Report of Analysis

Client Sample Lab Sample I		-SW-08/2 16-1				Date	Samı	oled: 05/27/10	
Matrix:		Surface W	ater			Date			
						Perce	ent So	lids: n/a	
Project:	Mt. I	Diablo- Ma	ursh Creel	s Road	I, Clayton,	CA			
Total Metals	Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Antimony	< 10	10	ug/1	1	06/02/10	06/04/10	СТ	SW846 6010B ²	SW3010A 4
Arsenic	< 10	10	ug/l	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Beryllium	< 5.0	5.0	ug/l	1	06/02/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Boron	486	50	ug/l	Y	06/02/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Cadmium	< 2.0	20	ug/l	1		06/04/10		SW846 6010B 2	SW3010A 4
Calcium	41400	50	ug/l	1	06/02/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Chromium	< 5.0	5.0	ug/l	J	06/02/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Copper	< 5.0	5.0	ug/l	1	06/02/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
lron	732	50	ng/l	1	06/02/10		СТ	SW846 6010B 2	SW3010A 4
Lead	< 5.0	5.0	ug/l	1	06/02/10	06/04/10	СТ	SW846 60108 2	SW3010A 4
Magnesium	19800	50	ug/l	1	06/02/10	06/04/10	СТ	SW446 6010B 2	SW3010A 4
Manganese	70.5	5.0	ug/l	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Mercury	< 0.20	0.20	ug/l	i		06/02/10		EPA 245.1	EPA 245.1/SW7470A 9
Nickel	9.5	5.0	ug/l	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Potassium	1560	500	ug/l	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Selemum	< 20	20	ug/l	1			CI	SW846 60108 2	SW3010A 4
Silicon	6620	50	ug/1	1		06/04/10	СТ	SW846 6010B 2	SW3010A 4
Silver	< 5.0	5.0	ug/l	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Sodium	16100	100	ug/l	1				SW846 6010B 2	SW3010A 4
Thallium	< 20	20	ug/1	1			CT	SW846 6010B 2	SW3010A 4
Zinc	< 10	10	ug/l	1		06/04/10	CT	SW846 601013 2	SW3010A 4

Instrument QC Batch: MA1239
 Instrument QC Batch: MA1243
 Prep QC Batch: MP2431
 Prep QC Batch: MP2433

RL = Reporting Limit

2.1 2

Client Sample ID: 1	MTD-SV	V-08/2									
Lab Sample ID:	C11216-	1			Date S	Sampled: 05/27/1	0				
Matrix:	AQ - Sur	face Water			Date]	Received: 05/28/1					
					Perce:	nt Solids: n/a					
Project:	Mt. Diah	olo- Marsh C	reek Road,	Clayton, CA	CA						
General Chemistry		1.51-									
Analyte		Result	RL	Units	DF	Analyzcd	By	Method			
Alkahnity, Bicarbona	te	169	5:0	mg/1	1	06/01/10	РН	SM18 4500C'02D			
Alkalinity, Carbonate		< 5.0	5.0	mg/l	1	06/01/10	PH	SM18 4500CO2D			
Alkalinity, Total as C	aCO3	169	5.0	mg/l	1	06/01/10	PH	SM18 2320B			
Bromide		< 0.20	0.20	mg/1	Ŧ	05/28/10 13:33	RL	EPA 300/SW846 9056A			
Chloride		10.8	1.3	mg/1	2.5	06/01/10 21:52	RL	EPA 300/SW846 9056A			
Dissolved Organic Ca	arbon	4.1	1.0	mg/l	1	05/28/10	RI.	SM18 5310C			
Fluoride		< 0.10	0.10	mg/1	7	05/28/10 13:33	RL	EPA 300/SW846 9056A			
Hardness, Total as Ca	aCO3 a	185	0.33	mg/l	1	06/04/10 15:30	ст	SW846 6010B/SM 234013			
Nitrogen, Nitrate		< 0.10	0.10	mg/l	1	05/28/10 13:33	RL,	EPA 300/SW846 4056A			
Silica, Dissolved b		14.2	0.11	mg/l	手	06/04/10 15:30	CT	SW846 6010B			
Solids, Total Dissolve	ed	231	10	mg/l	1	06/01/10	PH	SM18 2540C			
Specific Conductivity		414	1.0	umhos/cm	1	05/28/10	PH	SMIR 251019/EPA 120.1			
Sulfate		32.4	1.3	mg/l	2.5	06/01/10 21:52	RL.	EPA 300/SW846 9056A			
Turbidity		26 9	0.50	NTU	1	05/28/10 12:10	EB	SM18 2130B			
pH c		7.91		su	1	05/28/10 13:12	РП	SM18 450011+ B			

Report of Analysis

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)
(b) Calculated as: (Silicon * 2.139)
(c) pH was analyzed past the 15min hold time.

Report of Analysis

Client Sample ID: Lab Sample ID:	MTD C112	-SW-08/2 16-1F				Date Samp	0				
Matrix:	AQ -	Surface H	20 Filter	ed			Date Received: 05/28/10 Percent Solids: n/a				
Project:	Mt. E	Diablo- Ma	arsh Creel	k Roac	l, Clayton,	CA					
Dr. D. Marala	Anolysia										
Dissolved Wietals 2	snarysis	•									
Dissolved Metals 4 Analyte Ra	esult	RL	Units	DF	Prep	Analyzed By	Method	Prep Method			

Instrument QC Batch: MA1240
 Prep QC Batch: MP2430

2.2

N

Report of Analysis

Client Sampl		-SW-07/2				D			
Lab Sample I Matrix:		Surface V	Vater			Date Date			
Project:	Mt. I	Diablo- Mi	arsh Creel	k Road	, Clayton,		ent So		
Total Metals	Analysis						-		
Analyte	Result	RL	Units	ĎF	Prep	Analyzed	By	Method	Prep Method
Antimony	< 10	10	ug/1	1	06/02/1 0	06/02/10	CT	5W846 6010B	SW3010A 5
Arsenic	< 10	10	ug/l	1	06/02/10	06/02/10	CT	SW846 6010B	SW3010A 5
Beryllium	< 5.0	5.0	ug/l	1		06/02/10	CT	SW846 6010B 1	SW3010A 5
Boron	3120	250	ug/l	5	06/02/10		CT	SW846 6010B 3	SW3010A 5
Cadmium	< 2.0	2.0	ug/l	1	06/02/10	06/02/10	СТ	SW846 6010B 1	SW3010A 5
Calcium	52000	250	ag/1	5	06/02/10	06/04/10	CT	SW846 6010B 3	SW3010A 5
Chromium	< 5.0	5.0	ug/1	1	06/02/10	06/02/10	CT	SW846 6010B	SW3010A 5
Copper	< 5.0	5.0	ug/1	1	06/02/10	06/02/10	CT	SW846 6010B	SW3010A 5
Iron	665	50	ug/l	1	06/02/10			SW846 6010B	SW3010A 5
Lead	< 5.0	5.0	ug/l	1	06/02/10	06/02/10	СТ	SW846 6010B	SW3010A 5
Magnesium	36700	250	ug/l	5	06/02/10	06/04/10	C	SW846 6010B 3	SW3010A 5
Manganese	381	5.0	ug/1	T.			СТ	SW846 6010B I	SW3010A 5
Mercury	0.64	0.20	ug/l	1	06/01/10	06/02/10	RW	EPA 245.1 2	EPA 245.1/SW7470A 4
Nickel	345	25	ug/l	5		06/04/10		SW846 6010B 3	SW3010A 5
Potassium	3140	500	ug/l	ī	06/02/10			SW846 6010B	SW3010A 5
Selenium	< 20	20	ug/l	1	06/02/10		CT	SW846 6010B 1	SW3010A 5
Silicon	5930	50	ug/l	1	4			SW846 6010B 1	SW3010A 5
Silver	< 5.0	5.0	ug/l	i	06/02/10		СТ	SW846 6010B 1	SW3010A 5
Sodium	56000	500	ug/l	5		06/04/10	+ -	SW846 6010B 3	SW3010A 5
Thallium	< 20	20	ug/l	1		06/02/10		SW846 6010B	SW3010A 5
Zinc	< 10	10	ug/l	1				SW846 6010B	SW3010A 5

Instrument QC Batch: MA1238
 Instrument QC Batch: MA1239
 Instrument QC Batch: MA1243
 Prep QC Batch: MP2431
 Prep QC Batch: MP2433

RL = Reporting Limit

2:3 2

Report of Analysis

Lab Sample 1D: C11210	5-2 9-2 Water			Date 1	Sampled: 05/27/1 Received: 05/28/1 nt Solids: n/a		1
Project: Mt Dis	ablo- Marsh C	reek Road,	Clayton, CA				
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Bicarbonate	179	5.0	mg/l	1	06/01/10	РН	SM18 4500CO2D
Alkalinity, Carhonate	< 5.0	5.0	mg/l	3	06/01/10	PH	SM18 4500CO2D
Alkalinity, Total as CaCO3	179	5.0	mg/1	1	06/01/10	PH	SM18 2320B
Bromide	< 0.20	0.20	mg/l	1	05/28/10 13:50	RL	EPA 300/SW846 9056A
Chloride	54.0	5.0	mg/l	1Ŭ	06/01/10 22:45	RL	EPA 300/SW846 9056A
Dissolved Organic Carbon	4.3	1.0	mg/l	1	05/28/10	RL	SM18 5310C
Fluoride	< 0.10	0.10	mg/l	1	05/28/10 13:50	RL	EPA 300/SW846 4056A
Hardness, Total as CaCO3 a	281	1.7	mg/1	1	06/04/10 15:35	СТ	SW846 6010B/SM 2340B
Nitrogen, Nitrate	< 0.10	0.10	mg/1	I	05/28/10 13:50	RI.	EPA 300/SW846 9056A
Silica, Dissolved h	12.7	0.11	mg/1	1	06/02/10 20:09	CT	SW846 6010B
Solids, Total Dissolved	465	10	mg/1	1	06/01/10	PD	SM18 2540C
Specific Conductivity	774	1.0	unhos/cm	1	05/28/10	РH	SM18 2510B/EPA 120.1
Sulfate	123	5.Q	mg/l	1.0	06/01/10 22:45	RL	EPA 300/SW846 9056A
Turbidity	13.0	0.50	NTU	1	05/28/10 12:10	EB	SM18 2130B
pH ¢	7.69		su	1	05/28/10 13:16	PH	SM18 4500H+ B

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)
(b) Calculated as: (Silicon * 2.139)

(c) pH was analyzed past the 15min hold time.

RL = Reporting Limit

Report of Analysis

Client Samp	le ID: MTD	-SW-07/2							
Lab Sample	ID: C112	16-2F				Date Samp	led: 05/27/16)	
Matrix:	AQ -	Surface E	120 Filter	ed		Date Received: 05/28/10			
						Percent So	lids: n/a		
Project:	Mt. I	Diablo- Ma	arsh Creel	Road	l, Clayton,	CA			
3			anon oree.		., <i>e</i> ,,				
	etals Analysis				., englen,				
			Units	DF	Prep	Analyzed By	Method	Prep Method	

Instrument QC Batch: MA1240
 Prep QC Batch: MP2430

2.4

Ν

Report of Analysis

Client Sample ID: MTD-SW-09/2 Lab Sample ID: C11216-3 Date Sampled: 05/27/10 Date Received: 05/28/10 Matrix: AQ - Surface Water Percent Solids: n/a Project: Mt Diablo- Marsh Creek Road, Clayton CA **Total Metals Analysis** Analyte Result RL Units DF Prep Analyzed By Method Prep Method SW846 6010B SW3010A 5 Antimony < 1010 ug/l 1 06/02/10 06/02/10 CT Arsenic < 1010 ug/l 1 06/02/10 06/02/10 CT SW846 6010B SW3010A 5 SW3010A 5 Beryllium < 5.0 5.0 ug/l 1 06/02/10 06/02/10 CT SW846 6010B 1 SW3010A 5 Boron 86800 50 SW846 6010B 1 ug/l 1 06/02/10 06/02/10 CT SW3010A 5 Cadmium < 2.0 2.01 06/02/10 06/02/10 CT SW846 6010B 1 ug/l SW3010A 5 Calcium 409000 2500 ug/l 50 06/02/10 06/04/10 CT SW846 6010B SW3010A 5 Chromium 18.7 5.0ug/l 1 06/02/10 06/02/10 CT SW846 6010B SW3010A 5 Copper 43.2 5.0 ug/l 1 06/02/10 06/02/10 CT SW846 6010B SW3010A 5 Iron 11100 50 lig/1 1 06/02/10 06/02/10 CT SW846 6010B < 5.0 50 SW846 6010B 1 SW3010A 5 Lead ug/1 1 06/02/10 06/02/10 CT Magnesium 482000 2500 ug/] 50 06/02/10 06/04/10 CT SW846 6010B 3 SW3010A 5 SW3010A 5 Manganese 6950 5.0 ug/l 1 06/02/10 06/02/10 CT SW846 6010B 1 EPA 245.1/SW 7470A 4 Mercury 88.0 2.0 ug/l 10 06/01/10 06/02/10 RW EPA 245.1 2 Nickel 16000 250 Ug/I 50 06/02/10 06/04/10 C1 SW846 6010B 3 SW3010A 5 SW3010A 5 500 Potassium 47000 ug/l 1 06/02/10 06/02/10 CT SW846 6010B SW3010A 5 Selenium < 20 20 06/02/10 06/02/10 CT SW846 6010B 1 ug/l 1 SW3010A 5 ug/l SW846 6010B Silicon 16500 5.0 1 06/02/10 06/02/10 CT SW3010A 5 SW846 6010B 1 ug/l Silver < 5.0 5.0 1 06/02/10 06/02/10 CT SW3010A 5 Sodium 5000 SW846 6010B 3 1260000 ug/l 50 06/02/10 06/04/10 CT SW3010A 5 Thalliom < 20 20 ug/l 1 06/02/10 06/02/10 CT SW846 6010B 368 06/02/10 06/02/10 CT SW846 6010B SW3010A 5 Zing 10 ug/l 1

Instrument QC Batch: MA1238
 Instrument QC Batch: MA1239
 Instrument QC Batch: MA1243
 Prep QC Batch: MP2431
 Prep QC Batch: MP2433

RI = Reporting Limit

and the second se			and the second second				-			
	1TD-SW-0)9/2			Date S	Sampled: 05/27/1	0			
Matrix: A	Q - Surfac	ce Water			Date Received: 05/28/10					
					Perce	nt Solids: n/a				
Project: N	t. Diablo-	Marsh Cr	eek Road,	Clayton, CA						
General Chemistry										
Analyte	Ŧ	Result	RL	Units	ÞF	Analyzed	By	Method		
Alkalinity, Bicarbonate	е <	< 5.0	5.0	mg/l	T	06/01/10	рн	SM18 4500C'O2D		
Alkalinity, Carbonate	<	5.0	5.0	mg/1	k	06/01/10	PH	SM18 4500C'02D		
Alkalinity, Total as Ca	CO3 <	5.0	5.0	mg/l	1	06/01/10	PH	SM18 2320B		
Bromide	5	.9	1.0	mg/l	5	05/28/10 16:10	RL	EPA 300/SW846 9056A		
Chloride	1	750	100	mg/l	200	06/01/10 23:02	RL	EPA 300/SW846 9056A		
Dissolved Organic Car	bon 2	. 7	1.0	mg/l	1	05/28/10	RL	SM18 5310C		
Fluoride ^a		0.50	0.50	mg/l	5	05/28/10 16:10	RL	EPA 300/SW846 9056A		
Hardness, Total as Cal	CO3 ^b 3	010	17	mg/1	ļ	06/04/10 15:23	CT	SW846 6010B/SM 23401		
Nitrogen, Nitrate		.8	0.50	mg/1	5	05/28/10 16:10	RL.	E A 300/SW 846 4056A		
Silica, Dissolved ¢	3	5.3	0.11	mg/l	1	06/02/10 20:15	cr	SW846 60100		
Solids, Total Dissolved	1 7	800	10	mg/l	1	06/01/10	PH	SM18 2540C		
Specific Conductivity	• 9	810	1.0	umhos/cm	1	05/28/10	PH	SM18 2510B/EPA 120.1		
Sulfate	4	-310	200	mg/1	400	06/02/10 11:37	RL.	EPA 300/SW846 9056A		
Turbidity	1	9.1	0,50	NTU	1	05/28/10 12:10	EB	SM18 2130B		
pH d	4	.52		su	1	05/28/10 13:19	PII	SM18 450011+ B		

Report of Analysis

(a) Elevated detection limit due to high concentration of Chloride.
(b) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)
(c) Calculated as: (Silicon * 2.139)

(d) pH was analyzed past the 15min hold time.

Report	of	Analysis	
--------	----	----------	--

Report of Analysis									Page 1 of 1	
Client Sample ID	MTD	-SW-09/2	2							1
Lab Sample ID:	C112	16-3F				Date S	Sample	d: 05/27/10		
Matrix:	AQ -	AQ - Surface H2O Filtered					Date Received: 05/28/10			
Project: Dissolved Metals			arsh Creel	k Road	d, Clayton,		nt Solid	s: n/a		
Analyte R	esult	RL	Units	DF	Prep	Analyzed	By N	lethod	Prep Method	
Mercury 55	5.1	2.0	⊔g/1	10	06/02/10	06/03/10	RW E	PA 245.1 ¹	EPA 245.1/SW7470A 2	

Instrument QC Batch: MA1240
 Prep QC Batch: MP2430

2.6

N

Report of Analysis

Client Sample ID: MTD-SW-10/2 Lab Sample ID: C11216-4 Date Sampled: 05/27/10 Matrix: AQ - Surface Water Date Received: 05/28/10 Percent Solids: n/a Project: Mt. Diablo- Marsh Creek Road, Clayton, CA **Total Metals Analysis** Analyte Result RL Units DF Prep Analyzed By Method Prep Method

Antimony	< 10	10	µg/l	1	06/0 2/10	06/02/10	ст	SW846 6010B	SW3010.5
Arsenic	< f()	10	ug/l	1	06/02/10	06/02/10	СТ	SW846 6010R 3	SW3010A 5
Beryllium	< 5.0	5.0	ug/1	1	06/02/10	06/02/10	СТ	SW846 6010B 1	SW3010A 5
Boron	1920	150	ug/1	3	06/02/10	06/04/10	СТ	SW846 6010B 3	SW3010A 5
Cadmium	< 2.0	2.0	ug/1	1	06/02/10	06/02/10	СТ	SW846 6010B	SW3010A 5
Calcium	55900	50	ug/l	1	06/02/10	06/02/10	СТ	SW846 6010B	SW3010A 5
Chromium	< 5.0	5.0	ug/l	1	06/02/10	06/02/10	CT	SW846 6010B 1	SW3010A 5
Copper	< 5.0	5.0	ug/l	1	06/02/10	06/02/10	СТ	SW846 601019 1	SW3010A 5
Iron	1330	50	ug/l	1	06/02/10	06/02/10	СТ	SW846 6010B 1	SW3010A 5
Lead	< 5.0	5.0	trg/1	ſ	06/02/10	06/02/10	СТ	SW846 6010B	SW3010A 5
Magnesium	36500	50	ug/1	1	06/02/10	06/02/10	СТ	SW846 6010B	SW3010A 5
Manganese	623	5.0	ug/1	1	06/02/10	()6/02/10	CT	SVV846 6010B	SW3010A 5
Mercury	0.21	0.20	ug/l	1	06/01/10	06/02/10	RW	EPA 245.1 2	EPA 245.1/SW7470A 4
Nickel	263	5.0	ug/l	1	06/02/10	06/02/10	СТ	SW846 6010B 1	SW3010A 5
Potassium	2120	500	ug/1	Ť	06/02/10	06/02/10	СТ	SW846 6010B	SW 010A 5
Selenium	< 20	20	ug/1	1	0.6/02/10	06/02/10	СТ	SW846 6010B	SW3010A 5
Silicon	7960	50	ug/1	f	06/02/10	06/02/10	CT	SW846 6010B	SW3010A 5
Silver	< 5.0	5.0	ug/1	1	06/02/10	06/02/10	CT.	SW846 6010H	SW3010A 5
Sodium	37300	300	ug/1	3	06/02/10	06/04/10	СТ	SW846 60108 3	SW3010A 5
Thallium	< 20	20	ug/l	1	06/02/10	06/02/10	CT	SW846 6010B	SW3010A 5
Zinc	< 10	10	ug/l	1	06/02/10	06/02/10	СТ	SW846 6010B	SW3010A 5

Instrument QC Batch: MA1238
 Instrument QC Batch: MA1239
 Instrument QC Batch: MA1243
 Prep QC Batch: MP2431
 Prep QC Batch: MP2433

RL = Reporting Limit

Page 1 of I

Report of Analysis

Client Sample ID: Lab Sample ID:	MTD-SV C11216-				Date	Sampled: 05/27/1	0			
Matrix:		face Water			Date Received: 05/28/10					
					Percent Solids: n/a					
Project:	Mt. Diat	olo- Marsh C	reck Road,	Clayton, CA						
General Chemistry										
Analyte		Result	RL	Units	DF	Analyzed	By	Method		
Alkalinity, Bicarbor	ate	248	5.0	mg/l	Ţ	06/01/10	PH	SM18 4500CO2D		
Alkalinity, Carbona	te	< 5.0	5.0	mg/1	1	06/01/10	P1ł	SM18 4500CO2D		
Alkalinity, Total as	CaCO3	248	5.0	mg/1	1	06/01/10	PH	SM18 2320B		
Bromide		< 0.20	0.20	mg/l	1	05/28/10 14:25	RL	EPA 300/SW846 9056A		
Chloride		27.5	3.0	mg/l	6	06/01/10 23:20	RI	EPA 300/SW846 9056A		
Dissolved Organic (Carbon	5.2	1.0	mg/l	1	05/28/10	RI.	SM18 5310C		
Fluoride		< 0.10	0.10	mg/l	1	05/28/10 14:25	RI.	EPA 300/SW846 9056A		
Hardness, Total as	CaCO3 ^a	290	0.33	mg/l	JL	06/02/10 20:21	CT	SW846 6010B/SM 2340E		
Nitrogen. Nitrate		< 0.10	0.10	mg/l	1	05/28/10 14:25	RL	EPA 300/SW846 9056A		
Silica, Dissolved b		17.0	0.11	mg/l	-17 -	06 02/10 20:21	GT	SW846 6010B		
Solids, Total Dissol	ved	447	10	mg/l	1.	06/01/10	Pit	SM18 2540C		
Specific Conductivit	y	711	1.0	umhos/cm	1	05/28/10	P}+	SM18 2510B/EPA 120.1		
	-									

6

l,

Ľ

mg/1

NTU

su

06.01/10 23:20 RL

05/28/10 12:10 EB

05/28/10 13:26 PH

EPA 300/SW846 9056A

SM18 2130B

SM18 4500H+ B

(a) Calculated as: (Calcium * 2 497) + (Magnesium * 4.118)

101

7.1

7.41

3.0

0.50

(b) Calculated as: (Silicon * 2.139)

Sulfate

pH c

Turbidity

(c) pH was analyzed past the 15min hold time,

	Report of Analysis									
Client Sample Lab Sample II		-SW-10/2 16-4F				Date Sam	pled: 05/27/1()		
Matrix:	AQ -	Sut face F	120 Filter	red		Date Rece Percent Se	ived: 05/28/10 blids: n/a)		
Project:	Mt. I	Diablo- Ma	arsh Cree	k Road	l, Clayton,	CA				
Dissolved Met	als Analysi	s								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method		
Mercury	< 0.20	0.20	ug/]	1	06/02/10	06/03/10 RW	EPA 245.1 1	EPA 245 1/SW7470A 2		

Instrument QC Batch: MA1240
 Prep QC Batch: MP2430

2.8

N

Report of Analysis

Client Sample ID: MTD-SW-06/2 Lab Sample ID: C11216-5 Date Sampled: 05/27/10 Matrix: AQ - Surface Water Date Received: 05/28/10 Percent Solids: n/a Project: Mt. Diablo-Marsh Creek Road, Clayton, CA **Total Metals Analysis** Analyte Result RL Units DF Prep Analyzed By Method Prep Method Antimony < 1010 .ug/l 1 06/02/10 06/02/10 CT SW846 6010B 1 SW3010A 5 SW3010A 5 Arsenic < 1010 06/02/10 06/02/10 CT SW/846 6010B .g/1 1 SW846 6010B Beryllium < 5.0 5.0 ug/] 06/02/10 06/02/10 CT SW3010A 5 1 SW846 6010B 3 SW3010A 5 Boron 8660 500 ...g/] 10 06/02/10 06/04/10 CT SW3010A 5 2.0 SW846 6010B 1 Cadmium < 2.0ug/1 1 06/02/10 06/02/10 CT СаІсили 133000 500 ug/I 10 06/02/10 06/04/10 CT SW846 6010B 3 SW3010A 5 Chromium < 5.0 5.0 ug/l 1 06/02/10 06/02/10 CT SW846 6010B 1 SW3010A 5 34.2 5.0 ug/l 1 06/02/10 06/02/10 CT SW846 6010B SW3010A 5 Copper Iron 272 50 ug/l 1 06/02/10 06/02/10 CT SW846 60108 SW3010A 5 SW846 6010B SW3010A 5 Lead < 5.0 5.0ug/l L 06/02/10 06/02/10 CT 195000 500 SW846 6010B 3 SW3010A 5 Magnesium ug/l 10 06/02/10 06/04/10 CT Manganese 3410 5.0 ug/l 1 06/02/10 06/02/10 CT SW846 6010B SW3010A 5 Mercury 22.4 2.0ug/1 10 06/01/10 06/02/10 RW EPA 245.1 2 EPA 245 1/SW7470A 4 Nickel 16600 50 ug/l 10 06/02/10 06/04/10 CT SW'846 6010B 3 SW3010A 5 ug/l SW3010A 5 Potassium 10900 500 1 06/02/10 06/02/10 CT SW'846 6010B SW846 6010B 1 SW3010A 5 06/02/10 06/02/10 CT Selenium < 20 20 ug/1 1 SW3010A 5 SW846 6010B 1 25700 50 ug/l 06/02/10 06/02/10 CT Silicon 1 SW3010A 5 SW846 6010B 1 Silver < 5.0 5.0 ug/l 1 06/02/10 06/02/10 CT SW3010A 5 134000 Sodium 1000 ug/l 10 06/02/10 06/04/10 CT SVY846 6010B 3 SW3010A 5 Thallium < 20 20 ug/l 1 06/02/10 06/02/10 CT SW846 6010B 10 SW3010A 5 Zinc 245 ug/l 1 06/02/10 06/02/10 CT SW846 60108

Instrument QC Batch: MA1238
 Instrument QC Batch: MA1239
 Instrument QC Batch: MA1243
 Prep QC Batch: MP2431
 Prep QC Batch: MP2433

Page 1 of 1

2.9

Report of Analy	/S1S
------------------------	------

Client Sample ID: MTD-SW-06/2 Lab Sample ID: C11216-5 Date Sampled: 05/27/10 Matrix: AQ - Surface Water Date Received: 05/28/10 Percent Solids: n/a **Project:** Mt. Diablo- Marsh Creek Road, Clayton, CA **General Chemistry** Analyte Result RL Units DF Analyzed By Method Alkalinity, Bicarbonate < 5.0 5.0 mg/l 06/01/10 РĿ SM18 4500CO2D Alkalinity, Carbonate < 5.0 5.0 mg/l ľ 06/01/10 SM18 4500CO2D PH Alkalinity, Total as CaCO3 < 5.0 5.0 mg/1 06/01/10 SM18 2320B 1 PH Bromide 0.38 0.20 mg/l ٦. 05/28/10 14:43 RL EPA 300/SW846 9056A Chloride 102 25 06/01/10 23:38 RL 13 mg/l EPA 300/SW846 9056A Dissolved Organic Carbon 6.1 1.0 mg/l1 05/28/10 SM18 5310C RL. Fluoride < 0.100.10 mg/l 1 05/28/10 14:43 RL EPA 300/SW846 9056A Hardness, Total as CaCO3 * 1140 3.3 mg/l 1 06/04/10 15:45 CT SW846 6010B/SM 2340B Nitrogen, Nitrate < 0.100.10 mg/l I. 05/28/10 14:43 RL EPA 300/SW846 9056A Silica, Dissolved b 55.0 0.11 mg/l T. 06/02/10 21:18 CT SW846 6010B Solids, Total Dissolved 2000 10 06/01/10 mg/1Т PH SM18 2540C Specific Conductivity 2430 1.0 umhos/cm 1 05/28/10 PH SM18 2510B/EPA 120.1 Sulfate 1610 50 mg/l 100 06/02/10 00:30 RL EPA 300/SW846 9056A Turbidity 0.97 0.50 NTU L 05/28/10 12:10 EB SM18 2130B pH c 4.48 su L 05/28/10 13:27 PH SM18 4500H+ B

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118).

(b) Calculated as: (Silicon * 2,139)

(c) pH was analyzed past the 15min bold time.

Report of Analysis

Client Sample Lab Sample I		-SW-06/2 16-5F	2			Date Sam	pled: 05/27/10)
Matrix:			H2O Filter	ed			eived: 05/28/10	
Project:	144 T	Nabla M	and Charl	Bow	Classie		olids: n/a	
Finitecc	IVIL L	Napio- M	arsh Creek	K ROAL	i, Clayton,	C.A.		
	_			_				
Dissolved Met	tals Analysis	5					_	
Dissolved Met Analyte	tals Analysis Result	s RL	Units	DF	Prep	Analyzed By	Method	Prep Méthod

Instrument QC Batch: MA1240
 Prep QC Batch: MP2430

Report of Analysis

Client Sampl Lab Sample I Matrix:	ID: CT	D-SW-11/2 1216-6 - Surface V				Date Date Perce	Rece	ived: 05/28/10	
Project:	Mt	Diablo- M	arsh Cree	k Road	i, Clayton,				
Total Metals	Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Methöd	Prep Method
Antimony	< 10	10	ug/l	1	06/02/10	06/04/10	СТ	SW846 6010B ²	SW3010A 4
Arsenic	< 10	10	ug/l	ł	06/02/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Beryllium	< 5.0	5.0	ug/1	Ť	06/02/10	06/04/10	ст	SW846 6010B 2	SW3010A 4
Boron	971	50	ug/1	1	06/02/10	06/04/10	ст	SW846 6010B 2	SW3010A
Cadmium	< 2.0	2.0	ug/l	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Calcium	48300	50	ug/l	1	06/02/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Chromium	< 5.0	5.0	ug/1	1	06/02/10	06/04/10	CT.	SW846 60108 2	SW3010A 4
Copper	< 5.0	5.0	ug/1	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Iron	69.9	50	ug/1	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Lead	< 5.0	5.0	ug/1	1	06/02/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Magnesium	26900	50	ug/l	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Manganese	11.9	5.0	ug/l	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Mercury	< 0.20	0.20	ug/l	1	06/01/10	06/02/10	RW	EPA 245.1	EPA 245.1/SW7470A 3
Nickel	< 5.0	5.0	ug/l	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A -1
Potassium	808	5.00	ug/l	1	06/02/10	06/04/10	CT	SW846 6010B 2	SW3010A 4

06/02/10 06/04/10 CT

1

L

1

1

1

I

ug/1

ug/I

ug/l

ug/l

ug/l

ug/1

(1) Instrument QC Batch: MA1239 (2) Instrument QC Batch: MA1243 (3) Prep QC Batch: MP2431 (4) Prep QC Batch: MP2433

< 20

7790

< 5.0

18000

< 20

< 1.0

20

50

5.0

100

20

10

Selenium

Silicon

Sodium

Thallum

Silver

Zinc

RL = Reporting Limit

2.11 N

Page 1 of 1

SW846 6010B 2

SW846 6010B 2

SW846 6010B 2

SW846 60108 2

SW846 6010B 2

SW846 6010B 2

SW3010A 4

SW3010A 4

SW3010A 4

SW3010A 4

SW3010A 4

SW3010A 4

	TD-SW-11/2 11 2 16-6			Date	Sampled: 05/27/1	0	
Matrix: A	Q - Surface Water			Date	Received: 05/28/1	0	
				Perce	nt Solids: n/a		
Project: M	lt. Diablo- Marsh C	reek Road,	Clayton, CA]
General Chemistry							
Ånalyte	Result	RL	Units	DĘ	Änalyzed	Ву	Method
Alkalinity, Bicarbonate	227	5.0	mg/1	1	06/01/10	PH	SM18 4500CO2D
Alkalinity, Carbon te	< 5.0	5.0	mg/l	1	06/01/10	РН	SM18 4500CO2D
Alkalinity, Total as Ca	CO3 227	5.0	mg/l	1	06/01/10	PH	SM18 2320B
Bromide	< 0.20	0.20	mg/l	1	05/28/10 15:00	RL	EPA 300/SW846 9056A
Chloride	9.7	1.0	mg/l	2	06/02/10 00:48	RL.	EPA 300/SW846 9056A
Dissolved Organic Car	bon 2.4	Ĩ.Đ	mg/l	1	05/28/10	R1.	SM18 5310C
Fluoride	< 0.10	0.10	mg/ī	1	05/28/10 15:00	R1.	EPA 300/SW846 9056A
Hardness, Total as Cal	CO3 ^a 231	0.33	mg/1	1	06/04/10 15:50	CT	SW846 6010B/SM 2340B
Nitrogen, Nitrate	< 0.10	0.10	mg/l	1	05/28/10 15:00	RL	EI'A 300/SW846 9056A
Silica, Dissolved b	16.7	0.11	ing/l	1	06/04/10 15:50	CI	SW840 6010B
Solids, Total Dissolved	273	10.	m g /l	1	06/01/10	PH	SM18 2540C
Specific Conductivity	494	1.0	umhos/cm	1	05/28/10	PH	SM18 2510 D/EPA 120.1
Sulfate	31.4	1.0	mg/1	2	06/02/10 00:48	RL,	EPA 300/SW846 9056A
Turbidity	2.7	0,50	NTU	1	05/28/10 12:10	£Β	SM18 2130B
pH c	8.27		su	1	05/28/10 13:32	PH	SM18 4500H+ B

Report of Analysis

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)
(b) Calculated as: (Silicon * 2.139)
(c) pH was analyzed past the 15min hold time.

2.11 N

Report of Analysis

Client Sample Lab Sample II		-SW-11/2 16-6F				Date	Sampled:	05/27/10	
Matrix:	AQ -	Surface I	120 Filter	ed			Received: nt Solids:	05/28/10 n/a	
Project:	Mt. I	Diablo- Ma	arsh Creel	k Road	d, Clayton,		nt Sonus:	11/a	
Dissolved Met	als Analysi	8							A and an and a second s
	Result	RL	Units	DF	Prep	Analyzed	By Me	thod	Prep Method
Analyte	Result								

Instrument QC Batch: MA1240
 Prep QC Batch: MP2430

2.12

N

Report of Analysis

Client Sample ID: MTD-SW-16/2 Lab Sample ID: Date Sampled: 05/27/10 C11216-7 Matrix: AQ - Surface Water Date Received: 05/28/10 Percent Solids: n/a Project: Mt. Diablo- Marsh Creek Road, Clayton, CA **Total Metals Analysis** Analyte Result RL Units DF Prep Analyzed By Method' Prep Method' 06/02/10 06/04/10 CT SW3010A 4 Antimony < 10 10 ug/l SW846 6010B 2 SW846 6010B 2 SW3010A 4 Arsenic < 10 10 06/02/10 06/04/10 CT ug/l 5.0 Beryllium < 5.0 ug/1 06/02/10 06/04/10 CT SW846 6010B² SW3010A 4 SW846 6010B 2 171 SW3010A 4 Boron 50 ug/l 06/02/10 06/04/10 CT SW846 60108 2 Cadmium < 2.0 2.0 06/02/10 06/04/10 CT SW3010A 4 ug/l SW846 6010B 2 SW3010A 4 Calcium 38200 50 ug/l 06/02/10 06/04/10 CT SW3010A 4 ug/l Chromium < 5.0 5.0 06/02/10 06/04/10 CT S1V846 6010B 2 1 Copper 5.1 5.0 ug/l 06/02/10 06/04/10 CT SW846 6010B 2 SW3010A 4 1 Iron 2260 50 ug/1 06/02/10 06/04/10 CT SW846 6010B 2 SW3010A 4 1 SW846 601013 2 SW3010A 4 Lead < 5.0 5.0 ug/l 06/02/10 06/04/10 CT 1 Magnesium 13900 50 06/02/10 06/04/10 CT SW846 6010B 2 SW3010A 4 ug/1 1 SW3010A 4 Manganese 90.1 5.0 ug/1 1 06/02/10 06/04/10 CT SW846 6010B 2 Mercury < 0.20 0.20ug/l 1 06/01/10 06/02/10 RW EPA 245.1 EPA 245.1/SW7470A 3 Nickel < 5.05.0 ug/lL 06/02/10 (16/04/10 CT SW846 6010B 2 SW3010A 4 SW846 6010B 2 SW3010A 4 Potassium 1800 500 ug/1 1 06/02/10 06/04/10 CT < 20 SW846 6010B 2 SW3010A 4 20 06/02/10 06/04/10 CT Selenium ug/l 1 SW846 6010B 2 SW3010A 4 Silicon 8130 50 ug/! 06/02/10 06/04/10 CT Ŧ

06/02/10 06/04/10 CT

06/02/10 06/04/10 CT

06/02/10 06/04/10 CT

06/02/10 06/04/10 CT

Instrument QC Batch: MA1239
 Instrument QC Batch: MA1243
 Prep QC Batch: MP2431
 Prep QC Batch: MP2433

< 5.0

10700

< 20

10.6

5.0

100

20

10

ug/1

ug/L

ug/l

ug/1

]

1

1

Ł

Silver

Zinc

Sodium

Thallium

RL = Reporting Limit

SW846 6010B 2

SW846 6010B²

SW846 6010B 2

SW846 601013 2

SW3010A 4

SW3010A 4

SW3010A 4

SW3010A 4

			Repo	rt of Ar	alysis			Page 1 of 1
Lab Sample ID: Matrix:			rcek Road,	Clâyton, C	Date I Percer	Sampled: 05/27/1 Received: 05/28/1 at Solids: n/a		
General Chemistry								00
Analyte		Result	RL	Uńits	DF	Analyzed	By	Method
Alkalinity, Bicarbona	ite	139	5 0	mg/1	Į4	06/01/10	211	SM18 4500CO2D
Alkalinity, Carbonate	9	< 5.0	5.0	mg/l	1	06/01/10	PH	SM18 4500C'03D
Alkalinity, Total as C	aCO3	139	5.0	mg/l	1	06/01/10	PH	SM18 2320B
Bromide		< 0.20	0 20	mg/l	1	05/28/10 15:18	RL	EPA 300/SW846 9056A
Chloride		6.2	1.0	mg/l	2	06/02/10 01:05	RL	EPA 300/SW846 9056A
Dissolved Organic Ca	arbon	4.2	1.0	mg/l	1	05/28/10	RŁ	SM18 5310C
Fluoride		< 0.10	0.10	mg/l	1	05/28/10 15:18	RL	EPA 300/SW846 9056A
Hardness, Total as C	aCO3 a	153	0.33	mg/l	I	06/04/10 15:55	CT	SW846 6010B/SM 2340B
Nitrogen, Nitrate		0.23	0.10	mg/l	1	05/28/10 15:18	R	EPA 300/SW846 9056A
Silica, Dissolved b		17.4.	0.11	mg/l	1	06/04/10 15:55	CT	SW846 6010B
Solids, Total Dissolv	ed	190	10	mg/1	1	06/01/10	PH	SM18 2540C

(a) Calculated as: (Calcium * 2,497) + (Magnesium * 4.118)

335

19.3

45 8

7.75

1.0

1.0

0.1

(b) Calculated as: (Silicon * 2.139)

Specific Conductivity

Sulfate

pH °

Turbidity

(c) pH was analyzed past the 15min hold time.

tumhos/cm 1

2

2'

3

nıg/l

NTU

su

05/28/10

06/02/10 01:05 RL

05/28/10 12:10 EB

05/28/10 13:34 PH

PH

SM18 2510B/EPA 120.1

EPA 300/SW846 9056A

SM18 2130B

SM18 4500111 B

Report of Analysis

Client Sample ID: MTD-SW-16/2 Lab Sample ID: C11216-7F Date Sampled: 05/27/10 Date Received: 05/28/10 Matrix: AQ - Surface H2O Filtered Percent Solids: n/a Mt. Diablo- Marsh Creek Road, Clayton, CA Project: **Dissolved Metals Analysis** Analyte **Result** RL Units DF Prep Analyzed By Method Prep Method < 0.20 EPA 245 1/SW7470A 2. Mercury 0.20 ug/l 1 06/02/10 06/03/10 RW EPA 245 1⁻¹

