

Eagle Mountain Pumped Storage Project Draft Environmental Impact Report Volume III Technical Memorandum, Appendix C

State Clearinghouse No. 2009011010 FERC Project No. 13123

State Water Resources Control Board 1001 | Street, 14th Floor Sacramento, California 95814

Prepared by **GEI Consultants, Inc.** 10860 Gold Center Drive, Suite 350 Rancho Cordova, California

July 2010

12	Apper	ndix C – Technical Memoranda	12.0-1
	12.1	Stage 1 Design Level Site Investigation Plan	
	12.2	Erosion and Sediment Control Plan	
	12.3	Preliminary Groundwater Supply Wells, Pipeline, and Operating Costs: Eagle Mountain Pumped Storage Project	
	12.4	Groundwater Supply Pumping Technical Memorandum	
	12.5	Eagle Mountain Pumped Storage Project: Seepage Analysis for Upper and Lower Reservoirs	
	12.6	Seepage Recovery Wells, Groundwater Modeling Report	In this volume
	12.7	Schedule, Manpower, and Equipment Utilization During Construction of the Eagle Mountain Pumped Storage Project	
	12.8	Eagle Mountain Pumped Storage Project- Landfill Compatibility	
	12.9	Project Drainage Plan and Reservoir Spillway Designs	
	12.10	Appendix to Air Quality Analysis, Construction-Related Data	
	12.11	Class I Cultural Resources Investigation for the Proposed Eagle Mountain Pumped Storage Project.	
	12.12	Class III Cultural Resources Report	
	12.13	Draft Historic Properties Management Plan	
	12.14	Biological Mitigation and Monitoring Reports, and Biological Assessment of Desert Tortoise.	
	12.15	Golden Eagle Aerial Surveys for Eagle Mountain Pumped Storage Mojave Desert Region, California.	Project in the
	12.16	Results of Class I record search and Class III field inventory of Eag Pumped Storage Project alternative transmission line corridors and	·

12.5 Seepage Analysis for Upper and Lower Reservoir

Eagle Mountain Pumped Storage Project – Seepage Analyses for Upper and Lower Reservoirs

Prepared by: Nick Miller and Dick Westmore, GEI Consultants, Inc.

January 5, 2009, revised November 24, 2009

This memorandum summarizes preliminary estimates of seepage from the proposed Upper and Lower Reservoirs for the Eagle Mountain Pumped Storage Project. In addition, this TM provides opinions on the potential effectiveness of using the available fine mine tailings as a seepage control blanket to minimize seepage losses from the Upper and Lower Reservoirs. This treatment measure was proposed in the earlier project concepts developed in the 1990s. We also assessed the potential effectiveness of other seepage control measures at the two reservoirs.

Due to the current access constraints at the site, all geotechnical and geological information used for the seepage estimates was obtained from prior investigations and studies conducted by GeoSyntec Consultants, GSi/Water, and GeoPentech in support of studies for a proposed landfill. The results of those studies represent an initial step in characterizing potential seepage impacts associated with the Eagle Mountain Project. Seepage impacts are of particular concern to the Metropolitan Water District of Southern California (MWD), the State Water Quality Board, and others in the region.

Site Geology

Bedrock geologic units present at the site can be generally classified as either igneous or meta-sedimentary. The igneous units include several varieties of granitic rock including porphyritic quartz monzonite, diorite, monzonite porphyry, and granodiorite. The meta-sedimentary units include quartzites, meta-arkoses, and marbles formed by metamorphosis and/or hydrothermal-alteration or sandstones, conglomerates, arkoses, and carbonate rocks deposited in the Paleozoic or Precambrian age.

Surficial geology of the Eagle Mountain area generally consists of unconsolidated alluvial deposits. The alluvial deposits include sands, silts, gravels, and debris-flow deposits. The most significant alluvial deposits are found on the eastern edge of the site area, where they form a laterally extensive alluvial fan that extends and thickens to the east into the Chuckwalla Valley. Some of these deposits are exposed in the east wall of the east pit and underlie the eastern portion of the Lower Reservoir.

