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The review is in two parts. The first responds diseto the questions posed in Attachment 2.
The second is an Appendix that presents a more lebpengiscussion of the issues and a
preliminary analysis of the sediment toxicity dedallustrate the application of mechanistic
criteria.

1. Are benthic invertebrates important ecologicallgvant receptors to protect from direct
exposure to toxic pollutants in sediments withia blays and estuaries of California?

Yes, and the rationale for protecting benthic itserates are presented very well in the report.

2. Are multiple lines of evidence appropriate to asshe potential risk to benthic
invertebrates from toxic pollutants in sedimentthimi the bays and estuaries of
California?

Clearly multiple lines of evidence are requireéd$sess the potential risk to benthic invertebrates
from toxic pollutants in sediments. This is theechsth within the bays and estuaries of
California and for other sites, e.g. streams, s\ard lakes. The report presents the rationale and
appropriate citations to the literature supportimg position.

3. Individual lines of Evidence
a. Are proposed sediment toxicity indicators apprdpriar assessing both the
potential risk of exposure from toxic pollutantsighe biological effects in
benthic invertebrates within the bays and estuafi€salifornia?

The analysis of the available toxicity tests areriethodology presented in the report for
converting toxicity tests for use in judging thedeof toxicity appears to be sound. | find the
rejection of the Ampelisca abdita test a littleangye since the test is employed widely, but a
rationale is presented.



b. Are proposed sediment chemistry indicators appatgfior assessing both the
potential risk of exposure from toxic pollutantsdenthic invertebrates within
the bays and estuaries of California?

The sediment chemistry indicator developed in &p®rt is incomplete. As the report states, there
are two general methods available for assessingdtential for toxicity in sediments: empirical
and mechanistic. The report embraces the empirietthod and dismisses the mechanistic
method in a few sentences. In Section 5.5.3.2 ‘Mghamistry indicators should be used?” the
reasons are given

“Mechanistic SQGs based on equilibrium partitionimgre not included for several reasons.
Data for some of the key parameters needed to dpplgnechanistic guidelines (e.qg.
sediment acid volatile sulfides and simultaneoesiyacted metals) were not available. In
addition chemistry data were not available fotlad potential toxicants in the samples, which
limited the predictive ability of the guidelinesrforganics. Previous analyses using Southern
California data showed that these limitations gigantly affected mechanistic SQG
performance; application of a partial suite of nauktic SQGs for organics resulted in poor
predictive ability (Vidal and Bay 2005).”

Howeverboth empirical and mechanistic methods are incomphg¢gther method can predict

with more than a modest degree of certainty theayné of a toxicity test on a sediment from the
field that is contaminated with many, and possibiknown and unmeasured contaminants. Fig.
1 presents the results of the analysis from “Comatpar Sediment Quality Guideline Performance
For Predicting Sediment Toxicity In Southern Catifia, USA” by Vidal and Bay 2005.
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The empirical criteria predicts the lack of toxycieasonably well (SOCAMSQG-Q1 < 0,1) but
fails to discriminate between toxic and non toxdisnents at the same value of SOCAMSQG-
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Q1q for the bulk of the data in the range of 0.1.th The mechanistic criteria as evaluated by
Vidal and Bay appeared to have no predictive gtdlitall in this data set.

| have prepared an appendix attached to this rethiatwdiscusses these issues in more
detail. It illustrates the applicability of mechsint criteria to the available data to demonstrate
their utility, even if the necessary data for a ptete and rigorous application are not available.
As demonstrated in the appendix, the role of meskiarcriteria is not to predict toxicity. For the
reasons given above and as presented in more ietlad appendix, the role of mechanistic
criteria is to determine if the observed toxicignde explained by known modes of
bioavailability and toxic mechanisms.

The results can be used to judge whether the claéoaase of the toxicity for particular
sediment is likely to be metals, PAHs and othecotés, or the pesticides that have been
measured. The alternative is that none of thessetaof chemicals appear to be the cause of the
observed toxicity and the situation is quite uraert If the later is the case, then the resuthef
best professional judgment assessment of theisituabuld change to be very uncertain,
regardless of the level of chemical contaminatieo, in my opinion, more information about
the toxic sediment should be collected so that eereecure decision can be made.

