

# **Groundwater Monitoring and Progress Report Fourth Quarter 2004**

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

**Sierra Pacific Industries** 

January 26, 2005

Project No. 9329.000, Task 22

**Geomatrix Consultants** 

2101 Webster Street, 12th Floor Oakland, CA 94612 (510) 663-4100 • Fax (510) 663-4141



January 26, 2004 Project 9329.000, Task 22

Executive Officer California Regional Water Quality Control Board North Coast Region 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

Attention: Dean Prat

Subject: Groundwater Monitoring and Progress Report

Fourth Quarter 2004 Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Dear Mr. Prat:

As requested by Sierra Pacific Industries, we have enclosed a copy of the subject report.

Sincerely yours,

GEOMATRIX CONSULTANTS, INC.

Ross Steenson, C.HG. Senior Hydrogeologist

Edward P. Conti, C.E.G., C.HG.

Principal Geologist

RAS/EPC/abr

I:\Doc\_Safe\9000s\9329\22-Task\4Q2004\TransmittalLtr.doc

#### Enclosure

cc: Bob Ellery, Sierra Pacific Industries (with enclosure)

Gordie Amos, Sierra Pacific Industries (with enclosure)

Fred Evenson, Law Offices of Frederic Evenson (with enclosure) Jim Lamport, Ecological Rights Foundation (with enclosure)



# **Groundwater Monitoring and Progress Report Fourth Quarter 2004**

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

**Sierra Pacific Industries** 

Prepared by:

**Geomatrix Consultants, Inc.** 

2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4100

January 26, 2005

Project No. 9329.000, Task 22

## **Geomatrix Consultants**



### PROFESSIONAL CERTIFICATION

GROUNDWATER MONITORING AND PROGRESS REPORT FOURTH OUARTER 2004

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

January 26, 2005 Project No. 9329.000, Task 22



This report was prepared by Geomatrix Consultants, Inc., under the professional supervision of Ross A. Steenson. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional hydrogeologic practice, and within the scope of the project. There is no other warranty, either express or implied.

Ross A. Steenson, C.HG. Senior Hydrogeologist



## TABLE OF CONTENTS

|               |        |                                                                                                                                              | Page |
|---------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.0           | INTRO  | ODUCTION                                                                                                                                     | 1    |
| 2.0           | SITE 1 | BACKGROUND                                                                                                                                   | 1    |
|               | 2.1    | HISTORY                                                                                                                                      |      |
|               | 2.2    | LITHOLOGY                                                                                                                                    | 3    |
|               | 2.3    | Hydrogeology                                                                                                                                 | 3    |
| 3.0           | GROU   | JNDWATER MONITORING REPORT                                                                                                                   | 4    |
|               | 3.1    | Methods                                                                                                                                      |      |
|               |        | 3.1.1 Field Methods                                                                                                                          |      |
|               |        | 3.1.2 Laboratory Methods                                                                                                                     |      |
|               | 3.2    | LABORATORY DATA QUALITY REVIEW                                                                                                               |      |
|               | 3.3    | RESULTS OF GROUNDWATER MONITORING                                                                                                            |      |
|               |        | 3.3.2 Groundwater Analytical Results                                                                                                         |      |
|               | 3.4    | WASTEWATER DISPOSAL                                                                                                                          |      |
| 4.0           |        | GRESS REPORT ON PILOT STUDY ACTIVITIES                                                                                                       |      |
|               |        |                                                                                                                                              |      |
| 5.0           | SCHE   | DULE                                                                                                                                         | 7    |
| 6.0           | REFE   | RENCES                                                                                                                                       | 8    |
|               |        | TABLES                                                                                                                                       |      |
| Table         | 1      | Monitoring Well Construction Details                                                                                                         |      |
| Table 2       |        | Summary of Water Level Measurements                                                                                                          |      |
| Table 3       |        | Summary of Water Quality Parameters                                                                                                          |      |
| Table 4       | 4      | Laboratory Analytical Results for Chlorinated Phenols                                                                                        |      |
|               |        | FIGURES                                                                                                                                      |      |
| Figure        | 1      | Site Location Map                                                                                                                            |      |
| Figure        | 2      | Site Plan                                                                                                                                    |      |
| Figure        |        | Former Green Chain Area Plan                                                                                                                 |      |
| Figure        |        | Potentiometric Surface Map of Shallow Groundwater, December 14, 2004                                                                         |      |
| Figure Figure |        | Potentiometric Surface Map of Deep Groundwater, December 14, 2004<br>PCP Analytical Results for Shallow Groundwater, December 14 and 15, 200 | )4   |
|               |        | APPENDIXES                                                                                                                                   |      |
| Appen         | dix A  | Field Records—Groundwater Monitoring Program                                                                                                 |      |
| Appen         |        | Laboratory Analytical Reports for Groundwater Samples—Groundwater Monitoring Program                                                         |      |
| Appen         | dix C  | Laboratory Data Quality Review—Groundwater Monitoring Program                                                                                |      |



# GROUNDWATER MONITORING AND PROGRESS REPORT FOURTH QUARTER 2004

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

### 1.0 INTRODUCTION

This report presents the methods and results of groundwater monitoring and pilot study activities performed at the Sierra Pacific Industries (SPI) Arcata Division Sawmill, located in Arcata, California (the site, Figure 1) during the fourth calendar quarter 2004. The quarterly groundwater monitoring activities were performed in accordance with Monitoring and Reporting Program (MRP) No. R1-2003-0127, issued by the California Regional Water Quality Control Board, North Coast Region (RWQCB) on November 13, 2003. The pilot study activities were performed in accordance with the *Pilot Study Work Plan for Implementation of Proposed Remedial Action* (Geomatrix, 2004b). The pilot study work plan was approved by RWQCB staff in a letter dated June 1, 2004.

Geomatrix Consultants, Inc. (Geomatrix) has prepared this report on behalf of SPI. This report is organized as follows:

- Background, including a discussion of site history, subsurface lithology, and hydrogeology, is presented in Section 2.0.
- Fourth Quarter 2004 Groundwater Monitoring Report methods and results are presented in Section 3.0.
- Progress Report on Pilot Study Activities is presented in Section 4.0.
- Schedule of the planned monitoring and pilot study activities is presented in Section 5.0.
- References used in preparation of this report are listed in Section 6.0.

#### 2.0 SITE BACKGROUND

This section provides background information regarding the site setting and history and discusses subsurface conditions at the site, including lithology and hydrogeology. Subsurface lithologic and hydrogeologic conditions at the site were previously investigated and described by EnviroNet (EnviroNet, 2002a).



## 2.1 HISTORY

The approximately 68-acre site is located on the Samoa Peninsula, along the northern shoreline of Humboldt Bay and approximately 4 miles west of the town of Arcata, California. The site is bounded to the east by the Mad River Slough, to the northwest by an old railroad grade, and to the south by New Navy Base Road and mud flats of Humboldt Bay (Figure 1).

The site is currently an active sawmill; features are shown on Figure 2. The sawmill has operated at the site since approximately 1950. Prior to construction of the mill facilities, the site consisted of undeveloped sand dunes and mud flats. During construction of mill facilities in the 1950s and 1960s, portions of the Mad River Slough on the eastern, northern, and southern sides of the site were filled. The current mill facility consists of an administrative building, a main sawmill building, numerous wood-processing buildings, log storage areas, milled lumber storage areas, and loading/unloading areas. A 140-foot-deep water supply well (Feature 48 on Figure 2) provides water for log sprinkling. An older, shallow water supply well is located adjacent to the 140-foot well, but has not been used since it began to produce sand.

Wood surface protection activities historically conducted at the site included the use of an antistain solution containing chlorinated phenols, including pentachlorophenol (PCP) and tetrachlorophenol, to control sap stain and mold on a small amount of milled lumber. The antistain solution was applied in an aboveground dip tank located in the middle of the former green chain, which was located immediately south of the eastern end of the current sorter building (Feature 49 on Figure 2). Use of the solution containing chlorinated phenols in the former green chain area of the site reportedly commenced in the early to mid-1960s and was discontinued in 1985 (EnviroNet, 2002b). At the direction of the RWQCB, SPI stopped purchasing anti-stain solution containing chlorinated phenols in 1985 and commenced a process of relocating the remaining solution containing chlorinated phenols to a new dip tank facility for recycling (MFG, 2003). Due to the difficulty of disposing of the old solution containing chlorinated phenols, the remaining solution from the old dip tank was mixed with a new anti-stain solution that did not contain chlorinated phenols at the new dip tank facility (Feature 21 on Figure 2). Recycling of the solution containing chlorinated phenols in the new dip tank continued until 1987, at which time the drip basin adjacent to the old dip tank was cleaned out, filled with sand, and capped with 3 to 4 inches of concrete (MFG, 2003). The new dip tank has been cleaned three times since 1987.



The potential effects of wood surface protection activities on soil and groundwater have been investigated to depths of approximately 20 feet below ground surface (bgs). In 2002, investigation activities included the installation of 19 monitoring wells at the site: 15 monitoring wells (MW-1 through MW-12, MW-14, MW-17, and MW-18) were constructed to monitor shallow groundwater between depths of approximately 2 and 8 feet bgs, and four monitoring wells (MW-13D, MW-15D, MW-16D, and MW-19D) were constructed to monitor deeper groundwater between depths of approximately 15 and 20 feet bgs (EnviroNet, 2003). Two additional monitoring wells (MW-20 and MW-21) were installed in January and February 2004 to monitor shallow groundwater (Geomatrix, 2004a). Monitoring well locations are illustrated on Figure 3. Monitoring well construction details are included in Table 1.

## 2.2 LITHOLOGY

The site is located adjacent to the Mad River Slough near the northern shoreline of Humboldt Bay. The eastern, northern, and southern portions of the site were filled in the 1950s and 1960s.

Based on observations made during investigation activities at the site, subsurface lithology within the shallow zone (less than 8 feet bgs) is predominantly fine- to medium-grained sand of apparent sand dune origin. Wood and fill material was locally observed in this shallow zone during activities such as the installation of monitoring wells MW-13D and MW-15D. Soil beneath the fine- to medium-grained sand consisted of more sand and locally of fine-grained material, classified as "bay mud." The fine-grained material was encountered during the installation of monitoring wells MW-3, MW-10, MW-15D, MW-16D, and MW-17 at depths of approximately 6 to 8 feet bgs and during the installation of monitoring well MW-15 at a depth of approximately 15 feet bgs. Soil described during the installation of a water supply well at the site (Feature 48 on Figure 2) suggests that subsurface soil between the ground surface and 140 feet bgs is predominately composed of sand (EnviroNet, 2001).

## 2.3 HYDROGEOLOGY

The groundwater surface measured in 21 site monitoring wells has ranged between approximately 0.5 and 5.5 feet bgs in the 17 shallow wells (i.e., screened from 2 to 8 feet bgs) and between approximately 4 and 6 feet bgs in the four deep wells (i.e., screened from 15 to 20 feet bgs). In the eastern portion of the site, groundwater flow generally is to the east, toward the Mad River Slough (MFG and Geomatrix, 2003). In the southwestern portion of the site,



groundwater likely flows to the south-southeast, toward Humboldt Bay (MFG and Geomatrix, 2003).

Tidal fluctuations in the Mad River Slough and nearby Humboldt Bay influence groundwater levels at the site in the vicinity of the slough. A 2002 tidal influence study conducted at the site by EnviroNet suggested that tidal effects become negligible at distances greater than 100 feet from the slough shore (EnviroNet, 2003).

#### 3.0 GROUNDWATER MONITORING REPORT

This section presents field and laboratory methods and results of groundwater monitoring activities conducted during this calendar quarter.

#### 3.1 METHODS

#### 3.1.1 Field Methods

On December 14, 2004, depth to water was measured in all site monitoring wells (MW-1 through MW-21; Figure 3), and at a monitoring point in the Mad River Slough using an electric sounder (Table 2). Water levels were measured in the wells on the first day as sampling, before conducting groundwater sampling activities. Monitoring wells were gauged in sequence, generally from lowest expected concentrations of constituents of concern (first) to highest expected concentrations (last), based on laboratory analytical results from the previous sampling event. Field personnel cleaned the meter used to measure the groundwater surface before using it at each location. The equipment was washed in a Alconox<sup>®</sup> detergent solution and then rinsed with distilled water.

Twenty-one monitoring wells (MW-1 through MW-21) were purged and sampled on December 14 and 15, 2004, in accordance with the site MRP. Field personnel used dedicated, disposable Teflon<sup>®</sup> bailers to remove standing water in the well casing, except for monitoring well MW-21, where a peristaltic pump and disposable tubing were used due to the small diameter of this well casing. Field personnel measured and recorded readings of temperature and specific conductance on field sampling records during groundwater purging activities. Purging activities stopped when a minimum of three well casing volumes of water had been removed and water quality parameters stabilized to within approximately 10 percent of specific conductance, 0.05 pH unit for pH, and 1 degree Celsius for temperature. Copies of the field records for groundwater monitoring and sampling activities are included in Appendix A.



Groundwater samples were collected after purging, if applicable, using the dedicated Teflon<sup>®</sup> bailers and, for monitoring well MW-21, the peristaltic pump and new tubing. For MW-14, which was purged dry and exhibited a slow recharge rate, the well was allowed to recharge overnight before sampling. A field sample of groundwater was monitored for temperature, specific conductance, and total dissolved solids (TDS) just prior to collecting the groundwater sample to record water quality parameters of the groundwater being sampled. These field parameter measurements are summarized in Table 3. Laboratory analysis of TDS was discontinued during the fourth quarter of 2004 in lieu of field measurements. Historical laboratory analytical results for TDS also are shown in this table.

Groundwater collected from each of the 21 monitoring wells was placed in two 125-milliliter glass vials that were sealed with Teflon<sup>®</sup>-lined screw caps. After filling, the vials were labeled and placed in an ice-cooled, insulated chest for transport to the laboratory for analysis. In addition, the depth to water in each monitoring well was measured after sampling. Chain-of-custody records were completed for the samples and accompanied the samples until received by the laboratory. Copies of the chain-of-custody records for the groundwater samples are included in Appendix B.

An additional groundwater sample was collected from monitoring well MW-21 and submitted to the laboratory as a blind duplicate sample, labeled MW-A. This sample was placed in a 500-milliliter amber glass bottle sealed with a Teflon<sup>®</sup>-lined screw cap and sent to the laboratory as described above.

## 3.1.2 Laboratory Methods

Groundwater samples collected from monitoring wells MW-1 through MW-21 were analyzed at Alpha Analytical Laboratories, Inc. (Alpha), of Ukiah, California, a California Department of Health Services-certified laboratory. The samples were analyzed for the chlorinated phenols (including PCP; 2,3,5,6-tetrachlorophenol; 2,3,4,6-tetrachlorophenol; 2,3,4,5-tetrachlorophenol; and, 2,4,6-trichlorophenol) in accordance with the Canadian Pulp method.

## 3.2 LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed the quality of laboratory data generated for the quarterly groundwater sampling as discussed in Appendix C. Based on the procedures and data quality review, the analytical data quality is satisfactory and the sample results appear to be representative.



## 3.3 RESULTS OF GROUNDWATER MONITORING

Monitoring and sampling results from site wells include groundwater elevation measurements, field measurements of water quality parameters, and laboratory analysis of groundwater samples. Groundwater elevation data provide information on subsurface hydraulic conditions, discussed below as occurrence and movement of groundwater. Groundwater quality is evaluated based on the laboratory analysis of chlorinated phenols. The results are presented below.

#### 3.3.1 Occurrence and Movement of Groundwater

The groundwater surface measured in shallow monitoring wells at the site (i.e., screened from approximately 2 to 8 feet bgs) ranged from 1.04 to 5.10 feet below the measuring point, with associated groundwater elevations ranging from 4.51 to 9.24 feet above mean sea level (msl), relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the direction of shallow groundwater flow is generally to the east (Figure 4). The magnitude of the lateral hydraulic gradient ranges from approximately 0.01 foot/foot in the former green chain vicinity to as much as approximately 0.03 foot/foot beneath the sawmill and maintenance buildings. Groundwater elevations within 100 feet of the Mad River Slough shoreline are subject to tidal fluctuations (EnviroNet, 2003) and as such, were not used to evaluate the flow direction or gradient of shallow groundwater.

The groundwater surface measured in deep monitoring wells at the site (i.e., screened from approximately 15 to 20 feet bgs) ranged from 4.38 to 5.75 feet below the measuring point with associated groundwater elevations ranging from 5.40 to 6.24 feet above msl, relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the direction of deep groundwater flow is generally to the east (Figure 5) at a lateral hydraulic gradient of approximately 0.01 foot/foot.

### 3.3.2 Groundwater Analytical Results

Twenty-one groundwater monitoring wells were sampled during this period (MW-1 through MW-21). Laboratory analytical reports and sample chain-of-custody records are included in Appendix B. The results for the chlorinated phenol analyses are presented in Table 4. PCP results also are illustrated on Figure 6 (shallow groundwater).

Trichlorophenol, PCP and tetrachlorophenols were only detected in groundwater samples from 2 of the 21 monitoring wells (MW-7 and MW-21; Table 4; PCP is also shown on Figure 6).



The detected concentrations of PCP were 22,000 micrograms per liter ( $\mu$ g/L) in the samples from MW-7 and 3,200  $\mu$ g/L and 8,100  $\mu$ g/L in the samples from MW-21 (for primary and blind duplicate samples, respectively).

#### 3.4 WASTEWATER DISPOSAL

Wastewater was generated from purging groundwater during sampling activities and from cleaning water-level measurement equipment while monitoring groundwater elevations. The purge water and equipment wash water were placed in three steel, 55-gallon drums and labeled. As the drums are filled, SPI arranges for the drums to be disposed by Asbury Environmental Services in accordance with applicable regulations.

During this calendar quarter, no drums of purge water were disposed.

#### 4.0 PROGRESS REPORT ON PILOT STUDY ACTIVITIES

This section presents a summary of activities performed during the calendar quarter in accordance with the *Pilot Study Work Plan for Implementation of Proposed Remedial Action* (Geomatrix, 2004b). The objectives of the Pilot Study are to: (1) demonstrate that in situ destruction of contaminants is occurring in the subsurface through natural attenuation processes; (2) demonstrate that discharges of wood surface protection chemicals to surface water have been abated; and (3) implement risk management measures to protect current and future personnel working at the site from participating in activities that would result in exposure to unacceptable risk.

During the subject period, no pilot study activities were conducted.

## 5.0 SCHEDULE

The next groundwater monitoring and sampling event for the MRP is scheduled to be performed in March 2005. The next planned activities for the pilot study include preparation of the site management plan and groundwater sampling during the first calendar quarter of 2005.



### 6.0 REFERENCES

- EnviroNet Consulting (EnviroNet), 2001, Report on Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill, Arcata, California, October 23.
- EnviroNet, 2002a, *Report on Recent Hydrogeologic Investigation at Sierra-Pacific Industries*, Arcata Division Sawmill, Arcata, California, April 19.
- EnviroNet, 2002b, *Interim Feasibility Study to Remediate Chlorophenols in Soil and Groundwater*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, May 1.
- EnviroNet, 2003, Results of the Remedial Investigation for Sierra Pacific Industries, Arcata Division Sawmills, Arcata, California, May 1.
- Geomatrix Consultants, Inc. (Geomatrix), 2004a, *Monitoring Wells MW-20 and MW-21 Installation and Soil Sampling Report*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, April 7.
- Geomatrix, 2004b, *Pilot Study Work Plan for Implementation of Proposed Remedial Action*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, April 29.
- MFG, Inc. (MFG), 2003, *Interim Remedial Measures Report*, Sierra Pacific Industries Arcata Division Sawmill, June 10.
- MFG and Geomatrix, 2003, *Third Quarter 2003 Groundwater Monitoring Report*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, November 3.
- U.S. Environmental Protection Agency, 1999, *Contract Laboratory Program National Functional Guidelines for Organic Data Review*, Office of Emergency and Remedial Response, October.



## MONITORING WELL CONSTRUCTION DETAILS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

| Well<br>No.        | Date<br>Installed | Total Boring Depth (ft bgs) | Total<br>Well<br>Depth<br>(ft bgs) | Well<br>Diameter<br>(inches) | Latitude <sup>2</sup> | Longitude <sup>2</sup> | Ground Level<br>Elevation <sup>2</sup><br>(ft msl) | Top of Casing Elevation <sup>2</sup> (ft msl) | Screened<br>Interval<br>(ft bgs) | Screen Slot<br>Size<br>(inches) | Filter<br>Pack<br>Interval<br>(ft bgs) | Bentonite<br>Seal<br>Interval<br>(ft bgs) | Surface<br>Seal<br>Interval <sup>3</sup><br>(ft bgs) |
|--------------------|-------------------|-----------------------------|------------------------------------|------------------------------|-----------------------|------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------|---------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------------------|
| Shallow Well       |                   |                             |                                    | _                            |                       |                        |                                                    |                                               |                                  |                                 | ,                                      |                                           |                                                      |
| MW-1               | 5-Mar-02          | 8                           | 8                                  | 2                            | 40.8661595            | 124.1521395            | 10.12                                              | 9.69                                          | 2.0 - 8.0                        | 0.01                            | 1.5 - 8.0                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-2               | 5-Mar-02          | 9                           | 8                                  | 2                            | 40.8661024            | 124.1525276            | 10.41                                              | 9.61                                          | 2.0 - 8.0                        | 0.01                            | 1.5 - 9.0                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-3               | 5-Mar-02          | 8.5                         | 8                                  | 2                            | 40.8662689            | 124.1530739            | 11.67                                              | 11.22                                         | 2.0 - 8.0                        | 0.01                            | 1.5 - 8.5                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-4               | 5-Mar-02          | 8                           | 8                                  | 2                            | 40.8662303            | 124.1533599            | 11.17                                              | 10.74                                         | 2.0 - 8.0                        | 0.01                            | 1.5 - 8.0                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-5               | 7-Mar-02          | 8                           | 8                                  | 2                            | 40.8660945            | 124.1536734            | 11.26                                              | 10.74                                         | 2.0 - 8.0                        | 0.01                            | 1.5 - 8.0                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-6               | 7-Mar-02          | 8                           | 8                                  | 2                            | 40.8660710            | 124.1531061            | 10.13                                              | 9.83                                          | 2.0 - 8.0                        | 0.01                            | 1.5 - 8.0                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-7               | 7-Mar-02          | 8                           | 8                                  | 2                            | 40.8659980            | 124.1531187            | 10.09                                              | 9.74                                          | 2.0 - 8.0                        | 0.01                            | 1.5 - 8.0                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-8               | 8-Mar-02          | 8                           | 8                                  | 2                            | 40.8657492            | 124.1535343            | 10.55                                              | 10.33                                         | 2.0 - 8.0                        | 0.01                            | 1.5 - 8.0                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-9               | 8-Mar-02          | 8                           | 8                                  | 2                            | 40.8657520            | 124.1532218            | 10.36                                              | 9.91                                          | 2.0 - 8.0                        | 0.01                            | 1.5 - 8.0                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-10              | 11-Nov-02         | 9.5                         | 8                                  | 2                            | 40.8656910            | 124.1530670            | 10.08                                              | 9.85                                          | 2.0 - 8.0                        | 0.01                            | 1.5 - 9.5                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-11              | 12-Nov-02         | 8.5                         | 8                                  | 2                            | 40.8655740            | 124.1533817            | 10.51                                              | 10.28                                         | 2.0 - 8.0                        | 0.01                            | 1.5 - 8.5                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-12              | 12-Nov-02         | 9.5                         | 8                                  | 2                            | 40.8656625            | 124.1537231            | 11.01                                              | 10.76                                         | 2.0 - 8.0                        | 0.01                            | 1.5 - 9.5                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-14              | 13-Nov-02         | 8                           | 8                                  | 2                            | 40.8657622            | 124.1523580            | 9.60                                               | 9.15                                          | 2.0 - 8.0                        | 0.01                            | 1.5 - 8.0                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-17              | 14-Nov-02         | 9                           | 8                                  | 2                            | 40.8656690            | 124.1526420            | 9.46                                               | 9.16                                          | 2.0 - 8.0                        | 0.01                            | 1.5 - 9.0                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-18              | 13-Nov-02         | 9.5                         | 8                                  | 4                            | 40.8657448            | 124.1531649            | 10.12                                              | 9.92                                          | 2.0 - 8.0                        | 0.01                            | 1.5 - 9.5                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| MW-20 <sup>4</sup> | 23-Jan-04         | 8                           | 7                                  | 4                            | 40.8658416            | 124.1532563            | 10.92                                              | 11.87                                         | 3.2 - 6.8                        | 0.01                            | 2.0 - 7.0                              | 1.0 - 2.0                                 | 0 - 1.0                                              |
| MW-21              | 12-Feb-04         | 8.3                         | 8.3                                | 0.75                         | 40.8660161            | 124.1530089            | 10.11                                              | 12.89                                         | 2.1 - 8.1                        | 0.01                            | 1.5 - 8.3                              | 1.0 - 1.5                                 | 0 - 1.0                                              |
| Deep Wells         |                   |                             |                                    |                              |                       |                        |                                                    |                                               |                                  |                                 |                                        |                                           |                                                      |
| MW-13D             | 12-Nov-02         | 21                          | 20                                 | 2                            | 40.8660809            | 124.1525231            | 10.26                                              | 9.96                                          | 15.0 - 20.0                      | 0.01                            | 13.5 - 21.0                            | 12.0 - 13.5                               | 0 - 12.0                                             |
| MW-15D             | 13-Nov-02         | 21                          | 20                                 | 2                            | 40.8662658            | 124.1528255            | 11.59                                              | 11.19                                         | 15.0 - 20.0                      | 0.01                            | 14.0 - 21.0                            | 12.0 - 14.0                               | 0 - 12.0                                             |
| MW-16D             | 14-Nov-02         | 21.5                        | 20                                 | 2                            | 40.8655571            | 124.1530363            | 10.13                                              | 9.83                                          | 15.0 - 20.0                      | 0.01                            | 14.0 - 21.5                            | 12.0 - 14.0                               | 0 - 12.0                                             |
| MW-19D             | 14-Nov-02         | 21.5                        | 20                                 | 2                            | 40.8662419            | 124.1532744            | 11.21                                              | 11.06                                         | 15.0 - 20.0                      | 0.01                            | 14.0 - 21.0                            | 12.0 - 14.0                               | 0 - 12.0                                             |

- Construction details for wells MW-1 through MW-9 were obtained from Report on Recent Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill, dated April 19, 2002 prepared by Environet Consulting. Construction details for wells MW-10 through MW-19D were obtained from Results of the Remedial Investigation for Sierra Pacific Industries Arcata Division Sawmills, Arcata, California, dated January 30, 2003, prepared by EnviroNet Consulting. Installation of wells MW-20 and MW-21 documented in this report.
   Monitoring wells were resurveyed by Omsberg Suveyors and Company of Eureka California on February 13, 2004; latitude and longitude were surveyed relative to North American Datum (NAD) of 1983 and elevations were surveyed relative to National Geodetic Vertical Datum (NGVD) of 1929. Elevations shown have been adjusted by 3.35 feet and presented as North American Vertical
- Datum (NAVD) of 1988 elevations.
- 3. Surface seal interval consists of the concrete surface completion and a neat cement sanitary seal, if applicable.
- 4. Well installed on a raised concrete pad of the former green chain. Depth measurements (ft bgs) are relative to the local ground surface of the concrete pad, which is approximately 1 foot above the grade of the surrounding ground surface.

