

TECHNICAL MEMORANDUM

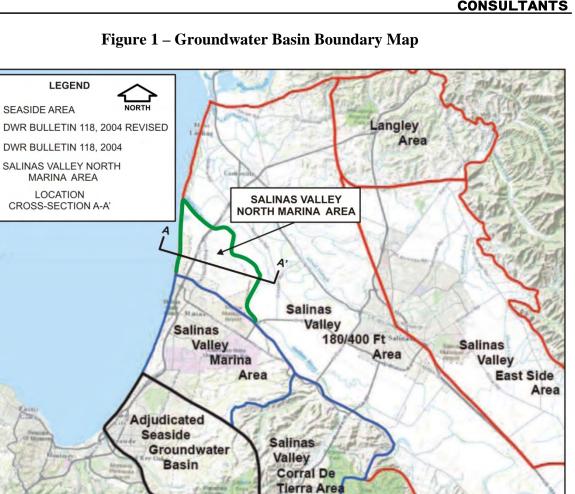
To:	Mr. Keith Van Der Maaten General Manager, Marina Coast Water District
From:	Curtis J. Hopkins Principal Hydrogeologist, Hopkins Groundwater Consultants, Inc.
Date:	July 13, 2016
Subject:	Proposed Settlement Agreement on Monterey Peninsula Water Supply Project (MPWSP) Desalination Plant Return Water

I. Introduction

Hopkins Groundwater Consultants, Inc. (Hopkins) has reviewed California-American Water Company's (Cal-Am's) proposed return water settlement agreement for groundwater extracted by the Monterey Peninsula Water Supply Project (MPWSP or project), dated June 14, 2016, as requested by Marina Coast Water District (MCWD). Cal-Am's proposed return water settlement agreement provides:

Pursuant to the terms of this Settlement Agreement, the Parties propose that Cal Am deliver Return Water to the Castroville Community Services District ("CCSD") and to the CSIP to satisfy Return Water requirements that may arise out of the Agency Act, CEQA, or California groundwater law, in accordance with terms and conditions and general principles contained in this Settlement Agreement and separate Return Water Purchase Agreements between Cal Am as seller and CCSD and the Agency, respectively, as purchasers of Return Water.

(Settlement Agreement on MPWSP Desalination Plant Return Water, p. 4 [¶AA].) As explained below, available information indicates the proposed return water settlement agreement will not satisfy the MPWSP's Return Water requirements under the California Environmental Quality Act (CEQA) or California groundwater law.

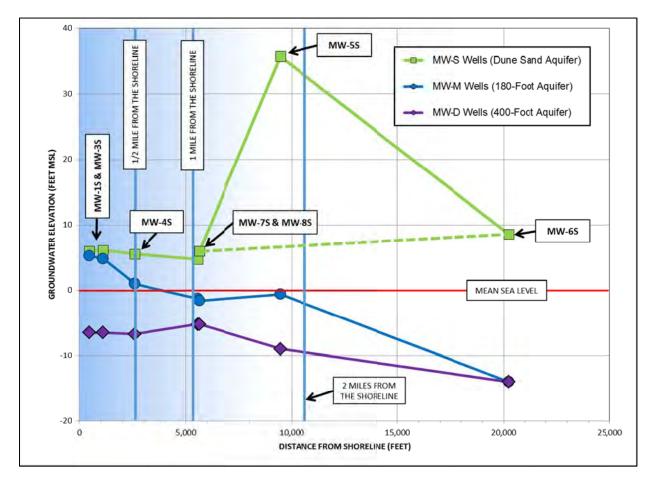

Our January 22, 2016 memorandum (entitled "Cal-Am's Return Water Proposal for Monterey Peninsula Water Supply Project") addressed many of the inadequacies in Cal-Am's currently proposed return water settlement agreement, specifically the inadequacies in the amount of water Cal-Am's estimates will need to be returned and its originally preferred return water alternative to return water through Castroville Seawater Intrusion Project (CSIP).¹ This memorandum supplements that analysis and provides our professional opinion on why providing return water to the Castroville area as proposed in the Return Water Settlement Agreement will not mitigate the adverse groundwater impacts caused by the project in the North Marina Area of the 180-400 Foot Aquifer Subbasin² within the Salinas Valley Groundwater Basin (SVGB). As explained in our prior memorandum and expanded upon herein, providing return water north of the Salinas River may beneficially effect groundwater in those aquifers, but it will not mitigate the project's primary adverse impacts to the aquifers south of the Salinas River and their water users.

II. North Marina Area Geology Differs from the Geology North of the Salinas River.

The geology in the North Marina Area differs from the geology north of the Salinas River in the main portion of the 180-400 Foot Aquifer Subbasin and has been described in detail by studies conducted for the MPWSP. An interpretation of subsurface deposits within this specific coastal area is provided in Plate 1 – Cross-Section A-A', which is a portion of a subsurface profile constructed by Geoscience Support Services, Inc. from borehole data collected in the area (Geoscience, 2014). The approximate location of Cross-Section A-A' is shown in Figure 1 – Groundwater Basin Boundary Map. As shown and as described by previous study (Geoscience, 2014 and 2015, KJC, 2004), the terrace deposits that comprise the 180-Foot Equivalent Aquifer (180-FTE) in the North Marina Area grade into the alluvial deposits that comprise the 180-Foot Aquifer in the main portion of the basin around the present location of the Salinas River.

¹/As explained in our January 22, 2016 memorandum, updated return water estimates based on unbiased modeling calibrated with actual data—rather than unproven assumptions—from the MPWSP test slant well project (TSW) and monitoring well data from the aquifers within the Northern Marina Subarea affected by the project are required to provide any meaningful basis for evaluating the efficacy of Cal-Am's return water proposals. As updated modeling is not available, we have not updated our estimates of the amount of return water that will be required to mitigate the proposed project impacts.

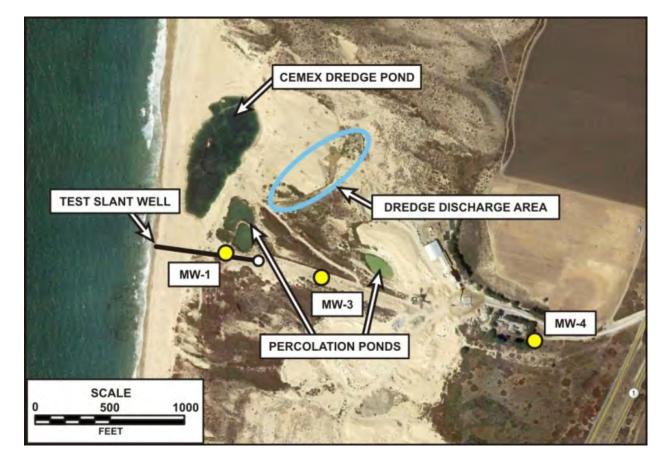
 $^{^{2}}$ / For purposes of the memorandum, the North Marina Area is defined as that portion of the 180/400 Foot Aquifer Subbasin located south of the Salinas River and north of the Salinas Valley Marina Area as indicated in Figure 1.



GROUNDW

Recent investigation for the MPWSP includes the installation of a test slant well and multiple monitoring wells in and around the CEMEX property where the MPWSP intake wells are proposed to be located. The monitoring well network is being used to generate background water level and water quality data within the North Marina Area of the 180-400 Foot Aquifer Subbasin. The location of the monitoring facilities is shown on Plate 2 – Well Location Map.

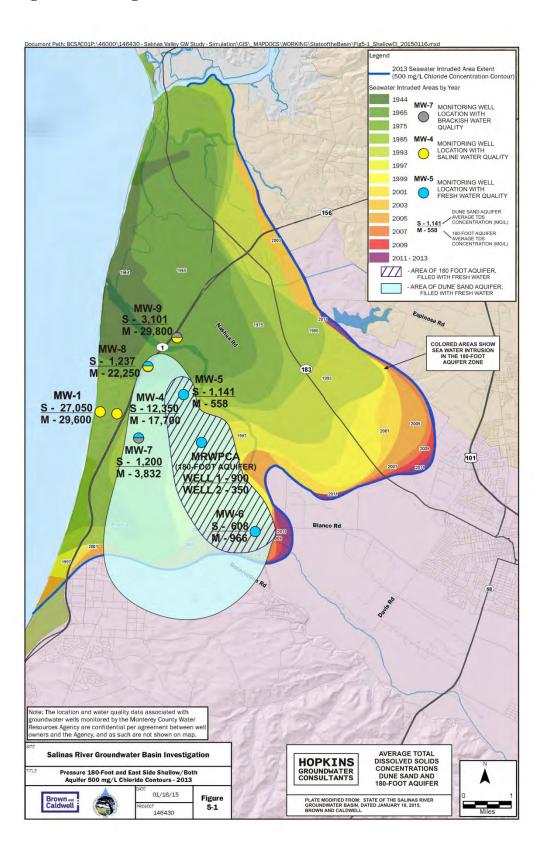
Routine monitoring of the well network is presented in weekly summary reports that are posted on the Cal-Am website. Water level data are graphically presented as hydrographs which show daily changes and seasonal trends. A set of hydrographs provided by the MPWSP test slant well long term pumping test Monitoring Report No. 61 are included as Attachment A -


MPWSP Water Level Data. We must note that while we have over a year of data, the climatic conditions prior to initiation of testing have been extremely dry. For comparison of the groundwater conditions across the area prior to resumption of pumping, data from May 2, 2016 were used to construct Figure 2 - Groundwater Elevation From MPWSP Monitoring Wells. As shown, the water level elevations vary significantly between the shallow Dune Sand Aquifer (indicated by the MW-S Wells), the 180-FTE Aquifer (indicated by the MW-M Wells), and the 400-Foot Aquifer (indicated by the MW-D Wells).

Notably, the monitoring performed to date shows the Dune Sand Aquifer has water levels above sea level that maintain a protective head against seawater intrusion (Geoscience, 2013). The coastal groundwater mounding at MW-1 and MW-3 is believed to be maintained by the CEMEX dredge pond operation that is discharged on the landward side of the coastal dunes as well as process water that is discharged to percolation ponds that are proximate to the 2 monitoring well locations. Figure 3 – CEMEX Salt Water Discharge Locations shows the surface water features that have influenced the groundwater levels and quality at this location along the coast for decades. The maintenance of these features undoubtedly increases the

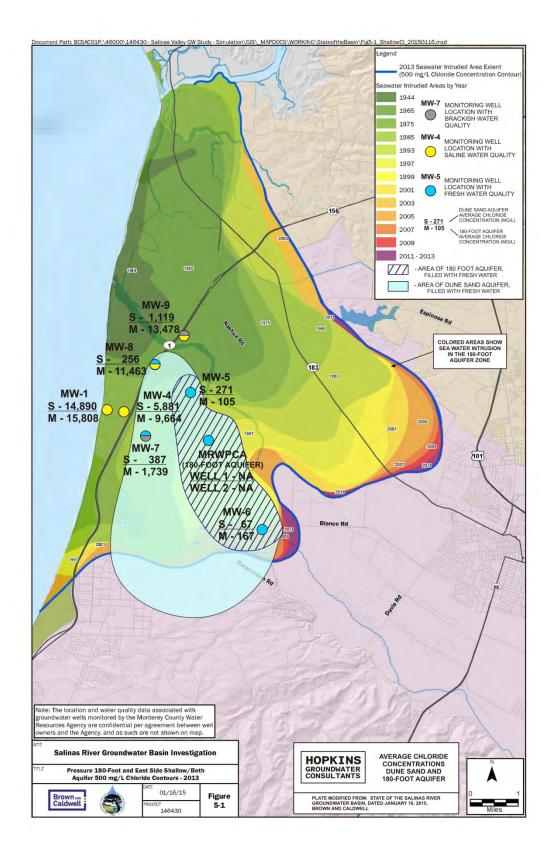
amount of ocean water present in shallow groundwater in the vicinity of the test slant well that likely does not exist at the location of the MPWSP source wells proposed south of the test slant well location.

As explained in our January 22, 2016 memorandum, these data developed from the MPWSP investigation show there is a perched groundwater condition in the vicinity of MW-5 where the groundwater elevation is 36 feet above mean sea level (msl). The groundwater perched above the Salinas Valley Aquitard equivalent flows toward the coast and results in downward recharge where the aquitard layer thins (or ends) and provides fresh water recharge into the coastal unconfined Dune Sand Aquifer and the underlying 180-Foot Aquifer in the vicinity of MW-7 and MW-8. (See January 22, 2016 memorandum, pp. 10-12, Figures 4-7.) Again, this is a very significant development given that the groundwater found with a 36-foot elevation in the Dune Sand Aquifer at the location of MW-5S (and a 6-foot elevation at MW-7S), effectively provides a protective layer preventing seawater from intruding into the Basin at a shallow depth in the Project area and percolating downward into the underlying aquifers. Instead of allowing a shallow pathway for ocean water, the Dune Sand Aquifer having a potable fresh water quality based on its TDS concentration, appears to be slowly recharging the lower

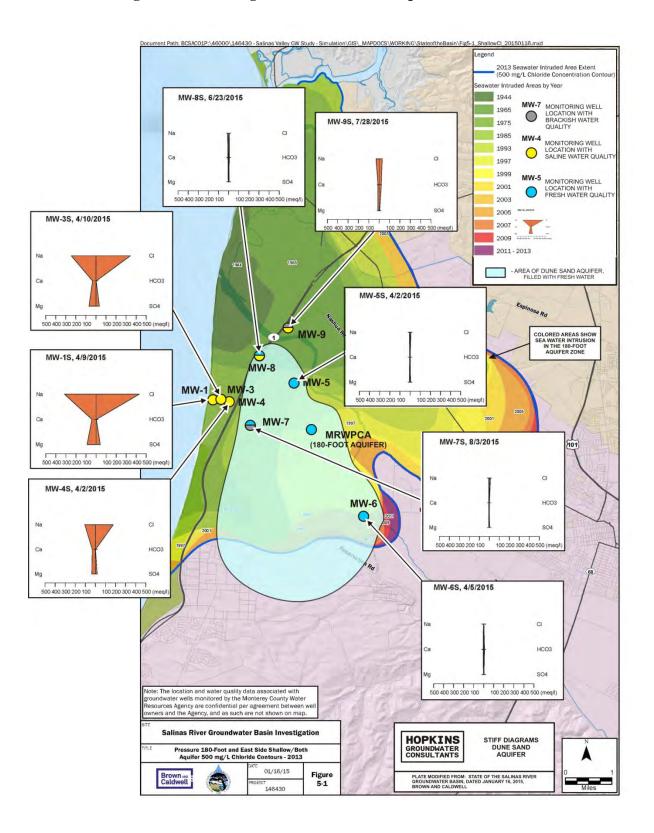

aquifers (i.e., the 180-Foot Aquifer and perhaps 400-Foot Aquifer), which has significantly reduced their TDS levels in this coastal area.

