Air Quality Affects on Water Quality - Monitoring at Sweetwater Reservoir

US Geological Survey Sacramento, CA Sweetwater Authority Spring Valley, CA

Objectives and Scope

- Determine Impact on WQ in SWR from the Construction and Operation of a Specific Highway Project (SR-125)
- Distinguish Local from Regional Ambient Levels of Contaminants
 - •Measuring long-term concentration trends of select VOCs, PAHs, and TMs in water and air and comparing them to measured baseline levels.
- General Health of the Watershed
 - To Better Understand Land Use Impacts on WQ Through Monitoring

Reservoir Characteristics:

Established in 1888

Uniqueness

- Water supplied from watershed
- Management Program
 - Controlled environment
 - URDS Program
 - Proactive Educational and Monitoring Programs
 - Air Quality Impacts on Water Quality

SR-125

- Elevated Tollway (~30m)
- >Upwind of Reservoir (within ~100m)
- Major NAFTA Route to and from Mexico

Program Timeline

•1998 - Start of Program High intensity sampling (every 2 months) •1999 - Sediment coring of Sweetwater Reservoir Low intensity sampling begins (every 3 months) •2003 - Construction on SR-125 began >Added sampling for TMs in whole water •2004 - Added sampling PAHs in whole water **TMs in air**

Program Timeline

2005 - Continue sampling during SR-125 construction

•2006 +

Sample for 2 to 3 years during full operation of SR-125

Study Design

Water

≻Air

Bed Sediments

•Reservoir Depth Profiles of:

>Temperature

⊳рН

Dissolved Oxygen

Specific Conductance

Thermocline
 mid-Epilimnion

>mid-Hypolimnion

USGS National Water Quality Assessment (NAWQA) Program

 Water Sampling Methods Point Sampling Water Analytical Methods **Water - All Sites** •VOCs Trace Metals **Water - Select Sites** •PAHs Waste water compounds Pharmaceuticals Pesticides and transformation products

•Air Monitoring at Sweetwater Reservoir

Meteorological Measurements
Air Temperature (2 & 10 m)
Relative Humidity (2 & 10 m)
Wind Speed (10 m)
Wind Direction (10 m)
Solar Radiation (2 m)
Barometric Pressure

Air Monitoring at Sweetwater Reservoir

Air Sampling
> VOCs (gas phase)
24 h composite, every 12th day
- 88 VOC compounds
> Method developed in conjunction with CARB
- Pankow, et al., 1998, Analytical Chemistry, v. 70, no. 24, p. 5213-5221

Air Monitoring at Sweetwater Reservoir

Air Sampling - 24 h composite, every 12th day
PAHs (gas & particle phases)
Custom Methods at NWQL
32 PAHs and related isomers
Trace Metals (particle phase)
32 TMs

Bed Sediments

Cores and Surficial
 32 PAH and related isomers
 Total PCBs
 14 OC pesticides
 Major and Trace Metals

Sweetwater Reservoir Sediment Core Total - DDT

PAH Concentration in Sweetwater Reservoir Sediment Core

Total Combustion PAH Concentration in Sweetwater Reservoir Sediment Core

PAH Compounds in Water

Phenol	%	Mean (µg/L)	Max (µg/L)	Median (µg/L)	
LLR (3)	33.3%	1.6	1.6	1.6	
Finished (5)	0.0%	0.0	0.0	0.0	
Imported (3)	66.7%	0.4	0.4	0.4	
LFB (5)	80.0%	0.6	1.5	0.3	
SWR01 (5)	80.0%	0.3	0.7	0.3	
SWR03 (5)	40.0%	0.5	0.6	0.5	

Benzyl n-butyl phthalate

- Bis(2-ethylhexyl) phthalate
- Di-n-butyl phthalate

PAHs in Air

Compound	Particle Phase	Gas Phase	
	(ng/m³)	(ng/m³)	
Acenaphthylene	0.003	0.23	
Acenaphthene	0.139	0.73	
Anthracene	0.008	0.117	
Chrysene	0.068	0.091	
Fluoranthene	0.057	1.03	
Phenanthrene	0.047	5.75	
Pyrene	0.060	0.70	
Benz (a) anthracene	0.044	0.029	
Benzo (a) pyrene	0.054	0.008	
Benzo (e) pyrene	0.096	0.014	