Therefore, both mechanistic and empirical critehauld be used to judge the extent of
toxicity that is likely due to chemicals, and ietbhemical data are consistent with known
measures of bioavailability and modes of chemigsicity. Ignoring mechanistic criteria is not
employing the best available science to supporilaggry judgments. Mechanistic criteria have
been developed and validated from very large de&ta8ecomprehensive review with citations to
the primary literature is available (Di Toro et, &005). They are based on quantitative
mechanistic models that have been published oeeydhrs in the peer reviewed literature, are
highly cited, and have been tested by numerougperlient investigators. They provide a
framework for understanding chemical causes ofhseqli toxicity, and can be used to
discriminate between two important cases: (1) weeustand the chemical cause of the observed
toxicity; (2) we do not, at our present level oflerstanding. Empirical criteria cannot provide
this important additional information.

c. Are proposed benthic community indicators appragriar assessing the
biological effects through benthic community coiaitwithin the bays and
estuaries of California?

The report presents the rationale and methodoloaggdlecting the benthic community indicators
and they appear to be sound.



4. s the integration framework appropriate for defeing if a station meets the narrative
objective?

The integration framework — the quantification esbprofessional judgment (BPJ) — is to be
commended. It produces a specific outcome for ¢te th be evaluated. The test of the method
by experts on a small dataset is a nice demorwtrafiits utility in quantifying BPJ and making
it applicable to specific sediment.

| would suggest one further test. Evaluate theedataset for which the necessary triad
information is available. What proportion of theted sediments is in which level of concern?
There are a number of arbitrary cutoff levels ia ttamework, and it is important to know if
these choices trigger many highly toxic sedimeftsriterion that is too restrictive and triggers
too many false positives is not a useful regulatooy.

5. Is the implementation of the narrative SGO appadprgiven the limitations of the
individual tools and potential uncertainty assamiatvith sediment quality assessment?

I would strongly recommend the inclusion of theutessof an analysis of the data using
mechanistic criteria for the purposes of deterngjrilre probable cause(s) of toxicity, or whither
the cause is unknown. An example application ikiohed in the appendix to this review.

1. Are there any additional scientific issues thata#g of the scientific basis of the
proposed rule not described above?

| would recommend that a report be prepared thetimbents the calculations that lead to the
LRM in the report so that the analysis can be r@peced, including the analysis leadingliable
2 from Direct Effects Calculation

In order to apply mechanistic criteria without tygproximations used in the appendix, certain
data are required. Although the historical data matyinclude the appropriate measurements, all
future data collection should include at least: S&M AVS for a proper assessment of metal
toxicity; a complete suite of PAHs including alkigd PAHs and sediment organic carbon to
evaluate PAH toxicity. Not requiring such datadg oonsistent with using the best science.

Section 5.7.4. The staff recommendation is to afipynarrative SQGs to NPDES permits as
receiving water limits. Unless mechanistic critaréan successfully identify the chemical causes
of the toxicity it is not possible to establisheaeng water limits. As discussed above it is the
universally agreed that empirical criteria canmdulsed to identify the chemical causes of
toxicity.



2. Taken as a whole is the scientific portion of thegesed rule based upon sound
scientific knowledge methods and practices?

With the exception of the exclusion of mechanistiteria for judging the possible chemical
causes of toxicity — and this is a glaring problethe implementation is based on sound
scientific knowledge methods and practices.
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Appendix 1

Empirical and Mechanigtic Criteria

To put my review in context, | will quote from tipaper “Comparative Sediment Quality
Guideline Performance For Predicting Sediment Tioxla Southern California, USA” (Vidal

and Bay, 2005), cited in the report (p76), whichraines these issues. First, the nature of the two
methods:

“Sediment quality guidelines can be classifiedwn tmain categories based on
the approach used to derive their values: empiandlmechanistic. Empirical SQG
approaches are based on the statistical analytasgef databases of synoptic sediment
chemistry and toxicity data to identify chemicahcentrations associated with various
levels of biological effects. Examples of this tygfeSQG include the effects range—low
and effects range—median (ERM) values, which ane@atrations corresponding to the
10th and 50th percentiles of the distribution obedrin toxic samples, respectively [2].
Variations in chemical speciation and bioavailapiéire not directly addressed in
empirical SQGs; such effects are indirectly incogped into these guidelines through the
use of a database containing samples from divecsdibns and sediment types.
Empirical SQGs have two major practical advantatiesyy can be calculated for a large
number of contaminants, and only routine cheminalyesis data are needed for their
application. “