The alluvial deposits within the Chuckwalla Valley extend to significant depths below the ground surface and generally consist of sands, silty sands, sands and gravel, cobbles and boulders. Within the sandy alluvial deposits in the Chuckwalla Valley a predominately clay layer was logged in borings at depths varying from about 600 to 900 feet, and is generally about 100 to 300 feet in thickness.

The entire Central Pit (Upper Reservoir) is incised into bedrock. Alluvial deposits in the area of the Upper Reservoir are smaller in extent and are generally confined to laterally discontinuous, generally thin deposits along the bottoms of the canyons.

Rock containing little to no mineral value (waste rock and tailings) generated by the former Kaiser operations were deposited in numerous areas near the site. These mining by-products include several distinctly different materials, including both bedrock and alluvial overburden, and tailings produced as a result of the mining and separation of iron ore-bearing rock from host rock. The tailings include both fine and coarse varieties.

The hydraulically-placed fine tailings exist in settling ponds to the southeast of the proposed Upper Reservoir. Total volume of these materials is estimated to potentially be over 19 million cubic yards. Laboratory testing indicated that the fine tailings vary in composition, ranging from silty sand and sandy silt to clayey silt to silty clay. In general, soils with higher sand content are located near the slurry discharge point while finer grained soils are present in the distal portions of each pond.

Coarse tailings were placed at several locations around the site, although the largest deposit lies in a stockpile located immediately south of the proposed Lower Reservoir. The total volume of coarse tailings in this stockpile is estimated to be about 50 million cubic yards. The majority of the coarse tailings were classified as clean gravels or sandy gravels containing significant percentages of cobbles and boulders and few fines.

The chemical composition of these materials will be fully investigated during Phase 1 Predesign investigations. Those studies are described in Section 12.1 of this document.

Upper Reservoir

The Upper Reservoir will occupy the former Central Pit of the Kaiser Mine. The reservoir is elongated generally east-west, with a maximum dimension of about 5,300 feet. North-south dimensions vary between 1,500 and 2,000 feet near the maximum planned reservoir surface (El. 2485). The existing low point in the Upper Reservoir is located in the eastern half of the pit and extends down to El. 2230. Due to topographic conditions, there will be two dams required to create the upper reservoir. The current concept is to construct these dams using roller-compacted concrete (RCC) with aggregate materials being derived from the abundant coarse mine tailings at the site or from other on-site aggregate sources with suitable characteristics for RCC.

Available geologic mapping shows the north side of the pit to be underlain by granitic rock units, while the central and southern portions of the pit are underlain by metasedimentary units and iron ore. Areas of the proposed Upper Reservoir are also covered with coarse tailings. Two borings completed in the bottom of the Upper Reservoir site (MW-10 and CH-10) provide insights on the hydrogeologic character of the rock materials. Rock core was obtained from boring CH-10. The boring was drilled to a total depth of 1,389 feet. Water was first observed at a depth of 1,309 feet. Rock lithology in the upper 350 feet of the boring was found to be moderately fractured, interbedded igneous and metasedimentary rock. Monitoring well MW-10, a 13.5-inch diameter borehole, was drilled to a total depth of 1,480 feet below ground surface. Water was first encountered at a depth of 506 feet; however, the static water level subsequently dropped and later stabilized at a depth of 1,040 feet. Borehole locations and logs are provided in the Appendix of this report.

Lower Reservoir

The Lower Reservoir will be located in the former East Pit of the Kaiser Mine. No dams are required to provide the needed storage at the Lower Reservoir. The pit has a maximum dimension of about 5,400 feet in an east-west direction, and a maximum dimension of about 2,000 feet in a north-south direction when measured at the normal maximum reservoir water surface at El. 1092. The pit narrows to the west to a minimum width of about 300 feet. The pit includes two low points or bowls, one in the east, and one in the western half of the pit. These low points are separated by a bedrock saddle, which is mantled with tailings deposits on the west side. The low point within the east bowl is at El. 776, while the lowest point within the west bowl is at El. 715. The intervening saddle is at about El. 880.

