Prepared for

CG Roxane, LLC

1210 South Highway 395 Olancha, California 93549

PHASE 2 SITE GROUNDWATER INVESTIGATION REPORT

Olancha Spring Water Bottling Facility 1210 South U.S. Highway 395 Olancha, California

Prepared by

engineers | scientists | innovators

924 Anacapa Street, Suite 4A Santa Barbara, California 93105

14 August 2015

PHASE 2 SITE GROUNDWATER INVESTIGATION REPORT

Olancha Spring Water Bottling Facility

1210 South U.S. Highway 395 Olancha, California

Prepared for

Crystal Geyser Roxane

14 August 2015

Mark Grivetti, P.G., C.E.G., C.Hg.

Geosyntec Consultants Principal Hydrogeologist

Ryan Smith, P.G., C.Hg. Geosyntec Consultants Project Geologist

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1.0	INT	RODUCTION	1
2.0	GEN	NERAL SITE INFORMATION	3
	2.1	General Site Information	
	2.2	Summary of Site Groundwater Wells	
3.0	PRE	EVIOUS HYDROGEOLOGIC SITE STUDIES	5
4.0	SITE	E GEOLOGY AND HYDROGEOLOGY	7
	4.1	Regional Geology and Hydrogeology	
	4.2	Site Geohydrology	7
5.0	FIEI	LD METHODOLOGY	9
	5.1	Drilling and Logging activities	9
6.0	INV	ESTIGATION RESULTS	
	6.1	Soil Sample Results Error! Bookmark no	t defined.
	6.2	Groundwater Sample Results Error! Bookmark no	t defined.
	6.3	Soil Vapor Sample Results	14
7.0	DAT	TA EVALUATION	18
8.0	CON	NCLUSIONS AND RECOMMENDATIONS	21
9.0	REF	FERENCES	24

LIST OF TABLES

Table 1: Soil Sample Results – Detected Metals

Table 2: Soil Sample Results – Detected Inorganic Constituents

Table 3: Soil Vapor Sample VOC Results

Table 4: Groundwater Levels and Well Construction Data

Table 5: Field Groundwater Quality Parameters

Table 6: Groundwater Sample Results - Detected Metals

Table 7: Groundwater Sample Results - Detected Inorganic Constituents

Table 8: Groundwater Sample Results – Total and Fecal Coliform

LIST OF FIGURES

Figure 1: Site Location Map

Figure 2: Site Plan Showing Estimated Groundwater Gradient, Wells, and Springs

Figure 3: Phase 2 Boring and Groundwater Monitoring Well Locations, July 6, 2015

Figure 4: Groundwater Elevations and Gradient

Figure 5: Dissolved Arsenic Isoconcentration

Figure 6: Stiff Diagram

APPENDICES

APPENDIX A: Well Construction Information

APPENDIX B: Field Monitoring Logs

APPENDIX C: Well Permits

iii 08/14/2015

Geosyntec consultants

APPENDIX D: Waste Transportation Manifests

APPENDIX E: Lithologic Boring Logs

APPENDIX F: Laboratory Reports

APPENDIX G: Data Validation Summary

iV 08/14/2015

EXECUTIVE SUMMARY

The Phase 2 Site investigation was conducted in general accordance with the RWQCB's Amended Investigative Order R6V-2014-0063A1. The Phase 2 Site investigation was conducted to further evaluate the soil, soil vapor, and groundwater conditions in the areas around the Arsenic Pond (AP), the East Pond (EP), and the Fire Pond (FP). Additionally, the investigation was completed to evaluate groundwater gradient and flow patterns in the upper-most shallow groundwater aquifer.

A total of nine groundwater monitoring wells and one temporary soil vapor probe were installed, and soil, soil vapor, and groundwater samples were collected and analyzed as part of the Phase 2 Site investigation. Soil samples results indicate that arsenic, cobalt, mercury, and molybdenum were detected at concentrations exceeding one or more published screening level. Of the metals detected in soil, only detections of arsenic and molybdenum exceeded the California median background for soil concentrations (UCR/DTSC, 1996). The distribution and concentrations of the detected metals and inorganic compounds indicate that there have been no significant impacts to soil due to waste water discharges at the Site.

Soil vapor sampling indicates low detections of volatile organic compounds (VOCs) above the laboratory minimum reporting limit (MRL). All soil vapor sample results were much lower than the most stringent screening levels for even residential vapor intrusion concerns. Based on the soil vapor sample results and the soil and groundwater sample results, there has not been a significant release of VOCs in the area around the valve distribution box.

The groundwater gradient in the area of the EP and AP was calculated to be towards the northeast at a magnitude of approximately 0.005 feet/ft. The gradient was not calculated for the area around the FP, but the groundwater elevations measured in well MW-01 and MW-02 near the FP indicate that there is a mounding effect caused by the Spring Line fault. MW-02 is installed directly west and adjacent to the inferred trace of the Spring Line fault. Groundwater flow on the west side of the Spring Line fault has been investigated in previous phases of work at the Site and has been shown to flow towards the east with a mounding effect on groundwater flow (Dames and Moore, 1991). The mounding effect causes groundwater to flow to the ground surface in areas of the Site from which the springs are produced.

The results of the Phase 2 investigation indicate that the primary groundwater constituents of concern in areas around the AP, EP, and FP, are metals. Antimony, arsenic, barium, and lead, were detected at concentrations exceeding MCLs of 6, 10, 1,000, and 15 micrograms per liter (μ g/L), respectively. Antimony was only detected in the sample collected from MW-04, while arsenic was detected in all groundwater samples collected except MW-08. The detections of barium and lead that exceeded MCLs of 1,000 and 15 μ g/L, respectively, were only found in the groundwater grab

08/14/2015

sample from AP-4 only. Arsenic was detected at elevated concentrations exceeding the MCLs in wells MW-04 and MW-05. These wells are located approximately 100 and 500 feet down-gradient of the AP along the northeasterly groundwater flow path. Other compounds analyzed were not detected above their respective primary or secondary MCLs.

It is important to note that elevated arsenic is known to be a naturally occurring element in the soils and in deeper groundwater at concentrations ranging from 16 to $28 \mu g/L^1$ based on regular water quality sampling conducted at the Site production wells. The production wells are located west of the Spring Line fault. It is assumed that naturally occurring arsenic concentrations in groundwater increase east of the Spring Line fault reaching very high levels beneath Owens Lake. Shallow groundwater sampling (< ~10 feet) by others beneath Owens Lake documented arsenic concentrations in the range of 50 - 150 mg/L (Levi et al, 1999). It is likely that these elevated concentrations are associated with the fine grained lacustrine deposits. Thus, as the presence of these layers increases eastward, it is expected that naturally occurring arsenic concentrations will likewise increase. However, this expected increase is a general trend and will be more dependent on the volume of fine grained lacustrine sediment encountered in each area.

Based on data collected during this investigation, it appears that there has been a release from the AP. The elevated arsenic concentrations detected in wells MW-04 and MW-05 are found proximal and down-gradient of the AP, but the extent has not been fully delineated in the down-gradient direction. Therefore, additional investigation of groundwater quality is recommended down-gradient of well MW-05 to further delineate the arsenic concentrations.

Based on the laboratory analytical results of the Phase 2 soil, soil vapor, and groundwater samples, the analytical schedule for future quarterly groundwater sampling of the monitoring wells is proposed to be reduced to:

- Dissolved CAM 17 metals; and
- General minerals including sodium, calcium, magnesium, chloride, bicarbonate, sulfate, and total dissolved solids.

Additionally, based on the low detections of VOCs in the SVP, is it proposed that additional soil vapor sampling is not necessary for this investigation.

Vi 08/14/2015

_

¹ Range of arsenic concentrations based on annual sample results in 2012 and 2013 from production wells CGR-1, CGR-3, CGR-5, CGR-6, and CGR-7.

1.0 INTRODUCTION

Geosyntec Consultants, Inc. (Geosyntec), on behalf of Crystal Geyser Roxane (CGR), is pleased to present the following *Phase 2 Site Groundwater Investigation Report* (Phase 2 Report) for the CGR Spring Water Bottling Facility (Site) located at 1210 South U.S. Highway 395, near Olancha, California.

The Phase 2 groundwater investigation was performed to address the requirements of the Lahontan Regional Water Quality Control Board (RWQCB) Amended Investigative Order Number R6V-2014-0063A1 (Amended Order) dated May 8, 2015. The Amended Order was issued by the RWQCB based on the results of the Phase 1 Site groundwater investigation summarized in the *Phase 1 Site Groundwater Investigation Report* dated February 16, 2015 (Geosyntec, 2015a). The Amended Order required additional soil, soil vapor, and groundwater investigation to further assess the extent of impacts to soil, soil vapor, and groundwater based on the Site's historical and current water discharges.

The scope of work for the Phase 2 investigation was presented in the *Site Groundwater Investigation Work Plan* (Plan) dated October 17, 2014 (Geosyntec, 2014), and the *Phase 2 Site Investigation Work Plan Addendum* (Plan Addendum) dated May 29, 2015 (Geosyntec, 2015b). The Plan Addendum was approved by the RWQCB in correspondence dated June 29, 2015.

The objectives of the Phase 2 scope of work were:

- Evaluate potential impacts to soil based on Site water discharges as required by the RWQCB;
- Evaluation of potential leakage from the distribution valve box collection through analysis of soil, soil vapor, and groundwater grab samples from boring AP-4; and
- Evaluation of groundwater quality in areas around the Fire Pond (FP), Arsenic Pond (AP), and East Pond (EP), through analysis of groundwater samples from nine groundwater monitoring wells.

The Phase 2 Report has been organized as follows:

- Section 1. *Introduction*.
- Section 2.0. —General Site Information. This section includes a general description of the site location, site topography and site features such as surface water, structures, and wells.

- Section 3.0 *Previous Hydrogeologic Investigations*. A summary of the previous investigations is presented.
- Section 4.0. Site Geology and Hydrogeology. This section includes a brief
 description of the regional and Site geology and hydrogeology including regional
 watershed information.
- Section 5.0. *Field Methodology*. Procedural information on drilling and well installation, flume installation, piezometer installation, aquifer testing, and water sampling is presented.
- Section 6.0. *Investigation Results*. This section presents the results of the drilling, groundwater monitoring well installation, groundwater level gauging, and soil, soil vapor, and groundwater sample analyses.
- Section 7.0. *Data Evaluation*. A discussion of the Site hydrogeology, soil conditions, soil vapor conditions, and groundwater quality conditions is presented, including comparison of sample results to established screening levels and maximum contaminant levels (MCLs).
- Section 8.0. *Conclusions and Recommendations*. This section provides conclusions regarding potential impacts based on the investigative data generated to date and the recommendations for additional Site investigative work.
- Section 9.0. *References*

2.0 GENERAL SITE INFORMATION

General Information

The Site is an irregularly-shaped property that consists of approximately 170 acres adjacent to Highway 395 approximately 3 miles north of Olancha, California (**Figure 1**). CGR operates a spring water bottling facility using groundwater production wells for bottled spring water supply and for domestic and industrial purposes. The facility consists of two large bottling-production and warehouse buildings, CGR North and CGR South, containing a total of six main bottling production lines. A full description of the bottling facility waste discharge systems and processes was submitted in the *Facility Waste Generation and Discharge Systems Report* (CGR, 2014). The facility pumps groundwater from production wells located on the property for spring water bottling and domestic/industrial uses.

Regionally, the Site is located in the southern portion of the Owens Valley. Owens Lake (dry lake bed) is located east of the Site, and the base of the Sierra Nevada Mountains is located 1 mile west of the Site. Highway 395, which runs north-south, crosses the western portion of the Site (**Figure 1**). The Los Angeles Aqueduct is located approximately ½-mile west of the Site.

CGR recently purchased the Cabin Bar Ranch property, located directly to the north of the Site. The town of Cartago is located to the north of the Cabin Bar Ranch. The Cartago Mutual Water Company (CMW) owns two wells, CMW-1 and CMW-2, located approximately 3,500 feet north of the northern Site boundary in the town of Cartago. CMW-1 was installed to a depth of approximately to 250 or 325 feet. CMW reports that CMW-2 is currently used to supply water to 43 residences in the town of Cartago. Based on a Driller's Well Report CMW-2 is installed to a depth of approximately 160 feet and is screened or perforated between depths of 115 to 150 feet. Current static groundwater levels in CMW-2 are reported to be at approximately 16 to 17 ft bgs and dynamic pumping levels in the well are reported to be at approximately 30 ft bgs.

There are numerous other private domestic wells located in the town of Cartago. Based on a survey conducted by CGR in which available County files were reviewed (by permission of the individual residences) and a private residence survey was completed, it is estimated that there are currently 14 active private wells in Cartago. The pumping in the CMW wells and the 14 active private wells are the only known significant groundwater withdrawals in the area surrounding the Site. **Figure 2** shows the location of the active domestic wells in Cartago. These wells are all located a minimum of approximately 3,500 feet north of the Site.

2.2 **Summary of Site Wells**

Production wells and observation wells for the Site and the surrounding area are shown on **Figure 2**. CGR has installed a total of 7 groundwater production wells at the Site (CGR-1 through CGR-7) and 5 groundwater observation wells (OW-7U, OW-7M, OW-8U, OW-8US, and OW-8D). Wells CGR-2 and CGR-7 are used for bottled water production, and wells CGR-3 and CGR-4 are used for domestic or industrial purposes. Other production wells are currently inactive.

CGR installed three production wells (CGR-8 through CGR-10) on the Cabin Bar Ranch property. Additionally, there are five inactive production wells, 15 piezometers, and three monitoring wells previously installed at the Cabin Bar Ranch. Eight wells (EW-1 through EW-8) were installed at the Site prior to CGR starting operations at the Site. These previous eight wells are currently inactive. As summarized in Dames & Moore *Phase II – Water Resources Investigation, Crystal Geyser-Roxane, Bottling Facility* (Dames and Moore, 1991), there are very little data available for these eight wells.

Available completion depth and screen interval information for the production wells and observation wells is taken from the Updated Hydrogeologic Evaluation for Crystal Geyser Roxane, Cabin Bar Ranch, (RCS, 2012) and is presented in **Appendix A**.

3.0 PREVIOUS HYDROGEOLOGIC SITE STUDIES

There have been five previous hydrogeological Site studies relating to the CGR spring water bottling operations. A listing of the report references in chronological order is found below. Electronic copies of these reports (excepting the first listed report) were provided with the *Investigation Work Plan*, (Geosyntec, 2014) dated October 17, 2014.

- Phase I Water Resources Investigation, Crystal Geyser-Roxane, Bottling Facility, Inyo County, California, February 19, 1990. Completed by Dames and Moore. Report is referenced in subsequent reports, but a copy of the report is not available.
- Phase II Water Resources Investigation, Crystal Geyser-Roxane, Bottling Facility, Inyo County, California, January 20, 1991. Completed by Dames and Moore.
- Report Water Supply Well CGR-2, Crystal Geyser Roxane, Olancha, California, March 31, 1993. Completed by Dames and Moore.
- Report Water Supply Wells CGR-4, CGR-5 and CGR-6 Crystal Geyser-Roxane, Olancha, California, April 21, 1995. Completed by Dames and Moore.
- Test Well Installation and Hydrogeology Report, Cabin Bar Ranch, Olancha, California. February 7, 2011. Completed by Geosyntec Consultants.

Additionally, a screening level Site investigation was conducted in November 2014 in accordance with the RWQCB Investigative Order. The *Phase 1 Site Groundwater Investigation Report* (Geosyntec, 2015b) summarized the results of the Phase 1 investigation. This investigation was completed to evaluate the groundwater conditions in the areas around the AP, the EP, and the FP, as well as near the cooling tower on the north side of the northern Site bottling facility. A total of 10 groundwater samples were collected to gather screening level data in order to better evaluate groundwater quality conditions and identify appropriate locations for groundwater monitoring wells. Additionally, production waste water samples were collected from both the northern and southern bottling plants, and at water discharge locations of the AP, EP, and FP, for characterization and comparison to groundwater quality.

The results of the Phase 1 Investigation indicated that the primary constituents of concern in the groundwater in the investigation areas of the AP, EP, and FP, are metals. Of the metals detected, the primary metal of concern exceeding the corresponding Maximum Contaminant Level (MCLs) was arsenic. Additionally, elevated concentrations of sulfate and total dissolved solids (TDS) were also detected at concentrations exceeding their secondary MCLs in borings adjacent to the AP.

Geosyntec Consultants

Based on the data collected during the Phase 1 Site groundwater investigation, installation of groundwater monitoring wells was recommended for the areas surrounding the AP, EP, and FP, to verify the Phase 1 screening data. The Plan Addendum dated May 29, 2015 (Geosyntec, 2015a) was approved by the RWQCB in correspondence dated June 29, 2015.

4.0 SITE GEOLOGY AND HYDROGEOLOGY

4.1 Regional Geology

The Site is located in the southern portion of the Owens Valley which has a length of 150 miles and width of generally less than 8 miles. The Owens Valley is the westernmost valley of the Basin Range Province and is formed by the Sierra Nevada Mountains to the west and the White/Inyo Mountains to the east. The Sierra Nevada Mountains are generally composed of Mesozoic age igneous rocks of granodiorite-granite composition whereas the White/Inyo Mountains, to the east, consist of Pre-Cambrian to Triassic sedimentary rock locally intruded with Mesozoic granitic rocks.

Structurally, the Owens Valley is a graben bounded by the Sierra Nevada Frontal fault and the Inyo Mountain Frontal fault. These faults are considered active and the offset on these faults is the cause of the dramatic relief in the Owens Valley area. The Site is located on the valley floor at an elevation of approximately 3,640 feet, while Olancha peak, to the west of the Site in the Sierra Nevada Mountains, stands at an elevation of over 12,000 feet. The Inyo Mountains east of the Site have an elevation greater than 8,000 feet.

The California Department of Water Resources (DWR, 2003) shows the Site to be located in the southern portion of the Owens Valley Groundwater Basin. The groundwater basin has a surface area of 1,030 square miles and includes valleys in both Mono and Inyo County. The basin, as defined by the Department of Water Resources, is bounded to the south by the Coso Range, the Sierra Nevada to the west, the White/Inyo Mountains to the east, and the Benton Range to the north. Groundwater occurs in the sediments that fill the valley.

4.2 Site Geohydrology

Based on the previous investigations, (see Section 3.0), the following description provides the basis of understanding for the Site geohydrology. Further discussion of the Site geohydrology based on the results of the Phase 2 investigation is presented in Section 6.3.1.

The most important water bearing formation in the vicinity of the Site is alluvium consisting of sands and gravels derived from erosion of the surrounding mountains. The upper zone of the alluvial aquifer, in which the westernmost Site production wells are installed, is unconfined. Deeper zones of water bearing alluvium beneath the Site are under semi-confined conditions. The sandy and gravelly alluvium is locally interbedded or interfingered with fine-grained lacustrine (lake) deposits. Fine-grained lacustrine deposits increase in occurrence and thickness to the east towards Owens Lake (GSI, 1983). The thickness of the alluvial and lacustrine sequence is thought to be several

thousand feet thick and up to 6,000 feet or more in the middle of the Owens Lake (Pakiser et. al., 1964).

The primary source of groundwater recharge in the Owens Valley Groundwater basin is from percolation of stream flow from the Sierra Nevada range. In the case of the Site and the Cartago area, the main aquifer is thought to recharge primarily by flow in Olancha Creek, Cartago Creek, and Walker Creek that have watersheds to the west of the Site in the Sierra Nevada Mountains. Stream flow in these creeks is derived from precipitation in the mountains and infiltrates through relatively permeable alluvium closer to the valley floor. There is also thought to be some recharge of the alluvium from underflow of groundwater in fractures in the mountain bedrock, although the volume of such recharge is not known. Recharge of direct precipitation into the alluvium may also contribute a relatively small component of recharge into the groundwater basin.

Groundwater in the shallow unconfined aquifer is the source for numerous springs and seeps that collectively form along a north-south trending fault (a part of the Sierra Nevada Frontal fault system). The north-south trending fault is known locally as the "Spring Line fault" (**Figure 2**). The fault is inferred to cause a "damming" effect and the subsequent rise of groundwater to the surface creates the large linear spring areas or spring seeps (Dames and Moore, 1991). Production wells that have been installed by CGR draw water from the shallow unconfined aquifer in hydraulic connection with the spring water. Wells used for spring water production are all located west of the spring line fault.

Four monitoring wells, OW-8U, OW-8US, OW-8D and OW-9U are installed east of the Spring Line fault. These wells are screened at depths of 55 - 75 feet below ground surface (ft bgs) for wells OW-8US and OW-9U, to 190 - 230 ft bgs for well OW-8U, and 582 - 642 ft bgs for well OW-8D. Groundwater in these wells is artesian and the well screens were not installed in the upper-most portion of the aquifer, and therefore the groundwater from these wells is not representative of the conditions of the upper-most aquifer.

Based on an extensive hydrogeological investigation conducted at the Site in 1991 by Dames and Moore, the groundwater gradient west of the Spring Line fault in the Site vicinity was calculated to be to the northeast towards Owens Lake at a gradient of approximately 0.007 (see Figures 3 and 4 in Dames and Moore, 1991). More recently the groundwater gradient in the central portion of the Cabin Bar Ranch was calculated to be 0.015 to the east (Geosyntec, 2011). Additional discussion of the shallow groundwater gradient in the Phase 2 investigation areas is discussed further in Section 6.3.1.

There is no known use of groundwater in areas down-gradient of the Site. Additionally, production wells in the Cartago area (>3500 feet to the north) do not produce groundwater which originates from the Site.

5.0 FIELD METHODOLOGY

The following sections describe the general procedures for the Phase 2 field work. The Phase 2 boring and well locations are displayed on **Figure 3**. Field development and groundwater sampling logs including daily field instrument calibration logs are provided in **Appendix B**.

5.1 Health & Safety Plan

A site-specific Health & Safety Plan (HASP) was prepared for Geosyntec personnel. Sub-contractors working on the project provided their own personnel with HASPs. All site personnel had 40-hour health and safety training (CFR 1919.120).

5.2 Well Permitting

Prior to mobilizing to the Site, Geosyntec applied for and obtained monitoring well permits from the County of Inyo Environmental Health Department. Copies of the well permits are provided in **Appendix C**.

5.3 Drilling and Soil Logging

The soil boring (AP-4) and monitoring wells were installed using a hollow-stem auger (HSA) drill rig. A standard operating procedure for HSA drilling, well installation, well development, and sampling was provided in an appendix of the *Investigation Work Plan*.

A total of nine, 2-inch diameter Schedule 40 PVC groundwater monitoring wells and one soil vapor probe (SVP) were installed by Gregg Drilling and Testing, Inc. between June 22 and June 26, 2015. An 8-inch diameter hollow stem auger was used for installation of the monitoring wells and SVP. Groundwater monitoring wells were generally installed with a screen length of approximately 15 feet (approximately 10 feet screen installed below the water table and 5 feet of screen installed above the water table). The annulus between the screen interval and the borehole wall was filled with #2/12 sand that extended from the bottom of the borehole to approximately one foot above the top of the screen. The well was sealed using a minimum of 2 foot thick hydrated bentonite pellets above the sand filter pack and bentonite grout to the ground surface. In locations where the groundwater table was shallower than 10 ft bgs, a 15 foot long well screen was installed at a minimum depth of 20 ft bgs, so that a minimum of 4 feet of bentonite seal material could be installed as a surface seal. The monitoring wells were completed with three-foot tall monument well boxes set in a 4x4 foot concrete pad at the ground surface as required by the County of Inyo Environmental Health Department permit requirements.

During drilling, soil samples were collected every five feet bgs using a California Modified split-spoon sampler. The field geologist prepared a boring log describing lithology and construction details the groundwater monitoring wells and SVP. Soil

samples were logged in general accordance with the Unified Soil Classification System under the direct supervision of a licensed Professional Geologist.

5.4 Well Development and Sampling

Between June 28 and July 1, 2015, the wells were developed a minimum of 48-hours following installation. The wells were developed using a surge block, bailer, and submersible pump. Well development was finished by pumping the wells using a 2-inch diameter electric submersible pump. Development continued until the turbidity reduced to approximately 10 NTUs, water quality parameters had stabilized, and no suspended sediment was visible in the discharge water. An exception to this was well MW-7. Following surging and bailing, this well went dry after 2-3 gallons were pumped using the submersible pump. The well was allowed to recharge for approximately 3 hours and was again attempted to finish development using the electric submersible pump. The well was again pumped dry after 2-3 gallons. The turbidity remained elevated and water quality parameters did not stabilize due to the low groundwater yield.

Groundwater samples were collected from the monitoring wells, and a grab groundwater sample was collected from boring AP-4. The groundwater well samples were collected using the micro-purge or low-flow purge technique as described in the *Investigation Work Plan*. The grab groundwater sample collected from AP-4 was collected by installing a temporary 2-inch diameter well and collecting a sample using a disposable bailer. All water samples were field filtered for sediment. Water quality parameters of temperature, electrical conductivity, pH, oxidation reduction potential (ORP), dissolved oxygen (DO), and turbidity were collected using a field water quality meter calibrated in accordance with the manufacturers specifications. Additionally, total and residual chlorine were analyzed in the field using a colorimeter.

A survey of the position and top of casing elevation of the groundwater monitoring wells was conducted following installation by Triad/Holmes Associates, Inc., a licensed professional surveyor.

5.5 Soil Vapor Probe Sampling

The SVP was purged and sampled in general accordance with State of California Department of Toxic Substances Control (DTSC)/Los Angeles Regional Water Quality Control Board *Advisory on Active Soil Gas Investigations* (DTSC/Regional Board, 2012). SVP sampling occurred after subsurface conditions equilibrated a minimum of 48 hours after installation.

During purging of the SVP, the soil vapor was screened for volatile organic compounds (VOCs) using a photoionization detector (PID) calibrated to standard isobutylene calibration gas. Helium was used as a leak check tracer compound during purging and monitoring. Helium was introduced into a shroud which encompassed the SVP surface

connections during the purge prior to sample collection. The SVP was purged and sampled on July 8, 2015, by applying a vacuum to the SVP using a vacuum chamber and vacuum pump. The general soil gas sampling procedures were as follows:

- Static pressure or vacuum in the SVP was measured and recorded.
- Leak checks involving "shut-in" and helium tracer testing were performed to verify that all couplings and fittings in the sampling train are free of leaks.
- Soil vapor was purged prior to sample collection in order to ensure the sample
 was representative of soil vapor contained within the geologic materials outside
 the SVP and filter sand surrounding the soil vapor probe screen.
- During purging soil vapor was collected in a Tedlar® bag and screened for VOCs using a photoionization detector (PID) calibrated to isobutylene.
- After purging and stabilization of field monitoring parameters, soil vapor samples for laboratory analysis were collected in a 1-L Summa canisters. The canisters used for sampling were batch certified by the analytical laboratory.
- Sample identification and sample times were recorded on standard chain-of-custody documentation and transferred to the analytical laboratory.

5.6 <u>Laboratory Analytical Schedule</u>

The soil and groundwater samples were analyzed for the following parameters by Eurofins Calscience Environmental Laboratory:

- CAM 17 metals, (total and dissolved) using EPA Method 6010B and 7470A;
- VOCs using EPA Method 8260B;
- Semi-Volatile Organic Compounds (SVOCs) using EPA Method 8270C;
- Methylene Blue Active Substances (MBAS) using SM Method 5540;
- General Minerals (sodium, calcium, magnesium, chloride, bicarbonate, and sulfate) using EPA Method 200.7, 300.0 and Standard Method (SM) 2320B;
- Total Dissolved Solids (TDS) using SM 2540C;
- Total phosphate and phosphorus using SM 4500;

- Total nitrogen, nitrate as nitrogen, ammonia, and Total Kjeldahl nitrogen using SM 4500;
- Soil samples were analyzed for pH using SM 4500.

Groundwater samples were analyzed for total and fecal coliform using SM 8221B and were sent to BC Laboratories in Bakersfield California due to the extremely short hold time of 8 hours and due to the remote location of the Site.

5.7 <u>Investigative Derived Waste</u>

Soil cuttings were transferred to a lined roll-off bin and well development, and purge/decontamination water was transferred to a holding tank and stored on-Site pending laboratory analysis and profile acceptance. A composite sample of both the soil cuttings and the purge/decontamination water were collected and analyzed for total petroleum hydrocarbons using EPA Method 8015M, Title 22 Metals using EPA Methods 6010B/7470A, and VOCs using EPA Method 8260B. Based on the results of the waste profile samples, a non-hazardous waste profile was accepted at the licensed waste disposal facility. The soil bin was transported to Soil Safe of California in Adelanto, California and the water was transported to Crosby and Overton, in Long Beach California on August 6, 2015. The transportation waste manifests for the soil and groundwater transported off the Site is included as **Appendix D**.

6.0 INVESTIGATION RESULTS

The following sections present the results of the Phase 2 investigation. A summary of the soil sample analytical results are presented in **Tables 1 and 2**. The soil vapor sample results are presented in **Table 3**. A summary of the groundwater well construction details and groundwater elevations on July 7, 2015, are presented in **Table 4**. The stabilized field groundwater quality parameter during sampling are presented in **Table 5**. Groundwater analytical results are presented in **Tables 6 through 8**. Lithologic logs and well completion logs are presented in **Appendix E**. The laboratory analytical reports for soil, soil vapor, and groundwater samples are presented in **Appendix F**.

6.1 Soil Results

6.1.1 Soil Classification and Field Data

In borings MW-01 and MW-02 the soil types encountered generally consisted of interbedded layers of light yellowish brown, fine to coarse grained, well graded sand and silty sand from ground surface to approximately 35 feet below ground surface (bgs). In boring MW-2 a sandy silt was found interbedded with the sands. The soils classified in these borings were interpreted to be alluvial fan sediments derived from erosion of the Sierra Nevada Mountains to the west of the Site. Both MW-1 and MW-2 are installed in locations west of the Spring Line fault.

In borings MW-03, MW-04, MW-05, MW-08 and MW-09, completed in locations around the AP, the soil types encountered generally consisted of light yellowish brown to light olive brown, loose, fine to coarse grained, well graded sand with trace gravel, from ground surface to depths ranging from approximately 8 to 15 ft bgs. Underlying the well graded sand were fine grained sediments consisting of moderate to highly plastic, dark gray to dark greenish gray, soft clays and silts, interbedded with poorly graded and well graded sands to the total depth of the borings (22-24 ft bgs). The soil sequence observed in these borings is interpreted to be recent alluvial deposits at the former lake shore of the dry Owens Lake interfingered with fine-grained lacustrine sediments of silts and clays. These borings were completed east of the Spring Line fault.

In borings MW-06 and MW-07, completed in locations around the EP, the soil types encountered consisted of grayish brown to light yellowish brown, fine to very coarse, well graded sand with trace rounded gravel from ground surface to approximately 23 ft bgs. The soil encountered in these borings are interpreted to be a slightly thicker sequence of alluvial deposits at the dry Owens Lake shore line. These borings were also completed east of the Spring Line fault.

No indications of contamination were noted such as staining, discoloration, or odors during soil logging. Photoionization (PID) readings collected in the field ranged from 0.0

to 4.5 parts per million volume (ppmv), with the highest PID reading recorded in MW-06 at approximately 20 ft bgs. The borehole logs are presented in **Appendix E**.

6.1.2 Soil Sample Analytical Results

A total of 10 soil samples and one duplicate sample were submitted for laboratory analyses. The duplicate soil sample was collected from boring AP-4. **Table 1** presents a summary of the detected metals and **Table 2** presents a summary of inorganic constituents in soil samples. Only detections above the laboratory minimum reporting limits (MRLs) are presented in tables; all other results were not detected above laboratory MRLs.

Arsenic, barium, beryllium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, vanadium, and zinc were detected above the laboratory MRL in one or more soil samples collected. Of these metals, arsenic, barium, chromium, cobalt, copper, vanadium, and zinc were the most prevalent with detections in all samples collected with the exception that arsenic was not detected above the laboratory MRL in the sample collected from boring MW-09.

The inorganic compounds detected above laboratory MRLs included alkalinity, ammonia, chloride, nitrate and nitrite, total nitrogen, and total Kjeldahl nitrogen, phosphate, total phosphorus, sulfate and TDS. Soil sample analytical reports are included as **Appendix F**.

6.2 Soil Vapor Sample Results

One primary sample and one duplicate soil vapor sample was collected from the SVP installed at boring AP-4. **Table 3** presents a summary of the detected VOCs in the soil vapor samples.

Field screening for VOCs using a PID was measured at 4.4 parts per million by volume (ppmv). The SVP was purged and sampled in general accordance with the procedures outlined in Section 5.5. The shut in tests and helium leak detection checks tests passed, indicating that there was no leakage in the sampling train or the seal for the SVP.

The samples from the SVP were sent to Eurofins Calscience Environmental Laboratory for analysis. Analytical results were reported as follows:

- The VOCs detected in 2-butanone, acetone, benzene, chloromethane, ethylbenzene, isopropyl alcohol, o-xylene, tetrachloroethene (PCE) and toluene.
- All other VOCs were not detected above the laboratory MRLs.

6.3 **Groundwater Results**

6.3.1 Groundwater Elevation Data

Groundwater level measurements were collected from the nine Site monitoring wells on July 6, 2015. The groundwater level monitoring data are presented in **Table 4**. Groundwater elevations ranged from 3,600.36 feet above sea level (ft asl) in well MW-05 to 3,625.93 ft asl measured in MW-02. Groundwater elevations in wells MW-01 and MW-02, located west of the Spring Line fault, are approximately 20 feet higher than the groundwater elevations measured in monitoring wells east of the Spring Line fault.

A groundwater elevation contour figure for July7, 2015, is presented in **Figure 4**. The groundwater flow direction is towards the northeast in the area beneath the AP and the EP. The groundwater gradient was calculated using the 3-point method, and was found to be approximately 0.005 feet/ft. In the area of the FP, the groundwater elevation at MW-02 was higher than the elevation at MW-01, suggesting groundwater flows to the southwest in this area. As previously mentioned, wells MW-01 and MW-02 are both located west of the Spring Line fault. MW-02 is located directly adjacent to and slightly west of the inferred trace of the Spring Line fault. Based on previous hydrogeologic investigations of the Site (Dames and Moore, 1991), groundwater west of the fault generally flows to the east, and the Spring Line fault is interpreted as a leaky boundary, such that groundwater will mound when it encounters the fault. This rise in groundwater associated with the Spring Line fault causes the spring seeps at the Site. The groundwater gradient calculated in previous investigations indicates that the flow direction and magnitude is similar on both sides of the Spring Line fault.

6.3.2 Groundwater Analytical Results

Ten groundwater monitoring well samples including the duplicate sample from MW-4 and one groundwater grab sample was collected as part of this investigation. The stabilized field groundwater quality monitoring parameters are presented on **Table 5**. Generally the oxidation reduction potential was negative, indicative of reducing conditions, for all wells except MW-01. Electrical conductivity and residual chlorine were highest in wells MW-04 and MW-05 and lowest in up-gradient wells MW-01 and MW-02.

The analytical results for the groundwater samples are summarized in **Tables 6 through 8** including the State of California Maximum Contaminant Levels (MCLs) for drinking water if available.

The following dissolved or total metals were detected in one or more of the Phase 2 groundwater samples:

• Antimony, arsenic, barium, chromium, copper, copper, lead, molybdenum, nickel, silver, vanadium, and zinc.

The following inorganic and general minerals constituents were detected above the laboratory MRL in one or more groundwater samples collected:

• Alkalinity (total), ammonia, calcium, chloride, magnesium, MBAS, nitrate and nitrite as nitrogen, total nitrogen, total Kjedahl nitrogen, phosphate, total phosphorus, sodium, sulfate, and TDS.

Fecal and total coliform were detected slightly above the laboratory MRL in wells MW-01, MW-03, MW-05, MW-07 and MW-08.

VOC and SVOCs were not detected above the laboratory MRL. Further discussion of the groundwater sample analytical results and comparison to MCLs is presented in Section 7.3.

6.4 Data Validation

The data were validated at a United States Environmental Protection Agency (EPA) Stage 2A data validation level. Based on this Stage 2A data validation covering the quality control (QC) parameters listed below, the data as qualified are usable for meeting project objectives, with the exceptions of rejected data. Further summary of the data validation results is presented in **Appendix G**. Qualified data should be used within the limitations of the qualification. The following qualifications for soil samples were identified based on the Stage 2A data validation:

- The MBAS analyses in reports 15-06-1886 and 15-06-2190 were performed 8-9 days and 5 days after collection, respectively, more than twice the 48-hour holding time. Therefore, based on technical and professional judgment, the nondetect values of MBAS in the associated samples were R qualified as rejected.
- The total and fecal coliform results reported by Standard Methods 9221B in laboratory report 15-06-2190 were analyzed 8 and 9 days after collection; the total and fecal coliform results reported by Standard Methods 9221B in laboratory report 15-06-1979 were analyzed 4-6 days after collection; the total and fecal coliform results reported by Standard Methods 9221B in laboratory report 15-06-1886 were analyzed 6 days after collection. These analyses were more than twice the 24-hour holding time. Therefore, based on technical and professional judgment, the non-detect values of total and fecal coliforms in the associated samples were R qualified as rejected due to the gross exceedances of the holding time.

- The samples in laboratory report 15-06-2190 were received 5 days after collection, at 20.6 degrees centigrade. Based on technical and professional judgment, the non-detect values of the VOCs, SVOCs and TPH were R qualified as rejected.
- The MBAS results were R qualified as rejected due to the gross exceedances of the holding times (analyzed more than 2 times the holding time); therefore, no additional qualifications were applied to the data due to the temperature at laboratory receipt.

The following qualifications for groundwater samples were identified based on the Stage 2A data validation:

- The samples in laboratory report 15-06-2184 were received 3 days after collection, at 16.3 degrees centigrade. Based on technical and professional judgment, the non-detect values of the VOCs and SVOCs were R qualified as rejected.
- The samples in laboratory reports 1516292 and 1516465 were analyzed more than 16 hours after collection, which are gross exceedances of the holding time. Therefore, based on technical and professional judgment, the undetected values of total and fecal coliforms in the samples in laboratory reports 1516292 and 1516465 were R qualified as rejected and the concentrations were J qualified as estimated.

7.0 DATA EVALUATION

7.1 Soil Conditions

The soil types encountered surrounding the EP and the AP indicate that the surficial soils are coarse grained sands representative of the former shoreline of the now dry Owens Lake. Soil types encountered below the coarse grained sands were fine grained lacustrine deposits interbedded with alluvial sands. This sequence of soil types is consistent with borings that have been completed east of the Spring Line fault, including the Phase 1 borings, and OW-8US, and OW-8M.

Soil samples analytical results for metals were compared to a number of regulatory screening levels including the United States Environmental Protection Agency (EPA) Regional Screening Levels (RSLs) (USEPA, 2014) based on an industrial site setting, for protection of groundwater for maximum contaminant levels (MCLs), for health risk based protection of groundwater, and based on the California median background soils (UCR/DTSC, 1996). Of the metals detected in the soil samples, arsenic, cobalt, mercury and molybdenum were detected at concentrations exceeding one or more of these screening levels. Furthermore, only detections of arsenic and molybdenum exceeded the California median background for soil concentrations. Molybdenum was detected above the laboratory MRL in the sample collected from boring MW-01 only. Additionally, this sample was collected at a depth of 15 ft bgs. MW-01 is located up-gradient of any waste water discharge outfall by more than 350 feet. Based on the depth and upgradient position from discharge outfalls, the molybdenum detected in the soil from MW-01 is interpreted as naturally occurring, and is not interpreted to be caused by waste water discharges from the Site.

Of the samples that exceeded the arsenic screening levels, the results from borings AP-4 and MW-03 slightly exceeded the California median background concentration of 2.7 micrograms per kilogram (mg/kg), while the result from MW-01 was greater than 10 times the California median background concentration. MW-01 is located up-gradient of any waste water discharge outfall by more than 350 feet. This soil sample was collected above the water table at a depth of 15 ft bgs. Based on the depth and upgradient position from discharge outfalls, the arsenic detected in the soil from MW-01 is interpreted as naturally occurring, and is not interpreted to be caused by waste water discharges from the Site. Furthermore, the distribution of the arsenic in soil samples does not support that potential releases from the AP or the valve distribution box have significantly contributed to the arsenic concentrations in the soil surrounding these features.

7.2 Soil Vapor

Concentrations of VOCs were detected at low concentrations in the sample collected. While vapor intrusion is very unlikely at this Site, all sample results were much lower

than the most stringent screening levels for even residential vapor intrusion concerns. In addition, VOCs in soil and groundwater from surrounding locations did not have detections of VOCs. Based on the soil vapor sample results and the soil and groundwater sample results, there has not been a significant release of VOCs in the area around the valve distribution box.

7.3 Groundwater

The groundwater sample results were compared to the California Department of Public Health Department MCLs. Antimony, arsenic, barium, and lead, were detected at concentrations exceeding MCLs of 6, 10, 1,000, and 15 micrograms per liter (μg/L), respectively. Antimony was only detected in the sample collected from MW-04, while arsenic was detected in all groundwater samples collected. The detections of barium and lead that exceeded MCLs of 1,000 and 15 μg/L, respectively, were only found in the groundwater grab sample from AP-4. Barium and lead were not detected in samples collected down-gradient from the AP-4 location at wells MW-04 or MW-05, and therefore the extent of these metals appears to be very limited. Sulfate was detected at concentrations exceeding the secondary MCL of 250 mg/L in samples collected from MW-04, MW-05 and MW-09. TDS was detected at concentrations exceeding the secondary MCL of 500 mg/L in samples collected from MW-01, MW-04, MW-05, MW-06, MW-07 and MW-09.

A groundwater isoconcentration figure for arsenic is presented in **Figure 5**. As indicated on the figure, elevated arsenic levels were found in samples collected from MW-04 and MW-05, located approximately 100 and 500 feet down-gradient, respectively, from the AP. Based on the groundwater flow direction and the sample results, the extent of the elevated arsenic concentrations has not been delineated in the down-gradient direction near MW-04 and 05.

The arsenic concentrations found in other Phase 2 groundwater monitoring well samples, appear to be within the range of expected naturally occurring background concentrations. As noted in previous reports (Geosyntec, 2015a) and based on previous investigations at the Site, arsenic is known to be a naturally occurring element in the soil and groundwater at and near the Site. For example, Site production wells located west of the Spring Line fault, which produce from deeper zones, have arsenic in the approximate range of 16 to 28 $\mu g/L^2$. It is assumed that naturally occurring arsenic concentrations in groundwater increase east of the Spring Line fault reaching very high levels beneath Owens Lake. Shallow groundwater sampling (< ~10 feet) by others beneath Owens Lake documented arsenic concentrations in the range of 50 – 150 mg/L (Levi et al, 1999). It is likely that these elevated concentrations are associated with the fine grained lacustrine deposits. Thus, as the presence of these layers increases, it is expected that naturally occurring

² Range of arsenic concentrations based on annual sample results in 2012 and 2013 from production wells CGR-1, CGR-3, CGR-5, CGR-6, and CGR-7.

arsenic concentrations will likewise increase. However, this expected increase is a general trend and will be more dependent on the volume of fine grained lacustrine sediment encountered in each area. For example, the arsenic detection in MW-09 were slightly higher than the range of arsenic detected west of the Spring Line Fault, however the fine-grained lacustrine sediments identified in this boring were directly adjacent to the screen section of this well where the sampling pump was installed. The arsenic concentrations detected in this well are likely the result of the fine grained sediments found in adjacent to this well screen.

As described in the Phase 1 report, previous groundwater grab samples were very turbid with sediment, which contributed to elevated total metals concentrations. All groundwater samples were field filtered for the Phase 2 groundwater sampling event. The results of dissolved and total metals were similar for the Phase 2 investigation samples, with the total metals concentrations generally slightly higher than the dissolved metals results.

A Stiff diagram is presented as **Figure 6**. The Stiff diagram graphically represents the relative concentrations of major anions and cations in milliequivalent units. Based on the Stiff diagram the water quality in MW-4 and MW-5 are similar in composition and contain the highest concentrations of both anions and cations. Wells located up-gradient or cross-gradient of these wells, MW-01, MW-02, MW-03, MW-08, and MW-09, generally have similar composition and relative concentrations of anions and cations. Wells MW-06 and MW-07 also have similar water quality characteristics and have similar concentrations of both cations and anions. In general, wells MW-04, MW-05, MW-06 and MW-07 have elevated concentrations of cations of sodium and potassium, and elevated concentrations sulfate and bicarbonate in comparison to wells MW-01, MW-02, MW-03, MW-08, and MW-09.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The Phase 2 Site investigation was conducted to further evaluate the soil, soil vapor, and groundwater conditions in the areas around the AP, the EP, and the FP. Additionally, the investigation was completed to evaluate groundwater gradient and flow patterns in the upper-most shallow groundwater aquifer. The monitoring well and soil vapor probe sampling locations were selected based on data obtained from the Phase 1 Site screening level investigation (Geosyntec, 2015b).

A total of nine groundwater monitoring wells and one temporary soil vapor probe were installed, and soil, soil vapor, and groundwater samples were collected and analyzed as part of the Phase 2 Site investigation. The groundwater gradient in the area of the EP and AP was calculated to be towards the northeast at a magnitude of approximately 0.005 feet/ft. The gradient was not calculated for the area around the FP, but the groundwater elevations measured in well MW-01 and MW-02 near the FP indicate that there is a mounding effect caused by the Spring Line fault. MW-02 is installed directly west and adjacent to the inferred trace of the Spring Line fault. Groundwater flow on the west side of the Spring Line fault has been investigated in previous phases of work at the Site and has been shown to flow towards the east with a mounding effect on groundwater flow (Dames and Moore, 1991). The mounding effect causes groundwater to discharge to ground surface (spring flow).

Soil samples results indicate that arsenic, cobalt, mercury, and molybdenum were detected at concentrations exceeding one or more published screening level. Of the metals detected in soil, only detections of arsenic and molybdenum exceeded the California median background for soil concentrations (UCR/DTSC, 1996). The distribution and concentrations of the detected metals and inorganic compounds indicate that there have been no significant impacts to soil due to waste water discharges at the Site.

Soil vapor sampling indicate low detections of VOCs above the laboratory MRL. All soil vapor sample results were much lower than the most stringent screening levels for even residential vapor intrusion concerns. Based on the soil vapor sample results and the soil and groundwater sample results, there has not been a significant release of VOCs in the area around the valve distribution box.

The results of the Phase 2 investigation indicate that the primary groundwater constituents of concern in areas around the AP, EP, and FP, are metals. In particular antimony and arsenic were detected at concentrations exceeding their MCLs of 6 and 10 μ g/L (as well as background – assumed to be approximately 16 to 28 μ g/L), in wells MW-04 and MW-05. These wells are located approximately 100 and 500 feet down-gradient of the AP along the northeasterly groundwater flow path. Additionally, elevated concentrations of sulfate and TDS were also detected at concentrations exceeding their secondary MCLs

in borings adjacent to the AP. Other compounds analyzed were not detected above their respective primary or secondary MCLs. It is important to note that elevated arsenic is known to be a naturally occurring element in the soils and at concentrations of approximately 16 to 28 µg/L³ based on regular water quality sampling conducted at the Site production wells. It is assumed that naturally occurring arsenic concentrations in groundwater increase east of the Spring Line fault, and groundwater sampling by others beneath Owens Lake documented arsenic concentrations in the range of 50 – 150 mg/L (Levi et al, 1999). It is likely that these elevated concentrations are associated with the fine grained lacustrine deposits. Thus, as the presence of these layers increases eastward, it is expected that naturally occurring arsenic concentrations will likewise increase. The occurrence of the shallow groundwater in contact with fine grained lacustrine deposits increases east of the AP, and therefore, it is anticipated that arsenic concentrations in the shallow groundwater east of the AP will be higher than the range of background concentrations observed in production wells west of the Spring Line fault.

It should be noted that production wells in the Cartago area (>3500 feet to the north) do not produce groundwater which originates from the Site. The Cartago wells are screened in different water bearing zone than the shallow-most groundwater found in the Phase 2 investigation areas. Furthermore, the groundwater gradient in the area of the AP is towards the northeast, and the arsenic-impacted groundwater is proximal to the AP and migrating a direction away the Cartago production wells.

Based on data collected during this investigation, it appears that there has been a release from the AP. The elevated arsenic concentrations detected in wells MW-04 and MW-05 are found proximal and down-gradient of the AP, but the extent has not been fully delineated in the down-gradient direction. Therefore, additional groundwater investigation is recommended down-gradient of well MW-05 to further delineate the arsenic concentrations. Additional groundwater investigation will be conducted in general accordance with the *Site Investigation Work Plan* (Geosyntec, 2014) and *Plan Addendum* (Geosyntec, 2015b) and is proposed to consist of collection of groundwater grab samples at locations down gradient of the AP. The groundwater grab samples will be analyzed and used to evaluate the placement of an additional groundwater well or wells, as necessary. Final well construction details will be determined based on analytical and field conditions.

The groundwater sample analytical results did not contain detections of VOCs, SVOCs, and contained very low detections of nitrate, nitrite, phosphate, phosphorus, MBAS, and total and fecal coliforms in one or more of the groundwater samples collected. Based on the laboratory analytical results of the Phase 2 soil, soil vapor, and groundwater samples, the analytical schedule for future quarterly groundwater sampling of the monitoring wells is proposed to be reduced to:

³ Range of arsenic concentrations based on annual sample results in 2012 and 2013 from production wells CGR-1, CGR-3, CGR-5, CGR-6, and CGR-7.

Geosyntec consultants

- Dissolved CAM 17 metals; and
- General minerals including sodium, calcium, magnesium, chloride, bicarbonate, sulfate, and total dissolved solids.

Additionally, based on the low detections of VOCs in the SVP, Geosyntec proposes that additional soil vapor sampling is not necessary for this investigation.

9.0 REFERENCES

- CGR 2014, Facility Waste Generation and Discharge Systems Report, Prepared by CG Roxane, LLC, 1210 South U.S. Highway 395, Olancha, California, October 21, 2014.
- Dames and Moore, 1990, Phase I Water Resources Investigation, Crystal Geyser-Roxane, Bottling Facility, Inyo County, California, February 19, 1990.
- Dames and Moore, 1991, Phase II Water Resources Investigation, Crystal Geyser-Roxane, Bottling Facility, Inyo County, California, January 20, 1991.
- Dames and Moore, 1991 Report Water Supply Wells CGR-4, CGR-5 and CGR-6 Crystal Geyser-Roxane, Olancha
- Dames and Moore, 1993, Report Water Supply Well CGR-2, Crystal Geyser Roxane, Olancha, California, March 31, 1993.
- Dames and Moore, 1995, Report Water Supply Wells CGR-4, CGR-5 and CGR-6 Crystal Geyser-Roxane, Olancha, California, April 21, 1995.
- Department of Water Resources, 2003, California's Groundwater, Bulletin 118.
- Geosyntec Consultants, Inc. 2011, Test Well Installation and Hydrogeology Report, Cabin Bar Ranch, Olancha, California. February 7, 2011.
- Geosyntec 2014, Site Investigation Workplan, Olancha Spring Water Bottling Facility, 1210 South U.S. Highway 395, Olancha, California, October 17, 2014.
- Geosyntec 2015a, Phase 1 Site Groundwater Investigation Report, Olancha Spring Water Bottling Facility, 1210 South U.S. Highway 395, Olancha, California, February 16, 2015.
- Geosyntec 2015b, Site Investigation Work Plan Addendum, Olancha Spring Water Bottling Facility, 1210 South U.S. Highway 395, Olancha, California, May 29, 2015.
- Geothermal Surveys Inc., 1982, Preliminary Geohydrologic Investigation of the Cabin Bar Ranch Area, Inyo, County, California.
- Geothermal Surveys Inc,. 1983, Ground Temperature Survey and Additional Geohydrologic Investigation, Cabin Bar Ranch, Inyo County. California.

- Levy et al., 1999 D.B. Levy, J.A. Schramke, K.J. Esposito, T.A. Erickson and J.C. Moore, The shallow ground water chemistry of arsenic, fluorine, and major elements: Eastern Owens Lake, California, Appl. Geochem. 14 (1999),
- Pakiser, L.C., Kane, M.F., and Jackson, W.H., 1964, Structural Geology and Volcanism of Owens Valley Region, California, a Geophysical Study. U.S.G.S. Professional Paper No. 438.
- RCS, 2012, Updated Draft Hydrogeologic Evaluation for Crystal Geyser Roxane Cabin Bar Ranch Water Bottling Facility Project, Inyo County, California, April 2012.
- Reid, J. S. et al., 1994, Local Meteorological, Transport, and Source Aerosol Characteristics of Late Autumn Owens Lake (dry) Dust Storms: Atmospheric Environment, v. 28, p. 1699-1706.
- Ryu J-H, et al., 2002, Arsenic Distribution, Speciation, and Solubility in Shallow Groundwater of Owens Dry Lake, California, Geochimica et Cosmochimica Acta, Vol. 66, No. 17, pp. 2981-2994, March 2002.
- UCR/DTSC, 1996, Background Concentrations of Trace and Major Elements in California Soils, Kearney Foundation of Soil Science, Division of Agriculture and Natural Resources, University of California Riverside, and California Department of Toxic Substances Control, March 1996
- USEPA, 2014. Regional Screening Levels for Chemical Contaminants at Superfund Sites. EPA Office of Superfund. January.

TABLES

Table 1

Soil Sample Results - Detected Metals Crystal Geyser Roxane Olancha, CA

Location	Depth (ft bgs)	Date Sampled	Sample ID	Arsenic mg/kg	Barium mg/kg	Beryllium mg/kg	Chromium mg/kg	Cobalt mg/kg	Copper mg/kg	Lead mg/kg	Mercury mg/kg	Molybdenum mg/kg	Nickel mg/kg	Vanadium mg/kg	Zinc mg/kg
AP-4	5	2015-06-25	AP-4-05-062515	2.95	16.7	ND < 0.248	3.05	0.886	2.76	0.864 J	ND < 0.0862 J	0.591	0.492 J	2.52	10.6
AP-4	5	2015-06-25	AP-4-05-062515-DUP	3.61	20.0	ND < 0.246	2.07	1.22	3.43	0.496 J	ND < 0.0794 J	0.259	1.23 J	3.41	11.0
MW-01	15	2015-06-22	MW-01-15-062215	53.8	49.1	0.379	1.62	5.19	14.7	4.01	ND < 0.0806	1.23	1.86	50.2	48.7
MW-02	10	2015-06-25	MW-02-10-062515	0.770	33.3	ND < 0.249	1.00	2.57	5.19	0.648	ND < 0.0877 J	ND < 0.249	0.841	10.3	33.0
MW-03	5	2015-06-23	MW-03-05-062315	3.33	31.2	ND < 0.255	2.35	1.68	2.92	0.801	0.169	ND < 0.255	2.52	5.32	10.6
MW-04	5	2015-06-24	MW-04-05-062415	1.11	9.92	ND < 0.245	0.350	0.501	3.02	ND < 0.490	ND < 0.0833 J	ND < 0.245	ND < 0.245	1.75	5.33
MW-05	5	2015-06-23	MW-05-05-062315	2.23	11.3	ND < 0.254	0.613	0.678	1.53	ND < 0.508	ND < 0.0847	ND < 0.254	0.380	2.78	6.92
MW-06	10	2015-06-23	MW-06-10-062315	1.54	15.1	ND < 0.238	1.26	0.871	2.07	ND < 0.476	ND < 0.0847	ND < 0.238	0.977	3.32	7.93
MW-07	5	2015-06-23	MW-07-05-062315	2.67	30.7	ND < 0.240	1.83	1.47	3.08	ND < 0.481	ND < 0.0794	ND < 0.240	2.01	5.46	10.9
MW-08	5	2015-06-24	MW-08-05-062415	2.54	18.5	ND < 0.255	1.25	1.02	3.30	0.552	ND < 0.0862	ND < 0.255	0.997	3.70	10.1
MW-09	10	2015-06-24	MW-09-10-062415	ND < 0.773	6.82	ND < 0.258	0.778	0.422	1.06	ND < 0.515	ND < 0.0794	ND < 0.258	0.431	2.62	3.36
		Screening Level - C	2.7	520	1.2	69	12	22	21	0.19	0.85	27	94	150	
		Screening Leve	el - USEPA 2014 Industrial Soil RSL	3.0	220,000	2,300	nl	350	47,000	800	40	5,800	22,000	5,800	350,000
Screenin	g Level - U	SEPA 2014 Protection	on of Groundwater MCL-Based SSL	0.29	82	3.2	180,000	nl	46	14	0.10	nl	nl	nl	nl
Screenin	ng Level - U	SEPA 2014 Protection	on of Groundwater Risk-Based SSL	0.0015	160	19	nl	0.27	28	nl	0.033	2.0	26	86	370

Notes:

Soil samples were analyzed for CAM 17 Metals by Eurofins Calscience Environmental Laboratories, in Garden Grove, California.

Samples were analyzed using EPA Methods 6010B and 7471A. Only detected metals shown in this table. Other metals were not detected above the laboratory Minimum Reporting Limit. Shaded cells represent an exceedence of one or more of the listed screening levels.

ND <x.xx: Indicates sample result was less than laboratory minimum reporting limit.

ft bgs: Feet below ground surface

mg/kg: milligrams per kilogram

RSL: United States Environmental Protection Agency Regional Screening Level.

nl: not listed

J: Estimated concentration.

SSL: Soil screening level

ND<: Not detected above the listed laboratory minimum reporting limit.

Table 2

Soil Sample Results - Detected Inorganic Constituents Crystal Geyser Roxane Olancha, CA

Location	Depth (ft bgs)	Date Sampled	Sample ID	Alkalinity, Total	Ammonia Nitrogen	Chloride	Nitrate and Nitrite	Nitrogen, Total (Calculated)	Nitrogen, Total Kjeldahl	рН	Phosphate	Phosphorus, Total as P	Sulfate	TDS
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH units	mg/kg	mg/kg	mg/kg	mg/kg
AP-4	5	2015-06-25	AP-4-05-062515	500 J	14 J	ND < 10 J	0.54 J	0.54 J	ND < 50 J	8.74	420 J	140 J	ND < 10 J	5,000 J
AP-4	5	2015-06-25	AP-4-05-062515-DUP	540 J	ND < 10 J	ND < 10 J	0.61 J	0.61 J	ND < 50 J	8.47	440 J	140 J	ND < 10 J	7,000 J
MW-01	15	2015-06-22	MW-01-15-062215	45	28	ND < 10	1.0	130	130	7.50	ND < 1.5	ND < 0.50	14	13,100
MW-02	10	2015-06-25	MW-02-10-062515	100 J	11 J	ND < 10 J	1.3 J	64 J	63 J	8.11	790 J	260 J	17 J	9,430 J
MW-03	5	2015-06-23	MW-03-05-062315	460	ND < 50	ND < 10	0.70	0.70	ND < 50	9.24	2.4	0.78	ND < 10	6,710
MW-04	5	2015-06-24	MW-04-05-062415	310 J	14 J	ND < 10 J	ND < 0.50 J	ND < 0.50 J	ND < 50 J	8.62	300 J	97 J	ND < 10 J	3,690 J
MW-05	5	2015-06-23	MW-05-05-062315	560	ND < 50	ND < 10	0.92	71	70	9.16	280	93	61	3,180
MW-06	10	2015-06-23	MW-06-10-062315	340	28	15	2.6	87	84	8.79	280	93	ND < 10	3,420
MW-07	5	2015-06-23	MW-07-05-062315	730	39	ND < 10	0.75	71	70	8.99	290	94	ND < 10	5,730
MW-08	5	2015-06-24	MW-08-05-062415	230	ND < 50	ND < 10	0.79	0.79	ND < 50	8.77	320	110	ND < 10	2,060
MW-09	10	2015-06-24	MW-09-10-062415	160	ND < 50	ND < 10	0.58	0.58	ND < 50	8.21	110	37	27	4,370

Notes:

Soil samples were analyzed for CAM 17 Metals by Eurofins Calscience Environmental Laboratories, in Garden Grove, California.

Samples were analyzed using EPA Methods 6010B and 7470A. Only detected metals shown in this table. Other metals were not detected above the laboratory Minimum Reporting Limit.

< x.xx: Indicates sample result was less than laboratory minimum reporting limit.

ft bgs: Feet below ground surface

mg/kg: milligrams per kilogram

J: Estimated concentration.

ND<: Not detected above the listed laboratory minimum reporting limit.

Table 3Soil Vapor Sample VOC Results
Crystal Geyser Roxane
Olancha, CA

Location	Depth	Date Sampled	Sample ID	2-butanone (MEK)	Acetone	Benzene	Chloromethane	Ethylbenzene	Isopropyl Alcohol	o-Xylene	Tetrachloroethene (PCE)	Toluene
				μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
SV-01	5	2015-07-08	SV-01-5-070815	ND < 4.7 J	25	ND < 1.7 J	1.1 J	ND < 2.3 J	18	ND < 2.3 J	ND < 3.6 J	ND < 2.0 J
SV-01	5	2015-07-08	SV-01-5-070815-DUP	9.6 J	60	20 J	ND < 1.1 J	4.8 J	20	2.3 J	5.2 J	7.8 J
	Screening Level - 2012 RSL Industrial Air * 1000			22,000,000	140,000,000	1,600	390,000	4,900	31,000,000	440,000	47,000	22,000,000
	5	Screening Level - 2012	2 RSL Residential Air * 1000	5,200,000	32,000,000	310	94,000	970	7,300,000	100,000	9,400	5,200,000

Notes:

Soil vapor samples analyzed by Eurofins Calscience Environmental Laboratory. Samples analyzed using EPA Method TO-15.

μg/m³: micrograms per cubic meter

ND <x.xx: Indicates sample result was less than laboratory minimum reporting limit.

RSL: USEPA Regional screening level.

J: Estimated concentration

Table 4Groundwater Levels and Well Construction Data
Crystal Geyser Roxane
Olancha, CA

Well ID	Date	Depth to Water	Top of Well Casing	Groundwater Elevation	Well Screen Interval	Well Total	Location C	oordinates
Well ID	Date	(ft btoc)	Elevation (ft amsl)	(ft amsl)	(ft bgs)	Depth (ft bgs)	Northing	Easting
MW-01	7/6/2015	21.80	3643.80	3622.00	18 - 33	33	36.3011461	-118.0207444
MW-02	7/6/2015	12.28	3638.21	3625.93	10 - 25	25	36.3018132	-118.0199017
MW-03	7/6/2015	13.97	3618.26	3604.29	5 - 20	20	36.3057165	-118.0186995
MW-04	7/6/2015	11.17	3615.22	3604.05	5 - 20	20	36.3061799	-118.0177333
MW-05	7/6/2015	7.97	3608.33	3600.36	5 - 20	20	36.3066296	-118.0165260
MW-06	7/6/2015	13.22	3615.33	3602.11	8 - 23	23	36.3052343	-118.0149476
MW-07	7/6/2015	8.28	3610.16	3601.88	5 - 20	20	36.3055453	-118.0142003
MW-08	7/6/2015	13.31	3617.28	3603.97	5 - 20	20	36.3063264	-118.0185088
MW-09	7/6/2015	16.14	3620.04	3603.90	9 - 24	24	36.3056073	-118.0178481

Notes:

Wellhead elevation and location survey completed by Triad/Holmes Associates, Inc.

Coordinate data in NAD 83 State Plane IV.

Elevation data in NAV 88.

ft btoc feet below top of casing ft amsl feet above mean sea level ft bgs feet below ground surface

Table 5Field Groundwater Quality Parameters
Crystal Geyser Roxane
Olancha, CA

Boring ID	Temperature (°C)	Conductivity (μS/cm)	ORP (mv)	DO (mg/L)	рН	Turbidity (NTU)	Free Cl ₂	Total Cl ₂
MW-01	18.3	315.4	8.8	5.7	6.76	16.0	0.31	0.24
MW-02	19.1	193.0	-9.4	0.6	6.10	10.0	0.45	0.23
MW-03	17.3	318.9	-217.5	0.3	7.34	16.0	0.6	0.39
MW-04	19.3	3,488	-263.0	0.5	10.62	143.0	1.62	1.74
MW-05	19.0	2,956	-152.1	0.3	9.74	9.0	2.35	1.73
MW-06	20.3	969.0	-311.0	0.3	8.48	69.0	0.79	0.77
MW-07	25.8	741.0	-303.9	0.4	9.13	>1000	1.55	14.68
MW-08	20.2	270.9	-190.4	0.4	7.15	7.0	0.3	0.2
MW-9	16.1	1,071	-82.4	3.4	3.14	8.0	0.38	0.28
AP-4	29.1	339.0	20.0	7.1	6.14	13.8	0.10	0.06

Notes:

bgs: below ground surface TDS: Total Dissolved Solids

ORP: Oxidation reduction potential

DO: Dissolved oxygen Cl₂: Residual chlorine

 $\mu S/cm$: microsiemens per centimeter

°C: degrees centigrade ppm: parts per million

mv: millivolts

mg/L: milligrams per liter

Table 6 Groundwater Sample Results - Detected Metals Crystal Geyser Roxane

Olancha, CA

Location	Date Sampled	Sample ID	Antimony (dissolved)	Antimony (total)	Arsenic (dissolved)	Arsenic (tota)	Barium (dissolved)	Barium (total)	Chromium (dissolved)	Copper (dissolved)	Copper (total)	Lead (dissolved)	Molybdenum (dissolved)	Molybdenum (total)	Nickel (total)	Silver (dissolved)	Vanadium (dissolved)	Vanadium (total)	(dissolve d)	(total)
			μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
AP-4	2015-06-25	AP-4-10-062515	< 15.0	< 15.0	239 J	80.1 J	1,300 J	< 10.0 J	13.3 J	83.6 J	< 10.0 J	16.1 J	137 J	54.3 J	< 10.0	< 5.00	187 J	22.1 J	282 J	11.6 J
MW-01	2015-07-07	MW-01-070715	< 15.0	< 15.0	13.6	17.6	22.8	26.8	< 10.0	< 10.0	< 10.0	< 10.0	11.0	11.9	< 10.0	< 5.00	< 10.0	< 10.0	< 10.0	< 10.0
MW-02	2015-07-07	MW-02-070715	< 15.0	< 15.0	23.3	21.0	19.6	20.2	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 5.00	< 10.0	< 10.0	< 10.0	< 10.0
MW-03	2015-07-07	MW-03-070715	< 15.0	< 15.0	20.5	20.1	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 5.00	< 10.0	< 10.0	< 10.0	< 10.0
MW-04	2015-07-06	MW-04-070615	24.7 J	16.0 J	742	821	10.3 J	24.4	< 10.0	48.2	43.3	< 10.0	430	476	< 10.0	6.80 J	217	249	< 10.0	24.9 J
MW-04	2015-07-06	MW-04-070615-DUP	20.3 J	< 15.0 J	757	816	< 10.0 J	23.8	< 10.0	36.1	41.8	< 10.0	439	471	< 10.0	7.91 J	222	248	< 10.0	13.4 J
MW-05	2015-07-07	MW-05-070715	< 15.0	< 15.0	707	730	14.3	17.2	< 10.0	50.5	47.3	< 10.0	437	448	< 10.0	5.59 J	197	208	10.3	37.5
MW-06	2015-07-06	MW-06-070615	< 15.0	< 15.0	17.1	18.3	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	10.4	10.4	< 10.0	< 5.00	< 10.0	< 10.0	< 10.0	< 10.0
MW-07	2015-07-06	MW-07-070615	< 15.0	< 15.0	47.9	48.3	< 10.0	14.2	< 10.0	37.2 J	16.2 J	< 10.0	29.3	30.1	10.5 J+	< 5.00	19.7	21.8 J+	< 10.0	22.6 J+
MW-08	2015-07-07	MW-08-070715	< 15.0	< 15.0	< 10.0	11.2	22.6	26.9	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 5.00	< 10.0	< 10.0	13.6 J	< 10.0 J
MW-09	2015-07-07	MW-09-070715	< 15.0	< 15.0	47.2	50.6	44.2	43.2	< 10.0	< 10.0	< 10.0	< 10.0	77.4	87.8	< 10.0	< 5.00	< 10.0	< 10.0	< 10.0	< 10.0
		2014 Cal EPA MCL	6.0	6.0	10	10	1,000	1,000	50	1,300	1,300	15	nl	nl	100	nl	nl	nl	nl	nl

Notes:

Groundwater samples were analyzed for CAM 17 Metals by Eurofins Calscience Environmental Laboratories, in Garden Grove, California.

Samples were analyzed using EPA Methods 60108 and 7470A. Only detected metals shown in this table. Other metals were not detected above the laboratory Minimum Reporting Limit. Shaded cells represent an exceedence of the listed maximum contaminant level.

ND <x.xx: Indicates sample result was less than laboratory minimum reporting limit.

ft bgs: Feet below ground surface

mg/kg: milligrams per kilogram

RSL: United States Environmental Protection Agency Regional Screening Level.

nl: not listed

J: Estimated concentration.

Table 7

Groundwater Sample Results - Detected Inorganic Constituents Crystal Geyser Roxane Olancha, CA

Location	Date Sampled	Sample ID	Alkalinity, Total	Ammonia Nitrogen	Calcium	Chloride	Magnesium	MBAS	Nitrate and Nitrite	Nitrogen, Total (Calculated)	Nitrogen, Total Kjeldahl	Phosphate	Phosphorus, Total as P	Sodium	Sulfate	TDS
			mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
AP-4	2015-06-25	AP-4-10-062515	865 J	< 0.10 J	3.54	7.9 J	0.199	< 0.10 J	< 0.10 J	1.1 J	0.980 J	27 J	8.8 J	95.6	26 J	2,060 J
MW-01	2015-07-07	MW-01-070715	114 J	< 0.10 J	37.7	3.1 J	3.63	< 0.10 J	0.55 J	0.54 J	< 0.500 J	< 0.31 J	< 0.10 J	21.8	26 J	230 J
MW-02	2015-07-07	MW-02-070715	72.0	< 0.10	23.1	2.0	2.54	< 0.10	< 0.10	< 0.50	< 0.500	< 0.31	< 0.10	9.42	12	160
MW-03	2015-07-07	MW-03-070715	120 J	0.56 J	20.9	9.7 J	5.19	< 0.10 J	< 0.10 J	1.1 J	1.10 J	0.94 J	0.31 J	41.3	12 J	245 J
MW-04	2015-07-06	MW-04-070615	916 J	0.11 J	7.40	20 J	1.10	< 0.10 J	0.23 J	1.6 J	1.40 J	4.8 J	1.6 J	934	880 J	2,340 J
MW-04	2015-07-06	MW-04-070615-DUP	916 J	0.11 J	7.34	16 J	1.10	< 0.10 J	0.23 J	1.6 J	1.40 J	4.9 J	1.6 J	909	890 J	2,360 J
MW-05	2015-07-07	MW-05-070715	556 J	0.39 J	16.3	19 J	2.37	0.11 J	< 0.10 J	1.8 J	1.80 J	4.9 J	1.6 J	716	830 J	1,960 J
MW-06	2015-07-06	MW-06-070615	180 J	0.17 J	48.5	190 J	8.91	< 0.10 J	< 0.10 J	0.86 J	0.840 J	1.5 J	0.49 J	192	48 J	635 J
MW-07	2015-07-06	MW-07-070615	248 J	< 0.10 J	6.56	72 J	1.69	< 0.10 J	< 0.10 J	1.3 J	1.30 J	1.8 J	0.58 J	145	58 J	1,040 J
MW-08	2015-07-07	MW-08-070715	120 J	0.39 J	22.3	4.3 J	1.49	< 0.10 J	< 0.10 J	0.84 J	0.840 J	0.43 J	0.14 J	30.8	4.2 J	205 J
MW-09	2015-07-07	MW-09-070715	174	< 0.10	154	6.8	7.11	< 0.10	0.28	0.79	0.560	0.44	0.14	75.3	360	730
	_	2014 Cal EPA MCL	nl	nl	nl	nl	nl	nl	10	nl	nl	nl	nl	nl	nl	nl

Notes:

Groundwater samples were analyzed by Eurofins Calscience Environmental Laboratories, in Garden Grove, California. Only detected compounds shown.

ND <x.xx: Indicates sample result was less than laboratory minimum reporting limit.

ft bgs: Feet below ground surface

mg/kg: milligrams per kilogram

RSL: United States Environmental Protection Agency Regional Screening Level.

nl: not listed

J: Estimated concentration.

Table 8Groundwater Sample Results - Total and Fecal Coliform
Crystal Geyser Roxane
Olancha, CA

Location	Date Sampled	Sample ID	Fecal Coliform MPN/100 ml	Total Coliform MPN/100 ml
AP-4	2015-06-25	AP-4-10-062515	< 2.0	< 2.0
MW-01	2015-07-07	MW-01-070715	< 2.0 R	2.0 J
MW-02	2015-07-07	MW-02-070715	< 2.0 R	< 2.0 R
MW-03	2015-07-07	MW-03-070715	< 2.0 R	2.0 J
MW-04	2015-07-06	MW-04-070615	< 2.0 R	< 2.0 R
MW-05	2015-07-07	MW-05-070715	< 2.0 R	2.0 J
MW-06	2015-07-06	MW-06-070615	< 2.0 R	< 2.0 R
MW-07	2015-07-06	MW-07-070615	2.0 J	2.0 J
MW-08	2015-07-07	MW-08-070715	< 2.0 R	2.0 J
MW-09	2015-07-07	MW-09-070715	< 2.0 R	< 2.0 R

Notes:

Samples analyzed by BC Laboratories, Inc.

MPN/100ml: Most probable number per 100 milliliters.

J: Estimated concentration

R: Data rejected due to data quality issues.

FIGURES

Stiff Diagram

Crystal Geyser Roxane, Spring Water Bottling Facility Olancha, California

Geosy	ntec⁵
cons	ultants
Santa Barbara	August 2015

Figure

6

Path "P:\GIS\Crystal Geyser\S80746\Prolects\Flag6 Stiff Diagral

APPENDIX A WELL CONSTRUCTION INFORMATION

TABLE 1A SUMMARY OF AVAILABLE WATER-SUPPLY WELL CONSTRUCTION DATA CABIN BAR RANCH PROPERTY INYO COUNTY, CALIFORNIA

	State Well		Method	Pilot Hole	Casing	Casing	Borehole	Sanitary	Perforation		Slot Opening	Type of	Pumping	Data Repo	orted by Dr	riller at Date	of Construction
Well No.	Completion Report No.	Date Drilled	of Drilling	Denth	Type & Depth (ft)	Diameter (in)	Diameter (in)	Seal Depth (ft)	Intervals (ft)	Type of Perforations	of Perforations (in)	Gravel Pack	Date	Type of Test	Duration of Test (hrs)	Estimated Test Rate (gpm)	Static Water Level (ft)
CBR-1	ND	ND	direct rotary	198	steel, ND	10	14	ND	60-120	ND	ND	ND	ND	airlift	ND	300	artesian flow @ 60 gpm
CBR-2 (?)	231281 (?)	7/82	direct rotary	187	steel, 186	10	14	20	62-123, 143-186	louvers (?)	0.125	ND	8/4/82	airlift	2	250	artesian flow @ 50 gpm
CBR-3	ND	ND	direct rotary	300	none installed	N/A	6	ND	ND	ND	ND	N/A	ND	ND	ND	N/A	artesian flow at 6 gpm
CBR-4	N/A	ND	ND	60	steel, 60	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CBR-5	575965	10/94	direct rotary	70	PVC to 52; then stainless steel to 67	all 10	17	49	52-67	well screen	0.06	coarse aquarium	10/7/94	ND	ND	ND	2
PW-1 (1989 test production well)	256267 E-logged on 2/9/89	3/89	direct rotary	753	steel 663	16	28	50	200-650	louvers	0.080 (80 slot)	ND	3/89	pumping	ND	2800 by pump	41
CGR-1	Geologic Log by Dames & Moore	4/90	direct rotary	94	PVC to 57; then stainless steel to 88	4 PVC; then 6 stainless steel	ND	52	57-88	well screen	0.020	#3 sand	ND	ND	ND	ND	ND
CGR-2	No E-log performed; Geologic Log by Dames & Moore	11/92	direct rotary	91	PVC to 50; then stainless steel to 65	All 10	22	50	51-65	well screen	0.080	#4 to #12 sand	ND	ND	ND	ND	ND
CGR-3	396391 E-logged on 9/20/03; Geologic Log by Dames & Moore	9/93	direct rotary	86	PVC to 52; then stainless steel to 72	All 10	17	53	56-72	well screen	0.050	#4 to #16 sand	ND	ND	ND	ND	ND
CGR-4	575694 E-logged on 8/2/94; Geologic log by Dames & Moore	8/94	direct rotary	100	PVC to 53; then stainless steel to 67	All 10	20	50	52-67	well screen	0.070	#4 to #12 sand	9/22/94	ND	ND	ND	5

TABLE 1A SUMMARY OF AVAILABLE WATER-SUPPLY WELL CONSTRUCTION DATA CABIN BAR RANCH PROPERTY INYO COUNTY, CALIFORNIA

	State Well		Method	Pilot Hole	Casing	Casing	Borehole	Sanitary	Perforation		Slot Opening	Type of	Pumping I	Data Repo	orted by Dr	iller at Date	of Construction
Well No.	Completion Report No.	Date Drilled	of Drilling	Depth (ft)	Type & Depth (ft)	Diameter (in)	Diameter (in)	Seal Depth (ft)	Intervals (ft)	Type of Perforations	of Perforations (in)	Gravel Pack	Date	Type of Test	Duration of Test (hrs)	Estimated Test Rate (gpm)	Static Water Level (ft)
CGR-5	575695 E-logged on 8/3/94; Geologic log by Dames & Moore	8/94	direct rotary	97	PVC to 52; then stainless steel to 67	All 10	20	49	52-67	well screen	0.060 or 0.070	#4 to #12 sand	10/7/94	ND	ND	ND	2
CGR-6	575966 E-logged on 8/2/94; Geologic Log by Dames & Moore	8/94	direct rotary	100	PVC to 53; then stainless steel to 68	All 10	20	±50	53-68	well screen	0.060	#4 to #12 sand	10/94	ND	ND		3
GCR-7	575967 (log for test hole at site)	9/94	direct rotary	104	PVC to 55; then stainless steel to 70; then PVC to 100	All 10	17	50	55-70	well screen	0.060	coarse aquarium	9/94	ND	ND	ND	artesian flow of 3 to 5 gpm
CGR-8	e0116254; nearby TH-4 borehole E-logged on 5/27/10	8/10	direct rotary	68	stainless steel, 68	10	18	50	53-68	well screen	0.070	#4 to #12	8/16/10	with pump	8	Q=400 s=20 Q/s=20	11
CGR-9	e0116289; nearby TH-2 borehole E-logged on 5/26/10	8/10	direct rotary	73	stainless steel, 73	10	18	50	53-73	well screen	0.070	#4 to #12 sand	8/19/10	with pump	8	Q=400 s=20 Q/s=20	10
CGR-10	e0166312; nearby TH-1 borehole E-logged on 5/25/10	8/10	direct rotary	73	stainless steel, 73	10	18	50	53-73	well screen	0.070	#4 to #12 sand	8/23/10	with pump	8	Q=400 s=20 Q/s=20	5

NOTES: 1. ND = no data; NA = not available

^{2.} Original Data for the CBR Wells 1 through 4 adapted from GSI 1982 report (Table 2).

^{3.} Data shown for CGR-8, -9, and -10 are from official driller's logs of each well and may differ slightly from those data listed on the geologic log of each well. Also, it is not known why driller listed identical test rates and drawdown values on each of his logs for these wells.

TABLE 1B SUMMARY OF AVAILABLE MONITORING WELL CONSTRUCTION DATA CABIN BAR RANCH PROPERTY INYO COUNTY, CALIFORNIA

Well No.	State Well Completion Report No.	Date Drilled	Method of Drilling	Pilot Hole Depth (ft)	Casing Type & Depth (ft)	Casing Diameter (in)	Borehole Diameter (in)	Sanitary Seal Depth (ft)	Perforation Intervals (ft)	Type of Perforations	Slot Opening of Perforations (in)	Type of Gravel Pack
OW-1	Geologic Log by Dames & Moore	8/90	direct rotary	70	PVC 69	4	ND	43	49-69	cut slots	#20	ND
OW-7U	Geologic Log by Dames & Moore	NA	direct rotary	704	NA 74½	5	NA	50	54½-74½	NA	NA	NA
OW-7M	Geologic Log by Dames & Moore	NA	direct rotary	704	NA 252	5	NA	188	212-252	NA	NA	NA
MW-1	256260 E-logged on 3/23/89	3/89	direct rotary	660	PVC 600	4	12	115	150-600	ND	0.060 (60-slot)	ND
MW-2	288949 E-logged on 4/5/89	4/89	direct rotary	700	steel(?) 615	4	12	130	165-615	louvers	0.060 (60-slot)	ND
MW-3	288952 E-logged on 4/18/99	4/89	direct rotary	510	steel 420	4	12	165	200-420	louvers	0.060 (60-slot)	ND
MW-4 (destroyed, 6/1987))	256303	1/89	direct rotary	91	steel 84	6	9	20	20-84	ND	ND	ND

NOTES: 1. ND = no data; NA = not available

TABLE 1C PIEZOMETER PERFORATION INTERVALS CABIN BAR RANCH INYO COUNTY, CALIFORNIA

Piezometer Number	Date Installed	Perforation Interval (ft bgs)
P- 1		23 to 28
P- 2		23 to 28
P- 3		24 to 29
P- 4		20 to 25
P- 5		23 to 28
P- 6		23 to 28
P- 7	April	29 to 34
P- 8	1988	33 to 38
P- 9		20 to 25
P- 10		33 to 38
P- 11		14 to 19
P- 12		14 to 19
P- 13		14 to 19
P- 14		8 to 13
P- 15	April	4 to 9
P- 16	1989	5 to 10
RP- 1		6 to 8
RP- 2	Sont	6 to 8
RP- 3	Sept 2010	5 to 7
RP- 4	2010	5 to 7
RP- 5		1 to 3

NOTES: The P series piezometers consist of 2-inch diameter galvanized steel tubes. No data available on the screened type or size. See JMM (1989) and MW (1993) for additional details on these piezometers.

The RP piezometers consisted of a 2-foot section of stainless steel screen with 0.020-inch slots joined with a galvanized steel pipe to ground surface and equipped with steel risers above the ground. See Geosyntec (2011) for additional detail regarding the construction of these piezometers.

APPENDIX B FIELD MONITORING LOGS

WELL GAUGING DATA

Project #	150706-201	Date _	7/4/15	Client <u>Coosymper</u>	
Site 1210	S. Hwy 39	<i>C</i> 0	lancha ca		

					Thickness	Volume of			Survey	
		Well		Depth to	of	Immiscibles			Point:	
	İ	Size	Sheen /	Immiscible	Immiscible	Removed	Depth to water	Depth to well	TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)		(ft.)	bottom (ft.)	100	Notes
mw-0/	6730	2	·				2(-80	36-37		
MW-02	1454	2					17.28	2828		
MW-03	1620	Z.,	, ters	,a			13.97	22.74		
mw 04	HOOP	2					11.17	22.8L		
MW-05	0912	2					7-97	23-37		
MW-06	1835	2					13.22	26-36		
MCU-07	1155	2					8.28	22-69		
MW-09	1143	V					13-31	23-41		
MW-09	1303	2					16.14	27-26	V	
							,		,	
,		AND CONTRACTOR OF STREET								·-
				•				1-2	The same of the sa	
									×.	

RAH MZ LOW FLOW WELL MONITORING DATA SHEET

	DELINOTHIO DATE OF					
Project #: (50006-61)	Client: Beo Syntec					
	Gauging Date: 7/7/15					
Well I.D.: MW-0!	Well Diameter (in.): ② 3 4 6 8					
Total Well Depth (ft.): 36-37	Depth to Water (ft.): 21.80					
Depth to Free Product: —	Thickness of Free Product (feet): -					
Referenced to: PYO Grade	Flow Cell Type: YST Pro Plus					

Purge Method:

2" Grundfos Pump

Peristaltic Pump

Bladder Pump

Sampling Method:

Dedicated Tubing/

New Tobing

Other

Start Purge Time: 6742

Flow Rate:

400 me 10mm

Pump Depth: 30

Cond. Temp. (mS/cm or Turbidity D.O. ORP Depth to Water Water Removed Time (Oor F) μ\$/cm) (NTUs) pΗ (mg/L) (ft.) (mV) (gals. or fall) 0745 951 1200 18-7 5.80 316.4 6.11 34-7 22.14 899 6748 185 316.2 19-8 100B 2400 6.01 22.14 0751 815 18.5 5.92 16-8 6-13 316.5 22.14 3600 0754 6.25 634 4800 18.4 5-87 25-4 317-1 22.14 0757 6-32 5.83 18.4 515 317-6 10000 26-8 22-14 6-40 405 5-73 18.4 318-2 0800 266 7200 22.19 18-4 6.46 22.14 0903 314 5.80 25-3 8400 318.6 6-51 0806 18.3 211 319.0 225 9600 22.14 5-28 0804 6-56 18.4 5-87 22-14 319.2 141 10800 20-5 80 5.72 08(2 18.3 10.01 12000 320.0 18-6 22.14 0815 18-3 4.64 5-78 22-14 321-7 13200 16-7 5.75 39 183 8180 320-3 14-1 14400 -6-67 22-14

Did well dewater?

o B

Amount actually evacuated:

21600 pm

Sampling Time:

0837

Yes

Sampling Date: 7/7/15

Sample I.D .: MW-01 - 076715

Laboratory: experience

Analyzed for:

BTEX TPH-D TPH-G **MTBE**

Other:

See coc

Equipment Blank I.D.:

(a) Time

Duplicate I.D.:

LOW FLOW WELL MONITORING DATA SHEET Project #: Client: 150766-M1 GOOSYNTEC 7/2/16 Gauging Date: Sampler: Well I.D.: Well Diameter (in.): 2 3 Total Well Depth (ft.): 36.37 Depth to Water (ft.): 21.80 Depth to Free Product: -Thickness of Free Product (feet): -Referenced to: Flow Cell Type: XSI Pro Plus PKC Grade Bladder Pump Purge Method: 2" Grundfos Pump Peristaltic Pump Sampling Method: New Tubing **Dedicated Tubing** Other 400 inl/an Pump Depth: 30' Start Purge Time: 0742 Flow Rate: Cond. Temp. (mS/cm or **Turbidity** D.O. ORP Water Removed Depth to Water μS/cm) Time (%C) or °F) (NTUs) pΗ (gals. or m(L) (mg/L)(mV) (ft.) 18-3 0821 319-1 34 13-5 6-69 5-77 15600 22.14 18.3 74 0824 671 318.6 22-14 5-78 11.7 16800 15 18.4 0827 318.3 6-74 5-80 22.14 10-0 18000 0830 18.3 6.74 5.85 317.2 16 19200 22-14 10-6 0833 366-0 22.14 95 18-4 6.76 16 5-80 20400 315-4 2211/ 0836 18.3 16 6-76 5-73 88 21600 CHLoznak Rue U-31 pm CHLORINE TOTAL 0-24 PPW Did well dewater? Yes Amount actually evacuated: NO 21600 ml Sampling Date: η_{γ}/γ Sampling Time: 0837 Laboratory: CHISCHERO Sample I.D.: Mw-01 - 070715 Other Sel 600 Analyzed for: TPH-G **BTEX** MTBE TPH-D

Duplicate I.D.:

(a)

Time

Equipment Blank I.D.:

LOW FLOW WELL MONITORING DATA SHEET

Pg /of 2

Project #: 15070c~19/	Client: Cosyntee					
Sampler: M	Gauging Date: 7/7/15					
Well I.D.: MwoZ	Well Diameter (in.): ② 3 4 6 8					
Total Well Depth (ft.): 28-28	Depth to Water (ft.): 17.78					
Depth to Free Product: —	Thickness of Free Product (feet):					
Referenced to: PYO Grade	Flow Cell Type: YSI Pro Plus					

Flow Rate: 400 ML/min

Purge Method:

2" Grundfos Pump

Peristaltic Pump

Bladder Pump Other

Sampling Method:

Start Purge Time: 150 Z

Dedicated Tubing

New Zubing

Pump Depth:_21

Cond. Temp. (mS/cm or **Turbidity** D.O. ORP Water Removed Depth to Water Time (°C) or °F) (NTUs) pH. $\mu S/cm$) (gals. or mL) (mg/L)(mV) (ft.) 1505 19.8 95 212-8 -15.7 6-21 1.46 1200 1736 72 150B 195 211-3 1.35 653 -69-8 2800 11.36 1511 1.25 -1213 19:4 6-44 210.0 74 3600 17.36 19-4 1514 124 -72-9 65 4800 6-37 209-1 17.36 15/7 208-8 56 12.36 19.3 6.31 1.20 -71-6 6000 1520 19.2 208.5 -677 17.36 6-25 57 1-19 7200 -62-8 19.2 K23 51 8400 1-11 6-27 206-1 12-36 1526 19-1 36 0.94 -53-2 202-6 6-19 17.36 9600 1529 201-0 0-90 6.16 19.2 -43-0 10800 36 P7.36 -35-6 1532 0-83 6-15 196 8 31 19-0 12000 17.38 1535 0-79 19-1 195-6 23 -23.0 13200 17.36 6-14 0.74 -153 1538 6.13 18-9 195-1 14400 17.36 20

Did well dewater? Yes

Ng

Amount actually evacuated:

19200 m

Sampling Time: 155

Sampling Date: 7/7/15

lex

Sample I.D.: MW-02 - 070715

Laboratory:

Colscience

Analyzed for:

TPH-G BTEX MTBE TPH-D

Other: Se co.c.

Equipment Blank I.D.:

-010115 @ 1650

Duplicate I.D.:

		LOWE	LOW WE	LL MON	ITORING	DATA	SHEET (y raft	
Project #:	150706-	10)		Client:	Geosyn	tec			
Sampler:	4		,	Gauging I	Gauging Date: 7/7/15				
Well I.D.	: mw-0	2_		1		_	3 4 6 8		
Total We	ll Depth (1	t.): 78	°-28	Depth to V	Vater (ft.)	: n-			
Depth to	Free Prodi	ıct: —	*	Thickness	·····				
Reference	ed to:	P√Ĉ	Grade	Flow Cell	Type:	YSE (Pro Plus		
Purge Metho Sampling M		2" Grundf Dedicated	-		Peristaltic I New Tubin	•	Bladder Pump Other		
Start Purge	Time: 150	<u> </u>	Flow Rate: _	400 mc/n	nn V	# *******	Pump Depth: Z	2'	
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ml)	Depth to Water (ft.)	
1541	19.2	6-12	194-1	14	0-69	-126	1560	17.36	
1844	14.2	6-11	194-0	1/	0.66	-10-4	11800	17-36	
1547	19-1	6-10	193-5	11:	0-63	-9-7	18000	17.36	
1550	j9-1	6-10	193-0	10	0-60	-9-4	19200	17-36	
-									
-									
			***************************************	***************************************			CHLORINGE - Free CHLORING-TOTAL		
		,					<u> </u>		
Did well o	lewater?	Yes	N ₀		Amount a	actually e	evacuated:	19200 M	
Sampling	Time:	551			Sampling	Date:	7/1/x		
Sample I.l	D.: mui-o	1 -0767	15	·	_				
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D		Other: 5	de coca		
Equipmen	t Blank I.I	<u> ひしつわり</u>).:	1/5@ /b	ro	Duplicate				

LOW FLOW WELL MONITORING DATA SHEET

Pi lofZ

Project #: 156706-201	Client: Geosgntec					
Sampler: (1)	Gauging Date: 7/7/15					
Well I.D.: MW-03	Well Diameter (in.): ② 3 4 6 8					
Total Well Depth (ft.): 22-74	Depth to Water (ft.): 13.97					
Depth to Free Product: —	Thickness of Free Product (feet): —					
Referenced to: PYG Grade	Flow Cell Type: YSP fro Nos					

Purge Method:

2" Grundfos Pump

Peristaltic Pump

Bladder Pump

Sampling Method:

Dedicated Tubing

New Tubing

Other

Start Purge Time: 1028

Flow Rate: 300 ml/nin

Pump Depth:___

			·		···		F	.,,
			Cond.					
	Temp.		(mS/cm or	Turbidity	D.O.	ORP	Water Removed	Depth to Water
Time	(Cor °F)	pН	μS(Onn)	(NTUs)	(mg/L)	(mV)	(gals. or mt)	(ft.)
1031	17-5	8-03	309-4	112	0.41	-230-7	906	14.30
1034	17-6	7-89	307-7	126	0-36	-232-6	1860	14-34
1637	17-6	7-81	308-7	129	0~37	- 228.8	2760	14-39
1046	17-6	7-74	317-6	108	0-40	-221-4	3600	14.40
1043	17-4	7-70	319-8	94	0.40	-221-4	4500	14-40
1046	17.2	7.67	318.2	72	0,34	-2240	5460	14.40
1049	17.3	7.67	315-1	4/	0-32	-223.8	6300	14.40
1052	17.3	7-57	314-4	28	0-37	-221-2	7200	14-40
1655	17.2	7.53	314.5	21	0.31	-219-9	8166	14-40
1058	17.2	750	314-6	17	6:30	-216.0	9000	14-40
1101	17-3	7.48	315.3	16	0,30	-216-4	9900	14.40
1104	17-3	7.40	316.0	15	028	-217.4	10800	14-40
Did well	dewater?	Yes	W)		Amount a	actually e	vacuated: (2600
Sampling	Tima	:1/1		and the second s	Compline	Date: 1	chle	, , , , , , , , , , , , , , , , , , , ,

Sampling Time:

i((///2))

Sampling Date: 7/7/18

Sample I.D.: Mw-03-070715

Laboratory:

Analyzed for:

MTBE TPH-G **BTEX** TPH-D

Time

Equipment Blank I.D.:

(a)

Duplicate I.D.:

		LOWI	FLOW WI	ELL MON	TORING	G DATA	SHEET	Py 2052	
Project #	: 15070	6-60/		Client:	bec	SYNTEC			
Sampler:	M			Client: Geosynfe C Gauging Date: 7/1/15					
Well I.D.	: mwo	3		Well Dian	neter (in.)	: Ø 3	3 4 6 8	3	
	ell Depth (-74	Depth to V		***			
	Free Prod			Thickness					
Referenced to: Pro Grade				Flow Cell			Pro Plus	,	
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing				Peristaltic I New Zubin	g	Bladder Pump Other			
Start Purge	Time: <u>/022</u>	<u></u>	Flow Rate: _	300 WL	low		Pump Depth: 1	§1	
Time	Temp.	pН	Cond. (mS/cm or µS/om)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mB)	Depth to Water (ft.)	
1107	17.2	7.36	318-3	15	0-29	-215.1	11700	14.40	
1110	17-3	7.34	318.9	16	0-29	-217-5	17600	14.40	
				·					
P-W-1-1-1-1-1-1							·		
						·			
					•				
		T						***************************************	
		,							
							delolano Tre	0.60 MM	
				····			adolpe 15 - FRE 4/01/10 - 7070/ =	0.39 PPM	
Did well o	dewater?	Yes (No ·	-	Amount a	ctually e	vacuated: 121	600	
Sampling	Time: //	//		•	Sampling	Date:	1/1/15	·	
Sample I.l	D.: MW-	23 - 070	7/5		Laborator	y: _{Os}	el Sevence		
Analyzed			BTEX MTB	E TPH-D		Other:Se	eoc		
 Equipmen	t Blank I.I	D.:	@ Time		Duplicate	I.D.:	19 M VIII.		

		LOWF	LOW WE	LL MONI	TORING	G DATA	SHEET	
Project #:	150706	-10/		Client:	60812	foc		•
Sampler:	NO			Client: Gauging I	Date: 7	12/18		
Well I.D.	: MW-04			Well Dian	neter (in.)	: ② 3	4 6 8	}
Total We	ll Depth (f	it.): 22.	Edo	Depth to V	Vater (ft.)	: //,/	7	
	Free Produ		1	Thickness	of Free P	roduct (fe	eet):	
Reference	ed to:	₽ Ŷc	Grade	Flow Cell	Type:	YSI P	ro PloS	
Purge Metho Sampling M		2" Grundf Dedicated	-		Peristaltic l	- ,	Bladder Pump Other	
Start Purge	Гіте: <u>///</u>		Flow Rate:	you ml/m			Pump Depth:	16'
Time	Temp.	рH	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mac)	Depth to Water (ft.)
1614	20-0	1031	3206	109	0-43	-347-6	1200	11.27
1617	19-6	10-39	3118	117	0.43	-291-6	2400	11-27
1620	19.8	10-42	2910	243	6-44	-285-6	3600	11.27
1623	(9-3	16.47	3074	257	0-43	-272-3	4800	11-27
1626	19-6	16-50	3144	243	0.38	-2779	6000	11.27
1629	19-6	10-54	3339	210	0-38	- 270-7	7200	11.27
1632	أنرم	10.58	3370	169	041	-2655	8400	11-27
1635	19.3	16.60	3412	155	0.45	-761-9	9600	11.27
1638	19.3	10-62	3452	151	0.48	-261-3	10800	11.27
1641	19-3	10-62	3488	143	0.47	- 263-0	12000	11-27
		. (fe					(Hloeine Free:	- 1.42 ppm
· .							CHLORINE TOTA	
Did well o	lewater?	Yes	N6)		Amount a	actually e	vacuated: (น	ioo nl
Sampling	Time: 16	45			Sampling	Date: 7	16/18	٠
Sample I.I	D.: Muso	4-0700	-15		Laborato	ry: Col	Schence	
Analyzed	for:	TPH-G	втех мтв	E TPH-D		Otlær: Se	e e.o.c.	
Fauinmen	t Rlank I I	· ·	@		Dunlicate	ID.		n . 0

LOW FLOW WELL MONITORING DATA SHEET

		LOWI	LOW WI		TIOKIN	JUAIA	SHEEL	
Project #	: 150700	6-201		Client:	Gosy	ntec		•
Sampler:	N			Gauging I			F	
Well I.D.	: mw-6	>5		Well Dian	neter (in.)	: ② 3	3 4 6 8	8
Total We	ll Depth (ft.): 2	3-37	Depth to V	Water (ft.)	: 7-9	97	
Depth to	Free Prod	uct: —		Thickness				V
Referenc	ed to:	PVC	Grade	Flow Cell	Type:	Y 57	Pro Plos	
Purge Methodology Sampling M		2" Grundf Dedicated	•		Peristaltic l		Bladder Pump Other	
Start Purge	Time: oʻll	6	Flow Rate: _	500 m/m	v		Pump Depth: ℓ	6
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)
<i>૦</i> ૧૧ ૧	18.7	9.40	2984	46	0.50	-1122	1500	8.08
0922	18.7	9.57	2256	49	0.3(-130-7	3000	808
0925	18-7	9.63	2891	36	0.33	-140-8	4500	B-08
0928	18-9	9-66	2887	21	0.36	-143-2	6000	B-03
6931	18.9	9.68	2907	16	0-35	- 150-8	7500	808
0434	19,0	9-70	2923	15	0.34	-1497	9000	8-08
0937	19.0	9.71	2937	10	0-33	-150-4	10500	808
0940	A-c	9.73	2936	10	6.33	-151-1	12000	8-08
0843	19-0	9.74	2156	9	0-31	- 152-1	13500	E-08
							Chicaline, tra	= 2-35 PPM
							CHLORINE TOTA	L= 1-73 ppm
Did well d	lewater?	Yes	16		Amount a	ctually ev	vacuated: /	3500 ml
Sampling	Time:	0944		•	Sampling	Date:	7/2/15	
Sample I.I	D.: MW-C	5-010	715		Laborator	y: Cols	dence	
Analyzed	for:	TPH-G	втех мтв	E TPH-D		Otker. Se	dence	
Equipmen	t Blank I.I	D.:	@ Time		Duplicate			

		LOWI	CLOW WE	LLL MON	TORING	s DATA	SHEET		
Project #	150707	2-10/		Client:	beosi	intec			
Sampler:	M			Gauging I	Gauging Date: 76/15				
Well I.D.	: MW-0	(Well Dian	Well Diameter (in.): ② 3 4 6 8				
Total We	ll Depth (1		,.3¢	Depth to V	Water (ft.)	: 13-2	2		
	Free Prod			Thickness					
Reference	ed to:	PV(C)	Grade	Flow Cell		YSI			
Purge Methors Sampling M	od:	2" Grungf Dedicated	Tubing		Peristaltic l	Pump	Bladden Pulmp Other		
Start Purge	Гіте: <u>1447</u>		Flow Rate: _	300 AL	mis		Pump Depth:	20′	
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nation)	Depth to Water (ft.)	
1445	20-7	8.83	1535	240	0.38	-279.5	900	13.72	
1449	20.3	9,00	1123	196	0.31	-292-8	1800	13-12	
1451	20.5	78.32	988	144	0-30	-294.3	2700	13.72	
1454	20-4	8.67	949	82	0-27	-298-2	3600	13-72	
1457	20.3	8-15	946	85	6.27	-302-4	4500	13.72	
1500	2002	8-51	951	75	0.27	-307-0	5400	13-72	
1503	20-4	8-49	960	71	0.27	-308-6	6300	13.72	
ROC	20.3	8-48	969	69	0.27	-311.6	72°0	13.72	
-							CHlorian From		
Did well d	lewater?	Yes	<u></u>		Amount a	actually e	vacuated: 72	ooul	
Sampling	Time: 🎉		30 .		Sampling		······································		
	D.: MW-01		15						
Analyzed	1		BTEX MTB	E TPH-D		Other:Sec	Science Leo.C.		
Equipmen	t Blank I.I	D.:	@ Time		Duplicate				

		LOWI	CLOW WE	ELL MON	ITORIN(G DATA	SHEET		
Project #	: 150706	-80 /		Client: Geo Synfec					
Sampler:				Gauging Date: 7/6/15					
Well I.D.	: MW-0	2		Well Dian	neter (in.)	: D 3	3 4 6 8	3	
l	ell Depth (.69	Depth to V	Water (ft.)	: 8-28	7		
	Free Prod	-		Thickness	of Free P	roduct (fe	eet): —		
Reference	ed to:	r VC	Grade	Flow Cell	Type:	YSI FR	20-9/WS		
Purge Methors Sampling M		2" Grundf Dedicated	Tubing		Peristaltic I	-,	Bladder Pump Other		
Start Purge	Time: 127	20	Flow Rate: _	75 MC/m	(e)		Pump Depth:	6	
Time	Temp.	pН	Cond. (mS/cm or µ\$/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or fill)	Depth to Water (ft.)	
1223	22-8	8-94	737	7,000	051	-298-6	225'	8-12	
1226	24-7	9-18	741	71000	0-48	-3065	IT O	8.87	
1229	24-6	8-18	739	71000	0-47	-304-0	625	9:01	
1232	24-8	9.17	735	71000	0.45	-306-2	900	2.68	
1235	25-1	9.15	740	71000	0.44	-308-0	1625	2-15	
1238	25-2	9-14	739	71000	0.42	- 307-7	1275	8-17	
124/	25-4	9-14	742	71000	0.42	-304-1	1425	9-19	
1244	25-8	9.13	741	71000	0-42	-303-9	1575	9-21	
•							TOTAL CHOME		
		_					Free Chloringe	= 44.68	
Did well o	lewater?	Yes	(old		Amount a	actually e	vacuated: /	5750C	
Sampling	Time:	1315	*		Sampling	Date:	7/6/15		
Sample I.I	D.: MW-0	7 - 07061	5		Laborator	ry: CA/	Sukut		
Analyzed			втех мтв	E TPH-D		Other:	sikuit el C-O-C		
Equipmen	t Blank I.I	D.:	@ Time		Duplicate				

LOW FLOW WELL MONITORING DATA SHEET

Ps 10+2

Project #: 160706 - 1919	Client: Geosyntec						
Sampler: M	Gauging Date: $7/7/1$						
Well I.D.: WW-08	Well Diameter (in.): ② 3 4 6 8						
Total Well Depth (ft.): て3~41	Depth to Water (ft.): (3-3/						
Depth to Free Product: _	Thickness of Free Product (feet): —						
Referenced to: PVO Grade	Flow Cell Type: YSI Pro Plus						

Purge Method:

2" Grundfos Pump

Peristaltic Pump

Bladder Pump

Sampling Method:

Dedicated Tubing

New Tubing

Other

Start Purge Time: 1148

Flow Rate: 400 ml/n.

Pump Depth: 181

			Cond.					
Time	Temp.	pН	(mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mil)	Depth to Water (ft.)
		-					,	
usi	20.6	7.30	273.9	328	0.48	-177.7	1700	13-37
1154	20.0	7.22	273-1	124	0-46	-182.2	2400	13.37
1157	20-3	7.18	272-9	123	6.35	-185-1	3600	13-37
1200	20.2	7-16	272-4	88	0.35	-185.9	4800	13.37
1203	26.3	7.16	272.3	74	0-33	-169-6.	6000	13-37
1706	20-4	7-19	274.4	58	0,40	- 177-3	7200	13.37
1209	21.0	7-17	271-5	33	0.32	- 183.2	8400	13.37
1212	20.9	7.17	271-3	27	0.37	-184-6	9600	13.37
1215	20.9	7-16	271-7	21	0-31	-186-0	10800	13.37
1218	20.5	7-16	271.4	14	0.33	-187-3	12000	13-37
1221	20-7	7.16	271.5	13	0.34	-1887	13200	13-37
1224	20.3	7-15	271-0	10	0.34	-1897	14400	-13-37

Did well dewater?

Amount actually evacuated:

Sampling Time:

1231

Sampling Date: 7/7/05

Sample I.D.: Mw-08 - 070715 ~

Laboratory:

Colschence

Analyzed for:

TPH-G **BTEX MTBE** TPH-D Other: see COC

Equipment Blank I.D.:

@ Time

Duplicate I.D.:

		LOW F	LOW WE	ELL MONI	ITORING	B DATA	SHEET	P4 20+2
Project #	: 150706	-120)		Client:	60	Syntec		
Sampler:	M			Gauging D	Date: 7	7/7/15		
Well I.D.	: MW-08)		Well Dian	neter (in.)	: Ø 3	3 4 6 8	3
Total We	ell Depth (f	ît.): 23	-41	Depth to V	Vater (ft.)	: 13.3	, /	
Depth to	Free Produ	uct:		Thickness	of Free P	roduct (fe	eet):	
Reference	ed to:	PVC	Grade	Flow Cell	Type:	VSI	pro plus	,
Purge Metho Sampling M Start Purge		2" Grundfo Dedicated	Tubing	400 M/m	Peristaltic P New Fubins	g	Bladden Pump Other_ Pump Depth:	
Time	Temp.	pН	Cond. (mS/cm or µS/Om)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or not)	
1227	20-3	7.15	270-8	7	035	- 189.7	Mod	13-37
1230	20-2	7-15	270-9	7	0-35	-1904	N 800	13.37
							CHORINE Free = CHORINE POTAl=	
Did well d	lewater?	Yes	M3		Amount a		vacuated: (16)	
Sampling	Time: (7	231			Sampling	Date:	2/0/16	
Sample I.I	D.: mw-0	8-07071	5		Laborator	y: Cu	1schence	
Analyzed			BTEX MTB	E TPH-D		Other Se	1schence e coc.	
Equipmen	t Blank I.I	 D.:	@ Time		Duplicate			

		<u>LOW I</u>	CLOW WI	ELL MON	ITORING	G DATA	SHEET	
Project #	: 15074	,-101		Client:	Geosyn	itec		
Sampler:	Ю			Gauging 1				
Well I.D.	: MW-09			Well Diar	neter (in.)	: ② 3	4 6 8	3
Total We	ll Depth (:	ft.): 27	1.26	Depth to	Water (ft.)	: 16-14	<i>j</i>	
Depth to	Free Prod	uct: -		Thickness				
Reference		PVO	Grade	Flow Cell			ProPlus	· · · · · · · · · · · · · · · · · · ·
Purge Meth Sampling M		2" Grundf Dedicated	-		Peristaltic		Bladder Pump Other	
Start Purge	Time: 1308)	Flow Rate: _	400 ml/m	(c)		Pump Depth: 2	1 "
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mil)	Depth to Water (ft.)
1311	16-9	6-97	1076	174	3.46	-68-9	1260	16-25
1314	165	7.06	1071	258	3.44	-78-1	2400	16-25
1317	16.3	7-09	1072	123	3-47	-81-3	3600	16-25
1320	16.0	7.12	1075	165	3.37	-832	izec	16.25
1323	16./	7.13	1076	118	3-36	-843	6000	16.25
1326	16-1	7.13	1072	117	3.34	-85~9	7200	16.20
1329	16-1	7.13	1072	<i>5</i> 3	3-40	= 85-/	8400	16-25
1332	16-1	7-13	1070	30	3244	-83.9	9600	16.25
1335	160	7.13	1070	/B	3-,46	-84-4	10800	16-20
1338	16-1	7.14	1074	ej	3-44	-83-6	12000	16.25
1341	16-1	7.14	1073	8	3-41	82-9	13200	16-25
1344	16.1	7.14	1071	8	3-38	-824	14400	1625
Did well d	lewater?	Yes	K)		Amount a	actually e	vacuated: /9	Your
Sampling	Time:	1345			Sampling	Date: 7	17/15	· ·
Sample I.I	D.: MW-0	9-07078	5	÷	Laborator	rv: <i>C-A</i>	/seiena	
Analyzed	for:	TPH-G	втех мтв	E TPH-D		Other:Se	e.oc.	
Equipmen	t Blank I.I	D.:	@ Time		Duplicate		Chlorine-	Plee = 0.38 PM

WELLHEAD INSPECTION CHECKLIST

Page ______ of ______

Client	Geos	yntec					Date	7/6	115	
Site Address	1210 c	5. Hur	395	Olan	CHA, C	A				
Job Number	150706	~ 00/				Techi	nician	Dani	y Rice	
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12" or less)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MW-01	V		Stand PIPE				,			
MW-02	~		Standpire							
MW-03	V		Standare							
MLU-CY	V		Stanoppe							
mw-05	/		Struppire							
MW-06	V		Stun DANE							
MW-07	W		Stanopive							
MW-08	/		Stamp pipe							
ML0-05	V		Standale							
									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
							× .			
			-							
NOTES:					channel thinking the same about the date that he had a fee or		Bahadana a Maris da da atau da da da anada da da asa	dentre de l'Alexandria de la companya de la company		
•						***				
									:	

BLAINE TECH SERVICES, INC.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

www.blainetech.com

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAME	ME GOSUKC D	Le 2 Mondra	LA.	PROJECT NUN	PROJECT NUMBER 150706 40,	2/	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	NDARDS D	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
X1Z 728	9,587 01 VIDI	Mels	7.00	7.07	2,00	6.92	9
(1101/10)	3000	(000)	90.01	26.6	(d.6)	2.5	Ą
			00.4 (OND)	38.7	7.00	1-22	Ø
				231-8	230-1	26.5	
<i>></i>	>	<u>`</u>	Dob 160	87.873	96.190	25.7	2
						7	
ISM		1/2/15	24 7.00	11-6	2000	5.42	
Pro Plus	13610 293)	ches	10.00	9.97	10.00	5.92	Ş
		******	V:00		80· Ý	26.2	1
			cong 3500	3893	3900	26.0	Q Q
	~	7	068 2315	2-222	231,5	8-22	"
۱ ۲	*	>	00/20	82028	95-370	25.8	<u> </u>

PAGE ___ OF ____

Note, but NTU aste to attain was 06 NTU.