#### Abbreviations:

ft bgs = feet below ground surface

ft msl = feet mean sea level



## SUMMARY OF WATER LEVEL MEASUREMENTS

| Well No.      | Measurement <sup>1</sup> Date | MP Elevation <sup>2</sup><br>(ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|---------------|-------------------------------|-------------------------------------------|----------------------------|---------------------------------------|
| Shallow Wells |                               |                                           |                            |                                       |
| MW-1          | 14-Mar-02                     | 9.56                                      | 5.31                       | 4.25                                  |
|               | 18-Jul-02                     | 9.56                                      | 4.52                       | 5.04                                  |
|               | 16-Sep-02                     | 9.56                                      | 4.37                       | 5.19                                  |
|               | 02-Dec-02                     | 9.56                                      | 4.18                       | 5.38                                  |
|               | 18-Mar-03                     | 9.56                                      | 4.09                       | 5.47                                  |
|               | 31-Mar-03                     | 9.56                                      | 4.48                       | 5.08                                  |
|               | 21-May-03                     | 9.56                                      | 4.66                       | 4.90                                  |
|               | 27-Aug-03                     | 9.56                                      | 4.55                       | 5.01                                  |
|               | 03-Nov-03                     | 9.56                                      | 4.20                       | 5.36                                  |
|               | 23-Mar-04                     | 9.69                                      | 4.47                       | 5.22                                  |
|               | 17-May-04                     | 9.69                                      | 4.57                       | 5.12                                  |
|               | 30-Aug-04                     | 9.69                                      | 4.55                       | 5.14                                  |
|               | 14-Dec-04                     | 9.69                                      | 4.30                       | 5.39                                  |
| MW-2          | 14-Mar-02                     | 9.49                                      | 4.52                       | 4.97                                  |
|               | 18-Jul-02                     | 9.49                                      | 5.43                       | 4.06                                  |
|               | 16-Sep-02                     | 9.49                                      | 5.28                       | 4.21                                  |
|               | 02-Dec-02                     | 9.49                                      | 5.17                       | 4.32                                  |
|               | 18-Mar-03                     | 9.49                                      | 5.16                       | 4.33                                  |
|               | 31-Mar-03                     | 9.49                                      | 5.43                       | 4.06                                  |
|               | 21-May-03                     | 9.49                                      | 5.45                       | 4.04                                  |
|               | 27-Aug-03                     | 9.49                                      | 5.09                       | 4.40                                  |
|               | 03-Nov-03                     | 9.49                                      | 5.17                       | 4.32                                  |
|               | 23-Mar-04                     | 9.61                                      | 5.31                       | 4.30                                  |
|               | 17-May-04                     | 9.61                                      | 5.43                       | 4.18                                  |
|               | 30-Aug-04                     | 9.61                                      | 5.07                       | 4.54                                  |
|               | 14-Dec-04                     | 9.61                                      | 5.10                       | 4.51                                  |
| MW-3          | 14-Mar-02                     | 11.14                                     | 2.19                       | 8.95                                  |
|               | 18-Jul-02                     | 11.14                                     | 2.79                       | 8.35                                  |
|               | 16-Sep-02                     | 11.14                                     | 2.96                       | 8.18                                  |
|               | 02-Dec-02                     | 11.14                                     | 2.75                       | 8.39                                  |
|               | 18-Mar-03                     | 11.14                                     | 2.30                       | 8.84                                  |
|               | 31-Mar-03                     | 11.14                                     | 1.96                       | 9.18                                  |
|               | 21-May-03                     | 11.14                                     | 2.19                       | 8.95                                  |
|               | 27-Aug-03                     | 11.14                                     | 2.08                       | 9.06                                  |
|               | 03-Nov-03                     | 11.14                                     | 2.35                       | 8.79                                  |
|               | 23-Mar-04                     | 11.22                                     | 2.24                       | 8.98                                  |
|               | 17-May-04                     | 11.22                                     | 2.25                       | 8.97                                  |
|               | 30-Aug-04                     | 11.22                                     | 2.42                       | 8.80                                  |
|               | 14-Dec-04                     | 11.22                                     | 2.79                       | 8.43                                  |



## SUMMARY OF WATER LEVEL MEASUREMENTS

| Well No. | Measurement <sup>1</sup><br>Date | MP Elevation <sup>2</sup> (ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|----------|----------------------------------|----------------------------------------|----------------------------|---------------------------------------|
| MW-4     | 14-Mar-02                        | 10.71                                  | 1.52                       | 9.19                                  |
|          | 18-Jul-02                        | 10.71                                  | 1.84                       | 8.87                                  |
|          | 16-Sep-02                        | 10.71                                  | 2.04                       | 8.67                                  |
|          | 02-Dec-02                        | 10.71                                  | 1.80                       | 8.91                                  |
|          | 18-Mar-03                        | 10.71                                  | 1.52                       | 9.19                                  |
|          | 31-Mar-03                        | 10.71                                  | 0.93                       | 9.78                                  |
|          | 21-May-03                        | 10.71                                  | 1.18                       | 9.53                                  |
|          | 27-Aug-03                        | 10.71                                  | 1.36                       | 9.35                                  |
|          | 03-Nov-03                        | 10.71                                  | 1.64                       | 9.07                                  |
|          | 23-Mar-04                        | 10.74                                  | 1.17                       | 9.57                                  |
|          | 17-May-04                        | 10.74                                  | 1.17                       | 9.57                                  |
|          | 30-Aug-04                        | 10.74                                  | 1.37                       | 9.37                                  |
|          | 14-Dec-04                        | 10.74                                  | 2.21                       | 8.53                                  |
| MW-5     | 14-Mar-02                        | 10.69                                  | 0.95                       | 9.74                                  |
|          | 18-Jul-02                        | 10.69                                  | 1.26                       | 9.43                                  |
|          | 16-Sep-02                        | 10.69                                  | 1.35                       | 9.34                                  |
|          | 02-Dec-02                        | 10.69                                  | 1.23                       | 9.46                                  |
|          | 18-Mar-03                        | 10.69                                  | 0.87                       | 9.82                                  |
|          | 31-Mar-03                        | 10.69                                  | 0.63                       | 10.06                                 |
|          | 21-May-03                        | 10.69                                  | 0.69                       | 10.00                                 |
|          | 27-Aug-03                        | 10.69                                  | 0.84                       | 9.85                                  |
|          | 03-Nov-03                        | 10.69                                  | 0.92                       | 9.77                                  |
|          | 23-Mar-04                        | 10.74                                  | 0.62                       | 10.12                                 |
|          | 17-May-04                        | 10.74                                  | 0.78                       | 9.96                                  |
|          | 30-Aug-04                        | 10.74                                  | 0.71                       | 10.03                                 |
|          | 14-Dec-04                        | 10.74                                  | 1.50                       | 9.24                                  |
| MW-6     | 14-Mar-02                        | 9.77                                   | 0.85                       | 8.92                                  |
|          | 18-Jul-02                        | 9.77                                   | 1.27                       | 8.50                                  |
|          | 16-Sep-02                        | 9.77                                   | 1.51                       | 8.26                                  |
|          | 02-Dec-02                        | 9.77                                   | 1.30                       | 8.47                                  |
|          | 18-Mar-03                        | 9.77                                   | 0.89                       | 8.88                                  |
|          | 31-Mar-03                        | 9.77                                   | 0.37                       | 9.40                                  |
|          | 21-May-03                        | 9.77                                   | 0.60                       | 9.17                                  |
|          | 27-Aug-03                        | 9.77                                   | 0.70                       | 9.07                                  |
|          | 03-Nov-03                        | 9.77                                   | 1.21                       | 8.56                                  |
|          | 23-Mar-04                        | 9.83                                   | 0.69                       | 9.14                                  |
|          | 17-May-04                        | 9.83                                   | 0.78                       | 9.05                                  |
|          | 30-Aug-04                        | 9.83                                   | 0.99                       | 8.84                                  |
|          | 14-Dec-04                        | 9.83                                   | 1.25                       | 8.58                                  |



## SUMMARY OF WATER LEVEL MEASUREMENTS

| Well No. | Measurement <sup>1</sup> Date | MP Elevation <sup>2</sup><br>(ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|----------|-------------------------------|-------------------------------------------|----------------------------|---------------------------------------|
| MW-7     | 14-Mar-02                     | 9.68                                      | 0.73                       | 8.95                                  |
|          | 18-Jul-02                     | 9.68                                      | 1.15                       | 8.53                                  |
|          | 16-Sep-02                     | 9.68                                      | 1.37                       | 8.31                                  |
|          | 02-Dec-02                     | 9.68                                      | 1.19                       | 8.49                                  |
|          | 18-Mar-03                     | 9.68                                      | 0.75                       | 8.93                                  |
|          | 31-Mar-03                     | 9.68                                      | 0.26                       | 9.42                                  |
|          | 21-May-03                     | 9.68                                      | 0.45                       | 9.23                                  |
|          | 27-Aug-03                     | 9.68                                      | 0.61                       | 9.07                                  |
|          | 03-Nov-03                     | 9.68                                      | 1.13                       | 8.55                                  |
|          | 23-Mar-04                     | 9.74                                      | 0.44                       | 9.30                                  |
|          | 17-May-04                     | 9.74                                      | 0.50                       | 9.24                                  |
|          | 30-Aug-04                     | 9.74                                      | 0.84                       | 8.90                                  |
|          | 14-Dec-04                     | 9.74                                      | 1.04                       | 8.70                                  |
| MW-8     | 14-Mar-02                     | 10.30                                     | 0.92                       | 9.38                                  |
|          | 18-Jul-02                     | 10.30                                     | 1.24                       | 9.06                                  |
|          | 16-Sep-02                     | 10.30                                     | 1.52                       | 8.78                                  |
|          | 02-Dec-02                     | 10.30                                     | 1.34                       | 8.96                                  |
|          | 18-Mar-03                     | 10.30                                     | 0.95                       | 9.35                                  |
|          | 31-Mar-03                     | 10.30                                     | 0.29                       | 10.01                                 |
|          | 21-May-03                     | 10.30                                     | 0.49                       | 9.81                                  |
|          | 27-Aug-03                     | 10.30                                     | 0.91                       | 9.39                                  |
|          | 03-Nov-03                     | 10.30                                     | 1.36                       | 8.94                                  |
|          | 23-Mar-04                     | 10.33                                     | 0.57                       | 9.76                                  |
|          | 17-May-04                     | 10.33                                     | 0.54                       | 9.79                                  |
|          | 30-Aug-04                     | 10.33                                     | 0.94                       | 9.39                                  |
|          | 14-Dec-04                     | 10.33                                     | 1.29                       | 9.04                                  |
| MW-9     | 14-Mar-02                     | 9.86                                      | 0.71                       | 9.15                                  |
|          | 18-Jul-02                     | 9.86                                      | 1.13                       | 8.73                                  |
|          | 16-Sep-02                     | 9.86                                      | 1.40                       | 8.46                                  |
|          | 02-Dec-02                     | 9.86                                      | 1.18                       | 8.68                                  |
|          | 18-Mar-03                     | 9.86                                      | 0.79                       | 9.07                                  |
|          | 31-Mar-03                     | 9.86                                      | 0.11                       | 9.75                                  |
|          | 21-May-03                     | 9.86                                      | 0.30                       | 9.56                                  |
|          | 27-Aug-03                     | 9.86                                      | 0.81                       | 9.05                                  |
|          | 03-Nov-03                     | 9.86                                      | 1.19                       | 8.67                                  |
|          | 23-Mar-04                     | 9.91                                      | 0.40                       | 9.51                                  |
|          | 17-May-04                     | 9.91                                      | 0.38                       | 9.53                                  |
|          | 30-Aug-04                     | 9.91                                      | 0.89                       | 9.02                                  |
|          | 14-Dec-04                     | 9.91                                      | 1.05                       | 8.86                                  |



## SUMMARY OF WATER LEVEL MEASUREMENTS

| Well No. | Measurement <sup>1</sup><br>Date | MP Elevation <sup>2</sup> (ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|----------|----------------------------------|----------------------------------------|----------------------------|---------------------------------------|
| MW-10    | 02-Dec-02                        | 9.80                                   | 1.35                       | 8.45                                  |
|          | 18-Mar-03                        | 9.80                                   | 0.95                       | 8.85                                  |
|          | 31-Mar-03                        | 9.80                                   | 0.30                       | 9.50                                  |
|          | 21-May-03                        | 9.80                                   | 0.52                       | 9.28                                  |
|          | 27-Aug-03                        | 9.80                                   | 1.02                       | 8.78                                  |
|          | 03-Nov-03                        | 9.80                                   | 1.43                       | 8.37                                  |
|          | 23-Mar-04                        | 9.85                                   | 0.70                       | 9.15                                  |
|          | 17-May-04                        | 9.85                                   | 0.61                       | 9.24                                  |
|          | 30-Aug-04                        | 9.85                                   | 1.13                       | 8.72                                  |
|          | 14-Dec-04                        | 9.85                                   | 1.24                       | 8.61                                  |
| MW-11    | 02-Dec-02                        | 10.26                                  | 1.55                       | 8.71                                  |
|          | 18-Mar-03                        | 10.26                                  | 1.12                       | 9.14                                  |
|          | 31-Mar-03                        | 10.26                                  | 0.40                       | 9.86                                  |
|          | 21-May-03                        | 10.26                                  | 0.64                       | 9.62                                  |
|          | 27-Aug-03                        | 10.26                                  | 1.19                       | 9.07                                  |
|          | 03-Nov-03                        | 10.26                                  | 1.56                       | 8.70                                  |
|          | 23-Mar-04                        | 10.28                                  | 0.75                       | 9.53                                  |
|          | 17-May-04                        | 10.28                                  | 0.69                       | 9.59                                  |
|          | 30-Aug-04                        | 10.28                                  | 1.20                       | 9.08                                  |
|          | 14-Dec-04                        | 10.28                                  | 1.44                       | 8.84                                  |
| MW-12    | 02-Dec-02                        | 10.73                                  | 1.56                       | 9.17                                  |
|          | 18-Mar-03                        | 10.73                                  | 1.15                       | 9.58                                  |
|          | 31-Mar-03                        | 10.73                                  | 0.55                       | 10.18                                 |
|          | 21-May-03                        | 10.73                                  | 0.70                       | 10.03                                 |
|          | 27-Aug-03                        | 10.73                                  | 1.12                       | 9.61                                  |
|          | 03-Nov-03                        | 10.73                                  | 1.68                       | 9.05                                  |
|          | 23-Mar-04                        | 10.76                                  | 0.87                       | 9.89                                  |
|          | 17-May-04                        | 10.76                                  | 0.76                       | 10.00                                 |
|          | 30-Aug-04                        | 10.76                                  | 1.13                       | 9.63                                  |
|          | 14-Dec-04                        | 10.76                                  | 1.55                       | 9.21                                  |
| MW-14    | 02-Dec-02                        | 9.02                                   | 2.40                       | 6.62                                  |
|          | 18-Mar-03                        | 9.02                                   | 2.21                       | 6.81                                  |
|          | 31-Mar-03                        | 9.02                                   | 1.77                       | 7.25                                  |
|          | 21-May-03                        | 9.02                                   | 1.69                       | 7.33                                  |
|          | 27-Aug-03                        | 9.02                                   | 2.27                       | 6.75                                  |
|          | 03-Nov-03                        | 9.02                                   | 2.52                       | 6.50                                  |
|          | 23-Mar-04                        | 9.15                                   | 2.08                       | 7.07                                  |
|          | 17-May-04                        | 9.15                                   | 2.15                       | 7.00                                  |
|          | 30-Aug-04                        | 9.15                                   | 2.48                       | 6.67                                  |
|          | 14-Dec-04                        | 9.15                                   | 2.30                       | 6.85                                  |



## SUMMARY OF WATER LEVEL MEASUREMENTS

| Well No.   | Measurement <sup>1</sup> Date | MP Elevation <sup>2</sup> (ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|------------|-------------------------------|----------------------------------------|----------------------------|---------------------------------------|
| MW-17      | 02-Dec-02                     | 8.98                                   | 1.27                       | 7.71                                  |
|            | 18-Mar-03                     | 8.98                                   | 0.94                       | 8.04                                  |
|            | 31-Mar-03                     | 8.98                                   | 0.32                       | 8.66                                  |
|            | 21-May-03                     | 8.98                                   | 0.58                       | 8.40                                  |
|            | 27-Aug-03                     | 8.98                                   | 1.06                       | 7.92                                  |
|            | 03-Nov-03                     | 8.98                                   | 1.30                       | 7.68                                  |
|            | 23-Mar-04                     | 9.16                                   | 0.83                       | 8.33                                  |
|            | 17-May-04                     | 9.16                                   | 0.74                       | 8.42                                  |
|            | 30-Aug-04                     | 9.16                                   | 1.21                       | 7.95                                  |
|            | 14-Dec-04                     | 9.16                                   | 1.17                       | 7.99                                  |
| MW-18      | 02-Dec-02                     | 9.53                                   | 0.94                       | 8.59                                  |
|            | 18-Mar-03                     | 9.53                                   | 0.52                       | 9.01                                  |
|            | 31-Mar-03                     | 9.53                                   | 3                          | NC                                    |
|            | 21-May-03                     | 9.53                                   | 0.05                       | 9.48                                  |
|            | 27-Aug-03                     | 9.53                                   | 0.55                       | 8.98                                  |
|            | 03-Nov-03                     | 9.53                                   | 0.95                       | 8.58                                  |
|            | 23-Mar-04                     | 9.92                                   | 0.52                       | 9.40                                  |
|            | 17-May-04                     | 9.92                                   | 0.47                       | 9.45                                  |
|            | 30-Aug-04                     | 9.92                                   | 0.98                       | 8.94                                  |
|            | 14-Dec-04                     | 9.92                                   | 1.13                       | 8.79                                  |
| MW-20      | 23-Mar-04                     | 11.87                                  | 2.36                       | 9.51                                  |
|            | 17-May-04                     | 11.87                                  | 2.35                       | 9.52                                  |
|            | 30-Aug-04                     | 11.87                                  | 2.70                       | 9.17                                  |
|            | 14-Dec-04                     | 11.87                                  | 2.80                       | 9.07                                  |
| MW-21      | 23-Mar-04                     | 12.89                                  | 3.97                       | 8.92                                  |
|            | 17-May-04                     | 12.89                                  | 3.99                       | 8.90                                  |
|            | 30-Aug-04                     | 12.89                                  | 4.23                       | 8.66                                  |
|            | 14-Dec-04                     | 12.89                                  | 4.36                       | 8.53                                  |
| Deep Wells |                               |                                        | -                          |                                       |
| MW-13D     | 02-Dec-02                     | 9.84                                   | 4.18                       | 5.66                                  |
|            | 18-Mar-03                     | 9.84                                   | 4.21                       | 5.63                                  |
|            | 31-Mar-03                     | 9.84                                   | 4.26                       | 5.58                                  |
|            | 21-May-03                     | 9.84                                   | 4.52                       | 5.32                                  |
|            | 27-Aug-03                     | 9.84                                   | 4.45                       | 5.39                                  |
|            | 03-Nov-03                     | 9.84                                   | 4.30                       | 5.54                                  |
|            | 23-Mar-04                     | 9.96                                   | 4.42                       | 5.54                                  |
|            | 17-May-04                     | 9.96                                   | 4.54                       | 5.42                                  |
|            | 30-Aug-04                     | 9.96                                   | 4.57                       | 5.39                                  |
|            | 14-Dec-04                     | 9.96                                   | 4.56                       | 5.40                                  |



## SUMMARY OF WATER LEVEL MEASUREMENTS

| Well No.                      | Measurement <sup>1</sup> Date | MP Elevation <sup>2</sup><br>(ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|-------------------------------|-------------------------------|-------------------------------------------|----------------------------|---------------------------------------|
| MW-15D                        | 02-Dec-02                     | 11.08                                     | 5.31                       | 5.77                                  |
|                               | 18-Mar-03                     | 11.08                                     | 5.44                       | 5.64                                  |
|                               | 31-Mar-03                     | 11.08                                     | 5.46                       | 5.62                                  |
|                               | 21-May-03                     | 11.08                                     | 5.74                       | 5.34                                  |
|                               | 27-Aug-03                     | 11.08                                     | 5.71                       | 5.37                                  |
|                               | 03-Nov-03                     | 11.08                                     | 5.51                       | 5.57                                  |
|                               | 23-Mar-04                     | 11.19                                     | 5.66                       | 5.53                                  |
|                               | 17-May-04                     | 11.19                                     | 5.77                       | 5.42                                  |
|                               | 30-Aug-04                     | 11.19                                     | 5.83                       | 5.36                                  |
|                               | 14-Dec-04                     | 11.19                                     | 5.75                       | 5.44                                  |
| MW-16D                        | 02-Dec-02                     | 9.80                                      | 3.99                       | 5.81                                  |
|                               | 18-Mar-03                     | 9.80                                      | 4.17                       | 5.63                                  |
|                               | 31-Mar-03                     | 9.80                                      | 3.91                       | 5.89                                  |
|                               | 21-May-03                     | 9.80                                      | 4.11                       | 5.69                                  |
|                               | 27-Aug-03                     | 9.80                                      | 3.95                       | 5.85                                  |
|                               | 03-Nov-03                     | 9.80                                      | 4.26                       | 5.54                                  |
|                               | 23-Mar-04                     | 9.83                                      | 4.01                       | 5.82                                  |
|                               | 17-May-04                     | 9.83                                      | 4.13                       | 5.70                                  |
|                               | 30-Aug-04                     | 9.83                                      | 4.13                       | 5.70                                  |
|                               | 14-Dec-04                     | 9.83                                      | 4.38                       | 5.45                                  |
| MW-19D                        | 02-Dec-02                     | 11.00                                     | 4.31                       | 6.69                                  |
|                               | 18-Mar-03                     | 11.00                                     | 4.23                       | 6.77                                  |
|                               | 31-Mar-03                     | 11.00                                     | 4.02                       | 6.98                                  |
|                               | 21-May-03                     | 11.00                                     | 4.22                       | 6.78                                  |
|                               | 27-Aug-03                     | 11.00                                     | 4.26                       | 6.74                                  |
|                               | 03-Nov-03                     | 11.00                                     | 4.61                       | 6.39                                  |
|                               | 23-Mar-04                     | 11.06                                     | 4.13                       | 6.93                                  |
|                               | 17-May-04                     | 11.06                                     | 4.63                       | 6.43                                  |
|                               | 30-Aug-04                     | 11.06                                     | 4.60                       | 6.46                                  |
|                               | 14-Dec-04                     | 11.06                                     | 4.82                       | 6.24                                  |
| Mad River Slough <sup>4</sup> | 31-Mar-03                     | 15.70                                     | 15.15                      | 0.55                                  |
|                               | 31-Mar-03                     | 15.70                                     | 15.84                      | -0.14                                 |
|                               | 21-May-03                     | 15.70                                     | 17.23                      | -1.53                                 |
|                               | 21-May-03                     | 15.70                                     | 16.75                      | -1.05                                 |
|                               | 27-Aug-03                     | 15.70                                     | 16.20                      | -0.50                                 |
|                               | 27-Aug-03                     | 15.70                                     | 12.60                      | 3.10                                  |
|                               | 03-Nov-03                     | 15.70                                     | 9.63                       | 6.07                                  |
|                               | 03-Nov-03                     | 15.70                                     | 10.53                      | 5.17                                  |
|                               | 23-Mar-04                     | 15.70                                     | 15.00                      | 0.70                                  |
|                               | 23-Mar-04                     | 15.70                                     | 12.16                      | 3.54                                  |
|                               | 17-May-04                     | 15.70                                     | 14.48                      | 1.22                                  |
|                               | 17-May-04                     | 15.70                                     | 12.50                      | 3.20                                  |
|                               | 30-Aug-04                     | 15.70                                     | 15.17                      | 0.53                                  |
|                               | 30-Aug-04                     | 15.70                                     | 12.20                      | 3.50                                  |
|                               | 14-Dec-04                     | 15.70                                     | 12.05                      | 3.65                                  |
|                               | 14-Dec-04                     | 15.70                                     | 9.90                       | 5.80                                  |



#### SUMMARY OF WATER LEVEL MEASUREMENTS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

#### Notes:

- Data prior to March 18, 2003 were obtained from Results of the Remedial Investigation for Sierra Pacific Industries - Arcata Division Sawmill, Arcata, California, dated January 30, 2003, prepared by Environet Consulting.
- Monitoring wells surveyed by Omsberg & Company of Eureka, California. Wells were resurveyed on February 13, 2004; elevations shown are relative to the Northern American Vertical Datum of 1988.
- 3. Water level was above the top of casing measuring point.
- 4. Mad River Slough measuring point on railroad bridge. Water level measurements are obtained before and after the water level measurements in the monitoring wells.

#### Abbreviations:

NC = not calcuated

ft NAVD 88 = feet above North American Vertical Datum of 1988 ft bMP = feet below measuring point
-- = not measured or sample not collected for analysis



|               |              |                  | Laboratory<br>Measurement <sup>2</sup> |                      |               |               |
|---------------|--------------|------------------|----------------------------------------|----------------------|---------------|---------------|
| Well No.      | Date Sampled | Temperature (°C) | Specific Conductance<br>(µmohs/cm)     | pH<br>(pH Units)     | TDS<br>(mg/L) | TDS<br>(mg/L) |
| Shallow Wells |              |                  |                                        |                      |               |               |
|               | 20-Mar-03    | 14               | 2,600                                  | 6.5                  |               |               |
|               | 22-May-03    | 14               | 2,700                                  | 6.7                  |               | 1,400         |
| MW-1          | 27-Aug-03    | 18               | 2,500                                  | 6.7                  | 1,800         | 1,400         |
| IVI VV - I    | 04-Nov-03    | 17               | 2,400                                  | 6.6                  | 1,800         | 1,300         |
|               | 17-May-04    | 15               | 2,600                                  | 6.3                  | 1,900         | 1,400         |
|               | 15-Dec-04    | 15               | 3,800                                  | 6.6                  | 2,500         |               |
|               | 20-Mar-03    | 13               | 2,100                                  | 6.2                  |               |               |
|               | 22-May-03    | 14               | 1,700                                  | 6.4                  | 1,100         | 860           |
|               | 27-Aug-03    | 18               | 1,500                                  | 6.6                  | 1,100         | 760           |
| MW            | 03-Nov-03    | 16               | 1,590                                  | 6.3                  | 1,100         | 760           |
| MW-2          | 24-Mar-04    | 13               | 1,390                                  | 6.3                  | 970           | 740           |
|               | 17-May-04    | 15               | 1,400                                  | 6.2                  | 980           | 730           |
|               | 30-Aug-04    | 19               | 1,200                                  | <b></b> <sup>3</sup> | 850           | 680           |
|               | 15-Dec-04    | 14               | 1,100                                  | 6.4                  | 740           |               |
|               | 20-Mar-03    | 13               | 1,100                                  | 6.4                  |               |               |
|               | 22-May-03    | 15               | 1,000                                  | 6.4                  | 630           | 510           |
|               | 27-Aug-03    | 20               | 1,000                                  | 6.5                  | 720           | 470           |
| MW-3          | 03-Nov-03    | 16               | 980                                    | 6.6                  |               | 410           |
|               | 17-May-04    | 16               | 1,100                                  | 6.2                  | 750           | 510           |
|               | 15-Dec-04    | 13               | 700                                    | 6.4                  | 460           |               |
|               | 20-Mar-03    | 14               | 830                                    | 6.5                  |               |               |
|               | 22-May-03    | 16               | 730                                    | 6.4                  | 440           | 420           |
|               | 27-Aug-03    | 21               | 730                                    | 6.5                  | 500           | 340           |
| MW-4          | 03-Nov-03    | 18               | 760                                    | 6.6                  | 520           | 310           |
|               | 17-May-04    | 18               | 880                                    | 6.2                  | 590           | 360           |
|               | 15-Dec-04    | 14               | 640                                    | 6.4                  | 410           |               |
|               | 20-Mar-03    | 14               | 670                                    | 6.6                  |               |               |
|               | 22-May-03    | 14               | 690                                    | 6.6                  | 410           | 360           |
| . err -       | 27-Aug-03    | 18               | 670                                    | 6.7                  | 450           | 360           |
| MW-5          | 03-Nov-03    | 17               | 660                                    | 6.6                  | 450           | 380           |
|               | 17-May-04    | 15               | 660                                    | 6.3                  | 440           | 360           |
|               | 15-Dec-04    | 15               | 470                                    | 6.4                  | 310           |               |
|               | 20-Mar-03    | 11               | 950                                    | 6.6                  |               |               |
|               | 22-May-03    | 14               | 1,000                                  | 6.3                  | 620           | 430           |
|               | 27-Aug-03    | 17               | 890                                    | 6.4                  | 620           | 410           |
|               | 04-Nov-03    | 13               | 920                                    | 6.6                  | 630           | 430           |
| MW-6          | 24-Mar-04    | 11               | 920                                    | 6.5                  | 640           | 410           |
|               | 17-May-04    | 14               | 930                                    | 6.3                  | 640           | 420           |
|               | 30-Aug-04    | 17               | 880                                    | <sup>3</sup>         | 610           | 430           |
|               | 15-Dec-04    | 11               | 700                                    | 6.4                  | 460           |               |



|            |              |                  | Laboratory<br>Measurement <sup>2</sup> |                      |            |               |
|------------|--------------|------------------|----------------------------------------|----------------------|------------|---------------|
| Well No.   | Date Sampled | Temperature (°C) | Specific Conductance (µmohs/cm)        | pH<br>(pH Units)     | TDS (mg/L) | TDS<br>(mg/L) |
|            | 20-Mar-03    | 11               | 910                                    | 6.6                  |            |               |
|            | 22-May-03    | 11               | 960                                    | 6.5                  |            | 460           |
|            | 27-Aug-03    | 14               | 840                                    | 6.6                  | 580        | 400           |
| MANU 7     | 03-Nov-03    | 12               | 870                                    | 6.6                  | 600        | 460           |
| MW-7       | 24-Mar-04    | 11               | 960                                    | 6.4                  |            | 440           |
|            | 18-May-04    | 12               | 730                                    | 6.6                  | 490        | 370           |
|            | 30-Aug-04    | 14               | 840                                    | 3                    | 580        | 410           |
|            | 15-Dec-04    | 11               | 700                                    | 6.4                  | 460        |               |
|            | 18-Mar-03    | 14               | 730                                    | 6.4                  |            |               |
|            | 21-May-03    | 16               | 740                                    | 6.3                  | 460        | 390           |
|            | 27-Aug-03    | 21               | 730                                    | 6.2                  | 500        | 370           |
| MANA       | 04-Nov-03    | 17               | 740                                    | 6.4                  | 510        | 380           |
| MW-8       | 24-Mar-04    | 14               | 780                                    | 6.2                  | 530        | 400           |
|            | 17-May-04    | 18               | 800                                    | 6.1                  | 530        | 390           |
|            | 30-Aug-04    | 21               | 760                                    | <b></b> <sup>3</sup> | 520        | 390           |
|            | 14-Dec-04    | 14               | 650                                    | 6.3                  | 420        |               |
|            | 18-Mar-03    | 14               | 820                                    | 6.4                  |            |               |
|            | 23-May-03    | 16               | 870                                    | 6.6                  | 550        | 400           |
|            | 27-Aug-03    | 20               | 830                                    | 6.2                  | 570        | 350           |
|            | 04-Nov-03    | 17               | 820                                    | 6.6                  | 560        | 350           |
| MW-9       | 24-Mar-04    | 14               | 880                                    | 6.4                  | 600        | 380           |
|            | 17-May-04    | 16               | 930                                    | 6.1                  | 620        | 380           |
|            | 30-Aug-04    | 20               | 860                                    | <b></b> <sup>3</sup> | 550        | 440           |
|            | 14-Dec-04    | 13               | 800                                    | 6.4                  | 520        |               |
|            | 18-Mar-03    | 14               | 920                                    | 6.4                  |            |               |
|            | 23-May-03    | 17               | 970                                    | 6.7                  |            | 460           |
|            | 27-Aug-03    | 22               | 860                                    | 6.3                  | 600        | 400           |
| MW-10      | 04-Nov-03    | 18               | 880                                    | 6.6                  | 600        | 430           |
|            | 17-May-04    | 19               | 920                                    | 6.2                  | 610        | 420           |
|            | 14-Dec-04    | 14               | 700                                    | 6.4                  | 450        |               |
|            | 20-Mar-03    | 14               | 870                                    | 6.4                  |            |               |
|            | 21-May-03    | 17               | 890                                    | 6.4                  | 560        | 460           |
| 1.637.11   | 27-Aug-03    | 23               | 870                                    | 6.2                  | 600        | 440           |
| MW-11      | 04-Nov-03    | 19               | 880                                    | 6.6                  | 600        | 450           |
|            | 17-May-04    | 18               | 880                                    | 6.2                  | 590        | 430           |
|            | 14-Dec-04    | 15               | 740                                    | 6.4                  | 480        |               |
|            | 18-Mar-03    | 15               | 830                                    | 6.3                  |            |               |
|            | 21-May-03    | 18               | 840                                    | 6.1                  |            | 460           |
| ) (TV - 10 | 27-Aug-03    | 23               | 870                                    | 6.2                  | 600        | 480           |
| MW-12      | 04-Nov-03    | 18               | 920                                    | 6.5                  | 630        | 480           |
|            | 17-May-04    | 20               | 900                                    | 6.0                  | 600        | 490           |
|            | 14-Dec-04    | 14               | 710                                    | 6.4                  | 460        |               |



|           |              |                  | Laboratory<br>Measurement <sup>2</sup> |                  |            |               |
|-----------|--------------|------------------|----------------------------------------|------------------|------------|---------------|
| Well No.  | Date Sampled | Temperature (°C) | Specific Conductance<br>(µmohs/cm)     | pH<br>(pH Units) | TDS (mg/L) | TDS<br>(mg/L) |
|           | 20-Mar-03    | 14               | 3,200                                  | 6.7              |            |               |
| NASS 14   | 22-May-03    | 15               | 3,400                                  | 6.6              |            | 2,100         |
|           | 27-Aug-03    | 20               | 3,600                                  | 6.6              | 2,300      | 1,900         |
| MW-14     | 04-Nov-03    | 16               | 3,300                                  | 6.6              | 2,500      | 2,100         |
|           | 17-May-04    | 17               | 2,800                                  | 6.4              | 2,000      | 1,800         |
|           | 15-Dec-04    | 14               | 2,500                                  | 6.6              | 1,300      |               |
|           | 20-Mar-03    | 13               | 980                                    | 6.4              |            |               |
|           | 22-May-03    | 15               | 1,000                                  | 6.5              |            | 450           |
| NOV 17    | 27-Aug-03    | 19               | 860                                    | 7.0              | 600        | 420           |
| MW-17     | 04-Nov-03    | 15               | 920                                    | 6.6              | 640        | 450           |
|           | 17-May-04    | 15               | 940                                    | 6.5              | 620        | 440           |
|           | 14-Dec-04    | 12               | 830                                    | 6.4              | 540        |               |
|           | 18-Mar-03    | 14               | 1,000                                  | 6.5              |            |               |
|           | 23-May-03    | 17               | 980                                    | 6.6              | 610        | 640           |
|           | 27-Aug-03    | 23               | 1,100                                  | 6.3              | 780        | 520           |
| MW-18     | 04-Nov-03    | 17               | 1,100                                  | 6.6              | 760        | 490           |
|           | 17-May-04    | 19               | 1,000                                  | 6.3              | 670        | 430           |
|           | 14-Dec-04    | 13               | 860                                    | 6.5              | 560        |               |
|           | 24-Mar-04    | 14               | 420                                    | 6.9              | 280        | 250           |
|           | 18-May-04    | 18               | 470                                    | 6.7              | 310        | 280           |
| MW-20     | 30-Aug-04    | 21               | 500                                    | 3                | 330        | 300           |
|           | 15-Dec-04    | 12               | 370                                    | 6.5              | 240        |               |
|           | 24-Mar-04    | 12               | 990                                    | 6.3              | 680        | 460           |
|           | 18-May-04    | 14               | 1,000                                  | 6.3              | 660        | 420           |
| MW-21     | 30-Aug-04    | 16               | 960                                    | 3                | 660        | 450           |
|           | 15-Dec-04    | 11               | 760                                    | 6.2              | 500        |               |
| eep Wells |              | 1                |                                        |                  |            |               |
|           | 20-Mar-03    | 14               | 1,200                                  | 6.2              |            |               |
|           | 22-May-03    | 14               | 1,100                                  | 6.2              |            |               |
|           | 27-Aug-03    | 15               | 1,100                                  | 6.1              | 750        | 690           |
| MW-13D    | 04-Nov-03    | 15               | 1,000                                  | 6.1              |            | 580           |
|           | 17-May-04    | 14               | 1,000                                  | 5.8              | 700        | 610           |
|           | 15-Dec-04    | 14               | 620                                    | 6.1              | 400        |               |
|           | 20-Mar-03    | 13               | 1,300                                  | 6.8              |            |               |
|           | 22-May-03    | 13               | 1,300                                  | 6.8              |            | 800           |
|           | 27-Aug-03    | 14               | 1,300                                  | 6.3              | 900        | 810           |
| MW-15D    | 04-Nov-03    | 14               | 1,300                                  | 6.8              |            | 790           |
|           | 17-May-04    | 13               | 1,400                                  | 6.3              | 930        | 800           |
|           | 15-Dec-04    | 14               | 1,000                                  | 6.7              | 650        |               |



Sierra Pacific Industries Arcata Division Sawmill Arcata, California

|             |              |                  | Laboratory<br>Measurement <sup>2</sup> |                  |            |               |
|-------------|--------------|------------------|----------------------------------------|------------------|------------|---------------|
| Well No.    | Date Sampled | Temperature (°C) | Specific Conductance (µmohs/cm)        | pH<br>(pH Units) | TDS (mg/L) | TDS<br>(mg/L) |
|             | 18-Mar-03    | 14               | 5,200                                  | 7.7              |            |               |
|             | 23-May-03    | 14               | 5,200                                  | 7.6              |            | 3,200         |
| MW-16D      | 27-Aug-03    | 16               | 5,000                                  | 7.4              | 3,400      | 3,000         |
| W - 10D     | 04-Nov-03    | 16               | 4,800                                  | 7.6              | 3,700      | 2,800         |
|             | 17-May-04    | 15               | 4,600                                  | 7.3              | 3,500      | 2,800         |
|             | 14-Dec-04    | 16               | 3,700                                  | 7.7              | 2,400      |               |
|             | 20-Mar-03    | 16               | 810                                    | 6.7              |            |               |
|             | 22-May-03    | 16               | 860                                    | 6.6              | 520        | 480           |
| MW-19D      | 27-Aug-03    | 17               | 810                                    | 6.5              | 560        | 410           |
| IVI W - 19D | 03-Nov-03    | 17               | 760                                    | 6.7              | 520        | 370           |
|             | 17-May-04    | 16               | 840                                    | 6.5              | 560        | 430           |
|             | 15-Dec-04    | 17               | 490                                    | 6.5              | 320        |               |

#### Notes:

- 1. Water quality parameters measured in the field using an Ultrameter instrument or a YSI Model 556 instrument; reported measurements recorded towards end of purge after parameters stabilized or from the last purge volume if a well was repeatedly purged dry.
- 2. Water quality parameter analyzed in the laboratory; EPA Method 160.1.
- 3. pH meter inoperable.