(1) Instrument QC Batch: MA1240 (2) Prep QC Batch MP2430

2.14

N

RL = Reporting Limit

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

19299			2105	Lundy Ave	, Sen J	ose, C/	A 951	31				ľ	ED EX	Tracking						nder Ganicel P			
the l	ACCUTEST.		(406)	688-0200	FA	X: (408						7	Ace when	Quota #					Accuti	HE NC Job	* \$ GI	1816	2. 1
1	Laboratorios Client/Reporting Information	-			sci Infor			«Pci	API	1R4	14		1			-		Prout	sted Ar	1.1210		U	Marin Codes
mpany)		-	Protest No			D. MI. E	-	1	-									Kugay			0		
le Sour	ce Group		Biraal		-	v. p	Mania		_	-		-	4			8			1	P B G	R	2	GW Ground Walk
	nconl Road												12						Q	CL-46-Frith	francy.	38	NO- Ind
y	Slate		City				1	Stata .					ž	(m)	Calltes	EC, pH, Bk,	Ntk, SJ		Y	2.5	1	10	0-06
essent Jact Cor	daal.	TG I	Claylon Project #	_	_			Ċ.	A				uoliv editioctal) - Lab 1986	Prills	Ŭ	8	ž d		Br. HOD, The street (SK.	34	11	2	16.07-1949pe
	Jan Philipp			01-SUN-	050			-	-			_	1-1	1		P	ě.		S.	Carbon	A.	P	LICI - Man Aquesua U
DRA Ø	925-844-2856 x 316		BRANLI	nt, geod	herrou ro		unet						-thou				4	-	a di	8	T		AR.
a'arekun	Name Jon Philipp		Citer Per	ehene Orde	(F								Acoh		ī	E.	Cations (B, K, Fa,	đ	(CLF.SOL	Organite	1		OW Chinking Wells (Parchiorale Coly)
cuteri		-	Collectio	n			Num	iper d	1 pres	berred	Bollie	61	staury (diaz	E.	1	6	e e		Đ,		104		
a mpia	Sample ID / Field Point / Point of Collection	Date	Time	face and by	Matrix	a of	3	1	1	8	No.	-	Terrar I	Priodite	AL.	1	3		Autions	Distolend	-		LAD USE ONL
-	OTD-SW-64/2	27-May	13:00	JP	BW	4	1	1	1	2	2		x	x	x	x	x	x	x	x		1	
-1	MTD-8W-07/2	27-May	13:30	qL	SWY	4	1	1	+	2	1		x	x	x	x	x	x	x	x	ð	>	to be Kun
1-3	MTD-6W-08/2	27-May	13:15	Lib.	BWY	4	1			2			x	x	x	X	x	x	x	x	5 74		Emai
-+	MTD-8W-18/2	27-May	13.50	JP	BW		1	1	+	2		H	x	x	x	x	x	X	x	x	5 20	pu -	
1	NTD-SW-46/2					4	-	1		2		+	-	-		-	x	x	x	x	+	-	
(MTD-8W-11/2	27-May	10:60		8W	4	1	-	-		+		X	X	X	X		-			+		
ELC.	MTD-814-16/2	27-May	8:20	1P	8W	3	1	1		1	+	\vdash	x	X	X	ж	X	X	X	X	744		TO BE RU
1	MID-011-1012	27-May	12:45	44	8W	4	1	1	-	2	+	\vdash	X	X	X	X	х	х	X	X	촚	-	Client Br
-					_		++	+					_				-				3 21	10	- nort Die
-											-			-				-				_	
	Tomeround Time (Business days)		-		Data Dat			1					-			-	-	Carr	enacits / I		-	-	
		oved Byd Date		1	Group Series			and a second		_	_	-		Note that	it de call de	aryle is	eria ato			ra terved pel	· Qui tefest	yes mi	1 10
						- Resol														they and that h			
×	I Day (involut)				- Leval 4				dwan	ndogra	rine -												Client Enai
	I Day (76% markup)			a start to	r Dealrai	rhar	-	E90 (Parkenet.	-	-	-+		25	omi	poly	(IN N	13) PI	122 6	(A); B	Will An	iber (e	ora) ear h
	1 Dep (1001) rozzkup)				EDF Gio	-		-	-	-		-		14	duit	PoH	en	NIP	(RA)	; R	poral po	N en	an with fire)
Emer	gancy T/A data available VIA Labilak		-	Promos			-	-		-		-		Du	ured	Som	e h	im	wit p	ON -NP	to Hiter	Fer	dissolved (Hg
	Sumple Custody m	ust be dag	umented	balow see	t time as	mples (chang	a pos		on, inc		r colui	ler dell	ivity.					R	1000			
T	RAD	5/28/10	1115	A CAL	Vasqu	167.	5	284				lam	er			= 14: nslai			2	em	m		
	ind By:	Dasa Time:	NO	Received By:	1			1+0	1.	quished			-	-	Dele Vina		410	-	Received		-		
V	идрух			3					4					1					4				

C11216: Chain of Custody Page 1 of 2

3.4

Accutest Laboratories Northern California Sample Receiving Check List

Job# : C<u>II216</u> Control Rep. Inifial: <u>exism</u>

Sample Receiving Check List	Sample (Control Rep. I	nitial: exim
Review Chain of Custody Chain of Custody is to be complete and legible.			Sarpcaph 2694
And these regulatory (NPDES) samples? Gw A-	Client Sample ID	pH Check	Other Commente/Issue
105/100		must	abone por (al marie)
was Cliant informed that hold time is 15 min? Yes / No Continue Yes / No		1	1
Was ortho-Phosphale filtered with in 15 min? Yes / No Continue Yes / No	6	_	
ran sample within hold lims?	-1	4	*
Are sample in danger of exceeding hold-time Yes / 10			
Existing Client? (No Existing Project? Yes)/ No			14 metrylmercury -> subled to
If No; # Report to into complete and legible, including;			Carrist -
deliverable o Namo o Address o phone n e-mail			
te Bill to info complete and legible, including,			
BPO# Credit card D Contact caddress O phone D e-mail			
ts Contact and/or Project Manager Identified, including;			
Phone die-mail			
Project name / number o Special requirements?		_	
Sample IDs / date & lime of collection provided? (Yes / No			
It's Matrix listed and correct?			
Analyses listed we do or client has authorized a subcontract?. Yes / No			
Chain is signed and dated by both client and sample custodian?			1
AT requested available? 1 No Approved by Pm			
Raylew Coolers:			
Were Coolers lemperatures measured at \$6"C? Cooler # 1 Temp 5. °C			
 If cooler is outside the ≤8°C, note down below the atracted bottles in that cooler Note that ANC does NOT accept evidentiary samples. (We do not lock refrigerators) 			
Shipment Received Method world (puricy			
Custody Seals. Present: Yes / No II Yes; Unbrokent: Yes / No			
oview of Sample Bottles: If you answer no, explain to the side			
Chain matchos bollie tabels? O/ No p-Sample bottle intact? Mas/ No			
te there enough sample volume in proper bottle for requested analysos? (e) No			
Proper Preservatives? (6) No Check pH on preserved samples oxcept 1664, 625, 6270 and VOAs.			
Headspace-VOAs? Graator liver from in diameter Yes / No			
Non-Compliance issues and discrepancies on the C Non-Siv-Matking Science-Data Laboratory SOPs SOP_Complete Listing SC001F1_1	OC are forwarded	to Project Ma	nagement

Anc-sn-file Nd\$1Entech-Detailaboratory SOPs SOP_Completel isting SC001F1_1_Form 1_Semi MControl_SemixaReceivingChack tet_2010-02-15.doc

C11216: Chain of Custody Page 2 of 2

3 1

Metals	Anal	lysis
--------	------	-------

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: Cl1216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2430 Matrix Type: AQUEOUS

Methods: BPA 245 1

Units. ug/1

Prep Date:					06/02/10	
Metal	RL	IDL	MDL	MB raw	final	
Mercury	0 20	. 02	02	0 0028	<0.20	

Associated samples MP2430. C11216-1F, C11216-2F, C11216-3F, C11216-4F, C11216-5F, C11216-6F, C11216-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

4.1.1

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C11216 Account: SGRPCAPH - The Bource Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2430 Matrix Type: AQUEOUS Methods: EPA 245.1 Units: ug/l

Prep Date:				06/02/10		
Metal	Cl 217-1 Original		Spikelot HGFwSl	% Rec	QC Limits	
Mercury	135	139	4	2240.0(a	70-130	

Associated samples MP2430: C11216-1F, C11216-2F, C11216-3F, C11216-4F, C11216-5F, C11216-6F, C11216-7F

Results < IDL are shown as zero for calculation Purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

(a) Spike amount low relative to the sample amount. Refer to hab control or spike blank for recovery information.

4.1.2

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C11216 Account: SGRPCAPH - The Source Group Project: Mt Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2430 Matrix Type: AQUEOUS Methods, MPA 245.1 Units, ug/l

Prep Date.					05/02/	10	
Metal	C11217 Origin	-lF al MSD	pikelot HGPWS1	% Rec	MSD RPD	QC Limit	
Mercury	135	135	4	2140 0(a	2.9	20	

Associated samples MP2430: Cl1216-1F, Cl1216-2F, Cl1216-3F, Cl1216-4F, Cl1216-5F, Cl1216-6F, Cl1216-7F

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

(a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information

4.1.2

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C11216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

OC Batch ID . MP 2430 Matrix Type: AOUEOUS		Methods: NPA 245.1 Units: ug/l
Prep Date:	06/02/10	06/02/10

Mețal	BSP Result	S pikelor HGPWS1	& Rec	QC Limits	BSD Result	Sp ikelot HGPWS1	% Rec	esd RPD	QC Limit
Mercury	1 9	2	95 0	85-115	2.0	2	100 0	5 1	

Associated samples MP2430: C11216-1F, C11216-2F, C11216-3F, C11216-4F, C11216-5F/ C11216-6F, C11216-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: Cll216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2431 Matrix Type: AQUEOUS Methods: BPA 245 1 Upits: ug/l

Prep Date:					06/01/10
Metal	RL	IDL	MDL	MB raw	final
Mercury	0.20	. 02	.02	-0.0054	<0.20

Associated samples MP2431: C11216-1, C11216-2, C11216-3, C11216-4, C11216-5, C11216-6, C11216-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

4.2.1 4

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C11216 Account, SGRPCAPH - The gource Group Project, Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2431 Matrix Type: AQUBOUS Methods · EPA 245 1 Units · ug/l

Prep hate:		06/01/1	10
Metal	Cll216-1	Spikelot	QC
	Original MS	HGPWS1 % Rec	Limits

Mercury Q.O 3 8 4 95.0 70-130

Associated samples MP2431: C11216-1, C11216-2, C11216-3, C11216-7, C11216-5, C11216-6, C11216-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

LOgin Number: C11216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2431 Matrix Type: AQUEOUS Method**s:** EPA 245.1 Units: ug/l

Prep Date.					06/01/	10	
Metal	C11216- Origina		Spikels HGPWS1	t % Rec	MSD RPD	QC Limit	
Mercury	0.0	3.8	4	95.0	0.0	20	

Associated samples MP2431. C11216-1, C11216-2, C11216-3, C11216-4, C11216-5, C11216-6, C11216-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

Login Number: C11216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID· MP2431 Matrix Type AQUEOUS

Methods: EPA 245 1 Units: ug/l

Prop Date:			06/01/1	.0				06/01/	10	4
Metal	ESP Result	Spikelot HGPWS1	% Rec	QC Limits	B\$D Result	Spikelot HGPWS1	Rec	B\$D RPD	QC Limit	
Mercury	1 9	2	95.0	85-115	1.9	2	95.0	0.0	-	

Associated samples MP2431+ C11216-1, C11216-2, C11216-3, C11216-4, C11216-5, C11216-6, C11216-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

4.2.3

4

BLANK RESULTS SUMMARY Part 2 - Me**thod B**lanks

Login Number, C11216 Account: SGRFCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2433 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

rep Date:		-			06/02/10	
etal	RL	IDL	MDL	MB raw	final	
ไนกา่านก	50	ณ4	21		An We would be and	
ntimony	10	6.9	5.3	4.8	<10	
rsenic	10	4.84,	3 1	-0.20	<10,	
arium	50	-	. 7			
eryllium	5 0	. I	2	0.10	₹5.0	
oron	50	.8.6	11	8.2	< 50	
admium	2.0	.3	. 3	Q 10	<2.0	
alcium	50	29:	12	-27	<50	
hromium	5.0	4	. Ę	0 0	<5 Q	
obalt	5.0	4	. 4			
opper	5.0	. 8	1.1	-0.90	<5.0	
ron	50	22 G	18	2 5	<50	
Bad	5.0	3-漢	13	-0.70,	<5 Ò	
ithium	10	2 2	2.5			
agnesium	50	9.6	13	-3.3	<50	
anganese	5.0	. 1	.2	0.0	<5.0	
olybđenum	5.0	$1_{i},3_{i'}$	ľ			
ickel	5.0	-8	, 5 ₈	0.20	< 5.0	
otassium	500	58	60	6l.7	~500	
elenium	10	14	12	1.7	<20	
iliogn	50	3.4	5.3	9.9	<50	
ilver	5.0	.9	.7	-0.20	< 5 0	
odium	100	15	13	80.9	<100	
trontium	10	3	2.4			
hallium	20	<u>615</u>	6.4	-4,3	<20	
izı	50	-2.3	2			
ftanium	2 .0	2	- 2			
anadium	5.0	.27	. 5			
inc	10	. 9	1.1	0.50	<10	

Associated samples MP2433: Cl1216-1, Cl1216-2, Cl1216-3, Cl1216-4, Cl1216-5, Cl1216-6, Cl1216-7

Results « IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

4.3.1

Page 1

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number, Cll216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2439 Matrix Type: AQUEOUS Methods: SW846 6010B Units ug/1

Prep Date.				06/02/10	
Metal	Cl1226-2 Original		S pikelot MPIR1	ध Rec	QC Limits
Aluminum	anr				
Antimony	0.0	482	500	96.4	89-120
Arsenic	Q.Ð	17\$	500	95.0	80-120
Barium	anr				
Beryllium	0+0	486	500	97.2	80-120
Boron	98.0	573	500	95 0	80-120
Cadmium	0.0	472	500	94.4	80-120
Calcium	24800	24900	500	20.0 (a)	60-120
Chromium	0.0	487	500	97.4	90-120
Cobalt					
Copper	80.2	568	500	97'.6	80-120
Iron	1370	1850	500	96 0	80-1為0
Lead	0.0	4 74	500	94.8	80-120
Lithium					
Magnesium	9 990	10200	500	42.0 (a)	BØ-120
Manganese	107	584	500	95 8	80-120
Molybdenum	anr				
Nickel	2.9	984	500	96.2	80-120
Potassium	.2570	7440	5000	97 4	80-120
Selenium	0 0	468	500	93 6	80-12 0
Silicon	3080	3290	250	84.0	80-120
Silver	0.0	500	500	100.0	80-120
Sodium	78200	77600	500	-120.0(a	80-120
Strontium					
Thallium	.ą. ¢	445	500	89.0	80-120
Tin					
Titanium					
Vanadium					
Zinc	10.6	481	500	94 1	80-120
Associated sam	ples MP24	33: C1123	16-1, C112	16-2, C11	216-3, C11216-4, C11216-5, C11216-6, C11216-7
Results < 1DL (*) Outside of (N) Matrix Spi (anr) Analyte (a) Spike anon informatio	the Rec. or not reques	s utside of sted	QC limit:	3	rposes . Refer to lab contr 01 or spike bla nk for recovery

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C11216 Account: SGRPCAPH - The Source Group Project: Mt. Blablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2433 Matrix Type: AQUEOUS

Methods: SW846 6010B Units: ug/l

Prep Date:	_	_	_	_	05/02/10			
Metal	C11226-2 Original		Spikelot MPIR1	% Rec	MSD RPD	QC Limit		
Aluminum	anr							
Antimony	0 0	4 7 7?	500	95.4	1.03	20		
Arsenic	0.0	464	500	92.8	2 31	20		
Barium	anr							
Beryllium	Ġ.0	484	5.00	96.8	0.4	20		
Boron	96 .0	567	500	93.8	1 1	20		
Cadmium	0.0	467	500	93.4	1 1	2尊		
Calcium	21800	24800	500	0.0 (a)	0.4	20		
Chromium	Q D	481	500	216 ¹ . 2	1.2	20		
Cobalt								
Copper	80 2	564	500	96.8	0.47	20		
Iron	1370	177 0	500	80.0	4.4	20		
Jead	0 C	470	500	940.0	0.8	2Ô		
ithium								
4agnesium	9990	10100	500	22.0 (a)	1_0	20		
anganese	107	583	500	95.2	0.5	20		
Olybdenum	anr							
lickel	2 9	478	500	95.0	1.2	20		
otassium	2570	7380	5000	96.2	0.8	20		
elenium	0 0	459	500	91.8	1 9	20		
ilicon	3080	3260	250	72.0 (a)	p .9	20		
Silver	0.0	496	500	99.2	0.8	20		
odium	78200	77700	500	-100.0(a	0 1	20		
Strontium								
fhallium	0.0	442	500	£.88	0 " 9 i	20		
'in								
itanium								
amadium								
linc	10.6	175	500	92.9	1.3	20		

(anr) Analyte not requested
 (a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number, C11216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: Matrix Type:							ls. SW84 s. ug/l	5 6010B	
Prep Date:			96/02/1	LO				06/02/	10
Metal	BSP Result	Spikelot MPIR1	% Rec	QC Limits	BSD Result	SpikelƏt MPIR1	* Rec	BSD RPD	QC Limit
Aluminum	anr						_		
Antimony	466	500	93 2	80-120	475	500	Q5.0	1.9.	
Arsenic	446	500	89.2	80-120	458	500	91.6	2 .7.	
Barium	anr								
Beryllium	467	500	93 4	80-120	473	500	94.8	24 A	
Boron	472	500	94 4	80-120	484	500	96.8	2.5	
Cadmium	460	500	92.0	80-120	468	500	93.6	1:7	
Calcium	457,	500	91.4	80-120	474	500	94.8	3.7	
Chromiun.	483	500	96 6	80-120	491	500	28.2	1.6	
Cobalt									
Copper	466	500	93.2	80-120	473	500	94.6	195	
Iron	485	500	97.0	80-120	495	500	99.0	違.0	
Lead	470	500	94,0	80-120	477)	500	95 4	1:5	
Lithium									
Magnesium	484	500	96.8	80-120	487	50Ø	.97.4	0.6	
Manganese	478	500	§5 ×6	80-120	485	500	97:01	145	
nolybdenum	anr								
Wickel	481	500	96.2	80-120	490	500	98 0	1,09	
Potassium	4930	5000	9\$.6	80-120	4980	5000	99.6	1. 6.	
Selenium	446	500	89.2	80-120	164	500	92 8	4,0	
siliçøn	257	250	102 8	\$0-120	254	250	105.6	.2.7	
Silver	492	500	98.4	80-120	498	500	99.6	1.2	
Jodium	568	500	113.6	80-120	572	500	114.4	0.7	
Strontium									
Thallium	430	500	86.01	80-120	445	500	89.0	31.4 *	
lin									
ltanium									
anadium									
linc	457	500	91.4	80-120	466	500	93 2	2.0	

Associated samples MP2433. C11216-1. C11216-2, C11216-3, C11216-4, C11216-5, C11216-6, C11216-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

4.3.3

SERIAL DILUTION RESULTS SUMMARY

Login Number: C11216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2433 Matrix Type: AQUEOUS

Methods. SWB46 6010B Units. ug/l

luminum anr ntimony 0.00 0.00 NC 0-10, rsenic 0.00 0.00 NC \$10 axium anr	
rsenic 0 00 0.00 NC Ø-10 arium anr sryllium 0.00 Q:00 NC 0-10 pron 98.0 136 38.8 (a) 0-10	
arium anr eryllium 0.00 0.00 NC 0-10 pron 98.0 136 38.8 (a) 0-10	
sryllium 0.00 Q:00 NC 0-10 pron 98.0 136 38.8 (a) 0-10	
pron 98.0 136 38.8 (a) 0-10	
alcium 24200 24500 1.0 0-10	
uromium 0.00 0.00 MC 0-10	
abalt	
ppper 80.2 79.0 1.5 0-10	
ron 1370 1360 0.6 0-10	
ad 0.06 0.00 NC 0-10	
thium	
gnesium 9990. 9980 0.0 \$-10	
nganese 107 108 0.2 0-10	
lybdenum anr	
lver 0.00 0.00 NC 0-10	
dium 78200 78000 0 3 0-10	
rontium	
allium 0.00, 0.00 NC 0-10	
a	
tanium	
1adium	
10.6 11.5 8.5 0-10	

(a) percent difference acceptable due to low initial sample concentration (< 50 times IDL).

4.3.4

POST DIGESTATE SPIKE SUMMARY

Login Number, Cl1216 Account: SGRPCAPH - The Source Group Project, Mt. biablo- Marsh Creek Road, Clayton, CA

QC Batch ID: Matrix Typ∈:							ds SW84 6 ts ug/l	6010B		
Prep Date:									06/02/1	0
Metal	Sample ml	Final ml	Raw	Corr **	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limi‡s
Aluminum										
antimony										
rsenic										
arium										
eryllium										
loron										
admium										
alcium										
hromium										
obalt										
opper										
ron										
ead										
ithium										
agnesium										
anganese										
olybdenum										
ickel										
olassium										
elenium										
ilicon										
ilver										
odium										
trontium										
hallium										
in										
'itanium										
anadium										
inc										
ssociated sa	mples MP24	433: C112	16-1, C1	1215-2, C11	21,6-3, (C11216-4,	C11216-5,	C11216-6	, Č112 16-	7
(*) Outside a (*) Outside a (**) Corr. 5 (anr) Analyte	ample resu	ts ult = Raw				volume)				

4.3.5 4

	- <u>.</u>	
QC Data Summaries		
 Includes the following where app Method Blank and Blank Spike Summ Duplicate Summaries Matrix Spike Summaries 		

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C11216 Account: SGRPCAPH - The Source Group Project: Mt Diablo- Marsh Creek Road, Clayton, CA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Alkalinity, Total as CaCO3	GN3690	5.0	0.0	mg/l	250	251	100 5	75-125%
Bromide	GP1783/GN3889	0 20	0.0	mg/l	5	4.78	95.6	90-110%
Chloride	GP1789/GN3908	0.50	0.0	mg/1	5	4.62	92.4	50-110t -
Dissolved Organic Carbon	GP1782/GN3888	1.0	0.52	mg/1	25.0	25.2	100.9	75-125%
Fluoride	GP1783/GN3889	0.10	0 0	mg/l	15	4.84	96 8	90-110%
Nitrogen, Nitrate	GP1783/GN3889	0.10	0.0	mg/1	5	4.65	93.0	90-110%
Solids, Total Dissolved	GN38B6	10	0.0	mg/l				De Trade
Specific Conductivity	GN3877	1.0	0.0	umbos/cm				
Sulfate	GP1789/GN3906	0 50	0.0	mg/l	5	4:76	95 2	90-110%
Turbidity	GN3883	0.50	0.048	NTU	40	41 1	102 8	75-125%

Associated Samples:

Associated Samples: Eatch GN3877: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GN3883: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GN3886: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GN3890: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1782: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1783: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-6. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-5. C11216-7. C11216-7 Batch GP1789: C11216-1. C11216-2. C11216-3. C11216-4. C11216-5. C11216-5. C11216-7. C112 (*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: Cl1216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

Analyte	Batch ID	Onits	Spike Amount	BSD R∈sult	RPD	QC Limit	
Alkalinity, Total as CaCO3	GN3890	mg/l	250	251	0_0		ch
Browide	GP1783/GN3889	mg/1	5	4.82	0 8	25%	N
Chloride	GP1789/GN3906	mg/l	5	4.61	0 2	258	
Dissolved Organic Carbon	GP1762/GN3888	mg/1	25.0	\$4.7	2 2		
Fluoride	GP1783/GN3889	mg/1	5	4.78	1.2	25%	<u></u> ປ
Nitrogen, Nitrate	GP1783/GN3889	mg/l	5	4.65	0.0	25%	
Sulfate	GP1789/GN3906	mg/l	5	4 74	0.4	25%	
Turbidity	GN3883	NTU	40	40.9	0.5		

Associated Samples:

Associated Samples: Eatch GN3883: Cli216-1, Cli216-2, Cli216-3, Cli216-4, Cli216-5, Cli216-6, Cli216-7 Eatch GN3890: Cli216-1, Cli216-2, Cli216-3, Cli216-4, Cli216-5, Cli216-6, Cli216-7 Eatch GP1782: Cli216-1, Cli216-2, Cli216-3, Cli216-4, Cli216-5, Cli216-6, Cli216-7 Eatch GP1783: Cli216-1, Cli216-2, Cli216-3, Cli216-4, Cli216-5, Cli216-6, Cli216-7 Eatch GP1789: Cli216-1, Cli216-2, Cli216-3, Cli216-4, Cli216-5, Cli216-6, Cli216-7 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number, C11216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits	
Alkalinity, Total as CaCO3	GN3890	C11107-4	mg/l	169	167	1.2	0-25%	
Solids, Total Dissolved	GN3886	C11190-1	mg/1	692	685	1.0	0-8	
Specific Conductivity	GN3877	C11216-1	umhos/Cm	414	418	1 0	0-25%	
Turbidity	GN3883	C11216-1	NTU	26.9	26.5	1 5	0-25%	
Hq	GN3876	C11216-1	su	7.91	7.93	0 3	0-25%	
Associated Samples: Battle GN3876: Cl1216-1, Cl12 Batch GN3877: Cl1216-1, Cl12 Batch GN3888: Cl1216-1, Cl12 Batch GN3886: Cl1216-1, Cl12 Batch GN3890: Cl1226-1, Cl12 (*) Outside of OC limits	16-2, C11216-3, 16-2, C11216-3, 16-2, C11216-3,	C11216-4, C11216 C11216-4, C11216 C11216-4, C11216	-5, C11216-) -5, C11216-) -5, C11216-)	5, C11216-7 5, C11216-7 5, C11216-7				1

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C11216 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

Analyte	Batch ID	QC Sample	Units	Original Result	Sp ike Amount	MS Result	%Rec	QC Limite
Bromide	GP1783/GN3889	C11216-1	mg/1	0.0	4	3 7	92.5	80-120%
Chloride	GP1789/GN3906	C11216-1	mg/l	10.8	10	20.7	99.0	80-120%
Dissolved Organic Carbon	GP1782/GN3888	C11217-2	mg/l	6.6	25	30.2	94.1	75-125%
Fluoride	GP1783/GN3889	C11216-1	mg/1	0.027	4	3.6	89.3	80-120%
Nitrogen, Nitrate	GP1783/GN3889	C11216-1	mg/1	0.031	4	3 6	89 2	80-120%
Sulfate	GP1789/GN3906	C11216-1	mg/1	32 4	10	42.2	98.0	80-120%

Associated Samples: Batch GP17M2: Cl1216-1, Cl1216-2, Cl1216-3, Cl1216-4, Cl1216-5, Cl1216-6, Cl1216-7 Batch GP17B3: Cl1216-1, Cl1216-2, Cl1216-3, Cl1216-4, Cl1216-5, Cl1216-6, Cl1216-7 Batch GP17B9: Cl1216-1, Cl1216-2, Cl1216-3, Cl1216-4, Cl1216-5, Cl1216-6, Cl1216-7 (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number C11216 Account: SGRPCAPH - The Source Group Project: Mt Diablo- Marsh Creek Road, Clayton, CA

Analyte	Batch ID	QC Sample	Units	Øriginal Result	Spike Amount	MSD Result	RFD	QC Limit	
Bromide	GP1783/GN3889	C11216-1	aug/1	0.0	4	3.7	0 0		0
Chloride	GF1789/GN3906	C11216-1	mg/l	10.8	10	20 7	0.0		6
Dissolved Organic Carbon	GP1782/GN3888	C11217-2	mg/1	6.6	25	29.6	2.0		
Fluoride	GP1783/GN3889	C11216-1	mg/l	0.027	4	3.5	2 8		
Nitrogen, Nitrate	CP1783/GN3889	C11216-1	mg/l	0 031	4	3.6	0.0		U
Sulfate	GP1789/GN3906	C11216-1	mg/l	32 4	10	42.1	0.2		

Associated Samples:

Batch GP1782: C11216-1, C11216-2, C11216-3, C11216-4, C11216-5, C11216-6, C11216-7 Batch GP1783: C11216-1, C11216-2, C11216-3, C11216-4, C11216-5, C11216-6, C11216-7 Batch GP1783: C11216-1, C11216-2, C11216-3, C11216-4, C11216-5, C11216-6, C11216-7 (*) Outside of QC limits

(N) Matrix Spike Rec outside of QC limits

Technical Report for

The Source Group

Mt. Diablo- Marsh Creek Road, Clayton, CA

SUNOCO

Accutest Job Number: C11217

Sampling Date: 05/27/10

Report to:

The Source Group 3451C Vincent Road Pleasant Hill, CA 94523 jphilipp@thesourcegroup.net

ATTN: Jon Philipp

Total number of pages in report: 46

MACCORD IN ACCORD

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Anne Kathain 408-588-0200

auni Start H

Laurie Glantz-Murphy Laboratory Director

Certifications: CA (08258CA) DoD/ISO/IEC 17025:2005 (L2242) This report shall not be reproduced, except in its entirety, without the written Approval of Accutest Laboratories Test results relate only to samples analyzed.

Northern California • 2105 Lundy Ave. • San Jose, CA 95131 • 4el 408-588-0200 • fax 408-588-0201 • http://www.accutest.com

Accutest Laboratories is the sole authority for authorizing edits or modifications to this document. Unauthorized modification of this report is strictly prohibited.

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: C11217-1: MTD-SW-02/2	
2.2: C11217-1F: MTD-SW-02/2	7
2.3: C11217-3: MTD-SW-12/2	8
2.4: C11217-3F: MTD-SW-12/2	10
2.5: C11217-4: MTD-SW-13/2	11
2.6: C11217-4F: MTD-SW-13/2	13
2.7: C11217-5: MTD-SW-14/2	14
2.8: C11217-5F: MTD-SW-14/2	16
2.9: C11217-6: MTD-SW-15/2	
2.10; C11217-6F: MTD-SW-15/2	
2.11: C11217-7: MTD-SW-05/2	20
2.12: C11217-7F: MTD-SW-05/2	
Section 3: Misc. Formis	
3.1: Chain of Custody	24
Section 4: Metals Analysis - QC Data Summaries	26
4.1: Prep QC MP2430: Hg	27
4.2: Prep QC MP2431: Hg	31
4.3: Prep QC MP2440: Sb,As,Be,B,Cd,Ca,Cr,Cu,Fe,Pb,Mg,Mn,Ni,K,Se,Si,Ag,Na,Tl,Zn.	35
Section 5: General Chemistry - QC Data Summaries	
5.1: Method Blank and Spike Results Summary	
5.2: Blank Spike Duplicate Results Summary	
5.3: Duplicate Results Summary	
5.4: Matrix Spike Results Summary	

Sections:

Sample Summary

The Source Group

Job No: C11217

Mt. Diablo Marsh Creek Road, Clayton, CA Project No: SUNOCO

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C11217-1	05/27/10	12.00 JP	05/2 8/10	ЛQ	Surface Water	MTD-Sw-02/2
C11217-1F	05/27/10	12:00 JP	05/28/10	AQ	Surface H2O Filtered	MTD-SW-02/2
C11217-2F	05/27/10	12:15 JP	05/28/10	лQ	Surface H2O Filtered	MTD-SW-04/2
C11217-3	05/27/ 10	09:20 JP	05/28/10	AQ	Surface Water	MTD-SW-12/2
C11217-3F	05/27/10	09:20 JP	05/28/10	AQ	Surface H2O Filtered	MTD-SW-12/2
112-17-4	0 5/27/10	09:3 0 JP	05/28/1 0	AQ	Surface Water	MTD-SW-13/2
C1\$217-4F	05/27/10	09:30 JP	05/ <mark>28/10</mark>	ΛQ	Surface H2O Filtered	MTD-SW-13/2
C11217-5	05/27/10	10:05 JP.	05/28/10	AQ	Surface#Water	MAD-SW-14/2
C11217-5F	05/27/10	10:05 JP	05/28/10	AQ	Surface H2O Filtered	MTD-SW-14/2
C11217-6	05/27/10	11:15 JP	05/28/10	AQ	Surface Water	MTD-SW-15/2
C11217-6F	05/27/10	11:15 JP	*05/28/1 0	AQ	Surface H2O Filtered	MTD-SW-15/2
C11217-7	05/27/10	13:1 0 Л Р	05/28/10	ΛQ	Surface Water	MTD-SW-05/2
C11217-7F	05/27/10	13:10 JP	0 5/28/10	AQ	Surface H2O Filtered	MTD-SW-05/2

Sample Results

Report of Analysis

Report of Analysis

Client Sampl		-SW-02/2					-				
Lab Sample 1						Date Sampled: 05/27/10 Date Received: 05/28/10 Percent Solids: p/a					
Matrix:	AQ -	Surface W	vater								
Project:	Mt I	Diablo- Mi	arsh Creel	Road	i, Clayton,		ent So	olids: n/a			
Troject.				. Hour	a, Olayton,		_				
Total Metals	Analysis										
Analyte	Result	ŔĸĿ	Units	DF	Prep	Analyzed	By	Method	Prep Method		
Antimony	21.9	io	ųg/İ	1	06/04/10	06 /04/10	СТ	SW846 6010B 2	SW3010A 4		
Arsonic	47.6	10	ug/1	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4		
Beryllium	< 5.0	5.0	ug/l	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4		
Boron	18000	500	ug/1	10	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4		
Cadmium	< 20	2.0	ug/l	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4		
Calcium	178000	500	ug/l	10	06/04/10	06.04/10	СТ	SW846 6010B 2	Sw3010A 4		
Chromium	309	5.0	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A		
Copper	94.3	5.0	ug/1	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4		
Iron	83800	50	ug/l	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4		
Lead	76	5.0	ug/l	L	06/04/10	06/04/10	cr	SW846 60108 2	SW3010A 4		
Magnesium	136000	500	ug/l	10	06/04/10	06/04/10	СТ	SW846 6010B ²	SW3010A 4		
Manganese	3410	5.0	ug/l	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4		
Mercury	161	10	ug/l	50	06/01/10	06/02/10	RW	EPA 245.1	EPA 245. 1/SW7470A 3		
Nickel	11000	50	ug/l	10	06/04/10	06/04/10	ст	SW846 6010B 2	SW3010A 4		
Potassium	14500	500	ug/l	I	06/04/10	06/04/10	ст	SWS46 6010B 2	SW3010A 4		
Selenium	< 20	20	ug/1	I	06/04/10	06/04/10	C	SW846 6010B 2	SW3010A 4		
Silicon	13600	500	ug/l	10	06/04/10	06/04/10	Cr	SW846 6010B 2	SW3010A 4		
Silver	< 5.0	5.0	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4		
Sodium	251000	1000	ug/l	10	06/04/10	06/04/10	ст	SW846 6010B 2	SW3010A 4		
Thallium	< 20	20	ug/1	1	06/04/10	06/04/10	ст	SW846 60108 2	SW3010A 4		
Zinc	276	10	ug/l	1			СТ	SW846 6010B 2	SW3010A 4		

Instrument QC Batch: MA1239
 Instrument QC Batch: MA1243
 Prep QC Batch: MP2431
 Prep QC Batch: MP2440

RL = Reporting Limit

2.1

		Repo	rt of Ana	lysis			Page 1 of 1
Lab Sample ID: 0	MTD-SW-02/2 C11217-1 AQ - Surface Water			Date 1	Sampled: 05/27/1 Received: 05/28/1 nt Solids: n/a		
Project:	Mt Diablo- Marsh (Creek Road,	Clayton, CA				
General Chemistry							87° 81
Analyte	Result	RL	Units [,]	DF	Ańalyzed	Ву	Method
Alkalinity, Bicarbona	e < 5.0	5.0	mg/l	ſ	06/01/10	BH	SM18 4500CO2D
Alkalinity, Carbonate		5.0	mg/1]	06/01/10	PH	SM18 4500CO2D
Aikalinity, Total as C		5.0	mg/l	1	06/01/10	PH	SM18 2320B
Bromide	0.92	0.20	mg/l	Ť	05/28/10 17:03	RL	EPA 300/SW846 9056A
Chloride	333	50	mg/l	100	06/02/10 01:23	RĽ	EPA 300/SW846 9056A
Dissolved Organic Ca	rbon 9,2	1.0	mg/l	1	05/28/10	RL	SM18 5310C
Fluoride	< 0 10	0.10	mg/l	1	05/28/10 17:03	RL	EPA 300/SW846 9056A
Hardness, Total as Ca	CO3 ª 1000	3.3	mg/1	1	06/04/10 16:53	ст	SW846 6010B/SM 2340B
Nitrogen, Nitrate	1.3	0.10	mg/ł	4	05/28/10 17:03	RI	EPA 300/SW846 9056A
Silica, Dissolved b	29.1	1,1	mg/l	1	06/04/10 16:53	CT	SW846 60108
Solids, Total Dissolve	d 3060	10	mg/l	1	06/01/10	PH	SM18 2540C
Specific Conductivity	3860	1.0	umhos/cm	1	05/28/10	PB	SM18 2510EVEPA 120.1
Sulfate	3450	100	ing/1	200	06/02/10 11:55	RL	EPA 300/SW846 9056A.
*Turbidity	261	5.0	NTU	10	05/28/10 12:10	EB	SM18 2130B
pH °	3.13		su	1	05/28/10 13:35	РН	SM18 450041+ B

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)
(b) Calculated as: (Silicon * 2.139)
(c) pH was analyzed past the 15min hold time

AC C11217

Laba

6 of 46 UTEST.

21

N

				Rep	ort of A	nalysis		Page 1 of
Client Sampl	le ID: MTD	-SW-02/2	2					
Lab Sample	ID: C112	17-11-				Date S	ampled: 05/27/19	0
Matrix:	AQ -	AQ - Surface H2O Filtered Date Received: 05/28/10						
						Percen	t Solids: n/a	
Project:	Mt. I	Diablo- M	larsh Cree	k Road	l, Clayton,	CA		
Dissolved Me	etals Analysis	8						in province in the second
Analyte	Result	RĽ	Units	DF	Prep	Analyzed I	By Method	Prep Method
Mercury	135	5_0	ug/İ	25	06 /02/10	06/03/10 F	W EPA 245 1	EPA 245.1/SW7470A ^{2'}

Instrument QC Batch: MA1240
 Prep QC Batch: MP2430

2.2 2

Report of Analysis

Client Sample ID: MTD-SW-12/2 Date Sampled: 05/27/10 Lab Sample ID: C11217-3 Date Received: 05/28/10 Matrix: AQ - Surface Water Percent Solids: n/a Mt. Diablo- Marsh Creek Road, Clayton, CA Project: **Total Metals Analysis** Analyte Result RL Units DF Prep-Analyzed By Method Prep Method Antimony < 10 10 ug/l 1 06/04/10 06/04/10 CT SW846 6010B 2 SW3010A 4 SW3010A 4 Arsenic < 10 10 ug/l 1 06/04/10 06/04/10 CT SW846 6010B 2 SW3010A 4 Beryllium < 5.0 5.4 ug/l 1 06/04/10 06/04/10 CT SW846 601013 2 941 SW846 6010B 2 SW3010A 4 Boron 50 ...g/1 1 06/04/10 06/04/10 C1 SW3010A 4 SW846 6010B 2 Cadmium < 2.0 2.Q 1g/1 l 06/04/10 06/04/10 CT SW3010A 4 SW846 6010B 2 Calcium 47100 50 ug/106/04/10 06/04/10 CT 1 SW3010A 4 Chromium < 5.0 5.0 ug/l 1 06/04/10 06/04/10 C1 SW846 6010B 2 SW3010A 4 Copper < 5.0 5.0 11g/1 1 06/04/10 06/04/10 CT SW846 6010B 2 ug/1 SW3010A 4 Iron < 50 50 1 06/04/10 06/04/10 CT SW846 6010B 2 SW'846 6010B 2 SW3010A 4 Lead < 5.0 5.0 ug/1 I 06/04/10 06/04/10 CT 25700 50 06/04/10 06/04/10 CT SW846 6010B 2 SW3010A 4 Magnesium ug/l 1 SW3010A 4 Manganese < 5.0 5.0 ug/l 1 06/04/10 06/04/10 CT SW846 6010B 2 EPA 245.1/SW7470A 38 Mercury < 0.20 0.20 ug/] 1 06/01/10 06/02/10 RW EPA 245.1 Nickel < 5.0 50 ug/l 1 06/04/10 06/04/10 CT SW'846 6010B 2 SW3010A 4 ug/! SW/846 6010B 2 SW3010A 4 Potassium 717 500 1 06/04/10 06/04/10 CT SW3010A 4 Selenium < 2020 06/04/10 06/04/10 CT SW846 6010B 2 ug/1 1 SW3010A 4 SW846 6010B 2 Silicon 7830 50 ug/1 Ţ 06/04/10 06/04/10 CT SW3010A 4 SW846 6010B 2 Silver ug/l < 5.0 5.0 1 06/04/10 06/04/10 CT SW3010A 4 SW846 6010B 2 17400 Sodium 100 ug/l 1 06/04/10 06/04/10 CT SW3010A 4 Thallium ≤ 20 20 ug/l J. 06/04/10 06/04/10 CT SW846 6010B 2 < 10 FØ 1 06/04/10 06/04/10 CT SW846 6010B 2 SW3010A 4 Zinc ug/1

(1) Instrument QC Batch: MA1239 (2) Instrument QC Batch: MA1243 (3) Prep QC Batch: MP2431 (4) Prep QC Batch: MP2440

RL = Reporting Limit

2.3

		Report of Analysis									
Lah Sample ID: Cl.	D-SW-12/2 1217-3 - Surface Water			Date l	Sampled: 05/27/1 Received: 05/28/1 nt Solids: n/a						
Project: Mt.	oject: Mt. Diabio- Marsh Creek Road, Clayton,					A					
General Chemistry							b				
Analyte	Result	RL	Units	DF	Analyzed	By	Method				
Alkalinity, Bicarbonate	223	5.0	mg/l	1	06/01/10	PH	SM18 4500CO2D				
Alkalinity, Carbonate	< 5.0	5.0	mg/l	1	06/01/10	211	SM18 4500CO2D				
Alkalinity, Total as CaC	O3 223	5.0	mg/l	I	06/01/10	۱°H	SM18 2320B				
Bromide	4.7	0.20	mg/l	1	05/28/10 18:13	RL	EPA 300/SW846 9056A				
Chloride	9.6	1.0	mg/l	2	06/02/10 01:58	RE	EPA 300/SW846 9056A				
Dissolved Organic Carbo	m 2.6	1.0	mg/l	41	05/28/10	RL	SM18 5310C				
Fluoride	< 0.10	0.10	mg/i	1	05/28/10 18:13	RL.	EPA 300/SW846 9056A				
Hardness, Total as CaCO	223	0.33	mg/l	1	06/04/10 17:15	ст	SW846 6010B/SM 2340B				
Nitrogen, Nitrate	< 0.10	0.10	mg/l	1	05/28/10 18:13	RŁ,	EPA 300/SW846 9056A				
Silica, Dissolved b	16.7	0.11	mg/l	1	06/04/10 17:15	CT	SW846 6010B				
Solids, Total Dissolved	261	10	mg/l	1Ì	06/01/10	PH	SM18 2540C				
Specific Conductivity	494	1.0	umbos/cm	L	05/28/10	PH	SM18 2510B/EPA 120.4				
Sulfate	29.5	1.0	mg/l	2	06/02/10 01:58	RL.	EPA 300/SW846 9056A				
Turbidity	1.5	0.50	NTU	1	05/28/10 12:10	EB	SM18 2130B				
pH c	8.20		su	1	05/28/10 13:44	PH	SM18 4500H+ B				

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)
(b) Calculated as: (Silicon * 2.139)
(c) pH was analyzed past the 15min hold time.

