APPENDIX AA

Field and Laboratory Operations

FIELD AND LABORATORY OPERATIONS

Sample Collection

The State Mussel Watch Program (SMWP) collects about 100 mussels at each station, which are randomly divided into two groups for trace element and synthetic organic chemical analysis. Based on recommendations by Goldberg (1980) and Risebrough *et al.* (1980), the SMWP samples 45 mussels, three replicates of 15 individuals each, for trace elements at each site. Trace element results in the SMWP represent a mean value for the three replicates. A single replicate of 45 composited individuals is analyzed for synthetic organic compounds.

Mussels of 55 to 65 mm in length are collected wherever possible in order to reduce size related effects. Similarly, freshwater clams of 20 to 30 mm in length are collected. Mussels are collected from the highest tidal height where they occur in adequate numbers to reduce variability induced by habitat height. Stainless steel pry bars are used to collect mussels off rocks. The pry bars are cleaned and rinsed in the laboratory and rinsed again with seawater prior to use. Freshwater clams are collected by towing a dredge

At locations where mussels are unavailable and sampling can be accomplished using scuba equipment, transplanted samples are used. The mussel transplant system, consisting of a bottom anchored float buoy used in water up to 40 m depth, is shown in Figure AA-1. Transplanted mussels are placed in polypropylene mesh bags and kept cool in ice chests for no more than 24 hours prior to deployment. To minimize the risk of contamination of the mussel from boat exhaust or surface film during deployment or retrieval, mussel samples are placed in polyethylene bags, where they remain until submerged and deployed. Upon retrieval from the subsurface buoy system, samples are again placed in polyethylene bags before being brought through the air-water interface. Once collected, the transplants are triple bagged. To minimize contamination caused by handling the mussel samples, polyethylene gloves are worn during collection, as well as processing, of mussel samples. Similar bags of freshwater clams are usually tied to plastic stakes placed off the bottom or are attached to submerged structures. A two month transplant period is adequate in most cases where pollutant uptake rates are expected to be high, but for trace elements in less contaminated environments, six month interval may be necessary for an adequate sample (Stephenson *et al.* 1980). A four to six month transplant interval is used for organic chemicals to be consistent with transplant periods for trace elements.

Mussels and clams to be analyzed for trace elements are placed in a ZIPLOCK[®] polyethylene bag of 4 mm thickness. The samples are placed inside two additional polyethylene ZIPLOCK[®] bags. Mussels to be analyzed for synthetic organic compounds are placed in a bag constructed of two layers of "heavy duty" aluminum foil. Prior to use, the foil is cleaned by heating to 500° C or by rinsing in hexane. Samples in the foil bags are placed in two polyethylene ZIPLOCK[®] bags. After bagging, all samples are placed in non-metallic ice chests and frozen using dry ice and stored at or below -20° C until processed.

Laboratory Analysis

A detailed description of procedures and techniques discussed below can be found in the Department of Fish and Game's (DFG) *Laboratory Quality Assurance Program Plan* (DFG 1990). The following is a summary of the 1987-93 Quality Assurance/Quality Control (QA\QC) results provided by the DFG's Moss Landing Laboratory. Copies of the Laboratory Quality Assurance Program Plan and QA\QC results are available upon request. Additional QA/QC information is also provided in *Quality Assurance Report for the Analysis of Marine Bivalve Tissue and Sediment for Organic Contaminants in the California State Mussel Watch Program 1987-1993* (Newman *et al.* 1994)

Trace Elements Analytical Techniques in Tissue and Sediment

The following procedures were employed for mussel dissection and homogenization for trace element analysis: Frozen mussels were removed individually from the bags, cleaned of epiphytic organisms and debris under running deionized water by personnel wearing polyethylene gloves, and allowed to thaw in clean polyethylene trays. Adductor muscles were severed and gonads removed with a MICRO[®]-cleaned stainless steel scalpel. Gonads were removed from mussels to reduce variability in trace element concentrations due to the sex of the organism (Stephenson *et al.* 1987). The remainder of the soft part was placed in a pre-weighted, acid-cleaned polypropylene 4 oz. jar and re-weighed. The shell lengths were also taken at this time. Samples were then homogenized to a paste-like consistency in the jars using a Brinkmann Polytron (Model PT10-35) equipped with a titanium generator (Model PTA 20). The homogenized samples were then refrozen at -20[°] C until analyzed. The same procedures were used on freshwater clams except that the entire soft body of the clam (including gonads) was used.

A Perkin-Elmer Model 2280 spectrophotometer with deuterium arc background corrector and digital display was used for techniques employing conventional (flame) atomic absorption spectrophotometry (AI, Cd, Cu, Mn, Zn) and cold vapor technique for mercury. A Perkin-Elmer Model 3030 Zeeman atomic absorption spectrophotometer equipped with an HGA-600 graphite furnace and an AS-60 autosampler was used for techniques requiring a graphite furnace (Ag, As, Cr, Ni, Pb, Se). All analytical values were corrected using procedural blanks. Trace element detection limits are presented in Table AA-1. From July 1, 1987 through June 30, 1990 the technique used for digesting samples was known as "beaker digestion". From July 1, 1990 through June 30, 1993 the technique used for digesting samples was known as "teflon vessel digestion". Separate techniques were performed on sediments and tissues in the "teflon vessel digestion" technique.

The "beaker digestion" technique was performed as followed: Samples were weighed into pre-cleaned 30 ml Pyrex glass beakers. Digestion of each sample was accomplished by adding concentrated 5 ml double distilled HNO₃ and heating the beaker on a hotplate. After the initial reaction, the sample was refluxed for 2-3 hours. Each sample was then evaporated almost to dryness. The volume was brought back up by adding 2 ml of 1% concentrated double distilled HNO₃. The sample was then again evaporated almost to dryness. The digestate was diluted to 20 ml with 1% concentrated double distilled HNO₃ and transferred to a clean polyethylene bottle.

The "teflon vessel digestion" technique for tissue was performed as follows: Samples were weighed into pre-cleaned 125 ml teflon digestion vessels. Digestion of each tissue sample was accomplished by adding a 4:1 concentrated HNO_3 : concentrated $HCIO_4$ mixture and heating the sample on a

warm (\approx 75°) hotplate. After the initial reaction, the teflon vessel was capped and heated in a 130° C oven for four hours. Once the digestate had cooled it was transferred to a clean polyethylene bottle and diluted with 20 ml Type II water. Sediment samples were digested using the same mixture as tissue samples except, instead of warming on a hotplate, sediment samples were heated in a 130° C oven for four hours. After the initial reaction, hydrofluoric acid was added to the sediment sample and the teflon vessel returned to a 130° C oven for 12 hours. Twenty ml of boric acid (2.5%) was added to each sediment sample before again returning to a 130° C oven for another 8 hours. Once the digestate was cool it was transferred to a clean polyethylene bottle.

To protect sample integrity, all materials contacting samples during laboratory operations were analyzed for trace element content. To ensure accuracy, reference materials from the National Bureau of Standards (NBS) were analyzed (Table AA-2).

Synthetic Organic Compounds Analytical Techniques in Tissues and Sediments

Samples were dissected in the same manner as trace element samples except gonads were not removed. Gonads were included because a high percentage of the whole body concentrations for most organic chemicals occur in this tissue. The dissection was conducted on a sheet of oven fired or hexane rinsed aluminum foil. The homogenization procedure was the same as for trace elements except a stainless steel shaft and blade was substituted for the titanium blade and shaft. All samples were stored at -20° C until extraction and analysis.

Summaries of the methods in use over the past six years are outlined below. Synthetic organic compound and polynuclear aromatic hydrocarbons (PAHs) detection limits are listed in Tables AA-3 and AA-4, respectively. Fractionated distribution of synthetic organic compounds are presented in Table AA-5. Results of standard reference materials starting in 1990-91 are presented in Table AA-6. Duplicate analyses results for synthetic organic compounds and PAHs are presented in Tables AA-7 and AA-8.

Analytical Methods for FY 87-88 through FY 89-90

Tissue samples (50g) were extracted using the methods described in the FDA's 1990 edition of the Pesticide Analytical Manual: *Methods Which Detect Multiple Residues* (PAM) by McMahon *et al.* (1990) using the "General Methods for Fatty Foods". Sediment samples (30g) were extracted with acetone and petroleum ether mixture. All samples were fractionated on Florisil using petroleum ether (F1 Fraction), 6% ethyl ether (F2 Fraction), 15% ethyl ether (F3 Fraction), 50% ethyl ether (F4 Fraction) and concentrated as described in PAM. Synthetic standards were fractionated to determine the column fractionation characteristics.

All organic chemicals were analyzed by capillary gas chromatography (GC) using Hewlett-Packard 5890A gas chromatographs. Synthetic organics (SOs) were analyzed on an instrument equipped with dual 30m x 0.25mm i.d. columns of different polarities (J&W Scientific, DB-5 and DB-17) and Ni⁶³ electron capture detectors (ECDs). A Hewlett-Packard Pascal ChemStation system was used to acquire and analyze all data.