PAGE ___ OF ___

21.9 Botton - 22/6 Toc 22.17

PAGE 1 OF ___

	SOIL GAS PROBE MEASUREMENTS	

Geosyntec^b consultants

engineers | scientists | innovators 10875 Ranch Bernardo Road, Suite 200

San Diego, Ca. 92127

858.674.6559 fax 858.674.6586

	Surface thickness: (ie. asph	Subsurface type	Field tubing blank (ppmv)	Project Name: C6 Roxave Project Number: 580746 Phase Number: 7805 Weath Field Personnel: 1.60dTw7 Tracer Gas: He
	alt of concrete s	☐ Asphalt	0.0	580746 580746 7/8/15 Weather He
	ickness:in/cm ☐ unkn (ie. asphalt of concrete surface)	☐ Asphalt ☐ Concrete	Time	Weather:
	□ unknown	☐ Grass 🏚 Other:	0730	YNNUS
	Steel Monument	M Other:	Initial Pressure/Vacuum (prior to pumping)	
	Soil gas probe 5000	3 C	0,0	
	□ Sub-slab <0.1 L Co (mL)	3 Casing Volumes	Time 0.7	Probe # PID Mo PID Ser Landtec Helium Air Ten
) 		bht0	Probe # PID Model # PID Serial # Landtech GEM 200 Helium detector (moderature) Air Temperature
	~	Purge Time (min.)	Perf	Probe # PID Model # TWT 1/5er PID Serial # A Bh 240 Landtech GEM 2000 Landfill Gas Meter Serial # Helium detector (model and serial number) Air Temperature ~ 15°F Atm. Pressure
Tencar Cas (%)		in.)	Shut-In Test Performed at" H ₂ 0 /" Hg Time: Pass	ial # NA Dialectric MCD-2008 (in Hg)

		b5¢()	Time					0250	Start Time	
	10-U2	10-05	ما ا					5540	End Time	
-	-01	10	Location					5	Elapsed Time (min)	
	-10-01-	-10-VS						1000	В	
	940-5180+0-5-10-NS	518040-5-10-NS	Sample ID					12/min	ag Volume Purge Rate Total Vo	
	15-DUP	15						0005	Total Vol	
	7001 P	LC278	Summa Canister ID					0.0	(in H ₂ O)	W 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			ster ID					١	CH4 (%)	
	-26,00	-25.82	Initial Vacuum (in Hg)						CO2 (%)	
16			m (in Hg)					1	02 (%)	
	-3.52	32.58	Final Vac					30	min	
	SA	8	Final Vacuum (in Hg)					3	max	Tracer Gas (%)
	20	30	% Tracer (Min)					0	Sample	(%)
	70	10	% Tracer (Max)					4.4	(ppmv)	VOCs by PID

Comments

FC# A303

APPENDIX C WELL PERMITS

P. O. Box 427, Independence, CA 93526 (760) 878-0238 • Fax (760) 878-0239

WELL PERMIT APPLICATION

			Permit No.
TYPE OF WORK (Check)	U	SE	EQUIPMENT (Check)
New Well	Domestic _	Test Well	Rotary
Repair or Modification Destruction	Irrigation Monitoring	Municipal 7	Cable Tool Other
Destruction	Monitoring	MW-01	Hollow Stem Auger
PROPOSED WELL DEPTH		PROPOSE	
28 Feet	Steel Other P	/C Diamete	r 2 inch Wall or Gage Sch 40
PROPOSED SEALING	ZONE		LING MATERIAL (Check)
From 0 to 12	Feet	Neat Cemen Cement Gro	
PHYSICAL SITE ADDRESS:	Was a second		DATE OF WORK
1210 S. US Highway 395			
Olancha, CA 93549 ASSESSOR'S PARCEL NO.		Start	6/15/15
033-470-08-00		Comp	oletion_6/19/15
NAME OF WELL OWNER: Crystal Geyser Roxane, LLC		NAME OF WELL DR Gregg Drilling and Test	ILLER: ting, Inc.
MAILING ADDRESS:	Ve	BUSINESS ADDRES	S :
1210 S. US Highway 395 Olancha, CA 93549		2726 Walnut Ave. Signal Hill, CA 90755	
PHONE NUMBER:		PHONE NUMBER:	
(FOR OFFICE USE O	NLY)	C-57 LICENSE NUM	BER:
DISPOSITION OF APPLIC		485165	Cash Deposit Bond Posted
APPROVED	D DENIED	\$149.00 Fee pa	
APPROVED WITH COI	NDITIONS LISTED:		4117
☐ Minimum ft. seal of an	Dular	I hereby garee to com	ply with all regulations of the Department
space(minimum 2 inches) is red			alth Services and with all ordinances and
witnessed by Inyo County Enviro	nmental Health		nd of the State of California pertaining to
Services.	-	of commencement of	r, modification and destruction at the time work.
A concrete pad shall be placed		11	<i>;</i> :
casing that extends at least two to directions from the outside of the		7~	- Lung
minimum of 4 inches thick. The payang from the well casing.		LIGENSEL	WELL DRILLER'S SIGNATURE
125		10.0	2-15
Well driller's log shall be submitt Environmental Health Services v	ed to Inyo County vithin 30 days of	<u> </u>	DATE
completion of the well.			
0		m. m	1 1 1 1 1 -
	l.	Site Approval/Rerinit Applica	During 6/9/15
-110-10-10-2-1		534 USS	
Inyo County Environmental Health Ser	vices recommends	Construction inspection	Date
that an acceptable bacteriological sam			
after the well is completed.		Final Approvel	Date

P. O. Box 427, Independence, CA 93526 (760) 878-0238 • Fax (760) 878-0239

WELL PERMIT APPLICATION

			Permit No.
TYPE OF WORK (Check)	U	SE	EQUIPMENT (Check)
New Well Repair or Modification Destruction	Domestic [Irrigation [Monitoring[Municipal	Rotary Cable Tool Other Hollow Stem Auger
PROPOSED WELL DEPTH	Steel Other P\	PROPOSE /C Diamete	
PROPOSED SEALING ZO	Feet	Neat Cemen Cement Gro	Turned Turned
PHYSICAL SITE ADDRESS:	W		DATE OF WORK
1210 S. US Highway 395 Olancha, CA 93549		Stort	6/15/15
ASSESSOR'S PARCEL NO.			
033-470-08-00		Comp	etion 6/19/15
NAME OF WELL OWNER: Crystal Geyser Roxane, LLC		NAME OF WELL DR Gregg Drilling and Test	ILLER: ling, Inc.
MAILING ADDRESS: 1210 S. US Highway 395 Olancha, CA 93549 PHONE NUMBER:		BUSINESS ADDRES 2726 Walnut Ave. Signal Hill. CA 90755 PHONE NUMBER:	S:
(FOR OFFICE USE ONL DISPOSITION OF APPLICA	Y) TION	C-57 LICENSE NUM 485165	BER: Cash Deposit Bond Posted
D APPROVED C	DENIED	\$149.00 Fee pa	id on 6/9/15 Receipt No.5469.45
APPROVED WITH COND	1		
Minimumft. seal of annu space(minimum 2 inches) is require witnessed by Inyo County Environn Services.	red and must be	of Environmental Healaws of Inyo County a	ply with all regulations of the Department lith Services and with all ordinances and nd of the State of California pertaining to r, modification and destruction at the time
A concrete pad shall be placed are casing that extends at least two fee directions from the outside of the w minimum of 4 inches thick. The pad away from the well casing.	t laterally in all	77	WELL DRILLER'S SIGNATURE
Well driller's log shall be submitted Environmental Health Services with completion of the well.	to Inyo County in 30 days of	6-2	DATE
		Manun M. Site Approval/Permit Applica	Makerat 6/9/15-
nyo County Environmental Health Service that an acceptable bacteriological sample after the well is completed.	be obtained	Construction inspection	Date
man to addificated:	I	Final Approval	Date

207 W. South Street, Bishop, CA 93514 P. O. Box 427, Independence, CA 93526) (760) 873-7866 • Fax (760) 873-3236 (760) 878-0238 • Fax (760) 878-0239 WELL PERMIT APPLICATION Permit No. **EQUIPMENT (Check)** USE TYPE OF WORK (Check) Domestic L Test Well Rotary New Well Repair or Modification Irrigation Municipal Cable Tool Monitoring / Other Destruction Other Hollow Stem Auger MW-03 PROPOSED CASING PROPOSED WELL DEPTH Other PVC Wall or Gage Sch 40 Feet Steel [Diameter 2 inch.... SEALING MATERIAL (Check) PROPOSED SEALING ZONE **Bentonite Clay** Neat Cement Cement Grout Concrete Feet From 0 to 5 PHYSICAL SITE ADDRESS: DATE OF WORK 1210 S. US Highway 395 Start 6/15/15 Olancha, CA 93549 ASSESSOR'S PARCEL NO. Completion 6/19/15 033-470-08-00 NAME OF WELL DRILLER: Gregg Drilling and Testing, Inc. NAME OF WELL OWNER: Crystal Geyser Roxane, LLC MAILING ADDRESS: 1210 S. US Highway 395 **BUSINESS ADDRESS:** 2726 Walnut Ave. Signal Hill, CA 90755 Olancha, CA 93549 PHONE NUMBER: PHONE NUMBER: C-57 LICENSE NUMBER: (FOR OFFICE USE ONLY) DISPOSITION OF APPLICATION Cash Deposit 485165 Bond Posted DENIED \$149.00 Receipt No. 546 945 **APPROVED** Fee paid on 义 APPROVED WITH CONDITIONS LISTED: ft. seal of annular I hereby agree to comply with all regulations of the Department Minimum space(minimum 2 inches) is required and must be of Environmental Health Services and with all ordinances and laws of invo County and of the State of California pertaining to witnessed by Inyo County Environmental Health well construction, repair, modification and destruction at the time Services. of commencement of work. A concrete pad shall be placed around the well casing that extends at least two feet laterally in all directions from the outside of the well boring and is a CENSED WELL DRILLER'S SIGNATURE minimum of 4 inches thick. The pad must be sloped away from the well casing. 6-2-15 叹 Well driller's log shall be submitted to Inyo County DATE Environmental Health Services within 30 days of completion of the well. Construction inspection Date Invo County Environmental Health Services recommends that an acceptable bacteriological sample be obtained after the well is completed. Final Approval Date

P. O. Box 427, Independence, CA 93526 (760) 878-0238 • Fax (760) 878-0239

WELL PERMIT APPLICATION

			Permit No.
TYPE OF WORK (Check)	U	ISE	EQUIPMENT (Check)
New Well Repair or Modification Destruction	Domestic [Irrigation [Monitoring[Test Well Municipal Other MW-04	Rotary Cable Tool Other Follow Stem Auger
PROPOSED WELL DEPTH 18 Feet	Steel Other P	PROPOSE VC Diamete	
PROPOSED SEALING ZO	NE Feet	SEA Neat Cemen Cement Gro	
PHYSICAL SITE ADDRESS: 1210 S. US Highway 395 Olancha. CA 93549 ASSESSOR'S PARCEL NO. 033-470-08-00			DATE OF WORK 6/15/15 Dietion 6/19/15
NAME OF WELL OWNER: Crystal Geyser Roxane. LLC		NAME OF WELL DR Gregg Drilling and Test	LLER: ing, Inc.
MAILING ADDRESS: 1210 S. US Highway 395 Olancha, CA 93549 PHONE NUMBER:	-	BUSINESS ADDRES 2726 Walnut Ave. Signal Hill, CA 90755 PHONE NUMBER:	S:
(FOR OFFICE USE ONL' DISPOSITION OF APPLICAT		C-57 LICENSE NUME 485165	Cash Deposit Bond Posted
APPROVED	DENIED	\$149.00 Fee pa	id on 6/9//5 Receipt No.546945
Minimumft. seal of annul space(minimum 2 inches) is requir witnessed by Inyo County Environm Services. A concrete pad shall be placed arocasing that extends at least two feel directions from the outside of the wininimum of 4 inches thick. The pad away from the well casing. Well driller's log shall be submitted Environmental Health Services within completion of the well.	ed and must be ental Health und the well laterally in all boring and is a must be sloped to inyo County in 30 days of	of Environmental Healaws of Inyo County a well construction, repair of commendement of	DWELL DRILLER'S SIGNATURE 2-15 DATE Mashourt 6/9/18
nyo County Environmental Health Servic that an acceptable bacteriological sample after the well is completed.	be obtained	Construction Inspection	Date

P. O. Box 427, Independence, CA 93526 (760) 878-0238 • Fax (760) 878-0239

WELL PERMIT APPLICATION

				Permit No.
	TYPE OF WORK (Check)	Ų	SE	EQUIPMENT (Check)
	New Well Repair or Modification Destruction	Domestic [Irrigation [Monitoring[Test Well Municipal Other MW-05	Rotary Cable Tool Other Hollow Stem Auger
	PROPOSED WELL DEPTH 15 Feet	Steel Other P	PROPOSE VC Diamete	
	PROPOSED SEALING ZO	ONE Feet	SEA Neat Cemer Cement Gro	
	ICAL SITE ADDRESS:	,		DATE OF WORK
	S. US Highway 395 ha, CA 93549		Start	6/15/15
ASSE	SSOR'S PARCEL NO.		1	
033-4	70-08-00			oletion 6/19/15
	OF WELL OWNER: I Geyser Roxane, LLC		NAME OF WELL DR Gregg Drilling and Tes	ILLER: ting, Inc.
1210 : Olanch	NG ADDRESS: S. US Highway 395 na, CA 93549 E NUMBER:		BUSINESS ADDRES 2726 Walnut Ave. Signal Hill, CA 90755 PHONE NUMBER:	S:
	(FOR OFFICE USE ONL DISPOSITION OF APPLICA	Y) TION	C-57 LICENSE NUM 485165	BER: Cash Deposit Bond Posted
	[] APPROVED	DENIED	\$149.00 Fee pa	id on 6/9/15 Receipt No.546945
	APPROVED WITH COND	ITIONS LISTED:		
0	Minimumft. seal of annu space(minimum 2 inches) is requi witnessed by Inyo County Environn Services.	red and must be	of Environmental Her	ply with all regulations of the Department alth Services and with all ordinances and and of the State of California pertaining to ir, modification and destruction at the time
Ø.	A concrete pad shall be placed and casing that extends at least two fee directions from the outside of the winimum of 4 inches thick. The pad away from the well casing.	t laterally in all rell boring and is a	LICENSE	WELL DRILLER'S SIGNATURE
×	Well driller's log shall be submitted Environmental Health Services with completion of the well.		Tana and the second sec	G-Z-IF DATE
0	**************************************		Manum W Site Approval/Permit Applica	when Approval 6/9/15
that an	eunty Environmental Health Servic acceptable bacteriological sample well is completed.		Construction Inspection	Date
aret ru	s was 15 completed.	ii ii	Final Approval	Date

P. O. Box 427, Independence, CA 93526 (760) 878-0238 • Fax (760) 878-0239

WELL PERMIT APPLICATION

			Permit No.
TYPE OF WORK (Check)	U	ISE	EQUIPMENT (Check)
New Well Repair or Modification Destruction	Domestic Irrigation [Monitoring[Test Well Municipal Other MW-06	Rotary Cable Tool Other Hollow Stem Auger
PROPOSED WELL DEPTH 18 Feet	Steel Other	PROPOSE Output Diamete	
PROPOSED SEALING ZO	ONE Feet	SEA Neat Cerner Çement Gro	
PHYSICAL SITE ADDRESS:			DATE OF WORK
1210 S. US Highway 395 Olancha, CA 93549		Start	6/15/15
ASSESSOR'S PARCEL NO. 033-470-08-00			oletion 6/19/15
NAME OF WELL OWNER: Crystal Geyser Roxane, LLC		NAME OF WELL DR Gregg Drilling and Tes	ILLER: ting, Inc.
MAILING ADDRESS: 1210 S. US Highway 395 Olancha, CA 93549 PHONE NUMBER:		BUSINESS ADDRES 2726 Walnut Ave. Signal Hill, CA 90755 PHONE NUMBER:	S:
(FOR OFFICE USE ONL DISPOSITION OF APPLICA	Y) TION	C-57 LICENSE NUMI 485165	BER: Cash Deposit Bond Posted
APPROVED	DENIED	\$149.00 Fee pa	id on 6/9/15 Receipt No 546945
ダ APPROVED WITH COND	ITIONS LISTED:		2
☐ Minimumft. seal of annu space(minimum 2 inches) is requi witnessed by Inyo County Environn Services.	red and must be	of Environmental Healaws of Inyo County a	ply with all regulations of the Department alth Services and with all ordinances and nd of the State of California pertaining to r, modification and destruction at the time work
A concrete pad shall be placed and casing that extends at least two fee directions from the outside of the wininimum of 4 inches thick. The pad away from the well casing.	t laterally in all ell boring and is a	L	WELL DRILLER'S SIGNATURE
Well driller's log shall be submitted Environmental Health Services with completion of the well.		6	- Z-IT DATE
		Manga Mis Sie Approval Permit Applica	Shirted 6 19/15
inyo County Environmental Héalth Service that an acceptable bacteriological sample after the well is completed.	be obtained	Construction Inspection	Date
enter tile frem te completed.		Final Approval	Date

P. O. Box 427, Independence, CA 93526 (760) 878-0238 • Fax (760) 878-0239

WELL PERMIT APPLICATION

			Perma No.
TYPE OF WORK (Check)	U	SE	EQUIPMENT (Check)
New Well Repair or Modification Destruction	Domestic Irrigation [Monitoring[Test Well Municipal Other MW-07	Rotary Cable Tool Other Flollow Stem Auger
PROPOSED WELL DEPTH 18 Feet	Steel Other P	PROPOSE Diamete	
PROPOSED SEALING ZO	ONE Feet	SEA Neat Cemen Cement Gro	
PHYSICAL SITE ADDRESS: 1210 S. US Highway 395			DATE OF WORK
Olancha, CA 93549 ASSESSOR'S PARCEL NO.		Start	6/15/15
033-470-08-00		Comp	oletion 6/19/15
NAME OF WELL OWNER: Crystal Geyser Roxane, LLC		NAME OF WELL DR Gregg Drilling and Test	LLER: ting, Inc.
MAILING ADDRESS: 1210 S. US Highway 395		BUSINESS ADDRES 2726 Walnut Ave.	S:
Olancha, CA 93549 PHONE NUMBER:		Signal Hill, CA 90755 PHONE NUMBER:	
(FOR OFFICE USE ONL' DISPOSITION OF APPLICA'		C-57 LICENSE NUM 485165	Cash Deposit Bond Posted
C) APPROVED	DENIED	\$149.00 Fee pa	id on 6/9/15 Receipt No. 54645
Minimumft. seal of annu space(minimum 2 inches) is require witnessed by Inyo County Environm Services. A concrete pad shall be placed are casing that extends at least two fee directions from the outside of the wininimum of 4 inches thick. The pad away from the well casing. Well driller's log shall be submitted Environmental Health Services with completion of the well.	lar red and must be sental Health und the well t laterally in all ell boring and is a must be sloped to Inyo County	of Environmental Healaws of Inyo County a well construction, repair of commencement of	DATE DATE 10-2-15 DATE
inyo County Environmental Health Service that an acceptable bacteriological sample after the well is completed.	be obtained	Censtruction Inspection	Date Date

P. O. Box 427, Independence, CA 93526 (760) 878-0238 • Fax (760) 878-0239

WELL PERMIT APPLICATION

			1	Permit No.	
TYPE OF WORK (Check)		ISE	E	QUIPMENT (Check)	B:
New Well Repair or Modification Destruction	Domestic [Irrigation [Monitoring[Test Well Municipal Other MW-08	Ca Ott	tery ble Tool er llow Stem Auger	
PROPOSED WELL DEPTH	Steel Other P	PROPOSE One of the property o		Wall or Gage Sch	10
PROPOSED SEALING Z	ONE			RIAL (Check)	
From 0 to 5	Feet	Neat Cemen Cement Gro		Bentonite CI Concrete	ay []
PHYSICAL SITE ADDRESS: 1210 S. US Highway 395 Olancha, CA 93549 ASSESSOR'S PARCEL NO.		1	DATE OF 1 6/15/15		
033-470-08-00		Comp	letion 6/19/1	15 	
NAME OF WELL OWNER: Crystal Geyser Roxane. LLC		NAME OF WELL DRI Gregg Drilling and Test	LLER; ing, Inc		
MAILING ADDRESS: 1210 S, US Highway 395 Olancha, CA 93549 PHONE NUMBER:		BUSINESS ADDRES 2726 Walnut Ave. Signal Hill, CA 90755 PHONE NUMBER:	S:		
(FOR OFFICE USE ONL DISPOSITION OF APPLICA		C-57 LICENSE NUMB 485165	C	Cash Deposit Sond Posted	
C) APPROVED C	DENIED	\$149.00 Fee pa	id on 6/9/	15 Receipt No 546	945
APPROVED WITH COND	ITIONS LISTED:				
Minimumft. seal of annu space(minimum 2 inches) is requi witnessed by Inyo County Environn Services.	red and must be	i hereby agree to come of Environmental Hea laws of Inyo County a well construction, repair of commencement of	ith Services nd of the Sta r, modification	and with all ordinand the of California pertains	ces and ining to
A concrete pad shall be placed and casing that extends at least two fee directions from the outside of the wininimum of 4 inches thick. The pad away from the well casing.	t laterally in all rell boring and is a	LIGENSED	WELL DRILLE	ER'S SIGNATURE	
Well driller's log shall be submitted Environmental Health Services with completion of the well.		6	DATE		
		Manun VI Site Approval/Permit Applica	Mais Ruya tion Approval	A 6/9/18	_
inyo County Environmental Health Servi that an acceptable bacteriological sampl	ces recommends e be obtained	Construction Inspection	0.100	Date	
after the well is completed.	li li	Final Approval		Date	

P. O. Box 427, Independence, CA 93526 (760) 878-0238 • Fax (760) 878-0239

WELL PERMIT APPLICATION

			Permit No.
TYPE OF WORK (Check)	U	SE	EQUIPMENT (Check)
New Weli Repair or Modification Destruction	Domestic Irrigation [Monitoring]	Test Well Municipal Other MW-09	Rotary Cable Tool Other Hollow Stem Auger
PROPOSED WELL DEPTH 18 Feet	Steel Other P	PROPOSE /C Diamete	
PROPOSED SEALING ZO	NE		LING MATERIAL (Check)
From 0 to 5	Feet	Neat Cemen Cement Gro	
PHYSICAL SITE ADDRESS: 1210 S. US Highway 395 Olancha, CA 93549 ASSESSOR'S PARCEL NO. 033-470-08-00		,	DATE OF WORK 6/15/15 eletion 6/19/15
NAME OF WELL OWNER: Crystal Geyser Roxane, LLC		NAME OF WELL DR Gregg Drilling and Test	ILLER:
MAILING ADDRESS: 1210 S. US Highway 395 Olancha, CA 93549 PHONE NUMBER:		BUSINESS ADDRES 2726 Walnut Ave. Signal Hill, CA 90755 PHONE NUMBER:	S:
(FOR OFFICE USE ONL' DISPOSITION OF APPLICATION		C-57 LICENSE NUMI 485165	BER: Cash Deposit Bond Posted
☐ APPROVED □	DENIED	\$149.00 Fee pa	id on <u>6/9//5</u> Receipt No. <u>546</u> 945
Minimumft. seal of annu space (minimum 2 inches) is require witnessed by Inyo County Environments Services. A concrete pad shall be placed are casing that extends at least two feet directions from the outside of the wininimum of 4 inches thick. The pad away from the well casing. Well driller's log shall be submitted Environmental Health Services with completion of the well.	iar red and must be rental Health und the well t laterally in all ell boring and is a must be sloped to Inyo County	of Environmental Healaws of Inyo County a well construction, repaid of commencement of	DWELL DRILLER'S SISNATURE D-2-15 DATE Date 10-2-15
Inyo County Environmental Health Service that an acceptable bacteriological sample after the well is completed.	be obtained	Construction Inspection Final Approval	Date Date

APPENDIX D WASTE TRANSPORTATION MANIFESTS

NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Nun	nber Requ	ired	2. Page 1 of	3. Emergen	cy Respons	e Phone	4. Waste T	racking Nu	mber 2015	063	
5. Generator's Name and Mai Crystal Geyan 1210 US F201 Clancha CA 1	ing Address r Roxane, LLC My 395 33543		D U NO NA		1120			l than mailing addr				
6. Transporter 1 Company Na	me							U.S. EPA ID		10.4.4	0 0	5 6
American Into 7. Transporter 2 Company Na		es inc					Ψ.	U.S. EPA ID		014	83	3 8
										fan L		
8. Designated Facility Name a Crocky & Over 1630 W. 17th 1 Long Beach C Facility's Phone:	Street						• 4.	U.S. EPA ID		703	0 9	9 3
9. Waste Shipping Nan	ne and Description					10. Conta	_	11. Total	12. Unit	-1.4		
	dous Waste Lic	udel Manaund	naustor)	- 10 M		No.	Туре	Quantity	Wt./Vol.			
is ease a a sembles.	CHEMICAL DEFENDANCE CONTRACT	America de posta constituen esco				001	77	1,900	> G			
2.							1,					
3.		,						7				
4.					700	a 2 P	7-1-1-8		- 1 m			
3. Special Handling Instruction Wear proper Jobs 3501.1	No. of the second	mation handli		hts or	volum	es are	e appr	oximate	116	3		
Job# 35011 4. GENERATOR'S/OFFERO marked and labeled/placar	-8-8 Pro	File# 27	578	consignment are	e fully and ac	ocurately des	scribed above	D 12	ipping name			
Job# 35011 4. GENERATOR'S/OFFERO marked and labeled/placar generator's/Offeror's Printed/Telegraphy Care	-8-8 Pro	I hereby declare that ects in proper condi	578	consignment are	re fully and acable internationature	occurately desponal and nati	scribed above ional governm	D 12	ipping name	e, and are class		
4. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/The Control of the	R'S CERTIFICATION: ded, and are in all resp yped Name Import to U. orts only):	I hereby declare that ects in proper condi	578	consignment ar ording to applica Sign	re fully and acable internationature	occurately desonal and nati	scribed above ional governm	D 12	ipping name	e, and are class		
4. GENERATOR'S/OFFERO marked and labeled/placar items and labeled/placa	R'S CERTIFICATION: ded, and are in all resp yped Name Import to U. orts only):	I hereby declare that ects in proper condi	578	consignment arr ording to applica Sign L Export from U	re fully and acable internationature	courately desponal and nati	scribed above ional governm	D 12	ipping name	e, and are class	h Day 06	Ye
4. GENERATOR'S/OFFERO marked and labeled/placar ienerator's/Offeror's Printed/Tope of the control of the contro	R'S CERTIFICATION: ded, and are in all resproyed Name Import to U. orts only): ent of Receipt of Materia	I hereby declare that ects in proper condi	578	consignment ar ording to applice Sign	re fully and acable internation	courately desponal and nati	scribed above ional governm	D 12	ipping name	e, and are class	h Day	Y
4. GENERATOR'S/OFFERO marked and labeled/placar ienerator's/Offeror's Printed/Tope of the control of the contro	R'S CERTIFICATION: ded, and are in all resp yped Name Import to U. orts only): ent of Receipt of Materiame	I hereby declare that ects in proper condi	578	consignment ar ording to applice Sign	re fully and adable international acture.	Port of en Date leav	scribed above ional governmental described above io	D 12	ipping name	Mon	h Day	Ye
4. GENERATOR'S/OFFERO marked and labeled/placar ienerator's/Offeror's Printed/Topic Cat. 5. International Shipments ransporter Signature (for exp. 6. Transporter Acknowledgmeransporter 1 Printed/Typed November 2 Printed/Typed November 2 Printed/Typed November 2 Printed/Typed November 2 Printed/Typed November 3 Discrepancy Indication Sp. 7b. Alternate Facility (or General	R'S CERTIFICATION: ded, and are in all resp yped Name Import to U. orts only): ent of Receipt of Materiame ame Quantity	I hereby declare that ects in proper condi	t the contents of this tion for transport acco	consignment ar ording to applice Sign	re fully and adable international acture.	Port of en Date leav	scribed above ional governmental described above io	by the proper sh nental regulations	ipping name	Mon	h Day 06 h Day	Ye Ye
4. GENERATOR'S/OFFERO marked and labeled/placar tenerator's/Offeror's Printed/Teleory of Carlot Signature (for exp. 6. Transporter Signature (for exp. 6. Transporter Acknowledgmaransporter 1 Printed/Typed North Printed/Typed N	R'S CERTIFICATION: ded, and are in all resp yped Name Import to U orts only): ent of Receipt of Materia ame Quantity erator)	I hereby declare that ects in proper condi	t the contents of this tion for transport acco	consignment ar ording to applice Sign	re fully and adable international acture.	Port of en Date leav	scribed above ional governmental described above io	by the proper shental regulations	ipping name	Mon	h Day h Day h Day	Ye
4. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/Topic Company of the Control of t	R'S CERTIFICATION: ded, and are in all resp yped Name Import to U orts only): ent of Receipt of Materia ame Quantity erator)	I hereby declare that ects in proper condi	t the contents of this tion for transport acco	consignment ar ording to applice Sign	re fully and adable international acture.	Port of en Date leav	scribed above ional governmental described above io	by the proper shental regulations	ipping name	Mont Mont	h Day h Day h Day	Ye Ye
14. GENERATOR'S/OFFERO marked and labeled/placar Generator's/Offeror's Printed/T	R'S CERTIFICATION: ded, and are in all resp yped Name Import to U orts only): ent of Receipt of Materia ame Quantity erator)	I hereby declare that ects in proper conditions. S. als	t the contents of this tion for transport according to the transport accord	consignment arrording to applica Sign Export from U Sign Sign	re fully and adable international acture S.S. Anature Manifest	Port of en Date leav	scribed above ional governmental described above io	by the proper shental regulations	ipping name	Mont Mont	h Day h Day Full Reje	Ye Ye

Soil Safe of California, Inc.

ADE 121272

12328 Hibiscus Ave. Adelanto, CA 92301

WEIGHMASTER CERTIFICATE

THIS IS TO CERTIFY that the following described commodity was weighed, measured, or counted by a weighmaster, whose signature is on this certificate, who is a recognized authority of accuracy, as prescribed by Chapter 7 (commencing with Section 12700) of Division 5 of the California Business and Professional Code, administered by the Division of Measurement Standards of the California Department of Food and Agriculture.

Manifest Number:

A4-4669 Load #: 1

8/6/2015

Generator Site Information:

Weighmaster Weighed at:

CRYSTAL GEYSER ROXANE, LLC

SOIL SAFE OF CALIFORNIA, INC...

1210 US HIGHWAY 395

12328 HIBISCUS AVE

ADELANTO, CA 92301

OLANCHA, CA 93549

Lbs

Tons

J Provansal

Time In: 2:12:35 PM

Gross Weight:

46700

23.35 Manual Wt

J Provansal

Time out: 2:12:38 PM

Tare Weight:

39760

19.88 Manual Wt

Net Weight:

6940

3.47

Truck Number: 563
Trailer Number: 240

Commodity: Non Haz - Solids

Driver on Gross and Tare Transporter: AIS - SANTIAGO

	Manifest	The state of the s	No		dous Soils				st # ↓	
	Date of Shipment:	Responsible for	r Payment:	Transport	Truck #:		Facility #:	Approval Number:	1 10	Load #
	Generator's Name and Billing	Address:			Generator's	Phone #				
	1210 US Highway 38	15			Person to Co	ontact:				
	Olancha, CA 93549				FAX#:			Customer Account	Number	
	Consultant's Name and Billing	Address:			Consultant's	s Phone	#:			
					Person to Co	ontact:				
					FAX#:			Customer Account	Number	
	Generation Site (Transport from Crystal Geyner Roxal	n): (name & address)			Site Phone #					
ant -	1210 US Highway 39 Olancha, CA 93549	6			Person to Co	ontact:				
nsult	Sulliani, Ort Cooks				FAX#:			#1 1		
/or Cc	Designated Facility (Transport t	o): (name & addřess)			Facility Phor	ne #:	982,8004			
Generator and/or Consultant	12328 Hiblecus Rd.				Person to Co		Protespeel			
nerato	Adelanto, CA 92301-	1700			FAX#:		246-8004			
- Ger	Transporter Name and Mailing Amarican integrated	Address: Bervices, inc.			Transporter's		#: 522-1168	Ch 3.00	0004/033	7
	P.O. Box 92316				Person to Co	ntact:	er Shorman	6.50		
	Long Beach, CA 908	09-2316			FAX#:		522-0474	Customer Account	Number 7704903	
	Description of Soil	Moisture Content	Contaminated b	y: Approx	: Qty: De	escriptio	on of Delivery	Gross Weight Tare	Weight Net	Weight
	Sand Organic Clay Other	0 - 10%	Gas Diesel Dother D	1				16700 39	140 6	940
	Sand Organic Clay Other	0 - 10%	Gas Diesel Dother						3.	.47
	List any exception to items listed AIS Project 3					Scal	e Ticket #	12127	9	
	Generator's and/or consulta Sheet completed and certifie in any way.									
	Print or Type Name: Genera	. 1	tant lanes	6 Sign	ature and dat	e det	erte la 1	l l	Month Day	Year
Transporter	Transporter's certification: I condition as when received. without off-loading, adding	I/We further cert	tify that the soil	is being a	lirectly tran	sported	from the Gener	is being delivered in ation Site to the D	n exactly th esignated F	e same Facility
Irans	Print or Type Name:	io, subtracting fro	nn or in ung way		ature and dat		ie.	, N	Month Day	Year
	Discrepancies:	11.42			1) and	ian	a Des	5	0806	15
Facility										
	Recycling Facility certifies th	he receipt of the so	oil covered by this				ove:			
Recy	Print or Type Name:			Sign	ature and date	e:	1			
	J. Provensel				-		1	36	-15.	

TRANSPORTER GOPY

APPENDIX E LITHOLOGIC BORING LOGS

Geosyntec (5) consultants

PHASE 2 INVESTIGATION. GPJ GEOSNTEC. GDT 8/7/15

LOGGER K. Agustsson

REVIEWER R. Smith

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

GS FORM: WELL BORE 01/04

BOREHOLE LOG

BORING AP-4

START DRILL DATE Jun 25, 15 **FINISH DRILL DATE** Jun 25, 15

LOCATION Olancha, CA **PROJECT** CG Roxane Phase 2

NUMBER SB0746

SHEET 1 OF 1

ELEVATION DATA:
GROUND SURF.
TOP OF CASING
DATUM NAD 1983

SAMPLE **DESCRIPTION** PID READING (ppm **GRAPHIC LOG ELEVATION (ft)** % WELL LOG SAMPLE NO. TIME (00:00) **GROUNDWATER** COMMENTS 1) Unit/Formation, Mem. 7) Plasticity **BLOWS PER** RECOVERY DEPTH 2) Soil/Rock Name 8) Density/Consistency OR (ft-bgs) 3) Color 9) Structure STRUCTURE 1) Rig Behavior 4) Moisture 10) Other (Mineralization, 2) Air Monitoring 5) Grain Size Discoloration, Odor, etc.) 6) Percentage Well graded SAND with gravel (SW); Grayish brown (2.5Y 5/2); Dry; Fine to very coarse sand; Fine to coarse gravel; (15,85,0); Nonplastic; Loose; NHCO/S Hand auger to 5' 1 2 3 4 5 100 SAA 12:30 Soil sample + duplicate taken @ 5' 6 7 8 9 Groundwater @ 9' 10 2 SAA except less gravel (10,90,0) and wet 100 12:35 Heaving sands up to 10' 11 12 13 14 TD = 14' (temporary depth to collect water sample) 15 16 17 18 19 **CONTRACTOR** Gregg Drilling **NORTHING** NOTES: SAA = Same As Above; NHCO/S = No Hydrocarbon odor or staining **EQUIPMENT** Rhino M5T **EASTING** DRILL MTHD HSA **COORDINATE SYSTEM: DIAMETER** 8" NAD 1983

Geosyntec consultants

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800

Fax: (805) 899-8689

BORING AP-4 START DRILL DATE Jun 25, 15 FINISH DRILL DATE Jun 25, 15 LOCATION Olancha, CA PROJECT CG Roxane Phase 2

ELEVATION DATA: GROUND SURF. TOP OF CASING DATUM NAD 1983

SHEET 1 OF

GS FORM:

WELL CONSTRUCTION LOG

EQUIPMENT Rhino M5T **DRILL MTHD** HSA **DIAMETER** 8"

LOGGER K. Agustsson

GEOSNTEC.GDT

PHASE 2 INVESTIGATION.GPJ

EASTING COORDINATE SYSTEM:

NAD 1983 **REVIEWER** R. Smith

TYPE/BRAND: MODEL:

CONTROLLER TYPE:

Geosyntec

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

GS FORM:

BORING MW-01

START DRILL DATE Jun 22, 15 FINISH DRILL DATE Jun 22, 15

LOCATION Olancha, CA **PROJECT** CG Roxane Phase 2 SHEET 1 OF 2

ELEVATION DATA: GROUND SURF.

TOP OF CASING 3643.80DATUM NAD 1983

	BOREHOI	LE LC	OG	NUMBER	SB0746							
DEPTH ft-bgs)	DESCRIPTION 1) Unit/Formation, Mem. 7) Plasticity 2) Soil/Rock Name 8) Density/Consistency 3) Color 9) Structure 4) Moisture 10) Other (Mineralization, 5) Grain Size Discoloration, Odor, etc.) 6) Percentage	GRAPHIC LOG	WELL LOG	GROUNDWATER OR STRUCTURE	ELEVATION (ft)	SAMPLE NO.	TYPE	BLOWS PER 6" WAS	RECOVERY (%)	PID READING (ppm)	TIME (00:00)	COMMENTS 1) Rig Behavior 2) Air Monitoring
1 -	Well graded SAND (SW); Trace gravel; Grayish brown (2.5Y 5/2); Dry; Fine to very coarse sand; Fine gravel; (5,95,0); Nonplastic; Loose; NHCO/S				-					<u>u</u>	14:00	Hand auger to 5' bgs
3 -					-							
5 - 6 -	SAA except trace silt (5,90,5)				-	1			90	0.2	14:25	
7 - 8 - 9 -					-							
10 -	SAA (5,90,5)				-	2			20	0.3	14:30	
12 -					-	_						
40	Silty SAND (SM); Dark yellowish brown (10YR 4/4); Moist; Fine and coarse sand; (0,35,65); Medium dense; FeOx staining; trace roots; NHCO/S				-	3			95	0.1	14:35	Soil sample collected @15'
17 -					-							
18 -					-							
19 -					-							
CONTI EQUIP DRILL DIAME	MENT Rhino M5T EA: MTHD HSA CO) 1983; U	408352.3 TE SYST ITM Zone	staining	SAA = Sa	me A	s Abo	ove; N	NHC	O/S	= No	Hydrocarbon odor or

Geosyntec consultants

LOGGER K. Agustsson

REVIEWER R. Smith

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

BORING MW-01

START DRILL DATE Jun 22, 15 FINISH DRILL DATE Jun 22, 15

LOCATION Olancha, CA PROJECT CG Roxane Phase 2 SHEET 2 OF 2

ELEVATION DATA: GROUND SURF.

TOP OF CASING 3643.80DATUM NAD 1983

	SS FORM: L BORE 01/04	BOREHOI	_E LC)G		NUMBER	SB0746							
DEPTH (ft-bgs)	DE 1) Unit/Formation, Me 2) Soil/Rock Name 3) Color 4) Moisture 5) Grain Size 6) Percentage	em. 7) Plasticity 8) Density/Consistency 9) Structure 10) Other (Mineralization, Discoloration, Odor, etc.)	GRAPHIC LOG	WELL LOG		JNDWATER OR RUCTURE	ELEVATION (ft)	SAMPLE NO.	TYPE	BLOWS PER 6" WE		PID READING (ppm)	TIME (00:00)	COMMENTS 1) Rig Behavior 2) Air Monitoring
21 -	Wet: Fine to very of	O (SW); Brown (10YR 4/3); coarse sand; (0,95,5); m dense; NHCO/S					-	4			80	0.1	14:40	
23 -					Ţ		_							
24 -					Ground	dwater @ 23'								
25 -							_							
26 -	brown (2.5Y 6/3):	ND (SP); Light yellowish Wet; Coarse to very coarse onplastic; Medium dense;					-	5			95	0.2	14:55	
27 -	NIICO/S						-							
28 -							_							
29 -														
30 -	SAA except trace s	silt (0.95.5)					_	6			100		15:00	
31 -	o, t t o,copt a doc t	Silt (0,00,0)					-							
32 -							-							
33 -							-							Bottom of screen = 33
34 -							-							bgs
35 -							_							TD = 35' bgs
36 -							-							
37 -							-							
38 -							-							
39 -							-							
EQUIP	RACTOR Gregg PMENT Rhino M& . MTHD HSA	T EAS	STING	4017834 408352. TE SYS	.31000	NOTES: staining	SAA = Sa	me A	s Abo	ove; N	IHCC)/S =	= No I	Hydrocarbon odor or

Geosyntec consultants

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

START DRILL DATE Jun 22, 15 FINISH DRILL DATE Jun 22, 15 LOCATION Olancha, CA PROJECT CG Roxane Phase 2

MW-01

BORING

ELEVATION DATA: GROUND SURF. TOP OF CASING 3643.80DATUM NAD 1983

SHEET 1 OF

GS FORM:

WELL CONSTRUCTION LOG

EQUIPMENT Rhino M5T **DRILL MTHD** HSA **DIAMETER** 8" LOGGER K. Agustsson

408352.31 **COORDINATE SYSTEM:**

NAD 1983; UTM Zone 11S **REVIEWER** R. Smith

MODEL:

CONTROLLER TYPE:

Geosyntec consultants

GS FORM:

CGR- PHASE 2 INVESTIGATION.GPJ GEOSNTEC.GDT 8/7/15

DIAMETER 8"

LOGGER K. Agustsson

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

BORING MW-02 START DRILL DATE Jun 25, 15 FINISH DRILL DATE Jun 25, 15

LOCATION Olancha, CA **PROJECT** CG Roxane Phase 2 NUMBER SB0746

SHEET 1 OF 2 **ELEVATION DATA: GROUND SURF.**

TOP OF CASING 3638.21DATUM NAD 1983

	GS FORM: LL BORE 01/04	BOREHO	LE LC	G	\Box	NUMBER	SB0746			_				
										SAM		$\widehat{}$		
DEPTH (ft-bgs)	1) Unit/Formation, M 2) Soil/Rock Name 3) Color 4) Moisture 5) Grain Size 6) Percentage	em. 7) Plasticity 8) Density/Consistency 9) Structure 10) Other (Mineralization, Discoloration, Odor, etc.)	GRAPHIC LOG	WELL LOG		UNDWATER OR RUCTURE	ELEVATION (ft)	SAMPLE NO.	TYPE	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME (00:00)	COMMENTS 1) Rig Behavior 2) Air Monitoring
1 -	Dry; Fine and coa	Grayish brown (10YR 5/2); rse sand; Trace fine gravel; stic; Loose; NHCO/S					-							Hand auger to 5' bgs
3 -							_							
4 -							_	_						
5 -	SAA except an inc (10,55,35)	crease in coarse gravel					_	1			90	1.0	17:27	
7 -							-							
8 -							-	-						
9 - 10 - 11 - 12 -	6/3); Dry; Fine to (Light yellowish brown (2.5Y coarse sand; Trace fine Nonplastic; Soft; NHCO/S					-	2			90	0.2	17:31	Soil sample collected @10'
13 - 14 -					∑ Groundy	rater @ 14.5'	-							
15 - - - 16 -	yellowish brown (2 coarse sand; Trac Nonplastic; Soft; N				Giouriuw	aici (y. 14.3	-	3			100	0.2	17:36	
17 - 18 - 19 -	Fine to coarse sar (0,65,35); Nonpla: gleyed-colored sp Sandy SILT (ML); 5GY 4/1); Wet; Finclay content; (0,40 NHCO/S	Dark greenish gray (GLEY ne to coarse sand; Trace 0,60); Low plasticity; Firm;					-							
20 - CONT	5GY 4/1); Wet; Fir	Dark greenish gray (GLEY ne to coarse sand; Trace 5,25); Low plasticity; Firm; Drilling NO	RTHING	401790	7.34000		SAA = Sa	me A	s Abo	ove; N	NHC(O/S :	= No	Hydrocarbon odor or
	PMENT Rhino M		STING	408428		staining								
	MTHD HSA		ORDINA											

NAD 1983; UTM Zone 11S

SEE KEY SHEET FOR SYMBOLS AND ABBREVIATIONS

REVIEWER R. Smith

Geosyntec (5) consultants

924 Anacapa St Suite 4A Tel: (805) 897-3800

Santa Barbara, CA 93101 Fax: (805) 899-8689

BORING MW-02 START DRILL DATE Jun 25, 15 FINISH DRILL DATE Jun 25, 15 LOCATION Olancha, CA PROJECT CG Roxane Phase 2

SHEET 2 OF 2 **ELEVATION DATA: GROUND SURF.** TOP OF CASING 3638.21DATUM NAD 1983

GS FORM:

LOGGER K. Agustsson

REVIEWER R. Smith

BO	R	FI	Н	0	ı	F		റദ
DU	\mathbf{r}	_		v	ᆫ	_	_	UG.

NUMBER SB0746 WELL BORE 01/04 SAMPLE **DESCRIPTION** (mdd) **GRAPHIC LOG ELEVATION (ft)** % WELL LOG (00:00)SAMPLE NO **GROUNDWATER COMMENTS** 1) Unit/Formation, Mem. 7) Plasticity **BLOWS PER** RECOVERY PID READING DEPTH 2) Soil/Rock Name 8) Density/Consistency OR (ft-bgs) 3) Color 9) Structure TIME (STRUCTURE 1) Rig Behavior 4) Moisture 10) Other (Mineralization. 2) Air Monitoring 5) Grain Size Discoloration, Odor, etc.) 6) Percentage Breathing space PID reading = 0.0 ppm NHCO/S 17:43 SAA (0,75,25) 21 SAA except more coarse gravel, up to 1" diameter and Light yellowish brown (10YR 22 23 24 25 Well graded SAND (SW); Dark yellowish brown (10YR 4/6); Wet; Very fine to very coarse sand; (0,100,0); Nonplastic; Loose; 0.3 17:47 100 26 NHCO/S TD = 26.5' bgs27 28 29 30 31 32 33 PHASE 2 INVESTIGATION. GPJ GEOSNTEC. GDT 8/7/15 34 35 36 37 38 39 NOTES: **CONTRACTOR** Gregg Drilling **NORTHING** 4017907.34000 SAA = Same As Above; NHCO/S = No Hydrocarbon odor or staining **EQUIPMENT** Rhino M5T **EASTING** 408428.75000 DRILL MTHD HSA **COORDINATE SYSTEM: DIAMETER** 8" NAD 1983; UTM Zone 11S

Geosyntec consultants

GS FORM:

DRILL MTHD HSA

LOGGER K. Agustsson

DIAMETER 8"

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

WELL CONSTRUCTION LOG

BORING MW-02 START DRILL DATE Jun 25, 15 FINISH DRILL DATE Jun 25, 15

LOCATION Olancha, CAPROJECT CG Roxane Phase 2NUMBER SB0746

SHEET 1 OF ELEVATION DATA:
GROUND SURF.

TOP OF CASING 3638.21 DATUM NAD 1983

COORDINATE SYSTEM:

NAD 1983; UTM Zone 11S

REVIEWER R. Smith

MODEL:

CONTROLLER TYPE:

Geosyntec consultants

LOGGER K. Agustsson

REVIEWER R. Smith

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

BORING MW-03

START DRILL DATE Jun 23, 15 FINISH DRILL DATE Jun 23, 15

LOCATION Olancha, CA PROJECT CG Roxane Phase 2

SHEET 1 OF 1 **ELEVATION DATA:**

GROUND SURF.

TOP OF CASING 3618.26DATUM NAD 1983

WEL	L BORE 01/04	BOREHOL	ELC			NUMBER	SB0746								
DEPTH (ft-bgs)	D 1) Unit/Formation, M 2) Soil/Rock Name 3) Color 4) Moisture 5) Grain Size 6) Percentage	lem. 7) Plasticity 8) Density/Consistency 9) Structure 10) Other (Mineralization, Discoloration, Odor, etc.)	GRAPHIC LOG	WELL LOG		UNDWATER OR RUCTURE	ELEVATION (ft)	SAMPLE NO.	TYPE	BLOWS PER 6" WWS	ECOVERY (%)	PID READING (ppm)	TIME (00:00)	COMMENTS 1) Rig Behavior 2) Air Monitoring	
1 - 2 - 3 -	Well graded SAN (2.5Y 6/2); Dry; F	D (SW); Light brownish gray ine to very coarse sand; Fine 10,90,0); Nonplastic; Loose;					-					<u>a</u>		Hand auger to 5'	
4 - 5 - 6 - 7 - 8 -	SAA except an in Well graded SAN	crease in coarse gravel to D with gravel (SW) (30,70,0)					-	1			40	0.0 1	6:05	Soil sample collected (5'	
9 - 10 -	SAA except sand Lean CLAY (CL);	Black (10YR 2/1); Wet;			∑ Groundw	rater @ 10'	-	2			70	0.0 1	6:12	Breathing space PID reading = 0.0 ppm	
12 - 13 - 14 -	plasticity; Soft; Ni SAA except an inc	crease in gravel (10,5,85)					-	3			90	0.2 1	6:20		
16 - 17 - 18 -	SILT (ML); Dark (4/1); Wet; (0,0,10 roots; slight anoxi	greenish gray (GLEY 5G I0); Low plasticity; Soft; Trace ic odor; NHCO/S					-								
20 - 21 - 22 - 23 -	Fine to very coars gravel; (10,90,0); SILT (ML); Black	I (SW); Black (10YR 2/1); se sand; Fine to coarse Nonplastic; Dense; NHCO/S (5Y 2.5/1); Wet; Trace fine to 5,95); Low plasticity; Soft;					-	4			80	0.0 1	6:25	Breathing space PID reading = 0.0 ppm TD = 21.5'	
24 - 25 -							-	-							
26 - 27 -							-	-							
28 - 29 -							-								
	RACTOR Gregg		RTHING STING	401833 408541		NOTES: staining	SAA = Sa	me A	s Abc	ve; N	HCC)/S =	No I	Hydrocarbon odor or	

Geosyntec consultants

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800

Fax: (805) 899-8689

START DRILL DATE Jun 23, 15 FINISH DRILL DATE Jun 23, 15 LOCATION Olancha, CA PROJECT CG Roxane Phase 2

SB0746

MW-03

BORING

NUMBER

ELEVATION DATA: GROUND SURF. TOP OF CASING 3618.26DATUM NAD 1983

SHEET 1 OF

GS FORM: WELL COMP AG 01/04

WELL CONSTRUCTION LOG

SURFACE COMPLETION: GRAPHIC LOG **COMMENTS TYPE** Monument LOCKING COVER WELL RISER HEIGHT 3.5 ft DEPTH 1) Groundwater MATERIAL (ft-bgs) 2) Surge Time DEPTH RISER DIAM. 8 in PROTECTIVE RISER 3) Dedicated Pump (FT-BGS) WELL CASING HEIGHT 3.2 ft CASING HEIGHT CONCRETE PAD SIZE 4 x 4 x 0.3 ft **BORING DEPTH** 21.5 ft bgs PILOT BORING DIAMETER 8 in REAM BORING DIAMETER WELL CONSTRUCTION WELL CONSTRUCTION DATE 6/23/2015 WELL DEPTH 20 ft bgs 4.0 WELL CASING DIAMETER <u>2 in</u> WELL CASING MATERIAL 5.0 Sch 40 PVC SCREEN SLOT SIZE/DIRECTION 0.020 inch TOP OF SCREEN 5 ft bgs BOTTOM OF SCREEN 20 ft bgs END CAP/SUMP LENGTH **GROUT** TOP DEPTH TYPE/BRAND NA **QUANTITY USED** NA 10 VOLUME FLUID USED PLACEMENT METHOD BENTONITE SEAL TOP DEPTH 0 ft bgs TYPE/BRAND Med. bentonite chips QUANTITY USED 1.28 cu. ft. **VOLUME FLUID USED** 10 gal SET-UP TIME overnight PLACEMENT METHOD pour TRANSITION SAND TOP DEPTH TYPE/BRAND GEOSNTEC.GDT QUANTITY USED NA PLACEMENT METHOD SAND/GRAVEL PACK 20.0 TOP DEPTH 4 ft bas 20 PHASE 2 INVESTIGATION.GPJ TYPE/BRAND #2/12/Lapis Lustre **QUANTITY USED** 5.14 cu. ft. 21.5 PLACEMENT METHOD Pour **BOTTOM FILL** TOP DEPTH NA TYPE/BRAND QUANTITY USED PLACEMENT METHOD DEDICATED PUMP SYSTEM: **CONTRACTOR** Gregg Drilling **NORTHING** 4018339.18

EQUIPMENT Rhino M5T **DRILL MTHD** HSA **DIAMETER** 8"

LOGGER K. Agustsson

EASTING 408541.26 **COORDINATE SYSTEM:**

NAD 1983; UTM Zone 11S

REVIEWER R. Smith

TYPE/BRAND: NA MODEL:

CONTROLLER TYPE:

Geosyntec consultants

GS FORM:

LOGGER K. Agustsson

REVIEWER R. Smith

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800

Fax: (805) 899-8689 **BOREHOLE LOG** **BORING** MW-04

START DRILL DATE Jun 24, 15 FINISH DRILL DATE Jun 24, 15

LOCATION Olancha, CA **PROJECT** CG Roxane Phase 2 SHEET 1 OF 1

ELEVATION DATA: GROUND SURF.

TOP OF CASING 3615.22DATUM NAD 1983

									SAMI	PLE			
DEPTH (ft-bgs)	3) Color 9)		GRAPHIC LOG	WELL LOG	GROUNDWATER OR STRUCTURE	ELEVATION (ft)	SAMPLE NO.	TYPE	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME (00:00)	COMMENTS 1) Rig Behavior 2) Air Monitoring
1 - 2 -	Well graded SAND (SW 7/2); Dry; Fine to very cc coarse gravel (10,90,0); NHCO/S	parse sand: Fine to				-							Hand auger to 5'
3 - 4 -				584 584	3	-							
5 - 6 -	SAA except less gravel (5,95,0)				-	1			70	0.7	12:34	Soil sample collected 5'
7 - 8 -					∑ Groundwater @ 8'	-							
9 - 10 -					Groundwater @ 8	-							
11 -	SAA except (5,95,0); we brown (2.5Y 5/3) SAA except becomes Lig	_				_	2			100	0.5	12:36	Breathing space PID reading = 0.0 ppm
12 -	(0,100,0) Lean CLAY (CL); Very d Wet; (0,0,100); High pla	ark grav (GLEY N 3/):				-							
13 - 14 -						-							
15 -	Well graded SAND with gray (2.5Y 4/1); Wet; Fir					-	3			100	1.0	12:40	
16 - 17 -	(0,90,10); Nonplastic; Lo SILT (ML); Dark greenis 4/1); Wet: (0.0,100); Lov	oose; NHCO/S h gray (GLEY 5GY				_							
18 - 19 -	Soft; NHCO/S					-							
20 -	Well graded SAND with	silt (SW-SM); Dark				_	4			70	1.3	12:45	Breathing space PID
21	gray (2.5Y 4/1); Wet; Fir (0,90,10); Nonplastic; Lo SILT (ML); Dark greenis	ne to coarse sand; bose; NHCO/S				-							reading = 0.0 ppm TD = 21.5'
22 - 23 -	4/1); Wet; Trace fine sar plasticity; Soft; NHCO/S	nd; (0,5,95); Low				-							
24 -						-							
25 -						-							
26 -						-							
27 <i>-</i> 28 <i>-</i>													
29 -						-							
30			 					- 4:			2/2		I bodon a d
CONT	RACTOR Gregg Drillir PMENT Rhino M5T . MTHD HSA ETER 8"	EAS CO	RTHING STING ORDINA 0 1983; U	408628 TE SYS	staining staining	SAA = Sa	me A	s Abo	ve; N	IHC)/S :	= No	Hydrocarbon odor or

Ceosyntec consultants

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

START DRILL DATE Jun 24, 15
FINISH DRILL DATE Jun 24, 15
LOCATION Olancha, CA
PROJECT CG Roxane Phase 2

SB0746

MW-04

BORING

NUMBER

SHEET 1 OF
ELEVATION DATA:
GROUND SURF.
TOP OF CASING 3615.22
DATUM NAD 1983

GS FORM: WELL COMP AG 01/04

WELL CONSTRUCTION LOG

SURFACE COMPLETION: GRAPHIC LOG **COMMENTS TYPE** Monument LOCKING COVER WELL RISER HEIGHT 3.5 ft DEPTH 1) Groundwater MATERIAL (ft-bgs) 2) Surge Time DEPTH RISER DIAM. 8 in PROTECTIVE RISER 3) Dedicated Pump (FT-BGS) WELL CASING HEIGHT 3.1 ft CASING HEIGHT CONCRETE PAD SIZE 4 x 4 x 0.3 ft **BORING DEPTH** 21.5 ft bgs PILOT BORING DIAMETER 8 in REAM BORING DIAMETER WELL CONSTRUCTION WELL CONSTRUCTION DATE 6/24/2015 WELL DEPTH 20 ft bgs 4.0 WELL CASING DIAMETER <u>2 in</u> WELL CASING MATERIAL 5.0 Sch 40 PVC SCREEN SLOT SIZE/DIRECTION 0.020 inch TOP OF SCREEN 5 ft bgs BOTTOM OF SCREEN 20 ft bgs END CAP/SUMP LENGTH **GROUT** TOP DEPTH TYPE/BRAND NA **QUANTITY USED** NA 10 VOLUME FLUID USED PLACEMENT METHOD BENTONITE SEAL TOP DEPTH 0 ft bgs TYPE/BRAND Med. bentonite chips QUANTITY USED 1.28 cu. ft. **VOLUME FLUID USED** 10 gal SET-UP TIME overnight PLACEMENT METHOD pour TRANSITION SAND TOP DEPTH TYPE/BRAND QUANTITY USED NA PLACEMENT METHOD SAND/GRAVEL PACK 20.0 TOP DEPTH 4 ft bas 20 TYPE/BRAND #2/12/Lapis Lustre **QUANTITY USED** 5.14 cu. ft. 21.5 PLACEMENT METHOD Pour **BOTTOM FILL** TOP DEPTH NA TYPE/BRAND QUANTITY USED PLACEMENT METHOD DEDICATED PUMP SYSTEM: **CONTRACTOR** Gregg Drilling **NORTHING** 4018389.67

CONTRACTOR Gregg Drilling
EQUIPMENT Rhino M5T
DRILL MTHD HSA
DIAMETER 8"

LOGGER K. Agustsson

GEOSNTEC.GDT

PHASE 2 INVESTIGATION.GPJ

NORTHING 4018389.67 EASTING 408628.54 COORDINATE SYSTEM: NAD 1983; UTM Zone 11S

REVIEWER R. Smith

TYPE/BRAND: NA MODEL:

CONTROLLER TYPE:

Geosyntec[©] consultants

924 Anacapa St Suite 4A Tel: (805) 897-3800

Santa Barbara, CA 93101 Fax: (805) 899-8689

BORING MW-05 START DRILL DATE Jun 23, 15 FINISH DRILL DATE Jun 23, 15 LOCATION Olancha, CA PROJECT CG Roxane Phase 2

SHEET 1 OF 1 **ELEVATION DATA: GROUND SURF.** TOP OF CASING 3608.33DATUM NAD 1983

GS FORM:

LOGGER K. Agustsson

REVIEWER R. Smith

BO	R	FI	Н	0	ı	F		റദ
DU	\mathbf{r}	_		v	ᆫ	_	_	UG.

NUMBER SB0746 WELL BORE 01/04 SAMPLE DESCRIPTION GRAPHIC LOG L0G % ELEVATION (00:00)SAMPLE NO **GROUNDWATER COMMENTS** 1) Unit/Formation, Mem. 7) Plasticity **BLOWS PER** ID READING RECOVERY DEPTH 2) Soil/Rock Name 8) Density/Consistency WELL I OR (ft-bgs) 3) Color 9) Structure 1) Rig Behavior **STRUCTURE** TIME 10) Other (Mineralization. 4) Moisture 2) Air Monitoring 5) Grain Size Discoloration, Odor, etc.) 6) Percentage Well graded SAND (SW); Olive brown (2.5Y 4/3); Dry; Very fine to very coarse sand; Fine gravel (10,90,0); Nonplastic; Loose; NHCO/S Hand auger to 5' 1 2 3 4 Soil sample collected @ 90 0.1 13:55 SAA except no gravel (0,100,0); Groundwater @ 5' Breathing space PID reading = 0.0 ppm 6 SAA except an increase in very coarse sand 7 8 9 10 0.4 Sandy SILT (ML); Dark greenish gray (GLEY 95 14:00 5GY 4/1); Wet; Very fine to fine sand; 11 (0,40,60); Nonplastic; Soft; Gleyed staining; Marshy anoxic odor; NHCO/S 12 13 14 15 100 0.2 14:10 Well graded SAND (SW); Dark greenish gray (GLEY 5GY 4/1); Wet; Very fine to coarse sand; (0,95,5); Nonplastic; Medium dense; NHCO/S Sandy SILT (ML); Dark greenish gray (GLEY 5GY 4/1); Wet; Very fine to fine sand; (0,40,60); Nonplastic; Soft; Gleyed staining; PHASE 2 INVESTIGATION. GPJ GEOSNTEC. GDT 8/7/15 Marshy anoxic odor; NHCO/S 19 20 Silty SAND (SM); Dark greenish gray (GLEY 5GY 4/1); Wet; Very fine sand; Trace coasrse sand; (0,60,40); Low plasticity; Soft; NHCO/S 0.7 14:15 Breathing space PID reading = 0.0 ppm 21 Sandy SILT (ML); Dark greenish gray (GLEY TD = 21.5'5GY 4/1); Wet; Very fine and trace coarse 22 sand; (0,30,70); Low plasticity; Soft; NHCO/S 23 24 **CONTRACTOR** Gregg Drilling **NORTHING** 4018438.42000 NOTES: SAA = Same As Above; NHCO/S = No Hydrocarbon odor or staining **EQUIPMENT** Rhino M5T **EASTING** 408737.46000 DRILL MTHD HSA **COORDINATE SYSTEM: DIAMETER** 8" NAD 1983; UTM Zone 11S

Geosyntec consultants

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

BORING MW-05 START DRILL DATE Jun 23, 15 FINISH DRILL DATE Jun 23, 15 **LOCATION** Olancha, CA PROJECT CG Roxane Phase 2

SHEET 1 OF **ELEVATION DATA: GROUND SURF.** TOP OF CASING 3608.33DATUM NAD 1983

GS FORM:

WELL CONSTRUCTION LOG

NUMBER SB0746 WELL COMP AG 01/04 SURFACE COMPLETION: GRAPHIC LOG **COMMENTS TYPE** Monument LOCKING COVER WELL RISER HEIGHT 3.5 ft DEPTH 1) Groundwater MATERIAL (ft-bgs) 2) Surge Time DEPTH RISER DIAM. 8 in PROTECTIVE RISER 3) Dedicated Pump (FT-BGS) WELL CASING HEIGHT 3.2 ft CASING HEIGHT CONCRETE PAD SIZE 4 x 4 x 0.3 ft **BORING DEPTH** 21.5 ft bgs PILOT BORING DIAMETER 8 in REAM BORING DIAMETER WELL CONSTRUCTION WELL CONSTRUCTION DATE 6/24/2015 WELL DEPTH 20 ft bgs 4.0 WELL CASING DIAMETER <u>2 in</u> WELL CASING MATERIAL 5.0 Sch 40 PVC SCREEN SLOT SIZE/DIRECTION 0.020 inch TOP OF SCREEN 5 ft bgs BOTTOM OF SCREEN 20 ft bgs END CAP/SUMP LENGTH **GROUT** TOP DEPTH TYPE/BRAND NA **QUANTITY USED** NA 10 VOLUME FLUID USED PLACEMENT METHOD BENTONITE SEAL TOP DEPTH 0 ft bgs TYPE/BRAND Med. bentonite chips QUANTITY USED 1.28 cu. ft. **VOLUME FLUID USED** 10 gal SET-UP TIME overnight PLACEMENT METHOD pour TRANSITION SAND TOP DEPTH TYPE/BRAND GEOSNTEC.GDT QUANTITY USED NA PLACEMENT METHOD SAND/GRAVEL PACK 20.0 TOP DEPTH 4 ft bas 20 PHASE 2 INVESTIGATION.GPJ TYPE/BRAND #2/12/Lapis Lustre **QUANTITY USED** 5.14 cu. ft. 21.5 PLACEMENT METHOD Pour **BOTTOM FILL** TOP DEPTH NA TYPE/BRAND QUANTITY USED PLACEMENT METHOD DEDICATED PUMP SYSTEM: **CONTRACTOR** Gregg Drilling **NORTHING** 4018438.42

EQUIPMENT Rhino M5T **DRILL MTHD** HSA **DIAMETER** 8"

LOGGER K. Agustsson

EASTING 408737.46 **COORDINATE SYSTEM:** NAD 1983; UTM Zone 11S

REVIEWER R. Smith

TYPE/BRAND: NA MODEL:

CONTROLLER TYPE:

Geosyntec consultants

GS FORM:

LOGGER K. Agustsson

REVIEWER R. Smith

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

BORING MW-06

START DRILL DATE Jun 23, 15 FINISH DRILL DATE Jun 23, 15

LOCATION Olancha, CA PROJECT CG Roxane Phase 2 SHEET 1 OF 1

ELEVATION DATA: GROUND SURF.

TOP OF CASING 3615.33DATUM NAD 1983

WELL	L BORE 01/04 BOREHO											
DEPTH (ft-bgs)	DESCRIPTION 1) Unit/Formation, Mem. 7) Plasticity 2) Soil/Rock Name 8) Density/Consistency 3) Color 9) Structure 4) Moisture 10) Other (Mineralization, Discoloration, Odor, etc.) 6) Percentage	GRAPHIC LOG	WELL LOG	GROUNDWATER OR STRUCTURE	ELEVATION (ft)	SAMPLE NO.	TYPE	BLOWS PER 6" WS	RECOVERY (%)	PID READING (ppm)	TIME (00:00)	COMMENTS 1) Rig Behavior 2) Air Monitoring
1 -	Well graded SAND (SW); Light olive brown (2.5Y 5/4); Dry; Fine to very coarse sand; Fine gravel (20,80,0); Nonplastic; Loose; NHCO/S				-					Д		Hand auger to 5'; Soil very loose difficult to ha auger; Soil caving
3 - 4 -					-							
5 - 6 - 7 -	SAA except a deserease in gravel and increase in silt (10,85,5)				-	1			90	1.0	09:00	
8 - 9 -					-							
10 -	SAA (10,85,5)			∑ Groundwater @ 10'	_	2			60	1.4	09:05	Soil sample collected
11 - 12 -	Well graded SAND (SW); Grayish brown (2.5Y 5/2); Moist; Fine to very coarse sand; (0,95,5); Nonplastic; Loose; NHCO/S				-							Breathing space PID reading = 0.0 ppm
13 -					-							
14 -					-	-						
15 -	SAA (0,95,5)				_	3			100	2.0	09:10	
16 - 17 -	Well graded SAND (SW); Dark gray (2.5Y 4/1); Wet' Very fine to coarse sand; Fine gravel; Trace coarse gravel; (5,90,5); Nonplastic; Loose; NHCO/S				-							
18 -					-							
19 -					-							
20 -	SAA except an increase in gravel (10,85,5)				-	4			80	4.5	09:15	
21 -	Poorly graded SAND with silt (SP-SM); Dark gray (5Y 4/1); Wet; Very fine to fine sand; Trace coarse sand; (0,90,10); Nonplastic;				-					1.9		
23 -	Loose; NHCO/S				_							
24 -												TD = 23'
25 -					_							
26 -					-							
27 -					-							
28 -					-							
29 -					-							
30			<u> </u>	<u> </u>								

Geosyntec consultants

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

START DRILL DATE Jun 23, 15
FINISH DRILL DATE Jun 23, 15
LOCATION Olancha, CA
PROJECT CG Roxane Phase 2

SB0746

MW-06

BORING

NUMBER

ELEVATION DATA:
GROUND SURF.
TOP OF CASING 3615.33
DATUM NAD 1983

SHEET 1 OF

GS FORM: WELL COMP AG 01/04

WELL CONSTRUCTION LOG

SURFACE COMPLETION: GRAPHIC LOG **COMMENTS TYPE** Monument LOCKING COVER WELL RISER HEIGHT 3.5 ft DEPTH 1) Groundwater MATERIAL (ft-bgs) 2) Surge Time DEPTH RISER DIAM. 8 in PROTECTIVE RISER 3) Dedicated Pump (FT-BGS) WELL CASING HEIGHT 3.2 ft CASING HEIGHT CONCRETE PAD SIZE 4 x 4 x 0.3 ft **BORING DEPTH** 23 ft bgs PILOT BORING DIAMETER 8 in REAM BORING DIAMETER WELL CONSTRUCTION WELL CONSTRUCTION DATE 6/23/2015 WELL DEPTH 23 ft bgs WELL CASING DIAMETER <u>2 in</u> WELL CASING MATERIAL Sch 40 PVC SCREEN SLOT SIZE/DIRECTION 0.020 inch TOP OF SCREEN 8 ft bgs BOTTOM OF SCREEN 23 ft bgs 7.0 END CAP/SUMP LENGTH 8.0 **GROUT** TOP DEPTH 0 ft bgs TYPE/BRAND Portland IV/WyoBen Grout **QUANTITY USED** 1.61 cu. ft. 10 **VOLUME FLUID USED** ~10 gal PLACEMENT METHOD pour **BENTONITE SEAL** TOP DEPTH 5 ft bgs TYPE/BRAND Med. bentonite chips QUANTITY USED 0.64 cu. ft. **VOLUME FLUID USED** 10 gal SET-UP TIME 20 min PLACEMENT METHOD pour TRANSITION SAND TOP DEPTH TYPE/BRAND GEOSNTEC.GDT QUANTITY USED NA PLACEMENT METHOD SAND/GRAVEL PACK TOP DEPTH 7 ft bas 20 INVESTIGATION.GPJ TYPE/BRAND #2/12/Lapis Lustre **QUANTITY USED** 5.14 cu. ft. PLACEMENT METHOD Pour **BOTTOM FILL** TOP DEPTH NA TYPE/BRAND QUANTITY USED PLACEMENT METHOD DEDICATED PUMP SYSTEM: **CONTRACTOR** Gregg Drilling **NORTHING** 4018282.15

CONTRACTOR Gregg Drilling
EQUIPMENT Rhino M5T
DRILL MTHD HSA
DIAMETER 8"

LOGGER K. Agustsson

 NORTHING
 4018282.15

 EASTING
 408877.55

 COORDINATE SYSTEM:

NAD 1983; UTM Zone 11S

REVIEWER R. Smith

TYPE/BRAND: NA MODEL:

CONTROLLER TYPE:

Geosyntec consultants

GS FORM:

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

BOREHOLE LOG

BORING MW-07

START DRILL DATE Jun 23, 15 FINISH DRILL DATE Jun 23, 15

LOCATION Olancha, CA **PROJECT** CG Roxane Phase 2 SHEET 1 OF 1

ELEVATION DATA: GROUND SURF.

TOP OF CASING 3610.16DATUM NAD 1983

	L BORE 01/04	BOREHOL	_E LC)G	NUMBER	SB0746							
	D	ESCRIPTION	(D						SAM	PLE			
DEPTH (ft-bgs)	1) Unit/Formation, M 2) Soil/Rock Name 3) Color 4) Moisture 5) Grain Size 6) Percentage	em. 7) Plasticity 8) Density/Consistency 9) Structure 10) Other (Mineralization, Discoloration, Odor, etc.)	GRAPHIC LOG	WELL LOG	GROUNDWATER OR STRUCTURE	ELEVATION (ft)	SAMPLE NO.	TYPE	"9 ABA SWOJB	RECOVERY (%)	PID READING (ppm)	TIME (00:00)	COMMENTS 1) Rig Behavior 2) Air Monitoring
1 -	(2.5Y 4/2); Dry; F	D (SW); Dark grayish brown ine to very coarse sand; Fine Nonplastic; Loose; NHCO/S				-							Hand auger to 5'
2 -													
3 -						-							
4 -						-							
5 - 6 -	SAA (10,90,0)						1			80	0.6	11:34	Soil sample collected 5' Breathing space PID
7 -					Soil begins to be moist								reading = 0.0 ppm
8 -						-	-						
9 -					∑ Groundwater @ 9'	-	-						
10 -		sh brown (2.5Y 5/2) and arse gravel; and trace silt				-	2			15	0.9	11:45	
11 -	(10,85,5); very loc	ose				-							
12 -						-							
13 - 14 -													
15 -	SAA except no gr	avel (0.95.5)				_	3			10	16	11:52	
16 -	SAN except no gr	avei (0,93,3)				-	1			.0		11.02	
17 -													
18 -						-							
19 -						-							
20 -	silt (5,95,0)	ne and coarse gravel and no					4			60	1.2	11:55	Breathing space PID reading = 0.0 ppm
22 -	Fine to coasre sar	Dark gray (2.5Y 4/1); Wet; nd; Fine gravel; (5,60,35); oose; Very water saturated;				-							TD = 21.5'
23 -	NHCO/S					-							
24 -						-							
_25						<u> </u>	_						
EQUIP	RACTOR Grego MENT Rhino M MTHD HSA	5T EAS	RTHING STING ORDINA	408945	staining	SAA = Sa	me A	s Abo	ove; N	NHC	O/S :	= No	Hydrocarbon odor or
	ETER 8" ER K. Agustsso) 1983; U R. Smith	TM Zone	e 11S	T FOR SVM	BOI €	ΔND ^	BBDE	\/IA Ŧ	IONIC		

Geosyntec consultants

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800 Fax: (805) 899-8689

BORING MW-07 START DRILL DATE Jun 23, 15 FINISH DRILL DATE Jun 23, 15 **LOCATION** Olancha, CA PROJECT CG Roxane Phase 2

SHEET 1 OF **ELEVATION DATA: GROUND SURF.** TOP OF CASING 3610.16DATUM NAD 1983

GS FORM: WELL COMP AG 01/04

WELL CONSTRUCTION LOG

NUMBER SB0746 SURFACE COMPLETION: GRAPHIC LOG **COMMENTS TYPE** Monument LOCKING COVER WELL RISER HEIGHT 3.5 ft DEPTH 1) Groundwater MATERIAL (ft-bgs) 2) Surge Time DEPTH RISER DIAM. 8 in PROTECTIVE RISER 3) Dedicated Pump (FT-BGS) WELL CASING HEIGHT 3.1 ft CASING HEIGHT CONCRETE PAD SIZE 4 x 4 x 0.3 ft **BORING DEPTH** 21.5 ft bgs PILOT BORING DIAMETER 8 in REAM BORING DIAMETER WELL CONSTRUCTION WELL CONSTRUCTION DATE 6/23/2015 WELL DEPTH 20 ft bgs 4.0 WELL CASING DIAMETER <u>2 in</u> WELL CASING MATERIAL 5.0 Sch 40 PVC SCREEN SLOT SIZE/DIRECTION 0.020 inch TOP OF SCREEN 5 ft bgs BOTTOM OF SCREEN 20 ft bgs END CAP/SUMP LENGTH **GROUT** TOP DEPTH TYPE/BRAND NA **QUANTITY USED** NA 10 VOLUME FLUID USED PLACEMENT METHOD BENTONITE SEAL TOP DEPTH 0 ft bgs TYPE/BRAND Med. bentonite chips QUANTITY USED 1.28 cu. ft. **VOLUME FLUID USED** 10 gal SET-UP TIME overnight PLACEMENT METHOD pour TRANSITION SAND TOP DEPTH TYPE/BRAND QUANTITY USED NA PLACEMENT METHOD SAND/GRAVEL PACK 20.0 TOP DEPTH 4 ft bas 20 TYPE/BRAND #2/12/Lapis Lustre **QUANTITY USED** 5.14 cu. ft. 21.5 PLACEMENT METHOD Pour **BOTTOM FILL** TOP DEPTH NA TYPE/BRAND QUANTITY USED PLACEMENT METHOD DEDICATED PUMP SYSTEM: **CONTRACTOR** Gregg Drilling **NORTHING** 4018315.95

EQUIPMENT Rhino M5T **DRILL MTHD** HSA **DIAMETER** 8"

LOGGER K. Agustsson

GEOSNTEC.GDT

PHASE 2 INVESTIGATION.GPJ

EASTING 408945.01 **COORDINATE SYSTEM:** NAD 1983; UTM Zone 11S

REVIEWER R. Smith

TYPE/BRAND: NA MODEL:

CONTROLLER TYPE:

Geosyntec D

924 Anacapa St Suite 4A Santa Barbara, CA 93101

Tel: (805) 897-3800 Fax: (805) 899-8689 **BORING MW-08** START DRILL DATE Jun 24, 15 FINISH DRILL DATE Jun 24, 15 LOCATION Olancha, CA **PROJECT** CG Roxane Phase 2

SHEET 1 OF 1 **ELEVATION DATA: GROUND SURF.** TOP OF CASING 3617.28DATUM NAD 1983

GS FORM:

LOGGER K. Agustsson

REVIEWER R. Smith

BO	R	FI	40)I	F	ıc	C
DU	Г	LI	ı	ᄼ	_	╌	JG

	GS FORM: ELL BORE 01/04 BOREHOLE LOG NUMBER SB0746 SAMPLE												
DEPTH (ft-bgs)	DES 1) Unit/Formation, Mem 2) Soil/Rock Name 3) Color 4) Moisture 5) Grain Size 6) Percentage	6CRIPTION 7) Plasticity 8) Density/Consistency 9) Structure 10) Other (Mineralization, Discoloration, Odor, etc.)	GRAPHIC LOG	WELL LOG	GROUNDWATER OR STRUCTURE	ELEVATION (ft)	SAMPLE NO.	TYPE		RECOVERY (%)	PID READING (ppm)	TIME (00:00)	COMMENTS 1) Rig Behavior 2) Air Monitoring
1 -	vellowish brown (10)	coarse gravel (20,80,0);				-						07:35	Hand auger to 5' bgs; s very loose; difficult to hand auger
3 -							_						
4 -				2850 XXX		-	-						
5 -	SAA except less gra	vel (5 95 0)				-	1			85	1.2	07:40	Soil sample collected (
6 -		(0,00,0)				-							5'
7 -						-							
8 -						-	-						
9 -						-	1						
10 -	SAA except no grave	el and wet; (0,100,0)			∑ Groundwater @ 10'	-	2			70	1.7	07:45	
11 -	SAA except an incre	ase in gravel (10,90,0)				-	1						reading = 0.0 ppm
12 -						-							
13 -						-	1						
14 -						-							
15 -	SAA except some sil	t (0,95,5); and wet				-	3			80	1.8	07:50	
16 - 17 -	(5GY 4/1); Wet; Fine	O (SP); Dark greenish gray to medium sand; trace asticity; Medium dense;				-							
18 -						-	-						
19 -						-	1						
20 -	SILT (ML); Dark gre	enish gray (GLEY 5GY				-	4			90	1.6	07:55	Breathing space PID
21 -	4/1); Wet; (0,0,100); NHCO/S	Low plasticity; Soft;				-	1						reading = 0.0 ppm
22 -						-	1						TD = 21.5'
23 -						-							
24 -						-							
25 CONT EQUIF DRILL DIAME	RACTOR Gregg D PMENT Rhino M5T . MTHD HSA ETER 8"	EAS CO	RTHING STING ORDINA 0 1983; U	408559 TE SYS	staining	SAA = Sa	me A	s Abc	ove; N	NHC	O/S	= No	Hydrocarbon odor o

Geosyntec consultants

924 Anacapa St Suite 4A Santa Barbara, CA 93101

Tel: (805) 897-3800 Fax: (805) 899-8689 START DRILL DATE Jun 24, 15 FINISH DRILL DATE Jun 24, 15 **LOCATION** Olancha, CA PROJECT CG Roxane Phase 2

SB0746

MW-08

BORING

NUMBER

ELEVATION DATA: GROUND SURF. TOP OF CASING 3617.28DATUM NAD 1983

SHEET 1 OF

GS FORM: WELL COMP AG 01/04

WELL CONSTRUCTION LOG

SURFACE COMPLETION: GRAPHIC LOG **COMMENTS TYPE** Monument LOCKING COVER WELL RISER HEIGHT 3.5 ft DEPTH 1) Groundwater MATERIAL (ft-bgs) 2) Surge Time DEPTH RISER DIAM. 8 in PROTECTIVE RISER 3) Dedicated Pump (FT-BGS) WELL CASING HEIGHT 3.2 ft CASING HEIGHT CONCRETE PAD SIZE 4 x 4 x 0.3 ft **BORING DEPTH** 21.5 ft bgs PILOT BORING DIAMETER 8 in REAM BORING DIAMETER WELL CONSTRUCTION WELL CONSTRUCTION DATE 6/24/2015 WELL DEPTH 20 ft bgs 4.0 WELL CASING DIAMETER <u>2 in</u> WELL CASING MATERIAL 5.0 Sch 40 PVC SCREEN SLOT SIZE/DIRECTION 0.020 inch TOP OF SCREEN 5 ft bgs BOTTOM OF SCREEN 20 ft bgs END CAP/SUMP LENGTH **GROUT** TOP DEPTH TYPE/BRAND NA **QUANTITY USED** NA 10 VOLUME FLUID USED PLACEMENT METHOD BENTONITE SEAL TOP DEPTH 0 ft bgs TYPE/BRAND Med. bentonite chips QUANTITY USED 1.28 cu. ft. **VOLUME FLUID USED** 10 gal SET-UP TIME overnight PLACEMENT METHOD pour TRANSITION SAND TOP DEPTH TYPE/BRAND QUANTITY USED NA PLACEMENT METHOD SAND/GRAVEL PACK 20.0 TOP DEPTH 4 ft bas 20 TYPE/BRAND #2/12/Lapis Lustre **QUANTITY USED** 5.14 cu. ft. 21.5 PLACEMENT METHOD Pour **BOTTOM FILL** TOP DEPTH NA TYPE/BRAND QUANTITY USED PLACEMENT METHOD DEDICATED PUMP SYSTEM: **CONTRACTOR** Gregg Drilling **NORTHING** 4018406.65

EQUIPMENT Rhino M5T **DRILL MTHD** HSA **DIAMETER** 8"

LOGGER K. Agustsson

GEOSNTEC.GDT

PHASE 2 INVESTIGATION.GPJ

EASTING 408559.09 **COORDINATE SYSTEM:** NAD 1983; UTM Zone 11S

REVIEWER R. Smith

TYPE/BRAND: NA MODEL:

CONTROLLER TYPE:

Geosyntec (5) consultants

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800

Fax: (805) 899-8689

BORING MW-09 START DRILL DATE Jun 24, 15 FINISH DRILL DATE Jun 24, 15 LOCATION Olancha, CA PROJECT CG Roxane Phase 2

SHEET 1 OF 1 **ELEVATION DATA: GROUND SURF.** TOP OF CASING 3620.04DATUM NAD 1983

GS FORM: **BOREHOLE LOG NUMBER** SB0746 WELL BORE 01/04 SAMPLE **DESCRIPTION** GRAPHIC LOG L0G % ELEVATION (00:00)SAMPLE NO **GROUNDWATER COMMENTS** 1) Unit/Formation, Mem. 7) Plasticity **BLOWS PER** RECOVERY READING DEPTH 2) Soil/Rock Name 8) Density/Consistency WELL I OR (ft-bgs) 3) Color 9) Structure 1) Rig Behavior **STRUCTURE** TIME 10) Other (Mineralization. 4) Moisture 2) Air Monitoring 5) Grain Size Discoloration, Odor, etc.) ₽ 6) Percentage Well graded SAND (SW); Brown (10YR 4/3); Hand auger to 5' Dry; Fine to very coarse sand; trace Fine to coarse gravel (5,95,0); Nonplastic; Loose; 1 NHCO/S 2 3 4 5 80 1.0 09:05 SAA except only fine gravel (5,95,0) Breathing space PID reading = 0.0 ppm 6 7 8 9 10 2 SAA except only fine gravel (5,95,0) 70 0.9 09:10 Soil sample collected @ SAA except pockets of Well graded SAND 11 with silt (SW); Black (10YR 2/1); (0,90,10) 12 13 14 Groundwater @ 14.3' 15 100 0.8 09:35 SAA except an increase in fine gravel (5,95,0) \and wet SILT (ML); Dark greenish gray (GLEY 5GY 4/1); Wet; Trace fine sand; (0,5,95); Low plasticity; Firm; Trace roots; NHCO/S Lean CLAY (CL); Dark greenish gray (GLEY PHASE 2 INVESTIGATION. GPJ GEOSNTEC. GDT 8/7/15 5GY 4/1); Wet; (0,0,100); Low plasticity; Firm; \Trace roots; NHCO/S 18 19 20 Well graded SAND (SW); Brown (10YR 4/3); Dry; Fine to very coarse sand; trace Fine to coarse gravel (5,95,0); Nonplastic; Loose; 1.5 09:58 Breathing space PID reading = 0.0 ppm 21 NHCO/Š SILT (ML); Dark greenish gray (GLEY 5GY 4/1); Wet; (0,0,100); Soft; Low plasticity; 22 NHCO/S 23 24 TD = 24' **CONTRACTOR** Gregg Drilling **NORTHING** 4018326.26000 NOTES: SAA = Same As Above; NHCO/S = No Hydrocarbon odor or staining **EQUIPMENT** Rhino M5T **EASTING** 408617.57000

DRILL MTHD HSA

DIAMETER 8"

LOGGER K. Agustsson

COORDINATE SYSTEM:

NAD 1983; UTM Zone 11S REVIEWER R. Smith

Geosyntec consultants

924 Anacapa St Suite 4A Santa Barbara, CA 93101 Tel: (805) 897-3800

Fax: (805) 899-8689

START DRILL DATE Jun 24, 15 FINISH DRILL DATE Jun 24, 15 **LOCATION** Olancha, CA PROJECT CG Roxane Phase 2 **NUMBER** SB0746

MW-09

BORING

ELEVATION DATA: GROUND SURF. TOP OF CASING 3620.04DATUM NAD 1983

SHEET 1 OF

GS FORM: WELL CONSTRUCTION LOG WELL COMP AG 01/04

EQUIPMENT Rhino M5T **DRILL MTHD** HSA **DIAMETER** 8"

LOGGER K. Agustsson

EASTING 408617.57 **COORDINATE SYSTEM:**

NAD 1983; UTM Zone 11S **REVIEWER** R. Smith

TYPE/BRAND: NA MODEL:

CONTROLLER TYPE:

APPENDIX F LABORATORY REPORTS

Calscience

WORK ORDER NUMBER: 15-06-1886

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: CG Roxane
Attention: Ryan Smith

924 Anacapa Street

Suite 4A

Santa Barbara, CA 93101-2177

Anna Monch

Approved for release on 07/07/2015 by:

Stephen Nowak Project Manager

Email your PM)

ResultLink >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: CG Roxane Work Order Number: 15-06-1886

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 300.0 Anions (Solid). 4.2 EPA 6010B/7471A CAC Title 22 Metals (Solid).	7 7 8
	4.3 EPA 7471A Mercury (Solid)	12
	4.4 EPA 8270C Semi-Volatile Organics (Solid)	13
	4.5 EPA 8260B Volatile Organics Prep 5035 (Solid)	25
	4.6 Combined Inorganic Tests	33
5	Quality Control Sample Data	35
	5.1 MS/MSD	35
	5.2 PDS/PDSD	43
	5.3 Sample Duplicate	44
	5.4 LCS/LCSD	48
6	Sample Analysis Summary	59
7	Glossary of Terms and Qualifiers	60
8	Chain-of-Custody/Sample Receipt Form	61
9	Subcontract Narrative	64
10	Subcontract -Total & Fecal Coliforms 15-06-1886	65

Work Order Narrative

Work Order: 15-06-1886 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 06/24/15. They were assigned to Work Order 15-06-1886.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants Work Order: 15-06-1886
924 Anacapa Street, Suite 4A Project Name: CG Roxane
Santa Barbara, CA 93101-2177 PO Number:

Date/Time 06/24/15 10:00 Received:

Number of 15

Containers:

Attn: Ryan Smith

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
MW-01-15-062215	15-06-1886-1	06/22/15 14:35	5	Solid
MW-06-10-062315	15-06-1886-2	06/23/15 09:05	5	Solid
MW-07-05-062315	15-06-1886-3	06/23/15 11:34	5	Solid

Detections Summary

Client: Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Work Order: 15-06-1886

Project Name: CG Roxane Received: 06/24/15

Attn: Ryan Smith Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-01-15-062215 (15-06-1886-1)						
Sulfate	14		10	mg/kg	EPA 300.0	N/A
Arsenic	53.8		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	49.1		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.379		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	1.62		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	5.19		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	14.7		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	4.01		0.495	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	1.23		0.248	mg/kg	EPA 6010B	EPA 3050B
Nickel	1.86		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	50.2		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	48.7		0.990	mg/kg	EPA 6010B	EPA 3050B
рН	7.50		0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	45		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	13100		100	mg/kg	SM 2540 C (M)	N/A
Total Kjeldahl Nitrogen	130		50	mg/kg	SM 4500 N Org B (M)	N/A
Ammonia (as N)	28		10	mg/kg	SM 4500-NH3 B/C (M)	N/A
Nitrate-Nitrite (as N)	1.0		0.50	mg/kg	SM 4500-NO3 E (M)	N/A
Total Nitrogen	130		0.50	mg/kg	Total Nitrogen by Calc	N/A
MW-06-10-062315 (15-06-1886-2)						
Chloride	15		10	mg/kg	EPA 300.0	N/A
Arsenic	1.54		0.714	mg/kg	EPA 6010B	EPA 3050B
Barium	15.1		0.476	mg/kg	EPA 6010B	EPA 3050B
Chromium	1.26		0.238	mg/kg	EPA 6010B	EPA 3050B
Cobalt	0.871		0.238	mg/kg	EPA 6010B	EPA 3050B
Copper	2.07		0.476	mg/kg	EPA 6010B	EPA 3050B
Nickel	0.977		0.238	mg/kg	EPA 6010B	EPA 3050B
Vanadium	3.32		0.238	mg/kg	EPA 6010B	EPA 3050B
Zinc	7.93		0.952	mg/kg	EPA 6010B	EPA 3050B
рН	8.79		0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	340		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	3420		10.0	mg/kg	SM 2540 C (M)	N/A
Total Kjeldahl Nitrogen	84		50	mg/kg	SM 4500 N Org B (M)	N/A
Phosphorus, Total	93		12	mg/kg	SM 4500 P B/E (M)	N/A
Total Phosphate	280		38	mg/kg	SM 4500 P B/E (M)	N/A
Ammonia (as N)	28		10	mg/kg	SM 4500-NH3 B/C (M)	N/A
Nitrate-Nitrite (as N)	2.6		0.50	mg/kg	SM 4500-NO3 E (M)	N/A
					Total Nitrogen by Calc	

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Work Order: 15-06-1886

Project Name: CG Roxane

Received: 06/24/15

Attn: Ryan Smith Page 2 of 2

<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-07-05-062315 (15-06-1886-3)						
Arsenic	2.67		0.721	mg/kg	EPA 6010B	EPA 3050B
Barium	30.7		0.481	mg/kg	EPA 6010B	EPA 3050B
Chromium	1.83		0.240	mg/kg	EPA 6010B	EPA 3050B
Cobalt	1.47		0.240	mg/kg	EPA 6010B	EPA 3050B
Copper	3.08		0.481	mg/kg	EPA 6010B	EPA 3050B
Nickel	2.01		0.240	mg/kg	EPA 6010B	EPA 3050B
Vanadium	5.46		0.240	mg/kg	EPA 6010B	EPA 3050B
Zinc	10.9		0.962	mg/kg	EPA 6010B	EPA 3050B
рН	8.99		0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	730		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	5730		10.0	mg/kg	SM 2540 C (M)	N/A
Total Kjeldahl Nitrogen	70		50	mg/kg	SM 4500 N Org B (M)	N/A
Phosphorus, Total	94		25	mg/kg	SM 4500 P B/E (M)	N/A
Total Phosphate	290		75	mg/kg	SM 4500 P B/E (M)	N/A
Ammonia (as N)	39		10	mg/kg	SM 4500-NH3 B/C (M)	N/A
Nitrate-Nitrite (as N)	0.75		0.50	mg/kg	SM 4500-NO3 E (M)	N/A
Total Nitrogen	71		0.50	mg/kg	Total Nitrogen by Calc	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec ConsultantsDate Received:06/24/15924 Anacapa Street, Suite 4AWork Order:15-06-1886Santa Barbara, CA 93101-2177Preparation:N/AMethod:EPA 300.0Units:mg/kg

Project: CG Roxane Page 1 of 1

MW 07 05 062215	15 06 1006 2 A	06/22/45	Colid	IC 7	06/26/45	06/27/15	150626L02B
Sulfate		ND	10		1.00		
Chloride		15	10		1.00		
<u>Parameter</u>		Result	RL	•	DF	Qua	alifiers
MW-06-10-062315	15-06-1886-2-A	06/23/15 09:05	Solid	IC 7	06/26/15	06/27/15 11:15	150626L03P
Sulfate		14	10		1.00		
Chloride		ND	10		1.00		
<u>Parameter</u>		Result	RL	1	<u>DF</u>	Qua	<u>alifiers</u>
MW-01-15-062215	15-06-1886-1-A	06/22/15 14:35	Solid	IC 7	06/26/15	06/27/15 10:58	150626L03P
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

MW-07-05-062315	15-06-1886-3-A	06/23/15 11:34	Solid	IC 7	06/26/15	06/27/15 11:31	150626L03P
Parameter		Result	RL	=	<u>DF</u>	Qual	<u>ifiers</u>
Chloride		ND	10	1	1.00		
Sulfate		ND	10	1	1.00		

Method Blank	099-12-922-608	N/A	Solid	IC 7	06/26/15	06/27/15 10:26	150626L03P
<u>Parameter</u>		Result	R	L	<u>DF</u>	Qua	<u>lifiers</u>
Chloride		ND	1	0	1.00		
Sulfate		ND	1	0	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-1886 EPA 3050B EPA 6010B

06/24/15

mg/kg

Units:

Page 1 of 4

Project: CG Roxane

1 age 1 01 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-01-15-062215	15-06-1886-1-A	06/22/15 14:35	Solid	ICP 7300	06/25/15	06/27/15 18:32	150625L02
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().743	0.990		
Arsenic		53.8	().743	0.990		
Barium		49.1	().495	0.990		
Beryllium		0.379	().248	0.990		
Cadmium		ND	().495	0.990		
Chromium		1.62	().248	0.990		
Cobalt		5.19	().248	0.990		
Copper		14.7	().495	0.990		
Lead		4.01	().495	0.990		
Molybdenum		1.23	().248	0.990		
Nickel		1.86	().248	0.990		
Selenium		ND	().743	0.990		
Silver		ND	().248	0.990		
Thallium		ND	().743	0.990		
Vanadium		50.2	().248	0.990		
Zinc		48.7	().990	0.990		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/24/15 15-06-1886 EPA 3050B EPA 6010B

mg/kg

Project: CG Roxane

Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-06-10-062315	15-06-1886-2-A	06/23/15 09:05	Solid	ICP 7300	06/25/15	06/27/15 18:43	150625L02
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	C).714	0.952		
Arsenic		1.54	C).714	0.952		
Barium		15.1	C	0.476	0.952		
Beryllium		ND	C).238	0.952		
Cadmium		ND	C	0.476	0.952		
Chromium		1.26	C).238	0.952		
Cobalt		0.871	C).238	0.952		
Copper		2.07	C	0.476	0.952		
Lead		ND	C	0.476	0.952		
Molybdenum		ND	C).238	0.952		
Nickel		0.977	C).238	0.952		
Selenium		ND	C).714	0.952		
Silver		ND	C	0.238	0.952		
Thallium		ND	C).714	0.952		
Vanadium		3.32	C	0.238	0.952		
Zinc		7.93	C).952	0.952		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/24/15 15-06-1886 EPA 3050B EPA 6010B

Units:

mg/kg Page 3 of 4

Project: CG Roxane

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-05-062315	15-06-1886-3-A	06/23/15 11:34	Solid	ICP 7300	06/25/15	06/27/15 18:45	150625L02
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND		0.721	0.962		
Arsenic		2.67		0.721	0.962		
Barium		30.7		0.481	0.962		
Beryllium		ND		0.240	0.962		
Cadmium		ND		0.481	0.962		
Chromium		1.83		0.240	0.962		
Cobalt		1.47		0.240	0.962		
Copper		3.08		0.481	0.962		
Lead		ND		0.481	0.962		
Molybdenum		ND		0.240	0.962		
Nickel		2.01		0.240	0.962		
Selenium		ND		0.721	0.962		
Silver		ND		0.240	0.962		
Thallium		ND		0.721	0.962		
Vanadium		5.46		0.240	0.962		
Zinc		10.9		0.962	0.962		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

0.251

1.01

1.01

1.01

15-06-1886 EPA 3050B EPA 6010B

06/24/15

Units:

mg/kg Page 4 of 4

Project: CG Roxane

Vanadium

Zinc

Lab Sample Number Date/Time Collected Date Prepared Date/Time Analyzed QC Batch ID Client Sample Number Matrix Instrument 06/26/15 14:49 06/25/15 Method Blank 097-01-002-21320 **ICP 7300** 150625L02 N/A Solid **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND Antimony 0.754 1.01 ND 0.754 1.01 Arsenic Barium ND 1.01 0.503 ND 1.01 Beryllium 0.251 Cadmium ND 1.01 0.503 1.01 Chromium ND 0.251 Cobalt ND 0.251 1.01 1.01 Copper ND 0.503 Lead ND 0.503 1.01 Molybdenum ND 0.251 1.01 Nickel ND 0.251 1.01 Selenium ND 0.754 1.01 Silver ND 0.251 1.01 Thallium ND 0.754 1.01

ND

ND

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-06-1886 EPA 7471A Total EPA 7471A mg/kg

06/24/15

Project: CG Roxane

Page 1 of 1

- Tojooti OO Hoxano							.90 1 01 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-01-15-062215	15-06-1886-1-A	06/22/15 14:35	Solid	Mercury 05	06/26/15	06/26/15 17:25	150626L04A
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0806	1.00		
MW-06-10-062315	15-06-1886-2-A	06/23/15 09:05	Solid	Mercury 05	06/26/15	06/26/15 17:27	150626L04A
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		
MW-07-05-062315	15-06-1886-3-A	06/23/15 11:34	Solid	Mercury 05	06/26/15	06/26/15 17:29	150626L04A
Parameter		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0794	1.00		

Method Blank	099-16-272-1399	N/A	Solid	Mercury 05	06/26/15	06/26/15 16:21	150626L04A
Parameter		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	0.0	833	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method: 06/24/15 15-06-1886 EPA 3545 EPA 8270C

Units: mg/kg
Page 1 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-01-15-062215	15-06-1886-1-A	06/22/15 14:35	Solid	GC/MS CCC	06/25/15	06/26/15 16:19	150625L05A
Parameter		Result	<u> </u>	R <u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
Acenaphthene		ND	(0.50	1.00		
Acenaphthylene		ND	(0.50	1.00		
Aniline		ND	(0.50	1.00		
Anthracene		ND	(0.50	1.00		
Azobenzene		ND	(0.50	1.00		
Benzidine		ND		10	1.00		
Benzo (a) Anthracene		ND	(0.50	1.00		
Benzo (a) Pyrene		ND	(0.50	1.00		
Benzo (b) Fluoranthene		ND	(0.50	1.00		
Benzo (g,h,i) Perylene		ND	(0.50	1.00		
Benzo (k) Fluoranthene		ND	(0.50	1.00		
Benzoic Acid		ND	2	2.5	1.00		
Benzyl Alcohol		ND	(0.50	1.00		
Bis(2-Chloroethoxy) Methane		ND	(0.50	1.00		
Bis(2-Chloroethyl) Ether		ND	2	2.5	1.00		
Bis(2-Chloroisopropyl) Ether		ND	(0.50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	(0.50	1.00		
4-Bromophenyl-Phenyl Ether		ND	(0.50	1.00		
Butyl Benzyl Phthalate		ND	(0.50	1.00		
4-Chloro-3-Methylphenol		ND	(0.50	1.00		
4-Chloroaniline		ND	(0.50	1.00		
2-Chloronaphthalene		ND	(0.50	1.00		
2-Chlorophenol		ND	(0.50	1.00		
4-Chlorophenyl-Phenyl Ether		ND	(0.50	1.00		
Chrysene		ND	(0.50	1.00		
Di-n-Butyl Phthalate		ND	(0.50	1.00		
Di-n-Octyl Phthalate		ND	(0.50	1.00		
Dibenz (a,h) Anthracene		ND	(0.50	1.00		
Dibenzofuran		ND	(0.50	1.00		
1,2-Dichlorobenzene		ND		0.50	1.00		
1,3-Dichlorobenzene		ND	(0.50	1.00		
1,4-Dichlorobenzene		ND	(0.50	1.00		
3,3'-Dichlorobenzidine		ND		10	1.00		
2,4-Dichlorophenol							
		ND	(0.50	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/24/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1886

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 2 of 12

Project: CG Roxane				Page 2 of 12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	66	27-120		

Geosyntec Consultants	Date Received:	06/24/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-1886
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 3 of 12

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	67	25-120	
Nitrobenzene-d5	64	33-123	
p-Terphenyl-d14	74	27-159	
Phenol-d6	68	26-122	
2,4,6-Tribromophenol	66	18-138	
p-Terphenyl-d14 Phenol-d6	74 68	27-159 26-122	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-1886 EPA 3545 EPA 8270C mg/kg

06/24/15

Units: mg
Page 4 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-06-10-062315	15-06-1886-2-A	06/23/15 09:05	Solid	GC/MS CCC	06/25/15	06/26/15 16:37	150625L05A
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
Acenaphthene		ND	0.8	50	1.00		
Acenaphthylene		ND	0.5	50	1.00		
Aniline		ND	0.5	50	1.00		
Anthracene		ND	0.5	50	1.00		
Azobenzene		ND	0.5	50	1.00		
Benzidine		ND	10)	1.00		
Benzo (a) Anthracene		ND	0.5	50	1.00		
Benzo (a) Pyrene		ND	0.5	50	1.00		
Benzo (b) Fluoranthene		ND	0.5	50	1.00		
Benzo (g,h,i) Perylene		ND	0.5	50	1.00		
Benzo (k) Fluoranthene		ND	0.8	50	1.00		
Benzoic Acid		ND	2.5	5	1.00		
Benzyl Alcohol		ND	0.8	50	1.00		
Bis(2-Chloroethoxy) Methane		ND	0.5	50	1.00		
Bis(2-Chloroethyl) Ether		ND	2.5	5	1.00		
Bis(2-Chloroisopropyl) Ether		ND	0.5	50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	0.5	50	1.00		
4-Bromophenyl-Phenyl Ether		ND	0.5	50	1.00		
Butyl Benzyl Phthalate		ND	0.5	50	1.00		
4-Chloro-3-Methylphenol		ND	0.5	50	1.00		
4-Chloroaniline		ND	0.5	50	1.00		
2-Chloronaphthalene		ND	0.5	50	1.00		
2-Chlorophenol		ND	0.5	50	1.00		
4-Chlorophenyl-Phenyl Ether		ND	0.5	50	1.00		
Chrysene		ND	0.5		1.00		
Di-n-Butyl Phthalate		ND	0.5	50	1.00		
Di-n-Octyl Phthalate		ND	0.5		1.00		
Dibenz (a,h) Anthracene		ND	0.5	50	1.00		
Dibenzofuran		ND	0.5	50	1.00		
1,2-Dichlorobenzene		ND	0.5		1.00		
1,3-Dichlorobenzene		ND	0.5		1.00		
1,4-Dichlorobenzene		ND	0.5		1.00		
3,3'-Dichlorobenzidine		ND	10		1.00		
2,4-Dichlorophenol		ND	0.5		1.00		
Diethyl Phthalate		ND	0.5		1.00		
•			• • •				

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/24/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1886

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 5 of 12

Project: CG Roxane				Page 5 of 12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	75	27-120		

Geosyntec Consultants	Date Received:	06/24/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-1886
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 6 of 12

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	78	25-120	
Nitrobenzene-d5	73	33-123	
p-Terphenyl-d14	82	27-159	
Phenol-d6	78	26-122	
2,4,6-Tribromophenol	88	18-138	
p-Terphenyl-d14 Phenol-d6	82 78	27-159 26-122	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/24/15 15-06-1886 EPA 3545 EPA 8270C

mg/kg Page 7 of 12

Project: CG Roxane

Client Sample Number	Lab Sample	Date/Time	Motrix	Instrument	Date	Date/Time	QC Batch ID
Client Sample Number	Number	Collected	Matrix	Instrument	Prepared	Analyzed	QC Batch ID
MW-07-05-062315	15-06-1886-3-A	06/23/15 11:34	Solid	GC/MS CCC	06/25/15	06/26/15 16:55	150625L05A
Parameter Parame		Result	<u> </u>	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Acenaphthene		ND	(0.50	1.00		
Acenaphthylene		ND	(0.50	1.00		
Aniline		ND	(0.50	1.00		
Anthracene		ND	(0.50	1.00		
Azobenzene		ND	(0.50	1.00		
Benzidine		ND		10	1.00		
Benzo (a) Anthracene		ND	(0.50	1.00		
Benzo (a) Pyrene		ND	(0.50	1.00		
Benzo (b) Fluoranthene		ND	(0.50	1.00		
Benzo (g,h,i) Perylene		ND	(0.50	1.00		
Benzo (k) Fluoranthene		ND	(0.50	1.00		
Benzoic Acid		ND	2	2.5	1.00		
Benzyl Alcohol		ND	(0.50	1.00		
Bis(2-Chloroethoxy) Methane		ND	(0.50	1.00		
Bis(2-Chloroethyl) Ether		ND	2	2.5	1.00		
Bis(2-Chloroisopropyl) Ether		ND	(0.50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	(0.50	1.00		
4-Bromophenyl-Phenyl Ether		ND	(0.50	1.00		
Butyl Benzyl Phthalate		ND	(0.50	1.00		
4-Chloro-3-Methylphenol		ND	(0.50	1.00		
4-Chloroaniline		ND	(0.50	1.00		
2-Chloronaphthalene		ND	(0.50	1.00		
2-Chlorophenol		ND	(0.50	1.00		
4-Chlorophenyl-Phenyl Ether		ND	(0.50	1.00		
Chrysene		ND	(0.50	1.00		
Di-n-Butyl Phthalate		ND	(0.50	1.00		
Di-n-Octyl Phthalate		ND	(0.50	1.00		
Dibenz (a,h) Anthracene		ND	(0.50	1.00		
Dibenzofuran		ND	(0.50	1.00		
1,2-Dichlorobenzene		ND	(0.50	1.00		
1,3-Dichlorobenzene		ND	(0.50	1.00		
1,4-Dichlorobenzene		ND	(0.50	1.00		

RL: Reporting Limit.

3,3'-Dichlorobenzidine

2,4-Dichlorophenol

Diethyl Phthalate

DF: Dilution Factor.

MDL: Method Detection Limit.

10

0.50

0.50

1.00

1.00

1.00

ND

ND

ND

 Geosyntec Consultants
 Date Received:
 06/24/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1886

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 8 of 12

Project: CG Roxane				Page 8 of 12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	71	27-120		

Geosyntec Consultants	Date Received:	06/24/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-1886
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 9 of 12

rs

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/24/15 15-06-1886 EPA 3545 EPA 8270C mg/kg

Project: CG Roxane

Page 10 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-549-3322	N/A	Solid	GC/MS CCC	06/25/15	06/26/15 13:37	150625L05A
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	<u>lifiers</u>
Acenaphthene		ND		0.50	1.00		
Acenaphthylene		ND		0.50	1.00		
Aniline		ND		0.50	1.00		
Anthracene		ND		0.50	1.00		
Azobenzene		ND		0.50	1.00		
Benzidine		ND		10	1.00		
Benzo (a) Anthracene		ND		0.50	1.00		
Benzo (a) Pyrene		ND		0.50	1.00		
Benzo (b) Fluoranthene		ND		0.50	1.00		
Benzo (g,h,i) Perylene		ND		0.50	1.00		
Benzo (k) Fluoranthene		ND		0.50	1.00		
Benzoic Acid		ND		2.5	1.00		
Benzyl Alcohol		ND		0.50	1.00		
Bis(2-Chloroethoxy) Methane		ND		0.50	1.00		
Bis(2-Chloroethyl) Ether		ND		2.5	1.00		
Bis(2-Chloroisopropyl) Ether		ND		0.50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND		0.50	1.00		
4-Bromophenyl-Phenyl Ether		ND		0.50	1.00		
Butyl Benzyl Phthalate		ND		0.50	1.00		
4-Chloro-3-Methylphenol		ND		0.50	1.00		
4-Chloroaniline		ND		0.50	1.00		
2-Chloronaphthalene		ND		0.50	1.00		
2-Chlorophenol		ND		0.50	1.00		
4-Chlorophenyl-Phenyl Ether		ND		0.50	1.00		
Chrysene		ND		0.50	1.00		
Di-n-Butyl Phthalate		ND		0.50	1.00		
Di-n-Octyl Phthalate		ND		0.50	1.00		
Dibenz (a,h) Anthracene		ND		0.50	1.00		
Dibenzofuran		ND		0.50	1.00		
1,2-Dichlorobenzene		ND		0.50	1.00		
1,3-Dichlorobenzene		ND		0.50	1.00		
1,4-Dichlorobenzene		ND		0.50	1.00		
3,3'-Dichlorobenzidine		ND		10	1.00		
2,4-Dichlorophenol		ND		0.50	1.00		
Diethyl Phthalate		ND		0.50	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/24/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1886

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 11 of 12

Project: CG Roxane				Page 11 of 12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	74	27-120		

Geosyntec Consultants	Date Received:	06/24/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-1886
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 12 of 12

Rec. (%)	Control Limits	Qualifiers
78	25-120	
72	33-123	
79	27-159	
78	26-122	
80	18-138	
	78 72 79 78	78 25-120 72 33-123 79 27-159 78 26-122

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-1886 **EPA 5035 EPA 8260B** ug/kg

06/24/15

Units:

Page 1 of 8

Project: CG Roxane

QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time Prepared Number Collected Analyzed 06/25/15 14:29 06/22/15 14:35 MW-01-15-062215 15-06-1886-1-D Solid GC/MS BB 06/22/15 150625L007 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 40 1.00 Acetone ND 0.79 Benzene 1.00 ND Bromobenzene 0.79 1.00 Bromochloromethane ND 1.00 1.6 Bromodichloromethane ND 0.79 1.00 **Bromoform** ND 4.0 1.00 **Bromomethane** ND 16 1.00 2-Butanone ND 16 1.00 n-Butylbenzene ND 0.79 1.00 sec-Butylbenzene ND 0.79 1.00 tert-Butylbenzene ND 0.79 1.00 Carbon Disulfide ND 7.9 1.00 Carbon Tetrachloride ND 0.79 1.00 Chlorobenzene ND 0.79 1.00 Chloroethane ND 1.6 1.00 Chloroform ND 0.79 1.00 Chloromethane ND 16 1.00 2-Chlorotoluene ND 0.79 1.00 4-Chlorotoluene ND 0.79 1.00 Dibromochloromethane ND 1.6 1.00 1,2-Dibromo-3-Chloropropane ND 4.0 1.00 1,2-Dibromoethane ND 0.79 1.00 Dibromomethane ND 0.79 1.00 1,2-Dichlorobenzene ND 0.79 1.00 1,3-Dichlorobenzene ND 0.79 1.00 1,4-Dichlorobenzene ND 0.79 1.00 Dichlorodifluoromethane ND 1.6 1.00 1,1-Dichloroethane ND 0.79 1.00 ND 1,2-Dichloroethane 0.79 1.00 1,1-Dichloroethene ND 0.79 1.00 c-1,2-Dichloroethene ND 0.79 1.00

RL: Reporting Limit.

t-1,2-Dichloroethene

1,2-Dichloropropane 1,3-Dichloropropane

2,2-Dichloropropane

DF: Dilution Factor.

MDL: Method Detection Limit.

