State Water Resources Control Board Delta Flow Criteria Informational Proceeding March 22, 2010

Exhibit by City of Antioch Summary of Historical Freshwater Availability at Antioch

Summary

The historic (pre-1918) Delta was significantly fresher than the current Delta. The characterization of the Delta as "historically saline" is false and is not based on scientific evidence. Historical salinity and flow conditions must be considered when: (i) establishing Delta outflows and inflows to protect public trust values which adapted to these conditions, (ii) establishing the criteria (volume, timing and quality) required by Senate Bill 7X 1, and (iii) establishing drinking water quality standards for the Delta.

1. Introduction

The City of Antioch (Antioch), located along the San Joaquin River in the western portion of the Sacramento and San Joaquin River Delta (Delta), is one of the oldest towns in California. Since the 1860s, Antioch has obtained all or part of its freshwater supply directly from the San Joaquin River. The City, because of its position in the western Delta, is also concerned with the ecological health of the Delta and its long-term viability as a recreational destination.

As part of the informational proceeding on establishing flow criteria in the Delta, this document summarizes the historical salinity and flow conditions near Antioch and contrasts them with the largely saline conditions prevailing today. The supporting document to this summary is a "powerpoint style" document containing text and figures relevant to the material presented in this summary.

2. Systemic changes have reduced freshwater flows and increased salinity in the western Delta, including at Antioch

Salinity in the western Delta (including at Antioch) is influenced both by natural factors, including ocean tides and hydrology of the upstream watersheds, and by artificial factors, including channelization of the Delta, elimination of tidal marsh, reservoir storage and release operations, and water diversions.

Major anthropogenic modifications to the Delta that affect salinity intrusion began with the European settlement of the region around 1850. Tidal marsh acreage in the Delta decreased from over 250,000 acres in the 1870s to less than 30,000 acres in the 1920s and

¹ Much of the water in the western Delta (including the City's water supply) comes from the Sacramento River. Historically, significant amounts of Sacramento River water flowed into the San Joaquin River east of Antioch at Three Mile and Georgiana Sloughs. Sacramento River water also reaches Antioch where the river merges with the San Joaquin River just west of the City. Town of Antioch v. Williams Irrigation

District et al. (1922) 188 Cal. 451, 455

City of Antioch: Document #5

has since continued to decrease (CCWD 2010), producing significant changes in the Delta landscape (Att. at pg. 7). For example, dredging of the Delta river channels to create the Stockton and Sacramento Deep Water Ship Channels affected the salt transport and distribution in the Delta (CCWD 2010). Construction of reservoirs for storage purposes started in the early 1900s and the largest reservoirs of the Central Valley Project (CVP, Lake Shasta) and the State Water Project (SWP, Lake Oroville) were completed in 1945 and 1968, respectively (CCWD 2010). Total upstream reservoir storage capacity increased from 1 million acre-feet (MAF) in 1920 to more than 30 MAF by 1979 (CCWD 2010). Water exports from the Delta have been steadily increasing since the 1950s, and the combined annual exports from CVP and SWP have increased, on average, from about 0.5 MAF/yr in the late 1950s to about 5 MAF/yr during the recent period (Att. at pg. 8).

3. Historical extent of freshwater

Testimony from the lawsuit filed by the Town of Antioch in 1920 and from various literature reports demonstrates that freshwater (low salinity conditions) prevailed in the western Delta in the late 1800s and early 1900s.

3.1 Testimony from Antioch's lawsuit in 1920

In 1920, the Town of Antioch filed a lawsuit against upstream irrigation districts alleging that the upstream diversions were causing increased salinity intrusion at Antioch (Town of Antioch [plaintiff] v. Williams Irrigation District et al. [defendants] (1922, 188 Cal. 451)). The testimony from the Antioch lawsuit provides a perspective of the salinity conditions prevailing in the early 1900s.

3.1.1 Pre-1918: Freshwater was available at Antioch year-round

Testimony from the defendants in the Antioch lawsuit indicated that in the late 1800s, water at Antioch was known to be brackish at high tide during certain time periods, but Antioch was able to pump freshwater at low tide throughout the year, with the possible exception of the fall season during one or two dry years. Water at Antioch was fresh at low tide at least until around 1915 (when the pumping plants started pumping continuously, regardless of tidal stage) (Att. at pg. 11).

Testimony from the plaintiff in the Antioch lawsuit indicated that Antioch's freshwater supply was obtained directly from the San Joaquin River (see footnote 1 above) from about 1866 to 1918, first by private water companies and then by the municipality after 1903 (when the City acquired pre-existing water rights) (Att. at pg. 12). Plaintiff's testimony included salinity measurements taken at Antioch (1913-1917) that indicated that prior to 1918, freshwater was available at Antioch even during dry years and in the fall (Att. at pg. 12).