In FY 87-88 through FY 89-90, PAHs were analyzed from the recombination of the F2 Fraction and the F3 Fraction collected for synthetic organics analysis. Polyaromatic hydrocarbon (PAH) analysis was accomplished with an HP 5890A attached to a Finnigan Model ITD 800 ion trap detector. Sample aliquots were delivered to the detector via on-column injection onto a 30m x 0.25mm i.d. DB-5 column. Spectral data were acquired in a multiple ion mode (MID) such that the base peak and two qualifier ions were monitored for each analyte of interest. Three point calibration curves ranging from 0.025 to 4.0 ng/µl were generated and fitted with linear curve fits (r > 0.998). All PAH data were acquired and quantitated using an IBM compatible micro computer and Finnigan ITDS v.4 Software Package.

In FY 88-89 and FY 89-90 polychlorinated biphenyls (PCBs) were quantitated as both unique congeners and technical mixtures. In FY 88-89, PCB congeners were quantitated in the F1 Fraction using a three point calibration curve. Dilutions of the National Institute of Standards Technology (NIST) Concentrated PCB Standard ranging from 2 pg/µl to 200 ng/µl were used to calibrate the instrumentation during the standard synthetic organic analysis. In FY 89-90, PCB congener data were quantitated with a six point calibration curve of a 1:1:1 mixture of Aroclors 1242, 1254, and 1260. The EPA Lot#s of Aroclors used to make these standards were fully characterization by Schulz *et al.* (1989) making the mixture quantitative for congeners. The response factors of coeluting domains were generated in house. The quantitation standard ranged from 0.15 to 15 ng/µl total Aroclor.

Quality assurance data for these years consisted of precision measurements through method duplicate analyses for synthetic organics in tissues. Method performance was further evaluated through the use of matrix spike recoveries and the analysis of split homogenates. Each year, multiple homogenates were split and analyzed at both the DFG Water Pollution Control Laboratory in Rancho Cordova and at the Trace Organics Facility, University of California, Santa Cruz. Analytical comparability was deemed acceptable for each year and verified by the project QA Officer.

All data results were hand transcribed and submitted to the Department of Fish and Game, Moss Landing Laboratory for entry into the SMWP database.

Analytical Methods for FY 90-91

Samples for synthetic organic analysis were processed as in FY 89-90. Tissue samples for PAH analysis were extracted and prepared for GC/ITD analysis using internal standard methodologies as described by Krahn et al. (1988). Samples (5g) were extracted with methylene chloride and coextracted biologicals were removed by silica/alumina gravity flow columns followed by size exclusion chromatography on a high performance liquid chromatograph (SEC/HPLC).

Acquisition and analytical systems were the same as in previous years.

Quality assurance associated with the analysis for this year consisted of precision measurements through method duplicate analyses in tissues and sediments, accuracy measurements for tissue through the analysis of standard reference materials (SRMs), and interference checks through the analysis of method blanks.

During FY 90-91 an organics laboratory database to be used for report generation was developed. All raw data were initially entered into this database and hard copies of final report values were submitted for entry into the main SMWP database.

Analytical Methods for FY 91-92

Tissue (5g) and sediment (10g) samples were extracted and prepared for organic contaminant analyses using the methods described for PAH analyses in FY 90-91. Internal standards were used for both synthetic organic and PAH analyses. Tissue extracts were subdivided such that one quarter was used for synthetic organic analysis, one half was used for PAH analysis, and one quarter was used for gravimetric lipid weight determinations. The synthetic organic sub-sample was fractionated on silica and alumina columns to isolate the PCBs from the polar chlorinated pesticides using one percent methylene chloride in pentane (F1 Fraction) followed by straight methylene chloride (F2 Fraction). Sediment extracts were treated similarly except lipid weight determinations were not performed and one half of the extract was used for synthetic organic analysis. All data analysis was performed as in FY 90-91.

During this year's analysis, PCB congener data were but not reported. Instruments were calibrated with standards prepared in house from neat materials. Data was recorded for 12 of the 18 NIST congeners as well as 12 additional environmentally significant congeners.

Quality assurance associated with the analysis for this year consisted of precision measurements through method duplicate analyses in tissues and sediments, accuracy measurements for tissue through the analysis of SRMs and sediments through the analysis of matrix spikes, and interference checks through the analysis of method blanks.

As in FY 90-91, all raw data were initially entered into the organics laboratory database and hard copies of final reported values were submitted for entry into the main SMWP database.

Analytical Methods for FY 92-93

In FY 92-93, all sample preparation and analysis was performed as in FY 91-92 except new data acquisition systems were used. All synthetic organic data were acquired and analyzed using a Hewlett-Packard DOS based ChemStation systems. Also, a Hewlett-Packard 5971A Mass Selective Detector was substituted for the Finnigan ion trap, the chromatographic column length was increased to 60m, and samples were introduced using splitless injections. Spectral data were acquired in a selective ion mode (SIM) such that the base peak and two qualifier ions were monitored for each analyte of interest. Three point calibration curves ranging from 0.025 to 4.0 ng/µl were generated and fitted with linear curve fits (r> 0.998).

During this year, PCB congener data were acquired, but not reported. Instruments were calibrated with standards prepared in house from neat materials. Data were recorded for all of the 18 NIST congeners as well as 33 additional environmentally significant congeners. In addition, Aroclor concentrations were calculated during this year from congener data. Briefly, a compositional analysis was performed on all in house Aroclor mixtures providing conversion factors for PCB congener concentrations to Aroclor concentrations. Aroclor 1260 values were generated from congeners 194, 195, 201, and 203. Aroclor 1248 values were generated from congeners 18, 31, and 28. Aroclor 1254 values were generated from congeners 99, 118, 128, and 138. The bias induced in Aroclor 1254 quantitation congeners by the presence of other Aroclors was removed by subtraction prior to calculation. The values generated by this approach compared well with values calculated using classical approaches as shown by in house tests and round robin exercises with the DFG Water Pollution Control Laboratory in Rancho Cordova.

Quality assurance associated with the analysis for this year consisted of precision measurements through method duplicate analyses in tissues and sediments, accuracy measurements through the analysis of SRMs, and interference checks through the analysis of method blanks.

All data results were electronically imported into the organic laboratory database structure and electronic data copies were submitted to the Department of Fish and Game, Moss Landing Laboratory for incorporation into the SMWP database.

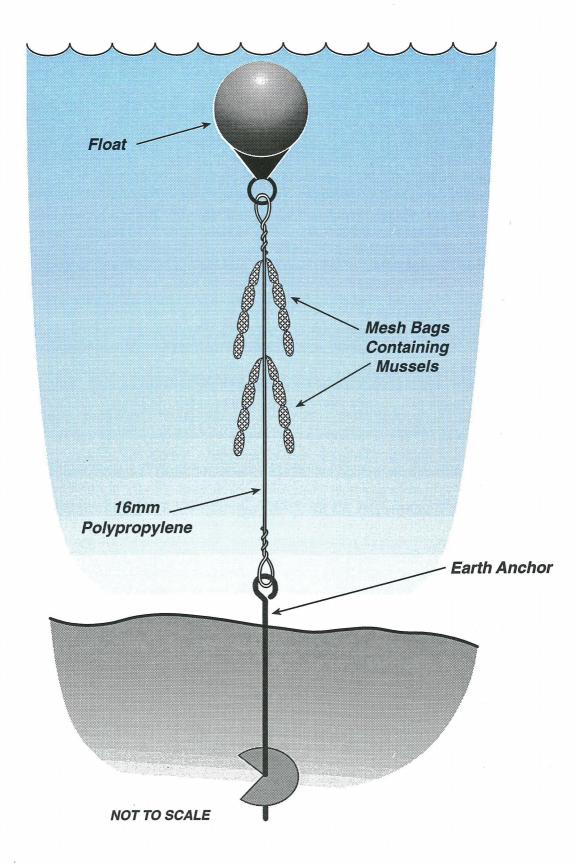
Analytical Techniques for Tributyltin (TBT)

Tributyltin was extracted from tissues by centrifugation 10 g of tissue, 10 ml of 50% HCL, and 25 ml of methylene chloride for 15 hours. The methylene chloride was removed and evaporated under a stream of air and the residue is dissolved in hexane. The hexane was washed in a 3% NaOH solution to remove all monobutyl- and dibutyl-tins and re-evaporated to dryness. The residue was digested with 1 ml of concentrated nitric acid and diluted to 5 ml with deionized water. The solution was analyzed on a Perkin Elmer Model 3030 Zeeman Atomic Absorption Spectrophotometer equipped with a Model 500 Graphite Furnace and an AS60 Autosampler. Ten μ l sample was co-injected with 10 μ l of matrix modifier consisting of 100 μ g phosphate and 10 μ g magnesium nitrate per injection. Tributyltin detection limits are provided in Table AA-3. Results of duplicate sample and reference material analysis for tributyltin are provided in Table AA-9.

Procedure for Lipid Determination

FY 1987-88 through FY 1990-91

A thoroughly homogenized sample weighing approximately 5 g (wet weight) was dried and macerated with anhydrous granular Na_2SO_4 . The dried sample was transferred to a blender with 150 ml of petroleum ether and blended for two minutes at high speed. The liquid was suction-filtered into a 500 ml filter flask through a 10 cm Buchner funnel containing Whatman #42 filter paper. The sample was blended once more with an additional 100 ml of petroleum ether and filtered. The filtrate was concentrated to approximately 25 ml with heat (steam bath) and air. The remaining filtrate was then quantitatively transferred into a 50 ml preweighed planchet. The petroleum ether was evaporated off, the planchet containing the residue is reweighed and the percent lipid is calculated.