RL = Reporting Limit

				Rep	ort of A	nalysis			Page 1 of
Client Sample II Lab Sample ID:		-SW-12/2 17-3F				Date	Samp	led: 05/27/10	,
Matrix: AQ - Surface H2O Filtered Date Received Percent Solids									
Project:	Mt. I	Diablo- Ma	arsh Creel	k Road	i, Clayton,	CA			
Dissolved Metal	s Analysi	\$							
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Mercury	< 0.20	0.20	ug/l	1	06/02/10	06/0 3/10	RW	FPA 245.1 ¹	EPA 245 1/SW7470A 2

Instrument QC Batch: MA1240
 Prep QC Batch: MP2430

RL = Reporting Limit

Report of Analysis

	Client Sample ID: MTD-SW-13/2 Dab Sample ID: C11217-4 Aatrix: AQ - Surface Water							Date Sampled: 05/27/10 Date Received: 05/28/10 Percent Solids: n/a				
Project: Mt. Diablo- Marsh Creek Road, Clayton, CA								117 ct				
Total Metals	Analysis	-										
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method			
Antimony	10.4	10	ug/1	1	06/04/10	06/04/ 10	ст	SW846 6010B 2	SW3010A ⁴			
Arsenic	< 10	10	ug/l	t	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4			
Beryllium	< 5.0	5.0	ug/l	1		06/04/10	CT	SW846 6010B 2	SW3010A 4			
Boron	953	50	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4			
Cadmium	< 2.0	2.0	ug/1	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4			
Calcium	49700	50	ug/1	3	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4			
Chromium	< 5.0	5.0	ug/l	1		()6/04/10		SW846 6010B 2	SW3010A 4			
Copper	< 5.0	5.0	ug/1	1			СТ	SW846 60108 2	SW3010A 4			
Iron	89.4	50	ug/l	Ī	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4			
Lead	< 5.0	5.0	ug/1	t	06/04/10	06/04/10	CT	SW846 6010B 2	SW 3010A 4			
Magnesium	28200	50	ug/l	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4			
Manganese	5.8	5.0	g /1	ļ		06/04/10		SW846 60108 2	SW3010A 4			
Mercury	< 0.20	Ø.20	ug/1	1	06/01/10	06/02/10	RW	EPA 245.1	EPA 245.1/SW7470A 3			
Nickel	6.2	5.0	ug/1	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4			
Potassium	898	500	ug/I	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4			
Selenium	< 20	20	ug/I	1		06/04/10	CT	SW846 6010B 2	SW3010A 4			
Silicon	7720	50	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4			
Silver	< 5.0	5.0	ug/l	1			СТ	SW846 6010B 2	SW3010A 4			
Sodium	18200	100	ug/1	1	06/04/10	06.04/10	CT	SW846 6010B 2	SW3010A 4			
Thallium	< 20	20	ug/1	1		06/04/10	CT	SW846 6010B 2	SW3010A 4			
Zinc	< 10	10	ng/l	1		06/04/10	CI	SW846 6010B 2	SW3010A 4			

Instrument QC Batch: MA1239
 Instrument QC Batch: MA1243
 Prep QC Batch: MP2431
 Prep QC Batch: MP2440

1

Report	of	Analysis	
--------	----	----------	--

Lab Sample ID:	MTD-SV C11217-4 AQ - Sur				Date 1	Date Sampled: 05/27/10 Date Received: 05/28/10 Percent Solids: n/a					
Project:	Mt. Diab	olo- Marsh Ci	reek Road,	Clayton, C.	A						
General Chemistry											
Analyte		Result	RL	Units	DF	Analyzed	By	Method			
Alkalinity, Bicarbona	ite	229	,5,0	mg/l	ľ	06/01/10	PH	SM18 4500CO2D			
Alkalinity, Carbonate		< 5.0	5.0	míg/l	Ť	06/01/10	РН	SM18 4500C'O2D			
Alkalinity, Total as C	CaCO3	233	5.0	mg/l	I	06/01/10	PH	SM18 2320B			
Bromide		< 0.20	0.20	mg/l	1	05/28/10 18:31	RL	EPA 300/SW846 9056A			
Chloride		10.2	1.3	mg/1	2:5	06/02/10 02:15	RI.	EPA 300/SW846 9056A			
Dissolved Organic Ca	arbon	2.6	1.0	mg/l	1	05/28/10	RL	SM18 5310C			
Fluoride		< 0.10	0.10	mg/l	1	05/28/10 18:31	RL	EPA 300/SW846 9056A			
Hardness, Total as C.	aCO3 a	240	0.33	mg/l	1	06/04/10 16:31	CT	SW846 6010H/SM 2340B			
Nitrogen, Nitrate		< 0.10	0.10	mg/l	Ť.	05/28/10 18:31	RL	EPA 300/SW846 9056A			
Silica, Dissolved b		16.5	0.11	mg/l	T.	06/04/10 16:31	CT	SW846 6010B			
Solids, Total Dissolv	ed	301	10	mg/1	1	06/01/10	PH	SM18 2540C			

umhos/cm 1

2.5

1

1

mg/l

NTU

su

05/28/10

06/02/10 02:15 RL

05/28/10 12:10 EB

05/28/10 13:46 PH

PH

SM18 2510B/EPA 120.1.

EPA 300/SW846 9056A

SM18 2130B

SM18 4500H+ B

1.Ô

1.3

0.50

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

526

39.2

3.0

8.37

(b) Calculated as: (Silicon * 2.139)

Specific Conductivity

Sulfate

pH ¢

Turbidity

(c) pH was analyzed past the 15min hold time.

2.5 2

				Rep	ort of A	nalysis		Page 1 of
Client Sample ID: Lab Sample ID:		-SW-13/2				Date Sam	oled: 05/27/10	
Matrix:	+	Surface H	20 Filter	ed		Date Rece Percent So	ived: 05/28/10	
Project:	Mit. I	Diablo- Ma	arsh Creel	k Road	i, Clayton,	CA		
Dissolved Metals A	nalysis	5						
Analyte Re	sult	RL	Units	DF	Prep	Analyzed By	Method	Prop Method
Mercury < (<u>0. 2</u> 0	0.20	ug/l	,]	06/02/10	06/03/10 RW	EPA 245 1 $\overline{1}$	EPA 245.1/SW7470A ²
(1) Instrument QC I	Batch: 1	MA1240						

(2) Prep QC Batch: MP2430

RL = Reporting Limit

Report of Analysis

	lient Sample ID: MTD-SW-14/2 ab Sample ID: C11217-5							oled: 05/27/10	
Matrix:		- Surface V	Vater			Date Perce	Rece	ived: 05/28/10	
Project:	Mt.	Diablo- Ma	arsh Creel	k Road	i, Clayton,		at St	MICES: 117 gl	
Total Metals	Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Antimony	< 10	10	ug/l	1	06/04 /10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Arsenic	< 10	10	ug/l	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Beryllium	< 5.0	5.0	ug/l	1	06/04/10	06/04/10	ст	SW846 6010B 2	SW3010A 4
Boron	761	50	ug/1	1	06/04/10	(16/04/10	СТ	SW846 6010B 2	SW3010A 4
Cadmium	< 2.0	2.0	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Calcium	22800	50	ug/1	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Chromium	< 5.0	5.0	ug/1	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Copper	6.4	5.0	ug/I	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Iron	987	50	.ug/l	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Lead	< 5.0	5.0	ug/l	1	06/04/10	06/04/10	СТ	SW846 60108 2	SW3010A 4
Mag esium	20400	50	ug/l	t	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Manganese	194	5.0	ug/l	ļ	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Mercury	1.3	0.20	ng/l	1	06/01/10	06/02/10	RW	EPA 245.1	EI'A 245.1/SW7470A 3
Nickel	587	5.0	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Potassitum	2080	5.00	ug/l	1	06/04/10	06/04/10	CI	SW846 6010B 2	SW3010A 4
Selenium	< 20	20	ug/1	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Silicon	15100	50	ug/l	1	06/04/10	06/04/10	СТ	SW846 601018 2	SW3010A 4
Silver	< 5.0	5.0	ug/l	1	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Sodium	20900	100	ug/1	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A
Thallium	< 20	20	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Zinc	13.8	10	ug/l	1	06/04/10	06/04/10	CT	SW846 6010B ²	SW3010A 4

(1) Instrument QC Batch: MA1239
(2) Instrument QC Batch: MA1243
(3) Prep QC Batch: MP2431
(4) Prep QC Batch: MP2440

RL = Reporting Limit

Chinride

Fluoride

Sulfate

pH c

Turbidity

Nitrogen, Nitrate

Silica, Dissolved b

Solids, Total Dissolved

Specific Conductivity

Dissolved Organic Carbon

Hardness, Total as CaCO3 a

			Repo	rt of An	alysis				Page 1 of 1
Client Sample ID: Lah Sample 1D:	MTD-SV C11217-				Date	Sampled: 0	5/27/1	0	-
Matrix:	AQ - Su	rface Water					5/28/1 /a	o	,
Project:	Mt. Dial	blo- Marsh C	reek Road,	Clayton, C/	A				
General Chemistry									
Analyte		Result	RL	Units	DF	Analyzed		By	Method
Alkalinity, Bicarbona	ate	39 8	5.0	mg/l	1	06/01/10		РН	SM18 4500CO2D
Alkalinity, Carbonat	e	< 5.0	5.0	mg/l	1	06/01/10		PH	SM18 4500CO2D
Alkalinity, Total as (CaCO3	39.8	5.0	mg/l	1	06/01/10		PH	SM18 2320B
Bromide		< 0.20	0.20	mg/l	1	05/28/10	18:48	R1	EPA 300/SW846 9056A

mg/l

mg/l

mg/l

mg/1

mg/l

mg/l

mg/f

mg/1

NTU

su

umhos/cm |

2

1

Į,

1

1

d.

L.

10

1

1

06/02/10 02:33 RI

05/28/10 18:48 RL

06/04/10 17:20 CT

05/28/10 18:48 RL

06/04/10 17:20 CT

06/02/10 02:50 RL

05/28/10 12:10 EB

05/28/10 13:50 PH

RL,

 \mathbf{PH}

 \mathbf{PI}

05/28/10

06/01/10

05/28/10

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

14.8

< 0.10

< 0.10

3.7

141

32.3

276

414

136

5.6

5.94

1.0

1.0

0.10

0.33

0.10

Q.11

10

10

5.0

0.50

(b) Calculated as: (Silicon * 2.139)

(c) pH was analyzed past the 15min hold time.

RL = Reporting Limit

EPA 300/SW846 9056A

EPA 300/SW846 9056A

EPA 300/SW846 9056A

SM18 2510B/EPA 120.1.

EPA 300/SW846 9056A

SW846 6010B/SNI 2340B

SM18 5310C

SW846 6010B

SM18 2540C

SM18 2130B

SM18 45001+ B

	Report of Analysis											
Client Sample II Lab Sample ID:	C112	-SW-14/2 17-5F				Date Sam						
Matrix:	AQ -	Sur face H	120 Filter	ed			ived: 05/28/10 plids: n/a					
Project:	Mt. I	Diablo- M	arsh Creek	k Road	l, Clayton,	CA						
Dissolved Metals	, Analysi	8										
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method				
Mercury	< 0.20	0 20	ug/l	1	06/02/10	06/03/10 RW	EPA 245 1 ¹	EPA 245 1/SW7470A ²				

Instrument QC Batch: MA1240
 Prep QC Batch: MP2430

2.8

ຽ

Report of Analysis

Client Sample Lab Sample I Matrix:	ID: C1121	-SW-15/2 17-6 Surface V				Date S Date J	Recei	ved: 05/28/10	
Project:	Mt. D	iablo- Mi	arsh Cree	k Road	l, Clayton,	Percei CA	nt 50	lids: n/a	
Total Metals	Analysis							BUD BUD	Res Res
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Methodi
Antimony	62.0	20	ug/l	2	06/04/1 0	06/04/10	ĊT	SW846 6010B 2	SW3010A 4
Arsenic ^a	182	20	ug/l	2	06/04/10	06/04/10	Cĩ	SV 846 6010B 2	SW/3010A 4
Beryllium	5.2	5.0	ug/1	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Boron	98900	2500	ug/1	50	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Cadmium	< 2.0	2.0	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Calcium	357000	2500	ug/1	50	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Chromium	240	10	ug/1	2	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Copper	101	10	ug/l	2	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Iron	411000	2500	ug/l	50	06/04/10	06/04/10	ст	SW846 6010B 2	SW3010A 4
Lead	13.4	5.0	ug/l	1	06/04/10	06/04/10	ст	SW846 6010B 2	SW3010A 4
Magnesium	567000	2500	ug/l	50	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Manganese	16000	250	ug/l	50	06/04/10	06/04/10	CŦ	SW846 6010B 2	SW3010A 4
Mercury	107	4.0	ug/1	20	06/01/10	06/02/10	RW	EPA 245.1	EI'A 245.1/SW7470A 3
Nickel	25000	250	ug/1	50	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Potassium	53300	1000	ug/l	2	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Selenium b	< 40	40	ug/l	2	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Silicon	38500	2500	ug/l	50	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Silver	< 5.0	5.0	ug/1	1	06/04/10	06/04/10	СТ	SW846 60108 2	SW3010A 4
Sodium	1290000	5000	ug/1	50	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Thallium	< 20	20	ug/1	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Zinc	1180	20	ug/l	2	06/04/10	06/04/10	CT	SW846 6010B 2	SW301QA 4

Instrument QC Bate : MA1239
 Instrument QC Batch: MA1243'

(3) Pren QC Batch: MP2431 (4) Prep QC Batch: MP2440

(a) Result confirmed by reanalysis.

(b) Elevated reporting limit(s) due to matrix interference.

2.9 N

Rei	port	of	Ana	lysis
T # # #	VUL V	~	T PUTCH	a porto

	TD-SW-15/2						
	11217-6				Sampled: 05/27/1		
Matrix: A	Q - Surface Water				Received: 05/28/1	0	
			a	Percei	nt Solids: n/a		
Project: M	t. Diablo- Marsh Ct	reek Road.	Clayton, CA				
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Вy	Method
Alkalmity, Bicarbonate	< 5.0	5.Q	mg/l	1	06/01/10	PH	SM18 4500CO2D
Alkalinity, Carbonate	< 5.0	5.0	mg/l	1	06/01/10	PH	SM18 4500C'O2D
Alkalinity, Total as Cal	CO3 < 5.0	5.0	mg/1	1	06/01/10	PH	SM18 2320B
Bromide	5.5	1.0	mg/1	5	06/01/10 11:29	RL	EPA 300/SW846 9056A
Chloride	1570	150	mg/1	300	06/02/10 14:14	RI.	EPA 300/SW846 9056A
Dissolved Organic Carl	bon 11.3	1.0	mg/1	1	05/28/10	RL.	SM18 5310C
Fluoride *	< 0.50	0.50	mg/!	5	06/01/10 11:29	RL.	EPA 300/SW846 9056A
Hardness, Total as CaC	CO3 b 3230	17	mg/l	1	06/04/10 17:25	CI	SW846 6010B/SM 2340B
Nitrogen, Nitrate c	< 0.50	0.50	mg/l	5	06/01/10 11:29	RL	EPA 300/SW846 9056A
Silica, Dissolved d	82.4	5.3	mg/l	1	06/04/10 17:25	CT	SW/846 6010B
Solids. Total Dissolved	9110	10	mg/I	1	06/01/10	PH	SM18 2540C
Specific Conductivity	11400	20	umhos/cm	2	06/04/10	PII	SM18 2510B/EPA 120.1
Sulfate	5340	150	mg/l	300	06/02/10 14:14	RL	EPA 300/SW846 9056A
Turbidity	2650	50	NTU	100	05/28/10 12:10	EB	SM18 2130B
pH ^e	4.36		su	1	05/28/10 13 51	PH	SM18 4500H+ B-

(a) Elevated detection limit due to high concentration of Chloride.

(a) Elevated detection minimum table to high concentration of entoring
(b) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)
(c) Sample exceeded holding time due to reanalysis.
(d) Calculated as: (Silicon * 2.139)

(e) pH was analyzed past the 15min hold time.

RL = Reporting Limit

2.9 N

				Rep	ort of A	nalysis		Page 1 of
Client Sample ID Lab Sample ID:	C112	9-SW-15/2				Date Sam		
Matrix: Project:			H2O Filter larsh Creel		i, Clayton,	Percent S	ived: 05/28/10 olids: n/a	
Dissolved Metals	Analysi	s						
Analyte R	esult	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury ^a 5.	5.6	2-0	ug/]	10	06/02/10	06/03/10 RW	EPA 245.1 ¹	EPA 245.1/SW7470A ²

Instrument QC Batch: MA1240
 Prep QC Batch: MP2430

(a) Elevated reporting limit(s) due to matrix interference

2.10

N

Report of Analysis

Client Sampl Lab Sample I Matrix:	ID: C1121	- SW-05/ 2 1 7-7 Surface W				Date Date Perce	Rece	ived: 05/28/10	
Project:	Mt. D	iablo- Ma	arsh Creel	k Road	i, Clayton,		ar se	Jitus: 14 a	
Total Metals	Analysis								a and a set of the set
Analyte	Résult	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Mcthod
Antimony	12.0	10	ug/l	1	06/04/10	06/04/10	СТ	SW846 601013 2	SW3010A 4
Arsenic	< 10	10	ug/l	Ť	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Beryllium	< 5.0	5.0	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Boron	139000	2500	ug/l	50	06/04/10	06/04/10	CI	SW'846 6010B 2	SW3010A 4
Cadmium	< 2.0	2.0	ug/l	3	06/04/10	06/04/10	ст	SW846 6010B 2	SW3010A 4
Caleium	549000	2500	ug/i	50	06/04/10	06/04/10	ст	SW846 6010B 2	SW3010A 4
Chromium	27.6	10	ug/l	2	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Copper	27.6	10	ug/1	2	06/04/10	06/04/10	ст	SW846 6010B 2	SW3010A 4
Iron	22900	100	ug/l	2	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Lead	< 5.0	5.0	ug/1		06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Magnesium	546000	2500	ug/l	50	06/04/10	06/04/10	ст	SVY846 6010B 2	S1V3010A 4
Manganese	6240	10	ug/l	2	06/04/10	06/04/10	C	SW846 6010B 2	SW3010A 4
Mercury	66.3	2.0	ug/l	10	06/01/10	06/02/10	RW	EPA 245.1	EPA 245.1/SW7470A 3
Nickel	9060	10	ug/l	2	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Potassium	68300	1000	ug/l	2	06/04/10	06/04/10	CT	SW846 6010B 2	SW3010A 4
Selenium	< 20	20	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Silicon	12800	100	ng/l	2	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Silver	< 5.0	5.0	ug/l	1	06/04/10	06/04/10	ст	SW846 6010B 2	SW3010A 4
Sodium	1760000	5000	ug/l	50	06/04/10	06/04/10	ct	SW/846 6010B 2	SW3010A 4
Thallium	< 20	20	ug/l	1	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4
Zinc	180	20	ug/l	2	06/04/10	06/04/10	СТ	SW846 6010B 2	SW3010A 4

(1) Instrument QC Batch: MA1239 (2) Instrument QC Batch: MA1243
(3) Prep QC Batch: MP2431
(4) Prep QC Batch: MP2440

RL = Reporting Limit

Report	of	Analysis	
	~	T THE PARTY NAME	

Client Sample ID: MTD-3 Lab Sample ID: C1121	SW-05/2			Date S	Sampled: 05/27/1	0	
-	urface Water				Received: 05/28/1		
					ut Solids: n/a	*	
Project: ML Di	ablo- Marsh C	reek Road,	Clayton, CA				
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Methnd
Aikalinity, Bicarbonate	187	5.0	mg/l	1	06/01/10	РН	SM18 4500CO2D
Alkalinity, Carbonate	< 5.0	5.0	mg/l	1	06/01/10	PH	SM18 4500CO2D
Alkalinity, Total as CaCO3	187	5.0	mg/l	1	06/01/10	P11	SM18 2320B
Bromide	8.7	1.0	mg/l	5	06 01/10 11:46	RI.	EPA 300/SW846 9056A
Chloride	2370	300	mg/l	600	06/02/10 14:31	RL.	EPA 300/SW846 9056A
Dissolved Organic Carbon	5.8	1.0	mg/l	1	05/28/10	RL.	SM18 5310C
Fluoride ^a	< 0.50	0.50	mg/J	5	06/01/10 11:46	RL.	EPA 300/SW846 9056A
Hardness, Total as CaCO3 b	3620	17	mg/1	ſ	06/04/10 17:30	CI	SW846 601013/SM 2340B
Nitrogen, Nitrate c	5.7	0.50	mg/1	5	06/01/10 11:46	RI.	EPA 300/SW846 9056A
Silica, Dissolved d	27.4	0.21	mg/l	1	06/04/10 18:40	CT	SW846 6010B
Solids, Total Dissolved	9980	10	mg/l	1	06/01/10	PH	SM18 2540C
Specific Conductivity	14200	2.0	umhos/cm	2	06/04/10	PH	SM18 2510B/EPA 120.1
Sullate	3840	300	mg/l	600	06/02/10 14:31	RL.	EPA 300/SW846 9056A
Turbidity	298	5,0	NTU	10	05/28/10 12:10	EB	SM18 2130B
pH °	7.18		su	1	05/28/10 13:56	РН	SM18 4500 H+ B.

(a) Elevated detection limit due to high concentration of Chloride.

(b) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

(c) Sample exceeded holding time due to reanalysis.

(d) Calculated as: (Silicon * 2,139)

(e) pH was analyzed past the 15min hold time.

Page 1 of L

2.11

N

Report	of	Analysis	
--------	----	----------	--

Client Sample	elD: MTD	-SW-05/2	2						
Lab Sample 1	D: C112	17-7F				Date Sam	pled: 05/27/10	Ó	
Matrix:	AQ -	Surface H	120 Filter	ed		Date Rec	eived: 05/28/10	0	
						Percent S	olids: n/a		
Project:	Mt I	Diablo- M	arch Craol	Dand	Clautan	CA			
	1¥31, 1			K RUat	, Clayion,	<u> </u>			
	_	_		K KUau	, Clayton,				
Dissolved Me Analyte	_	_	Units	DF	Prep	Analyzed By	Method	Prep Method	

(1) Instrument QC Batch: MA1240(2) Prep QC Batch: MP2430

(a) Elevated reporting limit(s) due to matrix interference.

2.12

N

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody

The !	ACCUTEBT.			undy Ave 669-0200		(408) (588-		004	mi	11 4	A	Accesso	Quete B					Acout	est NO Jub 1	CAU	AIN 1
	Client / Reporting Information		-	Prol	et Infor	mation.	- 1	aR	-01	(97)	Roj	1	Π.,	-	-		-	Requi			1	Matria Colles
iompany H			Pro j #61 ##	-	Sunoco	, MI. D	tablio									+				27	8	Dire Grantal Visio
he Bourt	e Group		Strept			_							1		+	er cat			0	Triened Trian	Andal Tec	and functions. The second
461C Vie	pent Road	Zip	Gily	-	-	_		tilu						-	catter	a 1	5		(a)	南方		1040
essen]		23	Clayton					C/			_			E L	S	N.	14	1	1	- Line	12	WP-Wige
oject Con			Project B	01-SUN (350								1	\sim		E.	6		1	Lung	8	LKD - Non-aqueous Li
10110	925-944-2856 x 316		EHALI	ish "poth	hanguro	earoup	.oel						A'ba			1	1	0	1	ő	E	-
arapiara'a		-		chan I Quideo		_		-	-	-	-	-		I.			1	1	1		A	DTH Ochilles With (Paralitative Only)
_	JON RUIMAA		Collectio	0	1	-	Hur	iper of	pres	erve	d Boli	les.	見古	1		d	E.	1	Q.	Ĭ	10	
iccutesi Ismpie D	Serverie ID / Fisid Point / Point of Collection	Datia	Time	Barrysteet by	Bi atric	8 cf builles	9	1	M	active.		1	1	1	1	8	1	1	1	1		LAN USE ON
Sal.	MTD-8W-02/2	27-May	12:00	ЛР	6W	4	1	1		2	-	-	X	X	X	X	X	X	X	X		HOLD (ER
1-2	MTD-IIW-04/2	27-blay	12:18	JP	-	4	1	1		2	-	-	X	X	x	X	X	X	X	X	*	SIER
-3	MTD-IPW-19/2	27.May	B:20	qt,	wW	3	1	1		1	_	-	X	X	X	X	X	X	X	X	++	
tent -	MTTD-8W-1\$12	27-May	8:30	JP_	-	3	1	1	1	1	_		X	x	x	x	X	X	X	X		
13	MTD-8W-14/2	27-May	10:05	"P	-	4	1	1		2	-		X	X	x	X	X	X	X	X		_
1-6	MTD-6W-16/2	27-May	11:15	æ	897	4	1	1		2		1	X	x	X	X	X	X	X	X		
1-7-	#TD-BW-06/2	27-May	13.10	ЛР	EW	4	1	1		2	+	+	x	x	x	X	X	X	X	X		
											1	T				-	-	-	-			
					Dista Di		11	1	-					-		(ALCONOMIC)	-	De		i flumedia		and the second second
X	Tomerocod Thite (Business digit) P Ony Blandard D Ony (Blandard D Ony (Chin markup) D On	oved Bysi Da	(e:		manical "A manical "A 15 - Level Int Castro	F" - Manu 10" - Manu 4 stata IP	w11.6		-	na iqg	ians"			き	put sport	P1	HOLD	25	per per	climit	pady. Die whol <u>tack of sampli</u> Mal. Jyskow	(AHAL) each (X7
Emet	1 Day (1999) mentani	-	_	Playid	L SHIF OL	abal 40 , geodet ,		-	_	_	-		-	-3.	-4		-		-			in dissolved (
form-quality	* Sample Cupledy It	Data Time?	awna otas	Ballow Bat	th time a	aregian	chan	389	лт	and meets	Maple.		nier Nier	вичету.	Carlo To		:05	-	100	nd Bys	Just	

C11217: Chain of Custody Page 1 of 2

3.4 - (3)

Accutest Laboratories Northern California Sample Receiving Check List

Job# : CILLIA Sample Control Rep. Initial: _ EKI3m

3.4

	(es) No	Client Sample ID	pH Check	Other Commentariesuss"
fis pH requested?	Yes ino	-1	11/2-	SEDNI DON (10 HUD2)
Was Client informed list hold time is 15 min? Yes / No Continue	Yos / No	1		1 1 1 1 3 3
	Yes / No	- V		
	Ces / No	-7	+	
	Yes/No			
Existing Client?	Yos/No			
If No: Is Report to into complete and teglible, including;				
o deliverable o Name o Address o phone o e-mail				
le Bill to info complete and legiblo, including,				
o PO# o Credit card o Contact paddress o phone o e-mail				
is Contact and/or Project Manager identified, including;				
to Phone bie mail				
Project name / number a Special requirements?	Yes / No			
Sample IDs / date & time of collection provided?	Yes / No			
1s Matrix listed and correct?	Tes I No			
Analyses listed we do or client has authorized a subcontract?	X100 / No			
Chain is signed and dated by both client and sample custodian?	Yes / No			
AT requested available? Yes / No Approved by PM				
avlew Coolors:				
Were Coolers temperatures measured at ≤6°C? Cooler # Temp	5.4 °C			
 If cooler is outside the SE°C; note down below the affected bottles in that Note that ANC does NOT accept evidentiary samples. (We do not lock r 	Logoline			
Shipment Received Method work Counter				
	Yes / No			
eview of Sample Bottles: If you snewer no, explain to the side				
	res)/ No			
is there enough sample volume in proper bottle for requested analyses?	No No		-	
Proper Preservatives? (a) No Check pH on Preserved samples exc 825, 8270 and vOAs.	capt 1664,			
Headspace-VOAs? Greater than 6mm in (tlameter Yos / No A List sample ID and effected container				

NAnc-srv-file11d\$lEntech_DetaiLaboratory\SOPs\SOP_CompleteListing\SC001F1_1_Form1_SampleControl_SampleRecolvingCnecklist_2010-02-15.doc

C11217: Chain of Custody Page 2 of 2

Section 4.

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number, C11217 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2430 Matrix Type AQUEOUS Methods: BPA 245.1 Units: ug/l

Prep Date:					06/02/10
Metal	RL	IDL	MDL	MB raw	final
Mercury	0 20	.02	02	0 0.02B	<0.20

Associated samples MP2430: C11217-1F, C11217-3F, C11217-4F, C11217-5F, C11217-6F, C11217-7F

Results < TDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

4.1.1 4

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number C11217 Account SGRPCAPH - The source Group

Project: Mt Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2430 Matrix Type: AQUEOUS Methods: EPA 245.1 Units ug/1

Prep Dale:				06/02/10		
Metal	C11217-1 Original		Spikelot HGPWS1	% Re¢	QC Limits	
Mercury	135	139	4	2240 0(a	70-130	

Associated samples MP2430. C11217-1F. C11217-3F. C11217-4F. C11217-5F. C11217-6F. C11217-7F.

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec outside of QC limits

(anr) Analyte not requested

(a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

28 of 46

C11217 Laboratottes

ं 🖆

4.1.2

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: Cl1217 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2430 Matrix Type: AQUEOUS Methods: EPA 245.1 Units: ug/l

Prep Date:					06/02/	10	
Metal	C11217-1 Original		Spikelot HGPWS1	% Rec	MSD RPD	QC Limit	
Mercury	13.5	135	4	2140.0 (a	2 9	20	and the second sec

Associated samples HP2430: C11217-1F, C11217-3F, C11217-4F, C11217-5F, C11217-6F, C11217-7F

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits
 (N) Matrix Spike Rec. outside of QC limits
 (anr) Analyte mot requested

(a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

4.1.2

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number, C11217 Account, SGRPCAPH - The Source Group Project, Mt. Diablo- Marsh Creek Road, Clayton, CA

 QC Batch ID: MP243Q
 Methods: EPA 245 1

 Matrix Type: AQUEOUS
 Units: ug/l

 Prep Date:
 06/D2/10
 06/02/18

FLOP Date.			00/ 9.4/ 1	.0				007047		
Metal	BŠP Result	Spikelot HGPWS1	% Rec	QC Limits	B\$D Result	Spikelot HGPW51	हे Rec	BSD RPD	QC Limit	
Mercury	1.9	2	95 D	\$5-115	2.0	2	100.0	5 1		

Associated samples MP2430: C11217-1F, C11217-3F, C11217-4F, C11217-5F, C11217-6F, C11217-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

4.1.3

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number C11217 Account: SGRPCAFH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2431 Matrix Type: AQUEOUS

Methods EPA 245.1 Units: ug/1

Prep Date:					06/01/10	
Metal	RL	IÐL	MDL	MB raw	final	
Mercury	0.20	02	.02	-0.0054	<0.20	

Associated samples MP2431: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7

Results . IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

C11217 Laboratories

280 PC

4.2.1

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY,

Login Number, Cl1217 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2431 Matrix Type: AQUEOUS Methods: EPA 245.1. Units: ug/l

Prep Date.				06/01/1	.0					
Metal	Cll216-1 Qriginal	MS	Spikelot NGPWS1	% Rec	QC Limits	-	an "error"	teres "West	 *8**	
Mercury	0 0	3 8	4	95.0	70-130					

Associated samples MP2431: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec outside of QC limits (anr) Analyte not requested

4.2.2

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C11217 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2431 Matrix Type: AQUEOUS Methods: EPA 245.1 Units: ug/1

Prep Date:					06/01/	10	
Metal	C11216-1 Original	MSD	Spikelot HGPWS1	l Rec	MSD RPD	QC Limit	
Mercury	0.0	3.8	4	95.0	0.0	20	

Associated samples MP2431: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7

Results < IbL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: Cl1217 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2431 Matrix Type: AQUEODS Methods: EPA 245.1 Units. ug/l

prep Date:			06/01/1	.0				06/01/	10	
Netal	BSP Result	Spikelot NGPWS1	% Rec	QC Limits	BSD Result	Spikelot HOPWS1	* Rec	BSD RPD	QC Limit	
Mercury	1.9	2	95.0	85-1 15	1.9	2	95.0	0.0		

Associated samples MP2431 C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number C11217 Account SGRPCAPH - The Source Group Project: Mt. Niablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2440 Matrix Type: AQUEOUS

Methods: SW846 6010B Onits: ug/1

Prep Date				_	06/04/10	
Metal	RĹ	IDL	MDL	MB raw	final	
Aluminum	50	14	21			-
Antimony	10	6.9	5.3	(4 . 7)	<101	
Arsenic	lQ	4.4	3.1	4.1	<10)	
Barium	5. Q.	. 6	.7			
Beryllium	:5., 0	.°1	. 2	0.10	<5.0	
Boron	50	8.6	11/	Š ,4'	<50	
Cadmium	\$.Q	· 4	-31	0.30	<2 0	
Calcium	50	29	12	0,30	<50	
Chromium	野.0	· 원	6	0.50	<5.0	
Cobalt	.5.0	: 例	. 4			
Copper	5 0	- 3b	1.1	-0.10	<5.0	
Iron	50	-2=.6	18	0.50	< 5.0	
Lead	5.0	3.431	1 3	0 60	<5.0	
Lithium	10	2.2	2 5			
Magnesium	50	9.6	13	1.3	< \$0	
langanese	5.0	U	. 2	0 10	<5.0	
101ybdenum	5.0	"I , 3	r	0 10		
lick∈l	5 0	-18	.5	0 20	<5 0	
Potassium	509	58	60	-5.8	<500	
Selenium	20	14	12	-13		
Silicon	5.0	÷*	5.3		<20	
lilver	5 0			0 0	<50	
odium	100	ेष्ट् 15	.7	0.30	<5.0	
trontium	100	3	13,	11 4	<100	
hallium			2 4		The second second second second second second second second second second second second second second second se	
'in	20	6.5	6.4	7.5	<20	
itanium	50	.2.3	Ž			
	2.0	~ 2'	. 2			
anadium	5.0	. 71	. 5			
linc	10	9	1.1	-0 10	<1\$	

Associated samples MP2440. C11217-1, C11217-3, C11217-4, C11217-5, C11217-5, C11217-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number, C11217 Account: SGRPCAPH - The Source Group Project. Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID. MP2440 Matrix Type, AQUEOUS

Methods. Sw846 6010B Units. ug/l

Prep Date:				06/04/10	D
Metal	Cll2l7-4 Original		Spikelot MPIR1	* Rec	QC Limits
Aluminum					
Antimony	10,4	509	500	99 .7	80-120
Arsenic	0 0	499	500	99.8.	80-120
Barium	anr				
Beryllium	0.10	504	500	100.8	80-120
Boron	953	1480	500	105.4	80-120
Cadmium	0.70	491	500	98 1	90-120
Calcium	49700	50500	500	160.0(a)	80-120
Chromium	-0 40	490	500	97.9	\$0-120
Cobalt	anr				
Copper	2.0	500	500	99.6	80-120
tron.	B 9 4	596	500	101.3	\$0-120
Lead	4.04	493	500	97.8	80-120
ithium					
lagnesium	28200	29100	500	180.0(a)	80-120
langanese	5.8	502,	500	99.2	80-120
olybdenum	anr				
ickel	6.2	479	50Ô	94 6	80-120
otassium	898	5940	5000	100.8	80-120
elenium	0 0	496		99.2	80-120
ilicon	7720	8090		148.0(a)	
ilver	0.0	523		104.6	80-120
odium	18200	18800		120.0	80-120
trontium					
ballium	0.0	⊎ <u>6</u> 2	500	9254	80-120
in					
itanium					
anadium	anr				
nc	2.1	487	500	97.0	80-120
ssociated sa					217-4, Cl1217-5, Cl1217-6, Cl1217-7
esuite « IDL *) Outside o N) Hatrix Sp anr) Analyte	t QC limits ike Rec. ou not reques unt low rel.	as zero tside o: ted	for calculs E QC limits	ation pur	

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number, C11217 Account, SGRPCAPH - The Source Group Project Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2440 Matrix Type AQUEOUS Methods: SW846 6010B Units: ug/l

Metal	Cil217-4 Original		Spikelot MPIR1	* Rec	MSD RPD	QC Limit
Aluminum			1			
Antimony	10 4	507	500	99-3	0.4	20
Arsenic	0.40	498	500	99.6	0.2	20
Barium	anr					
Beryllium	0 10	≹97	500	99.4	1 4	20
Boron	953	1490	500	107.4	0.7	20
Cadmium	0.70	490	500	97 9	0.2	20
Calcium	49700	50600	500	180.0(a)	0.2	20
Chromium	0.40	490	500	97.9	0.0	20
Cobalt	anr					
Copper	2 0	49Ô	500	97.6	2.0	20
Iron	89 4	589	500	99.9	1.2	20
lead	. 4 0	490	5 0 0	.97.2	0.5	20
ithium						
lagnesium	Ž8200	29200	500	200 Q(a)	0::3	20
langanese	5.8	494	500	97.6	1-6	20
olybdentum	anr					
ickel	6.2	4 78	5.00	94.4	Q.2	20
otassium	898	5940	5000	100 8	0.0	20
elenium	0 0	476	500	95.2	4.1	20
ilicon	7720	8150	250	172.0(a)	0.7	20
ilver	0.0	51 3	500	102 6	1.5.	20
odium	18200	18800	500	120.0	0 Ö	20
trontium						
hallium	0.0	457	500	91:4	N.C.	20
in						
itanium						
anadium	anr					
inc	2 1	486	500	96.8	0.2	20
ssociated sa	mples MP244	0 · C112:	17-1, C1121	7-3, C11:	217-4. (11217-5, C11217-6, C11217-7
esult s < ID *) Outside G N) Matrix Sp anr) Analyte	are shown of QC limits blke Rec. ou not reques	as zero teide oi ted	for calcul E QC limits	ation pu	Poses	11217-5, C11217-6, C11217-7 to lab control or spike blank for recovery

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C11217 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

Prep Date:			06/04/:	10				0010-12	•	
	tidin	(miles) -					_	06/04/1		
Metal	BSP Result	Spikelo MPIR1	% Rec	QC Limits	ESD Result	Spikeld MPIR1	% Rec	BSD RPD	QC Limit	
Aluminum							_			
Antimony	473	"50 0	94.6	80-120	480	500	96.0	1 5		
Arsenic	487	500	97.4	80-120	488	500	97.6	0.2		
Barium	anr									
se≭yllium	493	500	98.6	80-120	491	500	98.2	0.4		
Boron	495	500	99.0	80-120	500	500	100.0	1 0		
Cadmium	494	500	98.8	80-120	493	500	98.6	0.2		
Calcium	5 0 2	500	100.4	\$0-120	504	500	109.8	0.4		
1. nomium	494	500	98 8	80-120	491	500	98.2	0.6		
Cobalt	anr							17		
Copper	479	500	95.8	\$0-120	478	500	95.6	0 2		
ron	503	500	100.6	80-120	506	500	101.2	0.6		
ead	504	500	100.8	80-120	499	500	99.8	1 0		
ithium								- •		
lagnesium	500	50¢:	100.0	80-120	511	500	102.2	2.2		
langanese	500	500	100.0	80-120	497	500	29.4	0.6		
olybdenum	anr					204	No.F + 1	V.0		
lickel	498	500	99 6	80-120	495	500	99.0	0% 6		
otassium	4870	5000	97.4	80-120	4890	5000	97.8	0.4		
elenium	502	500	100.4	80-120	499	500	99.8	0.6		
ilicon	254	250	101.6	80-120						
ilver	513	500	102.6	80-120	253	250	101.2	0.44		
odium	497	500	99 4		512	500	10,2.4	0 2		
trontium	427	500	33 4	80-120	500	500	100.0	Ø.6		
hallium	177	500	04.5	Pa						
in	473	500	94: 6	\$0-120	4 70	500	94.0	D'. 6		
itanium										
anadium	3nr									
lnc	499	500	99.8	80-120	497	500	99.4	0.4		

(*) Outside of QC limits (anr) Analyte ot requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: Cli217 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2440 Matrix Type AQUEOUS Methods: SW846 6010B Units: ug/l

			06/04/10		_
letal	C11217-4 Original	SDL 1:5	\$D1F	QC Limite	
Luminum		-			
ntimony	10.4	0.00	100.0(a)	0-10	
rsenic	0.00	0.00	NC	0-10	
Barium	anr				
Beryllium	0.100	0 00	1 00.0 (a)	0-10	
Boron	953	1000	5 I	0-10	
Cadmium	0.700	2.00	185.7(a)	0-10	
Calcium	49700	48200	3.1	0-10	
Chromium	0.400	0.00	100.0(a)	0-10	
Cobalt	anr				
Copper	2.00	0.00	100 Q(a)	0-10	
Iron	89 4,	84.5	5.5	0-10	
Lead	4.00	0.00	100 Q(a)	8-10	
ithium					
lagnesium	28200	28500	Ø`×9	9-10	
langanese	5.80	6.00	3.4	°Õ-10	
Molybdenum	aLr				
lickel	6.20	4.00	35.5 (a)	0-10	
otassium	898	764	15.0 (a)		
elenium	0 00	0 00	NĊ	0-10	
Vilicon	7720	7620	1.3	0-10	
ilver	Q.00	0.00	NC	.0-10	
odium	18200	17900	1.2	0-10	
trontium					
hallium	0.00	0.00	NC	0-10	
in					
itanium					
/anadium	an).				
Composition Control					

Results < IDL arc thown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested (a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