0.79

0.79

0.79

4.0

1.00

1.00

1.00

1.00

ND

ND

ND

ND

 Geosyntec Consultants
 Date Received:
 06/24/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1886

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 2 of 8

Project: CG Roxane				Page 2 of 8
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.6	1.00	
c-1,3-Dichloropropene	ND	0.79	1.00	
t-1,3-Dichloropropene	ND	1.6	1.00	
Ethylbenzene	ND	0.79	1.00	
2-Hexanone	ND	16	1.00	
Isopropylbenzene	ND	0.79	1.00	
p-Isopropyltoluene	ND	0.79	1.00	
Methylene Chloride	ND	7.9	1.00	
4-Methyl-2-Pentanone	ND	16	1.00	
Naphthalene	ND	7.9	1.00	
n-Propylbenzene	ND	1.6	1.00	
Styrene	ND	0.79	1.00	
1,1,1,2-Tetrachloroethane	ND	0.79	1.00	
1,1,2,2-Tetrachloroethane	ND	1.6	1.00	
Tetrachloroethene	ND	0.79	1.00	
Toluene	ND	0.79	1.00	
1,2,3-Trichlorobenzene	ND	1.6	1.00	
1,2,4-Trichlorobenzene	ND	1.6	1.00	
1,1,1-Trichloroethane	ND	0.79	1.00	
1,1,2-Trichloroethane	ND	0.79	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	7.9	1.00	
Trichloroethene	ND	1.6	1.00	
Trichlorofluoromethane	ND	7.9	1.00	
1,2,3-Trichloropropane	ND	1.6	1.00	
1,2,4-Trimethylbenzene	ND	1.6	1.00	
1,3,5-Trimethylbenzene	ND	1.6	1.00	
Vinyl Acetate	ND	7.9	1.00	
Vinyl Chloride	ND	0.79	1.00	
p/m-Xylene	ND	1.6	1.00	
o-Xylene	ND	0.79	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.6	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	102	77-120		
Dibromofluoromethane	102	80-123		
1,2-Dichloroethane-d4	107	79-139		
Toluene-d8	99	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-06-1886 EPA 5035 EPA 8260B ug/kg

06/24/15

Project: CG Roxane

Page 3 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-06-10-062315	15-06-1886-2-D	06/23/15 09:05	Solid	GC/MS BB	06/23/15	06/25/15 14:58	150625L007
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	55		1.00		
Benzene		ND	1.1	I	1.00		
Bromobenzene		ND	1.1	I	1.00		
Bromochloromethane		ND	2.2	2	1.00		
Bromodichloromethane		ND	1.1		1.00		
Bromoform		ND	5.5	5	1.00		
Bromomethane		ND	22		1.00		
2-Butanone		ND	22		1.00		
n-Butylbenzene		ND	1.1		1.00		
sec-Butylbenzene		ND	1.1		1.00		
tert-Butylbenzene		ND	1.1	I	1.00		
Carbon Disulfide		ND	11		1.00		
Carbon Tetrachloride		ND	1.1		1.00		
Chlorobenzene		ND	1.1	I	1.00		
Chloroethane		ND	2.2	2	1.00		
Chloroform		ND	1.1	I	1.00		
Chloromethane		ND	22		1.00		
2-Chlorotoluene		ND	1.1	I	1.00		
4-Chlorotoluene		ND	1.1	ſ	1.00		
Dibromochloromethane		ND	2.2	2	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.5	5	1.00		
1,2-Dibromoethane		ND	1.1	ſ	1.00		
Dibromomethane		ND	1.1	I	1.00		
1,2-Dichlorobenzene		ND	1.1	I	1.00		
1,3-Dichlorobenzene		ND	1.1	I	1.00		
1,4-Dichlorobenzene		ND	1.1	I	1.00		
Dichlorodifluoromethane		ND	2.2	2	1.00		
1,1-Dichloroethane		ND	1.1	I	1.00		
1,2-Dichloroethane		ND	1.1	I	1.00		
1,1-Dichloroethene		ND	1.1		1.00		
c-1,2-Dichloroethene		ND	1.1		1.00		
t-1,2-Dichloroethene		ND	1.1		1.00		
1,2-Dichloropropane		ND	1.1		1.00		
1,3-Dichloropropane		ND	1.1		1.00		
2,2-Dichloropropane		ND	5.5		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants

Date Received:

924 Anacapa Street, Suite 4A

Work Order:

15-06-1886

Santa Barbara, CA 93101-2177

Preparation:

Method:

EPA 8260B

Units:

ug/kg

Project: CG Roxane

Project: CG Roxane				Page 4 of 8
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	2.2	1.00	
c-1,3-Dichloropropene	ND	1.1	1.00	
t-1,3-Dichloropropene	ND	2.2	1.00	
Ethylbenzene	ND	1.1	1.00	
2-Hexanone	ND	22	1.00	
Isopropylbenzene	ND	1.1	1.00	
p-Isopropyltoluene	ND	1.1	1.00	
Methylene Chloride	ND	11	1.00	
4-Methyl-2-Pentanone	ND	22	1.00	
Naphthalene	ND	11	1.00	
n-Propylbenzene	ND	2.2	1.00	
Styrene	ND	1.1	1.00	
1,1,1,2-Tetrachloroethane	ND	1.1	1.00	
1,1,2,2-Tetrachloroethane	ND	2.2	1.00	
Tetrachloroethene	ND	1.1	1.00	
Toluene	ND	1.1	1.00	
1,2,3-Trichlorobenzene	ND	2.2	1.00	
1,2,4-Trichlorobenzene	ND	2.2	1.00	
1,1,1-Trichloroethane	ND	1.1	1.00	
1,1,2-Trichloroethane	ND	1.1	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11	1.00	
Trichloroethene	ND	2.2	1.00	
Trichlorofluoromethane	ND	11	1.00	
1,2,3-Trichloropropane	ND	2.2	1.00	
1,2,4-Trimethylbenzene	ND	2.2	1.00	
1,3,5-Trimethylbenzene	ND	2.2	1.00	
Vinyl Acetate	ND	11	1.00	
Vinyl Chloride	ND	1.1	1.00	
p/m-Xylene	ND	2.2	1.00	
o-Xylene	ND	1.1	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.2	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	102	77-120		
Dibromofluoromethane	100	80-123		
1,2-Dichloroethane-d4	109	79-139		
Toluene-d8	98	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-06-1886 EPA 5035 EPA 8260B ug/kg

06/24/15

Project: CG Roxane

Page 5 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-05-062315	15-06-1886-3-D	06/23/15 11:34	Solid	GC/MS BB	06/23/15	06/25/15 15:26	150625L007
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	47	7	1.00		
Benzene		ND	0.	93	1.00		
Bromobenzene		ND	0.	93	1.00		
Bromochloromethane		ND	1.	9	1.00		
Bromodichloromethane		ND	0.	93	1.00		
Bromoform		ND	4.	7	1.00		
Bromomethane		ND	19	9	1.00		
2-Butanone		ND	19	9	1.00		
n-Butylbenzene		ND	0.	93	1.00		
sec-Butylbenzene		ND	0.	93	1.00		
tert-Butylbenzene		ND	0.	93	1.00		
Carbon Disulfide		ND	9.	3	1.00		
Carbon Tetrachloride		ND	0.	93	1.00		
Chlorobenzene		ND	0.	93	1.00		
Chloroethane		ND	1.	9	1.00		
Chloroform		ND	0.	93	1.00		
Chloromethane		ND	19	9	1.00		
2-Chlorotoluene		ND	0.	93	1.00		
4-Chlorotoluene		ND	0.	93	1.00		
Dibromochloromethane		ND	1.	9	1.00		
1,2-Dibromo-3-Chloropropane		ND	4.	7	1.00		
1,2-Dibromoethane		ND	0.	93	1.00		
Dibromomethane		ND	0.	93	1.00		
1,2-Dichlorobenzene		ND	0.	93	1.00		
1,3-Dichlorobenzene		ND	0.	93	1.00		
1,4-Dichlorobenzene		ND	0.	93	1.00		
Dichlorodifluoromethane		ND	1.	9	1.00		
1,1-Dichloroethane		ND	0.	93	1.00		
1,2-Dichloroethane		ND	0.	93	1.00		
1,1-Dichloroethene		ND		93	1.00		
c-1,2-Dichloroethene		ND		93	1.00		
t-1,2-Dichloroethene		ND		93	1.00		
1,2-Dichloropropane		ND		93	1.00		
1,3-Dichloropropane		ND		93	1.00		
2,2-Dichloropropane		ND	4.	7	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/24/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1886

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 6 of 8

Project: CG Roxane				Page 6 of 8
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.9	1.00	
c-1,3-Dichloropropene	ND	0.93	1.00	
t-1,3-Dichloropropene	ND	1.9	1.00	
Ethylbenzene	ND	0.93	1.00	
2-Hexanone	ND	19	1.00	
Isopropylbenzene	ND	0.93	1.00	
p-Isopropyltoluene	ND	0.93	1.00	
Methylene Chloride	ND	9.3	1.00	
4-Methyl-2-Pentanone	ND	19	1.00	
Naphthalene	ND	9.3	1.00	
n-Propylbenzene	ND	1.9	1.00	
Styrene	ND	0.93	1.00	
1,1,1,2-Tetrachloroethane	ND	0.93	1.00	
1,1,2,2-Tetrachloroethane	ND	1.9	1.00	
Tetrachloroethene	ND	0.93	1.00	
Toluene	ND	0.93	1.00	
1,2,3-Trichlorobenzene	ND	1.9	1.00	
1,2,4-Trichlorobenzene	ND	1.9	1.00	
1,1,1-Trichloroethane	ND	0.93	1.00	
1,1,2-Trichloroethane	ND	0.93	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	9.3	1.00	
Trichloroethene	ND	1.9	1.00	
Trichlorofluoromethane	ND	9.3	1.00	
1,2,3-Trichloropropane	ND	1.9	1.00	
1,2,4-Trimethylbenzene	ND	1.9	1.00	
1,3,5-Trimethylbenzene	ND	1.9	1.00	
Vinyl Acetate	ND	9.3	1.00	
Vinyl Chloride	ND	0.93	1.00	
p/m-Xylene	ND	1.9	1.00	
o-Xylene	ND	0.93	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.9	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	101	77-120		
Dibromofluoromethane	105	80-123		
1,2-Dichloroethane-d4	113	79-139		
Toluene-d8	98	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-1886 EPA 5035 EPA 8260B ug/kg

06/24/15

Units:

Page 7 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-312-491	N/A	Solid	GC/MS BB	06/25/15	06/25/15 13:32	150625L007
<u>Parameter</u>		Result	<u>R</u>	L	<u>DF</u>	Qua	alifiers
Acetone		ND	50	0	1.00		
Benzene		ND	1.	.0	1.00		
Bromobenzene		ND	1.	.0	1.00		
Bromochloromethane		ND	2.	.0	1.00		
Bromodichloromethane		ND	1.	.0	1.00		
Bromoform		ND	5.	.0	1.00		
Bromomethane		ND	20	0	1.00		
2-Butanone		ND	20	0	1.00		
n-Butylbenzene		ND	1.	.0	1.00		
sec-Butylbenzene		ND	1.	.0	1.00		
tert-Butylbenzene		ND	1.	.0	1.00		
Carbon Disulfide		ND	10	0	1.00		
Carbon Tetrachloride		ND	1.	.0	1.00		
Chlorobenzene		ND	1.	.0	1.00		
Chloroethane		ND	2.	.0	1.00		
Chloroform		ND	1.	.0	1.00		
Chloromethane		ND	20	0	1.00		
2-Chlorotoluene		ND	1.	.0	1.00		
4-Chlorotoluene		ND	1.	.0	1.00		
Dibromochloromethane		ND	2.	.0	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.	.0	1.00		
1,2-Dibromoethane		ND	1.	.0	1.00		
Dibromomethane		ND	1.	.0	1.00		
1,2-Dichlorobenzene		ND	1.	.0	1.00		
1,3-Dichlorobenzene		ND	1.	.0	1.00		
1,4-Dichlorobenzene		ND	1.	.0	1.00		
Dichlorodifluoromethane		ND	2.		1.00		
1,1-Dichloroethane		ND	1.		1.00		
1,2-Dichloroethane		ND	1.	.0	1.00		
1,1-Dichloroethene		ND	1.		1.00		
c-1,2-Dichloroethene		ND	1.		1.00		
t-1,2-Dichloroethene		ND	1.	.0	1.00		
1,2-Dichloropropane		ND	1.		1.00		
1,3-Dichloropropane		ND	1.		1.00		
2,2-Dichloropropane		ND	5.		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants

Date Received:

Work Order:

15-06-1886

Santa Barbara, CA 93101-2177

Preparation:

Method:

Units:

Page 8 of 8

Project: CG Roxane				Page 8 of 8
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	2.0	1.00	
c-1,3-Dichloropropene	ND	1.0	1.00	
t-1,3-Dichloropropene	ND	2.0	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	20	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	20	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	2.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	2.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	2.0	1.00	
1,2,4-Trichlorobenzene	ND	2.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
Trichloroethene	ND	2.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	2.0	1.00	
1,2,4-Trimethylbenzene	ND	2.0	1.00	
1,3,5-Trimethylbenzene	ND	2.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	1.0	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	102	77-120		
Dibromofluoromethane	98	80-123		
1,2-Dichloroethane-d4	103	79-139		
Toluene-d8	98	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Date Received: Work Order:

06/24/15 15-06-1886

Santa Barbara, CA 93101-2177

Project: CG Roxane

Page 1 of 2

Client Sample Number Lab Sample Number						Date/Tir	ne Collected	Matrix
MW-01-15-062215			15-06	6-1886-1		06/22/1	5 14:35	Solid
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method
рН	7.50	0.01	1.00		pH units	06/24/15	06/24/15	EPA 9045D
Alkalinity, Total (as CaCO3)	45	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Solids, Total Dissolved	13100	100	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Kjeldahl Nitrogen	130	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Phosphorus, Total	ND	0.50	1.00		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Total Phosphate	ND	1.5	1.00		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Ammonia (as N)	28	10	2.00		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Nitrate-Nitrite (as N)	1.0	0.50	1.00		mg/kg	06/26/15	06/26/15	SM 4500-NO3 E (M)
MBAS	ND	1.0	1.00		mg/kg	07/02/15	07/02/15	SM 5540C (M)
Total Nitrogen	130	0.50	1.00		mg/kg	N/A	07/06/15	Total Nitrogen by Calc

MW-06-10-062315			15-06-1	886-2		06/23/15	09:05	Solid
Parameter	Results	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method
рН	8.79	0.01	1.00		pH units	06/24/15	06/24/15	EPA 9045D
Alkalinity, Total (as CaCO3)	340	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Solids, Total Dissolved	3420	10.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Kjeldahl Nitrogen	84	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Phosphorus, Total	93	12	25.0		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Total Phosphate	280	38	25.0		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Ammonia (as N)	28	10	2.00		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Nitrate-Nitrite (as N)	2.6	0.50	1.00		mg/kg	06/26/15	06/26/15	SM 4500-NO3 E (M)
MBAS	ND	1.0	1.00		mg/kg	07/02/15	07/02/15	SM 5540C (M)
Total Nitrogen	87	0.50	1.00		mg/kg	N/A	07/06/15	Total Nitrogen by Calc

MW-07-05-062315			15-0	6-1886-3		06/23/1	5 11:34	Solid
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	Method
рН	8.99	0.01	1.00		pH units	06/24/15	06/24/15	EPA 9045D
Alkalinity, Total (as CaCO3)	730	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Solids, Total Dissolved	5730	10.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Kjeldahl Nitrogen	70	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Phosphorus, Total	94	25	50.0		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Total Phosphate	290	75	50.0		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Ammonia (as N)	39	10	2.00		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Nitrate-Nitrite (as N)	0.75	0.50	1.00		mg/kg	06/26/15	06/26/15	SM 4500-NO3 E (M)
MBAS	ND	1.0	1.00		mg/kg	07/02/15	07/02/15	SM 5540C (M)
Total Nitrogen	71	0.50	1.00		mg/kg	N/A	07/06/15	Total Nitrogen by Calc

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received:

06/24/15 15-06-1886

Work Order:

Project: CG Roxane Page 2 of 2

Client Sample Number Lab S				Sample Number	le Number Date/Time Collected			Matrix
Method Blank						N/A		Solid
Parameter	<u>Results</u>	<u>RL</u>	<u>DF</u>	Qualifiers	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	Method
Alkalinity, Total (as CaCO3)	ND	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Solids, Total Dissolved	ND	1.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Kjeldahl Nitrogen	ND	10	1.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Phosphorus, Total	ND	0.50	1.00		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Total Phosphate	ND	1.5	1.00		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Ammonia (as N)	ND	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Nitrate-Nitrite (as N)	ND	0.50	1.00		mg/kg	06/26/15	06/26/15	SM 4500-NO3 E (M)
MBAS	ND	1.0	1.00		mg/kg	07/02/15	07/02/15	SM 5540C (M)

06/24/15

N/A

15-06-1886

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Date Received:

Work Order:

Preparation:

Method: EPA 300.0

Project: CG Roxane Page 1 of 8

Quality Control Sample ID	Туре		Matrix	Matrix Instrument		Date Prepared Date Analyzed		lyzed	MS/MSD Batch Number	
15-06-1938-1	Sample	Sample		IC 7		06/26/15	06/27/15	11:48	150626S03P	•
15-06-1938-1	Matrix Spike		Solid	IC 7		06/26/15	06/27/15	13:42	150626S03P	•
15-06-1938-1	Matrix Spike	Duplicate	Solid	IC 7		06/26/15	06/27/15	13:59	150626S03P	•
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	ND	500.0	391.2	78	418.4	84	80-120	7	0-20	3
Sulfate	2375	500.0	2697	64	2890	103	80-120	7	0-20	3

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

06/24/15

06/24/15

15-06-1886

N/A

SM 4500 P B/E (M)

Project: CG Roxane Page 2 of 8

Quality Control Sample ID	Туре		Matrix	Insti	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
MW-07-05-062315	Sample		Solid	UV	7	06/25/15	06/25/15	18:00	F0625TPS1	
MW-07-05-062315	Matrix Spike		Solid	UV	7	06/25/15	06/25/15	18:00	F0625TPS1	
MW-07-05-062315	Matrix Spike D	uplicate	Solid	UV	7	06/25/15	06/25/15	18:00	F0625TPS1	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	93.72	100.0	190.5	97	192.2	99	70-130	1	0-25	

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

Date Received:

06/24/15

Work Order:

15-06-1886

Preparation:

N/A

SM 4500 P B/E (M)

Project: CG Roxane Page 3 of 8

Quality Control Sample ID	Туре	Matrix	Instrumer	nt Date Prepared	Date Analyzed	MS/MSD Batch Number
MW-07-05-062315	Sample	Solid	UV 7	06/25/15	06/25/15 18:00	F0625PO4S1
MW-07-05-062315	Matrix Spike	Solid	UV 7	06/25/15	06/25/15 18:00	F0625PO4S1
MW-07-05-062315	Matrix Spike Dup	licate Solid	UV 7	06/25/15	06/25/15 18:00	F0625PO4S1
Parameter	Sample Sp Conc. Ac	nike MS Ided Conc.	MS MS %Rec. Co	SD MSD sonc. %Rec.	%Rec. CL RPD	RPD CL Qualifiers
Total Phosphate	286.8 30	5.0 582.5	97 58	7.5 99	70-130 1	0-25

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Preparation:

Method:

06/24/15

06/24/15

06/24/15

N/A

SM 4500-NO3 E (M)

Project: CG Roxane Page 4 of 8

Quality Control Sample ID	Туре		Matrix	Insti	ument	Date Prepared	Date Ana	yzed	MS/MSD Bat	tch Number
MW-01-15-062215	Sample		Solid	UV	7	06/26/15	06/26/15	16:00	F0626NO3S	1
MW-01-15-062215	Matrix Spike		Solid	UV	7	06/26/15	06/26/15	16:00	F0626NO3S	1
MW-01-15-062215	Matrix Spike Du	plicate	Solid	UV	7	06/26/15	06/26/15	16:00	F0626NO3S	1
Parameter	Sample S Conc. A	S <u>pike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	1.018 2	2.500	3.535	101	3.595	103	70-130	2	0-25	

 Geosyntec Consultants
 Date Received:
 06/24/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1886

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 5540C (M)

 Project: CG Roxane
 Page 5 of 8

Quality Control Sample ID	Type		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
MW-07-05-062315	Sample		Solid	UV)	07/02/15	07/02/15	20:48	F0702SURS	2
MW-07-05-062315	Matrix Spike		Solid	UV	•	07/02/15	07/02/15	20:48	F0702SURS	2
MW-07-05-062315	Matrix Spike	Duplicate	Solid	UV	•	07/02/15	07/02/15	20:48	F0702SURS	2
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
MBAS	ND	10.00	8.700	87	8.900	89	70-130	2	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Date Received: Work Order: Preparation: Method:

06/24/15 15-06-1886 **EPA 3050B**

EPA 6010B

Page 6 of 8 Project: CG Roxane

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepar	ed Date Ana	alyzed	MS/MSD Ba	tch Number
15-06-1926-1	Sample		Solid	ICF	7300	06/25/15	06/26/15	14:57	150625 S 02	
15-06-1926-1	Matrix Spike		Solid	ICF	7300	06/25/15	06/26/15	14:59	150625S02	
15-06-1926-1	Matrix Spike	Duplicate	Solid	ICF	7300	06/25/15	06/26/15	15:02	150625S02	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	6.542	26	9.261	37	50-115	34	0-20	3,4
Arsenic	1.045	25.00	24.45	94	25.68	99	75-125	5	0-20	
Barium	366.6	25.00	426.9	4X	435.9	4X	75-125	4X	0-20	Q
Beryllium	ND	25.00	24.41	98	25.46	102	75-125	4	0-20	
Cadmium	0.6575	25.00	24.74	96	25.81	101	75-125	4	0-20	
Chromium	14.86	25.00	43.79	116	43.69	115	75-125	0	0-20	
Cobalt	13.29	25.00	37.52	97	38.68	102	75-125	3	0-20	
Copper	18.27	25.00	33.60	61	36.14	71	75-125	7	0-20	3
Lead	1.269	25.00	24.98	95	26.39	100	75-125	5	0-20	
Molybdenum	ND	25.00	21.49	86	22.90	92	75-125	6	0-20	
Nickel	5.778	25.00	30.35	98	31.67	104	75-125	4	0-20	
Selenium	ND	25.00	17.14	69	18.42	74	75-125	7	0-20	3
Silver	ND	12.50	12.28	98	12.82	103	75-125	4	0-20	
Thallium	ND	25.00	20.23	81	21.32	85	75-125	5	0-20	
Vanadium	37.00	25.00	66.45	118	68.86	127	75-125	4	0-20	3
Zinc	39.86	25.00	69.86	120	73.40	134	75-125	5	0-20	3

RPD: Relative Percent Difference. CL: Control Limits

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-1886
Santa Barbara, CA 93101-2177
Preparation:
EPA 7471A Total
Method:
EPA 7471A

Project: CG Roxane Page 7 of 8

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Bato	h Number
15-06-1926-1	Sample	Solid	Mercury 05	06/26/15	06/26/15 16:35	150626S04	
15-06-1926-1	Matrix Spike	Solid	Mercury 05	06/26/15	06/26/15 16:37	150626S04	
15-06-1926-1	Matrix Spike Dup	licate Solid	Mercury 05	06/26/15	06/26/15 16:40	150626S04	
Parameter	Sample Sp Conc. Ac	oike <u>MS</u> Ided <u>Conc.</u>	MS MSD Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL	Qualifiers
Mercury	ND 0.8	8350 0.8085	97 0.8561	103	75-125 6	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/24/15 15-06-1886 EPA 3545

EPA 8270C

Project: CG Roxane Page 8 of 8

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
15-06-1746-3	Sample		Solid	GC/	MS TT	06/25/15	06/26/15	15:45	150625S05	
15-06-1746-3	Matrix Spike		Solid	GC/	MS TT	06/25/15	06/26/15	16:04	150625S05	
15-06-1746-3	Matrix Spike	Duplicate	Solid	GC/	MS TT	06/25/15	06/26/15	16:22	150625S05	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acenaphthene	ND	10.00	6.364	64	6.154	62	34-148	3	0-20	
Acenaphthylene	ND	10.00	6.155	62	5.953	60	53-120	3	0-20	
Butyl Benzyl Phthalate	ND	10.00	6.700	67	6.199	62	15-189	8	0-20	
4-Chloro-3-Methylphenol	ND	10.00	6.569	66	6.178	62	32-120	6	0-20	
2-Chlorophenol	ND	10.00	6.345	63	6.307	63	53-120	1	0-20	
1,4-Dichlorobenzene	ND	10.00	5.373	54	5.095	51	43-120	5	0-26	
Dimethyl Phthalate	ND	10.00	6.269	63	6.092	61	44-122	3	0-20	
2,4-Dinitrotoluene	ND	10.00	6.591	66	6.320	63	28-120	4	0-20	
Fluorene	ND	10.00	6.511	65	6.248	62	12-186	4	0-20	
N-Nitroso-di-n-propylamine	ND	10.00	6.430	64	6.244	62	38-140	3	0-20	
Naphthalene	ND	10.00	5.871	59	5.640	56	20-140	4	0-20	
4-Nitrophenol	ND	10.00	6.361	64	5.811	58	14-128	9	0-59	
Pentachlorophenol	ND	10.00	4.805	48	3.652	37	10-124	27	0-20	4
Phenol	ND	10.00	6.888	69	6.693	67	22-124	3	0-20	
Pyrene	ND	10.00	6.595	66	6.290	63	31-169	5	0-20	
1,2,4-Trichlorobenzene	ND	10.00	5.686	57	5.355	54	56-120	6	0-20	3

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/24/15 15-06-1886 EPA 3050B EPA 6010B

Project: CG Roxane Page 1 of 1

Quality Control Sample ID	Type	N	Matrix	Instrument	Date Prepared Date	Analyzed PDS Num	/PDSD Batch ber
15-06-1926-1	Sample	\$	Solid	ICP 7300	06/25/15 00:00 06/2	6/15 14:57 1506	525S02
15-06-1926-1	PDS	\$	Solid	ICP 7300	06/25/15 00:00 06/2	6/15 15:04 1506	S25S02
Parameter		Sample Conc.	Spike Adde	d PDS Conc	. PDS %Rec.	%Rec. CL	<u>Qualifiers</u>
Antimony		ND	25.00	24.20	97	75-125	
Arsenic		1.045	25.00	25.81	99	75-125	
Barium		366.6	25.00	405.7	4X	75-125	Q
Beryllium		ND	25.00	25.45	102	75-125	
Cadmium		0.6575	25.00	25.93	101	75-125	
Chromium		14.86	25.00	41.26	106	75-125	
Cobalt		13.29	25.00	38.41	100	75-125	
Copper		18.27	25.00	45.42	109	75-125	
Lead		1.269	25.00	25.77	98	75-125	
Molybdenum		ND	25.00	24.38	98	75-125	
Nickel		5.778	25.00	31.25	102	75-125	
Selenium		ND	25.00	21.01	84	75-125	
Silver		ND	12.50	12.57	101	75-125	
Thallium		ND	25.00	22.36	89	75-125	
Vanadium		37.00	25.00	63.72	107	75-125	
Zinc		39.86	25.00	66.46	106	75-125	

Quality Control - Sample Duplicate

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

15-06-1886 N/A

06/24/15

Method:

EPA 9045D

Project: CG Roxane

Page 1 of 4

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-1896-1	Sample	Solid	PH 4	06/24/15 00:00	06/24/15 20:55	F0624PHD1
15-06-1896-1	Sample Duplicate	Solid	PH 4	06/24/15 00:00	06/24/15 20:55	F0624PHD1
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
рН		8.510	8.480	0	0-25	

Quality Control - Sample Duplicate

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: 06/24/15 15-06-1886 N/A

Method:

SM 2320B M

Page 2 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
MW-01-15-062215	Sample	Solid	PH1/BUR03	06/30/15 00:00	06/30/15 17:18	F0630ALKD3
MW-01-15-062215	Sample Duplicate	Solid	PH1/BUR03	06/30/15 00:00	06/30/15 17:18	F0630ALKD3
Parameter		Sample Conc.	DUP Conc.	<u>RPD</u>	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)		45.00	45.00	0	0-25	

06/24/15

15-06-1886

Quality Control - Sample Duplicate

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Date Received:

Work Order:

Preparation:

N/A SM 2540 C (M)

Project: CG Roxane Page 3 of 4

Method:

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-1885-1	Sample	Solid	N/A	06/30/15 00:00	06/30/15 17:00	F0630TDSD1
15-06-1885-1	Sample Duplicate	Solid	N/A	06/30/15 00:00	06/30/15 17:00	F0630TDSD1
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Solids. Total Dissolved		19430	20900	7	0-10	

Quality Control - Sample Duplicate

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: 06/24/15 15-06-1886 N/A

Method:

SM 4500 N Org B (M)

Project: CG Roxane Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-1883-1	Sample	Solid	BUR05	06/30/15 00:00	06/30/15 14:03	F0630TKND1
15-06-1883-1	Sample Duplicate	Solid	BUR05	06/30/15 00:00	06/30/15 14:03	F0630TKND1
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Total Kjeldahl Nitrogen		9800	9968	2	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/24/15 15-06-1886 N/A

EPA 300.0

Project: CG Roxane

Page 1 of 11

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-922-608	LCS	Solid	IC 7	06/26/15	06/27/15 10:42	150626L03P
<u>Parameter</u>		Spike Added	Conc. Recove	red LCS %R	ec. %Rec	. CL Qualifiers
Chloride		500.0	524.5	105	90-110)
Sulfate		500.0	514.6	103	90-110)

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-1886

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

SM 4500 P B/E (M)

Project: CG Roxane Page 2 of 11

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD B	atch Number
099-05-001-5438	LCS	Sol	id	UV 7	06/25/15	06/2	25/15 18:00	F0625TPL1	
099-05-001-5438	LCSD	Sol	id	UV 7	06/25/15	06/2	25/15 18:00	F0625TPL1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	2.000	2.125	106	2.100	105	80-120	1	0-20	

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-1886
Santa Barbara, CA 93101-2177
Preparation:
N/A
Method:
SM 4500 P B/E (M)

Project: CG Roxane Page 3 of 11

Quality Control Sample ID	Type	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-14-274-26	LCS	Soli	id	UV 7	06/25/15	06/2	5/15 18:00	F0625PO4L1	
099-14-274-26	LCSD	Soli	id	UV 7	06/25/15	06/2	5/15 18:00	F0625PO4L1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Total Phosphate	6.100	6.500	107	6.400	105	80-120	2	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: 06/24/15 15-06-1886 N/A

Method:

SM 4500-NH3 B/C (M)

Page 4 of 11

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	Analyzed	LCS/LCSD Ba	itch Number
099-12-812-798	LCS	Sol	id	BUR05	06/30/15	06/3	0/15 15:00	F0630NH3L2	
099-12-812-798	LCSD	Sol	id	BUR05	06/30/15	06/3	0/15 15:00	F0630NH3L2	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Ammonia (as N)	250.0	221.2	88	226.8	91	80-120	2	0-20	

N/A

Quality Control - LCS/LCSD

Geosyntec Consultants Date Received: 06/24/15 15-06-1886 924 Anacapa Street, Suite 4A Work Order: Preparation: Santa Barbara, CA 93101-2177

> Method: SM 4500-NO3 E (M)

Project: CG Roxane Page 5 of 11

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-05-001-5437	LCS	Soli	id	UV 7	06/26/15	06/2	6/15 16:00	F0626NO3L1	
099-05-001-5437	LCSD	Soli	id	UV 7	06/26/15	06/2	6/15 16:00	F0626NO3L1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	2.500	2.490	100	2.510	100	80-120	1	0-20	

 Geosyntec Consultants
 Date Received:
 06/24/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1886

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 5540C (M)

 Project: CG Roxane
 Page 6 of 11

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-05-027-41	LCS	Solid	UV 9	07/02/15	07/02/15 20:48	F0702SURL2
Parameter		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
MBAS		10.00	8.600	86	80-120	0

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/24/15 15-06-1886 EPA 3050B EPA 6010B

Project: CG Roxane

Page 7 of 11

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepa	red Date Analyze	ed LCS Batch N	umber
097-01-002-21320	LCS	Solid	ICP 7300	06/25/15	06/26/15 14:	52 150625L02	
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony	:	25.00	22.02	88	80-120	73-127	
Arsenic	:	25.00	21.11	84	80-120	73-127	
Barium	:	25.00	22.54	90	80-120	73-127	
Beryllium	:	25.00	21.05	84	80-120	73-127	
Cadmium	:	25.00	22.37	89	80-120	73-127	
Chromium	:	25.00	21.65	87	80-120	73-127	
Cobalt	:	25.00	21.18	85	80-120	73-127	
Copper	:	25.00	22.63	91	80-120	73-127	
Lead	:	25.00	22.16	89	80-120	73-127	
Molybdenum	:	25.00	21.24	85	80-120	73-127	
Nickel	:	25.00	22.23	89	80-120	73-127	
Selenium	:	25.00	21.35	85	80-120	73-127	
Silver		12.50	11.61	93	80-120	73-127	
Thallium	:	25.00	20.86	83	80-120	73-127	
Vanadium	:	25.00	21.85	87	80-120	73-127	
Zinc	:	25.00	22.32	89	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-1886
Santa Barbara, CA 93101-2177
Preparation:
EPA 7471A Total
Method:
EPA 7471A

Project: CG Roxane Page 8 of 11

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-1399	LCS	Solid	Mercury 05	06/26/15	06/26/15 16:24	150626L04A
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.8815	106	85-12	1

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-1886 EPA 3545 EPA 8270C

Page 9 of 11

06/24/15

Project: CG Roxane

Quality Control Sample ID	Type	Matrix	Instrumer	nt Date Pre	pared Date Ana	lyzed LCS Batcl	n Number
099-12-549-3322	LCS	Solid	GC/MS C	CC 06/25/15	06/26/15	13:19 150625L0	5A
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Acenaphthene		10.00	8.530	85	51-123	39-135	
Acenaphthylene		10.00	8.400	84	52-120	41-131	
Butyl Benzyl Phthalate		10.00	9.133	91	43-139	27-155	
4-Chloro-3-Methylphenol		10.00	8.735	87	55-121	44-132	
2-Chlorophenol		10.00	8.755	88	58-124	47-135	
1,4-Dichlorobenzene		10.00	7.649	76	42-132	27-147	
Dimethyl Phthalate		10.00	8.560	86	51-123	39-135	
2,4-Dinitrotoluene		10.00	9.407	94	51-129	38-142	
Fluorene		10.00	8.770	88	54-126	42-138	
N-Nitroso-di-n-propylamine		10.00	8.095	81	40-136	24-152	
Naphthalene		10.00	8.211	82	32-146	13-165	
4-Nitrophenol		10.00	7.464	75	24-126	7-143	
Pentachlorophenol		10.00	6.433	64	23-131	5-149	
Phenol		10.00	8.576	86	40-130	25-145	
Pyrene		10.00	8.231	82	47-143	31-159	
1,2,4-Trichlorobenzene		10.00	8.121	81	45-129	31-143	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/24/15 15-06-1886 EPA 5035 EPA 8260B

Project: CG Roxane Page 10 of 11

Dep-14-312-491 LCS	Quality Control Sample ID	Туре		Matrix	Inst	trument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
Parameter	099-14-312-491	LCS		Solid	GC	/MS BB	06/25/15	06/25/	15 11:01	150625L007	
Acetone Addreg SRec. Conc. WREC. Conc. Addreg Acetone 50.00 44.06 88 45.14 90 79.120 72.127 2 0.20 Bromobenzene 50.00 44.06 88 45.74 90 80.120 73.127 2 0.20 Bromochichloromethane 50.00 45.16 90 46.41 93 73.127 64.136 3 0.20 Bromochichloromethane 50.00 45.36 91 46.71 91 80.120 73.127 3 0.20 Bromomothane 50.00 45.36 91 47.11 90 36.144 18.12 12 0.20 2-Butanone 50.00 44.84 90 46.78 91 78.126 70.134 4 0.20 2-Butanone 50.00 44.44 90 46.78 91 79.127 71.134 4 0.20 2-Butanone 50.00 41.434 89 45.52<	099-14-312-491	LCSD		Solid	GC	/MS BB	06/25/15	06/25/	15 11:30	150625L007	
Benzene 50.00 44.06 88 45.14 90 79-120 72-127 2 0-20 Bromobenzene 50.00 44.05 88 44.90 90 80-120 73-127 2 0-20 Bromochicromethane 50.00 45.16 88 45.77 91 80-120 73-127 64-136 3 0-20 Bromochicromethane 50.00 45.38 91 44.70 89 56-138 42-146 2 0-20 Bromomethane 50.00 40.91 80 45.11 90 36-144 18-12 12 0-20 2-Butanone 50.00 44.84 90 46.78 91 78-126 70-134 4 0-20 8-Butanone 50.00 44.34 90 45.52 91 80-128 72-136 2 0-20 8-Butanone 50.00 43.43 9 45.52 91 80-128 72-136 4 0-20 18-Butanone	Parameter		LCS Conc.	LCS %Rec.		LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Bromobenzene 50.00 44.05 88 44.90 90 80-120 73-127 2 0-20 Bromodichoromethane 50.00 44.18 88 45.57 91 80-120 73-127 3 0-20 Bromodichoromethane 50.00 45.69 91 44.70 89 55-133 42-146 2 0-20 Bromomethane 50.00 40.19 80 45.11 90 36-144 18-162 12 0-20 Bromomethane 50.00 44.84 90 46.78 94 78-126 70-134 4 0-20 -Butanone 50.00 44.84 90 46.78 94 78-126 70-134 4 0-20 sec-Butylbenzene 50.00 37.04 74 38.36 77 80-122 71-135 3 0-20 Gerben Disulfide 50.00 39.33 79 41.10 82 58-142 41-156 4 0-20 Chioroform <td< td=""><td>Acetone</td><td>50.00</td><td>54.35</td><td>109</td><td>50.63</td><td>101</td><td>30-150</td><td>10-170</td><td>7</td><td>0-20</td><td></td></td<>	Acetone	50.00	54.35	109	50.63	101	30-150	10-170	7	0-20	
Bromochloromethane 50.00 44.18 88 45.57 91 80-120 73-127 3 0-20 Bromodichloromethane 50.00 45.16 90 46.41 93 73-127 64-136 3 0-20 Bromoform 50.00 45.39 91 44.70 89 55-133 42-146 2 0-20 Bromoform 50.00 40.19 80 45.11 90 36-144 18-162 12 0-20 2-Butanone 50.00 44.84 90 46.78 94 78-126 70-134 4 0-20 ses-Bulylbenzene 50.00 44.73 89 45.52 91 80-128 72-136 2 0-20 carbon Tetrachloride 50.00 37.04 74 38.36 77 53-125 41-137 3 0-20 Carbon Tetrachloride 50.00 43.86 88 44.90 90 80-120 73-127 2 0-20 Chloroberane	Benzene	50.00	44.06	88	45.14	90	79-120	72-127	2	0-20	
Bromodichloromethane 50.00 45.16 90 46.41 93 73.127 64.136 3 0.20 Bromoform 50.00 45.39 91 44.70 89 55.133 42.146 2 0.20 Bromoform 50.00 40.19 80 45.11 90 36.146 12 0.20 2-Butanone 50.00 44.84 90 46.78 94 78.126 70.134 4 0.20 sec-Butylbenzene 50.00 44.34 89 45.52 91 80.126 72-136 2 0.20 Carbon Disulfide 50.00 37.04 74 38.36 77 53.125 41.137 3 0.20 Carbon Disulfide 50.00 43.86 88 44.90 90 80.120 73-127 2 0.20 Chloroethane 50.00 47.49 95 50.78 102 60.120 50.130 7 0.20 Chloroethane 50.00 45.0	Bromobenzene	50.00	44.05	88	44.90	90	80-120	73-127	2	0-20	
Bromoform 50.00 45.39 91 44.70 89 55.133 42.146 2 0-20 Bromomethane 50.00 40.19 80 45.11 90 36.144 18-162 12 0-20 2-Butanone 50.00 42.89 105 49.13 98 66.176 36.196 7 0-20 n-Butylbenzene 50.00 44.34 89 45.71 91 79.127 71-135 3 0-20 Carbon Disulfide 50.00 37.04 74 38.36 77 31-26 72-136 2 0-20 Carbon Disulfide 50.00 37.04 74 38.36 77 61-12 71-135 3 0-20 Chiorobenzene 50.00 37.34 79 41.10 82 58-142 44-156 4 0-20 Chiorobenzene 50.00 45.76 92 47.36 95 80.120 73-127 3 0-20 Chiorobenzene 50.00 <td>Bromochloromethane</td> <td>50.00</td> <td>44.18</td> <td>88</td> <td>45.57</td> <td>91</td> <td>80-120</td> <td>73-127</td> <td>3</td> <td>0-20</td> <td></td>	Bromochloromethane	50.00	44.18	88	45.57	91	80-120	73-127	3	0-20	
Bromomethane 50.00 40.19 80 45.11 90 36.144 18-162 12 0-20 2-Butanone 50.00 52.68 105 49.13 88 56-176 36-196 7 0-20 n-Butylbenzene 50.00 44.34 89 45.71 91 78-126 7-1345 3 0-20 tert-Butylbenzene 50.00 44.73 89 45.52 91 80-128 72-136 2 0-20 Carbon Disulfide 50.00 37.04 74 38.36 77 53-125 41-137 3 0-20 Carbon Tetrachloride 50.00 43.38 88 44.90 90 80-120 73-127 2 0-20 Chloroethane 50.00 45.76 92 47.38 95 80-120 73-127 3 0-20 Chloroethane 50.00 45.01 92 47.58 95 80-120 73-127 3 0-20 Chloroethane <t< td=""><td>Bromodichloromethane</td><td>50.00</td><td>45.16</td><td>90</td><td>46.41</td><td>93</td><td>73-127</td><td>64-136</td><td>3</td><td>0-20</td><td></td></t<>	Bromodichloromethane	50.00	45.16	90	46.41	93	73-127	64-136	3	0-20	
2-Butanone 50.00 52.69 105 49.13 98 56.176 36.196 7 0.20 n-Butylbenzene 50.00 44.84 90 46.78 94 78.126 70.134 4 0-20 sec-Butylbenzene 50.00 44.34 89 45.52 91 80.128 72.136 3 0-20 Carbon Disulfide 50.00 37.04 74 38.36 77 53.125 41.137 3 0-20 Carbon Disulfide 50.00 39.33 79 41.10 82 58.142 44.156 4 0-20 Chlorobenzene 50.00 43.86 88 44.90 90 80-120 73-127 2 0-20 Chlorobrane 50.00 45.76 92 47.36 95 80-120 73-127 3 0-20 Chlorobrame 50.00 45.01 90 46.37 93 50-120 73-127 3 0-20 Chlorobrobutane 50	Bromoform	50.00	45.39	91	44.70	89	55-133	42-146	2	0-20	
n-Butylbenzene 50.00 44.84 90 46.78 94 78-126 70-134 4 0-20 sec-Butylbenzene 50.00 44.34 89 45.71 91 79-127 71-135 3 0-20 Carbon Disulfide 50.00 37.04 74 38.36 77 53-125 41-137 3 0-20 Carbon Disulfide 50.00 39.33 79 41.10 82 58-142 44-156 4 0-20 Chlorobenzene 50.00 43.86 88 44.90 90 80-120 73-127 2 0-20 Chlorobethane 50.00 47.49 95 50.78 102 60-120 50-130 7 0-20 Chlorothune 50.00 45.76 92 47.36 95 80-120 73-127 3 0-20 Chlorotoluene 50.00 45.76 92 47.58 95 80-120 73-127 3 0-20 12-Dibrorotoluene	Bromomethane	50.00	40.19	80	45.11	90	36-144	18-162	12	0-20	
sec-Butylbenzene 50.00 44.34 89 45.71 91 79-127 71-135 3 0-20 tert-Butylbenzene 50.00 44.73 89 45.52 91 80-128 72-136 2 0-20 Carbon Disulfide 50.00 37.04 74 38.36 77 53-125 41-137 3 0-20 Chloroperane 50.00 43.86 88 44.90 90 80-120 73-127 2 0-20 Chloroperbane 50.00 47.49 95 50.78 102 60-120 50-130 7 0-20 Chloroperbane 50.00 45.76 92 47.36 95 80-120 73-127 3 0-20 Chloropethane 50.00 45.01 90 46.35 93 50-122 38-134 3 0-20 Chloropethane 50.00 44.13 88 45.09 90 70-130 60-140 2 0-20 Dibromochloromethane	2-Butanone	50.00	52.69	105	49.13	98	56-176	36-196	7	0-20	
terl-Butylibenzene 50.00 44.73 89 45.52 91 80-128 72-136 2 0-20 Carbon Disulfide 50.00 37.04 74 38.36 77 53-125 41-137 3 0-20 Carbon Tetrachloride 50.00 39.33 79 41.10 82 58-142 44-156 4 0-20 Chlorobenzene 50.00 47.49 95 50.78 102 60-120 50-130 7 0-20 Chlorothane 50.00 45.76 92 47.36 95 80-120 73-127 3 0-20 Chlorotoluene 50.00 45.01 90 46.35 93 50-122 38-134 3 0-20 2-Chlorotoluene 50.00 43.06 86 44.87 90 80-120 73-127 3 0-20 1-Chlorotoluene 50.00 44.13 88 45.09 90 70-130 60-140 2 0-20 1,2-Dibromoethane <td>n-Butylbenzene</td> <td>50.00</td> <td>44.84</td> <td>90</td> <td>46.78</td> <td>94</td> <td>78-126</td> <td>70-134</td> <td>4</td> <td>0-20</td> <td></td>	n-Butylbenzene	50.00	44.84	90	46.78	94	78-126	70-134	4	0-20	
Carbon Disulfide 50.00 37.04 74 38.36 77 53.125 41.137 3 0-20 Carbon Tetrachloride 50.00 39.33 79 41.10 82 58.142 44.166 4 0-20 Chlorobenzene 50.00 43.86 88 44.90 90 80.120 73.127 2 0-20 Chloroterbane 50.00 45.76 92 47.36 95 80.120 73.127 3 0-20 Chloroterbane 50.00 45.01 90 46.35 93 50.122 38.134 3 0-20 Chloroteluene 50.00 45.01 90 46.35 93 50.122 38.134 3 0-20 4-Chloroteluene 50.00 46.20 92 47.58 95 80.120 73-127 3 0-20 Dibromochloromethane 50.00 46.18 92 46.55 93 54.132 41.145 5 0-20 1,2-Dichlorobenzene<	sec-Butylbenzene	50.00	44.34	89	45.71	91	79-127	71-135	3	0-20	
Carbon Tetrachloride 50.00 39.33 79 41.10 82 58-142 44-156 4 0-20 Chlorobenzene 50.00 43.86 88 44.90 90 80-120 73-127 2 0-20 Chloroethane 50.00 47.49 95 50.78 102 60-120 50-130 7 0-20 Chloroethane 50.00 45.76 92 47.36 95 80-120 73-127 3 0-20 Chloromethane 50.00 45.01 90 46.35 93 50-122 38-134 3 0-20 2-Chlorotoluene 50.00 45.01 90 46.38 95 80-120 73-127 3 0-20 4-Chlorotoluene 50.00 46.20 92 47.58 95 80-120 73-127 3 0-20 1/2-Dibromo-Shoromethane 50.00 44.13 88 45.09 90 70-130 60-140 2 0-20 1/2-Dibromo-Shorom	tert-Butylbenzene	50.00	44.73	89	45.52	91	80-128	72-136	2	0-20	
Chlorobenzene 50.00 43.86 88 44.90 90 80-120 73-127 2 0-20 Chloroethane 50.00 47.49 95 50.78 102 60-120 50-130 7 0-20 Chloroform 50.00 45.76 92 47.36 95 80-120 73-127 3 0-20 Chloromethane 50.00 45.01 90 46.35 93 50-122 38-134 3 0-20 2-Chlorotoluene 50.00 45.01 90 46.35 93 50-122 38-134 3 0-20 2-Chlorotoluene 50.00 46.20 92 47.58 95 80-122 73-127 3 0-20 Dibromochloromethane 50.00 44.13 88 45.09 90 70-130 60-140 2 0-20 1,2-Dibromo-3-Chloropropane 50.00 46.16 92 47.33 95 80-122 73-127 1 0-20 1,2-Dibromo-4than	Carbon Disulfide	50.00	37.04	74	38.36	77	53-125	41-137	3	0-20	
Chloroethane 50.00 47.49 95 50.78 102 60-120 50-130 7 0-20 Chloroform 50.00 45.76 92 47.36 95 80-120 73-127 3 0-20 Chloromethane 50.00 45.01 90 46.35 93 50-122 38-134 3 0-20 2-Chlorotoluene 50.00 43.06 86 44.87 90 80-125 72-132 4 0-20 4-Chlorotoluene 50.00 46.20 92 47.58 95 80-120 73-127 3 0-20 Dibromochloromethane 50.00 44.13 88 45.09 90 70-130 60-140 2 0-20 1,2-Dibromo-3-Chloropopane 50.00 46.16 92 46.55 93 54-132 41-145 5 0-20 1,2-Dibromo-3-Chloropopane 50.00 46.16 92 47-33 95 80-122 73-127 1 0-20 1,2-D	Carbon Tetrachloride	50.00	39.33	79	41.10	82	58-142	44-156	4	0-20	
Chloroform 50.00 45.76 92 47.36 95 80-120 73-127 3 0-20 Chloromethane 50.00 45.01 90 46.35 93 50-122 38-134 3 0-20 2-Chlorotoluene 50.00 43.06 86 44.87 90 80-125 72-132 4 0-20 4-Chlorotoluene 50.00 46.20 92 47.58 95 80-120 73-127 3 0-20 Dibromochloromethane 50.00 44.13 88 45.09 90 70-130 60-140 2 0-20 1,2-Dibromo-3-Chloropropane 50.00 49.01 98 46.58 93 54-132 41-145 5 0-20 1,2-Dibromoethane 50.00 46.16 92 46.55 93 80-120 73-127 1 0-20 1,2-Dichlorobenzene 50.00 44.26 89 45.71 91 80-120 73-127 3 0-20 1,4-Dic	Chlorobenzene	50.00	43.86	88	44.90	90	80-120	73-127	2	0-20	
Chloromethane 50.00 45.01 90 46.35 93 50.122 38-134 3 0-20 2-Chlorotoluene 50.00 43.06 86 44.87 90 80-125 72-132 4 0-20 4-Chlorotoluene 50.00 46.20 92 47.58 95 80-120 73-127 3 0-20 Dibromochloromethane 50.00 44.13 88 45.09 90 70-130 60-140 2 0-20 1,2-Dibromo-3-Chloropropane 50.00 49.01 98 46.58 93 54-132 41-145 5 0-20 1,2-Dibromoethane 50.00 46.16 92 46.55 93 80-120 73-127 1 0-20 Dibromomethane 50.00 46.09 92 47.33 95 80-122 73-127 3 0-20 1,2-Dichlorobenzene 50.00 44.26 89 45.67 91 80-120 73-127 3 0-20 1,4	Chloroethane	50.00	47.49	95	50.78	102	60-120	50-130	7	0-20	
2-Chlorotoluene 50.00 43.06 86 44.87 90 80-125 72-132 4 0-20 4-Chlorotoluene 50.00 46.20 92 47.58 95 80-120 73-127 3 0-20 Dibromochloromethane 50.00 44.13 88 45.09 90 70-130 60-140 2 0-20 1,2-Dibromoethane 50.00 46.16 92 46.55 93 80-120 73-127 1 0-20 Dibromomethane 50.00 46.09 92 47.33 95 80-122 73-127 1 0-20 1,2-Dichlorobenzene 50.00 44.33 89 45.67 91 80-120 73-127 3 0-20 1,3-Dichlorobenzene 50.00 44.26 89 45.71 91 80-120 73-127 3 0-20 1,4-Dichlorobenzene 50.00 42.96 86 44.39 89 80-120 73-127 3 0-20 Dichlorodifluoromethane 50.00 45.01 90 46.73 93 79-121 <	Chloroform	50.00	45.76	92	47.36	95	80-120	73-127	3	0-20	
4-Chlorotoluene 50.00 46.20 92 47.58 95 80-120 73-127 3 0-20 Dibromochloromethane 50.00 44.13 88 45.09 90 70-130 60-140 2 0-20 1,2-Dibromo-3-Chloropropane 50.00 49.01 98 46.58 93 54-132 41-145 5 0-20 1,2-Dibromoethane 50.00 46.16 92 46.55 93 80-120 73-127 1 0-20 Dibromomethane 50.00 46.09 92 47.33 95 80-122 73-129 3 0-20 1,2-Dichlorobenzene 50.00 44.33 89 45.67 91 80-120 73-127 3 0-20 1,4-Dichlorobenzene 50.00 42.96 86 44.39 89 80-120 73-127 3 0-20 1,1-Dichloroethane 50.00 45.01 90 46.73 93 74-120 66-128 4 0-20	Chloromethane	50.00	45.01	90	46.35	93	50-122	38-134	3	0-20	
Dibromochloromethane 50.00 44.13 88 45.09 90 70-130 60-140 2 0-20 1,2-Dibromo-3-Chloropropane 50.00 49.01 98 46.58 93 54-132 41-145 5 0-20 1,2-Dibromoethane 50.00 46.16 92 46.55 93 80-120 73-127 1 0-20 Dibromomethane 50.00 46.09 92 47.33 95 80-122 73-129 3 0-20 1,2-Dichlorobenzene 50.00 44.33 89 45.67 91 80-120 73-127 3 0-20 1,3-Dichlorobenzene 50.00 42.96 86 44.39 89 80-120 73-127 3 0-20 1,4-Dichloroethane 50.00 45.01 90 46.73 93 74-120 66-128 4 0-20 1,1-Dichloroethane 50.00 45.27 91 46.70 93 79-121 72-128 3 0-20	2-Chlorotoluene	50.00	43.06	86	44.87	90	80-125	72-132	4	0-20	
1,2-Dibromo-3-Chloropropane 50.00 49.01 98 46.58 93 54-132 41-145 5 0-20 1,2-Dibromoethane 50.00 46.16 92 46.55 93 80-120 73-127 1 0-20 Dibromomethane 50.00 46.09 92 47.33 95 80-122 73-129 3 0-20 1,2-Dichlorobenzene 50.00 44.33 89 45.67 91 80-120 73-127 3 0-20 1,3-Dichlorobenzene 50.00 44.26 89 45.71 91 80-120 73-127 3 0-20 1,4-Dichlorobenzene 50.00 42.96 86 44.39 89 80-120 73-127 3 0-20 1,1-Dichloroethane 50.00 52.34 105 56.25 113 32-158 11-179 7 0-20 1,2-Dichloroethane 50.00 45.27 91 46.70 93 79-121 72-128 3 0-20 1,1-Dichloroethene 50.00 44.21 88 45.87 92 80-123 <td>4-Chlorotoluene</td> <td>50.00</td> <td>46.20</td> <td>92</td> <td>47.58</td> <td>95</td> <td>80-120</td> <td>73-127</td> <td>3</td> <td>0-20</td> <td></td>	4-Chlorotoluene	50.00	46.20	92	47.58	95	80-120	73-127	3	0-20	
1,2-Dibromoethane 50.00 46.16 92 46.55 93 80-120 73-127 1 0-20 Dibromomethane 50.00 46.09 92 47.33 95 80-122 73-129 3 0-20 1,2-Dichlorobenzene 50.00 44.33 89 45.67 91 80-120 73-127 3 0-20 1,3-Dichlorobenzene 50.00 44.26 89 45.71 91 80-120 73-127 3 0-20 1,4-Dichlorobenzene 50.00 42.96 86 44.39 89 80-120 73-127 3 0-20 Dichlorodifluoromethane 50.00 52.34 105 56.25 113 32-158 11-179 7 0-20 1,1-Dichloroethane 50.00 45.01 90 46.73 93 74-120 66-128 4 0-20 1,2-Dichloroethane 50.00 45.27 91 46.70 93 79-121 72-128 3 0-20 1,1-Dichloroethene 50.00 44.21 88 45.87 92 80-123	Dibromochloromethane	50.00	44.13	88	45.09	90	70-130	60-140	2	0-20	
Dibromomethane 50.00 46.09 92 47.33 95 80-122 73-129 3 0-20 1,2-Dichlorobenzene 50.00 44.33 89 45.67 91 80-120 73-127 3 0-20 1,3-Dichlorobenzene 50.00 44.26 89 45.71 91 80-120 73-127 3 0-20 1,4-Dichlorobenzene 50.00 42.96 86 44.39 89 80-120 73-127 3 0-20 Dichlorodifluoromethane 50.00 52.34 105 56.25 113 32-158 11-179 7 0-20 1,1-Dichloroethane 50.00 45.01 90 46.73 93 74-120 66-128 4 0-20 1,2-Dichloroethane 50.00 45.27 91 46.70 93 79-121 72-128 3 0-20 1,1-Dichloroethene 50.00 44.21 88 45.87 92 80-123 73-130 4 0-20	1,2-Dibromo-3-Chloropropane	50.00	49.01	98	46.58	93	54-132	41-145	5	0-20	
1,2-Dichlorobenzene 50.00 44.33 89 45.67 91 80-120 73-127 3 0-20 1,3-Dichlorobenzene 50.00 44.26 89 45.71 91 80-120 73-127 3 0-20 1,4-Dichlorobenzene 50.00 42.96 86 44.39 89 80-120 73-127 3 0-20 Dichlorodifluoromethane 50.00 52.34 105 56.25 113 32-158 11-179 7 0-20 1,1-Dichloroethane 50.00 45.01 90 46.73 93 74-120 66-128 4 0-20 1,2-Dichloroethane 50.00 45.27 91 46.70 93 79-121 72-128 3 0-20 1,1-Dichloroethene 50.00 41.66 83 43.10 86 71-125 62-134 3 0-20 1-1,2-Dichloroethene 50.00 42.57 85 43.96 88 80-120 73-127 3 0-20 1,2-Dichloropropane 50.00 45.43 91 46.61 93 80-12	1,2-Dibromoethane	50.00	46.16	92	46.55	93	80-120	73-127	1	0-20	
1,3-Dichlorobenzene 50.00 44.26 89 45.71 91 80-120 73-127 3 0-20 1,4-Dichlorobenzene 50.00 42.96 86 44.39 89 80-120 73-127 3 0-20 Dichlorodifluoromethane 50.00 52.34 105 56.25 113 32-158 11-179 7 0-20 1,1-Dichloroethane 50.00 45.01 90 46.73 93 74-120 66-128 4 0-20 1,2-Dichloroethane 50.00 45.27 91 46.70 93 79-121 72-128 3 0-20 1,1-Dichloroethene 50.00 41.66 83 43.10 86 71-125 62-134 3 0-20 t-1,2-Dichloroethene 50.00 42.57 85 43.96 88 80-120 73-127 3 0-20 1,2-Dichloropropane 50.00 45.43 91 45.25 91 77-120 70-127 1 0-20 1,3-Dichloropropane 50.00 45.24 90 46.61 93 80-12	Dibromomethane	50.00	46.09	92	47.33	95	80-122	73-129	3	0-20	
1,4-Dichlorobenzene 50.00 42.96 86 44.39 89 80-120 73-127 3 0-20 Dichlorodifluoromethane 50.00 52.34 105 56.25 113 32-158 11-179 7 0-20 1,1-Dichloroethane 50.00 45.01 90 46.73 93 74-120 66-128 4 0-20 1,2-Dichloroethane 50.00 45.27 91 46.70 93 79-121 72-128 3 0-20 1,1-Dichloroethene 50.00 41.66 83 43.10 86 71-125 62-134 3 0-20 c-1,2-Dichloroethene 50.00 44.21 88 45.87 92 80-123 73-130 4 0-20 t-1,2-Dichloroethene 50.00 42.57 85 43.96 88 80-120 73-127 3 0-20 1,3-Dichloropropane 50.00 45.43 91 46.61 93 80-120 73-127 3 0-20 2,2-Dichloropropane 50.00 45.24 90 46.43 93 58-1	1,2-Dichlorobenzene	50.00	44.33	89	45.67	91	80-120	73-127	3	0-20	
Dichlorodifluoromethane 50.00 52.34 105 56.25 113 32-158 11-179 7 0-20 1,1-Dichloroethane 50.00 45.01 90 46.73 93 74-120 66-128 4 0-20 1,2-Dichloroethane 50.00 45.27 91 46.70 93 79-121 72-128 3 0-20 1,1-Dichloroethene 50.00 41.66 83 43.10 86 71-125 62-134 3 0-20 c-1,2-Dichloroethene 50.00 44.21 88 45.87 92 80-123 73-130 4 0-20 t-1,2-Dichloroethene 50.00 42.57 85 43.96 88 80-120 73-127 3 0-20 1,2-Dichloropropane 50.00 44.70 89 45.25 91 77-120 70-127 1 0-20 1,3-Dichloropropane 50.00 45.43 91 46.61 93 80-120 73-127 3 0-20 <tr< td=""><td>1,3-Dichlorobenzene</td><td>50.00</td><td>44.26</td><td>89</td><td>45.71</td><td>91</td><td>80-120</td><td>73-127</td><td>3</td><td>0-20</td><td></td></tr<>	1,3-Dichlorobenzene	50.00	44.26	89	45.71	91	80-120	73-127	3	0-20	
1,1-Dichloroethane 50.00 45.01 90 46.73 93 74-120 66-128 4 0-20 1,2-Dichloroethane 50.00 45.27 91 46.70 93 79-121 72-128 3 0-20 1,1-Dichloroethene 50.00 41.66 83 43.10 86 71-125 62-134 3 0-20 c-1,2-Dichloroethene 50.00 44.21 88 45.87 92 80-123 73-130 4 0-20 t-1,2-Dichloroethene 50.00 42.57 85 43.96 88 80-120 73-127 3 0-20 1,2-Dichloropropane 50.00 44.70 89 45.25 91 77-120 70-127 1 0-20 1,3-Dichloropropane 50.00 45.43 91 46.61 93 80-120 73-127 3 0-20 2,2-Dichloropropane 50.00 45.24 90 46.43 93 58-142 44-156 3 0-20	1,4-Dichlorobenzene	50.00	42.96	86	44.39	89	80-120	73-127	3	0-20	
1,2-Dichloroethane 50.00 45.27 91 46.70 93 79-121 72-128 3 0-20 1,1-Dichloroethene 50.00 41.66 83 43.10 86 71-125 62-134 3 0-20 c-1,2-Dichloroethene 50.00 44.21 88 45.87 92 80-123 73-130 4 0-20 t-1,2-Dichloroethene 50.00 42.57 85 43.96 88 80-120 73-127 3 0-20 1,2-Dichloropropane 50.00 44.70 89 45.25 91 77-120 70-127 1 0-20 1,3-Dichloropropane 50.00 45.43 91 46.61 93 80-120 73-127 3 0-20 2,2-Dichloropropane 50.00 45.24 90 46.43 93 58-142 44-156 3 0-20	Dichlorodifluoromethane	50.00	52.34	105	56.25	113	32-158	11-179	7	0-20	
1,1-Dichloroethene 50.00 41.66 83 43.10 86 71-125 62-134 3 0-20 c-1,2-Dichloroethene 50.00 44.21 88 45.87 92 80-123 73-130 4 0-20 t-1,2-Dichloroethene 50.00 42.57 85 43.96 88 80-120 73-127 3 0-20 1,2-Dichloropropane 50.00 44.70 89 45.25 91 77-120 70-127 1 0-20 1,3-Dichloropropane 50.00 45.43 91 46.61 93 80-120 73-127 3 0-20 2,2-Dichloropropane 50.00 45.24 90 46.43 93 58-142 44-156 3 0-20	1,1-Dichloroethane	50.00	45.01	90	46.73	93	74-120	66-128	4	0-20	
c-1,2-Dichloroethene 50.00 44.21 88 45.87 92 80-123 73-130 4 0-20 t-1,2-Dichloroethene 50.00 42.57 85 43.96 88 80-120 73-127 3 0-20 1,2-Dichloropropane 50.00 44.70 89 45.25 91 77-120 70-127 1 0-20 1,3-Dichloropropane 50.00 45.43 91 46.61 93 80-120 73-127 3 0-20 2,2-Dichloropropane 50.00 45.24 90 46.43 93 58-142 44-156 3 0-20	1,2-Dichloroethane	50.00	45.27	91	46.70	93	79-121	72-128	3	0-20	
t-1,2-Dichloroethene 50.00 42.57 85 43.96 88 80-120 73-127 3 0-20 1,2-Dichloropropane 50.00 44.70 89 45.25 91 77-120 70-127 1 0-20 1,3-Dichloropropane 50.00 45.43 91 46.61 93 80-120 73-127 3 0-20 2,2-Dichloropropane 50.00 45.24 90 46.43 93 58-142 44-156 3 0-20	1,1-Dichloroethene	50.00	41.66	83	43.10	86	71-125	62-134	3	0-20	
1,2-Dichloropropane 50.00 44.70 89 45.25 91 77-120 70-127 1 0-20 1,3-Dichloropropane 50.00 45.43 91 46.61 93 80-120 73-127 3 0-20 2,2-Dichloropropane 50.00 45.24 90 46.43 93 58-142 44-156 3 0-20	c-1,2-Dichloroethene	50.00	44.21	88	45.87	92	80-123	73-130	4	0-20	
1,3-Dichloropropane 50.00 45.43 91 46.61 93 80-120 73-127 3 0-20 2,2-Dichloropropane 50.00 45.24 90 46.43 93 58-142 44-156 3 0-20	t-1,2-Dichloroethene	50.00	42.57	85	43.96	88	80-120	73-127	3	0-20	
2,2-Dichloropropane 50.00 45.24 90 46.43 93 58-142 44-156 3 0-20	1,2-Dichloropropane	50.00	44.70	89	45.25	91	77-120	70-127	1	0-20	
	1,3-Dichloropropane	50.00	45.43	91	46.61	93	80-120	73-127	3	0-20	
1,1-Dichloropropene 50.00 42.67 85 42.88 86 69-120 60-128 0 0-20	2,2-Dichloropropane	50.00	45.24	90	46.43	93	58-142	44-156	3	0-20	
and the second of the second o	1,1-Dichloropropene	50.00	42.67	85	42.88	86	69-120	60-128	0	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

06/24/15 15-06-1886 EPA 5035 EPA 8260B

Project: CG Roxane

Page 11 of 11

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Cond	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
c-1,3-Dichloropropene	50.00	47.87	96	48.41	97	74-128	65-137	1	0-20	
t-1,3-Dichloropropene	50.00	50.03	100	50.88	102	66-120	57-129	2	0-20	
Ethylbenzene	50.00	44.67	89	45.96	92	80-120	73-127	3	0-20	
2-Hexanone	50.00	47.77	96	47.27	95	67-151	53-165	1	0-20	
Isopropylbenzene	50.00	45.06	90	46.63	93	80-129	72-137	3	0-20	
p-Isopropyltoluene	50.00	44.11	88	45.86	92	80-122	73-129	4	0-20	
Methylene Chloride	50.00	45.56	91	47.02	94	72-120	64-128	3	0-20	
4-Methyl-2-Pentanone	50.00	48.89	98	48.45	97	72-126	63-135	1	0-20	
Naphthalene	50.00	48.10	96	49.00	98	64-124	54-134	2	0-20	
n-Propylbenzene	50.00	46.73	93	48.76	98	80-122	73-129	4	0-20	
Styrene	50.00	44.99	90	46.37	93	80-123	73-130	3	0-20	
1,1,1,2-Tetrachloroethane	50.00	44.01	88	45.06	90	73-133	63-143	2	0-20	
1,1,2,2-Tetrachloroethane	50.00	48.98	98	48.50	97	77-120	70-127	1	0-20	
Tetrachloroethene	50.00	41.60	83	43.65	87	75-123	67-131	5	0-20	
Toluene	50.00	43.46	87	44.89	90	80-120	73-127	3	0-20	
1,2,3-Trichlorobenzene	50.00	45.65	91	48.08	96	73-127	64-136	5	0-20	
1,2,4-Trichlorobenzene	50.00	45.85	92	48.55	97	74-128	65-137	6	0-20	
1,1,1-Trichloroethane	50.00	43.55	87	45.08	90	71-131	61-141	3	0-20	
1,1,2-Trichloroethane	50.00	47.16	94	47.82	96	80-120	73-127	1	0-20	
1,1,2-Trichloro-1,2,2- Trifluoroethane	50.00	44.59	89	44.47	89	77-125	69-133	0	0-20	
Trichloroethene	50.00	43.93	88	45.35	91	80-120	73-127	3	0-20	
Trichlorofluoromethane	50.00	46.13	92	48.81	98	70-136	59-147	6	0-20	
1,2,3-Trichloropropane	50.00	47.48	95	47.05	94	60-120	50-130	1	0-20	
1,2,4-Trimethylbenzene	50.00	44.35	89	45.74	91	75-123	67-131	3	0-20	
1,3,5-Trimethylbenzene	50.00	44.78	90	47.08	94	80-123	73-130	5	0-20	
Vinyl Acetate	50.00	47.34	95	45.43	91	51-159	33-177	4	0-20	
Vinyl Chloride	50.00	50.51	101	54.09	108	68-120	59-129	7	0-20	
p/m-Xylene	100.0	91.77	92	94.85	95	80-122	73-129	3	0-20	
o-Xylene	50.00	44.20	88	45.77	92	79-127	71-135	3	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	44.92	90	45.32	91	64-124	54-134	1	0-20	

Total number of LCS compounds: 66
Total number of ME compounds: 0
Total number of ME compounds allowed: 3
LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 15-06-1886				Page 1 of 1
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 300.0	N/A	834	IC 7	1
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8260B	EPA 5035	486	GC/MS BB	2
EPA 8270C	EPA 3545	923	GC/MS CCC	1
EPA 9045D	N/A	688	PH 4	1
SM 2320B M	N/A	688	PH1/BUR03	1
SM 2540 C (M)	N/A	1009	N/A	1
SM 4500 N Org B (M)	N/A	685	BUR05	1
SM 4500 P B/E (M)	N/A	857	UV 7	1
SM 4500-NH3 B/C (M)	N/A	685	BUR05	1
SM 4500-NO3 E (M)	N/A	857	UV 7	1
SM 5540C (M)	N/A	990	UV 9	1
Total Nitrogen by Calc	N/A	92	N/A	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 15-06-1886 Page 1 of 1

	-
Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Return to Contents

	, 4	The second secon	The state of the s	
1	,			BLAZ
ı	red	Package	180	
_		Express US Airbill Factor 8082 3541 7157	form 0215	Recipient's Conj
1	From	Contraction with the contraction of the contraction	4 Fynress Package Service	
	Date		4 Express Package Service • To ITM NOTE: Service order has changed. Please select co	ost locations. Packages up to 150 lbs. For packages over 150 lbs., use the FedEx Express Freight US Airbill.
	Sender's	DAT 397-3800	Next Business Day	2 or 3 Business Days
	Name	Menjo Agustson Phone 700 744 3805	FedEx First Overnight	FedFy 2Day A M
			FedEx First Overnight Earliest next business morning delivery to select locations. Friday shipments will be delivered on Monday unless SATURDAY Delivery is selected.	Second business morning.* Seturday Delivery NOT available.
	Company	6 6 RBXAND SE GEOSYNTER Consultants	FedEx Priority Overnight	FedEx 2Day
		1	Next business morning.* Friday shipments will be delivered on Monday unless SATURDAY Delivery is selected.	FedEx 2Day Second business afternoon.* Thursday shipments will be delivered an Monday unless SATURDAY Delivery is selected.
	Address	HILLS HOW 305 124 AncopaSt Suile4A	FedEx Standard Overnight Next business afternoon.* Saturday Delivery NOT available.	FedEx Express Saver Third business day.* Saturday Delivery NOT available.
	<i>[*</i> 57	Dept/Floor/Suite/Room		Saturday Delivery NOT available.
	City - Like	APPENA Santana State CA ZIP 93645 93101	5 Packaging • Declared value limit \$500.	
2	Your Inter	mal Billing Reference	FedEx Envelope* FedEx Pak*	FedEx FedEx Other
3	To			codo:
	Recipient's Name	Store House 710 Alexander	6 Special Handling and Delivery Si	
	rume	Phone +14 975-ELALLY	SATURDAY Delivery NOT available for FedEx Standard Overnight, FedEx 2Day A.	M., or FedEx Express Saver.
e Sec.	Company	Elizative Calculate This	No Signature Required Direct Package may be left without Someofie	Signature Indirect Signature
		7	Package may be left without obtaining a signature for delivery.	for delivery. Fee applies. address, someone at a neighboring address may sign for delivery. For
	Address	7440 Linear Way	Does this shipment contain dangerous good	
	We cannot deli-	ver to P.O. boxes or P.O. ZIP codes. Dept/Floor/Suite/Room Dept/Floor/Suite/Room	One hox must be checked. Yes As per attached Shipper's Dec	Profes
	Address	HOLD Saturday Fedex location actives FEGUATED. Available 01tV for	Shipper's Declaration. not required,	claration Dry Ice Ory Ice 9, UN 1845 x kg
	Use this line for	the HOLD location address or for continuation of your shipping address. Feditz Priority Overnight and Feditz Zibey to select locations.	Dangerous goods (including dry ice) cannot be shipped in FedEx pack or placed in a FedEx Express Drop Box.	aging Cargo Aircraft Only
	City (Raidon Girle State CA ZIP 9284	7 Payment Bill to:	o. or Credit Card No. below. Obtain recip.
			Sender Sender	Third Party Credit Card Cash/Chec
٠.		0119990067		
			Total Packages Total Weight	Credit Card Auth.
ı			lbs	
l		T I HAN BURNIL DE BRINKL BERGERARIE HERR HERR DE BRINKE DE KROUE DE HERRE D	[†] Our liability is limited to US\$100 unless you declare a higher value. See the	ne current FedEx Service Guide for details.
		8082 3541 7157	Rev. Date 2/12 • Part #163134 • @1994-2012 FedEx • PRINTED IN U.S.	
		many the second of the second	nev. Date 2/12 • Part / 163134 • @1994-2012 Fedex • PRINTED IN U.S.	

Calscience

Page 63 of 67
WORK ORDER NUMBER: 15-06- 1866

SAMPLE RECEIPT CHECKLIST

COOLER _ i OF _/_

CLIENT: Greosyntec	DATE: 06 / <u>24</u>	/ 2015
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC2 (CF:-0.3°C); Temperature (w/o CF):		
	N/A Checked by: N/A Checked by:	
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of containers		N/A
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☑ No relinquished	hed time	
Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition		_ _ _
Proper containers for analyses requested	_	
Sufficient volume/mass for analyses requested	🗹 🗆	
Samples received within holding time Aqueous samples for certain analyses received within 15-minute holding time	Ø 0	
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen		Ø
Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses U Volatile Organics U Total Metals U Dissolved Metals		
Container(s) for certain analysis free of headspace		ď
Tedlar™ bag(s) free of condensation	🗆 🗆	
	ot Number:	
Aqueous: □VOA □VOAh □VOAna₂ □100PJ □100PJna₂ □125AGB □125AGBh □125PBznna □250AGB □250CGB □250CGBs □250PB □250PBn □500AGB □ □500PB □1AGB □1AGBna₂ □1AGBs □1PB □1PBna □ □ □ Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve (□ 500AGJ □ 500AGJs □ □ □ □ □ raCores® (_3) □ □): □ □ □ Ziploc/Resealable Bag	8n

Subcontractor Analysis Report

Work Order: 15-06-1886 Page 1 of 1

One or more samples in this work order have tests that were subcontracted. The subcontract report(s) follows.

For subcontracted tests, please reference the laboratory information noted below.

 Truesdail Laboratories, Inc. - Tustin, CA CA ELAP 1237 Microbiology

TRUESDAIL LABORATORIES, INC.

Garden Grove, CA 92841-1432

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

3337 MICHELSON DRIVE, SUITE CN 750 IRVINE, CA 92612 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com

> Work Order No.: 15F0437

> > Printed: 07/02/2015

Client: Eurofins/Calscience 7440 Lincoln Way

Attention: Stephen Nowalk Project Name: Total Coliform Project Number: 15-06-1886

CASE NARRATIVE

SAMPLE RECEIPT SUMMARY

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received
MW-01-15-062215	15F0437-01	Soil		06/22/2015 14:35	06/25/2015 11:40
MW-06-10-062315	15F0437-02	Soil		06/23/2015 09:05	06/25/2015 11:40
MW-07-05-062315	15F0437-03	Soil		06/23/2015 11:34	06/25/2015 11:40

DEFINITIONS

Symbol	Definition
DF	Dilution Factor
MDL	Method Detection Limit
ND	Not Detected
RL	Reporting Limit

Respectfully yours,

Jeff Lee

Project Manager

Client: Eurofins/Calscience

Total Coliforms

Fecal Coliforms

ND

ND

Project Name: **Total Coliform**

15-06-1886 Project Number: Printed: 07/02/2015

MW-01-15-062215

			137-01 (S						
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		Truesdail l	aborato	ries,	Inc				
Microbiology									
Total Coliforms	ND	20.0	MPN/g	1	1506498	06/28/2015 11:00	PA	SM 9221 B	•
Fecal Coliforms	ND	20.0	MPN/g	1	1506498	06/28/2015 11:00	PA	SM 9221 B	
		MW-0	6-10-06	2315					
		15F04	137-02 (\$	Soil)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		Truesdail I	aborato	ries,	Inc				
Microbiology									
Total Coliforms	ND	20.0	MPN/g	1	1506498	06/28/2015 11:00	PA	SM 9221 B	
Fecal Coliforms	ND	20.0	MPN/g	1	1506498	06/28/2015 11:00	PA	SM 9221 B	
		MW-0	7-05-06	2315					
		15F04	137-03 (\$	Soil)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		Truesdail I	aborato	ries,	Inc				
Microbiology									

20.0

20.0

MPN/g

MPN/g

1506498

1506498

06/28/2015 11:00

06/28/2015 11:00

PΑ

PA

SM 9221 B

SM 9221 B

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

: eurofins

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1427

Calscience TEL: (714) 895-5494. FAX: (714) 894-7501

TO: Truesdail

Irvine

15F0437

CHAIN OF CUSTODY RECORD

06/25/15

DATE: PAGE:

15-06-1896 15-00-1896 15-	Stephen Nowak Stephen Nowa	LABORATORY CLIENT:				CLIENT PROJECT NAME / NUMBER:		P.O. NO.:		Г
Production May Prod	Product Continue Name Product Continue Prod	ADDRESS.				15-06-1886				
The State of Chook CA \$2841	Supplementary Supplement	7440 Lincoln Way				PROJECT CONTACT:		NOTE NO.:		_
The State of State	THE SES 4634	om: Garden Grove, CA 92841			7	Stephen Nowak		AB USE ONLY		
SAME DAY 24 HR 48HR 72 HR 5 DAYS Syndadr SAME DAY 24 HR 48HR 72 HR 5 DAYS Syndadr DAY CALSOLENCE Manual Matrice Mat	SAMPLE ID 24 HR 48 HR 172 HR 15 DAYS Syndam'	AAIL	/ak@eurofinsUS.com			SAMPLER(S); (PRINT)				
Perchante Approximate Perchanter Submitted Perchanter Submitte	Percent National Control Way 749] 72 HR) Idard		REQUES	TED ANALYSIS			1
Please use 6 dilutions SAMPLE ID SAM	SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID DATE The Page 10 to 6 distance Pag	L COSTS								Т
NAW-01-15-062315	NAW-01-15-062315	SPECIAL INSTRUCTIONS Please use 6 dilutions				eal Coliforms				
NWW-01-15-062215	ANN-01-15-062216		SAMPLING			9님 7				
MW-01-15-062215	AWV-01-15-062215		DATE	TIME		Jotal S				
NW-06-10-062315 11:34 S 1 X	WW-05-10-062315					×				Т
MW-07-05-062315	Amy-07-05-062315 11:34 S 1 X	✓ MW-06-10-062315				×				6.71%
Refinquished by: (Signature) Received by / Affiliation: (Signature) Date: Time:	Refinquished by (Signature)					×				
Reinquished by (Signature)	Relinquished by: (Signature) Received by / Affiliation: (Signature) TL) \$\forall \times \forall \									ТТ
Relinquished by, (Signature)	Received by (Signature) Received by / Affliation; (Signature) Time:									
Relinquished by: (Signature) (CALSCIENCE) Received by / Affiliation: (Signature) Thre: Time: Relinquished by: (Signature) Received by / Affiliation: (Signature) Date: Time:	Relinquished by: (Signature) Received by / Affiliation: (Signature) Time: Relinquished by: (Signature) Received by / Affiliation: (Signature) Date: Time: Relinquished by: (Signature) Received by / Affiliation: (Signature) Date: Time:									
Relinquished by: (Signature) Received by / Affiliation: (Signature) Received by / Affiliation: (Signature) Date: Time: Relinquished by: (Signature) Received by / Affiliation: (Signature) Date: Time:	Received by / Affiliation; (Signature)									
Relinquished by: (Signature) Received by / Affiliation: (Signature) Received by / Affiliation: (Signature) Three: 6/2.5 / 15 11.40 Relinquished by: (Signature) Received by / Affiliation: (Signature) Received by / Affiliation: (Signature) Date: Time:	Relinquished by: (Signature) Received by / Affiliation: (Signature) TL/F C/2.5/15 11.40 Relinquished by: (Signature) Received by / Affiliation: (Signature) Received by / Affiliation: (Signature) Date: Time:									Т
Relinquished by: (Signature) Received by / Affiliation: (Signature) TL/FO 6/2.5/1/5 11.40 Relinquished by: (Signature) Received by / Affiliation: (Signature) Received by / Affiliation: (Signature) Date: Time:	Relinquished by: (Signature) Received by / Affiliation: (Signature) TL/F \$\ell(725\psi)\$ \$\ell(725									
Relinquished by: (Signature) Received by / Affiliation: (Signature) TL/F/25/IS Time: Relinquished by: (Signature) Received by / Affiliation: (Signature) Received by / Affiliation: (Signature) Time:	Received by / Affiliation: (Signature) Received by / Affiliation: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Received by / Affiliation: (Signature)									T
Relinquished by: (Signature) Received by / Affiliation: (Signature)	Relinquished by: (Signature) Received by / Affiliation: (Signature)	May 1		-	sceived by	Affiliation: (Signature)	Date:		Time:	Т
Reinquished by: (Signature) Received by / Affiliation: (Signature) Date: Time:	Received by / Affiliation: (Signature) Received by / Affiliation: (Signature) Time:	1200	(CALSCI	_	sceived by	// // // // // // // // // // // // //	C/C	1	Time:	- P
				, a	sceived by	fflilation: (Signature)	Date:		Time:	age 67
							A Displaying Committee Com			' of

Calscience

WORK ORDER NUMBER: 15-06-1979

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: CG Roxane
Attention: Ryan Smith

924 Anacapa Street

Moude

Suite 4A

Santa Barbara, CA 93101-2177

ResultLink >

Email your PM >

Approved for release on 07/08/2015 by:

Stephen Nowak Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: CG Roxane Work Order Number: 15-06-1979

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	7
	4.1 EPA 300.0 Anions (Solid)	7
	4.2 EPA 6010B/7471A CAC Title 22 Metals (Solid)	8
	4.3 EPA 7471A Mercury (Solid)	13
	4.4 EPA 8270C Semi-Volatile Organics (Solid)	14
	4.5 EPA 8260B Volatile Organics Prep 5035 (Solid)	29
	4.6 Combined Inorganic Tests	39
5	Quality Control Sample Data	41
	5.1 MS/MSD	41
	5.2 Sample Duplicate	50
	5.3 LCS/LCSD	55
6	Sample Analysis Summary	67
7	Glossary of Terms and Qualifiers	68
8	Chain-of-Custody/Sample Receipt Form	69
9	Subcontract Narrative	72
10	Subcontract -Total & Fecal Coliforms 15-06-1979	73

Work Order Narrative

Work Order: 15-06-1979 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 06/25/15. They were assigned to Work Order 15-06-1979.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants Work Order: 15-06-1979
924 Anacapa Street, Suite 4A Project Name: CG Roxane

Santa Barbara, CA 93101-2177 PO Number:

Date/Time 06/25/15 09:45 Received:

Number of 20

Containers:

Attn: Ryan Smith

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
MW-05-05-062315	15-06-1979-1	06/23/15 13:55	5	Solid
MW-03-05-062315	15-06-1979-2	06/23/15 16:05	5	Solid
MW-08-05-062415	15-06-1979-3	06/24/15 07:40	5	Solid
MW-09-10-062415	15-06-1979-4	06/24/15 09:10	5	Solid

Detections Summary

Client: Geosyntec Consultants

Work Order:

15-06-1979

924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Project Name: CG Roxane Received: 06/25/15

Attn: Ryan Smith

Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-05-05-062315 (15-06-1979-1)						
Sulfate	61		10	mg/kg	EPA 300.0	N/A
Arsenic	2.23		0.761	mg/kg	EPA 6010B	EPA 3050B
Barium	11.3		0.508	mg/kg	EPA 6010B	EPA 3050B
Chromium	0.613		0.254	mg/kg	EPA 6010B	EPA 3050B
Cobalt	0.678		0.254	mg/kg	EPA 6010B	EPA 3050B
Copper	1.53		0.508	mg/kg	EPA 6010B	EPA 3050B
Nickel	0.380		0.254	mg/kg	EPA 6010B	EPA 3050B
Vanadium	2.78		0.254	mg/kg	EPA 6010B	EPA 3050B
Zinc	6.92		1.02	mg/kg	EPA 6010B	EPA 3050B
рН	9.16		0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	560		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	3180		10.0	mg/kg	SM 2540 C (M)	N/A
Total Kjeldahl Nitrogen	70		50	mg/kg	SM 4500 N Org B (M)	N/A
Phosphorus, Total	93		12	mg/kg	SM 4500 P B/E (M)	N/A
Total Phosphate	280		38	mg/kg	SM 4500 P B/E (M)	N/A
Nitrate-Nitrite (as N)	0.92		0.50	mg/kg	SM 4500-NO3 E (M)	N/A
Total Nitrogen	71		0.50	mg/kg	Total Nitrogen by Calc	N/A
MW-03-05-062315 (15-06-1979-2)						
Arsenic	3.33		0.765	mg/kg	EPA 6010B	EPA 3050B
Barium	31.2		0.510	mg/kg	EPA 6010B	EPA 3050B
Chromium	2.35		0.255	mg/kg	EPA 6010B	EPA 3050B
Cobalt	1.68		0.255	mg/kg	EPA 6010B	EPA 3050B
Copper	2.92		0.510	mg/kg	EPA 6010B	EPA 3050B
Lead	0.801		0.510	mg/kg	EPA 6010B	EPA 3050B
Nickel	2.52		0.255	mg/kg	EPA 6010B	EPA 3050B
Vanadium	5.32		0.255	mg/kg	EPA 6010B	EPA 3050B
Zinc	10.6		1.02	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.169		0.0847	mg/kg	EPA 7471A	EPA 7471A Total
рН	9.24		0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	460		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	6710		10.0	mg/kg	SM 2540 C (M)	N/A
Phosphorus, Total	0.78		0.50	mg/kg	SM 4500 P B/E (M)	N/A
Total Phosphate	2.4		1.5	mg/kg	SM 4500 P B/E (M)	N/A
Nitrate-Nitrite (as N)	0.70		0.50	mg/kg	SM 4500-NO3 E (M)	N/A
Total Nitrogen	0.70		0.50	mg/kg	Total Nitrogen by Calc	N/A

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants

Work Order:

15-06-1979

924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Project Name: Received:

CG Roxane 06/25/15

Attn: Ryan Smith

Page 2 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-08-05-062415 (15-06-1979-3)						
Arsenic	2.54		0.765	mg/kg	EPA 6010B	EPA 3050B
Barium	18.5		0.510	mg/kg	EPA 6010B	EPA 3050B
Chromium	1.25		0.255	mg/kg	EPA 6010B	EPA 3050B
Cobalt	1.02		0.255	mg/kg	EPA 6010B	EPA 3050B
Copper	3.30		0.510	mg/kg	EPA 6010B	EPA 3050B
Lead	0.552		0.510	mg/kg	EPA 6010B	EPA 3050B
Nickel	0.997		0.255	mg/kg	EPA 6010B	EPA 3050B
Vanadium	3.70		0.255	mg/kg	EPA 6010B	EPA 3050B
Zinc	10.1		1.02	mg/kg	EPA 6010B	EPA 3050B
рН	8.77		0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	230		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	2060		10.0	mg/kg	SM 2540 C (M)	N/A
Phosphorus, Total	110		25	mg/kg	SM 4500 P B/E (M)	N/A
Total Phosphate	320		75	mg/kg	SM 4500 P B/E (M)	N/A
Nitrate-Nitrite (as N)	0.79		0.50	mg/kg	SM 4500-NO3 E (M)	N/A
Total Nitrogen	0.79		0.50	mg/kg	Total Nitrogen by Calc	N/A
MW-09-10-062415 (15-06-1979-4)						
Sulfate	27		10	mg/kg	EPA 300.0	N/A
Barium	6.82		0.515	mg/kg	EPA 6010B	EPA 3050B
Chromium	0.778		0.258	mg/kg	EPA 6010B	EPA 3050B
Cobalt	0.422		0.258	mg/kg	EPA 6010B	EPA 3050B
Copper	1.06		0.515	mg/kg	EPA 6010B	EPA 3050B
Nickel	0.431		0.258	mg/kg	EPA 6010B	EPA 3050B
Vanadium	2.62		0.258	mg/kg	EPA 6010B	EPA 3050B
Zinc	3.36		1.03	mg/kg	EPA 6010B	EPA 3050B
рН	8.21		0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	160		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	4370		10.0	mg/kg	SM 2540 C (M)	N/A
Phosphorus, Total	37		5.0	mg/kg	SM 4500 P B/E (M)	N/A
Total Phosphate	110		15	mg/kg	SM 4500 P B/E (M)	N/A
Nitrate-Nitrite (as N)	0.58		0.50	mg/kg	SM 4500-NO3 E (M)	N/A
Total Nitrogen	0.58		0.50	mg/kg	Total Nitrogen by Calc	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-1979

Santa Barbara, CA 93101-2177

Preparation:

Method:

Units:

Date Received:

06/25/15

N/A

15-06-1979

Preparation:

N/A

EPA 300.0

Units:

			wioti ioa.				21 / (000.0
			Units:				mg/kg
Project: CG Roxane						Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-05-05-062315	15-06-1979-1-B	06/23/15 13:55	Solid	IC 10	06/27/15	06/27/15 16:11	150627L01P
<u>Parameter</u>		Result	R	<u>RL</u>	<u>DF</u>	Qu	alifiers
Chloride		ND	1	0	1.00		
Sulfate		61	1	0	1.00		
MW-03-05-062315	15-06-1979-2-B	06/23/15 16:05	Solid	IC 10	06/27/15	06/27/15 16:27	150627L01P
Parameter		Result	R	<u>RL</u>	<u>DF</u>	Qu	alifiers
Chloride		ND	1	0	1.00		
Sulfate		ND	1	0	1.00		
MW-08-05-062415	15-06-1979-3-B	06/24/15 07:40	Solid	IC 10	06/27/15	06/27/15 16:44	150627L01P
<u>Parameter</u>		Result	<u>R</u>	<u>RL</u>	<u>DF</u>	Qu	alifiers
Chloride		ND	1	0	1.00		
Sulfate		ND	1	0	1.00		
MW-09-10-062415	15-06-1979-4-B	06/24/15 09:10	Solid	IC 10	06/27/15	06/27/15 17:00	150627L01P
<u>Parameter</u>		Result	<u>R</u>	<u>RL</u>	<u>DF</u>	Qu	alifiers
Chloride		ND	1	0	1.00		
Sulfate		27	1	0	1.00		
Method Blank	099-12-922-609	N/A	Solid	IC 10	06/27/15	06/27/15 10:41	150627L01P

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

0.254

1.02

1.02

1.02

15-06-1979 EPA 3050B EPA 6010B

06/25/15

Units:

mg/kg Page 1 of 5

Project: CG Roxane

Vanadium

Zinc

Lab Sample Number Date Prepared Date/Time Analyzed QC Batch ID Matrix Client Sample Number Date/Time Instrument Collected 07/01/15 14:45 06/23/15 13:55 MW-05-05-062315 15-06-1979-1-A **ICP 7300** 06/26/15 150626L02 Solid **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND Antimony 0.761 1.02 2.23 0.761 1.02 Arsenic Barium 11.3 0.508 1.02 ND Beryllium 0.254 1.02 Cadmium ND 1.02 0.508 Chromium 0.613 0.254 1.02 Cobalt 0.678 0.254 1.02 Copper 1.53 0.508 1.02 Lead ND 0.508 1.02 Molybdenum ND 0.254 1.02 Nickel 0.380 0.254 1.02 Selenium ND 0.761 1.02 Silver ND 0.254 1.02 ND Thallium 0.761 1.02

2.78

6.92

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/25/15 15-06-1979 EPA 3050B EPA 6010B

mg/kg

Project: CG Roxane

Page 2 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-03-05-062315	15-06-1979-2-A	06/23/15 16:05	Solid	ICP 7300	06/26/15	07/01/15 14:49	150626L02
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().765	1.02		
Arsenic		3.33	(0.765	1.02		
Barium		31.2	(0.510	1.02		
Beryllium		ND	(0.255	1.02		
Cadmium		ND	(0.510	1.02		
Chromium		2.35	().255	1.02		
Cobalt		1.68	(0.255	1.02		
Copper		2.92	(0.510	1.02		
Lead		0.801	(0.510	1.02		
Molybdenum		ND	(0.255	1.02		
Nickel		2.52	(0.255	1.02		
Selenium		ND	(0.765	1.02		
Silver		ND	().255	1.02		
Thallium		ND	(0.765	1.02		
Vanadium		5.32	().255	1.02		
Zinc		10.6		1.02	1.02		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/25/15 15-06-1979 EPA 3050B EPA 6010B

Units:

mg/kg

Project: CG Roxane

Page 3 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-08-05-062415	15-06-1979-3-A	06/24/15 07:40	Solid	ICP 7300	06/26/15	07/01/15 14:50	150626L02
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().765	1.02		
Arsenic		2.54	().765	1.02		
Barium		18.5	().510	1.02		
Beryllium		ND	().255	1.02		
Cadmium		ND	().510	1.02		
Chromium		1.25	().255	1.02		
Cobalt		1.02	().255	1.02		
Copper		3.30	().510	1.02		
Lead		0.552	().510	1.02		
Molybdenum		ND	().255	1.02		
Nickel		0.997	().255	1.02		
Selenium		ND	().765	1.02		
Silver		ND	().255	1.02		
Thallium		ND	().765	1.02		
Vanadium		3.70	().255	1.02		
Zinc		10.1	1	1.02	1.02		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/25/15 15-06-1979 EPA 3050B EPA 6010B

Units:

mg/kg Page 4 of 5

Project: CG Roxane

Time QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-09-10-062415	15-06-1979-4-A	06/24/15 09:10	Solid	ICP 7300	06/26/15	07/01/15 14:52	150626L02
Parameter		Result	<u> </u>	RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.773	1.03		
Arsenic		ND	(0.773	1.03		
Barium		6.82	(0.515	1.03		
Beryllium		ND	(0.258	1.03		
Cadmium		ND	(0.515	1.03		
Chromium		0.778	(0.258	1.03		
Cobalt		0.422	(0.258	1.03		
Copper		1.06	(0.515	1.03		
Lead		ND	(0.515	1.03		
Molybdenum		ND	(0.258	1.03		
Nickel		0.431	(0.258	1.03		
Selenium		ND	(0.773	1.03		
Silver		ND	(0.258	1.03		
Thallium		ND	(0.773	1.03		
Vanadium		2.62	(0.258	1.03		
Zinc		3.36	•	1.03	1.03		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/25/15 15-06-1979 EPA 3050B EPA 6010B

mg/kg

Project: CG Roxane

Page 5 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-21368	N/A	Solid	ICP 7300	06/26/15	07/01/15 14:25	150626L02
Parameter		Result	E	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	C).750	1.00		
Arsenic		ND	C).750	1.00		
Barium		ND	C).500	1.00		
Beryllium		ND	C).250	1.00		
Cadmium		ND	C	0.500	1.00		
Chromium		ND	C	0.250	1.00		
Cobalt		ND	C).250	1.00		
Copper		ND	C	0.500	1.00		
Lead		ND	C	0.500	1.00		
Molybdenum		ND	C	0.250	1.00		
Nickel		ND	C	0.250	1.00		
Selenium		ND	C	0.750	1.00		
Silver		ND	C	0.250	1.00		
Thallium		ND	C	0.750	1.00		
Vanadium		ND	C	0.250	1.00		
Zinc		ND	1	.00	1.00		

Mercury

Analytical Report

Geosyntec Consultants			Date Re	ceived:			06/25/15	
924 Anacapa Street, Suite 4A			Work O	rder:			15-06-1979	
Santa Barbara, CA 93101-2177			Prepara	tion:		EP.	A 7471A Total	
			Method:				EPA 7471A	
			Units:				mg/kg	
Project: CG Roxane						Pa	ige 1 of 1	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
MW-05-05-062315	15-06-1979-1-A	06/23/15 13:55	Solid	Mercury 05	06/29/15	06/29/15 16:31	150629L02	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Mercury		ND		0.0847	1.00			
MW-03-05-062315	15-06-1979-2-A	06/23/15 16:05	Solid	Mercury 05	06/29/15	06/29/15 17:09	150629L02	
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>Qualifiers</u>	

MW-08-05-062415	15-06-1979-3-A	06/24/15 07:40	Solid	Mercury 05	06/29/15	06/29/15 17:11	150629L02
<u>Parameter</u>		Result	<u>RL</u> <u>DF</u>		<u>DF</u>	Qua	alifiers
Mercury		ND	0.0	0862	1.00		

0.0847

1.00

0.169

MW-09-10-062415	15-06-1979-4-A	06/24/15 09:10	Solid	Mercury 05	06/29/15	06/29/15 17:13	150629L02
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Mercury		ND	0.0	794	1.00		

Method Blank	099-16-272-1405	N/A	Solid	Mercury 05	06/29/15	06/29/15 16:27	150629L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qu	alifiers
Mercury		ND	0.0	833	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-1979 **EPA 3545 EPA 8270C** mg/kg

06/25/15

Units:

Project: CG Roxane						Pa	ge 1 of 15
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-05-05-062315	15-06-1979-1-A	06/23/15 13:55	Solid	GC/MS CCC	07/07/15	07/07/15 15:21	150707L02
<u>Parameter</u>		<u>Result</u>	ılt <u>RL</u>		<u>DF</u>	Qualifiers	
Acenaphthene		ND	0	.50	1.00		
Acenaphthylene		ND	0	.50	1.00		

ND 0.50 Aniline 1.00 ND Anthracene 0.50 1.00 Azobenzene ND 0.50 1.00 Benzidine ND 10 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 2.5 1.00 ND Bis(2-Chloroisopropyl) Ether 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 ND 4-Bromophenyl-Phenyl Ether 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 ND 0.50 Dibenzofuran 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 ND 0.50 1.00 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00 Diethyl Phthalate ND 0.50 1.00

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 2 of 15

Project. CG Roxane				Page 2 01 15
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	47	27-120		

Geosyntec Consultants	Date Received:	06/25/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-1979
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 3 of 15

Rec. (%)	Control Limits	Qualifiers
46	25-120	
43	33-123	
54	27-159	
46	26-122	
59	18-138	
	46 43 54 46	46 25-120 43 33-123 54 27-159 46 26-122

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-1979 EPA 3545 EPA 8270C

06/25/15

Units: mg/kg
Page 4 of 15

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-03-05-062315	15-06-1979-2-A	06/23/15 16:05	Solid	GC/MS CCC	07/07/15	07/07/15 15:39	150707L02
Parameter		Result		RL	<u>DF</u>	Qua	<u>lifiers</u>
Acenaphthene		ND		0.51	1.00		
Acenaphthylene		ND		0.51	1.00		
Aniline		ND		0.51	1.00		
Anthracene		ND		0.51	1.00		
Azobenzene		ND		0.51	1.00		
Benzidine		ND		10	1.00		
Benzo (a) Anthracene		ND		0.51	1.00		
Benzo (a) Pyrene		ND		0.51	1.00		
Benzo (b) Fluoranthene		ND		0.51	1.00		
Benzo (g,h,i) Perylene		ND		0.51	1.00		
Benzo (k) Fluoranthene		ND		0.51	1.00		
Benzoic Acid		ND		2.5	1.00		
Benzyl Alcohol		ND		0.51	1.00		
Bis(2-Chloroethoxy) Methane		ND		0.51	1.00		
Bis(2-Chloroethyl) Ether		ND		2.5	1.00		
Bis(2-Chloroisopropyl) Ether		ND		0.51	1.00		
Bis(2-Ethylhexyl) Phthalate		ND		0.51	1.00		
4-Bromophenyl-Phenyl Ether		ND		0.51	1.00		
Butyl Benzyl Phthalate		ND		0.51	1.00		
4-Chloro-3-Methylphenol		ND		0.51	1.00		
4-Chloroaniline		ND		0.51	1.00		
2-Chloronaphthalene		ND		0.51	1.00		
2-Chlorophenol		ND		0.51	1.00		
4-Chlorophenyl-Phenyl Ether		ND		0.51	1.00		
Chrysene		ND		0.51	1.00		
Di-n-Butyl Phthalate		ND		0.51	1.00		
Di-n-Octyl Phthalate		ND		0.51	1.00		
Dibenz (a,h) Anthracene		ND		0.51	1.00		
Dibenzofuran		ND		0.51	1.00		
1,2-Dichlorobenzene		ND		0.51	1.00		
1,3-Dichlorobenzene		ND		0.51	1.00		
1,4-Dichlorobenzene		ND		0.51	1.00		
3,3'-Dichlorobenzidine		ND		10	1.00		
2,4-Dichlorophenol		ND		0.51	1.00		
Diethyl Phthalate		ND		0.51	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 5 of 15

Project: CG Roxane				Page 5 of 15
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.51	1.00	
2,4-Dimethylphenol	ND	0.51	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.51	1.00	
2,6-Dinitrotoluene	ND	0.51	1.00	
Fluoranthene	ND	0.51	1.00	
Fluorene	ND	0.51	1.00	
Hexachloro-1,3-Butadiene	ND	0.51	1.00	
Hexachlorobenzene	ND	0.51	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.51	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.51	1.00	
Isophorone	ND	0.51	1.00	
2-Methylnaphthalene	ND	0.51	1.00	
1-Methylnaphthalene	ND	0.51	1.00	
2-Methylphenol	ND	0.51	1.00	
3/4-Methylphenol	ND	0.51	1.00	
N-Nitroso-di-n-propylamine	ND	0.51	1.00	
N-Nitrosodimethylamine	ND	0.51	1.00	
N-Nitrosodiphenylamine	ND	0.51	1.00	
Naphthalene	ND	0.51	1.00	
4-Nitroaniline	ND	0.51	1.00	
3-Nitroaniline	ND	0.51	1.00	
2-Nitroaniline	ND	0.51	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.51	1.00	
2-Nitrophenol	ND	0.51	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.51	1.00	
Phenol	ND	0.51	1.00	
Pyrene	ND	0.51	1.00	
Pyridine	ND	0.51	1.00	
1,2,4-Trichlorobenzene	ND	0.51	1.00	
2,4,6-Trichlorophenol	ND	0.51	1.00	
2,4,5-Trichlorophenol	ND	0.51	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	66	27-120		

Geosyntec Consultants	Date Received:	06/25/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-1979
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 6 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	62	25-120	
Nitrobenzene-d5	58	33-123	
p-Terphenyl-d14	83	27-159	
Phenol-d6	64	26-122	
2,4,6-Tribromophenol	84	18-138	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-1979 EPA 3545 EPA 8270C

06/25/15

mg/kg

Units:

Page 7 of 15

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-08-05-062415	15-06-1979-3-A	06/24/15 07:40	Solid	GC/MS CCC	07/07/15	07/07/15 15:57	150707L02
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Acenaphthene		ND	0	.50	1.00		
Acenaphthylene		ND	0	.50	1.00		
Aniline		ND	0	.50	1.00		
Anthracene		ND	0	.50	1.00		
Azobenzene		ND	0	.50	1.00		
Benzidine		ND	1	0	1.00		
Benzo (a) Anthracene		ND	0	.50	1.00		
Benzo (a) Pyrene		ND	0	.50	1.00		
Benzo (b) Fluoranthene		ND	0	.50	1.00		
Benzo (g,h,i) Perylene		ND	0	.50	1.00		
Benzo (k) Fluoranthene		ND	0	.50	1.00		
Benzoic Acid		ND	2	.5	1.00		
Benzyl Alcohol		ND	0	.50	1.00		
Bis(2-Chloroethoxy) Methane		ND	0	.50	1.00		
Bis(2-Chloroethyl) Ether		ND	2	.5	1.00		
Bis(2-Chloroisopropyl) Ether		ND	0	.50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	0	.50	1.00		
4-Bromophenyl-Phenyl Ether		ND	0	.50	1.00		
Butyl Benzyl Phthalate		ND	0	.50	1.00		
4-Chloro-3-Methylphenol		ND	0	.50	1.00		
4-Chloroaniline		ND	0	.50	1.00		
2-Chloronaphthalene		ND	0	.50	1.00		
2-Chlorophenol		ND	0	.50	1.00		
4-Chlorophenyl-Phenyl Ether		ND	0	.50	1.00		
Chrysene		ND	0	.50	1.00		
Di-n-Butyl Phthalate		ND	0	.50	1.00		
Di-n-Octyl Phthalate		ND	0	.50	1.00		
Dibenz (a,h) Anthracene		ND	0	.50	1.00		
Dibenzofuran		ND	0	.50	1.00		
1,2-Dichlorobenzene		ND	0	.50	1.00		
1,3-Dichlorobenzene		ND	0	.50	1.00		
1,4-Dichlorobenzene		ND	0	.50	1.00		
3,3'-Dichlorobenzidine		ND	1	0	1.00		
2,4-Dichlorophenol		ND	0	.50	1.00		
Diethyl Phthalate		ND	0	.50	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 8 of 15

Project: CG Roxane				Page 8 of 15
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	72	27-120		

Geosyntec Consultants	Date Received:	06/25/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-1979
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 9 of 15

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
2-Fluorophenol	70	25-120	
Nitrobenzene-d5	66	33-123	
p-Terphenyl-d14	80	27-159	
Phenol-d6	70	26-122	
2,4,6-Tribromophenol	85	18-138	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-1979 **EPA 3545 EPA 8270C**

06/25/15

Units:

mg/kg Page 10 of 15

Project: CG Roxane

Butyl Benzyl Phthalate

2-Chloronaphthalene

Di-n-Butyl Phthalate

Di-n-Octyl Phthalate

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene 3,3'-Dichlorobenzidine

2,4-Dichlorophenol

Diethyl Phthalate

Dibenzofuran

Dibenz (a,h) Anthracene

4-Chloroaniline

2-Chlorophenol

Chrysene

4-Chloro-3-Methylphenol

4-Chlorophenyl-Phenyl Ether

Date/Time QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Date Prepared Number Collected Analyzed 07/07/15 16:15 06/24/15 09:10 MW-09-10-062415 15-06-1979-4-A Solid GC/MS CCC 07/07/15 150707L02 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers Acenaphthene ND 0.50 1.00 ND 0.50 1.00 Acenaphthylene ND Aniline 0.50 1.00 Anthracene ND 0.50 1.00 Azobenzene ND 0.50 1.00 Benzidine ND 10 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 2.5 1.00 ND Bis(2-Chloroisopropyl) Ether 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

10

0.50

0.50

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

ND

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 11 of 15

Project. CG Roxane				Page 11 01 15
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	79	27-120		

Geosyntec Consultants	Date Received:	06/25/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-1979
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 12 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	80	25-120	
Nitrobenzene-d5	72	33-123	
p-Terphenyl-d14	87	27-159	
Phenol-d6	81	26-122	
2,4,6-Tribromophenol	91	18-138	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/25/15 15-06-1979 EPA 3545 EPA 8270C

mg/kg

Project: CG Roxane

Page 13 of 15

Parameter Result RL DE Qualifiers	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Accenaphthene ND 0.50 1.00 Accenaphthylene ND 0.50 1.00 Anthracene ND 0.50 1.00 Anthracene ND 0.50 1.00 Azobanzene ND 0.50 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00	Method Blank	099-12-549-3334	N/A	Solid	GC/MS CCC	07/07/15	07/07/15 13:15	150707L02
Acenaphthylene ND 0.50 1.00 Anilline ND 0.50 1.00 Anilline ND 0.50 1.00 Anilline ND 0.50 1.00 Anilline ND 0.50 1.00 Arcbenzene ND 0.50 1.00 Benzidine ND 0.50 1.00 Benzidine ND 10 1.00 Benzidine ND 10 0.50 1.00 Benzidine ND 0.50 1.00 Benzo (a) Pryene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (c) Fluoranthene ND 0.50 1.00 Butpl Benzo (c) Fluoranth	Parameter		Result	RL	=	<u>DF</u>	Qua	<u>lifiers</u>
Aniline ND 0.50 1.00 Anthracene ND 0.50 1.00 Anthracene ND 0.50 1.00 Anthracene ND 0.50 1.00 Benzolane ND 10 0.50 1.00 Benzolane ND 10 0.50 1.00 Benzolane ND 10 0.50 1.00 Benzolane ND 0.50 1.00 Benzola (Aline Nerventie ND 0.50 1.00 Benzola (Aline Norventie ND 0.50 1.00 Benzola (Aline Nerventie ND 0.50 1.00 Benzola (Aline ND 0.50 1.00 Benzola (Aline Norventie ND 0.50 1.00 Benzola (Aline	Acenaphthene		ND	0.5	50	1.00		
Anthracene ND 0.50 1.00 Azobenzene ND 0.50 1.00 Azobenzene ND 0.50 1.00 3.60	Acenaphthylene		ND	0.5	50	1.00		
Azobenzene ND 0.50 1.00 Benzidine ND 10 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (c) Fluoranthene ND 0.50 1.00 Benzo (c) Acid ND 0.50 1.00 Bisi(2-Chlorosthyl) Ether ND 0.50 1.00 Bisi(2-Chlorosthyl) Ether ND 0.50 1.00 Bury Benzyl Phthalate	Aniline		ND	0.5	50	1.00		
Senzidine ND 10 1.00	Anthracene		ND	0.5	50	1.00		
Senzo (a) Anthracene ND	Azobenzene		ND	0.5	50	1.00		
Benzo (a) Pyrene ND 0.50 1.00	Benzidine		ND	10		1.00		
Senzo (b) Fluoranthene ND 0.50 1.00 Senzo (g,h,i) Perylene ND 0.50 1.00 Senzo (g,h,i) Perylene ND 0.50 1.00 Senzo (k) Fluoranthene ND 0.50 1.00 Senzo (k) Fluoranthene ND 0.50 1.00 Senzo (acid ND 0.50 1.00 Senzo (acid ND 0.50 1.00 Senzo (acid ND 0.50 1.00 Sis(2-Chloroethoxy) Methane ND 0.50 1.00 Sis(2-Chloroethoxy) Ether ND 0.50 1.00 Sis(2-Chloroethyl) Ethe	Benzo (a) Anthracene		ND	0.5	50	1.00		
Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzo (Acid ND 0.50 1.00 Benzol Alcohol ND 0.50 1.00 Bis (2-Chloroethoxy) Methane ND 0.50 1.00 Bis (2-Chloroethyl) Ether ND 0.50 1.00 Bis (2-Chlorospropyl) Ether ND 0.50 1.00 Bis (2-Chloroethyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 But By By Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloropanline ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-In-Butyl Phthalate ND 0.50 1.00 Din-Detyl Phthalate ND	Benzo (a) Pyrene		ND	0.5	50	1.00		
Benzo (k) Fluoranthene ND	Benzo (b) Fluoranthene		ND	0.5	50	1.00		
Senzoic Acid ND 2.5 1.00 1.	Benzo (g,h,i) Perylene		ND	0.5	50	1.00		
Senzyl Alcohol ND 0.50 1.00	Benzo (k) Fluoranthene		ND	0.5	50	1.00		
Sis(2-Chloroethoxy) Methane ND 0.50 1.00 Sis(2-Chloroethyl) Ether ND 0.50 1.00 Sis(2-Chloroisopropyl) Ether ND 0.50 1.00 Sis(2-Ethylhexyl) Phthalate ND 0.50 1.00 Sis(2-	Benzoic Acid		ND	2.5	5	1.00		
Bis(2-Chloroethyl) Ether ND 2.5 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroanjltine ND 0.50 1.00 2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Cyl Phthalate ND 0.50 1.00 Di-n-Cyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 <td>Benzyl Alcohol</td> <td></td> <td>ND</td> <td>0.5</td> <td>50</td> <td>1.00</td> <td></td> <td></td>	Benzyl Alcohol		ND	0.5	50	1.00		
Sis(2-Chloroisopropyl) Ether ND 0.50 1.00	Bis(2-Chloroethoxy) Methane		ND	0.5	50	1.00		
Sis(2-Chloroisopropyl) Ether ND 0.50 1.00	Bis(2-Chloroethyl) Ether		ND	2.5	5	1.00		
Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chloroaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Dirn-Butyl Phthalate ND 0.50 1.00 Dirn-Butyl Phthalate ND 0.50 1.00 Dirn-Cotyl Phthalate ND 0.50 1.00 Dirn-Cotyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz (benz ene ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00	Bis(2-Chloroisopropyl) Ether		ND	0.5	50	1.00		
#Bromophenyl-Phenyl Ether ND 0.50 1.00 #Butyl Benzyl Phthalate ND 0.50 1.00 #Chloro-3-Methylphenol ND 0.50 1.00 #Chloroaniline ND 0.50 1.00 #Chloroaniline ND 0.50 1.00 #Chlorophenol ND 0.50 1.00 #Chlorophenol ND 0.50 1.00 #Chlorophenyl-Phenyl Ether ND 0.50 1.00 #Chrysene ND 0.50 1.00 #Chlorophenol ND 0.50 1.00	Bis(2-Ethylhexyl) Phthalate		ND	0.5	50	1.00		
A-Chloro-3-Methylphenol ND 0.50 1.00 A-Chloro-3-Methylphenol ND 0.50 1.00 A-Chloroaphthalene ND 0.50 1.00 A-Chlorophenol ND 0.50 1.00 A-Chlorophenol ND 0.50 1.00 A-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dishorobenzene ND 0.50 1.00 A-Chlorobenzene ND 0.50 1.00 A-Chlorophenol ND 0.	4-Bromophenyl-Phenyl Ether		ND			1.00		
A-Chloro-3-Methylphenol ND 0.50 1.00 A-Chloro-3-Methylphenol ND 0.50 1.00 A-Chloroaphthalene ND 0.50 1.00 A-Chlorophenol ND 0.50 1.00 A-Chlorophenol ND 0.50 1.00 A-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dishorobenzene ND 0.50 1.00 A-Chlorobenzene ND 0.50 1.00 A-Chlorophenol ND 0.	Butyl Benzyl Phthalate		ND	0.5	50	1.00		
2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Chloro-3-Methylphenol		ND	0.5	50	1.00		
2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Chloroaniline		ND	0.5	50	1.00		
A-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1.00 1.2-Dichlorobenzene ND 0.50 1.00 1.3-Dichlorobenzene ND 0.50 1.00 1.4-Dichlorobenzene ND 0.50 1.00 1.3-Dichlorobenzene ND 0.50 1.00 1.4-Dichlorobenzene ND 0.50 1.00 1.4-Dichlorobenzene ND 0.50 1.00 1.4-Dichlorobenzene ND 0.50 1.00 2,4-Dichlorophenol ND 0.50 1.00	2-Chloronaphthalene		ND	0.5	50	1.00		
4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	2-Chlorophenol		ND	0.5	50	1.00		
Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Chlorophenyl-Phenyl Ether		ND	0.5	50			
Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Chrysene		ND	0.5	50	1.00		
Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Di-n-Butyl Phthalate		ND	0.5	50			
Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Di-n-Octyl Phthalate		ND	0.5	50	1.00		
1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Dibenz (a,h) Anthracene					1.00		
1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Dibenzofuran							
1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	1,2-Dichlorobenzene							
1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	1,3-Dichlorobenzene		ND					
3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	1,4-Dichlorobenzene							
2,4-Dichlorophenol ND 0.50 1.00	3,3'-Dichlorobenzidine							
	2,4-Dichlorophenol							
	Diethyl Phthalate		ND			1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 14 of 15

			Page 14 of 15
Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	0.50	1.00	
ND	0.50	1.00	
ND	2.5	1.00	
ND	2.5	1.00	
ND	0.50	1.00	
ND	2.5	1.00	
ND	0.50	1.00	
ND	2.5	1.00	
ND	0.50	1.00	
ND	0.50	1.00	
ND	2.5	1.00	
ND	0.50	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>	
76	27-120		
	ND N	ND 0.50 ND 0.50 ND 0.50 ND 2.5 ND 0.50	ND 0.50 1.00 ND 0.50 1.00 ND 2.5 1.00 ND 2.5 1.00 ND 0.50 1.00 ND <

Geosyntec Consultants	Date Received:	06/25/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-1979
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 15 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	78	25-120	
Nitrobenzene-d5	74	33-123	
p-Terphenyl-d14	82	27-159	
Phenol-d6	79	26-122	
2,4,6-Tribromophenol	79	18-138	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method: 06/25/15 15-06-1979 EPA 5035 EPA 8260B

Units: ug/kg
Page 1 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-05-05-062315	15-06-1979-1-D	06/23/15 13:55	Solid	GC/MS Q	06/23/15	06/26/15 21:03	150626L044
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Acetone		ND	4	12	1.00		
Benzene		ND	C).85	1.00		
Bromobenzene		ND	C	0.85	1.00		
Bromochloromethane		ND	1	1.7	1.00		
Bromodichloromethane		ND	C).85	1.00		
Bromoform		ND	4	1.2	1.00		
Bromomethane		ND	1	17	1.00		
2-Butanone		ND	1	17	1.00		
n-Butylbenzene		ND	C).85	1.00		
sec-Butylbenzene		ND	C).85	1.00		
tert-Butylbenzene		ND	C).85	1.00		
Carbon Disulfide		ND	8	3.5	1.00		
Carbon Tetrachloride		ND	C).85	1.00		
Chlorobenzene		ND	C).85	1.00		
Chloroethane		ND	1	1.7	1.00		
Chloroform		ND	C).85	1.00		
Chloromethane		ND	1	17	1.00		
2-Chlorotoluene		ND	C).85	1.00		
4-Chlorotoluene		ND	C).85	1.00		
Dibromochloromethane		ND	1	1.7	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	1.2	1.00		
1,2-Dibromoethane		ND	C	0.85	1.00		
Dibromomethane		ND	C	0.85	1.00		
1,2-Dichlorobenzene		ND	C	0.85	1.00		
1,3-Dichlorobenzene		ND	C	0.85	1.00		
1,4-Dichlorobenzene		ND	C	0.85	1.00		
Dichlorodifluoromethane		ND	1	1.7	1.00		
1,1-Dichloroethane		ND	C).85	1.00		
1,2-Dichloroethane		ND	C	0.85	1.00		
1,1-Dichloroethene		ND	C	0.85	1.00		
c-1,2-Dichloroethene		ND	C	0.85	1.00		
t-1,2-Dichloroethene		ND	C	0.85	1.00		
1,2-Dichloropropane		ND		0.85	1.00		
1,3-Dichloropropane		ND).85	1.00		
2,2-Dichloropropane		ND	4	1.2	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 2 of 10

Project: CG Roxane				Page 2 of 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.7	1.00	
c-1,3-Dichloropropene	ND	0.85	1.00	
t-1,3-Dichloropropene	ND	1.7	1.00	
Ethylbenzene	ND	0.85	1.00	
2-Hexanone	ND	17	1.00	
Isopropylbenzene	ND	0.85	1.00	
p-Isopropyltoluene	ND	0.85	1.00	
Methylene Chloride	ND	8.5	1.00	
4-Methyl-2-Pentanone	ND	17	1.00	
Naphthalene	ND	8.5	1.00	
n-Propylbenzene	ND	1.7	1.00	
Styrene	ND	0.85	1.00	
1,1,1,2-Tetrachloroethane	ND	0.85	1.00	
1,1,2,2-Tetrachloroethane	ND	1.7	1.00	
Tetrachloroethene	ND	0.85	1.00	
Toluene	ND	0.85	1.00	
1,2,3-Trichlorobenzene	ND	1.7	1.00	
1,2,4-Trichlorobenzene	ND	1.7	1.00	
1,1,1-Trichloroethane	ND	0.85	1.00	
1,1,2-Trichloroethane	ND	0.85	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.5	1.00	
Trichloroethene	ND	1.7	1.00	
Trichlorofluoromethane	ND	8.5	1.00	
1,2,3-Trichloropropane	ND	1.7	1.00	
1,2,4-Trimethylbenzene	ND	1.7	1.00	
1,3,5-Trimethylbenzene	ND	1.7	1.00	
Vinyl Acetate	ND	8.5	1.00	
Vinyl Chloride	ND	0.85	1.00	
p/m-Xylene	ND	1.7	1.00	
o-Xylene	ND	0.85	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.7	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	97	77-120		
Dibromofluoromethane	106	80-123		
1,2-Dichloroethane-d4	115	79-139		
Toluene-d8	99	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/25/15 15-06-1979 EPA 5035 EPA 8260B ug/kg

Project: CG Roxane

Page 3 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-03-05-062315	15-06-1979-2-D	06/23/15 16:05	Solid	GC/MS Q	06/23/15	06/26/15 21:30	150626L044
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acetone		ND	80		1.00		
Benzene		ND	1.6	5	1.00		
Bromobenzene		ND	1.6	5	1.00		
Bromochloromethane		ND	3.2	2	1.00		
Bromodichloromethane		ND	1.6	5	1.00		
Bromoform		ND	8.0)	1.00		
Bromomethane		ND	32		1.00		
2-Butanone		ND	32		1.00		
n-Butylbenzene		ND	1.6	3	1.00		
sec-Butylbenzene		ND	1.6	3	1.00		
tert-Butylbenzene		ND	1.6	6	1.00		
Carbon Disulfide		ND	16		1.00		
Carbon Tetrachloride		ND	1.6	3	1.00		
Chlorobenzene		ND	1.6	3	1.00		
Chloroethane		ND	3.2	2	1.00		
Chloroform		ND	1.6	3	1.00		
Chloromethane		ND	32		1.00		
2-Chlorotoluene		ND	1.6	3	1.00		
4-Chlorotoluene		ND	1.6	3	1.00		
Dibromochloromethane		ND	3.2	2	1.00		
1,2-Dibromo-3-Chloropropane		ND	8.0)	1.00		
1,2-Dibromoethane		ND	1.6	3	1.00		
Dibromomethane		ND	1.6	3	1.00		
1,2-Dichlorobenzene		ND	1.6	5	1.00		
1,3-Dichlorobenzene		ND	1.6	3	1.00		
1,4-Dichlorobenzene		ND	1.6	5	1.00		
Dichlorodifluoromethane		ND	3.2	2	1.00		
1,1-Dichloroethane		ND	1.6		1.00		
1,2-Dichloroethane		ND	1.6	5	1.00		
1,1-Dichloroethene		ND	1.6	5	1.00		
c-1,2-Dichloroethene		ND	1.6	5	1.00		
t-1,2-Dichloroethene		ND	1.6		1.00		
1,2-Dichloropropane		ND	1.6		1.00		
1,3-Dichloropropane		ND	1.6		1.00		
2,2-Dichloropropane		ND	8.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

Project: CG Roxane				Page 4 of 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	3.2	1.00	
c-1,3-Dichloropropene	ND	1.6	1.00	
t-1,3-Dichloropropene	ND	3.2	1.00	
Ethylbenzene	ND	1.6	1.00	
2-Hexanone	ND	32	1.00	
Isopropylbenzene	ND	1.6	1.00	
p-Isopropyltoluene	ND	1.6	1.00	
Methylene Chloride	ND	16	1.00	
4-Methyl-2-Pentanone	ND	32	1.00	
Naphthalene	ND	16	1.00	
n-Propylbenzene	ND	3.2	1.00	
Styrene	ND	1.6	1.00	
1,1,1,2-Tetrachloroethane	ND	1.6	1.00	
1,1,2,2-Tetrachloroethane	ND	3.2	1.00	
Tetrachloroethene	ND	1.6	1.00	
Toluene	ND	1.6	1.00	
1,2,3-Trichlorobenzene	ND	3.2	1.00	
1,2,4-Trichlorobenzene	ND	3.2	1.00	
1,1,1-Trichloroethane	ND	1.6	1.00	
1,1,2-Trichloroethane	ND	1.6	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	16	1.00	
Trichloroethene	ND	3.2	1.00	
Trichlorofluoromethane	ND	16	1.00	
1,2,3-Trichloropropane	ND	3.2	1.00	
1,2,4-Trimethylbenzene	ND	3.2	1.00	
1,3,5-Trimethylbenzene	ND	3.2	1.00	
Vinyl Acetate	ND	16	1.00	
Vinyl Chloride	ND	1.6	1.00	
p/m-Xylene	ND	3.2	1.00	
o-Xylene	ND	1.6	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	3.2	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	97	77-120		
Dibromofluoromethane	109	80-123		
1,2-Dichloroethane-d4	118	79-139		
Toluene-d8	99	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-06-1979 EPA 5035 EPA 8260B ug/kg

06/25/15

Project: CG Roxane

Page 5 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-08-05-062415	15-06-1979-3-D	06/24/15 07:40	Solid	GC/MS Q	06/24/15	06/26/15 21:56	150626L044
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	53		1.00		
Benzene		ND	1.1		1.00		
Bromobenzene		ND	1.1		1.00		
Bromochloromethane		ND	2.1		1.00		
Bromodichloromethane		ND	1.1		1.00		
Bromoform		ND	5.3	3	1.00		
Bromomethane		ND	21		1.00		
2-Butanone		ND	21		1.00		
n-Butylbenzene		ND	1.1		1.00		
sec-Butylbenzene		ND	1.1		1.00		
tert-Butylbenzene		ND	1.1		1.00		
Carbon Disulfide		ND	11		1.00		
Carbon Tetrachloride		ND	1.1		1.00		
Chlorobenzene		ND	1.1		1.00		
Chloroethane		ND	2.1		1.00		
Chloroform		ND	1.1		1.00		
Chloromethane		ND	21		1.00		
2-Chlorotoluene		ND	1.1		1.00		
4-Chlorotoluene		ND	1.1		1.00		
Dibromochloromethane		ND	2.1		1.00		
1,2-Dibromo-3-Chloropropane		ND	5.3	3	1.00		
1,2-Dibromoethane		ND	1.1		1.00		
Dibromomethane		ND	1.1		1.00		
1,2-Dichlorobenzene		ND	1.1		1.00		
1,3-Dichlorobenzene		ND	1.1		1.00		
1,4-Dichlorobenzene		ND	1.1		1.00		
Dichlorodifluoromethane		ND	2.1		1.00		
1,1-Dichloroethane		ND	1.1		1.00		
1,2-Dichloroethane		ND	1.1		1.00		
1,1-Dichloroethene		ND	1.1		1.00		
c-1,2-Dichloroethene		ND	1.1		1.00		
t-1,2-Dichloroethene		ND	1.1		1.00		
1,2-Dichloropropane		ND	1.1		1.00		
1,3-Dichloropropane		ND	1.1		1.00		
2,2-Dichloropropane		ND	5.3	3	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Methyl-t-Butyl Ether (MTBE)

Vinyl Acetate

Vinyl Chloride

p/m-Xylene

o-Xylene

Analytical Report

Geosyntec Consultants Date Received: 06/25/15 Work Order: 15-06-1979 924 Anacapa Street, Suite 4A Preparation: EPA 5035 Santa Barbara, CA 93101-2177 Method: **EPA 8260B** Units: ug/kg Project: CG Roxane Page 6 of 10 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 2.1 1.00 1,1-Dichloropropene c-1,3-Dichloropropene ND 1.1 1.00 t-1,3-Dichloropropene ND 2.1 1.00 Ethylbenzene ND 1.1 1.00 2-Hexanone ND 21 1.00 Isopropylbenzene ND 1.00 1.1 p-Isopropyltoluene ND 1.1 1.00 Methylene Chloride ND 11 1.00 4-Methyl-2-Pentanone ND 21 1.00 Naphthalene ND 11 1.00 ND n-Propylbenzene 2.1 1.00 Styrene ND 1.1 1.00 ND 1,1,1,2-Tetrachloroethane 1.1 1.00 1,1,2,2-Tetrachloroethane ND 2.1 1.00 Tetrachloroethene ND 1.00 1.1 Toluene ND 1.1 1.00 1,2,3-Trichlorobenzene ND 2.1 1.00 1,2,4-Trichlorobenzene ND 2.1 1.00 1,1,1-Trichloroethane ND 1.1 1.00 1,1,2-Trichloroethane ND 1.1 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 11 1.00 Trichloroethene ND 2.1 1.00 ND Trichlorofluoromethane 11 1.00

ND

ND

ND

ND

ND

ND

ND

ND

2.1

2.1

2.1

11

1.1

2.1

1.1

2.1

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Qualifiers

 Surrogate
 Rec. (%)
 Control Limits

 1,4-Bromofluorobenzene
 97
 77-120

 Dibromofluoromethane
 108
 80-123

 1,2-Dichloroethane-d4
 117
 79-139

 Toluene-d8
 98
 80-120

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-1979 EPA 5035 EPA 8260B

06/25/15

Units:

ug/kg Page 7 of 10

Project: CG Roxane

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-09-10-062415	15-06-1979-4-D	06/24/15 09:10	Solid	GC/MS Q	06/24/15	06/26/15 22:22	150626L044
<u>Parameter</u>		<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Acetone		ND	68	8	1.00		
Benzene		ND	1.	.4	1.00		
Bromobenzene		ND	1.	.4	1.00		
Bromochloromethane		ND	2.	.7	1.00		
Bromodichloromethane		ND	1.	.4	1.00		
Bromoform		ND	6.	.8	1.00		
Bromomethane		ND	2	7	1.00		
2-Butanone		ND	2	7	1.00		
n-Butylbenzene		ND	1.	.4	1.00		
sec-Butylbenzene		ND	1.	.4	1.00		
tert-Butylbenzene		ND	1.	.4	1.00		
Carbon Disulfide		ND	14	4	1.00		
Carbon Tetrachloride		ND	1.	.4	1.00		
Chlorobenzene		ND	1.	.4	1.00		
Chloroethane		ND	2.	.7	1.00		
Chloroform		ND	1.	.4	1.00		
Chloromethane		ND	2	7	1.00		
2-Chlorotoluene		ND	1.	.4	1.00		
4-Chlorotoluene		ND	1.	.4	1.00		
Dibromochloromethane		ND	2.	.7	1.00		
1,2-Dibromo-3-Chloropropane		ND	6.	.8	1.00		
1,2-Dibromoethane		ND	1.	.4	1.00		
Dibromomethane		ND	1.	.4	1.00		
1,2-Dichlorobenzene		ND	1.	.4	1.00		
1,3-Dichlorobenzene		ND	1.	.4	1.00		
1,4-Dichlorobenzene		ND	1.	.4	1.00		
Dichlorodifluoromethane		ND	2.	.7	1.00		
1,1-Dichloroethane		ND	1.	.4	1.00		
1,2-Dichloroethane		ND	1.	.4	1.00		
1,1-Dichloroethene		ND	1.	.4	1.00		
c-1,2-Dichloroethene		ND	1.	.4	1.00		
t-1,2-Dichloroethene		ND	1.	.4	1.00		
1,2-Dichloropropane		ND		.4	1.00		
1,3-Dichloropropane		ND	1.		1.00		
2,2-Dichloropropane		ND		.8	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 8 of 10

Project: CG Roxane				Page 8 of 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	2.7	1.00	
c-1,3-Dichloropropene	ND	1.4	1.00	
t-1,3-Dichloropropene	ND	2.7	1.00	
Ethylbenzene	ND	1.4	1.00	
2-Hexanone	ND	27	1.00	
Isopropylbenzene	ND	1.4	1.00	
p-Isopropyltoluene	ND	1.4	1.00	
Methylene Chloride	ND	14	1.00	
4-Methyl-2-Pentanone	ND	27	1.00	
Naphthalene	ND	14	1.00	
n-Propylbenzene	ND	2.7	1.00	
Styrene	ND	1.4	1.00	
1,1,1,2-Tetrachloroethane	ND	1.4	1.00	
1,1,2,2-Tetrachloroethane	ND	2.7	1.00	
Tetrachloroethene	ND	1.4	1.00	
Toluene	ND	1.4	1.00	
1,2,3-Trichlorobenzene	ND	2.7	1.00	
1,2,4-Trichlorobenzene	ND	2.7	1.00	
1,1,1-Trichloroethane	ND	1.4	1.00	
1,1,2-Trichloroethane	ND	1.4	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	14	1.00	
Trichloroethene	ND	2.7	1.00	
Trichlorofluoromethane	ND	14	1.00	
1,2,3-Trichloropropane	ND	2.7	1.00	
1,2,4-Trimethylbenzene	ND	2.7	1.00	
1,3,5-Trimethylbenzene	ND	2.7	1.00	
Vinyl Acetate	ND	14	1.00	
Vinyl Chloride	ND	1.4	1.00	
p/m-Xylene	ND	2.7	1.00	
o-Xylene	ND	1.4	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.7	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	96	77-120		
Dibromofluoromethane	107	80-123		
1,2-Dichloroethane-d4	117	79-139		
Toluene-d8	100	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-06-1979 EPA 5035 EPA 8260B ug/kg

06/25/15

Project: CG Roxane

Page 9 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-312-492	N/A	Solid	GC/MS Q	06/26/15	06/26/15 13:24	150626L044
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acetone		ND	50		1.00		
Benzene		ND	1.0)	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	2.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	20		1.00		
2-Butanone		ND	20		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	1.0)	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	2.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	20		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	2.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	2.0)	1.00		
1,1-Dichloroethane		ND	1.0		1.00		
1,2-Dichloroethane		ND	1.0)	1.00		
1,1-Dichloroethene		ND	1.0		1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	5.0		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 10 of 10

Result	<u>RL</u>		
	<u>1XL</u>	<u>DF</u>	Qualifiers
ND	2.0	1.00	
ND	1.0	1.00	
ND	2.0	1.00	
ND	1.0	1.00	
ND	20	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	20	1.00	
ND	10	1.00	
ND	2.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	2.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	2.0	1.00	
ND	2.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	2.0	1.00	
ND	10	1.00	
ND	2.0	1.00	
ND	2.0	1.00	
ND	2.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	2.0	1.00	
ND	1.0	1.00	
ND	2.0	1.00	
Rec. (%)	Control Limits	Qualifiers	
96	77-120		
104	80-123		
108	79-139		
99	80-120		
	ND N	ND 2.0 ND 1.0 ND 2.0 ND 1.0 ND 1.0 ND 1.0 ND 10 ND 10 ND 10 ND 1.0 ND 2.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 2.0 ND	ND 2.0 1.00 ND 1.0 1.00 ND 1.0 1.00 ND 2.0 1.00 ND 1.0 1.00 ND 10 1.00 ND 10 1.00 ND 10 1.00 ND 1.0 ND 1.0 1.00 N

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order:

06/25/15 15-06-1979

Project: CG Roxane

Page 1 of 2

Client Sample Number			Lab S	Sample Number		Date/Tin	ne Collected	Matrix	
MW-05-05-062315			15-06	6-1979-1		06/23/1	5 13:55	Solid	
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	<u>DF</u>	Qualifiers	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method	
рН	9.16	0.01	1.00		pH units	06/25/15	06/25/15	EPA 9045D	
Alkalinity, Total (as CaCO3)	560	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M	
Solids, Total Dissolved	3180	10.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)	
Total Kjeldahl Nitrogen	70	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)	
Phosphorus, Total	93	12	25.0		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)	
Total Phosphate	280	38	25.0		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)	
Ammonia (as N)	ND	50	10.0		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)	
Nitrate-Nitrite (as N)	0.92	0.50	1.00		mg/kg	06/26/15	06/26/15	SM 4500-NO3 E (M)	
MBAS	ND	1.0	1.00		mg/kg	06/25/15	06/25/15	SM 5540C (M)	
Total Nitrogen	71	0.50	1.00		mg/kg	N/A	07/06/15	Total Nitrogen by Calc	

MW-03-05-062315			15-06-1	979-2		06/23/15	16:05	Solid
Parameter	Results	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method
рН	9.24	0.01	1.00		pH units	06/25/15	06/25/15	EPA 9045D
Alkalinity, Total (as CaCO3)	460	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Solids, Total Dissolved	6710	10.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Kjeldahl Nitrogen	ND	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Phosphorus, Total	0.78	0.50	1.00		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Total Phosphate	2.4	1.5	1.00		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Ammonia (as N)	ND	50	10.0		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Nitrate-Nitrite (as N)	0.70	0.50	1.00		mg/kg	06/26/15	06/26/15	SM 4500-NO3 E (M)
MBAS	ND	1.0	1.00		mg/kg	06/25/15	06/25/15	SM 5540C (M)
Total Nitrogen	0.70	0.50	1.00		mg/kg	N/A	07/06/15	Total Nitrogen by Calc