#### Abbreviations:

°C = degrees Celsius

 $\mu$ mhos/cm = micromhos per centimeter at 25 °C

mg/L = milligrams per liter

-- = not measured or sample not collected for analysis

TDS = total dissolved solids

EPA = U.S. Environmental Protection Agency



Sierra Pacific Industries Arcata Division Sawmill Arcata, California

|               |                        |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6-     | 2,3,4,5-     |          |
|---------------|------------------------|--------------|------------|--------------|--------------|--------------|----------|
| Monitoring    | Date                   | Penta-       | trichloro- | tetrachloro- | tetrachloro- | tetrachloro- | Comments |
| Well Number   | Sampled 1              | chlorophenol | phenol     | phenol       | phenol       | phenol       |          |
| Shallow Wells | •                      | •            | •          | -            | -            | -            |          |
|               | 14-Mar-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 18-Jul-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 16-Sep-02              | 1.8          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 03-Oct-02 <sup>2</sup> | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 02-Dec-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-1          | 20-Mar-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 22-May-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 27-Aug-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 04-Nov-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 17-May-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 15-Dec-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 14-Mar-02              | 7.4          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 18-Jul-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 16-Sep-02              | 2.5          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 03-Dec-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 20-Mar-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-2          | 22-May-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| IVI VV -2     | 27-Aug-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 4-Nov-03               | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 24-Mar-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 17-May-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 30-Aug-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 15-Dec-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 14-Mar-02              | 1.2          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 18-Jul-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 16-Sep-02              | 5.0          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 03-Dec-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-3          | 20-Mar-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| 101 00 -3     | 22-May-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 27-Aug-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 4-Nov-03               | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 17-May-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 15-Dec-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |



Sierra Pacific Industries Arcata Division Sawmill Arcata, California

|             |           |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6-     | 2,3,4,5-     |                  |
|-------------|-----------|--------------|------------|--------------|--------------|--------------|------------------|
| Monitoring  | Date      | Penta-       | trichloro- | tetrachloro- | tetrachloro- | tetrachloro- | Comments         |
| Well Number | Sampled 1 | chlorophenol | phenol     | phenol       | phenol       | phenol       |                  |
|             | 14-Mar-02 | 8.6          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 18-Jul-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 16-Sep-02 | 5.7          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-4        | 20-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| IVI VV -4   | 22-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 15-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 14-Mar-02 | 4.3          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 18-Jul-02 | 9.1          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 16-Sep-02 | 25           | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 20-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-5        | 20-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        | duplicate sample |
|             | 22-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 15-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 14-Mar-02 | 4.5          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 18-Jul-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 16-Sep-02 | 6.3          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 20-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-6        | 22-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 24-Mar-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 30-Aug-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 15-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |



Sierra Pacific Industries Arcata Division Sawmill Arcata, California

|             |                        |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6-     | 2,3,4,5-     |                                 |
|-------------|------------------------|--------------|------------|--------------|--------------|--------------|---------------------------------|
| Monitoring  | Date                   | Penta-       | trichloro- | tetrachloro- | tetrachloro- | tetrachloro- | Comments                        |
| Well Number | Sampled 1              | chlorophenol | phenol     | phenol       | phenol       | phenol       |                                 |
|             | 14-Mar-02              | 31,000       | < 1.0      | 41           | 650          | 24           |                                 |
|             | 18-Jul-02              | 33,000       | < 1.0      | < 1.0        | 990          | 56           |                                 |
|             | 16-Sep-02              | 44,000       | < 1.0      | < 1.0        | 920          | 64           |                                 |
|             | 03-Dec-02              | 46,000       | < 1.3      | 76           | 1,300        | 52           |                                 |
|             | 14-Jan-03 <sup>3</sup> | 51,000       | 2.4        | < 1.0        | 970          | 52           |                                 |
|             | 20-Mar-03              | 19,000       | < 1.0      | 36           | 460          | 22           |                                 |
|             | 22-May-03              | 19,000       | < 1.0      | < 1.0        | 470          | < 100        |                                 |
|             | 22-May-03              | 16,000       | < 1.0      | < 1.0        | 400          | < 100        | duplicate sample                |
|             | 22-May-03              | 14,000       | < 1.0      | < 1.0        | 400          | < 100        | filtered                        |
|             | 27-Aug-03              | 31,000       | < 1.5      | 41           | 710          | 39           |                                 |
|             | 27-Aug-03              | 18,000       | < 1.0      | 28           | 450          | 26           | duplicate sample                |
| MW-7        | 3-Nov-03               | 28,000       | < 5.0      | 36           | 580          | 35           | bailer sample /<br>unfiltered   |
|             | 3-Nov-03               | 31,000       | < 5.0      | 47           | 740          | 43           | bailer sample /<br>filtered     |
|             | 3-Nov-03               | 20,000       | < 5.0      | 28           | 450          | 24           | low flow sample /<br>unfiltered |
|             | 3-Nov-03               | 14,000       | < 5.0      | 19           | 300          | 17           | low flow sample /<br>filtered   |
|             | 24-Mar-04              | 19,000       | < 1.5      | 19           | 450          | 19           |                                 |
|             | 24-Mar-04              | 7,400        | < 1.0      | 8.7          | 150          | 9.9          | duplicate sample                |
|             | 18-May-04              | 25,000       | < 2.5      | 86           | 480          | 41           |                                 |
|             | 30-Aug-04              | 13,000       | < 1.0      | 54           | 200          | 17           |                                 |
|             | 15-Dec-04              | 22,000       | 1.7        | 57           | 310          | 42           |                                 |
|             | 14-Mar-02              | 22           | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 18-Jul-02              | 31           | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 16-Sep-02              | 4.8          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 03-Dec-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 18-Mar-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
| MW-8        | 21-May-03              | 1.0          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
| IVI W -0    | 27-Aug-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 4-Nov-03               | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 24-Mar-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 17-May-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 30-Aug-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 14-Dec-04              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |



Sierra Pacific Industries Arcata Division Sawmill Arcata, California

|             |           |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6-     | 2,3,4,5-     |          |
|-------------|-----------|--------------|------------|--------------|--------------|--------------|----------|
| Monitoring  | Date      | Penta-       | trichloro- | tetrachloro- | tetrachloro- | tetrachloro- | Comments |
| Well Number | Sampled 1 | chlorophenol | phenol     | phenol       | phenol       | phenol       |          |
|             | 14-Mar-02 | 94           | 3.1        | 21           | 130          | 5.5          |          |
|             | 18-Jul-02 | 2.1          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 16-Sep-02 | 3.1          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 18-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-9        | 23-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| IVI VV - 9  | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 04-Nov-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 24-Mar-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 30-Aug-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 14-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 18-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 23-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-10       | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 14-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 20-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 21-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-11       | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 14-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 18-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 21-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-12       | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 14-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |



Sierra Pacific Industries Arcata Division Sawmill Arcata, California

|             |           |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6-     | 2,3,4,5-     |                  |
|-------------|-----------|--------------|------------|--------------|--------------|--------------|------------------|
| Monitoring  | Date      | Penta-       | trichloro- | tetrachloro- | tetrachloro- | tetrachloro- | Comments         |
| Well Number | Sampled 1 | chlorophenol | phenol     | phenol       | phenol       | phenol       |                  |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 20-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 22-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-14       | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 15-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 20-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 22-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-17       | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 14-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 18-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 23-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-18       | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 14-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 24-Mar-04 | 35           | < 1.0      | < 1.0        | 5.1          | 3.8          |                  |
| MW-20       | 18-May-04 | 3.6          | < 1.0      | < 1.0        | 1.1          | < 1.0        |                  |
| IVI VV -20  | 30-Aug-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 15-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-21       | 24-Mar-04 | 800          | < 1.0      | 6.3          | 17           | 12           |                  |
|             | 18-May-04 | 1,900        | < 1.0      | 11           | 36           | 11           |                  |
|             | 18-May-04 | 670          | < 1.0      | 3.5          | 16           | 4.4          | duplicate sample |
|             | 30-Aug-04 | 2,700        | < 1.0      | 6.4          | 66           | 5.4          |                  |
|             | 30-Aug-04 | 2,800        | < 1.0      | 6.9          | 68           | 5.5          | duplicate sample |
|             | 15-Dec-04 | 3,200        | < 1.0      | 34           | 50           | 5.5          |                  |
|             | 15-Dec-04 | 8,100        | 2.1        | 64           | 120          | 8.3          | duplicate sample |

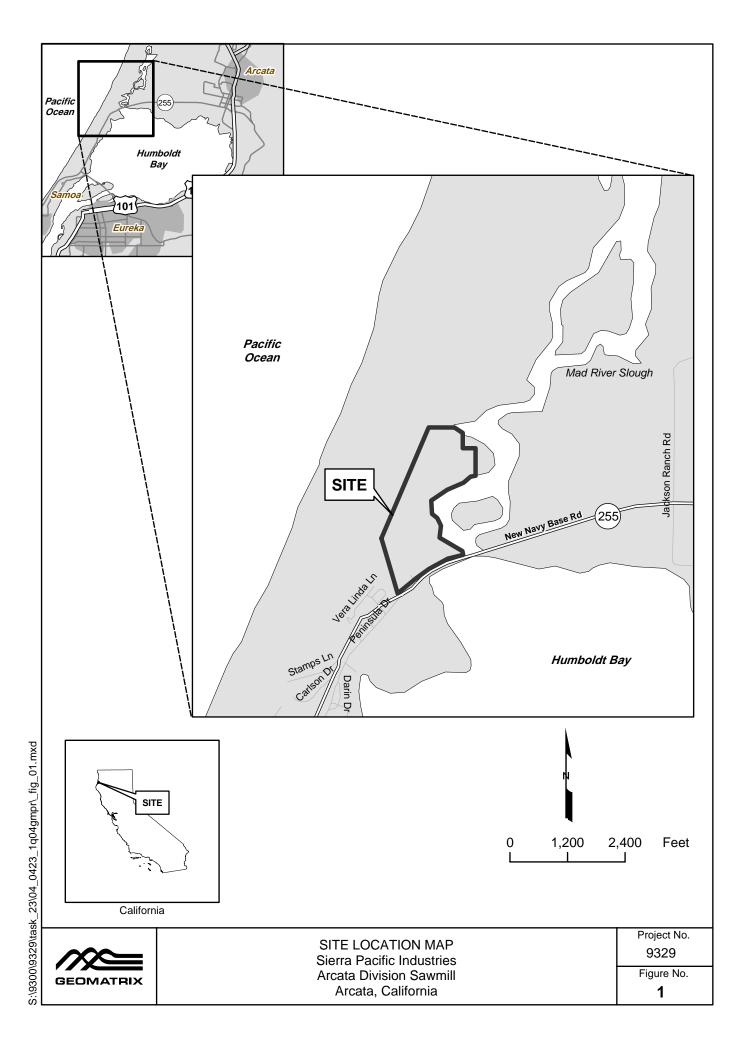


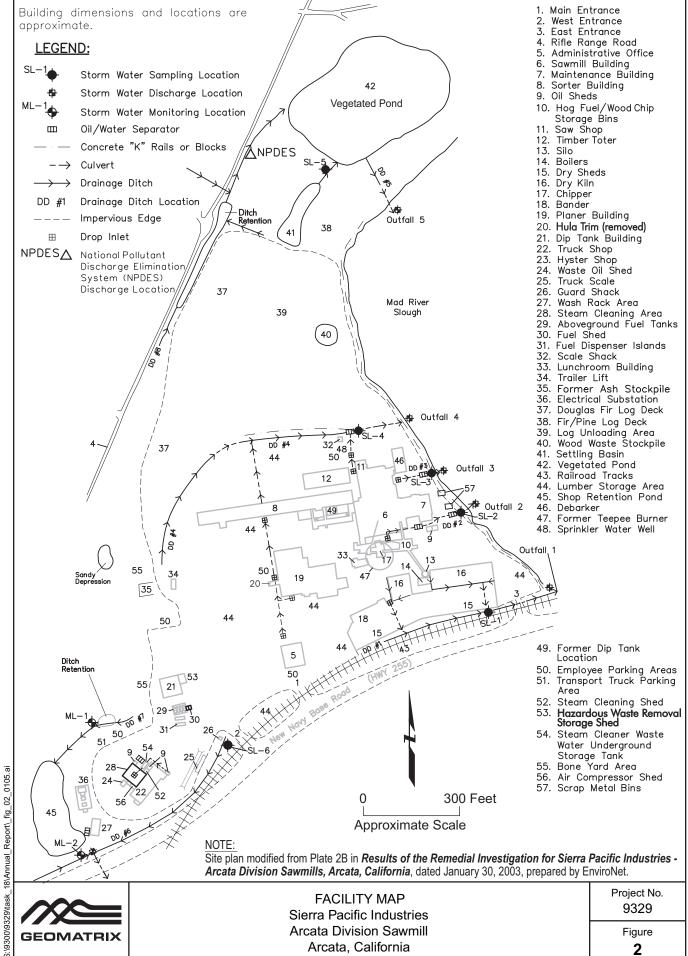
Sierra Pacific Industries Arcata Division Sawmill Arcata, California

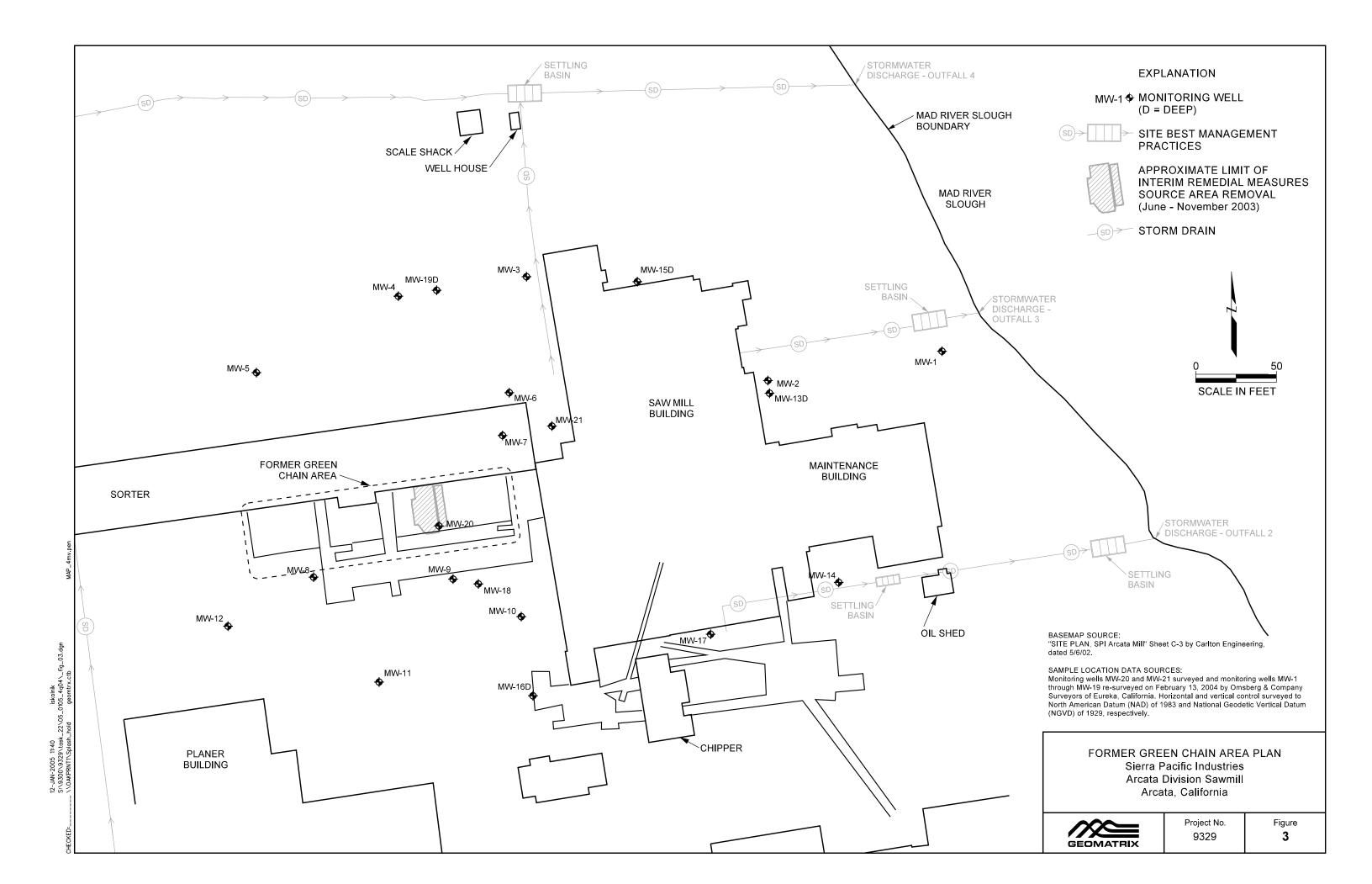
Concentrations in micrograms per liter (µg/L)

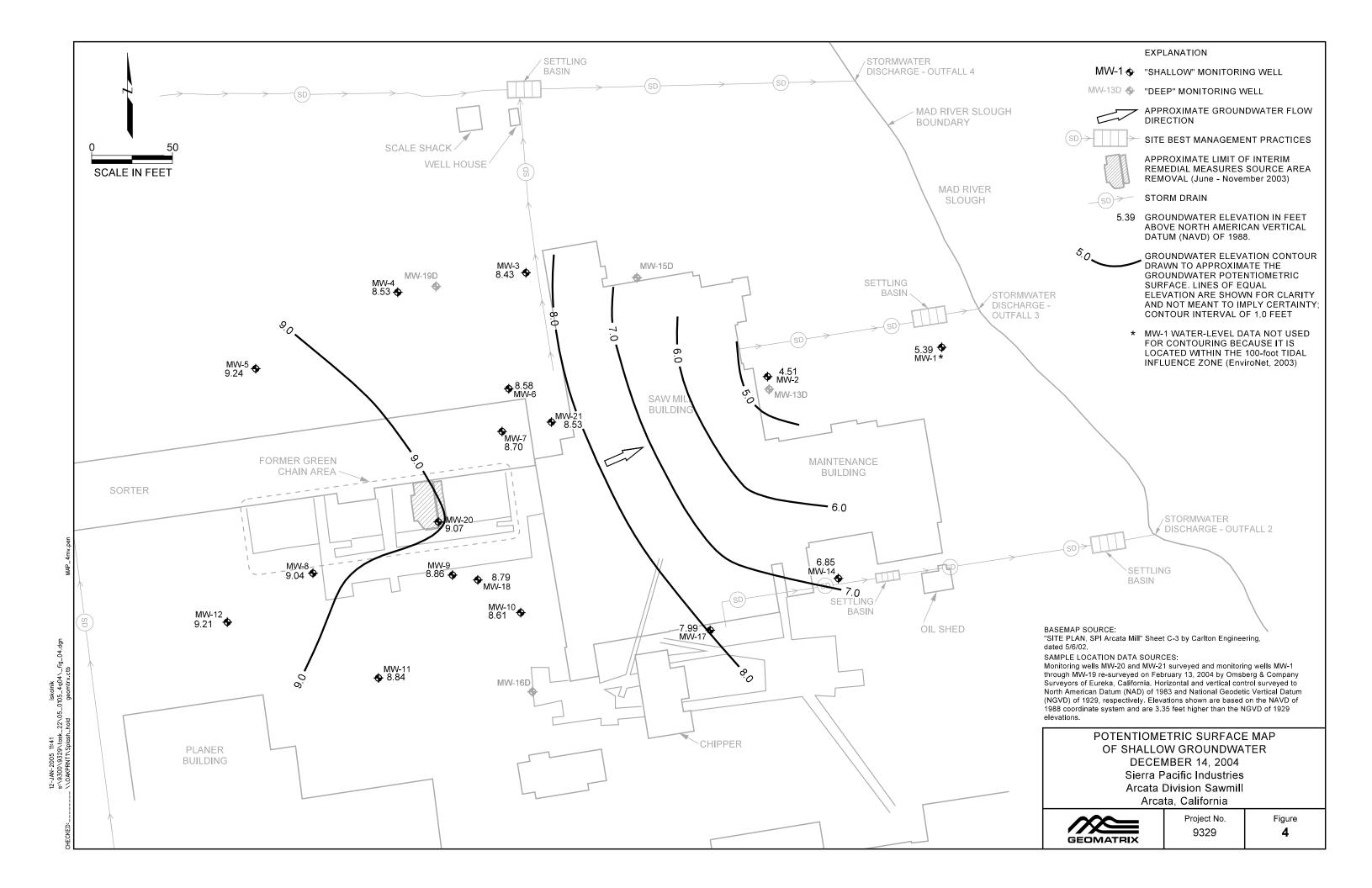
|             |           |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6- | 2,3,4,5-     |          |
|-------------|-----------|--------------|------------|--------------|----------|--------------|----------|
| Monitoring  | Date      | Penta-       | trichloro- | tetrachloro- |          | tetrachloro- | Comments |
| Well Number | Sampled 1 | chlorophenol | phenol     | phenol       | phenol   | phenol       |          |
| Deep Wells  |           |              |            |              |          |              |          |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 20-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 22-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
| MW-13D      | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 15-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 20-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 22-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
| MW-15D      | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 15-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 03-Dec-02 | 1.3          | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 18-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 23-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
| MW-16D      | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 14-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 03-Dec-02 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
| MW-19D      | 20-Mar-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 22-May-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 27-Aug-03 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 4-Nov-03  | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 17-May-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |
|             | 15-Dec-04 | < 1.0        | < 1.0      | < 1.0        | < 1.0    | < 1.0        |          |

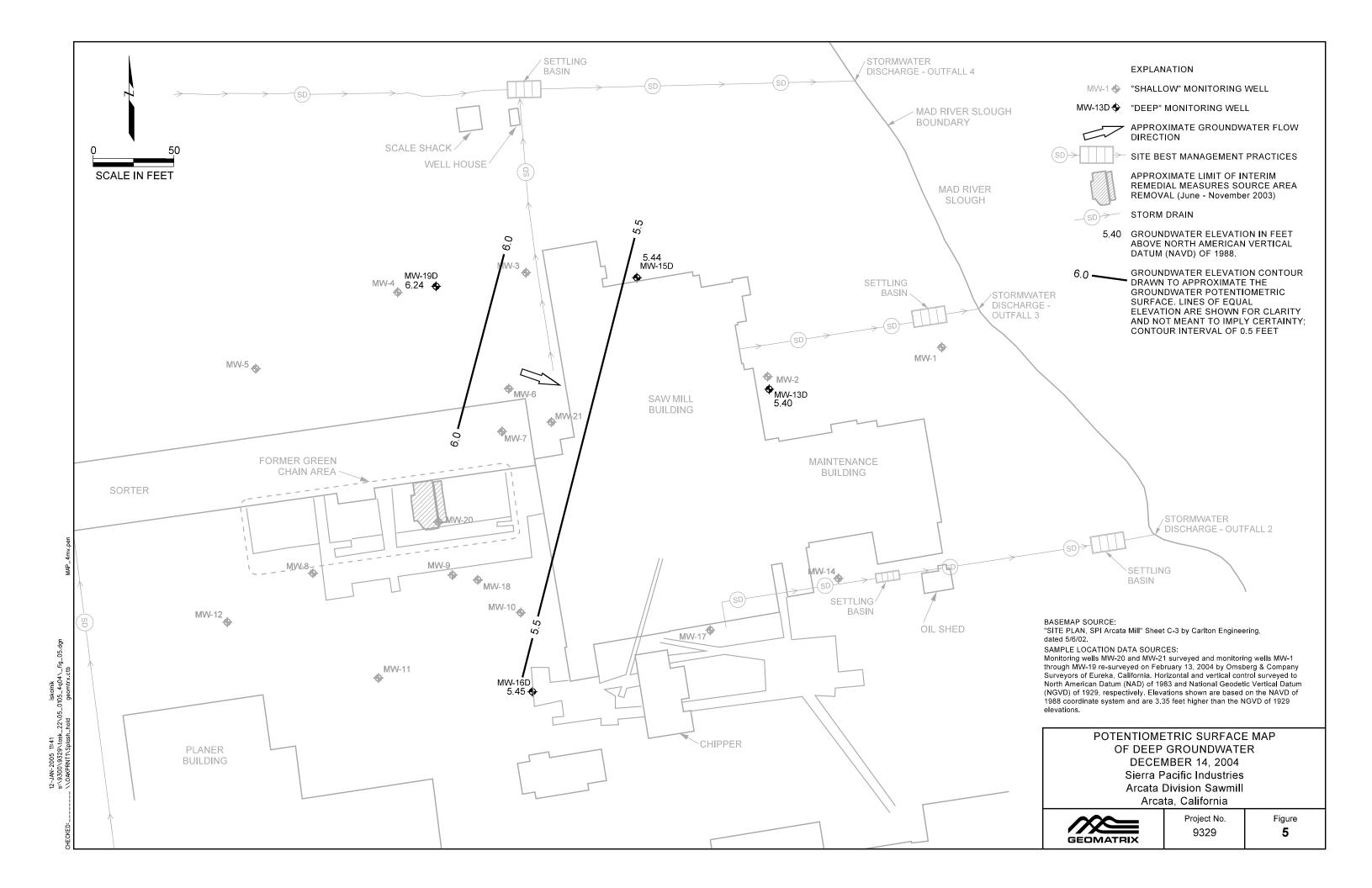
### Notes:

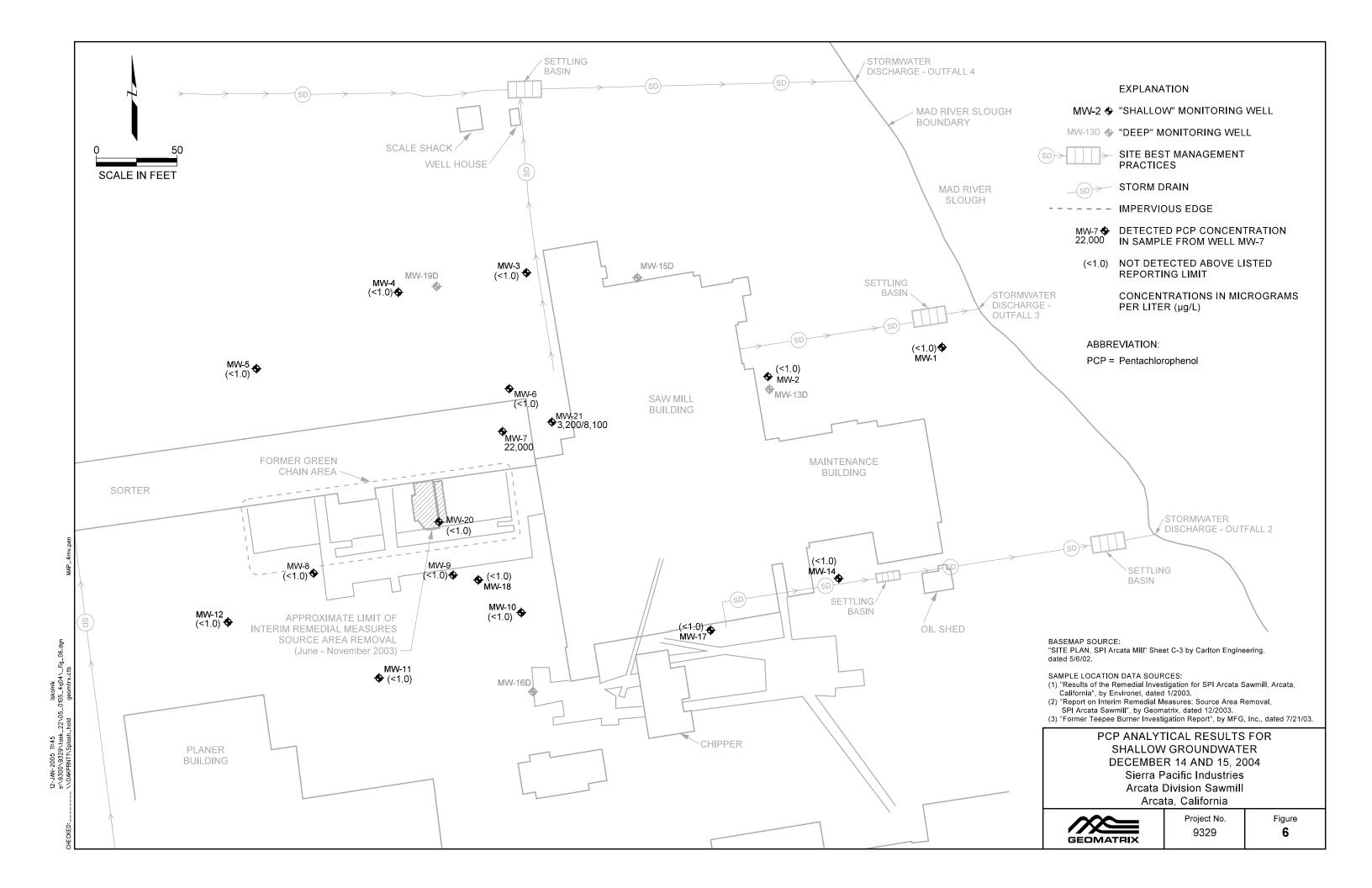

- Data prior to March 18, 2003 were obtained from Results of the Remedial Investigation for Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California, dated January 30, 2003, prepared by EnviroNet Consulting.
- 2. Confirmation sample collected due to detection of pentachlorophenol on September 16, 2002.
- 3. Sample also contained 280 mg/L of 2,3,4-trichlorophenol and 190 mg/L of 2,4,5-trichlorophenol.


#### Abbreviation:


- < = target analyte was not detected at or above the laboratory reporting limit shown.
- -- = not measured or sample not collected for analysis.