POST DIGESTATE SPIKE SUMMARY

Login Number C11217 Account: SGRPCAPH - The Source Group Projact: Mt. Diablo- Marsh Creek Road, Clayton, CA

QC Batch ID: MP2440 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:									06/04/1	0
Metal	Sample ml	Final ml	Raw	Corr.**	PS ug/l	Spike ml	Spike u&/ml	Spike ug/l	¥ Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Boron										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron										
Lead										
Sithium										
lagn∉sium										
(anganese										
olybdenum										
lickel										
otassium										
Selenium										
ilicon										
Gilver										
Jodium										
trontium										
hallium										
Fin										
litanium										
/anadium										
inc										
ssociated sa	mples MP24	140: C312	17-1, Cl	1217-3, Cl1:	217-4,	C11217-5,	C11217-6,	C11217-1	,	
Results < IDL (*) Outside o (**) Corr. B (anr) Analyte	f QC limit ample rest	:e ilt ≃ Rav				volume)				

General	Chemistry
---------	-----------

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

Ċ

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: Cl1217 ACCOUNT, SGRPCAPH - The Source Group Project: Mt Diablo- Marsh Creek Road, Clayton, CA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits	
Alkalinity, Total as CaCO3	GN3890	5.0	0 0	mg/l	250	251	100.5	75-125%	0
Bromide	GP1783/GN3889	0.20	0 0	mg/l	5	4.78	95.6	90-110%	15
Chloride	GP1789/GN3906	0.50	0.0	mg/l	5	4.62	92.4	90-1101	_
Dissolved Organic Carbon	GP1782/GN3888	1.0	0 52	mg/1	25.0	25.2	100.9	75-1258	
Fluoride	GP1783/GH3889	0 10	0 0	mg/l	5	4 84	96.8	90-1101	U
Nitrogen, Nitrate	GP1783/GN3889	0 10	0 0	mg/1	5	4 65	93.0	90-110%	
Solids, Total Dissolved	GN3886	10	0.0	mg/1	-	4 04	20.0	20-1108	
Specific Conductivity	GN3877	1.0	0 0	umhos/cm					
Specific Conductivity	GN3913	1 0	0 0	umbos/cm					
Sulfate	GP1799/GN3906	0.50	0 0	mg/1	5	4.76	95 2	90-110%	
Turbidity	GN3883	0.50	0.048	NTU	40	41 1	102.8	75-125%	

Associated Samples: Batch GN3877: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Batch GN3863: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Batch GN3890: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Batch GN3913: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Batch GP1782: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Batch GP1783: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Fatch GP1783: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 (*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C11217 Account SGRMCAPH - The Source Group Project, Mt. Diablo- Marsh Creek Road, Clayton, CA

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit	
Alkalinity, Total as Caco3	GN3890	mg/l	250	251	0 0		UI
Bromide	GP1783/GN3889	mg/1	5	4 82	0 8	25%	N
Chloride	GP1 789/GN3906	mg/l	5	4.61	0.2	25%	
Dissolved Organic Carbon	GP1782/GN3888	mg/l	25.0	24.7	2.2		
Fluoride	GP1783/GN1889	mg/1	5	4.78	1.2	25%	
Nitrogen, Nitrate	GP1783/GN3889	mg/l	5	4.45	0.0	25%	
Sulfate	GP1789/GN3906	mg/l	5	4 74	04	25%	
Turbidity	GN3283	NTU	40	40 9	0 5		

Associated Samples

Associated Samples: Batch GN3683; Cl1217-1, Cl1217-3, Cl1217-4, Cl1217-5, Cl1217-6, Cl1217-7 Batch GN3890; Cl1217-1, Cl1217-3, Cl1217-9, Cl1217-5, Cl1217-6, Cl1217-7 Batch GP1782; Cl1217-1, Cl 217-3, Cl1217-4, Cl1217-5, Cl1217-6, Cl1217-7 Batch GP1783; Cl1217-1, Cl1217-3, Cl1217-4, Cl1217-5, Cl1217-6, Cl1217-7 Batch GP1789; Cl1217-1, Cl1217-3, Cl1217-4, Cl1217-5, Cl1217-6, Cl1217-7 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY. GENERAL CHEMISTRY

Login Number - C11217 Account SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits	
Alkalimity. Total as CaCO3	GN3890	C11107-4	ug /l	169	167	1.2	0-25%	(J)
Solids, Total Dissolved	GN3886	C11190-1	mg/l	692	685	1.0	0-%	సు
Specific Conductivity	GN3877	C11216-1	umhos/cm	414	418	1 0	0-25%	-
Specific Conductivity	GN3913	C11251-1	umhos/cm	893	896	0 3	0-25%	
Turbidity	GN3883	C11216-1	NTU	26 9	26 5	1 5	0-25%	5
pH	GN3876	C11216-1	şu	7 91	7.93	0 3	0-25%	and the second se

Associated Samples: Batch GN3876: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Batch GN38877: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Batch GN3883: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Batch GN3890: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Batch GN3913: C11217-6, C11217-7, C11217-4, C11217-5, C11217-6, C11217-7 Batch GN3913: C11217-6, C11217-7 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C11217 Account: SGRPCAPH - The Source Group Project: Mt. Diablo- Marsh Creek Road, Clayton, CA

Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
GP1783/GN3889	C11216-1	mg/1	0.0	4	3.7	92 5	80-120%
GP1789/GN3906	C11217-7	mg/l	2370	2400	4740	98 8	80-120%
GP1782/GN3888	C11217-2	mg/l	6.6	25	30.2	94 1	75-125%
GP1783/GN3889	C11216-1	mg/1	0.027	4	3.6	89.3	80-120%
GP1783/GN3889	C11216-1	mg/1	0.031	4	3.6	89.2	80-120%
GP1789/GN3906	C11217-7	mg/1	3840	2400	6020	90.8	80-120%
	GP1763/GN3889 GP1789/GN3906 GP1782/GN3688 GP1783/GN3889 GP1783/GN3889	Batch ID Sample GP1783/GN3889 C11216-1 GP1789/GN3906 C11217-7 GP1782/GN3888 C11217-2 GP1783/GN3889 C11216-1 GP1783/GN3889 C11216-1	Batch ID Sample Units GP1783/GN3889 C11216-1 mg/l GP1789/GN3906 C11217-7 mg/l GP1782/GN3888 C11217-2 mg/l GP1783/GN3888 C11216-1 mg/l GP1783/GN3889 C11216-1 mg/l	Batch ID Sample Units Result GP1783/GN3889 C11216-1 mg/1 0.0 GP1789/GN3906 C11217-7 mg/1 2370 GP1782/GN3888 C11217-2 mg/1 6.6 GP1783/GN3889 C11216-1 mg/1 0.027 GP1783/GN3889 C11216-1 mg/1 0.031	Batch ID Sample Units Result Amount GP1783/GN3869 C11216-1 mg/1 0.0 4 GP1783/GN3806 C11217-7 mg/1 2370 2400 GP1782/GN3868 C11217-2 mg/1 6.6 25 GP1783/GN3889 C11216-1 mg/1 0.027 4 GP1783/GN3889 C11216-1 mg/1 0.031 4	Batch ID Sample Units Result Amount Result GP1783/GN3889 C11216-1 mg/l 0.0 4 3.7 GP1789/GN3906 C11217-7 mg/l 2370 2400 4740 GP1782/GN3888 C11217-7 mg/l 6.6 25 30.2 GP1783/GN3889 C11216-1 mg/l 0.027 4 3.6 GP1783/GN3889 C11216-1 mg/l 0.031 4 3.6	Batch ID Sample Units Result Amount Result %Rec GP1783/GN3889 C11216-1 mg/l 0.0 4 3.7 92 5 GP1789/GN3906 C11217-7 mg/l 2370 2400 4740 98 8 GP1782/GN3886 C11217-2 mg/l 6.6 25 30.2 94 1 GP1783/GN3889 C11216-1 mg/l 0.027 4 3.6 89.3 GP1783/GN3889 C11216-1 mg/l 0.031 4 3.6 89.2

Associated Samples. Associated samples. Batch GP1782, Cl1217-1, Cl1217-3, Cl1217-4, Cl1217-5, Cl1217-6, Cl1217-7 Batch GP1783, Cl1217-1, Cl1217-3, Cl1217-4, Cl1217-5, Cl1217-6, Cl1217-7 Batch GP1789, Cl1217-1, Cl1217-3, Cl1217-4, Cl1217-5, Cl1217-6, Cl1217-7 (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number C11217 Account: SGRPCAFE - The Source Group Project. Mt Diablo- Marsh Creek Road, Clayton, CA

Analyte	Batch ID	QC Sample	Units	Original Résult	Spike Amount	MSD Résult	rfd	QC Limit	
Bromjde	GP1783/GN3889	C11216-1	mg/l	0.0	4	3 7	0.0		0
Chloride	GP1789/GN3906	C11217-7	mg/l	2370	2400	4760	0 4		6
Dissolved Organic Carbon	GP1782/GN3888	C11217-2	mg/l	6.6	25	29.6	2.0		
Fluoride	GP1783/GN3889	C11216-1	mg/1	0.027	A	3.5	2.8		
Nitrogen, Nitrate	GP1783/GN3889	C11216-1	#g/1	0 031	4	3 6	Q Ù		0
Sulfate	GP1789/GN3906	C11217-7	mg/1	3840	2400	6070	0.8		

Associated Samples:

Associated Somples: Batch GP1/83: C11217-1, C11217-3, C11217-4, C11217-5, C11217-5, C11217-7, Batch GP1/83: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 Batch GP1789: C11217-1, C11217-3, C11217-4, C11217-5, C11217-6, C11217-7 (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

Technical Report for

The Source Group

Mt. Diablo- Marsh Creek Road, Clayton, CA

SUNOCO

Accutest Job Number: C11216X

Sampling Date: 05/27/10

Report to:

The Source Group 3451C Vincent Road Pleasant Hill, CA 94523 jphilipp@thesourcegroup.net

ATTN: Jon Philipp

Total number of pages in report:

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and or state specific certification programs as applicable.

Client Service contact: Anne Kathain 408-588-0200

Jauni Ster Hought

Laurie Glantz-Murphy Laboratory Director

Certifications: **CA (08258CA)** DoD/ISO/IEC 17025.2005 (L2242) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Ò6/10/10

Technical Report for

The Source Group

Mt. Diablo- Marsh Creek Road, Clayton, CA

SUNOCO

Accutest Job Number: C11217X

Sampling Date: 05/27/10

Report to:

The Source Group 3451C Vincent Road Pleasant Hill, CA 94523 jphilipp@thesourcegroup.net

ATTN: Jon Philipp

Total number of pages in report:

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Centerence and/or state specific certification programs as applicable.

Client Service contact: Anne Kathain 408-588-0200

Causie Sten Aughty

Laurie Glantz-Murphy Laboratory Director

Certifications: CA (08258CA) DoD/ISO/IEC 17025:2005 (L2242) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed. Accutest Laboratories

Sample Summary

The Source Group

Job No: C11216X

Mt. Diablo Marsh Creek Road, Clayton, CA Project No: SUNOCO

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
C11216-1X	05/27/10	13:00 JP	05/28/10	AQ	Surface Water	MTD-SW-08/2
C11216-2X	05/27/1 0	13:3 0 JP	05/28/10	AQ	Surface Water	MTD-SW-07/2
C11216-3X	05/27 /10	13:15 JP	05/28/10	AQ	Surface Water	MTD-SW-09/2
C11216-4X	05/27/10	13:50 JP	Q5/28/1Q	AQ	Surface Wáter	MTD-SW-10/2
C11216-5X	0 5/27/10	10:50 JP	05/28/10	AQ	Surface Water	MTD-SW-06/2
C41216-6X	05/27/10	09:20 JP	05/28/1Q	AQ	Surface Water	MTD-SW 11/2
C11216-7X	05/27/10	12:45 JP	05/ 28 /10	AQ	Surface Water	MTD-SW-16/2

Accutest Laboratories

Sample Summary

The Source Group

Job No: Cl

C11217X

Mt. Diablo- Marsh Creek Road, Clayton, CA Project No: SUNOCO

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
ĒН217- 1 Х	05/27/10	12:00 JP	05/28/10	AQ	Surface Water	MTD-SW-02/2
C41217-3X	05/27/10	09 20 JP	05/28/10	AQ	Surface Water	MTD-SW-12/2
CĨ1217-4X	05/27/10	09:30 JP	05/28/10	AQ	Surface Water	MTD-SW-13/2
CM217-5X	05/27/10	10:05 JP*	05/28/10	ΛQ	Surface Water	MTD-SW-14/2
€H1217-6X	05/27/10	11:15 JP	05/28/10	ΛQ	Surface Water	MTD-SW-15/2
C11217-7X	05/27/10	13.10 JP	05/28/10	AQ	Surface Water	MTD-SW-05/2

ENVIRONMENTAL ANALYSES

ELAP Certification 1664

Tuesday, June 08, 2010

Ann Kathain Accutest Laboratories 2105 Lundy Avenue San Jose, CA 95131

> Lab Order: K060068 Project ID: MT.DIABLO

Collected By PO/Contract # CLIENT C11216

Dear Ann Kathain:

RE:

Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, June 01, 2010. Results reported herein **co**nform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Enclosures

Project Manager: Mike Hamilton

6/8/2010 15.37

nelac

C RD ASSAL

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of CALTEST ANALYTICAL LABORATORY Page 1 of 11

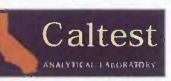
1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax (707) 226-1001 • e-mall: Info@caltestiabs.com

ELAP Certification 1664

ENVIRONMENTAL ANALYSES

SAMPLE SUMMARY

Lab Order:	K060068
Project ID:	MT.DIABLO


ab ID	Sample ID	Matrix	Date Collected	Date Received
060068001	MTD-SW-08/2	Water	5/27/2010 13:00	6/1/2010 14:20
060068002	MTD-SW-07/2	Water	5/27/2010 13:30	6/1/2010 14:20
060068003	MTD-SW-09/	Water	5/27/2010 13:15	6/1/2010 14:20
060066004	MTD-SW-10/2	Water	5/27/2010 13:50	6/1 /2010 14:2 0
060068005	MTD-SW-06/2	Water	5/27/201 0 10:50	6/1/2010 14:20
060068006	MTD-SW-11/2	Water	5/27/2010 09.20	6/1/2010 14:20
060068007	MTD-SW-16/2	Water	5/27/2010 12:45	6/1/2010 14:20
060068008	MTD-SW-02/2	Water	5/27/2010 12:00	6/1/2010 14:20
060086009	MTD-SW-04/2	Water	5/27/2010 12.15	6/1/2010 14:20
060068010	MTD-SW-12/2	Water	5/27/2010 09:20	6/1/2010 14:20
060068011	MTD-SW-13/2	Water	5/27/2010 09:30	6/1/2010 14:20
060066012	MTD-SW-14/2	Water	5/27/2010 10:05	6/1/2010 14:20
060068013	MTD-SW-15/2	Water	5/27/2010 11:15	6/1/2010 14·20
060068014	MTD-SW-05/2	Water	5/27/2010 13:10	6/1/2010 14:20

6/8/2010 15:37

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of CALTEST ANALYTICAL LABORATORY. Page 2 of 11

1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax (707) 226-1001 • e-mail: info@caltestlabs.com

ELAP Certification 1664

ENVIRONMENTAL ANALYSES

NARRATIVE

Lab Order: K060068 Project ID: MT.DIABLO

General Qualifiers and Notes

Caltest authorizes this report to be reproduced only in its entirety. Results are specific to the sample(s) as submitted and only to the parameter(s) reported.

Caltest certifies that all test results for wastewater and hazardous waste analyses meet all applicable NELAC requirements; all microbiology and drinking water testing meet applicable ELAP requirements, unless stated otherwise.

All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted.

Callest collects samples in compliance with 40 CFR, EPA Methods, Call Title 22, and Standard Methods.

Dilution Factors (DF) reported greater than '1' have been used to adjust the result, Reporting Limit (RL), and Method Detection Limit (MDL).

All Solid, sludge, a d/or blosolids data is reported in Wet Weight, unless otherwise specified

Laboratory filtration for dissolved metals (excluding mercury) and/or pH analysis was not performed within the 15 minute holding time as specified by 40CFR 136.3 table II.

Results Qualifiers: Report fields may contain codes and non-numeric data correlating to one or more of the following definitions:

ND - Non Detect - Indicates analytical result has not been detected.

RL - Reporting Limit is the quantitation limit at which the laboratory is able to detect an analyte. An analyte not detected at or above the RL is reported as ND unless otherwise noted or qualified. For analyses pertaining to the State Implementation Plan of the California Toxics Rule, the Cattest Reporting Limit (RL) is equivalent to the Minimum Level (ML). A standard is always run at or below the ML. Where Reporting Limits are elevated due to dilution, the ML calibration criteria has been met.

J - reflects estimated analytical result value detected below the Reporting Limit (RL) and above the Method Detection Limit (MDL). The 'J' flag is equivalent to the DNQ Estimated Concentration flag.

E - indicates an estimated analytical result value.

B - indicates the analyte has been detected in the blank associated with the sample

NC - means not able to be calculated for RPD or Spike R coveries.

SS - compound is a Surrogate Spike used per laboratory quality assurance manual

NOTE: This document represents a complete Analytical Report for the samples referenced herein and should be retained as a permanent record thereof.

6/8/2010 15:37

nelac

REPORT OF LABORATORY ANALYSIS

Page 3 of 11

This report shall not be reproduced, except in full, without the written consent of CALTEST ANALYTICAL LABORATORY.

1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax (707) 226-1001 • e-mail: info@caltestlabs.com

ELAP Certification 1664

ENVIRONMENTAL ANALYSIS

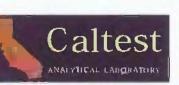
ANALYTICAL RESULTS

Lab Order: K060068 Project ID MT.DIABLO

										_
Lab ID:	K060068001	Date	e Collected:	5/27/2010 13:00		Matrix	Water			
Sample ID:	MTD-SW-08/2	Date	Received	6/1/2010 14:20						
Parameters		Result Units	RL	MDL	DF	Prepared	Batch	Analyzed	Batch	Quia
Methyl Merc	ury Analysis	Prep Meth Analytical		Draft EPA 1630 Draft EPA 1630		Prep by:	ECV	Analyzed by:	FCV	
Methyl Mercu	ıry	0.705 ng/L		0.05 0.02	1	06/02/10 00:00	MPR 8823	06/03/10 00.00		
Lab ID:	K060068002	Date	Collected:	5/27/2010 13:30		Matrix:	Water			
Sample (D:	MTD-SW-07/2	Date	Received:	6/1/2010 14:20						
Parameters		Result Units	R. L	MDL	DF	Prepared	Batch	Analyzed	Batch	Qua
Methyl Merc	ury Analysis	Prep Meth Analytica		Draft EPA 1630 Draft EPA 1630		Prep by:	ECV	Analyzed by:		
Methyl Mercu	iry	1.47 ng/L		0.05 0.02	1	06/02/10 00:00	MPR 8823	06/03/10 00:00		
Lab ID;	K060068003	Date	Collected.	5/27/2010 13:15		Matrix:	Water			-
Sample ID:	MTD-SW-09/	Date	e Received.	6/1/2010 14:20						
Parameters		Result Units	R. L.	MDL	DF	Prepared	Batch	Analyzed	Batch	Qua
Methyl Merc	ury Analysis	Prep Meth Analytical		Draft EPA 1630 Draft EPA 1630		Prep by:	ECV	Analyzed by:	ECV	
Methyl Mercu	iry	0.657 ng/L	NIGLIOU.	0.2 0.1	1	06/07/10 00:00	MPR 8838	06/07/10 00:00		
Lab ID :	K060068004	Date	Collected:	5/27/2010 13:50		Matrix	Water			
Sample ID:	MTD-SW-10/2	Date	Received	6/1/2010 14:20						
Parameters		Result Units	RL.	MDL	DF	Prepared	Batch	Analyzed	Batch	Qua
Methyl Merc	ury Analysis	Prep Meth		Draft EPA 1630		Prep by.	ECV	A - at - ad here	FOU	
Methyl Mercu	iry	Ana ≀ytical 7 26 ng/L		Draft EPA 1630 0.05 0.02	1	06/02/10 00:00	MPR 8823	Analyzed by: 06/03/10 00:00		
Lab ID:	K060068005	Date	Collected:	5/27/2010 10:50	-	Matrix:	Water			
Sample ID:	MTD-SW-08/2	Date	Received:	6/1/2010 14:20						
Parameters		Result Units	R L.	MD1	DF	Prepared	Batch	Analyzed	Batch	Qua
Methyl Merce	ury Analysis	Prep Meth	od.	Draft EPA 1630		Prep by.	ECV			

6/8/2010 15:37

REPORT OF LABORATORY ANALYSIS


This report shall not be reproduced, except in full,

Page 4 of 11

without the written consont of CALTEST ANALYTICAL LABORATORY.

1885 North Kelly Road - Napa, California 94558 (707) 258-4000 - Fax (707) 226-1001 - e-mail: info@caltestlabs.com

ENVIRONMENTAL ANALYSIS

ELAP Certification 1664

Lab Order: K060068 Project ID MT.DIABLO

K060068005		Dat	e Collected	5/2	27/2010 10:50		Matrix:	Water			
MTD-SW-06/2		Dat	e Received	6/-	/2010 14:20						
	Result	Units	R L.		MDL	DF	Prepared	Batch	Analyzed	Batch	Qua
у					EPA 1630 0.02	1	06/02/10 00:00	MPR 8823	-		
K060068006		Dat	e Collected	5/2	27/2010 09.20		Matrix:	Water			
MTD-SW-11/2		Dat	e Received	6/1	1/2010 14:20						
	Result	Units	R L.		MDL.	DF	Prepared	Batch	Analyzed	Batch	Qual
iry Analyŝis							Prep by:	ECV	Applyred by	ECV	-
У		-			0.02	1	06/02/10 00:00	MPR 8823			
K060068007		Date	e Collected	5/2	27/2010 12:45		Matrix:	Water			
MTD-SW-16/2		Date	e Received	6/1	1/2010 14: 20						
	Result	Units	R. L.		MDL	DF	Prepared	Batch	Analyzed	Batch	Qual
ry Analysis							Prep by:	ECV	Analyzed by:	FCV	
У					0.02	1	06/02/10 00:00	MPR 8823			
K060068008		Date	e Collected	5/2	27/2010 12:00		Matrix.	Water			_
MTD-SW-02/2		Date	e Received	6/1	1/2010 14:20						
	Result	Units	R . L.		MDL	DF	Prepared	Batch	Analyzed	Batch	Qual
ry Analysis							Prep by:	ECV	Applyrod by	FOU	
у			I MELTOD:	0.2	0.1	1	06/07/10 00:00	MPR 8838			
K060068010		Date	e Collected	5/2	7/2010 09:20		Matrix.	Water		_	
MTD-SW-12/2		Date	e Received	6/1	/2010 14:20						
	Result	Units	R. L.		MDL	DF	Prepared	Batch	Analyzed	Batch	Qual
ry Analysis		Prep Met				_					
	MTD-SW-06/2	MTD-SW-06/2	MTD-SW-06/2 Data Result Units Analytica ry 0.233 ng/L K060068006 Data MTD-SW-11/2 Data Irry Analysis Prep Mett ry 0.504 ng/L K060068007 Data MTD-SW-16/2 Data Irry Analysis Prep Mett Analytica O.504 ng/L K060068007 Data MTD-SW-16/2 Data Irry Analysis Prep Mett Analytica O.0766 ng/L K060068008 Data MTD-SW-02/2 Data Irry Analysis Prep Mett Analytica 2.84 ng/L K060068010 Data	MTD-SW-06/2 Date Received Result Units R L. Analytical Method: 0.233 ng/L ry 0.233 ng/L Image: Collected MTD-SW-11/2 Date Collected Date Received MTD-SW-11/2 Date Received Result Irry Analysis Prep Method: Analytical Method: Analytical Method: ry 0.504 ng/L Image: Collected MTD-SW-16/2 Date Collected Date Received Result Units R. L. Irry Analysis Prep Method: Analytical Method: Image: Collected mtD-SW-16/2 Date Collected Date Received K060068008 Date Collected Date Received MTD-SW-02/2 Date Received Image: Collected Irry Analysis Prep Method: Analytical Method: Image: Collected mtD-SW-02/2 Date Collected Date Received Irry Analysis Prep Method: Analytical Method: Image: Collected Irry Analysis Result <t< td=""><td>MTD-SW-06/2 Date Received: 6// Result Units R L. Analytical Method: Draft I ny 0.233 ng/L 0.05 K060068006 Date Collected: 5// MTD-SW-11/2 Date Received. 6// MTD-SW-11/2 Date Received. 6// MTD-SW-11/2 Date Received. 6// Irry Analysis Prep Method: Draft I ny 0.504 ng/L 0.05 K060068007 Date Collected: 5// MTD-SW-16/2 Date Received: 6/1 K060068007 Date Received: 5// MTD-SW-16/2 Date Received: 5// MTD-SW-16/2 Date Received: 6/1 K060068008 Date Collected: 5// MTD-SW-02/2 Date Received: 6/1 K060068008 Date Collected: 5// MTD-SW-02/2 Date Received: 6/1 Result Units R. L. Irry Analysis Prep Method: Draft H Analytical Method: Draft H Analytical Method:<!--</td--><td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL Analytical Method: Draft EPA 1630 ny 0.233 ng/L 0.05 0.02 K060068006 Date Collected: 5/27/2010 09.20 MTD-SW-11/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL Irry Analysis Prep Method: Draft EPA 1630 ny 0.504 ng/L 0.05 0.02 K060068007 Date Collected: 5/27/2010 12:45 MTD-SW-16/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL Irry Analysis Prep Method: Draft EPA 1630 Analytical Method: Draft EPA 1630 Analytical Method: Draft EPA 1630 MTD-SW-16/2 Date Collected: 5/27/2010 12:00 Analytical Method: Draft EPA 1630 MtD-SW-02/2 Result Units R. L. MDL MDL MtD-SW-02/2 Date Collected: 5/27/2010 12:00 Date Received: 6/1/2010 14:20 MtD-SW-02/2 Result Units R. L. MDL MDL</td><td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R.L. MDL DF Analytical Method: Draft EPA 1630 0.02 1 K060068006 Date Collected: 5/27/2010 09:20 1 K060068006 Date Received: 6/1/2010 14:20 DF K060068006 Date Received: 6/1/2010 14:20 DF Irry Analysis Prep Method: Draft EPA 1630 DF Irry Analysis Prep Method: Draft EPA 1630 0.02 1 K060068007 Date Collected: 5/27/2010 12:45 DF MTD-SW-16/2 Date Received: 6/1/2010 14:20 DF Irry Analysis Prep Method: Draft EPA 1630 D MTD-SW-16/2 Date Collected: 5/27/2010 12:45 D Irry Analysis Prep Method: Draft EPA 1630 D Irry Analysis Prep Method: Dr</td><td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL DF Prepared Analytical Method: Draft EPA 1630 D Df 0/02/10 00:00 K060068006 Date Collected: 5/27/2010 09:20 Matrix: MTD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: MTD-SW-11/2 Result Units R L. MDL DF Prepared Irry Analysis Prep Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: MTD-SW-16/2 Date Collected: 5/27/2010 12:45 Matrix: MTD-SW-16/2 Date Received: 0/1/2010 14:20 Matrix: MTD-SW-16/2 Date Received: 5/27/2010 12:45 Matrix: MTD-SW-16/2 Date Received: 5/27/2010 12:45 Matrix: MTD-SW-16/2 Drep Method: Draft EPA 1630</td><td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL DF Prepared Balch Analytical Method: Draft EPA 1630 1 06/02/10 0.000 MPR 8823 K0600668006 Date Collected: 5/27/2010 0.9.20 Matrix: Water MTD-SW-11/2 Date Received: 6/1/2010 1 06/02/10 0.000 MPR 8823 K0600668006 Date Collected: 5/27/2010 0.92 Matrix: Water MTD-SW-11/2 Date Received: 6/1/2010 1 06/02/10 0.000 MPR 8823 K0600668007 On564 ng/L 0.06 0.02 1 06/02/10 0.000 MPR 8823 K0600668007 Date Received: 5/27/2010 12.45 Matrix: Water MTD-SW-16/2 Date Received: 5/27/2010 12.45 Matrix: Water Mry Analysis Prep Method: Draft EPA 1630 Prep by: ECV Analytical Method: Draft EPA 1630 Prep by: ECV MTD-SW-02/2 Date Received: 5/27/2010 1.05/02/10 0.000<!--</td--><td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL DF Prepared Batch Analyzed by: ry 0.233 ng/L 0.05 0.02 1 06/02/10 00:00 MPR 8823 06/03/10 00:00 K060068006 Date Collected: 5/27/2010 09:20 Matrix: Water MTD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: Water K060068006 Date Collected: 5/27/2010 09:20 Matrix: Water mtD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: Water K060068007 Date Received: Draft EPA 1630 Prep by: ECV Analyzed by: mtD-SW-16/2 Date Collected: 5/27/2010 12:45 Matrix: Water Malyzed K060068007 Date Received: Ø/1/2010 14:420 DF Prep may: ECV Analyzed by: mty Analysis Prep Method: Draft EPA 1630 Prep by: ECV Analyzed MtD-SW-0/2 Date Received: Ø/1/2010 14:20 Matrix: Water mty Analysis Prep Method: D</td><td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL DF Prepared Batch Analyzed Batch Analytical Method: Drat EPA 1630 0.05 0.02 1 08/02/10 0.000 MPR 8823 08/03/10 0.00 MHG 3152 K060068006 Date Collected: 5/27/2010 09.20 Mathix: Water Water MTD-SW-11/2 Date Received: 6/1/2010 1/2010 0.05 0.02 1 08/02/10 0.00 MHG 3152 MTD-SW-11/2 Date Received: 6/1/2010 1/200 Mathix: Water Malyzed Batch Analyzed Batch Anal</td></td></td></t<>	MTD-SW-06/2 Date Received: 6// Result Units R L. Analytical Method: Draft I ny 0.233 ng/L 0.05 K060068006 Date Collected: 5// MTD-SW-11/2 Date Received. 6// MTD-SW-11/2 Date Received. 6// MTD-SW-11/2 Date Received. 6// Irry Analysis Prep Method: Draft I ny 0.504 ng/L 0.05 K060068007 Date Collected: 5// MTD-SW-16/2 Date Received: 6/1 K060068007 Date Received: 5// MTD-SW-16/2 Date Received: 5// MTD-SW-16/2 Date Received: 6/1 K060068008 Date Collected: 5// MTD-SW-02/2 Date Received: 6/1 K060068008 Date Collected: 5// MTD-SW-02/2 Date Received: 6/1 Result Units R. L. Irry Analysis Prep Method: Draft H Analytical Method: Draft H Analytical Method: </td <td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL Analytical Method: Draft EPA 1630 ny 0.233 ng/L 0.05 0.02 K060068006 Date Collected: 5/27/2010 09.20 MTD-SW-11/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL Irry Analysis Prep Method: Draft EPA 1630 ny 0.504 ng/L 0.05 0.02 K060068007 Date Collected: 5/27/2010 12:45 MTD-SW-16/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL Irry Analysis Prep Method: Draft EPA 1630 Analytical Method: Draft EPA 1630 Analytical Method: Draft EPA 1630 MTD-SW-16/2 Date Collected: 5/27/2010 12:00 Analytical Method: Draft EPA 1630 MtD-SW-02/2 Result Units R. L. MDL MDL MtD-SW-02/2 Date Collected: 5/27/2010 12:00 Date Received: 6/1/2010 14:20 MtD-SW-02/2 Result Units R. L. MDL MDL</td> <td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R.L. MDL DF Analytical Method: Draft EPA 1630 0.02 1 K060068006 Date Collected: 5/27/2010 09:20 1 K060068006 Date Received: 6/1/2010 14:20 DF K060068006 Date Received: 6/1/2010 14:20 DF Irry Analysis Prep Method: Draft EPA 1630 DF Irry Analysis Prep Method: Draft EPA 1630 0.02 1 K060068007 Date Collected: 5/27/2010 12:45 DF MTD-SW-16/2 Date Received: 6/1/2010 14:20 DF Irry Analysis Prep Method: Draft EPA 1630 D MTD-SW-16/2 Date Collected: 5/27/2010 12:45 D Irry Analysis Prep Method: Draft EPA 1630 D Irry Analysis Prep Method: Dr</td> <td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL DF Prepared Analytical Method: Draft EPA 1630 D Df 0/02/10 00:00 K060068006 Date Collected: 5/27/2010 09:20 Matrix: MTD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: MTD-SW-11/2 Result Units R L. MDL DF Prepared Irry Analysis Prep Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: MTD-SW-16/2 Date Collected: 5/27/2010 12:45 Matrix: MTD-SW-16/2 Date Received: 0/1/2010 14:20 Matrix: MTD-SW-16/2 Date Received: 5/27/2010 12:45 Matrix: MTD-SW-16/2 Date Received: 5/27/2010 12:45 Matrix: MTD-SW-16/2 Drep Method: Draft EPA 1630</td> <td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL DF Prepared Balch Analytical Method: Draft EPA 1630 1 06/02/10 0.000 MPR 8823 K0600668006 Date Collected: 5/27/2010 0.9.20 Matrix: Water MTD-SW-11/2 Date Received: 6/1/2010 1 06/02/10 0.000 MPR 8823 K0600668006 Date Collected: 5/27/2010 0.92 Matrix: Water MTD-SW-11/2 Date Received: 6/1/2010 1 06/02/10 0.000 MPR 8823 K0600668007 On564 ng/L 0.06 0.02 1 06/02/10 0.000 MPR 8823 K0600668007 Date Received: 5/27/2010 12.45 Matrix: Water MTD-SW-16/2 Date Received: 5/27/2010 12.45 Matrix: Water Mry Analysis Prep Method: Draft EPA 1630 Prep by: ECV Analytical Method: Draft EPA 1630 Prep by: ECV MTD-SW-02/2 Date Received: 5/27/2010 1.05/02/10 0.000<!--</td--><td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL DF Prepared Batch Analyzed by: ry 0.233 ng/L 0.05 0.02 1 06/02/10 00:00 MPR 8823 06/03/10 00:00 K060068006 Date Collected: 5/27/2010 09:20 Matrix: Water MTD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: Water K060068006 Date Collected: 5/27/2010 09:20 Matrix: Water mtD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: Water K060068007 Date Received: Draft EPA 1630 Prep by: ECV Analyzed by: mtD-SW-16/2 Date Collected: 5/27/2010 12:45 Matrix: Water Malyzed K060068007 Date Received: Ø/1/2010 14:420 DF Prep may: ECV Analyzed by: mty Analysis Prep Method: Draft EPA 1630 Prep by: ECV Analyzed MtD-SW-0/2 Date Received: Ø/1/2010 14:20 Matrix: Water mty Analysis Prep Method: D</td><td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL DF Prepared Batch Analyzed Batch Analytical Method: Drat EPA 1630 0.05 0.02 1 08/02/10 0.000 MPR 8823 08/03/10 0.00 MHG 3152 K060068006 Date Collected: 5/27/2010 09.20 Mathix: Water Water MTD-SW-11/2 Date Received: 6/1/2010 1/2010 0.05 0.02 1 08/02/10 0.00 MHG 3152 MTD-SW-11/2 Date Received: 6/1/2010 1/200 Mathix: Water Malyzed Batch Analyzed Batch Anal</td></td>	MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL Analytical Method: Draft EPA 1630 ny 0.233 ng/L 0.05 0.02 K060068006 Date Collected: 5/27/2010 09.20 MTD-SW-11/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL Irry Analysis Prep Method: Draft EPA 1630 ny 0.504 ng/L 0.05 0.02 K060068007 Date Collected: 5/27/2010 12:45 MTD-SW-16/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL Irry Analysis Prep Method: Draft EPA 1630 Analytical Method: Draft EPA 1630 Analytical Method: Draft EPA 1630 MTD-SW-16/2 Date Collected: 5/27/2010 12:00 Analytical Method: Draft EPA 1630 MtD-SW-02/2 Result Units R. L. MDL MDL MtD-SW-02/2 Date Collected: 5/27/2010 12:00 Date Received: 6/1/2010 14:20 MtD-SW-02/2 Result Units R. L. MDL MDL	MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R.L. MDL DF Analytical Method: Draft EPA 1630 0.02 1 K060068006 Date Collected: 5/27/2010 09:20 1 K060068006 Date Received: 6/1/2010 14:20 DF K060068006 Date Received: 6/1/2010 14:20 DF Irry Analysis Prep Method: Draft EPA 1630 DF Irry Analysis Prep Method: Draft EPA 1630 0.02 1 K060068007 Date Collected: 5/27/2010 12:45 DF MTD-SW-16/2 Date Received: 6/1/2010 14:20 DF Irry Analysis Prep Method: Draft EPA 1630 D MTD-SW-16/2 Date Collected: 5/27/2010 12:45 D Irry Analysis Prep Method: Draft EPA 1630 D Irry Analysis Prep Method: Dr	MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL DF Prepared Analytical Method: Draft EPA 1630 D Df 0/02/10 00:00 K060068006 Date Collected: 5/27/2010 09:20 Matrix: MTD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: MTD-SW-11/2 Result Units R L. MDL DF Prepared Irry Analysis Prep Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: Analytical Method: Draft EPA 1630 Prep by: MTD-SW-16/2 Date Collected: 5/27/2010 12:45 Matrix: MTD-SW-16/2 Date Received: 0/1/2010 14:20 Matrix: MTD-SW-16/2 Date Received: 5/27/2010 12:45 Matrix: MTD-SW-16/2 Date Received: 5/27/2010 12:45 Matrix: MTD-SW-16/2 Drep Method: Draft EPA 1630	MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R L. MDL DF Prepared Balch Analytical Method: Draft EPA 1630 1 06/02/10 0.000 MPR 8823 K0600668006 Date Collected: 5/27/2010 0.9.20 Matrix: Water MTD-SW-11/2 Date Received: 6/1/2010 1 06/02/10 0.000 MPR 8823 K0600668006 Date Collected: 5/27/2010 0.92 Matrix: Water MTD-SW-11/2 Date Received: 6/1/2010 1 06/02/10 0.000 MPR 8823 K0600668007 On564 ng/L 0.06 0.02 1 06/02/10 0.000 MPR 8823 K0600668007 Date Received: 5/27/2010 12.45 Matrix: Water MTD-SW-16/2 Date Received: 5/27/2010 12.45 Matrix: Water Mry Analysis Prep Method: Draft EPA 1630 Prep by: ECV Analytical Method: Draft EPA 1630 Prep by: ECV MTD-SW-02/2 Date Received: 5/27/2010 1.05/02/10 0.000 </td <td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL DF Prepared Batch Analyzed by: ry 0.233 ng/L 0.05 0.02 1 06/02/10 00:00 MPR 8823 06/03/10 00:00 K060068006 Date Collected: 5/27/2010 09:20 Matrix: Water MTD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: Water K060068006 Date Collected: 5/27/2010 09:20 Matrix: Water mtD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: Water K060068007 Date Received: Draft EPA 1630 Prep by: ECV Analyzed by: mtD-SW-16/2 Date Collected: 5/27/2010 12:45 Matrix: Water Malyzed K060068007 Date Received: Ø/1/2010 14:420 DF Prep may: ECV Analyzed by: mty Analysis Prep Method: Draft EPA 1630 Prep by: ECV Analyzed MtD-SW-0/2 Date Received: Ø/1/2010 14:20 Matrix: Water mty Analysis Prep Method: D</td> <td>MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL DF Prepared Batch Analyzed Batch Analytical Method: Drat EPA 1630 0.05 0.02 1 08/02/10 0.000 MPR 8823 08/03/10 0.00 MHG 3152 K060068006 Date Collected: 5/27/2010 09.20 Mathix: Water Water MTD-SW-11/2 Date Received: 6/1/2010 1/2010 0.05 0.02 1 08/02/10 0.00 MHG 3152 MTD-SW-11/2 Date Received: 6/1/2010 1/200 Mathix: Water Malyzed Batch Analyzed Batch Anal</td>	MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL DF Prepared Batch Analyzed by: ry 0.233 ng/L 0.05 0.02 1 06/02/10 00:00 MPR 8823 06/03/10 00:00 K060068006 Date Collected: 5/27/2010 09:20 Matrix: Water MTD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: Water K060068006 Date Collected: 5/27/2010 09:20 Matrix: Water mtD-SW-11/2 Date Received: 6/1/2010 14:20 Matrix: Water K060068007 Date Received: Draft EPA 1630 Prep by: ECV Analyzed by: mtD-SW-16/2 Date Collected: 5/27/2010 12:45 Matrix: Water Malyzed K060068007 Date Received: Ø/1/2010 14:420 DF Prep may: ECV Analyzed by: mty Analysis Prep Method: Draft EPA 1630 Prep by: ECV Analyzed MtD-SW-0/2 Date Received: Ø/1/2010 14:20 Matrix: Water mty Analysis Prep Method: D	MTD-SW-06/2 Date Received: 6/1/2010 14:20 Result Units R. L. MDL DF Prepared Batch Analyzed Batch Analytical Method: Drat EPA 1630 0.05 0.02 1 08/02/10 0.000 MPR 8823 08/03/10 0.00 MHG 3152 K060068006 Date Collected: 5/27/2010 09.20 Mathix: Water Water MTD-SW-11/2 Date Received: 6/1/2010 1/2010 0.05 0.02 1 08/02/10 0.00 MHG 3152 MTD-SW-11/2 Date Received: 6/1/2010 1/200 Mathix: Water Malyzed Batch Analyzed Batch Anal

6/8/2010 15:37

REPORT OF LABORATORY ANALYSIS

Page 5 of 11

This report shall not be reproduced, except in full,

without the written consent of CALTEST ANALYTICAL LABORATORY

1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax (707) 226-1001 • e-mail: info@caltestlabs.com

ELAP Certification 1664

ENVIRONMENTAL ANALYSIS

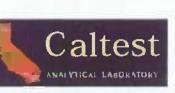
ANALYTICAL RESULTS

Lab Order: K060068 Project ID MT.DIABLO

Lab ID:	K060068010		Da	te Collected	ţ,	5/27/2010 09:20		Matrix:	Water			
Sample ID:	MTD-SW-12/2		Da	te Received		6/1/2010 14:20						
Parameters		Resul	t Units	RL		MDL	DF	Prepared	Batch	Analyzed	Batch	Qua
Methyl Mercu	гу	0.104	I ng/L		0 05	0.02	1	06/02/10 00:00	MPR 8823	06/03/10 00:00	MHG 3152	-
Lab ID:	K060068011		Da	te Collected	:	5/2 7/2010 09:30	-	Matrix:	Water			
Sample ID:	MTD-SW-13/2		Da	te Received	2	6/1/2010 14.20						
Parameters		Result	Units	R. L.		MDL	DF	Prepared	Batch	Analyzed	Batch	Qual
Methyl Merci			Prep Mei Analytica	lhod: al Method:		ft EPA 1630 ft EPA 1630		Prep by:	ECV	Analyzed by:	ECV	_
Methyl Mercu	ry	0.439	ng/L		0.05	0.02	1	06/02/10 00.00	MPR 8823	06/03/10 00:00	MHG 3152	
Lab ID. Sample ID:	K060068012 MTD-SW-14/2			te Collected		5/27/2010 10:05 6/1/2010 14:20		Matrix:	Water			
Parameters		Result	Units	R. L.	2	MDL	DF	Prepared	Batch	Analyzed	Batch	Qual
Methyl Mercu Methyl Mercur		1 16	Prep Met Analytica ng/L	al Method:		ft EPA 1630 ft EPA 1630 0 02	1	Prep by: 06/02/10 00:00		Analyzed by: 06/03/10 00.00		F
				_	-		_					
Lab ID: Sample ID:	K060068013 MTD-SW-15/2			e Collected e Received:		5/27/2010 11:15 6/1/2010 14: 20		Matrix;	Water			
Parameters		Result	Units	R. L.		MDL	DF	Prepared	Batch	Analyzed	Batch	Qual
Methyl Mercu Methyl Mercur		4.86		hod: Il Method:		ft EPA 1630 ft EPA 1630 0 1	1	Prep by: 06/07/10 00:00		Analyzed by:		_
	,	1.00	i gr =		0.2	0.1		00/07/10 00:00	WPR 0030	06/07/10 00:00	MHG 3153	_
Lab ID: Sample ID:	K060068014 MTD-SW-05/2			e Collected: e Received:		5/27/2010 13:10 5/1/2010 14:20		Matrix [.]	Water			
Parameters		Resulf	Units	R. L		MDL	DF	Prepared	Batch	Analyzed	Batch	Qual
Methyl Mercu Methyl Mercury		.3.29	-	nod: Method:		t EPA 1630 t EPA 1630 0.1	1	Prep by: 06/07/10 00 00		Analyzed by: 06/07/10 00:00	ECV	

6/8/2010 15:37

REPORT OF LABORATORY ANALYSIS


This report shall not be reproduced, except in full,

Page 6 of 11

without the written consent of CALTEST ANALYTICAL LABORATORY. 1885 North Kelly Road • Napa, California 94558

(707) 258-4000 • Fax (707) 226-1001 • e-mail: info@caltestlabs.com

ELAP Certification 1664

ENVIRONMENTAL ANALYSIS

ANALYTICAL RESULTS

Lab Order: K060068 Project ID MT.DIABLO

Lab ID:	K06006B014	Date	Collected	5/27/2010 13.1	0 Matrix.	Water			
Sample ID:	MTD-SW-05/2	Date	Received.	6/1/2010 14:20					
Parameters		Result Units	R.L.	MDL	DF Prepared	Batch	Analyzed	Batch	Quai

6/8/2010 15:37

nelac

This report shall **not be reproduced**, except in full. without the written consent of CALTEST ANALYTICAL LABORATORY. Page 7 of 1.1

1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax (707) 226-1001 • e-mail: info@caltestlabs.com

ELAP Certification 1664

ENVIRONMENTAL ANALYSES

QUALITY CONTROL DATA

Lab Order: K060068 Project (D: MT.DIABLO

Analysia Description: Analysis Method:	Methyl Merc Draft EPA 16					QC B QC B	atch: atch Me		APR/8823 Draft EPA 1	630		
METHOD BLANK:		333862										
Parameter		Blank Result	Report Li		MDL	Units	Quall	fiers				
Methyl Mercury	-	ND	C	0.05	0.02	ng/L			-4			
LABORATORY CONTRE	DL SAMPLE:	333863										
Parameter		Units	Spike Conc.		LCS Result	e	LCS % Rec		6 Rec imits Qua	lifiers		
Methyl Mercury		ng/L	1.11		1.09		98	67	7-133		_	
MATRIX SPIKE & MATR	X SPIKE DUP	LICATE: 33	33864		333865							
Parameter	Units	K060068001 Result	Spike Conc.	MS Resul		SD sult 9	MS % Rec	MSD % Rec		RPD	Max RPD	Qualifiers
Methyl Mercury MATRIX SPIKE & MATRI	ng/L X SPIKE DUP	0.705 LICATE: 33	1.11 3866	1.68	3 1 333867	.62	88	82	65-135	3.6	35	
		K060068007	Spike	MS	5 M	SD	MS	MSD	% Rec		Max	

Parameter	r Units	Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Methyl Mercury	ng/L	0.0766	1.11	1 11	1.18	93	99	65-1 35	6.1	35

Analysis Description:	Methyl Mercury Analysis	QC Batch: MPR/8838
Analysis Method:	Draft EPA 1630	QC Batch Method: Draft EPA 1630
METHOD BLANK:	334666	

Parameter	Blank Result	Reporting Limit	MDL	Units	Qualifiers
Methyl Mercury	ND	0.05	0.02	ng/L	

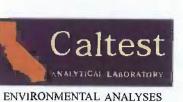
LABORATORY CONTROL SAMPLE: 334667

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
Methyl Mercury	ng/L	1.11	0.96	86	67-133

6/8/2010 15:37

REPORT OF LABORATORY ANALYSIS

Page 8 of 11


This report shall not be reproduced, except in full, without the written consent of CALTEST ANALYTICAL LABORATORY.

