Draft Technical Report on the Scientific Basis for Alternative San Joaquin River Flow and Southern Delta Salinity Objectives

> Public Board Workshop January 6-7, 2011

Focus of Workshop

- Focus: Discuss technical basis for developing alternative San Joaquin River flow and southern Delta salinity objectives
- Other Issues: including non-technical, environmental review, economics, policy and procedural issues focus of subsequent steps in process
- Additional comments: Due by noon, Feb. 8

Comments

- CA Farm Bureau Fed.
- CA Sportfishing Protection AI./CA Water Impact Net.
- Central Delta Wtr. Ag.
- Central Valley Clean Water Assoc.
- City of Stockton
- City of Tracy
- SF Pub. Util. Com.
- South Delta Water Ag.
- State Wtr. Contractors/San Luis Delta Mendota Wtr.
- Nat. Marine Fish. Serv.

- Coalition for a Sustainable Delta
- Contra Costa Wtr. Dist.
- Dept. Fish and Game
- Dept. Water Resources
- John Letty
- Stockton East Wtr. Dist.
- North. CA Water Assoc.
- San Joaquin R. Grp. Auth.
- Glenn-Colusa Ir. Dist.
- Bay Institute/Natural Res. Def. Council
- Dept. of Interior

Panel Participation Requests

- National Marine **Fisheries Service**
- Department of Fish and Game
- Bay Institute/Natural **Resources Defense** Council
- Department of Water Resources
- Department of Interior
- State & Federal Page 4 Water Contractors January 6 and 7, 2011 Workshop

- California Sportfishing **Protection Alliance/ California Water** Impact Network
- South Delta Water Agency
- U.S. Environmental Protection Agency
- American Rivers
- San Joaquin River **Group Authority**

Proposed Questions

- National Marine Fisheries Service
- Department of Fish and Game
- Bay Institute/Natural Resources Defense Council
- Department of Interior
- SF Public Utilities
 Commission

- California Sportfishing Protection Alliance/ California Water Impact Network
- South Delta Water Agency
- U.S. Environmental Protection Agency
- SJR Group Authority
- SJR Exchange Contractors

January 6 and 7, 2011 Workshop

Next Steps

- Following workshop submit revised Technical Report for independent peer review
- Draft Substitute Environmental Document expected by end of 2011
- Consideration of approval of final Substitute Environmental Document and any changes to San Joaquin River flow and southern Delta salinity objectives by spring of 2012

Chapter 2: Hydrologic Analysis of San Joaquin River Basin

- 1. Project area and unimpaired flow
- 2. Typical hydrograph
- 3. Annual, monthly, and daily flows
- 4. Major tributary contributions to Vernalis
- 5. Flow downstream of Vernalis
- 6. Summary

Project Area

January 6 and 7, 2011 Workshop

Unimpaired Flow

- "The flow that would occur absent the affects of dams and diversions"
- Not adjusted for changes in channel geometry, levees, valley flooding
- Data Source

DWR. 2007. "Central Valley Unimpaired Flow"
 DWR, CDEC website "Full Natural Flow"

Unimpaired Flow

- Tributaries calculated using gage data downstream of the major dams
 - □ Adjusted for evaporation, storage, and diversions
- "Valley Floor" based on factors for west side streams and Fresno Slough, however does not incorporate groundwater interaction
- Vernalis = Sum of tributaries, valley floor, minor streams, and Tulare Basin outflow

- 1. Project area and unimpaired flow
- 2. Typical hydrograph
- 3. Annual, monthly, and daily flows
- 4. Major tributary contributions to Vernalis
- 5. Flow downstream of Vernalis
- 6. Summary

Typical Hydrograph – Stanislaus

January 6 and 7, 2011 Workshop

- 1. Project area and unimpaired flow
- 2. Typical hydrograph
- 3. Annual, monthly, and daily flows
- 4. Major tributary contributions to Vernalis
- 5. Flow downstream of Vernalis
- 6. Summary

Annual Flows at Vernalis Changes in Storage within SJR Basin

Annual Flows at Vernalis Changes in Storage within SJR Basin

Monthly Flows at Vernalis

Monthly Flows at Vernalis

Monthly Flows at Vernalis

During 75% of years (~19 of past 25 yrs)
April : < 40% of Unimpaired Flow
May : < 25% of Unimpaired Flow
June : < 30% of Unimpaired Flow

May was never more than 60%June was never more than 55%

Daily Flows – Tuolumne Wet Year (2005)

ards

Daily Flows -Tuolumne Critically Dry Year (2008)

Annual Peak Daily Flows at Vernalis

Return Period	% Reduction from Unimpaired Flow (Annual 1-day Peak Flow)					
1.5yr	70%					
2yr	76%					
5yr	53%					
10yr	65%					
Unimpaired peak flows from USACE, 2002. "Sacramento San Joaquin Comprehensive Study" compared to 1984-2008 gage data.						