# **FIGURES**
















#### **APPENDIX A**

#### Field Records—Groundwater Monitoring Program

#### **DAILY FIELD RECORD**



Date: 12/14/04 Project and Task Number: 9329.000.0 22 Field Activity: Project Name: **GW** Monitoring SPI Arcata Location: Arcata Weather: Time Time PERSONNEL: Company Name Out In 8:30 1703 Matt Hillyard Geomatrix 8:30 Charlie Rome Geomatrix PERSONAL SAFETY CHECKLIST Tyvek Coveralls Χ Hard Hat Χ Steel-toed Boots Χ Χ Safety Goggles 1/2-Face Respirator Rubber Gloves **LOCATION** DRUM I.D. **DESCRIPTION OF CONTENTS AND QUANTITY DESCRIPTION OF WORK PERFORMED** TIME 8:30 Arrive 8144 measure eguilibrate 8:50 open 9:45 9:53 Levels 1035 VEN wrench '00 11:15 volumes Calculate vaitine 1345 1400 at Calibration recalibrate 10 20 10 Get

#### **DAILY FIELD RECORD** (continued)



Page 2 of 2

| Project and Task | Number: 9329.000.0 22 Date:12/14/04                         |
|------------------|-------------------------------------------------------------|
| TIME             | DESCRIPTION OF WORK PERFORMED                               |
| 1435             | collect sample @ MW-12 using disposable teflon Liler        |
|                  | and alternating into 2 125-ml number glass containers       |
|                  | and stored in ite-filled chest. All other wells sampled     |
|                  | and stored in ite-filled chest. All other wells sampled     |
|                  | in this manner unless otherwise noted.                      |
| 1450             | Mob to M4-8                                                 |
| 1458             | Sample MW-8                                                 |
| 1502             | Mob to MW-11                                                |
| 1514             | Sample MW-11                                                |
| 1516             | Mob to MW-9 god MW-18                                       |
| 1526             | Sample MW-9<br>Sample MW-18                                 |
| 1544             | Sample MW-18                                                |
| 1548             | Mob to MW-10                                                |
| 1558             | Sample ML-10                                                |
| 1600             | MOL to MV-16D                                               |
| 1614             | souple MV-16D                                               |
| 615              | Mob to MW-17                                                |
| 1630             | Sample MU-17                                                |
| 1675             | May to MW-14' Mu -14 dried up won't till tomorrow to sample |
| 1645             |                                                             |
| 17:00            | take full 55-gal drum to drum sted Habel                    |
| 17               | w/ pending analysi's label                                  |
| 17:05            | Clare Sile                                                  |
|                  |                                                             |
| ,                |                                                             |
|                  |                                                             |
|                  |                                                             |
|                  |                                                             |
|                  |                                                             |
|                  |                                                             |
|                  |                                                             |
|                  |                                                             |
|                  |                                                             |

#### **DAILY FIELD RECORD**



12/15/04 Project and Task Number: Date: 9329.000.0 22 Field Activity: **GW** Monitoring Project Name: SPI Arcata Weather: Location: Arcata Time Time Company **PERSONNEL:** Name Out In 8:15 12:10 Matt Hillyard Geomatrix 12:10 Charlie Rome Geomatrix PERSONAL SAFETY CHECKLIST X Steel-toed Boots X Hard Hat Tyvek Coveralls Χ Χ Safety Goggles 1/2-Face Respirator Rubber Gloves **DESCRIPTION OF CONTENTS AND QUANTITY LOCATION** DRUM I.D. **DESCRIPTION OF WORK PERFORMED** TIME check in w/ Jal + Gordie Arrive site 8:15 8:30 6:34 8:37 8:47 MW-13D 8:50 8:59 9:14 5:18 9:30 9:34 9:43 9:47 Scaple MW-17D 10:01 Mob to MW-4 10:05 10:10 10:14

#### **DAILY FIELD RECORD** (continued)



Page \_2\_\_ of \_2\_

| Project and Tasl | Number: 9329.000.0 22 | Date:12/15/04                            |
|------------------|-----------------------|------------------------------------------|
| TIME             | DESCRIPT              | ION OF WORK PERFORMED                    |
| 10:20            | Sample MW-5           |                                          |
| 10:25            | Mob to MW-6           |                                          |
| 10:30            | Sample MW-6           |                                          |
|                  | seal and drum take    | to dip tank skel quel get emptyone       |
|                  |                       | 445                                      |
| 10:50            | Mob to MW-7           |                                          |
| 10:55            | Sample MW-7           |                                          |
|                  | M64 +0 MW-20          | - get drum (1/2 full) from               |
|                  | near MW-1 bring       | gurder sonter                            |
| 11:10            | Mob to MW-20          |                                          |
| 11:21            | Sample MW-20          | collected addition 500-ml amberfor MS/AS |
| 11:25            | Mob to MW-21          |                                          |
| 1143             | Sample MW-21          | w/ peristaltic pump, poly                |
|                  | of tygon tubing       | Scimple MW-A in 500 ralamber             |
|                  | collect duplicate     | sample MW-A in 500 mlamber               |
| 11350            | clean up              |                                          |
| 12:09            | De Chock ont          | at office, Leave Site                    |
|                  |                       | /                                        |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  | <u> </u>              |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |
|                  |                       |                                          |

#### WATER LEVEL MONITORING RECORD



Project and Task Number: 9329.000.0 22 Project Name: SPI Arcata

Date: 12/14/04 Measured by: MAH/CFR Instrument Used: E5#Z

Note: For you convenience, the following abbreviations may be used.

P = Pumping

I = Inaccessible

D = Dedicated Pump

ST = Steel Tape

ES = Electric Sounder MP = Measuring Point WL = Water Level

| Well No. | Time | MP<br>Elevation<br>(feet) | Water Level<br>Below MP<br>(feet) | Water Level<br>Elevation<br>(feet) | Previous<br>Water Level<br>Below MP | Remarks                       |
|----------|------|---------------------------|-----------------------------------|------------------------------------|-------------------------------------|-------------------------------|
| RR       | 844  | 15.70                     | 12.05                             | 3.65                               |                                     |                               |
| MW-12    | 955  | 10.76                     | 1.55                              | 9.21                               |                                     | ,                             |
| MW-8     | 956  | 10.33                     | 1.29                              | 9.04                               |                                     |                               |
| MW-11    | 957  | 10.28                     | 1.44                              | 8.84                               |                                     |                               |
| MW-9     | 1009 | 9.91                      | 1.05                              | 8-86                               |                                     | Needs new alleywords 7/6 both |
| MW-18    | 1006 | 9.92                      | 1.13                              | 8.79                               |                                     |                               |
| MW-10    | (008 | 9.85                      | 1.24                              | 8.6                                |                                     |                               |
| MW-16D   | 1010 | 9.83                      | 4.38                              | 5.45                               |                                     |                               |
| MW-17    | 1011 | 9.16                      | 1.17                              | 7.99                               |                                     |                               |
| MW-14    | 1013 | 9.15                      | 2.30                              | 6.85                               |                                     | :                             |
| MW-1     | 1014 | 9.69                      | 4.30                              | 5.39                               | ,                                   |                               |
| MW-2     | 1015 | 9.61                      | 5-10                              | 4.51                               |                                     |                               |
| MW-13D   | 1017 | 9.96                      | 4.56                              | 5.40                               | 3                                   |                               |
| MW-15D   | 1020 | 11.19                     | 5.75                              | 5,44                               |                                     |                               |
| MW-3     | 102/ | 11.22                     | 2.79                              | 8.43                               |                                     | * 1                           |
| MW-19D   | 1022 | 11.06                     | 4.82                              | 6.24                               |                                     |                               |
| MW-4     | 1023 | 10.74                     | 2.71                              | 8.53                               |                                     |                               |
| MW-5     | 1024 | 10.74                     | 1.50                              | 9.24                               | :                                   | Α.                            |
| MW-6     | 1026 | 9.83                      | 1.25                              | 8.58                               |                                     |                               |
| MW-20    | 1027 | 11.87                     | 2.80                              | 7.07                               |                                     |                               |
| MW-21    | 1058 | 12.89                     | 4.36                              | 8.53                               |                                     |                               |
| MW-7     | 1030 | 9.74                      | 104                               | 8.70                               |                                     |                               |
| RR       | 1034 | 15.70                     | 9.90                              | 5,80                               |                                     |                               |
|          |      |                           |                                   |                                    |                                     |                               |
|          |      |                           |                                   |                                    |                                     |                               |
|          |      | -                         |                                   |                                    |                                     |                               |
|          |      |                           |                                   |                                    |                                     |                               |
|          |      |                           |                                   |                                    |                                     |                               |
|          |      |                           |                                   |                                    |                                     |                               |
|          |      |                           |                                   |                                    |                                     |                               |



| Well ID:        | MW-1                                  |                 |                        |           | Initial Depth to Water: リ、30        |                                                  |                                             |  |
|-----------------|---------------------------------------|-----------------|------------------------|-----------|-------------------------------------|--------------------------------------------------|---------------------------------------------|--|
| Sample II       | D: <u>MW-01-</u>                      | 200412 D        | uplicate I             | D:        | Depth to Water after Sampling: 4.86 |                                                  |                                             |  |
| Sample D        | epth:                                 | TOC             |                        |           | Total Depth to Well: _7.90'         |                                                  |                                             |  |
|                 | nd Task No                            |                 | 00.0 22                |           |                                     | Well Diameter: 2"                                |                                             |  |
| Project N       | lame: <u>SP</u>                       | I ARCATA        |                        |           | Casing/Bore                         | hole Volume: 🔼 🖰 💪 🕱 🤫 🖊 💮 💮 💮                   |                                             |  |
| Date: <u>12</u> | 2115/04                               |                 |                        |           | (Gircle one)                        | phole Volumes: 1.8991                            |                                             |  |
| Sampled         | By: MAH                               | /CFR            |                        |           | (Circle one)                        | Phole Volumes:                                   |                                             |  |
| Method o        | of Purging:                           | DISPOS          | ABLE`TE                | FLON BAIL | Total Casing/                       | Borehole スナ                                      |                                             |  |
| Method o        | of Samplin                            | g: <u>DISPO</u> | SABLE TE               | FLON BAI  | LER                                 | Volumes Rem                                      | Borehole 3 +<br>loved:                      |  |
| Time            | Intake<br>Depth                       | Rate<br>(gpm)   | Cum.<br>Vol.<br>(gal.) | Temp.     | pH<br>(units)                       | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |  |
| 0843            | TOC                                   |                 | 0                      | 14,68     | 5.97                                | 9632                                             | It yellow elear                             |  |
| 0844            | 1                                     |                 | 0.5                    |           |                                     | 4652                                             | · ·                                         |  |
| 0845            | /                                     |                 | 1.0                    |           |                                     | 4140                                             | 1+ grey slightly cloudy<br>TDS= 2,473 g/L   |  |
| 0847            | <b>V</b>                              |                 | 20                     | 14.89     | 6.55                                | 3804                                             | A.                                          |  |
|                 |                                       |                 |                        |           |                                     |                                                  | TDS= 2,473 3/L                              |  |
|                 |                                       |                 |                        |           |                                     |                                                  |                                             |  |
|                 |                                       |                 |                        |           |                                     |                                                  |                                             |  |
|                 |                                       |                 |                        |           |                                     |                                                  |                                             |  |
|                 |                                       |                 |                        | ,         |                                     |                                                  |                                             |  |
|                 |                                       |                 |                        |           |                                     |                                                  |                                             |  |
|                 |                                       |                 |                        |           |                                     |                                                  |                                             |  |
|                 |                                       |                 |                        |           |                                     |                                                  |                                             |  |
|                 | рН                                    | CALIBRA         | TION (cho              | ose two)  |                                     | Model or                                         | Unit No.:                                   |  |
| Buffer S        | Solution                              | pH 4            | 4.0 pH                 | 7.0 pH 1  | 0.0                                 | - 0                                              | er MW-1Z                                    |  |
| Temper          | ature C                               |                 |                        |           |                                     |                                                  | 24/10/12                                    |  |
| Instrum         | ent Readir                            | ng              |                        |           |                                     |                                                  |                                             |  |
| SPEC            | IFIC ELEC                             | TRICAL C        | ONDUCT                 | ANCE – CA | LIBRATIO                            | N Model or                                       | Unit No.:                                   |  |
| KCL So          | lution (μS/c                          | cm=μmhos/       | cm)                    |           |                                     |                                                  |                                             |  |
| Temper          | ature C                               |                 |                        |           |                                     |                                                  |                                             |  |
| Instrum         | ent Readir                            | ng              |                        |           |                                     |                                                  |                                             |  |
| Notes:          |                                       |                 |                        |           |                                     | <u> </u>                                         |                                             |  |
|                 |                                       |                 |                        |           |                                     |                                                  |                                             |  |
|                 | · · · · · · · · · · · · · · · · · · · |                 |                        |           |                                     |                                                  |                                             |  |
|                 |                                       |                 |                        |           |                                     |                                                  |                                             |  |
|                 |                                       |                 |                        |           |                                     |                                                  |                                             |  |
|                 |                                       |                 |                        |           |                                     |                                                  |                                             |  |

45 海



| Well ID: _      |                    |                    |                        |               |               | Initial Depth to Water: 5.10                     |                                             |  |
|-----------------|--------------------|--------------------|------------------------|---------------|---------------|--------------------------------------------------|---------------------------------------------|--|
| Sample ID       | ): <u>MW-02-</u> 2 | 200412 D           | uplicate II            | D:            |               | Depth to Water after Sampling: 4.98              |                                             |  |
|                 | epth:              |                    |                        |               |               | Total Depth to                                   |                                             |  |
| Project ar      | nd Task No         | o.: <u>9329.00</u> | 00.0 22                |               |               | Well Diameter:                                   | : 2"                                        |  |
| Project N       | ame: <u>SP</u>     | I ARCATA           |                        |               |               | 1 Casing/Bore                                    | hole Volume: 0.5 9 a l                      |  |
| Date: <u>12</u> | 115/04             |                    |                        |               | (             | (Circle one)                                     | 1501                                        |  |
| Sampled         | By: <u>MAH</u>     | /CFR               |                        |               | `             | Casing Bore<br>(Circle one)                      | hole Volumes: 1.5 9 al                      |  |
| Method o        | f Purging:         | DISPOS             | ABLE TEF               | LON BAIL      | ER            |                                                  | Borehole ~                                  |  |
| Method o        | f Sampling         | g: <u>DISPO</u>    | SABLE TE               | FLON BAII     | LER           | Volumes Rem                                      | Borehole Soved:                             |  |
| Time            | Intake<br>Depth    | Rate<br>(gpm)      | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(μS/cm) | Remarks<br>(color, turbidity, and sediment) |  |
| 0856            | toc                |                    | 0                      | 13.48         | 6.59          | 1197                                             | clear                                       |  |
| 0857            |                    |                    | 0.5                    | 13.67         | 6.44          | 11246                                            | clear, some sand                            |  |
| 0858            |                    |                    | 1.0                    | 13.65         | 6.41          | 1132                                             | e 1                                         |  |
| 0859            | W.                 |                    | 1.5                    | 13.68         | 6.37          | 1131                                             | • (                                         |  |
| ,               |                    | -                  |                        |               |               |                                                  | TDS=0.7353/L                                |  |
|                 |                    |                    |                        | ,             |               | , '1                                             |                                             |  |
|                 |                    |                    |                        |               |               |                                                  |                                             |  |
|                 |                    |                    |                        |               |               |                                                  |                                             |  |
|                 |                    |                    |                        |               |               |                                                  |                                             |  |
|                 |                    |                    |                        |               |               |                                                  | * 4                                         |  |
|                 |                    |                    |                        |               |               |                                                  |                                             |  |
|                 |                    |                    |                        |               |               |                                                  |                                             |  |
|                 | рН                 | CALIBRA            | TION (choo             | ose two)      |               | Model or l                                       | Unit No.:                                   |  |
| Buffer S        | olution            | pH 4               | I.0 pH 7               | 7.0 pH 1      | 0.0           |                                                  |                                             |  |
| Tempera         | iture C            |                    |                        |               |               |                                                  | See MW-12                                   |  |
| Instrume        | ent Readin         | g                  |                        |               |               |                                                  | _                                           |  |
| SPECI           | FIC ELEC           | TRICAL CO          | ONDUCTA                | NCE – CAI     | LIBRATIO      | N Model or                                       | Unit No.:                                   |  |
| KCL Sol         | ution (μS/c        | m=μmhos/o          | cm)                    |               |               |                                                  |                                             |  |
| Tempera         | ture C             |                    |                        |               |               |                                                  |                                             |  |
| Instrume        | ent Readin         | g                  |                        |               |               |                                                  |                                             |  |
| Notes:          |                    |                    |                        | 1             |               |                                                  |                                             |  |
|                 |                    |                    |                        |               |               |                                                  |                                             |  |
|                 |                    |                    |                        |               |               |                                                  |                                             |  |
|                 |                    |                    |                        |               |               |                                                  |                                             |  |
|                 |                    |                    |                        |               |               |                                                  |                                             |  |
|                 |                    |                    | -                      |               |               |                                                  |                                             |  |



| Well ID:  | MW-3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               | Initial Depth to Water: 2, 79 |                                                  |                                             |  |
|-----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|-------------------------------|--------------------------------------------------|---------------------------------------------|--|
|           | D: <u>MW-03-</u> | 200412 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uplicate II            | D:            |                               | Depth to Water after Sampling: 2.95              |                                             |  |
|           | Depth:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               | Total Depth to Well: _7.90'                      |                                             |  |
| •         | nd Task No       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 22                 |               |                               | Well Diameter: 2"                                |                                             |  |
| Project N | lame: <u>SP</u>  | I ARCATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |               |                               | 1 Casing/Bore                                    | hole Volume: 0.85 gal                       |  |
| Date: _12 | 2115 104         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               | (                             | (Circle one)                                     |                                             |  |
| Sampled   | By: MAH          | /CFR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |               | 4 Casing Bore<br>(Circle one) | hole Volumes: 2.5 991                            |                                             |  |
| Method o  | of Purging:      | DISPOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ABLE TEF               | LON BAIL      |                               | Porchala 5 1                                     |                                             |  |
| Method o  | of Sampling      | g: <u>DISPOS</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SABLE TE               | FLON BAII     | LER                           | Volumes Rem                                      | Borehole 3 +                                |  |
| Time      | Intake<br>Depth  | Rate<br>(gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                 | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |  |
| 0940      | TOC              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | 13.72         | 6.34                          | 724                                              | clean                                       |  |
| 0941      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                    | 13.45         | 6.29                          | 702                                              | clear                                       |  |
| 0942      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                    | 13.47         | 6.32                          | 704                                              | It grey                                     |  |
| 0443      | A                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                    | 13.48         | 6.36                          | 702                                              | 11                                          |  |
| * .       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                      |               |                               |                                                  | TDS= 0.456 9/L                              |  |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  |                                             |  |
|           |                  | Projection of the second of th |                        |               |                               |                                                  |                                             |  |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  |                                             |  |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W.                     |               |                               |                                                  |                                             |  |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               | ·                                                |                                             |  |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  |                                             |  |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  |                                             |  |
|           | pH (             | CALIBRAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>            |               |                               | Model or l                                       | Jnit No.:                                   |  |
| Buffer S  | olution          | pH 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0 pH 7                | .0 pH 10      | 0.0                           |                                                  | See MW72                                    |  |
| Tempera   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  | 7 C M 4 C                                   |  |
| Instrume  | ent Readin       | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |               |                               |                                                  |                                             |  |
| SPECI     | FIC ELECT        | RICAL CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NDUCTA                 | NCE - CAL     | IBRATIO                       | Model or U                                       | Unit No.:                                   |  |
| KCL Sol   | ution (μS/c      | m=μmhos/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m)                     |               |                               |                                                  |                                             |  |
| Tempera   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  |                                             |  |
| Instrume  | ent Readin       | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |               |                               |                                                  |                                             |  |
| Notes:    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  |                                             |  |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               | -                             |                                                  |                                             |  |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  |                                             |  |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  |                                             |  |
|           | ·                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  |                                             |  |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                               |                                                  |                                             |  |



| Well ID: _ | MW-4             |                    |                        |               | Initial Depth to Water: 2.2! |                                                  |                                             |  |
|------------|------------------|--------------------|------------------------|---------------|------------------------------|--------------------------------------------------|---------------------------------------------|--|
| Sample II  | D: <u>MW-04-</u> | 200412 C           | ouplicate II           | D:            |                              | Depth to Water after Sampling: 2-28              |                                             |  |
| Sample D   | Depth:           | 2 C                |                        |               |                              | Total Depth to Well: _7.80'                      |                                             |  |
| Project a  | nd Task No       | o.: <u>9329.00</u> | 00.0 22                |               |                              | Well Diameter: 2"                                |                                             |  |
| Project N  | lame: <u>SP</u>  | I ARCATA           | <b>\</b>               |               |                              | 1 Casing Bore                                    | hole Volume: 0.92 9al                       |  |
| Date: _12  | 2/15/04          |                    |                        |               | /                            | (Circle one)                                     | hole Volumes: 2.8 9.1                       |  |
| Sampled    | By: MAH          | /CFR               |                        |               | (Circle one)                 | hole Volumes:                                    |                                             |  |
| Method o   | of Purging:      | DISPOS             | ABLE TEF               | LON BAIL      | ,                            | Borehole >+                                      |                                             |  |
| Method o   | of Samplin       | g: <u>DISPO</u>    | SABLE TE               | FLON BAI      | LER                          | T                                                | Borehole 3 to oved:                         |  |
| Time       | Intake<br>Depth  | Rate<br>(gpm)      | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |  |
| 1007       | TOC              |                    | 0.5                    | 14.23         | 6.43                         | 611                                              | clear                                       |  |
| 1008       | ſ                |                    | 1.0                    | 14.27         |                              | 637                                              | It grey slightly clouds                     |  |
| 1009       | )                |                    | 2.0                    | 14.38         | 6.37                         | 642                                              | 11                                          |  |
| 1010       | 4                |                    | 3.6                    | 14.40         | 6.37                         | 636                                              | 11                                          |  |
|            |                  |                    |                        |               |                              |                                                  | TD5=0.413 3/L                               |  |
|            |                  |                    |                        |               |                              |                                                  |                                             |  |
|            |                  |                    |                        |               |                              |                                                  |                                             |  |
|            |                  |                    |                        |               |                              |                                                  |                                             |  |
|            |                  |                    |                        |               |                              |                                                  |                                             |  |
|            |                  |                    |                        |               |                              |                                                  |                                             |  |
| 4          |                  |                    |                        |               |                              |                                                  |                                             |  |
| - 08       |                  |                    |                        |               |                              |                                                  |                                             |  |
|            | pH               | CALIBRA            | TION (cho              | ose two)      |                              | Model or                                         | Unit No.:                                   |  |
| Buffer S   | Solution         | pH 4               | 4.0 pH 7               | 7.0 pH 1      | 0.0                          |                                                  | See MW-12                                   |  |
| Temper     | ature C          |                    |                        |               |                              |                                                  |                                             |  |
| Instrum    | ent Readin       | g                  |                        |               |                              |                                                  |                                             |  |
| SPEC       | IFIC ELEC        | TRICAL C           | ONDUCTA                | NCE – CA      | LIBRATIO                     | N Model or                                       | Unit No.:                                   |  |
| KCL So     | <br>lution (μS/c | :m=μmhos/          | cm)                    |               |                              |                                                  |                                             |  |
| Temper     | ature C          |                    |                        |               |                              |                                                  |                                             |  |
|            | ent Readin       | ıg                 |                        |               |                              |                                                  |                                             |  |
| Notes:     |                  |                    |                        |               |                              |                                                  |                                             |  |
|            |                  |                    |                        |               |                              |                                                  |                                             |  |
|            |                  |                    |                        |               |                              |                                                  |                                             |  |
|            | <u> </u>         |                    |                        |               |                              |                                                  |                                             |  |
|            |                  |                    |                        |               | <u></u>                      |                                                  |                                             |  |
|            |                  |                    |                        |               |                              |                                                  |                                             |  |



| Well ID: _ |                  |                    |                        |               | _                                   | Initial Depth to Water: 1.50                     |                                             |  |
|------------|------------------|--------------------|------------------------|---------------|-------------------------------------|--------------------------------------------------|---------------------------------------------|--|
| Sample II  | D: <u>MW-05-</u> | 200412 D           | uplicate II            | D:            | Depth to Water after Sampling: 1.60 |                                                  |                                             |  |
|            | Depth:           |                    |                        |               |                                     | Total Depth to Well: _7.80'                      |                                             |  |
| Project a  | nd Task N        | o.: <u>9329.00</u> | 00.0 22                |               |                                     | Well Diameter: 2"                                |                                             |  |
| Project N  | lame: <u>SP</u>  | I ARCATA           | 1                      | 1             | 1                                   | 1 Casing Bore                                    | ehole Volume: 1.03 gal                      |  |
| Date: _12  | 2/15/04          |                    |                        |               |                                     | (Circle one)                                     | ehole Volumes: 3, 1 g 1/                    |  |
| Sampled    | By: MAH          | /CFR               |                        |               | (Circle one)                        | ehole Volumes:                                   |                                             |  |
| Method o   | of Purging:      | DISPOS             | ABLE TEF               | LON BAIL      |                                     | Borehole 3 +                                     |                                             |  |
| Method o   | of Samplin       | g: <u>DISPO</u>    | SABLE TE               | FLON BAI      | Volumes Rem                         | Borehole 3 +                                     |                                             |  |
| Time       | Intake<br>Depth  | Rate<br>(gpm)      | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                       | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |  |
| 1016       | TOC              |                    | 0.5                    | 14.32         | 6.50                                | 477                                              | Clear                                       |  |
| 1017       | 1                |                    | 1.0                    | 14.70         | 6.50                                | 474                                              | (4                                          |  |
| 1018       |                  |                    | 2.0                    | 14.75         | 6.47                                | 472                                              | 11                                          |  |
| 1020       | V                |                    | 3.5                    | 14,78         | 6,44                                | 473                                              | (/                                          |  |
|            |                  |                    |                        |               |                                     |                                                  | TDS=0.3063/L                                |  |
|            |                  |                    |                        |               |                                     |                                                  |                                             |  |
|            |                  |                    |                        |               |                                     |                                                  |                                             |  |
|            |                  |                    |                        |               |                                     |                                                  |                                             |  |
|            |                  |                    |                        |               |                                     |                                                  | 1                                           |  |
|            |                  |                    |                        |               |                                     |                                                  |                                             |  |
|            |                  |                    |                        |               |                                     |                                                  |                                             |  |
|            |                  |                    |                        |               |                                     |                                                  |                                             |  |
|            | рН               | CALIBRA            | ΓΙΟΝ (choo             | ose two)      |                                     | Model or                                         | Unit No.:                                   |  |
| Buffer S   | olution          | pH 4               | i.0 pH 7               | 7.0 pH 1      | 0.0                                 |                                                  | See MW-12                                   |  |
| Tempera    | ature C          |                    |                        |               |                                     |                                                  | , 2                                         |  |
| Instrume   | ent Readin       | g                  |                        |               |                                     |                                                  |                                             |  |
| SPECI      | IFIC ELEC        | TRICAL CO          | ONDUCTA                | NCE – CAI     | IBRATIO                             | Model or                                         | Unit No.:                                   |  |
| KCL Sol    | lution (μS/c     | m=μmhos/o          | cm)                    |               |                                     |                                                  |                                             |  |
| Tempera    | ature C          |                    |                        |               |                                     |                                                  |                                             |  |
| Instrum    | ent Readin       | g                  |                        |               |                                     |                                                  |                                             |  |
| Notes:     |                  |                    |                        |               |                                     |                                                  |                                             |  |
|            |                  |                    |                        |               |                                     |                                                  |                                             |  |
|            |                  |                    |                        |               |                                     |                                                  |                                             |  |
|            |                  |                    |                        |               | ·                                   |                                                  |                                             |  |
|            |                  |                    |                        |               |                                     |                                                  |                                             |  |
|            |                  |                    |                        |               |                                     |                                                  |                                             |  |



| Well ID:  |                  |                     |                        |          | Initial Depth to Water: 25 |                                                  |                                             |  |  |
|-----------|------------------|---------------------|------------------------|----------|----------------------------|--------------------------------------------------|---------------------------------------------|--|--|
| Sample I  | D: <u>MW-06-</u> | 200412 C            | Ouplicate I            | D:       |                            | Depth to Water after Sampling:                   |                                             |  |  |
|           | Depth:           |                     |                        |          |                            | Total Depth to Well: _7.80'                      |                                             |  |  |
| Project a | nd Task N        | o.: <u>9329.0</u> 0 | 00.0 22                |          |                            | Well Diameter: 2"                                |                                             |  |  |
| Project N | lame: <u>SP</u>  | I ARCATA            |                        |          | 1                          | 1 Casing/Bore                                    | hole Volume: 1.07 91/                       |  |  |
| Date: _12 | 2/15/104         |                     |                        |          | /                          | (Circle one)                                     | phole Volumes: 3.2391                       |  |  |
| Sampled   | By: <u>MAH</u>   | /CFR                |                        |          |                            | Casing/Bore (Circle one)                         | enole volumes:                              |  |  |
| Method    | of Purging:      | DISPOS              | ABLE TER               | LON BAIL |                            | Borehole > +                                     |                                             |  |  |
| Method    | of Samplin       | g: <u>DISPO</u>     | SABLE TE               | FLON BAI | Volumes Rem                | Borehole 3 +                                     |                                             |  |  |
| Time      | Intake<br>Depth  | Rate<br>(gpm)       | Cum.<br>Vol.<br>(gal.) | Temp.    | pH<br>(units)              | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |  |  |
| 1027      | TOC              |                     | 0                      | 11.52    | 6.20                       | 715                                              | Clear                                       |  |  |
| 1028      |                  |                     | 1.0                    | 11.22    | 6.29                       | 721                                              | 1/                                          |  |  |
| 1029      |                  |                     | 7.0                    | 11.19    | 6.33                       | 719                                              | ./                                          |  |  |
| (03/)     | V                |                     | 3.5                    | 11.21    | 6.36                       | 705                                              | 1/                                          |  |  |
|           |                  |                     |                        |          |                            |                                                  | TDS=0.458 5/L                               |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           |                  |                     |                        | -        |                            |                                                  |                                             |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           | pH               |                     | TION (cho              |          |                            | Model or                                         |                                             |  |  |
| Buffer S  |                  | pH 4                | 4.0 pH                 | 7.0 pH 1 | 10.0                       |                                                  | see MW-12                                   |  |  |
| Temper    |                  |                     |                        |          |                            | >                                                | ) = = /                                     |  |  |
|           | ent Readin       |                     |                        |          |                            |                                                  |                                             |  |  |
|           | IFIC ELEC        |                     |                        | NCE – CA | LIBRATIO                   | Model or                                         | Unit No.:                                   |  |  |
|           | lution (μS/c     | :m=μmhos/           | cm)                    |          |                            |                                                  |                                             |  |  |
| Temper    |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           | ent Readir       | ng                  |                        |          |                            |                                                  |                                             |  |  |
| Notes:    |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |
|           |                  |                     |                        |          |                            |                                                  |                                             |  |  |