VOC Compounds in Water

Percent Detections

	LLR	SWR01	SWR03	SWR06	LFB	Finished	Imported
Trichloromethane	2.5	100	100	96.0	11.1	100	100
Bromodichloromethane	0.0	94.7	88.2	92.0	0.0	100	92.9
Dibromochloromethane	0.0	84.2	76.5	52.0	0.0	100	42.9
Tribromomethane	0.0	42.1	8.8	4.0	0.0	96.2	0.0
Chloromethane	0.0	2.6	2.9	0.0	3.7	84.6	0.0
Tetrachloromethane	0.0	0.0	0.0	0.0	0.0	80.8	0.0
Methyl tert-butyl ether	57.5	57.9	50.0	60.0	59.3	69.2	78.6
Acetone	2.5	5.3	2.9	8.0	0.0	65.4	0.0
Carbon disulfide	12.5	18.4	14.7	24.0	59.3	34.6	7.1
Toluene	47.5	50.0	38.2	52.0	48.1	34.6	28.6
Dichloromethane	0.0	5.3	5.9	0.0	3.7	30.8	0.0
Benzene	17.5	15.8	8.8	20.0	7.4	19.2	0.0
Chloroethane	0.0	0.0	0.0	0.0	0.0	15.4	0.0
1,1,1-Trichloroethane	0.0	0.0	0.0	0.0	0.0	11.5	28.6
Chlorobenzene	0.0	0.0	0.0	0.0	0.0	7.7	0.0
Styrene	0.0	5.3	2.9	4.0	51.9	7.7	0.0

VOC Compounds in Water

	Fir	nished	Water	S	SW01		
		(µg/L))	((µg/L)		
	%	max	mean	%	max	mean	
Trichloromethane (26/38)	100	44.8	14.18	100	1.34	0.360	
Bromodichloromethane (26/36)	100	66.6	24.65	94.7	2.07	0.424	
Dibromochloromethane (26/32)	100	61.1	24.10	84.2	2.10	0.406	
Tribromomethane (25/16)	96.2	11.5	5.15	42.1	0.47	0.131	
Chloromethane (22/1)	84.6	0.40	0.186	2.60	0.10	0.100	
Tetrachloromethane (21/0)	80.8	0.20	0.065	0.00	0.00	0.000	
Methyl tert-butyl ether (18/22)	69.2	0.80	0.306	57.9	0.30	0.155	
Acetone (17/2)	65.4	13.0	7.18	5.30	2.00	2.000	
Carbon disulfide (9/7)	34.6	0.15	0.049	18.4	0.26	0.063	
Toluene (9/19)	34.6	0.03	0.018	50.0	0.08	0.030	
Dichloromethane (8/2)	30.8	0.30	0.138	5.30	0.10	0.100	
Benzene (5/6)	19.2	0.02	0.014	15.8	0.01	0.010	
Chloroethane (4/0)	15.4	0.10	0.100	0.00	0.00	0.000	
1,1,1-Trichloroethane (3/0)	11.5	0.03	0.023	0.00	0.00	0.000	

Summary

Monitoring of Sweetwater and Loveland Res.

 Detecting wide variety of organic and inorganic chemicals in the source and finished waters

 Water treatment removes contaminants to various degrees and adds others (THMs)

Concentrations of most compounds are very low

 Imported water contains additional chemicals not detected Sweetwater Reservoir

Summary

Many of the same chemicals found in the water are also found in the air

 Because of the climate, the atmosphere may be a possible source in water for some compounds

Distinguish Local from Regional Ambient Levels SR-125 Construction is ongoing

Recommended Follow-up Actions

Gaps in Regulatory Structure

- Primary focus of the Safe Drinking Water Act source protection is on pathogens (cryptosporidium & giardia)
 - SDWA does address other contaminants, but post treatment
- A general lack of information and research on other risks to WQ such as the impact of air quality of water quality, i.e., risks from airborne vehicle emissions
- Informed decisions and sensible regulations can only be made based on quality research results

Recommended Follow-up Actions

Partnerships

How does one answer the question: "Will the emissions from a proposed or existing roadway alignment near a drinking water source have any impact on that source?"

- State and local regulatory and supply agencies and reliable, unbiased research organizations
- Open mindedness is needed to address the concerns of local water supply agencies

Recommended Follow-up Actions

- Research Needs
 - Long-term, effective research focused on identifying all risks to source waters in a variety of environmental settings
 - An integrated approach incorporating causes, effects, and solutions