1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax (707) 226-1001 • e-mail: info@caltestlabs.com

rtg/L

0.0356

1.11

ELAP Certification 1664

and the second second

QUALITY CONTROL DATA

Lab Order: K060068 Project ID: MT.DIABLO

Methyl Mercury

Analysis Description: Analysis Method:	Methyl Mercury Draft EPA 1630					Batch: Batch Me		PR/8838	
MATRIX SPIKE & MATRI	X SPIKE DUPLI	CATE 3	34668	33	4669				
Parameter	K Units	060232002 Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RPD	Max RPD Qualifiers

1 03

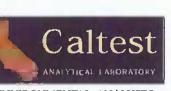
1.04

89

90

65-135

1 35


6/8/2010 15:37

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of CALTEST ANALYTICAL LABORATORY.

1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax (707) 226-1001 • e-mail: info@caltestlabs.com Page 9 of †1

ELAP Certification 1664

ENVIRONMENTAL ANALYSES

QUALITY CONTROL DATA QUALIFIERS

Lab Order: K060068 Project ID: MT.DIABLO

QUALITY CONTROL PARAMETER QUALIFIERS

Results Qualifiers. Report fields may contain codes and non-numeric data correlating to one or more of the following definitions:

NS - means not spiked and will not have recoveries reported for Analyte Spike Amounts

NC - means not able to be calculated for RPD or Spike Recoveries.

QC Codes Keys: These descriptors are used to help identify the specific QC samples and clarify the report.

MB - Method Blank

Method Blanks are reported to the same Method Detection Limits (MDLs) or Reporting Limits (RLs) as the analytical samples in the corresponding QC batch.

LCS/LCSD - Laboratory Control Spike / Laboratory Control Spike Duplicate

DUP - Duplicate of Original Sample Matrix

MS/MSD - Matrix Spike / Matrix Spike Duplicate

RPD - Relative Percent Olfference

%Recovery - Spike Recovery stated as a percentage

6/8/2010 15:37

nelac

This report shall not be reproduced, except in full, without the written consent of CALTEST ANALYTICAL LABOR//TORY. Page 10 of 11

1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax (707) 226-1001 • e-mail: info@caltestlabs.com

ELAP Certification 1664

ENVIRONMENTAL ANALYSES

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Lab Order: K060068 Project ID: MT.DIABLO

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
K060068001	MTD-SW-08/2	Draft EPA 1630	MPR/8823	Draft EPA 1630	MHG/3152
K060088002	MTD-SW-07/2	Draft EPA 1630	MPR/8823	Draft EPA 1630	MHG/3152
K060068004	MTD-SW-10/2	Draft EPA 1630	MPR/8823	Draft EPA 1630	MHG/3152
K080068005	MTD-SW-06/2	Draft EPA 1630	MPR/8823	Draft EPA 1630	MHG/3152
K060068006	MTD-SW-11/2	Draft EPA 1630	MPR/8823	Draft EPA 1630	MHG/3152
K060068007	MTD-SW-16/2	Draft EPA 1630	MPR/8823	Draft EPA 1630	MHG/3152
K060068010	MTD-SW-12/2	Draft EPA 1630	MPR/8823	Draft EPA 1630	MHG/31 52
K060068011	MTD-SW-13/2	Draft EPA 1630	MPR/8823	Draft EPA 1630	MHG/3152
K060088012	MTD-SW-14/2	Draft EPA 1630	MPR/8823	Draft EPA 1630	MHG/3152
K060068003	MTD-SW-09/	Draft EPA 1630	MPR/8838	Draft EPA 1630	MHG/3153
K060068008	MTD-SW-02/2	Draft EPA 1630	MPR/8838	Drafi EPA 1630	M HG/31 53
K060068013	MTD-SW-15/2	Draft EPA 1630	MPR/8838	Draft EPA 1630	MHG/3153
K060068014	MTD-SW-05/2	Draft EPA 1630	MPR/8838	Draft EPA 1630	MHG/3153

6/8/2010 15.37

nelac

This report shall not be reproduced, except in full, without the written consent of CALTEST ANALYTICAL LABORATORY. Page 11 of 11

1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax (707) 226-1001 • e-mail: info@caltestlabs.com

Accutest ID and PO#: C11216

2105 Lundy Avenue, San Jose, CA 95131 Phone : (408) 588-0200 Fax: (408) 588-0201

Subcontract Chain of Custody

in the

Subcontract Lab: Caltest Analytical Laboratory Date Sent: 06/01/10 + Date Due: 5 DAY TAT

S Day TAT RUSH

Project Name: Mt. Diablo Project Location: Clayton, CA

Accutest Lab Number	Customer Sample Name/Field Point ID	Matrix	Method	Collect Date	Collect Time
C11216-1	MTD-SW-08/2	SW	Methyl Mercury	05/27/10	13: 0 0
C11216-2	MTD-SW-07/2	SW	Methyl Mercury	05/27/10	13:30
C11216-3	MTD-SW-09/2	SW	Methyl Mercury	05/27/10	13:15
C11216-4	MTD-SW-10/2	SW	Methyl Mercury	05/27/10	13:50
C11216-5	MTD-SW-06/2	SW	Methyl Mercury	05/27/10	10:50
CI 1216-6	MTD-SW-11/2	SW	Methyl Mercury	05/27/10	09:20
C11216-7	MTD-SW-16/2	sw	Methyl Mercury	05/27/10	12:45

Comments:

Relinquished By:	Roceiver By:	Date;	Time:
ekumar Nethum	4	4/1/10	1145
Retinquished by:	Received By:	Date:	Time:
15	Nich	6/1/10	1420
Relinquished By.	Received By	Date:	Time:
	Y /	-	

Send the Report to: annek@accutest.com

Accutest ID and PO#: C11217

2105 Lundy Avenue, San Jose, CA 95131 Phone : (408)588-0200 Fax: (408)588-0201

Subcontract Chain of Custody

Subcontract Lab: Caltest Analytical Laboratory 🐇 Date Sent: 06/01/10 Date Due: 5 DAY TAT

5 Day TAT

RUSM

Project Name: Mt. Diablo Project Location: Clayton, CA

Accutest Lab Number	Customer Sample Name/Field Point ID	Matrix	Method	Collect Date	Collect Time
C11217-1	MTD-SW-02/2	SW	Methyl Mercury	05/27/10	12:00
C11217-2 6	MTD-SW-04/2	sw	Methyl Mcrcury (ON HOLD)	05/27/10	12:15
C11217-3	MTD-SW-12/2	SW	Methyl Mercury	05/27/10	09:20
CI1217-4	MTD-SW-13/2	SW	Methyl Mercury	05/27/10	09:30
C11217-5	MTD-SW-14/2	SW	Methyl Mercury	05/27/10	10:05
C11217-6	MTD-SW-15/2	SW	Methyl Mercury	05/27/10	11:15
CI1217-7	MTD-SW-05/2	SW	Methyl Mercury	05/27/10	13:10

Comments: C11217-2 (ON HOLD)

Relinquished By: ekumar	Received By:	Date: 6/1/10	Time: 1145
Relinquished By	Received By:	Date: 6/1/10	Time: 1920
Relinguished By:	Received By:	Date?	Time:

Send the Report to: annek@accutest.com

	Northern California		CHAIN OF CUSTO 2105 Lundy Ave, San Jose, CA 95131 (408) 588-0200 FAX: (408) 588-0201 SGR PCA P				1			L	-	FEDEX Tracking #					Bohle Order Control # Accutest NC Job #: 9						
1. 1. St.	Client / Reporting Information	1-1-1		Proj	ect info	mailon	201	NI Ç	PAF	1114	61-						-	Regu	A beta	nalyele			Malrix Codes
Company M			Project Name: Sunoco, Mt. Diablo												F				Pa	(1)		WWW Wasteverter GWK Ground Water	
Address			Streel													C. Car)			6	-	10	2	SW- Surface Water
3451C Vi City	ncent Road State	Zip	City State										-	IC.	3	pH, Bic,			6	포기	A water	5 28	50- 5 of
	НП СА 945	1.	Clayton CA										filter	(3)	Ca test	S, S	Ne, Si		1	CLab-Filtere	1º	19	6040
Pleasant Project Cor		<i>c</i>	Project #		50								()-(Lab filter	Elung small	(tract)	THE O	Mg. Ca. N		1, 504, 84, HOS, 24, Hat		R		WP-Wpa
Phone #	925-944-2858 x 316		EMAIL:	philipp@l	Tescun	cequoup	net					-	(teop		bco	b, all	4		à	- E	1	2	
Samplers's	Name Jon Philipp		CKenl Purchese Order #									- No	ant N	3 (30	(Frid	l (turb, al Fe, Mn,	(DW	100	Junk	4		A/R DW- Dricking Water	
	Jour e tauty	1	Collection Number of							-	od O	attlaa	(disa	Pollutiant	Incla	Chem	Cations (B, K,	Į,		10	1		(Parchitorste Only)
Accutest Sampla	Sample ID / Field Point / Point of Collection	Date	Time	Sampled by	Mətrix	# of boltins	Q Q	HON		1	8	Tal	Marcury (dissolved/tatal)	Priority P	Wethy! M	Methyl Mercury (subcontract) General Chem (turb, alk, TDS,		Handness	Anions (CL	Dissolved Organic Carbon	14		LAB USE ONLY
	MTD-SW-08/2	27-May	13:00		SW	4	1		1	2		-	X	x	X	X	x	x	X	X		1	
-2	MTD-SW-07/2	27-May	13:30	JP	SW	4	1	1		2		1	x	x	x	x	x	x	x	X	凿	->	to be Run, as per client.
-3	MTD-SW-09/2	27-May	13:15	JP	SW	4	1	1	1	2		1	x	X	x	X	x	x	X	x			Emai
-4	MTD-SW-10/2		13:50		-		1	-	1	2		-	X	1		x	x	1	x	X	5 76	10	
-5	MTD-SW-06/2	27-May 27-May	10:50		SW	4			1	2		1	X	X	X	x	X	X	x	x		-	
14-6	MTD-8W-11/2	27-May	9:20		SW	3	1	1		1			x	X	x	x	x	x	x	X	1		
4	MTD-5W-16/2	27-May	12:45		sw	4	1		1	2		-	X	x	x	x	x	x	x	x	×	-	TO BE RUM
10.1.1					GIV			1		Ē				-			-				5 71	10	Client Brail
								1	1	t							-				t		
	5 Day Standard 3 Day (50% markup) 2 Day (76% markup)	oved Bys' Dat	e;	Comm	ercial "8 ericel "6	liversble i I* - Renul I* - Renul I* - Renul I dete pa Isker	la wit alte, Qi skage	- QC +	d chra	mator	gratuu a			analyza i	South	poly	on H	g the si ve to cu pd 4 193) p	mellung utsomot D be	x7); 9	lack of ours led as	pto, call Per	no. Client Gnail
Emer	gency T/A data available VIA Labiink			Provide	EDF Git	gcodo: _	-		-	_		-		0		Som						102.00	ch w/p (kt) dissolved (49)
Rollness 1		Date Times	Will5	Received By:	11	vez		-	Rell	inquint	nied Dy NOT \	d to	ourier di unier			H: 19: 05 8:	-		Receive Z Astebye	ethe	m	- 11(
3 Rollinguished by: Date Time:				3 Received By; 5	-		-	-	4 Cus	4 Custody Sezi 0				ropriste Boltie J Pres (VIN Headspate YIN J) A Onice (Y)N					Cooler Temp. D-3 = 5.1 Cisc				

Accutest Laboratories Northern California Sample Receiving Check List

Review Chain of Custody Chain of Custody Is to be complete and I	egible.
G'Are these regulatory (NPDES)-samples? GWA-	Nes No
d'ls pH requested?	Yes / No)
was Client informed that hold time is 15 min? Yes / No Continue	YesiNo
	Yes / No
Are sample within hold time?	Yes / No
Are sample in danger of exceeding hold-time	Yes / No
CrExisting Client? (c) / No Existing Project?	Yes/ No
If No: Is Report to Info complete and legible, including;	
c deliverable c Name c Address c phone c e-mail	
Is Bill to into complete and legible, including;	
D PO# D Credit card D Contact Daddress D phone D e-mail	1
Is Contact and/or Project Manager identified, including;	
n phone a e-mail	
g Project name / number @ Special requirements?	(Yes / No
a Sample IDs / date & time of collection provided?	Nes / No
e'ls Matrix listed and correct?	Res / No
Analyses listed we do or client has authorized a subcontract?	Yes / No
p/Chain is signed and dated by both client and sample custodian?	Nes / No
TAT requested available? Yes / No Approved by PM	-
Review Coolers:	
g/Were Coolers temperatures measured at ≤6°C? Cooler # _L Tem	10 5.1 °C
 If cooler is outside the ≤6°C; note down below the affected bottles in th Note that ANC does NOT accept evidentiary samples. (We do not loop 	tat cooler k refrigerators
Shipment Received Method world Courier	
Custody Seals: Present: Yes / No If Yes; Unbroken:	Yes / No
Review of Sample Bottles: If you answer no, explain to the side	
Thain matches bottle tabels? Yes / No p-Sample bottle intact?	Yes/ No
ats there enough sample volume in proper bottle for requested analyses	? Yes/ No
Proper Preservatives? Yes/ No Check pH on preserved samples e 625, 8270 and VOAs.	except 1664.
A Headspace-VOAs? Greater than 6mm in diameter Yes / No NA List sample ID and affected container	

Sample Control Rep. Initial:

Job# : CINLID

SGRPCAPH 2674

Client Sample 10	pH Check	Other Comments/Issue
-	PHRA	250m part (12 HNO3)
		T
the second		
-7 55	and in	
		the shall be the second of the
		at methyl mercury -> subbed to
		Calles ,
		1
		· · · · · · · · · · · · · · · · · · ·
	- Los	
		-

Non-Compliance issues and discrepancies on the COC are forwarded to Project Management \\Anc-srv-file1\d\$\Entech-Data\Laboratory\SOPs\SOP_CompleteListing\SC001F1_1_Form1_SampleControl_SampleReceivingChecklist_2010-02-15.dac

ACCUTEST.				2105 Lundy Ave., San Jose, CA 85131									FEO-E	Clarking	181	-	-	-	Botule Order Control #				
anner			(408) 568-0200 FAX: (408) 568-0201								Acculest Quole # ć							Accutest NG Job #: C					
Company	Laboratories Client / Reporting Information	a —agai. 174 — 1 24 — 1 — 1			noini jos			dr	PC4	1 pH	126	4		-			-	Reque	ated A	nalyala		-	Millatrix Codes
The Source Group Address 3451C Vincent Road City State Zip				Projeci Name: Statioco, Ml. Diablo Street City State										6	cetter	EC, pH, Bkc, Carl)	8		B	- Filtered		AMANTE	GW- Ground Water SW- Surface Water SQ- 503 OI-03
Pleasant Hill CA 94523 Project Contact: Jon Philipp Phone # 925-944-2856 x 316 Samplers's Name Jon Philipp			Clayton CA Project # 01-SUN-050										ath - Lab Alto	Polluture Meteris pry 13	ubcontract	General Chem (tarte, alt, TOS, EC,	Min, Mg. Ce, Na,	(Ch Mg)	Aaleris (CL F, SO4, Br, NO3, Ze <u>, A</u>	Organic Carbon Leb -		LD (PO NAT	WP-Wipe
			EMAIL: jphilipp@thespurcegroup.net									issohred/total) -									AJR DYV- Drivbing Water (Perchlorale Only)		
Accutest Sample IO	Sample (D / Field Point / Point of Collection	Dalé	Collect	Sampled by	Matrix	# of bolties		iber of		Serve	Netson	1	Newcury (d)	Priority Po	Wothy! No	General C	Cations (B, K, Fe,	Hardness	Anleris (C	Dissolved		Hot	LAB USE ONLY
1	MTD-SW-04/2	27-May		JP JP	sw sw	4	1	1	1	2			x	x x	x x	x	x	X X	x x	X X	-	*	HOLD EF
174 C	MTD-SW-12/2 MTD-SW-13/2	27-May 27-May	9:20 9:30	JP JP	SW SW	3	1	1	-	1		-	x x	x x	X X	x x	x	x x	x x	x x			5128(10
	MTD-SW-14/2 MTD-SW-15/2	27-May 27-May	10:05	JP JP	sw sw	4	1	1	-	2	-	-	x x	x x	x x	x	x x	x x	x x	x x			
1997 E	#TD-\$W-06/2	27-May	13:10	JP	SW	4	1	1		2		-	x	x	x	X	x	x	x	x	-		
	Termercound Time (Business days)				Qata De	liverable	Inform	ation								-		Con	timerits /	Remarks			
Emer	Appr 5 Oay Standard 3 Oay (50% markup) 2 Day (76% markup) 1 Day (100% markup); 2 Day (100% markup); 2 Day (100% markup); 3 Day (100% markup); 3 Day (100% markup);	oved 8ys/Dat		Comm FULTI EDF fe Provide	encial "B enical "B - Luvel d g Geotra EDF Gio EDF Log	e ⁿ - Real 6 dala pa cker 16a1 ID _	uile, D ckage		chron	metog	er mön»			analyze El) put 50mi XILit	poly	How ha	AS AS NP(per per	client Ration	iar lack o iconel A sionel	poly e	ailme. Hei) each (X7) each N/p (X3)
Contraction of the local division of the loc				cumented below each time samples change possession, including cou Received By: 5385 Reinquished By: 18:25 1 1/10 18:09124 5385 2 World COLIM Received By: Reinquished By:									Date Time: 14:05 Reperve					allim					
3 3 4 Relinguished by: Date Time: Received By: 5 5					4 Cust	lody Sa	1 # 1 #			$\frac{4}{100000000000000000000000000000000000$							Cooter Temp. +0.3 = 5.9 Coc						

Accutest Laboratories Northern California Sample Receiving Check List

Review Chain of Custody Chain of Custody is to be complete and I	egible.
d'Are these regulatory (NPDES) samples? - GW A-	Yes/ No
d is pH requested?	Yes / No
Was Client informed that hold time is 15 min? Yes / No Continue	Yes / No
Was ontho-Phosphate filtered with in 15 min? Yas / No Continue	Yes / No
a Are sample within hold time?	Tes / No
Are sample in danger of exceeding hold-time	Yes/(No)
PExisting Client? Tes / No Existing Project?	Yes)/No
If No: Is Report to info complete and legible, including:	-
🗅 deliverable o Name o Address 🗅 phone 🛛 o-mail	
Is Bill to info complete and legible, including;	
DPO# DCredit card DContact Daddress Dphone De-mail	
Is Contact and/or Project Manager identified, including,	
🗅 phone 🛛 🖸 e-mail	
Project name / number Dispecial requirements?	Yes / No
z Sample IDs / date & time of collection provided?	(Yes) No
er's Matrix listed and correct?	Tes / No
Analyses listed we do or client has authorized a subcontract?	Yes / No
Chain is signed and dated by both client and sample custodian?	Nes / No
TAT requested available? Yes / No Approved by M	
Review Coolers:	
were Coolers temperatures measured at ≤6°C? Cooler # Tem	0 5.9 ℃
 If cooler is outside the ≤6°C; note down below the affected bottles in th Note that ANC does NOT accept evidentiary samples. (We do not loc	at cooler k refrigerators
Custody Seals: Present: Yes / No) If Yes; Unbroken:	Yes / No
Review of Sample Bottles: If you answer no, explain to the side	
Chain malches bottle labels? Yes / No Grample bottle Intact?	Yes No
als there enough sample volume in proper boltle for requested analyses?	
Proper Preservatives? Yes No Check pH on preserved samples e 625, 8270 and VOAs.	
A Headspace-VOAs? Greater than 6mm in diameter Yes / No List sample ID and affected container	

Job#: C11217

Sample Control Rep. Initial: 2K) m

SGRPCAPH 2674

Client Sample ID	pH Check	Other Comments/Issues
-1	pHC2-	REDMI POLY (114103)
. W		
-7	4	· ·
	_	
-		

Non-Compliance issues and discrepancies on the COC are forwarded to Project Management

\\Ano srv-file1\d\$\Entech-Data\Laboratory\SOPs\SOP_CompleteListing\SC001F1_1_Form1_SampleControl_SampleReceivingChecklist_2010-02-15.doc

APPENDIX D

STATISTICAL REPORT ON METHYL MERCURY DATA ANALYSIS

ProUCL Statistical Evaluation of Methyl Mercury in Surface Water Mount Diablo Mercury Mine Contra Costa County, California

General Statistics

Number of Valid Observations 21

Raw Statistics

Minimum 0.0607 Maximum 7.26 Mean 1.367 Median 0.657 SD 1.797 Coefficient of Variation 1.315 Skewness 2.346 Number of Distinct Observations 21

Log-transformed Statistics Minimum of Log Data -2.802 Maximum of Log Data 1.982 Mean of log Data -0.281 SD of log Data 1.096

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.659 Shapiro Wilk Critical Value 0.908 Data not Normal at 5% Significance Level

Assuming Normal Distribution 95% Student's-t UCL 2.043 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 2.228 95% Modified-t UCL 2.076

Gamma Distribution Test k star (bias corrected) 0.868 Theta Star 1.575 MLE of Mean 1.367 MLE of Standard Deviation 1.467 nu star 36.44 Approximate Chi Square Value (.05) 23.62 Adjusted Level of Significance 0.0383 Adjusted Chi Square Value 22.83

Anderson-Darling Test Statistic 1.072 Anderson-Darling 5% Critical Value 0.771 Kolmogorov-Smirnov Test Statistic 0.198 Kolmogorov-Smirnov 5% Critical Value 0.195 Data not Gamma Distributed at 5% Significance Level

> Assuming Gamma Distribution 95% Approximate Gamma UCL 2.108 95% Adjusted Gamma UCL 2.181

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.954 Shapiro Wilk Critical Value 0.908 Data appear Lognormal at 5% Significance Level

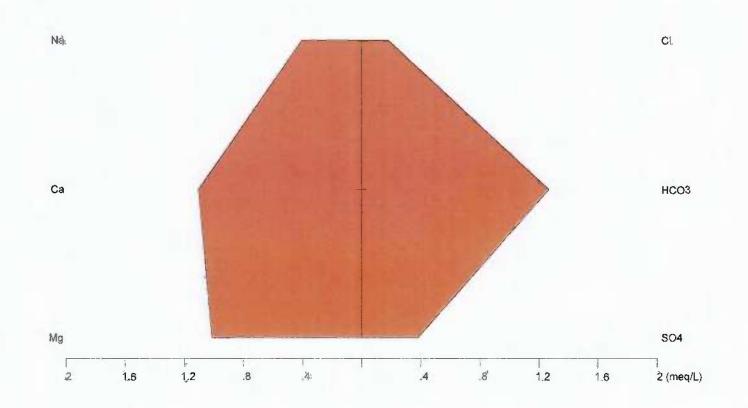
Assuming Lognormal Distribution

95% H-UCL 2.662 95% Chebyshev (MVUE) UCL 2.884 97.5% Chebyshev (MVUE) UCL 3.562 99% Chebyshev (MVUE) UCL 4.893

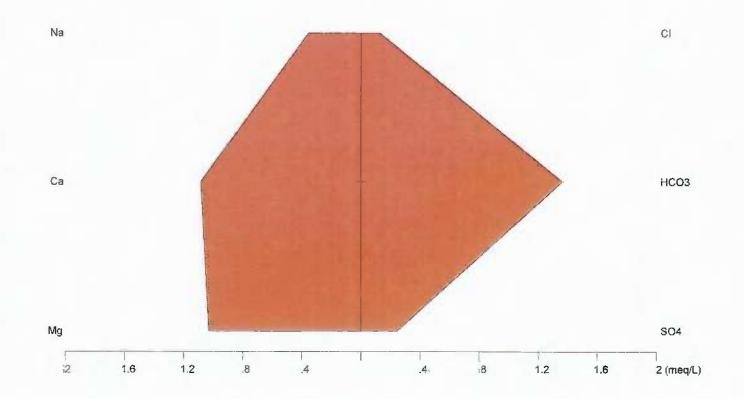
Data Distribution Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

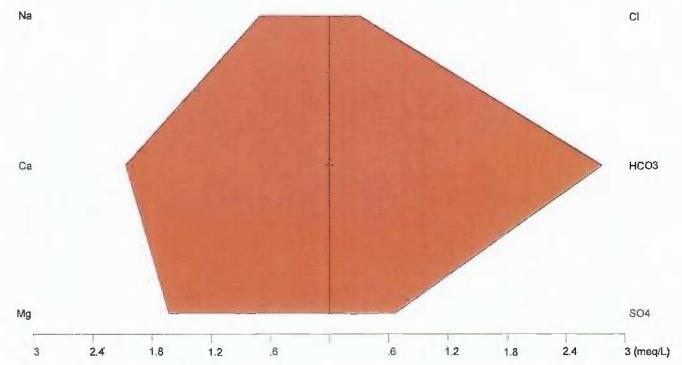
95% CLT UCL 2.011 95% Jackknife UCL 2.043 95% Standard Bootstrap UCL 1.984 95% Bootstrap-t UCL 2.593 95% Hall's Bootstrap UCL 2.547 95% Percentile Bootstrap UCL 2.041 95% BCA Bootstrap UCL 2.268 95% Chebyshev(Mean, Sd) UCL 3.076 97.5% Chebyshev(Mean, Sd) UCL 3.815 99% Chebyshev(Mean, Sd) UCL 5.267

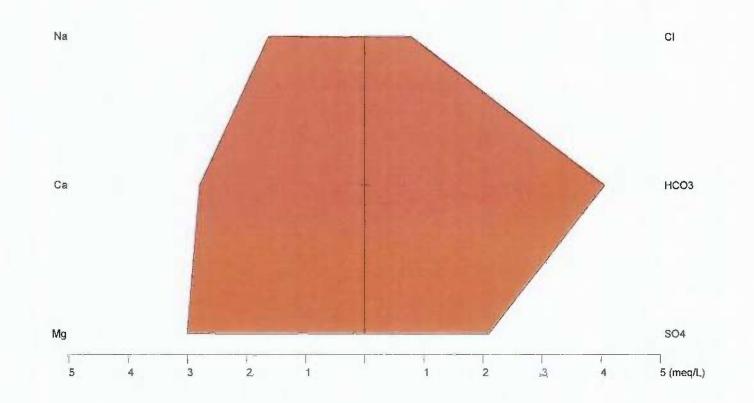

Use 95% Chebyshev (MVUE) UCL 2.88

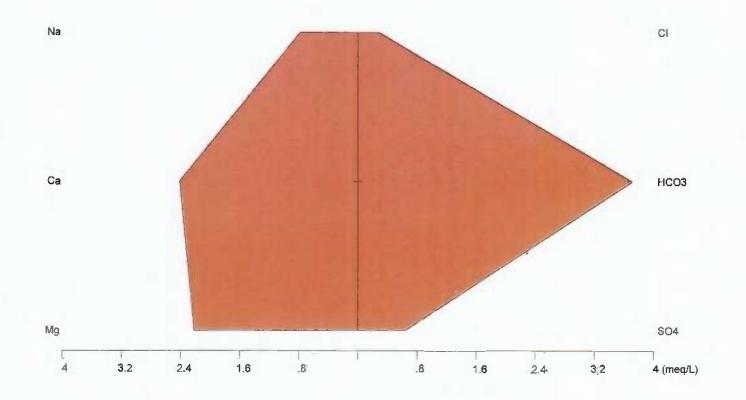
APPENDIX E

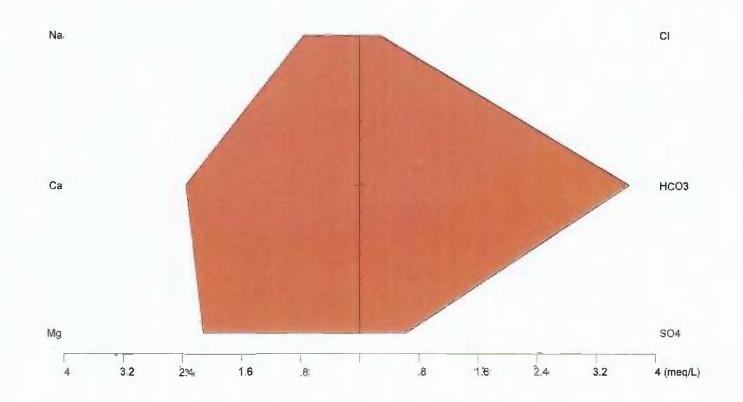

WATER QUALITY STIFF DIAGRAMS FOR 2010 SAMPLING

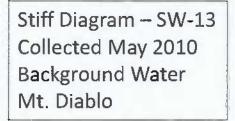
BACKGROUND WATER SIGNATURE

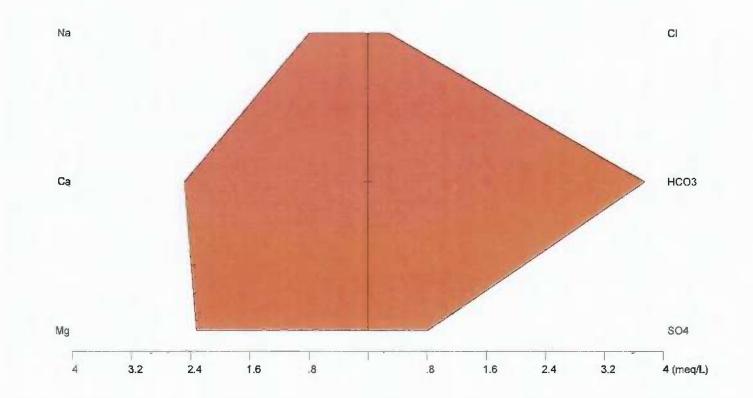

Stiff Diagram – SW-7 Collected April 2010 Background Water Mt. Diablo

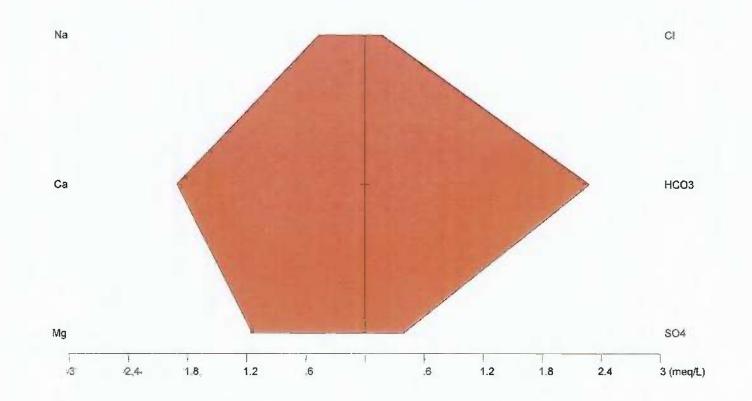

Stiff Diagram – SW-8 Collected April 2010 Background Water Mt. Diablo

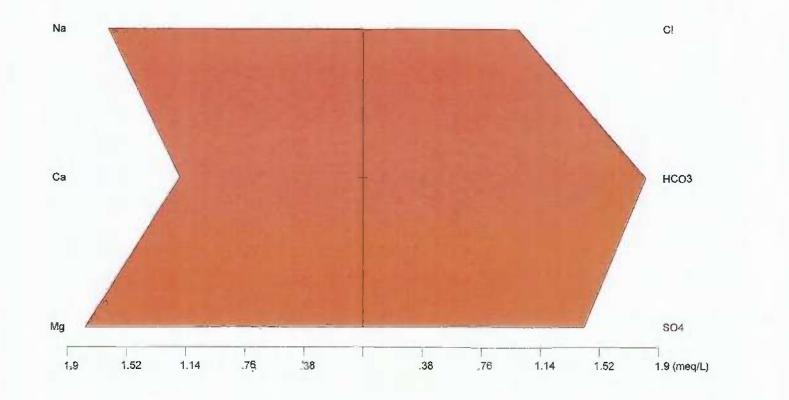

Stiff Diagram – SW-8 Collected May 2010 Background Water Mt. Diablo


Stiff Diagram – SW-10 Collected May 2010 Background Water Mt. Diablo




Stiff Diagram – SW-11 Collected May 2010 Background Water Mt. Diablo

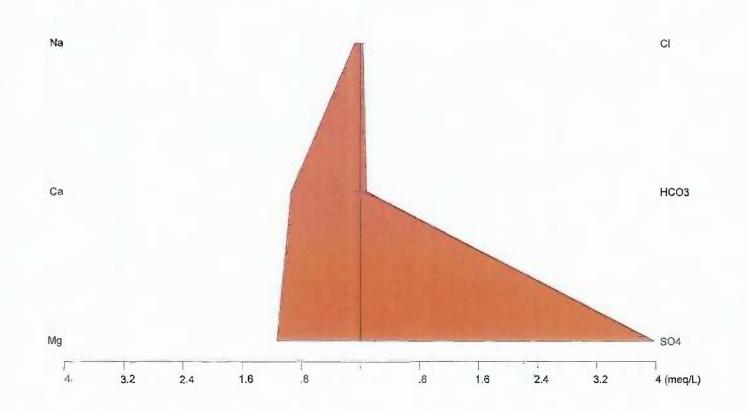

Stiff Diagram – SW-12 Collected May 2010 Background Water Mt. Diablo



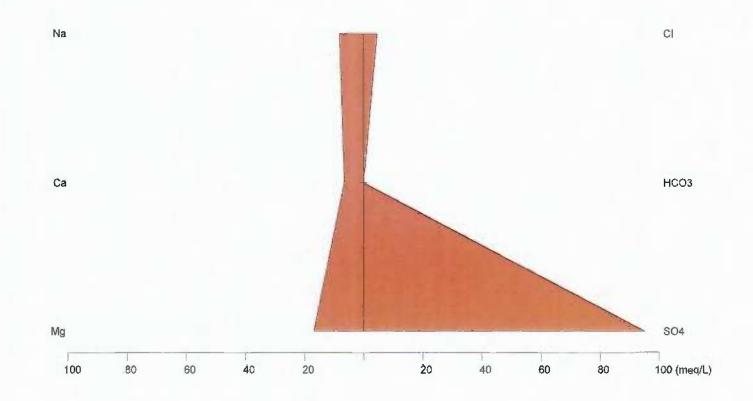
Stiff Diagram – SW-16 Collected May 2010 Background Water Mt. Diablo

PARK SPRING WATER SIGNATURE

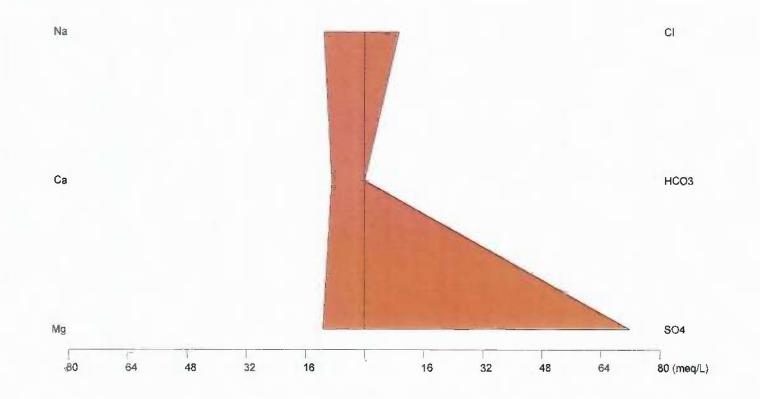
Stiff Diagram – SW-4 Collected April 2010 Background Water Mt. Diablo