| Well ID: _ | MW-7             |                   |                        |           | Initial Depth to Water: 1.04         |                                                  |                                             |  |  |  |  |
|------------|------------------|-------------------|------------------------|-----------|--------------------------------------|--------------------------------------------------|---------------------------------------------|--|--|--|--|
| Sample II  | D: <u>MW-07-</u> | 200412 E          | Duplicate I            | D:        | Depth to Water after Sampling: 1, 56 |                                                  |                                             |  |  |  |  |
| Sample D   | Depth:           | 00                |                        |           |                                      | Total Depth to Well: _7.80'                      |                                             |  |  |  |  |
| Project a  | nd Task N        | o.: <u>9329.0</u> | 00.0 22                |           |                                      | Well Diameter: 2"                                |                                             |  |  |  |  |
| Project N  | lame: SP         | I ARCATA          | ١                      |           |                                      | 1 Casing)Bore                                    | ehole Volume: 1.1 gal                       |  |  |  |  |
| Date: _12  | 2115 104         |                   |                        |           | (                                    | (Gircle one)                                     | 23                                          |  |  |  |  |
| Sampled    | By: MAH          | I/CFR             |                        |           | Casing/Bore (Circle one)             | ehole Volumes: 3,3 gal                           |                                             |  |  |  |  |
| Method o   | of Purging:      | DISPOS            | ABLE TEF               | LON BAIL  |                                      | Borehole 3+                                      |                                             |  |  |  |  |
| Method o   | of Samplin       | g: <u>DISPO</u>   | SABLE TE               | FLON BAI  | ILER                                 | Volumes Rem                                      | loved:                                      |  |  |  |  |
| Time       | Intake<br>Depth  | Rate<br>(gpm)     | Cum.<br>Vol.<br>(gal.) | Temp.     | pH<br>(units)                        | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |  |  |  |  |
| 1051       | TOC              |                   | 0.5                    | 11-05     | 8.38                                 | 714                                              | Clear                                       |  |  |  |  |
| 1052       | 1                |                   | 1-0                    | 11.01     | 6.37                                 | 759                                              | (1)                                         |  |  |  |  |
| 1053       |                  |                   | 7.0                    | 11.02     | 6.35                                 | 753                                              | (1                                          |  |  |  |  |
| 1055       | $\mathcal{V}$    | -                 | 3.5                    | 10.98     | 4.35                                 | 705                                              | 11                                          |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  | TDS=0.4559/L                                |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            | pН               | CALIBRAT          | TION (choo             | ose two)  |                                      | Model or I                                       | Unit No.:                                   |  |  |  |  |
| Buffer Se  | olution          | pH 4              | .0 pH 7                | '.0 pH 1  | 0.0                                  | _ <                                              | ee MW-12                                    |  |  |  |  |
| Tempera    | ture C           |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
| Instrume   | ent Readin       | g                 |                        |           |                                      |                                                  |                                             |  |  |  |  |
| SPECI      | FIC ELECT        | TRICAL CO         | ONDUCTA                | NCE – CAI | LIBRATION                            | Model or I                                       | Unit No.:                                   |  |  |  |  |
| KCL Sol    | ution (μS/c      | m=μmhos/c         | m)                     |           |                                      |                                                  |                                             |  |  |  |  |
| Tempera    | ture C           |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
| Instrume   | ent Readin       | g                 |                        |           |                                      |                                                  |                                             |  |  |  |  |
| Notes:     |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            | ******           |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |
|            |                  |                   |                        |           |                                      |                                                  |                                             |  |  |  |  |



| Well ID: _ | MW-8            |                  | •                      |               |               | Initial Depth to Water: 1.29                     |                                             |  |  |
|------------|-----------------|------------------|------------------------|---------------|---------------|--------------------------------------------------|---------------------------------------------|--|--|
| Sample ID  | D: MW-08-2      | 200412 D         | uplicate II            | ):            |               | Depth to Water after Sampling:                   |                                             |  |  |
| Sample D   | epth:           | OC               |                        |               |               | Total Depth to Well: _7.80'                      |                                             |  |  |
|            | nd Task No      |                  | 0.0 22                 |               |               | Well Diameter: 2"                                |                                             |  |  |
| Project N  | ame: SP         | ARCATA           |                        |               |               | 1 Casing/Bo                                      | rehole Volume: 1,// ga/                     |  |  |
| Date: _12  | 114104          |                  |                        |               |               | (Criticie oue)                                   |                                             |  |  |
| Sampled    | By: MAH         | /CFR             |                        |               |               |                                                  | rehole Volumes: 3,3 9 a/                    |  |  |
| Method o   | f Purging:      | DISPOS           | ABLE TEF               | LON BAILI     | ER            | `                                                | /Borehole                                   |  |  |
| Method o   | f Sampling      | g: <u>DISPOS</u> | SABLE TE               | FLON BAIL     | _ER           | Volumes Re                                       | Borehole 3 moved:                           |  |  |
| Time       | Intake<br>Depth | Rate<br>(gpm)    | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |  |  |
| 1454       | TOC             |                  | .5                     | 13.73         | 6.46          | 643                                              | clear                                       |  |  |
| 1455       |                 |                  | 1.6                    |               | 6.37          | 643                                              | 1+ yellow                                   |  |  |
| 1456       |                 |                  | 2.0                    | 13.92         | 6.32          | 645                                              | 3.1                                         |  |  |
| 1457       |                 |                  | 2.5                    | 13.96         | 6.31          | 645                                              | ×1                                          |  |  |
| 1458       |                 |                  | 3.0                    | 13,99         | 6.29          | 647                                              | ,1                                          |  |  |
| 1458       | V               |                  | 3.5                    | 14.01         | 6.29          | 647                                              | ()                                          |  |  |
|            |                 |                  |                        |               |               |                                                  | TDS=.4209/L                                 |  |  |
|            |                 |                  |                        |               |               |                                                  |                                             |  |  |
|            |                 |                  |                        |               |               |                                                  |                                             |  |  |
|            |                 |                  |                        |               |               |                                                  |                                             |  |  |
|            |                 |                  |                        |               |               |                                                  |                                             |  |  |
|            |                 |                  |                        |               |               |                                                  |                                             |  |  |
|            | рН              | CALIBRAT         | TION (choo             | se two)       |               |                                                  | or Unit No.: Sec MW-12                      |  |  |
| Buffer S   | olution         | pH 4             | i.0 pH 7               | 7.0 pH 10     | 0.0           | _ X5J                                            | F556                                        |  |  |
| Tempera    | ature C         |                  |                        |               |               |                                                  |                                             |  |  |
| Instrume   | ent Readin      | g                |                        |               |               |                                                  |                                             |  |  |
| SPECI      | FIC ELEC        | TRICAL CO        | ONDUCTA                | NCE – CAL     | IBRATIO       | Model                                            | or Unit No.:                                |  |  |
| KCL Sol    | ution (μS/c     | m=μmhos/α        | cm)                    |               |               |                                                  |                                             |  |  |
| Tempera    | ature C         |                  |                        |               |               |                                                  |                                             |  |  |
| Instrume   | ent Readin      | g                |                        |               |               |                                                  |                                             |  |  |
| Notes:     |                 | -                |                        |               |               |                                                  |                                             |  |  |
|            |                 |                  |                        |               |               |                                                  | ·                                           |  |  |
|            |                 |                  |                        |               |               |                                                  |                                             |  |  |
|            |                 |                  |                        |               |               |                                                  |                                             |  |  |
|            |                 |                  |                        |               |               |                                                  |                                             |  |  |
|            |                 |                  |                        |               | <u> </u>      |                                                  |                                             |  |  |



| Well ID: _ | MW-9             |                  | •                      |               |               | Initial Depth to Water: 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |  |
|------------|------------------|------------------|------------------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| Sample II  | D: <u>MW-09-</u> | 200412 D         | uplicate II            | D:            | ·             | Depth to Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r after Sampling:                           |  |
| Sample D   | epth:            | 10 C             |                        |               |               | Total Depth to Well: _7.80'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |  |
|            |                  |                  | 0.0 22                 |               |               | Well Diameter: 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
| Project N  | ame: <u>SP</u>   | I ARCATA         |                        |               |               | 1 Casing/Bore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hole Volume: 1./5 9 1/                      |  |
| Date: _12  | 114 104          |                  |                        |               |               | (Circle one)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                           |  |
| Sampled    | By: <u>MAH</u>   | /CFR             |                        |               | # Casing/Bore | hole Volumes: 3,44 gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |  |
| Method o   | f Purging:       | DISPOS           | ABLE TEF               | LON BAIL      | ER            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
| Method o   | f Sampling       | g: <u>DISPOS</u> | SABLE TE               | FLON BAIL     | ER            | Total Casing/E<br>Volumes Rem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oved:                                       |  |
| Time       | Intake<br>Depth  | Rate<br>(gpm)    | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(μS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remarks<br>(color, turbidity, and sediment) |  |
| 1521       | TOC              |                  | 0                      | 13.30         | 6.45          | 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clear                                       |  |
| 1522       | 1                |                  | 1.0                    | 13.33         | 6.42          | 779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                          |  |
| 1523       |                  |                  | 7.0                    | 13-34         | 6.43          | 792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                          |  |
| 1525       |                  |                  | 3.0                    | 13,45         | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - O                                         |  |
| 1526       | 1                |                  | 3.5                    | 13.49         | 6.43          | 798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ι.                                          |  |
|            |                  |                  |                        | ,             |               | Transport of the Control of the Cont | TD55.5189/L                                 |  |
|            |                  |                  |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                           |  |
|            |                  |                  |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
|            |                  |                  |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
|            |                  |                  |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
|            |                  | ·                |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
|            |                  |                  |                        |               |               | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |  |
|            | рН               | CALIBRAT         | TION (choo             | ose two)      |               | Model or I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit No.:                                   |  |
| Buffer S   | olution          | pH 4             | .0 pH 7                | '.0 pH 10     | 0.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 11   1 - 17                               |  |
| Tempera    | ture C           |                  |                        |               |               | 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ce MW-12                                    |  |
| Instrume   | ent Readin       | g                |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
| SPECI      | FIC ELEC         | TRICAL CO        | ONDUCTA                | NCE – CAL     | IBRATION      | Model or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit No.:                                   |  |
| KCL Sol    | ution (μS/c      | :m=μmhos/α       | cm)                    |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
| Tempera    | ature C          |                  |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
| Instrume   | ent Readin       | g                |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
| Notes:     |                  |                  |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
|            |                  |                  |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
|            |                  | -                |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
|            |                  |                  |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                         |  |
|            |                  |                  |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |
|            |                  |                  |                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |



| Well ID: _                           | MW-10                      |                    |             |           | Initial Depth to Water: \.2 4       |                                                  |                                             |  |
|--------------------------------------|----------------------------|--------------------|-------------|-----------|-------------------------------------|--------------------------------------------------|---------------------------------------------|--|
| Sample II                            | D: <u>MW-10-</u>           | 200412 D           | uplicate II | D:        | Depth to Water after Sampling: 2.27 |                                                  |                                             |  |
| Sample D                             | epth:                      | OC_                |             |           | Total Depth to Well: _7.85'         |                                                  |                                             |  |
| Project a                            | nd Task N                  | o.: <u>9329.00</u> | 0.0 22      |           |                                     | Well Diameter:                                   |                                             |  |
|                                      | ame: SP                    | I ARCATA           |             |           |                                     | 1 Casing/Bore<br>(Circle one)                    | hole Volume: 1,12 gg/                       |  |
| Date: <u>12</u>                      |                            | /CED               |             |           |                                     | 4 Casing/Bore                                    | hole Volumes: <u>3, 3 7 9 9</u> /           |  |
|                                      | By: MAH                    |                    | ADI E TEE   | I ON BAII |                                     | (Circle one)                                     | ,                                           |  |
|                                      | of Purging:<br>of Sampling |                    |             |           | Total Casing E<br>Volumes Rem       | Borehole 3 + oved:                               |                                             |  |
| Time Intake Rate Vol. (c) (c) (mits) |                            |                    |             |           |                                     | Specific<br>Electrical<br>Conductance<br>(μS/cm) | Remarks<br>(color, turbidity, and sediment) |  |
| 1555                                 | toc                        |                    | 8           | 13.99     | 6.47                                | 749                                              | Clear                                       |  |
| 1556                                 | 1                          |                    | 1.0         | 13.67     | 6.46                                | 716                                              | 1+ grey                                     |  |
| 1557                                 |                            |                    | 5.0         | 13.71     | 6.45                                | 700                                              | It Ira, slightly clouds                     |  |
| 1558                                 | V                          |                    | 3.5         | 13.7/     | 6.43                                | 695                                              | , 1                                         |  |
|                                      |                            |                    |             |           |                                     |                                                  | TDS= 6.4529/L                               |  |
|                                      |                            |                    |             |           |                                     |                                                  |                                             |  |
|                                      |                            |                    |             |           |                                     |                                                  |                                             |  |
|                                      |                            |                    |             |           |                                     |                                                  | , , , , , , , , , , , , , , , , , , ,       |  |
|                                      |                            |                    |             |           |                                     |                                                  |                                             |  |
|                                      |                            |                    |             |           |                                     |                                                  |                                             |  |
|                                      |                            |                    |             |           |                                     |                                                  |                                             |  |
|                                      |                            |                    |             |           |                                     |                                                  |                                             |  |
|                                      | рН                         | CALIBRAT           | TION (choo  | se two)   |                                     | Model or I                                       | Unit No.:                                   |  |
| Buffer S                             | olution                    | pH 4               | .0 pH 7     | .0 pH 10  | 0.0                                 |                                                  | 500 111                                     |  |
| Tempera                              | ture C                     |                    |             |           |                                     |                                                  | 5ee MW-12                                   |  |
| Instrume                             | ent Readin                 | g                  |             |           |                                     |                                                  |                                             |  |
| SPECI                                | FIC ELEC                   | TRICAL CO          | ONDUCTA     | NCE – CAI | IBRATION                            | Model or                                         | Unit No.:                                   |  |
| KCL Sol                              | ution (μS/c                | m=μmhos/c          | em)         |           |                                     |                                                  |                                             |  |
| Tempera                              | ature C                    |                    |             |           |                                     |                                                  |                                             |  |
| Instrume                             | ent Readin                 | g                  |             |           |                                     |                                                  |                                             |  |
| Notes:                               |                            |                    | •           | •         | -                                   |                                                  |                                             |  |
|                                      |                            |                    |             |           |                                     |                                                  |                                             |  |
|                                      |                            |                    | ·           |           |                                     |                                                  |                                             |  |
|                                      |                            |                    |             |           |                                     |                                                  |                                             |  |
|                                      |                            |                    |             |           |                                     |                                                  |                                             |  |
|                                      |                            |                    |             |           |                                     | 463                                              |                                             |  |



| Well ID: _ | MW-11                                         |                  |             |           | Initial Depth to Water: 1.44        |                                                  |                                             |
|------------|-----------------------------------------------|------------------|-------------|-----------|-------------------------------------|--------------------------------------------------|---------------------------------------------|
| Sample II  | D: <u>MW-11-</u>                              | 200412 D         | uplicate II | D:        | Depth to Water after Sampling: 1.50 |                                                  |                                             |
| Sample D   | Depth:                                        | CC               |             |           | Total Depth to Well: 8.45'          |                                                  |                                             |
|            | nd Task No                                    |                  | 0.0 22      |           |                                     | Well Diameter:                                   |                                             |
| Project N  | lame: <u>SP</u>                               | I ARCATA         |             |           |                                     | 1 Casing/Bore                                    | hole Volume: 119 99/                        |
| Date: _12  | 114104                                        |                  |             |           | /                                   | (Circle one)                                     | 31001                                       |
| Sampled    | By: MAH                                       | /CFR             |             |           |                                     | Casing/Bore (Circle one)                         | hole Volumes: 3.60 ga/                      |
| Method o   | of Purging:                                   | DISPOS           | ABLE TEF    | LON BAILI | ER                                  |                                                  | Sorehole ~ +                                |
| Method o   | of Sampling                                   | g: <u>DISPOS</u> | SABLE TE    | FLON BAIL | ER                                  | Volumes Rem                                      | Borehole 3 +                                |
| Time       | Time Intake Rate Vol. (gal.) Temp. pH (units) |                  |             |           | •                                   | Specific<br>Electrical<br>Conductance<br>(μS/cm) | Remarks<br>(color, turbidity, and sediment) |
| 1909       | TOC                                           |                  | 0.5         | 14.10     | 6.36                                | 730                                              | Stear It grey, cloudy, particles            |
| 1510       | 1                                             |                  | 1.5         | 14.39     | 6.39                                | 735                                              | It grey , cloudy                            |
| 1511       |                                               |                  | 2.5         | (4.67     | 6.42                                | 735                                              | V1                                          |
| 1512       |                                               |                  | 3.0         | 15.45     | 6.42                                | 732                                              | 1.7                                         |
| 1513       | 1                                             |                  | 4.0         | 14.97     |                                     | 738                                              | ` (                                         |
| 1514       | 1                                             |                  | 4.5         | 14.92     | 6.45                                | 737                                              | 11                                          |
|            |                                               |                  |             | (já       |                                     |                                                  | TDS=.4783/L                                 |
|            |                                               |                  |             | #**       |                                     |                                                  |                                             |
|            |                                               |                  |             |           |                                     |                                                  |                                             |
|            |                                               |                  |             |           |                                     | #                                                |                                             |
|            |                                               |                  |             |           |                                     |                                                  |                                             |
|            |                                               |                  |             |           |                                     |                                                  |                                             |
|            | рН                                            | CALIBRAT         | TION (choo  | se two)   |                                     | Model or t                                       | Unit No.:                                   |
| Buffer S   | olution                                       | pH 4             | .0 pH 7     | .0 pH 10  | 0.0                                 |                                                  | See MW-12                                   |
| Tempera    | ature C                                       |                  |             |           |                                     |                                                  | 7 E & 1 C                                   |
| Instrum    | ent Readin                                    | g                |             |           |                                     |                                                  |                                             |
| SPEC       | IFIC ELEC                                     | TRICAL CO        | ONDUCTA     | NCE – CAL | IBRATION                            | Model or                                         | Unit No.:                                   |
| KCL So     | lution (μS/c                                  | m=μmhos/c        | em)         |           |                                     |                                                  |                                             |
| Temper     | ature C                                       |                  |             |           |                                     |                                                  |                                             |
| Instrum    | ent Readin                                    | g                |             |           |                                     |                                                  |                                             |
| Notes:     |                                               |                  |             |           |                                     |                                                  |                                             |
|            |                                               |                  |             |           | -                                   |                                                  |                                             |
|            |                                               |                  |             |           |                                     |                                                  |                                             |
|            |                                               |                  |             |           | -                                   |                                                  |                                             |
|            |                                               |                  |             |           |                                     |                                                  |                                             |
|            |                                               |                  |             |           |                                     |                                                  |                                             |



| Well ID: _      | MW-12              |                  |                        |               | Initial Depth to Water: 1.55 |                                                  |                                             |  |
|-----------------|--------------------|------------------|------------------------|---------------|------------------------------|--------------------------------------------------|---------------------------------------------|--|
|                 | D: <u>MW-12-</u> 2 |                  |                        | ):            |                              | Depth to Water after Sampling: 2.16              |                                             |  |
|                 | Depth: To          |                  |                        |               |                              | Total Depth to Well: 8.50'                       |                                             |  |
|                 | nd Task No         | •                |                        |               |                              | Well Diameter:                                   |                                             |  |
| Project N       | lame: SP           | I ARCATA         |                        |               | $\overline{}$                | 1 Casing/Bore                                    | hole Volume: 48 1.18 gallons                |  |
| Date: <u>12</u> | 214 104            |                  |                        |               |                              | (Circle one)                                     | 35 / 11                                     |  |
| Sampled         | By: MAH            | /CFR             |                        |               |                              | Casing/Bore (Circle one)                         | hole Volumes: 3.5 gallons                   |  |
| Method o        | of Purging:        | DISPOSA          | ABLE TEF               | LON BAIL      | ER                           | è .                                              | Borehole > 1.                               |  |
| Method o        | of Sampling        | g: <u>DISPOS</u> | SABLE TE               | FLON BAII     | _ER                          | Volumes Rem                                      | oved: 3-4                                   |  |
| Time            | Intake<br>Depth    | Rate<br>(gpm)    | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                | Specific<br>Electrical<br>Conductance<br>(μS/cm) | Remarks<br>(color, turbidity, and sediment) |  |
| 1427            | TOC                |                  | 0.5                    | 14.18         | 6.42                         | 683                                              | Clear                                       |  |
| 1429            | 1                  |                  | 1.0                    | 14.03         | 6.31                         | 712                                              | (1                                          |  |
| 1431            |                    |                  | 7.0                    | 13.90         | 6.46                         | 718                                              | It brut Slightly (loody abortion            |  |
| 1432            |                    |                  | 3.0                    | 13.92         | 6.41                         | 713                                              | (1                                          |  |
| 1433            | ,                  |                  | 3.5                    | 14.03         | 6.42                         | 767                                              | U                                           |  |
| 1435            | 1                  |                  | 4.0                    | 13.96         | 6,41                         | 709                                              | 11: 59-p/e<br>TDS=4649/L                    |  |
|                 |                    |                  |                        |               |                              |                                                  | TDS=.464 9/L                                |  |
|                 |                    |                  |                        |               |                              |                                                  | ·                                           |  |
|                 |                    |                  |                        |               |                              |                                                  |                                             |  |
|                 |                    |                  | . 246.1<br>St. 1       |               |                              |                                                  |                                             |  |
|                 | ·                  |                  | ,                      |               |                              |                                                  |                                             |  |
|                 |                    |                  |                        |               |                              |                                                  |                                             |  |
|                 | рН                 | CALIBRAT         | ΓΙΟΝ (choo             | se two)       |                              | Model or                                         | Unit No.:                                   |  |
| Buffer S        | olution            | pH 4             | i.0 pH 7               | '.0 pH 1      | 0.0                          | X5                                               | I 556                                       |  |
| Tempera         | ature C            |                  |                        |               |                              | 1 '                                              |                                             |  |
| Instrum         | ent Readin         | g                |                        |               |                              | Tae                                              | tory Calibrated                             |  |
| SPEC            | IFIC ELEC          | TRICAL CO        | ONDUCTA                | NCE – CAI     | LIBRATIO                     | Model or                                         | Unit No.:                                   |  |
| KCL So          | lution (μS/c       | :m=μmhos/d       | cm)                    |               |                              |                                                  |                                             |  |
| Temper          | ature C            |                  |                        |               |                              |                                                  |                                             |  |
| Instrum         | ent Readin         | ıg               |                        |               |                              |                                                  |                                             |  |
| Notes:          |                    |                  |                        |               |                              |                                                  |                                             |  |
|                 |                    |                  |                        |               |                              |                                                  |                                             |  |
|                 |                    |                  |                        |               |                              |                                                  |                                             |  |
|                 |                    |                  |                        |               |                              |                                                  |                                             |  |
|                 |                    |                  |                        |               |                              |                                                  |                                             |  |
|                 |                    |                  |                        |               |                              |                                                  |                                             |  |



| Well ID:  | MW-13D                                            |           |            |           | Initial Depth to Water: 4.56 |                                                  |                                             |  |  |
|-----------|---------------------------------------------------|-----------|------------|-----------|------------------------------|--------------------------------------------------|---------------------------------------------|--|--|
| _         |                                                   | 200412    | Duplicate  | ID· ~     |                              |                                                  |                                             |  |  |
|           | Depth:                                            |           | Duplicate  | ib        | Total Depth to Well: 19.10'  |                                                  |                                             |  |  |
|           | nd Task N                                         |           | 00 0 22    |           |                              | Well Diameter: _2"                               |                                             |  |  |
| _         | ame: SP                                           |           |            |           |                              | Casing/Borehole Volume: 2.4 9 1                  |                                             |  |  |
| Date: _12 |                                                   | 7.1.07.17 | ·          |           |                              | Gircle one)                                      |                                             |  |  |
| -         | By: MAH                                           | /CFR      |            |           | (                            | Casing/Borehole Volumes: 7.191                   |                                             |  |  |
|           | -                                                 |           | ABLE TEF   | LON BAIL  | ER                           | (Circle one)                                     | o #                                         |  |  |
|           |                                                   |           | SABLE TE   |           | Volumes Rem                  | oved:                                            |                                             |  |  |
| Time      | Time Intake Rate Vol. (gpm) Cum. Temp. pH (units) |           |            |           |                              | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |  |  |
| 0904      | TOC                                               |           | 0.5        | 13.84     | 6.36                         | 527                                              | clear                                       |  |  |
| 0906      | 1                                                 |           | 2.0        | 14.41     | 6.12                         | 502                                              | ч                                           |  |  |
| 0907      |                                                   |           | 3.0        | 14.65     | 6.05                         | 550                                              | t I                                         |  |  |
| 0910      |                                                   |           | 4.5        | 14.52     | 6.06                         | 556                                              | Į,                                          |  |  |
| 0912      |                                                   | -         | 6.0        | 14.59     | 6.08                         | 570                                              | 14                                          |  |  |
| 0914      | 1                                                 |           | 7.25       | 14.50     | 6.12                         | 616                                              | U                                           |  |  |
| •         |                                                   |           |            |           |                              |                                                  | TD5=0.4009/L                                |  |  |
|           |                                                   |           |            |           |                              |                                                  |                                             |  |  |
|           |                                                   |           |            |           |                              |                                                  |                                             |  |  |
|           |                                                   |           |            |           |                              |                                                  |                                             |  |  |
|           |                                                   |           |            |           |                              |                                                  |                                             |  |  |
|           |                                                   |           |            |           |                              |                                                  |                                             |  |  |
|           | рН                                                | CALIBRA   | TION (choo | se two)   |                              | Model or l                                       | Unit No.:                                   |  |  |
| Buffer S  | olution                                           | pH 4      | I.0 pH 7   | 7.0 pH 1  | 0.0                          |                                                  | 0 MW-/7                                     |  |  |
| Tempera   | ature C                                           |           |            |           |                              |                                                  | See MW-12                                   |  |  |
| Instrume  | ent Readin                                        | g         |            |           |                              |                                                  |                                             |  |  |
| SPECI     | FIC ELECT                                         | TRICAL CO | ONDUCTA    | NCE – CAI | IBRATION                     | Model or I                                       | Unit No.:                                   |  |  |
| KCL Sol   | ution (μS/c                                       | m=μmhos/d | cm)        |           |                              |                                                  |                                             |  |  |
| Tempera   | ature C                                           |           |            |           |                              |                                                  |                                             |  |  |
| Instrume  | ent Readin                                        | g         |            |           |                              |                                                  |                                             |  |  |
| Notes:    |                                                   |           |            |           |                              |                                                  |                                             |  |  |
|           |                                                   |           |            |           |                              |                                                  |                                             |  |  |
|           |                                                   |           |            | -         |                              |                                                  |                                             |  |  |
|           |                                                   |           |            |           |                              |                                                  | <u> </u>                                    |  |  |
|           |                                                   |           |            |           |                              |                                                  |                                             |  |  |
|           |                                                   |           |            |           |                              |                                                  |                                             |  |  |



|        | Well ID: _      | MW-14             |                                        | ,                      |               | Initial Depth to Water: 7.30 |                                                  |                                             |  |  |  |
|--------|-----------------|-------------------|----------------------------------------|------------------------|---------------|------------------------------|--------------------------------------------------|---------------------------------------------|--|--|--|
|        | Sample II       | D: <u>MW-14-2</u> | 00412 D                                | uplicate IE            | D:            |                              | Depth to Water after Sampling: 3.13              |                                             |  |  |  |
|        | Sample D        | epth:             | oc                                     |                        |               |                              | Total Depth to Well: _7.90'                      |                                             |  |  |  |
|        | Project a       | nd Task No        | .: <u>9329.00</u>                      | 0.0 22                 |               |                              | Well Diameter: 2"                                |                                             |  |  |  |
|        |                 | ame: <u>SPI</u>   |                                        |                        |               | <                            | 1 Casing/Borehole Volume: 0.95 99                |                                             |  |  |  |
|        | Date: <u>12</u> | 114104            | mrze                                   | 12/                    | 15 59         | wolf                         | (Circle one)                                     |                                             |  |  |  |
|        | Sampled         | By: MAH           | CFR                                    |                        |               |                              | Casing Borehole Volumes: 2,999                   |                                             |  |  |  |
|        | Method o        | f Purging:        | DISPOSA                                | BLE TEF                | LON BAIL      | ER                           |                                                  | Borehole 3+                                 |  |  |  |
|        | Method o        | of Sampling       | j: <u>DISPOS</u>                       | ABLE TE                | FLON BAII     | LER                          | Total Casing Borehole Volumes Removed:           |                                             |  |  |  |
|        | Time            | Intake<br>Depth   | Rate<br>(gpm)                          | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |  |  |  |
|        | 1637            | TUC               |                                        | 0                      | 12.94         | 6.45                         | 2100                                             | clear It amber color                        |  |  |  |
|        | 1638            | Í                 |                                        | 1,0                    | 13.19         | 6.57                         |                                                  | ()                                          |  |  |  |
| 12/14  | 1639            |                   |                                        | 2.0                    | 13.53         |                              |                                                  | (1)                                         |  |  |  |
| ' \ ]  | 1646            |                   |                                        | 3.3.5                  | 13.78         | 6.53                         | z416                                             | cloudy anher well drying                    |  |  |  |
| (      | 1641            | V                 |                                        | 3.0                    | 14.03         | 6.55                         | 2481                                             | tt '                                        |  |  |  |
| ~      |                 |                   |                                        |                        |               |                              |                                                  |                                             |  |  |  |
| 12/15- | 0834            | TOC               |                                        |                        |               |                              |                                                  | TDS = 1.310 0/L sample                      |  |  |  |
| 1.7    |                 |                   |                                        |                        | ,             |                              |                                                  |                                             |  |  |  |
|        | ,               |                   |                                        |                        |               |                              |                                                  |                                             |  |  |  |
|        |                 |                   |                                        |                        |               |                              |                                                  |                                             |  |  |  |
|        |                 |                   |                                        |                        |               |                              |                                                  |                                             |  |  |  |
|        |                 |                   |                                        |                        |               |                              | ,                                                |                                             |  |  |  |
| •      |                 | pН                | CALIBRAT                               | ION (cho               | ose two)      |                              | Model or                                         | Unit No.:                                   |  |  |  |
|        | Buffer S        | olution           | pH 4                                   | .0 pH 7                | 7.0 pH 1      | 0.0                          |                                                  | See MW-12                                   |  |  |  |
|        | Tempera         | ature C           |                                        |                        |               |                              |                                                  |                                             |  |  |  |
|        |                 | ent Readin        |                                        |                        |               |                              |                                                  |                                             |  |  |  |
|        | SPEC            | IFIC ELECT        | TRICAL CO                              | NDUCTA                 | NCE – CA      | LIBRATIO                     | Model or                                         | Unit No.:                                   |  |  |  |
|        | KCL So          | lution (μS/c      | m=μmhos/c                              | m)                     |               |                              |                                                  |                                             |  |  |  |
|        | Temper          | ature C           |                                        |                        |               |                              |                                                  |                                             |  |  |  |
|        | Instrum         | ent Readin        | g                                      |                        |               |                              |                                                  | 11 15/                                      |  |  |  |
|        | Notes:          | Well              | dr                                     | edu                    | P Liz         | ttle 1                       | erover-1                                         | wait till tomorrow to                       |  |  |  |
|        |                 | Sound             | 4-e                                    |                        |               |                              |                                                  |                                             |  |  |  |
|        |                 |                   |                                        | 1 u                    |               |                              |                                                  | · ·                                         |  |  |  |
|        |                 |                   | ************************************** | -                      |               |                              |                                                  |                                             |  |  |  |
|        |                 |                   |                                        |                        |               |                              |                                                  |                                             |  |  |  |
|        |                 | #\POF:::==        |                                        | I DIC P                | 1             |                              |                                                  |                                             |  |  |  |
|        | \\st3\nningr    | ee\$\FORMATS      | WELL SAMP                              | LUNU RECORD (          | JOC           |                              |                                                  |                                             |  |  |  |