Monitoring data also indicate that the elevation of the water levels in Monitoring Wells MW- 7M and MW-8M under static groundwater conditions in May 2016 were lower than the levels in both MW-4M and MW-5M. While the groundwater elevation is near mean sea level, the gradient indicated by the higher level at MW-5M shows that groundwater flows toward the coast up to MW-7 and MW-8 under these conditions. The significance is that after several years of drought conditions, the groundwater gradient between MW-4M (roughly ½ mile from the coast) and MW-5M (almost 2 miles from the coast) is relatively flat in the 180-FTE Aquifer even though a significant decline in the groundwater level is observed to occur between MW-5M and MW-6M (see Figure 2). Further study would be required to understand if the mounding indicated in the 400-Foot Aquifer at MW-7 and MW-8 were from vertical recharge from the 180-FTE in this area along the coast.

III. Water Quality in North Marina Area Aquifers.


Water quality data developed as part of the test slant well project are summarized in the tables included in Attachment B – Laboratory Water Quality Test Results. The first table shown in Attachment B provides the only data published for wells other than the test slant well and MW-4 (Geoscience, 2015a). This table includes laboratory results for wells including MW-1, MW-3, MW-4, MW-5, and the test slant well. The second table in Attachment B is a compilation of laboratory data received by MCWD in October 2015 in response to a data request in the California Public Utilities Commission proceedings. This table includes data for monitoring wells MW-6, MW-7, MW-8, and MW-9 that to our knowledge, have not be published in any of the MPWSP documents.

The significance of these data is that they indicate beneficial conditions have developed (or have always existed) in the North Marina Area of the 180-400 Foot Aquifer Subbasin contrary to information published by the Monterey County Water Resources Agency (MCWRA). The recent investigation that is being conducted in and around the North Marina Area as part of the MPWSP has uncovered an occurrence of freshwater within the shallow Dune Sand Aquifer and the underlying 180-Foot Aquifer within the area delineated as seawater intruded by the MCWRA. As previously shown, water level data from wells in the shallow dune sand aquifer appear to show protective water levels that are sufficiently above sea level to prevent seawater intrusion in the shallower sediments. This condition, combined with the lack of pumping in the 180-Foot Aquifer in the North Marina Area, appears to have slowed seawater intrusion in this portion of the coastline. Water quality test results for total dissolved solids and chloride concentrations in these two uppermost aquifer zones are shown on Figures 4 and 5 – Average Total Dissolved Solids Concentrations in Groundwater and Average Chloride Concentrations in Groundwater, respectively.



These data suggest a change of groundwater conditions in this coastal section of the aquifer or alternatively, they may reveal the groundwater conditions that existed in an area largely lacking historical data. While the freshwater in this area contains salts and nutrients that are derived from overlying land uses that include agriculture, landfill, and wastewater treatment plant and composting facilities, the chemical character is not sodium chloride, which is indicative of seawater intrusion. Figure 6 and 7 – Stiff Diagrams of Dune Sand Aquifer Groundwater and 180-Foot Aquifer Groundwater, respectively show that the chemical character of groundwater in these new wells is predominantly calcium chloride and calcium bicarbonate.

Additionally, elevated concentrations of nitrate are present in monitoring wells MW-5S, MW-7S and MW-8S and range from 115 mg/l to 237 mg/l. The concentration of nitrate decreases with depth at all of these sites, and is the highest at MW-5, which is closest to the landfill and the wastewater treatment facilities. While future use of this area for a direct potable groundwater supply is unknown, existing conditions show abatement of seawater intrusion in the shallower aquifer zones in this coastal portion of the Salinas Valley Groundwater Basin. This condition could support the future beneficial uses of the 180-Foot Aquifer zone potentially including aquifer storage and recovery of highly purified recycled water for indirect potable reuse.

These data indicate a unique condition exists in the North Marina Subarea south of the Salinas River that provides a significant degree of protection against seawater intrusion in the shallower aquifers under the present and recent past hydrologic conditions.

HOPKINS

GROUNDWATER

CONSULTANTS

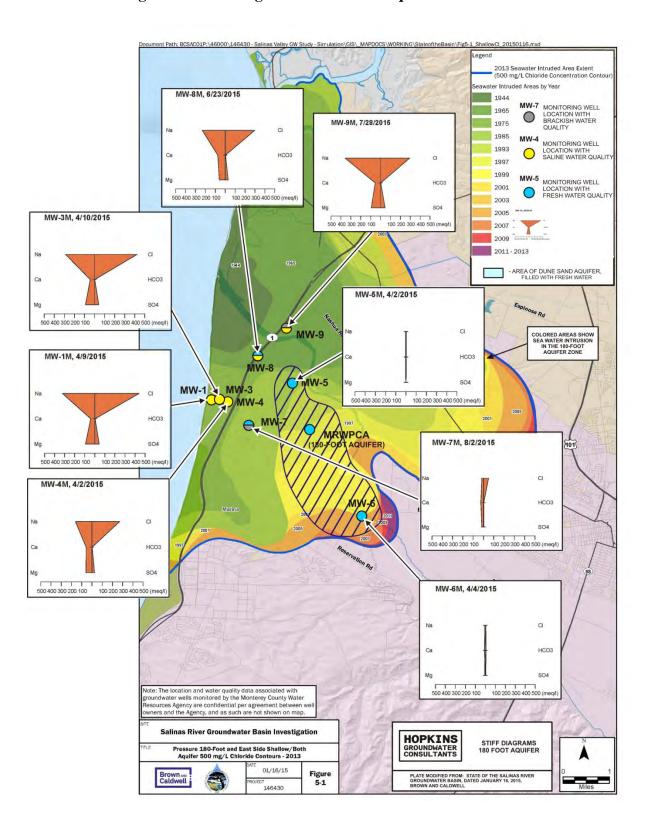


Figure 7 – Stiff Diagrams of 180-Foot Aquifer Groundwater

HOPKINS

GROUNDWATER

ГS

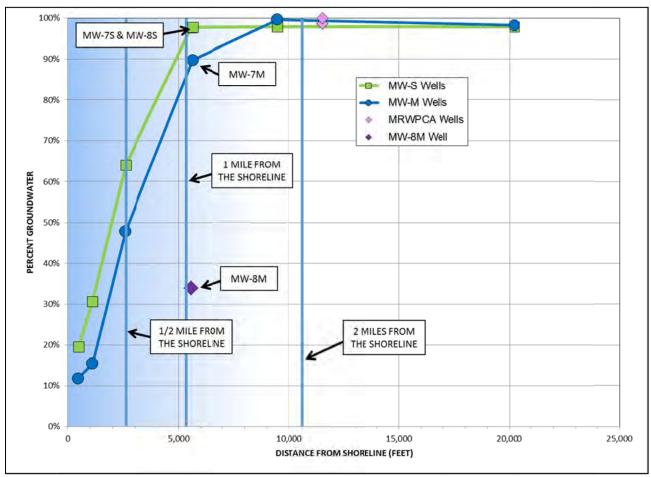

CONSULTAN

Figure 8 – Percent Groundwater with Distance From the Shoreline shows the rudimentary calculation of groundwater percentage versus ocean water percentage using the same equation applied to the test slant well discharge. The percentage of fresh groundwater in well water samples was calculated using the following equation:

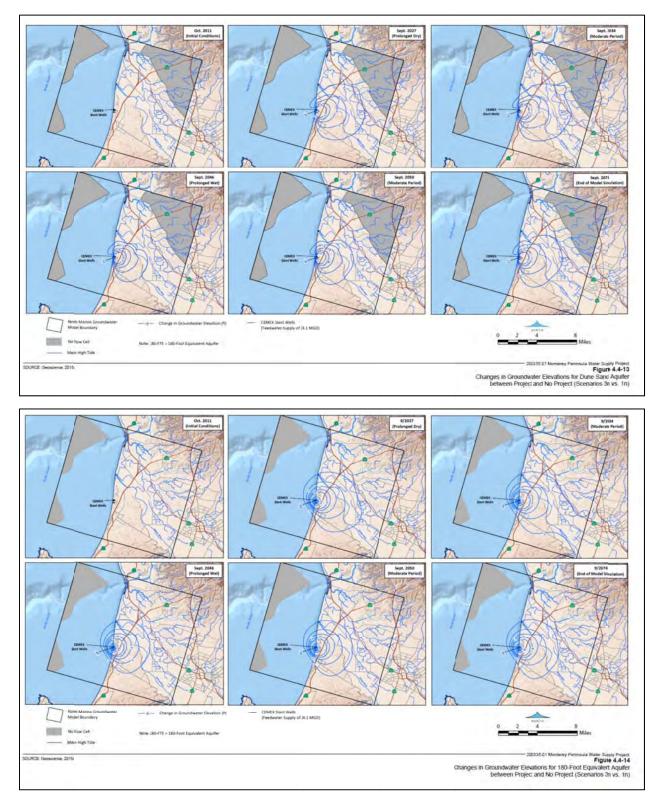
GWP = [1-(WSS-GWS/OWS-GWS)] X 100

Where:

GWP = Percent Groundwater WSS = Well Sample Salinity (mg/l) GWS = Groundwater Salinity (420 mg/l) OWS = Ocean Water Salinity (33,500 mg/l)

Figure 8 – Percent Groundwater with Distance From the Shoreline

Water quality data for this analysis were provided by the laboratory test results summarized in Attachment B. These available data show that the percentage of ocean water decreases significantly within a short distance from the coastline in the North Marina Area and the salinity of groundwater that is comparable to seawater is not up to 8 miles inland in the 180-Foot Aquifer as assumed by previous study. Calculation of percent ocean water using this method cannot differentiate between salts from overlying land uses and salt from ocean water.


This calculation assumes that all salt in groundwater with a TDS above a concentration of 420 mg/l is from ocean water. As shown in Figure 4, monitoring wells MW-5M and MW-6M along with the Monterey Regional Water Pollution Control Agency (MRWPCA) Wells are located in the 180-Foot Aquifer and the TDS concentration for samples from these wells ranges from approximately 558 to 966 milligrams per liter (mg/l) and is also considered fresh water (see water quality tables in Attachment B). However, the TDS concentration for MW-7M (3,832 mg/l) and MW-8M (22,250 mg/l) show that closer to the coast and closer to the main portion of the Basin north of the river, seawater has impacted the underlying 180-Foot Aquifer as shown in Figures 4 and 7.

IV. Proposed Return Water Settlement Agreement Does Not Mitigate MPWSP's Adverse Groundwater Impacts to North Marina Area Aquifers.


Under Cal-Am's proposed Return Water Settlement Agreement, all of the groundwater extracted by the MPWSP source wells from the North Marina Area aquifers would be returned to water users north of the Salinas River (i.e, CCSD and CSIP). Notably, the return water is reportedly provided to reduce groundwater pumping from those users water supply wells. The wells that allegedly would not be pumped (or where pumping would be reduced) to mitigate the impacts of the MPWSP source wells, however, are located north of the Salinas River outside of the area most impacted by the proposed MPSWP source wells. As shown by the drawdown contours provided in the CPUC's April 2015 CalAm MPWSP Draft Environmental Impact Report ("DEIR"), drawdown north of Salinas River is significantly less than the drawdown anticipated south of the Salinas River. See Figures 4.4-13, 4.4-14 and 4.4-15 from the MPWSP DEIR provided below.³

³ / While the modeling used in the CPUC's April 2015 CalAm MPWSP DEIR should not be relied upon to predict the likely amount of drawdown at any particular location for the reasons outlined in our January 22, 2016 memorandum, it is illustrative of how groundwater impacts from the MPWSP sources wells will lessen with distance.

Perhaps more importantly, the CCSD and CSIP wells where pumping will be reduced (or cease) do not pump water from the Dune Sand or 180-FT Aquifers that the MPWSP will extract water from. This is important for two reasons.

First, as discussed above, groundwater conditions in the Dune Sand or 180-FTE Aquifers inland of the proposed MPWSP intake system create protective heads in the shallow dune sand that is evident by the water levels in monitoring wells MW-4S, MW-7S, and MW-8S. Downward recharge into the underlying 180-FTE was observed to elevate the groundwater levels above sea level during 2015-2016 winter season (the single season of record), which occurred after a 4-year drought. The benefits from these unique groundwater recharge conditions that create shallow mounding in the North Marina Area will be removed by the project and delivery of return water north of the Salinas River to reduce pumping will not mitigate the potential impacts realized by these changed conditions.

Moreover, as indicated by water levels in MW-6M and MW-6D, there is direct vertical recharge between aquifers at certain locations with the North Marina Area where aquitard layers are discontinuous. Leakage through these layers can facilitate vertical flow of seawater that is induced into the North Marina Area by the project. Cal-Am's return water proposal does not address the increased seawater intrusion the project will cause within the North Marina Area by lowering existing protective heads and removing freshwater recharge. Given the groundwater gradients in the North Marina Area, water injected north of the Salinas River simply will not flow towards the North Marina Area, but rather away from it. For this same reason, reduced

pumping north of the Salinas River simply will not mitigate the reduced water levels and induced seawater intrusion in the North Marin Area that will result from the MPWSP. Figure 9 – Dune Sand Aquifer Groundwater Elevation Contour Map was included in our prior memorandum and is reproduced below to show the general North Marina Area where the project will impact groundwater conditions while the CCSD and CSIP wells where pumping would potentially be reduced under Cal-Am's proposed Return Water Settlement Agreement are located a significant distance (miles) north of the area and the CEMEX site.

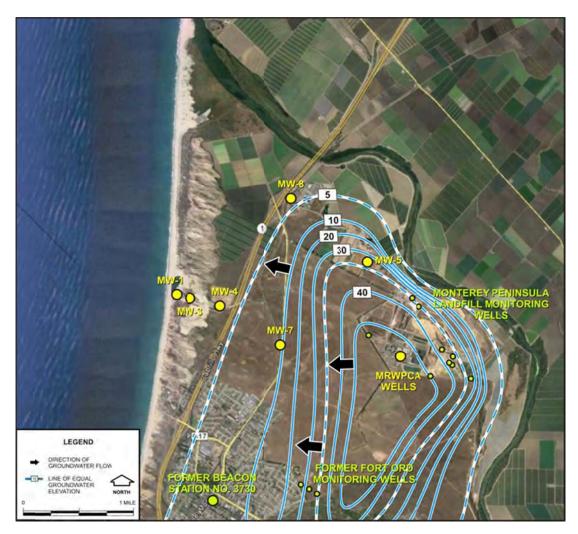


Figure 9 – Dune Sand Aquifer Groundwater Elevation Contour Map

Second, providing water north of the Salinas River as proposed in Cal-Am's Return Water Settlement Agreement will not remedy the harms to the water users in North Marina Area from reduced water levels and water quality caused by the MPWSP source wells. Again, none of the water provided to the CCSD or CSIP will flow towards the North Marina Area or lessen the Project's impacts in this area. Thus, the Cal-Am's proposed Return Water Settlement Agreement will not mitigate impacts to the North Marina area or its water users.