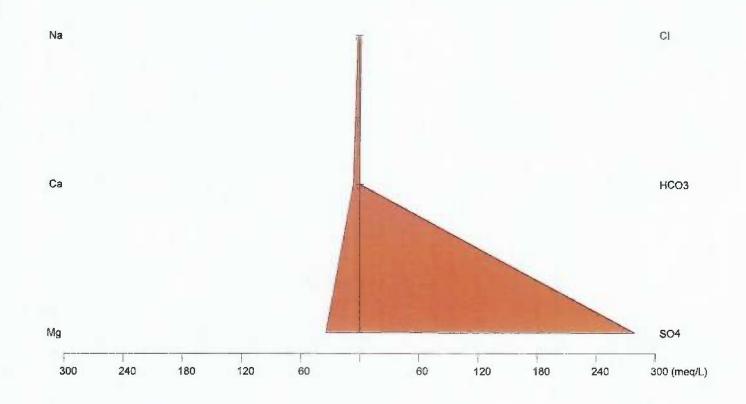


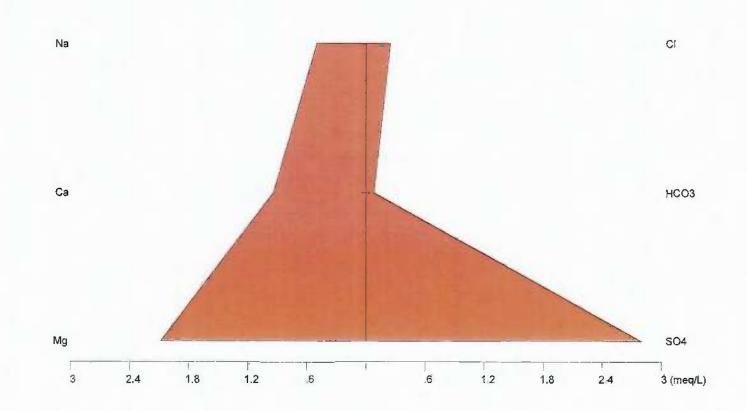
Stiff Diagram – SW-7 Collected April 2010 Park Spring Water Mt. Diablo

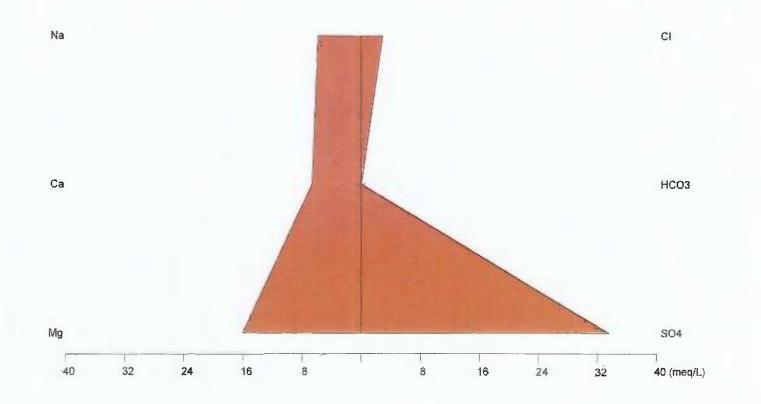


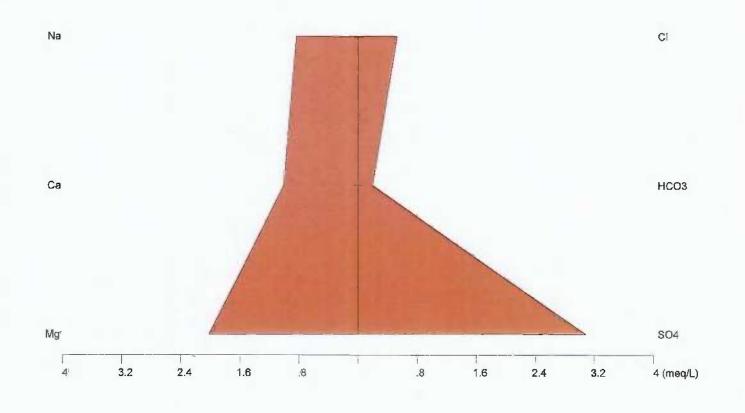
MINE WASTE SOURCE WATER SIGNATURE

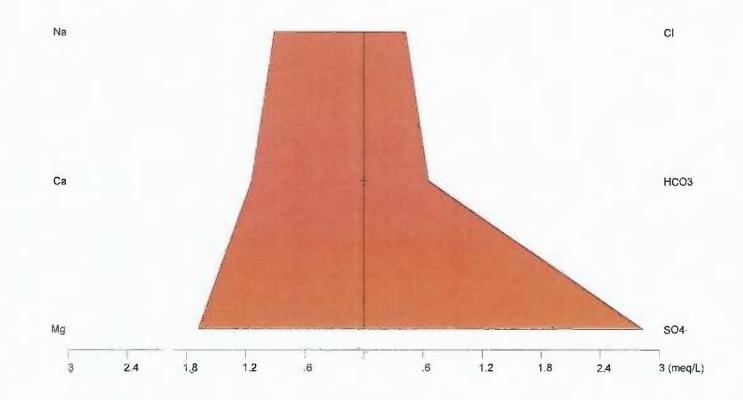

Stiff Diagram – SW-1 Collected April 2010 Mine Waste Source Water Mt. Diablo


Stiff Diagram – SW-2 Collected April 2010 Mine Waste Source Water Mt. Diablo

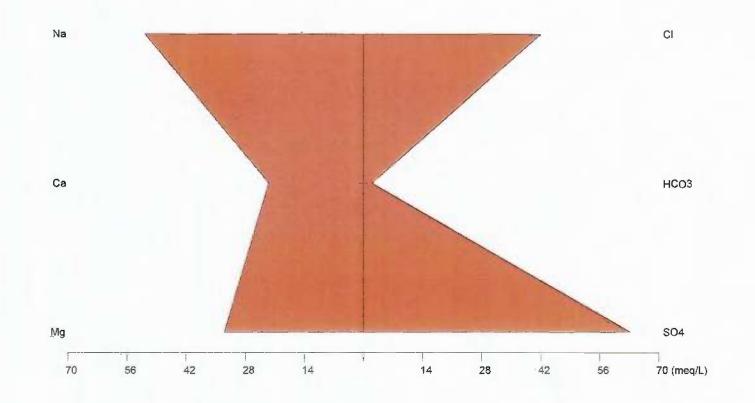

Stiff Diagram – SW-2 Collected May 2010 Mine Waste Source Water Mt. Diablo


Stiff Diagram – SW-3 Collected April 2010 Mine Waste Source Water Mt. Diablo

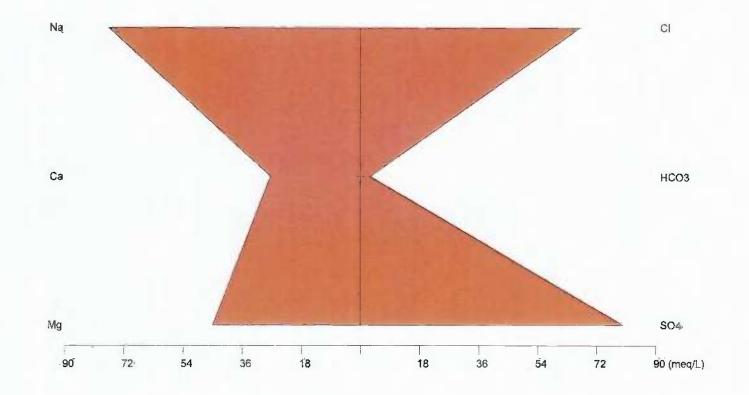

Stiff Diagram – SW-6 Collected April 2010 Mine Waste Source Water Mt. Diablo


Stiff Diagram – SW-6 Collected May 2010 Mine Waste Source Water Mt. Diablo

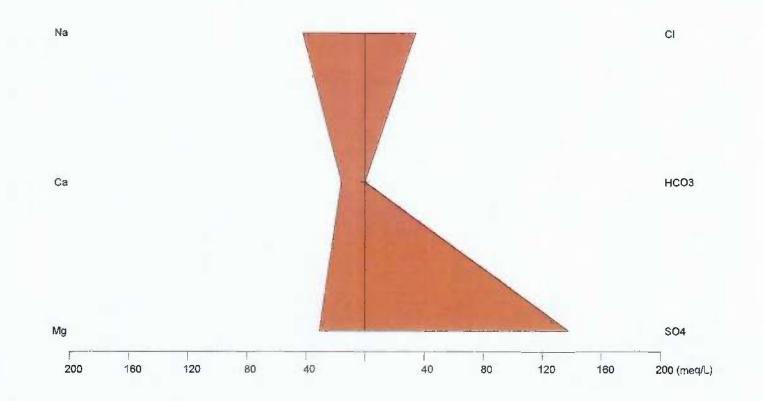
Stiff Diagram – SW-10 Collected April 2010 Mine Waste Source Water Mt. Diablo

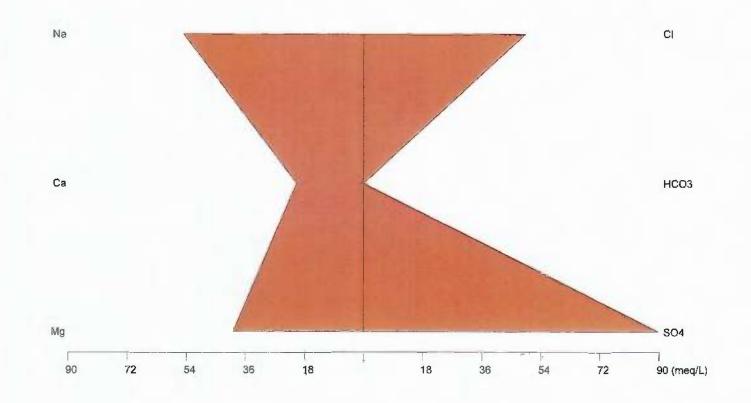


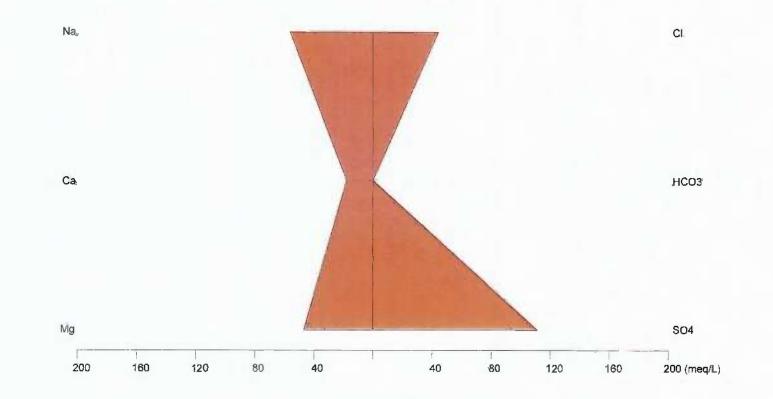
Stiff Diagram – SW-14 Collected May 2010 Mine Waste Source Water Mt. Diablo



ALTERED MINE WASTE WATER SIGNATURE


Stiff Diagram – SW-5 Collected April 2010 Altered Mine Waste Water Mt. Diablo


Stiff Diagram – SW-5 Collected May 2010 Altered Mine Waste Water Mt. Diablo


Stiff Diagram – SW-9 Collected April 2010 Altered Mine Waste Water Mt. Diablo

Stiff Diagram – SW-9 Collected May 2010 Altered Mine Waste Water Mt. Diablo

Stiff Diagram – SW-15 Collected May 2010 Altered Mine Waste Water Mt. Diablo

.

. .

.

.

45

45

EDCCOMB LAW GROUP

115 Sansome Street, Suite 700 San Francisco, California 94104 415.399.1555 direct 415.399.1885 fax jedgcomb@edgcomb-law.com

January 20, 2012

BY EMAIL & U.S. MAIL

Julie Macedo, Esq. State Water Resources Control Board Senior Staff Counsel, Office of Enforcement' 1001 "I" Street, 16th Floor P.O. Box 100 Sacramento, CA 95814'

Dear Ms. Macedo;

In advance of the January 24, 2012 meeting between Sunoco, Inc. (R&M)("Sunoco") and the Central Valley Regional Water Quality Control Board ("Regional Board") concerning the December 7, 2011 Additional Characterization Report, Mount Diablo Mercury Mine ("Site") prepared by Sunoco's consultant SGI, we are bringing to your attention another issue we would like to discuss at that meeting.

Specifically, our ongoing investigation into the corporate relationship between Cordero Mining Company ("Cordero") and Sunoco has determined there is no legal basis for the Regional Board to pursue Site related claims against Cordero, or to attribute Cordero liability at the Site, if any, to Sunoco.

The relevant background facts may be summarized as follows. Cordero was organized under Nevada law on March 4, 1941. Cordero briefly leased the Site and conducted limited operations there between late 1954 and early 1956. Effective as of November 18, 1975, long after Cordero operations at the Site were completed, Cordero was dissolved as a corporate entity, as acknowledged by the Nevada Scoretary of State. It is our understanding that Cordero was a wholly-owned subsidiary of Sun Oil Company (Delaware) when Cordero dissolved in 1975.

Nevada law governs the capacity of Cordero, and its former shareholder, to be pursued for Cordero's Site actions. The California Corporations Code does not apply to foreign entities such as Cordero (a dissolved Nevada corporation). See Cal. Corp. Code § 162 ("Corporation," unless otherwise expressly provided, refers only to a corporation organized under this division or a corporation subject to this division under the provisions of subdivision (a) of Section 102.")

Julie Macedo, Esq. State Water Resources Control Board Re: Sunoco Non-Liability January 20, 2012

Nevada's corporate capacity statute provides that claims against a dissolved corporation relating to pre-dissolution acts survive only for a period of two years following the date of dissolution. NRS 78.595 ("The dissolution of a corporation does not impair any remedy or cause of action available to or against it or its directors, officers or shareholders arising before its dissolution and commenced within two years after the date of the dissolution.") Further, effective June 16, 2011, Section 15 of Nevada Senate Bill 405 enacted a provision reaffirming the limited liability of stockholders of a dissolved corporation:

"2. A stockholder of a corporation dissolved pursuant to an NRS 78.580 or whose period of corporate existence has expired, the assets of which were distributed pursuant to an NRS 78.590, is not liable for any claim against the corporation on which an action, suit or proceeding is not begun before the expiration of the period described in NRS 78.585."

As noted above, Cordero was dissolved as of November 18, 1975 and lacked the capacity to be sued two years later (November 18, 1977). Therefore, Cordero cannot be a liable party in regards to the Site. For the same reason, and also pursuant to Section 15 of Nevada Senate Bill 405, a former shareholder of Cordero cannot be held liable for Cordero's Site actions either.

A recent decision by the United States District Court for the District of Nevada, Assurance Co. of Am. v. Campbell Concrete of Nev., Inc., 2011 U.S. Dist. LEXIS 145845 (D: Nev. Dec. 19, 2011), supports the non-liability under Nevada law of Cordero's former shareholder with respect to claims arising post-dissolution as well. See Assurance, supra (applying Nevada law, grants motion to dismiss filed by defendant shareholder of a dissolved Nevada corporation against which post-dissolution claims had been filed).

We look forward to discussing with you the technical and legal issues related to the Site on January 24, 2012. Please let us know if you have any questions regarding the above in advance of the meeting.

John D. Edgcom

cc (via email only): V. Izzo J. Freudenberg, S. Cullinan B. Morse

(00028263 DOC-3 }

.

·

46

SITE REMEDIATION WORK PLAN

Mount Diablo Mercury Mine 2430 Morgan Territory Road Contra Costa County, California

01-SUN-050

Prepared For:

10 Industrial Highway, MS4 Lester, PA 19029

3478 Buskirk Avenue, Suite 100 Pleasant Hill, CA 94523

May 8, 2012

Prepared and Reviewed By:

Wymou

Ivy Induye Senior Toxicologist

an Dilte

Paul D. Horton, P.G., C.HG. Principal Hydrogeologist

Robert Campbell, P.G., C.E.G. Principal Engineering Geologist

Site Remediation Work Plan Mount Diablo Mercury Mine, 2430 Morgan Territory Road, Contra Costa County, California

May 8, 2012

TABLE OF CONTENTS

				PAGE
LIST	OF FIG	URES		iv
LIST	OF TA	BLES		iv
LIST	OF AC	RONYM	S	v
PRO	FESSIC	ONAL GE	OLOGIST CERTIFICATION	vii
1.0				
	1.1	Projec	t Objectives	1-1
	1.2		al Project Approach	
	13	Work	Plan Organization	1-3
2.0	BAC	KGROU	ND	2-1
	2.1	Site S	etting	
		2.1.1	Land Use and Ownership	
		2.1.2	Site Location and Features	
		2.1.3	Potentially Significant Historical and Archeological Features	
		2.1.4	Regional Geologic Setting	
		2.1.5	Mine Geology	2-4
		2.1.6	Hydrogeology	
		2.1.7	Hydrology	2-6
		2.1.8	Climate	2-8
		2.1.9	Vegetation	
	2.2 Site History and Development		2-8	
		2.2.1	Mining History	
	2.3	2-10		
		2.3.1	State Water Pollution Control Board / California Regional Water	
			Quality Control Board Investigations	
		2.3.2	J.L. lovenitti, Weiss Associates, and J. Wessman, Mount Diablo	
			Mine Surface Impoundment Technical Report	2-11'
		2.3.3	Professor Darell G. Slotton, Marsh Creek Watershed Mercury	
			Assessment Project	
		2.3.4	2010 Site Characterization	
		2.3.5	Previous Remedial Actions	
	2.4	Mining	-Related Material Waste Characterization	
		2.4.1	Material Classification	
		2.4.2	Estimation of Mining-Related Material Volumes and Areal Extent of	
			Material	
	2.5		eptual Site Model Overview	
		2.5.1	Mining-Related Sources	
		2.5.2	Potential Future Land and Resources Uses	
		2.5.3	Potential Exposure Pathways and Receptors of Concern	2-19

TABLE OF CONTENTS

					PAGE		
			2.5.3.1	Chemical Release Mechanisms and Identification of			
				Transport Media	2-19		
			2.5.3 2	Potential Exposure Points			
			2.5.3.3	Potential Receptors	2-21		
			2.5.3.4	Exposure Pathways Considered Potentially Complete			
				and Significant	2-21		
			2.5.3.4.1.	Hypothetical On-Site Construction Worker Receptor			
			2.5.3.4.2.	Hypothetical On-Site Recreational Visitor Receptor			
			2.5.3.4.3.	Hypothetical Off-Site Recreational Angler Receptor			
			2.5.3.4.4.	Hypothetical Off-Site Aquatic Biota	2-22		
		2.5.4		of Potential Human Health Risks			
		2.5.5	Summary of	of Potential Ecological Risks	2-23		
3.0	REMEDY APPROACH AND SCOPE OF WORK						
0.0	3.1			Dverview and Approach			
	3.2						
	3.3			nd Control			
	0.0	3.3.1		s Agreements			
		3.3.2		n and Demobilization			
		3.3.3		ontrol			
		3.3.4		nd Equipment Staging			
		3.3.5		ovenients and Construction			
		3.3.6		tion Plan			
		3.3.7		0			
	3.4			aterial Remediation			
	0.7	3.4.1		gs Pile and Calcines			
		3.4.2		d Surface Impoundment.			
		3.4.3		and Shafts			
		3.4.4		Spring /Adit Discharge			
	3.5			ient Plan			
	0.0	3.5.1		and Disposal of Structures and Equipment			
		3.5.2		abilization and Capping			
		3.5.3		Waste			
	3.6			tion			
	3.7	Site Restoration Approach					
	0.1	3.7.1		Road Removal			
		3.7.2		, Slope Stabilization, and Bank Stabilization.			
		3.7.3		tion and Monitoring			
	REMOVAL DESIGN, METHODS AND PROCEDURES						
4.0		INUVAL DESIGN, WEI TIUDS AND FROGEDURES					
	4.1 4.2						
	4.2						
		4.2.1	Wobilizatio	n and Demobilization			

Site Remediation Work Plan Mount Diablo Mercury Mine, 2430 Morgan Territory Road, Contra Costa County, California

TABLE OF CONTENTS

				PAGE
		4.2.2	Materials and Equipment Staging	
		4.2.3	Road Construction and Improvements	
	4:3	Mining	g-Related Material Remediation	
		4.3.1	Required Equipment	
		4.3.2	Structures and Equipment Removal and Staging	
		4.3.3	Waste Rock, Tallings, and Sediment Removal, Segregation, and Staging	
		4.3.4	On-Site Management of Mine-Related Materials	
		4.3.5	Transportation Plan	
	4.4	Site R	estoration Design	
		4.4.1	Required Equipment	
		4.4.2	Restoration of Temporary Roads	
		4.4.3	Regrading and Slope Stabilization	
		4.4.4	Potential Channel Sediment Controls at Dunn Creek	
		4.4.5	Re-vegetation	
		4.4.6	Maintenance and Monitoring Plan	
			ment Decontamination	
			A-7	
	4.7	Recor	dkeeping	
		4.7.1	Daily Field Notes	
		4.7.2	Permit Book	
		4.7.3	Field and Laboratory Material Characterization Data Management	4-9
5.0	PRO	JECT SC	CHEDULE	5=1
6.0	LIMIT	ATIONS	8	6-1
7.0	REFE	RENCE	S	

May-8, 2012

Site Remediation Work Plan Mount Diablo Mercury Mine, 2430 Morgan Territory Road, Contra Costa County, California

LIST OF FIGURES

- Figure 2-1 Site Location Map
- Figure 2-2 2004 Aerial Photo with Mine Features
- Figure 2-3 Mine Springs and Seeps
- Figure 2-4 Site Geology from Pampeyan
- Figure 2-5 Marsh Creek Watershed
- Figure 2-6 Surface Water Drainage and Flow Patterns
- Figure 2-7 SGI Surface Water Sampling Locations 2010
- Figure 2-8 SGI Surface Water Sampling Locations 2011
- Figure 2-9 Remedial Plan Features Map
- Figure 2-10 Risk Screening Conceptual Site Model
- Figure 3-1 Remedial Plan Features with Topography
- Figure 3-2 Topographic Cross Section A-A'
- Figure 3-3 Thickness Map / Main Tailings Proposed for Removal
- Figure 3-4 Cross Section B-B', Cross Section C-C'
- Figure 4-1 Roads and Staging Areas
- Figure 5-1 Conceptual Project Schedule

LIST OF TABLES

- Table 2-1 Mine Production Statistics
- Table 2-2
 Estimated Waste Volumes for Removal and Consolidation

Site Remediation Work Plan Mount Diable Mercury Mine, 2430 Morgan Territory Road, Contra Costa County, California

May 8, 2012

LIST OF ACRONYMS

As	arsenic
AMD	Acid Mine Drainage
BMP	best management practices
Са	calcium
CEQA	California Environmental Quality Act
cfs	cubic feet per second
cm/sec	centimeter per second
COC	chemical of concern
COPC	chemical of potential concern
Cr	chromium
Cu	copper
CVRWQCB CSM	Central Valley Regional Water Quality Control Board conceptual site model
DMEA	Defense Minerals Exploration Agency
Fe	iron
gpm	gallons per minute
GPS	global positioning system
HASP	Health and Safety Plan
к	potassium
km	kilometer
m	meter
Mg	magnesium
Mn	manganese
msl	mean sea level
Na	sodium
NI	nickel
NOI	Notice of Intent
Pb	lead
PRP	potential responsible party
RCRA	Resource Conversation and Recovery Act
Sb	antimony
Si	silica
STLC	soluble threshold limits concentrations
SWPPP	Stormwater Pollution Prevention Plan

V

The Source Group, Inc.

Site Remediation Work Plan Mount Diablo Mercury Mine, 2430 Morgan Territory Road. Contra Costa County, California

May 8, 2012

USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
WPCB	Water Pollution Control Board
Zn	zinc
°F	Degree Fahrenheit
ng/L	nanograms per liter
µmhos/cm	micromhos per centimeter

The Source Group, Inc.

PROFESSIONAL GEOLOGIST CERTIFICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my knowledge and on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Paul D. Horton, P.G., C.HG. Printed Name of Registered Professional Geologist

and W

Signature

#5435 Registration Number

California

State

June 8, 1998

Date

1.0 INTRODUCTION

The Source Group, Inc. (SGI), on behalf of Sunoco, Inc. (R&M) (Sunoco), has prepared this Site Remediation Work Plan (Remediation Plan) as required and noted in item 3.0 (Page 5) of the Central Valley Regional Water Quality Control Board (CVRWQCB) December 30, 2009 Revised Technical Reporting Order R5-2009-0869 (Rev. Order) for the former Mount Diablo Marcury Mine in Contra Costa County, California (the Site or Mine). On February 7, 2012, the CVRWQCB issued correspondence approving the Characterization Reports for the Mine and officially setting the due date for submittal of the Remediation Plan as May 8, 2012.

The Revised Technical Reporting Order R5-2009-0869 (Rev. Order) for the former Mount Diablo Mercury Mine was issued to several potentially responsible parties (PRPs), including Jack and Carolyn Wessman, Bradley Mining Co. (Bradley), U.S. Department of the Interior, and Sunoco, which are referred to as Dischargers in the Rev. Order. Sunoco is a named discharger due to its purported connection with the Cordero Mining Company (Cordero) that conducted mercury ore investigations via tunneling and assaying during 1955. Submission of this Remediation Plan on behalf of Sunoco is not a commitment to implement it, which is not required by the Rev. Order, and Sunoco expressly reserves all rights with respect to any obligation to do so.

The Source Group, Inc. has prepared this Remediation Plan, to describe and/or provide the following:

- Site background;
- Characterization of the Mine-related materials to be removed;
- Water quality and human health risk assessment;
- A proposed Mine-related materials removal scope of work;
- A proposed spring/adit water routing and management scope of work;
- The removal design, methods, and procedures;
- A long term maintenance and monitoring plan; and
- A conceptual project schedule.

1.1 Project Objectives

The primary objectives of the removal activities described in this Remediation Plan are to mitigate the migration of particulate material and water potentially containing mercury from Mine-related materials (e.g., waste rock, tailings, and spring/adit discharges) associated with the Site that are potential sources of mercury to Dunn and Marsh Creeks. More specifically, the objectives of this Remediation Plan are to meet the goals specified in the Rev. Order and excerpted as follows:

Order R5-2009-0869, Page 5

3. Within 90 days of staff concurrence with the Characterization Report, submit a Site Remediation Work Plan (hereafter Remediation Plan) for the site. The Remediation Plan shall describe remediation activities to clean up or remediate the mining waste either to background concentrations, or to the lowest level that is technically and economically achievable. The Remediation Plan shall also address long-term maintenance and monitoring necessary to confirm and preserver the long-term effectiveness of the remedies. The potential remediation activities shall comply with all applicable WQOs in the Basin Plan. The Remediation Plan shall also include:

- a. An evaluation of water quality risk assessment-
- b. A human health risk assessment
- A time schedule to conduct the remediation activities.

The objectives for the Remediation Plan were further discussed and expanded in the February 7, 2012 CVRWQCB correspondence approving Mine Characterization reports excerpted as follows:

"The Reports conclude that groundwater in the Mine workings is chemically no different than background spring water and that Acid Mine Drainage (AMD) discharges are generated by the interaction of water from natural springs, the Mine workings, and rain fall with exposed Mine wastes. The Reports outline a conceptual site remedial plan, which was discussed among Sunoco staff, consultants, and Regional Board staff. The remedial plan could include capturing and re-directing away from Mine waste piles spring/adlt discharges. If spring/adit discharges are chemically similar to background native spring discharges then it would be evaluated whether liquid can be released above Dunn Creek as background spring water without further treatment (the Plan should consider an artificial wetlands above the creek to mitigate the discharge). Mine waste may be consolidated where possible and covered to reduce interactions with stormwater. Any Mine wastes or pond solids in the Dunn Creek floodplain should be considered for removal and the Lower Pond SI filled and covered."

This Remediation Plan presents a scope of work designed to address the goals and objectives detailed above. Major scope of work Items include the removal, consolidation and capping of Mine wastes of concern, the capture and re-routing of spring/adit discharges, and the restoration of the Dunn Creek Floodplain immediately below the Mine. During execution of the reclamation activities, environmental and health and safety controls would be implemented to ensure the work is completed safely and in accordance with applicable federal, state, and local regulations and permit conditions.

1.2 General Project Approach

The project, as outlined, includes planning, design, permitting, bid specifications, contractor selection, and oversight services during the project development, construction, and post-construction phases. The following summarizes the general approach to each of the project phases and the controls that would be implemented to ensure the work is completed safely and in accordance with applicable federal, state, and local regulations and permit conditions:

- Project Development and Scoping During this phase, the project will be defined based on the identified objectives and schedule constraints. Applicable county, state, and federal approvals will be attained, bid specifications will be prepared, and the construction contractor selected so construction may be initiated. The implementing parties would work closely with the CVRWQCB, and other regulatory agencies, as needed, to comply with applicable environmental requirements; and identify sustainable business practices that can be integrated into the removal design and implementation. Support from the CVRWQCB through the permitting process to ensure that applications and permits are received in a timely manner will be critical to the overall project success.
- Construction The construction phase will include Site preparation; removal, consolidation and stabilization of Mine-related waste rock, tailings, and stockpiled ore; removal of Minerelated equipment (if required) and clean capture and routing of Travertine Spring/Adit discharges away from contact with any Mine-related waste materials. During the construction phase, a record of approvals and permit conditions will be created and maintained in a single "Permit Book", including all certified and signed permissions and exemptions and a complete fist of permit conditions and best management practices (BMPs) that are to be adhered to during construction. In addition, clear lines of communication and project responsibilities will be defined for each construction activity prior to the start of construction. Following completion of removal activities, compliance with permit conditions and regularements will be documented, and the Site will be restored and re-vegetated in working areas, as needed, and a final inspection by CVRWQCB will be scheduled. Following completion of removal and consolidation activities, a long-term maintenance and monitoring plan will be developed as appropriate based on the finaldisposition of implemented remedial actions concerning capped areas, re-vegetated areas, and water discharge controls.

Descriptions of the removal scope of work and the removal design, methods, and procedures are provided in Sections 3.0 and 4.0 of this Remediation Plan, including the environmental, health and safety controls to be implemented during the project.

1.3 Work Plan Organization

This Remediation Plan is organized as follows:

 Section 2.0 provides background information related to the Site, including an overview of the Site setting, history and development, environmental conditions, and Mine-related

Site Remediation Workplan Final 05-08-12.docx

material characterization, and conceptual site model (CSM), which provide the basis for the remediation and removal actions.

- Section 3.0 provides the approach and scope of work of the Mine-related material remediation actions.
- Section 4.0 provides detailed descriptions of the removal design, methods, and procedures.
- Section 5.0 discusses the proposed project schedule.

Limitations and list of literature cited in the Remediation Plan are provided in Sections 6.0 and 7.0, respectively.

The Source Group, Inc.

2.0 BACKGROUND

This section summarizes Site background information relevant to the planned mining-material remediation activities, including the Site setting, history and development, environmental conditions, and characterization of Mine-related material. This information was used to develop the CSM (Section 2.5).

2.1 Site Setting

The Mine is located on the lower flanks of the northeastern environs of Mount Diablo (Figure 2-1). The Site is situated at an elevation of approximately 700 to 1,100 feet above mean sea level (msl), with the general slope of the land down to the east towards Dunn Creek, the eastern border of the property.

The Mine has reportedly been closed since around 1969. Most assay and process equipment has been removed from the Site, yet some abandoned wood structures that were part of the Mine operations remain and are not part of planned remedial actions. Remnants of the Mine visible from Morgan Territory Road include two ponds and bare uncovered tailings piles. The relevant Mine features within the area of focus of this Remediation Plan include the following; collapsed Mine workings area, furnace and processing area, Main Tailings Pile (Bradley Tailings), a series of three ponds on the eastern part of the Mine adjacent to Morgan Territory Road, two springs, and the former Mine portal (165 level Adit).

Currently the Site owners, Jack and Carolyn Wessman, and their lessees, use the Site for residential purposes and small-scale cattle ranching.

2.1.1 Land Use and Ownership

Jack and Carotyn Wessman, additional named dischargers on the Rev. Order, currently own the Mine. The property is used for residential purposes supporting multiple families that include home rentals. Occasionally in the past, the property has been leased for use as an organized paint ball gun battle facility. The property also supports a small herd of cattle owned and managed by Jack Wessman. These cattle are not raised for commercial sale but are used for vegetation control and considered family pets. Jack and Carolyn Wessman have owned the property since 1974 and its use has been primarily the same during this time period. Mr. and Mrs. Wessman purchased the Mine property as part of a larger land purchase in 1974. The property was purchased for residential use. The Wessman family has conducted many modifications to the property over the years during their ownership. This includes the importation of fill materials to fill in Mine openings, covering Mine tailings, and re-directing drainage from the upper Mine area around the exposed eastern Mine tailings as discussed further in Section 2.3.5.

2.1.2 Site Location and Features

The Mine is located in unincorporated eastern Contra Costa County, California at the northeastern base of Mount Diablo. The Mine lies 5 miles east from the town of Clayton and just south of the intersection of Marsh Creek Road and Morgan Territory Road (Figure 2-1). The Site as it pertains to the focus of this Remediation Plan includes the former Mine and its historic working areas that make-up the southeastern quadrant of the property owned by Jack and Carolyn Wessman. The Site is adjoined to the south and west by lands of Mount Diablo State Park, to the north by the remainder of Wessman Property Holdings, and to the east by Morgan Territory Road.

Mine-related features that remain on the Site include buildings associated with the old furnace plant, and various other related Mine buildings including the former electrical shed, the dynamite storage building, a former stack foundation and various other wooden out-buildings (Figure 2-2, Mine Features). The most prominent features that remain include the highly visible Main Tailings Pile located on the eastern slope of the Mine property bounded on the east by the Lower Pond Surface Impoundment (Lower Pond SI). The Main Tailings Pile is highly visible due to the fact that it is a bare, red and orange pile that supports little vegetation. Spring water discharges from the face of the Main Tallings Pile creating a steady source of surface flow that moves across the lower portion of the Main Tailings Pile and into the Lower Pond SI. The source of this continuous spring flow is interpreted to be from two buried Site features. The Main Tailings Pile was placed over a natural spring called the travertine Spring that pre-dates mining activity. This spring has resulted in the deposition of travertine deposits along the slope from the spring emanation point to the valley floor. These travertine deposits underlie on-lapping Mine tailings and derived sediments. Upslope and to the North of the original Travertine Spring emanation point lies the buried portal of the 165 level Adit. The 165 level Adit is buried by approximately 40 feet of tailings material and the location and condition of this portal are unknown. Spring water that emanates from the face of the Main Tailings Pile daylights through one main discharge point supplemented by several seeps below the former locations of both the Travertine Spring and the buried portal of the 165 level Adit (Figure 2-3).

The Lower Pond SI is the location of the historic Mine-constructed surface impoundment that has been upgraded by the current property owner to provide effective containment of historic Minederived waste and sediments. The Lower Pond SI contains sediments largely sourced via stormwater flow and Travertine Spring/Adit discharge drainage through and off the Main Tailings Pile. The Middle Pond contains stormwater and flanks the Lower Pond SI to the north. The Middle Pond is not a historic Mine feature but was created by the current property owner, Jack Wessman, as part of stormwater management controls for the Mine conducted under the direction of the CVRWQCB.

2.1.3 Potentially Significant Historical and Archeological Features

The Mine property is currently not listed on the National Register of National Historic Landmarks nor is it listed as a California Historical Landmark. The Mine was developed in the mid to late

1800's and portions of original mining equipment and structures remain at the Site. Remedial actions proposed in this Remediation Plan do not currently include the removal or destruction of any of these historic Site structures.

2.1.4 Regional Geologic Setting

Mount Diablo is a geologic anomaly about 30 miles (50 kilometers [km]) east of San Francisco. The mountain is the result of geologic compression and uplift caused by the movements of the Earth's plates. The mountain lies between converging earthquake faults and continues to grow slowly. The mountain grows from three to five millimeters each year.

The upper portion of the mountain is made up of volcanic and sedimentary deposits of what once was one or more island arcs of the Pacific Plate dating back to the Jurassic and Cretaceous periods, between 90 and 190 million years ago. During this time, the Pacific Plate was subducting beneath the North American continent. These deposits were scraped off the top and accreted onto the North American Plate. This resulted in the highly distorted and fractured basalt and serpentine of the Mount Diablo Ophiolite and metasediments of the Franciscan complex around the summit. East of the subduction zone, a basin was filling with sediment from the ancestral Slerra further to the east. Up to 60,000 feet (18,000 meters [m]) of sandstone, mudstone, and limestone of the Great Valley Sequence were deposited from 66 to 150 million years ago. These deposits are now found faulted against the Ophiolite and Franciscan deposits.

Over the past 20 million years continental deposits have been periodically laid down and subsequently jostled around by the newly-formed San Andreas Fault system, forming the Coast Ranges. Within the last four million years, local faulting has resulted in compression, folding, buckling, and erosion, bringing the various formations into their current juxtaposition. This faulting action continues to change the shape of Mount Diablo, along with the rest of the Coast Ranges.

The following describes the regional geology for Mount Diablo, as reported by Pampeyan (1963):

"The Coast Ranges of California east of San Francisco consist of Mesozoic and Cenozoic rocks, folded into a series of northwest-striking anticlines and synclines that are in some places overturned to the west. The Diablo Range, which forms the east edge of the Coast Ranges, is made up of a number of folds lying en echelon for more than 150 miles south of the Bay Area; Mount Diablo is at the north end of the Diablo Range and on the crest of one of these anticlines.

The rocks of Mount Diablo and vicinity can be divided into four groups: (1) a basement complex of broken and jumbled sedimentary, igneous, and metamorphic rocks; (2) a section of younger sedimentary rocks, more than 35,000 feet thick, in fault contact with the basement complex; (3) volcanic rocks which locally cut and overlie the younger sedimentary rocks; and (4) landslides, alluvium, and travertine which in places cover the older rocks.

The rocks of the basement complex make up the main mass of Mount Diablo, which occupies an area of about 18 square miles. They are in fault contact with the surrounding sedimentary rocks and form a semicircular plug which has been upthrust through the overlying strata. This plug is divided into two parts by a narrow bortheast-trending band of serpentine. South of this band, greenstone, chert, graywacke, shale, limestone, schist, and conglomerate of the Franciscan formation, cut by a few small bodies of serpentine, crop out in an area of 11 square miles. North of the serpentine band, an area of 5 square miles is occupied mainly by diabase but includes a few exposures of pillow basalt and vesicular diabase. The exact age relations of the rocks composing the basement complex are unknown; but it appears that first the diabase and then the serpentine intruded the Franciscan rocks before the plug was emplaced.

The sedimentary rocks overlying the basement complex consist mainly of fossiliferous clastic marine beds ranging in age from late Jurassic to late Miocene, but fresh-water Pliocene deposits overlie the Miocene beds south of Mount Diablo.

On the northeast side of Mount Diablo, Cretaceous rocks are cut by dikes and plugs of rhyodacite probably of late Tertiary or early Quaternary age. South and east of Mount Diablo, along the periphery of the plug, numerous recent landslides obscure much of the bedrock geology."

2.1.5 Mine Geology

The Mount Diablo Mine area geology discussed below is summarized from Knox (1938), Ross (1940), Division of Water Resources (1952), Pampeyan (1963), and Dibblee (1980), and lovenetti (1989). The most recent geologic maps of the area are in Pampeyan (1963) and Dibblee (1980).

The rocks of the Mount Diablo basement complex are separated from the Jurassic and yourger rocks by what Pampeyan (1963) called the boundary fault, which is actually a fault zone. In most places, the boundary fault consists of highly sheared material up to 100 feet wide. In discussing the Mount Diablo Mercury Mine, Pampeyan and Sheahan (1957) reported that, "The Mine is located in a fault zone that separates Franciscan sandstone and minor chert, greenstone, and shale on the west from Cretaceous shales and calcareous sandstone on the east (Figure 2-4). Two fault trends were mapped in the area. The mercury ore body that sourced the Mount Diablo Mercury Mine is within a northwest trending fault zone consisting of four traces (Knox, 1938). A north-south trending fault zone, approximately 200 feet east of the surface impoundment, was mapped by Dibblee (1980). He also reported that, "The quicksilver deposits form only in Franciscan, formation, in serpentine and silica-carbonate rock which is an alteration product of serpentine."

Ross (1940) reported that, "The lodes are in fracture zones near the footwalls of inclined, more or less tabular serpentine masses in Franciscan rock. They are thought to be formed by hot springs so recent that it is still giving rise to sulphurous gases and methane. The lodes are unique in that.

meta-cinnabar is an abundant primary ore mineral. The ore shoots are in zones of intense brecciation and are controlled in part by cross-fractures."

The mercury mineralization at the Mine principally occurs in sillcacarbonate rocks which are a product of hydrothermal alteration of the Franciscan serpentine. The primary ores in the Mine are metacinnabar and cinnabar. The gangue minerals are quartz, calcite, marcasite, pyrite, chalcopyrite, and stibnite. The iron sulfides, marcasite, and pyrite are commonly present and locally abundant. Hydrogen sulfide, sulfur dioxide, and methane gases were encountered during mining operations in considerable amounts. Several types of sulfates were also videspread throughout the Mine workings especially in portions of the Mine that were relatively undisturbed for a long time.

A relatively large hot spring deposit, which has been variously described as calcareous tufa, calcareous sinter or travertine, is southeast of the Mine. The hot spring is no longer active, but a small spring with continuous flow was reported by Ross (1940) near this deposit and it was mapped as a Travertine Spring by Knox (1938). Neither the water chemistry nor temperature for this spring was documented; however, Pampeyan (1963) reported that the location of this spring was near the portal of the 165 level Adit (Figure 2-4).

Southwest of the Lower Pond SI, a significant but relatively low flow spring complex occurs on the Mount Diablo State Park land (the State Park Spring). This spring complex is apparently on one of the northwest trending faults associated with the mercury mineralization.

The Lower Pond SI is located in the small valley which contains Dunn Creek, a tributary to Marsh Creek. The former channel for Dunn Creek longitudinally traverses the Lower Pond SI. In the area of the "travertine" deposit, the base of Dunn Creek is "travertine" cemented alluvial gravel. Virtually this entire travertine deposit is presently overlain by Mine tailings to the west and the Lower Pond' SI to the east.

2.1.6 Hydrogeology

Groundwater presence and movement in the area is neither predictable nor continuous due to the highly distorted and fractured nature of the Mount Diablo Ophiolite and meta-sediments of the Franciscan complex around the summit. However, the presence of many springs around the base of Mount Diablo attests to the accumulation and movement of groundwater recharged on the slopes of the mountain.