FY 1991-92

In FY 1991-92, the following changes were made in the lipid determination method: a 25 ml portion from the 100 ml extraction was used, methylene chloride replaced petroleum ether as the solvent, and the sample was air dried only, steam baths were not used.

FY 1992-93

In FY 1992-93, the 25 ml sample was transferred to a preweighed 50 ml pear shaped flask. The methylene chloride solvent was removed using a Bucchi Roto-vap. The sample was then dried to 110°C for two hours. The residue was reweighed and the percent lipid was calculated.

Figure AA-1 DIAGRAM OF THE TRANSPLANT SYSTEM DEPLOYED IN CALIFORNIA BAYS AND ESTUARIES

State Mussel Watch Program Trace Element Detection Limits

Tissue

Element	Detection Limit		
	(µg/g, ppm dry weight)	(µg/g, ppm wet weight)	
Aluminum	20.0	3.0	
Arsenic	0.25	0.04	
Cadmium	0.01	0.002	
Chromium	0.1	0.02	
Copper	1.0	0.2	
Mercury	0.03	0.005	
Manganese	1.0	0.2	
Nickel	0.1	0.02	
Lead	0.1	0.02	
Selenium	0.1	0.02	
Silver	0.01	0.002	
Titanium	0.5	0.08	
Zinc	5.0	0.8	

Sediment

Element	Detection Limit		
	(µg/g, ppm dry weight)	(µg/g, ppm wet weight)	
Aluminum	20.0	3.0	
Arsenic	0.25	0.04	
Antimony	0.1	0.02	
Cadmium	0.01	0.002	
Chromium	0.1	0.02	
Copper	1.0	0.2	
Mercury	0.03	0.005	
Manganese	1.0	0.2	
Nickel	0.1	0.02	
Lead	0.1	0.02	
Selenium	0.1	0.02	
Silver	0.01	0.002	
Tin	0.1	0.02	
Zinc	5.0	0.8	

State Mussel Watch Program Trace Element Analysis of Reference Materials (µg/g, dry weight)*

	1987	'-88 **	1988	8-89**	1989	-90**
	NBS-NIES	NBS-DOLT	NBS-NIES	NBS-DOLT	NBS-Oyster	NBS-DOLT
Ag	NA	NA	0.024±0.006 (0.027±0.003)	NA	1.7±0.11 (1.68±0.15)	NA
AI	206±21 (220)	NA	209±18 (220)	NA	85±14.1 (202.5±14.1)	NA
As	8.6±0.1 (9.2±0.5)	NA	9.2±0.2 (9.2±0.5)	9.7±0.1 (10.1±1.4)	13.5±0.6 (14.0±1.2)	NA
Cd	0.91±0.15 (0.82±0.03)	4.36±0.37 (4.18±0.28)	0.83±0.14 (0.82±0.03)	4.26±0.39 (4.18±0.28)	4.35±0.27 (4.15±0.38)	4.53±0.35 (4.18±0.28)
Cr	0.65±0.13 (0.063±0.07)	0.36±0.07 (0.40±0.07)	0.44±0.09 (0.63±0.07)	0.39±0.05 (0.40±0.07)	0.57±0.08 (1.43±0.46)	0.25±0.06 (0.40±0.07)
Cu	5.2±0.6 (4.9±0.03)	20.0±1.0 (20.8±1.2)	5.1±0.6 (4.9±0.3)	20.9±1.5 (20.8±1.2)	64.7±2.5 (66.3±4.3)	20.1±0.9 (20.8±1.2)
Hg	NA	0.208±0.023 (0.225±0.037)	NA	0.293±0.039 (0.225±0.037)	0.061±0.013 (0.064±0.007)	0.341±0.041 (0.225±0.037)
Mn	16.0±0.5 (16.3±1.2)	8.57±0.29 (8.72±0.53)	16.1±1.2 (16.3±1.2)	8.65±0.50 (8.72±0.53)	11.7±0.8 (12.3±1.5)	8.56±0.53 (8.72±0.53)
Ni	NA	NA	0.73±0.14 (0.93±0.06)	0.28±0.03 (0.26±0.06)	1.84±0.4 (2.25±0.44)	0.21±0.06 (0.26±0.06)
Pb	0.60±0.13 (0.91±0.04)	1.06±0.21 (1.36±0.29)	0.87±0.16 (0.91±0.040	1.45±0.43 (1.36±0.29)	0.311±0.08 (0.371±0.014)	1.26±0.25 (1.36±0.29)
Se	1.4 (1.5)	NA	1.4 (1.5)	NA	2.0±0.0 (2.21±0.24)	NA
Zn	101±5 (106±6)	88.9±4.6 (92.5±2.3)	112±9 (106±6)	94.4±7.9 (92.5±2.3)	816±48 (830±57)	93.5±4.2 (92.5±2.3)

Sample values are given first, followed by reference values in parentheses, both values include 95% confidence interval where appropriate.

NBS refers to the National Bureau of Standards.

NIES refers to the National Institute of Environmental Studies, Japan Environmental Agency – Certified Reference Material #6, mussel tissue.

DOLT refers to dogfish liver from the National Research Council of Canada.

** Sample Year = State Fiscal Year (July 1 - June 30).

NA = Not Analyzed.

TABLE AA-2 (continued) State Mussel Watch Program

State Mussel Watch Program Trace Element Analysis of Reference Materials (µg/g, dry weight)*

	1990	1990-91** 1991		-92**	1992	-93**
	NBS-Oyster	NBS-Mussel	NBS-Oyster	NBS-DOLT	NBS-Oyster	NBS-DOLT
Ag	1.59±0.13 (1.68±0.15)	0.097±0.007 (0.105±0.003	1.58±0.08 (1.68±0.15)	NA	1.61±0.06 (1.68±0.15)	NA
AI	173±9 (202.5±14.1)	41.1±5.4 (62.1±5.7)	172±13 (202.5±14.1)	NA	174±7.2 (202.5±14.1)	NA
As	12.4±0.8 (14.0±1.2)	1.09±0.06 (1.20±0.04)	13.2±0.7 (14.0±1.2)	9.1±0.6 (10.1±1.4)	13.0±0.3 (14.0±1.2)	NA
Cd	4.16±0.22	0.25±0.02	4.00±0.12	4.08±0.15	4.00±0.12	4.26±0.42
	(4.15±0.38)	(0.17±0.05)	(4.15±0.38)	(4.18±0.28)	(4.15±0.38)	(4.18±0.28)
Cr	1.08±0.09	0.324±0.043	1.12±0.11	0.29±0.04	1.17±0.25	0.31±0.08
	(1.43±0.46)	(0.322±0.026)	(1.43±0.46)	(0.40±0.07)	(1.43±0.46)	(0.40±0.07)
Cu	66.4±2.8	1.38±0.07	69.0±1.8	20.8±0.7	64.0±1.3	19.5±0.55
	(66.3±4.3)	(1.14±0.24)	(66.3±4.3)	(20.8±1.2)	(66.3±4.3)	(20.8±1.2)
Hg	0.067±0.009 (0.064±0.007)	NA	0.071±0.004 (0.064±0.007)	0.242±0.055 (0.225±0.037)	0.060±0.004 (0.064±0.007)	0.280±0.044 (0.225±0.037)
Mn	12.02±0.52	1.41±0.11	12.1±0.4	8.68±0.37	11.5±0.4	8.7±0.54
	(12.3±1.5)	(1.26±0.15)	(12.3±1.5)	(8.72±0.53)	(12.3±1.5)	(8.72±0.53)
Ni	2.00±0.3 (2.25±0.44)	ND (0.124±0.010)	1.87±0.10 (2.25±0.44)	NA	NA	0.32±0.04 (0.26±0.06)
Pb	0.33±0.02	1.22±0.06	0.31±0.03	1.2±0.18	0.32±0.06	1.18±0.16
	(0.371±0.014)	(1.20±0.07)	(0.371±0.014)	(1.36±0.29)	(0.371±0.014)	(1.36±0.29)
Se	1.61±0.14	0.211±0.049	2.4±0.3	7.4±0.6	2.2±0.03	7.5±0.0
	(2.21±0.24)	(0.247±0.007)	(2.21±0.24)	(7.34±0.42)	(2.21±0.24)	(7.34±0.42)
Zn	840±34	12.7±0.7	802±26	86.0±2.8	821±9.2	84.9±2.2
	(830±57)	(11.3±0.5)	(830±57)	(92.5±2.3)	(830±57)	(92.5±2.3)

* Sample values are given first, followed by reference values in parentheses, both values include 95% confidence interval where appropriate.

NBS refers to the National Bureau of Standards.

NIES refers to the National Institute of Environmental Studies, Japan Environmental Agency - Certified Reference Material #6, mussel tissue.

DOLT refers to dogfish liver from the National Research Council of Canada.

Sample Year = State Fiscal Year (July 1 - June 30).