MW-08-05-062415	MW-08-05-062415			6-1979-3		06/24/1	5 07:40	Solid	
Parameter	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method	
рН	8.77	0.01	1.00		pH units	06/25/15	06/25/15	EPA 9045D	
Alkalinity, Total (as CaCO3)	230	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M	
Solids, Total Dissolved	2060	10.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)	
Total Kjeldahl Nitrogen	ND	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)	
Phosphorus, Total	110	25	50.0		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)	
Total Phosphate	320	75	50.0		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)	
Ammonia (as N)	ND	50	10.0		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)	
Nitrate-Nitrite (as N)	0.79	0.50	1.00		mg/kg	06/26/15	06/26/15	SM 4500-NO3 E (M)	
MBAS	ND	1.0	1.00		mg/kg	06/25/15	06/25/15	SM 5540C (M)	
Total Nitrogen	0.79	0.50	1.00		mg/kg	N/A	07/06/15	Total Nitrogen by Calc	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A

Project: CG Roxane

Date Received: Work Order:

06/25/15 15-06-1979

Santa Barbara, CA 93101-2177

Page 2 of 2

Client Sample Number			Lab S	Sample Number		Date/Tir	ne Collected	Matrix
MW-09-10-062415			15-06	6-1979-4		06/24/1	5 09:10	Solid
Parameter	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	Method
pH	8.21	0.01	1.00		pH units	06/25/15	06/25/15	EPA 9045D
Alkalinity, Total (as CaCO3)	160	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Solids, Total Dissolved	4370	10.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Kjeldahl Nitrogen	ND	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Phosphorus, Total	37	5.0	10.0		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Total Phosphate	110	15	10.0		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Ammonia (as N)	ND	50	10.0		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Nitrate-Nitrite (as N)	0.58	0.50	1.00		mg/kg	06/26/15	06/26/15	SM 4500-NO3 E (M)
MBAS	ND	1.0	1.00		mg/kg	06/25/15	06/25/15	SM 5540C (M)
Total Nitrogen	0.58	0.50	1.00		mg/kg	N/A	07/06/15	Total Nitrogen by Calc

Method Blank						N/A		Solid
Parameter	Results	<u>RL</u>	<u>DF</u>	Qualifiers	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method
Alkalinity, Total (as CaCO3)	ND	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Solids, Total Dissolved	ND	1.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Kjeldahl Nitrogen	ND	10	1.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Phosphorus, Total	ND	0.50	1.00		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Total Phosphate	ND	1.5	1.00		mg/kg	06/25/15	06/25/15	SM 4500 P B/E (M)
Ammonia (as N)	ND	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Nitrate-Nitrite (as N)	ND	0.50	1.00		mg/kg	06/26/15	06/26/15	SM 4500-NO3 E (M)
MBAS	ND	1.0	1.00		mg/kg	06/25/15	06/25/15	SM 5540C (M)
MBAS	ND	1.0	1.00		mg/kg	06/25/15	06/25/15	SM 5540C (M)

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

06/25/15

N/A

15-06-1979

EPA 300.0

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received:
Work Order:
Preparation:
Method:

Project: CG Roxane Page 1 of 9

Quality Control Sample ID	Type		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
15-06-1937-15	Sample		Solid	IC 1	0	06/27/15	06/27/15	15:38	150627S01F	•
15-06-1937-15	Matrix Spike		Solid	IC 1	0	06/27/15	06/27/15	17:17	150627S01F	•
15-06-1937-15	Matrix Spike	Duplicate	Solid	IC 1	0	06/27/15	06/27/15	17:33	150627S01F	•
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	ND	500.0	516.2	103	516.0	103	80-120	0	0-20	
Sulfate	2447	500.0	5157	542	4409	392	80-120	16	0-20	3

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-1979
Santa Barbara, CA 93101-2177
Preparation:
N/A
Method:
SM 4500 P B/E (M)

Project: CG Roxane Page 2 of 9

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
15-06-1886-3	Sample		Solid	UV	7	06/25/15	06/25/15	18:00	F0625TPS1	
15-06-1886-3	Matrix Spike		Solid	UV	7	06/25/15	06/25/15	18:00	F0625TPS1	
15-06-1886-3	Matrix Spike D	uplicate	Solid	UV	7	06/25/15	06/25/15	18:00	F0625TPS1	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	93.72	100.0	190.5	97	192.2	99	70-130	1	0-25	

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-1979

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

SM 4500 P B/E (M)

Project: CG Roxane Page 3 of 9

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
15-06-1886-3	Sample	Solid	UV 7	06/25/15	06/25/15 18:00	F0625PO4S1
15-06-1886-3	Matrix Spike	Solid	UV 7	06/25/15	06/25/15 18:00	F0625PO4S1
15-06-1886-3	Matrix Spike Dup	olicate Solid	UV 7	06/25/15	06/25/15 18:00	F0625PO4S1
Parameter	Sample S Conc. A	pike <u>MS</u> dded <u>Conc.</u>	MS %Rec. Cor	D MSD nc. %Rec.	%Rec. CL RPD	RPD CL Qualifiers
Total Phosphate	286.8 30	05.0 582.5	97 587	.5 99	70-130 1	0-25

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-1979

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

SM 4500-NO3 E (M)

Project: CG Roxane Page 4 of 9

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
15-06-1886-1	Sample		Solid	UV	7	06/26/15	06/26/15	16:00	F0626NO3S	1
15-06-1886-1	Matrix Spike		Solid	UV	7	06/26/15	06/26/15	16:00	F0626NO3S	1
15-06-1886-1	Matrix Spike I	Duplicate	Solid	UV	7	06/26/15	06/26/15	16:00	F0626NO3S	1
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	1.018	2.500	3.535	101	3.595	103	70-130	2	0-25	

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 5540C (M)

 Project: CG Roxane
 Page 5 of 9

Quality Control Sample ID	Type		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
MW-05-05-062315	Sample		Solid	UV	•	06/25/15	06/25/15	13:54	F0625SURS	1
MW-05-05-062315	Matrix Spike		Solid	UV 9	•	06/25/15	06/25/15	13:54	F0625SURS	1
MW-05-05-062315	Matrix Spike D	uplicate	Solid	UV	•	06/25/15	06/25/15	13:54	F0625SURS	1
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
MBAS	ND	10.00	8.900	89	8.700	87	70-130	2	0-25	

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 5540C (M)

 Project: CG Roxane
 Page 6 of 9

Quality Control Sample ID	Туре	Ma	atrix I	nstrument	Date Prepared	Date Analy	yzed	MS/MSD Bat	tch Number
MW-09-10-062415	Sample	Sc	olid (JV 9	06/25/15	06/25/15 1	5:57	F0625SURS	2
MW-09-10-062415	Matrix Spike	Sc	olid (JV 9	06/25/15	06/25/15 1	5:57	F0625SURS	2
MW-09-10-062415	Matrix Spike Du	plicate Sc	olid (JV 9	06/25/15	06/25/15 1	5:57	F0625SURS	2
Parameter	Sample S Conc. A	Spike MS Added Cor	MS nc. %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
MBAS	ND 1	0.00 8.60	00 86	9.000	90	70-130	5	0-25	

Geosyntec Consultants
924 Anacapa Street, Suite 4A
Santa Barbara, CA 93101-2177

Date Received:
Work Order:
Preparation:
Method:

EPA 6010B

06/25/15

15-06-1979

EPA 3050B

Project: CG Roxane	Page 7 of 9
--------------------	-------------

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	d Date Ana	lyzed	MS/MSD Ba	tch Number
MW-05-05-062315	Sample		Solid	ICP	7300	06/26/15	07/01/15	14:45	150626S02	
MW-05-05-062315	Matrix Spike		Solid	ICP	7300	06/26/15	07/01/15	14:46	150626S02	
MW-05-05-062315	Matrix Spike	Duplicate	Solid	ICP	7300	06/26/15	07/01/15	14:48	150626S02	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	18.70	75	18.42	74	50-115	1	0-20	
Arsenic	2.226	25.00	28.04	103	26.94	99	75-125	4	0-20	
Barium	11.27	25.00	38.59	109	34.67	94	75-125	11	0-20	
Beryllium	ND	25.00	26.15	105	25.39	102	75-125	3	0-20	
Cadmium	ND	25.00	25.93	104	25.53	102	75-125	2	0-20	
Chromium	0.6134	25.00	28.16	110	27.41	107	75-125	3	0-20	
Cobalt	0.6776	25.00	27.78	108	27.08	106	75-125	3	0-20	
Copper	1.532	25.00	28.07	106	27.52	104	75-125	2	0-20	
Lead	ND	25.00	26.88	108	26.35	105	75-125	2	0-20	
Molybdenum	ND	25.00	26.20	105	25.37	101	75-125	3	0-20	
Nickel	0.3801	25.00	27.25	107	26.58	105	75-125	2	0-20	
Selenium	ND	25.00	24.82	99	24.27	97	75-125	2	0-20	
Silver	ND	12.50	12.74	102	12.39	99	75-125	3	0-20	
Thallium	ND	25.00	24.71	99	24.47	98	75-125	1	0-20	
Vanadium	2.777	25.00	29.95	109	28.56	103	75-125	5	0-20	
Zinc	6.922	25.00	33.89	108	31.58	99	75-125	7	0-20	

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-1979
Santa Barbara, CA 93101-2177
Preparation:
EPA 7471A Total
Method:
EPA 7471A

Project: CG Roxane Page 8 of 9

Quality Control Sample ID	Type		Matrix	Insti	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
MW-05-05-062315	Sample		Solid	Mer	cury 05	06/29/15	06/29/15	16:31	150629S02	
MW-05-05-062315	Matrix Spike		Solid	Mer	cury 05	06/29/15	06/29/15	16:42	150629S02	
MW-05-05-062315	Matrix Spike	Duplicate	Solid	Mer	cury 05	06/29/15	06/29/15	16:44	150629S02	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	1.033	124	1.015	122	71-137	2	0-14	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/25/15 15-06-1979 EPA 3545 EPA 8270C

Project: CG Roxane Page 9 of 9

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepare	ed Date Ana	lyzed	MS/MSD Ba	tch Number
MW-05-05-062315	Sample		Solid	GC	/MS CCC	07/07/15	07/07/15	15:21	150707S02	
MW-05-05-062315	Matrix Spike		Solid	GC	/MS CCC	07/07/15	07/07/15	14:45	150707S02	
MW-05-05-062315	Matrix Spike	Duplicate	Solid	GC	/MS CCC	07/07/15	07/07/15	15:03	150707S02	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acenaphthene	ND	10.00	7.158	72	7.249	72	34-148	1	0-20	
Acenaphthylene	ND	10.00	7.099	71	7.171	72	53-120	1	0-20	
Butyl Benzyl Phthalate	ND	10.00	7.616	76	7.774	78	15-189	2	0-20	
4-Chloro-3-Methylphenol	ND	10.00	7.021	70	7.095	71	32-120	1	0-20	
2-Chlorophenol	ND	10.00	6.710	67	7.393	74	53-120	10	0-20	
1,4-Dichlorobenzene	ND	10.00	5.522	55	6.052	61	43-120	9	0-26	
Dimethyl Phthalate	ND	10.00	7.075	71	7.047	70	44-122	0	0-20	
2,4-Dinitrotoluene	ND	10.00	7.608	76	7.603	76	28-120	0	0-20	
Fluorene	ND	10.00	7.216	72	7.244	72	12-186	0	0-20	
N-Nitroso-di-n-propylamine	ND	10.00	6.039	60	6.573	66	38-140	8	0-20	
Naphthalene	ND	10.00	6.429	64	6.866	69	20-140	7	0-20	
4-Nitrophenol	ND	10.00	5.901	59	5.079	51	14-128	15	0-59	
Pentachlorophenol	ND	10.00	6.953	70	6.261	63	10-124	10	0-20	
Phenol	ND	10.00	6.500	65	7.135	71	22-124	9	0-20	
Pyrene	ND	10.00	7.161	72	7.342	73	31-169	3	0-20	
1,2,4-Trichlorobenzene	ND	10.00	6.626	66	7.072	71	56-120	7	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation:

15-06-1979 N/A

Page 1 of 5

06/25/15

Method: EPA 9045D

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-1853-2	Sample	Solid	PH 4	06/25/15 00:00	06/25/15 16:44	F0625PHD2
15-06-1853-2	Sample Duplicate	Solid	PH 4	06/25/15 00:00	06/25/15 16:44	F0625PHD2
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
На		8.250	8.260	0	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation:

15-06-1979 N/A

06/25/15

Method: EPA 9045D Page 2 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-1854-3	Sample	Solid	PH 4	06/25/15 00:00	06/25/15 17:14	F0625PHD3
15-06-1854-3	Sample Duplicate	Solid	PH 4	06/25/15 00:00	06/25/15 17:14	F0625PHD3
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
На		8.620	8.590	0	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

15-06-1979 N/A

SM 2320B M

06/25/15

Method: Project: CG Roxane

Page 3 of 5

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-1886-1	Sample	Solid	PH1/BUR03	06/30/15 00:00	06/30/15 17:18	F0630ALKD3
15-06-1886-1	Sample Duplicate	Solid	PH1/BUR03	06/30/15 00:00	06/30/15 17:18	F0630ALKD3
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)		45.00	45.00	0	0-25	

06/25/15

N/A

15-06-1979

Quality Control - Sample Duplicate

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Date Received:

Work Order:

Preparation:

Method: SM 2540 C (M)

Project: CG Roxane Page 4 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-1885-1	Sample	Solid	N/A	06/30/15 00:00	06/30/15 17:00	F0630TDSD1
15-06-1885-1	Sample Duplicate	Solid	N/A	06/30/15 00:00	06/30/15 17:00	F0630TDSD1
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Solids, Total Dissolved		19430	20900	7	0-10	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

06/25/15 15-06-1979 N/A

SM 4500 N Org B (M)

Project: CG Roxane Page 5 of 5

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-1883-1	Sample	Solid	BUR05	06/30/15 00:00	06/30/15 14:03	F0630TKND1
15-06-1883-1	Sample Duplicate	Solid	BUR05	06/30/15 00:00	06/30/15 14:03	F0630TKND1
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Total Kjeldahl Nitrogen		9800	9968	2	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-1979 N/A

06/25/15

EPA 300.0 Page 1 of 12

Project: CG Roxane

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-922-609	LCS	Solid	IC 10	06/27/15	06/27/15 10:57	150627L01P
Parameter		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
Chloride		500.0	487.2	97	90-110	0
Sulfate		500.0	490.5	98	90-110	0

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-1979

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

SM 4500 P B/E (M)

Project: CG Roxane Page 2 of 12

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-05-001-5438	LCS	Soli	id	UV 7	06/25/15	06/2	5/15 18:00	F0625TPL1	
099-05-001-5438	LCSD	Soli	id	UV 7	06/25/15	06/2	5/15 18:00	F0625TPL1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	2.000	2.125	106	2.100	105	80-120	1	0-20	

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-1979

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

SM 4500 P B/E (M)

Project: CG Roxane Page 3 of 12

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-14-274-26	LCS	Sol	id	UV 7	06/25/15	06/2	5/15 18:00	F0625PO4L1	
099-14-274-26	LCSD	Sol	id	UV 7	06/25/15	06/2	5/15 18:00	F0625PO4L1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Total Phosphate	6.100	6.500	107	6.400	105	80-120	2	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

15-06-1979 N/A

06/25/15

SM 4500-NH3 B/C (M)

Project: CG Roxane Page 4 of 12

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	tch Number
099-12-812-799	LCS	Soli	id	BUR05	06/30/15	06/3	0/15 15:00	F0630NH3L2	
099-12-812-799	LCSD	Soli	id	BUR05	06/30/15	06/3	0/15 15:00	F0630NH3L2	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Ammonia (as N)	250.0	221.2	88	226.8	91	80-120	2	0-20	

N/A

Quality Control - LCS/LCSD

Geosyntec Consultants Date Received: 06/25/15 15-06-1979 924 Anacapa Street, Suite 4A Work Order: Preparation: Santa Barbara, CA 93101-2177

> Method: SM 4500-NO3 E (M)

Project: CG Roxane Page 5 of 12

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	Analyzed	LCS/LCSD Ba	tch Number
099-05-001-5437	LCS	Sol	id	UV 7	06/26/15	06/2	6/15 16:00	F0626NO3L1	
099-05-001-5437	LCSD	Sol	id	UV 7	06/26/15	06/2	6/15 16:00	F0626NO3L1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	2.500	2.490	100	2.510	100	80-120	1	0-20	

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 5540C (M)

 Project: CG Roxane
 Page 6 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date P	repared	Date Analyzed	LCS E	Batch Number
099-05-027-42	LCS	Solid	UV 9	06/25/1	5	06/25/15 13:54	F062	SURL1
<u>Parameter</u>		Spike Added	Conc. Recove	ered L	CS %Re	<u>c.</u> %Red	c. CL	<u>Qualifiers</u>
MBAS		10.00	8.900	8	89	80-12	0	

 Geosyntec Consultants
 Date Received:
 06/25/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-1979

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 5540C (M)

 Project: CG Roxane
 Page 7 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-05-027-43	LCS	Solid	UV 9	06/25/15	06/25/15 15:57	F0625SURL2
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
MBAS		10.00	9.000	90	80-120	0

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-1979 EPA 3050B EPA 6010B

06/25/15

Project: CG Roxane

Page 8 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepa	red Date Analyz	ed LCS Batch N	lumber
097-01-002-21368	LCS	Solid	ICP 7300	06/26/15	07/01/15 14	:27 150626L02	
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	23.31	93	80-120	73-127	
Arsenic		25.00	23.22	93	80-120	73-127	
Barium		25.00	24.75	99	80-120	73-127	
Beryllium		25.00	22.86	91	80-120	73-127	
Cadmium		25.00	24.16	97	80-120	73-127	
Chromium		25.00	25.37	101	80-120	73-127	
Cobalt		25.00	25.38	102	80-120	73-127	
Copper		25.00	24.41	98	80-120	73-127	
Lead		25.00	24.75	99	80-120	73-127	
Molybdenum		25.00	23.78	95	80-120	73-127	
Nickel		25.00	25.53	102	80-120	73-127	
Selenium		25.00	22.79	91	80-120	73-127	
Silver		12.50	12.53	100	80-120	73-127	
Thallium		25.00	22.89	92	80-120	73-127	
Vanadium		25.00	24.39	98	80-120	73-127	
Zinc		25.00	23.15	93	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec ConsultantsDate Received:06/25/15924 Anacapa Street, Suite 4AWork Order:15-06-1979Santa Barbara, CA 93101-2177Preparation:EPA 7471A TotalMethod:EPA 7471A

Project: CG Roxane Page 9 of 12

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-1405	LCS	Solid	Mercury 05	06/29/15	06/29/15 18:21	150629L02
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.9511	114	85-12	1

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-1979 EPA 3545 EPA 8270C

06/25/15

Project: CG Roxane

Page 10 of 12

Quality Control Sample ID	Туре	Matrix	Instr	ument	Date Prepared	Date Analyzed	LCS Batch Nu	ımber
099-12-549-3334	LCS	Solid	GC/I	MS CCC	07/07/15	07/07/15 12:57	150707L02	
<u>Parameter</u>		Spike Added	Conc. Recov	rered LCS	<u> %Rec.</u> <u>%F</u>	Rec. CL M	E CL	Qualifiers
Acenaphthene		10.00	8.344	83	51-	-123 39	9-135	
Acenaphthylene		10.00	8.252	83	52 -	-120 41	1-131	
Butyl Benzyl Phthalate		10.00	9.000	90	43-	-139 27	7-155	
4-Chloro-3-Methylphenol		10.00	8.057	81	55-	-121 44	4-132	
2-Chlorophenol		10.00	8.619	86	58-	-124 47	7-135	
1,4-Dichlorobenzene		10.00	7.613	76	42-	-132 27	7-147	
Dimethyl Phthalate		10.00	7.871	79	51-	-123 39	9-135	
2,4-Dinitrotoluene		10.00	8.472	85	51-	-129 38	3-142	
Fluorene		10.00	8.184	82	54-	-126 42	2-138	
N-Nitroso-di-n-propylamine		10.00	7.979	80	40-	-136 24	4-152	
Naphthalene		10.00	8.082	81	32-	-146 13	3-165	
4-Nitrophenol		10.00	5.206	52	24-	-126 7-	143	
Pentachlorophenol		10.00	6.186	62	23-	-131 5-	149	
Phenol		10.00	8.271	83	40-	-130 25	5-145	
Pyrene		10.00	8.532	85	47-	-143 31	1-159	
1,2,4-Trichlorobenzene		10.00	8.159	82	45-	-129 31	1-143	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/25/15 15-06-1979 EPA 5035 EPA 8260B

Project: CG Roxane Page 11 of 12

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-14-312-492	LCS		Solid	GC/	MS Q	06/26/15	06/26/1	15 12:00	150626L044	
099-14-312-492	LCSD		Solid	GC/	MS Q	06/26/15	06/26/1	15 12:26	150626L044	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Acetone	50.00	42.81	86	46.15	92	30-150	10-170	8	0-20	
Benzene	50.00	49.09	98	49.53	99	79-120	72-127	1	0-20	
Bromobenzene	50.00	51.98	104	52.25	104	80-120	73-127	1	0-20	
Bromochloromethane	50.00	49.66	99	50.59	101	80-120	73-127	2	0-20	
Bromodichloromethane	50.00	51.40	103	51.35	103	73-127	64-136	0	0-20	
Bromoform	50.00	43.52	87	43.43	87	55-133	42-146	0	0-20	
Bromomethane	50.00	45.38	91	54.43	109	36-144	18-162	18	0-20	
2-Butanone	50.00	49.31	99	49.03	98	56-176	36-196	1	0-20	
n-Butylbenzene	50.00	54.47	109	55.00	110	78-126	70-134	1	0-20	
sec-Butylbenzene	50.00	51.47	103	51.85	104	79-127	71-135	1	0-20	
tert-Butylbenzene	50.00	51.76	104	52.00	104	80-128	72-136	0	0-20	
Carbon Disulfide	50.00	47.21	94	46.64	93	53-125	41-137	1	0-20	
Carbon Tetrachloride	50.00	51.42	103	51.32	103	58-142	44-156	0	0-20	
Chlorobenzene	50.00	48.11	96	48.51	97	80-120	73-127	1	0-20	
Chloroethane	50.00	51.11	102	53.63	107	60-120	50-130	5	0-20	
Chloroform	50.00	49.14	98	49.17	98	80-120	73-127	0	0-20	
Chloromethane	50.00	46.62	93	52.02	104	50-122	38-134	11	0-20	
2-Chlorotoluene	50.00	49.53	99	50.12	100	80-125	72-132	1	0-20	
4-Chlorotoluene	50.00	51.02	102	51.21	102	80-120	73-127	0	0-20	
Dibromochloromethane	50.00	51.47	103	53.30	107	70-130	60-140	3	0-20	
1,2-Dibromo-3-Chloropropane	50.00	51.39	103	50.46	101	54-132	41-145	2	0-20	
1,2-Dibromoethane	50.00	49.94	100	52.35	105	80-120	73-127	5	0-20	
Dibromomethane	50.00	49.94	100	50.22	100	80-122	73-129	1	0-20	
1,2-Dichlorobenzene	50.00	48.76	98	48.56	97	80-120	73-127	0	0-20	
1,3-Dichlorobenzene	50.00	49.01	98	48.90	98	80-120	73-127	0	0-20	
1,4-Dichlorobenzene	50.00	48.19	96	48.44	97	80-120	73-127	1	0-20	
Dichlorodifluoromethane	50.00	61.72	123	64.04	128	32-158	11-179	4	0-20	
1,1-Dichloroethane	50.00	48.18	96	48.40	97	74-120	66-128	0	0-20	
1,2-Dichloroethane	50.00	50.39	101	50.99	102	79-121	72-128	1	0-20	
1,1-Dichloroethene	50.00	49.95	100	50.31	101	71-125	62-134	1	0-20	
c-1,2-Dichloroethene	50.00	51.50	103	52.38	105	80-123	73-130	2	0-20	
t-1,2-Dichloroethene	50.00	50.75	102	51.81	104	80-120	73-127	2	0-20	
1,2-Dichloropropane	50.00	51.00	102	51.21	102	77-120	70-127	0	0-20	
1,3-Dichloropropane	50.00	52.40	105	54.67	109	80-120	73-127	4	0-20	
2,2-Dichloropropane	50.00	53.06	106	52.99	106	58-142	44-156	0	0-20	
1,1-Dichloropropene	50.00	47.73	95	48.01	96	69-120	60-128	1	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

06/25/15 15-06-1979 EPA 5035 EPA 8260B

Project: CG Roxane

Page 12 of 12

<u>Parameter</u>	<u>Spike</u> Added	LCS Cond	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
c-1,3-Dichloropropene	50.00	55.88	112	56.58	113	74-128	65-137	1	0-20	
t-1,3-Dichloropropene	50.00	53.36	107	55.57	111	66-120	57-129	4	0-20	
Ethylbenzene	50.00	52.15	104	52.53	105	80-120	73-127	1	0-20	
2-Hexanone	50.00	51.75	104	51.42	103	67-151	53-165	1	0-20	
Isopropylbenzene	50.00	50.73	101	51.32	103	80-129	72-137	1	0-20	
p-Isopropyltoluene	50.00	54.21	108	54.03	108	80-122	73-129	0	0-20	
Methylene Chloride	50.00	50.26	101	51.30	103	72-120	64-128	2	0-20	
4-Methyl-2-Pentanone	50.00	50.78	102	51.23	102	72-126	63-135	1	0-20	
Naphthalene	50.00	46.25	92	45.90	92	64-124	54-134	1	0-20	
n-Propylbenzene	50.00	49.97	100	51.08	102	80-122	73-129	2	0-20	
Styrene	50.00	52.52	105	52.83	106	80-123	73-130	1	0-20	
1,1,1,2-Tetrachloroethane	50.00	53.00	106	54.50	109	73-133	63-143	3	0-20	
1,1,2,2-Tetrachloroethane	50.00	53.25	107	53.39	107	77-120	70-127	0	0-20	
Tetrachloroethene	50.00	47.74	95	49.43	99	75-123	67-131	3	0-20	
Toluene	50.00	51.55	103	51.44	103	80-120	73-127	0	0-20	
1,2,3-Trichlorobenzene	50.00	52.23	104	51.72	103	73-127	64-136	1	0-20	
1,2,4-Trichlorobenzene	50.00	52.21	104	52.17	104	74-128	65-137	0	0-20	
1,1,1-Trichloroethane	50.00	51.60	103	51.92	104	71-131	61-141	1	0-20	
1,1,2-Trichloroethane	50.00	49.07	98	51.73	103	80-120	73-127	5	0-20	
1,1,2-Trichloro-1,2,2- Trifluoroethane	50.00	50.12	100	50.15	100	77-125	69-133	0	0-20	
Trichloroethene	50.00	52.07	104	51.77	104	80-120	73-127	1	0-20	
Trichlorofluoromethane	50.00	59.30	119	58.23	116	70-136	59-147	2	0-20	
1,2,3-Trichloropropane	50.00	49.20	98	50.01	100	60-120	50-130	2	0-20	
1,2,4-Trimethylbenzene	50.00	52.51	105	51.86	104	75-123	67-131	1	0-20	
1,3,5-Trimethylbenzene	50.00	55.16	110	55.72	111	80-123	73-130	1	0-20	
Vinyl Acetate	50.00	58.95	118	60.33	121	51-159	33-177	2	0-20	
Vinyl Chloride	50.00	51.28	103	53.43	107	68-120	59-129	4	0-20	
p/m-Xylene	100.0	103.4	103	104.2	104	80-122	73-129	1	0-20	
o-Xylene	50.00	49.87	100	50.36	101	79-127	71-135	1	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	47.29	95	48.59	97	64-124	54-134	3	0-20	

Total number of LCS compounds: 66
Total number of ME compounds: 0
Total number of ME compounds allowed: 3

LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 15-06-1979				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 300.0	N/A	970	IC 10	1
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8260B	EPA 5035	905	GC/MS Q	2
EPA 8270C	EPA 3545	923	GC/MS CCC	1
EPA 9045D	N/A	688	PH 4	1
SM 2320B M	N/A	688	PH1/BUR03	1
SM 2540 C (M)	N/A	1009	N/A	1
SM 4500 N Org B (M)	N/A	685	BUR05	1
SM 4500 P B/E (M)	N/A	857	UV 7	1
SM 4500-NH3 B/C (M)	N/A	685	BUR05	1
SM 4500-NO3 E (M)	N/A	857	UV 7	1
SM 5540C (M)	N/A	687	UV 9	1
Total Nitrogen by Calc	N/A	92	N/A	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 15-06-1979 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

Χ % Recovery and/or RPD out-of-range.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Ζ

SG

Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Return to Contents

		Page 69 of 7	75
8			
RECO	54_	X X <i>X</i> X	7
TODY REC 124/15 No wa k	, H°	XXIXXI 6	
IKN STO	Cotal With the With Nights		Time:
CUS RRINT)	8.81S □ 6617 □ 6617 □ (IV)		
CHAIN-OF-CUSTODY RECORD DATE: 6/24/15 PAGE: 1 OF 1 P.O. NO.: LAB CONTACT OR QUOTE NO.: SAMPLEK(S): (PRINT) Kenjo Abustson YSES SES SES SER SES SES SES SE	X7+710≤03 □ X7+710103 □ 316)6M ≤≤	XXXXX	; ;
HAIN P.O. NO P.O. NO SAMPLE SAMPLE BES GES GES GES GES GES GES GE	MIS 07S8 □ 07S8 □ aHA		8
CHAI	SBs (8082)	Date:	Date:
CHAIN CHAIN LOG CODE: SAMPL SAMPL REQUESTED ANALYSES Proceeded.	(1808) sabicites	7,	
rTED	AOCs (8270)		
REQUESTED	rep (5035) 🗆 En Core 🗖 Terra Core		
REQUE	xygenates (8260)		
	(8260)		
15-06-197 15-06-197 SECTION OF SECTION OF SECTION OF SECTION OF SECTION SECT	□ 8260 □		
	and latel ————————————————————————————————————		
SE ONLY T NAME/ ACT: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	W VOYSVEINY WO 93 1 983 93 11 Hd	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
9 0 0 20 2	248M OND BACK		tion)
CLENT PROJECT	712 Jay/1927 OHOE COLD	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Z S S S S S S S S S S S S S S S S S S S
	belefiltered	Scelved by: (Signature/Affiliation)	red by: (Signature/Affiliation)
	релезел	MM MM MM	ed by: (
Scom or call us. ZIP: ZIP: 9 CO 9000 Syndec. com ANS KSTANDARD (12 EDD)	npreserved	Received Received Transfer and	Receiv
ALTHER STANDARD RESTANDARD	<u></u>		
ZP Z	NO. OP OF	1	
	MATRIX	1 .11	
insus or	MAT	20120	
STATE:		56 20	
Calscience 92841-1427 · (714) 895-5494 formation, contact us26_sales@eurofins enscultants Starte Starte STATE STATE STATE STATE Apply to any TAT not "STANDARD": □ 48 HR □ 72 HR □ 51 GEOSYNIC Specific Specifics		5 obrabe 1355 06/23/15 1605 06/24/15 07:40	
Calscience 841-1427 · (714) 895-6 nation, contact us26_sa secolfants Stolfants Stolfants Stolfants Stolfants F-MAIL-R SM i nivto any TAT not "STANDAR 148 HR □ 72 H RECSYNEC	SAMPLING	1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	
32 11427 (MAIL) Story TA 8 HR	, the state of the		
A 9284			
Ca Garden Grove, CA 92841-14 Is sample drop off information. San the Correct Anceres St Anceres St Rush surcharges may apply to am 124 HR 148 H MOTHER GREC			
Marke Co. 17.7.	SAMPLE ID	8-05-05-05-05-05-05-05-05-05-05-05-05-05-	inature)
Calscience incoln Way, Garden Grove, CA 92841-1427 · (714) 899 urier service / sample drop off information, contact us26_ARORY CLIENT: A Consol Park Consol Parks 35. 724 Anacopa St St 724 Anacopa St St 80. 80. 80. 80. 80. 80. 80. 80	SAMPLE ID SAMPLE ID SAMPLING SAMPLING SAMPLING SAMPLING	MW-05-05-062315 06/23/6 1355 MW-03-05-062315 06/23/15 1605 MW-08-05-062315 06/24/15 07:40 MW-09-10-062415 06/24/15 09:10 MW-09-10-062415 06/24/15 09:10 Mished by: (Signature)	by: (Sig
Calscience 7440 Lincoln Way, Garden Grove, CA 92841-1427 · (714) 895-5494 For courier service / sample drop off information, contact us26_sales@eurofinsus com or call us. LABORATORY CLIENT: ADDRESS: DDRESS: ADDRESS: A		S ANDIO STATE OF THE STATE OF T	Relinquished by: (Signature)
7440 Lino For courie LABORATO CITY TURNAROL D SAME EDD:	SPECI.		Relin

FID 488702 24JUNID TYRAL 522C1/8A0E/EE48	
	For package Fedia Express Fraignt
Express US All Div.	2 or 3 Business Days FedEx 2Day A.M. Second business morning. Saurday Delivery NOT evaluable.
Date Date Feld X TILL State Facility	FedEx 2 alternoon.* Thursday shipments Saconi and Manday unless SATURDAY
Sender's OSB Name FedEx Priority Overnul; Priority will be Next business morning. *Priority shipments will	will be since do unit
Company Com	
Address 1 24 A Capa Tipe Dept/Poor/Suite/Room Dept/Poor/Suite/Room 5 Packaging *Declared value limit \$500.	ak* Fedbx FedEx Tube
City Sunta Sunta Santara state	y Signature Options
2 Your Internal Billing Reference SATURDAY Delivery Not available for Felex Standard Overnight, Fedex	2Day A.M., or Fedex Express Indirect Signature
Name Obtaining a signaturator general to a signaturator general general to a signaturator general genera	Someone at recipients only Fee applies residential deliveries only Fee applies
Company	hipper's Declaration Dry ice, 9, UN 1845
Dept.Floor/sourial recommendations Feder Location address SISSINGED. Available DNNY for page rous goods (Including dry too) carnot be supposed in a Feder Express Drop Box.	A Fedex pauxoguis
Address	edEx Acct. No. or Credit Card No. below. Third Party Credit Card Card Card
Use this line for the HOLD location toward of the State State CA ZIP 12 Acros No. Share I Weight City Garden Garde	Crydit Card Audit
	A Company of the Comp

Calscience

Page 71 of 75 9
WORK ORDER NUMBER: 15-06- 1978 26 14/15

SAMPLE RECEIPT CHECKLIST

COOLER	Ì	OF	/

	DATE: 06 /	25/2015
	DAIE: UU /	SO I ZUIL

CLIENT: Geosyntec DA	TE: 06	<u>25</u>	/ 2015
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC2 (CF:-0.3°C); Temperature (w/o CF): 2 - 9 °C (w/ CF): 2 °C; □ Sample(s) outside temperature criteria (PM/APM contacted by:) Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: □ Air □ Filter	Blank Æ		
CUSTODY SEAL:			82,
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checke Checke		
SAMPLE CONDITION:	Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples			
COC document(s) received complete	. of		
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers	6/25/10		
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished time	-		
Sampler's name indicated on COC			
Sample container label(s) consistent with COC			
Sample container(s) intact and in good condition			
Proper containers for analyses requested	. z		
Sufficient volume/mass for analyses requested	. 🗹		
Samples received within holding time			
Aqueous samples for certain analyses received within 15-minute holding time			
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	. 🗆		
Proper preservation chemical(s) noted on COC and/or sample container	. 🖊		
Unpreserved aqueous sample(s) received for certain analyses			
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals			
Container(s) for certain analysis free of headspace	. 🗆		∠
☐ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)			
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			
Tedlar™ bag(s) free of condensation	. 🗆		Ø
CONTAINER TYPE: (Trip Blank Lot Numb	er:)
Aqueous: UVOA UVOAh UVOAna2 U100PJ U100PJna2 U125AGB U125AGB U125AGB	AGB p □	125PB	
□ 125PB znna □ 250AGB □ 250CGB □ 250CGB s □ 250PB □ 250PB n □ 500AGB □ 500AG	J 🗆 500 <i>F</i>	\GJ s	
□ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □ □ □ □	□		
Solid: ☐ 4ozCGJ	(<u> </u>		
Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ Other Matrix (): [ם		
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Re	sealable B	ag	
Preservative: $\mathbf{b} = \text{buffered}$, $\mathbf{f} = \text{filtered}$, $\mathbf{h} = \text{HCl}$, $\mathbf{n} = \text{HNO}_3$, $\mathbf{na} = \text{NaOH}$, $\mathbf{na_2} = \text{Na}_2\text{S}_2\text{O}_3$, $\mathbf{p} = \text{H}_3\text{PO}_4$, Labeled	d/Checke	ed by: _	\$12
$s = H_2SO_4$ $\mu = ultra-pure$ $znna = 7n(CH_2CO_2)_2 + NaOH$	Reviewe	d by:	SS

Subcontractor Analysis Report

Work Order: 15-06-1979 Page 1 of 1

One or more samples in this work order have tests that were subcontracted. The subcontract report(s) follows.

For subcontracted tests, please reference the laboratory information noted below.

 Truesdail Laboratories, Inc. - Irvine, CA CA ELAP 1237 Microbiology

TRUESDAIL LABORATORIES, INC.

Garden Grove, CA 92841-1432

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

3337 MICHELSON DRIVE, SUITE CN 750 IRVINE, CA 92612 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com

> Work Order No.: 15F0461

> > Printed: 07/02/2015

Client: Eurofins/Calscience 7440 Lincoln Way

Attention: Stephen Nowalk Project Name: Fecal Coliform Project Number: 15-06-1979

CASE NARRATIVE

SAMPLE RECEIPT SUMMARY

Sample ID	Laboratory ID	Matrix	Type	Date Sampled	Date Received
MW-05-05-062315	15F0461-01	Soil		06/22/2015 13:55	06/26/2015 11:30
MW-03-05-062315	15F0461-02	Soil		06/23/2015 16:05	06/26/2015 11:30
MW-08-05-062415	15F0461-03	Soil		06/24/2015 07:40	06/26/2015 11:30
MW-09-10-062415	15F0461-04	Soil		06/24/2015 09:10	06/26/2015 11:30

DEFINITIONS

Symbol	Definition
DF	Dilution Factor
MDL	Method Detection Limit
ND	Not Detected
RL	Reporting Limit

Respectfully yours,

Jeff Lee

Project Manager

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: Eurofins/Calscience

Project Name: Fecal Coliform

Project Number: 15-06-1979 Printed: 07/02/2015

MW-05-05-062315 15F0461-01 (Soil)

		15F04	461-01 (\$	Soil)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		Truesdail l	Laborato	ries,	Inc				
Microbiology									
Total Coliforms	ND	20.0	MPN/g	1	1507036	06/29/2015 16:00	PA	SM 9221 B	
Fecal Coliforms	ND	20.0	MPN/g	1	1507036	06/29/2015 16:00	PA	SM 9221 B	
		MW-0	3-05-06	2315					
		15F04	461-02 (8	Soil)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		Truesdail I	_aborato	ries,	Inc				
Microbiology									
Total Coliforms	ND	20.0	MPN/g	1	1507036	06/29/2015 16:00	PA	SM 9221 B	
Fecal Coliforms	ND	20.0	MPN/g	1	1507036	06/29/2015 16:00	PA	SM 9221 B	
		MW-0	8-05-06	2415					
		15F04	461-03 (\$	Soil)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		Truesdail I	_aborato	ries,	Inc				
Microbiology									
Total Coliforms	ND	20.0	MPN/g	1	1507036	06/29/2015 16:00	PA	SM 9221 B	
Fecal Coliforms	ND	20.0	MPN/g	1	1507036	06/29/2015 16:00	PA	SM 9221 B	
		MW-0	9-10-06	2415					
		15F04	461-04 (\$	Soil)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		Truesdail I	_aborato	ries,	Inc				
Microbiology									
Total Coliforms	ND	20.0	MPN/g	1	1507036	06/29/2015 16:00	PA	SM 9221 B	
Fecal Coliforms	ND	20.0	MPN/g	1	1507036	06/29/2015 16:00	PA	SM 9221 B	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

7440 LINCOLN WAY
GARDEN GROVE, CA 92841-1427
CAINCHE TEL: (714) 895-5494 . FAX: (714) 894-7501

O: Truesdai	Irvine
11/1	ē
771	5
5	7

CHAIN OF CUSTODY RECORD

06/26/15

DATE: PAGE:

Š L					בוני בוני	CLIENT PROJECT NAME / NUMBER	AME / NUM	ER:					P.O. NO.:			Г
Eurc	Eurofins Calscience, Inc.							15-06	15-06-1979							
7440 Lin	7440 Lincoln Way				PROJ	PROJECT CONTACT	40					+	QUOTE NO.:		i i	T
CITY:	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				T		č	-								
Gard	Garden Grove, CA 92841							Stephen Nowak	Now	ak			LAB USE DNLY	<u>*</u>		
714-8	E-MAIL	StephenNowak@eurofinsUS.com	El		SAMF	SAMPLER(S): (PRINT)	(L									
TURN.	TURNAROUND TIME SAME DAY 24 HR 48HR 72 HR	5 DAYS S	Standard						REQ	JESTE	D ANA	REQUESTED ANALYSIS				
SPECI	SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) RWQCB REPORTING RCHIVE SAMPLES UNTIL	7 7 7														
SPEC					emroìi			보는 기정무단기								
					loO lsoe								-	*****		
Ç		SAMPLING														
USE ONLY	SAMPLE ID	DATE	TIME	Matrix	*Cour							42				
	MW-05-05-062315	06/22/15	13:55	S	×											T
	MW-03-05-062315	06/23/15	16:05	S	1 X											Ī
	MW-08-05-062415	06/24/15	07:40	S	1 X											Γ
	MW-09-10-062415	06/24/15	09:10	S	1 X											T
																Г
																Ī
					_											
										1						
	*															
Reling	Relinquished by: (Signature)			Received	by / Affiliation	Received by / Affiliation: (Signature)		1			-	Date:		Time:	1,	Τ
Relind	Relinanished by Ginsalum)	(CALS	(CALSCIENCE)		10	Men	7	M), [1/2/4/4	1/3	1130An	4
	Santh Sarl			hacelved	by / Aniiiauo	received by / Aimillation: (Signature)	i.					Date:		Time:		age
	Reinquished by: (Signature)			Received	by / Affiliation	Received by / Affiliation: (Signature)						Date:		Time:		75 of
3 of 3						W	3.80	X.								7 5

Calscience

WORK ORDER NUMBER: 15-06-2190

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: CG Roxane
Attention: Ryan Smith

924 Anacapa Street

Suite 4A

Santa Barbara, CA 93101-2177

At Mouse

Approved for release on 07/08/2015 by: Stephen Nowak

Project Manager

Email your PM >

ResultLink >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: CG Roxane Work Order Number: 15-06-2190

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 300.0 Anions (Solid). 4.2 EPA 8015B (M) C6-C44 (Solid). 4.3 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.4 EPA 7471A Mercury (Solid). 4.5 EPA 8270C Semi-Volatile Organics (Solid). 4.6 EPA 8260B Volatile Organics Prep 5035 (Solid). 4.7 EPA 8260B Volatile Organics (Solid). 4.8 Combined Inorganic Tests.	8 9 11 17 18 33 43
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 Sample Duplicate. 5.3 LCS/LCSD.	49 49 61 65
6	Sample Analysis Summary	80
7	Glossary of Terms and Qualifiers	81
8	Chain-of-Custody/Sample Receipt Form	82
9	Subcontract Narrative	87
10	Subcontract -Total & Fecal Coliforms 15-06-2190.	88

Work Order Narrative

Work Order: 15-06-2190 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 06/29/15. They were assigned to Work Order 15-06-2190.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants Work Order: 15-06-2190
924 Anacapa Street, Suite 4A Project Name: CG Roxane

Santa Barbara, CA 93101-2177 PO Number:

Date/Time 06/29/15 10:00 Received:

Number of 21

Containers:

Attn: Ryan Smith

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
MW-04-05-062415	15-06-2190-1	06/24/15 12:34	5	Solid
AP-4-05-062515	15-06-2190-2	06/25/15 12:30	5	Solid
AP-4-05-062515-DUP	15-06-2190-3	06/25/15 12:30	5	Solid
MW-02-10-062515	15-06-2190-4	06/25/15 17:31	5	Solid
Soil Profile	15-06-2190-5	06/26/15 11:30	1	Solid

Detections Summary

Client: Geosyntec Consultants

Ryan Smith

Attn:

15-06-2190

924 Anacapa Street, Suite 4A

Project Name: Received:

Work Order:

CG Roxane

06/29/15

Santa Barbara, CA 93101-2177

Page 1 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-04-05-062415 (15-06-2190-1)						
Arsenic	1.11		0.735	mg/kg	EPA 6010B	EPA 3050B
Barium	9.92		0.490	mg/kg	EPA 6010B	EPA 3050B
Chromium	0.350		0.245	mg/kg	EPA 6010B	EPA 3050B
Cobalt	0.501		0.245	mg/kg	EPA 6010B	EPA 3050B
Copper	3.02		0.490	mg/kg	EPA 6010B	EPA 3050B
Vanadium	1.75		0.245	mg/kg	EPA 6010B	EPA 3050B
Zinc	5.33		0.980	mg/kg	EPA 6010B	EPA 3050B
рН	8.62	BU	0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	310		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	3690		10.0	mg/kg	SM 2540 C (M)	N/A
Phosphorus, Total	97		25	mg/kg	SM 4500 P B/E (M)	N/A
Total Phosphate	300		75	mg/kg	SM 4500 P B/E (M)	N/A
Ammonia (as N)	14		10	mg/kg	SM 4500-NH3 B/C (M)	N/A
AP-4-05-062515 (15-06-2190-2)						
Arsenic	2.95		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	16.7		0.495	mg/kg	EPA 6010B	EPA 3050B
Chromium	3.05		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	0.886		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	2.76		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	0.864		0.495	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.591		0.248	mg/kg	EPA 6010B	EPA 3050B
Nickel	0.492		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	2.52		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	10.6		0.990	mg/kg	EPA 6010B	EPA 3050B
рН	8.74	BU	0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	500		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	5000		10.0	mg/kg	SM 2540 C (M)	N/A
Phosphorus, Total	140		25	mg/kg	SM 4500 P B/E (M)	N/A
Total Phosphate	420		75	mg/kg	SM 4500 P B/E (M)	N/A
Ammonia (as N)	14		10	mg/kg	SM 4500-NH3 B/C (M)	N/A
Nitrate-Nitrite (as N)	0.54		0.50	mg/kg	SM 4500-NO3 E (M)	N/A
Total Nitrogen	0.54		0.50	mg/kg	Total Nitrogen by Calc	N/A

^{*} MDL is shown

Detections Summary

Project Name:

Client: Geosyntec Consultants

Work Order: 15-06-2190

CG Roxane

924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Received: 06/29/15

Attn: Ryan Smith

Page 2 of 3

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
AP-4-05-062515-DUP (15-06-2190-3)						
Arsenic	3.61		0.739	mg/kg	EPA 6010B	EPA 3050B
Barium	20.0		0.493	mg/kg	EPA 6010B	EPA 3050B
Chromium	2.07		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	1.22		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	3.43		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	0.496		0.493	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.259		0.246	mg/kg	EPA 6010B	EPA 3050B
Nickel	1.23		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	3.41		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	11.0		0.985	mg/kg	EPA 6010B	EPA 3050B
рН	8.47	BU	0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	540		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	7000		10.0	mg/kg	SM 2540 C (M)	N/A
Phosphorus, Total	140		25	mg/kg	SM 4500 P B/E (M)	N/A
Total Phosphate	440		75	mg/kg	SM 4500 P B/E (M)	N/A
Nitrate-Nitrite (as N)	0.61		0.50	mg/kg	SM 4500-NO3 E (M)	N/A
Total Nitrogen	0.61		0.50	mg/kg	Total Nitrogen by Calc	N/A
MW-02-10-062515 (15-06-2190-4)						
Sulfate	17		10	mg/kg	EPA 300.0	N/A
Arsenic	0.770		0.746	mg/kg	EPA 6010B	EPA 3050B
Barium	33.3		0.498	mg/kg	EPA 6010B	EPA 3050B
Chromium	1.00		0.249	mg/kg	EPA 6010B	EPA 3050B
Cobalt	2.57		0.249	mg/kg	EPA 6010B	EPA 3050B
Copper	5.19		0.498	mg/kg	EPA 6010B	EPA 3050B
Lead	0.648		0.498	mg/kg	EPA 6010B	EPA 3050B
Nickel	0.841		0.249	mg/kg	EPA 6010B	EPA 3050B
Vanadium	10.3		0.249	mg/kg	EPA 6010B	EPA 3050B
Zinc	33.0		0.995	mg/kg	EPA 6010B	EPA 3050B
рН	8.11	BU	0.01	pH units	EPA 9045D	N/A
Alkalinity, Total (as CaCO3)	100		5.0	mg/kg	SM 2320B M	N/A
Solids, Total Dissolved	9430		10.0	mg/kg	SM 2540 C (M)	N/A
Total Kjeldahl Nitrogen	63		50	mg/kg	SM 4500 N Org B (M)	N/A
Phosphorus, Total	260		50	mg/kg	SM 4500 P B/E (M)	N/A
Total Phosphate	790		150	mg/kg	SM 4500 P B/E (M)	N/A
Ammonia (as N)	11		10	mg/kg	SM 4500-NH3 B/C (M)	N/A
Nitrate-Nitrite (as N)	1.3		0.50	mg/kg	SM 4500-NO3 E (M)	N/A
Total Nitrogen	64		0.50	mg/kg	Total Nitrogen by Calc	N/A

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Work Order: 1

15-06-2190

Project Name: Received: CG Roxane 06/29/15

Attn: Ryan Smith Page 3 of 3

Client SampleID									
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>			
Soil Profile (15-06-2190-5)									
Arsenic	1.38		0.728	mg/kg	EPA 6010B	EPA 3050B			
Barium	22.8		0.485	mg/kg	EPA 6010B	EPA 3050B			
Chromium	1.92		0.243	mg/kg	EPA 6010B	EPA 3050B			
Cobalt	1.38		0.243	mg/kg	EPA 6010B	EPA 3050B			
Copper	2.83		0.485	mg/kg	EPA 6010B	EPA 3050B			
Lead	0.895		0.485	mg/kg	EPA 6010B	EPA 3050B			
Nickel	1.14		0.243	mg/kg	EPA 6010B	EPA 3050B			
Vanadium	4.23		0.243	mg/kg	EPA 6010B	EPA 3050B			
Zinc	15.5		0.971	mg/kg	EPA 6010B	EPA 3050B			

Subcontracted analyses, if any, are not included in this summary.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 EPA 300.0
 Units:
 mg/kg

 Project: CG Roxane
 Page 1 of 1
 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-05-062415	15-06-2190-1-A	06/24/15 12:34	Solid	IC 10	06/30/15	06/30/15 18:37	150630L01P
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Chloride		ND	10	0	1.00		
Sulfate		ND	1	0	1.00		

AP-4-05-062515	15-06-2190-2-A	06/25/15 12:30	Solid	IC 10	06/30/15	06/30/15 18:54	150630L01P
Parameter		Result	RI	<u>_</u>	<u>DF</u>	Qua	alifiers
Chloride		ND	10)	1.00		
Sulfate		ND	10)	1.00		

AP-4-05-062515-DUP	15-06-2190-3-A	06/25/15 12:30	Solid	IC 10	06/30/15	06/30/15 19:10	150630L01P
Parameter		Result	R	<u>L</u>	DF	Qua	alifiers
Chloride		ND	1	0	1.00		
Sulfate		ND	1	0	1.00		

MW-02-10-062515	15-06-2190-4-A	06/25/15 17:31	Solid	IC 10	06/30/15	06/30/15 19:26	150630L01P
<u>Parameter</u>		Result	R	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Chloride		ND	1	0	1.00		
Sulfate		17	1	0	1.00		

Method Blank	099-12-922-610	N/A	Solid	IC 10	06/30/15	06/30/15 14:40	150630L01P
<u>Parameter</u>		Result	RL	•	DF	Qua	<u>lifiers</u>
Chloride		ND	10		1.00		
Sulfate		ND	10		1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2190 EPA 3550B EPA 8015B (M)

06/29/15

Units:

mg/kg Page 1 of 2

Project: CG Roxane

Matrix Instrument Date Date/Time QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix II	nstrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Soil Profile	15-06-2190-5-A	06/26/15 11:30	Solid G	GC 45	06/30/15	06/30/15 17:42	150630B02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
C6		ND	4.9		1.00		
C7		ND	4.9		1.00		
C8		ND	4.9		1.00		
C9-C10		ND	4.9		1.00		
C11-C12		ND	4.9		1.00		
C13-C14		ND	4.9		1.00		
C15-C16		ND	4.9		1.00		
C17-C18		ND	4.9		1.00		
C19-C20		ND	4.9		1.00		
C21-C22		ND	4.9		1.00		
C23-C24		ND	4.9		1.00		
C25-C28		ND	4.9		1.00		
C29-C32		ND	4.9		1.00		
C33-C36		ND	4.9		1.00		
C37-C40		ND	4.9		1.00		
C41-C44		ND	4.9		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Contr</u>	ol Limits	Qualifiers		
n-Octacosane		82	61-14	! 5			

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2190 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: CG Roxane

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-1651	N/A	Solid	GC 45	06/30/15	06/30/15 15:53	150630B02
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0	0	1.00		
C7		ND	5.0	0	1.00		
C8		ND	5.0	0	1.00		
C9-C10		ND	5.0	0	1.00		
C11-C12		ND	5.0	0	1.00		
C13-C14		ND	5.0	0	1.00		
C15-C16		ND	5.0	0	1.00		
C17-C18		ND	5.0	0	1.00		
C19-C20		ND	5.0	0	1.00		
C21-C22		ND	5.0	0	1.00		
C23-C24		ND	5.0	0	1.00		
C25-C28		ND	5.0	0	1.00		
C29-C32		ND	5.0	0	1.00		
C33-C36		ND	5.0	0	1.00		
C37-C40		ND	5.0	0	1.00		
C41-C44		ND	5.0	0	1.00		
C6-C44 Total		ND	5.0	0	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
n-Octacosane		82	61	-145			

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-2190 EPA 3050B EPA 6010B

06/29/15

Units: mg/kg
Page 1 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-05-062415	15-06-2190-1-B	06/24/15 12:34	Solid	ICP 7300	06/30/15	07/02/15 19:41	150630L02
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.735	0.980		
Arsenic		1.11	(0.735	0.980		
Barium		9.92	(0.490	0.980		
Beryllium		ND	(0.245	0.980		
Cadmium		ND	(0.490	0.980		
Chromium		0.350	(0.245	0.980		
Cobalt		0.501	(0.245	0.980		
Copper		3.02	(0.490	0.980		
Lead		ND	(0.490	0.980		
Molybdenum		ND	(0.245	0.980		
Nickel		ND	(0.245	0.980		
Selenium		ND	(0.735	0.980		
Silver		ND	(0.245	0.980		
Thallium		ND	(0.735	0.980		
Vanadium		1.75	(0.245	0.980		
Zinc		5.33	(0.980	0.980		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Zinc

Date Received: Work Order: Preparation: Method:

0.990

0.990

Units:

06/29/15 15-06-2190 EPA 3050B EPA 6010B

mg/kg Page 2 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-05-062515	15-06-2190-2-B	06/25/15 12:30	Solid	ICP 7300	06/30/15	07/02/15 19:43	150630L02
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().743	0.990		
Arsenic		2.95	().743	0.990		
Barium		16.7	().495	0.990		
Beryllium		ND	().248	0.990		
Cadmium		ND	().495	0.990		
Chromium		3.05	().248	0.990		
Cobalt		0.886	().248	0.990		
Copper		2.76	().495	0.990		
Lead		0.864	().495	0.990		
Molybdenum		0.591	().248	0.990		
Nickel		0.492	().248	0.990		
Selenium		ND	().743	0.990		
Silver		ND	().248	0.990		
Thallium		ND	().743	0.990		
Vanadium		2.52	().248	0.990		

10.6

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/29/15 15-06-2190 EPA 3050B EPA 6010B

mg/kg

Project: CG Roxane

Page 3 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-05-062515-DUP	15-06-2190-3-A	06/25/15 12:30	Solid	ICP 7300	06/30/15	07/02/15 19:44	150630L02
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.739	0.985		
Arsenic		3.61	(0.739	0.985		
Barium		20.0	(0.493	0.985		
Beryllium		ND	(0.246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		2.07	(0.246	0.985		
Cobalt		1.22	(0.246	0.985		
Copper		3.43	(0.493	0.985		
Lead		0.496	(0.493	0.985		
Molybdenum		0.259	(0.246	0.985		
Nickel		1.23	(0.246	0.985		
Selenium		ND	(0.739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	(0.739	0.985		
Vanadium		3.41	(0.246	0.985		
Zinc		11.0	(0.985	0.985		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/29/15 15-06-2190 EPA 3050B

EPA 6010B mg/kg

Project: CG Roxane

Page 4 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-02-10-062515	15-06-2190-4-B	06/25/15 17:31	Solid	ICP 7300	06/30/15	07/02/15 19:50	150630L02
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND		0.746	0.995		
Arsenic		0.770		0.746	0.995		
Barium		33.3		0.498	0.995		
Beryllium		ND		0.249	0.995		
Cadmium		ND		0.498	0.995		
Chromium		1.00		0.249	0.995		
Cobalt		2.57		0.249	0.995		
Copper		5.19		0.498	0.995		
Lead		0.648		0.498	0.995		
Molybdenum		ND		0.249	0.995		
Nickel		0.841		0.249	0.995		
Selenium		ND		0.746	0.995		
Silver		ND		0.249	0.995		
Thallium		ND		0.746	0.995		
Vanadium		10.3		0.249	0.995		
Zinc		33.0		0.995	0.995		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/29/15 15-06-2190 EPA 3050B EPA 6010B

mg/kg

Project: CG Roxane

Page 5 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Soil Profile	15-06-2190-5-A	06/26/15 11:30	Solid	ICP 7300	06/30/15	07/02/15 19:52	150630L02
Parameter		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().728	0.971		
Arsenic		1.38	().728	0.971		
Barium		22.8	().485	0.971		
Beryllium		ND	(0.243	0.971		
Cadmium		ND	().485	0.971		
Chromium		1.92	(0.243	0.971		
Cobalt		1.38	(0.243	0.971		
Copper		2.83	().485	0.971		
Lead		0.895	().485	0.971		
Molybdenum		ND	(0.243	0.971		
Nickel		1.14	(0.243	0.971		
Selenium		ND	().728	0.971		
Silver		ND	(0.243	0.971		
Thallium		ND	().728	0.971		
Vanadium		4.23	(0.243	0.971		
Zinc		15.5	().971	0.971		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2190 EPA 3050B EPA 6010B

06/29/15

mg/kg

Units:

Page 6 of 6

Project: CG Roxane

Zinc

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-21365	N/A	Solid	ICP 7300	06/30/15	07/02/15 20:31	150630L02
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	C).758	1.01		
Arsenic		ND	C).758	1.01		
Barium		ND	C	.505	1.01		
Beryllium		ND	C	0.253	1.01		
Cadmium		ND	C	.505	1.01		
Chromium		ND	C	0.253	1.01		
Cobalt		ND	C	0.253	1.01		
Copper		ND	C	.505	1.01		
Lead		ND	C	.505	1.01		
Molybdenum		ND	C	0.253	1.01		
Nickel		ND	C	0.253	1.01		
Selenium		ND	C).758	1.01		
Silver		ND	C	0.253	1.01		
Thallium		ND	C).758	1.01		
Vanadium		ND	C	.253	1.01		

1.01

1.01

ND

Analytical Report

Geosyntec Consultants			Date Re	eceived:			06/29/15
924 Anacapa Street, Suite 4A			Work O	rder:			15-06-2190
Santa Barbara, CA 93101-2177			Prepara	ition:		EP	A 7471A Total
			Method	•			EPA 7471A
			Units:				mg/kg
Project: CG Roxane						Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-05-062415	15-06-2190-1-B	06/24/15 12:34	Solid	Mercury 05	06/30/15	07/01/15 14:53	150630L11
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
AP-4-05-062515	15-06-2190-2-B	06/25/15 12:30	Solid	Mercury 05	06/30/15	07/01/15 14:55	150630L11
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0862	1.00		
AP-4-05-062515-DUP	15-06-2190-3-A	06/25/15 12:30	Solid	Mercury 05	06/30/15	07/01/15 14:57	150630L11
Parameter		Result		RL	DF	Qua	alifiers
Mercury		ND		0.0794	1.00		
MW-02-10-062515	15-06-2190-4-B	06/25/15 17:31	Solid	Mercury 05	06/30/15	07/01/15 15:00	150630L11
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0877	1.00		
Soil Profile	15-06-2190-5-A	06/26/15 11:30	Solid	Mercury 05	06/30/15	07/01/15 15:06	150630L11
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0794	1.00		
Method Blank	099-16-272-1417	N/A	Solid	Mercury 05	06/30/15	07/01/15 14:24	150630L11
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-2190 EPA 3545 EPA 8270C mg/kg

Page 1 of 15

06/29/15

Units:

MW-04-05-062415 15-06-2190-1-A 06/24/15 Solid GC/MS CCC 06/30/15 07/01/15 1506 12:34 21:28	30L02
Parameter Result RL DF Qualifiers	
Acenaphthene ND 0.50 1.00	
Acenaphthylene ND 0.50 1.00	
Aniline ND 0.50 1.00	
Anthracene ND 0.50 1.00	
Azobenzene ND 0.50 1.00	
Benzidine ND 10 1.00	
Benzo (a) Anthracene ND 0.50 1.00	
Benzo (a) Pyrene ND 0.50 1.00	
Benzo (b) Fluoranthene ND 0.50 1.00	
Benzo (g,h,i) Perylene ND 0.50 1.00	
Benzo (k) Fluoranthene ND 0.50 1.00	
Benzoic Acid ND 2.5 1.00	
Benzyl Alcohol ND 0.50 1.00	
Bis(2-Chloroethoxy) Methane ND 0.50 1.00	
Bis(2-Chloroethyl) Ether ND 2.5 1.00	
Bis(2-Chloroisopropyl) Ether ND 0.50 1.00	
Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00	
4-Bromophenyl-Phenyl Ether ND 0.50 1.00	
Butyl Benzyl Phthalate ND 0.50 1.00	
4-Chloro-3-Methylphenol ND 0.50 1.00	
4-Chloroaniline ND 0.50 1.00	
2-Chloronaphthalene ND 0.50 1.00	
2-Chlorophenol ND 0.50 1.00	
4-Chlorophenyl-Phenyl Ether ND 0.50 1.00	
Chrysene ND 0.50 1.00	
Di-n-Butyl Phthalate ND 0.50 1.00	
Di-n-Octyl Phthalate ND 0.50 1.00	
Dibenz (a,h) Anthracene ND 0.50 1.00	
Dibenzofuran ND 0.50 1.00	
1,2-Dichlorobenzene ND 0.50 1.00	
1,3-Dichlorobenzene ND 0.50 1.00	
1,4-Dichlorobenzene ND 0.50 1.00	
3,3'-Dichlorobenzidine ND 10 1.00	
2,4-Dichlorophenol ND 0.50 1.00	
Diethyl Phthalate ND 0.50 1.00	

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 2 of 15

Project: CG Roxane				Page 2 of 15
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	73	27-120		

Geosyntec Consultants	Date Received:	06/29/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-2190
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 3 of 15

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	76	25-120	
Nitrobenzene-d5	67	33-123	
p-Terphenyl-d14	77	27-159	
Phenol-d6	78	26-122	
2,4,6-Tribromophenol	82	18-138	
	-	_	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-06-2190 EPA 3545 EPA 8270C mg/kg

06/29/15

Project: CG Roxane

Page 4 of 15

Parameter Result RL DE Qualifiers	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acenaphthene ND 0.50 1.00 Acenaphthylene ND 0.50 1.00 Acenaphthylene ND 0.50 1.00 Annine ND 0.50 1.00 Annine ND 0.50 1.00 Annine ND 0.50 1.00 Annine ND 0.50 1.00 Azobanzene ND 0.50 1.00 Benzolarene ND 0.50 1.00 Benzolaren	AP-4-05-062515	15-06-2190-2-A		Solid	GC/MS CCC	06/30/15	07/01/15 21:46	150630L02
Acanaphthylene ND 0.50 1.00 Anilline ND 0.50 1.00 Anilline ND 0.50 1.00 Anilline ND 0.50 1.00 Aranthracene ND 0.50 1.00 Benzidine ND 0.50 1.00 Benzidine ND 10 1.00 Benzidine ND 10 0.50 1.00 Benzidine ND 0.50 1.00 Benzidine ND 0.50 1.00 Benzid (a) Pyrene ND 0.50 1.00 Benzid (a) Pyrene ND 0.50 1.00 Benzid (b) Fluoranthene ND 0.50 1.00 Benzid (b), i) Perylene ND 0.50 1.00 Benzid (b), i) Perylene ND 0.50 1.00 Benzid (b), ii Perylene ND 0.50 1.00 Benzid (b), ii Perylene ND 0.50 1.00 Benzid (c), ii Perylene ND 0.50 1.00 Benzid (c), ii Perylene ND 0.50 1.00 Benzid (b), ii Perylene ND 0.50 1.00 Benzid (c), ii Perylene ND 0.50 1.00 Bis(2-Chlorosthoxy) Methane ND 0.50 1.00 Bis(2-Chlorosthoxy) Methane ND 0.50 1.00 Bis(2-Chlorosthoxy) Pether ND 0.50 1.00 Bis(2-Chlorosthoxy) Pether ND 0.50 1.00 Bis(2-Chlorosthoxy) Pether ND 0.50 1.00 Chrysene ND 0.50 1.00 Chrysene ND 0.50 1.00 Chrysene ND 0.50 1.00 Din-Butyl Phthalate ND 0.50 1.00 Din-Dutyl	Parameter		Result	RI	=	<u>DF</u>	Qua	<u>llifiers</u>
Aniline ND 0.50 1.00 Anithracene ND 0.50 1.00 Anithracene ND 0.50 1.00 Anithracene ND 0.50 1.00 Benzolar ND 0.50 1.00 Benzolar ND 10 1.00 Benzolar ND 10 1.00 Benzolar ND 1.00 Benzolar ND 0.50 1.00 B	Acenaphthene		ND	0.	50	1.00		
Anthracene ND 0.50 1.00 Azobenzene ND 0.50 1.00 Azobenzene ND 0.50 1.00 Benzo (a) Anthracene ND 0.50 1.00 1.00 Benzo (a) Anthracene ND 0.50 1.00 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (c), i) Perylene ND 0.50 1.00 Benzo (c), ii Perylene ND 0.50 1.00 Benzo (c), ii Perylene ND 0.50	Acenaphthylene		ND	0.	50	1.00		
Azobenzene ND 0.50 1.00 Benzidine ND 10 1.00 Benzidine ND 0.50 1.00 Benzid (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 Butyl	Aniline		ND	0.	50	1.00		
Benzicline ND 10 1.00 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g.h.i) Perylene Perylene Perylene Perylene Perylene Perylene	Anthracene		ND	0.	50	1.00		
Benzo (a) Anthracene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (b, I) Fluoranthene ND 0.50 1.00 Benzo (k), I) Perylene ND 0.50 1.00 Benzoic (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 0.50 1.00 Benzol Alcohol ND 0.50 1.00 Benzol Alcohol ND 0.50 1.00 Bisi(2-Chloroethoxy) Methane ND 0.50 1.00 Bisi(2-Chloroethyl) Ether ND 0.50 1.00 Bisi(2-Chlorospyl) Ether ND 0.50 1.00 Bisi(2-Chlorospyl) Phenyl Ether ND 0.50 1.00 Buyl Benzyl Phthalate ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether <td< td=""><td>Azobenzene</td><td></td><td>ND</td><td>0.</td><td>50</td><td>1.00</td><td></td><td></td></td<>	Azobenzene		ND	0.	50	1.00		
Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzolic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bisi(2-Chloroethyx) Methane ND 0.50 1.00 Bisi(2-Chloroethyy) Ether ND 0.50 1.00 Bisi(2-Chlorospropyl) Ether ND 0.50 1.00 Bisi(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Dhr-Buyl Phthalate ND<	Benzidine		ND	10)	1.00		
Benzo (b) Fluoranthene ND 0.50 1.00	Benzo (a) Anthracene		ND	0.	50	1.00		
Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzo (Acid ND 0.50 1.00 Benzyl Alcohol ND 0.50 1.00 Bis (2-Chloroethoxy) Methane ND 0.50 1.00 Bis (2-Chloroethyl) Ether ND 0.50 1.00 Bis (2-Chloroispropyl) Ether ND 0.50 1.00 Bis (2-Chlorospropyl) Ether ND 0.50 1.00 Bis (2-Chlorosphenyl-Phenyl Ether ND 0.50 1.00 4-Chlorosphand Phenyl Ether ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chloro	Benzo (a) Pyrene		ND	0.	50	1.00		
Benzo (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bisi(2-Chloroethxy) Methane ND 0.50 1.00 Bisi(2-Chloroethyr) Ether ND 0.50 1.00 Bis(2-Chlorospropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Dutyl Phthalate ND	Benzo (b) Fluoranthene		ND	0.	50	1.00		
Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Benzyl Alcohol ND 0.50 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyrl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Pithalate ND 0.50 1.00 Bis(2-Ethylhexyl) Pithalate ND 0.50 1.00 Bis(2-Ethylhexyl) Pithalate ND 0.50 1.00 A-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 A-Chloro-3-Methylphenol ND 0.50 1.00 A-Chloro-3-Methylphenol ND 0.50 1.00 A-Chloroaniline ND 0.50 1.00 A-Chloroaniline ND 0.50 1.00 A-Chlorophenol ND 0.50 1.00 A-Chlorophenol ND 0.50 1.00 A-Chlorophenyl-Phenyl Ether ND 0.50 1.00 A-Chlorop	Benzo (g,h,i) Perylene		ND	0.	50	1.00		
Benzyl Alcohol ND 0.50 1.00	Benzo (k) Fluoranthene		ND	0.	50	1.00		
Bis(2-Chloroethoxy) Methane ND 0.50 1.00	Benzoic Acid		ND	2.	5	1.00		
Bis(2-Chloroethyl) Ether ND 2.5 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 C-Ethylhexyl) Phthalate ND 0.50 1.00 C-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 C-Chloro-3-Methylphenol ND 0.50 1.00 C-Chloroaphthalene ND 0.50 1.00 C-Chloroaphthalene ND 0.50 1.00 C-Chlorophenol ND 0.50 1.00 C-Chlorophenol ND 0.50 1.00 C-Chlorophenyl-Phenyl Ether ND 0.50 1.00 C-Chlorophenyl-Phenyl Ether ND 0.50 1.00 C-Chlorophenyl-Phthalate ND 0.50 1.00 C-Chysene ND 0.50 1.00 C-Chyl Phthalate ND 0.50 1	Benzyl Alcohol		ND	0.	50	1.00		
Bis(2-Chloroisopropyl) Ether ND 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 4-Bromophenyl-Phenyl Ether ND 0.50 1.00 Butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloro-a-Methylphenol ND 0.50 1.00 4-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Din-Butyl Phthalate ND 0.50 1.00 Din-Dityl Phthalate ND 0.50 1.00 Din-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenze	Bis(2-Chloroethoxy) Methane		ND	0.	50	1.00		
Bis(2-Ethylhexyl) Phthalate	Bis(2-Chloroethyl) Ether		ND	2.	5	1.00		
4-Bromophenyl-Phenyl Ether ND 0.50 1.00 8-butyl Benzyl Phthalate ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 2-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 Dibenzofura	Bis(2-Chloroisopropyl) Ether		ND	0.	50	1.00		
Butyl Benzyl Phthalate ND 0.50 1.00	Bis(2-Ethylhexyl) Phthalate		ND	0.	50	1.00		
A-Chloro-3-Methylphenol ND 0.50 1.00 A-Chloro-3-Methylphenol ND 0.50 1.00 A-Chloroaphthalene ND 0.50 1.00 A-Chlorophenol ND 0.50 1.00 A-Chlorophenol ND 0.50 1.00 A-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz furan ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 A-Chlorobenzene ND 0.50 1.00 A-Chlorophenol ND 0.50 1.00 A-Chl	4-Bromophenyl-Phenyl Ether		ND	0.	50	1.00		
A-Chloroaniline A-Chloroaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Cytyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenz furan ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 Disenzofuran ND 0.50 0.50 0.50 0.50	Butyl Benzyl Phthalate		ND	0.	50	1.00		
2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 0.50 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Chloro-3-Methylphenol		ND	0.	50	1.00		
2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Chloroaniline		ND	0.	50	1.00		
A-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1.00 1.2-Dichlorobenzene ND 0.50 1.00 1.00 1.4-Dichlorobenzene ND 0.50 1.00 1.00 1.3-Dichlorobenzene ND 0.50 1.00 1.00 1.4-Dichlorobenzene ND 0.50 1.00	2-Chloronaphthalene		ND	0.	50	1.00		
Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	2-Chlorophenol		ND	0.	50	1.00		
Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	4-Chlorophenyl-Phenyl Ether		ND	0.	50	1.00		
Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Chrysene		ND	0.	50	1.00		
Dibenz (a,h) Anthracene ND 0.50 1.00 Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Di-n-Butyl Phthalate		ND	0.	50	1.00		
Dibenzofuran ND 0.50 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Di-n-Octyl Phthalate		ND	0.	50	1.00		
1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Dibenz (a,h) Anthracene		ND	0.	50	1.00		
1,3-Dichlorobenzene ND 0.50 1.00 1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	Dibenzofuran		ND	0.	50	1.00		
1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	1,2-Dichlorobenzene					1.00		
1,4-Dichlorobenzene ND 0.50 1.00 3,3'-Dichlorobenzidine ND 10 1.00 2,4-Dichlorophenol ND 0.50 1.00	1,3-Dichlorobenzene		ND	0.	50	1.00		
2,4-Dichlorophenol ND 0.50 1.00	1,4-Dichlorobenzene							
2,4-Dichlorophenol ND 0.50 1.00	3,3'-Dichlorobenzidine		ND					
	2,4-Dichlorophenol							
Distribution IND 0.00 1.00	Diethyl Phthalate		ND	0.	50	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 5 of 15

Project: CG Roxane				Page 5 of 15
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	75	27-120		

Geosyntec Consultants	Date Received:	06/29/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-2190
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 6 of 15

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	77	25-120	
Nitrobenzene-d5	69	33-123	
p-Terphenyl-d14	81	27-159	
Phenol-d6	79	26-122	
2,4,6-Tribromophenol	84	18-138	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-06-2190 EPA 3545 EPA 8270C mg/kg

06/29/15

Project: CG Roxane

Page 7 of 15

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-05-062515-DUP	15-06-2190-3-A	06/25/15 12:30	Solid	GC/MS CCC	06/30/15	07/01/15 22:04	150630L02
<u>Parameter</u>		Result	RI	=	<u>DF</u>	Qua	<u>lifiers</u>
Acenaphthene		ND	0.9	50	1.00		
Acenaphthylene		ND	0.9	50	1.00		
Aniline		ND	0.9	50	1.00		
Anthracene		ND	0.9	50	1.00		
Azobenzene		ND	0.9	50	1.00		
Benzidine		ND	10)	1.00		
Benzo (a) Anthracene		ND	0.9	50	1.00		
Benzo (a) Pyrene		ND	0.9	50	1.00		
Benzo (b) Fluoranthene		ND	0.9	50	1.00		
Benzo (g,h,i) Perylene		ND	0.9	50	1.00		
Benzo (k) Fluoranthene		ND	0.9	50	1.00		
Benzoic Acid		ND	2.	5	1.00		
Benzyl Alcohol		ND	0.9	50	1.00		
Bis(2-Chloroethoxy) Methane		ND	0.9	50	1.00		
Bis(2-Chloroethyl) Ether		ND	2.	5	1.00		
Bis(2-Chloroisopropyl) Ether		ND	0.9	50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	0.9	50	1.00		
4-Bromophenyl-Phenyl Ether		ND	0.9	50	1.00		
Butyl Benzyl Phthalate		ND	0.9	50	1.00		
4-Chloro-3-Methylphenol		ND	0.9	50	1.00		
4-Chloroaniline		ND	0.9	50	1.00		
2-Chloronaphthalene		ND	0.9	50	1.00		
2-Chlorophenol		ND	0.9	50	1.00		
4-Chlorophenyl-Phenyl Ether		ND	0.9	50	1.00		
Chrysene		ND	0.9	50	1.00		
Di-n-Butyl Phthalate		ND	0.9	50	1.00		
Di-n-Octyl Phthalate		ND	0.9	50	1.00		
Dibenz (a,h) Anthracene		ND	0.9	50	1.00		
Dibenzofuran		ND	0.9	50	1.00		
1,2-Dichlorobenzene		ND	0.9	50	1.00		
1,3-Dichlorobenzene		ND	0.9		1.00		
1,4-Dichlorobenzene		ND	0.9		1.00		
3,3'-Dichlorobenzidine		ND	10		1.00		
2,4-Dichlorophenol		ND	0.9		1.00		
Diethyl Phthalate		ND	0.9	50	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 8 of 15

Project: CG Roxane				Page 8 of 15
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	87	27-120		

Geosyntec Consultants	Date Received:	06/29/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-2190
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 9 of 15

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	91	25-120	
Nitrobenzene-d5	79	33-123	
p-Terphenyl-d14	92	27-159	
Phenol-d6	93	26-122	
2,4,6-Tribromophenol	88	18-138	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2190 EPA 3545 EPA 8270C

06/29/15

mg/kg

Units:

Page 10 of 15

Project: CG Roxane

Date/Time QC Batch ID Date/Time Client Sample Number Lab Sample Matrix Instrument Date Prepared Number Collected Analyzed 07/01/15 22:22 06/25/15 17:31 MW-02-10-062515 15-06-2190-4-A Solid **GC/MS CCC** 06/30/15 150630L02 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers Acenaphthene ND 0.50 1.00 ND 0.50 1.00 Acenaphthylene ND Aniline 0.50 1.00 Anthracene ND 0.50 1.00 Azobenzene ND 0.50 1.00 Benzidine ND 10 1.00 Benzo (a) Anthracene ND 0.50 1.00 Benzo (a) Pyrene ND 0.50 1.00 Benzo (b) Fluoranthene ND 0.50 1.00 Benzo (g,h,i) Perylene ND 0.50 1.00 Benzo (k) Fluoranthene ND 0.50 1.00 Benzoic Acid ND 2.5 1.00 Benzyl Alcohol ND 0.50 1.00 Bis(2-Chloroethoxy) Methane ND 0.50 1.00 Bis(2-Chloroethyl) Ether ND 2.5 1.00 ND Bis(2-Chloroisopropyl) Ether 0.50 1.00 Bis(2-Ethylhexyl) Phthalate ND 0.50 1.00 ND 4-Bromophenyl-Phenyl Ether 0.50 1.00 **Butyl Benzyl Phthalate** ND 0.50 1.00 4-Chloro-3-Methylphenol ND 0.50 1.00 4-Chloroaniline ND 0.50 1.00 2-Chloronaphthalene ND 0.50 1.00 2-Chlorophenol ND 0.50 1.00 4-Chlorophenyl-Phenyl Ether ND 0.50 1.00 Chrysene ND 0.50 1.00 Di-n-Butyl Phthalate ND 0.50 1.00 Di-n-Octyl Phthalate ND 0.50 1.00 Dibenz (a,h) Anthracene ND 0.50 1.00 ND 0.50 Dibenzofuran 1.00 1,2-Dichlorobenzene ND 0.50 1.00 1,3-Dichlorobenzene ND 0.50 1.00 ND 0.50 1.00 1,4-Dichlorobenzene

RL: Reporting Limit.

3,3'-Dichlorobenzidine

2,4-Dichlorophenol

Diethyl Phthalate

DF: Dilution Factor.

MDL: Method Detection Limit.

10

0.50

0.50

1.00

1.00

1.00

ND

ND

ND

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 11 of 15

Project: CG Roxane				Page 11 of 15
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	66	27-120		

Geosyntec Consultants	Date Received:	06/29/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-2190
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 12 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	70	25-120	
Nitrobenzene-d5	63	33-123	
p-Terphenyl-d14	71	27-159	
Phenol-d6	72	26-122	
2,4,6-Tribromophenol	72	18-138	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-06-2190 EPA 3545 EPA 8270C mg/kg

06/29/15

Project: CG Roxane

Page 13 of 15

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-549-3330	N/A	Solid	GC/MS CCC	06/30/15	07/01/15 15:25	150630L02
Parameter		Result	E	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Acenaphthene		ND	0	.50	1.00		
Acenaphthylene		ND	0	.50	1.00		
Aniline		ND	0	.50	1.00		
Anthracene		ND	0	.50	1.00		
Azobenzene		ND	0	.50	1.00		
Benzidine		ND	1	0	1.00		
Benzo (a) Anthracene		ND	0	.50	1.00		
Benzo (a) Pyrene		ND	0	.50	1.00		
Benzo (b) Fluoranthene		ND	0	.50	1.00		
Benzo (g,h,i) Perylene		ND	0	.50	1.00		
Benzo (k) Fluoranthene		ND	0	.50	1.00		
Benzoic Acid		ND	2	5	1.00		
Benzyl Alcohol		ND	0	.50	1.00		
Bis(2-Chloroethoxy) Methane		ND	0	.50	1.00		
Bis(2-Chloroethyl) Ether		ND	2	5	1.00		
Bis(2-Chloroisopropyl) Ether		ND	0	.50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	0	.50	1.00		
4-Bromophenyl-Phenyl Ether		ND	0	.50	1.00		
Butyl Benzyl Phthalate		ND	0	.50	1.00		
4-Chloro-3-Methylphenol		ND	0	.50	1.00		
4-Chloroaniline		ND	0	.50	1.00		
2-Chloronaphthalene		ND	0	.50	1.00		
2-Chlorophenol		ND	0	.50	1.00		
4-Chlorophenyl-Phenyl Ether		ND	0	.50	1.00		
Chrysene		ND	0	.50	1.00		
Di-n-Butyl Phthalate		ND	0	.50	1.00		
Di-n-Octyl Phthalate		ND	0	.50	1.00		
Dibenz (a,h) Anthracene		ND	0	.50	1.00		
Dibenzofuran		ND	0	.50	1.00		
1,2-Dichlorobenzene		ND	0	.50	1.00		
1,3-Dichlorobenzene		ND	0	.50	1.00		
1,4-Dichlorobenzene		ND	0	.50	1.00		
3,3'-Dichlorobenzidine		ND	1	0	1.00		
2,4-Dichlorophenol		ND	0	.50	1.00		
Diethyl Phthalate		ND	0	.50	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3545

 Method:
 EPA 8270C

 Units:
 mg/kg

 Project: CG Roxane
 Page 14 of 15

Project: CG Roxane				Page 14 of 15
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	76	27-120		

Geosyntec Consultants	Date Received:	06/29/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-2190
Santa Barbara, CA 93101-2177	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: CG Roxane		Page 15 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorophenol	80	25-120	
Nitrobenzene-d5	75	33-123	
p-Terphenyl-d14	79	27-159	
Phenol-d6	81	26-122	
2,4,6-Tribromophenol	75	18-138	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-06-2190 EPA 5035 EPA 8260B

06/29/15

ug/kg

Project: CG Roxane

Page 1 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-05-062415	15-06-2190-1-D	06/24/15 12:34	Solid	GC/MS BB	06/24/15	06/30/15 14:52	150630L008
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	51		1.00		
Benzene		ND	1.0)	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	2.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	5.1		1.00		
Bromomethane		ND	20		1.00		
2-Butanone		ND	20		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	1.0)	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	2.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	20		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	2.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.1		1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	2.0)	1.00		
1,1-Dichloroethane		ND	1.0		1.00		
1,2-Dichloroethane		ND	1.0)	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0		1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	5.1		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 2 of 10

Project: CG Roxane				Page 2 of 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	2.0	1.00	
c-1,3-Dichloropropene	ND	1.0	1.00	
t-1,3-Dichloropropene	ND	2.0	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	20	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	20	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	2.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	2.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	2.0	1.00	
1,2,4-Trichlorobenzene	ND	2.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
Trichloroethene	ND	2.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	2.0	1.00	
1,2,4-Trimethylbenzene	ND	2.0	1.00	
1,3,5-Trimethylbenzene	ND	2.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	1.0	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	101	77-120		
Dibromofluoromethane	103	80-123		
1,2-Dichloroethane-d4	100	79-139		
Toluene-d8	99	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2190 EPA 5035 EPA 8260B

Units: ug/kg
Page 3 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-05-062515	15-06-2190-2-D	06/25/15 12:30	Solid	GC/MS BB	06/25/15	06/30/15 15:20	150630L008
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	61		1.00		
Benzene		ND	1.2	!	1.00		
Bromobenzene		ND	1.2	!	1.00		
Bromochloromethane		ND	2.4		1.00		
Bromodichloromethane		ND	1.2	!	1.00		
Bromoform		ND	6.1		1.00		
Bromomethane		ND	24		1.00		
2-Butanone		ND	24		1.00		
n-Butylbenzene		ND	1.2	!	1.00		
sec-Butylbenzene		ND	1.2	!	1.00		
tert-Butylbenzene		ND	1.2	!	1.00		
Carbon Disulfide		ND	12		1.00		
Carbon Tetrachloride		ND	1.2	!	1.00		
Chlorobenzene		ND	1.2	!	1.00		
Chloroethane		ND	2.4	ļ	1.00		
Chloroform		ND	1.2	!	1.00		
Chloromethane		ND	24		1.00		
2-Chlorotoluene		ND	1.2	!	1.00		
4-Chlorotoluene		ND	1.2	!	1.00		
Dibromochloromethane		ND	2.4	ļ	1.00		
1,2-Dibromo-3-Chloropropane		ND	6.1		1.00		
1,2-Dibromoethane		ND	1.2	!	1.00		
Dibromomethane		ND	1.2	!	1.00		
1,2-Dichlorobenzene		ND	1.2	<u>.</u>	1.00		
1,3-Dichlorobenzene		ND	1.2	!	1.00		
1,4-Dichlorobenzene		ND	1.2	<u>.</u>	1.00		
Dichlorodifluoromethane		ND	2.4	}	1.00		
1,1-Dichloroethane		ND	1.2	!	1.00		
1,2-Dichloroethane		ND	1.2	<u>.</u>	1.00		
1,1-Dichloroethene		ND	1.2		1.00		
c-1,2-Dichloroethene		ND	1.2		1.00		
t-1,2-Dichloroethene		ND	1.2		1.00		
1,2-Dichloropropane		ND	1.2		1.00		
1,3-Dichloropropane		ND	1.2		1.00		
2,2-Dichloropropane		ND	6.1		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 4 of 10

Project: CG Roxane				Page 4 of 10
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	2.4	1.00	
c-1,3-Dichloropropene	ND	1.2	1.00	
t-1,3-Dichloropropene	ND	2.4	1.00	
Ethylbenzene	ND	1.2	1.00	
2-Hexanone	ND	24	1.00	
Isopropylbenzene	ND	1.2	1.00	
p-Isopropyltoluene	ND	1.2	1.00	
Methylene Chloride	ND	12	1.00	
4-Methyl-2-Pentanone	ND	24	1.00	
Naphthalene	ND	12	1.00	
n-Propylbenzene	ND	2.4	1.00	
Styrene	ND	1.2	1.00	
1,1,1,2-Tetrachloroethane	ND	1.2	1.00	
1,1,2,2-Tetrachloroethane	ND	2.4	1.00	
Tetrachloroethene	ND	1.2	1.00	
Toluene	ND	1.2	1.00	
1,2,3-Trichlorobenzene	ND	2.4	1.00	
1,2,4-Trichlorobenzene	ND	2.4	1.00	
1,1,1-Trichloroethane	ND	1.2	1.00	
1,1,2-Trichloroethane	ND	1.2	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	12	1.00	
Trichloroethene	ND	2.4	1.00	
Trichlorofluoromethane	ND	12	1.00	
1,2,3-Trichloropropane	ND	2.4	1.00	
1,2,4-Trimethylbenzene	ND	2.4	1.00	
1,3,5-Trimethylbenzene	ND	2.4	1.00	
Vinyl Acetate	ND	12	1.00	
Vinyl Chloride	ND	1.2	1.00	
p/m-Xylene	ND	2.4	1.00	
o-Xylene	ND	1.2	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.4	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	100	77-120		
Dibromofluoromethane	102	80-123		
1,2-Dichloroethane-d4	99	79-139		
Toluene-d8	99	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

06/29/15 15-06-2190 EPA 5035 **EPA 8260B**

Units:

ug/kg Page 5 of 10

Project: CG Roxane

Date/Time Matrix Instrument Date/Time QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-05-062515-DUP	15-06-2190-3-C	06/25/15 12:30	Solid	GC/MS BB	06/25/15	06/30/15 15:49	150630L008
Parameter		Result	E	<u>L</u>	<u>DF</u>	Qua	alifiers
Acetone		ND	4	3	1.00		
Benzene		ND	0	.85	1.00		
Bromobenzene		ND	0	.85	1.00		
Bromochloromethane		ND	1	.7	1.00		
Bromodichloromethane		ND	0	.85	1.00		
Bromoform		ND	4	.3	1.00		
Bromomethane		ND	1	7	1.00		
2-Butanone		ND	1	7	1.00		
n-Butylbenzene		ND	0	.85	1.00		
sec-Butylbenzene		ND	0	.85	1.00		
tert-Butylbenzene		ND	0	.85	1.00		
Carbon Disulfide		ND	8	.5	1.00		
Carbon Tetrachloride		ND	0	.85	1.00		
Chlorobenzene		ND	0	.85	1.00		
Chloroethane		ND	1	.7	1.00		
Chloroform		ND	0	.85	1.00		
Chloromethane		ND	1	7	1.00		
2-Chlorotoluene		ND	0	.85	1.00		
4-Chlorotoluene		ND	0	.85	1.00		
Dibromochloromethane		ND	1	.7	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	.3	1.00		
1,2-Dibromoethane		ND	0	.85	1.00		
Dibromomethane		ND	0	.85	1.00		
1,2-Dichlorobenzene		ND	0	.85	1.00		
1,3-Dichlorobenzene		ND	0	.85	1.00		
1,4-Dichlorobenzene		ND	0	.85	1.00		
Dichlorodifluoromethane		ND	1	.7	1.00		
1,1-Dichloroethane		ND	0	.85	1.00		
1,2-Dichloroethane		ND	0	.85	1.00		
1,1-Dichloroethene		ND		.85	1.00		
c-1,2-Dichloroethene		ND		.85	1.00		
t-1,2-Dichloroethene		ND		.85	1.00		
1,2-Dichloropropane		ND		.85	1.00		
1,3-Dichloropropane		ND		.85	1.00		
2,2-Dichloropropane		ND	4	.3	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 6 of 10

Project: CG Roxane				Page 6 of 10
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.7	1.00	
c-1,3-Dichloropropene	ND	0.85	1.00	
t-1,3-Dichloropropene	ND	1.7	1.00	
Ethylbenzene	ND	0.85	1.00	
2-Hexanone	ND	17	1.00	
Isopropylbenzene	ND	0.85	1.00	
p-Isopropyltoluene	ND	0.85	1.00	
Methylene Chloride	ND	8.5	1.00	
4-Methyl-2-Pentanone	ND	17	1.00	
Naphthalene	ND	8.5	1.00	
n-Propylbenzene	ND	1.7	1.00	
Styrene	ND	0.85	1.00	
1,1,1,2-Tetrachloroethane	ND	0.85	1.00	
1,1,2,2-Tetrachloroethane	ND	1.7	1.00	
Tetrachloroethene	ND	0.85	1.00	
Toluene	ND	0.85	1.00	
1,2,3-Trichlorobenzene	ND	1.7	1.00	
1,2,4-Trichlorobenzene	ND	1.7	1.00	
1,1,1-Trichloroethane	ND	0.85	1.00	
1,1,2-Trichloroethane	ND	0.85	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.5	1.00	
Trichloroethene	ND	1.7	1.00	
Trichlorofluoromethane	ND	8.5	1.00	
1,2,3-Trichloropropane	ND	1.7	1.00	
1,2,4-Trimethylbenzene	ND	1.7	1.00	
1,3,5-Trimethylbenzene	ND	1.7	1.00	
Vinyl Acetate	ND	8.5	1.00	
Vinyl Chloride	ND	0.85	1.00	
p/m-Xylene	ND	1.7	1.00	
o-Xylene	ND	0.85	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.7	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	102	77-120		
Dibromofluoromethane	102	80-123		
1,2-Dichloroethane-d4	96	79-139		
Toluene-d8	101	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-2190 EPA 5035 EPA 8260B

06/29/15

ug/kg

Units: ug
Page 7 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-02-10-062515	15-06-2190-4-D	06/25/15 17:31	Solid	GC/MS BB	06/25/15	06/30/15 16:18	150630L008
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Acetone		ND	57		1.00		
Benzene		ND	1.1		1.00		
Bromobenzene		ND	1.1		1.00		
Bromochloromethane		ND	2.3	;	1.00		
Bromodichloromethane		ND	1.1		1.00		
Bromoform		ND	5.7	•	1.00		
Bromomethane		ND	23		1.00		
2-Butanone		ND	23		1.00		
n-Butylbenzene		ND	1.1		1.00		
sec-Butylbenzene		ND	1.1		1.00		
tert-Butylbenzene		ND	1.1		1.00		
Carbon Disulfide		ND	11		1.00		
Carbon Tetrachloride		ND	1.1		1.00		
Chlorobenzene		ND	1.1		1.00		
Chloroethane		ND	2.3	;	1.00		
Chloroform		ND	1.1		1.00		
Chloromethane		ND	23		1.00		
2-Chlorotoluene		ND	1.1		1.00		
4-Chlorotoluene		ND	1.1		1.00		
Dibromochloromethane		ND	2.3	;	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.7	•	1.00		
1,2-Dibromoethane		ND	1.1		1.00		
Dibromomethane		ND	1.1		1.00		
1,2-Dichlorobenzene		ND	1.1		1.00		
1,3-Dichlorobenzene		ND	1.1		1.00		
1,4-Dichlorobenzene		ND	1.1		1.00		
Dichlorodifluoromethane		ND	2.3	i	1.00		
1,1-Dichloroethane		ND	1.1		1.00		
1,2-Dichloroethane		ND	1.1		1.00		
1,1-Dichloroethene		ND	1.1		1.00		
c-1,2-Dichloroethene		ND	1.1		1.00		
t-1,2-Dichloroethene		ND	1.1		1.00		
1,2-Dichloropropane		ND	1.1		1.00		
1,3-Dichloropropane		ND	1.1		1.00		
2,2-Dichloropropane		ND	5.7	•	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 8 of 10

	C.me.					
Project: CG Roxane				Page 8 of 10		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers		
1,1-Dichloropropene	ND	2.3	1.00			
c-1,3-Dichloropropene	ND	1.1	1.00			
t-1,3-Dichloropropene	ND	2.3	1.00			
Ethylbenzene	ND	1.1	1.00			
2-Hexanone	ND	23	1.00			
Isopropylbenzene	ND	1.1	1.00			
p-Isopropyltoluene	ND	1.1	1.00			
Methylene Chloride	ND	11	1.00			
4-Methyl-2-Pentanone	ND	23	1.00			
Naphthalene	ND	11	1.00			
n-Propylbenzene	ND	2.3	1.00			
Styrene	ND	1.1	1.00			
1,1,1,2-Tetrachloroethane	ND	1.1	1.00			
1,1,2,2-Tetrachloroethane	ND	2.3	1.00			
Tetrachloroethene	ND	1.1	1.00			
Toluene	ND	1.1	1.00			
1,2,3-Trichlorobenzene	ND	2.3	1.00			
1,2,4-Trichlorobenzene	ND	2.3	1.00			
1,1,1-Trichloroethane	ND	1.1	1.00			
1,1,2-Trichloroethane	ND	1.1	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11	1.00			
Trichloroethene	ND	2.3	1.00			
Trichlorofluoromethane	ND	11	1.00			
1,2,3-Trichloropropane	ND	2.3	1.00			
1,2,4-Trimethylbenzene	ND	2.3	1.00			
1,3,5-Trimethylbenzene	ND	2.3	1.00			
Vinyl Acetate	ND	11	1.00			
Vinyl Chloride	ND	1.1	1.00			
p/m-Xylene	ND	2.3	1.00			
o-Xylene	ND	1.1	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	2.3	1.00			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	101	77-120				
Dibromofluoromethane	101	80-123				
1,2-Dichloroethane-d4	98	79-139				
Toluene-d8	99	80-120				

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-2190 EPA 5035 EPA 8260B

06/29/15

ug/kg

Units:

Page 9 of 10

Method Blank 099-14-312-933 N/A Solid GC/MS B 06/30/16 Qualifiers Parameter Result RL DE Qualifiers Acetone ND 50 1.00 1.00 Bromacher ND 1.0 1.00 1.00 Bromochloromethane ND 2.0 1.00 1.00 Bromochloromethane ND 2.0 1.00 1.00 Bromochloromethane ND 2.0 1.00 1.00 Bromochromethane ND 1.0 1.00 1.00 Bromochromethane ND 1.0 1.00 1.00 Carbon Disulfide ND 1.0 1.00 1.00 Carbon Tetrachloride ND 1.0 1.00 1.00 Chiorochrame N	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acetane ND 50 1.00 Benzene ND 1.0 1.00 Bromobenzene ND 1.0 1.00 Bromochioromethane ND 2.0 1.00 Bromochichloromethane ND 1.0 1.00 Bromoform ND 2.0 1.00 Bromoform ND 20 1.00 Bromoform ND 20 1.00 Bromoform ND 20 1.00 Bromoform ND 20 1.00 Bromoform ND 1.0 1.00 Bromoform ND 1.0 1.00 Bromoform ND 1.0 1.00 Bromoform ND 1.0 1.00 Carbon Patrachlor ND 1.0 1.00 Chlorostane ND 1.0 1.00 Chlorostane ND 2.0 1.00 Chlorostane ND 2.0 1.00 Dibromochane ND	Method Blank	099-14-312-493	N/A	Solid	GC/MS BB	06/30/15	06/30/15 13:54	150630L008
Benzene ND 1.0 1.00 Bromobenzene ND 1.0 1.00 Bromoblichioromethane ND 2.0 1.00 Bromodichioromethane ND 1.0 1.00 Bromodichioromethane ND 5.0 1.00 Bromomethane ND 5.0 1.00 2-Butanone ND 20 1.00 9-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 terr-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chloroberzene ND 1.0 1.00 Chloroform ND 2.0 1.00 Chloroform ND 2.0 1.00 Chloroformathane ND 2.0 1.00 2-Chlorotoluene ND 2.0 1.00 1,2-Dishromethane ND 1.0 <th< td=""><td><u>Parameter</u></td><td></td><td>Result</td><td>RL</td><td>:</td><td><u>DF</u></td><td>Qua</td><td>alifiers</td></th<>	<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Bromobenzene ND 1.0 1.00 Bromochloromethane ND 2.0 1.00 Bromochloromethane ND 1.0 1.00 Bromochloromethane ND 5.0 1.00 Bromomethane ND 20 1.00 2-Butanone ND 1.0 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 L2-Dirbomoc-Schloropropane ND 1.0 </td <td>Acetone</td> <td></td> <td>ND</td> <td>50</td> <td></td> <td>1.00</td> <td></td> <td></td>	Acetone		ND	50		1.00		
Bromodichloromethane ND 1.0 1.00 Bromodichloromethane ND 1.0 1.00 Bromoform ND 5.0 1.00 Bromomethane ND 20 1.00 2-Butanone ND 1.0 1.00 n-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorochane ND 1.0 1.00 Chlorochane ND 1.0 1.00 Chlorochane ND 2.0 1.00 Chlorochane ND 2.0 1.00 Chlorochane ND 1.0 1.00 Chlorochane ND 1.0 1.00 Chlorochane ND 1.0 1.00 Chlorochane ND 1.0 1.00 L-2-Dibromo-3-Chloropropane ND 1.0 1.00	Benzene		ND	1.0)	1.00		
Bromodichloromethane ND 1.0 1.00 Bromoform ND 5.0 1.00 Bromomethane ND 20 1.00 2-Butlanone ND 20 1.00 n-Butlylbenzene ND 1.0 1.00 sec-Butlybenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chloroform ND 1.0 1.00 Chloroformethane ND 1.0 1.00 Chloroformethane ND 1.0 1.00 Chloroforomethane ND 1.0 1.00 L'2-Dibromo-S-Chloropropane ND 1.0 1.00 L'2-Dibromo-S-Chloropropane ND 1.0 1.00 L'2-Dibrlorobenzene ND 1.0 1.00 Dibrlorobenzene ND	Bromobenzene		ND	1.0)	1.00		
Bromoform ND 5.0 1.00 Bromomethane ND 20 1.00 2-Butanone ND 20 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobethane ND 2.0 1.00 Chlorofothane ND 2.0 1.00 Chlorotoluene ND 2.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 <td< td=""><td>Bromochloromethane</td><td></td><td>ND</td><td>2.0</td><td>)</td><td>1.00</td><td></td><td></td></td<>	Bromochloromethane		ND	2.0)	1.00		
Bromomethane ND 20 1.00 2-Butanone ND 20 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorochtane ND 1.0 1.00 Chlorochtane ND 1.0 1.00 Chlorochtane ND 1.0 1.00 Chlorothuene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,3-Dichloroethane ND 1	Bromodichloromethane		ND	1.0)	1.00		
2-Butanone ND 20 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 Eur-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 2.0 1.00 Chloroethane ND 1.0 1.00 Chlororothuene ND 1.0 1.00 Chlororotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1-Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0	Bromoform		ND	5.0)	1.00		
n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobethane ND 2.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 2.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotopropane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibrlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane <td< td=""><td>Bromomethane</td><td></td><td>ND</td><td>20</td><td></td><td>1.00</td><td></td><td></td></td<>	Bromomethane		ND	20		1.00		
sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chloroethane ND 1.0 1.00 Chloroethane ND 2.0 1.00 Chloroform ND 2.0 1.00 Chlorotoluene ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND	2-Butanone		ND	20		1.00		
terl-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 1.0 1.00 Chloroffr ND 1.0 1.00 Chloromethane ND 2.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND	n-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobethane ND 2.0 1.00 Chloroform ND 1.0 1.00 Chlorofothane ND 20 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane	sec-Butylbenzene		ND	1.0)	1.00		
Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorotethane ND 2.0 1.00 Chloroform ND 1.0 1.00 Chlorotoluene ND 2.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane	tert-Butylbenzene		ND	1.0)	1.00		
Chlorobenzene ND 1.0 1.00 Chloroethane ND 2.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 2.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibrlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene ND	Carbon Disulfide		ND	10		1.00		
Chloroethane ND 2.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 20 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroptopane ND 1.0 1.00 1,2-Dichloropropane	Carbon Tetrachloride		ND	1.0)	1.00		
Chloroform ND 1.0 1.00 Chloromethane ND 20 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 bibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorotethane ND 1.0 1.00 1,1-Dichlorotethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloropthene ND 1.0 1.00 1,2-Dichloroptopane <td>Chlorobenzene</td> <td></td> <td>ND</td> <td>1.0</td> <td>)</td> <td>1.00</td> <td></td> <td></td>	Chlorobenzene		ND	1.0)	1.00		
Chloromethane ND 20 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichloromethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorotethane ND 1.0 1.00 1,1-Dichlorotethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroethene ND 1.0 1.00 1-1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND<	Chloroethane		ND	2.0)	1.00		
2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Chloroform		ND	1.0)	1.00		
4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroptoethene ND 1.0 1.00 1,2-Dichloroptoethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane <td>Chloromethane</td> <td></td> <td>ND</td> <td>20</td> <td></td> <td>1.00</td> <td></td> <td></td>	Chloromethane		ND	20		1.00		
Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroptopane ND 1.0 1.00 1,2-Dichloroptopane ND 1.0 1.00 1,3-Dichloroptopane ND 1.0 1.00	2-Chlorotoluene		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	4-Chlorotoluene		ND	1.0)	1.00		
1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Dibromochloromethane		ND	2.0)	1.00		
Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 2.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dibromoethane		ND	1.0)	1.00		
1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 2.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Dibromomethane		ND	1.0)	1.00		
1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 2.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane ND 2.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,3-Dichlorobenzene		ND	1.0)	1.00		
1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,4-Dichlorobenzene		ND	1.0)	1.00		
1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Dichlorodifluoromethane		ND	2.0)	1.00		
1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,1-Dichloroethane		ND	1.0)	1.00		
1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dichloroethane		ND	1.0)	1.00		
c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,1-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	c-1,2-Dichloroethene		ND			1.00		
1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	t-1,2-Dichloroethene		ND	1.0)	1.00		
1,3-Dichloropropane ND 1.0 1.00	1,2-Dichloropropane			1.0)	1.00		
2,2-Dichloropropane ND 5.0 1.00	, ,							
	2,2-Dichloropropane		ND	5.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants	Date Received:	06/29/15	
924 Anacapa Street, Suite 4A	Work Order:	15-06-2190	
Santa Barbara, CA 93101-2177	Preparation:	EPA 5035	
	Method:	EPA 8260B	
	Units:	ug/kg	
Project: CG Roxane		Page 10 of 10	

Project: CG Roxane				Page 10 of 10
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	2.0	1.00	
c-1,3-Dichloropropene	ND	1.0	1.00	
t-1,3-Dichloropropene	ND	2.0	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	20	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	20	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	2.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	2.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	2.0	1.00	
1,2,4-Trichlorobenzene	ND	2.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
Trichloroethene	ND	2.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	2.0	1.00	
1,2,4-Trimethylbenzene	ND	2.0	1.00	
1,3,5-Trimethylbenzene	ND	2.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	1.0	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	102	77-120		
Dibromofluoromethane	102	80-123		
1,2-Dichloroethane-d4	94	79-139		
Toluene-d8	100	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2190 EPA 5030C EPA 8260B

06/29/15

ug/kg

Units:

Page 1 of 4

Project: CG Roxane

Date/Time QC Batch ID Client Sample Number Lab Sample Matrix Instrument Date Date/Time Prepared Number Collected Analyzed 06/30/15 20:36 06/26/15 11:30 Soil Profile 15-06-2190-5-A Solid GC/MS OO 06/29/15 150630L007 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 120 1.00 Acetone ND Benzene 5.0 1.00 ND Bromobenzene 5.0 1.00 Bromochloromethane ND 5.0 1.00 Bromodichloromethane ND 5.0 1.00 **Bromoform** ND 5.0 1.00 **Bromomethane** ND 25 1.00 2-Butanone ND 50 1.00 n-Butylbenzene ND 5.0 1.00 sec-Butylbenzene ND 5.0 1.00 tert-Butylbenzene ND 5.0 1.00 Carbon Disulfide ND 50 1.00 Carbon Tetrachloride ND 5.0 1.00 Chlorobenzene ND 5.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 5.0 1.00 Chloromethane ND 25 1.00 2-Chlorotoluene ND 5.0 1.00 4-Chlorotoluene ND 5.0 1.00 Dibromochloromethane ND 5.0 1.00 1,2-Dibromo-3-Chloropropane ND 10 1.00 1,2-Dibromoethane ND 5.0 1.00 Dibromomethane ND 5.0 1.00 1,2-Dichlorobenzene ND 5.0 1.00 1,3-Dichlorobenzene ND 5.0 1.00 1,4-Dichlorobenzene ND 5.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 5.0 1.00 ND 5.0 1,2-Dichloroethane 1.00 1,1-Dichloroethene ND 5.0 1.00 c-1,2-Dichloroethene ND 5.0 1.00 t-1,2-Dichloroethene ND 5.0 1.00

RL: Reporting Limit.

1,2-Dichloropropane1,3-Dichloropropane

2,2-Dichloropropane

DF: Dilution Factor.

MDL: Method Detection Limit.