As we noted in our January 22, 2016 memorandum, providing return water though injection wells or percolation basins within the Northern Marina Subarea may be a viable option. Additional information and analysis is needed to determine whether these possible options would offset the impacts of the project on the Northern Marina Subarea aquifers and the groundwater users within the subarea. To evaluate such an alternative, we would need know the location where the water is proposed to be injected or percolated, the zones and rates for an injection proposal, and what quality of water would be injected or percolated.

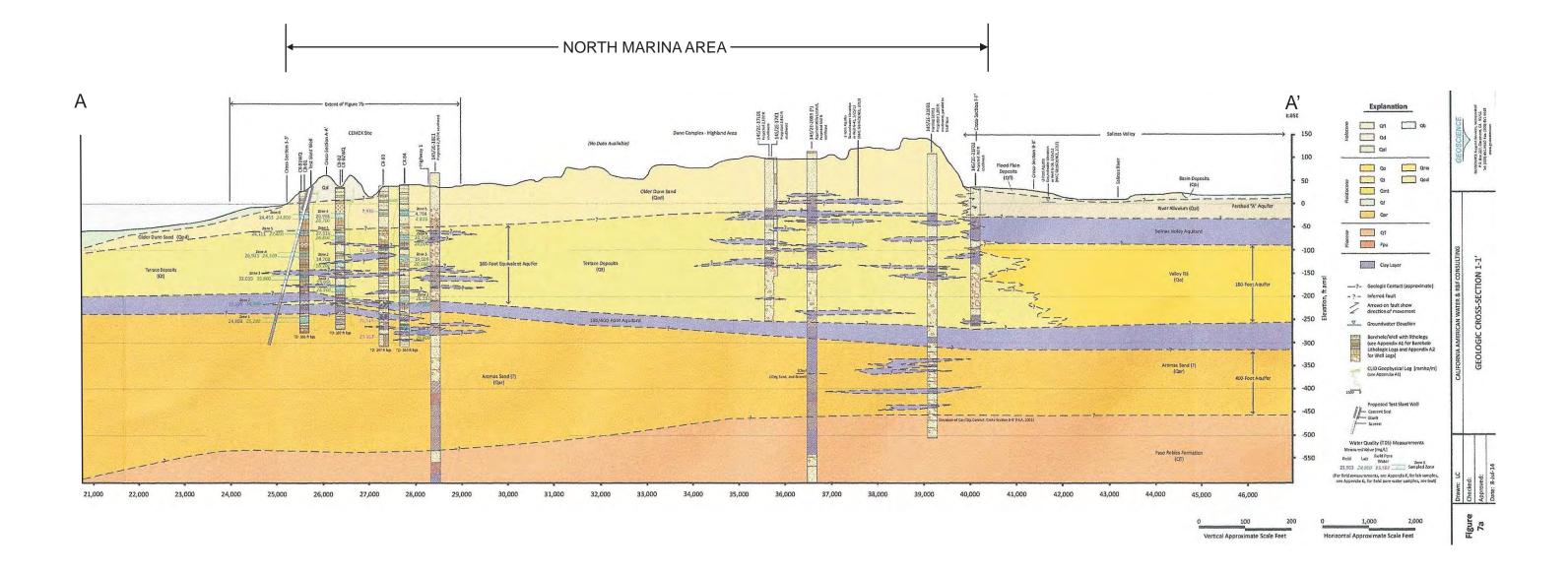
IV. Conclusion.

As indicated in our prior January 22, 2016 memorandum, updated modeling using information developed from the TSW field investigations and available from other studies in the North Marina Area must be used to refine the MPWSP modeling to accurately simulate aquifer conditions. Additional analysis regarding a method for returning groundwater pumped by the proposed MPWSP source wells that demonstrates the protective conditions that currently exist in the North Marina Area are not adversely impacted to the detriment of the groundwater users in the subarea. Without updated modeling and additional analysis, it is virtually impossible for the public and public agencies to provide meaningful testimony regarding Cal-Am's return water proposal. Nonetheless, it is clear that Cal-Am's Return Water Settlement Agreement will not mitigate the MPWSP's groundwater impacts to the groundwater aquifers within the North Marina Area.

In sum, Cal-Am's Return Water Settlement Agreement does not consider or address the adverse impacts that would result from the MPWSP's source wells. The return water method selected must ensure that the protective water level elevations within the North Marina Area aquifers are maintained to prevent further seawater intrusion within this portion of the SVGB. Unless a return water method ensures the protective conditions discussed above are not harmed, the MPWSP will induce seawater intrusion into the Dune Sand Aquifer and will exacerbate seawater intrusion in the 180-Foot Aquifer in the North Marina Area and likely result in cumulative impacts to aquifers and wells much further inland. It will also delay (or eliminate benefit from) efforts to reverse the trend of seawater intrusion in the North Marina Area and throughout the SVGB. The MPWSP will also undercut extensive efforts by the MCWD and others to eliminate the long-term overdraft condition and to respond to the serious existing drought conditions.

Sincerely,

HOPKINS GROUNDWATER CONSULTANTS, INC.


Curtis J. Hopkins Principal Hydrogeologist Certified Engineering Geologist, EG1800 Certified Hydrogeologist, HG114

References

- Application of California-American Water Company (U210W) for Approval of the Monterey Peninsula Water Supply Project and Authorization to Recover All Present and Future Costs in Rates (CPUC Application No. 12-04-019, Filed April 23, 2012) Settlement Agreement on MPWSP Desalination Plant Return Water, Dated June 14, 2016, Exhibit A to Joint Motion for Approval of Settlement Agreement on Desalination Plant Return Water.
- Environmental Science Associates (ESA, 2015), Cal-Am Monterey Peninsula Water Supply Project, Draft Environmental Impact Report, Prepared for California Public Utilities Commission, dated April.
- Geoscience Support Services, Inc. (Geoscience, 2013), *Technical Memorandum, Protective Elevations to Control Sea Water Intrusion in the Salinas Valley,* Prepared for Monterey County Water Resources Agency, Dated November 19.
- Geoscience Support Services, Inc. (Geoscience, 2014), Monterey Peninsula Water Supply Project, Hydrogeologic Investigation, Technical Memorandum (TM1) Summary of Results – Exploratory Boreholes, Prepared for California American Water, RBF Consulting, Dated July 8.
- Geoscience Support Services, Inc. (Geoscience, 2015), Draft Technical Memorandum, MPWSP Action Items Discussed at the 19-May-15 Geohydrology Workshop, To Mr. Eric Zigas ESA, From Dennis Williams, Dated June 12.
- Geoscience Support Services, Inc. (Geoscience, 2015a), *Monterey Peninsula Water Supply Project, Groundwater Modeling and Analysis, Draft,* Prepared for California American Water and Environmental Science Associates, Dated April 17.
- Geoscience Support Services, Inc. (Geoscience, 2016), Monterey Peninsula Water Supply Project, Test Slant Well Long Term Pumping Monitoring Report No. 61, 22-June-16 – 29-June-16, Coastal Development Permit #A-3-MrA-14-0050 and Amendment No. #A-3-MrA-14-0050-A1, Prepared for California American Water, Dated July 5.
- Hopkins Groundwater Consultants, Inc. (Hopkins, 2016), *Technical Memorandum, Cal-Am's Return Water Proposal for Monterey Peninsula Water Supply Project*, Addressed to Mr. Keith Van Der Maaten, General Manager Marina Coast Water District, Dated January 22.
- Kennedy-Jenks Consultants (KJC, 2004), *Hydrostratigraphic Analysis of the Northern Salinas Valley*, Prepared for Monterey County Water Resources Agency, Dated May 14.

PLATES

HOPKINS GROUNDWATER CONSULTANTS

CROSS-SECTION A-A' Technical Memorandum Marina Coast Water District Marina, California