NA = Not Analyzed.

ND = Not detected.

**

State Mussel Watch Program Synthetic Organic Compounds Analyzed and Their Detection Limits (ng/g)

Compound	Tis	sue	Sed	liment
Compound	(dry weight)	(wet weight)	(dry weight)	(wet weight)
aldrin	1	0.2	0.5	0.25
chlorbenside	10	2.0	10.0	5.00
cis-chlordane	1	0.2	0.5	0.25
trans-chlordane	1	0.2	0.5	0.25
chlordene, alpha	1	0.2	0.5	0.25
chlordene, gamma	1	0.2	0.5	0.25
chlorpyrifos	4 2 5 3 (3) 1 20	0.8	1.0	0.50
dacthal	2	0.4	(0.5) 0.2	(0.25) 0.10
DDD, o,p'	5	1.0	1.0	0.50
DDD, p,p'	3	0.6	(1.0) 0.4	(0.5) 0.20
DDE, o,p'	3	0.6	1.0	0.50
DDE, p,p' DDMS, p,p'	(3) 1	(0.6) 0.2	(5.0) 1.0	(2.5) 0.50
DDMS, p,p	20	4.0	3.0´	1.50
DDMU, p, p'	D A	1.0 0.8	(1.5) 2.0	(0.75) 1.00
DDT, o,p'	5 4 4 23	0.8	1.0 1.0	0.50 0.50
DDT, p,p' diazinon	4 22	0.8 4.6	5.0	2.50
dichlorobenzophenone-p,p'	25	5.0	3.0	1.50
dicofol (Kelthane)	25 75	15.0	10.0	5.00
dieldrin	1	0.2	(5.0) 0.5	(2.5) 0.25
endosulfan l	1	0.2	(5.0) 0.5	(2.5) 0.25
endosulfan II		(6.0) 0.6	(7.0) 1.0	(3.5) 0.50
endosulfan sulfate	(30) 3 (50) 5	(10.0) 1.0	(8.5) 2.0	(4.25) 1.00
endrin	6	1.2	(1.5) 2.0	(0.75) 1.00
ethion	(15) 9	(3.0) 1.8	2.0	1.00
HCH, alpha	<u>`</u> 1	`0.2´	0.2	0.10
HCH, beta	3	0.6	1.0	0.50
HCH, gamma	0.8	0.2	0.2	0.10
HCH, delta	2	0.4	0.5	0.25
heptachlor	1	0.2	0.5	0.25
heptachlor epoxide	1	0.2	0.5	0.25
HCB	,1	0.2	0.2	0.10
methoxychlor	15	3.0	1.5	0.75
mirex	(2) 1	(0.4) 0.2	(1.0) 0.5	(0.5) 0.25
cis-nonachlor	1	0.2	0.5	0.25
trans-nonachlor	1	0.2 1.2	0.5	0.25
oxadiazon	6 1	0.2	(2.0) 0.3	(1.0) 0.15
oxychlordane parathion, ethyl	10	2.0	0.5 1.0	0.25 0.50
parathion, methyl	4	0.8	1.0	0.50
PCB 1248	50	10.0	5.0	2.5
PCB 1254	10	2.0	5.0	2.5
PCB 1260	10	2.0	5.0	2.5
PCB congeners	2.0	0.4	1.0	0.50
PCT 5460	100	20.0	25.0	12.00
pentachlorophenol	4	0.8	4.0	0.80
phenol	0.5	0.1	0.5	0.10
2,3,5,6-tetrachlorophenol	5	1.0	5.0	1.00
tetradifon (Tedion)	10	2.0	10.0	5.00
toxaphene	100	20.0	10	5.00
tributyltin	20	3.0	20	3.00

()Detection limits from 1987-88 through 1990-91.

State Mussel Watch Program Polynuclear Aromatic Hydrocarbons (PAHs) Analyzed and Their Detection Limits (ng/g)

Compound	Tis	sue	Sedi	iment
	(dry weight)	(wet weight)	(dry weight)*	(wet weight)
naphthalene	10	2	5	0.2
1-methylnaphthalene	10	2	5	0.2
2-methylnaphthalene	10	2	5	0.2
biphenyl	10	2	5	0.2
2,6-dimethylnaphthalene	10	2	5	0.2
acenaphthylene	10	2	5	0.2
acenaphthene	10	2	5	0.2
2,3,5-trimethylnaphthalene	10	2	5	0.2
fluorene	10	2	5	0.2
phenanthrene	10	2	5	0.2
anthracene	10	2	5	0.2
1-methylphenanthrene	10	2	5	0.2
fluoranthrene	10	2	5	0.2
pyrene	10	2	5	0.2
benz[a]anthracene	10	2	5	0.2
chrysene	10	2	5	0.2
benzo[b]fluoranthrene	10	2	5	0.2
benzo[k]fluoranthrene	10	2	5	0.2
benzo[e]pyrene	10	2	5	0.2
benzo[a]pyrene	10	2	5	0.2
perylene	10	2	5	0.2
indeno[1,2,3-cd]pyrene	10	2	5	0.2
dibenz[a,h]anthracene	10	2	5	0.2
benzo[ghi]perylene	10	2	5	0.2

*Detection limit for dry weight sediment was 50 ng/g (25 ng/g wet weight) from 1987-88 to 1990-91.

State Mussel Watch Program Distribution of Synthetic Organic Compounds Among Four Fractions of a Standard Florisil[®] Column

FY 1987-88 through FY 1990-91

(0%) Fraction 1	(6%) Fraction 2	(15%) Fraction 3
aldrin	HCH, alpha*	dacthal
chlordene, alpha	HCH, beta	diazinon
chlordene, gamma*	HCH, gamma	dichlorobenzophenone, p,p
cis-chlordane*	HCH, delta	dieldrin
DDE, o,p'	chlorbenside	endosulfan I**
DDE, p,p'*	chlordene, gamma*	endosulfan II***
DDMU, p,p'*	chlorpyrifos	endrin
DDT, o,p'*	cis-chlordane*	parathion, ethyl
DDT, p,p'*	cis-nonachlor	parathion, methyl
heptachlor	DDE, p,p'*	tetradifon (tedion)
hexachlorobenzene	DDD, o,p'	
PCB 1248	DDD, p,p'	
PCB 1254	DDMS, p,p'	
PCB 1260	DDMU, p,p'*	
PCB congeners	DDT, o,p'*	
PCT 5460	DDT, p,p'*	
trans-nonachlor*	dicofol (kelthane)	(50%) Fraction 4
	endosulfan I**	endosulfan II***
	ethion	endosulfan sulfate
	heptachlor epoxide	
	methoxychlor	
	oxadiazon	
	oxychlordane	
	toxaphene	
	trans-chlordane	
	trans-nonachlor*	

* Found in both 0% and 6% fractions.

*** Found in both 15% and 50% fractions.

TABLE AA-5 (continued)

State Mussel Watch Program Distribution of Synthetic Organic Compounds Among Two Fractions of a Standard Florisil® Column

FY 1991-92 and FY 1992-93

Fraction 1	Fraction 2	
(1% methylene chloride in pentane)	(100% methylene chloride)	
aldrin	HCH, alpha	
chlordene, alpha	HCH, beta	
chlordene, gamma*	HCH, gamma	
DDE, o,p'	HCH, delta	
DDE, p,p'*	chlordene, gamma*	
DDMU, p,p'*	chlorpyrifos	
DDT, o,p'	cis-chlordane	
DDT, p,p'*	cis-nonachlor	
heptachlor	dacthal	
hexachlorobenzene	DDE, p,p'*	
PCB 1248	DDD, o,p'	
PCB 1254	DDD, p,p'	
PCB 1260	DDMS, p,p'	
PCT 5460	DDMU, p,p'*	
trans-nonachlor*	DDT, p,p'*	
	dichlorobenzophenone, p,p	
	dieldrin	
	endosulfan I	
	endosulfan II	
	endosulfan sulfate	
	ethion	
	endrin	
	heptachlor epoxide	
	methoxychlor	
	oxadiazon	
	oxychlordane	
	toxaphene	
	trans-chlordane	
	trans-nonachlor*	

* Found in both Fraction 1 and fraction 2.

State Mussel Watch Program Organic Compound Analysis of Reference Materials (ng/g, wet weight)

Polynuclear Aromatic Hydrocarbons (PAHs)	NIST- Mussel*	SMWP- Mussel
Phenanthrene	5.6 ± 1.4	4.65 ± 1.0
Anthracene	0.75 ± 0.21	2.15
Fluoranthrene	33.6 ± 5.8	31.79 ± 7.8
Pyrene	34.1 ± 3.7	33.21 ± 8.5
Perylene	1.05 ± 0.29	0
Benzo[b]fluoranthrene	6.5 ± 1.2	6.63 ± 3.8
Benzo[a]pyrene	2.29 ± 0.47	7.47 ± 4.4
Benzo[ghi]perylene	2.47 ± 0.28	0
Indeno[1,2,3-cd]pyrene	1.8 ± 0.33	0

1990-91 PAHs with NIST Certified Values

1990-91 PAHs with Non-Certified Values

Polynuclear Aromatic Hydrocarbons (PAHs)	NIST- Mussel*	SMWP- Mussel
2-methylnaphthalene	2.1 ± 0.5	1.79
1-methylnaphthalene	1.1 ± 0.2	0
Fluorene	1.5 ± 0.2	0
1-methylphenanthrene	2.3 ± 0.6	3.94 ± 1.5
Benz[a]anthracene	4.6 ± 0.4	4.99 ± 2.5
Chrysene	15.3 ± 1.4	13.56 ± 3.6
Benzo[k]fluoranthrene	3.0 ± 0.1	4.13 ± 2.6
Benzo[e]pyrene	10.0 ± 1	7.59 ± 3.9
Dibenz[a,h]anthracene	0.35 ± 0.01	0

* National Institute of Standards and Technology (NIST) Standard Reference Material 1974 - Organics in Mussel Tissue (*Mytilus edulis*).

