Storm Runoff

Factors affecting runoff
 Hydrographs

 Volume, Peak Rate, Timing

Factors Affecting Runoff

- Precipitation-
 - Type, duration, amount, intensity
 - Design storm event
- Watershed

Size, topography, shape, orientation, geology, interflow, soil, land use.

Predicting Volume of Runoff

 NRCS Curve Number method (5.5)
 We will use 2 equations and 2 Tables

$$S = \frac{1000}{CN} - 10$$

$$Q = \frac{(P - 0.2S)^{2}}{(P + 0.8S)}$$
Runoff

S-term related to soil type and moisture condition
CN-the curve number. Varies dependent on soil group and moisture condition. See Tables 5.1 and 5.2.

TABLE 5.1

Curve Numbers for Antecedent Soil Moisture Condition II

	Hyc	Irologic	Soil Gro	oup
Land Use Description	Α	В	С	D
Commercial, row houses and townhouses	80	85	90	95
Fallow, poor condition	77	86	91	94
Cultivated with conventional tillage	72	81	88	91
Cultivated with conservation tillage	62	71	78	81
Lawns, poor condition	58	74	82	86
Lawns, good condition	39	61	74	80
Pasture or range, poor condition	68	79	86	89
Pasture or range, good condition	39	61	74	80
Meadow	30	58	71	78
Pavement and roofs	100	100	100	100
Woods or forest thin stand, poor cover	45	66	77	83
Woods or forest, good cover	25	55	70	77
Farmsteads	59	74	82	86
Residential quarter-acre lot, poor condition	73	83	88	91
Residential quarter-acre lot, good condition	61	75	83	87
Residential half-acre lot, poor condition	67	80	86	89
Residential half-acre lot, good condition	53	70	80	85
Residential 2-acre lot, poor condition	63	77	84	87
Residential 2-acre lot, good condition	47	66	77	81
Roads	74	84	90	92
Source: From NRCS, 1984.				

TABLE 5.2

Adjustments to Runoff Curve Number (CN) for Dry or Wet Antecedent Soil Moisture Conditions

	Factors to Convert Curve Number for AMC II to AMC I or AMC III			
Curve Number (AMC II)	AMC I (dry)	AMC III (wet)		
10	0.40	2.22		
20	0.45	1.85		
30	0.50	1.67		
40	0.55	1.50		
50	0.62	1.40		
60	0.67	1.30		
70	0.73	1.21		
80	0.79	1.14		
90	0.87	1.07		
100	1.00	1.00		

Q -excess rainfall (runoff), inches
P -rainfall depth, inches
After calculating Q, multiply by watershed area to get volume

Let's try an example:

George's house is just downstream of a 4-acre watershed that presently has mature forest on top of a Crosby soil. He is worried that the new townhouse development will increase the amount of water flowing in the creek by his house. Using a 2 inch storm determine the increase in water volume that will flow by George's house due to the development.

$\mathbf{S} = \frac{1000}{\mathrm{CN}} - 10$

Step 1--Calculate S numbers -Crosby soil is Type C (appedix D) -CN (AMC II) mature forest is 70 -CN (AMC II) townhouses is 90 -Convert to AMC III-worst case scenario -CN 70*1.21=84.7 -CN 90*1.07=96.3 -S (forest) = 1.81 -S (townhouses) = 0.38

Step 2-Calculate Q (excess runoff)
P = 2 inches rainfall
Q(forest) = 0.91 inches
Q(townhouses) = 1.61 inches

- Step 3-Calculate volume
- Area = 4 acre
- Excess rainfalls = 0.91in (forest) = 0.08ft
- Excess rainfalls = 1.61in (townh) = 0.13ft
- Volume (forest) = 4*0.08=0.32 acre ft
- Volume (townh) = 4*0.13=0.52 acre ft
- Volume (forest) = 14,000ft³
- Volume (townh) = 22,600ft³
- Volume of runoff will increase 61%

Graphical Peak Discharge Method

$q = q_u A Q F$

 q_u is determine from Figure 5.17
 Q is based on the NRCS Curve Number Method a 24 hour event and AMC II
 F consider surface storage from wetlands, lakes, and reservoirs

TYPE II Rainfall Region ← Ia/P = 0.1 ← Ia/P = 0.3 ← Ia/P = 0.35 — Ia/P = 0.4 ← Ia/P = 0.45 ← Ia/P = 0.51000.0 Unit Peak Discharge, qu, cfs/mi/in la/P = 0.10la/P = 0.50100.0 10.0 1.0 10.0 0.1 Time of concentration, $t_{\rm c},\,hr$