PLATE 1

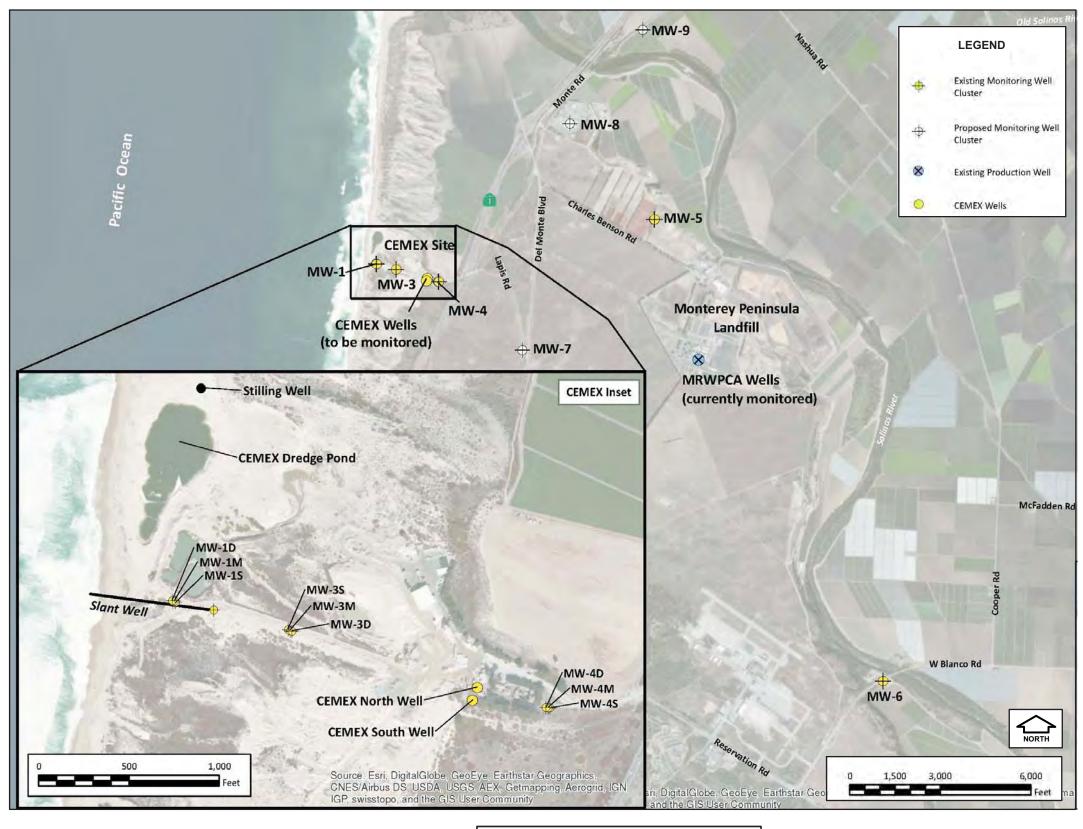
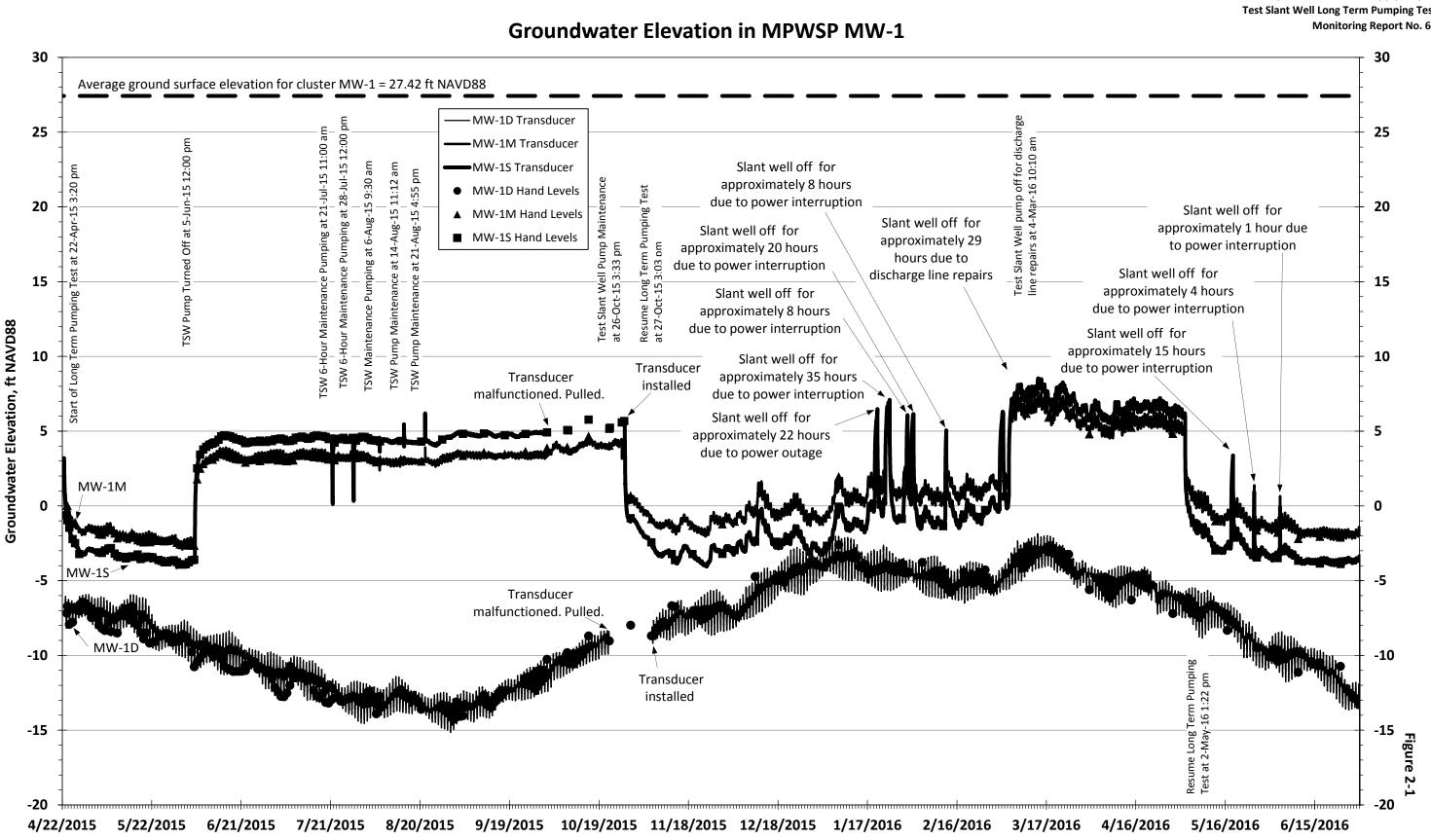
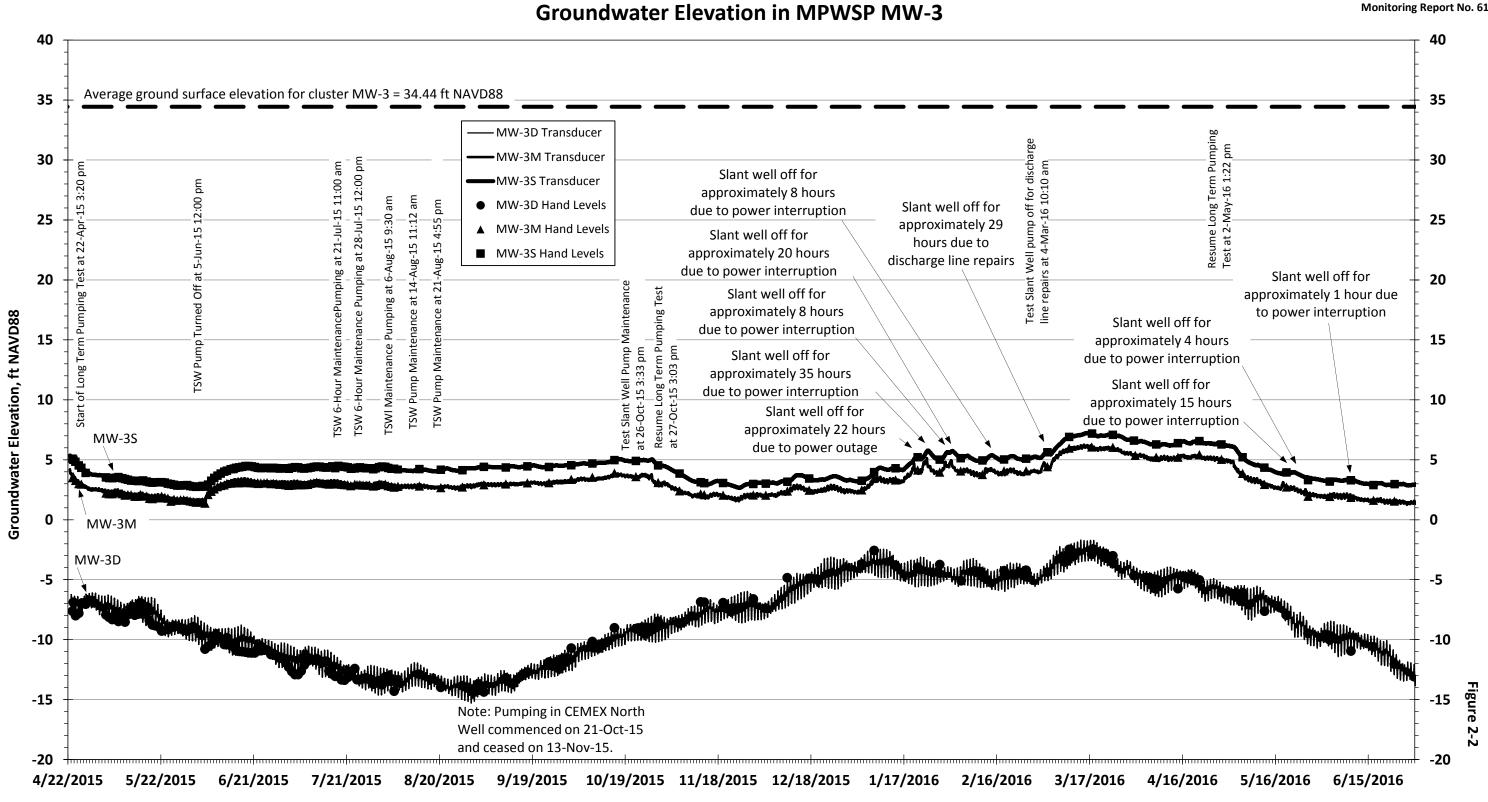
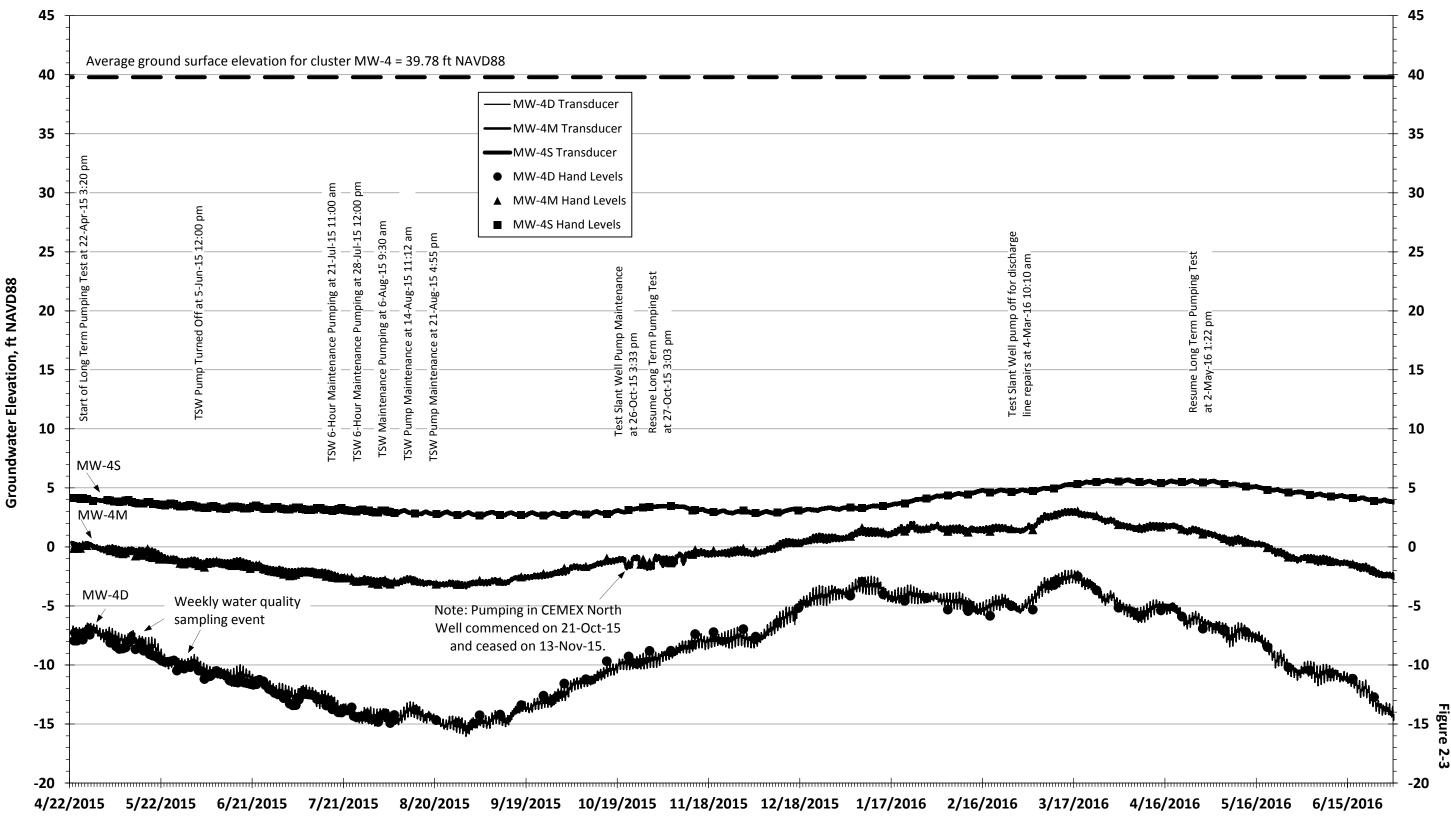


PLATE MODIFIED FROM: MONTEREY PENINSULA WATER SUPPLY PROJECT HYDROGEOLOGIC INVESTIGATION, TECHNICAL MEMORANDUM PART 1 SUMMARY OF RESULTS - EXPLORATORY BOREHOLES DATED JULY 8, 2014, GEOSCIENCE SUPPLY SERVICES, INC.


HOPKINS GROUNDWATER CONSULTANTS

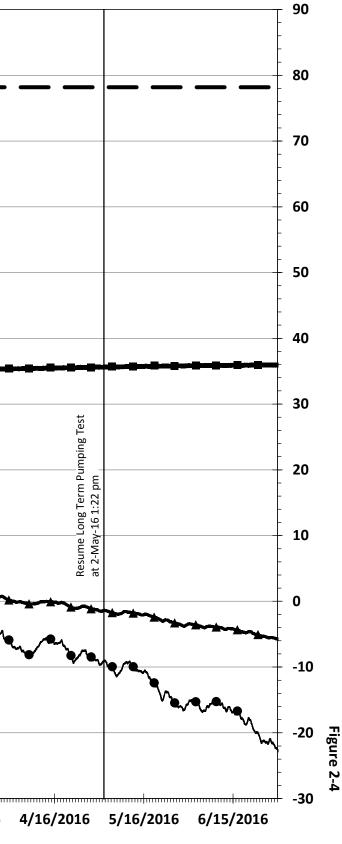
WELL LOCATION MAP Technical Memorandum Marina Coast Water District Marina, California