TABLE AA-6 (continued) State Mussel Watch Program

State Mussel Watch Program Organic Compound Analysis of Reference Materials (ng/g, wet weight)*

Polynuclear Aromatic Hydrocarbons (PAHs)	NIST- Mussel*	SMWP- Mussel
Phenanthrene	5.6 ± 1.4	7.49 ± 0.8
Anthracene	0.75 ± 0.21	0
Fluoranthrene	33.6 ± 5.8	34.31 ± 11
Pyrene	34.1 ± 3.7	36.5 ± 3.0
Perylene	1.05 ± 0.29	0
Benzo[b]fluoranthrene	6.5 ± 1.2	8.32 ± 0.5
Benzo[a]pyrene	2.29 ± 0.47	2.93 ± 0.7
Benzo[ghi]perylene	2.47 ± 0.28	3.0 ± 0.5
Indeno[1,2,3-cd]pyrene	1.8 ± 0.33	2.6

1991-92 PAHs with NIST Cetified Values

1991-92 PAHs with Non-Certified Values

Polynuclear Aromatic Hydrocarbons (PAHs)	NIST- Mussel*	SMWP- Mussel
2-methylnaphthalene	2.1 ± 0.5	2.75 ± 0.4
1-methylnaphthalene	1.1 ± 0.2	2.15 ± 0.1
Fluorene	1.5 ± 0.2	3.2
1-methylphenanthrene	2.3 ± 0.6	2.93 ± 0.6
Benz[a]anthracene	4.6 ± 0.4	5.79 ± 1.3
Chrysene	15.3 ± 1.4	15.2 ± 1.6
Benzo[k]fluoranthrene	3.0 ± 0.1	3.22 ± 0.6
Benzo[e]pyrene	10.0 ± 1.0	11.34 ± 1.4
Dibenz[a,h]anthracene	0.35 ± 0.01	4.0

* National Institute of Standards and Technology (NIST) Standard Reference Material 1974 - Organics in Mussel Tissue (*Mytilus edulis*).

TABLE AA-6 (continued)State Mussel Watch Program

Organic Compound Analysis of Reference Materials (ng/g, wet weight)*

Synthetic Organic Compounds	NIST- Mussel*	SMWP- Mussel		
cis-chlordane	3.2 ± 0.2	2.55 ± 0.8		
trans-nonachlor	2.6 ± 0.6	2.43 ± 0.4		
Dieldrin	1 ± 0.5	0.78 ± 0.2		
DDD, o,p'	2.5 ± 0.9	1.84 ± 0.5		
DDD, p,p'	8.4 ± 0.4	6.01 ± 1.2		
DDE, o,p'	0.72 ± 0.07	2.93 ± 0.5		
DDE, p,p'	5.9 ± 0.2	6.37 ± 1.7		
DDT, o,p'	0.4 ± 0.2	0.9		
DDT, p,p'	0.3 ± 0.3	0.92 ± 0.3		

1991-92 Synthetic Organics with Non-Certified Values

1992-93 Synthetic Organics with Non-Certified Values

Synthetic Organic Compounds	NIST- Mussel*	SMWP- Mussel		
cis-chlordane	3.2 ± 0.2	2.39 ± 0.3		
trans-nonachlor	2.6 ± 0.6	2.05 ± 0.2		
Dieldrin	1 ± 0.5	0.87 ± 0.2		
DDD, o,p'	2.5 ± 0.9	1.7 ± 0.2		
DDD, p,p'	8.4 ± 0.4	4.81 ± 0.7		
DDE, o,p'	0.72 ± 0.07	0.2		
DDE, p,p'	5.9 ± 0.2	5.06 ± 0.9		
DDT, o,p'	0.4 ± 0.2	0.41 ± 0.1		
DDT, p,p'	0.3 ± 0.3	1.1 ± 0.7		

* National Institute of Standards and Technology (NIST) Standard Reference Material 1974 - Organics in Mussel Tissue (Mytilus edulis).

TABLE AA-6 (continued) State Mussel Watch Program

State Mussel Watch Program Organic Compound Analysis of Reference Materials (ng/g, wet weight)*

Polynuclear Aromatic Hydrocarbons (PAHs)	NIST- Mussel*	SMWP- Mussel		
Phenanthrene	5.6 ± 1.4	5.41 ± 0.6		
Anthracene	0.75 ± 0.21	0.92 ± 0.7		
Fluoranthrene	33.6 ± 5.8	37.89 ± 5.5		
Pyrene	34.1 ± 3.7	37.58 ± 5.3		
Perylene	1.05 ± 0.29	0.94 ± 0.4		
Benzo[b]fluoranthrene	6.5 ± 1.2	7.8 ± 1.6		
Benzo[a]pyrene	2.29 ± 0.47	1.85 ± 0.9		
Benzo[ghi]perylene	2.47 ± 0.28	2.87 ± 0.7		
Indeno[1,2,3-cd]pyrene	1.8 ± 0.33	2.04 ± 0.6		

1992-93 PAHs with NIST Certified Values

1992-93 PAHs with Non-Certified Values

Polynuclear Aromatic Hydrocarbons (PAHs)	NIST- Mussel*	SMWP- Mussel		
2-methylnaphthalene	2.1 ± 0.5	3.55 ± 1.4		
1-methylnaphthalene	1.1 ± 0.2	2.85 ± 1.0		
Fluorene	1.5 ± 0.2	1.47 ± 0.7		
1-methylphenanthrene	2.3 ± 0.6	2.38 ± 0.4		
Benz[a]anthracene	4.6 ± 0.4	4.1 ± 1.1		
Chrysene	15.3 ± 1.4	6.49 ± 1.1		
Benzo[k]fluoranthrene	3.0 ± 0.1	2.58 ± 0.8		
Benzo[e]pyrene	10.0 ± 1.0	10.65 ± 2.3		
Dibenz[a,h]anthracene	0.35 ± 0.01	1.02 ± 0.5		

* National Institute of Standards and Technology (NIST) Standard Reference Material 1974 - Organics in Mussel Tissue (*Mytilus edulis*).

State Mussel Watch Program Results of Duplicate Sample Analysis: 1987-88 Synthetic Organic Compounds Quality Control (ng/g dry weight)

Station Name		dreas Road	Sandho	oldt Bridge	Carpinte	ria Marsh	Marina Del	Rey/Basin G		on Harbour/ er Street
Station No.	4	01.8	40	404.0		475.0		55.0	Ž13.0	
Species	TFC		RBM		TCM		TCM		TCM	
REPLICATE	1	2	1	2	1	2	1	2	1	2
COMPOUNDS										
aldrin	7.8	8.6								
alpha-chlordene	4.3	4.8					7.1	4.4	3.9	2.9
cis-chlordane	78.0	93.0	7.0	12.0	9.0	6.0	64.9	89.0	65.0	49.0
cis-nonachlor							19.0	26.0	26.0	17.0
gamma-chlordene	8.9	8.2							2.3	1.7
oxychlordane	14.0	18.0					3.4	5.3	4.4	3.4
trans-chlordane	60.0	73.0	9.9	11.0	6.2	4.2	56.0	69.0	57.0	50.0
trans-nonachlor	72.0	79.0	8.3	8.2	5.5	2.9	38.0	41.0	54.4	39.0
chlorpyrifos									7.2	5.1
dacthal	80.0	72.0							3.3	2.8
DDD, o,p'	239.8	320.0	16.0	36.0					18.0	12.0
DDD, p,p'	569.7	799.8	46.0	120.0			12.0	28.0	46.0	31.0
DDE, o,p'	120.0	83.5	10.3	11.2			11.7	15.2	22.2	13.0
DDE, p,p'	2199.4	2399.4	473.0	390.0	62.0	74.0	133.0	120.0	220.0	250.0
DDT, o,p'	475.9	429.7							13.0	11.0
DDT, p,p'	1061.8	1190.4	16.0	25.0	6.6	3.8			41.1	35.9
DDMS,p,p'	55.0	74.0								
DDMU,p,p'	91.0	100.4	24.0	30.0			17.0	14.0	9.3	8.6
diazinon	650.3	650.7								
dichlorobenzophenone	.p.p' 14.0	13.0								
dicofol	450.3	749.6								
dieldrin	1403.0	1199.7	13.0	23.0			29.0	48.0	27.0	18.0
endosulfan I	81.0	72.0	43.0	27.0	36.0	38.0			96.0	78.0
endosulfan II	94.8	100.4							68.0	300.0
endosulfan sulfate	230.4	240.0							160.0	270.0
endrin	49.0	50.0								
hexachlorobenzene	3.8	4.3								
alpha-HCH		-							2.3	2.0
gamma-HCH									4.6	5.1
heptachlor epoxide	22.0	26.0							2.0	1.5
oxadiazon	0	_0.0								
PCB 1248										
PCB 1254	180.1	189.7	250.0	140.0			440.0	290.0	530.0	430.0
PCB 1260									000.0	
toxaphene	3100.0	3701.4								
	0100.0	5/01.4								