5.0

5.0

5.0

1.00

1.00

1.00

ND

ND

ND

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 2 of 4

Project: CG Roxane				Page 2 of 4
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	96	60-132		
Dibromofluoromethane	108	63-141		
1,2-Dichloroethane-d4	114	62-146		
Toluene-d8	100	70-130		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-2190 EPA 5030C EPA 8260B

06/29/15

Units:

ug/kg Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-314-468	N/A	Solid	GC/MS OO	06/30/15	06/30/15 13:52	150630L007
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	1:	20	1.00		
Benzene		ND	5	.0	1.00		
Bromobenzene		ND	5	.0	1.00		
Bromochloromethane		ND	5	.0	1.00		
Bromodichloromethane		ND	5	.0	1.00		
Bromoform		ND	5	.0	1.00		
Bromomethane		ND	2	5	1.00		
2-Butanone		ND	5	0	1.00		
n-Butylbenzene		ND	5	.0	1.00		
sec-Butylbenzene		ND	5	.0	1.00		
tert-Butylbenzene		ND	5	.0	1.00		
Carbon Disulfide		ND	5	0	1.00		
Carbon Tetrachloride		ND	5	.0	1.00		
Chlorobenzene		ND	5	.0	1.00		
Chloroethane		ND	5.	.0	1.00		
Chloroform		ND	5	.0	1.00		
Chloromethane		ND	2	5	1.00		
2-Chlorotoluene		ND	5.	.0	1.00		
4-Chlorotoluene		ND	5.	.0	1.00		
Dibromochloromethane		ND	5.	.0	1.00		
1,2-Dibromo-3-Chloropropane		ND	10	0	1.00		
1,2-Dibromoethane		ND	5.	.0	1.00		
Dibromomethane		ND	5.	.0	1.00		
1,2-Dichlorobenzene		ND	5	.0	1.00		
1,3-Dichlorobenzene		ND	5.	.0	1.00		
1,4-Dichlorobenzene		ND	5	.0	1.00		
Dichlorodifluoromethane		ND	5	.0	1.00		
1,1-Dichloroethane		ND		.0	1.00		
1,2-Dichloroethane		ND	5	.0	1.00		
1,1-Dichloroethene		ND		.0	1.00		
c-1,2-Dichloroethene		ND		.0	1.00		
t-1,2-Dichloroethene		ND		.0	1.00		
1,2-Dichloropropane		ND		.0	1.00		
1,3-Dichloropropane		ND		.0	1.00		
2,2-Dichloropropane		ND	5	.0	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: CG Roxane
 Page 4 of 4

Project: CG Roxane				Page 4 of 4
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	5.0	1.00	
c-1,3-Dichloropropene	ND	5.0	1.00	
t-1,3-Dichloropropene	ND	5.0	1.00	
Ethylbenzene	ND	5.0	1.00	
2-Hexanone	ND	50	1.00	
Isopropylbenzene	ND	5.0	1.00	
p-Isopropyltoluene	ND	5.0	1.00	
Methylene Chloride	ND	50	1.00	
4-Methyl-2-Pentanone	ND	50	1.00	
Naphthalene	ND	50	1.00	
n-Propylbenzene	ND	5.0	1.00	
Styrene	ND	5.0	1.00	
1,1,1,2-Tetrachloroethane	ND	5.0	1.00	
1,1,2,2-Tetrachloroethane	ND	5.0	1.00	
Tetrachloroethene	ND	5.0	1.00	
Toluene	ND	5.0	1.00	
1,2,3-Trichlorobenzene	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	5.0	1.00	
1,1,1-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloroethane	ND	5.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	1.00	
Trichloroethene	ND	5.0	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	5.0	1.00	
Trichlorofluoromethane	ND	50	1.00	
1,3,5-Trimethylbenzene	ND	5.0	1.00	
Vinyl Acetate	ND	50	1.00	
Vinyl Chloride	ND	5.0	1.00	
p/m-Xylene	ND	5.0	1.00	
o-Xylene	ND	5.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	98	60-132		
Dibromofluoromethane	110	63-141		
1,2-Dichloroethane-d4	112	62-146		
Toluene-d8	99	70-130		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order:

06/29/15 15-06-2190

Santa Barbara, CA 93101-2177

Project: CG Roxane

Page 1 of 2

Parameter Results RL DE Qualifiers Units Pate Parameter Date Analyzed Analyze	Client Sample Number			Lab S	Sample Number		Date/Tir	ne Collected	Matrix
Principate Pri	MW-04-05-062415			15-00	6-2190-1		06/24/1	5 12:34	Solid
Alkalinity, Total (as CaCO3) 310 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 3890 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 97 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 300 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MINITARE-Nitrite (as N) ND 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 5540C (M) MBAS ND 1.00 BV,BU mg/kg 06/29/15 06/29/15 M 5540C (M) MBAS ND 1.00 BV,BU mg/kg 06/29/15 06/29/15 M 5540C (M) MBAS ND ND 0.50 1.00 mg/kg 06/29/15 06/29/15 M 5540C (M) MBAS ND 0.50 1.00 mg/kg 06/30/15 06/30/15 Total Nitrogen by Calc AP-4-05-062515 BR 8.74 0.01 1.00 BU pH units 06/30/15 06/30/15 EPA 9045D M MBAS ND 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) MBAS ND 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) MBAS ND 0.54 0	<u>Parameter</u>	<u>Results</u>	<u>RL</u>	DF	Qualifiers	<u>Units</u>			Method
Solids, Total Dissolved 3690 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldah Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Total Phosphate 300 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 300 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500-NO3 E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 5540C (M) Total Nitrogen ND 0.50 1.00 BV,BU mg/kg 06/29/15 06/29/15 Total Nitrogen by Calc AP-4-05-062515 Total Nitrogen DF Qualifiers Units Date Prepared Amalyzed Parameter Results RL DF Qualifiers Units Date	рН	8.62	0.01	1.00	BU	pH units	06/30/15	06/30/15	EPA 9045D
Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 97 25 5.0.0 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 97 25 5.0.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Nitrate-Nitrite (as N) ND 0.50 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M) MBAS ND 1.0 1.0 1.0 BV,BU mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M) Total Nitrogen ND 0.50 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M) Total Nitrogen ND 0.50 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M) Total Nitrogen ND 0.50 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M) Total Nitrogen ND 0.50 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M) Total Nitrogen by Calc AP-4-05-062515 Solid Parameter Results RL DF Qualifiers Units Pate Prepared Analyzed Analyzed Analyzed Analyzed Nethod Nethod Nethod No Solids, Total (as CaCO3) 500 5.0 1.00 mg/kg 06/30/15 06/30/15 06/30/15 SM 2500 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Nitrate-Nitrite (as N) ND 1.0 1.0 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Nitrate-Nitrite (as N) NITRAT	Alkalinity, Total (as CaCO3)	310	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Phosphorus, Total 97 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M)	Solids, Total Dissolved	3690	10.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Phosphate 300 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Nitrate-Nitrite (as N) ND 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500-NN3 B/C (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/30/15 06/29/15 SM 5540C (M) Total Nitrogen ND 0.50 1.00 BV,BU mg/kg 06/30/15 06/29/15 SM 5540C (M) Total Nitrogen ND 0.50 1.00 BV,BU mg/kg 06/30/15 06/29/15 SM 5540C (M) Parameter Results RL DE Qualifiers Units Date Prepared Analyzed Analyzed PH 8.74 0.01 1.00 BU PH units 06/30/15 06/30/15 EPA 9045D Alkalinity, Total (as CaCO3) 500 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500 N HBC (M) Total Nitrogen D.54 0.50 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500 N HBC (M) Total Nitrogen D.54 0.50 1.00 BV,BU mg/kg 06/30/15 06/30/15 SM 4500 N HBC (M) Total Nitrogen D.54 0.50 1.00 BV,BU mg/kg 06/30/15 SM 4500 N HBC (M) Total Nitrogen D.54 0.50 1.00 BV,BU mg/kg 06/30/15 SM 4500 N HBC (M) Total Nitrogen D.54 0.50 1.00 BV,BU mg/kg 06/30/15 SM 4500 N DG E(M) BAS ND 1.0 1.00 BV,BU mg/kg 06/30/15 SM 4500 N DG E(M) BAS Date Prepared Analyzed Analyz	Total Kjeldahl Nitrogen	ND	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M) Nitrate-Nitrite (as N) ND 0.50 1.00 mg/kg 06/30/15 07/01/15 SM 4500-NO3 E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/39/15 06/29/15 SM 5400-NO3 E (M) Total Nitrogen ND 0.50 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 5400-NO3 E (M) AP-4-05-062515 Tisologo (Apreaum) Tisologo (Apreaum) Date Prepared Analyzed Analyzed Analyzed Analyzed Analyzed Analyzed Analyzed Prepared Analyzed PH 8.74 0.01 1.00 BU pH units 06/30/15 06/30/15 EPA 9045D Alkalinity, Total (as CaCO3) 500 5.0 1.00 mg/kg 06/30/15 06/30/15 EPA 9045D Solids, Total Dissolved 5000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg </td <td>Phosphorus, Total</td> <td>97</td> <td>25</td> <td>50.0</td> <td></td> <td>mg/kg</td> <td>06/30/15</td> <td>06/30/15</td> <td>SM 4500 P B/E (M)</td>	Phosphorus, Total	97	25	50.0		mg/kg	06/30/15	06/30/15	SM 4500 P B/E (M)
Nitrate-Nitrite (as N) ND 0.50 1.00 mg/kg 06/30/15 07/01/15 SM 4500-NO3 E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 5540C (M) Total Nitrogen ND 0.50 1.00 mg/kg N/A 07/07/15 Total Nitrogen by Calc AP-4-05-062515 Units Parameter Results RL DF Qualifiers Units Prepared Analyzed Method Phenophorus, Total (as CaCO3) 500 5.0 1.00 mg/kg 06/30/15 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 5000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 5000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 5000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Nitrate-Nitrite (as N) 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 4500-NO3 E (M) Total Nitrogen 0.54 0.50 1.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Parameter Results RL DF Qualifiers Units Date Prepared Analyzed Prepared Analyzed Prepared Analyzed Analyzed Analyzed Prepared Analyzed Analyzed Analyzed Prepared Analyzed Analyzed Analyzed Analyzed Analyzed Prepared Analyzed Analyzed Analyzed Analyzed Prepared Analyzed Analyz	Total Phosphate	300	75	50.0		mg/kg	06/30/15	06/30/15	SM 4500 P B/E (M)
MBAS	Ammonia (as N)	14	10	2.00		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Total Nitrogen ND 0.50 1.00 mg/kg N/A 07/07/15 Total Nitrogen by Calc	Nitrate-Nitrite (as N)	ND	0.50	1.00		mg/kg	06/30/15	07/01/15	SM 4500-NO3 E (M)
Name	MBAS	ND	1.0	1.00	BV,BU	mg/kg	06/29/15	06/29/15	SM 5540C (M)
Parameter	Total Nitrogen	ND	0.50	1.00		mg/kg	N/A	07/07/15	Total Nitrogen by Calc
Prepared	AP-4-05-062515			15-00	6-2190-2		06/25/15	5 12:30	Solid
Alkalinity, Total (as CaCO3) 500 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 5000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 420 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Armmonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Nitrate-Nitrite (as N) 0.54 0.50 1.00 mg/kg 07/02/15 07/02/15 SM 4500-NO3 E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 5540C (M) Total Nitrogen 0.54 0.50 1.00 mg/kg N/A 07/07/15 Total Nitrogen by Calc AP-4-05-062515-DUP 15-06-2190-3 06/25/15 12:30 Solid Parameter Results RL DF Qualifiers Units Date Prepared Analyzed Prepared Analyzed O6/30/15 SM 2320B M Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids Total Dissolved 7000 10.0 mg/kg 06/30/15 06/30/15 SM 2320B M Solids Total Dissolved 7000 10.0 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 440 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 SM 4500 P B/E (M)	<u>Parameter</u>	<u>Results</u>	<u>RL</u>	DF	Qualifiers	<u>Units</u>	<u>Date</u> <u>Prepared</u>		Method
Solids Total Dissolved 5000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M)	рН	8.74	0.01	1.00	BU	pH units	06/30/15	06/30/15	EPA 9045D
Total Kjeldahl Nitrogen	Alkalinity, Total (as CaCO3)	500	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 420 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Nitrate-Nitrite (as N) 0.54 0.50 1.00 mg/kg 07/02/15 07/02/15 SM 4500-NH3 B/C (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 5540C (M) Total Nitrogen 0.54 0.50 1.00 mg/kg N/A 07/07/15 Total Nitrogen by Calc AP-4-05-062515-DUP 15-06-2190-3 06/25/15 12:30 Solid Parameter Results RL DF Qualifiers Units Date Prepared Analyzed PH 8.47 0.01 1.00 BU PH units 06/30/15 06/30/15 SM 2320B M Alkalinity, Total (as CaCO3) 540 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M)	Solids, Total Dissolved	5000	10.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Phosphate 420 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Nitrate-Nitrite (as N) 0.54 0.50 1.00 mg/kg 07/02/15 07/02/15 SM 4500-NH3 B/C (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 5540C (M) Total Nitrogen 0.54 0.50 1.00 mg/kg N/A 07/07/15 Total Nitrogen by Calc AP-4-05-062515-DUP 15-06-2190-3 06/25/15 12:30 Solid Parameter Results RL DF Qualifiers Units Date Prepared Analyzed Analyzed Analyzed Analyzed Analyzed Analyzed N/A 05/30/15 SM 2320B M Alkalinity, Total (as CaCO3) 540 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 440 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 N D B/E (M)	Total Kjeldahl Nitrogen	ND	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Ammonia (as N) 14 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M) Nitrate-Nitrite (as N) 0.54 0.50 1.00 mg/kg 07/02/15 07/02/15 SM 4500-NO3 E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 5540C (M) Total Nitrogen 0.54 0.50 1.00 mg/kg N/A 07/07/15 Total Nitrogen by Calc AP-4-05-062515-DUP 15-06-2190-3 06/25/15 12:30 Solid Parameter Results RL DE Qualifiers Units Date Prepared Analyzed Analyzed PH 8.47 0.01 1.00 BU PH units 06/30/15 06/30/15 EPA 9045D Alkalinity, Total (as CaCO3) 540 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 440 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500 N DR B/C (M)	Phosphorus, Total	140	25	50.0		mg/kg	06/30/15	06/30/15	SM 4500 P B/E (M)
Nitrate-Nitrite (as N) 0.54 0.50 1.00 mg/kg 07/02/15 07/02/15 SM 4500-NO3 E (M) MBAS ND 1.0 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 5540C (M) Total Nitrogen 0.54 0.50 1.00 BV,BU mg/kg N/A 07/07/15 Total Nitrogen by Calc AP-4-05-062515-DUP 15-06-2190-3 06/25/15 12:30 Solid Parameter Results RL DF Qualifiers Units Date Prepared Analyzed Analyzed PH 8.47 0.01 1.00 BU PH units 06/30/15 06/30/15 EPA 9045D Alkalinity, Total (as CaCO3) 540 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 440 75 50.0 mg/kg 06/30/15 O6/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 SM 4500-NH3 B/C (M)	Total Phosphate	420	75	50.0		mg/kg	06/30/15	06/30/15	SM 4500 P B/E (M)
MBAS ND 1.0 1.00 BV,BU mg/kg 06/29/15 06/29/15 SM 5540C (M) Total Nitrogen 0.54 0.50 1.00 BV,BU mg/kg N/A 07/07/15 SM 5540C (M) AP-4-05-062515-DUP 15-06-2190-3 06/25/15 12:30 Solid Parameter Results RL DF Qualifiers Units Date Prepared Analyzed Analyzed Method pH 8.47 0.01 1.00 BU pH units 06/30/15 06/30/15 EPA 9045D Alkalinity, Total (as CaCO3) 540 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) <t< td=""><td>Ammonia (as N)</td><td>14</td><td>10</td><td>2.00</td><td></td><td>mg/kg</td><td>06/30/15</td><td>06/30/15</td><td>SM 4500-NH3 B/C (M)</td></t<>	Ammonia (as N)	14	10	2.00		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Total Nitrogen 0.54 0.50 1.00 mg/kg N/A 07/07/15 Total Nitrogen by Calc	Nitrate-Nitrite (as N)	0.54	0.50	1.00		mg/kg	07/02/15	07/02/15	SM 4500-NO3 E (M)
AP-4-05-062515-DUP	MBAS	ND	1.0	1.00	BV,BU	mg/kg	06/29/15	06/29/15	SM 5540C (M)
Parameter Results RL DF Qualifiers Units Date Prepared Analyzed Analyzed Method Analyzed pH 8.47 0.01 1.00 BU pH units 06/30/15 06/30/15 EPA 9045D Alkalinity, Total (as CaCO3) 540 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 440 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M)	Total Nitrogen	0.54	0.50	1.00		mg/kg	N/A	07/07/15	Total Nitrogen by Calc
Prepared Analyzed pH 8.47 0.01 1.00 BU pH units 06/30/15 06/30/15 EPA 9045D Alkalinity, Total (as CaCO3) 540 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 440 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M)	AP-4-05-062515-DUP			15-00	6-2190-3		06/25/1	5 12:30	Solid
Alkalinity, Total (as CaCO3) 540 5.0 1.00 mg/kg 06/30/15 06/30/15 SM 2320B M Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 440 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M)	<u>Parameter</u>	Results	RL	DF	Qualifiers	<u>Units</u>			Method
Solids, Total Dissolved 7000 10.0 1.00 mg/kg 06/30/15 06/30/15 SM 2540 C (M) Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 440 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M)	рН	8.47	0.01	1.00	BU	pH units	06/30/15	06/30/15	EPA 9045D
Total Kjeldahl Nitrogen ND 50 5.00 mg/kg 06/30/15 06/30/15 SM 4500 N Org B (M) Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 440 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M)	Alkalinity, Total (as CaCO3)	540	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Phosphorus, Total 140 25 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Total Phosphate 440 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M)	Solids, Total Dissolved	7000	10.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Phosphate 440 75 50.0 mg/kg 06/30/15 06/30/15 SM 4500 P B/E (M) Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M)	Total Kjeldahl Nitrogen	ND	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Ammonia (as N) ND 10 2.00 mg/kg 06/30/15 06/30/15 SM 4500-NH3 B/C (M)	Phosphorus, Total	140	25	50.0		mg/kg	06/30/15	06/30/15	SM 4500 P B/E (M)
	Total Phosphate	440	75	50.0		mg/kg	06/30/15	06/30/15	SM 4500 P B/E (M)
Nitrate-Nitrite (as N) 0.61 0.50 1.00 mg/kg 07/02/15 07/02/15 SM 4500-NO3 E (M)	Ammonia (as N)	ND	10	2.00		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
	Nitrate-Nitrite (as N)	0.61	0.50	1.00		mg/kg	07/02/15	07/02/15	SM 4500-NO3 E (M)

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

ND

0.61

1.0

0.50

1.00

1.00

MBAS

Total Nitrogen

BV,BU

mg/kg

mg/kg

06/29/15

N/A

06/29/15

07/07/15

SM 5540C (M)

Total Nitrogen by Calc

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received:

06/29/15 15-06-2190

Work Order:

Drainati CC Davana Dago 2 of 2

Project: CG Roxane								Page 2 of 2
Client Sample Number			Lab Sample Number				ne Collected	Matrix
MW-02-10-062515			15-06-2190-4		06/25/1	5 17:31	Solid	
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method
рН	8.11	0.01	1.00	BU	pH units	06/30/15	06/30/15	EPA 9045D
Alkalinity, Total (as CaCO3)	100	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Solids, Total Dissolved	9430	10.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Kjeldahl Nitrogen	63	50	5.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Phosphorus, Total	260	50	100		mg/kg	06/30/15	06/30/15	SM 4500 P B/E (M)
Total Phosphate	790	150	100		mg/kg	06/30/15	06/30/15	SM 4500 P B/E (M)
Ammonia (as N)	11	10	2.00		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Nitrate-Nitrite (as N)	1.3	0.50	1.00		mg/kg	06/30/15	07/01/15	SM 4500-NO3 E (M)
MBAS	ND	1.0	1.00	BV,BU	mg/kg	06/29/15	06/29/15	SM 5540C (M)
Total Nitrogen	64	0.50	1.00		mg/kg	N/A	07/07/15	Total Nitrogen by Calc
Method Blank						N/A		Solid
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	DF	Qualifiers	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method

Method Blank						N/A		Solid
Parameter	<u>Results</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method
Alkalinity, Total (as CaCO3)	ND	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 2320B M
Solids, Total Dissolved	ND	1.0	1.00		mg/kg	06/30/15	06/30/15	SM 2540 C (M)
Total Kjeldahl Nitrogen	ND	10	1.00		mg/kg	06/30/15	06/30/15	SM 4500 N Org B (M)
Phosphorus, Total	ND	0.50	1.00		mg/kg	06/30/15	06/30/15	SM 4500 P B/E (M)
Total Phosphate	ND	1.5	1.00		mg/kg	06/30/15	06/30/15	SM 4500 P B/E (M)
Ammonia (as N)	ND	5.0	1.00		mg/kg	06/30/15	06/30/15	SM 4500-NH3 B/C (M)
Nitrate-Nitrite (as N)	ND	0.50	1.00		mg/kg	06/30/15	07/01/15	SM 4500-NO3 E (M)
Nitrate-Nitrite (as N)	ND	0.50	1.00		mg/kg	07/02/15	07/02/15	SM 4500-NO3 E (M)
MBAS	ND	1.0	1.00		mg/kg	06/29/15	06/29/15	SM 5540C (M)

06/29/15

N/A

15-06-2190

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Date Received:

Work Order:

Preparation:

Method: EPA 300.0

Project: CG Roxane Page 1 of 12

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
15-06-2136-1	Sample		Solid	IC 1	0	06/30/15	06/30/15	17:48	150630S01P	•
15-06-2136-1	Matrix Spike		Solid	IC 1	0	06/30/15	06/30/15	17:15	150630S01P	•
15-06-2136-1	Matrix Spike	Duplicate	Solid	IC 1	0	06/30/15	06/30/15	17:32	150630S01P	•
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	ND	500.0	497.6	100	479.4	96	80-120	4	0-20	
Sulfate	105.0	500.0	528.8	85	528.2	85	80-120	0	0-20	

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-2190

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

SM 4500 P B/E (M)

Project: CG Roxane Page 2 of 12

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
MW-04-05-062415	Sample		Solid	UV	7	06/30/15	06/30/15	17:51	F0630TPS2	
MW-04-05-062415	Matrix Spike		Solid	UV	7	06/30/15	06/30/15	17:51	F0630TPS2	
MW-04-05-062415	Matrix Spike	Duplicate	Solid	UV	7	06/30/15	06/30/15	17:51	F0630TPS2	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	96.68	100.0	200.0	103	203.5	107	70-130	2	0-25	

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-2190

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

SM 4500 P B/E (M)

Project: CG Roxane Page 3 of 12

Quality Control Sample ID	Туре	Matrix	Instru	ment	Date Prepared	Date Anal	yzed	MS/MSD Bat	tch Number
MW-04-05-062415	Sample	Solid	UV 7		06/30/15	06/30/15	17:51	F0630PO4S	2
MW-04-05-062415	Matrix Spike	Solid	UV 7		06/30/15	06/30/15	17:51	F0630PO4S	2
MW-04-05-062415	Matrix Spike Duplic	ate Solid	UV 7		06/30/15	06/30/15	17:51	F0630PO4S	2
Parameter	<u>Sample</u> <u>Spik</u> <u>Conc.</u> <u>Add</u>	e <u>MS</u> ed <u>Conc.</u>	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Total Phosphate	295.8 305.	0 612.5	104	622.5	107	70-130	2	0-25	

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-2190

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

SM 4500-NO3 E (M)

Project: CG Roxane Page 4 of 12

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
MW-04-05-062415	Sample		Solid	UV	7	06/30/15	07/01/15	18:29	F0701NO3S	4
MW-04-05-062415	Matrix Spike		Solid	UV	7	06/30/15	07/01/15	18:29	F0701NO3S	4
MW-04-05-062415	Matrix Spike I	Duplicate	Solid	UV	7	06/30/15	07/01/15	18:29	F0701NO3S	4
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	ND	2.500	2.645	106	2.640	106	70-130	0	0-25	

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-2190
Santa Barbara, CA 93101-2177
Preparation:
N/A
Method:
SM 4500-NO3 E (M)

Project: CG Roxane Page 5 of 12

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
AP-4-05-062515-DUP	Sample		Solid	UV	7	07/02/15	07/02/15	17:47	F0702NO3S	2
AP-4-05-062515-DUP	Matrix Spike		Solid	UV	7	07/02/15	07/02/15	17:47	F0702NO3S	2
AP-4-05-062515-DUP	Matrix Spike Duplicate		Solid	UV	7	07/02/15	07/02/15	17:47	F0702NO3S	2
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	0.6084	2.500	3.120	100	3.175	103	70-130	2	0-25	

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 5540C (M)

 Project: CG Roxane
 Page 6 of 12

Quality Control Sample ID	Туре		Matrix	Insti	ument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
MW-02-10-062515	Sample		Solid	UV	9	06/29/15	06/29/15	18:39	F0629SURS	2
MW-02-10-062515	Matrix Spike		Solid	UV :	9	06/29/15	06/29/15	18:39	F0629SURS	2
MW-02-10-062515	Matrix Spike I	Duplicate	Solid	UV :	9	06/29/15	06/29/15	18:39	F0629SURS	2
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
MBAS	ND	10.00	8.000	80	8.600	86	70-130	7	0-25	

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Project: CG Roxane
 Page 7 of 12

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prepared	Date Analyzed	MS/MSD Batch Number
15-06-2256-1	Sample	Solid	GC 45	06/30/15	06/30/15 17:05	150630S02
15-06-2256-1	Matrix Spike	Solid	GC 45	06/30/15	06/30/15 16:29	150630S02
15-06-2256-1	Matrix Spike Duplica	te Solid	GC 45	06/30/15	06/30/15 16:47	150630S02
Parameter	Sample Spike Conc. Added	MS Conc.	MS MS %Rec. Co	D MSD nc. %Rec.	%Rec. CL RPD	RPD CL Qualifiers
TPH as Diesel	ND 400.0	457.6	114 453	3.7 113	64-130 1	0-15

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Date Received:

Work Order:

Preparation:

Date Received: 06/29/15
Work Order: 15-06-2190
Preparation: EPA 3050B
Method: EPA 6010B

Project: CG Roxane Page 8 of 12

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
15-06-2237-7	Sample		Solid	ICP	7300	06/30/15	07/06/15	16:09	150630S02	
15-06-2237-7	Matrix Spike		Solid	ICP	7300	06/30/15	07/06/15	15:54	150630S02	
15-06-2237-7	Matrix Spike	Duplicate	Solid	ICP	7300	06/30/15	07/06/15	15:56	150630S02	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	5.609	22	9.588	38	50-115	52	0-20	3,4
Arsenic	2.283	25.00	26.38	96	26.14	95	75-125	1	0-20	
Barium	96.40	25.00	136.2	159	134.3	152	75-125	1	0-20	3
Beryllium	ND	25.00	25.41	102	26.06	104	75-125	3	0-20	
Cadmium	ND	25.00	24.80	99	24.95	100	75-125	1	0-20	
Chromium	28.01	25.00	54.80	107	56.91	116	75-125	4	0-20	
Cobalt	7.541	25.00	33.73	105	33.73	105	75-125	0	0-20	
Copper	9.958	25.00	36.78	107	36.18	105	75-125	2	0-20	
Lead	1.301	25.00	25.88	98	26.38	100	75-125	2	0-20	
Molybdenum	ND	25.00	20.19	81	21.35	85	75-125	6	0-20	
Nickel	8.485	25.00	34.07	102	34.32	103	75-125	1	0-20	
Selenium	ND	25.00	17.96	72	18.55	74	75-125	3	0-20	3
Silver	ND	12.50	13.23	106	13.26	106	75-125	0	0-20	
Thallium	ND	25.00	23.09	92	16.41	66	75-125	34	0-20	3,4
Vanadium	32.65	25.00	62.14	118	58.04	102	75-125	7	0-20	
Zinc	22.26	25.00	49.48	109	49.20	108	75-125	1	0-20	

Geosyntec ConsultantsDate Received:06/29/15924 Anacapa Street, Suite 4AWork Order:15-06-2190Santa Barbara, CA 93101-2177Preparation:EPA 7471A TotalMethod:EPA 7471A

Project: CG Roxane Page 9 of 12

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
15-06-2159-1	Sample		Solid	Mer	cury 05	06/30/15	07/01/15	14:28	150630S11	
15-06-2159-1	Matrix Spike		Solid	Mer	cury 05	06/30/15	07/01/15	14:31	150630S11	
15-06-2159-1	Matrix Spike	Duplicate	Solid	Mer	cury 05	06/30/15	07/01/15	14:33	150630S11	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.9696	116	0.8714	104	71-137	11	0-14	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

1,2,4-Trichlorobenzene

Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2190 EPA 3545

EPA 8270C

Project: CG Roxane Page 10 of 12

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-06-2224-3	Sample		Solid	GC	/MS CCC	06/30/15	07/01/15	16:39	150630S02	
15-06-2224-3	Matrix Spike		Solid	GC	MS CCC	06/30/15	07/01/15	16:03	150630S02	
15-06-2224-3	Matrix Spike	Duplicate	Solid	GC	MS CCC	06/30/15	07/01/15	16:21	150630S02	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acenaphthene	ND	10.00	8.189	82	8.351	84	34-148	2	0-20	
Acenaphthylene	ND	10.00	8.041	80	8.167	82	53-120	2	0-20	
Butyl Benzyl Phthalate	ND	10.00	8.414	84	8.726	87	15-189	4	0-20	
4-Chloro-3-Methylphenol	ND	10.00	8.062	81	8.262	83	32-120	2	0-20	
2-Chlorophenol	ND	10.00	8.257	83	8.481	85	53-120	3	0-20	
1,4-Dichlorobenzene	ND	10.00	7.029	70	7.055	71	43-120	0	0-26	
Dimethyl Phthalate	ND	10.00	7.927	79	7.932	79	44-122	0	0-20	
2,4-Dinitrotoluene	ND	10.00	8.710	87	8.815	88	28-120	1	0-20	
Fluorene	ND	10.00	8.384	84	8.445	84	12-186	1	0-20	
N-Nitroso-di-n-propylamine	ND	10.00	7.510	75	7.822	78	38-140	4	0-20	
Naphthalene	ND	10.00	7.730	77	7.843	78	20-140	1	0-20	
4-Nitrophenol	ND	10.00	7.418	74	7.727	77	14-128	4	0-59	
Pentachlorophenol	ND	10.00	4.802	48	5.424	54	10-124	12	0-20	
Phenol	ND	10.00	8.142	81	8.414	84	22-124	3	0-20	
Pyrene	ND	10.00	7.785	78	8.003	80	31-169	3	0-20	

76

7.797

78

56-120

0-20

ND

10.00

7.643

Geosyntec Consultants
924 Anacapa Street, Suite 4A
Santa Barbara, CA 93101-2177

Date Received: Work Order: Preparation:

15-06-2190 EPA 5030C

EPA 8260B

06/29/15

Method:

Page 11 of 12

Project: CG Roxane

Quality Control Sample ID Type Matrix Instrument Date Prepared Date Analyzed MS/MSD Batch Number 15-06-2227-1 Sample Solid GC/MS OO 06/30/15 06/30/15 14:49 150630S003 15-06-2227-1 **Matrix Spike** Solid GC/MS OO 06/30/15 06/30/15 17:13 150630S003 06/30/15 15-06-2227-1 **Matrix Spike Duplicate Solid** GC/MS OO 06/30/15 17:41 150630S003 MS Conc. %Rec. CL RPD RPD CL **Parameter** Sample 5 4 1 Spike Added MS %Rec. <u>MSD</u> <u>MSD</u> Qualifiers Conc. Conc. %Rec. ND 50.00 52.23 104 55.17 110 70-130 5 0-20 Acetone Benzene ND 50.00 42.42 85 42.01 84 61-127 1 0-20 ND 50.00 41.08 82 83 0-20 Bromobenzene 41.36 70-130 1 Bromochloromethane ND 50.00 44.90 90 44.88 90 70-130 0 0-20 Bromodichloromethane ND 50.00 28.22 56 26.65 53 70-130 6 0-20 3 **Bromoform** ND 50.00 36.67 73 35.63 71 70-130 3 0-20 **Bromomethane** ND 50.00 35.99 72 32.22 64 70-130 11 0-20 3 2-Butanone ND 50.00 52.62 105 46.87 94 70-130 12 0-20 n-Butylbenzene ND 50.00 29.04 58 30.07 60 77-123 3 0-25 3 sec-Butylbenzene ND 50.00 29.91 60 30.86 62 70-130 3 0-20 3 tert-Butylbenzene ND 50.00 30.28 61 30.64 61 70-130 1 0-20 3 ND 0-20 3 Carbon Disulfide 50.00 26.94 54 28.42 57 70-130 5 Carbon Tetrachloride ND 50.00 41.67 2 0-29 83 42.41 85 51-135 ND 76 0-20 Chlorobenzene 50.00 37.96 76 38.04 57-123 0 Chloroethane ND 50.00 37.66 75 41.35 83 9 0-20 70-130 Chloroform ND 50.00 41.18 82 84 70-130 2 0-20 41.83 ND 50.00 33.64 38.69 70-130 0-20 Chloromethane 67 77 14 3 2-Chlorotoluene ND 50.00 37.32 75 37.44 75 70-130 0 0-20 4-Chlorotoluene ND 50.00 35.57 71 35.41 71 70-130 0 0-20 Dibromochloromethane ND 50.00 32.05 64 30.33 61 70-130 6 0-20 3 1,2-Dibromo-3-Chloropropane ND 50.00 5.224 10 3.792 8 70-130 32 0-20 3,4 ND 50.00 44.45 89 90 64-124 0-20 1,2-Dibromoethane 44.83 1 Dibromomethane ND 50.00 46.29 93 44.60 89 70-130 4 0-20 1,2-Dichlorobenzene ND 50.00 35.38 71 35.26 71 35-131 0 0-25 1,3-Dichlorobenzene ND 50.00 34.14 68 33.71 67 70-130 1 0-20 3 ND 50.00 33.77 68 67 70-130 0-20 3 1,4-Dichlorobenzene 33.42 1 ND 3 Dichlorodifluoromethane 50.00 26.88 54 29.17 58 70-130 8 0-20 ND 3 1,1-Dichloroethane 50.00 40.38 81 41.72 83 70-130 0-20 ND 90 0-20 1,2-Dichloroethane 50.00 45.76 92 44.75 70-130 2 ND 50.00 69.88 140 147 47-143 5 0-25 3 1,1-Dichloroethene 73.31 c-1,2-Dichloroethene ND 50.00 47.75 96 45.29 91 70-130 5 0-20 t-1,2-Dichloroethene ND 50.00 41.53 83 43.01 86 70-130 4 0-20 1,2-Dichloropropane ND 50.00 44.98 90 45.14 90 79-115 0 0-25 1,3-Dichloropropane ND 50.00 46.29 93 46.54 93 70-130 1 0-20 2,2-Dichloropropane ND 50.00 41.71 83 41.70 83 70-130 0 0-20

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2190 EPA 5030C EPA 8260B

Project: CG Roxane Page 12 of 12

<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
1,1-Dichloropropene	ND	50.00	37.52	75	38.57	77	70-130	3	0-20	
c-1,3-Dichloropropene	ND	50.00	47.20	94	46.90	94	70-130	1	0-20	
t-1,3-Dichloropropene	ND	50.00	46.87	94	46.82	94	70-130	0	0-20	
Ethylbenzene	ND	50.00	39.74	79	40.17	80	57-129	1	0-22	
2-Hexanone	ND	50.00	43.78	88	45.29	91	70-130	3	0-20	
Isopropylbenzene	ND	50.00	37.22	74	37.63	75	70-130	1	0-20	
p-Isopropyltoluene	ND	50.00	30.23	60	30.71	61	70-130	2	0-20	3
Methylene Chloride	ND	50.00	45.05	90	45.51	91	70-130	1	0-20	
4-Methyl-2-Pentanone	ND	50.00	46.80	94	47.88	96	70-130	2	0-20	
Naphthalene	ND	50.00	34.44	69	35.66	71	70-130	3	0-20	3
n-Propylbenzene	ND	50.00	35.02	70	35.27	71	70-130	1	0-20	
Styrene	ND	50.00	42.16	84	42.16	84	70-130	0	0-20	
1,1,1,2-Tetrachloroethane	ND	50.00	36.17	72	35.37	71	70-130	2	0-20	
1,1,2,2-Tetrachloroethane	ND	50.00	0.9438	2	0.8696	2	70-130	8	0-20	3
Tetrachloroethene	ND	50.00	51.36	103	50.89	102	70-130	1	0-20	
Toluene	ND	50.00	42.25	85	42.05	84	63-123	0	0-20	
1,2,3-Trichlorobenzene	ND	50.00	29.59	59	29.35	59	70-130	1	0-20	3
1,2,4-Trichlorobenzene	ND	50.00	28.82	58	28.41	57	70-130	1	0-20	3
1,1,1-Trichloroethane	ND	50.00	42.81	86	43.09	86	70-130	1	0-20	
1,1,2-Trichloroethane	ND	50.00	8.749	17	7.181	14	70-130	20	0-20	3
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50.00	38.18	76	39.18	78	70-130	3	0-20	
Trichloroethene	ND	50.00	80.95	162	80.41	161	44-158	1	0-20	3
1,2,3-Trichloropropane	ND	50.00	40.06	80	39.22	78	70-130	2	0-20	
1,2,4-Trimethylbenzene	ND	50.00	35.73	71	35.61	71	70-130	0	0-20	
Trichlorofluoromethane	ND	50.00	41.68	83	42.80	86	70-130	3	0-20	
1,3,5-Trimethylbenzene	ND	50.00	37.88	76	37.87	76	70-130	0	0-20	
Vinyl Acetate	ND	50.00	0.3265	1	0.8189	2	70-130	86	0-20	3,4
Vinyl Chloride	ND	50.00	35.99	72	40.49	81	49-139	12	0-47	
p/m-Xylene	ND	100.0	79.60	80	80.15	80	70-130	1	0-20	
o-Xylene	ND	50.00	39.73	79	39.85	80	70-130	0	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	44.56	89	46.76	94	57-123	5	0-21	

Project: CG Roxane

Quality Control - Sample Duplicate

Geosyntec Consultants
924 Anacapa Street, Suite 4A
Santa Barbara, CA 93101-2177

Date Received: Work Order: Preparation: Method:

15-06-2190 N/A

EPA 9045D

06/29/15

Page 1 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
MW-04-05-062415	Sample	Solid	PH 4	06/30/15 00:00	06/30/15 20:02	F0630PHD1
MW-04-05-062415	Sample Duplicate	Solid	PH 4	06/30/15 00:00	06/30/15 20:02	F0630PHD1
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
pH		8.620	8.790	2	0-25	

Quality Control - Sample Duplicate

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Date Received: Work Order: Preparation:

06/29/15 15-06-2190 N/A

Method:

SM 2320B M

Page 2 of 4

Project: CG Roxane

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-1886-1	Sample	Solid	PH1/BUR03	06/30/15 00:00	06/30/15 17:18	F0630ALKD3
15-06-1886-1	Sample Duplicate	Solid	PH1/BUR03	06/30/15 00:00	06/30/15 17:18	F0630ALKD3
<u>Parameter</u>		Sample Conc.	DUP Conc.	<u>RPD</u>	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)		45.00	45.00	0	0-25	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Sample Duplicate

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-2190

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

SM 2540 C (M)

Project: CG Roxane Page 3 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
MW-02-10-062515	Sample	Solid	N/A	06/30/15 00:00	06/30/15 17:00	F0630TDSD2
MW-02-10-062515	Sample Duplicate	Solid	N/A	06/30/15 00:00	06/30/15 17:00	F0630TDSD2
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Solids, Total Dissolved		9433	9067	4	0-10	

Quality Control - Sample Duplicate

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

06/29/15 15-06-2190 N/A

SM 4500 N Org B (M)

Project: CG Roxane

Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-1883-1	Sample	Solid	BUR05	06/30/15 00:00	06/30/15 14:03	F0630TKND1
15-06-1883-1	Sample Duplicate	Solid	BUR05	06/30/15 00:00	06/30/15 14:03	F0630TKND1
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Total Kjeldahl Nitrogen		9800	9968	2	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2190 N/A

06/29/15

EPA 300.0

Project: CG Roxane

Page 1 of 15

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	d Date Analyzed	LCS Batch Number
099-12-922-610	LCS	Solid	IC 10	06/30/15	06/30/15 14:57	150630L01P
<u>Parameter</u>		Spike Added	Conc. Recov	ered LCS %I	Rec. %Rec	. CL Qualifiers
Chloride		500.0	525.9	105	90-110	0
Sulfate		500.0	515.2	103	90-110	0

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-06-2190

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

SM 4500 P B/E (M)

Project: CG Roxane Page 2 of 15

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-05-001-5440	LCS	Sol	id	UV 7	06/30/15	06/3	0/15 17:51	F0630TPL2	
099-05-001-5440	LCSD	Sol	id	UV 7	06/30/15	06/3	0/15 17:51	F0630TPL2	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	2.000	2.025	101	2.065	103	80-120	2	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: 06/29/15 15-06-2190 N/A

Method:

SM 4500 P B/E (M)

Page 3 of 15

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	tch Number
099-14-274-27	LCS	Sol	id	UV 7	06/30/15	06/3	0/15 17:51	F0630PO4L2	
099-14-274-27	LCSD	Sol	id	UV 7	06/30/15	06/3	0/15 17:51	F0630PO4L2	
<u>Parameter</u>	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Total Phosphate	6.100	6.200	102	6.300	103	80-120	2	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: 06/29/15 15-06-2190

Method:

N/A SM 4500-NH3 B/C (M)

Project: CG Roxane Page 4 of 15

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-12-812-800	LCS	Sol	id	BUR05	06/30/15	06/3	80/15 15:00	F0630NH3L2	
099-12-812-800	LCSD	Sol	id	BUR05	06/30/15	06/3	80/15 15:00	F0630NH3L2	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Ammonia (as N)	250.0	221.2	88	226.8	91	80-120	2	0-20	

N/A

Quality Control - LCS/LCSD

Geosyntec Consultants Date Received: 06/29/15 15-06-2190 924 Anacapa Street, Suite 4A Work Order: Preparation: Santa Barbara, CA 93101-2177

> Method: SM 4500-NO3 E (M)

Project: CG Roxane Page 5 of 15

Quality Control Sample ID	Туре	Matı	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-05-001-5441	LCS	Soli	d	UV 7	06/30/15	07/0	1/15 18:29	F0701NO3L4	
099-05-001-5441	LCSD	Soli	d	UV 7	06/30/15	07/0	1/15 18:29	F0701NO3L4	
Parameter	Spike Added L	CS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	2.500 2	2.605	104	2.635	105	80-120	1	0-20	

06/29/15

N/A

15-06-2190

Quality Control - LCS/LCSD

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Preparation:

Date Received:

Work Order:

Preparation:

Method: SM 4500-NO3 E (M)

Project: CG Roxane						Page 6 of 15
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number

Quality Control Sample ID	туре	iviai	IIX	IIISH UITIEHL	Date Fie	Jaieu Da	ale Allalyzeu	LUS/LUSD Da	ton Number
099-05-001-5442	LCS	Soli	d	UV 7	07/02/15	07	//02/15 17:47	F0702NO3L2	
099-05-001-5442	LCSD	Soli	d	UV 7	07/02/15	07	//02/15 17:47	F0702NO3L2	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. C	L RPD	RPD CL	<u>Qualifiers</u>
Nitrate-Nitrite (as N)	2.500	2.400	96	2.395	96	80-120	0	0-20	

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 5540C (M)

 Project: CG Roxane
 Page 7 of 15

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-05-027-44	LCS	Solid	UV 9	06/29/15	06/29/15 18:39	F0629SURL2
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
MBAS		10.00	9.000	90	80-120)

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2190

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Project: CG Roxane
 Page 8 of 15

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-1651	LCS	Solid	GC 45	06/30/15	06/30/15 16:11	150630B02
<u>Parameter</u>		Spike Added	Conc. Recove	red LCS %R	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	457.8	114	75-12	3

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2190 EPA 3050B EPA 6010B

06/29/15

Project: CG Roxane

Page 9 of 15

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prepa	ared Date Analy	zed LCS Batch N	lumber
097-01-002-21365	LCS	Solid	ICP 7300	06/30/15	07/07/15 1	5:23 150630L02	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	22.49	90	80-120	73-127	
Arsenic		25.00	22.38	90	80-120	73-127	
Barium		25.00	24.98	100	80-120	73-127	
Beryllium		25.00	23.65	95	80-120	73-127	
Cadmium		25.00	24.33	97	80-120	73-127	
Chromium		25.00	25.20	101	80-120	73-127	
Cobalt		25.00	24.99	100	80-120	73-127	
Copper		25.00	24.55	98	80-120	73-127	
Lead		25.00	24.40	98	80-120	73-127	
Molybdenum		25.00	23.50	94	80-120	73-127	
Nickel		25.00	25.16	101	80-120	73-127	
Selenium		25.00	22.34	89	80-120	73-127	
Silver		12.50	12.22	98	80-120	73-127	
Thallium		25.00	25.73	103	80-120	73-127	
Vanadium		25.00	24.27	97	80-120	73-127	
Zinc		25.00	23.70	95	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-2190
Santa Barbara, CA 93101-2177
Preparation:
EPA 7471A Total
Method:
EPA 7471A

Project: CG Roxane Page 10 of 15

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-1417	LCS	Solid	Mercury 05	06/30/15	07/01/15 14:26	150630L11
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.9128	109	85-12	1

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2190 EPA 3545 EPA 8270C

Project: CG Roxane

Page 11 of 15

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prepa	ared Date Analyz	ed LCS Batch N	umber
099-12-549-3330	LCS	Solid	GC/MS C	CC 06/30/15	07/01/15 15	43 150630L02	
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Acenaphthene		10.00	8.453	85	51-123	39-135	
Acenaphthylene		10.00	8.365	84	52-120	41-131	
Butyl Benzyl Phthalate		10.00	8.919	89	43-139	27-155	
4-Chloro-3-Methylphenol		10.00	8.309	83	55-121	44-132	
2-Chlorophenol		10.00	8.633	86	58-124	47-135	
1,4-Dichlorobenzene		10.00	7.568	76	42-132	27-147	
Dimethyl Phthalate		10.00	8.259	83	51-123	39-135	
2,4-Dinitrotoluene		10.00	8.964	90	51-129	38-142	
Fluorene		10.00	8.603	86	54-126	42-138	
N-Nitroso-di-n-propylamine		10.00	7.936	79	40-136	24-152	
Naphthalene		10.00	8.198	82	32-146	13-165	
4-Nitrophenol		10.00	6.710	67	24-126	7-143	
Pentachlorophenol		10.00	6.205	62	23-131	5-149	
Phenol		10.00	8.444	84	40-130	25-145	
Pyrene		10.00	8.280	83	47-143	31-159	
1,2,4-Trichlorobenzene		10.00	8.147	81	45-129	31-143	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2190 EPA 5035 EPA 8260B

Page 12 of 15

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-14-312-493	LCS		Solid	GC	MS BB	06/30/15	06/30/	15 12:21	150630L008	
099-14-312-493	LCSD		Solid	GC	MS BB	06/30/15	06/30/	15 12:49	150630L008	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Acetone	50.00	54.52	109	49.00	98	30-150	10-170	11	0-20	
Benzene	50.00	44.75	89	43.18	86	79-120	72-127	4	0-20	
Bromobenzene	50.00	47.86	96	45.51	91	80-120	73-127	5	0-20	
Bromochloromethane	50.00	46.57	93	44.93	90	80-120	73-127	4	0-20	
Bromodichloromethane	50.00	48.62	97	45.67	91	73-127	64-136	6	0-20	
Bromoform	50.00	46.22	92	45.21	90	55-133	42-146	2	0-20	
Bromomethane	50.00	41.61	83	35.96	72	36-144	18-162	15	0-20	
2-Butanone	50.00	41.28	83	42.31	85	56-176	36-196	2	0-20	
n-Butylbenzene	50.00	47.53	95	44.51	89	78-126	70-134	7	0-20	
sec-Butylbenzene	50.00	46.35	93	43.49	87	79-127	71-135	6	0-20	
tert-Butylbenzene	50.00	46.94	94	44.61	89	80-128	72-136	5	0-20	
Carbon Disulfide	50.00	31.11	62	30.29	61	53-125	41-137	3	0-20	
Carbon Tetrachloride	50.00	39.13	78	37.82	76	58-142	44-156	3	0-20	
Chlorobenzene	50.00	46.73	93	44.08	88	80-120	73-127	6	0-20	
Chloroethane	50.00	52.81	106	51.85	104	60-120	50-130	2	0-20	
Chloroform	50.00	47.83	96	46.22	92	80-120	73-127	3	0-20	
Chloromethane	50.00	46.74	93	44.28	89	50-122	38-134	5	0-20	
2-Chlorotoluene	50.00	47.71	95	45.00	90	80-125	72-132	6	0-20	
4-Chlorotoluene	50.00	48.62	97	45.29	91	80-120	73-127	7	0-20	
Dibromochloromethane	50.00	47.48	95	45.14	90	70-130	60-140	5	0-20	
1,2-Dibromo-3-Chloropropane	50.00	46.37	93	46.59	93	54-132	41-145	0	0-20	
1,2-Dibromoethane	50.00	47.21	94	45.74	91	80-120	73-127	3	0-20	
Dibromomethane	50.00	47.91	96	46.68	93	80-122	73-129	3	0-20	
1,2-Dichlorobenzene	50.00	47.72	95	44.89	90	80-120	73-127	6	0-20	
1,3-Dichlorobenzene	50.00	47.52	95	44.68	89	80-120	73-127	6	0-20	
1,4-Dichlorobenzene	50.00	46.87	94	43.56	87	80-120	73-127	7	0-20	
Dichlorodifluoromethane	50.00	72.38	145	69.45	139	32-158	11-179	4	0-20	
1,1-Dichloroethane	50.00	39.64	79	38.33	77	74-120	66-128	3	0-20	
1,2-Dichloroethane	50.00	41.34	83	40.33	81	79-121	72-128	2	0-20	
1,1-Dichloroethene	50.00	35.06	70	33.27	67	71-125	62-134	5	0-20	ME
c-1,2-Dichloroethene	50.00	44.88	90	43.34	87	80-123	73-130	3	0-20	
t-1,2-Dichloroethene	50.00	41.36	83	39.31	79	80-120	73-127	5	0-20	ME
1,2-Dichloropropane	50.00	40.08	80	38.48	77	77-120	70-127	4	0-20	
1,3-Dichloropropane	50.00	47.29	95	45.42	91	80-120	73-127	4	0-20	
2,2-Dichloropropane	50.00	41.70	83	39.86	80	58-142	44-156	5	0-20	
1,1-Dichloropropene	50.00	41.09	82	38.75	78	69-120	60-128	6	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: 06/29/15 15-06-2190 EPA 5035 EPA 8260B

Project: CG Roxane

Roxane Page 13 of 15

Method:

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
c-1,3-Dichloropropene	50.00	49.66	99	47.60	95	74-128	65-137	4	0-20	
t-1,3-Dichloropropene	50.00	51.33	103	49.20	98	66-120	57-129	4	0-20	
Ethylbenzene	50.00	46.99	94	43.74	87	80-120	73-127	7	0-20	
2-Hexanone	50.00	40.87	82	40.28	81	67-151	53-165	1	0-20	
Isopropylbenzene	50.00	48.32	97	45.11	90	80-129	72-137	7	0-20	
p-Isopropyltoluene	50.00	46.65	93	43.60	87	80-122	73-129	7	0-20	
Methylene Chloride	50.00	46.10	92	44.25	88	72-120	64-128	4	0-20	
4-Methyl-2-Pentanone	50.00	39.31	79	40.35	81	72-126	63-135	3	0-20	
Naphthalene	50.00	48.90	98	48.53	97	64-124	54-134	1	0-20	
n-Propylbenzene	50.00	50.95	102	47.35	95	80-122	73-129	7	0-20	
Styrene	50.00	46.72	93	43.60	87	80-123	73-130	7	0-20	
1,1,1,2-Tetrachloroethane	50.00	47.15	94	44.82	90	73-133	63-143	5	0-20	
1,1,2,2-Tetrachloroethane	50.00	48.51	97	47.38	95	77-120	70-127	2	0-20	
Tetrachloroethene	50.00	40.66	81	38.29	77	75-123	67-131	6	0-20	
Toluene	50.00	45.40	91	43.07	86	80-120	73-127	5	0-20	
1,2,3-Trichlorobenzene	50.00	50.73	101	48.52	97	73-127	64-136	4	0-20	
1,2,4-Trichlorobenzene	50.00	52.83	106	49.49	99	74-128	65-137	7	0-20	
1,1,1-Trichloroethane	50.00	43.64	87	42.04	84	71-131	61-141	4	0-20	
1,1,2-Trichloroethane	50.00	48.91	98	46.62	93	80-120	73-127	5	0-20	
1,1,2-Trichloro-1,2,2- Trifluoroethane	50.00	45.21	90	42.70	85	77-125	69-133	6	0-20	
Trichloroethene	50.00	44.97	90	42.75	85	80-120	73-127	5	0-20	
Trichlorofluoromethane	50.00	57.88	116	54.74	109	70-136	59-147	6	0-20	
1,2,3-Trichloropropane	50.00	47.30	95	46.51	93	60-120	50-130	2	0-20	
1,2,4-Trimethylbenzene	50.00	46.12	92	43.35	87	75-123	67-131	6	0-20	
1,3,5-Trimethylbenzene	50.00	49.05	98	45.55	91	80-123	73-130	7	0-20	
Vinyl Acetate	50.00	43.92	88	44.66	89	51-159	33-177	2	0-20	
Vinyl Chloride	50.00	50.61	101	48.92	98	68-120	59-129	3	0-20	
p/m-Xylene	100.0	96.71	97	90.84	91	80-122	73-129	6	0-20	
o-Xylene	50.00	47.26	95	43.89	88	79-127	71-135	7	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	43.49	87	42.37	85	64-124	54-134	3	0-20	

Total number of LCS compounds: 66
Total number of ME compounds: 2
Total number of ME compounds allowed: 3
LCS ME CL validation result: Pass

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

15-06-2190 EPA 5030C

06/29/15

Method:

EPA 8260B

Project: CG Roxane

Page 14 of 15

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Anal	yzed LCS Batcl	n Number
099-14-314-468	LCS	Solid	GC/MS O	O 06/30/15	06/30/15 1	12:50 150630L0	07
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Acetone		50.00	47.66	95	70-130	60-140	
Benzene		50.00	49.20	98	78-120	71-127	
Bromobenzene		50.00	50.68	101	70-130	60-140	
Bromochloromethane		50.00	47.65	95	70-130	60-140	
Bromodichloromethane		50.00	50.13	100	70-130	60-140	
Bromoform		50.00	47.06	94	70-130	60-140	
Bromomethane		50.00	37.39	75	70-130	60-140	
2-Butanone		50.00	46.66	93	70-130	60-140	
n-Butylbenzene		50.00	53.12	106	77-123	69-131	
sec-Butylbenzene		50.00	50.32	101	70-130	60-140	
ert-Butylbenzene		50.00	49.55	99	70-130	60-140	
Carbon Disulfide		50.00	41.37	83	70-130	60-140	
Carbon Tetrachloride		50.00	53.37	107	49-139	34-154	
Chlorobenzene		50.00	46.28	93	79-120	72-127	
Chloroethane		50.00	44.06	88	70-130	60-140	
Chloroform		50.00	48.28	97	70-130	60-140	
Chloromethane		50.00	41.08	82	70-130	60-140	
2-Chlorotoluene		50.00	49.19	98	70-130	60-140	
l-Chlorotoluene		50.00	47.94	96	70-130	60-140	
Dibromochloromethane		50.00	51.07	102	70-130	60-140	
,2-Dibromo-3-Chloropropane		50.00	48.92	98	70-130	60-140	
1,2-Dibromoethane		50.00	49.10	98	70-130	60-140	
Dibromomethane		50.00	47.79	96	70-130	60-140	
1,2-Dichlorobenzene		50.00	46.16	92	75-120	68-128	
,3-Dichlorobenzene		50.00	46.98	94	70-130	60-140	
,4-Dichlorobenzene		50.00	45.43	91	70-130	60-140	
Dichlorodifluoromethane		50.00	32.84	66	70-130	60-140	ME
,1-Dichloroethane		50.00	47.10	94	70-130	60-140	
,2-Dichloroethane		50.00	49.27	99	70-130	60-140	
1,1-Dichloroethene		50.00	47.38	95	74-122	66-130	
:-1,2-Dichloroethene		50.00	50.31	101	70-130	60-140	
-1,2-Dichloroethene		50.00	49.73	99	70-130	60-140	
,2-Dichloropropane		50.00	49.84	100	79-115	73-121	
,3-Dichloropropane		50.00	50.78	102	70-130	60-140	
2,2-Dichloropropane		50.00	53.37	107	70-130	60-140	
,1-Dichloropropene		50.00	46.39	93	70-130	60-140	
c-1,3-Dichloropropene		50.00	57.92	116	70-130	60-140	
-1,3-Dichloropropene		50.00	56.66	113	70-130	60-140	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2190 EPA 5030C EPA 8260B

Project: CG Roxane

Page 15 of 15

<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Ethylbenzene	50.00	51.17	102	76-120	69-127	
2-Hexanone	50.00	49.96	100	70-130	60-140	
Isopropylbenzene	50.00	52.15	104	70-130	60-140	
p-Isopropyltoluene	50.00	51.51	103	70-130	60-140	
Methylene Chloride	50.00	49.48	99	70-130	60-140	
4-Methyl-2-Pentanone	50.00	49.27	99	70-130	60-140	
Naphthalene	50.00	43.54	87	70-130	60-140	
n-Propylbenzene	50.00	50.28	101	70-130	60-140	
Styrene	50.00	52.24	104	70-130	60-140	
1,1,1,2-Tetrachloroethane	50.00	52.75	106	70-130	60-140	
1,1,2,2-Tetrachloroethane	50.00	50.28	101	70-130	60-140	
Tetrachloroethene	50.00	43.23	86	70-130	60-140	
Toluene	50.00	49.97	100	77-120	70-127	
1,2,3-Trichlorobenzene	50.00	48.46	97	70-130	60-140	
1,2,4-Trichlorobenzene	50.00	48.22	96	70-130	60-140	
1,1,1-Trichloroethane	50.00	51.68	103	70-130	60-140	
1,1,2-Trichloroethane	50.00	48.55	97	70-130	60-140	
1,1,2-Trichloro-1,2,2-Trifluoroethane	50.00	47.40	95	70-130	60-140	
Trichloroethene	50.00	49.69	99	70-130	60-140	
1,2,3-Trichloropropane	50.00	50.33	101	70-130	60-140	
1,2,4-Trimethylbenzene	50.00	50.99	102	70-130	60-140	
Trichlorofluoromethane	50.00	48.68	97	70-130	60-140	
1,3,5-Trimethylbenzene	50.00	54.18	108	70-130	60-140	
Vinyl Acetate	50.00	61.65	123	70-130	60-140	
Vinyl Chloride	50.00	43.03	86	68-122	59-131	
p/m-Xylene	100.0	103.2	103	70-130	60-140	
o-Xylene	50.00	50.35	101	70-130	60-140	
Methyl-t-Butyl Ether (MTBE)	50.00	47.13	94	77-120	70-127	

Total number of LCS compounds: 66
Total number of ME compounds: 1
Total number of ME compounds allowed: 3
LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 15-06-2190				Page 1 of 1
<u>Method</u>	<u>Extraction</u>	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 300.0	N/A	606	IC 10	1
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8015B (M)	EPA 3550B	682	GC 45	1
EPA 8260B	EPA 5035	486	GC/MS BB	2
EPA 8260B	EPA 5030C	986	GC/MS OO	2
EPA 8270C	EPA 3545	923	GC/MS CCC	1
EPA 9045D	N/A	688	PH 4	1
SM 2320B M	N/A	688	PH1/BUR03	1
SM 2540 C (M)	N/A	1009	N/A	1
SM 4500 N Org B (M)	N/A	685	BUR05	1
SM 4500 P B/E (M)	N/A	857	UV 7	1
SM 4500-NH3 B/C (M)	N/A	685	BUR05	1
SM 4500-NO3 E (M)	N/A	857	UV 7	1
SM 5540C (M)	N/A	990	UV 9	1
Total Nitrogen by Calc	N/A	92	N/A	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

SG

Χ

Glossary of Terms and Qualifiers

Work Order: 15-06-2190 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- % Recovery and/or RPD out-of-range. Ζ
 - Analyte presence was not confirmed by second column or GC/MS analysis.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Page 82 of 90 2108 DH CC 2014-07-01 Revision CHAIN-OF-CUSTODY RECORD 1007 Kenjo Maustsson P Time: Time Steve 1 SAMPLER(S): (PRINT PAGE: REQUESTED ANALYSES
Please check box or fill in blank as needed. MIS 0728 🗖 0728 🗖 eHA9 Date: Date PCBs (8082) E L (1808) sebioitse9 SAOCs (8270) Prep (5035) ☐ En Core ☐ Terra Core Koxane □ 0928 □ 381M / X318 Received by: (Signature/Affiliation) Received by: (Signature/Affiliation) Received by: (Signature/Affiliation) Field Filtered M \$ M 43(01 Jupreserved □48 HR □72 HR □5 DAYS KSTANDARD RSmith @ gosynter.com 17 170 S o S Feder S 5 B/28/ DICOELTEDF MOTHER GREGSWIPC Specifice FDD 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494

For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us. MATRIX S (V) VI **本本** SS. Consultants 45:21 12:34 6/25/15 [2:30 3 AP-4-05-062515-DUP 6/25/15 12:30 15:21/2/15:31 TIME Calscience SAMPLING \$ 6/22/15 4224 DATE Anacapa LABORATORY CLIENT: om Santa Barbara OCTE-OF 650 NW-04-05-06-08 Mil-02-10-062515 49 4 to - 5/25/5 AP-4-05-067515 805-897-380b Profile ☐ SAME DAY ☐ 24 HR e eurofins SAMPLEID Relinquished by: (Signature) 42 psessign SPECIAL INSTRUCTIONS: LAB USE ONLY

menument enterprised				
Fedex. US Airbili Express	racking BLAT LYSU	L7FLE	9700	Recipient's Copy
Date ()		4a Express Pac FedEx Priority 0 Next business morning slapments will be de- writes SATURDAY De-	Overnight g. Friday vered on Monday Front's splented	Seturdey Delivery NOT evallable.
Sender's Name	Phone	FedEx 2Day Second business day stroments will be debt unless SATURDAY Del FedEx Envelopers	TRK# TRUESTON TRUESTON TRK# TREAT	
Company Cos // /	Consificas	4b Express Frag FodEx 1Day Fre FodEx 10ay Fr	ight S	50 1796 STANDAR
Address 934 / WACAPA	51. 2. 1/2 1/ A DOP	chlorof Suita Floor Cal for Configuration Cal for Configuration Packaging	JE API	ANDAR
City. / A / A / B & G Your Internal Billing Reference	State CA ZIP 9310	FedEx Envelope*		
3. To Recipient's		6 Special Hy SATURDAY Not eyithable for redict Standary redict First Dy		
Company VIO A 1 C 7	Phone //y / 3	Sever, or red	or allism. 488782 26JUN15 IYKA 522	
Recipient's Address We cannot deliver to P.O. boxes or P.O. ZP codes.	1 Occit	7 Payment B	Ill to: Enter FedEx Acct. No. or Credit Card	
Address To request a package be held at a sperific FedEx location, print FedEx addres	s here.	Sender Acct No. in Serial IVIII	Recipient Third Party	
City secole Contract	State ZIP	Total Packages	Total Weight Total	Declared Value
		8 Residential		re, See back for details. Crook Card Audt. If you require a signature, check Direct of Indirect.
	Then the	O 50 00 00 00 00 00 00 00 00 00 00 00 00	O Proposition of the Proposition	inget Signature This is realists a) pients address, edutions pients address, edutions prephenry edutes any tot deliver, fee applies.
8668 6450		8:9	sign of Fedex-Printed in U.S.A. Shy	for delivery. Fee applies.
* *				• •

Calscience

Page 84 of 90 WORK ORDER NUMBER: **15-06-** 2190

SAMPLE RECEIPT CHECKLIST

CLIENT:	Geosyntec			DAT	ΓE: 06	1 29 1	2015
Thermomete Sampl Sampl	er ID: SC2 (CF:-0.3°C); Te le(s) outside temperature d le(s) outside temperature d	O°C, not frozen except sedim mperature (w/o CF): 20 · oriteria (PM/APM contacted boriteria but received on ice/choerature; placed on ice for tra	¶_°C (w/ CF): y: _ <mark>83.6_</mark>) illed on same day o		,	Sampl Led ted	1 ice
CUSTODY : Cooler Sample(s)	SEAL: ☐ Present and Intact ☐ Present and Intact	☐ Present but Not Intact ☐ Present but Not Intact	Not Present Not Present	□ N/A	-	ed by: ed by: _4	
COC docum □ Sampl	istody (COC) document(s) nent(s) received complete ling date □ Sampling time	received with samplese Matrix □ Number of celinquished □ No relinquished	ontainers			No 🗆	N/A
Sampler's n Sample con Sample con Proper cont Sufficient vo	ame indicated on COC tainer label(s) consistent w tainer(s) intact and in good ainers for analyses requesolume/mass for analyses re	vith COC					
Aqueous □ pH □ Proper pres	samples for certain analys I Residual Chlorine	ses received within 15-minutessolved Sulfide	e holding time I Oxygen			PH, MC	A5 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
Container(s □ Volatil □ Carbo	e Organics □ Dissolved on Dioxide (SM 4500) □ F	f headspace Gases (RSK-175) □ Dissolv errous Iron (SM 3500) □ H	ved Oxygen (SM 45 ydrogen Sulfide (Ha	500) ach)		0	ø Ø
CONTAINE Aqueous: □ □ 125PBzni □ 500PB □ Solid: □ 40:	R TYPE: I VOA □ VOAh □ VOAn na □ 250AGB □ 250CGE I 1AGB □ 1AGBna ₂ □ 1. zCGJ Ø 8ozCGJ □ 16oz	a ₂	(Trip Blar 1 125AGB □ 125A 250PBn □ 500AG □ nCores®() ☑	ok Lot Numbe GBh □ 125A GB □ 500AG □ TerraCores®	er: GBp	125PB)AGJs])
	b = buffered, f = filtered, h =	ar, $E = Envelope$, $G = Glass$, $J = HCl$, $n = HNO_3$, $na = NaOH$, na $nna = Zn(CH_3CO_2)_2 + NaOH$			d/Check		_

Calscience

SAMPLE ANOMALY REPORT

DATE: 06 / 29 / 2015

SAMPLES, CONTAINERS, AND LABELS:	Comments				
	Commence				
☐ Sample(s) NOT RECEIVED but listed on COC					
☐ Sample(s) received but NOT LISTED on COC					
☐ Holding time expired (list client or ECI sample ID and analysis)					
☐ Insufficient sample amount for requested analysis (list analysis)					
☐ Improper container(s) used (list analysis)					
☐ Improper preservative used (list analysis)					
☐ No preservative noted on COC or label (list analysis and notify lab)					
☐ Sample container(s) not labeled					
☐ Client sample label(s) illegible (list container type and analysis)					
☐ Client sample label(s) do not match COC (comment)					
☐ Project information					
☐ Client sample ID					
☐ Sampling date and/or time					
☐ Number of container(s)					
☐ Requested analysis					
☑ Sample container(s) compromised (comment)	(-3) received 1 of 2 goz clear glass				
⊭ Broken	yars braken				
☐ Water present in sample container	•				
☐ Air sample container(s) compromised (comment)					
□ Flat	· · · · · · · · · · · · · · · · · · ·				
☐ Very low in volume					
☐ Leaking (not transferred; duplicate bag submitted)					
☐ Leaking (transferred into ECI Tedlar™ bags*)					
☐ Leaking (transferred into client's Tedlar™ bags*)					
* Transferred at client's request.					
MISCELLANEOUS: (Describe)	Comments				
HEADSPACE:					
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)				
ECI ECI Total ECI ECI Total	ECI ECI Total Sample ID Container ID Number** Requested Analysis				
Sample ID Container ID Number** Sample ID Container ID Number**	Sample ID Container ID Nomber Requested Analysis				
	·				
Comments:					
** Record the total number of containers (i.e., vials or bottles) for the affected sample. Reviewed by: 681					
** Record the total number of containers (i.e., vials or bottles) for the affected sample. Reviewed by:					

to Contents

Stephen Nowak

From: Ryan Smith [rsmith@geosyntec.com]
Sent: Monday, June 29, 2015 10:51 AM

To: Stephen Nowak
Cc: Maricris dela Rosa
Subject: RE: ***COC***

Yes, please analyze the samples on this COC for all selected tests. Even tests out of hold time.

Thank you.

Ryan Smith, P.G., C.Hg Project Geologist

----Original Message-----

From: Stephen Nowak [mailto:StephenNowak@eurofinsUS.com]

Sent: Monday, June 29, 2015 10:33 AM

To: Ryan Smith

Cc: Maricris dela Rosa Subject: FW: ***COC***

Ryan-

See attached COC and sample receipt form.

This sample was received today 06/29/15 and the temp is 16.3 deg C- do you still want us to run this sample?

Stephen Nowak Project Manager

Eurofins Calscience, Inc. 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 5230

Email: StephenNowak@EurofinsUS.com

Website: www.calscience.com

Reminder – We will observe the 4th of July holiday on Friday, July 3rd. Sample Control will be open 0830-1730 to accept samples. We will have limited staff working to handle short-hold analyses; no data will be reported as our Project Managers will not be working, and there is no courier service this day.

The lab will be closed on Saturday, July 4th. Sample Control will not be open to accept samples; FEDEX and GSO are not operating that day. Please do not ship samples for Saturday delivery as they will not be received until Monday.

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

Subcontractor Analysis Report

Work Order: 15-06-2190 Page 1 of 1

One or more samples in this work order have tests that were subcontracted. The subcontract report(s) follows.

For subcontracted tests, please reference the laboratory information noted below.

 Truesdail Laboratories, Inc. - Tustin, CA CA ELAP 1237 Microbiology

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

3337 MICHELSON DRIVE, SUITE CN 750 IRVINE, CA 92612 REPORT (714) 730-6239 • FAX (714) 730-6462

www.truesdail.com

Work Order No.: 15G0038

> Printed: 07/08/2015

7440 Lincoln Way

Client: Eurofins/Calscience

Garden Grove, CA 92841-1432

Attention: Stephen Nowalk Project Name: Fecal Coliform Project Number: 15-06-2190

CASE NARRATIVE

SAMPLE RECEIPT SUMMARY

Sample ID	Laboratory ID	Matrix	Type	Date Sampled	Date Received
MW-04-05-062415	15G0038-01	Soil	Grab	06/24/2015 12:34	07/01/2015 12:12
AP-4-05-062515	15G0038-02	Soil	Grab	06/25/2015 12:30	07/01/2015 12:12
AP-4-05-062515-Dup	15G0038-03	Soil	Grab	06/25/2015 12:30	07/01/2015 12:12
MW-02-10-062515	15G0038-04	Soil	Grab	06/25/2015 17:31	07/01/2015 12:12

DEFINITIONS

Symbol	Definition
DF	Dilution Factor
MDL	Method Detection Limit
ND	Not Detected
RL	Reporting Limit

Respectfully yours,

Jeff Lee

Project Manager

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: Eurofins/Calscience

Fecal Coliforms

Project Name: Fecal Coliform

Project Number: 15-06-2190 Printed: 07/08/2015

1507058 07/03/2015 14:00 PA

MW-04-05-062415

		IVI VV -O	4-03-00	2413					
		15G0	038-01 (Soil)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		Truesdail	Laborato	ries,	Inc				
Microbiology									
Total Coliforms	ND	20.0	MPN/g	1	1507058	07/03/2015 14:00	PA	SM 9221 B	
Fecal Coliforms	ND	20.0	MPN/g	1	1507058	07/03/2015 14:00	PA	SM 9221 B	
		AP-4	-05-062	515					
		15G0	038-02 (Soil)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		Truesdail	Laborato	ries,	Inc				
Microbiology									
Total Coliforms	ND	20.0	MPN/g	1	1507058	07/03/2015 14:00	PA	SM 9221 B	
Fecal Coliforms	ND	20.0	MPN/g	1	1507058	07/03/2015 14:00		SM 9221 B	
		AP-4-0	5-06251	5-Du	р				
		15G0	038-03 (Soil)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		Truesdail	Laborato	ries,	Inc				
Microbiology									
Total Coliforms	ND	20.0	MPN/g	1	1507058	07/03/2015 14:00	PA	SM 9221 B	
Fecal Coliforms	ND	20.0	MPN/g	1	1507058	07/03/2015 14:00	PA	SM 9221 B	
		MW-0	2-10-06	2515					
		15G0	038-04 (\$	Soil)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
L		Truesdail	Laborato	ries,	Inc				
Microbiology									
Total Coliforms	ND	20.0	MPN/g	1	1507058	07/03/2015 14:00	PA	SM 9221 B	
E 10 "	ND				4505050			01100010	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

ND

SM 9221 B

Pag	je 90 c	of 90
7440 Lincoln Way	LABORATORY CLIENT: Eurofins Calscience, Inc	GARCIENCE TEL:

Garden Grove, CA 92841

714-895-5494

TURNAROUND TIME

SAME DAY 24 HR 48HR PECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)

☐ 72 HR

5 DAYS

Standard

REQUESTED ANALYSIS

StephenNowak@eurofinsUS.com

SAMPLER(S): (PRINT)

Stephen Nowak

FAB USE DNLY QUOTE NO.:

PROJECT CONTACT:

TEL: (714) 895-5494 . FAX: (714) 894-7501

livine

15-06-2190

CHAIN OF CUSTODY RECORI

07/01/15

Page 3 of 3

please run 6 dilutions Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) SPECIAL INSTRUCTIONS RWQCB REPORTING AP-4-05-062515-DUP MW-02-10-062515 MW-04-05-062415 AP-4-05-062515 SAMPLE ID RCHIVE SAMPLES UNTIL 06/25/15 06/25/15 06/24/15 | 12:34 06/25/15 (CALSCIENCE) SAMPLING 17:31 12:30 12:30 TIME THEM Received by / Affiliation: (Signature) Received by / Affiliation: (Signature) Received by / Affiliation: (Signature) S S S S anda MOON! _ **Fecal Coliform** × × × × **Total Coliform** × × × × Date: Date: Time: 12:12

1100

100

USE ONILY

Calscience

WORK ORDER NUMBER: 15-07-0551

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: Crystal Geyser / SB0746

Attention: Ryan Smith

924 Anacapa Street

Monde

Suite 4A

Santa Barbara, CA 93101-2177

ResultLink)

Email your PM >

Approved for release on 07/17/2015 by:

Stephen Nowak Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	Crystal Geyser / SB0746
Work Order Number:	15-07-0551

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA TO-15 Full List (Air).	6 6
5	Quality Control Sample Data. 5.1 LCS/LCSD.	12 12
6	Summa Canister Vacuum Summary	14
7	Sample Analysis Summary	15
8	Glossary of Terms and Qualifiers	16
9	Chain-of-Custody/Sample Receipt Form	17

Work Order Narrative

Work Order: 15-07-0551 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 07/09/15. They were assigned to Work Order 15-07-0551.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Work Order:

Project Name:

PO Number:

Date/Time Received:

Number of

Containers:

Crystal Geyser / SB0746

15-07-0551

07/09/15 18:50

2

Attn: Ryan Smith

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SV-01-5-070815	15-07-0551-1	07/08/15 08:09	1	Air
SV-01-5-070815-DUP	15-07-0551-2	07/08/15 08:09	1	Air

Detections Summary

Client: Geosyntec Consultants

Work Order:

15-07-0551

924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Project Name:

Crystal Geyser / SB0746

Received:

07/09/15

Attn: Ryan Smith Page 1 of 1

Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
25		5.0	ug/m3	EPA TO-15	N/A
1.1		1.1	ug/m3	EPA TO-15	N/A
18		13	ug/m3	EPA TO-15	N/A
60		4.9	ug/m3	EPA TO-15	N/A
20		1.7	ug/m3	EPA TO-15	N/A
9.6		4.6	ug/m3	EPA TO-15	N/A
4.8		2.3	ug/m3	EPA TO-15	N/A
20		13	ug/m3	EPA TO-15	N/A
5.2		3.5	ug/m3	EPA TO-15	N/A
7.8		2.0	ug/m3	EPA TO-15	N/A
2.3		2.3	ug/m3	EPA TO-15	N/A
	1.1 18 60 20 9.6 4.8 20 5.2 7.8	1.1 18 60 20 9.6 4.8 20 5.2 7.8	1.1 1.1 18 13 60 4.9 20 1.7 9.6 4.6 4.8 2.3 20 13 5.2 3.5 7.8 2.0	1.1 1.1 ug/m3 18 13 ug/m3 60 4.9 ug/m3 20 1.7 ug/m3 9.6 4.6 ug/m3 4.8 2.3 ug/m3 20 13 ug/m3 5.2 3.5 ug/m3 7.8 2.0 ug/m3	1.1 1.1 ug/m3 EPA TO-15 18 13 ug/m3 EPA TO-15 60 4.9 ug/m3 EPA TO-15 20 1.7 ug/m3 EPA TO-15 9.6 4.6 ug/m3 EPA TO-15 4.8 2.3 ug/m3 EPA TO-15 20 13 ug/m3 EPA TO-15 5.2 3.5 ug/m3 EPA TO-15 7.8 2.0 ug/m3 EPA TO-15

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Analytical Report

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0551 N/A EPA TO-15

07/09/15

Units:

ug/m3 Page 1 of 6

Project: Crystal Geyser / SB07	746					Pa	ge 1 of 6
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-01-5-070815	15-07-0551-1-A	07/08/15 08:09	Air	GC/MS II	N/A	07/11/15 03:24	150710L01
<u>Parameter</u>		Result	R	<u>L</u>	<u>DF</u>	Qua	alifiers
Acetone		25	5	.0	1.06		
Benzene		ND	1	.7	1.06		
Benzyl Chloride		ND	8	.2	1.06		
Bromodichloromethane		ND	3	.6	1.06		
Bromoform		ND	5	.5	1.06		
Bromomethane		ND	2	.1	1.06		
2-Butanone		ND	4	.7	1.06		
n-Butylbenzene		ND	2	.9	1.06		
sec-Butylbenzene		ND	2	.9	1.06		
tert-Butylbenzene		ND	2	.9	1.06		
Carbon Disulfide		ND	6	.6	1.06		
Carbon Tetrachloride		ND	3	.3	1.06		
Chlorobenzene		ND	2	.4	1.06		
Chloroethane		ND	1	.4	1.06		
Chloroform		ND	2	.6	1.06		
Chloromethane		1.1	1	.1	1.06		
Dibromochloromethane		ND	4	.5	1.06		
1,2-Dibromoethane		ND	4	.1	1.06		
1,2-Dichlorobenzene		ND	3	.2	1.06		
1,3-Dichlorobenzene		ND		.2	1.06		
1,4-Dichlorobenzene		ND		.2	1.06		
Dichlorodifluoromethane		ND		.6	1.06		
1,1-Dichloroethane		ND		.1	1.06		
1,2-Dichloroethane		ND		.1	1.06		
1,1-Dichloroethene		ND		.1	1.06		
c-1,2-Dichloroethene		ND	2	.1	1.06		
t-1,2-Dichloroethene		ND		.1	1.06		
1,2-Dichloropropane		ND		.4	1.06		
c-1,3-Dichloropropene		ND		.4	1.06		
t-1,3-Dichloropropene		ND		.8	1.06		
Dichlorotetrafluoroethane		ND	1		1.06		
1,1-Difluoroethane		ND		.7	1.06		
Ethylbenzene		ND		.3	1.06		
4-Ethyltoluene		ND		.6	1.06		
Hexachloro-1,3-Butadiene		ND		.o 7	1.06		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

1,2-Dichloroethane-d4

Toluene-d8

Analytical Report

Geosyntec Consultants	Da	ite Received:		07/09/15
924 Anacapa Street, Suite 4A	Wo	ork Order:		15-07-0551
Santa Barbara, CA 93101-2177	Pro	N/A		
,	Me	EPA TO-15		
		nits:		ug/m3
Project: Crystal Geyser / SB0746	G.			Page 2 of 6
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
2-Hexanone	ND	6.5	1.06	
Isopropanol	18	13	1.06	
Methyl-t-Butyl Ether (MTBE)	ND	7.6	1.06	
Methylene Chloride	ND	18	1.06	
4-Methyl-2-Pentanone	ND	6.5	1.06	
Styrene	ND	6.8	1.06	
1,1,2,2-Tetrachloroethane	ND	7.3	1.06	
Tetrachloroethene	ND	3.6	1.06	
Toluene	ND	2.0	1.06	
1,2,4-Trichlorobenzene	ND	16	1.06	
1,1,1-Trichloroethane	ND	2.9	1.06	
1,1,2-Trichloroethane	ND	2.9	1.06	
Trichloroethene	ND	2.8	1.06	
Trichlorofluoromethane	ND	6.0	1.06	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	12	1.06	
1,2,4-Trimethylbenzene	ND	7.8	1.06	
1,3,5-Trimethylbenzene	ND	2.6	1.06	
Vinyl Acetate	ND	7.5	1.06	
Vinyl Chloride	ND	1.4	1.06	
o-Xylene	ND	2.3	1.06	
p/m-Xylene	ND	9.2	1.06	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	112	68-134		

97

95

67-133

70-130

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: Crystal Geyser / SB0746

Date Received: Work Order: Preparation: Method:

15-07-0551 N/A EPA TO-15

07/09/15

Units:

ug/m3 Page 3 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-01-5-070815-DUP	15-07-0551-2-A	07/08/15 08:09	Air	GC/MS II	N/A	07/11/15 05:58	150710L01
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Acetone		60	4	.9	1.04		
Benzene		20	1	.7	1.04		
Benzyl Chloride		ND	8	.1	1.04		
Bromodichloromethane		ND	3	.5	1.04		
Bromoform		ND	5	.4	1.04		
Bromomethane		ND	2	.0	1.04		
2-Butanone		9.6	4	.6	1.04		
n-Butylbenzene		ND	2	.9	1.04		
sec-Butylbenzene		ND	2	.9	1.04		
tert-Butylbenzene		ND	2	.9	1.04		
Carbon Disulfide		ND	6	.5	1.04		
Carbon Tetrachloride		ND	3	.3	1.04		
Chlorobenzene		ND	2	.4	1.04		
Chloroethane		ND	1	.4	1.04		
Chloroform		ND	2	.5	1.04		
Chloromethane		ND	1	.1	1.04		
Dibromochloromethane		ND	4	.4	1.04		
1,2-Dibromoethane		ND	4	.0	1.04		
1,2-Dichlorobenzene		ND	3	.1	1.04		
1,3-Dichlorobenzene		ND	3	.1	1.04		
1,4-Dichlorobenzene		ND	3	.1	1.04		
Dichlorodifluoromethane		ND	2	.6	1.04		
1,1-Dichloroethane		ND	2	.1	1.04		
1,2-Dichloroethane		ND	2	.1	1.04		
1,1-Dichloroethene		ND	2	.1	1.04		
c-1,2-Dichloroethene		ND	2	.1	1.04		
t-1,2-Dichloroethene		ND	2	.1	1.04		
1,2-Dichloropropane		ND	2	.4	1.04		
c-1,3-Dichloropropene		ND	2	.4	1.04		
t-1,3-Dichloropropene		ND	4	.7	1.04		
Dichlorotetrafluoroethane		ND	1		1.04		
1,1-Difluoroethane		ND	5	.6	1.04		
Ethylbenzene		4.8	2	.3	1.04		
4-Ethyltoluene		ND		.6	1.04		
Hexachloro-1,3-Butadiene		ND	1	7	1.04		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Analytical Report

Geosyntec Consultants	Da	te Received:		07/09/15		
924 Anacapa Street, Suite 4A	Wo	ork Order:		15-07-0551		
Santa Barbara, CA 93101-2177	Pre	N/A				
Carra Barbara, Critotro Erri		Preparation: Method:				
	Un			EPA TO-15 ug/m3		
Project: Crystal Geyser / SB0746	OII		Page 4 of 6			
Froject. Crystal Geysel / 350/46						
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers		
2-Hexanone	ND	6.4	1.04			
Isopropanol	20	13	1.04			
Methyl-t-Butyl Ether (MTBE)	ND	7.5	1.04			
Methylene Chloride	ND	18	1.04			
4-Methyl-2-Pentanone	ND	6.4	1.04			
Styrene	ND	6.6	1.04			
1,1,2,2-Tetrachloroethane	ND	7.1	1.04			
Tetrachloroethene	5.2	3.5	1.04			
Toluene	7.8	2.0	1.04			
1,2,4-Trichlorobenzene	ND	15	1.04			
1,1,1-Trichloroethane	ND	2.8	1.04			
1,1,2-Trichloroethane	ND	2.8	1.04			
Trichloroethene	ND	2.8	1.04			
Trichlorofluoromethane	ND	5.8	1.04			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	12	1.04			
1,2,4-Trimethylbenzene	ND	7.7	1.04			
1,3,5-Trimethylbenzene	ND	2.6	1.04			
Vinyl Acetate	ND	7.3	1.04			
Vinyl Chloride	ND	1.3	1.04			
o-Xylene	2.3	2.3	1.04			
p/m-Xylene	ND	9.0	1.04			
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	111	68-134				
1,2-Dichloroethane-d4	100	67-133				
Toluene-d8	96	70-130				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

N/A EPA TO-15 ug/m3

07/09/15

15-07-0551

Project: Crystal Geyser / SB0746

Page 5 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-021-15654	N/A	Air	GC/MS II	N/A	07/10/15 16:27	150710L01
Parameter		Result	RL		<u>DF</u>	Qua	lifiers
Acetone		ND	4.8		1.00		
Benzene		ND	1.6		1.00		
Benzyl Chloride		ND	7.8		1.00		
Bromodichloromethane		ND	3.4		1.00		
Bromoform		ND	5.2		1.00		
Bromomethane		ND	1.9		1.00		
2-Butanone		ND	4.4		1.00		
n-Butylbenzene		ND	2.7		1.00		
sec-Butylbenzene		ND	2.7		1.00		
tert-Butylbenzene		ND	2.7		1.00		
Carbon Disulfide		ND	6.2		1.00		
Carbon Tetrachloride		ND	3.1		1.00		
Chlorobenzene		ND	2.3		1.00		
Chloroethane		ND	1.3		1.00		
Chloroform		ND	2.4		1.00		
Chloromethane		ND	1.0		1.00		
Dibromochloromethane		ND	4.3		1.00		
1,2-Dibromoethane		ND	3.8		1.00		
1,2-Dichlorobenzene		ND	3.0		1.00		
1,3-Dichlorobenzene		ND	3.0		1.00		
1,4-Dichlorobenzene		ND	3.0		1.00		
Dichlorodifluoromethane		ND	2.5		1.00		
1,1-Dichloroethane		ND	2.0		1.00		
1,2-Dichloroethane		ND	2.0		1.00		
1,1-Dichloroethene		ND	2.0		1.00		
c-1,2-Dichloroethene		ND	2.0		1.00		
t-1,2-Dichloroethene		ND	2.0		1.00		
1,2-Dichloropropane		ND	2.3		1.00		
c-1,3-Dichloropropene		ND	2.3		1.00		
t-1,3-Dichloropropene		ND	4.5		1.00		
Dichlorotetrafluoroethane		ND	14		1.00		
1,1-Difluoroethane		ND	5.4		1.00		
Ethylbenzene		ND	2.2		1.00		
4-Ethyltoluene		ND	2.5		1.00		
Hexachloro-1,3-Butadiene		ND	16		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants	Da	te Received:		07/09/15	
924 Anacapa Street, Suite 4A	Wo	ork Order:		15-07-0551	
Santa Barbara, CA 93101-2177	Pre		N/A		
Carra Barbara, Critotro Erri		thod:		EPA TO-15	
	Un			ug/m3	
Project: Crystal Geyser / SB0746	OII	113.		Page 6 of 6	
Froject. Crystal Geysel / 350/46					
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers	
2-Hexanone	ND	6.1	1.00		
Isopropanol	ND	12	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00		
Methylene Chloride	ND	17	1.00		
4-Methyl-2-Pentanone	ND	6.1	1.00		
Styrene	ND	6.4	1.00		
1,1,2,2-Tetrachloroethane	ND	6.9	1.00		
Tetrachloroethene	ND	3.4	1.00		
Toluene	ND	1.9	1.00		
1,2,4-Trichlorobenzene	ND	15	1.00		
1,1,1-Trichloroethane	ND	2.7	1.00		
1,1,2-Trichloroethane	ND	2.7	1.00		
Trichloroethene	ND	2.7	1.00		
Trichlorofluoromethane	ND	5.6	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11	1.00		
1,2,4-Trimethylbenzene	ND	7.4	1.00		
1,3,5-Trimethylbenzene	ND	2.5	1.00		
Vinyl Acetate	ND	7.0	1.00		
Vinyl Chloride	ND	1.3	1.00		
o-Xylene	ND	2.2	1.00		
p/m-Xylene	ND	8.7	1.00		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	100	68-134			
1,2-Dichloroethane-d4	100	67-133			
Toluene-d8	98	70-130			

Quality Control - LCS/LCSD

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: 07/09/15 15-07-0551 N/A

EPA TO-15

Method:

Page 1 of 2

Project: Crystal Geyser / SB0746

Quality Control Sample ID	Туре		Matrix	Instru	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-021-15654	LCS		Air	GC/I	AS II	N/A	07/10/1	5 13:41	150710L01	
095-01-021-15654	LCSD		Air	GC/I	IS II	N/A	07/10/1	5 14:31	150710L01	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	59.39	50.29	85	49.24	83	67-133	56-144	2	0-30	
Benzene	79.87	66.16	83	69.35	87	70-130	60-140	5	0-30	
Benzyl Chloride	129.4	121.0	94	125.0	97	38-158	18-178	3	0-30	
Bromodichloromethane	167.5	144.6	86	150.1	90	70-130	60-140	4	0-30	
Bromoform	258.4	220.0	85	227.6	88	63-147	49-161	3	0-30	
Bromomethane	97.08	87.77	90	85.48	88	70-139	58-150	3	0-30	
2-Butanone	73.73	65.46	89	67.93	92	66-132	55-143	4	0-30	
n-Butylbenzene	137.2	112.5	82	116.5	85	50-150	33-167	3	0-30	
sec-Butylbenzene	137.2	110.6	81	114.5	83	50-150	33-167	3	0-30	
tert-Butylbenzene	137.2	111.5	81	115.2	84	50-150	33-167	3	0-30	
Carbon Disulfide	77.85	64.72	83	67.16	86	68-146	55-159	4	0-30	
Carbon Tetrachloride	157.3	137.3	87	142.1	90	70-136	59-147	3	0-30	
Chlorobenzene	115.1	96.63	84	100.5	87	70-130	60-140	4	0-30	
Chloroethane	65.96	55.55	84	55.25	84	65-149	51-163	1	0-30	
Chloroform	122.1	98.73	81	102.6	84	70-130	60-140	4	0-30	
Chloromethane	51.63	45.07	87	45.54	88	69-141	57-153	1	0-30	
Dibromochloromethane	213.0	173.6	82	179.1	84	70-138	59-149	3	0-30	
1,2-Dibromoethane	192.1	162.8	85	169.1	88	70-133	60-144	4	0-30	
1,2-Dichlorobenzene	150.3	129.8	86	134.7	90	48-138	33-153	4	0-30	
1,3-Dichlorobenzene	150.3	129.1	86	133.6	89	56-134	43-147	3	0-30	
1,4-Dichlorobenzene	150.3	131.0	87	136.2	91	52-136	38-150	4	0-30	
Dichlorodifluoromethane	123.6	106.1	86	110.5	89	67-139	55-151	4	0-30	
1,1-Dichloroethane	101.2	80.27	79	84.23	83	70-130	60-140	5	0-30	
1,2-Dichloroethane	101.2	87.37	86	90.42	89	70-132	60-142	3	0-30	
1,1-Dichloroethene	99.12	78.92	80	79.84	81	70-135	59-146	1	0-30	
c-1,2-Dichloroethene	99.12	78.86	80	82.03	83	70-130	60-140	4	0-30	
t-1,2-Dichloroethene	99.12	79.62	80	83.06	84	70-130	60-140	4	0-30	
1,2-Dichloropropane	115.5	95.77	83	100.2	87	70-130	60-140	4	0-30	
c-1,3-Dichloropropene	113.5	103.7	91	108.0	95	70-130	60-140	4	0-30	
t-1,3-Dichloropropene	113.5	115.1	101	120.7	106	70-147	57-160	5	0-30	
Dichlorotetrafluoroethane	174.8	124.2	71	122.6	70	51-135	37-149	1	0-30	
1,1-Difluoroethane	67.54	61.53	91	64.64	96	70-131	60-141	5	0-30	
Ethylbenzene	108.6	89.84	83	92.94	86	70-130	60-140	3	0-30	
4-Ethyltoluene	122.9	104.5	85	108.2	88	68-130	58-140	3	0-30	
Hexachloro-1,3-Butadiene	266.6	215.3	81	224.4	84	44-146	27-163	4	0-30	
2-Hexanone	102.4	86.64	85	89.70	88	70-136	59-147	3	0-30	

RPD: Relative Percent Difference. CL: C

CL: Control Limits

Quality Control - LCS/LCSD

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

07/09/15 15-07-0551 N/A EPA TO-15

Project: Crystal Geyser / SB0746

Page 2 of 2

<u>Parameter</u>	<u>Spike</u> Added	LCS Cond	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
Isopropanol	61.45	45.77	74	45.63	74	57-135	44-148	0	0-30	
Methyl-t-Butyl Ether (MTBE)	90.13	75.03	83	77.60	86	68-130	58-140	3	0-30	
Methylene Chloride	86.84	64.22	74	51.71	60	69-130	59-140	22	0-30	ME
4-Methyl-2-Pentanone	102.4	89.89	88	93.46	91	70-130	60-140	4	0-30	
Styrene	106.5	91.90	86	94.84	89	65-131	54-142	3	0-30	
1,1,2,2-Tetrachloroethane	171.6	133.7	78	138.3	81	63-130	52-141	3	0-30	
Tetrachloroethene	169.6	146.9	87	151.2	89	70-130	60-140	3	0-30	
Toluene	94.21	78.23	83	81.53	87	70-130	60-140	4	0-30	
1,2,4-Trichlorobenzene	185.5	183.2	99	191.2	103	31-151	11-171	4	0-30	
1,1,1-Trichloroethane	136.4	112.3	82	116.0	85	70-130	60-140	3	0-30	
1,1,2-Trichloroethane	136.4	117.7	86	121.9	89	70-130	60-140	3	0-30	
Trichloroethene	134.3	114.5	85	119.0	89	70-130	60-140	4	0-30	
Trichlorofluoromethane	140.5	116.7	83	110.3	79	63-141	50-154	6	0-30	
1,1,2-Trichloro-1,2,2- Trifluoroethane	191.6	164.2	86	169.4	88	70-136	59-147	3	0-30	
1,2,4-Trimethylbenzene	122.9	105.2	86	109.0	89	60-132	48-144	4	0-30	
1,3,5-Trimethylbenzene	122.9	101.5	83	105.5	86	62-130	51-141	4	0-30	
Vinyl Acetate	88.03	66.21	75	69.26	79	58-130	46-142	5	0-30	
Vinyl Chloride	63.91	53.29	83	53.61	84	70-134	59-145	1	0-30	
o-Xylene	108.6	88.01	81	91.05	84	69-130	59-140	3	0-30	
p/m-Xylene	217.1	176.7	81	183.2	84	70-132	60-142	4	0-30	

Total number of LCS compounds: 56
Total number of ME compounds: 1
Total number of ME compounds allowed: 3
LCS ME CL validation result: Pass

Summa Canister Vacuum Summary

Work Order: 15-07-0551				Page 1 of 1
Sample Name	Vacuum Out	Vacuum In	Equipment	Description
SV-01-5-070815	-29.50 in Hg	-7.50 in Hg	LC278	Summa Canister 1L
SV-01-5-070815-DUP	-29.50 in Ha	-7.50 in Ha	LC1006	Summa Canister 1L

Sample Analysis Summary Report

Work Order: 15-07-0551				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA TO-15	N/A	866	GC/MS II	2

SG

Χ

Glossary of Terms and Qualifiers

Work Order: 15-07-0551 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- % Recovery and/or RPD out-of-range. Ζ
 - Analyte presence was not confirmed by second column or GC/MS analysis.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

age	17	of	18
C			

WO NO. / LAB USE ONLY

AIR CHAIN-OF-CUSTODY RECORD

P

PAGE: DATE

15-07-0551

7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us.

Glosynthe Consultants

924 Aracapa St.

omsauta Babara

1805-946-7190

Calscience

eurofins ...

Ryan Smith SBO746
PROJECT CONTACT:

93101

Clyshel bayer Poxane

Olancha

□ SAME DAY ☐ 24 HR ☐ 48 HR ☐ 72 HR ☐ 5 DAYS ☐ (STANDARD EDD.

COELT EDF COTHER

SPECIAL INSTRUCTIONS:

E-MAIL: Fraith (3) Geosylvtec, con

63246

SAMPLER(S). (PRINT)

VICK 600/1002

S. Hewalt LAB CONTACT OR QUOTE NO.

REQUESTED ANALYSES

-3,58 Pressure Time (24 hr clock) 0800

(24 hr clock)

Date

6L or 1L Size

Media

Indoor (I) Soil Vap. (SV) Ambient (A)

FIELD ID / POINT OF COLLECTION

SAMPLEID

LAB USE ONLY

Controller

2 (3) 7)8)15

A 303

8LC01

50-0V 90-05

50-01-5-070815

7/50-01-5-070815-0VP

900177

3 × >

A303

080

7/8/15

36.00 -X.83 Pressure (in Hg)

Pa

2014-07-01 Revision

Received by: (Signature/Affiliation)

uished by: (Signature)

Calscience

WORK ORDER NUMBER: 15-07-

SAMPLE RECEIPT CHECKLIST

COOLER <u>Ø</u> OF <u>Ø</u>

CLIENT: <u>GEOSYNTEC</u>	DATE: 07 / <u>09</u> / 2015
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC5 (CF:-0.2°C); Temperature (w/o CF):°C (w/	ay of sampling
Ambient Temperature: Ø Air □ Filter	Ontokod by.
CUSTODY SEAL: Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Presert Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Presert	
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of containers	
□ No analysis requested □ Not relinquished □ No relinquished date □ No Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested	
Sufficient volume/mass for analyses requested Samples received within holding time Aqueous samples for certain analyses received within 15-minute holding time	
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses	•
□ Volatile Organics □ Total Metals □ Dissolved Metals Container(s) for certain analysis free of headspace	M 4500)
Tedlar™ bag(s) free of condensation	Blank Lot Number:)
Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB	25AGBh
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = S = H ₂ SO ₄ , u = ultra-pure, znna = Zn(CH ₃ CO ₂) ₂ + NaOH	A -

Calscience

WORK ORDER NUMBER: 15-06-2184

The difference is service

ResultLink >

Email your PM >

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: CG Roxane
Attention: Ryan Smith

924 Anacapa Street

Suite 4A

Santa Barbara, CA 93101-2177

Annous de la company de la com

Approved for release on 07/16/2015 by: Stephen Nowak

Project Manager

nelac

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: CG Roxane
Work Order Number: 15-06-2184

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 300.0 Anions (Aqueous). 4.2 EPA 200.7 ICP Metals (Aqueous). 4.3 EPA 6010B/7470A CAC Title 22 Metals (Aqueous). 4.4 EPA 6010B/7470A CAC Title 22 Metals (Aqueous). 4.5 EPA 7470A Mercury (Aqueous). 4.6 EPA 7470A Mercury (Aqueous). 4.7 EPA 8270C Semi-Volatile Organics (Aqueous). 4.8 EPA 8260B Volatile Organics (Aqueous).	6 7 8 10 12 13 14 20
5	4.9 Combined Inorganic Tests. Quality Control Sample Data. 5.1 MS/MSD. 5.2 Sample Duplicate. 5.3 LCS/LCSD.	26 27 27 37 41
6	Sample Analysis Summary	59
7	Glossary of Terms and Qualifiers	60
8	Chain-of-Custody/Sample Receipt Form	61

Work Order Narrative

Work Order: 15-06-2184 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 06/29/15. They were assigned to Work Order 15-06-2184.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants Work Order: 15-06-2184
924 Anacapa Street, Suite 4A Project Name: CG Roxane

Santa Barbara, CA 93101-2177 PO Number:

Date/Time 06/29/15 10:10 Received:

Number of 16

Containers:

Attn: Ryan Smith

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
AP-4-10-062515	15-06-2184-1	06/25/15 14:35	14	Aqueous
QCTB-01-062515	15-06-2184-2	06/25/15 00:00	2	Agueous

Detections Summary

Work Order:

Received:

Client: Geosyntec Consultants

15-06-2184

06/29/15

924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Project Name: CG Roxane

Attn: Ryan Smith

Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
AP-4-10-062515 (15-06-2184-1)						
Calcium	3.54		0.100	mg/L	EPA 200.7	N/A
Magnesium	0.199		0.100	mg/L	EPA 200.7	N/A
Sodium	95.6		0.500	mg/L	EPA 200.7	N/A
Chloride	7.9		1.0	mg/L	EPA 300.0	N/A
Sulfate	26		1.0	mg/L	EPA 300.0	N/A
Arsenic	0.239		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Barium	1.30		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Chromium	0.0133		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Copper	0.0836		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Lead	0.0161		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Molybdenum	0.137		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Vanadium	0.187		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Zinc	0.282		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Arsenic	0.0801		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.0543		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Vanadium	0.0221		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Zinc	0.0116		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Alkalinity, Total (as CaCO3)	865		5.00	mg/L	SM 2320B	N/A
Solids, Total Dissolved	2060		10.0	mg/L	SM 2540 C	N/A
рН	9.24	BV,BU	0.01	pH units	SM 4500 H+ B	N/A
Total Kjeldahl Nitrogen	0.98		0.50	mg/L	SM 4500 N Org B	N/A
Phosphorus, Total	8.8		2.5	mg/L	SM 4500 P B/E	N/A
Total Phosphate	27		7.8	mg/L	SM 4500 P B/E	N/A
Total Nitrogen	1.1		0.50	mg/L	Total Nitrogen by Calc	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/29/15 15-06-2184 N/A

EPA 300.0 mg/L

Project: CG Roxane Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-10-062515	15-06-2184-1-E	06/25/15 14:35	Aqueous	IC 15	N/A	06/29/15 15:20	150629L01
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Chloride		7.9	1.0)	1.00		
Sulfate		26	1.0)	1.00		

Method Blank	099-12-906-5868	N/A	Aqueous	IC 15	N/A	06/29/15 14:46	150629L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Chloride		ND	1.0		1.00		
Sulfate		ND	1.0		1.00		

Geosyntec ConsultantsDate Received:06/29/15924 Anacapa Street, Suite 4AWork Order:15-06-2184Santa Barbara, CA 93101-2177Preparation:N/A

Method: EPA 200.7 Units: mg/L

Project: CG Roxane Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-10-062515	15-06-2184-1-I	06/25/15 14:35	Aqueous	ICP 7300	07/06/15	07/06/15 20:03	150706LA2
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>lifiers</u>
Calcium		3.54	0.1	00	1.00		
Magnesium		0.199	0.1	00	1.00		
Sodium		95.6	0.5	500	1.00		

Method Blank	097-01-012-6251	N/A	Aqueous ICP 7300	07/06/15	07/06/15 150706LA2 21:26
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Calcium		ND	0.100	1.00	
Magnesium		ND	0.100	1.00	
Sodium		ND	0.500	1.00	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/29/15 15-06-2184 EPA 3010A Total EPA 6010B mg/L

Project: CG Roxane

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-10-062515	15-06-2184-1-I	06/25/15 14:35	Aqueous	ICP 7300	06/29/15	07/03/15 15:46	150629LA2
<u>Parameter</u>	·	Result	RL	•	<u>DF</u>	Qua	lifiers
Antimony		ND	0.0	0150	1.00		
Arsenic		0.0801	0.0	0100	1.00		
Barium		ND	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.0543	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		0.0221	0.0	0100	1.00		
Zinc		0.0116	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/29/15 15-06-2184 EPA 3010A Total EPA 6010B mg/L

Project: CG Roxane

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-15175	N/A	Aqueous	ICP 7300	06/29/15	06/30/15 14:09	150629LA2
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0	150	1.00		
Arsenic		ND	0.0	100	1.00		
Barium		ND	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		ND	0.0	100	1.00		
Lead		ND	0.0	100	1.00		
Molybdenum		ND	0.0	100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0	150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0	150	1.00		
Vanadium		ND	0.0	100	1.00		
Zinc		ND	0.0	100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/29/15 15-06-2184 EPA 3005A Filt. EPA 6010B mg/L

Project: CG Roxane

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-10-062515	15-06-2184-1-M	06/25/15 14:35	Aqueous	ICP 7300	06/30/15	07/03/15 15:44	150630LA7A
Parameter		<u>Result</u>	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	0.0)150	1.00		
Arsenic		0.239	0.0)100	1.00		
Barium		1.30	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		0.0133	0.0	100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		0.0836	0.0	100	1.00		
Lead		0.0161	0.0	100	1.00		
Molybdenum		0.137	0.0	100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		0.187	0.0	0100	1.00		
Zinc		0.282	0.0	100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

06/29/15 15-06-2184 EPA 3005A Filt. EPA 6010B mg/L

Project: CG Roxane

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-15183	N/A	Aqueous	ICP 7300	06/30/15	07/03/15 13:19	150630LA7A
Parameter		Result	RL	:	<u>DF</u>	Qua	lifiers
Antimony		ND	0.0)150	1.00		
Arsenic		ND	0.0)100	1.00		
Barium		ND	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		ND	0.0	100	1.00		
Lead		ND	0.0	100	1.00		
Molybdenum		ND	0.0	100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	0100	1.00		

Page 1 of 1

Project: CG Roxane

Analytical Report

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-2184
Santa Barbara, CA 93101-2177
Preparation:
EPA 7470A Total
Method:
EPA 7470A

Units: mg/L

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-10-062515	15-06-2184-1-I	06/25/15 14:35	Aqueous	Mercury 04	07/01/15	07/01/15 19:36	150701L03
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Mercury		ND	0.0	00500	1.00		

Method Blank	099-04-008-7486	N/A	Aqueous Mercury	04 07/01/15	07/01/15 150701L03 19:01
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Mercury		ND	0.000500	1.00	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2184 EPA 7470A Filt. EPA 7470A

mg/L

Units:

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-10-062515	15-06-2184-1-M	06/25/15 14:35	Aqueous	Mercury 04	07/01/15	07/01/15 19:36	150701L02F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	0.0	000500	1.00		

Method Blank	099-15-763-579	N/A	Aqueous Mercury 04	07/01/15	07/01/15 18:07	150701L02F
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Quali</u>	<u>ifiers</u>
Mercury		ND	0.000500	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

Units:

15-06-2184 EPA 3510C EPA 8270C

06/29/15

ug/L

Page 1 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-10-062515	15-06-2184-1-H	06/25/15 14:35	Aqueous	GC/MS TT	06/30/15	07/01/15 14:51	150630L12
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	9.6		1.00		
Acenaphthylene		ND	9.6		1.00		
Aniline		ND	9.6		1.00		
Anthracene		ND	9.6		1.00		
Azobenzene		ND	9.6		1.00		
Benzidine		ND	48		1.00		
Benzo (a) Anthracene		ND	9.6		1.00		
Benzo (a) Pyrene		ND	9.6		1.00		
Benzo (b) Fluoranthene		ND	9.6		1.00		
Benzo (g,h,i) Perylene		ND	9.6		1.00		
Benzo (k) Fluoranthene		ND	9.6		1.00		
Benzoic Acid		ND	48		1.00		
Benzyl Alcohol		ND	9.6		1.00		
Bis(2-Chloroethoxy) Methane		ND	9.6		1.00		
Bis(2-Chloroethyl) Ether		ND	24		1.00		
Bis(2-Chloroisopropyl) Ether		ND	9.6		1.00		
Bis(2-Ethylhexyl) Phthalate		ND	9.6		1.00		
4-Bromophenyl-Phenyl Ether		ND	9.6		1.00		
Butyl Benzyl Phthalate		ND	9.6		1.00		
4-Chloro-3-Methylphenol		ND	9.6		1.00		
4-Chloroaniline		ND	9.6		1.00		
2-Chloronaphthalene		ND	9.6		1.00		
2-Chlorophenol		ND	9.6		1.00		
4-Chlorophenyl-Phenyl Ether		ND	9.6		1.00		
Chrysene		ND	9.6		1.00		
2,6-Dichlorophenol		ND	9.6		1.00		
Di-n-Butyl Phthalate		ND	9.6		1.00		
Di-n-Octyl Phthalate		ND	9.6		1.00		
Dibenz (a,h) Anthracene		ND	9.6		1.00		
Dibenzofuran		ND	9.6		1.00		
1,2-Dichlorobenzene		ND	9.6		1.00		
1,3-Dichlorobenzene		ND	9.6		1.00		
1,4-Dichlorobenzene		ND	9.6		1.00		
3,3'-Dichlorobenzidine		ND	24		1.00		
2,4-Dichlorophenol		ND	9.6		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2184

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: CG Roxane
 Page 2 of 6

Project: CG Roxane				Page 2 of 6
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Diethyl Phthalate	ND	9.6	1.00	
Dimethyl Phthalate	ND	9.6	1.00	
2,4-Dimethylphenol	ND	9.6	1.00	
4,6-Dinitro-2-Methylphenol	ND	48	1.00	
2,4-Dinitrophenol	ND	48	1.00	
2,4-Dinitrotoluene	ND	9.6	1.00	
2,6-Dinitrotoluene	ND	9.6	1.00	
Fluoranthene	ND	9.6	1.00	
Fluorene	ND	9.6	1.00	
Hexachloro-1,3-Butadiene	ND	9.6	1.00	
Hexachlorobenzene	ND	9.6	1.00	
Hexachlorocyclopentadiene	ND	24	1.00	
Hexachloroethane	ND	9.6	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	9.6	1.00	
Isophorone	ND	9.6	1.00	
2-Methylnaphthalene	ND	9.6	1.00	
1-Methylnaphthalene	ND	9.6	1.00	
2-Methylphenol	ND	9.6	1.00	
3/4-Methylphenol	ND	9.6	1.00	
N-Nitroso-di-n-propylamine	ND	9.6	1.00	
N-Nitrosodimethylamine	ND	9.6	1.00	
N-Nitrosodiphenylamine	ND	9.6	1.00	
Naphthalene	ND	9.6	1.00	
4-Nitroaniline	ND	9.6	1.00	
3-Nitroaniline	ND	9.6	1.00	
2-Nitroaniline	ND	9.6	1.00	
Nitrobenzene	ND	24	1.00	
4-Nitrophenol	ND	9.6	1.00	
2-Nitrophenol	ND	9.6	1.00	
Pentachlorophenol	ND	9.6	1.00	
Phenanthrene	ND	9.6	1.00	
Phenol	ND	9.6	1.00	
Pyrene	ND	9.6	1.00	
Pyridine	ND	9.6	1.00	
1,2,4-Trichlorobenzene	ND	9.6	1.00	
2,4,6-Trichlorophenol	ND	9.6	1.00	
2,4,5-Trichlorophenol	ND	9.6	1.00	

Geosyntec Consultants	Date Received:	06/29/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-2184
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: CG Roxane		Page 3 of 6

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
2-Fluorobiphenyl	80	50-110	
2-Fluorophenol	81	20-110	
Nitrobenzene-d5	77	40-110	
p-Terphenyl-d14	78	50-135	
Phenol-d6	75	10-115	
2,4,6-Tribromophenol	81	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-06-2184 EPA 3510C EPA 8270C ug/L

06/29/15

Project: CG Roxane

Page 4 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-02-008-44	N/A	Aqueous	GC/MS TT	06/30/15	07/01/15 11:46	150630L12
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1.00		
Acenaphthylene		ND	10		1.00		
Aniline		ND	10		1.00		
Anthracene		ND	10		1.00		
Azobenzene		ND	10		1.00		
Benzidine		ND	50		1.00		
Benzo (a) Anthracene		ND	10		1.00		
Benzo (a) Pyrene		ND	10		1.00		
Benzo (b) Fluoranthene		ND	10		1.00		
Benzo (g,h,i) Perylene		ND	10		1.00		
Benzo (k) Fluoranthene		ND	10		1.00		
Benzoic Acid		ND	50		1.00		
Benzyl Alcohol		ND	10		1.00		
Bis(2-Chloroethoxy) Methane		ND	10		1.00		
Bis(2-Chloroethyl) Ether		ND	25		1.00		
Bis(2-Chloroisopropyl) Ether		ND	10		1.00		
Bis(2-Ethylhexyl) Phthalate		ND	10		1.00		
4-Bromophenyl-Phenyl Ether		ND	10		1.00		
Butyl Benzyl Phthalate		ND	10		1.00		
4-Chloro-3-Methylphenol		ND	10		1.00		
4-Chloroaniline		ND	10		1.00		
2-Chloronaphthalene		ND	10		1.00		
2-Chlorophenol		ND	10		1.00		
4-Chlorophenyl-Phenyl Ether		ND	10		1.00		
Chrysene		ND	10		1.00		
2,6-Dichlorophenol		ND	10		1.00		
Di-n-Butyl Phthalate		ND	10		1.00		
Di-n-Octyl Phthalate		ND	10		1.00		
Dibenz (a,h) Anthracene		ND	10		1.00		
Dibenzofuran		ND	10		1.00		
1,2-Dichlorobenzene		ND	10		1.00		
1,3-Dichlorobenzene		ND	10		1.00		
1,4-Dichlorobenzene		ND	10		1.00		
3,3'-Dichlorobenzidine		ND	25		1.00		
2,4-Dichlorophenol		ND	10		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2184

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: CG Roxane
 Page 5 of 6

Project: CG Roxane				Page 5 of 6
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Diethyl Phthalate	ND	10	1.00	
Dimethyl Phthalate	ND	10	1.00	
2,4-Dimethylphenol	ND	10	1.00	
4,6-Dinitro-2-Methylphenol	ND	50	1.00	
2,4-Dinitrophenol	ND	50	1.00	
2,4-Dinitrotoluene	ND	10	1.00	
2,6-Dinitrotoluene	ND	10	1.00	
Fluoranthene	ND	10	1.00	
Fluorene	ND	10	1.00	
Hexachloro-1,3-Butadiene	ND	10	1.00	
Hexachlorobenzene	ND	10	1.00	
Hexachlorocyclopentadiene	ND	25	1.00	
Hexachloroethane	ND	10	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	10	1.00	
Isophorone	ND	10	1.00	
2-Methylnaphthalene	ND	10	1.00	
1-Methylnaphthalene	ND	10	1.00	
2-Methylphenol	ND	10	1.00	
3/4-Methylphenol	ND	10	1.00	
N-Nitroso-di-n-propylamine	ND	10	1.00	
N-Nitrosodimethylamine	ND	10	1.00	
N-Nitrosodiphenylamine	ND	10	1.00	
Naphthalene	ND	10	1.00	
4-Nitroaniline	ND	10	1.00	
3-Nitroaniline	ND	10	1.00	
2-Nitroaniline	ND	10	1.00	
Nitrobenzene	ND	25	1.00	
4-Nitrophenol	ND	10	1.00	
2-Nitrophenol	ND	10	1.00	
Pentachlorophenol	ND	10	1.00	
Phenanthrene	ND	10	1.00	
Phenol	ND	10	1.00	
Pyrene	ND	10	1.00	
Pyridine	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	10	1.00	
2,4,6-Trichlorophenol	ND	10	1.00	
2,4,5-Trichlorophenol	ND	10	1.00	

Geosyntec Consultants	Date Received:	06/29/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-2184
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: CG Roxane		Page 6 of 6

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	73	50-110	
2-Fluorophenol	53	20-110	
Nitrobenzene-d5	70	40-110	
p-Terphenyl-d14	75	50-135	
Phenol-d6	33	10-115	
2,4,6-Tribromophenol	74	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2184 EPA 5030C EPA 8260B

ug/L

Units: Page 1 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
AP-4-10-062515	15-06-2184-1-A	06/25/15 14:35	Aqueous	GC/MS T	07/02/15	07/03/15 09:12	150702L023
Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants

Date Received:

Work Order:

15-06-2184

Santa Barbara, CA 93101-2177

Preparation:

Method:

Units:

Units:

06/29/15

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

	•			9/-
Project: CG Roxane				Page 2 of 6
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	100	79-120		
Dibromofluoromethane	119	80-126		
1,2-Dichloroethane-d4	129	80-124	2,7	
Toluene-d8	100	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-2184 EPA 5030C EPA 8260B

06/29/15

Units: ug/L Page 3 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
QCTB-01-062515	15-06-2184-2-A	06/25/15 00:00	Aqueous	GC/MS T	07/02/15	07/03/15 01:52	150702L023
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants

Date Received:

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Preparation:

Method:

Units:

Units:

06/29/15

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

15-06-2184

Project: CG Roxane Page 4 of 6

Project: CG Roxane				Page 4 of 6
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	99	79-120		
Dibromofluoromethane	105	80-126		
1,2-Dichloroethane-d4	117	80-124		
Toluene-d8	102	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2184 EPA 5030C EPA 8260B

06/29/15

ug/L

Units:

Page 5 of 6

Project: CG Roxane

Date/Time Collected Date/Time Date Prepared QC Batch ID Client Sample Number Lab Sample Matrix Instrument Number Analyzed 07/03/15 01:21 **Method Blank** 099-14-316-2189 N/A Aqueous GC/MS T 07/02/15 150702L023 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 20 1.00 Acetone ND 0.50 Benzene 1.00 ND Bromobenzene 1.0 1.00 Bromochloromethane ND 1.0 1.00 Bromodichloromethane ND 1.0 1.00 **Bromoform** ND 1.0 1.00 **Bromomethane** ND 10 1.00 2-Butanone ND 10 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 ND 0.50 1,2-Dichloroethane 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 ND 1.0 1.00 1,2-Dichloropropane 1,3-Dichloropropane ND 1.0 1.00 ND 1.00 2,2-Dichloropropane 1.0

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 06/29/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-06-2184

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: CG Roxane
 Page 6 of 6

Project: CG Roxane				Page 6 of 6
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	97	79-120		
Dibromofluoromethane	103	80-126		
1,2-Dichloroethane-d4	114	80-124		
Toluene-d8	101	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received:

06/29/15 15-06-2184

Work Order:

Project: CG Roxane Page 1 of 1

Client Sample Number			Lab	Sample Number		Date/Tir	ne Collected	Matrix
AP-4-10-062515			15-0	6-2184-1		06/25/15 14:35		Aqueous
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	DF	Qualifiers	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	Method
Alkalinity, Total (as CaCO3)	865	5.00	1.00		mg/L	N/A	07/01/15	SM 2320B
Solids, Total Dissolved	2060	10.0	1.00		mg/L	06/30/15	06/30/15	SM 2540 C
рН	9.24	0.01	1.00	BV,BU	pH units	N/A	06/29/15	SM 4500 H+ B
Total Kjeldahl Nitrogen	0.98	0.50	1.00		mg/L	07/01/15	07/01/15	SM 4500 N Org B
Phosphorus, Total	8.8	2.5	25.0		mg/L	06/30/15	06/30/15	SM 4500 P B/E
Total Phosphate	27	7.8	25.0		mg/L	06/30/15	06/30/15	SM 4500 P B/E
Ammonia (as N)	ND	0.10	1.00		mg/L	07/01/15	07/01/15	SM 4500-NH3 B/C
Nitrate-Nitrite (as N)	ND	0.10	1.00		mg/L	07/01/15	07/01/15	SM 4500-NO3 E
MBAS	ND	0.10	1.00	BV,BU	mg/L	06/29/15	06/29/15	SM 5540C
Total Nitrogen	1.1	0.50	1.00		mg/L	N/A	07/09/15	Total Nitrogen by Calc
Method Blank						N/A		Aqueous
D	D 11 -	D.	- DE	0	1.126-	D-1-	D-11-	NA - (In an al

Method Blank						N/A		Aqueous
Parameter	<u>Results</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method
Alkalinity, Total (as CaCO3)	ND	1.0	1.00		mg/L	N/A	07/01/15	SM 2320B
Solids, Total Dissolved	ND	1.0	1.00		mg/L	06/30/15	06/30/15	SM 2540 C
Total Kjeldahl Nitrogen	ND	0.50	1.00		mg/L	07/01/15	07/01/15	SM 4500 N Org B
Phosphorus, Total	ND	0.10	1.00		mg/L	06/30/15	06/30/15	SM 4500 P B/E
Total Phosphate	ND	0.31	1.00		mg/L	06/30/15	06/30/15	SM 4500 P B/E
Ammonia (as N)	ND	0.10	1.00		mg/L	07/01/15	07/01/15	SM 4500-NH3 B/C
Nitrate-Nitrite (as N)	ND	0.10	1.00		mg/L	07/01/15	07/01/15	SM 4500-NO3 E
MBAS	ND	0.10	1.00		mg/L	06/29/15	06/29/15	SM 5540C

06/29/15

N/A

15-06-2184

Project: CG Roxane

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Preparation:

Method:

Method: EPA 300.0 Page 1 of 10

Quality Control Sample ID	Туре		Matrix		nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
AP-4-10-062515	Sample		Aqueous		C 15	N/A	06/29/15	15:20	150629S01	
AP-4-10-062515	Matrix Spike		Aqueous		C 15	N/A	06/29/15	15:38	150629S01	
AP-4-10-062515	Matrix Spike Duplicate		Aqueous		C 15	N/A	06/29/15	15:55	150629S01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	7.922	5000	5712	114	5705	114	80-120	0	0-20	
Sulfate	26.27	5000	5672	113	5653	113	80-120	0	0-20	

Project: CG Roxane

Quality Control - Spike/Spike Duplicate

Geosyntec ConsultantsDate Received:06/29/15924 Anacapa Street, Suite 4AWork Order:15-06-2184Santa Barbara, CA 93101-2177Preparation:N/A

Method: SM 4500 P B/E
Page 2 of 10

Quality Control Sample ID	Туре		Matrix	Insti	ument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
AP-4-10-062515	Sample		Aqueous	UV	7	06/30/15	06/30/15	15:39	F0630TPS1	
AP-4-10-062515	Matrix Spike		Aqueous	UV	7	06/30/15	06/30/15	15:39	F0630TPS1	
AP-4-10-062515	Matrix Spike Du	plicate	Aqueous	UV	7	06/30/15	06/30/15	15:39	F0630TPS1	
Parameter	Sample S Conc. A	<u>Spike</u> \dded	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	8.820 1	0.00	18.38	96	18.48	97	70-130	1	0-25	

06/29/15

N/A

15-06-2184

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants Date Received: Work Order: 924 Anacapa Street, Suite 4A Preparation: Santa Barbara, CA 93101-2177 Method: SM 4500 P B/E

Project: CG Roxane Page 3 of 10

Quality Control Sample ID	Type	Matrix	Instru	ment	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
AP-4-10-062515	Sample	Aqueou	us UV 7		06/30/15	06/30/15	15:39	F0630PO4S1	
AP-4-10-062515	Matrix Spike	Aqueou	us UV 7		06/30/15	06/30/15	15:39	F0630PO4S1	
AP-4-10-062515	Matrix Spike Dup	licate Aqueou	us UV 7		06/30/15	06/30/15	15:39	F0630PO4S1	
Parameter	Sample Sp Conc. Ac	ike <u>MS</u> Ided <u>Conc.</u>	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Total Phosphate	26.99 30	.50 56.25	96	56.50	97	70-130	0	0-25	

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

Method:

06/29/15

15-06-2184

Preparation:

N/A

SM 4500-NO3 E

Project: CG Roxane Page 4 of 10

Quality Control Sample ID	Type		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
15-06-2310-2	Sample		Aqueous	UV	7	07/01/15	07/01/15	13:35	F0701NO3S	1
15-06-2310-2	Matrix Spike		Aqueous	s UV	7	07/01/15	07/01/15	13:35	F0701NO3S	1
15-06-2310-2	Matrix Spike	Duplicate	Aqueous	s UV	7	07/01/15	07/01/15	13:35	F0701NO3S	1
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	ND	0.5000	0.4910	98	0.4970	99	70-130	1	0-25	

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-2184
Santa Barbara, CA 93101-2177
Preparation:
N/A
Method:
SM 5540C

Project: CG Roxane Page 5 of 10

Quality Control Sample ID	Type		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
AP-4-10-062515	Sample		Aqueous	UV	9	06/29/15	06/29/15	16:15	F0629SURS	1
AP-4-10-062515	Matrix Spike		Aqueous	uV.	9	06/29/15	06/29/15	16:15	F0629SURS	1
AP-4-10-062515	Matrix Spike	Duplicate	Aqueous	uV	9	06/29/15	06/29/15	16:15	F0629SURS	1
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
MBAS	ND	1.000	0.8400	84	0.8600	86	70-130	2	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

06/29/15 15-06-2184 N/A

EPA 200.7

Project: CG Roxane Page 6 of 10

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
15-07-0119-1	Sample		Aqueou	ıs IC	P 7300	07/06/15	07/06/15	21:34	150706SA2	
15-07-0119-1	Matrix Spike		Aqueou	ıs IC	P 7300	07/06/15	07/06/15	21:30	150706SA2	
15-07-0119-1	Matrix Spike	Duplicate	Aqueou	ıs IC	P 7300	07/06/15	07/06/15	21:40	150706SA2	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Calcium	67.61	0.5000	65.61	4X	61.39	4X	80-120	4X	0-20	Q
Magnesium	18.59	0.5000	17.44	4X	17.19	4X	80-120	4X	0-20	Q
Sodium	214.3	5.000	213.5	4X	199.7	4X	80-120	4X	0-20	Q

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2184 EPA 3010A Total **EPA 6010B**

Page 7 of 10

06/29/15

Project: CG Roxane

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
15-06-2180-2	Sample		Aqueous	s IC	P 7300	06/29/15	06/30/15	14:22	150629SA2	
15-06-2180-2	Matrix Spike		Aqueous	s IC	P 7300	06/29/15	06/30/15	14:28	150629SA2	
15-06-2180-2	Matrix Spike	Duplicate	Aqueous	s IC	P 7300	06/29/15	06/30/15	14:29	150629SA2	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Antimony	ND	0.5000	0.5211	104	0.5371	107	72-132	3	0-10	
Arsenic	2.547	0.5000	2.965	4X	3.075	4X	80-140	4X	0-11	Q
Barium	0.09673	0.5000	0.6085	102	0.6001	101	87-123	1	0-6	
Beryllium	ND	0.5000	0.5430	109	0.5572	111	89-119	3	0-8	

ND 0.5000 82-124 0-7 Cadmium 0.5371 107 0.5486 110 2 Chromium 0.01702 0.5000 0.5695 111 0.5786 112 86-122 2 0-8 Cobalt ND 0.5000 0.5776 83-125 2 0-7 0.5664 113 116 Copper 0.02069 0.5000 0.5789 112 0.5866 113 78-126 1 0-7 Lead ND 0.5000 0.5458 109 0.5606 112 84-120 3 0-7 Molybdenum ND 0.5000 0.5486 110 0.5553 111 78-126 1 0-7 Nickel 0.5000 0.5637 84-120 0.01579 0.5611 109 110 0 0-7 Selenium ND 0.5000 0.4047 0.4104 82 79-127 1 0-9 81 Silver ND 0.2500 0.2513 0.2568 103 86-128 2 0-7 101 Thallium ND 0.5000 0.5759 79-121 3 0-8 0.5598 112 115 Vanadium 0.01206 0.5000 0.5599 110 0.5653 88-118 1 0-7 111 Zinc 0.6877 0.5000 105 2 1.184 99 1.211 89-131 0-8

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2184 EPA 3005A Filt. EPA 6010B

Project: CG Roxane Page 8 of 10

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
15-06-2262-2	Sample		Aqueous	i 10	CP 7300	06/30/15	07/03/15	14:06	150630SA7	
15-06-2262-2	Matrix Spike		Aqueous	s 10	CP 7300	06/30/15	07/03/15	14:08	150630SA7	
15-06-2262-2	Matrix Spike	Duplicate	Aqueous	s 10	CP 7300	06/30/15	07/03/15	14:10	150630SA7	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	0.5000	0.5250	105	0.5151	103	72-132	2	0-10	
Arsenic	ND	0.5000	0.5212	104	0.5156	103	80-140	1	0-11	
Barium	0.4365	0.5000	0.9711	107	0.9638	105	87-123	1	0-6	
Beryllium	ND	0.5000	0.5471	109	0.5507	110	89-119	1	0-8	
Cadmium	ND	0.5000	0.5097	102	0.5114	102	82-124	0	0-7	
Chromium	ND	0.5000	0.5433	109	0.5524	110	86-122	2	0-8	
Cobalt	0.01053	0.5000	0.5254	103	0.5197	102	83-125	1	0-7	
Copper	ND	0.5000	0.4893	98	0.4883	98	78-126	0	0-7	
Lead	ND	0.5000	0.5083	102	0.5053	101	84-120	1	0-7	
Molybdenum	ND	0.5000	0.5321	106	0.5318	106	78-126	0	0-7	
Nickel	0.03296	0.5000	0.5407	102	0.5412	102	84-120	0	0-7	
Selenium	ND	0.5000	0.5488	110	0.5504	110	79-127	0	0-9	
Silver	ND	0.2500	0.2698	108	0.2706	108	86-128	0	0-7	
Thallium	ND	0.5000	0.4737	95	0.4659	93	79-121	2	0-8	
Vanadium	ND	0.5000	0.5359	107	0.5420	108	88-118	1	0-7	
Zinc	0.05947	0.5000	0.5494	98	0.5406	96	89-131	2	0-8	

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-2184
Santa Barbara, CA 93101-2177
Preparation:
EPA 7470A Total
Method:
EPA 7470A

Project: CG Roxane Page 9 of 10

Quality Control Sample ID	Type		Matrix	Inst	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
15-06-1773-2	Sample		Aqueous	Me	rcury 04	07/01/15	07/01/15	19:05	150701S03	
15-06-1773-2	Matrix Spike		Aqueous	Me	rcury 04	07/01/15	07/01/15	19:07	150701S03	
15-06-1773-2	Matrix Spike	Duplicate	Aqueous	Me	rcury 04	07/01/15	07/01/15	19:10	150701S03	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.01000	0.009663	97	0.009600	96	75-120	1	0-20	

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-06-2184
Santa Barbara, CA 93101-2177
Preparation:
Method:
EPA 7470A Filt.