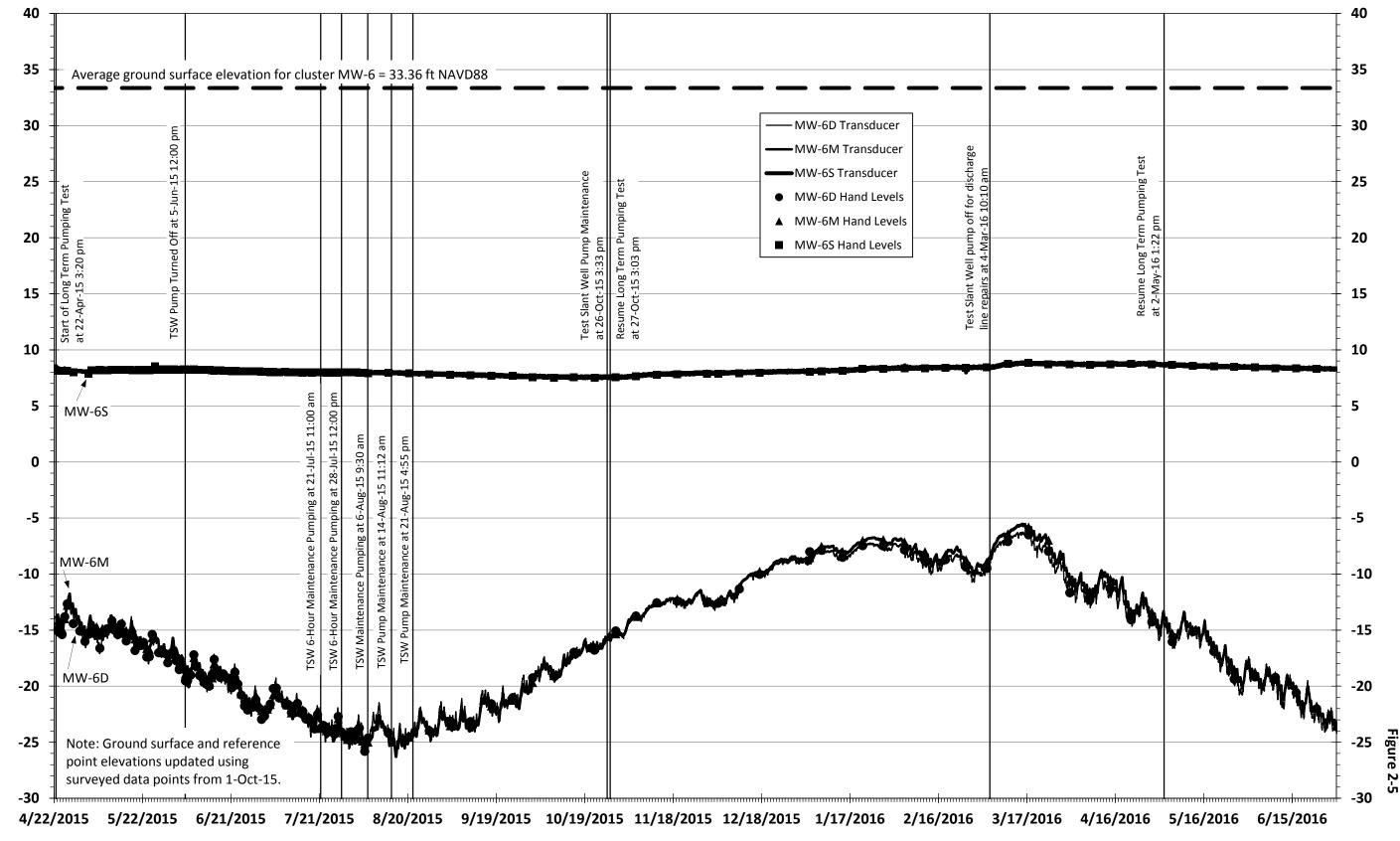

PLATE 2


ATTACHMENT A MPWSP WATER LEVEL DATA

Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61

Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61

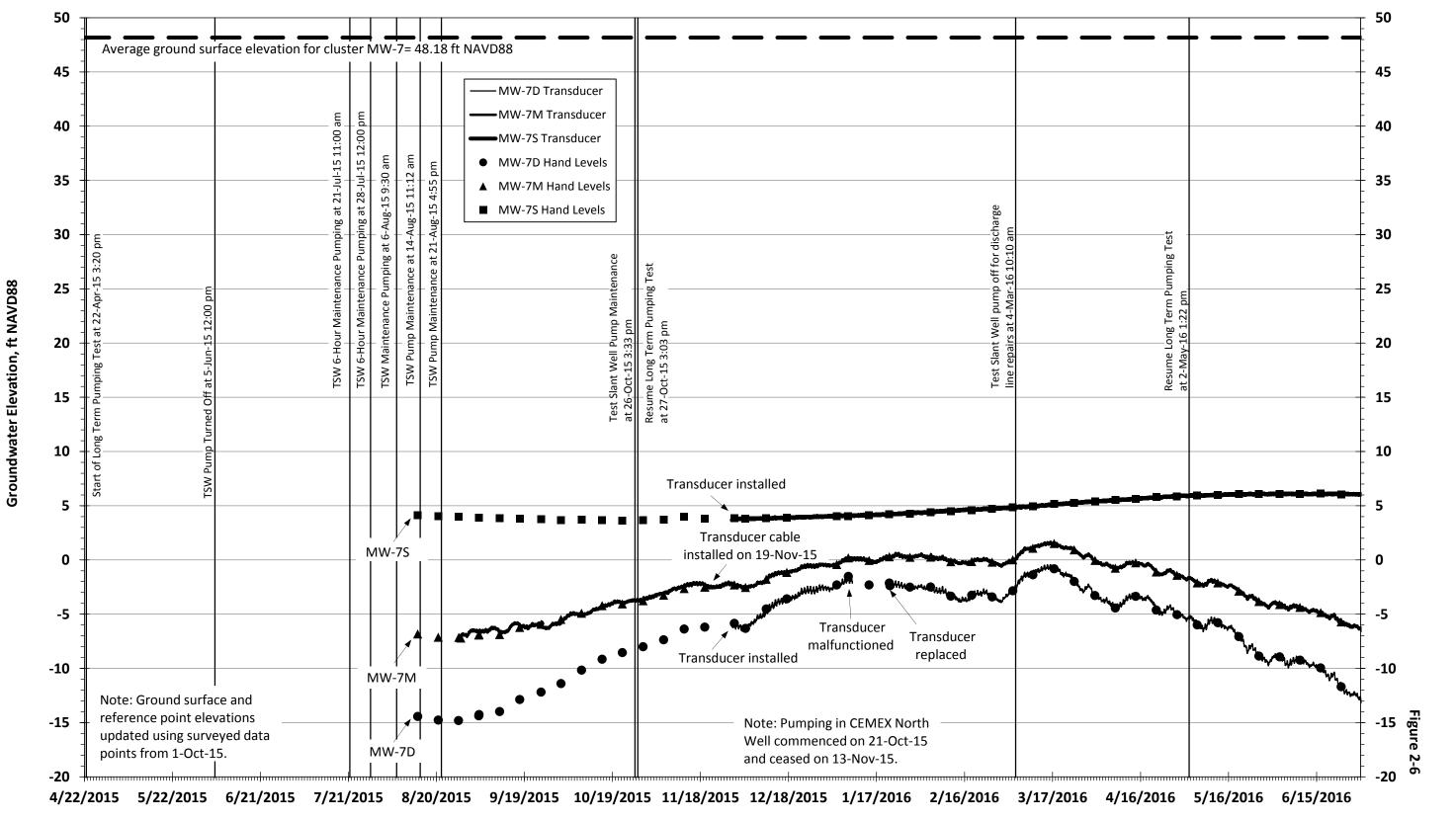


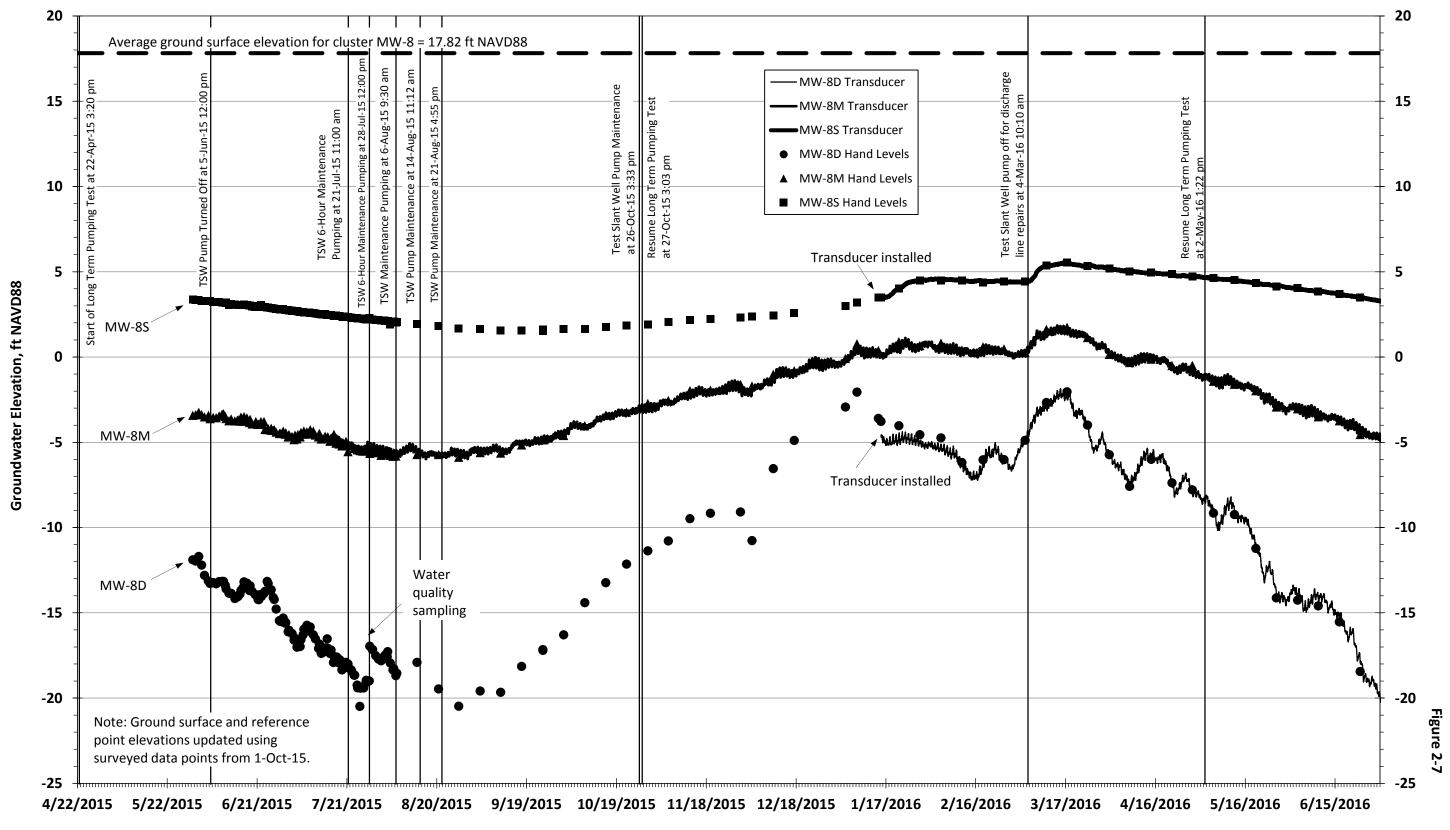

Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61

90 Average ground surface elevation for cluster MW-5 = 78.18 ft NAVD88 80 12:00 8 – MW-5D Transducer at 6-Aug-15 9:30 am TSW Pump Maintenance at 14-Aug-15 11:12 am E 70 Off at 5-Jun-15 12:00 5 at 21-Aug-15 4:55 - MW-5M Transducer MW-5S Transducer Test MW-5D Hand Levels ğ 60 Pumpir ▲ MW-5M Hand Levels ВЦ bm nance Pumpii Term | 3:20 p Turned MW-5S Hand Levels Long Mainte 50 TSW Maintenance TSW Pump Groundwater Elevation, ft NAVD88 of am ЦĔ 22 ā at 9 LS V 40 TSW (ΓSW f for discharge 10:10 am 30 MW-5S ell Pump Maintenance 3:33 pm est ы off 16 1 ong Term Pump -15 3:03 pm 20 dund bm 4-Mar Well Well I 15 3:3 Test Slant V line repairs 10 Test Slant ¹ at 26-Oct-1 Resume Lc at 27-Oct-: MW-5M 0 -10 MW-5D -20 -30 4/22/2015 5/22/2015 6/21/2015 7/21/2015 8/20/2015 9/19/2015 10/19/2015 11/18/2015 12/18/2015 1/17/2016 2/16/2016 3/17/2016 4/16/2016 5/16/2016

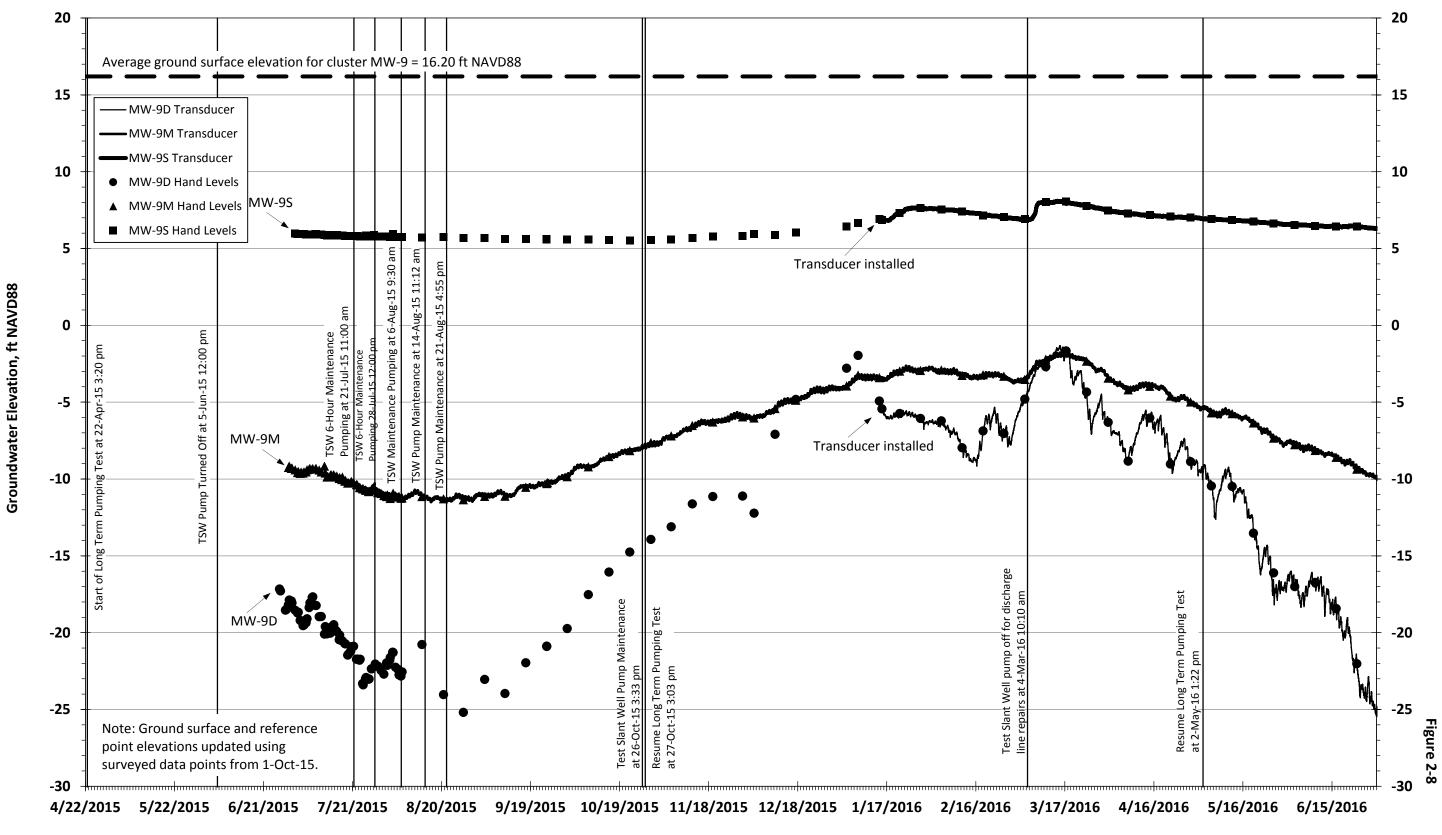
Groundwater Elevation in MPWSP MW-5

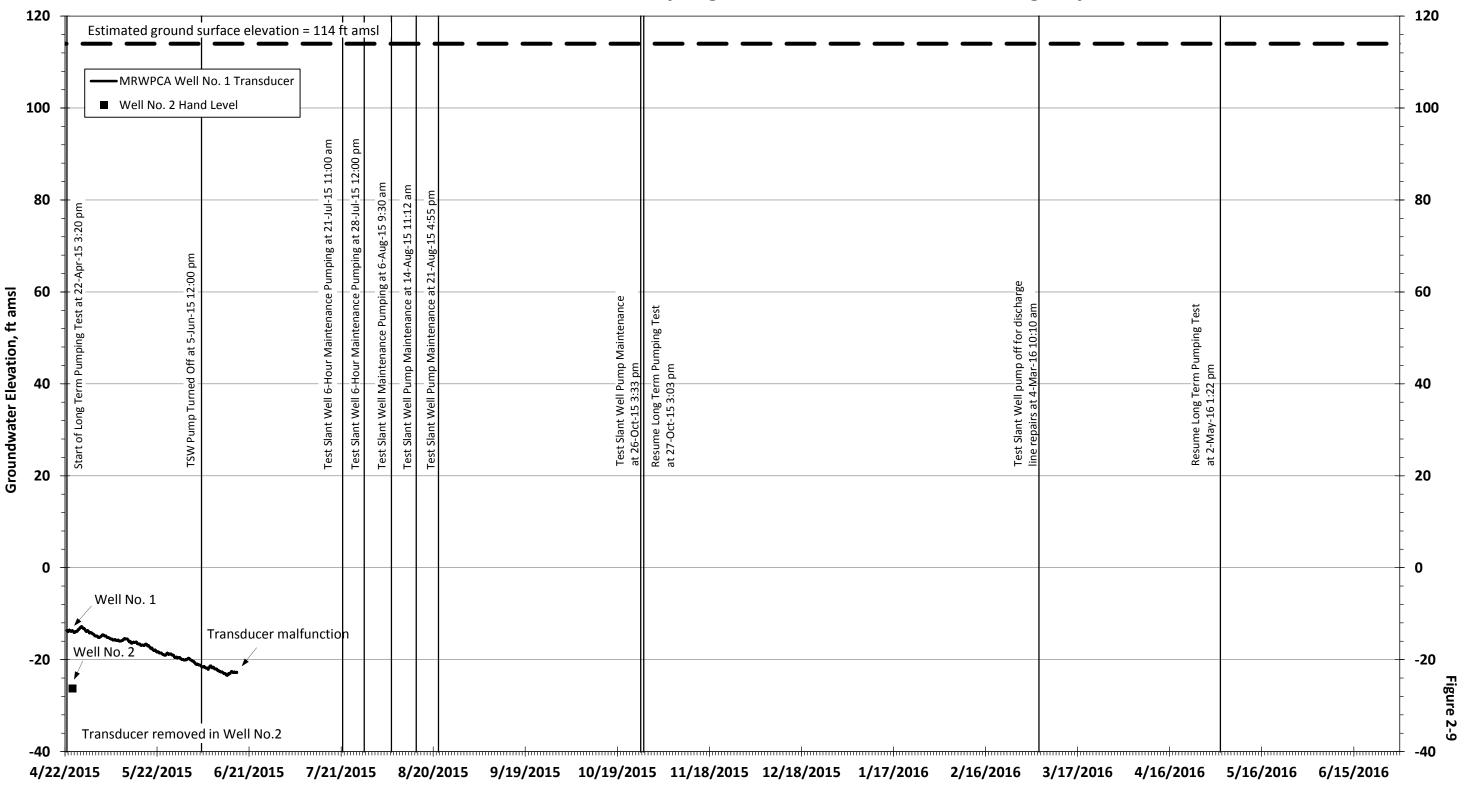
Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61