“The second principal type of SQG approach includdses based on
mechanistic models that incorporate factors thfacathe bioavailability of chemicals in
the sediment. Mechanistic SQGs may incorporatetfieets of sediment organic carbon
or sulfides (for metals) on the equilibrium paditing of contaminants and also use
laboratory dose—-response models to account fafthets of multiple contaminants [3—
5]. Sediment quality guidelines based on equiltorpartitioning (EqP) for organics have
been developed for selected pesticides and orgp#8$. The EqQP for organics theory
assumes that nonionic chemicals in sediment partiietween the organic carbon
present in the sediment as well as in the intek(pore) water and the benthic
organisms living on the sediment. At equilibriufraiconcentration is known in one of
the phases (e.g., sediment), then the other omelsecpredicted [6]. By accounting for
variations in bioavailability and mixture effectagchanistic SQGs have a greater ability
relative to empirical SQGs to determine the speciintaminants responsible for
toxicity. Mechanistic SQGs often require more estea chemical data, and published
values are not available for many contaminantsfika to empirical SQGs.”



This is a correct characterization of the curreamtarstanding of the nature and appropriate use of
the two methods. The report embraces the empmetihods and dismisses the mechanistic
methods in a few sentences.

“5.5.3.2 What chemistry indicators should be used™Mechanistic SQGs based on
equilibrium partitioning were not included for seakreasons. Data for some of the key
parameters needed to apply the mechanistic guete(ig. sediment acid volatile
sulfides and simultaneously extracted metals) wetevailable. In addition chemistry
data were not available for all the potential texits in the samples, which limited the
predictive ability of the guidelines for organicBrevious analyses using Southern
California data showed that these limitations gigantly affected mechanistic SQG
performance; application of a partial suite of nauktic SQGs for organics resulted in
poor predictive ability (Vidal and Bay 2005).”

I regard this dismissal as premature and poteytihgerous. There has been much discussion in
the literature and at meetings about the appraptisés of empirical and mechanistic guides
(Wenning and Ingersoll, 2005). The empirical glirdes suggested in this report are based on
fitting a logistic probability model to large setsamphipod mortality data sets collected in
California. An equation is developed for each meagpotential toxicant in the sediment. Then
these probabilities are combined to make predistafiresults of these The limitations of such a
procedure are well known. To quote from Vidal arayB2005

“The results of these analyses showed that exceedan individual empirical
chemical guidelines are unreliable indicators afdity and do not necessarily indicate
the cause of toxicity. For example, the mean SQG&thmean ERMq had similar
nontoxicity efficiency and specificity values, yae mean SQGQ1q uses only nine
chemicals in comparison to the 24 used for the nid&lq. The presence of many
contaminants in a sediment sample and the highedegfrcorrelation among them
indicates that most empirical SQG values shouldeatsed in isolation but rather be
used in combination to provide an overall indicatid the potential for adverse effects
(e.g., likely to be toxic or nontoxic). The excerda of an individual empirical SQG
value is not an indication that a chemical is tdgiorganisms. Other studies have also
suggested caution in the use of individual chen®€G values when assessing sediment
quality [14,16]. “

The Regression M odel



The California regression model is based on thddgigtic equation (page 13 of Appendix A and
page 2 of Direct Effects Calculation)

p = exp(lp + logio(c))/(1+ exp(l + bilogi(c)) 1)

It can be shown that this equation is equivalerthéomore intuitive formulation

p = 1/(1 + (EC50/¢) (2)
where

B =1 /In(10) (3)

EC50 = exp(-§ B) (4)

The EC50 is the concentration at which a 50% mitytal predicted an@ is the usual slope
parameter.

The example in the Direct Effects Calculation carubed to check these equations.