	Hydrologic Soil Group			
Land Use Description	Α	B	С	D
Commercial, row houses and townhouses	80	85	90	95
Fallow, poor condition	77	86	91	94
Cultivated with conventional tillage	72	81	88	91
Cultivated with conservation tiilage	62	71	78	81
Lawns, poor condition	58	74	82	86
Lawns, good condition	39	61	74	80
Pasture or range, poor condition	68	79	86	89
Pasture or range, good condition	39	61	74	80
Meadow	30	58	71	78
Pavement and roofs	100	100	100	100
Woods or forest thin stand, poor cover	45	66	77	83
Woods or forest, good cover	25	55	70	77
Farmsteads	59	74	82	86
Residential 1/4 acre lot, poor condition	73	83	88	91
Residential 1/4 acre lot, good condition	61	75	83	87
Residential 1/2 acre lot, poor condition	67	80	86	89
Residential 1/2 acre lot, good condition	53	70	80	85
Residential 2 acre lot, poor condition	63	77	84	87
Residential 2 acre lot, good condition	47	66	77	81
Roads	74	84	90	92

Curve Number AMC II	Factors to Convert Curve Number for AMC II to AMC I or AMC III		
	AMC I (dry)	AMC III (wet)	
10	0.40	2.22	
20	0.45	1.85	
30	0.50	1.67	
40	0.55	1.50	
50	0.62	1.40	
60	0.67	1.30	
70	0.73	1.21	
80	0.79	1.14	
90	0.87	1.07	
100	1.00	1 00	

Swamp & Pond Areas (%)	F
0.0	1.00
0.2	0.97
1.0	0.87
3.0	0.75
5.0	0.72

Example Calculation

Calculation the 10 year RI peak discharge from a two square mile watershed in Franklin County with the following properties:

- Hydraulic length of 10,800 ft
- Slope along the hydraulic length of 1%
- The hydraulic length is mainly a small cobblebed stream
- Residential half-acre lots with good hydrologic conditions
- Soil Group C

• 0.2% of the watershed is wetlands and ponds

Calculate the Runoff Depth

 $Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$

Duration	2 years	5 years	10 years	25 years	50 years	100 years
5 min	0.35	0.45	0.51	0.59	0.61	0.71
10	0.55	0.72	0.83	0.98	1.08	1.18
15	0.65	0.88	1.05	1.22	1.38	1.50
30	0.90	1.20	1.40	1.70	1.87	2.07
1 hr	1.10	1.50	1.75	2.10	2.32	2.60
2	1.26	1.72	2.00	2.40	2.65	3.00
4	1.42	1.93	2.26	2.68	2.96	3.30
8	1.61	2.16	2.52	2.96	3.30	3.64
12	1.80	2.36	2.74	3.20	3.53	3.88
24	2.14	2.76	3.18	3.75	4.08	4.50

Obtain P from Table 2.12 in Chapter 2

TABLE 5.1

Source: From NRCS, 1984.

Curve Numbers for Antecedent Soil Moisture Condition II

	Hydrologic Soil Group			oup
Land Use Description	Α	в	С	D
Commercial, row houses and townhouses	80	85	90	95
Fallow, poor condition	77	86	91	94
Cultivated with conventional tillage	72	81	88	91
Cultivated with conservation tillage	62	71	78	81
Lawns, poor condition	58	74	82	86
Lawns, good condition	39	61	74	80
Pasture or range, poor condition	68	79	86	89
Pasture or range, good condition	39	61	74	80
Meadow	30	58	71	78
Pavement and roofs	100	100	100	100
Woods or forest thin stand, poor cover	45	66	77	83
Woods or forest, good cover	25	55	70	77
Farmsteads	59	74	82	86
Residential quarter-acre lot, poor condition	73	83	88	91
Residential quarter-acre lot, good condition	61	75	83	87
Residential half-acre lot, poor condition	67	80	86	89
Residential half-acre lot, good condition	53	70	80	85
Residential 2-acre lot, poor condition	63	77	84	87
Residential 2-acre lot, good condition	47	66	77	81
Roads	74	84	90	92

Calculate the Curve Number from Table 5.1

 $\mathbf{S} = \frac{1000}{\mathrm{CN}} - 10$

✓ CN = 80
 ✓ S = 2.5 inches
 ✓ P = 3.18 inches
 ✓ Q = 1.39 inches

Calculate the F Factor

Swamp & Pond Areas (%)	$oldsymbol{F}$
0.0	1.00
0.2	0.97
1.0	0.87
3.0	0.75
5.0	0.72

Swamp & Pond areas are 0.2%

F = 0.97

(1) Forest with dense litter

- (2) Conservation tillage or woodland
- (3) Short grass pasture
- (4) Short row, fallow, and alluvial fans
- (5) Grassed waterway
- (6) Paved area and upland gullies
- (7) Small stream with cobble bed
- (8) Streams with sand and gravel beds
- (9) Deep (4+ ft) fast flowing rivers with low roughness
- (10) Concrete lined channels, storm drains, large fast flowing rivers

Calculate q_u

 Time of Concentration calculated as 10,800ft divided by 1 ft/s divided by 3600 seconds in each hour = 3 hours

• $I_a/P = 0.5/3.18 = 0.16$

Answer

$q = q_u A Q F$

q_u is about 350
A is 2 square miles
Q is about 1.39 inches
F is 0.97
q = (350)(2)(1.39)(0.97) = 944 cfs