|           | MW-15D           |                    |                        |               |               | Initial Depth to Water: 5.75                     |                                             |  |
|-----------|------------------|--------------------|------------------------|---------------|---------------|--------------------------------------------------|---------------------------------------------|--|
|           | D: <u>MW-15D</u> |                    | Duplicate              | ID:           |               | Depth to Water after Sampling: 5.81              |                                             |  |
| Sample D  | epth:            | OC                 |                        |               | ·             | Total Depth to Well: 19.90'                      |                                             |  |
| Project a | nd Task No       | o.: <u>9329.00</u> | 00.0 22                |               |               | Well Diameter                                    |                                             |  |
| Project N | ame: <u>SP</u>   | I ARCATA           |                        |               |               | 1 Casing/Bore                                    | hole Volume: 2,3 gal                        |  |
| Date: _12 | 115/04           |                    |                        |               | —— <i>(</i>   | (Gircle one)                                     | hole Volumes: 6.9 gal                       |  |
| Sampled   | By: MAH          | /CFR               |                        |               |               | # Casing/Bore (Circle one)                       | hole Volumes:                               |  |
| Method o  | of Purging:      | DISPOS             | ABLE TEF               | LON BAIL      | ER            |                                                  | Borehole 3+                                 |  |
| Method o  | of Sampling      | g: <u>DISPO</u>    | SABLE TE               | FLON BAII     | <u>LER</u>    | Volumes Rem                                      | oved:                                       |  |
| Time      | Intake<br>Depth  | Rate<br>(gpm)      | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(μS/cm) | Remarks<br>(color, turbidity, and sediment) |  |
| 0922      | TOC              |                    | O                      | 1332          | 6.30          | 579                                              | clear                                       |  |
| 0923      | 1                |                    | 1.5                    | 13.54         | 6.42          | 567                                              | Clear, some onage particles                 |  |
| 0925      |                  |                    | 3.0                    | 13.97         | _             | 913                                              | clear, It yellow tint                       |  |
| 0927      |                  |                    | 4.0                    | 14.22         | 6.59          | 1007                                             | Ü                                           |  |
| 0928      |                  |                    | 5,0                    | 14.17         | 6.62          | 1000                                             | U                                           |  |
| 0929      |                  |                    | 6.0                    | 14.10         | 6.65          | 1005                                             | M                                           |  |
| 0930      | 1                |                    | 7.0                    | 14,07         | 6.67          | 1004                                             | L!                                          |  |
|           |                  |                    |                        |               | ,             |                                                  | TDS=0.6529/L                                |  |
|           |                  |                    |                        |               |               |                                                  |                                             |  |
|           |                  |                    |                        |               |               |                                                  |                                             |  |
|           |                  |                    |                        |               |               |                                                  |                                             |  |
|           |                  |                    |                        |               |               |                                                  |                                             |  |
|           | рН               | CALIBRA            | TION (choo             | ose two)      |               | Model or                                         | Unit No.:                                   |  |
| Buffer S  | olution          | pH 4               | I.0 pH 7               | 7.0 pH 1      | 0.0           |                                                  |                                             |  |
| Tempera   | ature C          |                    |                        |               |               |                                                  | See MW-12                                   |  |
| Instrum   | ent Readin       | g                  |                        |               |               |                                                  |                                             |  |
| SPECI     | IFIC ELEC        | TRICAL CO          | ONDUCTA                | NCE – CAI     | LIBRATIO      | Model or                                         | Unit No.:                                   |  |
| KCL Sol   | lution (μS/c     | :m=μmhos/o         | cm)                    |               |               |                                                  |                                             |  |
| Tempera   | ature C          |                    |                        |               |               |                                                  |                                             |  |
| Instrum   | ent Readin       | ıg                 |                        |               |               | *                                                |                                             |  |
| Notes:    |                  |                    |                        |               |               |                                                  |                                             |  |
|           |                  |                    |                        |               |               |                                                  |                                             |  |
|           |                  |                    |                        |               |               |                                                  |                                             |  |
|           |                  |                    |                        |               |               |                                                  |                                             |  |
|           |                  |                    |                        |               |               |                                                  |                                             |  |
|           |                  |                    |                        |               |               |                                                  |                                             |  |



| Well ID: _ | MW-16D                                                         |                    |            |           | Initial Depth to Water: 4.38 |                                                  |                                             |  |  |
|------------|----------------------------------------------------------------|--------------------|------------|-----------|------------------------------|--------------------------------------------------|---------------------------------------------|--|--|
| Sample II  | D: <u>MW-16</u> E                                              | <u> -200412</u>    | Duplicate  | ID:       |                              | Depth to Water after Sampling: 4.27              |                                             |  |  |
|            | epth:                                                          |                    |            |           |                              | Total Depth to Well: 19.65'                      |                                             |  |  |
| Project a  | nd Task N                                                      | o.: <u>9329.00</u> | 00.0 22    |           |                              | Well Diameter: _2"                               |                                             |  |  |
| Project N  | ame: <u>SP</u>                                                 | I ARCATA           | 1          |           | (                            | 1 Casing/Bore                                    | hole Volume: 2.59 gs/                       |  |  |
| Date: _12  | 14/04                                                          |                    |            |           |                              | (Circle one)                                     |                                             |  |  |
| Sampled    | By: <u>MAH</u>                                                 | /CFR               |            |           |                              | Casing/Bore (Circle one)                         | hole Volumes: 7,79 5 4/                     |  |  |
| Method o   | of Purging:                                                    | DISPOS             | ABLE TEF   | LON BAIL  | ER                           |                                                  | Borehole 😞 /                                |  |  |
| Method o   | of Samplin                                                     | g: <u>DISPO</u>    | SABLE TE   | FLON BAII | LER                          | Volumes Rem                                      | oved: 3 +                                   |  |  |
| Time       | Time Intake Rate Vol. (gpm) Cum. Vol. (cgal.) Temp. pH (units) |                    |            |           |                              | Specific<br>Electrical<br>Conductance<br>(μS/cm) | Remarks<br>(color, turbidity, and sediment) |  |  |
| 1605       | TOC                                                            |                    | ٥          | 13.90     | 7.29                         | 3042                                             | clear amber colon                           |  |  |
| 1607       | 1                                                              |                    | 2.0        | 14.80     | 7.60                         | 3115                                             | 1)                                          |  |  |
| 1609       |                                                                |                    | 4.0        |           |                              | 3938                                             | (1)                                         |  |  |
| 1612       |                                                                |                    | 6.0        | 15,52     | 7.71                         | 3792                                             | N/                                          |  |  |
| 1614       | a a                                                            |                    | 8.0        | 15.53     | 7.74                         | 3691                                             | f t                                         |  |  |
|            |                                                                |                    |            |           | ·                            |                                                  | TDS= 2.397 3/L                              |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            | рН                                                             | CALIBRAT           | ΓΙΟΝ (choo | ose two)  |                              | Model or                                         | Unit No.:                                   |  |  |
| Buffer S   | olution                                                        | pH 4               | I.0 pH 7   | 7.0 pH 10 | 0.0                          |                                                  |                                             |  |  |
| Tempera    | ature C                                                        |                    |            |           |                              |                                                  | see MV-12                                   |  |  |
| Instrume   | ent Readin                                                     | g                  |            |           |                              |                                                  |                                             |  |  |
| SPECI      | FIC ELEC                                                       | TRICAL CO          | ONDUCTA    | NCE – CAI | LIBRATION                    | Model or                                         | Unit No.:                                   |  |  |
| KCL Sol    | ution (μS/c                                                    | m=μmhos/α          | cm)        |           |                              |                                                  |                                             |  |  |
| Tempera    | ature C                                                        |                    |            |           |                              |                                                  |                                             |  |  |
| Instrume   | ent Readin                                                     | g                  |            |           |                              |                                                  |                                             |  |  |
| Notes:     |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |
|            |                                                                |                    |            |           |                              |                                                  |                                             |  |  |



| Well ID:                     | BA\A/ 47                                          |           |              |                      | Initial Danth to                    | Initial Depth to Water: 1.17                     |                                             |  |  |
|------------------------------|---------------------------------------------------|-----------|--------------|----------------------|-------------------------------------|--------------------------------------------------|---------------------------------------------|--|--|
| Well ID: _                   | <u>MW-17</u><br>D: <u>MW-17-</u>                  | 200412    | Junlicata II | D:                   | Depth to Water after Sampling: 2.45 |                                                  |                                             |  |  |
|                              | D: <u>MW-17-</u><br>Depth:                        |           | aplicate II  | J                    |                                     |                                                  |                                             |  |  |
|                              |                                                   |           | 20.0.22      |                      |                                     | Total Depth to Well: 7.60'                       |                                             |  |  |
| _                            | nd Task N                                         |           |              |                      |                                     | Well Diameter                                    | hole Volume: 1,1 gg//ous                    |  |  |
| Project N<br>Date: <u>12</u> | ame: <u>SP</u>                                    | TARCATA   |              |                      |                                     | (Circle one)                                     | _                                           |  |  |
|                              | ,                                                 | VOED.     |              |                      |                                     | A Casing/Bore                                    | phole Volumes: 3-394/045                    |  |  |
| -                            | By: MAH                                           |           | ADI E TEE    | I ON BAIL            |                                     | (Circle one)                                     |                                             |  |  |
|                              |                                                   |           |              | LON BAIL<br>FLON BAI | Total Casing/I<br>Volumes Rem       | orehole 3 <del> </del>                           |                                             |  |  |
| Time                         | Time Intake Rate Vol. (gal.) Cum. Temp. pH (gal.) |           |              |                      |                                     | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |  |  |
| 1625                         | TOC                                               |           | 6.5          | 17.34                | 7.17                                | 911                                              | clear                                       |  |  |
| 1627                         | (                                                 |           | 1.5          | 17.08                | 6.58                                | 819                                              | 11                                          |  |  |
| 1628                         |                                                   |           | 2,0          | 12.03                | 6.51                                | 824                                              | 11                                          |  |  |
| 1629                         |                                                   |           | 3.0          | 12.02                | 6.47                                | 892                                              | t1                                          |  |  |
| 1630                         | 4                                                 |           | 4.0          | <u> </u>             | 6.45                                | 834                                              | ti                                          |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  | TDS=0.5429/L                                |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              | pH                                                | CALIBRAT  | ΓΙΟΝ (choo   | ose two)             |                                     | Model or                                         | Unit No.:                                   |  |  |
| Buffer S                     | olution                                           | pH 4      | i.0 pH 7     | 7.0 pH 1             | 0.0                                 |                                                  | see MW-17                                   |  |  |
| Tempera                      | iture C                                           |           |              |                      |                                     | >                                                |                                             |  |  |
| Instrume                     | nt Readin                                         | g         |              |                      |                                     |                                                  |                                             |  |  |
| SPECI                        | FIC ELECT                                         | TRICAL CO | ONDUCTA      | NCE – CAI            | LIBRATIO                            | N Model or                                       | Unit No.:                                   |  |  |
| KCL Sol                      | ution (μS/c                                       | m=μmhos/α | cm)          |                      |                                     |                                                  |                                             |  |  |
| Tempera                      | ture C                                            |           |              |                      |                                     |                                                  |                                             |  |  |
| Instrume                     | ent Readin                                        | g         |              |                      |                                     |                                                  |                                             |  |  |
| Notes:                       |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |
|                              |                                                   |           |              |                      |                                     |                                                  |                                             |  |  |



| Well ID: _      | MW-18                                            |                    |             |           | Initial Depth to Water: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                |                                             |  |
|-----------------|--------------------------------------------------|--------------------|-------------|-----------|--------------------------------------------------------------|--------------------------------|---------------------------------------------|--|
| Sample II       | D: <u>MW-18-</u>                                 | 200412 D           | uplicate II | D:        |                                                              | Depth to Water after Sampling: |                                             |  |
| Sample D        | epth:                                            | TOC                |             |           |                                                              | Total Depth to Well: 8.35'     |                                             |  |
| Project a       | nd Task No                                       | o.: <u>9329.00</u> | 0.0 22      |           | -                                                            | Well Diameter:                 |                                             |  |
| Project N       | ame: <u>SP</u>                                   | I ARCATA           |             |           |                                                              | 1 Casing/Bore                  | hole Volume: 4, 77 g 4/                     |  |
| Date: <u>12</u> | 114104                                           |                    |             |           | (                                                            | (Circle one)                   |                                             |  |
| Sampled         | By: MAH                                          | /CFR               |             |           |                                                              | Circle one)                    | hole Volumes: 14,30 ga/                     |  |
| Method o        | f Purging:                                       | DISPOS             | ABLE TEF    | LON BAIL  | ER                                                           |                                |                                             |  |
| Method o        | f Sampling                                       | g: DISPOS          | SABLE TE    | FLON BAI  | LER                                                          | Volumes Rem                    | Borehole 3 + oved:                          |  |
| Time            | Time Intake Rate Vol. (gpm) (gpal.) (°C) (units) |                    |             |           |                                                              |                                | Remarks<br>(color, turbidity, and sediment) |  |
| 1532            | toc                                              |                    | 6           | 1354      | 6.45                                                         | 778                            | Clear                                       |  |
| 1534            | 1                                                |                    | 2.5         | 13/41     | 6.43                                                         |                                | *1                                          |  |
| 1536            |                                                  |                    | 5.0         | 13,36     | 6.44                                                         | 833                            | EF.                                         |  |
| 1538            |                                                  |                    | 7.5         | 13.35     | 6.45                                                         | 855                            | रर                                          |  |
| 1540            |                                                  |                    | 10.0        | 13.34     | 6.49                                                         | 857                            | N. C.                                       |  |
| 1542            | 1542 / 12.5 1333 6.41                            |                    |             |           |                                                              |                                | Y                                           |  |
| 1544            | $\forall$                                        |                    | 15.0        | 13.33     | 6.50                                                         | 855                            | VI.                                         |  |
|                 |                                                  |                    |             |           |                                                              |                                | TD>=0.5559/L                                |  |
|                 |                                                  |                    |             |           |                                                              |                                |                                             |  |
|                 |                                                  |                    |             |           | ,                                                            |                                |                                             |  |
|                 |                                                  |                    |             |           |                                                              |                                |                                             |  |
|                 |                                                  |                    |             |           |                                                              |                                |                                             |  |
|                 | рН                                               | CALIBRAT           | TION (choo  | se two)   |                                                              | Model or t                     | Unit No.:                                   |  |
| Buffer So       | olution                                          | pH 4               | .0 pH 7     | .0 pH 10  | 0.0                                                          |                                | 411.1.1.2                                   |  |
| Tempera         | ture C                                           |                    | 9           |           |                                                              |                                | ee MW-12                                    |  |
| Instrume        | ent Readin                                       | g                  |             |           |                                                              |                                |                                             |  |
| SPECI           | FIC ELECT                                        | TRICAL CO          | ONDUCTA     | NCE – CAI | IBRATION                                                     | Model or I                     | Unit No.:                                   |  |
| KCL Sol         | ution (μS/c                                      | m=μmhos/o          | em)         |           |                                                              |                                |                                             |  |
| Tempera         | ture C                                           |                    |             |           |                                                              |                                |                                             |  |
| Instrume        | ent Readin                                       | g                  |             |           |                                                              |                                |                                             |  |
| Notes:          |                                                  |                    |             |           |                                                              |                                |                                             |  |
|                 |                                                  |                    |             |           |                                                              |                                |                                             |  |
|                 |                                                  |                    |             |           |                                                              |                                |                                             |  |
|                 |                                                  |                    |             |           |                                                              |                                |                                             |  |
|                 |                                                  |                    |             |           | <del></del>                                                  |                                |                                             |  |
|                 |                                                  |                    |             |           | ····                                                         |                                |                                             |  |



|                 | MW-19D           |                    |                        |               |                                     | Initial Depth to                                 | Water: 4.82                                 |
|-----------------|------------------|--------------------|------------------------|---------------|-------------------------------------|--------------------------------------------------|---------------------------------------------|
| Sample II       | D: <u>MW-19D</u> | -200412            | Duplicate              | ID:           | Depth to Water after Sampling: 6.93 |                                                  |                                             |
| Sample D        | Depth:           | TOC                |                        |               | Total Depth to Well: _19.85'        |                                                  |                                             |
| Project a       | nd Task No       | o.: <u>9329.00</u> | 00.0 22                |               |                                     | Well Diameter:                                   | : _2"                                       |
| 1               | lame: <u>SP</u>  | I ARCATA           |                        |               | (                                   | 1 Casing/Bore                                    | : <u>2"</u><br>hole Volume: <u>2.5 g 91</u> |
| Date: <u>12</u> | 2/15/04          |                    |                        |               | /                                   | (Circle one)                                     | hole Volumes: 7.5 991                       |
| Sampled         | By: <u>MAH</u>   | /CFR               |                        |               |                                     | (Circle one)                                     | noie volumes:                               |
| Method o        | of Purging:      | DISPOS             | ABLE TEF               | LON BAIL      | ER(                                 | Total Casing E                                   | Borehole 3                                  |
| Method o        | of Sampling      | g: <u>DISPO</u>    | SABLE TE               | FLON BAI      | Volumes Rem                         | oved:                                            |                                             |
| Time            | Intake<br>Depth  | Rate<br>(gpm)      | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                       | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |
| 0950            | TOC              |                    | 0.5                    | 15.30         | 6.48                                | 551                                              | clear                                       |
| 0952            | )                |                    | 20                     | 16-57         | 6.45                                | 579                                              | /1                                          |
| 0954            |                  |                    | 3.0                    | 17.12         | 6.54                                | 579                                              | te                                          |
| 0955            |                  |                    | 4.0                    | 17.27         | 6.62                                | 576                                              | t <sub>1</sub>                              |
| 0958            |                  |                    | 6.0                    | 17.08         | 6.58                                | 529                                              | 1/                                          |
| 1001            |                  | 4.                 | 7.5                    |               | 6.52                                | 494                                              | TDS=0.3213/L                                |
|                 |                  |                    |                        |               |                                     |                                                  |                                             |
|                 |                  |                    |                        |               |                                     |                                                  |                                             |
|                 |                  |                    |                        |               |                                     |                                                  |                                             |
|                 |                  |                    |                        |               |                                     |                                                  |                                             |
|                 |                  |                    |                        |               |                                     |                                                  |                                             |
|                 |                  |                    |                        |               |                                     |                                                  |                                             |
|                 | рН               | CALIBRA            | TION (cho              | ose two)      |                                     | Model or                                         | Unit No.:                                   |
| Buffer S        | Solution         | pH 4               | 1.0 pH                 | 7.0 pH 1      | 0.0                                 |                                                  |                                             |
| Temper          | ature C          |                    |                        |               |                                     | 100                                              | Sec MW-12                                   |
| Instrum         | ent Readin       | ıg                 |                        |               |                                     | -                                                |                                             |
| SPEC            | IFIC ELEC        | TRICAL C           | ONDUCTA                | NCE – CA      | LIBRATIO                            | N Model or                                       | Unit No.:                                   |
| KCL So          | lution (μS/c     | :m=μmhos/          | cm)                    |               |                                     |                                                  |                                             |
| Temper          | ature C          |                    |                        |               |                                     |                                                  |                                             |
| Instrum         | ent Readin       | ng                 |                        |               |                                     |                                                  |                                             |
| Notes:          |                  |                    |                        |               |                                     | •                                                |                                             |
|                 |                  |                    |                        |               |                                     |                                                  |                                             |
|                 |                  |                    |                        |               |                                     |                                                  |                                             |
|                 |                  |                    |                        |               |                                     |                                                  | ·                                           |
|                 |                  |                    |                        |               |                                     |                                                  |                                             |
|                 |                  |                    |                        |               |                                     |                                                  |                                             |



| Well ID: _ | MW-20            |                    |                        |               | Initial Depth to Water: 2,80                     |                                             |                                     |  |
|------------|------------------|--------------------|------------------------|---------------|--------------------------------------------------|---------------------------------------------|-------------------------------------|--|
|            | D: <u>MW-20-</u> |                    | ouplicate II           | D:            |                                                  | Depth to Water after Sampling: 4.90         |                                     |  |
| Sample D   | epth: T          | 2                  |                        |               |                                                  | Total Depth to Well: 6.50'                  |                                     |  |
| Project a  | nd Task No       | o.: <u>9329.00</u> | 00.0 22                |               |                                                  | Well Diameter:                              |                                     |  |
|            | lame: <u>SP</u>  | I ARCATA           | <b>\</b>               |               |                                                  | Casing/Bore                                 | hole Volume:                        |  |
| Date: _12  | 2/65 /04         |                    |                        |               |                                                  | (Circle one)                                | hole Volumes: 1.8 gat 7.3 gal       |  |
| Sampled    | By: <u>MAH</u>   | /CFR               |                        |               | (Circle one)                                     | hole Volumes:                               |                                     |  |
| Method o   | of Purging:      | DISPOS             | ABLE TEF               | LON BAIL      | Total Casing/F                                   | Borehole 3 +                                |                                     |  |
| Method o   | of Sampling      | g: <u>DISPO</u>    | SABLE TE               | FLON BAI      | Volumes Rem                                      | oved:                                       |                                     |  |
| Time       | Intake<br>Depth  | Rate<br>(gpm)      | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Remarks<br>(color, turbidity, and sediment) |                                     |  |
| 1113       | Toc              |                    | 0                      | 12.17         | 6.44                                             | 369                                         | Clear                               |  |
| 1115       | )                |                    | 2.0                    |               | 6.48                                             | 386                                         | clear w/ sed, ment in bottom baile. |  |
| 1117       |                  |                    | 4.0                    | 12.42         | 6.48                                             | 380                                         | 11                                  |  |
| 1119       |                  |                    | 6.0                    | 12,41         | 6.47                                             | 377                                         | (/                                  |  |
| 1121       | W .              |                    | 8.0                    | 12.38         | 6.47                                             | 372                                         | 11                                  |  |
|            |                  |                    |                        |               |                                                  |                                             | TDS = 0.242 3/2                     |  |
|            |                  |                    |                        |               |                                                  |                                             |                                     |  |
|            |                  |                    |                        |               |                                                  |                                             |                                     |  |
|            |                  |                    |                        |               |                                                  |                                             | 2                                   |  |
|            | 1.               |                    |                        |               |                                                  |                                             |                                     |  |
|            |                  |                    |                        |               |                                                  |                                             |                                     |  |
|            |                  |                    |                        |               |                                                  |                                             |                                     |  |
|            | рН               | CALIBRA            | TION (choo             | ose two)      |                                                  | Model or l                                  |                                     |  |
| Buffer S   | olution          | pH 4               | 1.0 pH 7               | 7.0 pH 1      | 0.0                                              | Se                                          | e nu-12                             |  |
| Tempera    | ature C          |                    |                        |               |                                                  |                                             |                                     |  |
| Instrume   | ent Readin       | g                  |                        |               |                                                  |                                             |                                     |  |
| SPECI      | FIC ELEC         | TRICAL CO          | ONDUCTA                | NCE – CAI     | LIBRATIO                                         | Model or                                    | Unit No.:                           |  |
| KCL Sol    | ution (μS/c      | m=μmhos/           | cm)                    |               |                                                  |                                             |                                     |  |
| Tempera    | ature C          |                    |                        |               |                                                  |                                             |                                     |  |
| Instrume   | ent Readin       | g                  |                        |               |                                                  |                                             |                                     |  |
| Notes:     | Sample vo        | lume doul          | bled for MS            | S/MSD.        |                                                  |                                             | ·                                   |  |
|            |                  |                    |                        |               |                                                  |                                             |                                     |  |
|            |                  |                    |                        |               |                                                  |                                             |                                     |  |
|            |                  |                    |                        |               |                                                  |                                             |                                     |  |
|            |                  |                    |                        |               |                                                  |                                             |                                     |  |
|            |                  |                    |                        |               |                                                  |                                             |                                     |  |



| Well ID:  | MW-21                  |                    |                        |               |               | Initial Depth to Water: 4.36  Depth to Water after Sampling: 4.40 |                                             |  |  |
|-----------|------------------------|--------------------|------------------------|---------------|---------------|-------------------------------------------------------------------|---------------------------------------------|--|--|
| /** ·     | D: <u>MW-21-</u>       |                    | 1 .                    |               | 4             | Deptil to Water after Sampling.                                   |                                             |  |  |
| Sample [  | Depth:                 | FOE                | 2 ab                   | ove we        | 11 bottom     | Total Depth to                                                    | Well: 10.80'                                |  |  |
| Project a | ınd Task N             | o.: <u>9329.00</u> | 00.0 22                |               |               | Well Diameter: _0.75"                                             |                                             |  |  |
| 1         | Name: SP               | I ARCATA           |                        |               | (             |                                                                   | hole Volume: 105 gal 0.15 gal               |  |  |
| Date: _12 | 2/15/04                |                    |                        |               | (             | (Circle one)                                                      | hole Volumes: 3.15 921 0.4594               |  |  |
| Sampled   | l By: <u>MAH</u>       | /CFR               | thr Oum                | 1 00/47       | -ubina        | (Circle one)                                                      | mole volumes.                               |  |  |
| Method    | of Purging:            | DISPOS             | ABLE TEF               | LON BAIL      | ER + 1/901    | Total Casing                                                      |                                             |  |  |
| Method    | of Samplin             | g: <b>DISPO</b>    | SABLE TE               | FLON BAH      | LER +TY90     | Volumes Rem                                                       | oved:                                       |  |  |
| Time      | Intake<br>Depth<br>ぎ.お | Rate<br>(gpm)      | Cum.<br>Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(µS/cm)                  | Remarks<br>(color, turbidity, and sediment) |  |  |
| 1137      | 100                    | 0.12               | 0                      | 11.16         | 6.13          | 736                                                               | rlear                                       |  |  |
| 1138      | Ī                      | 1                  | 0.(2                   | 11.27         |               | 738                                                               | 1                                           |  |  |
| 1139      |                        |                    | 0.24                   | 11.33         | 6.13          | 740                                                               | 1(                                          |  |  |
| 1140      |                        |                    | 0.36                   | 11.36         | 6.16          | 743                                                               | U                                           |  |  |
| 1141      |                        |                    | 0.46                   | 11.38         | 6.20          | 748                                                               | (1                                          |  |  |
| 1142      |                        |                    | 0 -60                  | 11.38         | A             | 754                                                               | (1                                          |  |  |
| 1143      | W                      | V                  | 0.72                   | 11.40         | 6-24          | 758                                                               | 11                                          |  |  |
|           |                        |                    |                        |               |               |                                                                   | TDS=0.496 9/L                               |  |  |
|           |                        |                    |                        |               |               |                                                                   |                                             |  |  |
|           |                        |                    |                        |               |               |                                                                   |                                             |  |  |
|           |                        |                    |                        |               |               |                                                                   | /                                           |  |  |
|           |                        |                    |                        |               |               |                                                                   |                                             |  |  |
|           | pH                     | CALIBRA            | TION (choo             |               | ·             | Model or                                                          | Unit No.:                                   |  |  |
| Buffer S  | Solution               | pH 4               | 1.0 pH 7               | 7.0 pH 1      | 0.0           |                                                                   | see MW-12                                   |  |  |
| Temper    | ature C                |                    |                        |               |               |                                                                   | . =                                         |  |  |
| Instrum   | ent Readin             | g                  |                        |               |               |                                                                   |                                             |  |  |
| SPEC      | IFIC ELEC              | TRICAL CO          | ONDUCTA                | NCE – CAI     | LIBRATIO      | Model or                                                          | Unit No.:                                   |  |  |
| KCL So    | lution (μS/c           | :m=μmhos/e         | cm)                    |               |               |                                                                   |                                             |  |  |
| Temper    | ature C                |                    |                        |               |               |                                                                   |                                             |  |  |
| Instrum   | ent Readin             |                    |                        |               |               |                                                                   |                                             |  |  |
| Notes:    |                        | 1-                 | 7sec                   | per           | 125           | mL =                                                              | 12 99/1/11/11                               |  |  |
| Int       |                        |                    | Sample                 | def           | 744           | at app                                                            | rex z'above bottom                          |  |  |
| 0 €       | - we                   | (                  |                        |               |               | •                                                                 |                                             |  |  |
|           |                        |                    |                        |               |               |                                                                   |                                             |  |  |
|           |                        |                    |                        |               |               |                                                                   |                                             |  |  |
|           |                        |                    |                        |               |               |                                                                   |                                             |  |  |



#### **APPENDIX B**

Laboratory Reports and Chain-of-Custody Records for Groundwater Samples—Groundwater Monitoring Program



Alpha | Analytical Laboratories Inc.

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

30 December 2004

Geomatrix Consultants

Attn: Ross Steenson

2101 Webster Street, 12th Floor

Oakland, CA 94612

RE: SPI Arcata GW Monitoring

Work Order: A412497

Enclosed are the results of analyses for samples received by the laboratory on 12/16/04 14:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lisa E. Jansen For Sheri L. Speaks

Lisa Jansen

Project Manager



Alpha | Analytical Laboratories Inc.

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 1 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612

Attn: Ross Steenson

Order Number

A412497

Receipt Date/Time Client Code 12/16/2004 14:35 **GEOMAT** 

9329.000.0/030275 Project No: SPI Arcata GW Monitoring Project ID:

Report Date: 12/30/04 14:21

Client PO/Reference

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID     | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|---------------|---------------|--------|----------------|----------------|
| MW-12-200412  | A412497-01    | Water  | 12/14/04 14:35 | 12/16/04 14:35 |
| MW-08-200412  | A412497-02    | Water  | 12/14/04 14:58 | 12/16/04 14:35 |
| MW-11-200412  | A412497-03    | Water  | 12/14/04 15:14 | 12/16/04 14:35 |
| MW-18-200412  | A412497-04    | Water  | 12/14/04 15:44 | 12/16/04 14:35 |
| MW-09-200412  | A412497-05    | Water  | 12/14/04 15:26 | 12/16/04 14:35 |
| MW-10-200412  | A412497-06    | Water  | 12/14/04 15:58 | 12/16/04 14:35 |
| MW-16D-200412 | A412497-07    | Water  | 12/14/04 16:14 | 12/16/04 14:35 |
| MW-17-200412  | A412497-08    | Water  | 12/14/04 16:30 | 12/16/04 14:35 |
| MW-14-200412  | A412497-09    | Water  | 12/15/04 08:34 | 12/16/04 14:35 |
| MW-01-200412  | A412497-10    | Water  | 12/15/04 08:47 | 12/16/04 14:35 |
| MW-02-200412  | A412497-11    | Water  | 12/15/04 08:59 | 12/16/04 14:35 |
| MW-13D-200412 | A412497-12    | Water  | 12/15/04 09:14 | 12/16/04 14:35 |
| MW-15D-200412 | A412497-13    | Water  | 12/15/04 09:30 | 12/16/04 14:35 |
| MW-03-200412  | A412497-14    | Water  | 12/15/04 09:43 | 12/16/04 14:35 |
| MW-19D-200412 | A412497-15    | Water  | 12/15/04 10:01 | 12/16/04 14:35 |
| MW-04-200412  | A412497-16    | Water  | 12/15/04 10:10 | 12/16/04 14:35 |
| MW-05-200412  | A412497-17    | Water  | 12/15/04 10:20 | 12/16/04 14:35 |
| MW-06-200412  | A412497-18    | Water  | 12/15/04 10:30 | 12/16/04 14:35 |
| MW-07-200412  | A412497-19    | Water  | 12/15/04 10:55 | 12/16/04 14:35 |
| MW-20-200412  | A412497-20    | Water  | 12/15/04 11:21 | 12/16/04 14:35 |
| MW-21-200412  | A412497-21    | Water  | 12/15/04 11:43 | 12/16/04 14:35 |
| MW-A-200412   | A412497-22    | Water  | 12/15/04 00:00 | 12/16/04 14:35 |

 ${\it The results in this report apply to the samples analyzed in accordance with the chain}$ of custody document. This analytical report must be reproduced in its entirety.

Lisa Jansen



Alpha | Analytical Laboratories Inc.

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 2 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Ross Steenson Report Date: 12/30/04 14:21 Project No: 9329.000.0/030275

Project ID: SPI Arcata GW Monitoring

Order Number A412497 Receipt Date/Time 12/16/2004 14:35 Client Code GEOMAT Client PO/Reference

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Jansen



Alpha l'Analytical Laboratories Inc.