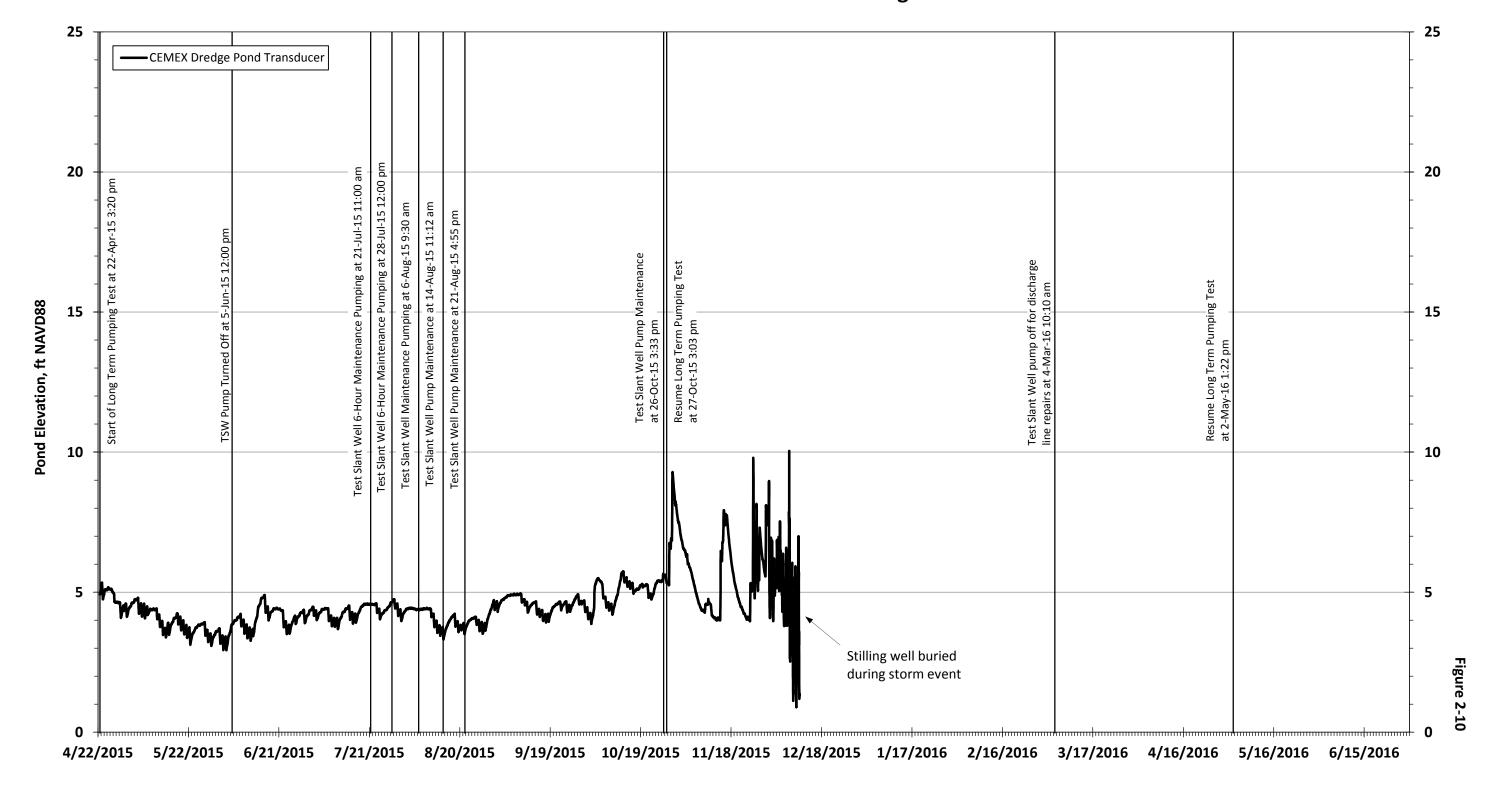

Groundwater Elevation, ft NAVD88

Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61

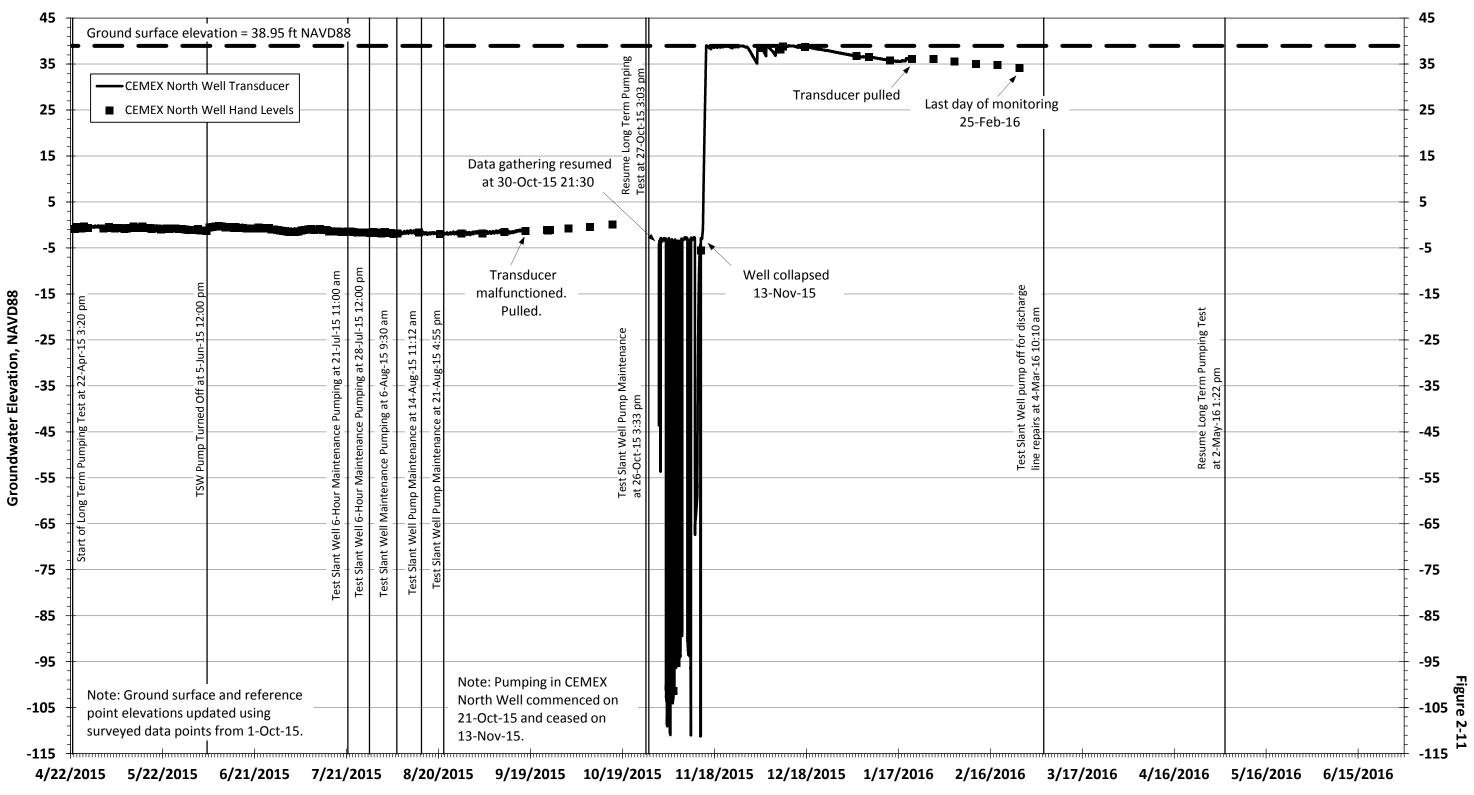

GEOSCIENCE Support Services, Inc.


Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61

Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61

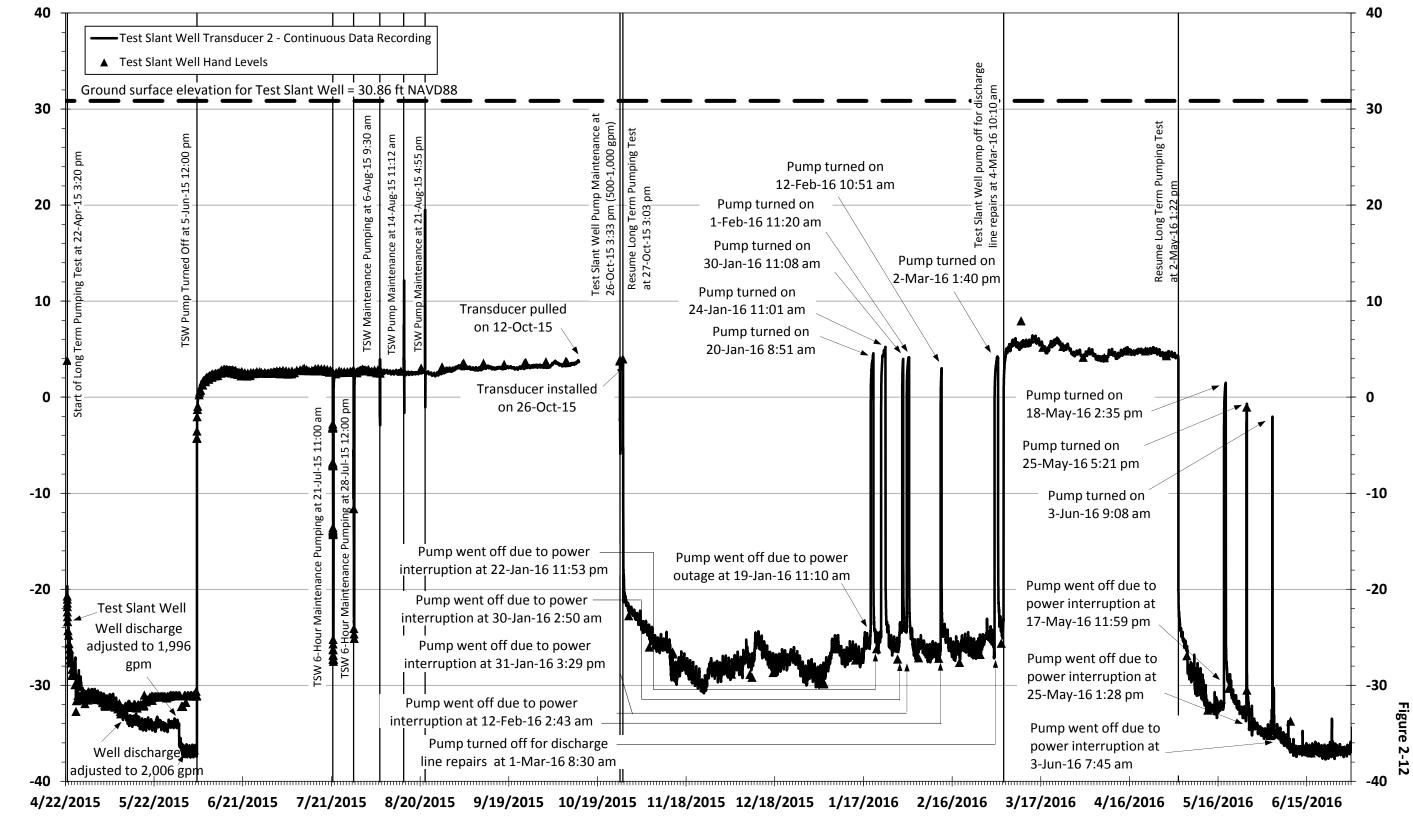


Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61


Groundwater Elevation in Monterey Regional Water Pollution Control Agency Wells

Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61

Surface Water Elevation in CEMEX Dredge Pond


Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61

Groundwater Elevation in CEMEX North Well

Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61

Groundwater Elevation in MPWSP Test Slant Well

Monterey Peninsula Water Supply Project Test Slant Well Long Term Pumping Test Monitoring Report No. 61

ATTACHMENT B LABORATORY WATER QUALITY TEST RESULTS

Cal Am / RBF Baseline Water and Total Dissolved Solids Levels Monterey Peninsula Water Supply Project Area