January 6 and 7, 2011 Workshop

- 1. Project area and unimpaired flow
- 2. Typical hydrograph
- 3. Annual, monthly, and daily flows
- 4. Major tributary contributions to Vernalis
- 5. Flow downstream of Vernalis
- 6. Summary

Tributary Contribution to Vernalis Flow

STANISLAUS RIVER

MERCED RIVER

Page 24

January 6 and 7, 2011 Workshop

- 1. Project area and unimpaired flow
- 2. Typical hydrograph
- 3. Annual, monthly, and daily flows
- 4. Major tributary contributions to Vernalis
- 5. Flow downstream of Vernalis
- 6. Summary

Summary

- Natural variability and magnitude reduced
- Seasonal peak flows shifted in time
- Tributary contributions altered
- Flows downstream of Vernalis altered

Chapter 3: Scientific Basis for Developing Alternate San Joaquin River Delta Inflow Objectives

- Focus, Problem and Approach for Chap. 3
- Salmon and Steelhead Life History
- Salmon and Steelhead Population Trends
- San Joaquin River Basin Inflow Needs
- Importance of the Natural Hydrograph

Focus, Problem and Approach

- Focus: San Joaquin River flows at Vernalis for fall-run Chinook salmon & steelhead
- Problem: Reduced flows & changes in natural flow regime impairing fish and wildlife
- Approach: Evaluated existing scientific literature on inflows and protection of fish & wildlife and used to develop range of potential flow alternatives

Focus, Problem and Approach for Chap. 3
Salmon and Steelhead Life History
Salmon and Steelhead Population Trends
San Joaquin River Basin Inflow Needs
Natural Hydrograph Importance

Generalized Life History

SJR basin Fall-Run Chinook Salmon and Central Valley Winter-Run Steelhead

Table 3-1. Generalized Life History Timing of Central Valley Fall-Run Chinook Salmon

	Upstream	Spawning	Incubation	Juvenile	Rearing
	Migration	Period		Rearing and	Duration
	Period			Outmigration	
Overall	July to early	October to	October to	December to	3 to 12 Months
	January	December	March	July	
Peak	October to	October to	40 to 60	Late April to	3 to 7 Months
	December	November	days	Late May	

Table 3-2. Life History Timing of Central Valley Winter-Run Steelhead

	Upstream	Spawning	Incubation	Juvenile	Rearing
	Migration	Period		Outmigration	Duration
	Period				
Overall	July to April	December to	December to	December to	1 to 3 Years
		June	June	July	
Peak	October to	January to	30 days	March to April	1 to 2 Years
	February	March	-		

- Focus, Problem and Approach for Chap. 3
 Salmon and Steelhead Life History
- Salmon and Steelhead Population Trends
- San Joaquin River Basin Inflow Needs
- Natural Hydrograph Importance

Population Trends SJR basin Fall-Run Chinook Salmon

Figure 3-2. Total estimated escapement of adult fall-run Chinook for SJR basin from 1952 to 2008 (Source: DFG 2009b Grandtab)

Population Trends SJR basin Fall-Run Chinook Salmon

Figure 3-3. Annual natural and hatchery fall-run Chinook escapement to the SJR basin 1970 to 2008 (Source: Greene 2009)

Population Trends SJR basin Central Valley Winter-Run Steelhead

Annual number of Central Valley steelhead smolts caught while Kodiak trawling at the Mossdale monitoring location on the SJR (Marston 2004, SJRGA 2007, Speegle 2008) (NMFS 2009a).

Figure 3-4. Annual number of Central Valley steelhead smolts

Outline

- Focus, Problem and Approach for Chap. 3
- Salmon and Steelhead Life History
- Salmon and Steelhead Population Trends
- San Joaquin River Basin Inflow Needs
- Natural Hydrograph Importance

Fall-Run Chinook Inflow Needs

Primary limiting factor for San Joaquin River fall-run Chinook salmon survival and abundance is reduced flows during spring

State Water Board review focused on inflows to Delta from February through June

Functions Supported by Spring Flows

- Salmon have adapted to natural flows
- These flows provide several functions
 - □ Cues for outmigration
 - Improved transport downstream
 - Improved edge habitat and food production
 - Maintenance of channel habitat and transport of sediments, biota and nutrients
 - Increased turbidity and reduced predation
 - Improved water quality

Salmon Abundance

- Additional flow is needed
- The primary influence on adult escapement is flow two and a half years earlier