RCM = Resident California Mussel

TFC = Transplanted Fresh Water Clam RFC = Resident Fresh Water Clam

TABLE AA-7 (continued) State Mussel Watch Program

Results of Duplicate Sample Analysis: 1987-88 Synthetic Organic Compounds Quality Control

(ng/g dry weight)

Station Name	San Di	ego Bay/	
	Sampson	Street Pier	
Station No.	88	32.7	
Species	Т	CM	
REPLICATE	1	2	
COMPOUNDS		L	
aldrin			
alpha-chlordene			
cis-chlordane	11.4	10.0	
cis-nonachlor	3.2	2.0	
gamma-chlordene	0.2	2.0	
oxychlordane			
trans-chlordane	12.0	11.0	
trans-nonachlor	8.1	7.3	
chlorpyrifos			
dacthal			
DDD, o,p'	o =	.	
DDD, p,p'	6.5	9.1	
DDE, o,p'	16.5	11.0	
DDE, p,p'	19.0	22.5	
DDT, o,p'			
DDT, p,p'	22.9	23.9	
DDMS,p,p'			
DDMU,p,p'			
diazinon			
dichlorobenzophenone, p,	p'		
dicofol			
dieldrin	5.2	2.6	
endosulfan I			
endosulfan II			
endosulfan sulfate			
endrin			
hexachlorobenzene			
alpha-HCH			
gamma-HCH			
heptachlor epoxide			
oxadiazon			
PCB 1248			
PCB 1254	740.0	850.0	
PCB 1260	, 10.0	00010	
toxaphene			
(chapitorio			
BCM = Resident Calif	ornia Musse	j	TEC = Transplanted Fresh Water Clam

RCM = Resident California Mussel

TFC = Transplanted Fresh Water Clam RFC = Resident Fresh Water Clam

RBM = Resident Bay Mussel TCM = Transplanted California Mussel

TABLE AA-7 (continued)

State Mussel Watch Program Results of Duplicate Sample Analysis: 1988-89 Synthetic Organic Compounds Quality Control (ng/g dry weight)

Station Name	Mad Riv	er Slough	Eureka Channel 103.0 TCM		Gav	viota	Carpinte	eria Marsh	Huntington Harbour/ Harbor Lane	
Station No.		0.0			455.0 TCM		475.0 TCM		717.0 TCM	
Species REPLICATE		CM		,IVI 2		2	4	2		2
		2		2		2		2		2
aldrin									0.0	0.0
alpha-chlordene					0.5	0.0	15.0	1.0	9.0	9.8
cis-chlordane					3.5	3.6	15.0	1.3	9.7	12.0
cis-nonachlor							1.6	1.4	23.0	38.0
gamma-chlordene									5.7	6.8
oxychlordane									7.1	9.3
trans-chlordane							11.0	2.8	58.0	69.0
trans-nonachlor					1.2	1.3	7.5	8.1	69.0	88.0
chlorpyrifos							11.0	6.4	35.0	36.0
dacthal										
DDD, o,p'									5.8	21.0
DDD, p,p'							46.0	69.0	160.0	196.0
DDE, o,p'							3.7	4.9	26.0	33.0
DDE, p,p'					31.0	30.0	130.0	130.0	370.0	450.0
DDT, o,p'										
DDT, p,p'							12.0	14.0	7.7	3.6
DDMS,p,p'									34.0	42.0
DDMU,p,p'							6.7	5.9	26.0	28.0
diazinon										
dichlorobenzophenone, p,p'										
dicofol										
dieldrin	2.5	1.5	2.2	2.4	2.9	3.5	11.0	15.0	40.0	53.0
endosulfan l						0.0	22.0	29.0	1.6	4.2
endosulfan II								_0.0		
endosulfan sulfate										
endrin										
hexachlorobenzene									1.4	2.0
alpha-HCH	2.6	2.0	3.2	2.4	2.4	2.2	2.2	1.6	1.4	2.0
gamma-HCH	2.0	2.0	0.2	2.4	2.4	2.2	2.2	1.0	6.6	8.0
heptachlor epoxide									0.0	0.0
oxadiazon										
PCB 1248										
PCB 1246 PCB 1254							30.0	32.0	410.0	490.0
PCB 1254 PCB 1260							30.0	32.0	410.0	490.0
toxaphene										

RCM = Resident California Mussel

TFC = Transplanted Fresh Water Clam RFC = Resident Fresh Water Clam

RBM = Resident Bay Mussel TCM = Transplanted California Mussel

TABLE AA-7 (continued)

State Mussel Watch Program Results of Duplicate Sample Analysis: 1989-90 Synthetic Organic Compounds Quality Control (ng/g dry weight)

Station Name	Trinidad Head 10.0 RCM		Revolor	n Slough	LA H Consoli	larbor/ dated Slip	San O	nofre 2	Ocea	anside
Station No. Species			50 SI	507.8 SED		616.0 TCM		744.2 TCM		0.0 CM
REPLICATE	1	2	1	2	1	2	1	2	1	2
COMPOUNDS aldrin alpha-chlordene	·			<u> </u>	3.3	3.3	•	<u> </u>		
cis-chlordane cis-nonachlor gamma-chlordene oxychlordane			7.4 5.4	5.5 3.5	24.4 12.2	26.1 9.8	3.5	2.5	1.7	0.8
trans-chlordane trans-nonachlor chlorpyrifos dacthal			6.4 6.2 8.5	4.7 4.7 4.9	26.7 20.0	23.9 19.6	2.5	2.5	7.0 2.6	3.3 0.8
DDD, o,p' DDD, p,p' DDE, o,p' DDE, p,p'			35.8 119.3 9.5 457.3	28.7 90.1 5.3 348.0	31.1 122.2 34.4 177.8	20.7 100.0 22.8 130.4	3.0 4.5 55.6	8.6 8.1 44.4	7.8 33.0	11.7 28.3
DDE, p,p DDT, o,p' DDT, p,p'			457.3 35.8 91.5	26.6 75.4	30.0	9.8	4.0	44.4	9.6	20.3 5.0
DDMS,p,p' DDMU,p,p' diazinon dichlorobenzophenone, p,p' dicofol			15.5	10.4	25.6 6.7	35.0 16.3	4.0	4.5	9.0	5.0
dieldrin endosulfan I endosulfan II endosulfan sulfate endrin	1.3	1.3	2.2 5.4 9.1 18.1	1.8 5.5 7.8 15.6	6.7	9.8	5.6	2.5	4.3 1.7	4.2 1.7
hexachlorobenzene alpha-HCH beta-HCH gamma-HCH heptachlor epoxide oxadiazon	7.1 5.8 1.3	6.1 4.8 1.3	0.6	0.4			4.0	3.0	3.5	1.7
PCB 1248 PCB 1254 PCB 1260			4.0	4.3	155.6 544.4	217.4 510.9	39.4	22.2	64.3	61.7
toxaphene			258.4	225.2						

RCM = Resident California Mussel RBM = Resident Bay Mussel TCM = Transplanted California Mussel

TFC = Transplanted Fresh Water Clam RFC = Resident Fresh Water Clam SED = Sediment

TABLE AA-7 (continued)State Mussel Watch ProgramResults of Duplicate Sample Analysis: 1989-90 Synthetic Organic Compounds Quality Control

(ng/g dry weight)

Station Name		Bay/Landfill 1	
Station No.	8	68.5	
Species		CM	
REPLICATE	1	2	
COMPOUNDS			
aldrin			
alpha-chlordene			
cis-chlordane	6.5	7.1	
cis-nonachlor	3.6	2.8	
gamma-chlordene			
oxychlordane			
trans-chlordane	5.0	3.5	
trans-nonachlor	1.4	3.5	
chlorpyrifos			
dacthal			
DDD, o,p'			
DDD, p,p'	4.3	4.3	
DDE, o,p'			
DDE, p,p'	18.0	31.9	
DDT, o,p'			
DDT, p,p'			
DDMS,p,p'			
DDMU,p,p'			
diazinon			
dichlorobenzophenone, p,	p'		
dicofol			
dieldrin			
endosulfan I			
endosulfan II			
endosulfan sulfate			
endrin			
hexachlorobenzene			
alpha-HCH	0.7	0.7	
gamma-HCH			
heptachlor epoxide			
oxadiazon			
PCB 1248			
PCB 1254	93.5	170.2	
PCB 1260			
toxaphene			
RCM = Resident Califo		el	TFC = Transplanted Fresh Water Clam
RBM = Resident Bay N	Aussel		RFC = Resident Fresh Water Clam