Project: CG Roxane Page 10 of 10

Quality Control Sample ID	Type		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-06-2040-2	Sample		Aqueous	Me	ercury 04	07/01/15	07/01/15	18:40	150701S02F	
15-06-2040-2	Matrix Spike		Aqueous	. Me	ercury 04	07/01/15	07/01/15	20:18	150701S02F	
15-06-2040-2	Matrix Spike	Duplicate	Aqueous	Me	ercury 04	07/01/15	07/01/15	20:20	150701S02F	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.01000	0.009754	98	0.009576	96	57-141	2	0-10	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: 06/29/15 15-06-2184 N/A

Method:

SM 2320B

Project: CG Roxane

Page 1 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-2262-1	Sample	Aqueous	PH1/BUR03	N/A	07/01/15 20:55	F0701ALKD1
15-06-2262-1	Sample Duplicate	Aqueous	PH1/BUR03	N/A	07/01/15 20:55	F0701ALKD1
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)		555.0	552.0	1	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

1

0-20

06/29/15 15-06-2184 N/A

SM 2540 C Page 2 of 4

Project: CG Roxane

Solids, Total Dissolved

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-2032-1	Sample	Aqueous	SC 2	06/30/15 00:00	06/30/15 18:00	F0630TDSD3
15-06-2032-1	Sample Duplicate	Aqueous	SC 2	06/30/15 00:00	06/30/15 18:00	F0630TDSD3
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	<u>Qualifiers</u>

1375

1365

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation:

Method:

06/29/15 15-06-2184 N/A

SM 4500 H+ B

	Page 3 of 4
	raye 3 01 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-2214-1	Sample	Aqueous	PH 1	N/A	06/29/15 18:51	F0629PHD1
15-06-2214-1	Sample Duplicate	Aqueous	PH 1	N/A	06/29/15 18:51	F0629PHD1
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
рН		5.870	5.860	0	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: 06/29/15 15-06-2184 N/A

Method: SM 4500 N Org B

Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-06-2080-1	Sample	Aqueous	BUR05	07/01/15 00:00	07/01/15 17:46	F0701TKND1
15-06-2080-1	Sample Duplicate	Aqueous	BUR05	07/01/15 00:00	07/01/15 17:46	F0701TKND1
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Total Kjeldahl Nitrogen		112.0	110.3	2	0-25	

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

Date Received:

06/29/15

Work Order:

15-06-2184

Preparation:

N/A

EPA 300.0

Project: CG Roxane Page 1 of 18

Quality Control Sample ID	Туре	Matrix	Instrument	Date	Prepared Date A	nalyzed	LCS Batch	Number
099-12-906-5868	LCS	Aqueous	IC 15	N/A	06/29/	15 15:03	150629L01	
<u>Parameter</u>		Spike Added	Conc. Recov	ered	LCS %Rec.	%Rec	. CL	Qualifiers
Chloride		50.00	51.15		102	90-110)	
Sulfate		50.00	50.69		101	90-110)	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2184 N/A

06/29/15

SM 2320B

Project: CG Roxane

Page 2 of 18

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	tch Number
099-15-859-744	LCS	Aqı	ieous	PH1/BUR03	N/A	07/0	1/15 20:55	F0701ALKB1	
099-15-859-744	LCSD	Aqı	ieous	PH1/BUR03	N/A	07/0	1/15 20:55	F0701ALKB1	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)	100.0	100.0	100	98.00	98	80-120	2	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation: Method:

15-06-2184 N/A

SM 2540 C

06/29/15

Page 3 of 18

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-12-180-4652	LCS	Aqı	ueous	SC 2	06/30/15	06/3	0/15 18:00	F0630TDSL3	
099-12-180-4652	LCSD	Aqı	ueous	SC 2	06/30/15	06/3	0/15 18:00	F0630TDSL3	
Parameter	Spike Added	d LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Solids, Total Dissolved	100.0	95.00	95	100.0	100	80-120	5	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

15-06-2184 N/A

06/29/15

SM 4500 P B/E Page 4 of 18

Project: CG Roxane

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD B	atch Number
099-05-098-2669	LCS	Aqı	ieous	UV 7	06/30/15	06/3	30/15 15:39	F0630TPL1	
099-05-098-2669	LCSD	Aqı	ieous	UV 7	06/30/15	06/3	80/15 15:39	F0630TPL1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	0.4000	0.4010	100	0.4000	100	80-120	0	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation:

15-06-2184 N/A

06/29/15

Method: SM 4500 P B/E Page 5 of 18

Quality Control Sample ID	Туре	Matr	ix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-14-276-161	LCS	Aqu	eous	UV 7	06/30/15	06/3	30/15 15:39	F0630PO4L1	
099-14-276-161	LCSD	Aqu	eous	UV 7	06/30/15	06/3	30/15 15:39	F0630PO4L1	
Parameter	Spike Added LC	CS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Total Phosphate	1.220 1.2	230	101	1.220	100	80-120	1	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: CG Roxane

Date Received: Work Order: Preparation:

Method:

15-06-2184 N/A

06/29/15

SM 4500-NH3 B/C

Page 6 of 18

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-12-814-2150	LCS	Aqu	ieous	BUR05	07/01/15	07/0	1/15 17:58	F0701NH3L1	
099-12-814-2150	LCSD	Aqu	ieous	BUR05	07/01/15	07/0	1/15 17:58	F0701NH3L1	
Parameter	Spike Added L	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Ammonia (as N)	5.000	4.648	93	4.536	91	80-120	2	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

15-06-2184 N/A

SM 4500-NO3 E

06/29/15

Method: Project: CG Roxane

Page 7 of 18

Quality Control Sample ID	Type	Matr	ix	Instrument	Date Prep	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-14-282-336	LCS	Aqu	eous	UV 7	07/01/15	07/0	1/15 13:35	F0701NO3L1	
099-14-282-336	LCSD	Aqu	eous	UV 7	07/01/15	07/0	1/15 13:35	F0701NO3L1	
Parameter	Spike Added LC	CS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	0.5000 0.	.4740	95	0.4770	95	80-120	1	0-20	

06/29/15

15-06-2184

Quality Control - LCS

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Date Received:

Work Order:

Preparation:

Preparation: N/A Method: SM 5540C

Project: CG Roxane Page 8 of 18

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-05-093-2888	LCS	Aqueous	UV 9	06/29/15	06/29/15 16:15	F0629SURL1
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
MBAS		1.000	0.9000	90	80-120	0

06/29/15

15-06-2184

Quality Control - LCS

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Date Received:

Work Order:

Preparation:

Preparation: N/A Method: EPA 200.7

Project: CG Roxane Page 9 of 18

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-01-012-6251	LCS	Aqueous	ICP 7300	07/06/15	07/06/15 21:43	150706LA2
Parameter		Spike Added	Conc. Recovere	ed LCS %R	ec. %Rec.	CL Qualifiers
Calcium		0.5000	0.4912	98	85-115	5
Magnesium		0.5000	0.4696	94	85-115	5
Sodium		5.000	5.049	101	85-115	5

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2184 EPA 3010A Total EPA 6010B

06/29/15

Project: CG Roxane Page 10 of 18

Quality Control Sample ID	Туре	Matrix	Instrume	nt Date Prep	ared Date Analy	zed LCS Batch N	Number
097-01-003-15175	LCS	Aqueo	us ICP 7300	06/29/15	06/30/15 1	4:11 150629LA2	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		0.5000	0.4594	92	80-120	73-127	
Arsenic		0.5000	0.4549	91	80-120	73-127	
Barium		0.5000	0.4701	94	80-120	73-127	
Beryllium		0.5000	0.4648	93	80-120	73-127	
Cadmium		0.5000	0.4822	96	80-120	73-127	
Chromium		0.5000	0.4971	99	80-120	73-127	
Cobalt		0.5000	0.5020	100	80-120	73-127	
Copper		0.5000	0.4920	98	80-120	73-127	
Lead		0.5000	0.4952	99	80-120	73-127	
Molybdenum		0.5000	0.4657	93	80-120	73-127	
Nickel		0.5000	0.5043	101	80-120	73-127	
Selenium		0.5000	0.4542	91	80-120	73-127	
Silver		0.2500	0.2327	93	80-120	73-127	
Thallium		0.5000	0.4809	96	80-120	73-127	
Vanadium		0.5000	0.4790	96	80-120	73-127	
Zinc		0.5000	0.4624	92	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 06/29/15 15-06-2184 EPA 3005A Filt. EPA 6010B

Page 11 of 18

Project: CG Roxane

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Analy	zed LCS Batch N	Number
097-01-003-15183	LCS	Aqueo	us ICP 7300	06/30/15	07/03/15 13	3:21 150630LA7	A
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		0.5000	0.4099	82	80-120	73-127	
Arsenic		0.5000	0.4099	82	80-120	73-127	
Barium		0.5000	0.4593	92	80-120	73-127	
Beryllium		0.5000	0.4386	88	80-120	73-127	
Cadmium		0.5000	0.4536	91	80-120	73-127	
Chromium		0.5000	0.4734	95	80-120	73-127	
Cobalt		0.5000	0.4573	91	80-120	73-127	
Copper		0.5000	0.4644	93	80-120	73-127	
Lead		0.5000	0.4469	89	80-120	73-127	
Molybdenum		0.5000	0.4236	85	80-120	73-127	
Nickel		0.5000	0.4601	92	80-120	73-127	
Selenium		0.5000	0.4100	82	80-120	73-127	
Silver		0.2500	0.2258	90	80-120	73-127	

0.4065

0.4526

0.4500

81

91

90

80-120

80-120

80-120

73-127

73-127

73-127

0.5000

0.5000

0.5000

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Thallium

Zinc

Vanadium

Geosyntec Consultants

Date Received:

924 Anacapa Street, Suite 4A

Work Order:

15-06-2184

Santa Barbara, CA 93101-2177

Preparation:

Method:

EPA 7470A

EPA 7470A

Project: CG Roxane

Page 12 of 18

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-04-008-7486	LCS	Aqueous	Mercury 04	07/01/15	07/02/15 15:34	150701L03
Parameter		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	:. CL Qualifiers
Mercury		0.01000	0.009873	99	85-12	1

Geosyntec ConsultantsDate Received:06/29/15924 Anacapa Street, Suite 4AWork Order:15-06-2184Santa Barbara, CA 93101-2177Preparation:EPA 7470A Filt.Method:EPA 7470A

Project: CG Roxane Page 13 of 18

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-763-579	LCS	Aqueous	Mercury 04	07/01/15	07/01/15 18:09	150701L02F
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.01000	0.009976	100	85-12°	1

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2184 EPA 3510C EPA 8270C

06/29/15

Project: CG Roxane Page 14 of 18

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-02-008-44	LCS		Aqueous	3	GC/MS TT	06/30/15	07/01/1	5 12:04	150630L12	
099-02-008-44	LCSD		Aqueous	5	GC/MS TT	06/30/15	07/01/1	5 12:36	150630L12	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.		%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Acenaphthene	100.0	97.68	98	99.05	99	45-110	34-121	1	0-11	
Acenaphthylene	100.0	95.17	95	96.56	97	50-105	41-114	1	0-20	
Aniline	100.0	95.05	95	95.92	96	50-130	37-143	1	0-20	
Anthracene	100.0	99.85	100	100.2	100	55-110	46-119	0	0-20	
Azobenzene	100.0	101.3	101	100.2	100	50-130	37-143	1	0-20	
Benzidine	100.0	121.3	121	125.5	125	50-130	37-143	3	0-20	
Benzo (a) Anthracene	100.0	96.74	97	95.77	96	55-110	46-119	1	0-20	
Benzo (a) Pyrene	100.0	90.66	91	90.76	91	55-110	46-119	0	0-20	
Benzo (b) Fluoranthene	100.0	84.56	85	87.91	88	45-120	32-132	4	0-20	
Benzo (g,h,i) Perylene	100.0	93.04	93	91.25	91	40-125	26-139	2	0-20	
Benzo (k) Fluoranthene	100.0	95.44	95	92.08	92	45-125	32-138	4	0-20	
Benzoic Acid	100.0	56.39	56	58.63	59	50-130	37-143	4	0-20	
Benzyl Alcohol	100.0	85.19	85	87.11	87	30-110	17-123	2	0-20	
Bis(2-Chloroethoxy) Methane	100.0	96.09	96	95.53	96	45-105	35-115	1	0-20	
Bis(2-Chloroethyl) Ether	100.0	93.90	94	93.26	93	35-110	22-122	1	0-20	
Bis(2-Chloroisopropyl) Ether	100.0	102.2	102	103.2	103	25-130	8-148	1	0-20	
Bis(2-Ethylhexyl) Phthalate	100.0	103.7	104	102.8	103	40-125	26-139	1	0-20	
4-Bromophenyl-Phenyl Ether	100.0	94.93	95	92.66	93	50-115	39-126	2	0-20	
Butyl Benzyl Phthalate	100.0	104.0	104	101.8	102	45-115	33-127	2	0-20	
4-Chloro-3-Methylphenol	100.0	87.01	87	86.35	86	45-110	34-121	1	0-40	
4-Chloroaniline	100.0	97.14	97	98.54	99	15-110	0-126	1	0-20	
2-Chloronaphthalene	100.0	93.06	93	95.85	96	50-105	41-114	3	0-20	
2-Chlorophenol	100.0	87.81	88	88.59	89	35-105	23-117	1	0-18	
4-Chlorophenyl-Phenyl Ether	100.0	89.24	89	90.64	91	50-110	40-120	2	0-20	
Chrysene	100.0	97.02	97	96.00	96	55-110	46-119	1	0-20	
2,6-Dichlorophenol	100.0	91.41	91	89.94	90	42-120	29-133	2	0-21	
Di-n-Butyl Phthalate	100.0	93.10	93	92.93	93	55-115	45-125	0	0-20	
Di-n-Octyl Phthalate	100.0	98.36	98	97.55	98	35-135	18-152	1	0-20	
Dibenz (a,h) Anthracene	100.0	89.98	90	90.10	90	40-125	26-139	0	0-20	
Dibenzofuran	100.0	92.88	93	94.13	94	55-105	47-113	1	0-20	
1,2-Dichlorobenzene	100.0	89.57	90	90.77	91	35-100	24-111	1	0-20	
1,3-Dichlorobenzene	100.0	87.63	88	88.88	89	30-100	18-112	1	0-20	
1,4-Dichlorobenzene	100.0	88.07	88	88.84	89	30-100	18-112	1	0-26	
3,3'-Dichlorobenzidine	100.0	107.4	107	108.4	108	20-110	5-125	1	0-20	
2,4-Dichlorophenol	100.0	93.40	93	92.48	92	50-105	41-114	1	0-20	
Diethyl Phthalate	100.0	87.84	88	89.88	90	40-120	27-133	2	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

06/29/15 15-06-2184 EPA 3510C

EPA 8270C

Project: CG Roxane Page 15 of 18

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Cond	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Dimethyl Phthalate	100.0	88.39	88	90.64	91	25-125	8-142	3	0-20	
2,4-Dimethylphenol	100.0	93.22	93	93.50	94	30-110	17-123	0	0-20	
4,6-Dinitro-2-Methylphenol	100.0	100.0	100	101.5	101	40-130	25-145	1	0-20	
2,4-Dinitrophenol	100.0	86.97	87	91.88	92	15-140	0-161	5	0-20	
2,4-Dinitrotoluene	100.0	89.55	90	93.83	94	50-120	38-132	5	0-36	
2,6-Dinitrotoluene	100.0	92.75	93	94.12	94	50-115	39-126	1	0-20	
Fluoranthene	100.0	90.10	90	93.08	93	55-115	45-125	3	0-20	
Fluorene	100.0	93.00	93	96.54	97	50-110	40-120	4	0-20	
Hexachloro-1,3-Butadiene	100.0	88.50	89	86.18	86	25-105	12-118	3	0-20	
Hexachlorobenzene	100.0	96.17	96	95.67	96	50-110	40-120	1	0-20	
Hexachlorocyclopentadiene	100.0	85.49	85	87.06	87	50-130	37-143	2	0-20	
Hexachloroethane	100.0	90.15	90	90.94	91	30-95	19-106	1	0-20	
Indeno (1,2,3-c,d) Pyrene	100.0	89.34	89	88.87	89	45-125	32-138	1	0-20	
Isophorone	100.0	92.53	93	92.17	92	50-110	40-120	0	0-20	
2-Methylnaphthalene	100.0	93.55	94	92.80	93	45-105	35-115	1	0-20	
1-Methylnaphthalene	100.0	87.19	87	87.04	87	80-120	73-127	0	0-20	
2-Methylphenol	100.0	83.50	83	83.73	84	40-110	28-122	0	0-20	
3/4-Methylphenol	200.0	150.3	75	152.6	76	30-110	17-123	2	0-20	
N-Nitroso-di-n-propylamine	100.0	111.1	111	113.0	113	35-130	19-146	2	0-13	
N-Nitrosodimethylamine	100.0	78.77	79	81.79	82	25-110	11-124	4	0-20	
N-Nitrosodiphenylamine	100.0	138.2	138	134.5	135	50-110	40-120	3	0-20	Χ
Naphthalene	100.0	93.01	93	92.56	93	40-100	30-110	0	0-20	
4-Nitroaniline	100.0	101.9	102	105.5	106	35-120	21-134	3	0-20	
3-Nitroaniline	100.0	105.6	106	108.8	109	20-125	2-142	3	0-20	
2-Nitroaniline	100.0	111.4	111	115.3	115	50-115	39-126	3	0-20	
Nitrobenzene	100.0	87.56	88	87.19	87	45-110	34-121	0	0-20	
4-Nitrophenol	100.0	44.91	45	45.84	46	20-150	0-172	2	0-40	
2-Nitrophenol	100.0	94.05	94	93.69	94	40-115	28-128	0	0-20	
Pentachlorophenol	100.0	87.53	88	87.67	88	40-115	28-128	0	0-40	
Phenanthrene	100.0	103.2	103	103.6	104	50-115	39-126	0	0-20	
Phenol	100.0	41.41	41	41.35	41	10-115	0-132	0	0-23	
Pyrene	100.0	106.4	106	105.5	106	50-130	37-143	1	0-20	
Pyridine	100.0	89.52	90	92.28	92	52-115	42-126	3	0-20	
1,2,4-Trichlorobenzene	100.0	89.88	90	87.74	88	35-105	23-117	2	0-21	
2,4,6-Trichlorophenol	100.0	92.93	93	95.25	95	50-115	39-126	2	0-20	
2,4,5-Trichlorophenol	100.0	89.64	90	92.93	93	50-110	40-120	4	0-20	

Total number of LCS compounds: 72 Total number of ME compounds: 0

Geosyntec Consultants	Date Received:	06/29/15
924 Anacapa Street, Suite 4A	Work Order:	15-06-2184
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
Project: CG Roxane		Page 16 of 18

Total number of ME compounds allowed: 4 LCS ME CL validation result: Pass

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-06-2184 EPA 5030C EPA 8260B

06/29/15

Project: CG Roxane Page 17 of 18

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepare	d Date	e Analyzed	LCS/LCSD Ba	tch Number
099-14-316-2189	LCS		Aqueous	;	GC/MS T	07/02/15	07/0	2/15 23:11	150702L023	
099-14-316-2189	LCSD		Aqueous	;	GC/MS T	07/02/15	07/0	2/15 23:43	150702L023	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS <u>%Rec.</u>	LCSE Conc		%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Acetone	50.00	45.32	91	39.31	79	12-150	0-173	14	0-20	
Benzene	50.00	50.98	102	51.11	102	80-120	73-127	7 0	0-20	
Bromobenzene	50.00	57.86	116	55.32	111	80-120	73-127	7 4	0-20	
Bromochloromethane	50.00	60.48	121	51.98	104	80-122	73-129) 15	0-20	
Bromodichloromethane	50.00	57.73	115	58.87	118	80-123	73-130) 2	0-20	
Bromoform	50.00	49.50	99	52.50	105	74-134	64-144	1 6	0-20	
Bromomethane	50.00	57.79	116	50.53	101	22-160	0-183	13	0-20	
2-Butanone	50.00	43.77	88	41.98	84	44-164	24-184	4	0-20	
n-Butylbenzene	50.00	60.06	120	55.71	111	80-132	71-141	8	0-20	
sec-Butylbenzene	50.00	55.82	112	53.81	108	80-129	72-137	7 4	0-20	
tert-Butylbenzene	50.00	54.36	109	54.19	108	80-130	72-138	3 0	0-20	
Carbon Disulfide	50.00	45.84	92	38.71	77	60-126	49-137	7 17	0-20	
Carbon Tetrachloride	50.00	50.53	101	49.96	100	64-148	50-162	2 1	0-20	
Chlorobenzene	50.00	50.31	101	49.78	100	80-120	73-127	7 1	0-20	
Chloroethane	50.00	61.70	123	52.35	105	63-123	53-133	3 16	0-20	
Chloroform	50.00	56.15	112	57.25	114	79-121	72-128	3 2	0-20	
Chloromethane	50.00	54.49	109	46.98	94	43-133	28-148	3 15	0-20	
2-Chlorotoluene	50.00	56.99	114	52.40	105	80-130	72-138	8 8	0-20	
4-Chlorotoluene	50.00	54.24	108	52.99	106	80-121	73-128	3 2	0-20	
Dibromochloromethane	50.00	54.38	109	55.40	111	80-125	72-132	2 2	0-20	
1,2-Dibromo-3-Chloropropane	50.00	46.92	94	45.43	91	68-128	58-138	3	0-20	
1,2-Dibromoethane	50.00	51.22	102	51.67	103	80-120	73-127	7 1	0-20	
Dibromomethane	50.00	54.54	109	54.64	109	80-121	73-128	3 0	0-20	
1,2-Dichlorobenzene	50.00	52.11	104	51.32	103	80-120	73-127	7 2	0-20	
1,3-Dichlorobenzene	50.00	52.55	105	50.90	102	80-121	73-128	3	0-20	
1,4-Dichlorobenzene	50.00	51.39	103	49.72	99	80-120	73-127	7 3	0-20	
Dichlorodifluoromethane	50.00	52.30	105	43.54	87	25-187	0-214	18	0-20	
1,1-Dichloroethane	50.00	54.14	108	54.81	110	75-120	68-128	3 1	0-20	
1,2-Dichloroethane	50.00	59.72	119	59.45	119	80-123	73-130	0	0-20	
1,1-Dichloroethene	50.00	63.18	126	59.01	118	74-122	66-130	7	0-20	ME
c-1,2-Dichloroethene	50.00	56.70	113	58.50		75-123	67-131	3	0-20	
t-1,2-Dichloroethene	50.00	52.40	105	52.96	106	70-124	61-133	3 1	0-20	
1,2-Dichloropropane	50.00	54.58	109	55.28		80-120	73-127		0-20	
1,3-Dichloropropane	50.00	53.70	107	53.70		80-120	73-127	7 0	0-20	
2,2-Dichloropropane	50.00	66.51	133	64.43	129	49-151	32-168	3	0-20	
1,1-Dichloropropene	50.00	47.47	95	45.48		76-120	69-127		0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

06/29/15 15-06-2184 EPA 5030C EPA 8260B

Project: CG Roxane Page 18 of 18

<u>Parameter</u>	<u>Spike</u> Added	LCS Con	c. <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
c-1,3-Dichloropropene	50.00	48.88	98	46.28	93	80-124	73-131	5	0-20	
t-1,3-Dichloropropene	50.00	42.92	86	40.26	81	68-128	58-138	6	0-20	
Ethylbenzene	50.00	56.45	113	53.94	108	80-120	73-127	5	0-20	
2-Hexanone	50.00	48.95	98	48.14	96	57-147	42-162	2	0-20	
Isopropylbenzene	50.00	57.95	116	54.61	109	80-127	72-135	6	0-20	
p-Isopropyltoluene	50.00	57.94	116	55.23	110	80-125	72-132	5	0-20	
Methylene Chloride	50.00	57.36	115	50.35	101	74-122	66-130	13	0-20	
4-Methyl-2-Pentanone	50.00	49.53	99	47.56	95	71-125	62-134	4	0-20	
Naphthalene	50.00	43.14	86	42.06	84	54-144	39-159	3	0-20	
n-Propylbenzene	50.00	57.41	115	52.07	104	80-127	72-135	10	0-20	
Styrene	50.00	57.37	115	55.26	111	80-120	73-127	4	0-20	
1,1,1,2-Tetrachloroethane	50.00	57.41	115	59.93	120	80-125	72-132	4	0-20	
1,1,2,2-Tetrachloroethane	50.00	47.45	95	49.69	99	78-126	70-134	5	0-20	
Tetrachloroethene	50.00	61.78	124	58.43	117	57-141	43-155	6	0-20	
Toluene	50.00	54.88	110	53.39	107	80-120	73-127	3	0-20	
1,2,3-Trichlorobenzene	50.00	52.33	105	49.66	99	58-154	42-170	5	0-20	
1,2,4-Trichlorobenzene	50.00	54.05	108	51.71	103	57-153	41-169	4	0-20	
1,1,1-Trichloroethane	50.00	57.06	114	57.91	116	76-124	68-132	1	0-20	
1,1,2-Trichloro-1,2,2- Trifluoroethane	50.00	60.04	120	56.69	113	58-148	43-163	6	0-20	
1,1,2-Trichloroethane	50.00	53.02	106	53.60	107	80-120	73-127	1	0-20	
Trichloroethene	50.00	56.49	113	55.53	111	80-120	73-127	2	0-20	
Trichlorofluoromethane	50.00	66.75	133	56.02	112	64-136	52-148	17	0-20	
1,2,3-Trichloropropane	50.00	48.63	97	46.32	93	74-122	66-130	5	0-20	
1,2,4-Trimethylbenzene	50.00	56.84	114	55.42	111	80-120	73-127	3	0-20	
1,3,5-Trimethylbenzene	50.00	62.42	125	57.42	115	80-126	72-134	8	0-20	
Vinyl Acetate	50.00	41.98	84	33.49	67	34-172	11-195	23	0-20	Χ
Vinyl Chloride	50.00	58.75	117	49.51	99	67-127	57-137	17	0-20	
p/m-Xylene	100.0	112.8	113	106.8	107	80-127	72-135	6	0-20	
o-Xylene	50.00	56.41	113	54.58	109	80-127	72-135	3	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	53.92	108	52.01	104	71-120	63-128	4	0-20	

Total number of LCS compounds: 66

Total number of ME compounds: 1

Total number of ME compounds allowed: 3

LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 15-06-2184					
Method	Extraction	Chemist ID	Instrument	Analytical Location	
EPA 200.7	N/A	935	ICP 7300	1	
EPA 300.0	N/A	834	IC 15	1	
EPA 6010B	EPA 3005A Filt.	935	ICP 7300	1	
EPA 6010B	EPA 3010A Total	935	ICP 7300	1	
EPA 7470A	EPA 7470A Filt.	915	Mercury 04	1	
EPA 7470A	EPA 7470A Total	915	Mercury 04	1	
EPA 8260B	EPA 5030C	849	GC/MS T	2	
EPA 8260B	EPA 5030C	996	GC/MS T	2	
EPA 8270C	EPA 3510C	923	GC/MS TT	1	
SM 2320B	N/A	688	PH1/BUR03	1	
SM 2540 C	N/A	1009	SC 2	1	
SM 4500 H+ B	N/A	688	PH 1	1	
SM 4500 N Org B	N/A	685	BUR05	1	
SM 4500 P B/E	N/A	688	UV 7	1	
SM 4500 P B/E	N/A	857	UV 7	1	
SM 4500-NH3 B/C	N/A	685	BUR05	1	
SM 4500-NO3 E	N/A	857	UV 7	1	
SM 5540C	N/A	990	UV 9	1	
Total Nitrogen by Calc	N/A	92	N/A	1	

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 15-06-2184 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Return to Contents

FedEx.	US Airbill
Express	

	FECELX US Airbill	Tracking ALLA 6450	1936		Recipient's Copy
1	From	THE PROPERTY OF THE PARTY OF TH	THE OPPOSIT	4a Express Package Service	Packages up to 150 lbs.
•	Date		张连星	FedEx Priority Overnight Next business morning.* Friday shipments will be delivered on Monday unless SATURDAY Delivery is selected. FedEx Standard Overnight Next business aftermoon.* Saturday Delivery NOT available.	FedEx First Overnight Earliest next business morning delivery to select locations.* Saturday Delivery NOT available.
	Sender's Name	Phone	- 1. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	FedEx 2Day Second business day.* Thursday shipments will be delivered on Monday unless SATURDAY Delivery is selected. FedEx Express Saver Third business day.* Saturday Delivery Not available. In additional Control of the Control of	* To most locations.
		1		4b Express Freight Service	Packages over 150 lbs.
	Company			FedEx 1Day Freight* Next business day.** Friday shipments will be delivered on Monday unless SAURDAY Delever is selected. FedEx 2Day Freight Second business day.** Thursday shipments will be delivered on Monday unless SAURDAY Delivery is selected.	FedEx 3Day Freight Third business day.** Saturday Delivery NOT available.
	Address		Dept/Roor/Suitz/Room	* Call for Confirmation:	** To most locations.
		•		5 Packaging	
	<u>City </u>	State ZIP		FedEx Envelope* FedEx Pak* FedEx Small Pak FedEx Box	FedEx Other Tube *Declared value limit \$500.
2	Your Internal Billing Reference			6 Special Handling Include FedEx addre	un in Santian 2
3	To Recipient's Name	Phone	3.000.377	SATURDAY Delivery Not available for Fedds: Standard Overnight, Fedds: Kinst Overnight, Fedds: Express Saver, or Fedds: 309 regight.	HOLD Saturday at FedEx Location Available ONLY for FedEx Priority Overnight and FedEx 2Day to select locations.
	Company	1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1		As per attached Shipper's Declaration Dn Shipper's Declaration. not required.	y Ice vice, 9, UN 1845xkg
	Recipient's			Dengerous goods (including dry ice) cannot be shipped in FedEx packaging.	Obtain Recip.
	Address We cannot deliver to P.O. boxes or P.O. ZIP codes.	· · · · · · · · · · · · · · · · · · ·	Dept/Floor/Suite/Room	7 Payment Bill to: Enter FedEx Acct. No. or Credit Card No. belo Sender Acct. No. in Recipient Third Party	w. Acct. No. Credit Card Cash/Check
	Address			he billad	
	To request a package be held at a specific FedEx location, print FedEx address:	State ZIP	7.	Total Packages Total Weight Total Declar	red Value†
	Only			\$ †Our liability is limited to \$100 unless you declare a higher value. See ba	.00 Credit Card Auth.
				No Signature Direct Signature Indirect Signature Someone at recipient's African Control of Control	ess, someone
		AND TALL ASSESSED WAS ARRESTED BUT		Package may be left delivery. Foe applies. at a neighborin	g address may

8668 6450 1936

Fed Exx.

TRK# 8668 6450 1936

92 APVA

92841 CA-US SNA

Calscience

Page 63 of 65
WORK ORDER NUMBER: 15-06- 2144

S	Α	V	VI	P	L	E	F	RE	:C	ÈΕ		P	T	C	H		E	C	ľ	(I		S	T	•
---	---	---	----	---	---	---	---	----	----	----	--	---	---	---	---	--	---	---	---	----	--	---	---	---

COOLER _ | OF _ [

CLIENT:	Geosyntec	MACRA MATERIAL MATERIA		DA	ATE: 06	1 29	/ 2015			
Thermometer Samp	er ID: SC2 (CF:-0.3°C); Te le(s) outside temperature of le(s) outside temperature of	0°C, not frozen except sedimemperature (w/o CF): 16.6 criteria (PM/APM contacted boriteria but received on ice/ch perature; placed on ice for tra	°C (w/ CF): <u>16</u> y: <u>15</u>) illed on same day o			□ Samp				
CUSTODY	SEAL:	·								
Cooler Sample(s)	☐ Present and Intact☐ Present and Intact☐	☐ Present but Not Intact☐ Present but Not Intact☐	Not Present Not Present	□ N/A □ N/A		ed by: _ ed by: _	15 836			
SAMPLE C	ONDITION:				Yes	No	N/A			
Chain-of-Cu	Chain-of-Custody (COC) document(s) received with samples									
COC docum	nent(s) received complete	,			🗆					
☐ Samp	ling date □ Sampling tim	e □ Matrix □ Number of c	ontainers							
☐ No an	alysis requested ☐ Not r	elinquished 🛭 No relinquish	ed date 🏻 No relii	nquished tim	е					
Sampler's n	ame indicated on COC				🗷					
Sample con	tainer label(s) consistent v	with COC			🗆					
Sample con	tainer(s) intact and in goo	d condition			🔎					
Proper cont	ainers for analyses reques	sted			🎾					
Sufficient vo	olume/mass for analyses re	equested			🗹 🏻					
Samples re	ceived within holding time				🔎					
Aqueous	samples for certain analy	ses received within 15-minut	e holding time				_			
□рН□	I Residual Chlorine ☐ Di	ssolved Sulfide Dissolved	d Oxygen		🛮		Æ			
Proper pres	ervation chemical(s) noted	d on COC and/or sample con	tainer		🔎					
Unprese	rved aqueous sample(s) re	eceived for certain analyses								
☐ Volatil	le Organics 🛚 Total Meta	ils Z Dissolved Metals			_					
Container(s) for certain analysis free o	of headspace			Д					
☐ Volatii	e Organics Dissolved	Gases (RSK-175) ☐ Dissol	ved Oxygen (SM 4	500)						
☐ Carbo	n Dioxide (SM 4500) D F	Ferrous Iron (SM 3500) 🛛 H	lydrogen Sulfide (H	ach)						
Tedlar™ ba	g(s) free of condensation				🗆		Ð			
CONTAINE	R TYPE: (3)		(Trip Blai	nk Lot Numb	oer: <u>150</u>	603B)			
Aqueous: E	JVOA ZVOAh UVOAn	ia₂ □ 100PJ □ 100PJna₂ [□ 125AGB □ 125A	GB h □ 125.	AGB p 🗗	125PB				
□ 125PB zn i	na	B 2 250 GBs 2 250 PB 2	250PBn □ 500A0	SB □ 500AG	SJ □ 500	AGJ s				
Ø 500PB □	Z 1AGB □ 1AGBna₂ □ 1	AGBs 🗹 1PB 🗆 1PBna 🗆]				
1		CGJ 🗆 Sleeve () 🗆 E								
Air: 🗆 Tedla	ar™ □ Canister □ Sorbe	nt Tube PUF 🗆	Other Matrix ():	□	□_				
Container: A	= Amber, B = Bottle, C = Cle	ear, E = Envelope, G = Glass, J :	= Jar, P = Plastic, and	d Z = Ziploc/Re	esealable I	Bag	0			
Preservative	: b = buffered, f = filtered, h =	: HCl, n = HNO ₃ , na = NaOH, na	$\mathbf{a_2} = Na_2S_2O_3, \mathbf{p} = H_3F_3$	O ₄ , Label	ed/Check	ed by: _	876			
		nna = Zn(CH ₃ CO ₂) ₂ + NaOH			Review					

Calscience

Page 64 of 65
WORK ORDER NUMBER: **15-06-** 2184

SAMPLE ANOMALY REPORT

DATE: 06 / 29 / 2015

SAMPLES, CONTAINERS, AND LABELS:	Comments
☐ Sample(s) NOT RECEIVED but listed on COC	
☐ Sample(s) received but NOT LISTED on COC	
Holding time expired (list client or ECI sample ID and analysis)	MBAS
☐ Insufficient sample amount for requested analysis (list analysis)	
☐ Improper container(s) used (list analysis)	
☐ Improper preservative used (list analysis)	
☐ No preservative noted on COC or label (list analysis and notify lab)	
☐ Sample container(s) not labeled	
☐ Client sample label(s) illegible (list container type and analysis)	
☑ Client sample label(s) do not match COC (comment)	
☐ Project information	
☐ Client sample ID	
☐ Sampling date and/or time	
☐ Number of container(s)	
☑ Requested analysis	
☐ Sample container(s) compromised (comment)	
□ Broken	Market Control of the
☐ Water present in sample container	
☐ Air sample container(s) compromised (comment)	
□ Flat	
☐ Very low in volume	- Addition of the second secon
☐ Leaking (not transferred; duplicate bag submitted)	
☐ Leaking (transferred into ECI Tedlar™ bags*)	
☐ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments
1.242000000	
HEADSPACE:	
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)
ECI ECI Total ECI ECI Total Sample ID Container ID Number**	ECI ECI Total Sample ID Container ID Number** Requested Analysis
Comments:	
	Reported by: \$3.6 Reviewed by: 96.5
** Record the total number of containers (i.e., vials or bottles) for the affected sample.	Raviowed hy 965

to Contents

Stephen Nowak

From: Ryan Smith [rsmith@geosyntec.com]
Sent: Monday, June 29, 2015 10:51 AM

To: Stephen Nowak
Cc: Maricris dela Rosa
Subject: RE: ***COC***

Yes, please analyze the samples on this COC for all selected tests. Even tests out of hold time.

Thank you.

Ryan Smith, P.G., C.Hg Project Geologist

----Original Message-----

From: Stephen Nowak [mailto:StephenNowak@eurofinsUS.com]

Sent: Monday, June 29, 2015 10:33 AM

To: Ryan Smith Cc: Maricris dela Rosa Subject: FW: ***COC***

Ryan-

See attached COC and sample receipt form.

This sample was received today 06/29/15 and the temp is 16.3 deg C- do you still want us to run this sample?

Stephen Nowak Project Manager

Eurofins Calscience, Inc. 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 5230

Email: StephenNowak@EurofinsUS.com

Website: www.calscience.com

Reminder – We will observe the 4th of July holiday on Friday, July 3rd. Sample Control will be open 0830-1730 to accept samples. We will have limited staff working to handle short-hold analyses; no data will be reported as our Project Managers will not be working, and there is no courier service this day.

The lab will be closed on Saturday, July 4th. Sample Control will not be open to accept samples; FEDEX and GSO are not operating that day. Please do not ship samples for Saturday delivery as they will not be received until Monday.

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

Calscience

WORK ORDER NUMBER: 15-07-0357

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: Crystal Geyser Roxane / SB0746

Attention: Ryan Smith

924 Anacapa Street

Suite 4A

Santa Barbara, CA 93101-2177

Mouch

Approved for release on 07/20/2015 by: Stephen Nowak

Project Manager

Email your PM >

ResultLink >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Cr	ystal Geyser Roxane / SB0746
-------------------------	------------------------------

Work Order Number: 15-07-0357

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	12
	4.1 EPA 300.0 Anions (Aqueous)	12 14
	4.3 EPA 6010B/7470A CAC Title 22 Metals (Aqueous)	16
	4.4 EPA 6010B/7470A CAC Title 22 Metals (Aqueous)	25
	4.5 EPA 7470A Mercury (Aqueous)	34
	4.6 EPA 7470A Mercury (Aqueous)	36
	4.7 EPA 8270C Semi-Volatile Organics (Aqueous)	38
	4.8 EPA 8260B Volatile Organics (Aqueous)	62
	4.9 Combined Inorganic Tests	82
5	Quality Control Sample Data	85
	5.1 MS/MSD	85
	5.2 Sample Duplicate	96
	5.3 LCS/LCSD	100
6	Sample Analysis Summary	119
7	Glossary of Terms and Qualifiers	120
8	Chain-of-Custody/Sample Receipt Form	121

Work Order Narrative

Work Order: 15-07-0357 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 07/08/15. They were assigned to Work Order 15-07-0357.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Samples for this project were outside temperature criteria (0-6 deg C). Ryan Smith with Geosyntec authorized the analysis of all samples on 07/08/15- email is attached to Chain of custody record. The EPA 8270C sample container for MW-05-070715 was received broken.

Sample Summary

Client: Geosyntec Consultants

Work Order:

15-07-0357

924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Project Name:

Crystal Geyser Roxane / SB0746

PO Number:

Date/Time Received:

07/08/15 10:30

98

.....

Number of

Containers:

Attn: Ryan Smith

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
MW-07-070615	15-07-0357-1	07/06/15 13:15	12	Aqueous
MW-06-070615	15-07-0357-2	07/06/15 15:30	12	Aqueous
MW-04-070615	15-07-0357-3	07/06/15 16:45	12	Aqueous
MW-04-070615-DUP	15-07-0357-4	07/06/15 16:45	12	Aqueous
MW-01-070715	15-07-0357-5	07/07/15 08:37	12	Aqueous
MW-05-070715	15-07-0357-6	07/07/15 09:44	12	Aqueous
MW-03-070715	15-07-0357-7	07/07/15 11:11	12	Aqueous
MW-08-070715	15-07-0357-8	07/07/15 12:31	12	Aqueous
QCTB-01-070715	15-07-0357-9	07/06/15 00:00	2	Aqueous

Client: Geosyntec Consultants

Work Order: 15-07-0357 Project Name: 924 Anacapa Street, Suite 4A Crystal Geyser Roxane / SB0746

Received: 07/08/15 Santa Barbara, CA 93101-2177

Attn: Ryan Smith Page 1 of 7

lient SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
IW-07-070615 (15-07-0357-1)						
Calcium	6.56		0.100	mg/L	EPA 200.7	N/A
Magnesium	1.69		0.100	mg/L	EPA 200.7	N/A
Sodium	145		0.500	mg/L	EPA 200.7	N/A
Chloride	72		1.0	mg/L	EPA 300.0	N/A
Sulfate	58		1.0	mg/L	EPA 300.0	N/A
Arsenic	0.0479		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Copper	0.0372		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Molybdenum	0.0293		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Vanadium	0.0197		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Arsenic	0.0483		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Barium	0.0142		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Copper	0.0162		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.0301		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Nickel	0.0105		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Vanadium	0.0218		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Zinc	0.0226		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Alkalinity, Total (as CaCO3)	248		5.00	mg/L	SM 2320B	N/A
Solids, Total Dissolved	1040		10.0	mg/L	SM 2540 C	N/A
рН	8.86	BV,BU	0.01	pH units	SM 4500 H+ B	N/A
Total Kjeldahl Nitrogen	1.3		0.50	mg/L	SM 4500 N Org B	N/A
Phosphorus, Total	0.58		0.10	mg/L	SM 4500 P B/E	N/A
Total Phosphate	1.8		0.31	mg/L	SM 4500 P B/E	N/A
Total Nitrogen	1.3		0.50	mg/L	Total Nitrogen by Calc	N/A

^{*} MDL is shown

Client: Geosyntec Consultants Work Order: 15-07-0357

924 Anacapa Street, Suite 4A Project Name: Crystal Geyser Roxane / SB0746

Santa Barbara, CA 93101-2177 Received: 07/08/15

Attn: Ryan Smith Page 2 of 7

Client SampleID		_				
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-06-070615 (15-07-0357-2)						
Calcium	48.5		0.100	mg/L	EPA 200.7	N/A
Magnesium	8.91		0.100	mg/L	EPA 200.7	N/A
Sodium	192		0.500	mg/L	EPA 200.7	N/A
Chloride	190		2.0	mg/L	EPA 300.0	N/A
Sulfate	48		1.0	mg/L	EPA 300.0	N/A
Arsenic	0.0171		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Molybdenum	0.0104		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Arsenic	0.0183		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.0104		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Alkalinity, Total (as CaCO3)	180		5.00	mg/L	SM 2320B	N/A
Solids, Total Dissolved	635		1.00	mg/L	SM 2540 C	N/A
рН	8.15	BV,BU	0.01	pH units	SM 4500 H+ B	N/A
Total Kjeldahl Nitrogen	0.84		0.50	mg/L	SM 4500 N Org B	N/A
Phosphorus, Total	0.49		0.10	mg/L	SM 4500 P B/E	N/A
Total Phosphate	1.5		0.31	mg/L	SM 4500 P B/E	N/A
Ammonia (as N)	0.17		0.10	mg/L	SM 4500-NH3 B/C	N/A
Total Nitrogen	0.86		0.50	mg/L	Total Nitrogen by Calc	N/A

^{*} MDL is shown

15-07-0357

Client: Geosyntec Consultants Work Order:

924 Anacapa Street, Suite 4A Project Name: Crystal Geyser Roxane / SB0746

Santa Barbara, CA 93101-2177 Received: 07/08/15

Attn: Ryan Smith Page 3 of 7

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-04-070615 (15-07-0357-3)						
Calcium	7.40		0.100	mg/L	EPA 200.7	N/A
Magnesium	1.10		0.100	mg/L	EPA 200.7	N/A
Sodium	934		5.00	mg/L	EPA 200.7	N/A
Chloride	20		2.0	mg/L	EPA 300.0	N/A
Sulfate	880		20	mg/L	EPA 300.0	N/A
Antimony	0.0247		0.0150	mg/L	EPA 6010B	EPA 3005A Filt.
Arsenic	0.742		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Barium	0.0103		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Copper	0.0482		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Molybdenum	0.430		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Silver	0.00680		0.00500	mg/L	EPA 6010B	EPA 3005A Filt.
Vanadium	0.217		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Antimony	0.0160		0.0150	mg/L	EPA 6010B	EPA 3010A Total
Arsenic	0.821		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Barium	0.0244		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Copper	0.0433		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.476		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Vanadium	0.249		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Zinc	0.0249		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Alkalinity, Total (as CaCO3)	916		5.00	mg/L	SM 2320B	N/A
Solids, Total Dissolved	2340		10.0	mg/L	SM 2540 C	N/A
рН	10.34	BV,BU	0.01	pH units	SM 4500 H+ B	N/A
Total Kjeldahl Nitrogen	1.4		0.50	mg/L	SM 4500 N Org B	N/A
Phosphorus, Total	1.6		0.20	mg/L	SM 4500 P B/E	N/A
Total Phosphate	4.8		0.62	mg/L	SM 4500 P B/E	N/A
Ammonia (as N)	0.11		0.10	mg/L	SM 4500-NH3 B/C	N/A
Nitrate-Nitrite (as N)	0.23		0.10	mg/L	SM 4500-NO3 E	N/A
Total Nitrogen	1.6		0.50	mg/L	Total Nitrogen by Calc	N/A

^{*} MDL is shown

Client: Geosyntec Consultants Work Order: 15-07-0357

924 Anacapa Street, Suite 4A Project Name: Crystal Geyser Roxane / SB0746

Santa Barbara, CA 93101-2177 Received: 07/08/15

Attn: Ryan Smith Page 4 of 7

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
MW-04-070615-DUP (15-07-0357-4)						
Calcium	7.34		0.100	mg/L	EPA 200.7	N/A
Magnesium	1.10		0.100	mg/L	EPA 200.7	N/A
Sodium	909		5.00	mg/L	EPA 200.7	N/A
Chloride	16		2.0	mg/L	EPA 300.0	N/A
Sulfate	890		20	mg/L	EPA 300.0	N/A
Antimony	0.0203		0.0150	mg/L	EPA 6010B	EPA 3005A Filt.
Arsenic	0.757		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Copper	0.0361		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Molybdenum	0.439		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Silver	0.00791		0.00500	mg/L	EPA 6010B	EPA 3005A Filt.
Vanadium	0.222		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Arsenic	0.816		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Barium	0.0238		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Copper	0.0418		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.471		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Vanadium	0.248		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Zinc	0.0134		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Alkalinity, Total (as CaCO3)	916		5.00	mg/L	SM 2320B	N/A
Solids, Total Dissolved	2360		10.0	mg/L	SM 2540 C	N/A
рН	10.35	BV,BU	0.01	pH units	SM 4500 H+ B	N/A
Total Kjeldahl Nitrogen	1.4		0.50	mg/L	SM 4500 N Org B	N/A
Phosphorus, Total	1.6		0.20	mg/L	SM 4500 P B/E	N/A
Total Phosphate	4.9		0.62	mg/L	SM 4500 P B/E	N/A
Ammonia (as N)	0.11		0.10	mg/L	SM 4500-NH3 B/C	N/A
Nitrate-Nitrite (as N)	0.23		0.10	mg/L	SM 4500-NO3 E	N/A
Total Nitrogen	1.6		0.50	mg/L	Total Nitrogen by Calc	N/A

^{*} MDL is shown

Client: Geosyntec Consultants Work Order: 15-07-0357

924 Anacapa Street, Suite 4A Project Name: Crystal Geyser Roxane / SB0746

Santa Barbara, CA 93101-2177 Received: 07/08/15

Attn: Ryan Smith Page 5 of 7

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-01-070715 (15-07-0357-5)						
Calcium	37.7		0.100	mg/L	EPA 200.7	N/A
Magnesium	3.63		0.100	mg/L	EPA 200.7	N/A
Sodium	21.8		0.500	mg/L	EPA 200.7	N/A
Chloride	3.1		1.0	mg/L	EPA 300.0	N/A
Sulfate	26		1.0	mg/L	EPA 300.0	N/A
Arsenic	0.0136		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Barium	0.0228		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Molybdenum	0.0110		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Arsenic	0.0176		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Barium	0.0268		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.0119		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Alkalinity, Total (as CaCO3)	114		5.00	mg/L	SM 2320B	N/A
Solids, Total Dissolved	230		1.00	mg/L	SM 2540 C	N/A
рН	7.58	BV,BU	0.01	pH units	SM 4500 H+ B	N/A
Nitrate-Nitrite (as N)	0.55		0.10	mg/L	SM 4500-NO3 E	N/A
Total Nitrogen	0.54		0.50	mg/L	Total Nitrogen by Calc	N/A

^{*} MDL is shown

Client: Geosyntec Consultants Work Order: 15-07-0357

924 Anacapa Street, Suite 4A Project Name: Crystal Geyser Roxane / SB0746

Santa Barbara, CA 93101-2177 Received: 07/08/15

Attn: Ryan Smith Page 6 of 7

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-05-070715 (15-07-0357-6)						
Calcium	16.3		0.100	mg/L	EPA 200.7	N/A
Magnesium	2.37		0.100	mg/L	EPA 200.7	N/A
Sodium	716		0.500	mg/L	EPA 200.7	N/A
Chloride	19		5.0	mg/L	EPA 300.0	N/A
Sulfate	830		10	mg/L	EPA 300.0	N/A
Arsenic	0.707		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Barium	0.0143		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Copper	0.0505		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Molybdenum	0.437		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Silver	0.00559		0.00500	mg/L	EPA 6010B	EPA 3005A Filt.
Vanadium	0.197		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Zinc	0.0103		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Arsenic	0.730		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Barium	0.0172		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Copper	0.0473		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.448		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Vanadium	0.208		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Zinc	0.0375		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Alkalinity, Total (as CaCO3)	556		5.00	mg/L	SM 2320B	N/A
Solids, Total Dissolved	1960		10.0	mg/L	SM 2540 C	N/A
рН	9.55	BV,BU	0.01	pH units	SM 4500 H+ B	N/A
Total Kjeldahl Nitrogen	1.8		0.50	mg/L	SM 4500 N Org B	N/A
Phosphorus, Total	1.6		0.20	mg/L	SM 4500 P B/E	N/A
Total Phosphate	4.9		0.62	mg/L	SM 4500 P B/E	N/A
Ammonia (as N)	0.39		0.10	mg/L	SM 4500-NH3 B/C	N/A
MBAS	0.11		0.10	mg/L	SM 5540C	N/A
Total Nitrogen	1.8		0.50	mg/L	Total Nitrogen by Calc	N/A

^{*} MDL is shown

Client: Geosyntec Consultants Work Order: 15-07-0357

924 Anacapa Street, Suite 4A Project Name: Crystal Geyser Roxane / SB0746

Santa Barbara, CA 93101-2177 Received: 07/08/15

Attn: Ryan Smith Page 7 of 7

Analyte Result Qualifiers RL Units Method Extraction MW-03-070715 (15-07-0357-7) Calcium 20.9 0.100 mg/L EPA 200.7 N/A Magnesium 5.19 0.100 mg/L EPA 200.7 N/A Soldrum 41.3 0.500 mg/L EPA 200.7 N/A Sulfate 12 1.0 mg/L EPA 300.0 N/A Arsenic 0.0205 0.0100 mg/L EPA 300.0 N/A Alkalinity, Total (as CaCO3) 120 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 230B N/A Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2500 Pb/L N/A Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2500 Pb/L N/A Phasphate 7.80 BV.BU 0.01 mg/L SM 2500 Pb/L N/A Total Nitrogen 1.1 5.0 m	Client SampleID						
Calcium 20.9 0.100 mg/L EPA 200.7 N/A Magnesium 5.19 0.100 mg/L EPA 200.7 N/A Sodium 41.3 0.500 mg/L EPA 200.7 N/A Chloride 9.7 1.0 mg/L EPA 300.0 N/A Sulfate 12 1.0 mg/L EPA 300.0 N/A Arsenic 0.0205 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0201 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 4500 Hb B N/A Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 4500 Hb B N/A Solids, Total Dissolved 245 1.0 mg/L SM 4500 N Org B N/A Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 N Org B N/A	<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
Magnesium 5.19 0.100 mg/L EPA 200.7 N/A Sodium 41.3 0.500 mg/L EPA 200.7 N/A Chloride 9.7 1.0 mg/L EPA 300.0 N/A Sulfate 12 1.0 mg/L EPA 6010B EPA 300.5 Filt. Arsenic 0.0201 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 245 1.00 mg/L SM 4500 Hb B N/A PH 7.80 BV,BU 0.01 pH units SM 4500 Hb B N/A Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 Hb B N/A Total Phosphate 0.94 0.31 mg/L SM 4500 Pb/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 Pb/E N/A MW-08-070715 (15-07-0357-8) 2.3 0.10 mg/L EPA 200.7 N/A	MW-03-070715 (15-07-0357-7)						
Sodium 41.3 0.500 mg/L EPA 200.7 N/A Chloride 9.7 1.0 mg/L EPA 300.0 N/A Sulfate 12 1.0 mg/L EPA 300.0 N/A Arsenic 0.0201 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L EPA 6010B EPA 3010A Total Solids, Total Dissolved 245 1.00 mg/L SM 2320B N/A Ph 7.80 BV,BU 0.01 pH units SM 4500 Pt-B N/A Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 Pt-B N/A Total Phosphate 0.94 0.31 mg/L SM 4500 Pt-B N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 Pt-B N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 Pt-B N/A MW-08-070715 (15-07-0357-B) 0.56 0.10 mg/L EPA 200.7 N/A <	Calcium	20.9		0.100	mg/L	EPA 200.7	N/A
Chloride 9.7 1.0 mg/L EPA 300.0 N/A Sulfate 12 1.0 mg/L EPA 300.0 N/A Arsenic 0.0205 0.0100 mg/L EPA 6010B EPA 3010A Total Arsenic 0.0201 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Alkalinity, Total Dissolved 245 1.00 mg/L SM 2540 C N/A PH 7.80 BV,BU 0.01 pH units SM 4500 H b B N/A Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 P B/E N/A Phosphorus, Total 0.31 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Total Nitrogen 1.1 0.50 mg/L SM 4500 P B/E N/A Alkalinty, Total (as CaCO3) 22.3 0.100 mg/L EPA 200.7 <td< td=""><td>Magnesium</td><td>5.19</td><td></td><td>0.100</td><td>mg/L</td><td>EPA 200.7</td><td>N/A</td></td<>	Magnesium	5.19		0.100	mg/L	EPA 200.7	N/A
Sulfate 12 1.0 mg/L EPA 300.0 N/A Arsenic 0.0205 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0201 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 245 1.00 mg/L SM 2540 C N/A PH 7.80 BV,BU 0.01 pH units SM 4500 H+B N/A Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.31 mg/L SM 4500 N Org B N/A Total Kjeldahl Nitrogen 0.94 0.31 mg/L SM 4500 N Org B N/A Total Phosphate 0.94 0.31 mg/L SM 4500 N Org B N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 N H3 B/C N/A MW-0s-070715 (15-07-0357-8) 0.50 mg/L EPA 200.7 N/A <td>Sodium</td> <td>41.3</td> <td></td> <td>0.500</td> <td>mg/L</td> <td>EPA 200.7</td> <td>N/A</td>	Sodium	41.3		0.500	mg/L	EPA 200.7	N/A
Arsenic 0.0205 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0201 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinty, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 245 1.00 mg/L SM 2540 C N/A pH 7.80 BV,BU 0.01 pH units SM 4500 N Org B N/A Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.31 0.50 mg/L SM 4500 N Org B N/A Total Phosphate 0.94 0.31 mg/L SM 4500 N B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 N B/E N/A Total Nitrogen 1.1 0.50 mg/L Total Nitrogen by Calc N/A MW-08-070715 (15-07-0357-8) V Total Nitrogen by Calc N/A N/A Magnesium 1.49 0.100 mg/L EPA 200.7 </td <td>Chloride</td> <td>9.7</td> <td></td> <td>1.0</td> <td>mg/L</td> <td>EPA 300.0</td> <td>N/A</td>	Chloride	9.7		1.0	mg/L	EPA 300.0	N/A
Arsenic 0.0201 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 245 1.00 mg/L SM 2540 C N/A pH 7.80 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 P B/E N/A Phosphorus, Total 0.31 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.94 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Alkalinity (as Cacoa) 1.1 0.50 mg/L EPA 200.7	Sulfate	12		1.0	mg/L	EPA 300.0	N/A
Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 245 1.00 mg/L SM 2540 C N/A pH 7.80 BV,BU 0.01 pH units SM 4500 N Org B N/A Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.31 0.50 mg/L SM 4500 N Org B N/A Total Phosphate 0.94 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 N B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 N B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 N B/E N/A MW-08-070715 (15-07-0357-8) 0.10 mg/L EPA 200.7 N/A Calcium 1.49 0.100 mg/L EPA 200.7 N/A Magnesium 1.49 0.500 mg/L EPA 200.7 N/A	Arsenic	0.0205		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Solids, Total Dissolved 245 1.00 mg/L SM 2540 C N/A pH 7.80 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.31 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.94 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 0.10 mg/L EPA 200.7 N/A Ammonia (as N) 1.1 0.100 mg/L EPA 200.7	Arsenic	0.0201		0.0100	mg/L	EPA 6010B	EPA 3010A Total
pH 7.80 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.31 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.94 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A MVG 0.07715 (15-07-0357-8) 0.06 mg/L EPA 200.7 N/A Magnesium 1.49 0.100 mg/L EPA 200.7 N/A Magnesium 1.43 1.0 mg/L EPA 200.7 N/A	Alkalinity, Total (as CaCO3)	120		5.00	mg/L	SM 2320B	N/A
Total Kjeldahl Nitrogen 1.1 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.31 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.94 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500-NH3 B/C N/A Total Nitrogen 1.1 0.50 mg/L SM 4500-NH3 B/C N/A MW-08-070715 (15-07-0357-8) V Total Nitrogen by Calc N/A Calcium 22.3 0.100 mg/L EPA 200.7 N/A Magnesium 1.49 0.100 mg/L EPA 200.7 N/A Sodium 30.8 0.500 mg/L EPA 200.7 N/A Sulfate 4.3 1.0 mg/L EPA 300.0 N/A Sulfate 4.2 1.0 mg/L EPA 6010B EPA 3005A Filt. Zinc 0.0136 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112	Solids, Total Dissolved	245		1.00	mg/L	SM 2540 C	N/A
Phosphorus, Total 0.31 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.94 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500 P B/E N/A Total Nitrogen 1.1 0.50 mg/L SM 4500 P B/E N/A MW-08-070715 (15-07-0357-8) V Total Nitrogen by Calc N/A Calcium 22.3 0.100 mg/L EPA 200.7 N/A Magnesium 1.49 0.100 mg/L EPA 200.7 N/A Sodium 30.8 0.500 mg/L EPA 200.7 N/A Chloride 4.3 1.0 mg/L EPA 300.0 N/A Sulfate 4.2 1.0 mg/L EPA 6010B EPA 3005A Filt. Zinc 0.0136 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0	рН	7.80	BV,BU	0.01	pH units	SM 4500 H+ B	N/A
Total Phosphate 0.94 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.56 0.10 mg/L SM 4500-NH3 B/C N/A Total Nitrogen 1.1 0.50 mg/L Total Nitrogen by Calc N/A MW-08-070715 (15-07-0357-8) V V V EPA 200.7 N/A Magnesium 1.49 0.100 mg/L EPA 200.7 N/A Sodium 30.8 0.500 mg/L EPA 200.7 N/A Chloride 4.3 1.0 mg/L EPA 300.0 N/A Sulfate 4.2 1.0 mg/L EPA 6010B EPA 3005A Filt. Zinc 0.0136 0.0100 mg/L EPA 6010B EPA 3005A Filt. Zinc 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L SM 2320B N/A Solids, Total Di	Total Kjeldahl Nitrogen	1.1		0.50	mg/L	SM 4500 N Org B	N/A
Ammonia (as N) 0.56 0.10 mg/L SM 4500-NH3 B/C N/A Total Nitrogen 1.1 0.50 mg/L Total Nitrogen by Calc N/A MW-08-070715 (15-07-0357-8) W V V V V V VA Calcium 22.3 0.100 mg/L EPA 200.7 N/A N/A Magnesium 1.49 0.500 mg/L EPA 200.7 N/A N/A Sodium 30.8 0.500 mg/L EPA 200.7 N/A N/A Chloride 4.3 1.0 mg/L EPA 300.0 N/A N/A Sulfate 4.2 1.0 mg/L EPA 300.0 N/A N/A Barium 0.0226 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Bolids, Total (as CaCO3) 120 <t< td=""><td>Phosphorus, Total</td><td>0.31</td><td></td><td>0.10</td><td>mg/L</td><td>SM 4500 P B/E</td><td>N/A</td></t<>	Phosphorus, Total	0.31		0.10	mg/L	SM 4500 P B/E	N/A
Total Nitrogen 1.1 0.50 mg/L Total Nitrogen by Calc N/A MW-08-070715 (15-07-0357-8) Magnesium 22.3 0.100 mg/L EPA 200.7 N/A Magnesium 1.49 0.100 mg/L EPA 200.7 N/A Sodium 30.8 0.500 mg/L EPA 200.7 N/A Chloride 4.3 1.0 mg/L EPA 300.0 N/A Sulfate 4.2 1.0 mg/L EPA 300.0 N/A Barium 0.0226 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 230B N/A Solids, Total Dissolved 205 1.00 mg/L SM 4500 H B N/A<	Total Phosphate	0.94		0.31	mg/L	SM 4500 P B/E	N/A
MW-08-070715 (15-07-0357-8) Calcium 22.3 0.100 mg/L EPA 200.7 N/A Magnesium 1.49 0.100 mg/L EPA 200.7 N/A Sodium 30.8 0.500 mg/L EPA 200.7 N/A Chloride 4.3 1.0 mg/L EPA 300.0 N/A Sulfate 4.2 1.0 mg/L EPA 300.0 N/A Barium 0.0226 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3005A Filt. Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L SM 2320B N/A Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2540 C	Ammonia (as N)	0.56		0.10	mg/L	SM 4500-NH3 B/C	N/A
Calcium 22.3 0.100 mg/L EPA 200.7 N/A Magnesium 1.49 0.100 mg/L EPA 200.7 N/A Sodium 30.8 0.500 mg/L EPA 200.7 N/A Chloride 4.3 1.0 mg/L EPA 300.0 N/A Sulfate 4.2 1.0 mg/L EPA 300.0 N/A Barium 0.0226 0.0100 mg/L EPA 6010B EPA 3005A Filt. Zinc 0.0136 0.0100 mg/L EPA 6010B EPA 3010A Total Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L SM 230B N/A Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2540 C N/A Solids, Total Dissolved 205 1.00 mg/L SM 4500 H + B N/A Total Kjeldahl Nitrogen <td>Total Nitrogen</td> <td>1.1</td> <td></td> <td>0.50</td> <td>mg/L</td> <td>Total Nitrogen by Calc</td> <td>N/A</td>	Total Nitrogen	1.1		0.50	mg/L	Total Nitrogen by Calc	N/A
Magnesium 1.49 0.100 mg/L EPA 200.7 N/A Sodium 30.8 0.500 mg/L EPA 200.7 N/A Chloride 4.3 1.0 mg/L EPA 300.0 N/A Sulfate 4.2 1.0 mg/L EPA 300.0 N/A Barium 0.0226 0.0100 mg/L EPA 6010B EPA 3005A Filt. Zinc 0.0136 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3005A Filt. Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 205 1.00 mg/L SM 2540 C N/A PH 7.47 BV,BU 0.01 pH units SM 4500 N Org B N/A	MW-08-070715 (15-07-0357-8)						
Sodium 30.8 0.500 mg/L EPA 200.7 N/A Chloride 4.3 1.0 mg/L EPA 300.0 N/A Sulfate 4.2 1.0 mg/L EPA 300.0 N/A Barium 0.0226 0.0100 mg/L EPA 6010B EPA 3005A Filt. Zinc 0.0136 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 205 1.00 mg/L SM 2540 C N/A PH 7.47 BV,BU 0.01 pH units SM 4500 H B N/A Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 P B/E N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A	Calcium	22.3		0.100	mg/L	EPA 200.7	N/A
Chloride 4.3 1.0 mg/L EPA 300.0 N/A Sulfate 4.2 1.0 mg/L EPA 300.0 N/A Barium 0.0226 0.0100 mg/L EPA 6010B EPA 3005A Filt. Zinc 0.0136 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 205 1.00 mg/L SM 2540 C N/A pH 7.47 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 P B/E N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500 -NH3 B/C N/A	Magnesium	1.49		0.100	mg/L	EPA 200.7	N/A
Sulfate 4.2 1.0 mg/L EPA 300.0 N/A Barium 0.0226 0.0100 mg/L EPA 6010B EPA 3005A Filt. Zinc 0.0136 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 205 1.00 mg/L SM 2540 C N/A pH 7.47 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500-NH3 B/C N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500-NH3 B/C N/A	Sodium	30.8		0.500	mg/L	EPA 200.7	N/A
Barium 0.0226 0.0100 mg/L EPA 6010B EPA 3005A Filt. Zinc 0.0136 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 205 1.00 mg/L SM 2540 C N/A pH 7.47 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 P B/E N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500 -NH3 B/C N/A	Chloride	4.3		1.0	mg/L	EPA 300.0	N/A
Zinc 0.0136 0.0100 mg/L EPA 6010B EPA 3005A Filt. Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 205 1.00 mg/L SM 2540 C N/A pH 7.47 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500 -NH3 B/C N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500 -NH3 B/C N/A	Sulfate	4.2		1.0	mg/L	EPA 300.0	N/A
Arsenic 0.0112 0.0100 mg/L EPA 6010B EPA 3010A Total Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 205 1.00 mg/L SM 2540 C N/A pH 7.47 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500-NH3 B/C N/A	Barium	0.0226		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Barium 0.0269 0.0100 mg/L EPA 6010B EPA 3010A Total Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 205 1.00 mg/L SM 2540 C N/A pH 7.47 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500-NH3 B/C N/A	Zinc	0.0136		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Alkalinity, Total (as CaCO3) 120 5.00 mg/L SM 2320B N/A Solids, Total Dissolved 205 1.00 mg/L SM 2540 C N/A pH 7.47 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500-NH3 B/C N/A	Arsenic	0.0112		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Solids, Total Dissolved 205 1.00 mg/L SM 2540 C N/A pH 7.47 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500-NH3 B/C N/A	Barium	0.0269		0.0100	mg/L	EPA 6010B	EPA 3010A Total
pH 7.47 BV,BU 0.01 pH units SM 4500 H+ B N/A Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500-NH3 B/C N/A	Alkalinity, Total (as CaCO3)	120		5.00	mg/L	SM 2320B	N/A
Total Kjeldahl Nitrogen 0.84 0.50 mg/L SM 4500 N Org B N/A Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500-NH3 B/C N/A	Solids, Total Dissolved	205		1.00	mg/L	SM 2540 C	N/A
Phosphorus, Total 0.14 0.10 mg/L SM 4500 P B/E N/A Total Phosphate 0.43 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500-NH3 B/C N/A	рН	7.47	BV,BU	0.01	pH units	SM 4500 H+ B	N/A
Total Phosphate 0.43 0.31 mg/L SM 4500 P B/E N/A Ammonia (as N) 0.39 0.10 mg/L SM 4500-NH3 B/C N/A	Total Kjeldahl Nitrogen	0.84		0.50	mg/L	SM 4500 N Org B	N/A
Ammonia (as N) 0.39 0.10 mg/L SM 4500-NH3 B/C N/A	Phosphorus, Total	0.14		0.10	mg/L	SM 4500 P B/E	N/A
	Total Phosphate	0.43		0.31	mg/L	SM 4500 P B/E	N/A
Total Nitrogen 0.84 0.50 mg/L Total Nitrogen by Calc N/A	Ammonia (as N)	0.39		0.10	mg/L	SM 4500-NH3 B/C	N/A
	Total Nitrogen	0.84		0.50	mg/L	Total Nitrogen by Calc	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Sulfate

Analytical Report

Geosyntec Consultants	Date Received:	07/08/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0357
Santa Barbara, CA 93101-2177	Preparation:	N/A
	Method:	EPA 300.0
	Units:	mg/L
Project: Crystal Geyser Royane / SR0746		Page 1 of 2

Project: Crystal Geyser Rox	kane / SB0746					Pa	ige 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-070615	15-07-0357-1-D	07/06/15 13:15	Aqueous	IC 15	N/A	07/08/15 12:06	150708L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Chloride		72	1.0		1.00		
Sulfate		58	1.0		1.00		
MW-06-070615	15-07-0357-2-D	07/06/15 15:30	Aqueous	IC 15	N/A	07/08/15 12:30	150708L01
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Sulfate		48	1.0		1.00		
MW-06-070615	15-07-0357-2-D	07/06/15 15:30	Aqueous	IC 15	N/A	07/08/15 17:21	150708L01
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Chloride		190	2.0		2.00		
MW-04-070615	15-07-0357-3-D	07/06/15 16:45	Aqueous	IC 15	N/A	07/08/15 12:47	150708L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Chloride		20	2.0		2.00		
MW-04-070615	15-07-0357-3-D	07/06/15 16:45	Aqueous	IC 15	N/A	07/08/15 17:38	150708L01
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Sulfate		880	20		20.0		
MW-04-070615-DUP	15-07-0357-4-D	07/06/15 16:45	Aqueous	IC 15	N/A	07/08/15 13:04	150708L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Chloride		16	2.0		2.00		
MW-04-070615-DUP	15-07-0357-4-D	07/06/15 16:45	Aqueous	IC 15	N/A	07/08/15 17:56	150708L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

20

20.0

890

Qualifiers

<u>Parameter</u>

Chloride

Analytical Report

MW-01-070715	15-07-0357-5-D	07/07/15	Aqueous	IC 15	N/A	07/08/15	150708L01		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Project: Crystal Geyser Roxar	ne / SB0746					Pa	ge 2 of 2		
			Units:				mg/L		
			Method:				EPA 300.0		
Santa Barbara, CA 93101-2177			Preparation:			N/A			
924 Anacapa Street, Suite 4A			Work Order:				15-07-0357		
Geosyntec Consultants			Date Recei	ved:	07/08/15				

Sulfate		26	1.0	1.00	
MW-05-070715	15-07-0357-6-D	07/07/15 09:44	Aqueous IC 15	N/A	07/08/15 150708L01 13:39
<u>Parameter</u>	·	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Chloride		19	5.0	5.00	

<u>RL</u>

1.0

<u>DF</u>

1.00

Result

3.1

MW-05-070715	15-07-0357-6-D	07/07/15 09:44	Aqueous	IC 15	N/A	07/08/15 18:13	150708L01
Parameter		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	alifiers
Sulfate		830	10		10.0		

MW-03-070715	15-07-0357-7-D	07/07/15 11:11	Aqueous IC 15	N/A	07/08/15 150708L01 13:56
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Chloride		9.7	1.0	1.00	
Sulfate		12	1.0	1.00	

MW-08-070715	15-07-0357-8-D	07/07/15 12:31	Aqueous IC 15	N/A	07/08/15 150708L01 14:13
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Chloride		4.3	1.0	1.00	
Sulfate		4.2	1.0	1.00	

Method Blank	099-12-906-5882	N/A	Aqueous	IC 15	N/A	07/08/15 11:07	150708L01
Parameter		Result	RL		<u>DF</u>	Qualit	fiers
Chloride		ND	1.0)	1.00		
Sulfate		ND	1.0	1	1.00		

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 EPA 200.7

 Units:
 mg/L

 Project: Crystal Geyser Roxane / SB0746
 Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-070615	15-07-0357-1-I	07/06/15 13:15	Aqueous	ICP 7300	07/10/15	07/11/15 02:11	150710LA3
<u>Parameter</u>		<u>Result</u>	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Calcium		6.56	0.1	00	1.00		
Magnesium		1.69	0.1	00	1.00		
Sodium		145	0.5	500	1.00		
MW-06-070615	15-07-0357-2-I	07/06/15 15:30	Aqueous	ICP 7300	07/10/15	07/11/15 02:13	150710LA3
Parameter		Result	RL	:	DF	Qua	alifiers
Calcium		48.5	0.1	00	1.00		
Magnesium		8.91	0.1	00	1.00		
Sodium		192	0.5	500	1.00		
MW-04-070615	15-07-0357-3-I	07/06/15 16:45	Aqueous	ICP 7300	07/10/15	07/11/15 02:15	150710LA3
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Calcium		7.40	0.1	00	1.00		
Magnesium		1.10	0.1	00	1.00		
MW-04-070615	15-07-0357-3-I	07/06/15 16:45	Aqueous	ICP 7300	07/10/15	07/15/15 18:08	150710LA3
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Sodium		934	5.0	00	10.0		
MW-04-070615-DUP	15-07-0357-4-I	07/06/15 16:45	Aqueous	ICP 7300	07/10/15	07/11/15 02:17	150710LA3
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Calcium		7.34	0.1	00	1.00		
Magnesium		1.10	0.1	00	1.00		
MW-04-070615-DUP	15-07-0357-4-I	07/06/15 16:45	Aqueous	ICP 7300	07/10/15	07/15/15 18:11	150710LA3
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Sodium		909	5.0	00	10.0		

Geosyntec Consultants Date Received: 07/08/15 924 Anacapa Street, Suite 4A Work Order: 15-07-0357 Santa Barbara, CA 93101-2177 Preparation: N/A Method: EPA 200.7 Units: mg/L Page 2 of 2

Project: Crystal Geyser Roxane / SB0746

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-01-070715	15-07-0357-5-I	07/07/15 08:37	Aqueous	ICP 7300	07/10/15	07/11/15 02:19	150710LA3
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Calcium		37.7	0.1	00	1.00		
Magnesium		3.63	0.1	00	1.00		
Sodium		21.8	0.5	600	1.00		

MW-05-070715	15-07-0357-6-I	07/07/15 09:44	Aqueous ICP 7300	07/10/15	07/11/15 150710LA3 02:24
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Calcium		16.3	0.100	1.00	
Magnesium		2.37	0.100	1.00	
Sodium		716	0.500	1.00	

MW-03-070715	15-07-0357-7-I	07/07/15 11:11	Aqueous ICP 7300	07/10/15	07/11/15 150710LA3 02:27
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Calcium		20.9	0.100	1.00	
Magnesium		5.19	0.100	1.00	
Sodium		41.3	0.500	1.00	

MW-08-070715	15-07-0357-8-I	07/07/15 12:31	Aqueous ICP 7300	07/10/15	07/11/15 150710LA3 02:29
Parameter		Result	<u>RL</u>	DF	<u>Qualifiers</u>
Calcium		22.3	0.100	1.00	
Magnesium		1.49	0.100	1.00	
Sodium		30.8	0.500	1.00	

Method Blank	097-01-012-6255	N/A	Aqueous ICP 7300	07/10/15	07/10/15 150710LA3 21:45
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Calcium		ND	0.100	1.00	
Magnesium		ND	0.100	1.00	
Sodium		ND	0.500	1.00	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3010A Total EPA 6010B

mg/L

Project: Crystal Geyser Roxane / SB0746

Page 1 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-070615	15-07-0357-1-I	07/06/15 13:15	Aqueous	ICP 7300	07/08/15	07/10/15 14:31	150708LA7
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		0.0483	0.0	0100	1.00		
Barium		0.0142	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		0.0162	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.0301	0.0	0100	1.00		
Nickel		0.0105	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		0.0218	0.0	0100	1.00		
Zinc		0.0226	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 2 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-06-070615	15-07-0357-2-I	07/06/15 15:30	Aqueous	ICP 7300	07/08/15	07/11/15 01:36	150708LA7
Parameter		Result	RL	- -	<u>DF</u>	Qua	lifiers
Antimony		ND	0.0	0150	1.00		
Arsenic		0.0183	0.0	0100	1.00		
Barium		ND	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.0104	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	0150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0	0150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 3 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-070615	15-07-0357-3-I	07/06/15 16:45	Aqueous	ICP 7300	07/08/15	07/11/15 01:39	150708LA7
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	lifiers
Antimony		0.0160	0.0	0150	1.00		
Arsenic		0.821	0.0	0100	1.00		
Barium		0.0244	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		0.0433	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.476	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		0.249	0.0	0100	1.00		
Zinc		0.0249	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 4 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-070615-DUP	15-07-0357-4-I	07/06/15 16:45	Aqueous	ICP 7300	07/08/15	07/11/15 01:41	150708LA7
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0)150	1.00		
Arsenic		0.816	0.0	0100	1.00		
Barium		0.0238	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		0.0418	0.0	100	1.00		
Lead		ND	0.0	100	1.00		
Molybdenum		0.471	0.0	0100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		0.248	0.0	0100	1.00		
Zinc		0.0134	0.0	100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 5 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-01-070715	15-07-0357-5-I	07/07/15 08:37	Aqueous	ICP 7300	07/08/15	07/11/15 01:44	150708LA7
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0)150	1.00		
Arsenic		0.0176	0.0	0100	1.00		
Barium		0.0268	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		ND	0.0	100	1.00		
Lead		ND	0.0	100	1.00		
Molybdenum		0.0119	0.0	0100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3010A Total EPA 6010B

mg/L

Project: Crystal Geyser Roxane / SB0746

Page 6 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-05-070715	15-07-0357-6-I	07/07/15 09:44	Aqueous	ICP 7300	07/08/15	07/11/15 01:46	150708LA7
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0)150	1.00		
Arsenic		0.730	0.0)100	1.00		
Barium		0.0172	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		0.0473	0.0	100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.448	0.0	100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		0.208	0.0)100	1.00		
Zinc		0.0375	0.0)100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 7 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-03-070715	15-07-0357-7-I	07/07/15 11:11	Aqueous	ICP 7300	07/08/15	07/11/15 01:49	150708LA7
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	lifiers
Antimony		ND	0.0	150	1.00		
Arsenic		0.0201	0.0	100	1.00		
Barium		ND	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		ND	0.0	100	1.00		
Lead		ND	0.0	100	1.00		
Molybdenum		ND	0.0	100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0	150	1.00		
Silver		ND	0.0	0500	1.00		
Thallium		ND	0.0	150	1.00		
Vanadium		ND	0.0	100	1.00		
Zinc		ND	0.0	100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3010A Total EPA 6010B

mg/L

Project: Crystal Geyser Roxane / SB0746

Page 8 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-08-070715	15-07-0357-8-I	07/07/15 12:31	Aqueous	ICP 7300	07/08/15	07/11/15 01:52	150708LA7
Parameter		Result	RL	- -	<u>DF</u>	Qua	lifiers
Antimony		ND	0.0	0150	1.00		
Arsenic		0.0112	0.0	0100	1.00		
Barium		0.0269	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		ND	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	0150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0	0150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 9 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-15195	N/A	Aqueous	ICP 7300	07/08/15	07/09/15 12:41	150708LA7
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		ND	0.0	0100	1.00		
Barium		ND	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		ND	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3005A Filt. EPA 6010B

mg/L

Project: Crystal Geyser Roxane / SB0746

Page 1 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-070615	15-07-0357-1-H	07/06/15 13:15	Aqueous	ICP 7300	07/10/15	07/15/15 19:53	150710LA5F
Parameter		Result	RL	•	DF	Qua	lifiers
Antimony		ND	0.0	0150	1.00		
Arsenic		0.0479	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		0.0372	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.0293	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	0150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		0.0197	0.0	0100	1.00		

MW-07-070615	15-07-0357-1-H	07/06/15 13:15	Aqueous ICP 730	0 07/10/15	07/17/15 13:50	150710LA5F
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Barium		ND	0.0100	1.00		
Zinc		ND	0.0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3005A Filt. EPA 6010B

mg/L Page 2 of 9

Project: Crystal Geyser Roxane / SB0746

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-06-070615	15-07-0357-2-H	07/06/15 15:30	Aqueous	ICP 7300	07/10/15	07/15/15 19:56	150710LA5F
Parameter		Result	RI	=	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		0.0171	0.0	0100	1.00		
Barium		ND	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.0104	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	0150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0	0150	1.00		
Vanadium		ND	0.0	0100	1.00		

MW-06-070615	15-07-0357-2-H	07/06/15 15:30	Aqueous ICP 7300	07/10/15	07/17/15 150710LA5F 13:52
			.		
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Zinc		ND	0.0100	1.00	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3005A Filt. EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 3 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-070615	15-07-0357-3-H	07/06/15 16:45	Aqueous	ICP 7300	07/10/15	07/15/15 19:58	150710LA5F
Parameter		<u>Result</u>	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		0.0247	0.0	0150	1.00		
Arsenic		0.742	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		0.0482	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.430	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	0150	1.00		
Silver		0.00680	0.0	00500	1.00		
Thallium		ND	0.0	0150	1.00		
Vanadium		0.217	0.0	0100	1.00		

MW-04-070615	15-07-0357-3-H	07/06/15 16:45	Aqueous ICP 7300	07/10/15	07/17/15 13:55	150710LA5F
<u>Parameter</u>	·	Result	<u>RL</u>	DF	Qua	alifiers
Barium		0.0103	0.0100	1.00		
Zinc		ND	0.0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3005A Filt. EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 4 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-070615-DUP	15-07-0357-4-H	07/06/15 16:45	Aqueous	ICP 7300	07/10/15	07/15/15 20:01	150710LA5F
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		0.0203	0.0	0150	1.00		
Arsenic		0.757	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		0.0361	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.439	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		0.00791	0.0	00500	1.00		
Thallium		ND	0.0	0150	1.00		
Vanadium		0.222	0.0	0100	1.00		

MW-04-070615-DUP	15-07-0357-4-Н	07/06/15 16:45	Aqueous ICP 7300	07/10/15	07/17/15 13:57	150710LA5F
<u>Parameter</u>		Result	<u>RL</u>	DF	Qua	alifiers
Barium		ND	0.0100	1.00		
Zinc		ND	0.0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3005A Filt. EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 5 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-01-070715	15-07-0357-5-H	07/07/15 08:37	Aqueous	ICP 7300	07/10/15	07/15/15 20:04	150710LA5F
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		0.0136	0.0	0100	1.00		
Barium		0.0228	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.0110	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3005A Filt. EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 6 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-05-070715	15-07-0357-6-K	07/07/15 09:44	Aqueous	ICP 7300	07/10/15	07/15/15 20:07	150710LA5F
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	alifiers
Antimony		ND	0.0	0150	1.00		
Arsenic		0.707	0.0	0100	1.00		
Barium		0.0143	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		0.0505	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.437	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	0150	1.00		
Silver		0.00559	0.0	00500	1.00		
Thallium		ND	0.0	0150	1.00		
Vanadium		0.197	0.0	0100	1.00		
Zinc		0.0103	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3005A Filt. EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 7 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-03-070715	15-07-0357-7-H	07/07/15 11:11	Aqueous	ICP 7300	07/10/15	07/15/15 20:15	150710LA5F
Parameter		Result	RL	•	DF	Qua	<u>lifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		0.0205	0.0	0100	1.00		
Barium		ND	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		ND	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3005A Filt. EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 8 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-08-070715	15-07-0357-8-H	07/07/15 12:31	Aqueous	ICP 7300	07/10/15	07/15/15 20:17	150710LA5F
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		ND	0.0	0100	1.00		
Barium		0.0226	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		ND	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		0.0136	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3005A Filt. EPA 6010B mg/L

Project: Crystal Geyser Roxane / SB0746

Page 9 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-15199	N/A	Aqueous	ICP 7300	07/10/15	07/13/15 17:49	150710LA5F
Parameter		Result	RL	=	DF	Qua	<u>lifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		ND	0.0	0100	1.00		
Barium		ND	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		ND	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	0150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0	0150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	0100	1.00		

Geosyntec Consultants				07/08/15			
924 Anacapa Street, Suite 4A		,	Work Orde	r:			15-07-0357
Santa Barbara, CA 93101-2177			Preparation	n:		EP	A 7470A Total
			Method:				EPA 7470A
			Units:				mg/L
Project: Crystal Geyser Roxane / S	SB0746					Pa	nge 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-070615	15-07-0357-1-I	07/06/15 13:15	Aqueous	Mercury 04	07/10/15	07/10/15 21:47	150710LA2
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	0.0	000500	1.00		
MW-06-070615	15-07-0357-2-I	07/06/15 15:30	Aqueous	Mercury 04	07/10/15	07/10/15 21:49	150710LA2
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	0.0	000500	1.00		
MW-04-070615	15-07-0357-3-I	07/06/15 16:45	Aqueous	Mercury 04	07/10/15	07/10/15 21:51	150710LA2
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers
Mercury		ND	0.0	000500	1.00		
MW-04-070615-DUP	15-07-0357-4-I	07/06/15 16:45	Aqueous	Mercury 04	07/10/15	07/10/15 21:53	150710LA2
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers
Mercury		ND	0.0	000500	1.00		
MW-01-070715	15-07-0357-5-I	07/07/15 08:37	Aqueous	Mercury 04	07/10/15	07/10/15 22:00	150710LA2
<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	0.0	000500	1.00		
MW-05-070715	15-07-0357-6-I	07/07/15 09:44	Aqueous	Mercury 04	07/10/15	07/10/15 22:02	150710LA2
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	0.0	000500	1.00		
MW-03-070715	15-07-0357-7-I	07/07/15 11:11	Aqueous	Mercury 04	07/10/15	07/10/15 22:05	150710LA2
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	0.0	000500	1.00		
MW-08-070715	15-07-0357-8-I	07/07/15 12:31	Aqueous	Mercury 04	07/10/15	07/10/15 22:07	150710LA2
Parameter		Result	RL		DF	Qua	alifiers
Mercury		ND	0.0	000500	1.00		

Geosyntec ConsultantsDate Received:07/08/15924 Anacapa Street, Suite 4AWork Order:15-07-0357Santa Barbara, CA 93101-2177Preparation:EPA 7470A TotalMethod:EPA 7470A

Units: mg/L

Project: Crystal Geyser Roxane / SB0746 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-04-008-7494	N/A	Aqueous	Mercury 04	07/10/15	07/10/15 21:26	150710LA2
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Mercury		ND	0.0	00500	1.00		

Geosyntec Consultants			Date Recei	ved:			07/08/15
924 Anacapa Street, Suite 4A			Work Ordei	·:			15-07-0357
Santa Barbara, CA 93101-2177			Preparation	n:		El	PA 7470A Filt.
			Method:				EPA 7470A
			Units:				mg/L
Project: Crystal Geyser Roxane / S	SB0746					Pa	ge 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-070615	15-07-0357-1-H	07/06/15 13:15	Aqueous	Mercury 04	07/10/15	07/10/15 20:53	150710LA1F
<u>Parameter</u>		Result	RL	1	DF	Qua	<u>lifiers</u>
Mercury		ND	0.0	00500	1.00		
MW-06-070615	15-07-0357-2-H	07/06/15 15:30	Aqueous	Mercury 04	07/10/15	07/10/15 20:55	150710LA1F
Parameter		Result	RL	1	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	0.0	000500	1.00		
MW-04-070615	15-07-0357-3-H	07/06/15 16:45	Aqueous	Mercury 04	07/10/15	07/10/15 20:57	150710LA1F
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	0.0	00500	1.00		
MW-04-070615-DUP	15-07-0357-4-H	07/06/15 16:45	Aqueous	Mercury 04	07/10/15	07/10/15 21:00	150710LA1F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	0.0	00500	1.00		
MW-01-070715	15-07-0357-5-H	07/07/15 08:37	Aqueous	Mercury 04	07/10/15	07/10/15 21:06	150710LA1F
<u>Parameter</u>		Result	RL	1	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	0.0	000500	1.00		
MW-05-070715	15-07-0357-6-H	07/07/15 09:44	Aqueous	Mercury 04	07/10/15	07/10/15 21:08	150710LA1F
MW-05-070715 Parameter	15-07-0357-6-H		Aqueous RL	Mercury 04	07/10/15 <u>DF</u>	21:08	150710LA1F
	15-07-0357-6-H	09:44	RL	Mercury 04		21:08	
<u>Parameter</u>	15-07-0357-6-H 15-07-0357-7-H	09:44 Result	RL		DF	21:08	
Parameter Mercury MW-03-070715 Parameter		09:44 Result ND 07/07/15 11:11 Result	RL 0.0	000500 Mercury 04	DF 1.00 07/10/15	21:08 Qua 07/10/15 20:46	lifiers
Parameter Mercury MW-03-070715		09:44 Result ND 07/07/15 11:11	RL 0.0	000500 Mercury 04	DF 1.00 07/10/15	21:08 Qua 07/10/15 20:46	lifiers 150710LA1F
Parameter Mercury MW-03-070715 Parameter		09:44 Result ND 07/07/15 11:11 Result	RL 0.0	000500 Mercury 04	DF 1.00 07/10/15	21:08 Qua 07/10/15 20:46	lifiers 150710LA1F
Parameter Mercury MW-03-070715 Parameter Mercury	15-07-0357-7-H	09:44 Result ND 07/07/15 11:11 Result ND 07/07/15	Aqueous RL 0.0 Aqueous RL RL	Mercury 04 000500 Mercury 04	DF 1.00 07/10/15 DF 1.00	21:08 Qua 07/10/15 20:46 Qua 07/10/15 21:11	lifiers 150710LA1F lifiers

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-07-0357
Santa Barbara, CA 93101-2177
Preparation:
Method:
Units:
mg/L

Project: Crystal Geyser Roxane / SB0746 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-763-581	N/A	Aqueous	Mercury 04	07/10/15	07/10/15 20:42	150710LA1F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Mercury		ND	0.0	00500	1.00		

Geosyntec Consultants
924 Anacapa Street, Suite 4A
Santa Barbara, CA 93101-2177

 Date Received:
 07/08/15

 Work Order:
 15-07-0357

 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

Project: Crystal Geyser Roxane / SB0746

Page 1 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-070615	15-07-0357-1-M	07/06/15 13:15	Aqueous	GC/MS TT	07/09/15	07/10/15 12:57	150709L02
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Acenaphthene		ND	9.5		1.00		
Acenaphthylene		ND	9.5		1.00		
Aniline		ND	9.5		1.00		
Anthracene		ND	9.5		1.00		
Azobenzene		ND	9.5		1.00		
Benzidine		ND	47		1.00		
Benzo (a) Anthracene		ND	9.5		1.00		
Benzo (a) Pyrene		ND	9.5		1.00		
Benzo (b) Fluoranthene		ND	9.5		1.00		
Benzo (g,h,i) Perylene		ND	9.5		1.00		
Benzo (k) Fluoranthene		ND	9.5		1.00		
Benzoic Acid		ND	47		1.00		
Benzyl Alcohol		ND	9.5		1.00		
Bis(2-Chloroethoxy) Methane		ND	9.5		1.00		
Bis(2-Chloroethyl) Ether		ND	24		1.00		
Bis(2-Chloroisopropyl) Ether		ND	9.5		1.00		
Bis(2-Ethylhexyl) Phthalate		ND	9.5		1.00		
4-Bromophenyl-Phenyl Ether		ND	9.5		1.00		
Butyl Benzyl Phthalate		ND	9.5		1.00		
4-Chloro-3-Methylphenol		ND	9.5		1.00		
4-Chloroaniline		ND	9.5		1.00		
2-Chloronaphthalene		ND	9.5		1.00		
2-Chlorophenol		ND	9.5		1.00		
4-Chlorophenyl-Phenyl Ether		ND	9.5		1.00		
Chrysene		ND	9.5		1.00		
2,6-Dichlorophenol		ND	9.5		1.00		
Di-n-Butyl Phthalate		ND	9.5		1.00		
Di-n-Octyl Phthalate		ND	9.5		1.00		
Dibenz (a,h) Anthracene		ND	9.5		1.00		
Dibenzofuran		ND	9.5		1.00		
1,2-Dichlorobenzene		ND	9.5		1.00		
1,3-Dichlorobenzene		ND	9.5		1.00		
1,4-Dichlorobenzene		ND	9.5		1.00		
3,3'-Dichlorobenzidine		ND	24		1.00		
2,4-Dichlorophenol		ND	9.5		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: Crystal Geyser Roxane / SB0746
 Page 2 of 24

Troject. Crystal Seysel Noxalle / SB0140				1 age 2 of 24
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Diethyl Phthalate	ND	9.5	1.00	
Dimethyl Phthalate	ND	9.5	1.00	
2,4-Dimethylphenol	ND	9.5	1.00	
4,6-Dinitro-2-Methylphenol	ND	47	1.00	
2,4-Dinitrophenol	ND	47	1.00	
2,4-Dinitrotoluene	ND	9.5	1.00	
2,6-Dinitrotoluene	ND	9.5	1.00	
Fluoranthene	ND	9.5	1.00	
Fluorene	ND	9.5	1.00	
Hexachloro-1,3-Butadiene	ND	9.5	1.00	
Hexachlorobenzene	ND	9.5	1.00	
Hexachlorocyclopentadiene	ND	24	1.00	
Hexachloroethane	ND	9.5	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	9.5	1.00	
Isophorone	ND	9.5	1.00	
2-Methylnaphthalene	ND	9.5	1.00	
1-Methylnaphthalene	ND	9.5	1.00	
2-Methylphenol	ND	9.5	1.00	
3/4-Methylphenol	ND	9.5	1.00	
N-Nitroso-di-n-propylamine	ND	9.5	1.00	
N-Nitrosodimethylamine	ND	9.5	1.00	
N-Nitrosodiphenylamine	ND	9.5	1.00	
Naphthalene	ND	9.5	1.00	
4-Nitroaniline	ND	9.5	1.00	
3-Nitroaniline	ND	9.5	1.00	
2-Nitroaniline	ND	9.5	1.00	
Nitrobenzene	ND	24	1.00	
4-Nitrophenol	ND	9.5	1.00	
2-Nitrophenol	ND	9.5	1.00	
Pentachlorophenol	ND	9.5	1.00	
Phenanthrene	ND	9.5	1.00	
Phenol	ND	9.5	1.00	
Pyrene	ND	9.5	1.00	
Pyridine	ND	9.5	1.00	
1,2,4-Trichlorobenzene	ND	9.5	1.00	
2,4,6-Trichlorophenol	ND	9.5	1.00	
0.45 T : 11	NB	0.5	4.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

2,4,5-Trichlorophenol

9.5

1.00

ND

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: Crystal Geyser Roxane / SB0746
 Page 3 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	76	50-110	
2-Fluorophenol	52	20-110	
Nitrobenzene-d5	80	40-110	
p-Terphenyl-d14	78	50-135	
Phenol-d6	32	10-115	
2,4,6-Tribromophenol	80	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/08/15 15-07-0357 EPA 3510C EPA 8270C

Units:

ug/L Page 4 of 24

Project: Crystal Geyser Roxane / SB0746

ime OC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-06-070615	15-07-0357-2-M	07/06/15 15:30	Aqueous	GC/MS TT	07/09/15	07/10/15 13:16	150709L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	9.4		1.00		
Acenaphthylene		ND	9.4		1.00		
Aniline		ND	9.4		1.00		
Anthracene		ND	9.4		1.00		
Azobenzene		ND	9.4		1.00		
Benzidine		ND	47		1.00		
Benzo (a) Anthracene		ND	9.4		1.00		
Benzo (a) Pyrene		ND	9.4		1.00		
Benzo (b) Fluoranthene		ND	9.4		1.00		
Benzo (g,h,i) Perylene		ND	9.4		1.00		
Benzo (k) Fluoranthene		ND	9.4		1.00		
Benzoic Acid		ND	47		1.00		
Benzyl Alcohol		ND	9.4		1.00		
Bis(2-Chloroethoxy) Methane		ND	9.4		1.00		
Bis(2-Chloroethyl) Ether		ND	24		1.00		
Bis(2-Chloroisopropyl) Ether		ND	9.4		1.00		
Bis(2-Ethylhexyl) Phthalate		ND	9.4		1.00		
4-Bromophenyl-Phenyl Ether		ND	9.4		1.00		
Butyl Benzyl Phthalate		ND	9.4		1.00		
4-Chloro-3-Methylphenol		ND	9.4		1.00		
4-Chloroaniline		ND	9.4		1.00		
2-Chloronaphthalene		ND	9.4		1.00		
2-Chlorophenol		ND	9.4		1.00		
4-Chlorophenyl-Phenyl Ether		ND	9.4		1.00		
Chrysene		ND	9.4		1.00		
2,6-Dichlorophenol		ND	9.4		1.00		
Di-n-Butyl Phthalate		ND	9.4		1.00		
Di-n-Octyl Phthalate		ND	9.4		1.00		
Dibenz (a,h) Anthracene		ND	9.4		1.00		
Dibenzofuran		ND	9.4		1.00		
1,2-Dichlorobenzene		ND	9.4		1.00		
1,3-Dichlorobenzene		ND	9.4		1.00		
1,4-Dichlorobenzene		ND	9.4		1.00		
3,3'-Dichlorobenzidine		ND	24		1.00		
2,4-Dichlorophenol		ND	9.4		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

Project: Crystal Geyser Roxane / SB07	746			Page 5 of 24
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Diethyl Phthalate	ND	9.4	1.00	
Dimethyl Phthalate	ND	9.4	1.00	
2,4-Dimethylphenol	ND	9.4	1.00	
4,6-Dinitro-2-Methylphenol	ND	47	1.00	
2,4-Dinitrophenol	ND	47	1.00	
2,4-Dinitrotoluene	ND	9.4	1.00	
2,6-Dinitrotoluene	ND	9.4	1.00	
Fluoranthene	ND	9.4	1.00	
Fluorene	ND	9.4	1.00	
Hexachloro-1,3-Butadiene	ND	9.4	1.00	
Hexachlorobenzene	ND	9.4	1.00	
Hexachlorocyclopentadiene	ND	24	1.00	
Hexachloroethane	ND	9.4	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	9.4	1.00	
Isophorone	ND	9.4	1.00	
2-Methylnaphthalene	ND	9.4	1.00	
1-Methylnaphthalene	ND	9.4	1.00	
2-Methylphenol	ND	9.4	1.00	
3/4-Methylphenol	ND	9.4	1.00	
N-Nitroso-di-n-propylamine	ND	9.4	1.00	
N-Nitrosodimethylamine	ND	9.4	1.00	
N-Nitrosodiphenylamine	ND	9.4	1.00	
Naphthalene	ND	9.4	1.00	
4-Nitroaniline	ND	9.4	1.00	
3-Nitroaniline	ND	9.4	1.00	
2-Nitroaniline	ND	9.4	1.00	
Nitrobenzene	ND	24	1.00	
4-Nitrophenol	ND	9.4	1.00	
2-Nitrophenol	ND	9.4	1.00	
Pentachlorophenol	ND	9.4	1.00	
Phenanthrene	ND	9.4	1.00	
Phenol	ND	9.4	1.00	
Pyrene	ND	9.4	1.00	
Pyridine	ND	9.4	1.00	
1,2,4-Trichlorobenzene	ND	9.4	1.00	
2,4,6-Trichlorophenol	ND	9.4	1.00	
2,4,5-Trichlorophenol	ND	9.4	1.00	

Geosyntec Consultants	Date Received:	07/08/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0357
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: Crystal Geyser Roxane / SB0746		Page 6 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	80	50-110	
2-Fluorophenol	55	20-110	
Nitrobenzene-d5	83	40-110	
p-Terphenyl-d14	82	50-135	
Phenol-d6	33	10-115	
2,4,6-Tribromophenol	88	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/08/15 15-07-0357 EPA 3510C EPA 8270C

Units:

ug/L Page 7 of 24

Project: Crystal Geyser Roxane / SB0746

ime QC Batch IE

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-070615	15-07-0357-3-M	07/06/15 16:45	Aqueous	GC/MS TT	07/09/15	07/10/15 13:34	150709L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	9.4	ļ	1.00		
Acenaphthylene		ND	9.4	ļ	1.00		
Aniline		ND	9.4	ļ	1.00		
Anthracene		ND	9.4	ļ.	1.00		
Azobenzene		ND	9.4	ļ	1.00		
Benzidine		ND	47		1.00		
Benzo (a) Anthracene		ND	9.4		1.00		
Benzo (a) Pyrene		ND	9.4		1.00		
Benzo (b) Fluoranthene		ND	9.4		1.00		
Benzo (g,h,i) Perylene		ND	9.4	ļ.	1.00		
Benzo (k) Fluoranthene		ND	9.4		1.00		
Benzoic Acid		ND	47		1.00		
Benzyl Alcohol		ND	9.4	ļ.	1.00		
Bis(2-Chloroethoxy) Methane		ND	9.4	ļ.	1.00		
Bis(2-Chloroethyl) Ether		ND	23		1.00		
Bis(2-Chloroisopropyl) Ether		ND	9.4	ļ	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	9.4	ļ.	1.00		
4-Bromophenyl-Phenyl Ether		ND	9.4	ļ.	1.00		
Butyl Benzyl Phthalate		ND	9.4	ļ	1.00		
4-Chloro-3-Methylphenol		ND	9.4	ļ	1.00		
4-Chloroaniline		ND	9.4	ļ	1.00		
2-Chloronaphthalene		ND	9.4	ļ	1.00		
2-Chlorophenol		ND	9.4	ļ	1.00		
4-Chlorophenyl-Phenyl Ether		ND	9.4	ļ	1.00		
Chrysene		ND	9.4	ļ	1.00		
2,6-Dichlorophenol		ND	9.4	ļ	1.00		
Di-n-Butyl Phthalate		ND	9.4	ļ	1.00		
Di-n-Octyl Phthalate		ND	9.4	ļ	1.00		
Dibenz (a,h) Anthracene		ND	9.4	ŀ	1.00		
Dibenzofuran		ND	9.4	ŀ	1.00		
1,2-Dichlorobenzene		ND	9.4	ļ	1.00		
1,3-Dichlorobenzene		ND	9.4	ļ	1.00		
1,4-Dichlorobenzene		ND	9.4	ļ	1.00		
3,3'-Dichlorobenzidine		ND	23		1.00		
2,4-Dichlorophenol		ND	9.4	ļ	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Pyrene

Pyridine

1,2,4-Trichlorobenzene

2,4,6-Trichlorophenol

2,4,5-Trichlorophenol

Analytical Report

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

Project: Crystal Geyser Roxane / SB0746 Page 8 of 24 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers Diethyl Phthalate ND 1.00 9.4 **Dimethyl Phthalate** ND 9.4 1.00 2,4-Dimethylphenol ND 9.4 1.00 4,6-Dinitro-2-Methylphenol ND 47 1.00 2,4-Dinitrophenol ND 47 1.00 2,4-Dinitrotoluene ND 1.00 9.4 2,6-Dinitrotoluene ND 9.4 1.00 Fluoranthene ND 9.4 1.00 Fluorene ND 9.4 1.00 Hexachloro-1,3-Butadiene ND 9.4 1.00 Hexachlorobenzene ND 9.4 1.00 Hexachlorocyclopentadiene ND 23 1.00 Hexachloroethane ND 9.4 1.00 Indeno (1,2,3-c,d) Pyrene ND 9.4 1.00 ND 1.00 Isophorone 9.4 2-Methylnaphthalene ND 9.4 1.00 1-Methylnaphthalene ND 9.4 1.00 2-Methylphenol ND 9.4 1.00 3/4-Methylphenol ND 9.4 1.00 N-Nitroso-di-n-propylamine ND 9.4 1.00 N-Nitrosodimethylamine ND 9.4 1.00 N-Nitrosodiphenylamine ND 9.4 1.00 Naphthalene ND 9.4 1.00 4-Nitroaniline ND 1.00 9.4 3-Nitroaniline ND 9.4 1.00 2-Nitroaniline ND 1.00 9.4 Nitrobenzene ND 23 1.00 ND 4-Nitrophenol 9.4 1.00 2-Nitrophenol ND 9.4 1.00 Pentachlorophenol ND 9.4 1.00 Phenanthrene ND 9.4 1.00 Phenol ND 1.00 9.4

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

9.4

9.4

9.4

9.4

9.4

1.00

1.00

1.00

1.00

1.00

ND

ND

ND

ND

ND

Geosyntec Consultants	Date Received:	07/08/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0357
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: Crystal Geyser Roxane / SB0746		Page 9 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	67	50-110	
2-Fluorophenol	50	20-110	
Nitrobenzene-d5	71	40-110	
p-Terphenyl-d14	72	50-135	
Phenol-d6	31	10-115	
2,4,6-Tribromophenol	75	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3510C EPA 8270C

ug/L

Project: Crystal Geyser Roxane / SB0746

Page 10 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-070615-DUP	15-07-0357-4-M	07/06/15 16:45	Aqueous	GC/MS TT	07/09/15	07/10/15 13:53	150709L02
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	9.4		1.00		
Acenaphthylene		ND	9.4		1.00		
Aniline		ND	9.4		1.00		
Anthracene		ND	9.4		1.00		
Azobenzene		ND	9.4		1.00		
Benzidine		ND	47		1.00		
Benzo (a) Anthracene		ND	9.4		1.00		
Benzo (a) Pyrene		ND	9.4		1.00		
Benzo (b) Fluoranthene		ND	9.4		1.00		
Benzo (g,h,i) Perylene		ND	9.4		1.00		
Benzo (k) Fluoranthene		ND	9.4		1.00		
Benzoic Acid		ND	47		1.00		
Benzyl Alcohol		ND	9.4		1.00		
Bis(2-Chloroethoxy) Methane		ND	9.4		1.00		
Bis(2-Chloroethyl) Ether		ND	24		1.00		
Bis(2-Chloroisopropyl) Ether		ND	9.4		1.00		
Bis(2-Ethylhexyl) Phthalate		ND	9.4		1.00		
4-Bromophenyl-Phenyl Ether		ND	9.4		1.00		
Butyl Benzyl Phthalate		ND	9.4		1.00		
4-Chloro-3-Methylphenol		ND	9.4		1.00		
4-Chloroaniline		ND	9.4		1.00		
2-Chloronaphthalene		ND	9.4		1.00		
2-Chlorophenol		ND	9.4		1.00		
4-Chlorophenyl-Phenyl Ether		ND	9.4		1.00		
Chrysene		ND	9.4		1.00		
2,6-Dichlorophenol		ND	9.4		1.00		
Di-n-Butyl Phthalate		ND	9.4		1.00		
Di-n-Octyl Phthalate		ND	9.4		1.00		
Dibenz (a,h) Anthracene		ND	9.4		1.00		
Dibenzofuran		ND	9.4		1.00		
1,2-Dichlorobenzene		ND	9.4		1.00		
1,3-Dichlorobenzene		ND	9.4		1.00		
1,4-Dichlorobenzene		ND	9.4		1.00		
3,3'-Dichlorobenzidine		ND	24		1.00		
2,4-Dichlorophenol		ND	9.4		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

Page 11 of 24

Project: Crystal Geyser Roxane / SB07	746			Page 11 of 24
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Diethyl Phthalate	ND	9.4	1.00	
Dimethyl Phthalate	ND	9.4	1.00	
2,4-Dimethylphenol	ND	9.4	1.00	
4,6-Dinitro-2-Methylphenol	ND	47	1.00	
2,4-Dinitrophenol	ND	47	1.00	
2,4-Dinitrotoluene	ND	9.4	1.00	
2,6-Dinitrotoluene	ND	9.4	1.00	
Fluoranthene	ND	9.4	1.00	
Fluorene	ND	9.4	1.00	
Hexachloro-1,3-Butadiene	ND	9.4	1.00	
Hexachlorobenzene	ND	9.4	1.00	
Hexachlorocyclopentadiene	ND	24	1.00	
Hexachloroethane	ND	9.4	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	9.4	1.00	
Isophorone	ND	9.4	1.00	
2-Methylnaphthalene	ND	9.4	1.00	
1-Methylnaphthalene	ND	9.4	1.00	
2-Methylphenol	ND	9.4	1.00	
3/4-Methylphenol	ND	9.4	1.00	
N-Nitroso-di-n-propylamine	ND	9.4	1.00	
N-Nitrosodimethylamine	ND	9.4	1.00	
N-Nitrosodiphenylamine	ND	9.4	1.00	
Naphthalene	ND	9.4	1.00	
4-Nitroaniline	ND	9.4	1.00	
3-Nitroaniline	ND	9.4	1.00	
2-Nitroaniline	ND	9.4	1.00	
Nitrobenzene	ND	24	1.00	
4-Nitrophenol	ND	9.4	1.00	
2-Nitrophenol	ND	9.4	1.00	
Pentachlorophenol	ND	9.4	1.00	
Phenanthrene	ND	9.4	1.00	
Phenol	ND	9.4	1.00	
Pyrene	ND	9.4	1.00	
Pyridine	ND	9.4	1.00	
1,2,4-Trichlorobenzene	ND	9.4	1.00	
2,4,6-Trichlorophenol	ND	9.4	1.00	
2,4,5-Trichlorophenol	ND	9.4	1.00	

Geosyntec Consultants	Date Received:	07/08/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0357
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: Crystal Geyser Roxane / SB0746		Page 12 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	66	50-110	
2-Fluorophenol	51	20-110	
Nitrobenzene-d5	72	40-110	
p-Terphenyl-d14	72	50-135	
Phenol-d6	31	10-115	
2,4,6-Tribromophenol	76	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3510C EPA 8270C

ug/L

Project: Crystal Geyser Roxane / SB0746

Page 13 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-01-070715	15-07-0357-5-N	07/07/15 08:37	Aqueous	GC/MS TT	07/09/15	07/10/15 14:12	150709L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	lifiers
Acenaphthene		ND	9.4		1.00		
Acenaphthylene		ND	9.4		1.00		
Aniline		ND	9.4		1.00		
Anthracene		ND	9.4		1.00		
Azobenzene		ND	9.4		1.00		
Benzidine		ND	47		1.00		
Benzo (a) Anthracene		ND	9.4		1.00		
Benzo (a) Pyrene		ND	9.4		1.00		
Benzo (b) Fluoranthene		ND	9.4		1.00		
Benzo (g,h,i) Perylene		ND	9.4		1.00		
Benzo (k) Fluoranthene		ND	9.4		1.00		
Benzoic Acid		ND	47		1.00		
Benzyl Alcohol		ND	9.4		1.00		
Bis(2-Chloroethoxy) Methane		ND	9.4		1.00		
Bis(2-Chloroethyl) Ether		ND	24		1.00		
Bis(2-Chloroisopropyl) Ether		ND	9.4		1.00		
Bis(2-Ethylhexyl) Phthalate		ND	9.4		1.00		
4-Bromophenyl-Phenyl Ether		ND	9.4		1.00		
Butyl Benzyl Phthalate		ND	9.4		1.00		
4-Chloro-3-Methylphenol		ND	9.4		1.00		
4-Chloroaniline		ND	9.4		1.00		
2-Chloronaphthalene		ND	9.4		1.00		
2-Chlorophenol		ND	9.4		1.00		
4-Chlorophenyl-Phenyl Ether		ND	9.4		1.00		
Chrysene		ND	9.4		1.00		
2,6-Dichlorophenol		ND	9.4		1.00		
Di-n-Butyl Phthalate		ND	9.4		1.00		
Di-n-Octyl Phthalate		ND	9.4		1.00		
Dibenz (a,h) Anthracene		ND	9.4		1.00		
Dibenzofuran		ND	9.4		1.00		
1,2-Dichlorobenzene		ND	9.4		1.00		
1,3-Dichlorobenzene		ND	9.4		1.00		
1,4-Dichlorobenzene		ND	9.4		1.00		
3,3'-Dichlorobenzidine		ND	24		1.00		
2,4-Dichlorophenol		ND	9.4		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

	Ur	Units:			
Project: Crystal Geyser Roxane / SB0746				Page 14 of 24	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	
Diethyl Phthalate	ND	9.4	1.00		
Dimethyl Phthalate	ND	9.4	1.00		
2,4-Dimethylphenol	ND	9.4	1.00		
4,6-Dinitro-2-Methylphenol	ND	47	1.00		
2,4-Dinitrophenol	ND	47	1.00		
2,4-Dinitrotoluene	ND	9.4	1.00		
2,6-Dinitrotoluene	ND	9.4	1.00		
Fluoranthene	ND	9.4	1.00		
Fluorene	ND	9.4	1.00		
Hexachloro-1,3-Butadiene	ND	9.4	1.00		
Hexachlorobenzene	ND	9.4	1.00		
Hexachlorocyclopentadiene	ND	24	1.00		
Hexachloroethane	ND	9.4	1.00		
Indeno (1,2,3-c,d) Pyrene	ND	9.4	1.00		
Isophorone	ND	9.4	1.00		
2-Methylnaphthalene	ND	9.4	1.00		
1-Methylnaphthalene	ND	9.4	1.00		
2-Methylphenol	ND	9.4	1.00		
3/4-Methylphenol	ND	9.4	1.00		
N-Nitroso-di-n-propylamine	ND	9.4	1.00		
N-Nitrosodimethylamine	ND	9.4	1.00		
N-Nitrosodiphenylamine	ND	9.4	1.00		
Naphthalene	ND	9.4	1.00		
4-Nitroaniline	ND	9.4	1.00		
3-Nitroaniline	ND	9.4	1.00		
2-Nitroaniline	ND	9.4	1.00		
Nitrobenzene	ND	24	1.00		
4-Nitrophenol	ND	9.4	1.00		
2-Nitrophenol	ND	9.4	1.00		
Pentachlorophenol	ND	9.4	1.00		
Phenanthrene	ND	9.4	1.00		
Phenol	ND	9.4	1.00		
Pyrene	ND	9.4	1.00		
Pyridine	ND	9.4	1.00		
4.0.4 Triablement agency	ND	0.4	4.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

1,2,4-Trichlorobenzene

2,4,6-Trichlorophenol

2,4,5-Trichlorophenol

9.4

9.4

9.4

1.00

1.00

1.00

ND

ND

ND

Geosyntec Consultants	Date Received:	07/08/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0357
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: Crystal Geyser Roxane / SB0746		Page 15 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	75	50-110	
2-Fluorophenol	58	20-110	
Nitrobenzene-d5	82	40-110	
p-Terphenyl-d14	80	50-135	
Phenol-d6	34	10-115	
2,4,6-Tribromophenol	83	40-125	

Geosyntec Consultants
924 Anacapa Street, Suite 4A
Santa Barbara, CA 93101-2177

Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3510C EPA 8270C

ug/L

Project: Crystal Geyser Roxane / SB0746

Page 16 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-03-070715	15-07-0357-7-N	07/07/15 11:11	Aqueous	GC/MS TT	07/09/15	07/10/15 14:30	150709L02
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	9.5		1.00		
Acenaphthylene		ND	9.5		1.00		
Aniline		ND	9.5		1.00		
Anthracene		ND	9.5		1.00		
Azobenzene		ND	9.5		1.00		
Benzidine		ND	47		1.00		
Benzo (a) Anthracene		ND	9.5		1.00		
Benzo (a) Pyrene		ND	9.5		1.00		
Benzo (b) Fluoranthene		ND	9.5		1.00		
Benzo (g,h,i) Perylene		ND	9.5		1.00		
Benzo (k) Fluoranthene		ND	9.5		1.00		
Benzoic Acid		ND	47		1.00		
Benzyl Alcohol		ND	9.5		1.00		
Bis(2-Chloroethoxy) Methane		ND	9.5		1.00		
Bis(2-Chloroethyl) Ether		ND	24		1.00		
Bis(2-Chloroisopropyl) Ether		ND	9.5		1.00		
Bis(2-Ethylhexyl) Phthalate		ND	9.5		1.00		
4-Bromophenyl-Phenyl Ether		ND	9.5		1.00		
Butyl Benzyl Phthalate		ND	9.5		1.00		
4-Chloro-3-Methylphenol		ND	9.5		1.00		
4-Chloroaniline		ND	9.5		1.00		
2-Chloronaphthalene		ND	9.5		1.00		
2-Chlorophenol		ND	9.5		1.00		
4-Chlorophenyl-Phenyl Ether		ND	9.5		1.00		
Chrysene		ND	9.5		1.00		
2,6-Dichlorophenol		ND	9.5		1.00		
Di-n-Butyl Phthalate		ND	9.5		1.00		
Di-n-Octyl Phthalate		ND	9.5		1.00		
Dibenz (a,h) Anthracene		ND	9.5		1.00		
Dibenzofuran		ND	9.5		1.00		
1,2-Dichlorobenzene		ND	9.5		1.00		
1,3-Dichlorobenzene		ND	9.5		1.00		
1,4-Dichlorobenzene		ND	9.5		1.00		
3,3'-Dichlorobenzidine		ND	24		1.00		
2,4-Dichlorophenol		ND	9.5		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: Crystal Geyser Roxane / SB0746
 Page 17 of 24

Flojeci. Crystal Geysel Roxalle / 350/40				rage 17 01 24
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Diethyl Phthalate	ND	9.5	1.00	
Dimethyl Phthalate	ND	9.5	1.00	
2,4-Dimethylphenol	ND	9.5	1.00	
4,6-Dinitro-2-Methylphenol	ND	47	1.00	
2,4-Dinitrophenol	ND	47	1.00	
2,4-Dinitrotoluene	ND	9.5	1.00	
2,6-Dinitrotoluene	ND	9.5	1.00	
Fluoranthene	ND	9.5	1.00	
Fluorene	ND	9.5	1.00	
Hexachloro-1,3-Butadiene	ND	9.5	1.00	
Hexachlorobenzene	ND	9.5	1.00	
Hexachlorocyclopentadiene	ND	24	1.00	
Hexachloroethane	ND	9.5	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	9.5	1.00	
Isophorone	ND	9.5	1.00	
2-Methylnaphthalene	ND	9.5	1.00	
1-Methylnaphthalene	ND	9.5	1.00	
2-Methylphenol	ND	9.5	1.00	
3/4-Methylphenol	ND	9.5	1.00	
N-Nitroso-di-n-propylamine	ND	9.5	1.00	
N-Nitrosodimethylamine	ND	9.5	1.00	
N-Nitrosodiphenylamine	ND	9.5	1.00	
Naphthalene	ND	9.5	1.00	
4-Nitroaniline	ND	9.5	1.00	
3-Nitroaniline	ND	9.5	1.00	
2-Nitroaniline	ND	9.5	1.00	
Nitrobenzene	ND	24	1.00	
4-Nitrophenol	ND	9.5	1.00	
2-Nitrophenol	ND	9.5	1.00	
Pentachlorophenol	ND	9.5	1.00	
Phenanthrene	ND	9.5	1.00	
Phenol	ND	9.5	1.00	
Pyrene	ND	9.5	1.00	
Pyridine	ND	9.5	1.00	
1,2,4-Trichlorobenzene	ND	9.5	1.00	
2,4,6-Trichlorophenol	ND	9.5	1.00	
2,4,5-Trichlorophenol	ND	9.5	1.00	
T. Committee of the com		-		

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: Crystal Geyser Roxane / SB0746
 Page 18 of 24

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
2-Fluorobiphenyl	78	50-110	

2-Fluorophenol 56 20-110
Nitrobenzene-d5 84 40-110
p-Terphenyl-d14 81 50-135
Phenol-d6 33 10-115
2,4,6-Tribromophenol 85 40-125

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3510C EPA 8270C

ug/L

Project: Crystal Geyser Roxane / SB0746

Page 19 of 24

MW-08-070715 15-07-0357-8-N 07/07/15 12:31 Aqueous Aqueous Aqueous Aqueous BC/MS TT 07/09/15 07/10/15 14:49 150709L Parameter Acenaphthene Result ND RL ND DF Qualifiers Acenaphthylene ND 9.4 1.00 Aniline ND 9.4 1.00 Anthracene ND 9.4 1.00 Azobenzene ND 9.4 1.00 Benzidine ND 47 1.00 Benzo (a) Anthracene ND 9.4 1.00	ch ID
Acenaphthene ND 9.4 1.00 Acenaphthylene ND 9.4 1.00 Aniline ND 9.4 1.00 Anthracene ND 9.4 1.00 Azobenzene ND 9.4 1.00 Benzidine ND 47 1.00	L02
Acenaphthylene ND 9.4 1.00 Aniline ND 9.4 1.00 Anthracene ND 9.4 1.00 Azobenzene ND 9.4 1.00 Benzidine ND 47 1.00	
Aniline ND 9.4 1.00 Anthracene ND 9.4 1.00 Azobenzene ND 9.4 1.00 Benzidine ND 47 1.00	
Anthracene ND 9.4 1.00 Azobenzene ND 9.4 1.00 Benzidine ND 47 1.00	
Azobenzene ND 9.4 1.00 Benzidine ND 47 1.00	
Benzidine ND 47 1.00	
Benzo (a) Anthracene ND 9.4 1.00	
Benzo (a) Pyrene ND 9.4 1.00	
Benzo (b) Fluoranthene ND 9.4 1.00	
Benzo (g,h,i) Perylene ND 9.4 1.00	
Benzo (k) Fluoranthene ND 9.4 1.00	
Benzoic Acid ND 47 1.00	
Benzyl Alcohol ND 9.4 1.00	
Bis(2-Chloroethoxy) Methane ND 9.4 1.00	
Bis(2-Chloroethyl) Ether ND 24 1.00	
Bis(2-Chloroisopropyl) Ether ND 9.4 1.00	
Bis(2-Ethylhexyl) Phthalate ND 9.4 1.00	
4-Bromophenyl-Phenyl Ether ND 9.4 1.00	
Butyl Benzyl Phthalate ND 9.4 1.00	
4-Chloro-3-Methylphenol ND 9.4 1.00	
4-Chloroaniline ND 9.4 1.00	
2-Chloronaphthalene ND 9.4 1.00	
2-Chlorophenol ND 9.4 1.00	
4-Chlorophenyl-Phenyl Ether ND 9.4 1.00	
Chrysene ND 9.4 1.00	
2,6-Dichlorophenol ND 9.4 1.00	
Di-n-Butyl Phthalate ND 9.4 1.00	
Di-n-Octyl Phthalate ND 9.4 1.00	
Dibenz (a,h) Anthracene ND 9.4 1.00	
Dibenzofuran ND 9.4 1.00	
1,2-Dichlorobenzene ND 9.4 1.00	
1,3-Dichlorobenzene ND 9.4 1.00	
1,4-Dichlorobenzene ND 9.4 1.00	
3,3'-Dichlorobenzidine ND 24 1.00	
2,4-Dichlorophenol ND 9.4 1.00	

RL: Reporting Limit.