For cadmium: ¢ = 0.15 mg/kge b 0.2894, b= 3.1764 and p = 0.09. Using the above equations:
B =1.38, EC50 = 0.81 mg/kg and p = 0.09 as befdote that the EC50 is approximately 1 mg
Cd/kg by visual inspection of Fig. 2 in Direct Edte Calculation, which is consistent with EC50
= 0.81 mg/kg calculated above.The parameters tother chemicals are listed below

Table 1
(Table 2 from Direct Effects Calculation and EC5@l f)
units b b, B EC50
Cd mg/kg 0.2894 3.1764 1.38 0.81
Cu mg/kg -5.5931 2.5885 1.12 144.79
Pb mg/kg -4.7228 2.8404 1.23 46.00
Hg mg/kg -0.0618 2.6837 1.17 1.05
Zn mg/kg -5.1337 2.4205 1.05 132.11
HPAH ug/kg -8.1922 1.9995 0.87 12506.17
LPAH ug/kg -6.8071 1.8827 0.82 4126.72
Alpha Chlordane ug/kg -3.408 4.457 1.94 5.82
Dieldrin ug/kg -1.8344 2.589 1.12 5.11
Trans Nonachlor ug/kg -4.259 5.3135 2.31 6.33
Total PCBs ug/kg -4.4144 1.4837 0.64 944.64
4-4-DDT ug/lkg -3.5531 3.2621 1.42 12.28

TheBasisfor the M od€
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The model parametersy(and h, or equivalently EC50 ang) are based on regression fits to the
toxicity and chemical data set assembled for thip@se. The report, appendices, and
supplementary information do not contain the dath@ocedures from which these parameters
were derived. In an attempt to understand thegqoha@ in more detail, | have attempted to
reproduce the fitting procedure. The Access damsatewideSQO_11 17 _06.mdb is available
on the web. | retrieved the Eohaustorius estudE& mortality data and the corresponding
chemistry. It was not clear what data was useregating the report values and | did not have
the time completely understand this very large lutda. | restricted the retrieval to “SP” (survival
percentage) and “SD_RESULT” (not replicates etdictv seemed reasonable choices. One of
my recommendations is that a report be preparéditcuments the calculations that lead to the

LRM in the report so that the analysis can be pced. Nevertheless the results of this analysis
are very instructive.

This analysis will focus on cadmium as an illustnat The Cd data are presented below in Fig. 1.
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The other metals and PAH data are shown in fighitesnd 12 in the Figure appendix. The data
all share a common feature. At low concentratitiese is mostly >80% survival indicating no
toxicity. At higher concentrations, some samplesrat toxic (>80% survival) and others are
highly toxic (0% survival). Note that these tworexhes can occuat the same cadmium
concentration! This is the central problem in understanding thécity of chemicals in field
collected sediments with multiple contaminants. diificulty is that it is not clear that Cd is
causing toxicity in any of these sediments sincawilability is not accounted for in empirical
criteria. It is mechanistic criteria that strivedausally relate a chemical concentration to actoxi
response.
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This idea behind logistic regression models isski§it is more probable that as the Cd
concentration increases, the survival percentageases. Fig. 3 presents the results of a fitef th
logistic regression equation (2) to the data. TOgtskic equation using the parameters in Table 1
is also shown. A fit to the data produces an alrflastelationship, indicating that there is
virtually no relationship between percent surviaatl Cd concentration. Yet the logistic equation
using the Table 1 parameters seem to indicat@agstelationship.

The reason is, | think, that the data are presekbefore the logistic equation is fit. The
procedure is described in Field et al., 2002.

Log-logistic Regression Cd
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Figure2
“The presence of multiple contaminants, many ofclvhmay be present at very low
concentrations, frequently complicates evaluatiregrelationship between the
concentration of an individual contaminant and diyiin field-collected sediments.
Consequently, the data for samples that were iishtas toxic in this investigation were
further screened before being used to developotyistic models for each individual
contaminant [5]. This screening process excludgit wamples in which the selected
contaminant was unlikely to contribute substantitdl the observed toxicity. Following
the general screening approach used by Ingersall gt2] and similar to that used by
others [1,7,13], the concentration of the selectezinical in each toxic sample was
compared with the mean of the concentration ofsbbstance in the nontoxic samples
collected in the same study and geographic ar¢lae IEoncentration of a chemical in an
individual toxic sample was less than or equahtorhean concentration of that chemical
in the nontoxic samples from that study area, & w@nsidered unlikely that the observed