Well drillers in the area report that water production in the Cretaceous shale formations (like those adjacent to the ore zone at the Mine) are very unpredictable. Very often, no water is found. When it is produced, production is generally low and water quality degrades during the summer months. This is corroborated by the findings produced by a study of the Division of Water Resources (1952) when investigating conditions around the Mine.

Groundwater is present in the Mine workings. Two monitoring wells completed within the Mine workings indicate an upward hydraulic gradient in this area of Mount Diablo (see Section 2.3.4).

Site Remediation Workplan Final 05-08-12.docx

May 8, 2012

The presence of springs along the fault trace that defines the mercury ore zone at the Mine indicates the movement of groundwater sourced in the environs of Mount Diablo is moving down slope and forced to the surface as it encounters the highly sheared material within the 100 foot thick fault zone. Groundwater emerging as spring water contains a large mineral load consistent with movement within the highly mineralized rock of the fault zone at the Mine. Monitoring well DMEA-1, located within the Cretaceous shale and calcareous sandstone formations north and east of the fault zone, was dry and devoid of groundwater until the fault zone was encountered at depth (Section 2.3.4 and SGI, 2011).

Hydraulic head conditions combined with water quality data from these monitoring wells confirm the vertical movement of groundwater up through the fault zone on its path to discharge via the springs, and potentially via near-surface sub-flow that is not visible. Under the direction of the CVRWQCB, Jack Wessman conducted an investigation of sub-flow at a location just west of the Lower Pond SI. Jack Wessman constructed the trench on June 5, 1989. Water was found at a depth of 6 feet below grade with a field ph of 4.44 and electrical conductance of 13,620 micromhos per centimeter (µmhos/cm). This is similar to the water quality of current \$pring water seeps on the face of the Main Tailings Pile (SGI, 2011) and indicates the presence of near-surface sub-flow in the area between the Lower Pond SI and the Main Tailings Pile lying above and west.

One residential supply well is located to the northwest of the Mine area providing potable water supply to the Wessman Family residence. Jack Wessman reports that this well makes plenty of water and has been tested by the Wessman family for suitability as a potable water supply. This, well has been the source of water supply to the Wessman family since 1974. Additional residential properties located within the Wessman property tract north of the Mine are provided water by the 'local water company.

2.1.7 Hydrology

The Mine lies within the upper reaches of the 128 square mile Marsh Creek Watershed (Figure 2-5). The Mine is bordered on the east by Dunn Creek, a minor tributary to Marsh Creek. On the north, a feeder stream to Dunn Creek called "*My Creek*" drains the northern portion of the Mine Site. Two perennially flowing springs are located in the Mine area and are designated the "*State Park*" Spring and the "*Travertine/Adit*" Spring. The State Park Spring is located near the Mine property boundary on lands of the Mount Diablo State Park. The Travertine/Adit Spring emerges on the eastern slope of Mine tailings mid-way between the top of the tailings mound and Dunn Creek floodplain (Figure 2-3). Evaluation of flow from the Travertine/Adit Spring in summer and late fall is based on field observation estimates conducted by SGI are on the order of 3 to 5 gaflons per minute (gpm).

One ephemeral spring, the Ore House Spring, is located near the historic Mine Furnace Plant. The Ore House Spring is a low flow spring and has not been observed to have enough flow to cause notable overland flow from the spring's emanation point. Flow from this spring currently moves into a drainage ditch that is channeled with other surface water in the area that ultimately flows into the

The Source Group, Inc.

Upper Pond and then to Dunn Creek. The only known measurement of flow from the Ore House Spring was made by Slotton (1996) at 0.01 cubic feet per second (cfs) in late March of 1995 following an extensive period of storms (Slotton, 1996). As a result of the timing of measurement by Slotton, this flow rate can likely be considered on the high side of the range for spring base flow at this location.

Two perennial ponds exist in the Dunn Creek floodplain directly below the area of exposed Mine tailings. Both of these ponds drain directly into Dunn Creek. A third ephemeral pond (the Upper Pond), created by the current property owner as part of stormwater controls, is located on the slopes of the Mine above Middle Pond and drains directly into the Middle Pond.

All surface water leaving the Mine is ultimately captured by Dunn Creek. Dunn Creek flows south. from the Mine Site to join Marsh Creek 0.5 miles downstream. Marsh Creek then flows approximately 11 miles to discharge into the Marsh Creek Reservoir and then into the western Saria Joaquin Delta at Big Break.

Surface flow that originates at the Mine takes one of three paths as depicted on Figure 2-6 as follows:

- Surface flow on the northern portion of the Mine area drains north into the ephtemeral
 feeder stream called My Creek. My Creek then drains into Dunn Creek in the northeastern
 corner of the Mine area;
- 2. Flow that originates in the upper reaches of the Mine including the old Mine workings areas is captured via stormwater control features installed by the current property owner and ultimately discharged into the Upper Pond which in turn flows into the Middle Pond. The Middle Pond drains directly into Dunn Creek along the northern boundary of the Lower Pond SI. Dunn Creek then flows along the eastern boundary of the Lower Pond SI south towards Marsh Creek bypassing the Lower Pond SI; and
- 3, Surface flow and spring flow that originates from the exposed eastern Mine tailings and the Travertine/Adit Spring area drains directly east and flows into the Lower Pond SI. The Lower Pond SI overflows into a channel and flows into Dunn Creek below the southern impoundment berm.

The State Park Spring emerges as a perennial spring on the adjacent Mount Diablo State Park. The spring flows directly east to join Dunn Creek just below the southern bank of the Lower Pond SI impoundment. Some stormwater flow from the southernmost extent of Mine tailings may join. State Park Spring water as it migrates downslope towards Dunn Creek.

Above the Lower Pond SI, Dunn Creek is an ephemeral stream. Drainage from the Lower Pond SI, and the State Park Spring create a condition of perennial flow in Dunn Creek below the Lower Pond SI as it moves downstream to discharge into Marsh Creek.

Although the primary objective of the Remediation Plan is to control erosion and minimize sedimentry and dissolved phase mineral discharge into Dunn and Marsh Creeks, the remediation program is not a Dunn Creek stream restoration project.

2.1.8 Climate

The climate in eastern Contra Costa County is "mediterranean," characterized by mild to moderately cold, wet winters and hot, dry summers Mt. Diablo represents the border between the cool summer climate type found along the Pacific coast and the hot summer climate type found in the Central Valley.

The National Weather Service maintains a weather station at Mount Diablo Junction, 2,170 feet (661 m) above sea level. The warmest month at the station is July, with an average high of 85.2 degrees Fahrenheit (°F) and an average low of 59.6°F. The coolest month is January, with an average high of 55.6°F and an average low of 39.3°F. The highest temperature recorded was 111°F on July 15, 1972. The lowest temperature recorded was 14°F on February 6, 1989, and on December 14, 1990. (The San Francisco Chronicle reported that the temperature dropped to 10°F at the summit on January 21, 1962.) Temperatures reach 90°F or higher on an average of 36.0 days each year and 100°F or higher on 3.3 days each year. Lows of 32°F or lower occut on an average of 15.4 days annually.

Annual precipitation averages 23.96 inches. The most precipitation recorded in a month was 13.54 inches in February 1998. The greatest 24-hour precipitation was 5.02 inches on January 21, 1972. The average annual days with measurable precipitation is 65.3 days.

Snowfall at Mount Diablo Junction averages 1.2 inches each year. Prior to 2009, the most snowfall observed in a month was 17.0 inches in April 1975; that same month saw 6.0 inches in one day (April 4, 1975). Measurable snowfall does not occur every year, so the annual average days with measurable snowfall is only 0.5 days. Snow is more common in the upper reaches of the mountain. On December 7, 2009, Mount Diablo received a rare snow event of 18.0 inches, receiving more in one day than what it normally receives in one year. (Mount Diablo Junction Station Data supplied by the Western Regional Climate Center).

2.1.9 Vegetation

Vegetation in the environs of the Mine and Mount Diablo is mixed oak woodland and savannah, and open grassland with extensive areas of chaparral and a number of endemic plant species, such as the Mount Diablo manzanita (*Arctostaphylos auriculata*), Mount Diablo fairy-tantern (*Calochortus pulchellus*), chaparral beliftower (*Campanula exigua*), Mount Diablo bird's beak (*Cordylanthus nidularius*), and Mount Diablo sunflower (*Hellanthella castanea*). The area can include a mixed ground cover of western poison-oak that is toxic via skin contact to most people.

2.2 Site History and Development

Historically, mercury has been mined at several localities around Mount Diablo. By far the largest amount was at the Mount Diablo Mine, which operated intermittently between 1863 to the late 1950s,

2.2.1 Mining History

Between 1863 and 1936, vanous operators removed approximately 1,739 flasks of mercury from the Site. Bradley produced more than 10,000 flasks of mercury during its 15 years of mining operations at the Site between 1936 to 1951. At the end of Bradley's operations, the underground Mine workings consisted of four levels in a steeply dipping shear zone. The Bradley workings were accessed by a main shaft and had an adit that exited to the surface on the 165 level (the 165 level Adit; Pampeyan, 1963).

Bradley generated 78,188 cubic yards of milled tailings and 24,815 cubic yards of waste rock from the Mine tunnels (Ross, 1940). The material generated by Bradley represents 97.3 percent of all waste material generated, and nearly 100 percent of all mill tailings, as documented in the attached Table 2-1. In addition to the materials generated from the Mine, Bradley also operated a rock quarry to the west of the Mine. Waste rock generated from Bradley's quarry operation is reported to have been placed in the area called the "*Waste Dump*" on maps produced by the California Division of Mines and Geology (Pampeyan, 1963). Historical records indicate that Bradley's mining waste and tailings piles at the Site match the waste pile configuration reflected in the 1953 California Division of Mines and Geology's Site mapping (Pampeyan, 1963). Figure 2-4 provides a map depicting the locations of the tailings and waste rock piles that Bradley generated on the Site. The area that received Bradley's quarry waste rock is north (northern waste rock) and is circled in a green outline (figure 2-4).

Following the period of extensive Bradley operations, Mt. Diablo Quicksilver Co., Ltd. (Mt. Diablo Quicksilver) leased the Mine to Ronnie B. Smith and partners (Smith, 1951). Using surface (open pit) mining methods, Smith, et al. produced an estimated 125 flasks of mercury in a rotary furnace. In 1953, the Defense Minerals Exploration Agency (DMEA) granted Smith, et al. a loan to explore the deeper parts of the shear zone (Schuette, 1954). With DMEA's grant money, and under the DMEA's supervision, Smith, et al. constructed a 300-foot-deep shaft (historically referred to as the DMEA Shaft) during the period from August 15, 1953 to January 16, 1954 (Schuette, 1954). The DMEA Shaft and workings flooded on February 18, 1954 and, subsequently, Smith, et al. abandoned the project (Schuette, 1954).

Cordero leased the Site from Mt. Diablo Quicksilver on November 1, 1954, and began reconditioning the DMEA Shaft in January 1955 before discontinuing operations in December 1955. Cordero conducted its underground mining efforts from the pre-existing DMEA Shaft (Pampeyan and Sheahan, 1957). The total volume of waste rock generated by Cordero was approximately 1,228 cubic yards (Table 2-1). Cordero generated an estimated 100 to 200 tons of ore with a grade of 3 to 10 pounds of mercury per ton (Pampeyan and Sheahan, 1957), which equates to approximately 50 to 100 cubic yards of ore material.

In 1956 the Nevada Scheelite Corp. leased the Mine and installed a deep-well pump (550 gpm) to remove water which had risen to a point 112 feet below the collar of the shaft. Since the downstream ranchers objected to the discharge of acid Mine water into the creek this work was suspended. Attention was then directed to the open pit where some exploration was done using

wagon drills. A small tonnage of retort-grade ore was developed. Since this was not sufficient to satisfy the requirements of the company, the lease was relinquished (California Division of Mines, 1958).

A June 1958 State Water Pollution Control Board (WPCB) inspection report states the Mine was leased to John E. Johnson and that he was operating it, but he apparently died later that year and the Site ceased operation. Welty and Randall Mining Co. subsequently operated an unidentified portion of the Site from approximately 1965 to 1969. They apparently re-worked Mine tallings at the Site under a lease from Victoria Resources Company (Victoria Resources), which purchased the Mine from Mt. Diablo Quicksilver in May 1962. On or about December 9, 1969, Guadalupe Mining Co. (Guadalupe) purchased the Mine from Victoria Resources. It is unclear whether Guadalupe actually operated the Mine. In June 1974, the current owners, Jack and Carolyn Wessman and the Wessman Family Trust purchased the Site from Guadalupe. In 1977, the Wessmans sold the portion of the Site containing the settlement pond to Ellen and Frank Meyer, but subsequently re-purchased it in 1989.

2.3 Previous Investigations

The potential for contamination of Marsh Creek from the Site has long been of concern, resulting in considerable sampling of Marsh Creek, Dunn Creek, Horse Creek, pond effluent, and other surface waters, over the past 50 plus years (WPCB Document Log) by the following:

- CVRWQCB and its predecessor, the WPCB, as part of inspection visits to the Mine Sirice the late 1930's;
- J.L. lovenitti, Weiss Associates, and J. Wessman, as part of Mount Diablo Mine Surface Impoundment Technical Report dated June 30, 1989;
- Professor Darell G. Slotton, U.C. Davis, as part of the Marsh Creek Watershed Mercury Assessment Project conducted in March 1996, July 1997, and June 1998; and
- Sunoco Inc, via The Source Group. Inc Site Characterization Report, August 2, 2010 and Additional Site Characterization Report, December 7, 2011.

The following sections briefly summarize these previous investigations.

2.3.1 State Water Pollution Control Board / California Regional Water Quality Control. Board Investigations

Sampling events conducted by the CVRWQCB and its predecessor, the WPCB, have consisted of collecting grab samples under varying conditions (ranging from high run-off periods, to periods of little or no run-off). Samples have been collected since the early 1950's at the following locations:

- Dunn Creek (at various locations);
- Horse Creek (upstream of pond outlet);
- Perkins Creek (above the confluence with Marsh Creek);
- Curry Creek (above the confluence with Marsh Creek);
- Marsh Creek (at vanous locations);

Site Remediation Workplan Final 05-08-12 docx.

The Source Group, Inc.

- Drainage from Mine/tailings on Wessman property;
- Drainage from ponded area, north of tailings;
- Springs on State Park Land;
- Alkali Spring below and east of pond/dam;
- Mine pond;
- Zuur well;
- Prison Farm well; and
- Marsh Creek Springs Resort well.

These samples were analyzed for general water quality parameters and metals. The Siter Characterization Report (SGI 2010a) includes a summary of these water sample results. In general, these results documented the continuous discharge of high concentrations of minerals and metals derived from surface water interactions with tailings materials and from spring discharges at the Mine.

2.3.2 J.L. lovenitti, Weiss Associates, and J. Wessman, Mount Diablo Mine Surface Impoundment Technical Report

In 1989, a technical report evaluating the geohydrochemical setting of the Lower Pond SI, the source of contaminants in the Lower Pond SI, waste control alternatives, and preliminary cost estimates for these alternatives was prepared as part of the application to qualify for an exemption authorized by the Amendment to the Toxic Pits Cleanup Act of 1984 (lovenitti, 1989).

The report characterized the contaminants in the Lower Pond SI based on historical data obtained from 11 water samples collected from the surface impoundment from 1953 through 1988. The surface water samples were analyzed for general water quality parameters and metals. The results indicated that the metals concentrations detected in the water within the surface impoundment exceeded primary drinking water standards and that sediment contained mercury and nickel in exceedance of soluble threshold limits concentrations (STLCs).

2.3.3 Professor Darell G. Slotton, Marsh Creek Watershed Mercury Assessment Project

Contra Costa County sponsored a three-year study (Slotton, 1996; 1997; and 1998) of the Marsh Creek Watershed to comprehensively determine the sources of mercury in the Marsh Creek Watershed, both natural and anthropogenic. These studies also documented mercury concentrations in indicator species, surface water, and sediment to evaluate mercury bloavailability within the Marsh Creek Watershed. These studies were designed to characterize baseline conditions of the Marsh Creek Watershed and to evaluate the relative effectiveness of potential future remedial actions at the Mine.

The results of the 1995 study are summarized in a March 1996 report titled "Marsh Creek" Watershed 1995 Mercury Assessment Project – Final Report" prepared by Darell G. Slotton, Shaun M. Ayers, and John E. Reuter (Slotton, et al., 1996). The 1995 study evaluated aspects of mercury loading within the Marsh Creek Watershed. As part of this Mercury Assessment Project,

The Source Group, Inc..

sampling was conducted at the Site, including the Lower Pond SI, the spring on State Park property, the spring emanating from the tailings pile, and other locations upstream in Dunn Creek and downstream along Marsh Creek.

The results of the 1996 study are summarized in a July 1997, report titled "Marsh Creek Watershed Mercury Assessment Project – Second Year (1996) Baseline Data Report" prepared by Darell G. Slotton, Shaun M. Ayers, and John E. Reuter (Slotton, et al., 1997). The 1996 study, (the second year of the three-year baseline study), evaluated mercury availability in indicator species and sediment within stream sites and the Marsh Creek Reservoir by collecting 175 individual and composite samples of invertebrates, sediment, and young fish from 13 stream sites and the Marsh Creek Reservoir (Slotton, et al., 1997).

The results of the 1997 study are summarized in a June 1998 report titled "Marsh Creek Watershed Mercury Assessment Project – Third Year (1997) Baseline Data Report with 3-Year Review of Selected Data" prepared by Darell G. Slotton, Shaun M. Ayers, and John E. Reuter (Slotton, et al., 1998). As with the 1996 study, the 1997 study (i.e., final year of the three-year baseline study) focused on evaluating mercury availability in indicator species and sediments within stream sites and the Marsh Creek Reservoir and involved the collection of 137 individual and composite samples of invertebrates, sediment, and young fish from 12 stream sites and the Marsh Creek Reservoir (Slotton, et al., 1998).

As part of this Mercury Assessment Project, sampling was also conducted at the Mine area. including the Lower Pond SI, the spring on State Park property, the spring emanating from the waste rock, and other locations upstream in Dunn Creek and downstream along Marsh Creek. Based on the results of the 3-year study and extensive sampling of the entire Marsh Creek watershed, the Slotton report concluded that the Mount Dlablo Mercury Mine, and specifically the exposed tailings and waste rock (Bradley's waste) above the existing pond combined with acidic discharge from the spring emanating from the waste rock above the pond, was the dominant' source of mercury in the watershed. Sampling of Dunn Creek above the Lower Pond SI indicated minimal sourcing of mercury was occurring from the watershed immediately above the Lower PondI SI.

As specifically stated by Slotton, et al. (1996) the data indicates that "the great majority of the mercury load emanating from the tailings is initially mobilized in the dissolved state. This dissolved mercury rapidly partitions onto particles as it moves downstream. The bulk of downstrearn mercury transport is thus particle-associated." The Slotton report also states that "...major mitigation focus should be directed toward source reduction from the tailings piles themselves, with subsequent containment of the remaining mobile mercury fraction being a secondary consideration."

Slotton, et al.'s three-year study and extensive sampling of the entire Marsh Creek Watershed (Slotton, 1996) specifically concluded that the Mt. Diablo Mercury Mine region contributed the great majority of the entire watershed's mercury loading (95 percent with 88 percent directly traceable to the ongoing drainage from exposed tailings, [Bradley's waste]) at the Site (Slotton, et al., 1996).

The results of the Slotton studies were incorporated in the design of follow on studies implemented by Sunoco as described in the following Section 2.3.4.

2.3.4 2010 Site Characterization

Initial Investigation

Initial work conducted by SGI on behalf of Sunoco included research, acquisition, review and analysis of existing published information and data related to the former Mine and attendant water quality impacts, field surveys of the Mine conducted over a period of two years, property owner interviews, and two surface water sampling events at the Mine Site. This work is documented in the Site Characterization Report (SGI, 2010a).

A total of 23 surface water samples were collected at the following 16 locations during the two sampling events conducted in April and May of 2010:

- Bradley Tailing Piles (four locations, SW-01, SW-02, SW-03, and SW-15);
- Springs (three locations, including the Adit Spring [SW-01, SW-15], Mount Diablo State Park Spring [SW-04] and the Ore House Spring [SW-14]);
- Run-off water between the Bradley Tailings Piles and the Lower Pond SI (SW-05);
- Storm Water Retention Ponds (three locations, including the Upper Pond [SW-06], the Middle Pond [SW-10], and the Lower Pond [SW-09]);
- Dunn Creek (three locations, including downstream of the Lower Pond SI [SW-07], between the Middle Pond and My Creek [SW-08], and upstream of My Creek [SW-16]), and
- My Creek (three locations, including upstream, within, and downstream of the Northerny Waste Dump [SW-12, SW-11, and SW-13, respectively]).

Upstream surface water sampling locations SW-12 and SW-16 were considered background locations. The 2010 surface water sampling locations are presented on Figure 2-7.

Additional Investigations

In response to the results of a Site Characterization Report (SGI, 2010a) technical review meeting with the CVRWQCB and subsequent correspondence, SGI, on behalf of Sunoco, conducted additional investigations (SGI, 2011).

This work supplemented SGI's initial investigation (SGI, 2010a), which identified data gaps and recommended work elements to complete characterization of the Site pursuant to the Rev. Order: CVRWQCB staff concurred with the proposed additional elements in its August 30, 2010 letter to Sunoco. SGI then presented a detailed scope of work in its Additional Characterization Work Plan (SGI, 2010b), which included the following activities:

- Performance of a detailed 2-foot topographic survey;
- Installation of two groundwater monitoring wells: 1) a well within the Bradley Mine workings, specifically, in the 165 level (completed at a total depth of 85 feet below ground surface)

Site Remediation Workplan Final 05-08-12-dock

The Source Group, Inc.

[bgs] and; 2) a well into the former DMEA/Cordero underground Mine workings, specifically, into the Cordero 360 level lateral tunnel (completed at a total depth of 275 feet bgs);

- Sampling and analysis of groundwater and evaluation of gradients within these wells; and
- Surface water sampling at 16 locations to determine and/or confirm sources of mercury to Site surface waters to assist the CVRWQCB's evaluation of remedial alternatives.

The 2011 surface water sampling locations are presented on Figure 2-8.

The data collected during this phase of investigation enabled a more complete understanding of the relationships between different water sources and overland flow patterns at the Site Specifically, water sampling results from the two monitoring wells (ADIT-1 and DMEA-1) enabled comparison of these results to the surface water sampling events that have been carried out in 2010 and 2011. This companies and evaluation has resulted in more holistic understanding of the sources of surface water present at the Site, which specifically falls into three general categories: water sourced from underground Mine workings (i.e., the Bradley Mine workings); water sourced from overland flow through Mine tailings and waste rock; and surface water which does not come in contact with Mine tailings.

The review of historical data (including scientific studies, corporate records and regulatory reports); the georeferencing of historical features with the current physical disposition of the Mine Site, the physical mapping of Site features such as tailings piles and surface water drainage, and the collection of surface water samples, including the comparison to historical data set, combine to paint a detailed physical picture of current Mine Site conditions (SGI, 2010a).

As represented in the Site Characterization Report, both historical documentation and surface water analytical data collected in 2010 support the conclusion that the majority (93 percent based on Slotton [1995] calculations) of the mercury mass loading into the Marsh Creek Watershed originates via run-off over and through Bradley's operation-derived waste rock and tailings piles. The Mine wastes contain trace amounts of pyrite and other sulfur-containing minerals. These minerals, when exposed to air, oxidize to form sulfates. The sulfates, once dissolved in water, form sulfuric acid which depresses the pH. This low pH drainage is able to solubilize minerals and' release metals such as mercury. The cycle of wetting and drying of soils, promotes the formation of acid and the release of minerals from the Mine waste.

The primary path from the mining waste is through overland flow into the Lower Pond SI into nearby Dunn Creek that subsequently leads into the greater Marsh Creek Watershed. The works of Slotton (Slotton, 1996) and of SGI's surface water sampling in 2010 quantified the concentrations of mercury and other chemical constituents emanating from the various Mine Site features via overland water flow. The water from My Creek, along with the Dunn Creek water above the Lower Pond SI, have no detectable mercury concentrations and have a chemical signature distinct from the water that had come in contact with the Bradley tailings piles. My Creek collects drainage water from the Northern Waste Dump. Water Quality data from My Creek

indicates that material present in the Northern Waste Dump do not contribute mercury or other chemicals of concern (COCs) to surface water runoff in that area.

The Site surface water sampling locations (Figure 2-8) associated with run-off of surface water through the Bradley Tailings Piles and into the Lower Pond SI (SW-15, SW-02, SW-03, SW-05 and SW-09) fairly consistently exceeded water quality criteria for total and dissolved mercury, nicket, lead, and zinc, and less consistently exceeded the same criteria for methyl mercury, arsenic and chromium (e.g., Lower Pond SI sample location SW-09 had no methyl mercury, arsenic or chromium exceedances).

In summary, data analysis indicates that groundwater in the Mine workings is chemically no different than background spring water and that Acid Mine Drainage (AMD) discharges may be solely generated by the interaction of water from natural springs, the Mine workings, and rainfall in contact with exposed Mine wastes.

Dunn Creek Surface Water Quality

Surface sample location SW-07 (Figure 2-8) was collected in Dunn Creek, downstream of surface water from the Site, and is considered a point-of-compliance sampling point. As such, the analytical results from this sampling location and all other surface sampling locations were compared to water quality criteria developed for bodies of freshwater by the CVRWQCB and the USEPA. The comparisons indicated several key points including:

- Mercury and arsenic were not detected above water quality criteria in SW-07;
- Methyl mercury, alkalinity, total dissolved solids, chloride, iron, and nickel were detected above water quality criteria in SW-07; and
- With the exception of methyl mercury, all of these compounds were also detected at concentrations exceeding the water quality criteria in SW-04, at the background State Park Spring sample location.

As reported by Dr. Slotton of the University of California at Davis, methyl mercury is pervasively present in aquatic systems that include any oxic/anoxic interface. Sampling of surfaces waters in and around the Mt. Diablo mercury mine have confirmed the consistent and natural presence of methyl mercury in site and background waters. Methyl mercury has only been detected in down-gradient surface water sample SW-07 (detected at maximum of 6.56 nanograms per liter [ng/l]) above water quality criteria (3 ng/l) on one of five sampling events (SGI, 2011). This sampling event was conducted in late October corresponding with the driest part of the year. This one time exceedance is likely related to the subsurface discharge of waters through the toe of the Lower Pond Surface Impoundment mixing with State Park Spring waters flowing at normal reduced dryseason flows.

This point of compliance and water quality criteria evaluation shows that in general, water downgradient of the Mine exceeds water quality criteria only for compounds present in background samples above water quality criteria. Although COCs from the Mine are travelling into Dunn Creek,

the volume contribution of the water from these sources is so small compared to other sources (i.e., State Park Spring, normal watershed run-off that does not come in contact with tailings), the presence of these compounds are reduced to background or near background levels at point of compliance sampling location SW-07.

2.3.5 Previous Remedial Actions

The current property owner, Jack Wessman, over the period of his ownership since 1974, has conducted work in an effort to minimize the impact of exposed Mine waste material to surface water run-off. This work has included earth moving at the Site involving the importation of a large quantity of fill material (reported by Jack Wessman to be on the order of 50,000 cubic yards), and the movement and grading of this fill material around the Site to cover Mine waste. In 1978, Order No. 78-114, Waste Discharge Requirements for the Mount Diablo Quicksilver Mine, was issued to Mr. and Mrs. Wessman, prohibiting the direct discharge of Mine waste to surface waters or surface water drainage courses. That same year, a cleanup and Abatement Order was issued ordering the Wessmans to, among other things, (1) "...redivert the springs from the Mine overburden...back to the storage reservoir [surface impoundment] to abate further discharge", and (2) "...complete the repair of the storage reservoir...". In compliance with this order, the surface impoundment was rebuilt in 1978/1979 by the Wessmans.

Based on SGI's discussions with Jack Wessman during Site inspections in 2008, this work has specifically included: 1) infilling and covering of the original collapsed Mine workings area, 2) filling of the DMEA Shaft and filling and capping of waste rock below the shaft toward the furnace, 3) filling and capping of a small pond located west of the DMEA Shaft, 4) grading of waste rock and tailings piles located to the east of and overlying the Mine workings as part of surface drainage control actions, 5) re-configuring, enhancing and maintaining impoundments around the lower waste ponds, and 6) installing drains and drainage pipe for the purpose of re-directing surface rainfall run-off in the upper Mine area around the exposed tailings and waste rock into Dunn Creek directly bypassing flow through the Lower Pond SI.

Current surface drainage for the higher elevations of the Site, including the Cordero operations. around the DMEA Shaft area, is captured and routed around the exposed tailings and waste rock, and around the Lower Pond SI, emptying directly into Dunn Creek at a location upgradient of the Lower Pond SI (Figure 2-6).

Sunoco conducted follow on work relating to stabilization of the surface impoundment in 2008/2009. In response to a Unilateral Administrative Order for the Performance of Removal Action from the United States Environmental Protection Agency (USEPA), Sunoco conducted an emergency stabilization of the southeastern wall of the Lower Pond SI's impoundment dam to prevent continued storm flow erosion of the impoundment in 2008/2009. This work was documented in the SGI report titled "Final Summary Report for Removal Action to Stabilize the Impoundment Berm" (SGI, 2009).

May 8, 2012

2.4 Mining-Related Material Waste Characterization

2.4.1 Material Classification

Three main categories of Mine-related waste are targeted for remediation within this Remediation Plan. These wastes have been categorized based on the characterization work conducted by SGI in 2010/2011, which included a review of historic Mine operational documents in combination with field inspections and near surface material examination by tailings experts. In the order of significance, these three waste categories are defined as follows:

- <u>Main Tailings Pite and Waste Rock Dump</u>. The Main Tailings Pile is located in the eastern perimeter of the Mine workings area as shown on Figure 2-2. The Main Tailings Pile is composed of general Mine tailings including calc-silicate ore zone waste rock that is well graded from small grain processed material to large boulders. Additional waste rock is present in this tallings pile composed of shale and sandstone materials derived from the country rock that surrounds the ore zone. These waste rock materials are inter-mixed with processed tailings and calcines.
- Pond Sediments. The Lower Pond SI sediments were characterized in 1989 (lovenet), 1989). The Lower Pond SI receives run-off from the Main Tailings Pile combined with the steady flow from the Travertine/Adit Spring that emerges from the Main Tailings Pile and travels through and over the Main Tailings Pile on its path to the impoundment. Volume calculations on the Lower Pond SI sediments provided in Table 2-2 include the volume of the impoundment berm.
- 3. <u>Calcines</u>. North of the Main Tailings Pile and immediately east and down-slope of the old furnace plant is a free-standing calcines pile not apparently mixed with other Mine waste. The calcines consist of the well sorted and highly processed roasted waste material.

2.4.2 Estimation of Mining-Related Material Volumes and Areal Extent of Material

The locations and extent of Mine-related wastes that will be addressed as part of this Remediation Plan are shown in Figure 2-9. An inventory of the Mine-related materials, including volume estimates, is included in Table 2-2.

Volumes of waste rock and tailings piles were estimated using the following procedure:

- The ground topography was surveyed to a 2-foot contour level by a licensed surveyor;
- The pre-accumulation ground surface topography provided on historic DMEA maps was utilized where possible, combined with interpolation of surrounding topography based on the available geolocated base map; and
- Based on a comparative analysis on a point-by-point basis of pre-existing to current topography, a tailing's pile thickness map was developed. Tailings pile volumes were them calculated based on these known and/or estimated thickness determinations.

The Source Group, Inc.

The preliminary total volume of Mine-related materials to be managed is approximately 124,000 cubic yards. The bulk of this material is made up of waste rock and tailings from the former Bradley Tailings Pile located on the eastern scarp of the Mine Site (102,245 cubic yards). Approximately 7,500 cubic yards of the total is composed of calcines. Approximately 14,089 cubic yards of material is made up of pond sediments from the Lower Pond SI and the impoundment berm. The Lower Pond SI estimate includes the removal of Mine wastes located at the southern foot of the impoundment as shown on Figure 2-9.

2.5 Conceptual Site Model Overview

The conceptual site model (CSM) summarizes available information about potential sources, release mechanisms, contaminant fate and transport, exposure pathways, and potential receptors at the Site. This CSM presented in this section is focused on Mine-related materials within the remedial action area of the Site (Figure 2-9), and is based on SGI's current understanding of Site conditions.

The CSM incorporates the following components:

- Mine-related sources;
- Future land and resource uses; and
- Exposure pathways and receptors of concern

2.5.1 Mining-Related Sources

Visible Mine-related features that remain on the Site include various Mine buildings, bare uncovered tailings piles, a Middle Pond, and a Lower Pond SI. The Main Tailings Pile is located on the eastern slope of the Mine property bounded on the east by the Lower Pond SI. Spring water discharges from the face of the Main Tailings Pile creating a steady source of surface flow that moves across the lower portion of the Main Tailings Pile and into the Lower Pond SI. The Lower Pond SI is the location of the historic Mine constructed surface impoundment that has been upgraded by the current landowner to provide effective containment of historic Mine derived waste and sediments. The Lower Pond SI contains sediments largely sourced via stormwater flow and Travertine Spring/Adit discharge drainage through and off the Main Tailings Pile. Residual Mine features that are contributing mercury loading to the Marsh Creek watershed are the subject of the actions proposed in this Remediation Plan as depicted on Figure 2-9.

The Middle Pond is not a historic Mine feature but was created by the property owner, Jack Wessman, as part of stormwater management controls for the Mine conducted under the direction of the CVRWQCB. The Middle Pond contains stormwater and flanks the Lower Pond SI to the north and, based on characterization data, is not currently considered a source of significant mercury loading to Marsh Creek.

2.5.2 Potential Future Land and Resources Uses.

The Mine has reportedly been closed since around 1969. The Wessmans have owned the property since 1972 and it has been primarily used for residential purposes, supporting multiple families that include home rentals. No residences are located in the remedial action area (former Mine work area). Occasionally in the past, the property has been leased for recreational activities such as paint ball. The property also supports a small herd of cattle owned and managed by Jack Wessman. These cattle are not raised for commercial sale but are used for vegetation control and considered family pets. Future land use is expected to remain the same.

2.5.3 Potential Exposure Pathways and Receptors of Concern

This section provides a scientifically defensible basis for the selection of potentially exposed hypothetical receptors and the most likely ways they might be exposed to chemicals at the Site. To develop a conceptual understanding of the Site, information regarding potential chemical source, chemical release and transport mechanisms, locations of potentially exposed receptors, and potential exposure routes were assessed. This information is outlined schematically in a CSM shown on Figure 2-10. The CSM associates source of chemicals with potentially exposed receptors and associated complete exposure pathways. In this way, the CSM assists in quantifying potential impacts to human and ecological health.

As defined by USEPA (1989), all of the following four components are necessary for a chemical exposure pathway to be considered complete and for chemical exposure to occur:

- A chemical source and a mechanism of chemical release to the environment;
- An environmental transport medium (e.g., soil) for the released chemical:
- A point of contact between the contaminated medium and the receptor (i.e., the exposure point); and
- An exposure route (e.g., dermal contact with chemically-impacted soils) at the exposure point.

The following sections describe these components and provide a basis for the CSM.

2.5.3.1 Chemical Release Mechanisms and Identification of Transport Media

In this section, the first two components necessary for a complete exposure pathway are addressed. Chemical properties of the detected chemicals and the physical characteristics of the Site were reviewed to identify factors that might allow the release and transport of a chemical in the environment. Other than the on-site residential properties, which are outside the remedial action area, the Site remains undeveloped. The Site is on the lower flanks of the northeastern environs of Mount Diablo and is generally unpaved. The Site landscape is not expected to change in the future except as described in remedial actions proposed in this Remediation Plan.

The chemicals of potential concern (COPCs) at the Site are mercury and arsenic. Release of COPCs can potentially occur through wind and/or mechanical erosion (i.e., during construction), infiltration of chemicals into the groundwater, or lateral migration of chemicals in groundwater,

These types of releases may result in dust (with sorbed chemicals) emissions in air, or the movement of chemicals downward into groundwater with infiltrating rain water or stormwater runoff into surface water. The COPCs are not particularly mobile in soil; therefore, soil to groundwater is not considered a likely transfer mechanism. However, groundwater that flows from the underground Mine workings does contain COPCs. The groundwater is interpreted to daylight via springs or seeps on the face of the Main Tailings Pile.

2.5.3.2 Potential Exposure Points

The third component necessary for an exposure pathway to be complete is a point of contact between the contaminated medium and the receptor (i.e., the exposure point). For soil, the exposure point for potential receptors is defined as the remedial action area (former Mine work area).

As mentioned previously, other than the two groundwater monitoring wells installed into the Minë workings by SGI, only one additional groundwater well is located at the Site. This well is referred to as the "Wessman Well". The groundwater from the Wessman Well is used for domestic purposes by the residents located at the top of the hill well above the historic Mine workings. This well is located outside the remedial action area (former Mine work area). As such, the water from this well is not expected to be impacted by the Mine workings or actions proposed in this Remediation Plan. According to Jack Wessman, groundwater from the Wessman Well has been tested in the past and has been deemed potable. Residents located on the lower portions of the Site are connected to a public water supply system. Groundwater from the remedial action area (Figure 2-9) is not being used for domestic purposes and groundwater use is not expected to change in the future.

Although it is possible that a hypothetical outdoor construction worker receptor could contact shallow groundwater during excavation, this contact is expected to be very infrequent and involve only minor contact, if any, with contaminated groundwater. In general, any hypothetical construction worker receptor will be performing activities consistent with a site health and safety plan (HASP). This HASP and BMPs would require control measures to limit and preclude any direct contact with groundwater for workers at the Site.

Additionally, surface run-off and near-surface groundwater is assumed to discharge via ephermeral streams, springs, or seeps into surface waters adjacent to the Site (i.e., Dunn Creek). Dunn Creek is seasonal and intermittent adjacent to the Site and not used for recreational purposes in the stretch adjacent to the Mine. Intermittent presence of water is considered unlikely to support fish suitable for human consumption. Dunn Creek flows south from the Mine Site to join Marsh Creek 0.5 miles downstream, then flows approximately 11 miles to discharge into the Marsh Creek Reservoir, and then into the western San Joaquin Delta at Big Break. Metals (e.g., mercury) may move from the Site to adjacent waterways in dissolved and particulate form. As mentioned previously in Section 2.3.3, 95 percent of the total input of mercury to the upper watershed has been estimated to come from Dunn Creek, with 88 percent traceable to exposed tailings piles of the Mount Diablo Mercury Mine (Slotton, 1996, 1997, 1998). However, 95 percent of the

watershed's suspended sediment load is from non-Mine, low mercury source regions. Although Site-related contaminants may flow to potential drinking water sources further downstream from the Site, concentrations are expected to be significantly diluted.

2.5.3.3 Potential Receptors

In addition to exposure points, potential receptors at the Site are necessary for an exposure pathway to be complete. Hypothetical receptors identified for evaluation in this assessment were identified on the basis of proximity to the remedial action area of the Site, proposed activities that could possibly result in direct or indirect contact with chemicals. On the basis of current and potential future uses of the Site, the following hypothetical receptors were evaluated in this risk assessment:

On-Site

- Hypothetical Future Construction Worker Receptor; and
- Hypothetical Current/Future Recreational Visitor Receptor.

Off-Site

- Hypothetical Current/Future Recreational Angler Receptor; and
- Hypothetical Current/Future Aquatic Biota.

2.5.3.4 Exposure Pathways Considered Potentially Complete and Significant

The fourth and final component, a complete exposure pathway (i.e., route of exposure) is discussed in combination with the third component (i.e., presence of receptors) to define those exposure pathways considered to be complete and significant. As indicated in the CSM (Figure 2-10), contact with COPCs at the Site could occur via exposure to soil, groundwater, and surface water. The following sections separately summarize those pathways considered complete and significant for each receptor.

2.5.3.4.1. Hypothetical On-Site Construction Worker Receptor

The hypothetical construction worker receptor is included in this CSM due to planned future construction at the Site. Future construction may occur during installation, monitoring, and maintenance of remedial actions implemented at the Site as proposed and detailed in this Remediation Plan. Therefore, future hypothetical construction worker receptors are expected to perform soil invasive activities. This receptor is expected to be a short-term outdoor worker (i.e., 2 weeks to 7 years [USEPA, 1989]) for a single construction or development project at the Site. This receptor spends the workday outdoors performing construction-related tasks. The exposure pathways assumed to be complete and significant for the hypothetical outdoor construction worker receptor include:

- Incidental ingestion of soil;
- Dermal contact with soil; and

Inhalation of dust in outdoor air generated from the subsurface.

2.5.3.4.2. Hypothetical On-Site Recreational Visitor Receptor

The hypothetical recreational visitor receptor is included in this CSM in the event any recreational activities occur at the Site. The Site is accessible through privately owned lands and is blocked from public access by fencing and locked gates. Due to access restrictions in place at the Site, the number of visitors is anticipated to be minimal and infrequent and of short duration. This receptor may also include an unauthorized visitor (or trespasser). Conservatively, this receptor is expected to be a long-term recreational receptor that includes exposures as both a child and adult recreational visitor. Exposure to surface water is not expected due to the intermittent presence of surface water and the infrequent and limited time spent at the Site by the recreational visitor. The exposure pathways assumed to be complete and significant for the hypothetical recreational visitor receptor include:

- Incidental ingestion of soil;
- Dermal contact with soil; and
- Inhalation of dust in outdoor air generated from the subsurface.

Areas of the Site outside of the remedial action area are currently used for residential purposes, but these areas are not expected to be impacted by Site-related contaminants from the remedial action area. However, as residents on the property, they may walk or hike on the property. This on-site recreational visitor receptor will address any potential exposures to a potential resident receptor conducting recreational activities in the remedial action areas.

2.5.3.4.3. Hypothetical Off-Site Recreational Angler Receptor

The hypothetical recreational angler receptor is included in this CSM in the event recreational angling is conducted in downgradient waterways that support fish. This hypothetical recreational angler receptor includes both a child and adult. Conservatively, this receptor is expected to be a long-term recreational receptor. The exposure pathways assumed to be complete and significant for the hypothetical recreational angler receptor include:

Ingestion of fish.