Summary of Laboratory Water Quality Results in Monitoring Wells

	Well Name: MW-1D MW-1M MW-1S MW-3D MW-3S MW-4D MW-4M MW-4S												MW-4S MW-5D			MW-5M MW-5S				Test Slant Well								
Scre	en Interval (ft bgs):	277 -			- 225	55 -	95	285 -		105			- 90	280		100		50 -	90	380		100		50 -			320, 400 - 710	
	Sample Date:	14-Feb-15	9-Apr-15	14-Feb-15	9-Apr-15	13-Feb-15	9-Apr-15	21-Feb-15	10-Apr-15	24-Feb-15	10-Apr-15	25-Feb-15	10-Apr-15	19-Feb-15	2-Apr-15	6-Mar-15	2-Apr-15	7-Mar-15	2-Apr-15	17-Feb-15	2-Apr-15	3-Mar-15	2-Apr-15	10-Mar-15	2-Apr-15	20-Mar-15	24-Mar-15	8-Apr-15
Constituent ¹	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Alkalinity, Total (as CaCO ₃)	mg/L	123	124	112	117	105	120	114	118	105	104	97	97	111	124	97	97	80	86	112	117	195	121	50	50	N/A	N/A	117
Aluminum, Total	μg/L	ND N/A	ND	ND	ND N/A	ND NI(A	ND N/A	ND N/A	ND	166	18	166	36	ND N/A	ND	ND	ND N/A	ND	ND	ND	ND	ND N/A	ND NI(A	14	33	N/A	N/A	ND N/A
Ammonia-N Ammonia-N, Dissolved	mg/L mg/L	N/A ND	N/A *	N/A ND	N/A *	N/A ND	N/A *	N/A ND	N/A *	N/A ND	N/A *	N/A ND	N/A *	N/A ND	N/A ND	N/A ND	N/A ND	N/A ND	N/A ND	N/A ND	N/A ND	N/A ND	N/A ND	N/A ND	N/A ND	0.08 N/A	ND N/A	N/A ND
Ammonia-NH ₃ (calc) Un-Ionized	ug/L	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	N/A
Arsenic, Total	μg/L	46	34	41	33	43	30	44	39	37	34	34	27	40	30	21	22	15	14	4	3	2	3	4	3	N/A	N/A	33
Barium, Dissolved	μg/L	141	143	61	63	68	63	162	157	79	66	97	91	166	176	104	104	92	107	562	466	96	67	173	200	N/A	N/A	95
Bicarbonate (as HCO3-)	mg/L	150	151	137	143	128	146	139	144	128	127	118	118	135	151	118	118	98	105	137	143	238	148	61	61	N/A	N/A	143
Boron, Dissolved Bromide, Dissolved	mg/L mg/L	0.89	1.16	2.36	2.78 50	2.27 39	2.73 49	1.06 44.1	1.03 44	1.01 53.8	2.68 49	2.2	2.3	0.65 43.8	0.75	1.16 31	1.03	0.79 16.7	0.88	0.09	ND 2	ND 0.4	ND ND	ND 4.4	ND 5.2	N/A N/A	N/A N/A	2.6 37
Calcium	mg/L	2.440	2,510	746	805	661	791	2.470	2,350	826	835	628	664	2.980	2,827	1,040	31 1,131	594	621	3.5	358	96	62	4.4	132	N/A N/A	N/A N/A	349
Calcium, Dissolved	mg/L	2,410	2,480	732	781	646	771	2,370	2,360	844	879	666	664	3,070	2,810	1,060	1,100	617	627	363	356	99	63	142	138	N/A	N/A	371
Carbamates by HPLC (EPA 531)	μg/L	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	N/A	N/A	ND
Carbonate as CaCO ₃	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND
Chloride, Dissolved	mg/L	14,905	16,346	16,037	15,580	14,504	15,276	16,069	16,456	14,686	14,964	11,680	12,136	14,142	14,177	9,751	9,587	5,497	6,266	1,168	1,152	120	90	271	272	N/A	N/A	13,830
Chlorinated Pesticides and PCB (EPA 508)	μg/L	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	N/A	N/A	ND
Chlorine Residual,Total (Laboratory)	mg/L (H)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	N/A
Coliform, E. Coli (Quantitray) Coliform, E. Coli (Quantitray)-18	MPN/100mL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<10	N/A
Hour Coliform, Total (Quantitray)	MPN/100mL MPN/100mL	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	< 10 N/A	N/A 490	N/A N/A
Coliform, Total (Quantitray)- 18Hour	MPN/100mL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2,755	N/A	N/A
Color, Apparent (Unfiltered)	CU	10	20	ND	ND	4	ND	6	ND	ND	ND	ND	7	8	ND	4	ND	3	ND	ND	4	ND	ND	7	8	60	10	4
Copper, Total	μg/L	40	52	61	80	62	52	56	76	62	90	42	78	46	30	42	22	ND	16	13	4	ND	ND	5	ND	N/A	N/A	44
DBCP & EDB	μg/L	ND	N/A N/A	ND	N/A	ND	N/A	ND	N/A N/A	ND RP	N/A	ND	N/A N/A	ND	N/A	ND	N/A	ND	N/A	ND ND	N/A	ND	N/A N/A	ND	N/A	N/A N/A	N/A	ND ND
Dioxin Diquat (EPA 549)	pg/L μg/L	ND ND	N/A N/A	ND ND	N/A N/A	ND ND	N/A N/A	ND ND	N/A N/A	ND	N/A N/A	RP ND	N/A N/A	ND ND	N/A N/A	ND ND	N/A N/A	ND ND	N/A N/A	ND	N/A N/A	ND ND	N/A N/A	ND ND	N/A N/A	N/A N/A	N/A N/A	ND
Dissolved Oxygen (Field)	mg/L (H)	N/A	0.08	N/A	3.34	N/A	2.64	N/A	0.225	N/A	3.85	4.7	3.56	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5.28	N/A	N/A
Dissolved Oxygen (Laboratory)	mg/L (H)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7.34	8.84	N/A
Endothall	μg/L	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	N/A	N/A	ND
Fluoride, Dissolved Glyphosate	mg/L μg/L	ND ND	ND N/A	ND ND	ND N/A	0.3 ND	ND N/A	ND ND	ND N/A	0.5 ND	ND N/A	0.4 ND	ND N/A	ND ND	0.1 N/A	ND ND	ND N/A	ND ND	0.1 N/A	0.1 ND	0.1 N/A	0.1 ND	0.1 N/A	ND ND	ND N/A	N/A N/A	N/A N/A	0.2 ND
Hardness (as CaCO ₃)	mg/L	10,765	11,338	6,327	6,606	5,678	6,439	12,063	11,140	6,378	6,520	5,044	5,109	11,617	11,021	5,601	5,740	3,176	3,321	1,484	1,429	367	229	561	540	N/A	N/A	4,751
Hydroxide	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND
lodide	μg/L	ND	*	ND	*	ND	*	ND	*	ND	*	ND	*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND
Iron	μg/L	146	722	ND	ND	25	ND	169	671	ND	ND	ND	ND	77	223	ND	ND	ND	169	39	17	ND	ND	ND	26	N/A	N/A	69
Iron, Dissolved Kjehldahl Nitrogen, Dissolved	μg/L mg/L	118 ND	726	12 ND	ND *	15 ND	ND *	142 ND	684 *	ND ND	ND *	ND ND	ND *	80 0.6	215 ND	ND 1.8	ND ND	ND ND	175 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	N/A N/A	65 ND
Lithium	μg/L	254	200	201	155	172	157	250	184	159	115	144	106	222	193	34	25	16	18	75	53	7	3	6	8	N/A	N/A	152
Magnesium	mg/L	1,130	1,230	1,080	1,120	978	1,080	1,430	1,280	1,050	1,080	844	838	1,020	962	730	708	411	430	142	130	31	18	58	51	N/A	N/A	942
Magnesium, Dissolved	mg/L	1,180	1,230	1,100	1,110	979	1,080	1,290	1,310	1,020	1,160	797	859	979	969	752	681	421	437	135	128	31	18	62	54	N/A	N/A	989
Manganese, Dissolved	μg/L	440	1,060	18 19	ND ND	41 43	ND ND	259 289	1,080	ND 14	ND ND	ND 58	170	268	1,220	113 90	ND	ND ND	248	340	645	ND	ND ND	ND ND	ND ND	N/A N/A	N/A N/A	26
Manganese, Total MBAS (Surfactants)	μg/L mg/L	484 ND	1,100 ND	19 ND	ND	43 ND	ND	289 ND	1,060 ND	ND	ND	58 ND	154 ND	276 ND	1,221 ND	90 ND	ND ND	ND	268 ND	336 ND	653 ND	ND ND	ND	ND	ND	N/A N/A	N/A N/A	26 ND
Nitrate as NO ₃	mg/L	1	2	2	4	3	4	ND	2	5	3	29	6	1	ND	4	3	20	10	3	1	70	64	237	233	N/A	N/A	5
Nitrate+Nitrite as N	mg/L	0.4	0.6	1.1	1	0.7	0.9	0.1	0.6	1.2	0.8	6.5	1.5	0.2	0.1	1	0.9	5.3	2.3	0.8	0.4	16.2	14.6	54	52.7	N/A	N/A	1
Nitrite as NO ₂ -N, Dissolved	mg/L	0.2	ND	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	ND	0.1	ND	0.1	ND	0.1	0.3	0.3	ND	0.1	N/A	N/A	ND
Odor Threshold at 60 C	TON	1	2	1	2	1	1	3	3	3	1	5	2	3	1	1	1	4	14	3	2	2	1	2	10	N/A	N/A	2
Oil & Grease (HEM) o-Phosphate-P	mg/L mg/L	N/A 0.03	N/A 0.06	N/A 0.07	N/A 0.09	N/A 0.07	N/A 0.05	N/A 0.06	N/A 0.04	N/A 0.05	N/A 0.06	N/A 0.18	N/A 0.14	N/A 0.06	N/A 0.04	N/A ND	N/A 0.06	N/A 0.06	N/A 0.09	N/A 0.04	N/A 0.05	N/A 0.06	N/A 0.12	N/A 0.05	N/A 0.12	ND N/A	ND N/A	N/A 0.1
pH (Field Test)	pH	6.72	7.24	7.02	7.74	7.15	7.87	6.55	6.84	6.89	7.05	7.25	7.27	6.65	6.56	6.78	6.78	6.77	6.91	0.04	7.18	7.23	7.44	6.46	6.63	7.53	7.07	7.03
pH (Laboratory)	рН (Н)	7.1	7.1	7	7.4	7.2	7.5	6.9	7.2	7.2	7.4	7.2	7.5	7	7.1	7.1	7.2	7	7.2	7.5	7.4	7.3	7.5	6.7	7.1	7.7	7.2	7.2
Phenoxy Acid Herbicides (515.3)	μg/L	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	N/A	N/A	ND
Phosphorus, Dissolved Total	mg/L	0.04	0.03	0.09	0.08	0.05	0.04	0.04	ND	ND	0.06	0.12	0.13	0.11	0.14	ND	0.06	0.06	0.07	0.04	0.04	0.06	0.12	0.08	0.08	N/A	N/A	0.09
Potassium Detassium Disselved	mg/L	60 E0	61	201	209	228	247	64.4	58	197	214	168	157	51.2	46.2	46	43.9	26	30.2	7.8	6.7	3.4	2.2	2	3.1	N/A	N/A	203
Potassium, Dissolved QC Ratio TDS/SEC	mg/L	59 0.73	60.9 0.66	197 0.7	207 0.67	224 0.68	244 0.67	55.7 0.74	59.6 0.66	197 0.69	232 0.69	157 0.68	161 0.68	49.1 0.72	46.3 0.74	50 0.68	43.3 0.64	28 0.7	31.5 0.68	7.1 0.69	6.6 0.65	3.6 0.6	2.2 0.64	2.4 0.67	3 0.64	N/A N/A	N/A N/A	213 0.67
Reg. Org. Compounds (EPA 525)	μg/L	ND	N/A	ND	N/A	0.08 ND	N/A	0.74 ND	N/A	0.69 ND	N/A	ND	0.08 N/A	0.72 ND	N/A	ND	0.84 N/A	ND	0.68 N/A	0.69 ND	0.65 N/A	ND	N/A	0.87 ND	0.64 N/A	N/A	N/A	ND
Settleable Solids	mL/L	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	N/A
Silica as SiO ₂ , Dissolved	mg/L	33	32	22	21	20	19	32	30	21	18	19	19	36	31	30	27	27	24	45	41	35	32	39	38	N/A	N/A	20
Sodium	mg/L	5,760	5,913	8,011	7,381	7,306	7,211	6,960	5,620	7,232	6,590	5,340	5,632	4,286	4,092	4,079	3,685	2,579	2,399	161	131	71	51	120	116	N/A	N/A	7,606
Sodium, Dissolved	mg/L	6,150	6,340	8,320	7,920	7,500	7,480	6,110	6,180	6,930	7,670	5,550	6,260	4,730	4,090	4,320	3,490	2,750	2,500	136	128	76	51	131	120	N/A	N/A	8,040
Specific Conductance (E.C)	µmhos/cm	40,120	43,440	43,960	42,510	39,090	40,840	44,020	43,570	41,090	41,040	34,180	34,300	38,000	37,390	26,250	27,200	17,050	18,800	3,775	3,729	1,106	714	1,752	1,735	36,890	36,280	37,860
Specific Conductance (E.C) (Field) Strontium, Dissolved	μmhos/cm μg/L	40,882 15,666	43,249	43,788 8,689	42,426 9,434	39,747 7,995	41,557 9,084	41,740 16,370	43,223 16,228	42,340 9,500	40,642 9,458	33,456 7,619	33,798 7,287	5,750 17,499	37,532	26,779 9,637	27,703 9,864	16,917 5,208	18,376 5,455	3,961 2,777	3,968 2,834	962 630	796 435	1,828 1,231	1,746 1,288	35,270 N/A	36,306 N/A	38,097 7,440
Sciontium, Dissolveu	μg/L	10,000	10,477	0,003	7,434	1,395	3,004	10,570	10,220	5,500	3,430	1,019	1,201	17,499	17,140	3,057	3,004	3,200	J,+33	2,111	2,034	050	433	1,201	1,200	IN/A	IN/A	7,440

Table 2

Cal Am / RBF Baseline Water and Total Dissolved Solids Levels Monterey Peninsula Water Supply Project Area