DF: Dilution Factor.

Geosyntec Consultants Date Received: 07/08/15 924 Anacapa Street, Suite 4A Work Order: 15-07-0357 EPA 3510C Santa Barbara, CA 93101-2177 Preparation: Method: EPA 8270C

1,2,4-Trichlorobenzene

2,4,6-Trichlorophenol

2,4,5-Trichlorophenol

	ug/L			
Project: Crystal Geyser Roxane / SB0746				Page 20 of 24
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Diethyl Phthalate	ND	9.4	1.00	
Dimethyl Phthalate	ND	9.4	1.00	
2,4-Dimethylphenol	ND	9.4	1.00	
4,6-Dinitro-2-Methylphenol	ND	47	1.00	
2,4-Dinitrophenol	ND	47	1.00	
2,4-Dinitrotoluene	ND	9.4	1.00	
2,6-Dinitrotoluene	ND	9.4	1.00	
Fluoranthene	ND	9.4	1.00	
Fluorene	ND	9.4	1.00	
Hexachloro-1,3-Butadiene	ND	9.4	1.00	
Hexachlorobenzene	ND	9.4	1.00	
Hexachlorocyclopentadiene	ND	24	1.00	
Hexachloroethane	ND	9.4	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	9.4	1.00	
Isophorone	ND	9.4	1.00	
2-Methylnaphthalene	ND	9.4	1.00	
1-Methylnaphthalene	ND	9.4	1.00	
2-Methylphenol	ND	9.4	1.00	
3/4-Methylphenol	ND	9.4	1.00	
N-Nitroso-di-n-propylamine	ND	9.4	1.00	
N-Nitrosodimethylamine	ND	9.4	1.00	
N-Nitrosodiphenylamine	ND	9.4	1.00	
Naphthalene	ND	9.4	1.00	
4-Nitroaniline	ND	9.4	1.00	
3-Nitroaniline	ND	9.4	1.00	
2-Nitroaniline	ND	9.4	1.00	
Nitrobenzene	ND	24	1.00	
4-Nitrophenol	ND	9.4	1.00	
2-Nitrophenol	ND	9.4	1.00	
Pentachlorophenol	ND	9.4	1.00	
Phenanthrene	ND	9.4	1.00	
Phenol	ND	9.4	1.00	
Pyrene	ND	9.4	1.00	
Pyridine	ND	9.4	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

9.4

9.4

9.4

1.00

1.00

1.00

ND

ND

ND

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: Crystal Geyser Roxane / SB0746
 Page 21 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	77	50-110	
2-Fluorophenol	57	20-110	
Nitrobenzene-d5	83	40-110	
p-Terphenyl-d14	80	50-135	
Phenol-d6	33	10-115	
2,4,6-Tribromophenol	85	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 3510C EPA 8270C ug/L

Project: Crystal Geyser Roxane / SB0746

Page 22 of 24

Method Blank 099-02-008-45 N/A Aqueous BC/MS TT P07/09/15 07/10/15 12:37 150709L Parameter Acenaphthene Result ND 10 RESULT ND 10 DE Qualifiers Acenaphthylene ND 10 1.00 Aniline ND 10 1.00 1.00 Anthracene ND 10 1.00 Azobenzene ND 10 1.00 Benzidine ND 50 1.00 Benzo (a) Anthracene ND 10 1.00 Benzo (a) Pyrene ND 10 1.00 Benzo (b) Fluoranthene ND 10 1.00 Benzo (g,h,i) Perylene ND 10 1.00	h ID
Acenaphthene ND 10 1.00 Acenaphthylene ND 10 1.00 Aniline ND 10 1.00 Anthracene ND 10 1.00 Azobenzene ND 10 1.00 Benzidine ND 50 1.00 Benzo (a) Anthracene ND 10 1.00 Benzo (a) Pyrene ND 10 1.00 Benzo (b) Fluoranthene ND 10 1.00	.02
Acenaphthylene ND 10 1.00 Aniline ND 10 1.00 Anthracene ND 10 1.00 Azobenzene ND 10 1.00 Benzidine ND 50 1.00 Benzo (a) Anthracene ND 10 1.00 Benzo (a) Pyrene ND 10 1.00 Benzo (b) Fluoranthene ND 10 1.00	
Aniline ND 10 1.00 Anthracene ND 10 1.00 Azobenzene ND 10 1.00 Benzidine ND 50 1.00 Benzo (a) Anthracene ND 10 1.00 Benzo (a) Pyrene ND 10 1.00 Benzo (b) Fluoranthene ND 10 1.00	
Anthracene ND 10 1.00 Azobenzene ND 10 1.00 Benzidine ND 50 1.00 Benzo (a) Anthracene ND 10 1.00 Benzo (a) Pyrene ND 10 1.00 Benzo (b) Fluoranthene ND 10 1.00	
Azobenzene ND 10 1.00 Benzidine ND 50 1.00 Benzo (a) Anthracene ND 10 1.00 Benzo (a) Pyrene ND 10 1.00 Benzo (b) Fluoranthene ND 10 1.00	
Benzidine ND 50 1.00 Benzo (a) Anthracene ND 10 1.00 Benzo (a) Pyrene ND 10 1.00 Benzo (b) Fluoranthene ND 10 1.00	
Benzo (a) Anthracene ND 10 1.00 Benzo (a) Pyrene ND 10 1.00 Benzo (b) Fluoranthene ND 10 1.00	
Benzo (a) Pyrene ND 10 1.00 Benzo (b) Fluoranthene ND 10 1.00	
Benzo (b) Fluoranthene ND 10 1.00	
Benzo (g,h,i) Perylene ND 10 1.00	
Benzo (k) Fluoranthene ND 10 1.00	
Benzoic Acid ND 50 1.00	
Benzyl Alcohol ND 10 1.00	
Bis(2-Chloroethoxy) Methane ND 10 1.00	
Bis(2-Chloroethyl) Ether ND 25 1.00	
Bis(2-Chloroisopropyl) Ether ND 10 1.00	
Bis(2-Ethylhexyl) Phthalate ND 10 1.00	
4-Bromophenyl-Phenyl Ether ND 10 1.00	
Butyl Benzyl Phthalate ND 10 1.00	
4-Chloro-3-Methylphenol ND 10 1.00	
4-Chloroaniline ND 10 1.00	
2-Chloronaphthalene ND 10 1.00	
2-Chlorophenol ND 10 1.00	
4-Chlorophenyl-Phenyl Ether ND 10 1.00	
Chrysene ND 10 1.00	
2,6-Dichlorophenol ND 10 1.00	
Di-n-Butyl Phthalate ND 10 1.00	
Di-n-Octyl Phthalate ND 10 1.00	
Dibenz (a,h) Anthracene ND 10 1.00	
Dibenzofuran ND 10 1.00	
1,2-Dichlorobenzene ND 10 1.00	
1,3-Dichlorobenzene ND 10 1.00	
1,4-Dichlorobenzene ND 10 1.00	
3,3'-Dichlorobenzidine ND 25 1.00	
2,4-Dichlorophenol ND 10 1.00	

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

Page 23 of 24

Project: Crystal Geyser Roxane / SB074	16			Page 23 of 24
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Diethyl Phthalate	ND	10	1.00	
Dimethyl Phthalate	ND	10	1.00	
2,4-Dimethylphenol	ND	10	1.00	
4,6-Dinitro-2-Methylphenol	ND	50	1.00	
2,4-Dinitrophenol	ND	50	1.00	
2,4-Dinitrotoluene	ND	10	1.00	
2,6-Dinitrotoluene	ND	10	1.00	
Fluoranthene	ND	10	1.00	
Fluorene	ND	10	1.00	
Hexachloro-1,3-Butadiene	ND	10	1.00	
Hexachlorobenzene	ND	10	1.00	
Hexachlorocyclopentadiene	ND	25	1.00	
Hexachloroethane	ND	10	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	10	1.00	
Isophorone	ND	10	1.00	
2-Methylnaphthalene	ND	10	1.00	
1-Methylnaphthalene	ND	10	1.00	
2-Methylphenol	ND	10	1.00	
3/4-Methylphenol	ND	10	1.00	
N-Nitroso-di-n-propylamine	ND	10	1.00	
N-Nitrosodimethylamine	ND	10	1.00	
N-Nitrosodiphenylamine	ND	10	1.00	
Naphthalene	ND	10	1.00	
4-Nitroaniline	ND	10	1.00	
3-Nitroaniline	ND	10	1.00	
2-Nitroaniline	ND	10	1.00	
Nitrobenzene	ND	25	1.00	
4-Nitrophenol	ND	10	1.00	
2-Nitrophenol	ND	10	1.00	
Pentachlorophenol	ND	10	1.00	
Phenanthrene	ND	10	1.00	
Phenol	ND	10	1.00	
Pyrene	ND	10	1.00	
Pyridine	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	10	1.00	
2,4,6-Trichlorophenol	ND	10	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

2,4,5-Trichlorophenol

10

1.00

ND

Geosyntec Consultants	Date Received:	07/08/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0357
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: Crystal Geyser Roxane / SB0746		Page 24 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	80	50-110	
2-Fluorophenol	61	20-110	
Nitrobenzene-d5	83	40-110	
p-Terphenyl-d14	81	50-135	
Phenol-d6	36	10-115	
2,4,6-Tribromophenol	87	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 5030C EPA 8260B ug/L

Project: Crystal Geyser Roxane / SB0746

Page 1 of 20

Parameter Result RL DE Qualifiers	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acetone ND 20 1.00 Benzene ND 0.50 1.00 Bromochicomethane ND 1.0 1.00 Bromochicomethane ND 1.0 1.00 Bromoform ND 1.0 1.00 Bromomethane ND 1.0 1.00 Bromomethane ND 10 1.00 2-Butanone ND 10 1.00 2-Butanone ND 10 1.00 2-Butanone ND 1.0 1.00 2-Butylbenzene ND 1.0 1.00 2-Butylbenzene ND 1.0 1.00 1-Butylbenzene ND 1.0 1.00 1-B	MW-07-070615	15-07-0357-1-A		Aqueous	GC/MS WW	07/09/15	07/09/15 12:35	150709L002
Benzane ND 0.50 1.00 Bromochorzene ND 1.0 1.00 Bromochichoromethane ND 1.0 1.00 Bromochichoromethane ND 1.0 1.00 Bromoderm ND 1.0 1.00 Bromomethane ND 10 1.00 2-Butanone ND 10 1.00 n-Butylbenzene ND 1.0 1.00 see-Butylbenzene ND 1.0 1.00 see-Butylbenzene ND 1.0 1.00 carbon Tetrachloride ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorocethane ND 1.0 1.00 <td><u>Parameter</u></td> <td></td> <td>Result</td> <td>RL</td> <td>:</td> <td><u>DF</u></td> <td>Qua</td> <td>alifiers</td>	<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Bromobenzene ND 1.0 1.00 Bromochloromethane ND 1.0 1.00 Bromochloromethane ND 1.0 1.00 Bromoform ND 1.0 1.00 Bromomethane ND 10 1.00 2-Butanone ND 10 1.00 Bromocheme ND 1.0 1.00 Bec-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 0.50 1.00 Carbon Disulfide ND 0.50 1.00 Chlorocharzene ND 1.0 1.00	Acetone		ND	20		1.00		
Bromochloromethane ND 1.0 1.00 Bromodichloromethane ND 1.0 1.00 Bromoform ND 1.0 1.00 Bromomethane ND 10 1.00 2-Butanone ND 10 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tetri-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 0.50 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chloroform ND 1.0 1.00 Chloroform ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotomethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0	Benzene		ND	0.5	50	1.00		
Bromodichloromethane ND 1.0 1.00 Bromoderhane ND 1.0 1.00 Bromomethane ND 10 1.00 2-Butanone ND 10 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Disulfide ND 10 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chloroformathane ND 1.0 1.00 Chloroform ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1-2-Dibromo-3-Chloropropane ND 1.0 1.00 1-2-Dibromo-3-Chloropropane ND	Bromobenzene		ND	1.0)	1.00		
Bromoform ND 1.0 1.00 Bromomethane ND 10 1.00 2-Butanone ND 10 1.00 nButylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 Letr-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorosthane ND 1.0 1.00 Chlorosthane ND 1.0 1.00 Chlorostoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibriorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 <	Bromochloromethane		ND	1.0)	1.00		
Bromomethane ND 10 1,00 2-Butanone ND 10 1,00 n-Butylbenzene ND 1,0 1,00 sec-Butylbenzene ND 1,0 1,00 tert-Butylbenzene ND 1,0 1,00 Carbon Disulfide ND 1,0 1,00 Carbon Tetrachloride ND 0,50 1,00 Chlorobenzene ND 1,0 1,00 Chlorobenzene ND 1,0 1,00 Chlorotorm ND 1,0 1,00 Chlorotormethane ND 1,0 1,00 Chlorototluene ND 1,0 1,00 Chlorototluene ND 1,0 1,00 Chlorototluene ND 1,0 1,00 Dibromochloromethane ND 1,0 1,00 1,2-Dibromoethane ND 1,0 1,00 1,2-Dibromoethane ND 1,0 1,00 1,2-Dichlorobenzene ND 1,0	Bromodichloromethane		ND	1.0)	1.00		
2-Butanone ND 10 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 etr-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorotehane ND 1.0 1.00 Chlorotehane ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0	Bromoform		ND	1.0)	1.00		
n-Butylbenzene	Bromomethane		ND	10		1.00		
sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chlorofothane ND 1.0 1.00 Chlorofothane ND 1.0 1.00 Chlorofothane ND 1.0 1.00 4-Chlorofoluene ND 1.0 1.00 4-Chlorofoluene ND 1.0 1.00 4-Chlorofoluene ND 1.0 1.00 1-2-Dibromo-S-Chloropropane ND 1.0 1.00 1-2-Dibromo-S-Chloropropane ND 1.0 1.00 1-2-Dibromoethane ND 1.0 1.00 1-2-Dibromoethane ND 1.0 1.00 1-3-Dichloropethane ND	2-Butanone		ND	10		1.00		
tert-Buylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chlorodhane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chlorodhane ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorotobanzene ND 1.0 1.00 1,4-Dichlorotobanzene ND 1.0 1.00 1,4-Dichlorotethane ND 1.0 1.00 1,1-Dichlorotethane ND <th< td=""><td>n-Butylbenzene</td><td></td><td>ND</td><td>1.0</td><td>)</td><td>1.00</td><td></td><td></td></th<>	n-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chlorochtane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1.2-Dibromo-3-Chloropropane ND 1.0 1.00 1.2-Dibromo-3-Chloropropane ND 1.0 1.00 1.2-Dibromoethane ND 1.0 1.00 1.2-Dibromoethane ND 1.0 1.00 1.3-Dichlorobenzene ND 1.0 1.00 1.4-Dichlorobenzene ND 1.0 1.00 1.4-Dichloroethane ND 1.0 1.00 1.4-Dichloroethane ND 1.0 1.00 1.1-Dichloroethene	sec-Butylbenzene		ND	1.0)	1.00		
Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane	tert-Butylbenzene		ND	1.0)	1.00		
Chlorobenzene ND 1.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene <th< td=""><td>Carbon Disulfide</td><td></td><td>ND</td><td>10</td><td></td><td>1.00</td><td></td><td></td></th<>	Carbon Disulfide		ND	10		1.00		
Chloroethane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chloromethane ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichlorop	Carbon Tetrachloride		ND	0.5	50	1.00		
Chloroform ND 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 c-1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropa	Chlorobenzene		ND	1.0)	1.00		
Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 -1,2-Dichloroethene ND 1.0 1.00 -1,2-Dichloroethene ND 1.0 1.00 -1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane	Chloroethane		ND	5.0)	1.00		
2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Chloroform		ND	1.0)	1.00		
4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Chloromethane		ND	10		1.00		
Dibromochloromethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropthene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	2-Chlorotoluene		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	4-Chlorotoluene		ND	1.0)	1.00		
1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Dibromochloromethane		ND	1.0)	1.00		
Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroethene ND 1.0 1.00 1-2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dibromoethane		ND	1.0)	1.00		
1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Dibromomethane		ND	1.0)	1.00		
1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,3-Dichlorobenzene		ND	1.0)	1.00		
1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,4-Dichlorobenzene		ND	1.0)	1.00		
1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,1-Dichloroethane		ND	1.0)	1.00		
c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dichloroethane		ND	0.5	50	1.00		
t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,1-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	c-1,2-Dichloroethene		ND	1.0)	1.00		
1,3-Dichloropropane ND 1.0 1.00	t-1,2-Dichloroethene		ND	1.0)	1.00		
1,3-Dichloropropane ND 1.0 1.00	1,2-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane ND 1.0 1.00	1,3-Dichloropropane					1.00		
	2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: Crystal Geyser Roxane / SB0746
 Page 2 of 20

Project. Crystal Geysel Roxalle / 360740				raye z ui zu
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	95	79-120		
Dibromofluoromethane	103	80-126		
1,2-Dichloroethane-d4	109	80-124		
Toluene-d8	99	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-07-0357 EPA 5030C EPA 8260B ug/L

07/08/15

Project: Crystal Geyser Roxane / SB0746

Page 3 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-06-070615	15-07-0357-2-A	07/06/15 15:30	Aqueous	GC/MS WW	07/09/15	07/09/15 13:05	150709L002
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0		1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0		1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane							

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: Crystal Geyser Roxane / SB0746
 Page 4 of 20

Parameter Result <u>RL</u> <u>DF</u> Qualifiers ND 1.0 1.00 1,1-Dichloropropene c-1,3-Dichloropropene ND 0.50 1.00 t-1,3-Dichloropropene ND 0.50 1.00 Ethylbenzene ND 1.0 1.00 2-Hexanone ND 10 1.00 Isopropylbenzene ND 1.00 1.0 p-Isopropyltoluene ND 1.0 1.00 Methylene Chloride ND 10 1.00 4-Methyl-2-Pentanone ND 10 1.00 Naphthalene ND 10 1.00 n-Propylbenzene ND 1.0 1.00 Styrene ND 1.0 1.00 1,1,1,2-Tetrachloroethane ND 1.0 1.00 1,1,2,2-Tetrachloroethane ND 1.0 1.00 Tetrachloroethene ND 1.0 1.00 Toluene ND 1.0 1.00 1,2,3-Trichlorobenzene ND 1.0 1.00 1,2,4-Trichlorobenzene ND 1.0 1.00 1,1,1-Trichloroethane ND 1.0 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 10 1.00 1,1,2-Trichloroethane ND 1.0 1.00 Trichloroethene ND 1.0 1.00 ND Trichlorofluoromethane 10 1.00 1,2,3-Trichloropropane ND 5.0 1.00 1,2,4-Trimethylbenzene ND 1.0 1.00 1,3,5-Trimethylbenzene ND 1.0 1.00 Vinyl Acetate ND 10 1.00 Vinyl Chloride ND 0.50 1.00 p/m-Xylene ND 1.0 1.00 o-Xylene ND 1.0 1.00 Methyl-t-Butyl Ether (MTBE) ND 1.0 1.00 **Control Limits** Qualifiers Surrogate Rec. (%) 1,4-Bromofluorobenzene 79-120 93

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Dibromofluoromethane

1,2-Dichloroethane-d4

Toluene-d8

80-126

80-124

80-120

102

111

100

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 5030C EPA 8260B

ug/L

Project: Crystal Geyser Roxane / SB0746

Page 5 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-070615	15-07-0357-3-A	07/06/15 16:45	Aqueous	GC/MS WW	07/09/15	07/09/15 13:35	150709L002
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Geosyntec Consultants

Date Received:

Work Order:

Santa Barbara, CA 93101-2177

Preparation:

Method:

Units:

Date Received:

07/08/15

15-07-0357

Preparation:

EPA 5030C

Method:

ug/L

Project: Crystal Geyser Roxane / SB0746				Page 6 of 20
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	94	79-120		
Dibromofluoromethane	102	80-126		
1,2-Dichloroethane-d4	112	80-124		
Toluene-d8	99	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-07-0357 EPA 5030C EPA 8260B

07/08/15

ug/L

Project: Crystal Geyser Roxane / SB0746

Page 7 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
MW-04-070615-DUP	15-07-0357-4-A	07/06/15 16:45	Aqueous	GC/MS WW	07/09/15	07/09/15 14:06	150709L002	
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	Qualifiers	
Acetone		ND	20		1.00			
Benzene		ND	0.5	50	1.00			
Bromobenzene		ND	1.0)	1.00			
Bromochloromethane		ND	1.0)	1.00			
Bromodichloromethane		ND	1.0)	1.00			
Bromoform		ND	1.0)	1.00			
Bromomethane		ND	10		1.00			
2-Butanone		ND	10		1.00			
n-Butylbenzene		ND	1.0)	1.00			
sec-Butylbenzene		ND	1.0)	1.00			
tert-Butylbenzene		ND	1.0)	1.00			
Carbon Disulfide		ND	10		1.00			
Carbon Tetrachloride		ND	0.5	50	1.00			
Chlorobenzene		ND	1.0)	1.00			
Chloroethane		ND	5.0)	1.00			
Chloroform		ND	1.0)	1.00			
Chloromethane		ND	10		1.00			
2-Chlorotoluene		ND	1.0)	1.00			
4-Chlorotoluene		ND	1.0)	1.00			
Dibromochloromethane		ND	1.0)	1.00			
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00			
1,2-Dibromoethane		ND	1.0)	1.00			
Dibromomethane		ND	1.0)	1.00			
1,2-Dichlorobenzene		ND	1.0)	1.00			
1,3-Dichlorobenzene		ND	1.0)	1.00			
1,4-Dichlorobenzene		ND	1.0)	1.00			
Dichlorodifluoromethane		ND	1.0)	1.00			
1,1-Dichloroethane		ND	1.0)	1.00			
1,2-Dichloroethane		ND	0.5	50	1.00			
1,1-Dichloroethene		ND	1.0)	1.00			
c-1,2-Dichloroethene		ND	1.0)	1.00			
t-1,2-Dichloroethene		ND	1.0)	1.00			
1,2-Dichloropropane		ND	1.0)	1.00			
1,3-Dichloropropane		ND	1.0)	1.00			
2,2-Dichloropropane		ND	1.0)	1.00			

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: Crystal Geyser Roxane / SB0746
 Page 8 of 20

			Page 8 of 20
Result	<u>RL</u>	<u>DF</u>	Qualifiers
ND	1.0	1.00	
ND	0.50	1.00	
ND	0.50	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	10	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	5.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	0.50	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>	
95	79-120		
105	80-126		
113	80-124		
101	80-120		
	ND N	ND 1.0 ND 0.50 ND 0.50 ND 1.0 ND 1.0 ND 10 ND 10 ND 1.0 ND 10 ND 10 ND 10 ND 10 ND 10 ND 1.0	ND 1.0 1.00 1.00 ND 0.50 1.00 ND 1.0 1.00 ND 1.00 ND 1.00 ND ND 1.00 ND ND 1.00 ND ND 1.00 ND

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/08/15 15-07-0357 EPA 5030C EPA 8260B

Units:

ug/L Page 9 of 20

Project: Crystal Geyser Roxane / SB0746

Γime QC Batch I

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-01-070715	15-07-0357-5-A	07/07/15 08:37	Aqueous	GC/MS WW	07/09/15	07/09/15 14:37	150709L002
<u>Parameter</u>		Result	RL		DF Qualifiers		<u>llifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Geosyntec Consultants Date Received: 07/08/15 924 Anacapa Street, Suite 4A Work Order: 15-07-0357 EPA 5030C Santa Barbara, CA 93101-2177 Preparation: Method: **EPA 8260B** Units: ug/L Page 10 of 20

Project: Crystal Geyser Roxane / SB0746

Troject. Crystal Ceysel Novalle / CB0740				1 age 10 01 20
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	96	79-120		
Dibromofluoromethane	104	80-126		
1,2-Dichloroethane-d4	115	80-124		
Toluene-d8	100	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/08/15 15-07-0357 EPA 5030C EPA 8260B

ug/L

Units:

Page 11 of 20

Project: Crystal Geyser Roxane / SB0746

Date/Time QC Batch ID Date/Time Client Sample Number Lab Sample Matrix Instrument Date Prepared Number Collected Analyzed 07/07/15 09:44 07/09/15 15:07 MW-05-070715 15-07-0357-6-A Aqueous **GC/MS WW** 07/09/15 150709L002 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 20 1.00 Acetone ND 0.50 Benzene 1.00 ND Bromobenzene 1.0 1.00 ND 1.0 1.00 Bromochloromethane Bromodichloromethane ND 1.0 1.00 **Bromoform** ND 1.0 1.00 **Bromomethane** ND 10 1.00 2-Butanone ND 10 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 5.0 1.00 ND Chloroform 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 ND 0.50 1,2-Dichloroethane 1.00 1,1-Dichloroethene ND 1.0 1.00

RL: Reporting Limit.

c-1,2-Dichloroethene

t-1,2-Dichloroethene

1,2-Dichloropropane1,3-Dichloropropane

2,2-Dichloropropane

DF: Dilution Factor.

MDL: Method Detection Limit.

1.0

1.0

1.0

1.0

1.0

1.00

1.00

1.00

1.00

1.00

ND

ND

ND

ND

ND

Geosyntec Consultants Date Received: 07/08/15 924 Anacapa Street, Suite 4A Work Order: 15-07-0357 EPA 5030C Santa Barbara, CA 93101-2177 Preparation: Method: **EPA 8260B** Units: ug/L Page 12 of 20

Project: Crystal Geyser Roxane / SB0746

			1 3 3 1 2 1 2
<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	1.0	1.00	
ND	0.50	1.00	
ND	0.50	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	10	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	5.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	0.50	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>	
95	79-120		
108	80-126		
114	80-124		
102	80-120		
	ND N	ND 1.0 ND 0.50 ND 0.50 ND 1.0 ND 10 ND 1.0 ND 10 ND 10 ND 1.0 ND 1.0	ND 1.0 1.00 1.00 ND ND 0.50 1.00 ND ND 1.0 1.00 ND ND ND 1.00 ND ND ND 1.00 ND ND ND ND 1.00 ND ND ND 1.00 ND ND ND 1.00 ND ND ND ND 1.00 ND ND ND ND 1.00 ND

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/08/15 15-07-0357 EPA 5030C EPA 8260B

ug/L

Project: Crystal Geyser Roxane / SB0746

Page 13 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-03-070715	15-07-0357-7-A	07/07/15 11:11	Aqueous	GC/MS WW	07/09/15	07/09/15 15:38	150709L002
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	lifiers
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants Date Received: 07/08/15 924 Anacapa Street, Suite 4A Work Order: 15-07-0357 EPA 5030C Santa Barbara, CA 93101-2177 Preparation: Method: EPA 8260B Units: ug/L Page 14 of 20

Project: Crystal Geyser Roxane / SB0746

Project: Crystal Geyser Roxane / SB0746						
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers		
1,1-Dichloropropene	ND	1.0	1.00			
c-1,3-Dichloropropene	ND	0.50	1.00			
t-1,3-Dichloropropene	ND	0.50	1.00			
Ethylbenzene	ND	1.0	1.00			
2-Hexanone	ND	10	1.00			
Isopropylbenzene	ND	1.0	1.00			
p-Isopropyltoluene	ND	1.0	1.00			
Methylene Chloride	ND	10	1.00			
4-Methyl-2-Pentanone	ND	10	1.00			
Naphthalene	ND	10	1.00			
n-Propylbenzene	ND	1.0	1.00			
Styrene	ND	1.0	1.00			
1,1,1,2-Tetrachloroethane	ND	1.0	1.00			
1,1,2,2-Tetrachloroethane	ND	1.0	1.00			
Tetrachloroethene	ND	1.0	1.00			
Toluene	ND	1.0	1.00			
1,2,3-Trichlorobenzene	ND	1.0	1.00			
1,2,4-Trichlorobenzene	ND	1.0	1.00			
1,1,1-Trichloroethane	ND	1.0	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00			
1,1,2-Trichloroethane	ND	1.0	1.00			
Trichloroethene	ND	1.0	1.00			
Trichlorofluoromethane	ND	10	1.00			
1,2,3-Trichloropropane	ND	5.0	1.00			
1,2,4-Trimethylbenzene	ND	1.0	1.00			
1,3,5-Trimethylbenzene	ND	1.0	1.00			
Vinyl Acetate	ND	10	1.00			
Vinyl Chloride	ND	0.50	1.00			
p/m-Xylene	ND	1.0	1.00			
o-Xylene	ND	1.0	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00			
Surrogate	Rec. (%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	95	79-120				
Dibromofluoromethane	102	80-126				
1,2-Dichloroethane-d4	111	80-124				
Toluene-d8	100	80-120				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0357 EPA 5030C EPA 8260B

07/08/15

Units:

ug/L

Project: Crystal Geyser Roxane / SB0746

Page 15 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-08-070715	15-07-0357-8-A	07/07/15 12:31	Aqueous	GC/MS WW	07/09/15	07/09/15 16:09	150709L002
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	lifiers
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Geosyntec Consultants
 Date Received:
 07/08/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0357

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: Crystal Geyser Roxane / SB0746
 Page 16 of 20

Project: Crystal Geyser Roxane / SB0746				Page 16 of 20
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	95	79-120		
Dibromofluoromethane	105	80-126		
1,2-Dichloroethane-d4	115	80-124		
Toluene-d8	102	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: Crystal Geyser Roxane / SB0746

Date Received: Work Order: Preparation: Method:

15-07-0357 EPA 5030C EPA 8260B

07/08/15

ug/L

Units:

Page 17 of 20

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
QCTB-01-070715	15-07-0357-9-A	07/06/15 00:00	Aqueous	GC/MS WW	07/09/15	07/09/15 12:01	150709L002
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0		1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants Date Received: 07/08/15 924 Anacapa Street, Suite 4A Work Order: 15-07-0357 **EPA 5030C** Santa Barbara, CA 93101-2177 Preparation: Method: EPA 8260B Units: ug/L

Project: Crystal Geyser Roxane / SB0746				Page 18 of 20
Parameter	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	96	79-120		
Dibromofluoromethane	103	80-126		
1,2-Dichloroethane-d4	109	80-124		
Toluene-d8	100	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0357 EPA 5030C EPA 8260B

07/08/15

ug/L

Units:

Page 19 of 20

Project: Crystal Geyser Roxane / SB0746

Date/Time Collected Date/Time QC Batch ID Client Sample Number Lab Sample Matrix Instrument Date Prepared Number Analyzed 07/09/15 11:30 **Method Blank** 099-14-316-2193 N/A Aqueous **GC/MS WW** 07/09/15 150709L002 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 20 1.00 Acetone ND 0.50 1.00 ND 1.0 1.00 ND 1.0 1.00

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Geosyntec Consultants

Date Received:

Work Order:

Santa Barbara, CA 93101-2177

Preparation:

Method:

Units:

Date Received:

07/08/15

Work Order:

15-07-0357

EPA 5030C

Method:

EPA 8260B

Units:

Project: Crystal Geyser Roxane / SB0746 Page 20 of 20

				g
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	96	79-120		
Dibromofluoromethane	101	80-126		
1,2-Dichloroethane-d4	109	80-124		
Toluene-d8	101	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Date Received: Work Order:

07/08/15 15-07-0357

Santa Barbara, CA 93101-2177

Project: Crystal Geyser Roxane / SB0746

Page 1 of 3

Client Sample Number	lient Sample Number Lab Sample Number			Date/Tir	ne Collected	Matrix			
MW-07-070615			15-07-0357-1				5 13:15	Aqueous	
Parameter	<u>Results</u>	<u>RL</u>	DF	Qualifiers	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method	
lkalinity, Total (as CaCO3)	248	5.00	1.00		mg/L	N/A	07/10/15	SM 2320B	
olids, Total Dissolved	1040	10.0	1.00		mg/L	07/08/15	07/08/15	SM 2540 C	
Н	8.86	0.01	1.00	BV,BU	pH units	N/A	07/08/15	SM 4500 H+ B	
otal Kjeldahl Nitrogen	1.3	0.50	1.00		mg/L	07/11/15	07/11/15	SM 4500 N Org B	
hosphorus, Total	0.58	0.10	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
otal Phosphate	1.8	0.31	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
mmonia (as N)	ND	0.10	1.00		mg/L	07/14/15	07/14/15	SM 4500-NH3 B/C	
itrate-Nitrite (as N)	ND	0.10	1.00	BU	mg/L	07/08/15	07/08/15	SM 4500-NO3 E	
BAS	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 5540C	
otal Nitrogen	1.3	0.50	1.00		mg/L	N/A	07/15/15	Total Nitrogen by Calc	

MW-06-070615			15-07-0357-2			07/06/1	5 15:30	Aqueous	
Parameter	<u>Results</u>	<u>RL</u>	DF	Qualifiers	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method	
Alkalinity, Total (as CaCO3)	180	5.00	1.00		mg/L	N/A	07/10/15	SM 2320B	
Solids, Total Dissolved	635	1.00	1.00		mg/L	07/08/15	07/08/15	SM 2540 C	
рН	8.15	0.01	1.00	BV,BU	pH units	N/A	07/08/15	SM 4500 H+ B	
Total Kjeldahl Nitrogen	0.84	0.50	1.00		mg/L	07/11/15	07/11/15	SM 4500 N Org B	
Phosphorus, Total	0.49	0.10	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Total Phosphate	1.5	0.31	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Ammonia (as N)	0.17	0.10	1.00		mg/L	07/14/15	07/14/15	SM 4500-NH3 B/C	
Nitrate-Nitrite (as N)	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 4500-NO3 E	
MBAS	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 5540C	
Total Nitrogen	0.86	0.50	1.00		mg/L	N/A	07/15/15	Total Nitrogen by Calc	

MW-04-070615			15-07-0357-3			07/06/15 16:45		Aqueous
Parameter	<u>Results</u>	<u>RL</u>	DF	Qualifiers	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	Method
Alkalinity, Total (as CaCO3)	916	5.00	1.00		mg/L	N/A	07/10/15	SM 2320B
Solids, Total Dissolved	2340	10.0	1.00		mg/L	07/08/15	07/08/15	SM 2540 C
рН	10.34	0.01	1.00	BV,BU	pH units	N/A	07/08/15	SM 4500 H+ B
Total Kjeldahl Nitrogen	1.4	0.50	1.00		mg/L	07/11/15	07/11/15	SM 4500 N Org B
Phosphorus, Total	1.6	0.20	2.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E
Total Phosphate	4.8	0.62	2.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E
Ammonia (as N)	0.11	0.10	1.00		mg/L	07/14/15	07/14/15	SM 4500-NH3 B/C
Nitrate-Nitrite (as N)	0.23	0.10	1.00		mg/L	07/08/15	07/08/15	SM 4500-NO3 E
MBAS	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 5540C
Total Nitrogen	1.6	0.50	1.00		mg/L	N/A	07/15/15	Total Nitrogen by Calc

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Date Received: Work Order:

07/08/15 15-07-0357

Santa Barbara, CA 93101-2177

Page 2 of 3

Project: Crystal Geyser R	oxarie / Sbo	740						Page 2 of 3
Client Sample Number			Lab S	Sample Number		Date/Tir	ne Collected	Matrix
MW-04-070615-DUP			15-07	7-0357-4		07/06/1	5 16:45	Aqueous
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method
Alkalinity, Total (as CaCO3)	916	5.00	1.00		mg/L	N/A	07/10/15	SM 2320B
Solids, Total Dissolved	2360	10.0	1.00		mg/L	07/08/15	07/08/15	SM 2540 C
ρΗ	10.35	0.01	1.00	BV,BU	pH units	N/A	07/08/15	SM 4500 H+ B
Total Kjeldahl Nitrogen	1.4	0.50	1.00		mg/L	07/11/15	07/11/15	SM 4500 N Org B
Phosphorus, Total	1.6	0.20	2.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E
Total Phosphate	4.9	0.62	2.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E
Ammonia (as N)	0.11	0.10	1.00		mg/L	07/14/15	07/14/15	SM 4500-NH3 B/C
Nitrate-Nitrite (as N)	0.23	0.10	1.00		mg/L	07/08/15	07/08/15	SM 4500-NO3 E
MBAS	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 5540C
Total Nitrogen	1.6	0.50	1.00		mg/L	N/A	07/15/15	Total Nitrogen by Calc
MW-01-070715			45.07	7-0357-5		07/07/1	. 00.27	Aqueous

MW-01-070715			15-0	7-0357-5		07/07/1	5 08:37	Aqueous	
Parameter	<u>Results</u>	<u>RL</u>	DF	Qualifiers	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	<u>Method</u>	
Alkalinity, Total (as CaCO3)	114	5.00	1.00		mg/L	N/A	07/10/15	SM 2320B	
Solids, Total Dissolved	230	1.00	1.00		mg/L	07/08/15	07/08/15	SM 2540 C	
рН	7.58	0.01	1.00	BV,BU	pH units	N/A	07/08/15	SM 4500 H+ B	
Total Kjeldahl Nitrogen	ND	0.50	1.00		mg/L	07/11/15	07/11/15	SM 4500 N Org B	
Phosphorus, Total	ND	0.10	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Total Phosphate	ND	0.31	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Ammonia (as N)	ND	0.10	1.00		mg/L	07/14/15	07/14/15	SM 4500-NH3 B/C	
Nitrate-Nitrite (as N)	0.55	0.10	1.00		mg/L	07/08/15	07/08/15	SM 4500-NO3 E	
MBAS	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 5540C	
Total Nitrogen	0.54	0.50	1.00		mg/L	N/A	07/15/15	Total Nitrogen by Calc	

MW-05-070715			15-0	7-0357-6		07/07/1	5 09:44	Aqueous
<u>Parameter</u>	Results	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	Method
Alkalinity, Total (as CaCO3)	556	5.00	1.00		mg/L	N/A	07/10/15	SM 2320B
Solids, Total Dissolved	1960	10.0	1.00		mg/L	07/08/15	07/08/15	SM 2540 C
рН	9.55	0.01	1.00	BV,BU	pH units	N/A	07/08/15	SM 4500 H+ B
Total Kjeldahl Nitrogen	1.8	0.50	1.00		mg/L	07/11/15	07/11/15	SM 4500 N Org B
Phosphorus, Total	1.6	0.20	2.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E
Total Phosphate	4.9	0.62	2.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E
Ammonia (as N)	0.39	0.10	1.00		mg/L	07/14/15	07/14/15	SM 4500-NH3 B/C
Nitrate-Nitrite (as N)	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 4500-NO3 E
MBAS	0.11	0.10	1.00		mg/L	07/08/15	07/08/15	SM 5540C
Total Nitrogen	1.8	0.50	1.00		mg/L	N/A	07/15/15	Total Nitrogen by Calc

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Date Received: Work Order:

07/08/15 15-07-0357

Santa Barbara, CA 93101-2177

Project: Crystal Geyser Roxane / SB0746

Page 3 of 3

Client Sample Number			Lab	Sample Number		Date/Tir	ne Collected	Matrix	
MW-03-070715			15-07	7-0357-7		07/07/1	5 11:11	Aqueous	
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method	
Alkalinity, Total (as CaCO3)	120	5.00	1.00		mg/L	N/A	07/10/15	SM 2320B	
Solids, Total Dissolved	245	1.00	1.00		mg/L	07/08/15	07/08/15	SM 2540 C	
рН	7.80	0.01	1.00	BV,BU	pH units	N/A	07/08/15	SM 4500 H+ B	
Total Kjeldahl Nitrogen	1.1	0.50	1.00		mg/L	07/11/15	07/11/15	SM 4500 N Org B	
Phosphorus, Total	0.31	0.10	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Total Phosphate	0.94	0.31	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Ammonia (as N)	0.56	0.10	1.00		mg/L	07/14/15	07/14/15	SM 4500-NH3 B/C	
Nitrate-Nitrite (as N)	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 4500-NO3 E	
MBAS	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 5540C	
Total Nitrogen	1.1	0.50	1.00		mg/L	N/A	07/15/15	Total Nitrogen by Calc	
MW-08-070715			15-07	7-0357-8		07/07/1	5 12:31	Aqueous	
<u>Parameter</u>	Results	<u>RL</u>	DF	Qualifiers	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	Method	
Alkalinity, Total (as CaCO3)	120	5.00	1.00		mg/L	N/A	07/10/15	SM 2320B	
Solids, Total Dissolved	205	1.00	1.00		mg/L	07/08/15	07/08/15	SM 2540 C	
рН	7.47	0.01	1.00	BV,BU	pH units	N/A	07/08/15	SM 4500 H+ B	
Total Kjeldahl Nitrogen	0.84	0.50	1.00		mg/L	07/11/15	07/11/15	SM 4500 N Org B	
Phosphorus, Total	0.14	0.10	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Total Phosphate	0.43	0.31	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Ammonia (as N)	0.39	0.10	1.00		mg/L	07/14/15	07/14/15	SM 4500-NH3 B/C	
Nitrate-Nitrite (as N)	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 4500-NO3 E	
MBAS	ND	0.10	1.00		mg/L	07/08/15	07/08/15	SM 5540C	
Total Nitrogen	0.84	0.50	1.00		mg/L	N/A	07/15/15	Total Nitrogen by Calc	
Method Blank						N/A		Aqueous	
<u>Parameter</u>	Results	<u>RL</u>	<u>DF</u>	Qualifiers	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	Method	
Alkalinity, Total (as CaCO3)	ND	1.0	1.00		mg/L	N/A	07/10/15	SM 2320B	
Solids, Total Dissolved	ND	1.0	1.00		mg/L	07/08/15	07/08/15	SM 2540 C	
Total Kjeldahl Nitrogen	ND	0.50	1.00		mg/L	07/11/15	07/11/15	SM 4500 N Org B	
Phosphorus, Total	ND	0.10	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Total Phosphate	ND	0.31	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

ND

ND

ND

ND

0.10

0.10

0.10

0.10

1.00

1.00

1.00

1.00

Ammonia (as N)

MBAS

MBAS

Nitrate-Nitrite (as N)

mg/L

mg/L

mg/L

mg/L

07/14/15

07/08/15

07/08/15

07/08/15

07/14/15

07/08/15

07/08/15

07/08/15

SM 4500-NH3 B/C

SM 4500-NO3 E

SM 5540C

SM 5540C

N/A

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants Date Received: 07/08/15 924 Anacapa Street, Suite 4A Work Order: 15-07-0357 Santa Barbara, CA 93101-2177 Preparation: Method: EPA 300.0

Project: Crystal Geyser Roxane / SB0746 Page 1 of 11

Quality Control Sample ID	Туре		Matrix Instrument		Date Prepared	Date Ana	lyzed	MS/MSD Batch Number		
MW-08-070715	Sample		Aqueous	s IC	15	N/A	07/08/15	14:13	150708S01	
MW-08-070715	Matrix Spike		Aqueous	s IC	15	N/A	07/08/15	14:31	150708S01	
MW-08-070715	Matrix Spike	Duplicate	Aqueous	s IC	15	N/A	07/08/15	14:48	150708S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	4.285	50.00	55.94	103	55.89	103	80-120	0	0-20	
Sulfate	4.163	50.00	55.91	104	55.69	103	80-120	0	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Date Received: Work Order: Preparation: Method:

15-07-0357 N/A SM 4500 P B/E

07/08/15

Project: Crystal Geyser Roxane / SB0746

Page 2 of 11

Quality Control Sample ID	Туре	Туре		Matrix Instrument I		Date Prepared	Date Ana	lyzed	MS/MSD Batch Number		
15-07-0460-2	Sample		Aqueous	s UV	17	07/10/15	07/10/15	15:30	F0710TPS1		
15-07-0460-2	Matrix Spike		Aqueous	s UV	17	07/10/15	07/10/15	15:30	F0710TPS1		
15-07-0460-2	Matrix Spike D	uplicate	Aqueous	s UV	17	07/10/15	07/10/15	15:30	F0710TPS1		
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers	
Phosphorus, Total	ND	0.4000	0.4590	115	0.4530	113	70-130	1	0-25		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: 07/08/15 15-07-0357 N/A

Method: SM 4500 P B/E Page 3 of 11

Project: Cry	rstal Geyser R	oxane / SB0746
--------------	----------------	----------------

Quality Control Sample ID	Туре	Туре		Instrument		Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
15-07-0460-2	Sample		Aqueous	Aqueous UV 7		07/10/15	07/10/15	15:30	F0710PO4S	1
15-07-0460-2	Matrix Spike		Aqueous	UV	7	07/10/15	07/10/15	15:30	F0710PO4S	1
15-07-0460-2	Matrix Spike D	uplicate	Aqueous	UV	7	07/10/15	07/10/15	15:30	F0710PO4S	1
<u>Parameter</u>	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Total Phosphate	ND	1.220	1.400	115	1.390	114	70-130	1	0-25	

Geosyntec ConsultantsDate Received:07/08/15924 Anacapa Street, Suite 4AWork Order:15-07-0357Santa Barbara, CA 93101-2177Preparation:N/AMethod:SM 4500-NO3 E

Project: Crystal Geyser Roxane / SB0746	Page 4 of 11

Quality Control Sample ID	Туре	Туре		Matrix Instrument		Date Prepared	Date Ana	Analyzed MS/MSD Batch Number		
MW-03-070715	Sample	Sample		Aqueous UV 7		07/08/15	07/08/15	14:53	F0708NO3S1	
MW-03-070715	Matrix Spike		Aqueou	s U\	17	07/08/15	07/08/15	14:53	F0708NO3S	51
MW-03-070715	Matrix Spike I	Duplicate	Aqueou	s U\	17	07/08/15	07/08/15	14:53	F0708NO3S	51
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	ND	0.5000	0.5150	103	0.5180	104	70-130	1	0-25	

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:

Santa Barbara, CA 93101-2177
Preparation:

Method:

07/08/15

15-07-0357

Preparation:

N/A

SM 5540C

Project: Crystal Geyser Roxane / SB0746 Page 5 of 11

Quality Control Sample ID	Туре		Matrix Instrument		Date Prepared	Date Ana	lyzed	MS/MSD Batch Number			
MW-07-070615	Sample		Aqueous	Aqueous UV 9		07/08/15	07/08/15	13:11	F0708SURS1		
MW-07-070615	Matrix Spike		Aqueous	s U\	/ 9	07/08/15	07/08/15	13:11	F0708SURS	1	
MW-07-070615	Matrix Spike I	Duplicate	Aqueous	s U\	/ 9	07/08/15	07/08/15	13:11	F0708SURS	1	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers	
MBAS	ND	1.000	0.9100	91	0.8300	83	70-130	9	0-25		

Geosyntec Consultants Date Received: 07/08/15 15-07-0357 924 Anacapa Street, Suite 4A Work Order: Preparation: N/A Santa Barbara, CA 93101-2177 SM 5540C Method:

Project: Crystal Geyser Roxane / SB0746 Page 6 of 11

Quality Control Sample ID	Туре		Matrix Instrument		Date Prepared	Date Ana	lyzed	d MS/MSD Batch Numbe		
MW-08-070715	Sample		Aqueous UV 9		07/08/15	07/08/15	15:10	F0708SURS2		
MW-08-070715	Matrix Spike		Aqueous	UV	9	07/08/15	07/08/15	15:10	F0708SURS	2
MW-08-070715	Matrix Spike Du	uplicate	Aqueous	UV	9	07/08/15	07/08/15	15:10	F0708SURS	2
Parameter	Sample S Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
MBAS	ND ^	1.000	0.8300	83	0.8400	84	70-130	1	0-25	

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Preparation:

Method:

15-07-0357 N/A EPA 200.7

07/08/15

Project: Crystal Geyser Roxane / SB0746 Page 7 of 11

Quality Control Sample ID	Туре		Matrix	Matrix Instrume		Date Prepared	Date Analyzed		MS/MSD Ba	tch Number
15-07-0460-2	Sample		Aqueous ICP 7300		07/10/15 07/11/		02:07	150710SA3	A	
15-07-0460-2	Matrix Spike		Aqueous ICP 73		ICP 7300 07/10/15		07/11/15 02:01		150710SA3	A
15-07-0460-2	Matrix Spike	Duplicate	Aqueou	s IC	P 7300	07/10/15	07/11/15	02:03	150710SA3	4
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Calcium	23.11	0.5000	23.87	4X	23.80	4X	80-120	4X	0-20	Q
Magnesium	2.541	0.5000	3.119	4X	3.193	4X	80-120	4X	0-20	Q
Sodium	9.416	5.000	14.89	109	14.84	108	80-120	0	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0357 EPA 3010A Total EPA 6010B

07/08/15

Project: Crystal Geyser Roxane / SB0746

Page 8 of 11

Quality Control Sample ID	Туре	Туре			Instrument	Date Prepare	d Date Ana	lyzed	MS/MSD Batch Number	
MW-07-070615	Sample		Aqueou	s	ICP 7300	07/08/15	07/10/15 14:31		150708SA7	
MW-07-070615	Matrix Spike	Matrix Spike		s	ICP 7300	07/08/15	07/09/15	12:50	150708SA7	
MW-07-070615	Matrix Spike	Duplicate	Aqueou	s	ICP 7300	07/08/15	07/09/15	12:52	150708SA7	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Re	MSD c. Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	0.5000	0.6021	120	0.5929	119	72-132	2	0-10	
Arsenic	0.04831	0.5000	0.6685	124	0.6562	122	80-140	2	0-11	
Barium	0.01418	0.5000	0.5982	117	0.5747	112	87-123	4	0-6	
Beryllium	ND	0.5000	0.6033	121	0.5811	116	89-119	4	0-8	3
Cadmium	ND	0.5000	0.6226	125	0.6007	120	82-124	4	0-7	3
Chromium	ND	0.5000	0.6039	121	0.5829	117	86-122	4	0-8	
Cobalt	ND	0.5000	0.6516	130	0.6365	127	83-125	2	0-7	3
Copper	0.01616	0.5000	0.6785	132	0.6526	127	78-126	4	0-7	3
Lead	ND	0.5000	0.6132	123	0.5993	120	84-120	2	0-7	3
Molybdenum	0.03014	0.5000	0.6399	122	0.6214	118	78-126	3	0-7	
Nickel	0.01054	0.5000	0.6438	127	0.6315	124	84-120	2	0-7	3
Selenium	ND	0.5000	0.5773	115	0.5745	115	79-127	0	0-9	
Silver	ND	0.2500	0.2912	116	0.2803	112	86-128	4	0-7	
Thallium	ND	0.5000	0.6362	127	0.6256	125	79-121	2	0-8	3
Vanadium	0.02176	0.5000	0.6296	122	0.6069	117	88-118	4	0-7	3
Zinc	0.02264	0.5000	0.6857	133	0.6492	125	89-131	5	0-8	3

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0357 EPA 3005A Filt. EPA 6010B

07/08/15

Project: Crystal Geyser Roxane / SB0746

Page 9 of 11

Quality Control Sample ID	Туре		Matrix	ļ.	nstrument	Date Prepar	ed Date Ana	lyzed	MS/MSD Ba	ch Number
MW-01-070715	Sample		Aqueou	s l	CP 7300	07/10/15	07/15/15	20:04	150710SA5	
MW-01-070715	Matrix Spike		Aqueou	s l	CP 7300	07/10/15	07/13/15	18:11	150710SA5	
MW-01-070715	Matrix Spike	Duplicate	Aqueou	s l	CP 7300	07/10/15	07/13/15	18:13	150710SA5	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	0.5000	0.5337	107	0.5067	101	72-132	5	0-10	
Arsenic	0.01365	0.5000	0.5662	111	0.5398	105	80-140	5	0-11	
Barium	0.02283	0.5000	0.5817	112	0.5701	109	87-123	2	0-6	
Beryllium	ND	0.5000	0.5375	108	0.5277	106	89-119	2	0-8	
Cadmium	ND	0.5000	0.5367	107	0.5277	106	82-124	2	0-7	
Chromium	ND	0.5000	0.5576	112	0.5469	109	86-122	2	0-8	
Cobalt	ND	0.5000	0.5549	111	0.5455	109	83-125	2	0-7	
Copper	ND	0.5000	0.5406	108	0.5305	106	78-126	2	0-7	
Lead	ND	0.5000	0.5423	108	0.5196	104	84-120	4	0-7	
Molybdenum	0.01096	0.5000	0.5483	107	0.5275	103	78-126	4	0-7	
Nickel	ND	0.5000	0.5418	108	0.5167	103	84-120	5	0-7	
Selenium	ND	0.5000	0.5360	107	0.5184	104	79-127	3	0-9	
Silver	ND	0.2500	0.2759	110	0.2711	108	86-128	2	0-7	
Thallium	ND	0.5000	0.5021	100	0.4920	98	79-121	2	0-8	
Vanadium	ND	0.5000	0.5576	112	0.5479	110	88-118	2	0-7	
Zinc	ND	0.5000	0.5619	112	0.5540	111	89-131	1	0-8	

Geosyntec Consultants Date Received: 07/08/15 924 Anacapa Street, Suite 4A Work Order: 15-07-0357 EPA 7470A Total Santa Barbara, CA 93101-2177 Preparation: Method: EPA 7470A

Project: Crystal Geyser Roxane / SB0746 Page 10 of 11

Quality Control Sample ID	Туре		Matrix	Matrix Instrument		Date Prepared Date Analyzed		MS/MSD Batch Number		
15-07-0460-1	Sample	Sample		Ме	ercury 04	07/10/15	07/10/15	21:36	150710SA2	
15-07-0460-1	Matrix Spike		Aqueous	Ме	ercury 04	07/10/15	07/10/15	21:38	150710SA2	
15-07-0460-1	Matrix Spike Duplicate		Aqueous	Aqueous Mercui		07/10/15	07/10/15	21:40	150710SA2	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.01000	0.009613	96	0.009725	5 97	57-141	1	0-10	

Geosyntec Consultants Date Received: 07/08/15 924 Anacapa Street, Suite 4A Work Order: 15-07-0357 EPA 7470A Filt. Santa Barbara, CA 93101-2177 Preparation: Method: EPA 7470A

Project: Crystal Geyser Roxane / SB0746 Page 11 of 11

Quality Control Sample ID	Туре		Matrix	Matrix Instrument		Date Prepared Date Analyzed		lyzed	MS/MSD Batch Number	
MW-03-070715	Sample		Aqueous	Ме	ercury 04	07/10/15	07/10/15 20:46		150710SA1	
MW-03-070715	Matrix Spike		Aqueous	Me	ercury 04	07/10/15	07/10/15	20:48	150710SA1	
MW-03-070715	Matrix Spike Duplicate		Aqueous Mercury 04		ercury 04	07/10/15	07/10/15 20:51		150710SA1	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.01000	0.009842	98	0.009634	96	57-141	2	0-10	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: Crystal Geyser Roxane / SB0746

Date Received: Work Order: Preparation: Method:

15-07-0357 N/A

SM 2320B

07/08/15

Page 1 of 4

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-07-0005-1	Sample	Aqueous	PH1/BUR03	N/A	07/10/15 19:25	F0710ALKD2
15-07-0005-1	Sample Duplicate	Aqueous	PH1/BUR03	N/A	07/10/15 19:25	F0710ALKD2
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)		276.0	275.0	0	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0357 N/A

07/08/15

SM 2540 C

Project: Crystal Geyser Roxane / SB0746

Page 2 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
MW-05-070715	Sample	Aqueous	SC 2	07/08/15 00:00	07/08/15 19:00	F0708TDSD4
MW-05-070715	Sample Duplicate	Aqueous	SC 2	07/08/15 00:00	F0708TDSD4	
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Solids, Total Dissolved		1960	1925	2	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

15-07-0357 N/A

07/08/15

Method:

SM 4500 H+ B

Project: Crystal Geyser Roxane / SB0746

Page 3 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-07-0341-1	Sample	Aqueous	PH 1	N/A	07/08/15 17:43	F0708PHD1
15-07-0341-1	Sample Duplicate	Aqueous	PH 1	N/A	07/08/15 17:43	F0708PHD1
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	<u>Qualifiers</u>
рН		6.950	7.000	1	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

Method:

15-07-0357 N/A

07/08/15

SM 4500 N Org B

Project: Crystal Geyser Roxane / SB0746

Page 4 of 4

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-07-0347-1	Sample	Aqueous	BUR05	07/11/15 00:00	07/11/15 16:02	F0711TKND1
15-07-0347-1	Sample Duplicate	Aqueous	BUR05	07/11/15 00:00	07/11/15 16:02	F0711TKND1
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Total Kjeldahl Nitrogen		129.9	128.8	1	0-25	

Quality Control - LCS

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

Santa Barbara, CA 93101-2177

Preparation:

Method:

Date Received:

07/08/15

15-07-0357

N/A

Method:

EPA 300.0

Project: Crystal Geyser Roxane / SB0746 Page 1 of 19

Quality Control Sample ID	Туре	Matrix	Instrument	Date	Prepared Date A	nalyzed	LCS Batch	Number
099-12-906-5882	LCS	Aqueous	IC 15	N/A	07/08/1	5 11:24	150708L01	
Parameter		Spike Added	Conc. Recov	ered	LCS %Rec.	%Rec	. CL	Qualifiers
Chloride		50.00	47.66		95	90-110)	
Sulfate		50.00	48.21		96	90-110)	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/08/15 15-07-0357 N/A

SM 2320B

Project: Crystal Geyser Roxane / SB0746

Page 2 of 19

CS/LCSD Batch Number

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	ared Date	Analyzed	LCS/LCSD Ba	tch Number
099-15-859-747	LCS	Aqı	ieous	PH1/BUR03	N/A	07/1	0/15 19:25	F0710ALKB2	
099-15-859-747	LCSD	Aqı	ieous	PH1/BUR03	N/A	07/1	0/15 19:25	F0710ALKB2	
<u>Parameter</u>	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)	100.0	100.0	100	100.0	100	80-120	0	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0357 N/A

07/08/15

SM 2540 C Page 3 of 19

Project: Crystal Geyser Roxane / SB0746

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	tch Number
099-12-180-4660	LCS	Aqı	ieous	SC 2	07/08/15	07/0	8/15 19:00	F0708TDSL3	
099-12-180-4660	LCSD	Aqu	ieous	SC 2	07/08/15	07/0	8/15 19:00	F0708TDSL3	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Solids, Total Dissolved	100.0	90.00	90	95.00	95	80-120	5	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0357 N/A

07/08/15

SM 4500 P B/E Page 4 of 19

Project: Crystal Geyser Roxane / SB0746

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-05-098-2674	LCS	Aqı	ieous	UV 7	07/10/15	07/1	0/15 15:30	F0710TPL1	
099-05-098-2674	LCSD	Aqu	ieous	UV 7	07/10/15	07/1	0/15 15:30	F0710TPL1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	0.4000	0.3940	98	0.3910	98	80-120	1	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: 07/08/15 15-07-0357 N/A

Method: SM 4500 P B/E Page 5 of 19

Project: Crystal Geyser Roxane / SB0746

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	itch Number
099-14-276-163	LCS	Aqı	ieous	UV 7	07/10/15	07/10	0/15 15:30	F0710PO4L1	
099-14-276-163	LCSD	Aqı	ieous	UV 7	07/10/15	07/10	0/15 15:30	F0710PO4L1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Total Phosphate	1.220	1.210	99	1.200	98	80-120	1	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

15-07-0357 N/A

07/08/15

Method: SM 4500-NH3 B/C Page 6 of 19

Project: Crystal Geyser Roxane / SB0746

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-12-814-2153	LCS	Aqu	eous	BUR05	07/14/15	07/1	4/15 15:37	F0714NH3L1	
099-12-814-2153	LCSD	Aqu	eous	BUR05	07/14/15	07/1	4/15 15:37	F0714NH3L1	
Parameter	Spike Added L	CS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Ammonia (as N)	5.000 4	1.368	87	4.424	88	80-120	1	0-20	

N/A

Quality Control - LCS/LCSD

Geosyntec Consultants Date Received: 07/08/15 15-07-0357 924 Anacapa Street, Suite 4A Work Order: Preparation: Santa Barbara, CA 93101-2177 Method: SM 4500-NO3 E

Project: Crystal Geyser Roxane / SB0746 Page 7 of 19

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-05-120-1828	LCS	Aqı	ueous	UV 7	07/08/15	07/08	8/15 14:53	F0708NO3L1	
099-05-120-1828	LCSD	Aqı	ueous	UV 7	07/08/15	07/08	8/15 14:53	F0708NO3L1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	0.5000	0.5020	100	0.5010	100	80-120	0	0-20	

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:

Santa Barbara, CA 93101-2177
Preparation:

Method:

07/08/15

15-07-0357

Preparation:

N/A

SM 5540C

Project: Crystal Geyser Roxane / SB0746 Page 8 of 19

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-05-093-2892	LCS	Aqueous	UV 9	07/08/15	07/08/15 13:11	F0708SURL1
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
MBAS		1.000	0.8500	85	80-12	0

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-07-0357

Santa Barbara, CA 93101-2177

Preparation:

Method:

SM 5540C

Project: Crystal Geyser Roxane / SB0746 Page 9 of 19

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-05-093-2893	LCS	Aqueous	UV 9	07/08/15	07/08/15 15:10	F0708SURL2
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %Re	ec. %Rec	. CL Qualifiers
MBAS		1.000	0.8800	88	80-120)

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0357 N/A

07/08/15

EPA 200.7

Project: Crystal Geyser Roxane / SB0746

Page 10 of 19

Quality Control Sample ID	Туре	Matrix	Instrument Da	ate Prepared Date	Analyzed LCS Ba	atch Number
097-01-012-6255	LCS	Aqueous	ICP 7300 07	7/10/15 07/10	0/15 21:47 150710	LA3
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	Qualifiers
Calcium		0.5000	0.5013	100	85-115	
Magnesium		0.5000	0.5340	107	85-115	
Sodium		5.000	4.936	99	85-115	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0357 EPA 3010A Total EPA 6010B

07/08/15

Project: Crystal Geyser Roxane / SB0746

Page 11 of 19

Quality Control Sample ID	Type	Matri	x Instrume	ent Date Pre	pared Date Ana	alyzed LCS Bate	ch Number
097-01-003-15195	LCS	Aque	eous ICP 730	0 07/08/15	07/09/15	12:44 150708L	A7
<u>Parameter</u>		Spike Added	Conc. Recovere	d LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		0.5000	0.5147	103	80-120	73-127	
Arsenic		0.5000	0.4986	100	80-120	73-127	
Barium		0.5000	0.5345	107	80-120	73-127	
Beryllium		0.5000	0.5013	100	80-120	73-127	
Cadmium		0.5000	0.5368	107	80-120	73-127	
Chromium		0.5000	0.5508	110	80-120	73-127	
Cobalt		0.5000	0.5680	114	80-120	73-127	
Copper		0.5000	0.5512	110	80-120	73-127	
Lead		0.5000	0.5527	111	80-120	73-127	
Molybdenum		0.5000	0.5319	106	80-120	73-127	
Nickel		0.5000	0.5679	114	80-120	73-127	
Selenium		0.5000	0.5080	102	80-120	73-127	
Silver		0.2500	0.2651	106	80-120	73-127	
Thallium		0.5000	0.5758	115	80-120	73-127	
Vanadium		0.5000	0.5333	107	80-120	73-127	
Zinc		0.5000	0.5208	104	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/08/15 15-07-0357 EPA 3005A Filt. EPA 6010B

Project: Crystal Geyser Roxane / SB0746

Page 12 of 19

Quality Control Sample ID	Туре	Matri	x Instrumen	t Date Pre	pared Date Ana	lyzed LCS Bat	ch Number
097-01-003-15199	LCS	Aque	eous ICP 7300	07/10/15	07/13/15	17:52 150710L	.A5F
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		0.5000	0.4658	93	80-120	73-127	
Arsenic		0.5000	0.4795	96	80-120	73-127	
Barium		0.5000	0.5330	107	80-120	73-127	
Beryllium		0.5000	0.4905	98	80-120	73-127	
Cadmium		0.5000	0.5130	103	80-120	73-127	
Chromium		0.5000	0.5360	107	80-120	73-127	
Cobalt		0.5000	0.5433	109	80-120	73-127	
Copper		0.5000	0.5157	103	80-120	73-127	
Lead		0.5000	0.5107	102	80-120	73-127	
Molybdenum		0.5000	0.4951	99	80-120	73-127	
Nickel		0.5000	0.5192	104	80-120	73-127	
Selenium		0.5000	0.4758	95	80-120	73-127	
Silver		0.2500	0.2613	105	80-120	73-127	
Thallium		0.5000	0.5199	104	80-120	73-127	
Vanadium		0.5000	0.5197	104	80-120	73-127	
Zinc		0.5000	0.4988	100	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-07-0357
Santa Barbara, CA 93101-2177
Preparation:
Method:
EPA 7470A
Project: Crystal Geyser Roxane / SB0746
Page 13 of 19

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-04-008-7494	LCS	Aqueous	Mercury 04	07/10/15	07/10/15 21:33	150710LA2
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	. CL Qualifiers
Mercury		0.01000	0.009401	94	85-12	1

Geosyntec ConsultantsDate Received:07/08/15924 Anacapa Street, Suite 4AWork Order:15-07-0357Santa Barbara, CA 93101-2177Preparation:EPA 7470A Filt.Method:EPA 7470A

Project: Crystal Geyser Roxane / SB0746 Page 14 of 19

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-763-581	LCS	Aqueous	Mercury 04	07/10/15	07/10/15 20:44	150710LA1F
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.01000	0.009901	99	85-12°	1

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/08/15 15-07-0357 EPA 3510C EPA 8270C

Project: Crystal Geyser Roxane / SB0746

Page 15 of 19

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-02-008-45	LCS		Aqueous	s G	C/MS TT	07/09/15	07/10/1	5 11:59	150709L02	
099-02-008-45	LCSD		Aqueous	s G	C/MS TT	07/09/15	07/10/1	5 12:18	150709L02	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acenaphthene	100.0	92.14	92	92.40	92	45-110	34-121	0	0-11	
Acenaphthylene	100.0	90.25	90	90.24	90	50-105	41-114	0	0-20	
Aniline	100.0	94.18	94	94.22	94	50-130	37-143	0	0-20	
Anthracene	100.0	95.22	95	95.54	96	55-110	46-119	0	0-20	
Azobenzene	100.0	88.82	89	89.27	89	50-130	37-143	1	0-20	
Benzidine	100.0	104.7	105	109.8	110	50-130	37-143	5	0-20	
Benzo (a) Anthracene	100.0	91.86	92	91.31	91	55-110	46-119	1	0-20	
Benzo (a) Pyrene	100.0	85.69	86	87.05	87	55-110	46-119	2	0-20	
Benzo (b) Fluoranthene	100.0	85.17	85	89.13	89	45-120	32-132	5	0-20	
Benzo (g,h,i) Perylene	100.0	95.15	95	96.23	96	40-125	26-139	1	0-20	
Benzo (k) Fluoranthene	100.0	86.57	87	83.79	84	45-125	32-138	3	0-20	
Benzoic Acid	100.0	63.14	63	62.79	63	50-130	37-143	1	0-20	
Benzyl Alcohol	100.0	96.52	97	94.56	95	30-110	17-123	2	0-20	
Bis(2-Chloroethoxy) Methane	100.0	92.11	92	89.28	89	45-105	35-115	3	0-20	
Bis(2-Chloroethyl) Ether	100.0	89.70	90	88.67	89	35-110	22-122	1	0-20	
Bis(2-Chloroisopropyl) Ether	100.0	93.21	93	90.38	90	25-130	8-148	3	0-20	
Bis(2-Ethylhexyl) Phthalate	100.0	98.23	98	99.23	99	40-125	26-139	1	0-20	
4-Bromophenyl-Phenyl Ether	100.0	87.94	88	88.30	88	50-115	39-126	0	0-20	
Butyl Benzyl Phthalate	100.0	98.02	98	98.50	99	45-115	33-127	0	0-20	
4-Chloro-3-Methylphenol	100.0	92.15	92	92.35	92	45-110	34-121	0	0-40	
4-Chloroaniline	100.0	98.69	99	97.17	97	15-110	0-126	2	0-20	
2-Chloronaphthalene	100.0	85.85	86	84.42	84	50-105	41-114	2	0-20	
2-Chlorophenol	100.0	91.24	91	90.76	91	35-105	23-117	1	0-18	
4-Chlorophenyl-Phenyl Ether	100.0	88.64	89	88.62	89	50-110	40-120	0	0-20	
Chrysene	100.0	90.65	91	92.38	92	55-110	46-119	2	0-20	
2,6-Dichlorophenol	100.0	90.72	91	91.43	91	42-120	29-133	1	0-21	
Di-n-Butyl Phthalate	100.0	92.14	92	92.08	92	55-115	45-125	0	0-20	
Di-n-Octyl Phthalate	100.0	92.11	92	93.17	93	35-135	18-152	1	0-20	
Dibenz (a,h) Anthracene	100.0	92.71	93	92.41	92	40-125	26-139	0	0-20	
Dibenzofuran	100.0	89.89	90	91.17	91	55-105	47-113	1	0-20	
1,2-Dichlorobenzene	100.0	74.56	75	74.21	74	35-100	24-111	0	0-20	
1,3-Dichlorobenzene	100.0	69.52	70	69.74	70	30-100	18-112	0	0-20	
1,4-Dichlorobenzene	100.0	71.08	71	71.09	71	30-100	18-112	0	0-26	
3,3'-Dichlorobenzidine	100.0	101.0	101	102.0	102	20-110	5-125	1	0-20	
2,4-Dichlorophenol	100.0	92.87	93	93.99	94	50-105	41-114	1	0-20	
Diethyl Phthalate	100.0	93.19	93	93.04	93	40-120	27-133	0	0-20	

RPD: Relative Percent Difference.

CL: Control Limits

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-07-0357
Santa Barbara, CA 93101-2177
Preparation:
EPA 3510C
Method:
EPA 8270C

Project: Crystal Geyser Roxane / SB0746 Page 16 of 19

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Cond	c. <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Dimethyl Phthalate	100.0	90.81	91	90.71	91	25-125	8-142	0	0-20	
2,4-Dimethylphenol	100.0	91.37	91	90.96	91	30-110	17-123	0	0-20	
4,6-Dinitro-2-Methylphenol	100.0	99.77	100	100.4	100	40-130	25-145	1	0-20	
2,4-Dinitrophenol	100.0	100.4	100	99.36	99	15-140	0-161	1	0-20	
2,4-Dinitrotoluene	100.0	95.11	95	93.83	94	50-120	38-132	1	0-36	
2,6-Dinitrotoluene	100.0	93.95	94	93.14	93	50-115	39-126	1	0-20	
Fluoranthene	100.0	91.98	92	91.63	92	55-115	45-125	0	0-20	
Fluorene	100.0	92.96	93	93.64	94	50-110	40-120	1	0-20	
Hexachloro-1,3-Butadiene	100.0	77.20	77	75.42	75	25-105	12-118	2	0-20	
Hexachlorobenzene	100.0	93.69	94	92.68	93	50-110	40-120	1	0-20	
Hexachlorocyclopentadiene	100.0	81.77	82	80.17	80	50-130	37-143	2	0-20	
Hexachloroethane	100.0	71.56	72	70.15	70	30-95	19-106	2	0-20	
Indeno (1,2,3-c,d) Pyrene	100.0	92.55	93	92.75	93	45-125	32-138	0	0-20	
Isophorone	100.0	90.35	90	90.14	90	50-110	40-120	0	0-20	
2-Methylnaphthalene	100.0	92.50	93	92.62	93	45-105	35-115	0	0-20	
1-Methylnaphthalene	100.0	87.12	87	86.79	87	80-120	73-127	0	0-20	
2-Methylphenol	100.0	91.03	91	90.76	91	40-110	28-122	0	0-20	
3/4-Methylphenol	200.0	167.4	84	168.1	84	30-110	17-123	0	0-20	
N-Nitroso-di-n-propylamine	100.0	113.6	114	114.0	114	35-130	19-146	0	0-13	
N-Nitrosodimethylamine	100.0	78.34	78	76.89	77	25-110	11-124	2	0-20	
N-Nitrosodiphenylamine	100.0	125.0	125	124.8	125	50-110	40-120	0	0-20	Χ
Naphthalene	100.0	84.41	84	84.05	84	40-100	30-110	0	0-20	
4-Nitroaniline	100.0	108.5	109	108.8	109	35-120	21-134	0	0-20	
3-Nitroaniline	100.0	107.8	108	110.5	111	20-125	2-142	3	0-20	
2-Nitroaniline	100.0	112.4	112	112.0	112	50-115	39-126	0	0-20	
Nitrobenzene	100.0	83.47	83	82.04	82	45-110	34-121	2	0-20	
4-Nitrophenol	100.0	45.56	46	45.70	46	20-150	0-172	0	0-40	
2-Nitrophenol	100.0	89.28	89	90.35	90	40-115	28-128	1	0-20	
Pentachlorophenol	100.0	89.19	89	88.95	89	40-115	28-128	0	0-40	
Phenanthrene	100.0	98.09	98	97.38	97	50-115	39-126	1	0-20	
Phenol	100.0	44.34	44	43.81	44	10-115	0-132	1	0-23	
Pyrene	100.0	98.98	99	99.66	100	50-130	37-143	1	0-20	
Pyridine	100.0	82.30	82	81.81	82	52-115	42-126	1	0-20	
1,2,4-Trichlorobenzene	100.0	78.92	79	79.98	80	35-105	23-117	1	0-21	
2,4,6-Trichlorophenol	100.0	88.28	88	88.81	89	50-115	39-126	1	0-20	
2,4,5-Trichlorophenol	100.0	87.10	87	85.60	86	50-110	40-120	2	0-20	

Total number of LCS compounds: 72 Total number of ME compounds: 0

Geosyntec Consultants	Date Received:	07/08/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0357
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
Project: Crystal Geyser Roxane / SB0746		Page 17 of 19

Total number of ME compounds allowed: 4 LCS ME CL validation result: Pass

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/08/15 15-07-0357 EPA 5030C EPA 8260B

Project: Crystal Geyser Roxane / SB0746

Page 18 of 19

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepare	d Date	Analyzed	LCS/LCSD Ba	tch Number
099-14-316-2193	LCS		Aqueous	;	GC/MS WW	07/09/15	07/09/	/15 09:24	150709L002	
099-14-316-2193	LCSD		Aqueous	;	GC/MS WW	07/09/15	07/09/	/15 09:54	150709L002	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSE Conc		%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Acetone	50.00	57.15	114	61.80	124	12-150	0-173	8	0-20	
Benzene	50.00	48.69	97	48.73	97	80-120	73-127	0	0-20	
Bromobenzene	50.00	53.83	108	53.08	106	80-120	73-127	1	0-20	
Bromochloromethane	50.00	48.78	98	49.16	98	80-122	73-129	1	0-20	
Bromodichloromethane	50.00	52.57	105	52.38	105	80-123	73-130	0	0-20	
Bromoform	50.00	52.28	105	51.71	103	74-134	64-144	1	0-20	
Bromomethane	50.00	38.28	77	36.08	72	22-160	0-183	6	0-20	
2-Butanone	50.00	57.05	114	56.88	114	44-164	24-184	0	0-20	
n-Butylbenzene	50.00	59.08	118	53.73	107	80-132	71-141	9	0-20	
sec-Butylbenzene	50.00	53.93	108	49.58	99	80-129	72-137	8	0-20	
tert-Butylbenzene	50.00	53.67	107	50.50	101	80-130	72-138	6	0-20	
Carbon Disulfide	50.00	46.10	92	45.38	91	60-126	49-137	2	0-20	
Carbon Tetrachloride	50.00	51.65	103	48.10	96	64-148	50-162	7	0-20	
Chlorobenzene	50.00	47.17	94	46.45	93	80-120	73-127	2	0-20	
Chloroethane	50.00	39.64	79	36.98	3 74	63-123	53-133	7	0-20	
Chloroform	50.00	47.22	94	46.11	92	79-121	72-128	2	0-20	
Chloromethane	50.00	37.64	75	37.47	75	43-133	28-148	0	0-20	
2-Chlorotoluene	50.00	53.50	107	50.18	100	80-130	72-138	6	0-20	
4-Chlorotoluene	50.00	52.05	104	48.61	97	80-121	73-128	7	0-20	
Dibromochloromethane	50.00	52.82	106	52.06	104	80-125	72-132	1	0-20	
1,2-Dibromo-3-Chloropropane	50.00	64.12	128	62.36	125	68-128	58-138	3	0-20	
1,2-Dibromoethane	50.00	55.11	110	54.81	110	80-120	73-127	1	0-20	
Dibromomethane	50.00	51.11	102	50.59	101	80-121	73-128	1	0-20	
1,2-Dichlorobenzene	50.00	50.46	101	48.44	97	80-120	73-127	4	0-20	
1,3-Dichlorobenzene	50.00	51.60	103	48.68	97	80-121	73-128	6	0-20	
1,4-Dichlorobenzene	50.00	49.78	100	46.13	92	80-120	73-127	8	0-20	
Dichlorodifluoromethane	50.00	48.56	97	50.06	100	25-187	0-214	3	0-20	
1,1-Dichloroethane	50.00	46.37	93	46.87	94	75-120	68-128	1	0-20	
1,2-Dichloroethane	50.00	55.08	110	54.45	109	80-123	73-130	1	0-20	
1,1-Dichloroethene	50.00	47.37	95	48.92	98	74-122	66-130	3	0-20	
c-1,2-Dichloroethene	50.00	46.68	93	48.52	97	75-123	67-131	4	0-20	
t-1,2-Dichloroethene	50.00	50.38	101	49.85	100	70-124	61-133	1	0-20	
1,2-Dichloropropane	50.00	48.89	98	50.38		80-120	73-127	3	0-20	
1,3-Dichloropropane	50.00	54.57	109	54.83		80-120	73-127	0	0-20	
2,2-Dichloropropane	50.00	54.03	108	51.49	103	49-151	32-168	5	0-20	
1,1-Dichloropropene	50.00	45.81	92	44.21		76-120	69-127	4	0-20	

RPD: Relative Percent Difference. CL: Co

CL: Control Limits

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/08/15 15-07-0357 EPA 5030C EPA 8260B

Project: Crystal Geyser Roxane / SB0746

Page 19 of 19

<u>Parameter</u>	<u>Spike</u> Added	LCS Con	c. <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
c-1,3-Dichloropropene	50.00	54.83	110	55.85	112	80-124	73-131	2	0-20	
t-1,3-Dichloropropene	50.00	55.69	111	54.02	108	68-128	58-138	3	0-20	
Ethylbenzene	50.00	53.09	106	50.84	102	80-120	73-127	4	0-20	
2-Hexanone	50.00	61.43	123	61.86	124	57-147	42-162	1	0-20	
Isopropylbenzene	50.00	54.08	108	51.63	103	80-127	72-135	5	0-20	
p-Isopropyltoluene	50.00	56.80	114	52.43	105	80-125	72-132	8	0-20	
Methylene Chloride	50.00	47.68	95	50.30	101	74-122	66-130	5	0-20	
4-Methyl-2-Pentanone	50.00	59.04	118	62.82	126	71-125	62-134	6	0-20	ME
Naphthalene	50.00	56.86	114	56.42	113	54-144	39-159	1	0-20	
n-Propylbenzene	50.00	53.58	107	50.52	101	80-127	72-135	6	0-20	
Styrene	50.00	53.45	107	51.76	104	80-120	73-127	3	0-20	
1,1,1,2-Tetrachloroethane	50.00	51.13	102	50.77	102	80-125	72-132	1	0-20	
1,1,2,2-Tetrachloroethane	50.00	53.97	108	53.67	107	78-126	70-134	1	0-20	
Tetrachloroethene	50.00	52.54	105	49.40	99	57-141	43-155	6	0-20	
Toluene	50.00	49.77	100	50.07	100	80-120	73-127	1	0-20	
1,2,3-Trichlorobenzene	50.00	59.14	118	56.53	113	58-154	42-170	5	0-20	
1,2,4-Trichlorobenzene	50.00	57.98	116	55.35	111	57-153	41-169	5	0-20	
1,1,1-Trichloroethane	50.00	48.68	97	48.39	97	76-124	68-132	1	0-20	
1,1,2-Trichloro-1,2,2- Trifluoroethane	50.00	46.82	94	48.77	98	58-148	43-163	4	0-20	
1,1,2-Trichloroethane	50.00	52.62	105	55.03	110	80-120	73-127	4	0-20	
Trichloroethene	50.00	52.17	104	50.93	102	80-120	73-127	2	0-20	
Trichlorofluoromethane	50.00	48.33	97	47.07	94	64-136	52-148	3	0-20	
1,2,3-Trichloropropane	50.00	66.06	132	64.58	129	74-122	66-130	2	0-20	X,ME
1,2,4-Trimethylbenzene	50.00	54.19	108	50.52	101	80-120	73-127	7	0-20	
1,3,5-Trimethylbenzene	50.00	59.50	119	55.59	111	80-126	72-134	7	0-20	
Vinyl Acetate	50.00	73.54	147	73.09	146	34-172	11-195	1	0-20	
Vinyl Chloride	50.00	47.68	95	45.99	92	67-127	57-137	4	0-20	
p/m-Xylene	100.0	105.9	106	102.7	103	80-127	72-135	3	0-20	
o-Xylene	50.00	52.68	105	51.49	103	80-127	72-135	2	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	52.20	104	52.37	105	71-120	63-128	0	0-20	

Total number of LCS compounds: 66
Total number of ME compounds: 2
Total number of ME compounds allowed: 3
LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 15-07-0357				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 200.7	N/A	935	ICP 7300	1
EPA 300.0	N/A	834	IC 15	1
EPA 6010B	EPA 3005A Filt.	771	ICP 7300	1
EPA 6010B	EPA 3005A Filt.	935	ICP 7300	1
EPA 6010B	EPA 3010A Total	771	ICP 7300	1
EPA 7470A	EPA 7470A Filt.	1004	Mercury 04	1
EPA 7470A	EPA 7470A Total	1004	Mercury 04	1
EPA 8260B	EPA 5030C	849	GC/MS WW	2
EPA 8270C	EPA 3510C	923	GC/MS TT	1
SM 2320B	N/A	688	PH1/BUR03	1
SM 2540 C	N/A	1009	SC 2	1
SM 4500 H+ B	N/A	688	PH 1	1
SM 4500 N Org B	N/A	685	BUR05	1
SM 4500 P B/E	N/A	857	UV 7	1
SM 4500-NH3 B/C	N/A	685	BUR05	1
SM 4500-NO3 E	N/A	650	UV 7	1
SM 5540C	N/A	687	UV 9	1
SM 5540C	N/A	689	UV 9	1
Total Nitrogen by Calc	N/A	92	N/A	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 15-07-0357 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number:, 6653

15-07-0357

Analysis Request and Chain of Custody Record

Project Name Crystal Geyser Ruxane	Project Number SB0746	er 46					Requir	Required Analyses	alyse				Page \ of	
odini	Project Conta	act nith tsw	Project Contact Ryan Smith rsmith@) secsynte Lo	\$ 5	B Josen					youk hak				
	Lab Contact S. Nowalk	3 mark		20985) 1026.19	0728				ickoy	4:101-		White copy: to accompany samples	ny samples
1	Lab Phone 714	895-5494	he	, Kq :	σ+ s		S √ 3	Wilver 16021		19 Du			Yellow copy: field copy	. Adoc
borden Grene, CA 12841	Carrier/Waybill No.	.vo.		ΛΟC ²	Metal	SVOC		-	11	1 \$ 401	1:01		•	
						3ottle T	/pe and	Bottle Type and Volume/Preservative	e/Pres	ervativ	ə			Lab Use
				7 * 03 E		o gray	Z Z		164.7	30			•	Only
,		i	Sample	*		(a)	200	82	30	(2)		J		Condition of
Sample Name	Date	Time	Type			Ž	mber	Number of Containers	ntaine	Z.			Comments	Bottles
5190to-to-MW	110/12	1315	MzO	×	×	×	×	×	×	×	×			
MW-06-676615	7/6/15	1530	MaD	×	×	×	×	X	×	×	X		()01	
MW- 64-670615	7/6/15	Sh91	M20	×	X	×	×	Х х	×	X	X		00//	
400-51900-ho-mm	7/6/15	ا ۱۹۹ کر	N20	×	×	×	` *	×	×	×	X		1 110	
EB-01-070415	17 3 KF		-CJCH	×	*	X	<u>↑</u>	*	*	X	$\frac{1}{\sqrt{2}}$	7	1000	
MW-01-070715	17/7/15	t 880	Nao	X	X	X	×	X	X	×	X		to 11.05	
51 tot9-50-MW 9	7/11/15	6444	Mio	Х	X	X	X	X	X	×	X		1. V'?	
MW-03-070715	7 FIF	1111	N20	X	×	X	X	X	X	×	X		٧,	
MW-08-070715	7/2/15	1331	OgH	X	\times	×	X	×	X	X	X			
4.05														
718/12														
Special Instructions:													Turn-around Time:	
	,												区 Normal 口 Rush:	Management
1. Relinquished by Color (Signiture/Affiliation)	in Con	\mathcal{L}	Date Time	1320	77/2/02	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1. Rec (Signiture/	1. Received by (Signiture/Affiliation)	>	FEDEX	Π X		Date $\frac{7/7}{1300}$	20/2/
						+								

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Geosyntec^o

3. Received by (Signiture/Affiliation)

Date Time

3. Relinquished by (Signiture/Affiliation)

2. Relinquished by (Signiture/Affiliation)

Time Date

2. Received by (Signiture/Affliation)

Time

Date

Date Time

		· ·
Express US Airbill	8540 7985 019	50 0200 form FedEx Retrieval Copy
Date Sender's FedEx Account Number Sender's Name	359-4617-6	44 Express Package Service To add SATURDAY Delivery, see Section 6. Packages up to 150 lbs. To not seed to see the second seed to see the see the second seed to see the see the second seed to see the secon
Address	Dept//Floor/Suitor/R	PodEx Envelope rate not available. Minimum charge: One-pound rate. 4b Express Freight Service To add SATUROAY Delivery, see Section 5. 7 FedEx 1Day Freight* 8 FedEx 2Day Freight Second business day.* 1 Set for Confirmed point. 1 Cell for Confirmed point.
City Stat 2 Your Internal Billing Reference		5 Packaging 6 FedEx 2 FedEx Pak* 3 FedEx Box Tube 6 Special Handling 6 Special Handling
Recipient's Name Company	Phone	3 SATURDAY Delivery Available ONLY for FedEx Priority Available ONLY for FedEx Froirty No wealable for No wealable f
Recipient's Address We cannot deliver to P.O. Hoxes or P.O. ZIP codes. Address To request a package be held at a specific FudEx location, print FudEx address here.	Dept/Floor/Suits/Floor	Shipper so Beakerston. In the required. Payment Bill to: Enter FodEx Acct. No. or Credit Card No. below. Sander 2 Recipient 3 Third Party 4 Credit Card 5 Cass Check
City	ZIP	Total Packages Total Weight Total Charges Total Weight Total Charges Total Weight Total Charges Total Charges Total Charges Total Charges Total Weight Total Charges Total Charges Indirect Signature Signature Signature Indirect Signature In or on is a swaleship at a superstime, check Direct or indirect. The or one is a swaleship at a superstime of the or one is a swaleship at a neighboring address any sign the delivery. The supplies a superstime of the or one is a swaleship at a neighboring address any sign the delivery. The supplies a superstime of the or one is a swaleship at a neighboring address any sign to delivery. For applies.
8540 7985 0150		Tor delivery. Rev Date 5/05 + Part #158261+©1994-2005 FedS+PRINTED IN U.S.A. SRY

100	Fec Exx US Airbill Express	8540 7985		0200 Form 10 No.	FedEx Retrieval Copy
1	From Sender's FedEx Account Number	359-4617-	b A	Express Package Service To add SATU FedEx Priority Overnight Max business morning. FedEx S Next busin	ADAY Delivery, see Section 6. Packages up to 150 lbs. to most lections transdard Overnight for Fedex First Overnight ses afternoon.* Fedex First Overnight defines next business morning definery to select locations.*
	Sender's Name	Phone	3[FodEx Envelope rate not available. Minimum charge: One-p	AV Delivery sen Section 6 Packages over 150 lbs.
	Company	<u>, 16</u>	7 [4b Express Freight Service To add SATURD FedEx 10 ay Freight* FedEx 20 Ay Freight Next business day.* Call for Confirmation:	Day Freight 83 FedEx 3Day Freight
	Address		Dept./Floor/Suite/Room	5 Packaging	Declared vysio line 5500.
	Express US, Airbill	8540 798	5 0160	0200 Form 10 No.	FedEx Retrieval Copy
	Date Sender's FedEx Account Number			Ta Express Package Service To odd S 1 V FedE Priority Overnight 5 FedI Next beliness morning.	ATURDAY Delivery, see Section 6. Packages up to 150 lbs. *To most locations x Standard Overnight Similes aftermeon.* FedEx First Overnight Selection to select focebone.*
	Name Company	Phone	12 1157	FedEx 2Day Second business day. FedEx Envelope rate not available. Minimum charge: 0: 4h Farances From the Second of the Secon	x Express Saver uservase day* e-pound rate.
	Fedex US Airbill	8540 798	5 0208	0200 Form 10 No.	FedEx Retrieval Copy
	From Sender's FedEx Account Number	1359-4617-	6/	4a: Express Package Service To add SA 1 Fee Ex Priority Overnight 5 Fee Rext Next Bushess morning.	TURDAY Delivery, see Section 6. Packages up to 150 lbs. * To most locations * Standard Overnight 6 FedEx First Overnight Earliest most business snorming delivery to select locations.*
	Sender's Name	Phone		FedEx 2Day Second business day. FedEx Envelope rate not available. Minimum cherge: Or Better Service To add SATI	
	Company Address		•	7 FedEx 1Day Freight* 9 F7 FedE	x 2Day Freight 83 FedEx 3Day Freight business day.**
	City	State ZIP	Dept/Floor/Suite/Floom	5 Packaging 6 FedEx 2 FedEx Pak* Envelope* FedEx Pak*	3 FedEx 4 FedEx 1 Other Box
- {}	2 Your Internal Billing Reference 3 To Recipient's Name	Phone	1. 1. 54	Available ONLY for FodEx Priority	Include FedEx address in Section 3. Weekday 31
	Company			Does this shipment contain dangerous go one box must be checked. No 4 Yes Yes Shipper's Evolution on trequire. Dangerous goods (including dy les) cannot be shipped in FadEx	ods? Dry Ica Dry Ica
	Recipient's Address We cannot deliver to P.O. boxes or P.O. ZIP codes. Address	y CW47	Dept./Floor/Suite/Room	7 Payment Bill to: Enter FedEx Acct. Sender 2 Recipient 3 Staton I will be belief.	No. or Credit Card No. below. Third Party 4 Credit Card 5 Cash/Check
	To request a package be held at a specific Fedex location, print Fedex address here. City GAMIEN GAWVE	State CA ZIP 92	5411	Foder Acet No. Credit Card No. Total Packages Total Weight	Exp. Date Total Charges
. Simple being semant maked some salebitings.	8540 7985 0208		*	Tour liability is limited to \$100 unless you declare a higher value 8 NEW Residential Delivery Sig No Signature 10 Direct Signature Anyone at recipients address may sign for definition. Package may be left with-out obtaining a signature for delivery. Rev. Loss \$505-Pair 1958281-©1984-2005 Fadder-PRINTED IN U.S.A.	nature Options : If you require a signature, check Direct or Indirect 34 Indirect Signature If no one is a switched at recipient's address, anyon of the periphoring address may

WORK ORDER NUMBER: 15-07- 0357

SAMPLE RECEIPT CHECKLIST

COOLER) OF 3	?

CLIENT:	Geosynle (DA [*]	TE: 07	1 <u>08</u> 1	2015
Thermomete Sample Sample Sample(s)	r ID: SC5 (CF:-0.2°C); Te e(s) outside temperature o e(s) outside temperature o	0°C, not frozen except sedimemperature (w/o CF): 10.5 criteria (PM/APM contacted be criteria but received on ice/ch perature; placed on ice for tra	├─°C (w/ CF): 1 C y: 1 S) illed on same day c			□ Sampl ed by: <u></u>	
CUSTODY S Cooler Sample(s)	EAL: ☐ Present and Intact ☐ Present and Intact	☐ Present but Not Intact☐ Present but Not Intact	Not Present	□ N/A □ N/A		ed by: <u> </u>	
COC docume □ Sampli	stody (COC) document(s) ent(s) received complete ng date □ Sampling tim	received with samplese	ontainers	,	Ø	No	N/A
Sampler's na Sample cont Sample cont Proper conta	ame indicated on COC ainer label(s) consistent valuer(s) intact and in good iners for analyses reques	vith COCd conditionsted					
Aqueous □ pH □ Proper prese	samples for certain analy Residual Chlorine	ses received within 15-minute ssolved Sulfide	e holding time I Oxygen		. 🗆	_ _	 Ø
□ Volatile Container(s) ☑ Volatile □ Carbor	e Organics	of headspace	ved Oxygen (SM 45 ydrogen Sulfide (H	500) ach)	• .		
CONTAINER Aqueous: 2 125PBznn 500PB 2 Solid: 12 40z	TYPE: 3 VOAn Z VOAh UVOAn a U250AGB U250CG 1AGB U1AGBna2 Z 1 CGJ U8ozCGJ U16oz	a ₂ □ 100PJ □ 100PJna ₂ □ B 250CGB s 	(Trip Blar ☐ 125AGB ☐ 125A ☐ 250PB n ☐ 500AC ☐	nk Lot Numbe GBh □ 125A GB □ 500AG □ I TerraCores®	er: <u>150</u> .GBp / 2 	125PB AGJ s]	
Preservative:	b = buffered, f = filtered, h =	ear, E = Envelope, G = Glass, J = HCl, n = HNO ₃ , na = NaOH, na nna = Zn(CH ₃ CO ₂) ₂ + NaOH			d/Check		2 -

SAMPLE RECEIPT CHECKLIST

WORK ORDER NUMBER: 15-07- 0357

COOLER 2 OF 3

CLIENT: Greosynie	DAT	E: 07	1081	2015
TEMPERATURE: (Criteria: 0.0°C - 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC5 (CF:-0.2°C); Temperature (w/o CF): 14 .6 °C (w/ CF): 14 .6 Sample(s) outside temperature criteria (PM/APM contacted by: 15) Sample(s) outside temperature criteria but received on ice/chilled on same day of sa Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: Air Filter			□ Sample	
] N/A] N/A		ked by: <u> </u> 	_
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of containers			No	N/A
□ No analysis requested □ Not relinquished □ No relinquished date □ No relinquished sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested Samples received within holding time				
Aqueous samples for certain analyses received within 15-minute holding time pH Residual Chlorine Dissolved Sulfide Dissolved Oxygen Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses Volatile Organics Dissolved Metals		_	<u> </u>	ø
Container(s) for certain analysis free of headspace ✓ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500) □ Carbon Dioxide (SM 4500) □ Ferrous Iron (SM 3500) □ Hydrogen Sulfide (Hach) Tedlar™ bag(s) free of condensation)			
CONTAINER TYPE: Aqueous: □ VOA Ø VOAh □ VOAna2 □ 100PJ □ 100PJna2 □ 125AGB □ 125AGBH□ 125PBznna □ 250AGB □ 250CGB □ 250CGBs Ø 250PB Ø 250PBn □ 500AGB Ø 500PB Ø 1AGB □ 1AGBna2 Ø 1AGBs Ø 1PB □ 1PBna □ □ □ □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores® () □ TeAir: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (ot Numbe 1	r: GBp	125PB 0AGJs)
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ , s = H ₂ SO ₄ , u = ultra-pure, znna = Zn(CH ₃ CO ₂) ₂ + NaOH	Labeled	I/Chec		945

Page 126 of 12 WORK ORDER NUMBER: 15-07-

SAMPLE RECEIPT CHECKL	-151 C	OOLE	R <u> </u>)F <u>/</u>
CLIENT: Geosyntec	DA	ге: 07	108	2015
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC5 (CF:-0.2°C); Temperature (w/o CF): 16 · 3 °C (w/ CF) Sample(s) outside temperature criteria (PM/APM contacted by: 15) Sample(s) outside temperature criteria but received on ice/chilled on same Sample(s) received at ambient temperature; placed on ice for transport by co	e day of sampling		□ Sampl	
CUSTODY SEAL: Cooler			ked by: <u>/</u> ked by: <u>/</u>	~
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete			No	N/A
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers ☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ I Sampler's name indicated on COC Sample container label(s) consistent with COC		Æ	□ p ⁄	0
Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested		ď		
Samples received within holding time	е			
Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses Uolatile Organics Total Metals Dissolved Metals		. 🗷	_	
Container(s) for certain analysis free of headspace	(SM 4500) fide (Hach)			
Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGB □ 125PBznna □ 250AGB □ 250CGB ☑ 250CGBs ☑ 250PB ☑ 250PB ☑ 250PBn □ ☑ 500PB ☑ 1AGB □ 1AGBna₂ ☑ 1AGBs ☑ 1PB □ 1PBna □ □	i p Blank Lot Numb □ 125AGB h □ 125A I 500AGB □ 500AG □ □	er: \GBp	□ 125PB 0AGJ s □	
Solid: ☐ 4ozCGJ ☐ 8ozCGJ ☐ 16ozCGJ ☐ Sleeve () ☐ EnCores® (

Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag

 $s = H_2SO_4$, u = ultra-pure, $znna = Zn(CH_3CO_2)_2 + NaOH$

Preservative: $\mathbf{b} = \text{buffered}$, $\mathbf{f} = \text{filtered}$, $\mathbf{h} = \text{HCl}$, $\mathbf{n} = \text{HNO}_3$, $\mathbf{na} = \text{NaOH}$, $\mathbf{na}_2 = \text{Na}_2\text{S}_2\text{O}_3$, $\mathbf{p} = \text{H}_3\text{PO}_4$, Labeled/Checked by: 10^{20}

Reviewed by: 965

SAMPLE ANOMALY REPORT

DATE: 07 / <u>09</u> / 2015

SAMPLES, CONTAINERS, AND LAB	ELS:		Commen	ıts.		
☐ Sample(s) NOT RECEIVED but listed or	COC		(-9) re	cerved tu	o trip	plants not listed on
☑ Sample(s) received but NOT LISTED on	COC		(00;	labeled a	s QCT	TB-01-070715
☐ Holding time expired (list client or ECI sa	mple ID and ana	lysis)	***************************************	1/7/15 P	reserved	with Itcl
☐ Insufficient sample amount for requested	l analysis (list ana	alysis)		·		
☐ Improper container(s) used (list analysis)			ECI	H [5060	03B
☐ Improper preservative used (list analysis)					
☐ No preservative noted on COC or label (list analysis and r	notify lab)				
☐ Sample container(s) not labeled			***************************************			
☐ Client sample label(s) illegible (list conta	iner type and ana	lysis)				
☐ Client sample label(s) do not match CO	(comment)					
☐ Project information						
☐ Client sample ID						
☐ Sampling date and/or time		•		·····		
☐ Number of container(s)						:
☐ Requested analysis	•					
☑ Sample container(s) compromised (com	ment)		(-8) a	nd (-4)	of 3	250 - clear glacs
G/Broken			bottle	es presen	ved w	th H ₂ so4
☐ Water present in sample container			recei	ved bra	cen	
☐ Air sample container(s) compromised (c	omment)					
□ Flat			(-6)	1 of 1	Miter	Amber for
☐ Very low in volume			S	VOC by	8270	received broken.
☐ Leaking (not transferred; duplicate ba	ng submitted)	سنور				· · · · · · · · · · · · · · · · · · ·
☐ Leaking (transferred into ECI Tedlar	^м bags*)					
☐ Leaking (transferred into client's Ted	ar™ bags*)		• • • • • • • • • • • • • • • • • • • •			
* Transferred at client's request.						
MISCELLANEOUS: (Describe)			Commer	ıts		
HEADSPACE:						
(Containers with bubble > 6 mm or ¼ inch for volatile o	ganic or dissolved gas	s analysis)	(Containers wi	th bubble for othe	r analysis)	
ECI ECI Total ECI Sample ID Container ID Number** Sample	ECI D Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis
Comments:						
						Reported by:(する)
** Record the total number of containers (i.e., vials or b	ottles) for the affected	sample.				Reviewed by: 965
	,	***************************************				

Contents

Stephen Nowak

From: Ryan Smith [rsmith@geosyntec.com]
Sent: Wednesday, July 08, 2015 4:49 PM

To: Stephen Nowak

Subject: RE: CG COC and Sample Receipt form

Steve,

Please proceed with the analysis.

Ryan Smith, P.G., C.Hg Project Geologist

----Original Message-----

From: Stephen Nowak [mailto:StephenNowak@eurofinsUS.com]

Sent: Wednesday, July 08, 2015 4:46 PM

To: Ryan Smith

Subject: CG COC and Sample Receipt form

Ryan-

See attached - all of the temps of the coolers were >6deg C. Should we go ahead with the analysis?

A couple of bottles received broken (but I think we can get by with what we have).

Stephen Nowak Project Manager

Eurofins Calscience, Inc. 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 5230

Email: StephenNowak@EurofinsUS.com

Website: www.calscience.com

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

----Original Message-----

From: noreply@eurofinsUS.com [mailto:noreply@eurofinsUS.com]

Sent: Wednesday, July 08, 2015 4:44 PM

To: Stephen Nowak; Noel Cruise

WORK ORDER NUMBER: 15-07-0460

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Geosyntec Consultants

Client Project Name: Crystal Geyser / SB0746

Attention: Ryan Smith

924 Anacapa Street

Moude

Suite 4A

Santa Barbara, CA 93101-2177

ResultLink >

Email your PM >

Approved for release on 07/22/2015 by: Stephen Nowak

Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	Crystal Geyser / SB0746
Work Order Number:	15-07-0460

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 300.0 Anions (Aqueous). 4.2 EPA 8015B (M) C6-C44 (Aqueous). 4.3 EPA 200.7 ICP Metals (Aqueous). 4.4 EPA 6010B/7470A CAC Title 22 Metals (Aqueous). 4.5 EPA 6010B/7470A CAC Title 22 Metals (Aqueous). 4.6 EPA 7470A Mercury (Aqueous). 4.7 EPA 7470A Mercury (Aqueous). 4.8 EPA 8270C Semi-Volatile Organics (Aqueous). 4.9 EPA 8260B Volatile Organics (Aqueous). 4.10 Combined Inorganic Tests.	7 8 10 11 16 20 21 22 34 46
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 Sample Duplicate. 5.3 LCS/LCSD.	48 48 58 63
6	Sample Analysis Summary	83
7	Glossary of Terms and Qualifiers	84
8	Chain-of-Custody/Sample Receipt Form	85

Work Order Narrative

Work Order: 15-07-0460 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 07/09/15. They were assigned to Work Order 15-07-0460.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Geosyntec Consultants

Work Order:

15-07-0460

924 Anacapa Street, Suite 4A

Project Name:

Crystal Geyser / SB0746

Santa Barbara, CA 93101-2177 PO Number:

Date/Time Received:

07/09/15 10:00

Number of

52

Containers:

Attn: Ryan Smith

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
MW-09-070715	15-07-0460-1	07/07/15 13:45	15	Aqueous
MW-02-070715	15-07-0460-2	07/07/15 15:51	14	Aqueous
IDW-GW-070715	15-07-0460-3	07/07/15 16:40	5	Aqueous
EB-01-070715	15-07-0460-4	07/07/15 16:50	16	Aqueous
QCTB-02-070715	15-07-0460-5	07/07/15 00:00	2	Aqueous

Detections Summary

Client: Geosyntec Consultants

Ryan Smith

Attn:

Work Order: 15-07-0460

924 Anacapa Street, Suite 4A

Project Name: Crystal Geyser / SB0746

Santa Barbara, CA 93101-2177 Received:

07/09/15 Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-09-070715 (15-07-0460-1)						
Calcium	154		0.100	mg/L	EPA 200.7	N/A
Magnesium	7.11		0.100	mg/L	EPA 200.7	N/A
Sodium	75.3		0.500	mg/L	EPA 200.7	N/A
Chloride	6.8		1.0	mg/L	EPA 300.0	N/A
Sulfate	360		5.0	mg/L	EPA 300.0	N/A
Arsenic	0.0472		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Barium	0.0442		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Molybdenum	0.0774		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Arsenic	0.0506		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Barium	0.0432		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.0878		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Alkalinity, Total (as CaCO3)	174		5.00	mg/L	SM 2320B	N/A
Solids, Total Dissolved	730		1.00	mg/L	SM 2540 C	N/A
рН	7.40	BV,BU	0.01	pH units	SM 4500 H+ B	N/A
Total Kjeldahl Nitrogen	0.56		0.50	mg/L	SM 4500 N Org B	N/A
Phosphorus, Total	0.14		0.10	mg/L	SM 4500 P B/E	N/A
Total Phosphate	0.44		0.31	mg/L	SM 4500 P B/E	N/A
Nitrate-Nitrite (as N)	0.28		0.10	mg/L	SM 4500-NO3 E	N/A
Total Nitrogen	0.79		0.50	mg/L	Total Nitrogen by Calc	N/A
1W-02-070715 (15-07-0460-2)						
Calcium	23.1		0.100	mg/L	EPA 200.7	N/A
Magnesium	2.54		0.100	mg/L	EPA 200.7	N/A
Sodium	9.42		0.500	mg/L	EPA 200.7	N/A
Chloride	2.0		1.0	mg/L	EPA 300.0	N/A
Sulfate	12		1.0	mg/L	EPA 300.0	N/A
Arsenic	0.0233		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Barium	0.0196		0.0100	mg/L	EPA 6010B	EPA 3005A Filt.
Arsenic	0.0210		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Barium	0.0202		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Alkalinity, Total (as CaCO3)	72.0		1.00	mg/L	SM 2320B	N/A
Solids, Total Dissolved	160		1.00	mg/L	SM 2540 C	N/A
рН	6.75	BV,BU	0.01	pH units	SM 4500 H+ B	N/A

^{*} MDL is shown

Detections Summary

Client: Geosyntec Consultants

Work Order: 15-07-0460

Project Name:

924 Anacapa Street, Suite 4A

Crystal Geyser / SB0746

Santa Barbara, CA 93101-2177

Received: 07/09/15

Attn: Ryan Smith Page 2 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
IDW-GW-070715 (15-07-0460-3)						
Arsenic	0.234		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Barium	0.0808		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Copper	0.0254		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Molybdenum	0.118		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Vanadium	0.114		0.0100	mg/L	EPA 6010B	EPA 3010A Total
Zinc	0.0578		0.0100	mg/L	EPA 6010B	EPA 3010A Total
EB-01-070715 (15-07-0460-4)						
Calcium	0.137		0.100	mg/L	EPA 200.7	N/A
рН	7.45	BV,BU	0.01	pH units	SM 4500 H+ B	N/A

Subcontracted analyses, if any, are not included in this summary.

Qualifiers

07/09/15

Geosyntec Consultants

Parameter Chloride

Sulfate

Analytical Report

Date Received:

 $\underline{\mathsf{RL}}$

1.0

1.0

<u>DF</u>

1.00

1.00

924 Anacapa Street, Suite 4A			Work Order	r:		15-07-0460	
Santa Barbara, CA 93101-2177			Preparation		N/A		
			Method:				EPA 300.0
			Units:				mg/L
Project: Crystal Geyser / SB0746						Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-09-070715	15-07-0460-1-E	07/07/15 13:45	Aqueous	IC 9	N/A	07/09/15 12:30	150709L01
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Chloride		6.8	1.0)	1.00		
MW-09-070715	15-07-0460-1-E	07/07/15 13:45	Aqueous	IC 9	N/A	07/09/15 13:53	150709L01
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Sulfate		360	5.0)	5.00		

EB-01-070715	15-07-0460-4-E	07/07/15 16:50	Aqueous IC 9	N/A	07/09/15 150709L01 12:13
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Chloride		ND	1.0	1.00	
Sulfate		ND	1.0	1.00	

Result

2.0

12

Method Blank	099-12-906-5887	N/A	Aqueous	IC 9	N/A	07/09/15 11:25	150709L01
<u>Parameter</u>		Result	RL		DF	Qualif	<u>iers</u>
Chloride		ND	1.0		1.00		
Sulfate		ND	1.0		1.00		

n-Octacosane

Analytical Report

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: Crystal Geyser / SB0746 Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-GW-070715	15-07-0460-3-E	07/07/15 16:40	Aqueous	GC 46	07/10/15	07/11/15 01:15	150710B11
Parameter		Result	RL	•	<u>DF</u>	Qua	lifiers
C6		ND	10	0	1.00		
C7		ND	10	0	1.00		
C8		ND	10	0	1.00		
C9-C10		ND	10	0	1.00		
C11-C12		ND	10	0	1.00		
C13-C14		ND	10	0	1.00		
C15-C16		ND	10	0	1.00		
C17-C18		ND	10	0	1.00		
C19-C20		ND	10	0	1.00		
C21-C22		ND	10	0	1.00		
C23-C24		ND	10	0	1.00		
C25-C28		ND	10	0	1.00		
C29-C32		ND	10	0	1.00		
C33-C36		ND	10	0	1.00		
C37-C40		ND	10	0	1.00		
C41-C44		ND	10	0	1.00		
C6-C44 Total		ND	10	0	1.00		
<u>Surrogate</u>		Rec. (%)	Co	ntrol Limits	Qualifiers		

68

68-140

n-Octacosane

Analytical Report

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: Crystal Geyser / SB0746 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-498-268	N/A	Aqueous	GC 46	07/10/15	07/10/15 22:55	150710B11
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	100)	1.00		
C7		ND	100)	1.00		
C8		ND	100)	1.00		
C9-C10		ND	100)	1.00		
C11-C12		ND	100)	1.00		
C13-C14		ND	100)	1.00		
C15-C16		ND	100)	1.00		
C17-C18		ND	100)	1.00		
C19-C20		ND	100)	1.00		
C21-C22		ND	100)	1.00		
C23-C24		ND	100)	1.00		
C25-C28		ND	100)	1.00		
C29-C32		ND	100)	1.00		
C33-C36		ND	100)	1.00		
C37-C40		ND	100)	1.00		
C41-C44		ND	100)	1.00		
C6-C44 Total		ND	100)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		

68-140

78

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 EPA 200.7

 Units:
 mg/L

 Project: Crystal Geyser / SB0746
 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-09-070715	15-07-0460-1-J	07/07/15 13:45	Aqueous	ICP 7300	07/10/15	07/11/15 02:05	150710LA3
Parameter		Result	RL		<u>DF</u>	Qua	lifiers
Calcium		154	0.1	00	1.00		
Magnesium		7.11	0.1	00	1.00		
Sodium		75.3	0.5	000	1.00		

MW-02-070715	15-07-0460-2-J	07/07/15 15:51	Aqueous	ICP 7300	07/10/15	07/11/15 02:07	150710LA3
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Calcium		23.1	0.1	00	1.00		
Magnesium		2.54	0.1	00	1.00		
Sodium		9.42	0.5	00	1.00		

EB-01-070715	15-07-0460-4-J	07/07/15 16:50	Aqueous IC	CP 7300 07/10/15	07/11/15 150710LA3 02:09
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Calcium		0.137	0.100	1.00	
Magnesium		ND	0.100	1.00	
Sodium		ND	0.500	1.00	

Method Blank	097-01-012-6255	N/A	Aqueous ICI	P 7300 07/10/15	07/10/15 21:45	150710LA3
<u>Parameter</u>		Result	<u>RL</u>	DF	Qu	alifiers
Calcium		ND	0.100	1.00		
Magnesium		ND	0.100	1.00		
Sodium		ND	0.500	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/09/15 15-07-0460 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser / SB0746

Page 1 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
MW-09-070715	15-07-0460-1-J	07/07/15 13:45	Aqueous	ICP 7300	07/10/15	07/21/15 11:04	150710LA4	
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>	
Antimony		ND	0.0)150	1.00			
Arsenic		0.0506	0.0100		1.00			
Barium		0.0432	0.0	100	1.00			
Beryllium		ND	0.0	100	1.00			
Cadmium		ND	0.0	0100	1.00			
Chromium		ND	0.0	0100	1.00			
Cobalt		ND	0.0	0100	1.00			
Copper		ND	0.0100		1.00			
Lead		ND	0.0100		1.00			
Molybdenum		0.0878	0.0	0100	1.00			
Nickel		ND	0.0)100	1.00			
Selenium		ND	0.0)150	1.00			
Silver		ND	0.0	00500	1.00			
Thallium		ND	0.0)150	1.00			
Vanadium		ND	0.0	0100	1.00			
Zinc		ND	0.0	0100	1.00			

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/09/15 15-07-0460 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser / SB0746

Page 2 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-02-070715	15-07-0460-2-L	07/07/15 15:51	Aqueous	ICP 8300	07/10/15	07/17/15 13:25	150710LA4
Parameter		<u>Result</u>	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0)150	1.00		
Arsenic		0.0210	0.0)100	1.00		
Barium		0.0202	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		ND	0.0	100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		ND	0.0	100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0)100	1.00		
Zinc		ND	0.0)100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/09/15 15-07-0460 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser / SB0746

Page 3 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-GW-070715	15-07-0460-3-D	07/07/15 16:40	Aqueous	ICP 7300	07/10/15	07/21/15 11:06	150710LA4
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0)150	1.00		
Arsenic		0.234	0.0)100	1.00		
Barium		0.0808	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		0.0254	0.0	100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.118	0.0	100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		0.114	0.0)100	1.00		
Zinc		0.0578	0.0)100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/09/15 15-07-0460 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser / SB0746

Page 4 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB-01-070715	15-07-0460-4-L	07/07/15 16:50	Aqueous	ICP 8300	07/10/15	07/17/15 13:27	150710LA4
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0	0.0150			
Arsenic		ND	0.0100		1.00		
Barium		ND	0.0	100	1.00		
Beryllium		ND	0.0100		1.00		
Cadmium		ND	0.0100		1.00		
Chromium		ND	0.0100		1.00		
Cobalt		ND	0.0100		1.00		
Copper		ND	0.0100		1.00		
Lead		ND	0.0100		1.00		
Molybdenum		ND	0.0	100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0)100	1.00		
Zinc		ND	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/09/15 15-07-0460 EPA 3010A Total EPA 6010B mg/L

Project: Crystal Geyser / SB0746

Page 5 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-15206	N/A	Aqueous	ICP 7300	07/10/15	07/15/15 17:51	150710LA4
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	0.0)150	1.00		
Arsenic		ND	0.0	100	1.00		
Barium		ND	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	100	1.00		
Molybdenum		ND	0.0	100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	0500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/09/15 15-07-0460 EPA 3005A Filt. EPA 6010B mg/L

Project: Crystal Geyser / SB0746

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-09-070715	15-07-0460-1-F	07/07/15 13:45	Aqueous	ICP 7300	07/10/15	07/10/15 23:21	150710LA5F
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>alifiers</u>
Antimony		ND	0.0)150	1.00		
Arsenic		0.0472	0.0	0100	1.00		
Barium		0.0442	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		0.0774	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		

RL: Reporting Limit. DF: Dilution Factor.