Fall-Run Chinook Salmon Escapement shifted 2 years

Salmon Survival

Combined Differential Recovery Rate (CDRR) are point estimates of survival

Supporting Studies

Study	Conclusion
Kjelson et al. 1981	Additional flow increased use of estuary and survival of juveniles
Kjelson and Brandes 1989	Salmon escapement and Vernalis flow correlated
Anadromous Fish Restoration Program 1995	Salmon declines attributed to inadequate streamflow – more flow needed
Brandes and McLain 2001	Relationship between survival and river flow statistically significant

Supporting Studies

Study	Conclusion
Mesick 2001	Recruitment correlated with springtime flows
Mesick et al. 2008; Mesick 2009	Winter and spring flows highly correlated with smolt production
Newman 2008	Positive association between flow and survival

Supporting Studies

VAMP Peer Review

- Increased flows have a positive effect on salmon survival
- Higher flows through the Stockton Deep Water Ship Channel could benefit salmon
- VAMP Acoustic Evaluations
 - Survival of tagged fish has remained low
 - Dry conditions can lead to increased predation

Previous Flow Recommendations

- Increase flows at Vernalis to achieve salmon doubling goal
 - □ DFG: 7,000 to 15,000 cfs
 - □ AFRP: 1,744 to 17,369 cfs
 - □ TBI/NRDC: 5,000 cfs to an average of 10,000 cfs
- Increase flows at Vernalis to protect fish and wildlife beneficial uses
 - □ 60 percent of unimpaired

Outline

- Focus, Problem and Approach for Chap. 3
 Salmon and Steelhead Life History
- Salmon and Steelhead Population Trends
- San Joaquin River Basin Inflow Needs
- Natural Hydrograph Importance

- A more natural flow regime would improve ecosystem functions
 - □ Fish communities
 - □ Food web
 - □ Habitat connectivity
 - Fluvial hydrogeomorphological processes
 - Temperature

Fish Communities

Native communities have adapted to flow variability

□ A natural flow regime protects genetic variability

Food Web

High pulse flows benefit the lower trophic levels
 Floodplain inundation provides organic matter

- Habitat connectivity (lateral and longitudinal)
 - Riparian and floodplain activation allows for energy flow
 - Improved juvenile fish survival
 - □ Beneficial migration transport
 - Less hostile rearing conditions
 - □ Greater net downstream flow

- Fluvial hydrogeomorphological processes

 Increased complexity
 Mobilization of the streambed
 Less homogenous channel

 Temperature

 Decreased temperatures provide cold water
 - refugia

Conclusions

- A higher and more naturally variable inflow regime from the SJR is needed
- Any flow objectives will incorporate adaptive management
- A range of alternative SJR flow objectives expressed as percentages of Unimpaired Flow will be analyzed

Chapter 4: Southern Delta Salinity

Existing Salinity Objectives

Southern Delta (SD) Salinity

Outline:

- Characterizing SD salinity degradation
- Salt Loading from NPDES discharges
- Effects of salinity on agricultural uses
- Effects of salinity on municipal uses

Factors Affecting SD Salinity

- Salinity of SJR at Vernalis
- Evapo-concentration from agricultural use
- Net flows in SD channels
 - □ Barrier operations
 - Project pumping
- NPDES point sources

Salinity Regression Analysis

Water Boards

Salinity Regression Analysis

Page 58

January 6 and 7, 2011 Workshop

Southern Delta (SD) Salinity

Outline:

- Estimating SD salinity degradation
- Salt Loading from NPDES discharges
- Effects of salinity on agricultural uses
- Effects of salinity on municipal uses

Loading from NPDES Discharges

- 2007 Regional Board led DWR study:
 City of Tracy WWTP estimated to increase salinity 3 to 11 µS/cm at full capacity
- Mass balance analysis
 - Assumed permitted maximum salinity loads from Tracy, Deuel, and Mountain House
 - Compared to estimated of salt load entering SD at the head of Old River

Mass Balance Analysis Results

January 6 and 7, 2011 Workshop

Southern Delta (SD) Salinity

Outline:

- Estimating SD salinity degradation
- Salt Loading from NPDES discharges
- Effects of salinity on agricultural uses
- Effects of salinity on municipal uses

Salt Sensitivity of Crops in SD

From Figure 3.4, Hoffman (2010)

Most salt sensitive crops grown in SD: - dry bean - almond, - walnut, - apricot

Water Boards

Findings from Hoffman, 2010

- No adverse effects from following factors:
 - □ Saline/sodic soils
 - □ Shrink/swell soils (bypass flows)
 - Chloride/sodium toxicity
 - □ Shallow groundwater
- Current salinity levels suitable for all crops
- Potential for boron toxicity