RBM = Resident Bay Mussel TCM = Transplanted California Mussel

TABLE AA-7 (continued)

State Mussel Watch Program Results of Duplicate Sample Analysis: 1990-91 Synthetic Organic Compounds Quality Control (ng/g dry weight)

Station Name	Sante Fe Channel/End		Channel I	ton Bridge Varker 14	Cr	iis Obispo eek 1		Slough 4	Navy I	eim Bay Marsh 2
Station No.		03.4	32	1.0		446.0		460.3		8.5
Species	T	CM	TC	CM		FC	S	ED	T	CM
REPLICATE	1	2	1	2	1	2	1	2	1	2
COMPOUNDS										
aldrin	5.4	4.7								
alpha-chlordene					6.9	5.7				
cis-chlordane	22.0	19.0	15.0	19.0	73.0	66.0	1.7	1.9	15.0	19.0
cis-nonachlor	5.5	5.0	9.0	11.0	35.0	31.0			10.0	13.0
gamma-chlordene										
oxychlordane					6.4	5.7				
trans-chlordane	20.0	18.0	11.0	11.0	56.0	49.0	1.9	1.9	9.0	11.0
trans-nonachlor	15.0	13.0	6.7	1.3	89.0	82.0	1.5	1.9 2.7	13.0	16.0
chlorpyrifos			-	-			-			
dacthal										
DDD, o,p'	260.0	220.0	12.0	15.0					17.0	20.0
DDD, p,p'	930.0	830.0	12.0	14.0	35.0	42.0			23.0	28.0
DDE, o,p'	37.0	43.0	12.0	11.0	00.0	12.0			20.0	20.0
DDE, p,p'	400.0	360.0	51.0	46.0	63.0	56.0	5.1	5.8	210.0	264.0
DDT, o,p'	311.0	260.0	01.0	-10.0	00.0	00.0	0.1	0.0	210.0	201.0
DDT, p,p'	680.0	570.0			20.0	18.0			5.8	7.9
DDNS,p,p'	112.0	92.0			20.0	10.0			5.0	7.5
DDMU,p,p'	110.0	95.0							31.0	38.0
diazinon	110.0	95.0							31.0	30.0
	n n'									
dichlorobenzophenone,	p,p									
dicofol dieldrin	050.0	000.0	05.0	01.0					14.0	10.0
	250.0	260.0	25.0	31.0					14.0	10.0
endosulfan I										
endosulfan II										
endosulfan sulfate										
endrin										
hexachlorobenzene										
alpha-HCH										
gamma-HCH										
heptachlor epoxide										
oxadiazon	8.9	9.1								
PCB 1248	180.0	180.0								
PCB 1254	880.0	820.0	88.0	110.0	220.0	200.0	140.0	660.0	110.0	140.0
PCB 1260					22.0	76.0				
PCB 5460					1000.0	2400.0				
toxaphene					-					

TFC = Transplanted Fresh Water Clam RFC = Resident Fresh Water Clam SED = Sediment

RCM = Resident California Mussel RBM = Resident Bay Mussel TCM = Transplanted California Mussel

TABLE AA-7 (continued) State Mussel Watch Program

Results of Duplicate Sample Analysis: 1990-91 Synthetic Organic Compounds Quality Control (ng/g dry weight)

Station Name		Dnofre 6	
Station No.	74	14.6	
Species		CM	
REPLICATE	1	2	
<u>COMPOUNDS</u>			
aldrin			
alpha-chlordene			
cis-chlordane	4.0	4.5	
cis-nonachlor	1.2	1.1	
gamma-chlordene			
oxychlordane			
trans-chlordane	2.3	2.1	
trans-nonachlor	2.4	2.3	
chlorpyrifos			
dacthal			
DDD, o,p'			
DDD, p,p'			
DDE, o,p'			
DDE, p,p'	89.0	87.0	
DDT, o,p'			
DDT, p,p'			
DDMS,p,p'			
DDMU,p,p'	7.0	7.2	
diazinon			
dichlorobenzophenone, p,p	1		
dicofol			
dieldrin	1.7	2.5	
endosulfan I			
endosulfan II			
endosulfan sulfate			
endrin			
hexachlorobenzene			
alpha-HCH	1.7	1.9	
gamma-HCH			
heptachlor epoxide			
oxadiazon			
PCB 1248			
PCB 1254	22.0	21.0	
PCB 1260			
toxaphene			
RCM = Resident Califor		el	TFC = Transplanted Fresh Water Clam
RBM = Resident Bay M	ussel		RFC = Resident Fresh Water Clam

RFC = Resident Fresh Water Clam

RBM = Resident Bay Mussel TCM = Transplanted California Mussel

TABLE AA-7 (continued)

State Mussel Watch Program Results of Duplicate Sample Analysis: 1991-92 Synthetic Organic Compounds Quality Control (ng/g dry weight)

Station Name	Bodega Harbor/ Spud Point Marina		Spud Point Marina Estuary 2		ary 2	Navy	eim Bay/ Harbor	Turnir	ort Bay/ ng Basin	Highwa	ort Bay/ y 1 Bridge
Station No.	205.0 TCM		487.3			707.0		723.4		24.0	
Species	. 19		SE		I	СМ	I	СМ		СМ	
REPLICATE	1	2	1	2	1	2	1	2	1	2	
COMPOUNDS											
aldrin											
alpha-chlordene											
cis-chlordane			1.0	0.9	13.8	14.9	26.0	27.9	22.1	40.1	
cis-nonachlor					7.1	7.2	17.0	12.5	19.1	21.5	
gamma-chlordene											
oxychlordane											
trans-chlordane	1.9	1.3	0.7	0.6	8.9	10.0	24.0	19.2	30.5	32.0	
trans-nonachlor	1.9	2.6			16.0	12.7	33.0	19.2	44.2	34.2	
chlorpyrifos			1.5	1.4							
dacthal			2.3	2.4							
DDD, o,p'					7.1	7.2	15.0	9.6	24.4	26.0	
DDD, p,p'			2.6	2.4	18.0	21.0	67.0	58.7	140.0	178.3	
DDE, o,p'					45.0	47.6	18.0	8.7	29.0	20.8	
DDE, p,p'	18.1	17.5	6.3	6.6	440.0	420.8	450.0	259.9	990.0	742.9	
DDT, o,p'											
DDT, p,p'			11.6	10.1							
DDMS,p,p'											
DDMU,p,p'					38.0	36.5	22.0	14.4	49.6	47.5	
diazinon					0010	0010					
dichlorobenzophenone, p.r	n'										
dicofol											
dieldrin					9.6	10.5	18.0	14.4	18.3	19.3	
endosulfan l					0.0	10.0	10.0	1-1	10.0	10.0	
endosulfan II											
endosulfan sulfate											
endrin											
hexachlorobenzene											
alpha-HCH											
gamma-HCH					0.9	1.1					
					0.9	1.1					
heptachlor epoxide							11.0	FO	17 5	14.0	
oxadiazon							11.0	5.8	17.5	14.9	
PCB 1248	120.0	160.0			200.0	076.0	E00.0	250.0	100 F	210 5	
PCB 1254	130.0	162.0			280.0	276.8	500.0	259.9	480.5	319.5	
PCB 1260											
toxaphene											

AA-27

TFC = Transplanted Fresh Water Clam RFC = Resident Fresh Water Clam

RBM = Resident Bay Mussel TCM = Transplanted California Mussel

RCM = Resident California Mussel

TABLE AA-7 (continued) State Mussel Watch Program

Results of Duplicate Sample Analysis: 1991-92 Synthetic Organic Compounds Quality Control (ng/g dry weight)

		-					
Station Name	La Joll						
Station No.	832.0)					
Species	RCM						
REPLICATE	1	2					
COMPOUNDS							
aldrin							
alpha-chlordene							
cis-chlordane							
cis-nonachlor							
gamma-chlordene							
oxychlordane							
trans-chlordane	1.4	2.0					
trans-nonachlor							
chlorpyrifos							
dacthal							
DDD, o,p'							
DDD, p,p'							
DDE, o,p'							
DDE, p,p'	11.9	11.2					
DDT, o,p'							
DDT, p,p'							
DDMS,p,p'							
DDMU,p,p'							
diazinon							
dichlorobenzophenone, p,p'							
dicofol							
dieldrin endosulfan l							
endosulfan II							
endosulfan sulfate							
endrin							
hexachlorobenzene							
alpha-HCH	1.4	2.4					
gamma-HCH	1.4	2.4					
heptachlor epoxide							
oxadiazon							
PCB 1248							
PCB 1254							
PCB 1260							
toxaphene							
RCM = Resident Californ	ia Mussel		TFC = Trar	splanted Fresh W	ater Clam		
RBM = Resident Bay Mu	ssel		RFC = Res	ident Fresh Water			
	C	. 1		· · · · · ·			

TCM = Transplanted California Mussel

TABLE AA-7 (continued)

State Mussel Watch Program Results of Duplicate Sample Analysis: 1992-93 Synthetic Organic Compounds Quality Control (ng/g dry weight)