-12-



toxicity could be attributed to that chemical. Téfere, these toxic samples were not
included in the screened data set used for devejdpe logistic model for that chemical.
All nontoxic samples were included in these anayse

An example of the importance of pre-screening #ie ¢ shown in Fig. 4 from Field et al, 1999.
Before screening, there is virtually no relatiopsbéetween probability of toxicity and
phenanthrene concentration. After prescreeningetisea very nice relationship. Thus the role of
pre-screening is critical to the development of LM
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Figure3

Following this procedure, the median concentratiball nontoxic (survival >80%) samples was
found (Cd = 0.26 mg/kg). Then all toxic samples\sw@l >80%) for which Cd < 0.26 mg/kg
were removed. The result is shown in Fig. 5. Sithe samples that exhibited toxicity at low Cd
concentrations (the samples in the lower left qaljrhave been removed, there is now a
relationship between toxicity and Cd concentratidffit of equation (2) to the screened data is
now closer to the result using the Table 1 pararme8ince the methodology used to derive the
results in the report are not available, it is pagsible to understand why there is still a
discrepancy. Nevertheless, it is clear that thespreening of the data is a critical part of the

analysis.
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Log-logistic Regression Cd
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Figure4
Critique of the L ogistic Regression Model (LRM)

Consider the situation when the logistic regressiadel (LRM) is applied to a new
sediment sample. The probability of survival tisatomputed from the Cd concentration uses the
curve derived from the data in Fig. 5. But applyihgt curve presupposes that the new data
comes from the prescreened data set, i.e. it igkraopriori that whatever toxicity the sample
might exhibit is not due to Cd if the Cd concentnats low. But there is no way of actually
knowing that is the case for the new sample at hiaiig] rather, an assumption upon which the
method is based. Also note that this result igpeculiar to cadmium. All the toxicity-chemistry
data share the same general pattern, and all egcpeened to produce the LRM.

Another interesting feature of the LRM is that E@50s for the metals, which are
derived from the screened dataset, are compambkie tmedian concentrations of the metals in
the entire dataset. Fig. 6 presents the ratio@E@50 (Table 1) to the median concentrations
computed from the entire data set and also fontimetoxic samples. The ratio ranges from 1 to
4, indicating that the EC50 used in the LRM is aswge of the general level of contamination of
the sediments in the dataset. Alsofttseare roughly the same. This suggests that ®nibtals
at least, the LRMs are modeling the extent of animiation. They predict low toxicity if the level
of metal concentration is well below the medianaamiration in the datasets.

This is not an unreasonable way to prebick of toxicity for relatively clean, i.e.
uncontaminated, sediments. However, it is not nafcaguide for predicting the actual toxicity if
the level of contamination is larger. The reasmnlbgistic model “fits the data” is that the
troublesome data — those showing toxicity at lowoamtrations — are removed by the pre-
screening procedure.
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Use of M echanistic M odels

Mechanistic models attempt to relate toxicity te Hioavailable fraction of the chemicals
in sediments. The most well developed of therd@reixtures of metalsAnkley et al., 1996,
USEPA, 2005) and mixtures of PAHs (Di Toro & McGra2000, USEPA, 2003). They use the
Equilibrium Partition Model (Di Toro et al., 1998% the general framework and apply toxicity
mixture and partitioning models to predict the tityi of single chemicals and chemical mixtures.
The models have been validated using spiked sedéniBarry et al., 1996) for which the toxic
chemical(s) are not in doubt. Additionally fieldtdsets have been employed that are heavily
contaminated with either metals (Hansen et al.6188 PAHs (Di Toro & McGrath, 2000) for
which the chemicals causing the toxicity can besoeably assumed to be known.

It has been found that for the large dataset enepldyr establishing the empirical
criteria in this report, the mechanistic criter@mrbt appear to be as predictive as the empirical
criteria. Fig. 7 presents the results of the ansliyem Vidal and Bay 2005.
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Figure 6 from Vidal and Bay 2005

The SoCAMSQG-Q1g model has very much the samerpatt predictive power as the
individual datasets (Fig. 5). For a low level ohtamination there is only a control level of
mortality. At higher levels of contamination thene both toxic and non-toxic sediments at the
same level of contamination (the x-axis). By costtthe EQP comparison shows no
discrimination.