Page 2 of 5

3.1.2 Post-1918: Increased upstream diversions drastically increased salinity intrusion

Testimony and measurements from the Delta (1918-1920) presented by the plaintiff in the Antioch lawsuit indicated that after 1918, salinity abruptly increased during the irrigation (rice cultivation) season, but returned to a potable level after irrigation ceased (Att. at pg. 13). The effect of upstream diversions was also confirmed by records in the plaintiff's testimony from California & Hawaiian Sugar Refining Corporation (C&H) (CCWD 2010). Plaintiff's testimony indicated that although Antioch is located along the San Joaquin River, the source of much of the water at Antioch was the Sacramento River, which flowed to Antioch via Georgiana and Three Mile Sloughs (Att. at pg. 14-15); this was confirmed by the California Supreme Court (Att. at p. 15).

Information from the Antioch lawsuit is consistent with literature reports (see the following discussion) and with paleo records of salinity and river flow obtained from tree rings and sediment cores (CCWD 2010).

3.2 Literature reports

Several literature reports confirm that freshwater was available year-round in the western Delta (including Antioch) and Suisun Bay during the late 1800s and early 1900s. For instance, DPW (1931), the precursor to the Department of Water Resources, indicated that the City of Antioch obtained all or most of its freshwater supplies directly from the San Joaquin River until 1917, and that salinity intrusion prevented domestic use of water at the Antioch intake in summer and fall after 1917 (Att. at pg. 9). DPW (1931) and Tolman and Poland (1935) indicated that prior to the 1920s, water near the City of Pittsburg was sufficiently fresh for that City to directly obtain all or most of its freshwater (Att. at pg. 10). Dillon (1980) and Cowell (1963) indicated that prior to the 1920s, freshwater was available in the Suisun Bay and Carquinez Straits for use by the City of Benicia (Att. at pg. 10). Means (1928) indicated that Carquinez Strait (near Martinez in the western Delta) is the approximate boundary between salt water and freshwater under natural conditions. Moreover, Means (1928) also indicated that during the wet season freshwater extended up to the Golden Gate (Att. at pg. 9).

The California Department of Water Resources (DWR, 1960) estimated that water with a chloride concentration of 350 mg/L or less would be available at San Joaquin at Antioch about 85% of the time under "natural" conditions (Att. at pg. 16). DWR (1960) also estimated that chloride concentrations at Antioch would be less than 350 mg/L about 80% of the time in 1900 and about 60% of the time by 1940, with decreasing freshwater availability due to upstream diversions; DWR also projected further deterioration of water quality in 1960 and later, but did not include the effects of reservoir releases for salinity control (Att. at pg. 16).

4. Current Salinity Conditions at Antioch

Salinity data compiled by the Interagency Ecological Program (IEP) and California Data Exchange Center (CDEC) were used to analyze the present availability of freshwater at Antioch. These quantitative measurements from the present were compared to the

testimony from the Antioch lawsuit and to observation recorded by C&H to establish how salinity at Antioch and in the western Delta has increased over time compared to historical conditions.

4.1 Freshwater availability continues to decline

Availability of freshwater at Antioch continues to decline. Antioch may take water at its intake when salinity is less than 250 mg/L chlorides (equivalent to about 1000 μ S/cm EC)². The number of days per year, expressed as a percentage, when daily average salinity at Antioch was below 1000 μ S/cm EC declined from about 70% in the late 1960s to about 40% during the recent period (Att. at pg. 19).

Even in years with above normal runoff in the Sacramento River watershed, freshwater at Antioch is less available than historically (Att. at pg. 20). For instance, during the above normal water year 2000, water at the City of Antioch's intake was below 1000 $\mu\text{S/cm}$ EC for the entire day for about four-and-a-half months (early February through mid-June) and for a portion of the day at low tide for another three-and-a-half months (mid-June through September). For the remaining four months (October-January), water at the City's intakes exceeded 1,000 $\mu\text{S/cm}$ EC for the entire day, regardless of tidal stage. Testimony from the Antioch lawsuit indicates that prior to 1918, water at the City of Antioch's intake was below 1000 $\mu\text{S/cm}$ EC for the entire day during above-normal years and in all but dry fall months.