Station Name	Watsonville Slough/ Bridge		Bridge Calleguas Creek			on Harbour/ Ave Bridge		San Diego Bay/ Evans Street	
Station No.	4	401.5	01.5 507		715.0				
Species		TFC	S	ED	Т	СМ	TCM		
REPLICATE	1	2	1	2	1	2	1	2	
COMPOUNDS									
aldrin	13.0	9.8							
alpha-chlordene	6.8	6.8							
cis-chlordane	100.0	120.0	4.2	4.2	45.0	40.0	10.0	14.0	
cis-nonachlor	92.0	140.0			22.0	23.0	9.2	12.0	
gamma-chlordene	7.5	9.1							
oxychlordane									
trans-chlordane	110.0	110.0	3.5	3.8	51.0	40.0	9.9	15.0	
trans-nonachlor	110.0	110.0	3.9	3.7	34.0	39.0	8.5	13.0	
chlorpyrifos	120.0	120.0			23.0	23.0			
dacthal	220.0	210.0	14.0	12.0					
DDD, o,p'	500.0	450.0	11.0	11.0	10.0	7.7			
DDD, p,p'	670.0	650.0	42.0	44.0	26.0	27.0	5.0	7.1	
DDE, o,p'	130.0	130.0			10.0	10.0			
DDE, p,p'	5000.0	5100.0	200.0	200.0	330.0	350.0	21.0	27.0	
DDT, o,p'	1100.0	1200.0	6.3	5.2	8.9	11.0			
DDT, p,p'	3000.0	3000.0	21.0	24.0	45.0	47.0	5.4	6.1	
DDMS,p,p'									
DDMU,p,p'	210.0	200.0			41.0	36.0	7.4	9.8	
diazinon									
dichlorobenzophenone	e, p,p'								
dicofol									
dieldrin	1500.0	1700.0			22.0	22.0	6.5	7.4	
endosulfan I	26.0	31.0							
endosulfan II	110.0	150.0							
endosulfan sulfate	270.0	230.0							
endrin	140.0	180.0							
hexachlorobenzene	7.3	7.1							
alpha-HCH									
gamma-HCH									
heptachlor epoxide	26.0	26.0							
oxadiazon	68.0	280.0							
PCB 1248	98.0	80.0			59.0	65.0			
PCB 1254	250.0	190.0			280.0	300.0	1100.0	1300.0	
PCB 1260			28.0	30.0					
toxaphene	12000.0	15000.0	160.0	180.0	200.0	230.0			
·									

RCM = Resident California Mussel

TFC = Transplanted Fresh Water Clam RFC = Resident Fresh Water Clam

RBM = Resident Bay Mussel TCM = Transplanted California Mussel

State Mussel Watch Program Results of Duplicate Sample Analysis: PAH Quality Control (ng/g dry weight)

Station Name	Samoa B	ridge/East	Dumbarto	n Bridge/	Montana	De Oro 2	San O	nofre 6		a Harbor/
Station No.	10	2.0	Channel N 321		13	0.4	74	4.6		oint Marina 05.0
Year		0-91	1990			0.4		0-91		91-92
Species		CM	TC			CM		CM		CM
REPLICATE	1	2	1	2	1	2	1	2	1	2
COMPOUNDS										
Naphthalene	26.0	33.0	55.0	55.0	21.0	21.0	34.0	33.0	23.0	23.0
2-Methylnaphthalene									66.0	87.0
I-Methylnaphthalene									15.0	19.0
Biphenyl										
2,6-Dimethylnaphthalene										
Acenaphthylene										
Acenaphthene										
2,3,5-TrimethyInaphthalene	Э									
Fluorene										
Phenanthrene	39.0	28.0	20.0	35.0					230.0	230.0
Anthracene										
1-Methylphenanthrene										
Fluoranthrene	17.0	14.0	51.0	74.0					260.0	250.0
Pyrene	21.0	26.0	74.0	110.0					250.0	200.0
Benz[a]anthracene			15.0	21.0					34.0	37.0
Chrysene			30.0	32.0					59.0	71.0
Benzo[b]fluoranthrene			34.0	41.0					31.0	24.0
Benzo[k]fluoranthrene			23.0	34.0					0.10	
Benzo[e]pyrene			37.0	37.0					27.0	29.0
Benzo[a]pyrene			43.0	65.0					27.0	20.0
Perylene			10.0	00.0						
ndeno[1,2,3-cd]pyrene										
Dibenz[a,h]anthracene										
Benzo[ghi]perylene			13.0	38.0						
Seurolânihei Mene			15.0	00.0						

RCM = Resident California Mussel RBM = Resident Bay Mussel TCM = Transplanted California Mussel

TFC = Transplanted Fresh Water Clam RFC = Resident Fresh Water Clam

TABLE AA-8 (continued) State Mussel Watch Program

Results of Duplicate Sample Analysis: PAH Quality Control (ng/g dry weight)

Station Name		on Harbour/		ego Bay/
		Ave Bridge		Street
Station No.				87.0
Year		92-93		2-93
Species	Т	CM	T	CM
REPLICATE	1	2	1	2
COMPOUNDS				
Naphthalene	30.0	22.0	20.0	37.0
2-Methylnaphthalene	28.0	21.0	47.0	68.0
1-Methylnaphthalene	16.0	11.0	12.0	25.0
Biphenyl			11.0	12.0
2,6-Dimethylnaphthalene				
Acenaphthylene			11.0	20.0
Acenaphthene			140.0	130.0
2,3,5-Trimethylnaphthalen	е			
Fluorene			170.0	270.0
Phenanthrene	30.0	25.0	1200.0	1100.0
Anthracene			380.0	340.0
1-Methylphenanthrene			110.0	110.0
Fluoranthrene	130.0	120.0	5900.0	5100.0
Pyrene	170.0	160.0	3500.0	3100.0
Benz[a]anthracene	18.0	16.0	780.0	740.0
Chrysene	48.0	40.0	590.0	820.0
Benzo[b]fluoranthrene	22.0	23.0	700.0	760.0
Benzo[k]fluoranthrene			180.0	200.0
Benzo[e]pyrene	30.0	27.0	690.0	740.0
Benzo[a]pyrene	2 3.0		200.0	200.0
Perylene			98.0	98.0
Indeno[1,2,3-cd]pyrene			97.0	100.0
Dibenz[a,h]anthracene			0.10	
Benzo[ghi]perylene			160.0	180.0
PCM Posidopt Califo	rnio Muoo			TEC Tro

RCM = Resident California Mussel

TFC = Transplanted Fresh Water Clam RFC = Resident Fresh Water Clam

SED = Sediment

RBM = Resident Bay Mussel TCM = Transplanted California Mussel

State Mussel Watch Program

Results of Duplicate Sample and Reference Material Analysis: 1987-93 Tributyltin (TBT) Quality Control (ng/g dry weight)

	Station	Station	Sample	Sample	Duplicate
Year	Number	Name	Туре	Cconcentration	Cconcentration
987-88	No duplic	ates were analyzed.			
1988-89	10.0	Trinidad Head	RCM	ND	ND
	307.4	Oakland Inner Hbr/Embarcadero Cove	TCM	4,000	5,500
	556.0	Marina Del Rey/Basin E	TCM	7,800	8,400
	899.0	San Diego Bay/Shelter Is/Fshg Pier	TCM	1,100	1,300
989-90	414.0	Pacific Grove	RCM	ND	ND
	429.2	Morro Bay/Boat Works	TCM	280	420
	726.4	Newport Bay/Rhine Channel/End	TCM	6,500	7,100
1990-91	205.0	Bodega Harbor/Spud Point Marina	TCM	830	680
	302.0	Point Pinole	TCM	300	210
	619.0	LA Harbor/San Pedro Boatworks	RBM	1,400	1,300
	707.0	Anaheim Bay/Navy Harbor	TCM	470	210
	708.0	Anaheim Bay/Navy Marsh	TCM	430	200
	723.4	Newport Bay/Turning Basin	TCM	5,300	4,000
	724.0	Newport Bay/Highway 1 Bridge	TCM	3,300	2,500
	726.4	Newport Bay/Rhine Channel/End	SED	ND	ND
991-92	616.0	LA Harbor/Consolidated Slip	SED	280	290
	717.0	Huntington Harbor/Harbor Lane	TCM	990	1,200
	901.0	San Diego Bay/Degausing Station	TCM	260	270
992-93	10.0	Trinidad Head	RCM	ND	ND
	899.2	San Diego Bay/Shelter Island	ТСМ	5,700	5,900

ND = Not Detected.

RCM = Resident California Mussel RBM = Resident Bay Mussel TCM = Transplanted California Mussel SED = Sediment

1992-93 TBT ANALYSIS OF REFERENCE MATERIAL*

Sample	Concent-	Certified	Upper Warning	Lower Warning	Upper Control	Lower Control
	tration	Value	Limit	Limit	Limit	Limit
PACS-1 Replicate 1 PACS-1 Replicate 2	1,047 1,020	1,270	1,710	893	1,790	840

Standard reference material (SRM) for TBT was not available for use until 1992-93. **PACS-1** refers to marine sediment reference material from the National Research Council of Canada. Warning and control limits were calculated according to U.S.EPA/EMAP guidelines.

Warning limits are within 15% of the certified SRM 95% confidence limits, control limits are within 20%.