There are a number of possible reasons for theréadf the EqP based predictions
Certainly one important problem is the lack of #pgropriate measure of the critical metal
binding parameter acid volatile sulfides (AVS) (@iro et al., 1990, 1992) in the majority of
sediments in the dataset. The second is the lanleaurements for all the significant PAHs that
may be present (McGrath & Di Toro 2000). Finallgdahe most vexing problem, is the lack of
measurements for other compounds that may be catesiitity. Nevertheless, the EQP models
can be very useful in understanding the possihlsesof toxicity.

SEM-AVS Model of Metal Toxicity

For metal toxicity, it has been shown that if thelan sum of the metal concentrations
that is simultaneously extractedSEM) with the AVS is less than the AVS concentnatice.’
SEM — AVS < 0 no toxicity is expected. This hasmeemonstrated using acute and chronic
laboratory spiked and field deployed spiked sedisi@i Toro et al., 2005).SEM data are not
available but the molar sum of the total extractedals (Total Metal = Cd + Cu + Ni + Pb + Zn)
are available and inferences can be drawn fronetbescentrations. Fig.8 presents the data.
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Figure?7

The pattern of the data is not much different freither Cd (fig 2) or the other metals (Figs. 11-
12). However the difference is that this distribatcan be interpreted in terms concentration of
AVS in sediments. For example, little mortalitysisen for total metal concentrations < 2 umol/g.
If the AVS in all the sediment samples were attl@asmol/g, not a large amount of AVS for
muddy sediments, then the lack of toxicity due ttats would be expected. If AVS
concentrations were available for all the datan timetal toxicity could be unambiguously ruled
out for those sediment for which Total Metal — A¥®, since this would guarantee tHatSEM
—AVS <O0.

There is a small amount of AVS data in the dataliaswhich Total Metal — AVS can be
calculated and compared to observed mortality. & laes shown in Fig. 9. Most of the toxic
sediments have AVS concentrations greater tharl Matal, i.e. Total Metal —AVS < 0. Since
Total metal >Y SEM, the data would plot further toward the negatialues if> SEM were
available. This would indicate that in these sedit®@\VS is greater thapy SEM and it is
unlikely that metals are causing toxicity in thigset of the database. The point is that a

judgment can be made about the likely cause otitgxin these sediments that is not possible
using the empirical criteria.
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Target Lipid Model of PAH Mixture Toxicity

An EgP model has been developed for mixtures of ®&tsediments, based on the
Target Lipid Model of Narcosis Toxicity (Di Toro at., 2000). The Criteria corresponding to
chronic effects and 10 day Rhepoxynius abroniugiirare listed in Table 2. The average and
standard deviation of criteria for low (LPAH) anigiin (HPAH) molecular weight PAH sums as
well as total PAH are listed. The toxicity of axtuire is found by summing the toxic units — the
ratio of the concentrations to the criteria in BaBI-- comparing the results to one toxic unit for
50% effect. To a good approximation, the same résobtained be evaluated by summing the
organic carbon normalized molar concentrationsAHfi®and comparing the sum to the average
criteria. The reason is that the organic carbomiadized sediment criteria for the individual
PAHs do not vary very much. For example, the gateary from 16.18 to 21.96 umol/gOC for
the R. abronius LC50s. An explanation based omtjuations for toxic units is available (Di
Toro & McGrath, 2000).

Table 2
PAH Sediment Criteria for Chronic Effects and 19 &hbepoxynius abronius Survival
Log Chronic R. abronius
Chemical CAS MW Kow EC50 LC50
number  (g/mol) (umol/gOC)  (umol/gOC)

Acenaphthylene 208968 152.2 3.22 5.03 16.18
Naphthalene 91203 128.19 3.36 5.09 16.38
1-Methylnaphthalene 90120 142.2 3.84 5.31 17.08
2-Methylnaphthalene 91576 142.2 3.86 5.32 17.11
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Acenaphthene 83329 154.21 4.01 5.39 17.34