2,5.3.4.4. Hypothetical Off-Site Aquatic Biota

Due to the ecological concerns associated with mercury and formation of methyl mercury in aquatic systems and the presence of surface water that receives run-off from the Site, aquatic biota are included in this CSM. The exposure pathways assumed to be complete and significant for the hypothetical aquatic biota include:

- Uptake of surface water by aquatic biota (i.e., aquatic plants, water-column invertebrates, fishes); and
- Uptake of sediments by sediment dwelling invertebrates...

2.5.4 Summary of Potential Human Health Risks

For the hypothetical on-site human receptors, potential exposure to COPCs in Mine-related materials is possible through direct contact (i.e., incidental ingestion or dermal contact) with contaminated material and inhalation of airborne dust particulates. The Site-related contaminants may pose a risk to human health as a result of work performed at the Site (i.e., hiking, biking, and other outdoor activities). In general, any hypothetical construction worker receptor will be performing activities consistent with a site HASP and BMPs, which would require proper personal protective equipment to limit direct contact with soil for workers at the Site. In the current exposure scenario, recreational visitor receptor exposures are expected to be infrequent and of short duration; therefore, reducing actual exposure to the Site. In the future exposure scenario, the Mine waste will be capped. As a result, future recreational visitor receptors will not be exposed to Mine waste at the Site.

For the hypothetical off-site recreational angler receptor, water quality criteria for human health (i.e., consumption of water and organisms and consumption of organism only) were lower than the analytical detection limit for surface water samples. Surface water sample location SW-07 (Figure 2-8) in Dunn Creek is the natural point of compliance sampling location for monitoring rum-off impacts from the Site. In sample location SW-07, arsenic was not detected above the analytical detection limit and mercury (total and dissolved) were detected below or slightly above the analytical detection limit. Because analytical detection limits are above the water quality criteria, arsenic impacts cannot be evaluated. Site-related contaminant concentrations are expected to be diluted significantly by the time they reach the Marsh Creek Reservoir. Mitigation of sourcing of Site-related contaminants into Dunn Creek and its tributaries and subsequently the Marsh Creek watershed with remedial actions at the Site coupled with ongoing dilution will reduce any potential risks to hypothetical off-site recreational angler receptors from Site-related contaminants.

2.5.5 Summary of Potential Ecological Risks

As mentioned previously, water from the Site eventually flows into Dunn Creek and its tributaries. Although chemistry results fluctuate based on seasonal nature of precipitation events which result in more or less dilution of the waters flowing from the Site, no mercury (total or dissolved) or arsenic have been detected at concentrations that have exceeded the water quality criteria (SGI; 2011). Water quality criteria that have been exceeded at sample location SW-07 include methyl mercury, alkalinity, total dissolved solids, chloride, iron, and nickel. With the exception of methyl mercury, all of these compounds exceed the water quality criteria in the State Park Spring sample location (SW-04), which has no known connection to the Mine and likely reflects natural chemistry of waters that would flow from background areas around the Site. Therefore, these exceedances would occur independent of the any impacts caused by former Mine operations in the remedial action area of the Site. In Dunn Creek (SW-07), methyl mercury concentrations ranged from 0.68 to 6.56 ng/l. However, background concentrations for methyl mercury ranged from 0.077 to 0.980 ng/l. Due to the endemic presence of trace levels of mercury in the environment at some

Site Remediation Work Plan		Querter Querte Querte Querte	
Mount Diablo Mercury Mine, 243	30 Morgan Territory Road	, Contra Costa County, Califor	nia

May 8, 2012

trace level, in aquatic systems with any oxic-anoxic interface (i.e., subsurface in sediments), some small fraction of mercury will inevitably be methylated.

Potential aquatic receptors in surface waters downstream of the Site may be impacted by exposure to methyl mercury, which also has the potential to bioaccumulate in biota. However, remedial actions for the Site are designed to mitigate sourcing of Site-related contaminants into Dunn Creek and its tributaries and subsequently the Marsh Creek watershed.

3:0 REMEDY APPROACH AND SCOPE OF WORK

This section describes the planned remediation activities of Mine-related material at the Site, including permitting, Site preparation and control, Mine-related material removal and in-place management, waste management, removal confirmation, and Site restoration.

3.1 Remedial Action Overview and Approach

Mining waste targeted for remedial action was identified via characterization activities that have essentially been ongoing over the last 50 years (Section 2.3). Recent characterization activities were conducted by SGI on behalf of Sunoco to expand and refine historic characterization activities as detailed in SGI's Additional Characterization Report of December 7, 2011 (Summarized in Section 2.3.4). The focus of characterization activities has been to identify Mining waste based on its demonstrated contribution of sediment and COCs to Dunn Creek and the Marsh Creek watershed. Characterization activities have all indicated that the continuing source of mercury impact to lower Dunn Creek and Marsh Creek and its environs emanates from the Lower Pond that is filled via spring discharge and surface run-off that flows over the Main Tailings and waste rock pile (Bradleys' eastern tailings piles) at the Mine. As a result, the focus of this Remediation Plan is to effectively remediate this condition and reduce discharges into Dunn Creek from the Mine Site to be consistent with natural background specific to the Mine Site. Since the Mine Site and the adjacent State Park contain highly mineralized natural springs that pre-date mining activities, restoration of natural background surface water discharges is focused on activities that reduce and eliminate contribution of Mine derived additional COCs and mineral content to the natural highly mineralized background water quality.

Characterization has identified three main categories of solid Mine waste material that are the focus of this Remediation Plan. The primary focus is concerned with the Main Tailings Pile that has been demonstrated to be providing the bulk of COC loading to Dunn creek via storm flow, seepage and movement of recharge through the pile, and the discharge and movement through and on the pile of the Travertine/Adit Spring. The secondary focus is the presence of sediments in the Mine surface impoundment located below the Main Tailings Pile. A third and minor item is the calcines located north of the Main Tailings Pile. The locations and extent of the materials targeted for remedial action are depicted on Figure 3-1. Volumes of these materials are summarized in Table 2-2.

The Main Tailings Pile is made up of both capped and uncapped Mine-related wastes as indicated on Figure 3-1. Surface water sampling has indicated that COC sourcing is occurring on the lower, uncapped portion of the Main Tailings Pile. The remedial approach for the Main Tailings Pile is to remove the portion of these tailings that are uncapped and consolidate them within the area of the former Mine workings as shown on Figure 3-1. The former Mine workings area is located directly west of the Main Tailings Pile and consists of a flat base made up of compacted fill placed over the collapsed Mine workings by the current property owner. The Mine workings area is bounded on

the north, south and west sides by the steep slopes of the mountainside as a result of historic Mine-related excavations in the Mine workings area. The Mine workings area thus forms an ideal location for the consolidation and capping of Mine wastes away from the Dunn Creek environs. Figure 3-2 presents a cross section demonstrating the nature of the disposition of Mine wastes and the selected area for consolidation and capping

The sediments and berm materials of the Lower Pond SI will also be excavated and consolidated with materials from the Main Tailings Pile in the Mine workings area. Additionally, a smaller volume of processed ore (calcines), located north of the Main Tailings Pile will be excavated and consolidated with the other material (Figure 3-1). These consolidated materials will then be capped and appropriate surface water drainage controls implemented.

Excavation and removal of these Mine waste materials will expose the portal of the 165 level Adit and any associated Mine water discharge as well as the pre-mining emanation point of the former Travertine spring. The relationship of these discharge locations to Mine waste and remedial actions is shown on the cross section of Figure 3-2 and on Figure 3-3. Discharge waters encountered from these sources will be sampled and analyzed as detailed in section 4.1. The short-term solutions implemented as part of this Remediation Plan will include the capture and routing of these groundwater discharges away from and around all contact with Mine waste materials prior to discharge into Dunn Creek below the Lower Pond SI. Based on characterization data, it is anticipated that elimination of contact of these waters with Bradley Mine wastes will likely reduce COCs to natural background conditions. Regardless, these groundwater discharges will be evaluated to determine if additional remedial action concerning them is warranted.

The general approach described above for Mine-related material remediation is consistent with previous federal and state recommendations for similar settings in California. In the case of the Sulfur Creek Mercury Mining District, the United States Geological Survey (USGS, 2004) and Churchill and Clinkenbeard (2003) reports concluded that effective Mine Site remediation should be based on general Site erosion control and Mine-related material isolation measures. Similarly, a CalFED Bay-Delta Program (CalFED) Report regarding the Sulfur Creek Mercury Mining District also recommended that Mine-related wastes with elevated mercury levels be excavated and removed off-site and/or consolidated and stabilized on-site, with the implementation of institutional and surface water run-on/run-off controls to reduce the potential for erosion into nearby surface water (CalFed, 2003).

3.2 Permitting

All necessary approvals must be obtained prior to initiating the remediation activities described in this Remediation Plan to ensure the project is completed in compliance with applicable regulatory requirements. Mine and mill wastes are specifically excluded from regulation as hazardous wastes under the Bevill Amendment and as such, RCRA Subtitle C regulations do not apply. The general approach to the permitting process will be to:

Mount Diable Mercury Mine, 2430 Morgan Territory Road, Contra Costa County, California.

- Identify potentially applicable approvals required from regulatory agencies and private parties;
- Meet with key regulatory agencies for pre-application meetings to confirm the potential requirements, and establish early communication with agencies and adjust data needs as required; and
- Facilitate the approval process from pre-application to submittal and approval.

Tracking of the approval status and compliance with the potential requirements will be conducted including:

- Use of a permit-tracking matrix to manage submittal of materials and status of approvals. A
 master permit list with more detailed information on permit requirements and planned dates
 will be prepared and will be updated throughout the project for use as a tracking and
 management tool as part of pre-implementation.
- Development of specific oversight plans and documentation as required for permit compliance.
- Implementation of field monitoring requirements, as needed. Work monitoring and inspection activities (e.g., monitoring of BMPs) required by applicable permits during field work/construction will be implemented into the bid specifications.

3.3 Site Preparation and Control

This section describes the Site preparation and control activities to be completed prior to and during remediation and restoration work at the Site, including Site access agreements, mobilization and demobilization, material and equipment staging, road construction and improvements, and transportation.

3.3.1 Site Access Agreements

Updated Site access agreements will be required with the current property owners at the Site by all parties involved in implementation of the remedy. In addition, a Site access agreement will be required with the Mount Diablo State Park to allow removal of waste material that overlaps the property border to the south (Figure 3-1 illustrates the State Park boundary overlap).

3.3.2 Mobilization and Demobilization

Mobilization and demobilization will include all work necessary to manage operations for the duration of the project. Mobilization will be an ongoing task as new resources are needed for specific operations. The project-specific HASP will be completed as part of the mobilization phase. A draft HASP will be finalized prior to beginning field activities, with input from the selected remediation contractor during the pre-mobilization phase of work. During mobilization, equipment will be cleaned to limit noxious weed transport to the Site. A stormwater pollution prevention plan (SWPPP) will be prepared prior to the initiation of any soil disturbing activities at the Site.

Demobilization will include the removal of all equipment and personnel mobilized to the Site and waste generated during the duration of the project. Final demobilization will include cleanup and restoration of all staging areas to pre-existing conditions. At the conclusion of the construction season, work areas will be secured and appropriate stormwater BMPs will be implemented to reduce the potential for Site activities to impact stormwater run-off.

3.3.3 Erosion Control

Remediation of the Mine-related materials will require establishing equipment access and the excavation, loading, and haulage of the materials. The disturbance associated with these activities will need to be mitigated to prevent erosion. A notice of intent (NOI) and storm water pollution prevention plan (SWPPP) will be prepared and certified through the CVRWQCB. This mitigation will involve the re-grading and reclamation of the natural ground surface and the temporary placement of erosion control BMPs.

BMPs will be selected based on the planned reclamation activities and include categories related to erosion control, sediment control, tracking control, wind erosion, non-stormwater controls, and waste management and materials control. These BMPs can include, but are not limited to:

- Grading;
- Silt Fences;
- Straw Bales;
- Biodegradable Fiber Rolls;
- Loose Straw, Mulch;
- Grass Filters;
- Sand/Gravel Bags;
- Dust Control Moderation;
- Good Housekeeping Practices;
- Site Entrances and Exit Maintenance; and
- Management of Construction-Related Wastes.

The combination of the above-listed BMPs will protect the stormwater quality during reclamation activities. Procedures to ensure proper implementation of erosion control BMPs during remediation will be identified and described in the SWPPP. The SWPPP will be established prior to starting any soll disturbing activities associated with construction work at the Site, and will be included as necessary in permitting documentation. Specific construction activities likely to require erosion control measures are addressed in the task descriptions in the following sections. Erosion control materials will be on standby for use if rainfall events occur during construction activities.

3.3.4 Material and Equipment Staging

All materials and equipment will be staged on the Mine Site. Each work area will have a temporary staging area for equipment and personnel. These areas will be determined and approved by the current property owners and the Site engineer prior to mobilization.

3.3.5 Road Improvements and Construction

Mine access road construction and improvement will be required throughout the project. Proposed locations of access routes and roads are preliminary and will be revised as necessary pending final approvals by the property owners and the Site Engineer. Access Improvements will be located to minimize disturbance.

In the event that any roads cross a drainage channel, existing culvert, or small tributary, a replacement culvert will be installed or temporary steel plating will be placed across to keep drainage areas open.

3.3.6 Transportation Plan

A Site transportation plan will be prepared during pre-mobilization activities and will cover on-site transport of Mine-related material and other material generated during Site removal and restoration activities. The transportation plan establishes procedures to minimize the environmental and health and safety risks associated with material transportation conducted for the project.

3.3.7 Dust Control

Reclamation activities anticipated to generate dust during the project include construction vehicle traffic and ground disturbance activities associated with material removal, consolidation and recontouring. Routine dust control measures will consist of water spray to moisten disturbed areas, on-site haul roads and other areas, as needed (e.g., unpaved construction roads are commonly watered three or more times per day during the dry season). If dust emissions are visible, dust control practices will be modified or other corrective measures will be implemented immediately.

3.4 Mining-Related Material Remediation

This section describes in greater detail the remediation (e.g., removal and management-in-place) of Mine-related materials including waste rock and tailings, calcines, spring water discharge and Lower Pond SI sediments.

3.4.1 Main Tailings Pile and Calcines

The Main Tailings Pile is generally laid at a slope of 3:1 (18 degrees) from the Lower Pond SI up to the beginning of the capped area near the top of the slope (Figure 3-1). The waste is covered in places with boulders up to 6 feet in diameter. The internal character of the waste in the Main Tailings Pile has not been investigated by intrusive activities. The thickness of the material in the Main Tailings Pile has been determined via comparison of historic topography with the current

Site Remediation Work Plan	
Mount Diablo Mercury Mine, 2430 Morgan Territory Road, Contra Costa County, California	

surveyed Site topography as demonstrated on Figures 3-2 and 3-3. The average thickness of the western portion of the Main Tailings Pile targeted for removal is 24 feet. The eastern portion of waste extending from the lower reaches of Main Tailings Pile to the Lower Pond SI is estimated to be as little as three feet thick or less. Along the east-west edge of the upper portion of the Main Tailings Pile, the slope is very steep - on the order of 1:1. The waste area extends into the adjacent State Park to the south.

The top surface of the Main Tailings Pile is essentially level with a grade to the west for the capture of surface water as designed by the landowner. The tailings have been capped with 10 to 20 feet of fill as estimated by the landowner (Figure 3-2). The capping material extends down the face of the Tailings a significant distance. The cap material is reported to be from a local pool contractor who has stored excess soils on the Site for many years. The leading downhill slope of the stockpile is quite steep and likely is on the order of 2:1 (26.5 degrees) or steeper. The estimated volume of wastes proposed for removal from the Main Tailings Pile, as depicted on Figure 3-1, is 102,245 cubic yards.

A small area of calcines is located to the north of the Bradley wastes (Figure 3-1). The gravel-size material was roasted to drive off the mercury as a vapor. The calcines are distinctive and their extent is readily discernable on the ground. The estimated volume of these materials is 7,500 cubic yards based on topographic analysis.

The remedy proposed is the removal and transport of these uncapped exposed Mine waster materials as depicted on Figure 3-1 to the former Mine workings area for consolidation and capping. Figure 3-4 depicts cross sections of the expected configuration of the Mine waste after all waste has been consolidated in the former Mine workings area. The cross sections depict Mine waste extending to an elevation of 930 feet. The planned footprint of consolidated waste in the former Mine workings area extends from the base of the floor at approximately 875 feet to the 930-foot contour interval as shown on Figure 3-1. The volume capacity of this consolidation area is calculated to be approximately 150,000 cubic yards.

Removal of the waste footprint from the Main Tailings Pile as depicted on Figures 3-1 and 3-2 will result in the exposure of the toe of the capped waste that lies above. During the preimplementation planning phase of the proposed project, an approach for the stabilization and capping of the exposed toe of the capped waste material will be developed by the Site engineer in consultation with an appropriate geotechnical expert. Currently, insufficient data combined with the unknown condition of the base rock under the tailings preclude the development of a detailed plan. The capping and grading plan developed will be based on appropriate field sampling and investigation conducted during the pre-implementation phase of the project and will be submitted to the CVRWQCB for review and approval.

3.4.2 Lower Pond Surface Impoundment

A surface impoundment at the location of the Lower Pond SI has been present at the Mount Diablo Mine since at least the late 1930s. Division of Water Resources (1952) reports the results of a

chemical analysis of "final" pond outflow from 1939. It is believed that this final pond occupies the same approximate footprint as the present day surface impoundment. The current condition of the Lower Pond SI at the Mine is a result of upgrade and modifications conducted by the current property owner. The Lower Pond SI was re-built in 1978/1979 by Jack Wessman as one of the requirements of the Waste Discharge Requirements and the Cleanup and Abatement Order issued in 1978. Jack Wessman has stated that the Lower Pond SI levee material was derived from local soils that were not in contact with the Mine tailings with the bulk of the material derived on-site from an area north and east of the Lower Pond SI. The lower pond was designed to have an effective storage capacity of 3.0 acre-feet.

A small secondary pond (herein referred to as the Middle Pond) was also constructed by Jack' Wessman, immediately north of the Lower Pond SI. This Middle Pond was built by Jack Wessman to capture the stormwater drainage as part of his work to manage stormwater flow away from exposed Mine waste as discussed in Section 2.1.7. Removal of the Middle Pond is not part of this Remediation Plan.

Removal of the Lower Pond SI and berm materials is estimated to generate approximately 14,189 cubic yards of solid waste material form the area depicted on Figure 3-1. Of this total, approximately 9,400 cubic yards are estimated to be sediment contained within the impoundment. Additionally, approximately 2,400 cubic yards of waste material that is observable below the southern levee of the surface impoundment is included in the total.

In its current configuration, the Lower Pond SI drains directly into Dunn Creek. De-watering of the Lower Pond SI will be conducted via pumping and on-site treatment to remove sediment load and reduce total metals loading to Dunn creek. Estimated water volume in the pond at the time of project implementation will be dependent on the time of year and the total winter rainfall preceding the project start. Water volume is estimated to be on the order of 2 to 3 million gallons. Based on the requirements determined during the permitting stage of the Remediation Plan implementation process, a de-watering plan for the impoundment will be developed and submitted to the CVRWQCB for review and approval.

The Lower Pond SI is bounded on the west by a large area of open ground with a gentle slope that is already covered and impacted with Mine waste materials. During sediment excavation, staging and amendment of sediments will be conducted in this area such that run-off from the staging and processing area will naturally be contained within the catchment of the Lower Pond SI.

Lower Pond SI sediments will be excavated and amended via the addition of cement and/or other satisfactory pozzolonic material to stabilize them and allow transport to the consolidation area. Initial estimates indicate the need for 1200 tons of dry cement for application to the pond sediments in order to stabilize and condition the sediments.

The footprint of the excavated Lower Pond SI will be restored via Implementation of a re-vegetation, plan as discussed in Sections 3.7 and 4.4.

3.4.3 Mine Adits and Shafts

Based on review of Site mining history information and interviews with the current property owners, no mineshafts are known to exist in the area of planned tailings removal. Removal of the Mairí Tailings Pile is expected to uncover the former 165 level Adit as shown on Figure 3-2. The condition of the adit opening is unknown. Historic information indicates that this adit may be the source of some or all of the spring water currently exiting the Main Tailings Pile and called the Travertine/Adit Spring. Based on the condition of the adit when uncovered, a plan will be developed to; 1) remove Mine waste in the adit mouth that could contribute mercury loading to spring water, 2) stabilize and plug the adit opening, and 3) construct a catchment to capture any water drainage effectively and route it away from all Mine waste as detailed in following Section 3.4.4.

3.4.4 Travertine Spring /Adit Discharge

Removal of the Main Tailings Pile will allow access to the historic emanation location of the Travertine Spring and the possible groundwater discharge from the portal of the 165 level Adit (Figure 3-2 and 3-3). Through access to these areas, the sources of current groundwater discharge that emerges as the spring and seeps will be determined. Based on the determination of the source of the spring water, appropriate catchment/s will be designed. The catchment/s will be designed to allow complete capture of these groundwater discharges allowing competent routing of the flow away from contact with Mine waste. During project Implementation, a temporary catchment will be designed by the Site engineer to route the groundwater discharge away from the on-going work areas. This flow will be diverted to Dunn Creek and bypass any further contact with existing Mine waste. Due to the planned removal actions that will be occurring in the vicinity of these groundwater discharges, the likely routing direction for this flow is to the south in the vicinity of the State Park Spring. As a result of this planned re-routing, it is expected that the groundwater discharge of these waters to Dunn Creek.

A spring water catchment and routing plan will be developed and submitted to CVRWQCB for review and approval. During the intervening time, a temporary catchment and routing plan will be developed and immediately implemented by the Site engineer in consultation with CVRWQCB staff. Maintenance of this temporary discharge routing will be conducted throughout the implementation process. Construction of permanent catchment and routing structures will be conducted following approval of the developed plan by the CVRWQCB and the effective completion of removal and stabilization activities in the area.

3.5 Material Management Plan

This section describes the material management plan for Site Mine-related material, including structures and equipment, waste rock, tailings, calcines, and mercury-enriched sediments.

3.5.1 Recycling and Disposal of Structures and Equipment

The **Remediation** Plan does not include the removal of Mine-related equipment. However, it is possible that during the process of excavation and consolidation of Mine waste, Mine-related equipment will be encountered.

Mine-related equipment that is encountered, such as pipes and retort remnants, will be consolidated within the consolidation area if feasible. Where inclusion of Mine-related equipment encountered is considered by the Site engineer to be infeasible, the Mine-related equipment will be further evaluated to determine if removal is necessary. If equipment or structures encountered cannot be included in the consolidation area, then the procedures that would be followed are. described below.

Where possible, based on the available material characterization data, remnants of former Minerelated structures and equipment will be recycled. Only those materials demonstrated to contain concentrations of mercury below applicable regulatory limits will be considered for recycling. Materials will be sorted by type (i.e., brick/concrete, dimension stone, wood, and metal) in the staging area as they are removed. Brick, dimension stone, and concrete debris will be transferred to a recycling facility or disposed as construction waste, depending on condition. Wood will either be recycled or disposed of as construction waste depending on condition. Steel will be transferred to a recycling facility as general scrap metal.

3.5.2 On-Site Stabilization and Capping

Mine waste consolidation and stabilization will be completed so that the consolidated and capped materials will not be actively eroding material directly to Dunn creek or its minor tributaties. In general, materials that are moved for consolidation will be placed in lifts, keyed into existing slopes and compacted between lifts. Water trucks will provide water that will be used for dust control as well as to enhance soil compactability. Lifts will be keyed in for stability and erosion control. Once final grading is complete, the materials will be capped with soil. The source of the borrow soil will be determined prior to contractor selection and detailed in a capping plan. The cap material will be keyed into the surrounding native material and proof rolled for compaction.

A licensed geotechnical engineer under the direction of the Site engineer will perform a geotechnical investigation. The investigation will include slope stability, seismic stability, and design of the capping area. Furthermore, the licensed geotechnical engineer will provide drainage recommendations to be installed within the consolidated waste material. Based on this pre-implementation design, a general Capping Plan will be prepared by the Site engineer and submitted to the CVRWQCB for review and approval.

3.5.3 Hazardous Waste

Mine-related waste that is the subject of this Remediation Plan is by its nature considered to fall under the Bevill exclusion. In October, 1980, Resource Conservation and Recovery Act (RCRA) was amended by adding section 3001(b)(3)(A)(ij), known as the Bevill exclusion, to exclude

"solid waste from the extraction, beneficiation, and processing of ores and minerals" from regulation as hazardous waste under Subtitle C of RCRA.

No waste is planned for off-site disposal as a result of the actions described in the Remediation Plan. Although not anticipated, if hazardous wastes are generated during the project and they do not meet the Bevill exclusion requirements, these wastes will be transported to an appropriate hazardous waste landfill facility for disposal. In this event, a transportation plan will be developed. The transportation plan will include, if required, trucking routes and manifest required for the hazardous waste facility. The final hazardous waste disposal facility will be determined based on the waste characteristics, waste profile, and the acceptance criteria for the available disposal facilities.

3.6 Removal Confirmation

The extent of excavation of Mine-related waste rock, and tailings at the Site will be determined in the field using qualitative (visual) techniques before and during excavation activities. Samples for laboratory analysis will not be collected to confirm removal and/or stabilization limits or boundaries,

The horizontal and vertical limits of the waste rock, and tailings piles will be identified and confirmed using the following guidelines:

- Topographical expression (many material piles have well-defined topographic profiles);
- Color change (calcine tailings have a distinctive reddish color);
- Presence of buried soil horizons, as evidenced by the presence of organic material, roots; and developed soil horizons;
- Presence of in-place bedrock;
- Presence of laminated or bedded fine-grained material indicative of natural overbank, deposits; and
- Presence of an aburdance of rounded gravel and cobbles indicative of former streambed or stream terrace deposits.

Delineation of the horizontal and vertical limits of the waste rock, ore, and tailings piles will be conducted by or under the direction of registered Professional Geologists with relevant expertise in accordance with California Business and Professions Code sections 6735, 7835, and 7835.1. The delineation tasks will also be documented and reported to the CVRWQCB.

In order to distinguish Mine-related materials from natural soils and rock materials, the following guides will be used; the soil classification guidelines published in American Society for Testing and Materials Standard D-2487 and the standard practice for classification of soils for engineering purposes (Unified Soil Classification System). The available guidelines will be applied in a manner that allows for the removal or stabilization of all targeted Mine-related materials while minimizing the removal or disruption of in-place naturally occurring materials.

3.7 Site Restoration Approach

This section describes the Site restoration approach, including temporary road removal; re-grading, slope stabilization and bank stabilization; and re-vegetation that will be conducted in accordance with the NOI storm water discharge permit.

3.7.1 Temporary Road Removal

All Mine access roads or constructed temporary roads, bridges, or steel plates used during construction will be removed and the area restored upon the completion of work in that area as described in Sections 3.7.2 and 3.7.3. Unless required for future access or requested by the property owner, culverts placed or repaired during the construction of the roads will be removed and disposed of in accordance the recycling plan described in Section 3.5.1.

3.7.2 Re-grading, Slope Stabilization, and Bank Stabilization

Disturbed areas and temporary roads will be restored upon completion of all removal and/or on-site stabilization activities. Slopes and roads will be graded to a natural line that limits run-off and drainage. Fill material will be borrowed from on-site as need for grading and stabilization. Positive drainage will be achieved to minimize ponding of water. Slopes will be stabilized by eliminating run-off from the top of the slope, or cutting the slope back to slow stormwater run-off. Grading around on-site stabilized materials will be used to divert stormwater away from the stabilized material. Grading near creeks will be completed to limit streambed disturbance and maintain the natural flow. The grading of Site areas will remain above the Dunn Creek elevation to minimize the potential for undercutting.

Temporary bank stabilization measures may be necessary at the Dunn Creek drop adjacent to the southeast corner of the Lower Pond SI to minimize lateral creek migration following removal of the pond and associated berms.

3.7.3 Re-vegetation and Monitoring

A re-vegetation plan will be developed for the project that focuses on the seeding of early succession herbaceous grasses and/or forbs upon completion of the Site removal actions.

Disturbed Site areas will be re-vegetated following the completion of the construction season just prior to the first rain events. Re-vegetation will include hydro seeding, or other techniques where more appropriate, with an appropriate soil stabilization seed mix. Upon completion of re-vegetation activities, a Site Inspection with the CVRWQCB will be scheduled. See Section 4.4.5 for additional-details of the re-vegetation plan.

4.0 REMOVAL DESIGN, METHODS AND PROCEDURES

This section describes the removal design, methods and procedures, including sample collection and analysis, Site preparation and control, Mine-related material removal, Site restoration design, equipment decontamination, geolocation, and recordkeeping.

4.1 Sample Collection and Analysis

Sample collection during project implementation is anticipated for both soil and water as follows:

- Geotechnical evaluations discussed in Section 3.5.2 will be required during the removal, consolidation, and capping of Mine waste material. Sample collection and analysis specifications for soil samples will be described in the capping and grading plan developed before and during project implementation.
- 2. Water sampling will be conducted at the Lower Pond SI to evaluate water treatment and discharge options during planned **de**-watering.
- 3. Additionally, water samples will be collected from spring discharge upon uncovering of the former Travertine spring and the portal of the 165 level Adit. These samples will be collected and analyzed to aid in the management of these spring waters during and after completion of the removal actions specified in this Remediation Plan. All water samples will be collected under chain-of-custody protocols and transported to a State-certified laboratory for analysis. Samples will be analyzed for the following constituents using the appropriate test method:

Constituent	Test Method	
Total/Dissolved Mercury	EPA 245.1	
Methyl Mercury	EPA 1630	
pH/Specific Conductivity/Turbidity	SM18 4500H+/2510B/2130B	
Alkalinity (Bicarbonate, Carbonate, Total)	SM18 2320B	
Total Organic Carbon	SM18 5310C	
Total Dissolved Solids	SM18 2540C	
Chloride, Bromide, Fluoride, Nitrate	EPA 300/SW846 9056A	
Metals (Sb, As, B, Ca, Cr, Cu, Fe, Pb, Mg, Mn, Ni, K, Si, Na, Zn)	SW846 6010B	

Site Remediation Workplan Final 05-08-12.docx

Site Remediation Work Plan Mount Diablo Mercury Mine, 2430 Morgan Territory Road, Contra Costa County, California

4.2 Site Preparation and Control

This section outlines the Site preparation and control methods and procedures to be implemented during Site removal and restoration activities, including mobilization and demobilization, materials and equipment staging, and road construction and improvements.

4.2.1 Mobilization and Demobilization

Mobilization and demobilization includes all work necessary to manage operations for the duration of the project. Mobilization tasks will include, but are not limited to:

- Project management of all construction operations;
- Completion and maintenance of the HASP;
- Delivery of all equipment and materials to support work and health and safety requirements;
- General Site preparation, including fencing, and signage, to support operations for the duration of the project; and
- Installation and maintenance of all stormwater BMPs,

Demobilization tasks will include, but are not limited to:

- Removal of temporary Site controls and facilities established by the subcontractor;
- Removal of any damage caused by temporary Site controls and/or removal work;
- Verification that post-construction SWPPP BMPs are in place at the conclusion of the project;
- Decontamination of all equipment leaving the Site; and
- Final inspection by CVRWQCB at the conclusion of the project.

4.2.2 Materials and Equipment Staging

Material and equipment staging areas will be located on the valley floor near the entrance to the Mine property and on the Mine terrace area located as shown on Figure 4-1. The staging areas will house field offices, equipment and material storage, and heavy equipment staging areas.

The valley floor staging area will be located in an area that is not impacted by past mining operations. Only minor or emergency equipment repair or maintenance will be completed in the staging area. Activities will be conducted within the staging areas in a safe manner that is protective of the environment. All generators used for power will have secondary containment for fueling and a spill response kit available at all times. The equipment maintenance area will also have secondary containment as well as stormwater BMPs in place to protect the surrounding area. Note non-emergency maintenance will be conducted off-site.

Storm water BMPs will be in place anytime material is being stored in the stockpile portion of staging areas. Stockpiles will be covered if substantial rain is in the forecast and run-off is possible.

At a minimum, BMPs will consist of straw wattles around the base of the pile and silt fence around the perimeter of the stockpile area.

Both the materials and equipment staging areas will be restored as described in Section 4.4 upon completion of the project.

4.2.3 Road Construction and Improvements

Road construction and improvements will be an ongoing task during the project. Mine access roads will be constructed or existing roads repaired on an as needed basis. Conceptual plans for road construction and improvements are shown in Figure 4-4. Tasks that will be performed for Mine access road construction include the following:

- Grading of existing roads for use by off-road trucks and equipment will be kept to a
 minimum. Roads will only be scraped to remove ruts, large rocks, or widened for safe
 passage of the largest piece of equipment using the road. These roads will be constructed
 by using a dozer to create a road and berm the spoils along the outer edge of the road for
 use later. The maximum road width will be 14 feet except in turn out areas. Roads will be
 re-contoured to minimize the disturbance of existing slopes.
- Replacing or extending drainage culverts may be required to accommodate larger vehicles.
- New culverts, steel trench plates, or a combination of the two will be used at locations where existing culverts or drainage channels require additional support.
- New access roads will be constructed only when needed. Each road will be constructed with a dozer just deep enough to remove vegetation and wide enough for the largest piece of equipment to access. Any material removed from the road will be bermed on the side for re-vegetation use when the work is complete. Roads will be constructed along contour as much as possible while providing safe passage of trucks and equipment. Turns will be kept wide so that additional rutting and damage to the area does not occur.

4.3 Mining-Related Material Remediation

This section describes the Mine-related material remediation methods (i.e., removal and managedin-place) and procedures to be implemented during Site removal and restoration activities, including required equipment; structures and equipment removal and staging; waste rock, tailings, and sediment removal segregation, and staging; on-site management of Mine-related materials; and transportation.

4.3.1 Required Equipment

The removal of Mine-related materials (e.g., rock, tailings, and debris) will require at a minimum the use of heavy equipment, including:

- Excavator with thumb;
- Excavator with straight edge buckety

- Multiple 10-wheel truck or off-road trucks;
- Water truck, all wheel drive;
- Drop tank for water;
- Loader;
- Dozer, D-6; and
- Dozer, D-6 LGP.

4.3.2 Structures and Equipment Removal and Staging

The removal of Mine-related structures is currently not anticipated as part of this Remediation Plan. If required due to encountered conditions, the removal of former Mine structures will be completed with an excavator with thumb with minor cutting. If hot work is need to dismantle steel structures, a separate job safety analysis form will be completed and included in the project HASP.

4.3.3 Waste Rock, Tailings, and Sediment Removal, Segregation, and Staging

Waste rock, tailings, and sediment will be removed from the Site using a systematic approach. Excavators will be used to excavate the material and load into haul trucks. The material will be removed using a straight edge bucket working from the outside edges of dumps and piles inward. The process will minimize the mixing of native material with the tailings, the over excavation of material, and the spreading of material into adjacent creeks and clean areas. To the extent possible, work will proceed from the furthest location of the Mine back toward the staging area. Material will be directly loaded into trucks and transported to the consolidation area in the former Mine workings for placement.

During sediment excavation, staging and amendment of sediments will be conducted in the area located immediately west of the pond as shown on Figure 4-1. Pond sediments will be excavated and amended via the addition of dry cement to stabilize them and condition the sediments allowing transportation to the consolidation area. Care will be taken to prevent generation of cement dust using a water buffalo during mixing activities. Mixing will also occur during sunny and low wind conditions. If average wind velocities are greater than 25 miles per hour, then lime stabilization activities will cease until conditions stabilize to stabilize them and allow transport to the consolidation area.

4.3.4 On-Site Management of Mine-Related Materials

The Mine-related material will be spread in thin lifts and compacted. The final surface shall be graded to match the surrounding surface, have positive drainage, and seeded with the approved upland seed mix to vegetate the finished surface. The final specifications for the consolidation and capping of waste materials will be detailed in the capping and grading plans developed as discussed in Section 3.4.1,

4.3.5 Transportation Plan

A Site transportation plan will be prepared during pre-mobilization to identify potential health and safety risks resulting from on- and off-site movement of materials, equipment, and debris. The preliminery transportation plan outlines appropriate procedures and precautions that will be taken to minimize potential risks, and will be modified during the project to reflect changing conditions, improved procedures, and expanded scope, as needed, including additional off-site disposal locations, if necessary.

4.4 Site Restoration Design

This section describes the Site restoration design, including required equipment, temporary road removal, re-grading and slope stabilization, sediment controls, and re-vegetation.

4.4.1 Required Equipment

Equipment required for Year 1 Site restoration may include the following:

- Water truck, all wheel drive;
- Dozer, D-6, with rippers; and
- Hydro seeder.

4.4.2 Restoration of Temporary Roads

All temporary roads used or constructed as part of this project will be removed when all construction is completed. Using excavating equipment and starting at the furthest extent of the access road, the roadway shall be graded to match existing grade and contour as the equipment "backs out" of the access road alignment. Road areas shall be graded such that no ponding of stormwater will occur and seeded with the approved seed mix to re-establish the vegetative cover. Restoration activities will include:

- Removal of culverts installed for creek crossings;
- Removal of signs or markers installed during mobilization;
- Removal of new temporary bridges, anchor blocks, and support blocks in creek;
- Rip the soil compacted during road construction to facilitate re-vegetation;
- Re-grade the road location to minimize visual evidence of the road;
- Re-grade to minimize run-off and erosion, per Sections 4.4.3 and 4.4.4; and
- Re-vegetate area per Section 4.4.5.

4.4.3 Regrading and Stope Stabilization

The restoration of disturbed areas and temporary roads will be completed by grading the area to blend with the surrounding grades and natural slopes to the extent practicable. Areas that have

been compacted and abandoned will be graded and/or ripped to facilitate vegetation growth, All. slopes and graded areas will minimize channeled stormwater run-off and erosion.

Slopes will be stabilized by track rolling with the dozer, will comply with stormwater BMPs, and will be finished with hydro seeding per the re-vegetation plan. For areas requiring fill along slopes, the material will be keyed in and compacted.

Where appropriate, grass filters may be employed to facilitate stabilization and mitigate sediment run-off to the creek. A grass filter is essentially a vegetated buffer zone lying on the flat to gently sloping terrace surface between the toe of the slope and the top of the main channel bank. The vegetation slows the velocity of sediment laden run-off causing the sediment to deposit on the surface within the limits of the vegetation coverage before reaching the edge of the stream bank. It relies on a high cover density of grass or grass-like vegetation (a dense cover of weeds will also be effective). The grass filter can be formed either by preserving an existing stand of dense vegetative cover (i.e., leaving a buffer zone) or by re-establishing a dense vegetative cover on a newly disturbed surface.

4.4.4 Potential Channel Sediment Controls at Dunn Creek

Dunn Creek flows on the eastern portion of the Site, and flow is toward the south. Dunn Creek's drainage on the northern portion of the Site is relatively topographically flat and near the northern portion of the Lower Pond SI, Dunn Creek is funneled into a narrow channel, which increases stream velocity and erosive energy. Near the southern end of the Lower Pond SI, Dunn Creek topographically drops approximately 4 feet, which has resulted in moderate to severe erosion at this location. At the request of Sunoco, SGI concreted with shotcrete the western portion of Dunn Creek as it bounds the Lower Pond SI to prevent erosion from damaging the southeast corner of the surface impoundment (SGI, 2009). The eastern portion of Dunn Creek at this location has since experienced moderate erosion and BMPs will be deployed to reduce the velocity of the channelized water before and after falling over the topographically higher ledge. BMPs will include inert rip-rap, energy dissipaters, and splash preventers. All BMPs will be selected and designed by a Professional Geologist/Professionat Engineer prior to deployment.

4.4.5 Re-vegetation

A re-vegetation plan will be developed during the implementation phase of the project. The goal will be to introduce early succession stage vegetation that will (a) control soil erosion and (b) promote future succession of plant communities at the Mine. As underlying substrate and slope of areas following remediation cannot be accurately determined at this time, the re-vegetation plan will be developed during project implementation following completion of excavation and removal activities.

4.4.6 Maintenance and Monitoring Plan

Due to the unknown nature of the final design of some of the specific remedial actions described herein, development of a maintenance and monitoring plan will be conducted following completion of removal and consolidation activities. The maintenance and monitoring plan will be developed as appropriate based on the final known and/or designed disposition of implemented remedial actions concerning capped areas, re-vegetated areas, and water discharge controls. The maintenance and monitoring plan will be submitted to the CVRWQCB for review and approval consistent with the approach for the multiple implementation plans specified for development in this Remediation Plan.

4.5 Equipment Decontamination

Equipment decontamination will occur anytime a piece of equipment or truck that was in contact with contaminated material leaves the Mine area (boundaries to be determined in the field) or the Site. Mine area and staging area decontamination will be conducted in accordance with the following procedures:

- Contaminated material with be knocked off all equipment tracks and/or tires prior to leaving, work area;
- Bulk transporters or on-site trucks will load in a single area outside of the contaminated zone to prevent material from being tracked out;
- Bulk transporters and on-site trucks will keep loads below the rail and will clean rails prior to
 proceeding on haul road; and
- Support vehicles will not enter contaminated zones.

Equipment and or trucks leaving the project Site will adhere to the following procedures:

- Equipment will be decontaminated in the staging area prior to leaving the Site. The bidt specifications will include specific demobilization decontamination procedures.
- Bulk transport trucks will verify that rails and fenders of trucks are clear of soil and that tires. are clean prior to leaving staging area. Knock-off pads will be constructed if necessary.
- Pickup trucks leaving the Site will have clean tires prior to leaving the Site on the access road.
- All vehicles leaving the property will have clean tires prior to entering Morgan Territory Road. Knock-off pads will be constructed if needed.

4.6 Geolocation

The limits of removal actions at the Mine will be photo-documented in the field and will be geolocated using a portable global positioning system (GPS) unit. The GPS data will be used to develop as-built maps of the construction effort using the existing project base maps, and will be augmented by a series of before-and-after photographs of all of the working areas.

Site Remaduation Workplan Final 05-08-12.docx.