Salinity at low tide at Antioch during the present is higher than historical conditions (Att. pg. 21). For instance, during the period 1985 to 2009, the tenth percentile low tide daily salinity was below 1,000 $\mu\text{S/cm}$ EC for about one-and-a-half months, and the 25^{th} percentile low tide daily salinity was below 1,000 $\mu\text{S/cm}$ EC for about nine months. However, testimony from the Antioch lawsuit indicates that during the driest years prior to 1918, low tide salinity at the City of Antioch's intake was below 1000 $\mu\text{S/cm}$ EC for about nine months; for all but the driest years, salinity at low tide was below 1,000 $\mu\text{S/cm}$ EC throughout the year. These data establish that salinity is higher at Antioch for a wider range of hydrologic conditions and for a longer duration of the year than under historic conditions.

4.2 Salinity intrusion occurs earlier and extends farther

Since the early 1900s the California & Hawaiian Sugar Refining Corporation (C&H), located in Crockett near the western edge of Suisun Bay, obtained its freshwater supply in Crockett. When freshwater was not available at Crockett, C&H used barges that traveled upstream on the Sacramento and San Joaquin Rivers to procure freshwater. The measurements of distance to freshwater from Crockett, recorded during these barge operations, serve as a surrogate for the historical extent of freshwater in the western

² The freshwater salinity threshold of 250 mg/L chlorides at the San Joaquin River at Antioch is based on the 1968 agreement between the City of Antioch and DWR. This threshold is approximately equivalent to $1000 \,\mu\text{S/cm}$ EC, based on the site-specific empirical relationships between chloride concentration and EC (K. Guivetchi, DWR Memorandum dated June 24, 1986).

Delta. A comparison of C&H data during 1908-1917 and estimates³ of distance to freshwater from Crockett during the post-SWP construction period (1966-1975) indicates that salinity intrusion into the Delta occurs on average about 4 months earlier (in March instead of July) during the post-SWP construction period of 1966-1975 (Att. at pg. 17). Comparison of C&H data from 1908-1917 to estimates of distance to freshwater from Crockett during the period 1995-2004 indicates that salinity intrusion during the recent period not only occurs earlier (by 4 months) but also extends farther in to the Delta (by about 5 to 20 miles) (Att. at pg. 18).

5. Conclusions

- Prior to 1918, freshwater was almost always available at Antioch at least at low tide. Only during dry years and during high tide conditions did salinity at Antioch become brackish.
- Between 1918 and the late 1930s, drought conditions, upstream water diversions, and channelization increased the salinity of water at Antioch.
- By 1940 the drought receded, but salinity at Antioch remained elevated.
- Salinity has continued to increase in recent years at Antioch.
- The fraction of time that water at Antioch is suitable for use (when salinity is < 250 mg/L chlorides or 1000 μS/cm EC) has declined significantly.
- "Historic" Delta was significantly fresher than the current Delta.

6. Request

The City of Antioch requests that the State Water Resources Control Board review and incorporate historic salinity data into its analyses when considering Delta outflow requirements to protect public trust resources in the Western Delta and the flow requirements of SB X7 1 (e. g., volume, timing and quality), and that the Board use historic data to establish and to adjust its "baseline" of water quality for both fisheries health and drinking water quality standards. In fact, the City asks the SWRCB to establish flow and salinity standards in line with the Delta's historic fresh condition. The City also requests that the SWRCB consider using the gauging station at Antioch as a point of interest to ensure that flow criteria and salinity objectives are met.

References

[CCWD] Contra Costa Water District. 2010. Report titled "Historical Freshwater and Salinity Conditions in the Western Sacramento-San Joaquin Delta and Suisun Bay".

Cowell, J. W. 1963. History of Benicia Arsenal: Benicia, California: January 1851 – December 1962. Berkeley, Howell-North Books. [DPW] Department of Public Works. 1931. *Variation and Control of Salinity in Sacramento-San Joaquin Delta and Upper San Francisco Bay.* Bulletin No. 27. State of California, Department of Public Works, Division of Engineering and Irrigation. [DWR] Department of Water Resources. 1960. *Delta Water Facilities.* Bulletin No. 76. State of California.

Dillon, R. 1980. Great Expectations: The Story of Benicia, California, Fresno, California. 241 pp.

Means, T. 1928. Salt Water Problem: San Francisco Bay and Delta of Sacramento and San Joaquin Rivers, San Francisco, California, April 1928. Report prepared for the Association of Industrial Water Users of Contra Costa and Solano Counties.

Tolman, C. F. and J. F. Poland. 1935. Investigation of the Ground-Water Supply of the Columbia Steel Company Pittsburg, California. Stanford University, California, May 30, 1935.

Town of Antioch v. Williams Irrigation District (1922, 188 Cal. 451).

³ These estimates were made using IEP data in CCWD (2010), which will be presented by the Contra Costa Water District during this informational proceeding.