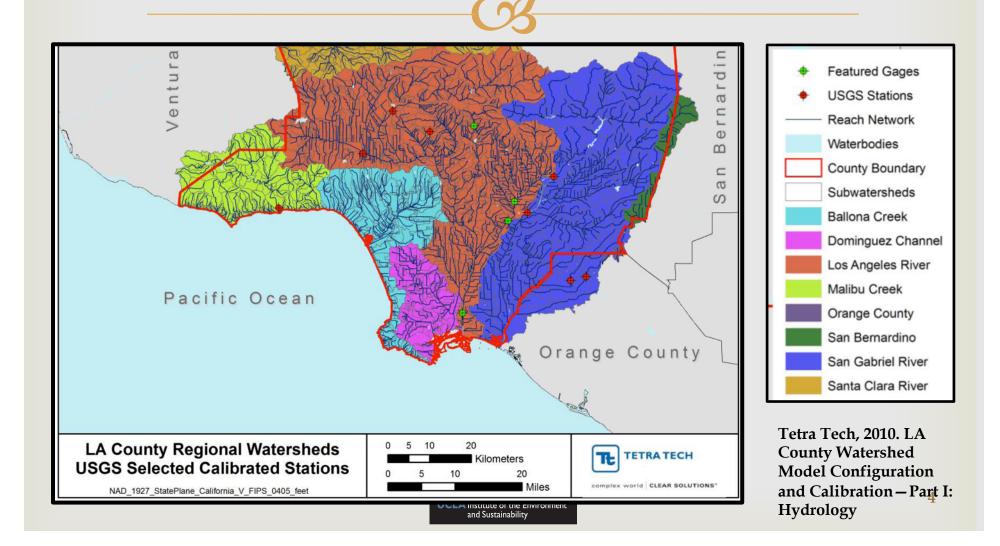
Continuous Flow Monitoring

Water Board Academy / College of Storm Water 3rd Hydromodification Seminar & Workshop July 17, 2013

Overview


- Current regulatory requirements for monitoring
- A <u>draft</u> 3-point plan:
 - Incentivize
 - Ensure data quality and consistency
 - Generate central shared repository

Need for long-term continuous streamflow and Hydromod-BMP monitoring

- Calibration/validation of hydrologic models
- Verification of BMP design/operation
- Quantification of in-stream flow duration changes
- Test assumptions that underpin our current hydromodification management approach
- Adaptive management
 Adaptive management

Existing streamflow gauge system is sparse, most on basins >100sq-mi

Summary of selected MS4 permit monitoring requirements

Rev San Diego County – R9-2007-0001

- HMP dated March 2011- see next slide for discussion of flow monitoring
- Rev Ventura County R4-2010-0108 (July 8, 2010)
 - Attachment F- Monitoring Program requires protocols for ongoing monitoring
 - May meet this requirement by participation in SCCWRP study and SMC
- N. Orange County R8-2009-0039, amended by R8-2010-0062
 - ⁶⁸ No specific hydromod monitoring requirements
- **S. Orange County** R9-2009-0002
 - Hydromod Plan (Oct 25, 2012) monitoring components only include stream benthic community and channel incision and widening
 - Mo flow monitoring
- Rev LA County R4-2012-00175 (Nov 8, 2012)
 - Attachment E Monitoring and Reporting Program
 - States that "Flow may be estimated using USEPA methods at receiving water monitoring stations where flow measuring equipment is not in place."
 - Requires HMP within 1-yr; to include monitoring and effectiveness assessment
- Central Coast Resolution R3-2013-0032, Draft Post-Construction Requirements (July 12, 2013)
 - ^{os} No apparent monitoring requirements
- Real Phase II Small MS4 General Permit
 - s Specifies flow monitoring using pressure transducer or stage gage, but time period not clear
 - Applies only to traditional permittees pop >50K that aren't doing ASBS, TMDL or 303d monitoring

San Diego County MS4 Permit

Requires a monitoring program to evaluate HMP effectiveness, per Sect. D.1.g(1)(k) of the Regional Board Order R9-2007-0001

Monitoring:

- Streamflow HOBO level loggers
- Rating curve (stage-discharge relationship)
 - SonTek FlowTracker Acoustic Doppler Velocimeter
- Sediment Transport