Summary of Laboratory Water Quality Results in Monitoring Wells

	Well Name:	M\	MW-1D 277 - 327		MW-1M 115 - 225		MW-1S		MW-3D		V-3M	MV	V-3S	MV	V-4D	MW	/-4M	MW	-4S	MW-5D		MW	/-5M	MW-5S			Test Slant We	ااد
	Screen Interval (ft bgs):	277					- 95	285 - 330		105	- 215	50	- 90	280	- 330	100	100 - 230		50 - 90		430	100	- 325	50	- 90	140 -	320, 400 - 71	.0 (MD)
	Sample Date:	14-Feb-15	9-Apr-15	14-Feb-15	9-Apr-15	13-Feb-15	9-Apr-15	21-Feb-15	10-Apr-15	24-Feb-15	10-Apr-15	25-Feb-15	10-Apr-15	19-Feb-15	2-Apr-15	6-Mar-15	2-Apr-15	7-Mar-15	2-Apr-15	17-Feb-15	2-Apr-15	3-Mar-15	2-Apr-15	10-Mar-15	2-Apr-15	20-Mar-15	24-Mar-15	8-Apr-
Constituent ¹	Units	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Resu
fate	mg/L	1,950	N/A	2,070	N/A	1,840	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1,700	N/A	N/A	N/A	N/A	N/A	58	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ate, Dissolved	mg/L	N/A	2,148	N/A	2,048	N/A	2,008	2,058	2,158	1,960	1,967	1,533	1,605	N/A	1,796	1,184	1,205	716	807	N/A	31	110	67	197	192	N/A	N/A	1,840
nperature	°C	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16.3	N/A	N/A
nperature (Field)	°C	19.2	20.02	17.2	17.89	18.8	17.64	19.6	20.22	16.3	18.74	17.5	19.17	19.9	19.8	18.4	18.3	17.7	18.1	21.3	21.4	16.97	18.2	16.7	18.1	20.9	19.1	17.2
al Diss. Solids	mg/L	29,100	28,700	30,900	28,300	26,600	27,500	32,600	28,600	28,500	28,300	23,400	23,300	27,500	27,600	17,900	17,500	11,900	12,800	2,616	2,437	663	454	1,166	1,117	25,300	24,400	25,400
tal Susp. Solids	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	36	ND	N/A
bidity	NTU	1.8	0.15	0.1	0.1	0.1	0.15	1	0.3	0.1	0.16	0.15	0.24	0.65	0.15	0.25	0.05	0.3	0.2	0.25	0.25	ND	ND	0.4	0.75	17	1.6	0.4
bidity (Field)	NTU	0.65	0.69	0.41	0.35	0.28	0.43	0.38	0.87	0.42	0.21	0.96	0.55	0.76	0.53	0.71	0.84	0.52	0.17	0.71	0.87	0.47	0.45	1.31	1.26	40.3	0.66	0.74
atile Org. Compounds (524) μg/L	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	RP	N/A	RP	N/A	ND	N/A	RP	N/A	RP	N/A	ND	N/A	RP	N/A	N/A	N/A	ND
, Total	μg/L	ND	ND	ND	ND	413	ND	ND	ND	297	ND	312	ND	ND	ND	211	107	ND	108	51	ND	40	ND	43	ND	N/A	N/A	ND

-	Degrees deisids
CU	= Color Units
mg/L	= Milligrams per Liter
NTU	= Nephelometric Turbidity Units
pg/L	= Picograms per Liter
TON	= Threshold Odor Number
μg/L	= Micorgrams per Liter
μmhos/cm	= Micromhos per Centimeter
н	= Analyzed outside of hold time
MPN/100mL	= The most probable number (MPN) of coliform or fecal coliform bacteria per 100 milliliter
ND	= NOT DETECTED at or above the Reporting Limit or Practical Quantitation Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
N/A	= No Lab Results available
RP	= Results to be provided

¹ Laboratory water quality reports will be provided in the Test Slant Well and mornitoring well completion report.
 Laboratory water quality results pending.

Table 2

		MW-6D	MW-6M	MW-6S	MW-7D	MW-7M	MW-7S	MW-8D	MW-8D	MW-8M	MW-8M	MW-8S	MW-8S	MW-9D	MW-9D	MW-9M	MW-9M	MW-9S	MW-9S
CONSTITUENT	UNIT	4/2/2015	4/4/2015	4/5/2015	9-Aug-15	2-Aug-15	3-Aug-15	5/21/2015	6/23/2015	5/27/2015	6/23/2015	5/28/2015	6/23/2015	25-Jun-15	5 28-Jul-15	28-Jun-15	28-Jul-15	30-Jun-15	5 28-Jul-15
ALKALINITY, TOTAL (as CaCO ₃)	mg/L	117	397	366	109	98	29	152	112	140	155	320	302	170	176	127	128	1,051	1,019
ALUMINUM, TOTAL	μg/L	ND	ND	ND	ND	18	ND	37	128	292	ND	ND	ND	ND	ND	ND	ND	11	ND
AMMONIA-N	mg/L	NA	NA	NA				NA	NA	NA	NA	NA	NA						
AMMONIA-N, DISSOLVED	mg/L	ND	0.17	0.45	ND	ND	0.08	ND	ND	ND	ND	ND	ND	ND	0.07	0.12	0.17	2.83	2.86
AMMONIA-NH ₃ (CALC) UN-IONIZED	ug/L	NA	NA	NA				NA	NA	NA	NA	NA	NA						
ARSENIC, TOTAL	μg/L	3	5	16	41	4	1	1	11	28	24	1	1	2	2	39	35	11	12
BARIUM, DISSOLVED	μg/L	255	155	105	110	282	199	88	178	154	119	57	75	59	48	163	141	315	273
BICARBONATE (AS HCO3-)	mg/L	143	484	447	133	120	35	185	137	171	189	390	368	207	215	155	156	1,282	1,243
BORON, DISSOLVED	mg/L	ND	ND	ND	1.71	ND	ND	0.05	0.66	1.83	1.37	0.22	0.29	0.08	0.07	2.93	2.77	0.69	0.64
BROMIDE, DISSOLVED	mg/L	2	0.5	0.2	44.3	6.6	1.3	0.6	11.5	42.1	33.6	0.9	1	0.2	0.2	49.6	47.6	4.2	3.5
	mg/L	341	139	93	1,900	507	120	64	413	1110	1500	149	142	32	34	878	1,060	209	234
CALCIUM, DISSOLVED	mg/L	347 ND	140 ND	92	1,890	520 ND	114 ND	59 ND	416	1140 NA	1500	151 ND	139 ND	35 ND	33	869 ND	1,100	242 ND	235
CARBAMATES BY HPLC (EPA 531)	μg/L			ND	ND			ND	ND		ND				ND		ND		ND
	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CHLORIDE, DISSOLVED	mg/L	814	167	57	13,589	1,739	387	220	3995	12380 ND	10546	261	251	74	75	16,519	10,436	1,199	1,038
CHLORINATED PESTICIDES AND PCB (EPA 508) CHLORINE RESIDUAL, TOTAL (LABORATORY)	μg/L mg/L (H)	ND NA	A NA	A NA	A	ND	ND	ND NA	ND NA	NA	ND NA	A NA	A NA	ND		ND		ND	
COLIFORM, E. COLI (QUANTITRAY)	MPN/100ml	NA	NA	NA				NA	NA	NA	NA	NA	NA						
COLIFORM, E. COLI (QUANTITRAT) COLIFORM, E. COLI (QUANTITRAY) - 18 HOUR	MPN/100ml	NA	NA	NA				NA	NA	NA	NA	NA	NA						
COLIFORM, E. COLI (QUANTITRAT) - 18 HOOK COLIFORM, TOTAL (QUANTITRAY)	MPN/100ml	NA	NA	NA				NA	NA	NA	NA	NA	NA						
COLIFORM, TOTAL (QUANTITRAT)	MPN/100ml	NA	NA	NA				NA	NA	NA	NA	NA	NA	1	1	<u> </u>		1	1
COLOR, APPARENT (UNFILTERED)	CU	5	16	20	ND	ND	ND	11	16	ND	7	3	ND	ND	3	6	14	175	60
COPPER, TOTAL	μg/L	8	ND	ND	ND	ND	ND	ND	ND	ND	, ND	ND	ND	10	ND	ND	ND	ND	ND
DBCP & EDB	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
DIOXIN	pg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND		ND	1
DIQUAT (EPA 549)	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	1
DISSOLVED OXYGEN (FIELD)	mg/L (H)	NA	NA	NA				NA	NA	NA	NA	NA	NA						
DISSOLVED OXYGEN (LABORATORY)	mg/L (H)	NA	NA	NA				NA	NA	NA	NA	NA	NA						
ENDOTHALL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
FLUORIDE, DISSOLVED	mg/L	0.1	ND	0.2	ND	ND	0.1	0.3	ND	0.4	ND	0.1	ND	0.3	0.3	ND	ND	ND	0.4
GLYPHOSATE	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
HARDNESS (AS CaCO ₃)	mg/L	1222	565	393	9,030	2,044	547	263	2057	6080	6698	578	556	133	138	6,718	7,296	1,218	1,206
HYDROXIDE	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
IODIDE	μg/L	ND	35	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	500	330
IRON	μg/L	ND	184	315	ND	ND	33	81	274	ND	ND	104	ND	10	ND	670	1,540	6,964	6,878
IRON, DISSOLVED	μg/L	ND	182	315	ND	ND	26	15	ND	ND	ND	99	ND	ND	ND	667	1,520	6,300	1,400
KJEHLDAHL NITROGEN, DISSOLVED	mg/L	ND	0.7	1	ND	ND	0.09	ND	ND	ND	ND	ND	ND	ND	0.11	0.2	0.19	6.12	2.9
	μg/L	25	17	6	271	29	5	49	157	132	132	ND	6	38	39	289	296	23	20
MAGNESIUM	mg/L	90	53	39	1,040	189	60	25	249	801	717	50	49	13	13	1,100	1,130	169	151
	mg/L	83	49	37	1,010	192	58	23	250	828	692	51	47	13	13	1,090	1,140	161	152
MANGANESE, DISSOLVED MANGANESE, TOTAL	μg/L	714 750	821 810	2090 1880	230 232	372 372	476 500	283 310	759 847	353 354	642 668	ND ND	76 86	247 254	186 188	1,120	1,410	4,920	4,830
MBAS (SURFACTANTS)	μg/L mg/L	ND	ND	1880 ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	1,160 ND	1,380 ND	5,140 ND	4,840 ND
NITRATE AS NO ₃		2	ND	ND	6	15	198	2	6	5	6	123	115	2	2	5	6	ND	
	mg/L									-	-	-				-	-		ND 1.2
	mg/L	0.7	0.5	0.5	1.4	3.4	44.8	0.7	1.3	1.5	1.4	28.2	26.8	0.9	0.8	1.2	1.3	2.5	1.2
NITRITE AS NO ₂ -N, DISSOLVED	mg/L	0.2	0.1	0.5	ND	ND	0.1	0.3	ND	0.4	ND	0.4	0.8	0.3	0.3	ND	ND	2.5	1.2
ODOR THRESHOLD AT 60 C	TON	1	1	2	1	2	2	1	2	1	1	2	1	1	2	1	2	2	5
OIL & GREASE (HEM)	mg/L	NA 0.05	NA 0.32	NA 1.55	0.05	0.010	0.025	NA 0.06	NA 0.04	NA 0.06	NA 0.04	NA 0.1	NA 0.13	0.00	0.12	0.00	0.04	1.24	0.28
o-PHOSPHATE-P pH (FIELD TEST)	mg/L pH	0.05	7.43	7.07	0.05	0.016	0.035 7.05	0.06	8.17	0.06	6.92	0.1 7.13	6.99	0.06	0.13 8.03	0.06	0.04 7.03	1.34 7.06	7.04
pH (LABORATORY)	рн рН (Н)	7.24	7.43	7.07	6.9	7.17	7.05	7.33	8.17	7.2	7.2	7.13	7.2	7.44	7.8	6.9	6.9	7.06	7.04
PHENOXY ACID HERBICIDES (515.3)	μg/L	ND	ND	ND	0.9 ND	7.2 ND	7.3 ND	ND	ND	ND	ND	ND	ND	7.5 ND	7.0	6.9 ND	0.3	7.1 ND	/.1
PHOSPHORUS, DISSOLVED TOTAL	mg/L	0.06	0.31	1.38	0.02	0.017	0.04	0.06	ND	0.07	ND	0.11	0.07	0.12	0.029	0.06	ND	1.4	0.16
POTASSIUM	mg/L	7.1	6.4	7.6	57	10	5.9	5.1	41	108	55	4.1	5	3.5	6.1	197	168	14	13
POTASSIUM, DISSOLVED	mg/L	8	7	7.2	55	10	5.5	4.6	42	111	50	4.3	4.8	3.6	6	196	167	12.8	13
QC RATIO TDS/SEC		0.67	0.63	0.61	0.69	0.68	0.68	0.56	0.58	0.69	0.7	0.62	0.63	0.59	0.61	0.66	0.69	0.6	0.58
REG. ORG. COMPOUNDS (EPA 525)	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
SETTLEABLE SOLIDS	mL/L	NA	NA	NA				NA	NA	NA	NA	NA	I .		I				I
SILICA AS SIO ₂ , DISSOLVED	mg/L	44	44	34	35	30	37	45	33	30	33	37	40	45	44	35	30	43	40
SODIUM	mg/L	77	140	79	6,834	338	124	148	2192	6106	5310	262	245	68	75	8,407	8,224	732	691
SODIUM, DISSOLVED	mg/L	78	141	79	6,540	342	119	135	2290	6270	4950	265	239	68	74	8,430	8,240	698	692
SPECIFIC CONDUCTANCE (E.C)	µmhos/cm	2758	1545	989	38,800	5,650	1,768	1045	12190	35020	29320	2036	1935	624	617	44,090	44,660	5,330	5,190
SPECIFIC CONDUCTANCE (E.C) (FIELD)	µmhos/cm	2859	1531	869	39,065	5,507	1,762	1113	15312	35040	29888	2004	1932	574	658	44,462	45,724	5,384	5,255
STRONTIUM, DISSOLVED	μg/L	1826	761	561	12,676	3,689	1,327	470	3536	8504	8507	868	855	273	260	8,148	8,301	3,064	1,861
SULFATE	mg/L	NA	NA	NA				NA	NA	NA	NA	NA	NA						
SULFATE, DISSOLVED	mg/L	85	175	87	1,882	176	61	32	541	1743	1430	258	239	25	23	2,286	2,207	210	220
TEMPERATURE	°C	NA	NA	NA				NA	NA	NA	NA	NA	NA			ļ			
TEMPERATURE, (FIELD)	°C	10.6	16.8	NA	19.7	18.4	18.2	21.2	19.2	17.17	17.2	16.83	17	21.2	20.2	17.2	17.3	17.3	17.1
TOTAL DISS. SOLIDS	mg/L	1840	966	608	26,700	3,832	1,200	583	7100	24000	20500	1260	1214	366	377	29,000	30,600	3,204	2,997
TOTAL SUSP. SOLIDS	mg/L	NA	NA	NA				NA	NA	NA	NA	NA	NA				-		
	NTU	0.2	0.7	2.6	0.2	0.2	0.3	0.55	1.9	0.1	0.2	0.1	0.15	0.1	0.5	1.3	3	55	50
	NTU	0.59	0.7	0.62	0.85	0.88	0.7	2.48	1	0.56	1	0.92	1	0.86	0.7	0.29	0.3	0.82	0.2
VOLATILE ORG. COMPOUNDS (524)	μg/L	ND	ND	ND	ND	A ND	ND ND	ND ND	ND ND	ND 340	ND ND	A 636	A ND	ND 22	ND	ND ND	ND	A ND	ND
ZINC, TOTAL	μg/L	24	ND	ND	ND														