Findings from Hoffman, 2010 con't

- Drains in western part of SD averaged LF = 0.21 to 0.27; minimum = 0.11
- Relatively high leaching fractions (LF) associated with SD irrigation practices
- Studies of dry bean salt tolerance outdated
- No studies on early growth stages
- Studies recommended on bean tolerance, leaching fraction, and boron toxicity

Soil Water Salinity Modeling

- Recommends steady-state approach:
 using "exponential" water uptake equation
 including rainfall
- For dry bean, alfalfa, and almond in SD:
 no loss yields at EC=1.0 dS/m and LF > 0.20
 5% yield loss with low rainfall at LF = 0.15
- Salt dissolution could increase soil water salinity by 5% over steady-state estimate

Southern Delta (SD) Salinity

Outline:

- Estimating SD salinity degradation
- Salt Loading from NPDES discharges
- Effects of salinity on agricultural uses
- Effects of salinity on municipal uses

Impacts on Municipal Uses

- Municipal and domestic supply beneficial use identified by Basin Plan for SD
- No municipal intakes in immediate area, but SWP and CCWD intakes are in vicinity
- USEPA maximum contaminant level (MCL):
 Recommended MCL = 0.9 dS/m
 Upper MCL = 1.6 dS/m

Chapter 5: Water Supply Impact Analysis

Water Supply Impact Analysis

Outline:

- Overview of Approach
- Estimating Additional Flows Required
- Estimating Reduction in Return Flow
- Total Water Supply Impact Analysis

Water Supply Impact Analysis

- Conservative estimate of combined impact of flow and salinity objective alternatives.
- Additional flow above current conditions compared against diversions.
- Does not identify where or how additional flow will be obtained.
- Post-processing of CALSIM II model run representative of current conditions.

CALSIM II Operations Model

- SJR module of CALSIM II was developed by USBR as operations planning model
- Imposes current infrastructure, regulations, delivery constraints and estimates demand
- Assumes historical conditions from 1922 to 2003 representative of future
- Uses CALSIM II output from 2009 SWP Delivery Reliability Report

CALSIM vs. Observed -Vernalis Flow

CALSIM vs. Observed -Vernalis Salinity

Page 74

Water Boards

Water Supply Impact Analysis

Outline:

- Overview of Approach
- Estimating Additional Flows Required
 Estimating Reduction in Return Flow
- Total Water Supply Impact Analysis

Additional Flow for Meeting Flow Objective Alternatives

January 6 and 7, 2011 Workshop

Water Boards

Additional Flow for Meeting Salinity Objective Alternatives

Three-step calculation on monthly time-step:

- 1. Use regression equations to determine required EC at Vernalis
- 2. Calculate low-salinity flows needed to achieve required EC at Vernalis
- 3. Subtract flows already being provided to meet flow objective alternative

Water Supply Impact Analysis

Outline:

- Overview of Approach
- Estimating Additional Flows Required
- Estimating Reduction in Return Flow
- Total Water Supply Impact Analysis

Return Flow Reductions

- Assumes required additional flows to come from reduced diversions
- Proportional reduction in return flows (requiring additional diversion reduction)
- Also assumes increase in irrigation efficiency in response to reductions
- Adds approximately 11% to the total water supply impact estimate

Water Supply Impact Analysis

Outline:

- Overview of Approach
- Estimating Additional Flows Required
- Estimating Reduction in Return Flow
- Total Water Supply Impact Analysis

Total Water Supply Impact

- Sum of the following:
- Additional flow to meet flow objectives
- Additional flow to meet salinity objectives (not already being provided for flow objectives)
 Estimated reductions in return flows

Total Water Supply Impact

% Unimpaired	Total Annual Volume by Water Year Type							
Flow	(average in thousand acre-feet)							
Alternative	W	AN	BN	D	С			
	for flow objectives only							
60%	1,531	1,723	1,496	981	793			
50%	944	1,226	1,088	683	584			
40%	462	766	709	409	389			
30%	162	373	363	194	214			
20%	23	83	101	49	69			
	additional required for salinity objectives in combination							
60%	80	155	173	189	208			
50%	80	155	181	203	223			
40%	80	158	197	235	237			
30%	81	158	221	271	265			
20%	88	172	249	306	329			

Total Water Supply Impact

% Unimpaired	Percent of Diversions by Water Year Type							
Flow	(average in percent)							
Alternative	W	AN	BN	D	С			
	for flow objectives only							
60%	76	83	71	45	49			
50%	47	59	51	32	36			
40%	23	37	33	19	24			
30%	8	18	17	9	13			
20%	1	4	5	2	4			
	additional required for salinity objectives in combination							
60%	4	7	8	9	13			
50%	4	7	8	9	14			
40%	4	8	9	11	15			
30%	4	8	10	12	16			
20%	4	8	12	14	21			

Questions?