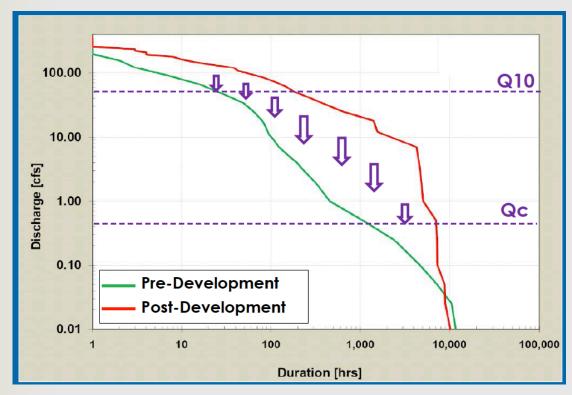
 - Bedload transport US BLH-84 handheld wading bedload sampler
- Precipitation portable rain gauges
- SMP (inflow and) outflow

SCCWRP Hydromod Monitoring Framework

- SCCWRP Tech Report 752 / Stein & Bledsoe 2013, Framework for Developing Hydromodification Monitoring Programs
- - stream flow
 - Assessment endpoint: long term flow magnitude and duration
 - BMP inflow and outflow
 - Assessment endpoint: discharge magnitude and duration

Cost Estimates (From SCCWRP TR752)

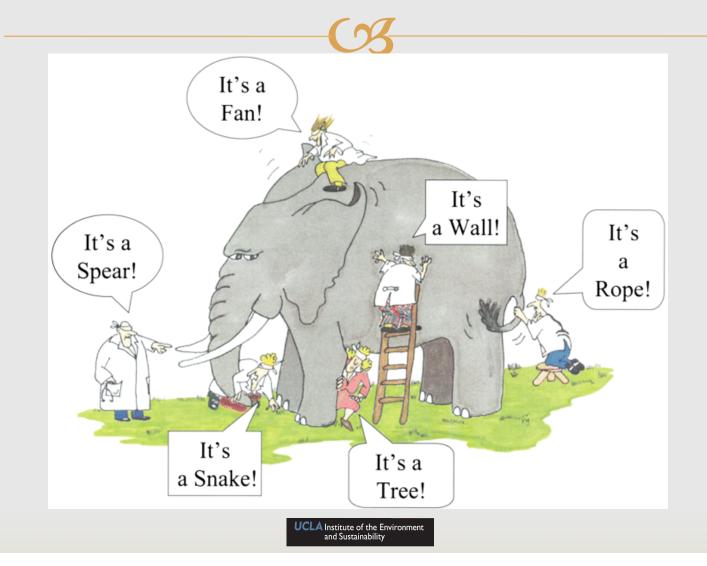
Table 6. Unit costs for one-time up front and recurring annual monitoring of major indicators.


One time, up front costs			Recurring Annual Costs	
Flow		1	Flow	
pressure tranducers	\$1,250		annual data download/processing	\$5,000
station set up	\$1,000			
Total	\$2,250		Biology and Geomorphology	
		1		
Biology and Geomorphology			Field geomorphic assessment	\$2,000
site recon & selection	\$2,000		field collection of inverts and algae	\$2,000
access and permits	\$1,000		CRAM	\$1,000
Total	\$3,000		benthic inverts taxonomy	\$600
			diatoms taxonomy	\$400
			data entry, QA/QC	\$500
			Total	\$6,500

and Sustainability

Challenges

- Requipment costs
- Requipment security
- Labor costs:
 - Requipment installation
 - Development of a rating curve
 - Should have velocity and x-section measurements at a min of 6 stages representing the range of expected flows
 - Monitoring for significant x-sectional changes
 - Data downloads
 - Data integrity QA/QC process
 - Data management
 - Data analysis and interpretation
- Resolution of precipitation data?


What's at Stake?

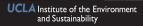
Without continuous streamflow monitoring, no way to evaluate change in long-term duration of erosive flows.