Fluorene 86737 166.2 4.21 5.48 17.64
2,6-Dimethylnaphthalene 581420 156.23 4.37 5.56 8a7.
Anthracene 120127 178.2 453 5.64 18.15
Phenanthrene 85018 178.2 4.57 5.66 18.21
2,3,5-Trimethylnaphthalene 2245387 170.26 4.86 5.8 18.68
LPAH 5.43(0.25) 17.5(0.80)
Pyrene 129000 202.26 4.92 5.83 18.78
1-Methylphenanthrene 832699  192.26 5.04 5.89 18.97
Fluoranthene 206440 202.26 5.08 5.92 19.04
Benzo[a]anthracene 56553  228.29 5.67 6.23 20.05
Chrysene 218019 228.29 5.71 6.25 20.12
Benzo[a]pyrene 50328 252.31 6.11 6.47 20.84
Perylene 198550 252.31 6.14 6.49 20.89
Benzo[e]pyrene 192972  252.32 6.14 6.49 20.89
Benzo[b]fluoranthene 205992  252.32 6.27 6.56 21.13
Benzo[k]fluoranthene 207089  252.32 6.29 6.58 21.17
Benzo[ghi]perylene 191242  276.34 6.51 6.7 21.58
Dibenz[a,h]anthracene 53703 278.35 6.71 6.82 21.96
Indeno[1,2,3-cd]pyrene 193395 276.34 6.72 6.83 &1.9
HPAH 6.39(0.34) 20.6(1.1)
TPAH 5.97 (0.57) 19.2(1.84)

The total PAH data in units of umol/gOC is presérnin Fig. 10. It is computed from the
low (LPAH) and high (HPAH) molecular weight PAH datsing average molecular weights for
these classes, and the organic carbon concentadttbe sediment, which is in the database.

Total PAH - Organic Carbon Normalized
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The data has the same shape as the previous clerhigaas with the metals data, the
appropriate toxicity threshold is known. For theddy Rhepoxynius abronius survival the
average LC50 is 19.2 umol/gOC (TPAH in Table 2 $¢diment in Fig. 10 appears to exceed
this threshold so it appears that PAHs are not#luse of the toxicity in any of these samples.

There is a significant problem, however, with gpm this logic to these data. The
criteria apply to the sum @ll PAHs. But the available data are for only the PAtisold face
type in Table 2. In particular the alkylated PAM#ich are primarily associated with petroleum
contamination, can be a large component of the TBAdHthese are not being adequately
measured. For these data there is only one repagisencomponent 2-methylnaphthalene. Thus
it is possible that the total PAH concentratiothia sediments could be larger.

The conclusion of this analysis is either that RAgdte not the cause of toxicity in these
sediments, or there is large fraction of PAHs #ratnot being measured, that are contributing to
toxicity.

Summary of Empirical and M echanistic Model Applications

The purpose of this appendix is to examine thé&yoF empirical and mechanistic
models in the evaluation of toxicity of sedimeningdes. The empirical models estimate the
probability of observing toxicity based on the leekcontamination. When the sediments have
low levels of most contaminants, they predict thatsediment will not be toxic. This conclusion
is almost forced by the pre-screening procedurdeyals increase the prediction is that toxicity
becomes more likely. But it should be clear fréva &bove analysis that tbause(s) of the
toxicity cannot be judged from empirical criterfdney are simply responding to the increasing
level of overall contamination. The higher the @lelevel of contamination, the more like it is
that toxicity will be found.

The mechanistic criteria can make predictions abich classes of chemicals are
possibly involved in the observed toxicity. If tA¥S exceeds the total metal concentration,
metal toxicity is almost surely not present. If irganic carbon molar sum of the PAHSs in the
sediment, including the alkylated compounds, is tean the appropriate LC50 for the species
being tested, e.g. 19.2 umol/gOC Riepoxynius abronius survival, then PAHs are almost
surely not the cause of toxicity.

If neither metals, nor PAHSs are the causes of ityxiand similar screening calculations
can be made for other measured constituents rtasmation can be included in the next step in
the investigation. At least, we know we either knawdo not know the causes of toxicity. If the
causes are known, we can proceed with confidehtt®e tause is unknown, than a completely
different approach is warranted. This is cruaiéimation to making judgments about whether
sediments are toxic due to chemical contaminafiod,whether the information at hand is
consistent with known chemical modes of toxicitysediments.
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Figure Appendix
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