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/09/15 15-07-0460 EPA 3005A Filt. EPA 6010B mg/L

Project: Crystal Geyser / SB0746

Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-02-070715	15-07-0460-2-F	07/07/15 15:51	Aqueous	ICP 7300	07/10/15	07/10/15 23:23	150710LA5F
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		0.0233	0.0	0100	1.00		
Barium		0.0196	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		ND	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0	0150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0	0150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	0100	1.00		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: Crystal Geyser / SB0746

Zinc

Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 3005A Filt. EPA 6010B

Page 3 of 4

mg/L

Units:

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB-01-070715	15-07-0460-4-F	07/07/15 16:50	Aqueous	ICP 7300	07/10/15	07/10/15 23:29	150710LA5F
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0	0150	1.00		
Arsenic		ND	0.0	0100	1.00		
Barium		ND	0.0	0100	1.00		
Beryllium		ND	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Cobalt		ND	0.0	0100	1.00		
Copper		ND	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Molybdenum		ND	0.0	0100	1.00		
Nickel		ND	0.0	0100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		

0.0100

1.00

ND

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/09/15 15-07-0460 EPA 3005A Filt. EPA 6010B mg/L

Project: Crystal Geyser / SB0746

Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-15199	N/A	Aqueous	ICP 7300	07/10/15	07/13/15 17:49	150710LA5F
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.0)150	1.00		
Arsenic		ND	0.0)100	1.00		
Barium		ND	0.0	100	1.00		
Beryllium		ND	0.0	100	1.00		
Cadmium		ND	0.0	100	1.00		
Chromium		ND	0.0	100	1.00		
Cobalt		ND	0.0	100	1.00		
Copper		ND	0.0	100	1.00		
Lead		ND	0.0	100	1.00		
Molybdenum		ND	0.0	100	1.00		
Nickel		ND	0.0	100	1.00		
Selenium		ND	0.0)150	1.00		
Silver		ND	0.0	00500	1.00		
Thallium		ND	0.0)150	1.00		
Vanadium		ND	0.0	0100	1.00		
Zinc		ND	0.0	0100	1.00		

Mercury

Analytical Report

Geosyntec Consultants			07/09/15					
924 Anacapa Street, Suite 4A			Work Orde	r:		15-07-0460		
Santa Barbara, CA 93101-2177			Preparation	n:		EPA 7470A Total		
			Method:			EPA 7470A		
			Units:			mg/L		
Project: Crystal Geyser / SB0746						Pa	ige 1 of 1	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
MW-09-070715	15-07-0460-1-F	07/07/15 13:45	Aqueous	Mercury 04	07/10/15	07/10/15 21:36	150710LA2	
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers	
Mercury		ND	0.0	000500	1.00			
MW-02-070715	15-07-0460-2-F	07/07/15 15:51	Aqueous	Mercury 04	07/10/15	07/10/15 21:42	150710LA2	
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qualifiers		
Mercury		ND	0.0	000500	1.00			
IDW-GW-070715	15-07-0460-3-D	07/07/15 16:40	Aqueous	Mercury 04	07/10/15	07/10/15 21:17	150710LA2	
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers	
Mercury		ND	0.0	000500	1.00			
EB-01-070715	15-07-0460-4-F	07/07/15 16:50	Aqueous	Mercury 04	07/10/15	07/10/15 21:44	150710LA2	
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers	
Mercury		ND	0.0	000500	1.00			
Method Blank	099-04-008-7494	N/A	Aqueous	Mercury 04	07/10/15	07/10/15 21:26	150710LA2	
<u>Parameter</u>		Result	RL	:	DF	Qua	<u>alifiers</u>	

ND

0.000500

1.00

Geosyntec Consultants
924 Anacapa Street, Suite 4A
Santa Barbara, CA 93101-2177

Date Received: Work Order: Preparation: Method:

<u>RL</u>

0.000500

<u>DF</u>

1.00

Units:

15-07-0460 EPA 7470A Filt. EPA 7470A mg/L

07/09/15

Project: Crystal Geyser / SB0746

Parameter

Mercury

Page 1 of 1

Qualifiers

Troject. Orystal Geysel / GBC							
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-09-070715	15-07-0460-1-F	07/07/15 13:45	Aqueous	Mercury 04	07/10/15	07/10/15 21:13	150710LA1F
Parameter	·	Result	RL		<u>DF</u>	Qualifiers	
Mercury		ND	0.0	000500	1.00		
MW-02-070715	15-07-0460-2-F	07/07/15 15:51	Aqueous	Mercury 04	07/10/15	07/10/15 21:15	150710LA1F
Parameter		Result	<u>RL</u>		<u>DF</u>	Qualifiers	
Mercury		ND	0.0	000500	1.00		
EB-01-070715	15-07-0460-4-F	07/07/15 16:50	Aqueous	Mercury 04	07/10/15	07/10/15 21:20	150710LA1F
Parameter		Result	RL	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		ND			1.00		
Method Blank	099-15-763-581	N/A	Aqueous	Mercury 04	07/10/15	07/10/15 20:42	150710LA1F

Result

ND

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/09/15 15-07-0460 EPA 3510C EPA 8270C

ug/L

u Page 1 of 12

Project: Crystal Geyser / SB0746

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-09-070715	15-07-0460-1-O	07/07/15 13:45	Aqueous	GC/MS TT	07/09/15	07/10/15 15:08	150709L02
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	9.4		1.00		
Acenaphthylene		ND	9.4		1.00		
Aniline		ND	9.4		1.00		
Anthracene		ND	9.4		1.00		
Azobenzene		ND	9.4		1.00		
Benzidine		ND	47		1.00		
Benzo (a) Anthracene		ND	9.4		1.00		
Benzo (a) Pyrene		ND	9.4		1.00		
Benzo (b) Fluoranthene		ND	9.4		1.00		
Benzo (g,h,i) Perylene		ND	9.4		1.00		
Benzo (k) Fluoranthene		ND	9.4		1.00		
Benzoic Acid		ND	47		1.00		
Benzyl Alcohol		ND	9.4		1.00		
Bis(2-Chloroethoxy) Methane		ND	9.4		1.00		
Bis(2-Chloroethyl) Ether		ND	24		1.00		
Bis(2-Chloroisopropyl) Ether		ND	9.4		1.00		
Bis(2-Ethylhexyl) Phthalate		ND	9.4		1.00		
4-Bromophenyl-Phenyl Ether		ND	9.4		1.00		
Butyl Benzyl Phthalate		ND	9.4		1.00		
4-Chloro-3-Methylphenol		ND	9.4		1.00		
4-Chloroaniline		ND	9.4		1.00		
2-Chloronaphthalene		ND	9.4		1.00		
2-Chlorophenol		ND	9.4		1.00		
4-Chlorophenyl-Phenyl Ether		ND	9.4		1.00		
Chrysene		ND	9.4		1.00		
2,6-Dichlorophenol		ND	9.4		1.00		
Di-n-Butyl Phthalate		ND	9.4		1.00		
Di-n-Octyl Phthalate		ND	9.4		1.00		
Dibenz (a,h) Anthracene		ND	9.4		1.00		
Dibenzofuran		ND	9.4		1.00		
1,2-Dichlorobenzene		ND	9.4		1.00		
1,3-Dichlorobenzene		ND	9.4		1.00		
1,4-Dichlorobenzene		ND	9.4		1.00		
3,3'-Dichlorobenzidine		ND	24		1.00		
2,4-Dichlorophenol		ND	9.4		1.00		

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: Crystal Geyser / SB0746
 Page 2 of 12

1 Tojedi. Orystal Ocysel / Obor 40				1 age 2 of 12
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Diethyl Phthalate	ND	9.4	1.00	
Dimethyl Phthalate	ND	9.4	1.00	
2,4-Dimethylphenol	ND	9.4	1.00	
4,6-Dinitro-2-Methylphenol	ND	47	1.00	
2,4-Dinitrophenol	ND	47	1.00	
2,4-Dinitrotoluene	ND	9.4	1.00	
2,6-Dinitrotoluene	ND	9.4	1.00	
Fluoranthene	ND	9.4	1.00	
Fluorene	ND	9.4	1.00	
Hexachloro-1,3-Butadiene	ND	9.4	1.00	
Hexachlorobenzene	ND	9.4	1.00	
Hexachlorocyclopentadiene	ND	24	1.00	
Hexachloroethane	ND	9.4	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	9.4	1.00	
Isophorone	ND	9.4	1.00	
2-Methylnaphthalene	ND	9.4	1.00	
1-Methylnaphthalene	ND	9.4	1.00	
2-Methylphenol	ND	9.4	1.00	
3/4-Methylphenol	ND	9.4	1.00	
N-Nitroso-di-n-propylamine	ND	9.4	1.00	
N-Nitrosodimethylamine	ND	9.4	1.00	
N-Nitrosodiphenylamine	ND	9.4	1.00	
Naphthalene	ND	9.4	1.00	
4-Nitroaniline	ND	9.4	1.00	
3-Nitroaniline	ND	9.4	1.00	
2-Nitroaniline	ND	9.4	1.00	
Nitrobenzene	ND	24	1.00	
4-Nitrophenol	ND	9.4	1.00	
2-Nitrophenol	ND	9.4	1.00	
Pentachlorophenol	ND	9.4	1.00	
Phenanthrene	ND	9.4	1.00	
Phenol	ND	9.4	1.00	
Pyrene	ND	9.4	1.00	
Pyridine	ND	9.4	1.00	
1,2,4-Trichlorobenzene	ND	9.4	1.00	
2,4,6-Trichlorophenol	ND	9.4	1.00	
O. A.E. Tricklements and	ND	0.4	4.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

2,4,5-Trichlorophenol

9.4

1.00

ND

Geosyntec Consultants	Date Received:	07/09/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0460
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: Crystal Geyser / SB0746		Page 3 of 12

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	82	50-110	
2-Fluorophenol	56	20-110	
Nitrobenzene-d5	82	40-110	
p-Terphenyl-d14	81	50-135	
Phenol-d6	34	10-115	
2,4,6-Tribromophenol	86	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 3510C EPA 8270C

ug/L

Units:

Page 4 of 12

Project: Crystal Geyser / SB0746

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-02-070715	15-07-0460-2-O	07/07/15 15:51	Aqueous	GC/MS TT	07/09/15	07/10/15 15:26	150709L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acenaphthene		ND	9.4		1.00		
Acenaphthylene		ND	9.4		1.00		
Aniline		ND	9.4		1.00		
Anthracene		ND	9.4		1.00		
Azobenzene		ND	9.4	ı	1.00		
Benzidine		ND	47		1.00		
Benzo (a) Anthracene		ND	9.4	ı	1.00		
Benzo (a) Pyrene		ND	9.4	ı	1.00		
Benzo (b) Fluoranthene		ND	9.4	ļ	1.00		
Benzo (g,h,i) Perylene		ND	9.4	ļ	1.00		
Benzo (k) Fluoranthene		ND	9.4	ļ	1.00		
Benzoic Acid		ND	47		1.00		
Benzyl Alcohol		ND	9.4	ļ	1.00		
Bis(2-Chloroethoxy) Methane		ND	9.4	ļ	1.00		
Bis(2-Chloroethyl) Ether		ND	24		1.00		
Bis(2-Chloroisopropyl) Ether		ND	9.4	ı	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	9.4	ļ	1.00		
4-Bromophenyl-Phenyl Ether		ND	9.4	ļ	1.00		
Butyl Benzyl Phthalate		ND	9.4	ļ	1.00		
4-Chloro-3-Methylphenol		ND	9.4	ļ	1.00		
4-Chloroaniline		ND	9.4	ļ	1.00		
2-Chloronaphthalene		ND	9.4	ļ	1.00		
2-Chlorophenol		ND	9.4	ļ	1.00		
4-Chlorophenyl-Phenyl Ether		ND	9.4	ļ	1.00		
Chrysene		ND	9.4	ļ	1.00		
2,6-Dichlorophenol		ND	9.4	ļ	1.00		
Di-n-Butyl Phthalate		ND	9.4	ļ	1.00		
Di-n-Octyl Phthalate		ND	9.4	ļ	1.00		
Dibenz (a,h) Anthracene		ND	9.4	ļ	1.00		
Dibenzofuran		ND	9.4	ļ	1.00		
1,2-Dichlorobenzene		ND	9.4		1.00		
1,3-Dichlorobenzene		ND	9.4		1.00		
1,4-Dichlorobenzene		ND	9.4	ļ	1.00		
3,3'-Dichlorobenzidine		ND	24		1.00		
2,4-Dichlorophenol		ND	9.4	ļ	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: Crystal Geyser / SB0746
 Page 5 of 12

				1 119 2 21 1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Diethyl Phthalate	ND	9.4	1.00	
Dimethyl Phthalate	ND	9.4	1.00	
2,4-Dimethylphenol	ND	9.4	1.00	
4,6-Dinitro-2-Methylphenol	ND	47	1.00	
2,4-Dinitrophenol	ND	47	1.00	
2,4-Dinitrotoluene	ND	9.4	1.00	
2,6-Dinitrotoluene	ND	9.4	1.00	
Fluoranthene	ND	9.4	1.00	
Fluorene	ND	9.4	1.00	
Hexachloro-1,3-Butadiene	ND	9.4	1.00	
Hexachlorobenzene	ND	9.4	1.00	
Hexachlorocyclopentadiene	ND	24	1.00	
Hexachloroethane	ND	9.4	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	9.4	1.00	
Isophorone	ND	9.4	1.00	
2-Methylnaphthalene	ND	9.4	1.00	
1-Methylnaphthalene	ND	9.4	1.00	
2-Methylphenol	ND	9.4	1.00	
3/4-Methylphenol	ND	9.4	1.00	
N-Nitroso-di-n-propylamine	ND	9.4	1.00	
N-Nitrosodimethylamine	ND	9.4	1.00	
N-Nitrosodiphenylamine	ND	9.4	1.00	
Naphthalene	ND	9.4	1.00	
4-Nitroaniline	ND	9.4	1.00	
3-Nitroaniline	ND	9.4	1.00	
2-Nitroaniline	ND	9.4	1.00	
Nitrobenzene	ND	24	1.00	
4-Nitrophenol	ND	9.4	1.00	
2-Nitrophenol	ND	9.4	1.00	
Pentachlorophenol	ND	9.4	1.00	
Phenanthrene	ND	9.4	1.00	
Phenol	ND	9.4	1.00	
Pyrene	ND	9.4	1.00	
Pyridine	ND	9.4	1.00	
1,2,4-Trichlorobenzene	ND	9.4	1.00	
2,4,6-Trichlorophenol	ND	9.4	1.00	
2,4,5-Trichlorophenol	ND	9.4	1.00	

Geosyntec Consultants	Date Received:	07/09/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0460
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: Crystal Geyser / SB0746		Page 6 of 12

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	83	50-110	
2-Fluorophenol	58	20-110	
Nitrobenzene-d5	84	40-110	
p-Terphenyl-d14	83	50-135	
Phenol-d6	35	10-115	
2,4,6-Tribromophenol	86	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 3510C EPA 8270C ug/L

Units:

Project: Crystal Geyser / SB0746

Page 7 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB-01-070715	15-07-0460-4-O	07/07/15 16:50	Aqueous	GC/MS TT	07/09/15	07/10/15 15:45	150709L02
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	9.5		1.00		
Acenaphthylene		ND	9.5		1.00		
Aniline		ND	9.5		1.00		
Anthracene		ND	9.5		1.00		
Azobenzene		ND	9.5		1.00		
Benzidine		ND	48		1.00		
Benzo (a) Anthracene		ND	9.5		1.00		
Benzo (a) Pyrene		ND	9.5		1.00		
Benzo (b) Fluoranthene		ND	9.5		1.00		
Benzo (g,h,i) Perylene		ND	9.5		1.00		
Benzo (k) Fluoranthene		ND	9.5		1.00		
Benzoic Acid		ND	48		1.00		
Benzyl Alcohol		ND	9.5		1.00		
Bis(2-Chloroethoxy) Methane		ND	9.5		1.00		
Bis(2-Chloroethyl) Ether		ND	24		1.00		
Bis(2-Chloroisopropyl) Ether		ND	9.5		1.00		
Bis(2-Ethylhexyl) Phthalate		ND	9.5		1.00		
4-Bromophenyl-Phenyl Ether		ND	9.5		1.00		
Butyl Benzyl Phthalate		ND	9.5		1.00		
4-Chloro-3-Methylphenol		ND	9.5		1.00		
4-Chloroaniline		ND	9.5		1.00		
2-Chloronaphthalene		ND	9.5		1.00		
2-Chlorophenol		ND	9.5		1.00		
4-Chlorophenyl-Phenyl Ether		ND	9.5		1.00		
Chrysene		ND	9.5		1.00		
2,6-Dichlorophenol		ND	9.5		1.00		
Di-n-Butyl Phthalate		ND	9.5		1.00		
Di-n-Octyl Phthalate		ND	9.5		1.00		
Dibenz (a,h) Anthracene		ND	9.5		1.00		
Dibenzofuran		ND	9.5		1.00		
1,2-Dichlorobenzene		ND	9.5		1.00		
1,3-Dichlorobenzene		ND	9.5		1.00		
1,4-Dichlorobenzene		ND	9.5		1.00		
3,3'-Dichlorobenzidine		ND	24		1.00		
2,4-Dichlorophenol		ND	9.5		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: Crystal Geyser / SB0746
 Page 8 of 12

1 Toject. Orystal Ocysel / Obol 40				1 age 0 01 12
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Diethyl Phthalate	ND	9.5	1.00	
Dimethyl Phthalate	ND	9.5	1.00	
2,4-Dimethylphenol	ND	9.5	1.00	
4,6-Dinitro-2-Methylphenol	ND	48	1.00	
2,4-Dinitrophenol	ND	48	1.00	
2,4-Dinitrotoluene	ND	9.5	1.00	
2,6-Dinitrotoluene	ND	9.5	1.00	
Fluoranthene	ND	9.5	1.00	
Fluorene	ND	9.5	1.00	
Hexachloro-1,3-Butadiene	ND	9.5	1.00	
Hexachlorobenzene	ND	9.5	1.00	
Hexachlorocyclopentadiene	ND	24	1.00	
Hexachloroethane	ND	9.5	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	9.5	1.00	
Isophorone	ND	9.5	1.00	
2-Methylnaphthalene	ND	9.5	1.00	
1-Methylnaphthalene	ND	9.5	1.00	
2-Methylphenol	ND	9.5	1.00	
3/4-Methylphenol	ND	9.5	1.00	
N-Nitroso-di-n-propylamine	ND	9.5	1.00	
N-Nitrosodimethylamine	ND	9.5	1.00	
N-Nitrosodiphenylamine	ND	9.5	1.00	
Naphthalene	ND	9.5	1.00	
4-Nitroaniline	ND	9.5	1.00	
3-Nitroaniline	ND	9.5	1.00	
2-Nitroaniline	ND	9.5	1.00	
Nitrobenzene	ND	24	1.00	
4-Nitrophenol	ND	9.5	1.00	
2-Nitrophenol	ND	9.5	1.00	
Pentachlorophenol	ND	9.5	1.00	
Phenanthrene	ND	9.5	1.00	
Phenol	ND	9.5	1.00	
Pyrene	ND	9.5	1.00	
Pyridine	ND	9.5	1.00	
1,2,4-Trichlorobenzene	ND	9.5	1.00	
2,4,6-Trichlorophenol	ND	9.5	1.00	
O A E Tricklesses has all	ND	0.5	4.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

2,4,5-Trichlorophenol

9.5

1.00

ND

Geosyntec Consultants	Date Received:	07/09/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0460
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: Crystal Geyser / SB0746		Page 9 of 12

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	84	50-110	
2-Fluorophenol	58	20-110	
Nitrobenzene-d5	84	40-110	
p-Terphenyl-d14	83	50-135	
Phenol-d6	35	10-115	
2,4,6-Tribromophenol	87	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 3510C EPA 8270C

ug/L

Units:

Page 10 of 12

Project: Crystal Geyser / SB0746

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-02-008-45	N/A	Aqueous	GC/MS TT	07/09/15	07/10/15 12:37	150709L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1.00		
Acenaphthylene		ND	10		1.00		
Aniline		ND	10		1.00		
Anthracene		ND	10		1.00		
Azobenzene		ND	10		1.00		
Benzidine		ND	50		1.00		
Benzo (a) Anthracene		ND	10		1.00		
Benzo (a) Pyrene		ND	10		1.00		
Benzo (b) Fluoranthene		ND	10		1.00		
Benzo (g,h,i) Perylene		ND	10		1.00		
Benzo (k) Fluoranthene		ND	10		1.00		
Benzoic Acid		ND	50		1.00		
Benzyl Alcohol		ND	10		1.00		
Bis(2-Chloroethoxy) Methane		ND	10		1.00		
Bis(2-Chloroethyl) Ether		ND	25		1.00		
Bis(2-Chloroisopropyl) Ether		ND	10		1.00		
Bis(2-Ethylhexyl) Phthalate		ND	10		1.00		
4-Bromophenyl-Phenyl Ether		ND	10		1.00		
Butyl Benzyl Phthalate		ND	10		1.00		
4-Chloro-3-Methylphenol		ND	10		1.00		
4-Chloroaniline		ND	10		1.00		
2-Chloronaphthalene		ND	10		1.00		
2-Chlorophenol		ND	10		1.00		
4-Chlorophenyl-Phenyl Ether		ND	10		1.00		
Chrysene		ND	10		1.00		
2,6-Dichlorophenol		ND	10		1.00		
Di-n-Butyl Phthalate		ND	10		1.00		
Di-n-Octyl Phthalate		ND	10		1.00		
Dibenz (a,h) Anthracene		ND	10		1.00		
Dibenzofuran		ND	10		1.00		
1,2-Dichlorobenzene		ND	10		1.00		
1,3-Dichlorobenzene		ND	10		1.00		
1,4-Dichlorobenzene		ND	10		1.00		
3,3'-Dichlorobenzidine		ND	25		1.00		

RL: Reporting Limit.

2,4-Dichlorophenol

DF: Dilution Factor.

MDL: Method Detection Limit.

10

1.00

ND

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8270C

 Units:
 ug/L

 Project: Crystal Geyser / SB0746
 Page 11 of 12

Project: Crystal Geyser / SB0746				Page 11 of 12
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Diethyl Phthalate	ND	10	1.00	
Dimethyl Phthalate	ND	10	1.00	
2,4-Dimethylphenol	ND	10	1.00	
4,6-Dinitro-2-Methylphenol	ND	50	1.00	
2,4-Dinitrophenol	ND	50	1.00	
2,4-Dinitrotoluene	ND	10	1.00	
2,6-Dinitrotoluene	ND	10	1.00	
Fluoranthene	ND	10	1.00	
Fluorene	ND	10	1.00	
Hexachloro-1,3-Butadiene	ND	10	1.00	
Hexachlorobenzene	ND	10	1.00	
Hexachlorocyclopentadiene	ND	25	1.00	
Hexachloroethane	ND	10	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	10	1.00	
Isophorone	ND	10	1.00	
2-Methylnaphthalene	ND	10	1.00	
1-Methylnaphthalene	ND	10	1.00	
2-Methylphenol	ND	10	1.00	
3/4-Methylphenol	ND	10	1.00	
N-Nitroso-di-n-propylamine	ND	10	1.00	
N-Nitrosodimethylamine	ND	10	1.00	
N-Nitrosodiphenylamine	ND	10	1.00	
Naphthalene	ND	10	1.00	
4-Nitroaniline	ND	10	1.00	
3-Nitroaniline	ND	10	1.00	
2-Nitroaniline	ND	10	1.00	
Nitrobenzene	ND	25	1.00	
4-Nitrophenol	ND	10	1.00	
2-Nitrophenol	ND	10	1.00	
Pentachlorophenol	ND	10	1.00	
Phenanthrene	ND	10	1.00	
Phenol	ND	10	1.00	
Pyrene	ND	10	1.00	
Pyridine	ND	10	1.00	
1,2,4-Trichlorobenzene	ND	10	1.00	
2,4,6-Trichlorophenol	ND	10	1.00	
2,4,5-Trichlorophenol	ND	10	1.00	

Geosyntec Consultants	Date Received:	07/09/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0460
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
	Units:	ug/L
Project: Crystal Geyser / SB0746		Page 12 of 12

Surrogate	Rec. (%)	Control Limits	Qualifiers
2-Fluorobiphenyl	80	50-110	
2-Fluorophenol	61	20-110	
Nitrobenzene-d5	83	40-110	
p-Terphenyl-d14	81	50-135	
Phenol-d6	36	10-115	
2,4,6-Tribromophenol	87	40-125	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 5030C EPA 8260B

Units:

ug/L

Project: Crystal Geyser / SB0746

Page 1 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-09-070715	15-07-0460-1-A	07/07/15 13:45	Aqueous	GC/MS RR	07/10/15	07/10/15 17:30	150710L011
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: Crystal Geyser / SB0746
 Page 2 of 12

Project: Crystal Geyser / SB0746				Page 2 of 12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	93	79-120		
Dibromofluoromethane	90	80-126		
1,2-Dichloroethane-d4	88	80-124		
Toluene-d8	100	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 5030C

Units:

EPA 8260B ug/L

Project: Crystal Geyser / SB0746

Page 3 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-02-070715	15-07-0460-2-A	07/07/15 15:51	Aqueous	GC/MS RR	07/10/15	07/10/15 18:00	150710L011
Parameter	•	Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: Crystal Geyser / SB0746

Project: Crystal Geyser / SB0746				Page 4 of 12
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	100	79-120		
Dibromofluoromethane	96	80-126		
1,2-Dichloroethane-d4	91	80-124		
Toluene-d8	98	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 5030C EPA 8260B

Units:

ug/L Page 5 of 12

Project: Crystal Geyser / SB0746

Time QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IDW-GW-070715	15-07-0460-3-A	07/07/15 16:40	Aqueous	GC/MS RR	07/10/15	07/10/15 18:29	150710L011
Parameter		Result	RL	•	<u>DF</u>	Qua	alifiers
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: Crystal Geyser / SB0746				Page 6 of 12
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	98	79-120		
Dibromofluoromethane	96	80-126		
1,2-Dichloroethane-d4	91	80-124		
Toluene-d8	98	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: Crystal Geyser / SB0746

Date Received: Work Order: Preparation: Method:

07/09/15 15-07-0460 EPA 5030C EPA 8260B

Units:

ug/L Page 7 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EB-01-070715	15-07-0460-4-A	07/07/15 16:50	Aqueous	GC/MS RR	07/10/15	07/10/15 14:05	150710L011
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: Crystal Geyser / SB0746
 Page 8 of 12

Project: Crystal Geyser / SB0746				Page 8 of 12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	95	79-120	<u>Quamitrio</u>	
Dibromofluoromethane	101	80-126		
1,2-Dichloroethane-d4	98	80-124		
Toluene-d8	98	80-120		
i diddilo do	55	00 120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

07/09/15 15-07-0460 EPA 5030C EPA 8260B

ug/L

u Page 9 of 12

Project: Crystal Geyser / SB0746

1,1-Dichloroethene

c-1,2-Dichloroethene

t-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
QCTB-02-070715	15-07-0460-5-A	07/07/15 00:00	Aqueous	GC/MS RR	07/10/15	07/10/15 14:35	150710L011
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

1.0

1.0

1.0

1.0

1.0

1.0

1.00

1.00

1.00

1.00

1.00

1.00

ND

ND

ND

ND

ND

ND

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: Crystal Geyser / SB0746
 Page 10 of 12

Project: Crystal Geyser / SB0746				Page 10 of 12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	95	79-120		
Dibromofluoromethane	100	80-126		
1,2-Dichloroethane-d4	98	80-124		
Toluene-d8	99	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

Units:

15-07-0460 EPA 5030C EPA 8260B ug/L

07/09/15

Project: Crystal Geyser / SB0746

Page 11 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-316-2194	N/A	Aqueous	GC/MS RR	07/10/15	07/10/15 13:07	150710L011
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	0.5	50	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	1.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	1.0)	1.00		
Bromomethane		ND	10		1.00		
2-Butanone		ND	10		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	1.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: Crystal Geyser / SB0746
 Page 12 of 12

Project: Crystal Geyser / SB0746				Page 12 of 12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	1.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	1.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	96	79-120		
Dibromofluoromethane	100	80-126		
1,2-Dichloroethane-d4	97	80-124		
Toluene-d8	98	80-120		

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Project: Crystal Geyser / SB0746 Date Received: Work Order:

07/09/15 15-07-0460

Page 1 of 2

Client Sample Number			Lab S	Sample Number		Date/Tir	ne Collected	Matrix
MW-09-070715			15-07-0460-1		07/07/1	5 13:45	Aqueous	
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	Method
Alkalinity, Total (as CaCO3)	174	5.00	1.00		mg/L	N/A	07/13/15	SM 2320B
Solids, Total Dissolved	730	1.00	1.00		mg/L	07/09/15	07/09/15	SM 2540 C
рН	7.40	0.01	1.00	BV,BU	pH units	N/A	07/09/15	SM 4500 H+ B
Total Kjeldahl Nitrogen	0.56	0.50	1.00		mg/L	07/16/15	07/16/15	SM 4500 N Org B
Phosphorus, Total	0.14	0.10	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E
Total Phosphate	0.44	0.31	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E
Ammonia (as N)	ND	0.10	1.00		mg/L	07/16/15	07/16/15	SM 4500-NH3 B/C
Nitrate-Nitrite (as N)	0.28	0.10	1.00		mg/L	07/09/15	07/09/15	SM 4500-NO3 E
MBAS	ND	0.10	1.00		mg/L	07/09/15	07/09/15	SM 5540C
Total Nitrogen	0.79	0.50	1.00		mg/L	N/A	07/20/15	Total Nitrogen by Calc

MW-02-070715			15-0	7-0460-2		07/07/1	5 15:51	Aqueous		
Parameter	Results	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method		
Alkalinity, Total (as CaCO3)	72.0	1.00	1.00		mg/L	N/A	07/13/15	SM 2320B		
Solids, Total Dissolved	160	1.00	1.00		mg/L	07/09/15	07/09/15	SM 2540 C		
рН	6.75	0.01	1.00	BV,BU	pH units	N/A	07/09/15	SM 4500 H+ B		
Total Kjeldahl Nitrogen	ND	0.50	1.00		mg/L	07/16/15	07/16/15	SM 4500 N Org B		
Phosphorus, Total	ND	0.10	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E		
Total Phosphate	ND	0.31	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E		
Ammonia (as N)	ND	0.10	1.00		mg/L	07/16/15	07/16/15	SM 4500-NH3 B/C		
Nitrate-Nitrite (as N)	ND	0.10	1.00		mg/L	07/09/15	07/09/15	SM 4500-NO3 E		
MBAS	ND	0.10	1.00		mg/L	07/09/15	07/09/15	SM 5540C		
Total Nitrogen	ND	0.50	1.00		mg/L	N/A	07/20/15	Total Nitrogen by Calc		

EB-01-070715	15			7-0460-4		07/07/1	5 16:50	Aqueous
Parameter	Results	<u>RL</u>	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> <u>Analyzed</u>	Method
Alkalinity, Total (as CaCO3)	ND	1.0	1.00		mg/L	N/A	07/14/15	SM 2320B
Solids, Total Dissolved	ND	1.0	1.00		mg/L	07/09/15	07/09/15	SM 2540 C
рН	7.45	0.01	1.00	BV,BU	pH units	N/A	07/09/15	SM 4500 H+ B
Total Kjeldahl Nitrogen	ND	0.50	1.00		mg/L	07/16/15	07/16/15	SM 4500 N Org B
Phosphorus, Total	ND	0.10	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E
Total Phosphate	ND	0.31	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E
Ammonia (as N)	ND	0.10	1.00		mg/L	07/16/15	07/16/15	SM 4500-NH3 B/C
Nitrate-Nitrite (as N)	ND	0.10	1.00		mg/L	07/09/15	07/09/15	SM 4500-NO3 E
MBAS	ND	0.10	1.00		mg/L	07/09/15	07/09/15	SM 5540C
Total Nitrogen	ND	0.50	1.00		mg/L	N/A	07/20/15	Total Nitrogen by Calc

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: Crystal Geyser / SB0746

Date Received: Work Order:

07/09/15 15-07-0460

Page 2 of 2

Client Sample Number				Lab Sample Number			ne Collected	Matrix	
Method Blank					N/A		Aqueous		
Parameter	<u>Results</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method	
Alkalinity, Total (as CaCO3)	ND	1.0	1.00		mg/L	N/A	07/13/15	SM 2320B	
Alkalinity, Total (as CaCO3)	ND	1.0	1.00		mg/L	N/A	07/14/15	SM 2320B	
Solids, Total Dissolved	ND	1.0	1.00		mg/L	07/09/15	07/09/15	SM 2540 C	
Total Kjeldahl Nitrogen	ND	0.50	1.00		mg/L	07/16/15	07/16/15	SM 4500 N Org B	
Phosphorus, Total	ND	0.10	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Total Phosphate	ND	0.31	1.00		mg/L	07/10/15	07/10/15	SM 4500 P B/E	
Ammonia (as N)	ND	0.10	1.00		mg/L	07/16/15	07/16/15	SM 4500-NH3 B/C	
Nitrate-Nitrite (as N)	ND	0.10	1.00		mg/L	07/09/15	07/09/15	SM 4500-NO3 E	
MBAS	ND	0.10	1.00		mg/L	07/09/15	07/09/15	SM 5540C	

Quality Control - Spike/Spike Duplicate

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Work Order:

15-07-0460

Santa Barbara, CA 93101-2177

Preparation:

N/A

Method:

EPA 300.0

Project: Crystal Geyser / SB0746 Page 1 of 10

Quality Control Sample ID	Туре		Matrix		rument	Date Prepared	Date Analyzed		MS/MSD Batch Number	
15-07-0382-1	Sample		Aqueous	s IC 9)	N/A	07/09/15	13:03	150709S01	
15-07-0382-1	Matrix Spike		Aqueous	s IC 9)	N/A	07/09/15 13:20		150709S01	
15-07-0382-1	Matrix Spike	Duplicate	Aqueous IC		9 N/A		07/09/15 13:37 150709\$01			
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chloride	50.29	50.00	106.0	111	106.1	112	80-120	0	0-20	
Sulfate	81.74	50.00	142.1	121	141.9	120	80-120	0	0-20	3

Quality Control - Spike/Spike Duplicate

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 4500 P B/E

 Project: Crystal Geyser / SB0746
 Page 2 of 10

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Analyzed		MS/MSD Batch Number	
MW-02-070715	Sample		Aqueous	Aqueous UV 7		07/10/15	07/10/15	15:30	F0710TPS1	
MW-02-070715	Matrix Spike		Aqueous	s UV	7	07/10/15	07/10/15	15:30	F0710TPS1	
MW-02-070715	Matrix Spike Duplicate		Aqueous UV 7		7	07/10/15	07/10/15	15:30	F0710TPS1	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	ND	0.4000	0.4590	115	0.4530	113	70-130	1	0-25	

Quality Control - Spike/Spike Duplicate

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 4500 P B/E

 Project: Crystal Geyser / SB0746
 Page 3 of 10

Quality Control Sample ID	Туре		Matrix		rument	Date Prepared	Date Analyzed		MS/MSD Batch Number	
MW-02-070715	Sample		Aqueous	Aqueous UV 7		07/10/15	07/10/15 15:30		F0710PO4S	1
MW-02-070715	Matrix Spike		Aqueous UV 7		7	07/10/15	07/10/15 15:30		F0710PO4S1	
MW-02-070715	Matrix Spike Duplicate		Aqueous UV 7		7	07/10/15	07/10/15	15:30	F0710PO4S	1
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Total Phosphate	ND	1.220	1.400	115	1.390	114	70-130	1	0-25	

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 4500-NO3 E

 Project: Crystal Geyser / SB0746
 Page 4 of 10

Quality Control Sample ID	Туре		Matrix	Ins	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
MW-09-070715	Sample		Aqueou	s UV	7	07/09/15	07/09/15	13:08	F0709NO3S	51
MW-09-070715	Matrix Spike		Aqueou	s UV	7	07/09/15	07/09/15	13:08	F0709NO3S	51
MW-09-070715	Matrix Spike	Duplicate	Aqueou	s UV	7	07/09/15	07/09/15	13:08	F0709NO3S	31
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	0.2753	0.5000	0.8360	112	0.8380	113	70-130	0	0-25	

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 5540C

 Project: Crystal Geyser / SB0746
 Page 5 of 10

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
MW-09-070715	Sample		Aqueous	s U\	/ 9	07/09/15	07/09/15	12:41	F0709SURS	1
MW-09-070715	Matrix Spike		Aqueous	s U\	/ 9	07/09/15	07/09/15	12:41	F0709SURS	1
MW-09-070715	Matrix Spike	Duplicate	Aqueous	s U\	/ 9	07/09/15	07/09/15	12:41	F0709SURS	1
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
MBAS	ND	1.000	0.8700	87	0.9300	93	70-130	7	0-25	

Geosyntec Consultants

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101-2177

Preparation:

Method:

EPA 200.7

07/09/15

N/A

15-07-0460

Project: Crystal Geyser / SB0746 Page 6 of 10

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
MW-02-070715	Sample		Aqueou	ıs IC	P 7300	07/10/15	07/11/15	02:07	150710SA3	4
MW-02-070715	Matrix Spike		Aqueou	ıs IC	P 7300	07/10/15	07/11/15	02:01	150710SA3	4
MW-02-070715	Matrix Spike	Duplicate	Aqueou	ıs IC	P 7300	07/10/15	07/11/15	02:03	150710SA3	4
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Calcium	23.11	0.5000	23.87	4X	23.80	4X	80-120	4X	0-20	Q
Magnesium	2.541	0.5000	3.119	4X	3.193	4X	80-120	4X	0-20	Q
Sodium	9.416	5.000	14.89	109	14.84	108	80-120	0	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 3005A Filt. EPA 6010B

Project: Crystal Geyser / SB0746

Page 7 of 10

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	ch Number
15-07-0562-2	Sample		Aqueous	IC	CP 7300	07/10/15	07/10/15	21:59	150710SA4	
15-07-0562-2	Matrix Spike		Aqueous	10	CP 7300	07/10/15	07/10/15	21:54	150710SA4	
15-07-0562-2	Matrix Spike	Duplicate	Aqueous	10	CP 7300	07/10/15	07/10/15	21:57	150710SA4	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	0.5000	0.4926	99	0.5008	100	72-132	2	0-10	
Arsenic	ND	0.5000	0.4961	99	0.5155	103	80-140	4	0-11	
Barium	0.1190	0.5000	0.6228	101	0.6327	103	87-123	2	0-6	
Beryllium	ND	0.5000	0.5054	101	0.5060	101	89-119	0	0-8	
Cadmium	ND	0.5000	0.4873	97	0.4904	98	82-124	1	0-7	
Chromium	0.01950	0.5000	0.5299	102	0.5384	104	86-122	2	0-8	
Cobalt	ND	0.5000	0.4756	95	0.4902	98	83-125	3	0-7	
Copper	ND	0.5000	0.4920	98	0.4979	100	78-126	1	0-7	
Lead	ND	0.5000	0.4729	95	0.4853	97	84-120	3	0-7	
Molybdenum	ND	0.5000	0.4981	100	0.5112	102	78-126	3	0-7	
Nickel	ND	0.5000	0.4687	94	0.4746	95	84-120	1	0-7	
Selenium	ND	0.5000	0.5101	102	0.5256	105	79-127	3	0-9	
Silver	ND	0.2500	0.2613	105	0.2668	107	86-128	2	0-7	
Thallium	ND	0.5000	0.4330	87	0.4542	91	79-121	5	0-8	
Vanadium	ND	0.5000	0.5103	102	0.5203	104	88-118	2	0-7	
Zinc	0.04324	0.5000	0.5313	98	0.5526	102	89-131	4	0-8	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 3005A Filt. EPA 6010B

Project: Crystal Geyser / SB0746

Page 8 of 10

Quality Control Sample ID	Туре		Matrix	ı	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-07-0357-5	Sample		Aqueous	1	CP 7300	07/10/15	07/15/15	20:04	150710SA5	
15-07-0357-5	Matrix Spike		Aqueous	ı	CP 7300	07/10/15	07/13/15	18:11	150710SA5	
15-07-0357-5	Matrix Spike	Duplicate	Aqueous	ı	CP 7300	07/10/15	07/13/15	18:13	150710SA5	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	0.5000	0.5337	107	0.5067	101	72-132	5	0-10	
Arsenic	0.01365	0.5000	0.5662	111	0.5398	105	80-140	5	0-11	
Barium	0.02283	0.5000	0.5817	112	0.5701	109	87-123	2	0-6	
Beryllium	ND	0.5000	0.5375	108	0.5277	106	89-119	2	0-8	
Cadmium	ND	0.5000	0.5367	107	0.5277	106	82-124	2	0-7	
Chromium	ND	0.5000	0.5576	112	0.5469	109	86-122	2	0-8	
Cobalt	ND	0.5000	0.5549	111	0.5455	109	83-125	2	0-7	
Copper	ND	0.5000	0.5406	108	0.5305	106	78-126	2	0-7	
Lead	ND	0.5000	0.5423	108	0.5196	104	84-120	4	0-7	
Molybdenum	0.01096	0.5000	0.5483	107	0.5275	103	78-126	4	0-7	
Nickel	ND	0.5000	0.5418	108	0.5167	103	84-120	5	0-7	
Selenium	ND	0.5000	0.5360	107	0.5184	104	79-127	3	0-9	
Silver	ND	0.2500	0.2759	110	0.2711	108	86-128	2	0-7	
Thallium	ND	0.5000	0.5021	100	0.4920	98	79-121	2	0-8	
Vanadium	ND	0.5000	0.5576	112	0.5479	110	88-118	2	0-7	
Zinc	ND	0.5000	0.5619	112	0.5540	111	89-131	1	0-8	

Geosyntec Consultants Date Received: 07/09/15 924 Anacapa Street, Suite 4A Work Order: 15-07-0460 EPA 7470A Total Santa Barbara, CA 93101-2177 Preparation: Method: EPA 7470A Project: Crystal Geyser / SB0746 Page 9 of 10

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
MW-09-070715	Sample		Aqueous	Ме	cury 04	07/10/15	07/10/15	21:36	150710SA2	
MW-09-070715	Matrix Spike		Aqueous	Mei	cury 04	07/10/15	07/10/15	21:38	150710SA2	
MW-09-070715	Matrix Spike D	Ouplicate	Aqueous	Mei	cury 04	07/10/15	07/10/15	21:40	150710SA2	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.01000	0.009613	96	0.009725	97	57-141	1	0-10	

Geosyntec Consultants Date Received: 07/09/15 Work Order: 924 Anacapa Street, Suite 4A 15-07-0460 Preparation: EPA 7470A Filt. Santa Barbara, CA 93101-2177 Method: EPA 7470A Project: Crystal Geyser / SB0746 Page 10 of 10

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
15-07-0357-7	Sample	Aqueous	Mercury 04	07/10/15	07/10/15 20:46	150710SA1
15-07-0357-7	Matrix Spike	Aqueous	Mercury 04	07/10/15	07/10/15 20:48	150710SA1
15-07-0357-7	Matrix Spike Duplicate	Aqueous	Mercury 04	07/10/15	07/10/15 20:51	150710SA1
<u>Parameter</u>	Sample Spike Conc. Added	MS MS	MSD Conc	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0460 N/A

07/09/15

SM 2320B

Project: Crystal Geyser / SB0746

Page 1 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-07-0433-7	Sample	Aqueous	PH1/BUR03	N/A	07/13/15 14:26	F0713ALKD1
15-07-0433-7	Sample Duplicate	Aqueous	PH1/BUR03	N/A	07/13/15 14:26	F0713ALKD1
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)		368.0	368.0	0	0-25	

Geosyntec Consultants
924 Anacapa Street, Suite 4A
Santa Barbara, CA 93101-2177

Date Received:
Work Order:
Preparation:
Method:

15-07-0460 N/A SM 2320B

07/09/15

Project: Crystal Geyser / SB0746

Page 2 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
EB-01-070715	Sample	Aqueous	PH1/BUR03	N/A	07/14/15 16:45	F0714ALKD1
EB-01-070715	Sample Duplicate	Aqueous	PH1/BUR03	N/A	07/14/15 16:45	F0714ALKD1
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)		ND	ND	N/A	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0460 N/A

07/09/15

SM 2540 C Page 3 of 5

Project: Crystal Geyser / SB0746

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-07-0382-1	Sample	Aqueous	SC 2	07/09/15 00:00	07/09/15 19:00	F0709TDSD2
15-07-0382-1	Sample Duplicate	Aqueous	SC 2	07/09/15 00:00	07/09/15 19:00	F0709TDSD2
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Solids, Total Dissolved		465.0	495.0	6	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: Crystal Geyser / SB0746

рΗ

Date Received: Work Order: Preparation: Method:

07/09/15 15-07-0460 N/A

SM 4500 H+ B

0-25

Page 4 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
EB-01-070715	Sample	Aqueous	PH 1	N/A	07/09/15 19:41	F0709PHD1
EB-01-070715	Sample Duplicate	Aqueous	PH 1	N/A	07/09/15 19:41	F0709PHD1
<u>Parameter</u>		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers

7.440

7.450

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: Crystal Geyser / SB0746

Date Received: Work Order: Preparation:

15-07-0460 N/A

07/09/15

Method: SM 4500 N Org B

Page 5 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-07-0601-5	Sample	Aqueous	BUR05	07/16/15 00:00	07/16/15 17:00	F0716TKND1
15-07-0601-5	Sample Duplicate	Aqueous	BUR05	07/16/15 00:00	07/16/15 17:00	F0716TKND1
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Total Kieldahl Nitrogen		26.32	26.46	1	0-25	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 N/A

EPA 300.0 Page 1 of 20

Project: Crystal Geyser / SB0746

.

Quality Control Sample ID	Туре	Matrix	Instrument	Date	e Prepared Date	Analyzed LCS Ba	atch Number
099-12-906-5887	LCS	Aqueous	IC 9	N/A	07/09/	/15 11:42 150709)L01
Parameter		Spike Added	Conc. Recov	<u>rered</u>	LCS %Rec.	%Rec. CL	Qualifiers
Chloride		50.00	49.06		98	90-110	
Sulfate		50.00	48.96		98	90-110	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 N/A

SM 2320B

Project: Crystal Geyser / SB0746

Page 2 of 20

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pr	epared Da	te Analyzed	LCS/LCSD Ba	atch Number
099-15-859-748	LCS	Aqı	ueous	PH1/BUR03	N/A	07/	13/15 14:26	F0713ALKB1	
099-15-859-748	LCSD	Aqu	ueous	PH1/BUR03	N/A	07/	13/15 14:26	F0713ALKB1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. Cl	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)	100.0	100.0	100	100.0	100	80-120	0	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 N/A

SM 2320B

Project: Crystal Geyser / SB0746

Page 3 of 20

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Dat	e Analyzed	LCS/LCSD Ba	atch Number
099-15-981-109	LCS	Aqı	ieous	PH1/BUR03	N/A	07/	14/15 16:45	F0714ALKB1	
099-15-981-109	LCSD	Aqı	ieous	PH1/BUR03	N/A	07/	14/15 16:45	F0714ALKB1	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)	10.00	10.00	100	10.00	100	80-120	0	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0460 N/A

07/09/15

SM 2540 C Page 4 of 20

Project: Crystal Geyser / SB0746

Quality Control Sample ID Туре Matrix Instrument Date Prepared Date Analyzed LCS/LCSD Batch Number 099-12-180-4658 LCS SC 2 07/09/15 07/09/15 19:00 F0709TDSL2 Aqueous 099-12-180-4658 **LCSD** Aqueous SC₂ 07/09/15 07/09/15 19:00 F0709TDSL2 LCS <u>%Rec.</u> **LCSD** <u>Parameter</u> Spike Added LCS Conc. LCSD Conc. %Rec. CL <u>RPD</u> RPD CL Qualifiers %Rec. Solids, Total Dissolved 100.0 85.00 85 80.00 80 80-120 6 0-20

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 N/A

SM 4500 P B/E Page 5 of 20

Project: Crystal Geyser / SB0746

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-05-098-2674	LCS	Aqı	ieous	UV 7	07/10/15	07/1	0/15 15:30	F0710TPL1	
099-05-098-2674	LCSD	Aqu	ieous	UV 7	07/10/15	07/1	0/15 15:30	F0710TPL1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	0.4000	0.3940	98	0.3910	98	80-120	1	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 N/A

SM 4500 P B/E

Project: Crystal Geyser / SB0746

Page 6 of 20

Quality Control Sample ID	Type	Mat	rix	Instrument	Date Pre	pared Dat	e Analyzed	LCS/LCSD Ba	tch Number
099-14-276-163	LCS	Aqı	ieous	UV 7	07/10/15	07/	10/15 15:30	F0710PO4L1	
099-14-276-163	LCSD	Aqı	ueous	UV 7	07/10/15	07/	10/15 15:30	F0710PO4L1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Total Phosphate	1.220	1.210	99	1.200	98	80-120	1	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177

Project: Crystal Geyser / SB0746

Date Received: Work Order: Preparation:

15-07-0460 N/A

07/09/15

Method:

SM 4500-NH3 B/C

Page 7 of 20

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	tch Number
099-12-814-2155	LCS	Aqı	ieous	BUR05	07/16/15	07/1	6/15 17:40	F0716NH3L2	
099-12-814-2155	LCSD	Aqu	ieous	BUR05	07/16/15	07/1	6/15 17:40	F0716NH3L2	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Ammonia (as N)	5.000	4.536	91	4.368	87	80-120	4	0-20	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0460 N/A

SM 4500-NO3 E

07/09/15

Page 8 of 20

Project: Crystal Geyser / SB0746

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	tch Number
099-05-120-1829	LCS	Aqı	ieous	UV 7	07/09/15	07/0	9/15 13:08	F0709NO3L1	
099-05-120-1829	LCSD	Aqı	ieous	UV 7	07/09/15	07/0	9/15 13:08	F0709NO3L1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Nitrate-Nitrite (as N)	0.5000	0.4890	98	0.4910	98	80-120	0	0-20	

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 N/A

 Method:
 SM 5540C

 Project: Crystal Geyser / SB0746
 Page 9 of 20

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-05-093-2897	LCS	Aqueous	UV 9	07/09/15	07/09/15 12:41	F0709SURL1
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
MBAS		1.000	0.9500	95	80-120	0

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Project: Crystal Geyser / SB0746
 Page 10 of 20

Quality Control Sample ID	Туре	Matr	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-15-498-268	LCS	Aqu	eous	GC 46	07/10/15	07/1	10/15 23:12	150710B11	
099-15-498-268	LCSD	Aqu	eous	GC 46	07/10/15	07/1	10/15 23:30	150710B11	
Parameter	Spike Added LC	S Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	4000 388	31	97	3857	96	75-117	1	0-13	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation:

15-07-0460 N/A

07/09/15

Method:

EPA 200.7

Project: Crystal Geyser / SB0746

Page 11 of 20

Quality Control Sample ID	Туре	Matrix	Instrument Da	ate Prepared	Date Analyzed LC	S Batch Number
097-01-012-6255	LCS	Aqueous	ICP 7300 07	7/10/15	07/10/15 21:47 15	0710LA3
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Red	c. %Rec. CL	Qualifiers
Calcium		0.5000	0.5013	100	85-115	
Magnesium		0.5000	0.5340	107	85-115	
Sodium		5.000	4.936	99	85-115	

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method:

15-07-0460 EPA 3010A Total EPA 6010B

07/09/15

Project: Crystal Geyser / SB0746

Page 12 of 20

Quality Control Sample ID	Туре	Matrix	Instrumer	nt Date Prepa	ared Date Analyz	zed LCS Batch N	lumber
097-01-003-15206	LCS	Aqueou	ICP 7300	07/10/15	07/15/15 17	:54 150710LA4	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		0.5000	0.4022	80	80-120	73-127	
Arsenic		0.5000	0.4141	83	80-120	73-127	
Barium		0.5000	0.4843	97	80-120	73-127	
Beryllium		0.5000	0.4151	83	80-120	73-127	
Cadmium		0.5000	0.4441	89	80-120	73-127	
Chromium		0.5000	0.4540	91	80-120	73-127	
Cobalt		0.5000	0.4495	90	80-120	73-127	
Copper		0.5000	0.4528	91	80-120	73-127	
Lead		0.5000	0.4413	88	80-120	73-127	
Molybdenum		0.5000	0.4235	85	80-120	73-127	
Nickel		0.5000	0.4426	89	80-120	73-127	
Selenium		0.5000	0.4126	83	80-120	73-127	
Silver		0.2500	0.2371	95	80-120	73-127	
Thallium		0.5000	0.4421	88	80-120	73-127	
Vanadium		0.5000	0.4383	88	80-120	73-127	
Zinc		0.5000	0.4262	85	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 3005A Filt. EPA 6010B

Project: Crystal Geyser / SB0746

Page 13 of 20

Quality Control Sample ID	Туре	Matri	x Instrumen	t Date Pre	pared Date Ana	lyzed LCS Bat	ch Number
097-01-003-15199	LCS	Aque	eous ICP 7300	07/10/15	07/13/15	17:52 150710L	.A5F
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		0.5000	0.4658	93	80-120	73-127	
Arsenic		0.5000	0.4795	96	80-120	73-127	
Barium		0.5000	0.5330	107	80-120	73-127	
Beryllium		0.5000	0.4905	98	80-120	73-127	
Cadmium		0.5000	0.5130	103	80-120	73-127	
Chromium		0.5000	0.5360	107	80-120	73-127	
Cobalt		0.5000	0.5433	109	80-120	73-127	
Copper		0.5000	0.5157	103	80-120	73-127	
Lead		0.5000	0.5107	102	80-120	73-127	
Molybdenum		0.5000	0.4951	99	80-120	73-127	
Nickel		0.5000	0.5192	104	80-120	73-127	
Selenium		0.5000	0.4758	95	80-120	73-127	
Silver		0.2500	0.2613	105	80-120	73-127	
Thallium		0.5000	0.5199	104	80-120	73-127	
Vanadium		0.5000	0.5197	104	80-120	73-127	
Zinc		0.5000	0.4988	100	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 7470A Total

 Method:
 EPA 7470A

 Project: Crystal Geyser / SB0746
 Page 14 of 20

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-04-008-7494	LCS	Aqueous	Mercury 04	07/10/15	07/10/15 21:33	150710LA2
Parameter		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
Mercury		0.01000	0.009401	94	85-12	1

 Geosyntec Consultants
 Date Received:
 07/09/15

 924 Anacapa Street, Suite 4A
 Work Order:
 15-07-0460

 Santa Barbara, CA 93101-2177
 Preparation:
 EPA 7470A Filt.

 Method:
 EPA 7470A

 Project: Crystal Geyser / SB0746
 Page 15 of 20

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-763-581	LCS	Aqueous	Mercury 04	07/10/15	07/10/15 20:44	150710LA1F
Parameter		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
Mercury		0.01000	0.009901	99	85-12	1

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 3510C EPA 8270C

Project: Crystal Geyser / SB0746

Page 16 of 20

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepare	d Date A	Analyzed	LCS/LCSD Ba	tch Number
099-02-008-45	LCS		Aqueous	s G	C/MS TT	07/09/15	07/10/	15 11:59	150709L02	
099-02-008-45	LCSD		Aqueous	s G	C/MS TT	07/09/15	07/10/	15 12:18	150709L02	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Acenaphthene	100.0	92.14	92	92.40	92	45-110	34-121	0	0-11	
Acenaphthylene	100.0	90.25	90	90.24	90	50-105	41-114	0	0-20	
Aniline	100.0	94.18	94	94.22	94	50-130	37-143	0	0-20	
Anthracene	100.0	95.22	95	95.54	96	55-110	46-119	0	0-20	
Azobenzene	100.0	88.82	89	89.27	89	50-130	37-143	1	0-20	
Benzidine	100.0	104.7	105	109.8	110	50-130	37-143	5	0-20	
Benzo (a) Anthracene	100.0	91.86	92	91.31	91	55-110	46-119	1	0-20	
Benzo (a) Pyrene	100.0	85.69	86	87.05	87	55-110	46-119	2	0-20	
Benzo (b) Fluoranthene	100.0	85.17	85	89.13	89	45-120	32-132	5	0-20	
Benzo (g,h,i) Perylene	100.0	95.15	95	96.23	96	40-125	26-139	1	0-20	
Benzo (k) Fluoranthene	100.0	86.57	87	83.79	84	45-125	32-138	3	0-20	
Benzoic Acid	100.0	63.14	63	62.79	63	50-130	37-143	1	0-20	
Benzyl Alcohol	100.0	96.52	97	94.56	95	30-110	17-123	2	0-20	
Bis(2-Chloroethoxy) Methane	100.0	92.11	92	89.28	89	45-105	35-115	3	0-20	
Bis(2-Chloroethyl) Ether	100.0	89.70	90	88.67	89	35-110	22-122	1	0-20	
Bis(2-Chloroisopropyl) Ether	100.0	93.21	93	90.38	90	25-130	8-148	3	0-20	
Bis(2-Ethylhexyl) Phthalate	100.0	98.23	98	99.23	99	40-125	26-139	1	0-20	
4-Bromophenyl-Phenyl Ether	100.0	87.94	88	88.30	88	50-115	39-126	0	0-20	
Butyl Benzyl Phthalate	100.0	98.02	98	98.50	99	45-115	33-127	0	0-20	
4-Chloro-3-Methylphenol	100.0	92.15	92	92.35	92	45-110	34-121	0	0-40	
4-Chloroaniline	100.0	98.69	99	97.17	97	15-110	0-126	2	0-20	
2-Chloronaphthalene	100.0	85.85	86	84.42	84	50-105	41-114	2	0-20	
2-Chlorophenol	100.0	91.24	91	90.76	91	35-105	23-117	1	0-18	
4-Chlorophenyl-Phenyl Ether	100.0	88.64	89	88.62	89	50-110	40-120	0	0-20	
Chrysene	100.0	90.65	91	92.38	92	55-110	46-119	2	0-20	
2,6-Dichlorophenol	100.0	90.72	91	91.43	91	42-120	29-133	1	0-21	
Di-n-Butyl Phthalate	100.0	92.14	92	92.08	92	55-115	45-125	0	0-20	
Di-n-Octyl Phthalate	100.0	92.11	92	93.17	93	35-135	18-152	1	0-20	
Dibenz (a,h) Anthracene	100.0	92.71	93	92.41	92	40-125	26-139	0	0-20	
Dibenzofuran	100.0	89.89	90	91.17	91	55-105	47-113	1	0-20	
1,2-Dichlorobenzene	100.0	74.56	75	74.21	74	35-100	24-111	0	0-20	
1,3-Dichlorobenzene	100.0	69.52	70	69.74	70	30-100	18-112	0	0-20	
1,4-Dichlorobenzene	100.0	71.08	71	71.09	71	30-100	18-112	0	0-26	
3,3'-Dichlorobenzidine	100.0	101.0	101	102.0	102	20-110	5-125	1	0-20	
2,4-Dichlorophenol	100.0	92.87	93	93.99	94	50-105	41-114	1	0-20	
Diethyl Phthalate	100.0	93.19	93	93.04	93	40-120	27-133	0	0-20	

RPD: Relative Percent Difference.

CL: Control Limits

Geosyntec Consultants
Date Received:

924 Anacapa Street, Suite 4A
Work Order:
15-07-0460
Santa Barbara, CA 93101-2177
Preparation:
EPA 3510C
Method:
EPA 8270C

Project: Crystal Geyser / SB0746 Page 17 of 20

<u>Parameter</u>	<u>Spike</u> Added	LCS Con	c. <u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Dimethyl Phthalate	100.0	90.81	91	90.71	91	25-125	8-142	0	0-20	
2,4-Dimethylphenol	100.0	91.37	91	90.96	91	30-110	17-123	0	0-20	
4,6-Dinitro-2-Methylphenol	100.0	99.77	100	100.4	100	40-130	25-145	1	0-20	
2,4-Dinitrophenol	100.0	100.4	100	99.36	99	15-140	0-161	1	0-20	
2,4-Dinitrotoluene	100.0	95.11	95	93.83	94	50-120	38-132	1	0-36	
2,6-Dinitrotoluene	100.0	93.95	94	93.14	93	50-115	39-126	1	0-20	
Fluoranthene	100.0	91.98	92	91.63	92	55-115	45-125	0	0-20	
Fluorene	100.0	92.96	93	93.64	94	50-110	40-120	1	0-20	
Hexachloro-1,3-Butadiene	100.0	77.20	77	75.42	75	25-105	12-118	2	0-20	
Hexachlorobenzene	100.0	93.69	94	92.68	93	50-110	40-120	1	0-20	
Hexachlorocyclopentadiene	100.0	81.77	82	80.17	80	50-130	37-143	2	0-20	
Hexachloroethane	100.0	71.56	72	70.15	70	30-95	19-106	2	0-20	
Indeno (1,2,3-c,d) Pyrene	100.0	92.55	93	92.75	93	45-125	32-138	0	0-20	
Isophorone	100.0	90.35	90	90.14	90	50-110	40-120	0	0-20	
2-Methylnaphthalene	100.0	92.50	93	92.62	93	45-105	35-115	0	0-20	
1-Methylnaphthalene	100.0	87.12	87	86.79	87	80-120	73-127	0	0-20	
2-Methylphenol	100.0	91.03	91	90.76	91	40-110	28-122	0	0-20	
3/4-Methylphenol	200.0	167.4	84	168.1	84	30-110	17-123	0	0-20	
N-Nitroso-di-n-propylamine	100.0	113.6	114	114.0	114	35-130	19-146	0	0-13	
N-Nitrosodimethylamine	100.0	78.34	78	76.89	77	25-110	11-124	2	0-20	
N-Nitrosodiphenylamine	100.0	125.0	125	124.8	125	50-110	40-120	0	0-20	Χ
Naphthalene	100.0	84.41	84	84.05	84	40-100	30-110	0	0-20	
4-Nitroaniline	100.0	108.5	109	108.8	109	35-120	21-134	0	0-20	
3-Nitroaniline	100.0	107.8	108	110.5	111	20-125	2-142	3	0-20	
2-Nitroaniline	100.0	112.4	112	112.0	112	50-115	39-126	0	0-20	
Nitrobenzene	100.0	83.47	83	82.04	82	45-110	34-121	2	0-20	
4-Nitrophenol	100.0	45.56	46	45.70	46	20-150	0-172	0	0-40	
2-Nitrophenol	100.0	89.28	89	90.35	90	40-115	28-128	1	0-20	
Pentachlorophenol	100.0	89.19	89	88.95	89	40-115	28-128	0	0-40	
Phenanthrene	100.0	98.09	98	97.38	97	50-115	39-126	1	0-20	
Phenol	100.0	44.34	44	43.81	44	10-115	0-132	1	0-23	
Pyrene	100.0	98.98	99	99.66	100	50-130	37-143	1	0-20	
Pyridine	100.0	82.30	82	81.81	82	52-115	42-126	1	0-20	
1,2,4-Trichlorobenzene	100.0	78.92	79	79.98	80	35-105	23-117	1	0-21	
2,4,6-Trichlorophenol	100.0	88.28	88	88.81	89	50-115	39-126	1	0-20	
2,4,5-Trichlorophenol	100.0	87.10	87	85.60	86	50-110	40-120	2	0-20	

Total number of LCS compounds: 72 Total number of ME compounds: 0

Geosyntec Consultants	Date Received:	07/09/15
924 Anacapa Street, Suite 4A	Work Order:	15-07-0460
Santa Barbara, CA 93101-2177	Preparation:	EPA 3510C
	Method:	EPA 8270C
Project: Crystal Geyser / SB0746		Page 18 of 20

Total number of ME compounds allowed: 4 LCS ME CL validation result: Pass

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 5030C EPA 8260B

Project: Crystal Geyser / SB0746

Page 19 of 20

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepare	d Date	Analyzed	LCS/LCSD Ba	tch Number
099-14-316-2194	LCS		Aqueous		GC/MS RR	07/10/15	07/10	0/15 11:13	150710L011	
099-14-316-2194	LCSD		Aqueous		GC/MS RR	07/10/15	07/10	0/15 11:43	150710L011	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSI Conc		%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Acetone	50.00	48.68	97	56.44	113	12-150	0-173	15	0-20	
Benzene	50.00	44.10	88	48.98	98	80-120	73-127	10	0-20	
Bromobenzene	50.00	48.86	98	54.43	109	80-120	73-127	11	0-20	
Bromochloromethane	50.00	47.67	95	52.19	104	80-122	73-129	9	0-20	
Bromodichloromethane	50.00	46.66	93	51.93	104	80-123	73-130	11	0-20	
Bromoform	50.00	49.38	99	55.12	110	74-134	64-144	11	0-20	
Bromomethane	50.00	28.20	56	30.65	61	22-160	0-183	8	0-20	
2-Butanone	50.00	47.29	95	56.17	112	44-164	24-184	17	0-20	
n-Butylbenzene	50.00	50.34	101	54.63	109	80-132	71-141	8	0-20	
sec-Butylbenzene	50.00	47.44	95	50.92	102	80-129	72-137	7	0-20	
tert-Butylbenzene	50.00	47.82	96	51.32	103	80-130	72-138	7	0-20	
Carbon Disulfide	50.00	44.32	89	44.68	89	60-126	49-137	1	0-20	
Carbon Tetrachloride	50.00	41.17	82	45.02	90	64-148	50-162	9	0-20	
Chlorobenzene	50.00	44.86	90	49.11	98	80-120	73-127	9	0-20	
Chloroethane	50.00	38.16	76	40.89	82	63-123	53-133	7	0-20	
Chloroform	50.00	43.77	88	48.99	98	79-121	72-128	11	0-20	
Chloromethane	50.00	38.75	77	33.31	67	43-133	28-148	15	0-20	
2-Chlorotoluene	50.00	45.33	91	49.48	99	80-130	72-138	9	0-20	
4-Chlorotoluene	50.00	45.72	91	49.77	100	80-121	73-128	8	0-20	
Dibromochloromethane	50.00	49.49	99	54.57	109	80-125	72-132	10	0-20	
1,2-Dibromo-3-Chloropropane	50.00	47.57	95	54.76	110	68-128	58-138	14	0-20	
1,2-Dibromoethane	50.00	48.40	97	53.33	3 107	80-120	73-127	10	0-20	
Dibromomethane	50.00	45.38	91	51.15	102	80-121	73-128	12	0-20	
1,2-Dichlorobenzene	50.00	46.37	93	50.76	102	80-120	73-127	9	0-20	
1,3-Dichlorobenzene	50.00	47.28	95	51.98	3 104	80-121	73-128	9	0-20	
1,4-Dichlorobenzene	50.00	45.78	92	50.05	100	80-120	73-127	9	0-20	
Dichlorodifluoromethane	50.00	47.78	96	49.63	99	25-187	0-214	4	0-20	
1,1-Dichloroethane	50.00	42.68	85	47.69	95	75-120	68-128	11	0-20	
1,2-Dichloroethane	50.00	44.93	90	50.23	3 100	80-123	73-130	11	0-20	
1,1-Dichloroethene	50.00	43.90	88	47.69	95	74-122	66-130	8	0-20	
c-1,2-Dichloroethene	50.00	47.75	95	53.25		75-123	67-131	11	0-20	
t-1,2-Dichloroethene	50.00	47.39	95	51.11	102	70-124	61-133	8	0-20	
1,2-Dichloropropane	50.00	46.63	93	52.48		80-120	73-127	12	0-20	
1,3-Dichloropropane	50.00	48.23	96	54.13		80-120	73-127	12	0-20	
2,2-Dichloropropane	50.00	46.80	94	50.49		49-151	32-168	8	0-20	
1,1-Dichloropropene	50.00	41.44	83	44.51		76-120	69-127	7	0-20	

RPD: Relative Percent Difference. CL:

CL: Control Limits

Geosyntec Consultants 924 Anacapa Street, Suite 4A Santa Barbara, CA 93101-2177 Date Received: Work Order: Preparation: Method: 07/09/15 15-07-0460 EPA 5030C EPA 8260B

Project: Crystal Geyser / SB0746

Page 20 of 20

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Cond	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
c-1,3-Dichloropropene	50.00	50.21	100	55.82	112	80-124	73-131	11	0-20	
t-1,3-Dichloropropene	50.00	47.49	95	52.01	104	68-128	58-138	9	0-20	
Ethylbenzene	50.00	46.81	94	51.80	104	80-120	73-127	10	0-20	
2-Hexanone	50.00	46.25	92	53.93	108	57-147	42-162	15	0-20	
Isopropylbenzene	50.00	46.62	93	51.12	102	80-127	72-135	9	0-20	
p-Isopropyltoluene	50.00	50.30	101	55.36	111	80-125	72-132	10	0-20	
Methylene Chloride	50.00	46.95	94	51.93	104	74-122	66-130	10	0-20	
4-Methyl-2-Pentanone	50.00	45.68	91	53.76	108	71-125	62-134	16	0-20	
Naphthalene	50.00	45.68	91	51.22	102	54-144	39-159	11	0-20	
n-Propylbenzene	50.00	45.38	91	49.50	99	80-127	72-135	9	0-20	
Styrene	50.00	48.49	97	53.36	107	80-120	73-127	10	0-20	
1,1,1,2-Tetrachloroethane	50.00	49.01	98	54.28	109	80-125	72-132	10	0-20	
1,1,2,2-Tetrachloroethane	50.00	47.90	96	53.50	107	78-126	70-134	11	0-20	
Tetrachloroethene	50.00	53.08	106	58.38	117	57-141	43-155	10	0-20	
Toluene	50.00	45.51	91	50.87	102	80-120	73-127	11	0-20	
1,2,3-Trichlorobenzene	50.00	49.96	100	55.02	110	58-154	42-170	10	0-20	
1,2,4-Trichlorobenzene	50.00	52.21	104	55.41	111	57-153	41-169	6	0-20	
1,1,1-Trichloroethane	50.00	45.73	91	50.01	100	76-124	68-132	9	0-20	
1,1,2-Trichloro-1,2,2- Trifluoroethane	50.00	50.43	101	52.79	106	58-148	43-163	5	0-20	
1,1,2-Trichloroethane	50.00	48.35	97	53.52	107	80-120	73-127	10	0-20	
Trichloroethene	50.00	46.43	93	51.43	103	80-120	73-127	10	0-20	
Trichlorofluoromethane	50.00	47.16	94	49.81	100	64-136	52-148	5	0-20	
1,2,3-Trichloropropane	50.00	45.96	92	51.93	104	74-122	66-130	12	0-20	
1,2,4-Trimethylbenzene	50.00	48.25	97	53.17	106	80-120	73-127	10	0-20	
1,3,5-Trimethylbenzene	50.00	50.12	100	54.90	110	80-126	72-134	9	0-20	
Vinyl Acetate	50.00	65.47	131	73.21	146	34-172	11-195	11	0-20	
Vinyl Chloride	50.00	39.10	78	40.24	80	67-127	57-137	3	0-20	
p/m-Xylene	100.0	88.67	89	97.07	97	80-127	72-135	9	0-20	
o-Xylene	50.00	44.32	89	49.32	99	80-127	72-135	11	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	46.17	92	51.04	102	71-120	63-128	10	0-20	

Total number of LCS compounds: 66
Total number of ME compounds: 0
Total number of ME compounds allowed: 3

LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 15-07-0460				Page 1 of 1
Method	<u>Extraction</u>	Chemist ID	Instrument	Analytical Location
EPA 200.7	N/A	771	ICP 7300	1
EPA 300.0	N/A	834	IC 9	1
EPA 6010B	EPA 3005A Filt.	771	ICP 7300	1
EPA 6010B	EPA 3005A Filt.	935	ICP 7300	1
EPA 6010B	EPA 3010A Total	935	ICP 7300	1
EPA 6010B	EPA 3010A Total	935	ICP 8300	1
EPA 7470A	EPA 7470A Filt.	1004	Mercury 04	1
EPA 7470A	EPA 7470A Total	1004	Mercury 04	1
EPA 8015B (M)	EPA 3510C	972	GC 46	1
EPA 8260B	EPA 5030C	1005	GC/MS RR	2
EPA 8270C	EPA 3510C	923	GC/MS TT	1
SM 2320B	N/A	857	PH1/BUR03	1
SM 2540 C	N/A	1009	SC 2	1
SM 4500 H+ B	N/A	688	PH 1	1
SM 4500 N Org B	N/A	685	BUR05	1
SM 4500 P B/E	N/A	857	UV 7	1
SM 4500-NH3 B/C	N/A	685	BUR05	1
SM 4500-NO3 E	N/A	650	UV 7	1
SM 5540C	N/A	990	UV 9	1
Total Nitrogen by Calc	N/A	92	N/A	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 15-07-0460 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Document Number: 6655

X

	An	Analysis Requ	luest and Chain of Custody Record	Shain	of Cu	stod	y Re	cord	•	15-07-0460	0460	
Project Name Crystal Grysol	Project Number 530746			Redu	Required Analyses	alyses			<u> </u>	Page	of	
Samplers Names (0, 60divez	Project Contact RVAN SWIN	rsmith@esyntec	Z				24×2	(-)	<u> </u>			
15	Lab Contact S. Dowalk		8260 1250 1250 1250 1250		le de le	·	ondson	ر ر ۱۰۰۲:۲۸:۱		White copy: to accompany samples	ompany sample:	
Lab Address ' hary (wary	Lab Phone	hbh	ગ s	S#8	י במשי ו במשי	50	22 Ph		5/24	Yellow copy: field copy	field copy	
Gorden Grane, CAP41	Carrier/Waybill No. たみを						401 B					
			Bott	le Type a	Bottle Type and Volume/Preservative	e/Prese	rvative				Lab Use	ø
		Samula									Only	
Sample Name	Date Time			Numbe	Number of Containers	ntainer	s		T	Comments	Bottles	5
MW-08-070715	\$751 (S)(t)(t)	1120	× × ×	×	×	K	×	×				Π
MW-02-070715	7/4/15/1951		×	×	×	×	×	×				Π
10W-6W-070715			×		-				×	(JOCS, TPH-CC,	c'ants)	
5120to-10-83	1717115 1650		X	X X	χ ×	X	×	X				
acr8-02-070715	7/4/12	0°61-1	×									
	-											
					<i> </i>							
)				
Special Instructions:									<u>T</u>	Turn-around Time:		
	,								₽-	Normal	Rush:	
1. Relinquished by	•	Date	31/8/12	1. Re	ceived	by /	7	7	rcker	y Da	Date 7/8/パ	
(Signiture/Affiliation) ///れじって	7	Time	0945	(Signitu	re/Affiliation	£	٦ 	ς	240	(Signiture/Affiliation) $+$ C	3760 ar	Pa
Relinquished by		Date		2. Re	2. Received by $\rho_{\!\scriptscriptstyle N}$	$\sim \mathcal{U}$ Kq	7	1		ey Date	11/b/t al	9e 8
(Signiture/Affiliation)		Time		(Signitu	(Signiture/Affiliation)	2	`			Time	G00/ 91	5.0
3. Relinquished by		Date		3. Re	3. Received by	by				Date	te	f 88
niture/Affiliation)		Time		Signitu	re/Affiliation	=				Time]e	}_

10875 Rancho Bernardo Road, Suite 200, San Diego, CA 92127 (858) 674-6559 Fax: (858) 674-6586 Geosyntec^o

FEC 意义。US Airbill	FedEx Retrieopy op
Sender's FedEx 247932208	4a Express Package Service 12 set SATURDAY Delivery, see Section 9. Package 150 lbs. 10 lbs. 1 FedEx Priority Overright 5 Fedex Standard Overnight 6 FedEx Information in Package 150 lbs. 10
Sender's Name Phone	3 FedEx 2Day Second business day. 20 FedEx Express Saver Third business day.
Company	FedEx Envelope rate not available, Manimum charge: One-pound rate. 4b Express Freight Service to add SATURDAY Dativery, see Section 8. Face (ser 150 Mbs.) (bs.
Address	7 FedEx 1Bay Freight* 8 FedEx 2Day Freight 83 FedEx Edight sight
Dept/Roor/Suite/Room City	5 Packaging - Ovaborant 2000. 200
2 Your Internal Billing Reference	6 FedEx Pak* 3 FedEx Envelope* 2 FedEx Pak* 3 Sox 4 FedEx Tube
3 To Recipients	5 Special Handling 3 SATURDAY Delivery Abuillable ONLY for Fedex Priority Overright, Fedex 20ay, Fedex Day Freight, and Fedex 20ay, Fedex Fedex Inc. available for, Fedex First Dumpfelt Fedex First Demonstration Available for, Fedex First Dumpfelt Fedex First Demonstration Available for Fedex First Page Availa
Name Phone	resign to select ZP codes.
Company	One box must be checked.
Recipient's Address	Plangurous goods (including drylice) consort he shipped in Fedbackchaging. Pangurous goods (including drylice) consort he shipped in Fedbackchaging. Cargo Alfr. Only 9
We manned disker to P.O. boxes or P.O. ZIP codes. Opp.//Piocr/Simb/Room Addresss	7 Payment Bill to: Enter FellEx Acct. No. or Credit Card No. below. below. cott No. or Acct. No. in Section 1 voil 2 Recipient 3 Third Party 4 Credit Card 5 Cash/Check.
To enquest a pockage behald at a specific FedEx location, print FedEx address hero.	be blind. FodEx Acct. No. Credit Card No. Up.
City State Z!P	Total Packages Total Weight Total Charges
	Our fiability is limited to \$100 unless you declate a higher value. See the current FedEx Service Gordetar details.
	8 NEW Residential Delivery Signature Options Hydrogona's signature characteristic for the Company of the Compan
8540 7985 0171	No Signature Requirate 10 Anyone at necipiants address may also first address, anyoning and obtaining a signature for delivery. See applies.
3070 7000 0171	Bar. Data 5,055 Fart #150281-©1594-2005 FedEx-PRINTED IN U.S.A. SRY sign for delivery, Fee applies.

Calscience

WORK ORDER NUMBER: 15-07- 0460

SAMPLE RECEIPT CHECKLIST

COOLER / OF /

CLIENT: <u>Geosyntec</u>	DATE: 07	19	/ 2015
TEMPERATURE: (Criteria: 0.0°C - 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC5 (CF:-0.2°C); Temperature (w/o CF):5-9°C (w/ CF):5-7 □ Sample(s) outside temperature criteria (PM/APM contacted by:) □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sam □ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: □ Air □ Filter	pling	□ Samp	
CUSTODY SEAL: Cooler		ked by: _ ked by: _	83 <u>c</u>
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete □ Sampling date □ Sampling time □ Matrix □ Number of containers		No □	N/A
□ No analysis requested □ Not relinquished □ No relinquished date □ No relinquish Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition			0
Proper containers for analyses requested Sufficient volume/mass for analyses requested Samples received within holding time Aqueous samples for certain analyses received within 15-minute holding time	<u>a</u>		
Proper preservation chemical(s) noted on COC and/or sample container			7 4 10
Container(s) for certain analysis free of headspace ✓ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500) □ Carbon Dioxide (SM 4500) □ Ferrous Iron (SM 3500) □ Hydrogen Sulfide (Hach) Tedlar™ bag(s) free of condensation			
CONTAINER TYPE: (Trip Blank Lot Aqueous: □ VOA ☑ VOAh □ VOAna, □ 100PJ □ 100PJna, □ 125AGB □ 125AGBh □ 125PBznna □ 250AGB □ 250CGB ☑ 250CGB ☑ 250PBn □ 500AGB □	Number: <u>/</u> 5¢	7125PB)
Z 500PB Z 1AGB □ 1AGBna₂ Z 1AGBs Z 1PB □ 1PBna □ □ □ □ □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores® () □ Terra Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □	□] 	
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Zij Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ ,	Labeled/Check	-	

Calscience

Page 88 of 88 work order number: 15-07- Δ 460

SAMPLE ANOMALY REPORT

DATE: 07 / <u>69</u> / 2015

SAMPLES, CONTAINERS, AND LABELS:	Comments
□ Sample(s) NOT RECEIVED but listed on COC	
☐ Sample(s) received but NOT LISTED on COC	
☐ Holding time expired (list client or ECI sample ID and analysis)	
☐ Insufficient sample amount for requested analysis (list analysis)	
☐ Improper container(s) used (list analysis)	
☐ Improper preservative used (list analysis)	
☐ No preservative noted on COC or label (list analysis and notify lab)	
☑ Sample container(s) not labeled	+ (-3) all Containers
☐ Client sample label(s) illegible (list container type and analysis)	
☐ Client sample label(s) do not match COC (comment)	
☐ Project information	
☐ Client sample ID	
☐ Sampling date and/or time	
☐ Number of container(s)	
☐ Requested analysis	(-z).(4) 1 of 3 vials received
☑ Sample container(s) compromised (comment)	broken
_⊒ Broken	
☐ Water present in sample container	
☐ Air sample container(s) compromised (comment)	
□ Flat	
☐ Very low in volume	
☐ Leaking (not transferred; duplicate bag submitted)	
☐ Leaking (transferred into ECI Tedlar™ bags*)	
☐ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments
,	
HEADSPACE:	
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)
ECI ECI Total ECI ECI Total	ECI ECI Total
Sample ID Container ID Number** Sample ID Container ID Number**	Sample ID Container ID Number** Requested Analysis
	to all districtions and
Comments: (-3) received 3 vials/HCL+/-; +1-1 Liter Amber unpreserva	cound plasic unpresented.
	Reported by:

Date of Report: 06/30/2015

Ryan Smith

Geosyntec Consultants 924 Anacapa Street Suite 4A Santa Barbara, CA 93101

Client Project: CG Roxane Bacteriological **BCL Project:**

1515578 **BCL Work Order:** B207029 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 6/25/2015. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Christina Herndon

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information		
Laboratory / Client Sample C	ross Reference	3
Bacteriological Sample Result	s	
1515578-01 - AP-4 Vapo	Probe Boring next to Arsenic Pond	
Water Analysis (Ba	eteriological)	4
Notes		
Notes and Definitions		Ę

Report ID: 1000369507

Reported: 06/30/2015 14:14 Project: Bacteriological Project Number: CG Roxane Project Manager: Ryan Smith

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1515578-01 **COC Number:**

Project Number: Sampling Location:

Sampling Point: AP-4 Vapor Probe Boring next to Arsenic Pond

Sampled By: K. A.

06/25/2015 18:55 Receive Date: Sampling Date: 06/25/2015 14:35

Sample Depth: Water

Lab Matrix: Groundwater Sample Type:

District ID: System Number: Station Number: Sample Site:

Residual Chlorine, ppm: Lab Temperature, C: 1.4

Report ID: 1000369507 Page 3 of 5

Reported: 06/30/2015 14:14 Project: Bacteriological Project Number: CG Roxane Project Manager: Ryan Smith

1515578-01

Water Analysis (Bacteriological)

COC Number:

Project Number: Sampling Location:

AP-4 Vapor Probe Boring next to Arsenic Pond **Sampling Point:**

Sampled By:

K. A.

06/25/2015 18:55 Receive Date: Sampling Date: 06/25/2015 14:35

Sample Depth: Sample Matrix: Water District ID:

System Number: Station Number: Sample Site:

Residual Chlorine, ppm:

1.4 Temperature, C:

Multiple Tube Fermentation (5,5,5)

					Initial			Lab
Constituent	Result	Units	Method	Analyst	Dilution	Date Started	Date Completed	Quals
Total Coliform, Presumptive Test	0	Positive Tubes	SM-9221B	TMT	1	06/25/2015 19:00	06/27/2015	
Total Coliform, Confirmed Test	0	Positive Tubes	SM-9221B	TMT	1	06/25/2015 19:00	06/27/2015	
Total Coliform, Density	<2	MPN/100ml	SM-9221B	TMT	1	06/25/2015 19:00	06/27/2015	
Fecal Coliform, Confirmed Test	0	Positive Tubes	SM-9221E	TMT	1	06/25/2015 19:00	06/27/2015	
Fecal Coliform, Density	<2	MPN/100ml	SM-9221E	TMT	1	06/25/2015 19:00	06/27/2015	

Report ID: 1000369507 Page 4 of 5

06/30/2015 14:14 Reported: Project: Bacteriological Project Number: CG Roxane Project Manager: Ryan Smith

Notes And Definitions

MPN Most Probable Number

Report ID: 1000369507

Page 5 of 5

Date of Report: 07/10/2015

Ryan Smith

Geosyntec Consultants 924 Anacapa Street Suite 4A Santa Barbara, CA 93101

Client Project: [none]

BCL Project: Bacteriological

BCL Work Order: 1516292 Invoice ID: B207834

Enclosed are the results of analyses for samples received by the laboratory on 7/6/2015. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Christina Herndon

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information	
Laboratory / Client Sample Cross Reference	3
Bacteriological Sample Results	
1516292-01 - MW-07-070615	
Water Analysis (Bacteriological)	
Notes	
Notes and Definitions	5

Page 2 of 5

Report ID: 1000372501

Reported: 07/10/2015 11:49 Project: Bacteriological

Project Number: [none] Project Manager: Ryan Smith

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1516292-01 **COC Number:**

> **Project Number: Sampling Location:**

Sampling Point: MW-07-070615

Sampled By: N.G.

07/06/2015 17:25 Receive Date: Sampling Date: 07/06/2015 13:15

Sample Depth:

Lab Matrix: Water

Groundwater Sample Type:

District ID: System Number:

Station Number: Sample Site:

Residual Chlorine, ppm: Lab Temperature, C: 1.2

Report ID: 1000372501 Page 3 of 5

Reported: 07/10/2015 11:49

Project: Bacteriological

Project Number: [none] Project Manager: Ryan Smith

1516292-01

Water Analysis (Bacteriological)

COC Number:

Project Number: Sampling Location:

MW-07-070615 **Sampling Point:**

Sampled By:

07/06/2015 17:25 Receive Date: Sampling Date: 07/06/2015 13:15

N.G.

Sample Depth: Sample Matrix: Water District ID:

Sample Site:

System Number: Station Number:

Residual Chlorine, ppm:

1.2 Temperature, C:

Multiple Tube Fermentation (5,5,5)

					Initial			Lab
Constituent	Result	Units	Method	Analyst	Dilution	Date Started	Date Completed	Quals
Total Coliform, Presumptive Test	1	Positive Tubes	SM-9221B	FBV	1	07/07/2015 08:30	07/09/2015	
Total Coliform, Confirmed Test	1	Positive Tubes	SM-9221B	FBV	1	07/07/2015 08:30	07/09/2015	
Total Coliform, Density	2.0	MPN/100ml	SM-9221B	FBV	1	07/07/2015 08:30	07/09/2015	
Fecal Coliform, Confirmed Test	1	Positive Tubes	SM-9221E	FBV	1	07/07/2015 08:30	07/09/2015	
Fecal Coliform, Density	2.0	MPN/100ml	SM-9221E	FBV	1	07/07/2015 08:30	07/09/2015	

Report ID: 1000372501 Page 4 of 5

07/10/2015 11:49 Reported: Project: Bacteriological

Project Number: [none] Project Manager: Ryan Smith

Notes And Definitions

MPN Most Probable Number

Report ID: 1000372501

Date of Report: 07/13/2015

Ryan Smith

Geosyntec Consultants 924 Anacapa Street Suite 4A Santa Barbara, CA 93101

Client Project: [none]

Bacteriological **BCL Project:**

1516465 **BCL Work Order:** B207916 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 7/7/2015. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Christina Herndon

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Report ID: 1000372856

Table of Contents

Sample Information	
Laboratory / Client Sample Cross Reference	3
Bacteriological Sample Results	
1516465-01 - MW-08-070715	
Water Analysis (Bacteriological)	6
1516465-02 - MW-09-070715	
Water Analysis (Bacteriological)	7
1516465-03 - MW-06-070715	
Water Analysis (Bacteriological)	8
1516465-04 - MW-04-070715	
Water Analysis (Bacteriological)	9
1516465-05 - MW-03-070715	
Water Analysis (Bacteriological)	10
1516465-06 - MW-05-070715	
Water Analysis (Bacteriological)	11
1516465-07 - MW-01-070715	
Water Analysis (Bacteriological)	12
1516465-08 - MW-02-070715	
Water Analysis (Bacteriological)	13
lotes	
Notes and Definitions	14

Reported: 07/13/2015 10:26 Project: Bacteriological

Project Number: [none] Project Manager: Ryan Smith

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1516465-01 COC Number:

> **Project Number:** Sampling Location:

Sampling Point: MW-08-070715

Sampled By: N.G.

07/07/2015 17:36 **Receive Date:** Sampling Date: 07/07/2015 12:50

Sample Depth: Lab Matrix: Water

Groundwater Sample Type:

District ID: System Number: Station Number: Sample Site:

Residual Chlorine, ppm: Lab Temperature, C: 0.5

1516465-02 **COC Number:**

Project Number:

Sampling Location:

MW-09-070715 Sampling Point:

Sampled By: N.G.

07/07/2015 17:36 Receive Date: 07/07/2015 13:45 Sampling Date:

Sample Depth: Water Lab Matrix:

Groundwater Sample Type:

District ID: System Number: Station Number: Sample Site:

Residual Chlorine, ppm: Lab Temperature, C:

1516465-03 COC Number:

Project Number:

Sampling Location:

MW-06-070715 Sampling Point:

Sampled By: N.G. **Receive Date:** 07/07/2015 17:36

07/07/2015 14:19 Sampling Date:

Sample Depth: Water Lab Matrix: Sample Type: Groundwater

District ID: System Number: Station Number: Sample Site:

Residual Chlorine, ppm: Lab Temperature, C:

Report ID: 1000372856

Page 3 of 14

Reported: 07/13/2015 10:26 Project: Bacteriological

Project Number: [none] Project Manager: Ryan Smith

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1516465-04 COC Number:

Project Number:

Sampling Location:

Sampling Point: MW-04-070715

Sampled By:

N.G.

Receive Date:

07/07/2015 17:36

Sampling Date: Sample Depth:

07/07/2015 14:20

Lab Matrix:

Water

Sample Type:

Groundwater

District ID:

System Number: Station Number: Sample Site:

Residual Chlorine, ppm: Lab Temperature, C:

1516465-05

COC Number:

Project Number:

Sampling Location: Sampling Point:

Sampled By:

MW-03-070715

N.G.

Receive Date:

07/07/2015 17:36

Sampling Date:

07/07/2015 14:30

Sample Depth: Lab Matrix:

Water

Sample Type:

Groundwater

District ID:

System Number:

Station Number: Sample Site:

Residual Chlorine, ppm: Lab Temperature, C:

1516465-06

COC Number:

Project Number:

Sampling Location:

MW-05-070715 Sampling Point: N.G.

Sampled By:

Receive Date:

07/07/2015 17:36

Sampling Date:

07/07/2015 14:27

Sample Depth:

Water

Lab Matrix: Sample Type:

Groundwater

District ID:

System Number: Station Number:

Sample Site:

Residual Chlorine, ppm:

Lab Temperature, C:

Report ID: 1000372856

Reported: 07/13/2015 10:26 Project: Bacteriological

Project Number: [none] Project Manager: Ryan Smith

Laboratory / Client Sample Cross Reference

Client Sample Information Laboratory

1516465-07 COC Number:

> **Project Number:** Sampling Location:

Sampling Point: MW-01-070715

N.G.

Sampled By:

07/07/2015 17:36 **Receive Date:**

Sampling Date: 07/07/2015 14:37

Sample Depth: Lab Matrix: Water

Groundwater Sample Type:

District ID: System Number:

Station Number: Sample Site:

Residual Chlorine, ppm: Lab Temperature, C:

1516465-08 **COC Number:**

Project Number: Sampling Location:

MW-02-070715 Sampling Point:

N.G. Sampled By:

07/07/2015 17:36 Receive Date: 07/07/2015 15:25 Sampling Date:

Sample Depth: Water Lab Matrix: Groundwater Sample Type:

District ID: System Number: Station Number:

Sample Site: Residual Chlorine, ppm: Lab Temperature, C:

Report ID: 1000372856 Page 5 of 14

Reported: 07/13/2015 10:26 Project: Bacteriological

Project Number: [none]
Project Manager: Ryan Smith

1516465-01

Water Analysis (Bacteriological)

COC Number: ---

Project Number: --Sampling Location: ---

Sampling Point: MW-08-070715

Sampled By:

N.G. 07/07/2015 17:36

Receive Date: 07/07/2015 17:36 **Sampling Date:** 07/07/2015 12:50

Sample Depth: --Sample Matrix: Water

District ID:

System Number: Station Number:

Sample Site: Residual Chlorine, ppm:

Temperature, C: 0.5

Multiple Tube Fermentation (5,5,5)

					Initial			Lab
Constituent	Result	Units	Method	Analyst	Dilution	Date Started	Date Completed	Quals
Total Coliform, Presumptive Test	1	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/11/2015	
Total Coliform, Confirmed Test	1	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/11/2015	
Total Coliform, Density	2.0	MPN/100ml	SM-9221B	FBV	1	07/08/2015 08:30	07/11/2015	
Fecal Coliform, Confirmed Test	0	Positive Tubes	SM-9221E	FBV	1	07/08/2015 08:30	07/11/2015	
Fecal Coliform, Density	<2	MPN/100ml	SM-9221E	FBV	1	07/08/2015 08:30	07/11/2015	

Report ID: 1000372856 4100 At

Reported: 07/13/2015 10:26 Project: Bacteriological

Project Number: [none]
Project Manager: Ryan Smith

1516465-02

Water Analysis (Bacteriological)

COC Number: ---

Project Number: --Sampling Location: ---

Sampling Point: MW-09-070715

Sampled By:

Receive Date: 07/07/2015 17:36 **Sampling Date:** 07/07/2015 13:45

N.G.

Sample Depth: --Sample Matrix: Water

District ID:

System Number: Station Number: Sample Site:

Residual Chlorine, ppm:

Temperature, C:

Multiple Tube Fermentation (5,5,5)

					Initial			Lab
Constituent	Result	Units	Method	Analyst	Dilution	Date Started	Date Completed	Quals
Total Coliform, Presumptive Test	5	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Total Coliform, Confirmed Test	0	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Total Coliform, Density	<2	MPN/100ml	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Fecal Coliform, Confirmed Test	0	Positive Tubes	SM-9221E	FBV	1	07/08/2015 08:30	07/12/2015	
Fecal Coliform, Density	<2	MPN/100ml	SM-9221E	FBV	1	07/08/2015 08:30	07/12/2015	

Report ID: 1000372856 4100 Atlas

Reported: 07/13/2015 10:26 Project: Bacteriological

Project Number: [none] Project Manager: Ryan Smith

1516465-03

Water Analysis (Bacteriological)

COC Number:

Project Number: Sampling Location:

MW-06-070715 **Sampling Point:**

N.G. Sampled By:

07/07/2015 17:36 Receive Date: Sampling Date: 07/07/2015 14:19

Sample Depth: Sample Matrix: Water District ID:

System Number: Station Number: Sample Site:

Residual Chlorine, ppm:

Temperature, C:

Multiple Tube Fermentation (5,5,5)

					Initial			Lab
Constituent	Result	Units	Method	Analyst	Dilution	Date Started	Date Completed	Quals
Total Coliform, Presumptive Test	4	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Total Coliform, Confirmed Test	0	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Total Coliform, Density	<2	MPN/100ml	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Fecal Coliform, Confirmed Test	0	Positive Tubes	SM-9221E	FBV	1	07/08/2015 08:30	07/12/2015	
Fecal Coliform, Density	<2	MPN/100ml	SM-9221E	FBV	1	07/08/2015 08:30	07/12/2015	

Report ID: 1000372856 Page 8 of 14 Geosyntec Consultants

Reported: 07/13/2015 10:26

924 Anacapa Street Suite 4A

Project: Bacteriological

Santa Barbara, CA 93101 Project Number: [none]
Project Manager: Ryan Smith

1516465-04

Receive Date:

Sampling Date:

Water Analysis (Bacteriological)

COC Number: --- District ID:

Project Number:---System Number:Sampling Location:---Station Number:Sampling Point:MW-04-070715Sample Site:

Sampled By: N.G. Residual Chlorine, ppm:

07/07/2015 17:36 **Temperature, C:** 07/07/2015 14:20

Sample Depth: --Sample Matrix: Water

Multiple Tube Fermentation (5,5,5)

					Initial			Lab
Constituent	Result	Units	Method	Analyst	Dilution	Date Started	Date Completed	Quals
Total Coliform, Presumptive Test	0	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/10/2015	
Total Coliform, Confirmed Test	0	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/10/2015	
Total Coliform, Density	<2	MPN/100ml	SM-9221B	FBV	1	07/08/2015 08:30	07/10/2015	
Fecal Coliform, Confirmed Test	0	Positive Tubes	SM-9221E	FBV	1	07/08/2015 08:30	07/10/2015	
Fecal Coliform, Density	<2	MPN/100ml	SM-9221E	FBV	1	07/08/2015 08:30	07/10/2015	

Report ID: 1000372856 4100 Atlas Court Bakerstield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 9 of 14

Reported: 07/13/2015 10:26 Project: Bacteriological

Project Number: [none]

Project Manager: Ryan Smith

1516465-05

Water Analysis (Bacteriological)

COC Number:

Project Number: Sampling Location:

MW-03-070715 **Sampling Point:**

N.G. Sampled By:

07/07/2015 17:36 Receive Date: Sampling Date: 07/07/2015 14:30

Sample Depth: Sample Matrix: Water District ID:

System Number: Station Number: Sample Site:

Residual Chlorine, ppm:

Temperature, C:

Multiple Tube Fermentation (5,5,5)

					Initial			Lab
Constituent	Result	Units	Method	Analyst	Dilution	Date Started	Date Completed	Quals
Total Coliform, Presumptive Test	5	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Total Coliform, Confirmed Test	1	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Total Coliform, Density	2.0	MPN/100ml	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Fecal Coliform, Confirmed Test	0	Positive Tubes	SM-9221E	FBV	1	07/08/2015 08:30	07/12/2015	
Fecal Coliform, Density	<2	MPN/100ml	SM-9221E	FBV	1	07/08/2015 08:30	07/12/2015	

Report ID: 1000372856 Page 10 of 14 Geosyntec Consultants Reported: 07/13/2015 10:26 Project: Bacteriological 924 Anacapa Street Suite 4A

Santa Barbara, CA 93101 Project Number: [none] Project Manager: Ryan Smith

1516465-06

Receive Date:

Sampling Date:

Water Analysis (Bacteriological)

COC Number: District ID:

Project Number: System Number: Sampling Location: Station Number: MW-05-070715 **Sampling Point:** Sample Site:

N.G. Sampled By: Residual Chlorine, ppm:

> 07/07/2015 17:36 Temperature, C: 07/07/2015 14:27

Sample Depth: Sample Matrix: Water

Multiple Tube Fermentation (5,5,5)

			Initial					Lab
Constituent	Result	Units	Method	Analyst	Dilution	Date Started	Date Completed	Quals
Total Coliform, Presumptive Test	8	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Total Coliform, Confirmed Test	1	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Total Coliform, Density	2.0	MPN/100ml	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Fecal Coliform, Confirmed Test	0	Positive Tubes	SM-9221E	FBV	1	07/08/2015 08:30	07/12/2015	
Fecal Coliform, Density	<2	MPN/100ml	SM-9221E	FBV	1	07/08/2015 08:30	07/12/2015	

Report ID: 1000372856 Page 11 of 14

Reported: 07/13/2015 10:26 Project: Bacteriological

Project Number: [none] Project Manager: Ryan Smith

1516465-07

Water Analysis (Bacteriological)

COC Number:

Project Number: Sampling Location:

MW-01-070715 **Sampling Point:**

Sampled By:

07/07/2015 17:36 Receive Date: Sampling Date: 07/07/2015 14:37

N.G.

Sample Depth: Sample Matrix: Water District ID:

System Number: Station Number: Sample Site:

Residual Chlorine, ppm:

Temperature, C:

Multiple Tube Fermentation (5,5,5)

			Initial					Lab
Constituent	Result	Units	Method	Analyst	Dilution	Date Started	Date Completed	Quals
Total Coliform, Presumptive Test	2	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Total Coliform, Confirmed Test	1	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Total Coliform, Density	2.0	MPN/100ml	SM-9221B	FBV	1	07/08/2015 08:30	07/12/2015	
Fecal Coliform, Confirmed Test	0	Positive Tubes	SM-9221E	FBV	1	07/08/2015 08:30	07/12/2015	
Fecal Coliform, Density	<2	MPN/100ml	SM-9221E	FBV	1	07/08/2015 08:30	07/12/2015	

Report ID: 1000372856 Page 12 of 14 Geosyntec Consultants Reported: 07/13/2015 10:26 Project: Bacteriological 924 Anacapa Street Suite 4A

Santa Barbara, CA 93101 Project Number: [none] Project Manager: Ryan Smith

1516465-08

Receive Date:

Sampling Date:

Water Analysis (Bacteriological)

District ID: **COC Number:**

Project Number: System Number: Sampling Location: Station Number: MW-02-070715 **Sampling Point:** Sample Site:

N.G. Sampled By: Residual Chlorine, ppm:

> 07/07/2015 17:36 Temperature, C: 07/07/2015 15:25

Sample Depth: Sample Matrix: Water

Multiple Tube Fermentation (5,5,5)

			Initial					Lab
Constituent	Result	Units	Method	Analyst	Dilution	Date Started	Date Completed	Quals
Total Coliform, Presumptive Test	0	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/10/2015	
Total Coliform, Confirmed Test	0	Positive Tubes	SM-9221B	FBV	1	07/08/2015 08:30	07/10/2015	
Total Coliform, Density	<2	MPN/100ml	SM-9221B	FBV	1	07/08/2015 08:30	07/10/2015	
Fecal Coliform, Confirmed Test	0	Positive Tubes	SM-9221E	FBV	1	07/08/2015 08:30	07/10/2015	
Fecal Coliform, Density	<2	MPN/100ml	SM-9221E	FBV	1	07/08/2015 08:30	07/10/2015	

Report ID: 1000372856 Page 13 of 14 Geosyntec Consultants 07/13/2015 10:26 Reported: Project: Bacteriological 924 Anacapa Street Suite 4A Santa Barbara, CA 93101

Project Number: [none] Project Manager: Ryan Smith

Notes And Definitions

MPN Most Probable Number

APPENDIX G DATA VALIDATION MEMORANDUM

Crystal Geyser Olancha
Stage 2A Data Validation Summary

08/05/15

Summary of the Stage 2A Data Validation of Eurofins Calscience Laboratory Report 15-07-0551

The air samples were analyzed for volatile organic compounds (VOCs) by EPA method TO-15. The samples were analyzed by Eurofins/Calscience, Garden Grove, California.

The data were validated at an EPA Stage 2A data validation level. The organic data were reviewed based on the USEPA National Functional Guidelines for Superfund Organic Methods Data Review, August 2014 (EPA 540-R-014-002), as well as by the pertinent method referenced by the data package and professional and technical judgment.

Based on this Stage 2A data validation covering the quality control (QC) parameters listed below, the data as qualified are usable for meeting project objectives. Qualified data should be used within the limitations of the qualification.

The samples were analyzed within the method specified holding time.

The results for the laboratory method blanks, laboratory control samples/laboratory control sample duplicate (LCS/LCSD) pairs and surrogates were within the laboratory specified acceptance criteria, with the following exceptions.

The LCSD recovery of methylene chloride was low and outside the laboratory specified acceptance criteria. Therefore, the undetected values of methylene chloride in the associated samples were UJ qualified as estimated less than the reporting limits (RLs), based on professional and technical judgment.

A field duplicate sample, SV-01-5-070815-DUP, was collected. Acceptable precision (RPD \leq 30%) was demonstrated between the field duplicate and the original sample, SV-01-5-070815, with the following exceptions.

Chloromethane was detected in the original sample, but not in the field duplicate, resulting in a noncalculable RPD between the results. In addition, benzene, 2-butanone, ethylbenzene, tetrachloroethene, toluene and o-xylene were detected in the field duplicate, but not in the original sample, resulting in noncalculable RPDs between the results. Therefore, based on technical and professional judgment, the concentrations of these compounds in the field duplicate pair were J qualified as estimated and the nondetect values were UJ qualified as estimated less than the RLs.

Respectfully submitted by: Reviewed by:

Mary Tyler Julia K. Caprio
Geosyntec Consultants Geosyntec Consultants
07/29/15 8/05/15

DV summary Crystal Geyser 080515 air

1

Crystal Geyser Stage 2A Data Validation Summary

08/05/15

Summary of the Stage 2A Data Validation of Eurofins Calscience Laboratory Reports 15-06-1886, 15-06-1979 and 15-06-2190

The soil samples were analyzed for volatile organic compounds (VOCs) by EPA methods 5035/8260B, semivolatile organic compounds (SVOCs) by EPA methods 3545/8270C, carbon chain hydrocarbons (C6-C44) by EPA methods 3550/8015B (M), CAM 17 metals (including mercury) by EPA methods 3050B/6010B and 7471A, total alkalinity as CaCO₃ by Standard Method 2320B (M), ammonia nitrogen by Standard Method 4500-NH3 B/C (M), nitrate-nitrite as N by Standard Methods 4500-NO3 E, anions (chloride and sulfate) by EPA method 300.0, total phosphorus by Standard Method 4500 B/E (M), total phosphate by Standard Method 4500 B/E (M), pH by EPA method 9045D (M), total kjeldahl nitrogen (TKN) by Standard Method 4500-N Org B (M), total nitrogen by calculation by Standard Method 4500 (M), total dissolved solids (TDS) by Standard Method 2540C (M), surfactants (methylene blue active substances, MBAS) by Standard Method 5540C (M), total coliform and fecal coliform by Standard Method 9221B.

The samples were analyzed at Truesdail Laboratories, Inc., Irvine, California for total and fecal coliforms and the other analyses were performed by Eurofins/Calscience, Garden Grove, California.

The data were validated at an EPA Stage 2A data validation level. The organic data were reviewed based on the USEPA National Functional Guidelines for Superfund Organic Methods Data Review, August 2014 (EPA 540-R-014-002), as well as by the pertinent methods referenced by the data package and professional and technical judgment. The inorganic data were reviewed based on USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, August 2014 (EPA 540-R-013-001), as well as by the pertinent methods referenced by the data package and professional and technical judgment.

Based on this Stage 2A data validation covering the quality control (QC) parameters listed below, with the exceptions of the R qualified (rejected) data, the data as qualified are usable for meeting project objectives. Qualified data (J, UJ) should be used within the limitations of the qualification.

The samples were analyzed within the method specified holding times, with the following exceptions.

The pH analyses were performed outside the 15 minute holding times, by more than twice the holding times. No qualifications were applied to the pH data based on technical and professional judgment.

The MBAS analyses in reports 15-06-1886 and 15-06-2190 were performed 8-9 days and 5 days after collection, respectively, more than twice the 48-hour holding time. Therefore, based on technical and professional judgment, the nondetect values of MBAS in the associated samples were R qualified as rejected.

The total and fecal coliform results reported by Standard Methods 9221B in laboratory report 15-06-2190 were analyzed 8 and 9 days after collection; the total and fecal coliform results reported by

Standard Methods 9221B in laboratory report 15-06-1979 were analyzed 4-6 days after collection; the total and fecal coliform results reported by Standard Methods 9221B in laboratory report 15-06-1886 were analyzed 6 days after collection. These analyses were more than twice the 24-hour holding time. Therefore, based on technical and professional judgment, the nondetect values of total and fecal coliforms in the associated samples were R qualified as rejected due to the gross exceedances of the holding time.

The samples in laboratory report 15-06-2190 were received 5 days after collection, at 20.6°C. Based on technical and professional judgment, the nondetect values of the VOCs, SVOCs and TPH were R qualified as rejected. In addition, for the other analyses, with the exception of pH, MBAS and the metals analyses by EPA method 6010B, the nondetect values were UJ qualified as estimated less than the RLs and the concentrations were J qualified as estimated, based on technical and professional judgment. Based on professional and technical judgment, no qualifications were applied to the pH results due to the temperature at laboratory receipt. The MBAS results were R qualified as rejected due to the gross exceedances of the holding times (analyzed more than 2 times the holding time); therefore, no additional qualifications were applied to the data due to the temperature at laboratory receipt. There is no temperature requirement for the preservation of soils for metals analysis; therefore, no qualifications were applied to the data due to the temperature at laboratory receipt.

The results for the laboratory method blanks, laboratory control samples/laboratory control sample duplicate (LCS/LCSD) pairs, matrix spike/matrix spike duplicate (MS/MSD) pairs, laboratory duplicates and surrogates were within the laboratory specified acceptance criteria, with the following exceptions.

There were no QC sample results (blanks or control samples) reported with the total and fecal coliform results. Since the results were R qualified as rejected due to analyses outside the holding time, no additional qualifications were applied to the data.

One or both of the LCS/LCSD recoveries were low and outside the laboratory specified acceptance criteria in batch 150630L008 for 1,1-dichloroethene and trans-1,2-dichloroethene and in batch 150630L007 for dichlorodifluromethane (report 15-06-2190). Since the nondetect results for these compounds in the associated samples were R qualified as rejected due to the lag time for laboratory receipt and the temperature at laboratory receipt, no additional qualifications were applied to the data.

The following SVOC compounds were not spiked into the LCSs; therefore, based on professional and technical judgment, the undetected values of these SVOCs in the associated samples were UJ qualified as estimated less than the MDLs.

2,4,5-Trichlorophenol	2,4-Dinitrophenol	2-Nitrophenol
1,2-Dichlorobenzene	2,6-Dinitrotoluene	3,3-Dichlorobenzidine
1,3-Dichlorobenzene	2-Chloronaphthalene	Isophorone
1-Methylnaphthalene	2-Chlorophenol	4-Bromophenyl phenyl ether
2,4,6-Trichlorophenol	2-Methyl-4,6-Dinitrophenol	4-Chloroaniline
2,4-Dichlorophenol	2-Methylnaphthalene	4-Chlorophenyl Phenyl Ether
2,4-Dimethylphenol	2-Nitroaniline	Dibenz[a,h]anthracene

DibenzofuranBenzo[k]fluorantheneHexachlorobutadiene (HCBD)p-NitroanilineBenzoic AcidHexachlorocyclopentadiene

ChryseneBenzyl alcoholHexachloroethaneAnilineBis(2-Chloroethoxy)MethaneIndeno(1,2,3-cd)pyrene

Anthracene Bis(2-Chloroethyl) Ether m-Nitroaniline
Pyridine Bis(2-chloroisopropyl) ether Phenanthrene
Azobenzene Dibutyl phthalate Nitrobenzene

Benzidine Diethyl phthalate n-Nitrosodimethylamine (NDMA)

Benz[a]anthracene Di-n-octyl phthalate n-Nitrosodiphenylamine
Benzo(a)pyrene Bis(2-ethylhexyl) phthalate 3/4-Methylphenol

Benzo(b)fluoranthene Fluoranthene
Benzo(g,h,i)perylene Hexachlorobenzene

A field duplicate sample, AP-4-05-062515-DUP, was collected and reported in laboratory report 15-06-2190. Acceptable precision (RPD \leq 50%) was demonstrated between the field duplicate and the original sample, AP-4-05-062515, with the following exceptions.

The RPDs for lead and nickel were greater than 50%; therefore, the concentrations of lead and nickel in the field duplicate pair were J qualified as estimated. In addition, ammonia was detected in the original sample, but not in the field duplicate, resulting in a noncalculable RPD between the results. Therefore, based on technical and professional judgment, the concentration of ammonia in sample AP-4-05-062515 was J qualified as estimated and the nondetect value in the field duplicate, AP-4-05-062515-DUP, was UJ qualified as estimated less than the RL.

Respectfully submitted by: Reviewed by:

Mary Tyler Julia K. Caprio

Geosyntec Consultants Geosyntec Consultants

07/29/15 08/05/15

Crystal Geyser
Stage 2A Data Validation Summary

8/10/15

Summary of the Stage 2A Data Validation of BC Laboratories Work Orders 1516292, 1515578 and 1516465

The water samples were analyzed for total coliform and fecal coliform by Standard Method 9221B.

The samples were analyzed at BC Laboratories, Inc., Bakersfield, California for total and fecal coliforms.

The data were validated at an EPA Stage 2A data validation level. The data were reviewed based on USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, August 2014 (EPA 540-R-013-001), as well as by the pertinent method referenced by the data package and professional and technical judgment.

Based on this Stage 2A data validation covering the quality control (QC) parameters listed below, the data are usable for meeting project objectives, with the exception of the rejected data due to gross exceedance of the holding time, as described below.

The sample in laboratory report 1515578 was analyzed within the 8 hour holding time. The samples in laboratory reports 1516292 and 1516465 were analyzed more than 16 hours after collection, which are gross exceedances of the holding time. Therefore, based on technical and professional judgment, the undetected values of total and fecal coliforms in the samples in laboratory reports 1516292 and 1516465 were R qualified as rejected and the concentrations were J qualified as estimated.

The positive and negative control results were within the laboratory specified acceptance criteria.

Respectfully submitted by: Reviewed by:

Mary Tyler Julia K. Caprio

Geosyntec Consultants Geosyntec Consultants

08/10/15 8/10/15

Crystal Geyser Stage 2A Data Validation Summary

08/05/15

Summary of the Stage 2A Data Validation of Eurofins Calscience Laboratory Reports 15-06-2184, 15-07-0357 and 15-07-0460

The water samples were analyzed for volatile organic compounds (VOCs) by EPA methods 5030C/8260B, semivolatile organic compounds (SVOCs) by EPA methods 3510C/8270C, carbon chain hydrocarbons (C6-C44) by EPA methods 3510C/8015B (M), calcium, magnesium and sodium by EPA methods 200.7, total and dissolved CAM 17 metals (including mercury) by EPA methods 3010A/6010B, 3005A/6010B and 7470A, total alkalinity as CaCO₃ by Standard Method 2320B, ammonia nitrogen by Standard Method 4500-NH3 B/C, nitrate-nitrite as N by Standard Methods 4500-NO3 E, anions (chloride and sulfate) by EPA method 300.0, total phosphorus by Standard Method 4500 B/E, total phosphate by Standard Method 4500 B/E, pH by Standard Method 4500 H+B, total kjeldahl nitrogen (TKN) by Standard Method 4500-N Org B, total nitrogen by calculation, total dissolved solids (TDS) by Standard Method 2540C and surfactants (methylene blue active substances, MBAS) by Standard Method 5540C.

The samples were analyzed by Eurofins/Calscience, Garden Grove, California.

The data were validated at an EPA Stage 2A data validation level. The organic data were reviewed based on the USEPA National Functional Guidelines for Superfund Organic Methods Data Review, August 2014 (EPA 540-R-014-002), as well as by the pertinent methods referenced by the data package and professional and technical judgment. The inorganic data were reviewed based on USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, August 2014 (EPA 540-R-013-001), as well as by the pertinent methods referenced by the data package and professional and technical judgment.

Based on this Stage 2A data validation covering the quality control (QC) parameters listed below, with the exceptions of the R qualified (rejected) data, the data as qualified (J, UJ) are usable for meeting project objectives. Qualified data should be used within the limitations of the qualification.

A trip blank was sent in with the samples reported in laboratory report 15-07-0357, but it was not listed on the chain of custody. VOCs were not detected in the trip blank above the RLs.

The SVOC sample container for MW-07-070615 (laboratory report 15-07-0357) was received broken upon laboratory receipt, so analysis was not performed.

The samples were analyzed within the method specified holding times, with the following exceptions.

The pH analyses were performed outside the 15 minute holding times, by more than twice the holding times. No qualifications were applied to the pH data, based on technical and professional judgment.

The nitrate-nitrite analysis of sample MW-07-070615 (laboratory report 15-07-0357) was flagged by the laboratory to indicate analysis outside the holding time. The laboratory report indicated the analysis was

2 days after collection. Since the holding time for nitrate-nitrite is 28 days after collection, no qualifications were applied to the data.

The MBAS analyses in report 15-06-2184 were performed 4 days after collection, outside the 48-hour holding time. Therefore, based on technical and professional judgment, the nondetect values of MBAS in the associated samples were UJ qualified as estimated less than the RLs.

The samples in laboratory report 15-06-2184 were received 3 days after collection, at 16.3°C. Based on technical and professional judgment, the nondetect values of the VOCs and SVOCs were R qualified as rejected. In addition, for the other analyses, with the exception of pH and the metals analyses by EPA methods 200.7 and 6010B, the nondetect values were UJ qualified as estimated less than the RLs and the concentrations were J qualified as estimated, based on technical and professional judgment. Based on professional and technical judgment, no qualifications were applied to the pH results due to the temperature at laboratory receipt. There is no temperature requirement for the preservation of waters for metals analysis; therefore, no qualifications were applied to the metals data due to the temperature at laboratory receipt.

The samples in laboratory report 15-07-0357 were received the day after collection, at 10.5°C, 14.6°C and 16.1°C. Based on technical and professional judgment, with the exception of pH and the metals analyses by EPA methods 200.7 and 6010B, for the other analyses nondetect values were UJ qualified as estimated less than the RLs and the concentrations were J qualified as estimated, based on technical and professional judgment. Based on professional and technical judgment, no qualifications were applied to the pH results due to the temperature at laboratory receipt. There is no temperature requirement for the preservation of waters for metals analysis by EPA methods 200.7 and 6010B.

The results for the laboratory method blanks, trip blanks, equipment blanks, laboratory control samples/laboratory control sample duplicate (LCS/LCSD) pairs, matrix spike/matrix spike duplicate (MS/MSD) pairs, laboratory duplicates and surrogates were within the laboratory specified acceptance criteria, with the following exceptions.

One or both of the beryllium, cadmium, cobalt, lead and thallium MS/MSD recoveries were high and outside the laboratory specified acceptance criteria in the MS/MSD pair using sample MW-07-070615. Since beryllium, cadmium, cobalt, lead and thallium were not detected in sample MW-07-070615, no qualifications were applied to the data. In addition, one or both of the copper, nickel, vanadium and zinc MS/MSD recoveries were high and outside the laboratory specified acceptance criteria in the MS/MSD pair using sample MW-07-070615. Therefore, the concentrations of copper, nickel, vanadium and zinc in sample MW-07-070615 were J+ qualified as estimated with high biases.

The LCS/LCSD recoveries of n-nitrosodiphenylamine in batch 150709L02 in report 15-07-0357, in batch 150630L12 in report 15-06-2184 and in batch 150709L02 in report 15-07-0460 were high and outside the laboratory specified acceptance criteria. Since n-nitrosodiphenylamine was not detected in the associated samples, no qualifications were applied to the data.

One or both of the LCS/LCSD recoveries of 4-methyl-2-pentanone and 1,2,3-trichlorpropane in batch 150709L002 in report 15-07-0357 were high and outside the laboratory specified acceptance criteria.

Since 4-methyl-2-pentanone and 1,2,3-trichlorpropane were not detected in the associated samples, no qualifications were applied to the data.

The LCS recovery of 1,1-dichloroethene in batch 150702L023 in report 15-06-2184 was high and outside the laboratory specified acceptance criteria. Since 1,1-dichloroethene was not detected in the associated samples, no qualifications were applied to the data. In addition, the vinyl chloride LCS/LCSD RPD was high and outside the laboratory specified acceptance criteria. Since vinyl chloride was not detected in the associated samples, no qualifications were applied to the data.

The 1,2-dichloroethane-d4 surrogate recovery in sample AP-4-10-062515 was high and outside the laboratory specified acceptance criteria. Since the other three VOC surrogates were acceptable and VOCs were not detected in the sample, no qualifications were applied to the data.

The samples were analyzed for total and dissolved CAM 17 metals. The total metals concentrations were greater than the dissolved metals concentrations, with the following exceptions indicated in the table below. No qualifications were applied to the concentrations if the RPD between the total and dissolved concentrations was <30%. The concentrations were J qualified as estimated for RPDs >30%. If the total metal was not detected and the dissolved metal was detected, the undetected total metal value was UJ qualified as estimated less than the RL and the dissolved concentration was J qualified as estimated.

Client Sample ID	Compound	Laboratory Concentration (mg/L)	Laboratory Flag	RPD	Validation Concentration (mg/L)	Validation Qualifier*	Reason Code**
AP-4-10- 062515	Arsenic	0.0801	NA	99	0.0801	J	13
AP-4-10- 062515	Arsenic (dissolved)	0.239	NA		0.239	J	13
AP-4-10- 062515	Barium	0.01	U	NC	0.01	UJ	13
AP-4-10- 062515	Barium (dissolved)	1.3	NA		1.3	J	13
AP-4-10- 062515	Chromium	0.01	U	NC	0.01	UJ	13
AP-4-10- 062515	Chromium (dissolved)	0.0133	NA		0.0133	J	13
AP-4-10- 062515	Copper	0.01	U	NC	0.01	UJ	13
AP-4-10- 062515	Copper (dissolved)	0.0836	NA		0.0836	J	13
AP-4-10- 062515	Lead	0.01	U	NC	0.01	UJ	13
AP-4-10- 062515	Lead (dissolved)	0.0161	NA		0.0161	J	13
AP-4-10- 062515	Molybdenum	0.0543	NA	119	0.0543	J	13
AP-4-10- 062515	Molybdenum (dissolved)	0.137	NA		0.137	J	13
AP-4-10- 062515	Vanadium	0.0221	NA	158	0.0221	J	13
AP-4-10- 062515	Vanadium (dissolved)	0.187	NA		0.187	J	13

Client Sample ID	Compound	Laboratory Concentration	Laboratory Flag	RPD	Validation Concentration	Validation Qualifier*	Reason Code**
		(mg/L)		101	(mg/L)		10
AP-4-10-	Zinc	0.0116	NA	184	0.0116	J	13
062515	7: / -l: ll\	0.202	NIA.	1	0.202		12
AP-4-10-	Zinc (dissolved)	0.282	NA		0.282	J	13
062515		2 2224					
MW-03-	Arsenic	0.0201	NA	2	NA	NA	NA
070715				1			
MW-03-	Arsenic	0.0205	NA		NA	NA	NA
070715	(dissolved)	0.016			0.010		10
MW-04-	Antimony	0.016	NA	43	0.016	J	13
070615		0.0047		1	0.0247		42
MW-04-	Antimony	0.0247	NA		0.0247	J	13
070615	(dissolved)	2 2 4 2 2					
MW-04-	Copper	0.0433	NA	11	NA	NA	NA
070615	_						
MW-04-	Copper	0.0482	NA		NA	NA	NA
070615	(dissolved)	0.005	l	L	0.00-		
MW-04-	Silver	0.005	U	NC	0.005	UJ	13
070615				_			
MW-04-	Silver	0.0068	NA		0.0068	J	13
070615	(dissolved)						
MW-04-	Antimony	0.015	U	NC	0.015	UJ	13
070615-DUP				_			
MW-04-	Antimony	0.0203	NA		0.0203	J	13
070615-DUP	(dissolved)						
MW-04-	Silver	0.005	U	NC	0.005	UJ	13
070615-DUP							
MW-04-	Silver	0.00791	NA		0.00791	J	13
070615-DUP	(dissolved)						
MW-05-	Copper	0.0473	NA	7	NA	NA	NA
070715							
MW-05-	Copper	0.0505	NA		NA	NA	NA
070715	(dissolved)						
MW-05-	Silver	0.005	U	NC	0.005	UJ	13
070715				_			
MW-05-	Silver	0.00559	NA		0.00559	J	13
070715	(dissolved)						
MW-07-	Copper	0.0162	NA	79	0.0162	J	13
070615							
MW-07-	Copper	0.0372	NA		0.0372	J	13
070615	(dissolved)						
MW-08-	Zinc	0.01	U	31	0.01	UJ	13
070715				1			
MW-08-	Zinc (dissolved)	0.0136	NA		0.0136	J	13
070715							
MW-02-	Arsenic	0.021	NA	10	NA	NA	NA
070715				1			
MW-02-	Arsenic	0.0233	NA		NA	NA	NA
070715	(dissolved)						
MW-09-	Barium	0.0432	NA	2	NA	NA	NA
070715]			
MW-09-	Barium	0.0442	NA		NA	NA	NA
070715	(dissolved)	1					

A field duplicate sample, MW-04-070615-DUP, was collected and reported in laboratory report 15-07-0357. Acceptable precision (RPD \leq 30%) was demonstrated between the field duplicate and the original sample, MW-04-070615, with the following exceptions.

The RPD for zinc was greater than 30%; therefore, the concentrations of zinc in the field duplicate pair were J qualified as estimated. In addition, total antimony and dissolved barium were detected in the original sample, but not in the field duplicate, resulting in noncalculable RPDs between the results. Therefore, based on technical and professional judgment, the concentrations of total antimony and dissolved barium in sample MW-04-070615 were J qualified as estimated and the nondetect values in the field duplicate, MW-04-070615-DUP, were UJ qualified as estimated less than the RLs.

Respectfully submitted by: Reviewed by:

Mary Tyler Geosyntec Consultants 07/29/15 Julia K. Caprio Geosyntec Consultants 7/xx/15