From Judd Goodman's presentation

Its the temporal analogue of this spatially inadequate sampling situation

So... A Draft 3-Point Plan for Moving Forward

- **1.** Incentivize continuous flow monitoring
- 2. Ensure data quality and consistency
- 3. Utilize a central, shared repository

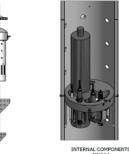

Incentivize!

- MEON aquatic monitoring equipment standards/protocols
- X-Prize to develop cheap and easy continuous streamflow data collection?
- Creative collaborations for data collection and processing
 - Gould be great research project for local university or maybe even high school
- Establish a fund to pay for continuous stream flow monitoring in the most meaningful places, using fees from other projects where monitoring isn't useful

Data Quality / Consistency

- Establish standards for equipment deployment and data collection
- - June 25, 2013 NWQMC webinar presentation available at: http://acwi.gov/monitoring/webinars/NWQMC_NEON-presentation_06.25.2013.pdf

NEON Aquatic Monitoring


Aquatic Instrument System (AIS)

Aquatic In stream sensors

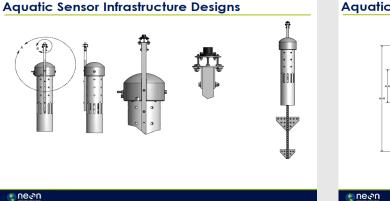
- Water temp, DO, turbidity, pH, conductivity
- Chromophoric dissolved organic matter
- Chlorophyll
- Discharge/water level
- Nutrient Analyzer
- Photosynthetically active radiation (PAR)
- Stream-side meteorology
 - Air temp, precipitation, barometric pressure, PAR, net radiation
 - Wind speed and direction
 - Camera

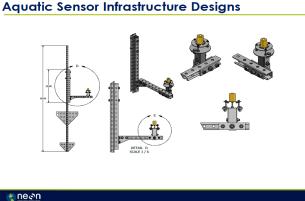
🗞 ne 🧟 n

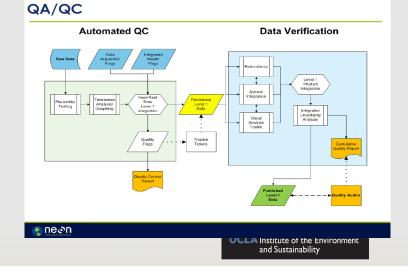
- Groundwater sensors
 - Temperature, level and conductivity

NEON Aquatic Monitoring

Sensors and Infrastructure Designs


- COTS Sensors and Instruments
- Sensor measurement defined
- Sensor manufacturers being selected
 - Awaiting NSF approval
- Sensor installation designs ongoing
- Make designs available to the public
- Accepting applications for an instrumentation working group
 - General discussions
 - Workshops




褖 ne 🤄 n

NEON Aquatic Sensor Selection, Infrastructure Design, Data Management Protocols

Constant Congrit Walk and Constant

- All designs, protocols and data will be publically available
- Estimated by end of 2013

A Central Shared Repository

\bowtie Stream flow data \rightarrow CEDEN

- Generation California Environmental Data Exchange Network www.ceden.org
- Central location to find and share information about CA's water bodies, including streams, lakes, rivers, and the coastal ocean.
- Aggregates data from multiple monitoring efforts across the state and makes them available to public.
- \bowtie BMP inflow/outflow data →?
 - Possibly incorporate into ASCE Water Quality Data Base or develop similar program
 - General Standard set of reporting parameters
 - Use to inform new designs / compliance planning

SCCWRP Tech Report 752

- Appx A Bibliography of Source Info on Streamflow Measurement
 - Rantz, S.E., et al. (1982). Measurement and Computation of Streamflow: United States Geological Survey Water-Supply Paper 2175. Washington D.C.
 - Volume 1. Measurement of Stage and Discharge
 - Rev Volume 2. Computation of Discharge
 - Freeman, Lawrence A. et al. (2004). Use of Submersible Pressure Transducers in Water-Resources Investigations. United States Geological Survey Techniques of Water-Resources Investigations 08-A3: Reston, VA.
 - 3. Mueller, David S. and Wagner, Chad R. (2009). Measuring Discharge with Acoustic Doppler Current Profilers from a Moving Boat. United States Geological Survey Techniques and Methods 03-A22. Reston, VA.