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 3 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Report Date: 12/30/04 14:21 9329.000.0/030275 Project No:

SPI Arcata GW Monitoring Project ID:

Order Number

A412497

Receipt Date/Time 12/16/2004 14:35 Client Code **GEOMAT** 

Client PO/Reference

|                                     | 12/10/2001 11.55 |         | 0.          | BOWN II  |          |                         |     |      |  |
|-------------------------------------|------------------|---------|-------------|----------|----------|-------------------------|-----|------|--|
| Alpha Analytical Laboratories, Inc. |                  |         |             |          |          |                         |     |      |  |
|                                     | METHOD           | BATCH   | PREPARED    | ANALYZED | DILUTION | RESULT                  | PQL | NOTE |  |
| MW-12-200412 (A412497-01)           |                  |         | Sample Type | : Water  |          | Sampled: 12/14/04 14:35 |     |      |  |
| Chlorinated Phenols by Canadian Pu  | ılp Method       |         |             |          |          |                         |     |      |  |
| 2,4,6-Trichlorophenol               | EnvCan           | AL42012 | 12/20/04    | 12/21/04 | 1        | ND ug/l                 | 1.0 |      |  |
| 2,3,5,6-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| 2,3,4,6-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| 2,3,4,5-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| Pentachlorophenol                   | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| Surrogate: Tribromophenol           | "                | "       | "           | "        |          | 92.0 % 79-11            | 9   |      |  |
| MW-08-200412 (A412497-02)           |                  |         | Sample Type | e: Water |          | Sampled: 12/14/04 14:58 |     |      |  |
| Chlorinated Phenols by Canadian Pu  | ılp Method       |         |             |          |          |                         |     |      |  |
| 2,4,6-Trichlorophenol               | EnvCan           | AL42012 | 12/20/04    | 12/21/04 | 1        | ND ug/l                 | 1.0 |      |  |
| 2,3,5,6-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| 2,3,4,6-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| 2,3,4,5-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| Pentachlorophenol                   | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| Surrogate: Tribromophenol           | "                | "       | "           | "        |          | 90.0 % 79-11            | 9   |      |  |
| MW-11-200412 (A412497-03)           |                  |         | Sample Type | e: Water |          | Sampled: 12/14/04 15:14 |     |      |  |
| Chlorinated Phenols by Canadian Pu  | ılp Method       |         |             |          |          |                         |     |      |  |
| 2,4,6-Trichlorophenol               | EnvCan           | AL42012 | 12/20/04    | 12/21/04 | 1        | ND ug/l                 | 1.0 |      |  |
| 2,3,5,6-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| 2,3,4,6-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| 2,3,4,5-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| Pentachlorophenol                   | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| Surrogate: Tribromophenol           | "                | "       | "           | "        |          | 91.6% 79-11             | 9   |      |  |
| MW-18-200412 (A412497-04)           |                  |         | Sample Type | e: Water |          | Sampled: 12/14/04 15:44 |     |      |  |
| Chlorinated Phenols by Canadian Pu  | ılp Method       |         |             |          |          |                         |     |      |  |
| 2,4,6-Trichlorophenol               | EnvCan           | AL42012 | 12/20/04    | 12/22/04 | 1        | ND ug/l                 | 1.0 |      |  |
| 2,3,5,6-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| 2,3,4,6-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |
| 2,3,4,5-Tetrachlorophenol           | "                | "       | "           | "        | "        | ND "                    | 1.0 |      |  |

 ${\it The results in this report apply to the samples analyzed in accordance with the chain}$ of custody document. This analytical report must be reproduced in its entirety.

Lisa E. Jansen For Sheri L. Speaks Project Manager

12/30/2004



Alpha l'Analytical Laboratories Inc.

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 4 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612

Attn: Ross Steenson

Report Date: 12/30/04 14:21 9329.000.0/030275 Project No:

SPI Arcata GW Monitoring Project ID:

Order Number A412497

Pentachlorophenol

Surrogate: Tribromophenol

Receipt Date/Time 12/16/2004 14:35

Client Code **GEOMAT** 

Client PO/Reference

| Δ | Alnha A | nalytical | Lahorato | ries Inc |
|---|---------|-----------|----------|----------|

| Sample Type: Water   Sampled: 12/14/04 15:44   Stampled: 12/14/04 15:44   Stampled: 12/14/04 15:45   Stampled: 12/14/04 16:14   | Alpha Analytical Laboratories, Inc.    |                 |         |             |          |          |                         |        |     |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|---------|-------------|----------|----------|-------------------------|--------|-----|------|
| Pentachlorophenol   EnvCan   "   "   12/22/04   "   ND "   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | METHOD          | BATCH   | PREPARED    | ANALYZED | DILUTION | RESULT                  |        | PQL | NOTE |
| Pentachlorophenol   EnvCan   "   12/22/04   "   ND "   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MW-18-200412 (A412497-04)              |                 |         | Sample Type | : Water  |          | Sampled: 12/14/04 15:44 |        |     |      |
| Surrogate: Tribromophenol   "   "   "   "   Sample Type: Water   Sampled: 12/14/04 15:26   Sampled: 12/14/04 16:16   Sam | Chlorinated Phenols by Canadian Pulp M | Method (cont'd) |         |             |          |          |                         |        |     |      |
| W-09-200412 (A412497-05)   Sample Type: Water   Sampled: 12/14/04 15:26   Sampled: 12/14/04 16:16   Sampled: 12/14/04 16 | Pentachlorophenol                      | EnvCan          | "       | "           | 12/22/04 | "        | ND "                    |        | 1.0 |      |
| Chlorinated Phenols by Canadian Pulp Method   EnvCan   AL42012   12/20/04   12/22/04   1   ND ug/l   1.0   1.0   2.3,5,6-Tetrachlorophenol   " " " " " " ND "   1.0   2.3,4,6-Tetrachlorophenol   " " " " " " ND "   1.0   2.3,4,6-Tetrachlorophenol   " " " " " " ND "   1.0   2.3,4,5-Tetrachlorophenol   " " " " " " ND "   1.0   2.3,4,5-Tetrachlorophenol   " " " " " " " ND "   1.0   2.3,4,5-Tetrachlorophenol   " " " " " " " ND "   1.0   2.3   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2.4   2 | Surrogate: Tribromophenol              | "               | "       | "           | "        |          | 93.6 %                  | 79-119 |     |      |
| 2,4,6-Trichlorophenol   EnvCan   AL42012   12/20/04   12/22/04   1   ND ug/l   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-09-200412 (A412497-05)              |                 |         | Sample Type | e: Water |          | Sampled: 12/14/04 15:26 |        |     |      |
| 2,3,5,6-Tetrachlorophenol " " " " " " " ND" 1.0 2,3,4,6-Tetrachlorophenol " " " " " ND" 1.0 2,3,4,5-Tetrachlorophenol " " " " " ND" 1.0 Pentachlorophenol " " " " " ND" 1.0  Pentachlorophenol " " " " " ND" 1.0  Surrogate: Tribromophenol " " " " " 79,2% 79-119  W-10-200412 (A412497-06) Sample Type: Water Sampled: 12/14/04 15:58  Thorinated Phenols by Canadian Pulp Method  2,4,6-Trichlorophenol " " " " " ND" 1.0 2,3,5,6-Tetrachlorophenol " " " " " ND" 1.0 2,3,4,5-Tetrachlorophenol " " " " " ND" 1.0 2,3,4,5-Tetrachlorophenol " " " " " ND" 1.0 2,3,4,5-Tetrachlorophenol " " " " ND" 1.0 Pentachlorophenol " " " " " ND" 1.0  EnvCan NL42497-06) " " " " ND" 1.0  EnvCan NL42497-06 " " " " ND" 1.0  EnvCan NL42497-07 " ND" 1.0  Surrogate: Tribromophenol " " " " " ND" 1.0  W-16D-200412 (A412497-07) Sample Type: Water Sampled: 12/14/04 16:14  **Chlorinated Phenols by Canadian Pulp Method  2,4,6-Trichlorophenol EnvCan AL42012 12/20/04 12/22/04 1 ND ug/l 1.0 2,3,5,6-Tetrachlorophenol " " " " ND" 1.0  2,3,5,6-Tetrachlorophenol " " " " ND" 1.0  2,4,6-Trichlorophenol EnvCan AL42012 12/20/04 12/22/04 1 ND ug/l 1.0 2,3,5,6-Tetrachlorophenol " " " " " " ND ug/l 1.0 2,3,5,6-Tetrachlorophenol " " " " " " ND ug/l 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chlorinated Phenols by Canadian Pulp M | Method          |         |             |          |          |                         |        |     |      |
| 2,3,4,6-Tetrachlorophenol " " " " " ND" 1.0  Pentachlorophenol " " " " " " ND" 1.0  Pentachlorophenol " " " " " " ND" 1.0  Surrogate: Tribromophenol " " " " " " ND" 1.0  W-10-200412 (A412497-06) Sample Type: Water Sampled: 12/14/04 15:58  Chlorinated Phenols by Canadian Pulp Method 2,3,4,6-Tetrachlorophenol " " " " " " ND" 1.0  2,3,4,6-Tetrachlorophenol " " " " " ND" 1.0  2,3,4,6-Tetrachlorophenol " " " " " ND" 1.0  2,3,4,6-Tetrachlorophenol " " " " " ND" 1.0  2,3,4,5-Tetrachlorophenol " " " " " ND" 1.0  2,3,4,5-Tetrachlorophenol " " " " " ND" 1.0  Pentachlorophenol " " " " ND" 1.0  ND " ND" 1.0  Surrogate: Tribromophenol " " " " " ND" 1.0  Surrogate: Tribromophenol " " " " ND" 1.0  Surrogate: Tribromophenol " " " " ND" 1.0  Surrogate: Tribromophenol " " " " ND" 1.0  AL42012 12/20/04 12/22/04 1 ND ug/l 1.0  Chlorinated Phenols by Canadian Pulp Method 2,4,6-Trichlorophenol " " " " ND ug/l 1.0  2,3,4,6-Tetrachlorophenol " " " " " ND ug/l 1.0  2,3,5,6-Tetrachlorophenol " " " " " ND ug/l 1.0  2,3,5,6-Tetrachlorophenol " " " " ND ug/l 1.0  2,3,5,6-Tetrachlorophenol " " " " ND ug/l 1.0  2,3,4,6-Tetrachlorophenol " " " " ND ug/l 1.0  2,3,5,6-Tetrachlorophenol " " " " " ND ug/l 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,4,6-Trichlorophenol                  | EnvCan          | AL42012 | 12/20/04    | 12/22/04 | 1        | ND ug/l                 |        | 1.0 |      |
| 2,3,4,5-Tetrachlorophenol " " " " " ND" 1.0  Pentachlorophenol " " " " " " 79,2% 79-119  W-10-200412 (A412497-06) Sample Type: Water Sampled: 12/14/04 15:58  Chlorinated Phenols by Canadian Pulp Method 2,3,5,6-Tetrachlorophenol " " " " " ND" 1.0  2,3,4,5-Tetrachlorophenol " " " " ND" 1.0  2,3,4,6-Tetrachlorophenol " " " " ND" 1.0  2,3,4,5-Tetrachlorophenol " " " " ND" 1.0  2,3,4,6-Tetrachlorophenol " " " " ND" 1.0  2,3,4,6-Tetrachlorophenol " " " " ND" 1.0  2,3,4,6-Tetrachlorophenol " " " " ND" 1.0  Pentachlorophenol " " " " " ND" 1.0  Pentachlorophenol " " " " " ND" 1.0  Surrogate: Tribromophenol " " " " " ND" 1.0  Surrogate: Tribromophenol " " " " ND" 1.0  Surrogate: Tribromophenol " " " " ND" 1.0  W-16D-200412 (A412497-07) Sample Type: Water Sampled: 12/14/04 16:14  Chlorinated Phenols by Canadian Pulp Method 2,3,5,6-Tetrachlorophenol " " " " ND " 1.0  2,3,4,6-Tetrachlorophenol " " " " ND " 1.0  2,3,4,6-Tetrachlorophenol " " " " ND " 1.0  2,3,5,6-Tetrachlorophenol " " " " ND " 1.0  2,3,5,6-Tetrachlorophenol " " " " " ND " 1.0  2,3,4,6-Tetrachlorophenol " " " " ND " 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,3,5,6-Tetrachlorophenol              | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |
| Pentachlorophenol " " " " " ND" 1.0  Surrogate: Tribromophenol " " " " " 79.2 % 79-119  W-10-200412 (A412497-06) Sample Type: Water Sampled: 12/14/04 15:58  Chlorinated Phenols by Canadian Pulp Method  2,4,6-Trichlorophenol " " " " ND" 1.0  2,3,5,6-Tetrachlorophenol " " " " ND" 1.0  2,3,4,6-Tetrachlorophenol " " " " ND" 1.0  Pentachlorophenol " " " " " ND" 1.0  Surrogate: Tribromophenol " " " ND" 1.0  ND" 1.0  Surrogate: Tribromophenol " " " ND" 1.0  ND ND" 1.0  Sample Type: Water ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,3,4,6-Tetrachlorophenol              | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |
| No.   No.  | 2,3,4,5-Tetrachlorophenol              | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |
| W-10-200412 (A412497-06) Sample Type: Water Sampled: 12/14/04 15:58  Chlorinated Phenols by Canadian Pulp Method  2,4,6-Trichlorophenol BroCan AL42012 12/20/04 12/22/04 1 ND ug/l ND " 1.0 2,3,4,6-Tetrachlorophenol " " " " " " " ND" 1.0 2,3,4,5-Tetrachlorophenol " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pentachlorophenol                      | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |
| Chlorinated Phenols by Canadian Pulp Method   EnvCan   AL42012   12/20/04   12/22/04   1   ND ug/l   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Surrogate: Tribromophenol              | "               | "       | "           | "        |          | 79.2 %                  | 79-119 |     |      |
| 2,4,6-Trichlorophenol EnvCan AL42012 12/20/04 12/22/04 1 ND ug/l 1.0 2,3,5,6-Tetrachlorophenol " " " " " ND " 1.0 2,3,4,6-Tetrachlorophenol " " " " " ND " 1.0 2,3,4,5-Tetrachlorophenol " " " " " ND " 1.0 2,3,4,5-Tetrachlorophenol " " " " ND " 1.0 Pentachlorophenol " " " " " ND " 1.0  Surrogate: Tribromophenol " " " " " ND " 1.0  W-16D-200412 (A412497-07)  W-16D-200412 (A412497-07)  Sample Type: Water Sampled: 12/14/04 16:14  Chlorinated Phenols by Canadian Pulp Method  2,4,6-Trichlorophenol EnvCan AL42012 12/20/04 12/22/04 1 ND ug/l 1.0 2,3,5,6-Tetrachlorophenol " " " " ND " 1.0 2,3,4,6-Tetrachlorophenol " " " " ND " 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MW-10-200412 (A412497-06)              |                 |         | Sample Type | e: Water |          | Sampled: 12/14/04 15:58 |        |     |      |
| 2,3,5,6-Tetrachlorophenol " " " " " " ND " 1.0 2,3,4,6-Tetrachlorophenol " " " " " ND " 1.0 2,3,4,5-Tetrachlorophenol " " " " " ND " 1.0 Pentachlorophenol " " " " " ND " 1.0  Surrogate: Tribromophenol " " " " " ND " 1.0  W-16D-200412 (A412497-07) Sample Type: Water Sampled: 12/14/04 16:14  Chlorinated Phenols by Canadian Pulp Method  2,4,6-Trichlorophenol EnvCan AL42012 12/20/04 12/22/04 1 ND ug/l 1.0 2,3,5,6-Tetrachlorophenol " " " " ND " 1.0 2,3,4,6-Tetrachlorophenol " " " " ND " 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chlorinated Phenols by Canadian Pulp M | Method          |         |             |          |          |                         |        |     |      |
| 2,3,4,6-Tetrachlorophenol " " " " " ND" 1.0  2,3,4,5-Tetrachlorophenol " " " " " ND" 1.0  Pentachlorophenol " " " " " " ND" 1.0  Surrogate: Tribromophenol " " " " " " 88.0 % 79-119  W-16D-200412 (A412497-07) Sample Type: Water Sampled: 12/14/04 16:14  Chlorinated Phenols by Canadian Pulp Method  2,4,6-Trichlorophenol EnvCan AL42012 12/20/04 12/22/04 1 ND ug/l 1.0  2,3,5,6-Tetrachlorophenol " " " " ND" 1.0  2,3,4,6-Tetrachlorophenol " " " " ND" 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,4,6-Trichlorophenol                  | EnvCan          | AL42012 | 12/20/04    | 12/22/04 | 1        | ND ug/l                 |        | 1.0 |      |
| 2,3,4,5-Tetrachlorophenol " " " " " " ND" 1.0 Pentachlorophenol " " " " " " ND" 1.0 Surrogate: Tribromophenol " " " " " Sample Type: Water Sampled: 12/14/04 16:14 Chlorinated Phenols by Canadian Pulp Method  2,4,6-Trichlorophenol EnvCan AL42012 12/20/04 12/22/04 1 ND ug/l 1.0 2,3,5,6-Tetrachlorophenol " " " " ND" 1.0 2,3,4,6-Tetrachlorophenol " " " " ND" 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,3,5,6-Tetrachlorophenol              | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |
| Pentachlorophenol " " " " " " ND " 1.0  Surrogate: Tribromophenol " " " " " 88.0 % 79-119  W-16D-200412 (A412497-07) Sample Type: Water Sampled: 12/14/04 16:14  Chlorinated Phenols by Canadian Pulp Method  2,4,6-Trichlorophenol EnvCan AL42012 12/20/04 12/22/04 1 ND ug/l 1.0  2,3,5,6-Tetrachlorophenol " " " " ND " 1.0  2,3,4,6-Tetrachlorophenol " " " " ND " 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,3,4,6-Tetrachlorophenol              | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |
| ND   1.0   Surrogate: Tribromophenol   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,3,4,5-Tetrachlorophenol              | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |
| W-16D-200412 (A412497-07)  Sample Type: Water Sampled: 12/14/04 16:14  Chlorinated Phenols by Canadian Pulp Method  2,4,6-Trichlorophenol EnvCan AL42012 12/20/04 12/22/04 1 ND ug/l 1.0  2,3,5,6-Tetrachlorophenol " " " " " " ND " 1.0  2,3,4,6-Tetrachlorophenol " " " " " ND " 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pentachlorophenol                      | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |
| Chlorinated Phenols by Canadian Pulp Method         2,4,6-Trichlorophenol       EnvCan       AL42012       12/20/04       12/22/04       1       ND ug/l       1.0         2,3,5,6-Tetrachlorophenol       "       "       "       "       ND "       1.0         2,3,4,6-Tetrachlorophenol       "       "       "       "       ND "       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surrogate: Tribromophenol              | "               | "       | "           | "        |          | 88.0 %                  | 79-119 |     |      |
| 2,4,6-Trichlorophenol       EnvCan       AL42012       12/20/04       12/22/04       1       ND ug/l       1.0         2,3,5,6-Tetrachlorophenol       "       "       "       "       "       ND "       1.0         2,3,4,6-Tetrachlorophenol       "       "       "       "       ND "       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MW-16D-200412 (A412497-07)             |                 |         | Sample Type | e: Water |          | Sampled: 12/14/04 16:14 |        |     |      |
| 2,3,5,6-Tetrachlorophenol       "       "       "       "       ND"       1.0         2,3,4,6-Tetrachlorophenol       "       "       "       "       ND"       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chlorinated Phenols by Canadian Pulp M | Method          |         |             |          |          |                         |        |     |      |
| 2,3,4,6-Tetrachlorophenol " " " " ND" 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,4,6-Trichlorophenol                  | EnvCan          | AL42012 | 12/20/04    | 12/22/04 | 1        | ND ug/l                 |        | 1.0 |      |
| 2,5,4,6-1 et a chiotophenoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,3,5,6-Tetrachlorophenol              | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,3,4,6-Tetrachlorophenol              | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |
| 2,3,4,5-Tetrachlorophenol " " " " " ND" 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,3,4,5-Tetrachlorophenol              | "               | "       | "           | "        | "        | ND "                    |        | 1.0 |      |

MW-17-200412 (A412497-08) Sample Type: Water Sampled: 12/14/04 16:30

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND "

89.6 %

Lisa E. Jansen For Sheri L. Speaks Project Manager

12/30/2004

1.0

79-119



208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 5 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612

Attn: Ross Steenson

Report Date: 12/30/04 14:21 9329.000.0/030275 Project No:

SPI Arcata GW Monitoring Project ID:

Order Number A412497

Receipt Date/Time 12/16/2004 14:35

Client Code **GEOMAT** 

Client PO/Reference

|                                      |        | Alpha   | Analytical  | Laboratori | es, Inc. |                     |        |     |      |
|--------------------------------------|--------|---------|-------------|------------|----------|---------------------|--------|-----|------|
|                                      | METHOD | BATCH   | PREPARED    | ANALYZED   | DILUTION | RESULT              |        | PQL | NOTE |
| MW-17-200412 (A412497-08)            |        |         | Sample Type | : Water    | San      | npled: 12/14/04 16: | 30     |     |      |
| Chlorinated Phenols by Canadian Pulp | Method |         |             |            |          |                     |        |     |      |
| 2,4,6-Trichlorophenol                | EnvCan | AL42012 | 12/20/04    | 12/22/04   | 1        | ND ug/l             |        | 1.0 |      |
| 2,3,5,6-Tetrachlorophenol            | "      | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| 2,3,4,6-Tetrachlorophenol            | n n    | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| 2,3,4,5-Tetrachlorophenol            | n n    | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| Pentachlorophenol                    | "      | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| Surrogate: Tribromophenol            | "      | "       | "           | "          |          | 89.6 %              | 79-119 |     |      |
| MW-14-200412 (A412497-09)            |        |         | Sample Type | : Water    | San      | npled: 12/15/04 08: | 34     |     |      |
| Chlorinated Phenols by Canadian Pulp | Method |         |             |            |          |                     |        |     |      |
| 2,4,6-Trichlorophenol                | EnvCan | AL42012 | 12/20/04    | 12/22/04   | 1        | ND ug/l             |        | 1.0 |      |
| 2,3,5,6-Tetrachlorophenol            | "      | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| 2,3,4,6-Tetrachlorophenol            | "      | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| 2,3,4,5-Tetrachlorophenol            | "      | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| Pentachlorophenol                    | "      | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| Surrogate: Tribromophenol            | "      | "       | "           | "          |          | 97.2 %              | 79-119 |     |      |
| MW-01-200412 (A412497-10)            |        |         | Sample Type | e: Water   | San      | npled: 12/15/04 08: | 47     |     |      |
| Chlorinated Phenols by Canadian Pulp | Method |         |             |            |          |                     |        |     |      |
| 2,4,6-Trichlorophenol                | EnvCan | AL42012 | 12/20/04    | 12/22/04   | 1        | ND ug/l             |        | 1.0 |      |
| 2,3,5,6-Tetrachlorophenol            | n n    | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| 2,3,4,6-Tetrachlorophenol            | n n    | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| 2,3,4,5-Tetrachlorophenol            | n n    | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| Pentachlorophenol                    | "      | "       | "           | "          | "        | ND "                |        | 1.0 |      |
| Surrogate: Tribromophenol            | "      | "       | "           | "          |          | 101 %               | 79-119 |     |      |
| MW-02-200412 (A412497-11)            |        |         | Sample Type | : Water    | San      | npled: 12/15/04 08: | 59     |     |      |
| Chlorinated Phenols by Canadian Pulp | Method |         |             |            |          |                     |        |     |      |
| 2,4,6-Trichlorophenol                | EnvCan | AL42012 | 12/20/04    | 12/22/04   | 1        | ND ug/l             |        | 1.0 |      |
|                                      |        |         |             |            |          |                     |        |     |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2,3,5,6-Tetrachlorophenol

2,3,4,6-Tetrachlorophenol

2,3,4,5-Tetrachlorophenol

ND"

ND"

ND"

Lisa E. Jansen For Sheri L. Speaks Project Manager

12/30/2004

1.0

1.0

1.0



208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 6 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612

Attn: Ross Steenson

Report Date: 12/30/04 14:21 9329.000.0/030275 Project No:

SPI Arcata GW Monitoring Project ID:

Order Number

A412497

Receipt Date/Time 12/16/2004 14:35 Client Code **GEOMAT** 

Client PO/Reference

| A412497                            | 12/16/2004 14:35   |         | Gl          | EOMAI      |           |                         |        |     |      |
|------------------------------------|--------------------|---------|-------------|------------|-----------|-------------------------|--------|-----|------|
|                                    |                    | Alpha   | Analytical  | Laboratori | ies, Inc. |                         |        |     |      |
|                                    | METHOD             | ВАТСН   | PREPARED    | ANALYZED   | DILUTION  | RESULT                  |        | PQL | NOTE |
| MW-02-200412 (A412497-11)          |                    |         | Sample Type | : Water    |           | Sampled: 12/15/04 08:59 |        |     |      |
| Chlorinated Phenols by Canadian Pu | lp Method (cont'd) |         |             |            |           |                         |        |     |      |
| Pentachlorophenol                  | EnvCan             | "       | "           | 12/22/04   | "         | ND"                     |        | 1.0 |      |
| Surrogate: Tribromophenol          | n                  | "       | "           | "          |           | 99.6 %                  | 79-119 |     |      |
| MW-13D-200412 (A412497-12)         |                    |         | Sample Type | : Water    |           | Sampled: 12/15/04 09:14 |        |     |      |
| Chlorinated Phenols by Canadian Pu | lp Method          |         |             |            |           |                         |        |     |      |
| 2,4,6-Trichlorophenol              | EnvCan             | AL42012 | 12/20/04    | 12/22/04   | 1         | ND ug/l                 |        | 1.0 |      |
| 2,3,5,6-Tetrachlorophenol          | "                  | "       | "           | "          | "         | ND "                    |        | 1.0 |      |
| 2,3,4,6-Tetrachlorophenol          | "                  | "       | "           | "          | "         | ND "                    |        | 1.0 |      |
| 2,3,4,5-Tetrachlorophenol          | "                  | "       | "           | "          | "         | ND "                    |        | 1.0 |      |
| Pentachlorophenol                  | "                  | "       | "           | "          | "         | ND"                     |        | 1.0 |      |
| Surrogate: Tribromophenol          | "                  | "       | "           | "          |           | 92.8 %                  | 79-119 |     |      |
| MW-15D-200412 (A412497-13)         |                    |         | Sample Type | : Water    |           | Sampled: 12/15/04 09:30 |        |     |      |
| Chlorinated Phenols by Canadian Pu | lp Method          |         |             |            |           |                         |        |     |      |
| 2,4,6-Trichlorophenol              | EnvCan             | AL42012 | 12/20/04    | 12/22/04   | 1         | ND ug/l                 |        | 1.0 |      |
| 2,3,5,6-Tetrachlorophenol          | "                  | "       | "           | "          | "         | ND "                    |        | 1.0 |      |
| 2,3,4,6-Tetrachlorophenol          | "                  | "       | "           | "          | "         | ND "                    |        | 1.0 |      |
| 2,3,4,5-Tetrachlorophenol          | "                  | "       | "           | "          | "         | ND "                    |        | 1.0 |      |
| Pentachlorophenol                  | "                  | "       | "           | "          | "         | ND"                     |        | 1.0 |      |
| Surrogate: Tribromophenol          | "                  | "       | "           | "          |           | 99.2 %                  | 79-119 |     |      |
| MW-03-200412 (A412497-14)          |                    |         | Sample Type | : Water    |           | Sampled: 12/15/04 09:43 |        |     |      |
| Chlorinated Phenols by Canadian Pu | lp Method          |         |             |            |           |                         |        |     |      |
| 2,4,6-Trichlorophenol              | EnvCan             | AL42012 | 12/20/04    | 12/22/04   | 1         | ND ug/l                 |        | 1.0 |      |
| 2,3,5,6-Tetrachlorophenol          | "                  | "       | "           | "          | "         | ND "                    |        | 1.0 |      |
| 2,3,4,6-Tetrachlorophenol          | "                  | "       | "           | "          | "         | ND "                    |        | 1.0 |      |
| 2,3,4,5-Tetrachlorophenol          | "                  | "       | "           | "          | "         | ND "                    |        | 1.0 |      |
| Pentachlorophenol                  | "                  | "       | "           | "          | "         | ND "                    |        | 1.0 |      |
| Surrogate: Tribromophenol          | "                  | "       | "           | "          |           | 101 %                   | 79-119 |     |      |
|                                    |                    |         |             |            |           |                         |        |     |      |

MW-19D-200412 (A412497-15) Sample Type: Water Sampled: 12/15/04 10:01

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa E. Jansen For Sheri L. Speaks Project Manager

12/30/2004



METHOD

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 7 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612

Attn: Ross Steenson

Report Date: 12/30/04 14:21 9329.000.0/030275 Project No:

SPI Arcata GW Monitoring Project ID:

Client PO/Reference

Order Number Receipt Date/Time A412497

Client Code 12/16/2004 14:35 **GEOMAT** 

|         | Sample Type       | : Water    | Sa       | mpled: 12/15/04 10:01 |     |      |  |
|---------|-------------------|------------|----------|-----------------------|-----|------|--|
| BATCH   | PREPARED          | ANALYZED   | DILUTION | RESULT                | PQL | NOTE |  |
| 111p114 | 1 111111 ) 111111 | 2400141011 | ,        |                       |     |      |  |

|                                        | METHOD | BATCH   | FREFARED    | ANALIZED | DILUTION | RESCEI                | TQE NOTE |
|----------------------------------------|--------|---------|-------------|----------|----------|-----------------------|----------|
| MW-19D-200412 (A412497-15)             |        |         | Sample Type | e: Water | San      | npled: 12/15/04 10:01 |          |
| Chlorinated Phenols by Canadian Pulp ! | Method |         |             |          |          |                       |          |
| 2,4,6-Trichlorophenol                  | EnvCan | AL42012 | 12/20/04    | 12/22/04 | 1        | ND ug/l               | 1.0      |
| 2,3,5,6-Tetrachlorophenol              | "      | "       | "           | "        | "        | ND "                  | 1.0      |
| 2,3,4,6-Tetrachlorophenol              | "      | "       | "           | "        | "        | ND "                  | 1.0      |
| 2,3,4,5-Tetrachlorophenol              | "      | "       | "           | "        | "        | ND "                  | 1.0      |
| Pentachlorophenol                      | "      | "       | "           | "        | "        | ND "                  | 1.0      |
| Surrogate: Tribromophenol              | "      | "       | "           | "        |          | 91.2 %                | 79-119   |

Alpha Analytical Laboratories, Inc.

| MW-04-200412 (A412497-16) Sample Type: Water Sampled: 12/15/04 10:10 |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

| MIW-04-200412 (A412497-10)                |        |         | sampie rype | e. water | , | Sampled: 12/13/04 10:10 |     |  |
|-------------------------------------------|--------|---------|-------------|----------|---|-------------------------|-----|--|
| Chlorinated Phenols by Canadian Pulp Meth | od     |         |             |          |   |                         |     |  |
| 2,4,6-Trichlorophenol                     | EnvCan | AL42012 | 12/20/04    | 12/22/04 | 1 | ND ug/l                 | 1.0 |  |
| 2,3,5,6-Tetrachlorophenol                 | "      | "       | "           | "        | " | ND"                     | 1.0 |  |
| 2,3,4,6-Tetrachlorophenol                 | "      | "       | "           | "        | " | ND "                    | 1.0 |  |
| 2,3,4,5-Tetrachlorophenol                 | "      | "       | "           | "        | " | ND "                    | 1.0 |  |
| Pentachlorophenol                         | "      | "       | "           | "        | " | ND "                    | 1.0 |  |
|                                           |        |         |             |          |   |                         |     |  |

Surrogate: Tribromophenol 92.0 % 79-119

| MW-05-200412 (A412497-17)<br>Chlorinated Phenols by Canadian Pulp Me | thod   | :       | Sample Type | e: Water |   | Sampled: 12/15/04 10:20 |     |
|----------------------------------------------------------------------|--------|---------|-------------|----------|---|-------------------------|-----|
| 2,4,6-Trichlorophenol                                                | EnvCan | AL42012 | 12/20/04    | 12/22/04 | 1 | ND ug/l                 | 1.0 |
| 2,3,5,6-Tetrachlorophenol                                            | "      | "       | "           | "        | " | ND "                    | 1.0 |
| 2,3,4,6-Tetrachlorophenol                                            | "      | "       | "           | "        | " | ND "                    | 1.0 |
| 2,3,4,5-Tetrachlorophenol                                            | "      | "       | "           | "        | " | ND "                    | 1.0 |
| Pentachlorophenol                                                    | "      | "       | "           | "        | " | ND "                    | 1.0 |

Surrogate: Tribromophenol 100 % 79-119

| MW-06-200412 (A412497-18)<br>Chlorinated Phenols by Canadian Pulp Me | thod   | \$      | Sample Type | e: Water |   | Sampled: 12/15/04 10:30 |     |
|----------------------------------------------------------------------|--------|---------|-------------|----------|---|-------------------------|-----|
| 2,4,6-Trichlorophenol                                                | EnvCan | AL42012 | 12/20/04    | 12/22/04 | 1 | ND ug/l                 | 1.0 |
| 2,3,5,6-Tetrachlorophenol                                            | "      | "       | "           | "        | " | ND "                    | 1.0 |
| 2,3,4,6-Tetrachlorophenol                                            | "      | "       | "           | "        | " | ND "                    | 1.0 |
| 2,3,4,5-Tetrachlorophenol                                            | "      | "       | "           | "        | " | ND "                    | 1.0 |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 8 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612

Attn: Ross Steenson

Report Date: 12/30/04 14:21 9329.000.0/030275 Project No:

SPI Arcata GW Monitoring Project ID:

Order Number Receipt Date/Time Client Code Client PO/Reference A412497 12/16/2004 14:35 **GEOMAT** 

|                                      |                 | Alpha   | Alpha Analytical Laboratories, Inc. |          |          |                         |        |      |  |  |  |  |  |  |
|--------------------------------------|-----------------|---------|-------------------------------------|----------|----------|-------------------------|--------|------|--|--|--|--|--|--|
|                                      | METHOD          | BATCH   | PREPARED                            | ANALYZED | DILUTION | RESULT                  | PQL    | NOTE |  |  |  |  |  |  |
| MW-06-200412 (A412497-18)            |                 |         | Sample Type                         | : Water  | S        | Sampled: 12/15/04 10:30 |        |      |  |  |  |  |  |  |
| Chlorinated Phenols by Canadian Pulp | Method (cont'd) |         |                                     |          |          |                         |        |      |  |  |  |  |  |  |
| Pentachlorophenol                    | EnvCan          | "       | "                                   | 12/22/04 | "        | ND "                    | 1.0    |      |  |  |  |  |  |  |
| Surrogate: Tribromophenol            | "               | "       | "                                   | "        |          | 95.2 %                  | 79-119 |      |  |  |  |  |  |  |
| MW-07-200412 (A412497-19)            |                 |         | Sample Type                         | e: Water | S        | Sampled: 12/15/04 10:55 |        |      |  |  |  |  |  |  |
| Chlorinated Phenols by Canadian Pulp | Method          |         |                                     |          |          |                         |        |      |  |  |  |  |  |  |
| 2,4,6-Trichlorophenol                | EnvCan          | AL42012 | 12/20/04                            | 12/22/04 | 1        | 1.7 ug/l                | 1.0    |      |  |  |  |  |  |  |
| 2,3,5,6-Tetrachlorophenol            | "               | "       | "                                   | 12/23/04 | 50       | 57 "                    | 50     |      |  |  |  |  |  |  |
| 2,3,4,6-Tetrachlorophenol            | "               | "       | "                                   | "        | "        | 310 "                   | 50     |      |  |  |  |  |  |  |
| 2,3,4,5-Tetrachlorophenol            | "               | "       | "                                   | "        | 100      | 42 "                    | 10     |      |  |  |  |  |  |  |
| Pentachlorophenol                    | "               | "       | "                                   | "        | 1000     | 22000 "                 | 1000   |      |  |  |  |  |  |  |
| Surrogate: Tribromophenol            | "               | "       | "                                   | 12/22/04 |          | 111 %                   | 79-119 |      |  |  |  |  |  |  |
| TW-20-200412 (A412497-20)            |                 |         | Sample Type                         | : Water  | S        | Sampled: 12/15/04 11:21 |        |      |  |  |  |  |  |  |
| Chlorinated Phenols by Canadian Pulp | Method          |         |                                     |          |          |                         |        |      |  |  |  |  |  |  |
| 2,4,6-Trichlorophenol                | EnvCan          | AL42012 | 12/20/04                            | 12/21/04 | 1        | ND ug/l                 | 1.0    |      |  |  |  |  |  |  |
| 2,3,5,6-Tetrachlorophenol            | "               | "       | "                                   | "        | "        | ND "                    | 1.0    |      |  |  |  |  |  |  |
| 2,3,4,6-Tetrachlorophenol            | "               | "       | "                                   | "        | "        | ND "                    | 1.0    |      |  |  |  |  |  |  |
| 2,3,4,5-Tetrachlorophenol            | "               | "       | "                                   | "        | "        | ND "                    | 1.0    |      |  |  |  |  |  |  |
| Pentachlorophenol                    | "               | "       | "                                   | "        | "        | ND "                    | 1.0    |      |  |  |  |  |  |  |
| Surrogate: Tribromophenol            | "               | "       | "                                   | "        |          | 105 %                   | 79-119 |      |  |  |  |  |  |  |
| ЛW-21-200412 (А412497-21)            |                 |         | Sample Type                         | e: Water | s        | Sampled: 12/15/04 11:43 |        |      |  |  |  |  |  |  |
| Chlorinated Phenols by Canadian Pulp | Method          |         |                                     |          |          |                         |        |      |  |  |  |  |  |  |
| 2,4,6-Trichlorophenol                | EnvCan          | AL42012 | 12/20/04                            | 12/22/04 | 1        | ND ug/l                 | 1.0    |      |  |  |  |  |  |  |
| 2,3,5,6-Tetrachlorophenol            | "               | "       | "                                   | 12/23/04 | 20       | 34 "                    | 20     |      |  |  |  |  |  |  |
| 2,3,4,6-Tetrachlorophenol            | "               | "       | "                                   | "        | "        | 50 "                    | 20     |      |  |  |  |  |  |  |
| 2,3,4,5-Tetrachlorophenol            | "               | "       | "                                   | 12/22/04 | 1        | 5.5 "                   | 1.0    |      |  |  |  |  |  |  |
| Pentachlorophenol                    | "               | "       | "                                   | 12/23/04 | 500      | 3200 "                  | 500    |      |  |  |  |  |  |  |
| Surrogate: Tribromophenol            | "               | "       | "                                   | 12/22/04 |          | 100 %                   | 79-119 |      |  |  |  |  |  |  |

Sample Type: Water

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

MW-A-200412 (A412497-22)

Sampled: 12/15/04 00:00

Lisa E. Jansen For Sheri L. Speaks Project Manager



208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 9 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Ross Steenson Report Date: 12/30/04 14:21 Project No: 9329.000.0/030275

Project ID: SPI Arcata GW Monitoring

Order Number

A412497

Receipt Date/Time 12/16/2004 14:35

Client Code GEOMAT Client PO/Reference

| Alpha Analytical Laboratories, Inc. |
|-------------------------------------|

|                                      | The first state of the state of |                    |          |          |          |          |         |  |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|----------|----------|----------|---------|--|--|--|--|
|                                      | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BATCH              | PREPARED | ANALYZED | DILUTION | RESULT   | PQL NOT |  |  |  |  |
| MW-A-200412 (A412497-22)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Type: Water |          | Sam      |          |          |         |  |  |  |  |
| Chlorinated Phenols by Canadian Pulp | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |          |          |          |          |         |  |  |  |  |
| 2,4,6-Trichlorophenol                | EnvCan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AL42012            | 12/20/04 | 12/22/04 | 1        | 2.1 ug/l | 1.0     |  |  |  |  |
| 2,3,5,6-Tetrachlorophenol            | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "                  | "        | 12/23/04 | 50       | 64 "     | 50      |  |  |  |  |
| 2,3,4,6-Tetrachlorophenol            | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "                  | "        | "        | 100      | 120 "    | 100     |  |  |  |  |
| 2,3,4,5-Tetrachlorophenol            | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "                  | "        | 12/22/04 | 1        | 8.3 "    | 1.0     |  |  |  |  |
| Pentachlorophenol                    | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "                  | "        | 12/23/04 | 1000     | 8100 "   | 1000    |  |  |  |  |
| Surrogate: Tribromophenol            | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "                  | "        | 12/22/04 |          | 110 %    | 79-119  |  |  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |          |          |          |         |  |  |  |  |



208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 10 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612

Attn: Ross Steenson

Report Date: 12/30/04 14:21 9329.000.0/030275 Project No:

SPI Arcata GW Monitoring Project ID:

Order Number A412497

Receipt Date/Time 12/16/2004 14:35

Client Code **GEOMAT** 

Client PO/Reference

### SourceResult Chlorinated Phenols by Canadian Pulp Method - Quality Control

| Analyte(s)                      | Result | PQL        | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Flag |
|---------------------------------|--------|------------|-------|----------------|------------------|-------------|----------------|------|--------------|------|
| Batch AL42012 - EPA 8151A       |        |            |       |                |                  |             |                |      |              |      |
| Blank (AL42012-BLK1)            |        |            |       | Prepared: 1    | 12/20/04 A       | nalyzed: 12 | /21/04         |      |              |      |
| 2,4,6-Trichlorophenol           | ND     | 1.0        | ug/l  |                |                  |             |                |      |              |      |
| 2,3,5,6-Tetrachlorophenol       | ND     | 1.0        | "     |                |                  |             |                |      |              |      |
| 2,3,4,6-Tetrachlorophenol       | ND     | 1.0        | "     |                |                  |             |                |      |              |      |
| 2,3,4,5-Tetrachlorophenol       | ND     | 1.0        | "     |                |                  |             |                |      |              |      |
| Pentachlorophenol               | ND     | 1.0        | "     |                |                  |             |                |      |              |      |
| Surrogate: Tribromophenol       | 23.2   |            | "     | 25.0           |                  | 92.8        | 79-119         |      |              |      |
| LCS (AL42012-BS1)               |        |            |       | Prepared: 1    | 12/20/04 A       | nalyzed: 12 | /21/04         |      |              |      |
| 2,4,6-Trichlorophenol           | 4.70   | 1.0        | ug/l  | 5.00           |                  | 94.0        | 81-120         |      |              |      |
| 2,3,5,6-Tetrachlorophenol       | 5.01   | 1.0        | "     | 5.00           |                  | 100         | 78-108         |      |              |      |
| 2,3,4,6-Tetrachlorophenol       | 4.44   | 1.0        | "     | 5.00           |                  | 88.8        | 76-108         |      |              |      |
| 2,3,4,5-Tetrachlorophenol       | 4.98   | 1.0        | "     | 5.00           |                  | 99.6        | 80-116         |      |              |      |
| Pentachlorophenol               | 5.32   | 1.0        | "     | 5.00           |                  | 106         | 86-109         |      |              |      |
| Surrogate: Tribromophenol       | 23.0   |            | "     | 25.0           |                  | 92.0        | 79-119         |      |              |      |
| Matrix Spike (AL42012-MS1)      | Source | ce: A41249 | 7-20  | Prepared:      | 12/20/04 A       | nalyzed: 12 | /21/04         |      |              |      |
| 2,4,6-Trichlorophenol           | 4.75   | 1.0        | ug/l  | 5.00           | ND               | 88.2        | 75-125         |      |              |      |
| 2,3,5,6-Tetrachlorophenol       | 5.08   | 1.0        | "     | 5.00           | ND               | 93.6        | 69-115         |      |              |      |
| 2,3,4,6-Tetrachlorophenol       | 4.03   | 1.0        | "     | 5.00           | ND               | 73.0        | 66-117         |      |              |      |
| 2,3,4,5-Tetrachlorophenol       | 4.87   | 1.0        | "     | 5.00           | ND               | 97.4        | 70-115         |      |              |      |
| Pentachlorophenol               | 5.20   | 1.0        | "     | 5.00           | ND               | 89.6        | 55-124         |      |              |      |
| Surrogate: Tribromophenol       | 25.0   |            | n .   | 25.0           |                  | 100         | 79-119         |      |              |      |
| Matrix Spike Dup (AL42012-MSD1) | Source | ce: A41249 | 7-20  | Prepared: 1    | 12/20/04 A       | nalyzed: 12 | /21/04         |      |              |      |
| 2,4,6-Trichlorophenol           | 4.19   | 1.0        | ug/l  | 5.00           | ND               | 77.0        | 75-125         | 12.5 | 20           |      |
| 2,3,5,6-Tetrachlorophenol       | 4.41   | 1.0        | "     | 5.00           | ND               | 80.2        | 69-115         | 14.1 | 20           |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 11 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612

Oakland, CA 94612 Attn: Ross Steenson Project No: Project ID:

Report Date: 12/30/04 14:21 Project No: 9329.000.0/030275

Project ID: SPI Arcata GW Monitoring

Order Number A412497 Receipt Date/Time 12/16/2004 14:35 Client Code GEOMAT Client PO/Reference

Chlorinated Phenols by Canadian Pulp Method - Quality Control

| Analyte(s)                      | Result | PQL       | Units | Spike<br>Level                        | Source<br>Result | %REC | %REC<br>Limits | RPD  | RPD<br>Limit | Flag  |  |  |  |
|---------------------------------|--------|-----------|-------|---------------------------------------|------------------|------|----------------|------|--------------|-------|--|--|--|
| Batch AL42012 - EPA 8151A       |        |           |       |                                       |                  |      |                |      |              |       |  |  |  |
| Matrix Spike Dup (AL42012-MSD1) | Source | e: A41249 | 7-20  | Prepared: 12/20/04 Analyzed: 12/21/04 |                  |      |                |      |              |       |  |  |  |
| 2,3,4,6-Tetrachlorophenol       | 3.77   | 1.0       | "     | 5.00                                  | ND               | 67.8 | 66-117         | 6.67 | 20           |       |  |  |  |
| 2,3,4,5-Tetrachlorophenol       | 4.14   | 1.0       | "     | 5.00                                  | ND               | 82.8 | 70-115         | 16.2 | 20           |       |  |  |  |
| Pentachlorophenol               | 4.05   | 1.0       | "     | 5.00                                  | ND               | 66.6 | 55-124         | 24.9 | 20           | QM-08 |  |  |  |
| Surrogate: Tribromophenol       | 23.8   |           | "     | 25.0                                  |                  | 95.2 | 79-119         |      |              |       |  |  |  |



208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 12 of 12

Geomatrix Consultants 2101 Webster Street, 12th Floor

Oakland, CA 94612

Attn: Ross Steenson

Report Date: 12/30/04 14:21 Project No: 9329.000.0/030275

Project ID: SPI Arcata GW Monitoring

<u>Order Number</u> <u>Receipt Date/Time</u> <u>Client Code</u> <u>Client PO/Reference</u>

A412497 12/16/2004 14:35 GEOMAT

### **Notes and Definitions**

QM-08 The RPD was outside acceptance limits for MS/MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
POL Practical Quantitation Limit

| C                                      | Chain-      | of Custody F                                             | 200                    | cor                                 | 'nd                  |                 |                                            | T                                  | -               |                       |                          |           |                                            |       |     |      |        | 1         | Date                    | : 1                                                                                          | 2/                               | 15          | 10                    | 4 Page 1 of 2           |  |
|----------------------------------------|-------------|----------------------------------------------------------|------------------------|-------------------------------------|----------------------|-----------------|--------------------------------------------|------------------------------------|-----------------|-----------------------|--------------------------|-----------|--------------------------------------------|-------|-----|------|--------|-----------|-------------------------|----------------------------------------------------------------------------------------------|----------------------------------|-------------|-----------------------|-------------------------|--|
| Project No.                            | П           | ANALYSES                                                 |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          | T         | REMARKS                                    |       |     |      |        |           |                         |                                                                                              |                                  |             |                       |                         |  |
| Samplers (S                            | Signature:) | Met Hilly                                                | nod 8021<br>(n         | nod 8021<br>Ss only)                | nod 8021<br>lly)     | nod 8260        | nod 8270<br>(r                             | EPA Method 8270<br>SIM (PAHS only) | 015m (Gasoline) | Method 8015m (Diesel) | Method 8015m (Motor Oil) | Cleanup   | Chlorinated Phenols<br>Canadian Pulp noted |       |     |      |        | Water (W) | Vapor (V), or Other (o) |                                                                                              | d                                |             | No. of Containers     | Additional Comments     |  |
| Date                                   | Time        | Sample Number                                            | EPA Meth<br>(Full Scar | EPA Method 8021<br>(Hal. VOCs only) | EPA Meth<br>(BETX or | EPA Method 8260 | EPA Meth<br>(Fuli Scar                     | EPA Meth<br>SIM (PAH               | Method 8        | Method 8              | Method 8                 | Silica Ge | Chloricand                                 |       |     |      |        | Soil (S), | Vapor (V                | Filtered                                                                                     | Preserved                        | Cooled      | No. of Co             | A412497                 |  |
| 12/14                                  | 1435        | MW-12-200412                                             |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           | X                                          |       |     |      |        | V         | V                       |                                                                                              |                                  | ×           | 2                     | 1                       |  |
| )                                      | 1458        | MW-08-200412                                             | Γ                      |                                     |                      |                 |                                            |                                    |                 |                       |                          |           |                                            |       |     |      |        | 1         | Ц                       |                                                                                              |                                  |             | 2                     | 2                       |  |
|                                        |             | MW-11-200412                                             |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           |                                            |       |     |      |        |           | Щ                       |                                                                                              |                                  |             | 2                     | 3                       |  |
|                                        | 1544        | MW-18-200412                                             |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           |                                            |       |     |      |        | $\perp$   | Ц                       |                                                                                              |                                  | Щ           | 2                     | 4                       |  |
|                                        | 1526        | MW-09-260412                                             |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           |                                            |       |     |      |        | $\perp$   | $\coprod$               |                                                                                              |                                  |             | 2                     | 5                       |  |
|                                        | 1558        | MW-10-2004/2                                             |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           |                                            |       |     |      |        | $\perp$   | 1                       |                                                                                              |                                  | Щ           | 2                     | 6                       |  |
|                                        | 1614        | M4-16D-200412                                            |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           |                                            |       |     |      |        | ┸         | Ц                       |                                                                                              |                                  |             | 2                     | 7                       |  |
| V                                      | 16 30       | MW-17-200412                                             |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           |                                            |       |     |      |        |           | Ц                       | _                                                                                            |                                  | $\parallel$ | 2                     | 8                       |  |
| 12/15                                  | 0834        | MW-14-200412                                             |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           | Ш                                          |       |     |      |        | Ц         |                         |                                                                                              |                                  | L           | 2                     | 9                       |  |
|                                        |             | MW-01-200412                                             | Γ                      |                                     |                      |                 |                                            |                                    |                 |                       |                          |           |                                            |       |     |      |        |           |                         |                                                                                              |                                  |             | 2                     | 10                      |  |
|                                        | 0859        | MW-02-200412                                             |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           |                                            |       |     |      |        |           |                         |                                                                                              |                                  |             | 2                     | 11                      |  |
|                                        |             | MW-13D-200412                                            |                        |                                     |                      |                 |                                            |                                    |                 | Г                     |                          |           |                                            |       |     |      |        |           |                         |                                                                                              |                                  |             | 2                     | 12                      |  |
|                                        |             | MW-15D-2004/2                                            |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           | П                                          |       |     |      |        |           |                         |                                                                                              |                                  |             | 2                     | 13                      |  |
|                                        |             | MW-03-200412                                             |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           | 11/                                        |       |     |      |        |           | 1                       |                                                                                              |                                  |             | 2                     | 14                      |  |
|                                        |             | MW-19D-200412                                            |                        |                                     |                      |                 |                                            |                                    |                 |                       |                          |           | W                                          |       |     |      |        | T         |                         |                                                                                              |                                  | 1           | 2                     | 15                      |  |
| Laboratory: Alpha Ukiah Turnaround Tir |             |                                                          |                        |                                     |                      |                 | Results to: Rest Steenson Total No. of Cor |                                    |                 |                       |                          |           |                                            |       |     |      | ont    | ntainers  |                         |                                                                                              |                                  |             | 7                     |                         |  |
| Relinquis                              | hed by (Si  | gnature): Date: R                                        | elino                  | uish                                | ed b                 | W (8)           | 1gna                                       | thire                              | خوا             | 7                     | Pate<br>12/              | : ;       | Relir                                      | iquis | hed | by ( | Signat | ure       | ):                      |                                                                                              | ate                              | :           | Meth                  | od of Shipment: Courier |  |
| Printed N                              | inte<br>OG  | linguished by (Signatus)  A H A K W  inted Name:  SCHU T |                        |                                     |                      |                 |                                            |                                    | Time            |                       | Printed Name:            |           |                                            |       |     |      | Time:  |           |                         | :                                                                                            | Laboratory Comments and Log No.: |             |                       |                         |  |
| Company<br>Geoma<br>Received           |             | mpany. HCD 14 1                                          |                        |                                     |                      |                 |                                            | 1435<br>Date:                      |                 |                       |                          |           |                                            |       |     |      | Date:  |           |                         | $\dashv$                                                                                     | d.                               | . 0         |                       |                         |  |
| Bab                                    | U           | Main                                                     |                        |                                     |                      |                 |                                            | Printed Name:                      |                 |                       |                          |           |                                            |       |     |      |        |           |                         |                                                                                              |                                  |             |                       |                         |  |
|                                        |             | 4UCIZ Time:                                              | U S                    |                                     |                      |                 |                                            |                                    |                 |                       | Time                     |           |                                            |       |     |      |        |           | Time:                   |                                                                                              |                                  |             | Geometrix Consultants |                         |  |
| Company                                | Alpha       | 747                                                      | Alpha labs             |                                     |                      |                 |                                            | Company:                           |                 |                       |                          |           |                                            |       |     |      |        |           |                         | 2101 Webster Street, 12th Floor • Oakland, CA 94612<br>Phone: 510-663-4100 Fax: 510-663-4141 |                                  |             |                       |                         |  |

|              | Chain-      | of Custody F       | 200          | cor                                 | 'nd                |                 |                  | T                     |                  |                       |                   |            |                                      | Automotion*** |      |    |        |           | Date                    | : 12     | 2/1       | 51                                                                                      | 100               | Page 2 of 2                   |
|--------------|-------------|--------------------|--------------|-------------------------------------|--------------------|-----------------|------------------|-----------------------|------------------|-----------------------|-------------------|------------|--------------------------------------|---------------|------|----|--------|-----------|-------------------------|----------|-----------|-----------------------------------------------------------------------------------------|-------------------|-------------------------------|
| Project No.: | T           | ANALYSES           |              |                                     |                    |                 |                  |                       |                  |                       |                   | T          | REMARKS                              |               |      |    |        |           |                         |          |           |                                                                                         |                   |                               |
| Samplers (S  | Signature:) | Matt Hillyal       | thod 8021    | EPA Method 8021<br>(Hal. VOCs only) | thod 8021<br>inly) | EPA Method 8260 | thod 8270<br>an) | thod 8270<br>HS only) | 8015m (Gasoline) | Method 8015m (Diesel) | 8015m (Motor Oil) | el Cleanup | Culorinated Phenols<br>Canadian full |               |      |    |        | Water (W) | Vapor (V), or Other (o) |          | /ed       |                                                                                         | No. of Containers | Additional Comments           |
| Date         | Time        | Sample Number      | EPA Me       | EPA Me                              | EPA Me             | EPA Me          | EPA Me           | EPA Me<br>SIM (PA     | Method           | Method                | Method            | Silica G   | Chlor                                |               |      |    |        | (5) 105   | Vapor (                 | Filtered | Preserved | Cooled                                                                                  |                   | A412497                       |
| 12/15        | 1010        | MW-04-2004/2       |              |                                     |                    |                 |                  |                       |                  |                       |                   |            | 1                                    |               |      |    |        |           | W                       |          |           | ×                                                                                       | 2                 | 16                            |
| 1            | 1020        | MW-05-200412       | Γ            |                                     |                    |                 |                  |                       |                  |                       |                   |            |                                      |               |      |    |        | _         | Ц                       |          |           |                                                                                         | 2                 | 17                            |
|              |             | MW-66-200412       |              |                                     |                    |                 |                  |                       |                  |                       |                   |            |                                      |               |      |    |        | _         | $\coprod$               |          |           |                                                                                         | 2                 | 10                            |
|              |             | MW-07-200412       |              |                                     |                    |                 |                  |                       |                  |                       |                   |            | Ш                                    |               |      |    |        | 4         | Ц                       |          |           | Ц.                                                                                      | 2                 | 19                            |
|              | 1121        | MW-20-200412       |              |                                     |                    |                 |                  |                       |                  |                       |                   |            | 11                                   |               |      |    |        | 4         | 1                       |          |           | -                                                                                       | 3                 | MS/MSD additional 20          |
| V            | 1143        | MW-21-200412       |              |                                     |                    |                 |                  |                       |                  |                       |                   |            | V                                    |               |      |    |        | 4         |                         |          |           | 1                                                                                       | 2                 |                               |
| 12/15        | _           | MW-A-260412        | L            |                                     |                    |                 |                  |                       |                  |                       |                   | _          | X                                    | _             |      |    |        | -         | 4                       |          |           | 1                                                                                       | 1                 | 23                            |
|              |             |                    | $\perp$      | _                                   | _                  |                 |                  | _                     | _                | _                     | _                 | $\vdash$   | +                                    |               |      |    |        | +         | $\dashv$                |          |           | -                                                                                       | -                 |                               |
|              |             |                    | $\downarrow$ | -                                   |                    | _               |                  | _                     | -                | -                     | -                 | $\vdash$   | +                                    | -             |      |    |        | +         | -                       |          |           | -                                                                                       | -                 |                               |
|              |             |                    | ╀            | -                                   | _                  | _               |                  | -                     | -                | $\vdash$              | -                 | $\vdash$   | -                                    | -             |      |    |        | $\dashv$  | $\dashv$                |          |           | $\vdash$                                                                                | +                 |                               |
|              |             |                    | lacksquare   | -                                   | -                  | -               |                  | -                     | -                | $\vdash$              | -                 | +          | +                                    | -             |      |    |        | $\dashv$  | -                       |          | -         | -                                                                                       | $\vdash$          |                               |
|              |             |                    | $\vdash$     | +                                   | -                  | -               | -                | -                     | -                | $\vdash$              | $\vdash$          | +          | +                                    | -             |      |    |        | $\dashv$  | -                       |          | _         |                                                                                         | $\vdash$          |                               |
|              |             |                    | +            | +                                   | -                  | -               | -                |                       | $\vdash$         | $\vdash$              | $\vdash$          | +          | +                                    | -             | -    |    |        | $\dashv$  | 1                       |          | _         | $\vdash$                                                                                | T                 |                               |
|              |             |                    | +            | +                                   | -                  | -               | -                | -                     | $\vdash$         | $\vdash$              | -                 | +          | +                                    | -             |      |    |        | $\dashv$  |                         |          |           | $\vdash$                                                                                |                   |                               |
| Laborato     | ry: Alph    | 1a Ukiah           | Tu           | ırnar                               | ound               |                 | ne:              |                       | 1                | Lo                    |                   | Ste        | en5                                  |               | 1    |    | o. of  |           |                         | ers      |           |                                                                                         | 14                |                               |
| Relinguis    | shed by (S  | ignature): Date: F | elin         | quisi                               | ned                | by h            | Sign             | atur                  | e):              | 1                     | Date              | 7:         | Reli                                 | nqui          | shed | by | (Signa | ature     | e):                     |          | Date      | 9:                                                                                      | Met               | hod of Shipment: Courier      |
| Printed N    | lame;       | 12/16 F            | rint         | ed N                                | ame                | A.              | 90               | 17                    |                  |                       | Time              |            | Prin                                 | ted I         | Name | 9: |        |           |                         | 7        | Time      | e:                                                                                      | Lab               | oratory Comments and Log No.: |
|              |             |                    |              | any:                                | 19                 | ١               |                  |                       |                  |                       | 143               | - 1        | Com                                  | pan           | y:   |    |        |           |                         |          |           |                                                                                         |                   | 2.8°C                         |
| (200 matrix  |             |                    |              | eceived by:                         |                    |                 |                  |                       |                  |                       | Date              | 3:/        |                                      |               |      |    |        |           |                         | Date:    |           |                                                                                         |                   | J-0                           |
| But          | 1 sel       | Time:              | rint         | rintled Name:                       |                    |                 |                  |                       |                  | -                     | Time              |            | Printed Name:                        |               |      |    |        |           |                         | -        | Time      | e:                                                                                      |                   | Geomatrix Consultants         |
| Printed No.  |             | Mesie Winn         |              |                                     |                    |                 |                  |                       | 143              | - }                   | Com               | pan        | y:                                   | -             |      |    |        | $\dashv$  |                         |          | 2101      | Webster Street, 12th Floor • Oakland, CA 94612<br>Phone: 510-663-4100 Fax: 510-663-4141 |                   |                               |
|              | HAPT        | 14 1050 19         |              | TU                                  | Olv                | 21              | W                | 55                    |                  |                       | 1 ( -             |            |                                      |               |      |    |        | -         |                         |          |           |                                                                                         |                   |                               |



### **APPENDIX C**

## **Laboratory Data Quality Review**



### **APPENDIX C**

### LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed quality assurance and quality control (QA/QC) procedures to assess quality of the analytical results by evaluating the precision, accuracy, and completeness of the data. We performed the data quality review using U.S. Environmental Protection Agency National Functional Guidelines for Organic Data Review (U.S. EPA, 1999).

### **PRECISION**

Data precision is evaluated by comparing analytical results for the following:

- concentrations in primary and (blind) duplicate field samples
- concentrations of matrix spike (MS) and matrix spike duplicate (MSD) concentrations
- laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) concentrations

Concentrations detected in the primary or spiked samples are compared with respective concentrations in duplicate or duplicate spiked samples. Relative percent differences (RPDs) are used to calculate results, using the following equation:

$$RPD = \frac{[S-D]}{(S+D)/2} \times 100$$

Where,

S = Sample concentration

D = Duplicate sample concentration

RPDs for primary and duplicate field samples are calculated in Table C-1. RPDs are only calculated when primary and duplicate sample concentrations are greater than or equal to two times the laboratory reporting limits. In cases where the detection in either the primary or duplicate sample, or both, are less than two times the reporting limit, the absolute difference between the primary and duplicate sample concentration is calculated. RPDs for MS/MSD and LCS/LCSD analysis are reported in laboratory analytical reports, included in Appendix B.



RPDs for the groundwater monitoring program data were acceptable even though the RPDs between the primary (MW-21) and the duplicate (MW-A) field samples were extremely variable. This situation has been consistent from field duplicates collected at this and other locations previously.

### **ACCURACY**

Data accuracy is assessed by evaluating holding times required by analytical methods, sample preservation, laboratory method blank results, recovery of laboratory surrogates, MS/MSD results, and LCS/LCSD results. We evaluated these criteria for samples collected for the quarterly groundwater monitoring program. Results of the review are summarized below.

- Hold times. Samples were analyzed within the holding time for each analytical method.
- Preservation. Samples were collected in laboratory-supplied containers with preservatives, if applicable. Samples were stored and transported to analytical laboratories in chilled coolers.
- **Method blanks.** No detections were observed in any of the method blanks analyzed by the laboratory.
- **Surrogate Recoveries.** Laboratory surrogates were recovered at concentrations within acceptable ranges.
- MS/MSD analysis. RPDs were acceptable.
- LCS/LCSD analysis. RPDs were acceptable.

### **COMPLETENESS**

Based on our laboratory data quality review, data contained in this report is considered complete and representative.



# TABLE C-1 RELATIVE PERCENT DIFFERENCES BETWEEN DUPLICATE SAMPLES<sup>1</sup>

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations reported in micrograms per liter (µg/L).

|              |                    | Q<br>Groundy                     |                                           |                                   |
|--------------|--------------------|----------------------------------|-------------------------------------------|-----------------------------------|
| Constituent  | Reporting<br>Limit | Sample<br>Concentration<br>MW-21 | Duplicate<br>Sample Concentration<br>MW-A | Relative<br>Percent<br>Difference |
| РСР          | 500/1,000          | 3,200                            | 8,100                                     | 86.7%                             |
| 2,3,4,5-TeCP | 1.0                | 5.5                              | 8.3                                       | 40.6%                             |
| 2,3,4,6-TeCP | 20/100             | 50                               | 120                                       | 82.4%                             |
| 2,3,5,6-TeCP | 20/50              | 34                               | 64                                        | 61.2%                             |

### Notes:

- 1. Quarterly groundwater samples collected on December 15, 2004 and analyzed by Alpha Analytical Laboratory, of Ukiah, California, for chlorinated phenols using the Canadian Pulp Method. Only constituents with detections in either the primary and/or secondary sample are listed in this table.
- 2. RPD calculated as ([2(S-D)]/[S+D]) x 100 where S is the sample concentration and D is the blind duplicate sample concentration.
- 3. For sample concentrations less than two times the reporting limit, the absolute difference between the sample concentration and the blind duplicate sample is calculated.
- 4. The reporting limit is presented as the reporting limit for MW-21/MW-A for the listed constituent when the laboratory chose to use different dilutions with which to analyze the respective samples.

### Abbreviations:

PCP = pentachlorophenol

TeCP = tetrachlorophenol