The proposed Lower Reservoir can be divided into two zones on the basis of geology. The eastern one-quarter of the site is excavated in Quaternary alluvial sediments, including fan deposits and debris flow deposits. In the eastern wall of the pit, a vertical section of about 300 feet of alluvial deposits is exposed. The western three-quarters of the site are underlain by granitic rocks and undifferentiated metasedimentary rocks and rocks of the upper quartzite unit. The granitic rocks are located along the northern face of the pit, while the metasedimentary rocks are found along the south pit face and the lower portions of the north face. Quartzite is located in the central portion of the pit and underlies the unconsolidated deposits.

A total of eight borings were used to characterize the geology in the area that would be occupied by the Lower Reservoir and surrounding areas; these include: MW-13, CH-5A, P-1, MW-1, MW-2, P-11, P-12, and C-10. Borings MW-13, CH-5A were completed along the western and northwestern corner of the Lower Reservoir site. These two borings show slightly fractured, interbedded igneous and metasedimentary rock extending to depths below EI. 500. The static water level was subsequently measured in boring MW-13 at about 285 feet below the ground surface. The boring for P-1 is located on the bedrock saddle which divides the East Pit into two sections. This boring was drilled to a depth of 270 feet, and also shows interbedded igneous and metasedimentary rock for the entire depth. A static water level was subsequently measured at 177 feet below the ground surface in P-1.

Boreholes MW-1, MW-2, P-11, P-12, and C-10 were located east of the pit, and were projected onto the geologic section prepared for our analysis. The logs of these boreholes were reviewed to estimate the extent of alluvial deposits found on the eastern edge of the site. Generally, the alluvial deposits form a laterally extensive alluvial fan that extends and thickens to the east into the Chuckwalla Valley. These five borings encountered predominately fine to coarse sand, with gravel and cobbles in several locations. The borings also indicate a relatively thin, predominately clay layer interbedded within the primarily sandy alluvial deposits. The clay layer ranges in elevations from about 600 to 900 feet, and is generally about 100 to 300 feet thick. The groundwater in the bedrock and alluvium generally drops from west to east and from north to south. The groundwater was estimated to be approximately 240 feet below the ground surface at the point where boring P-12 is projected onto the geologic section. Borehole locations and logs are provided in the Appendix.

Seepage Analyses

The expected quantity of seepage through the Upper and Lower Reservoirs was evaluated by performing seepage analyses. The seepage analyses were performed using the twodimensional, finite element program GeoStudio 2007, specifically the SEEP/W module. The majority of the seepage from the proposed reservoirs is anticipated to travel from west to east towards the Chuckwalla Valley, similar to the existing ground water conditions at the site. Based on these ground water levels and the geologic conditions, the hydraulic gradient produced by the proposed reservoirs will be greater in the west-east direction than the hydraulic gradient in the north-south direction; therefore, all seepage flow rates and annual seepage volumes were estimated using west-east profiles. However, there is potential for seepage from the proposed reservoirs to travel from north to south. For this reason, north-south seepage profiles were also developed for both reservoirs only for estimating the ground water levels at specific down-gradient facilities of concern. We performed the analyses for the reservoirs using cross sections prepared for the locations shown in plan view on Figure 1. The representative cross sections used for the Upper Reservoir and Lower Reservoir seepage analyses are shown on Figures 2 through 5.

Hydraulic Conductivity

The estimates of hydraulic conductivity for the various geologic materials present at the site were developed based on the available results of field permeability tests, laboratory permeability tests, correlations with published values based on material descriptions and gradations, and empirical correlations between grain size and permeability. The hydraulic conductivity values used in the seepage analyses are presented in Table 1.

Material	Hydraulic Conductivity (centimeters/sec)	Hydraulic Conductivity (feet/sec)	Conductivity Ratio
Rock – Upper Reservoir (moderately fractured)	1.00E-04	3.28E-06	1.00
Rock – Lower Reservoir (slightly fractured)	1.00E-05	3.28E-07	1.00
Sand	5.00E-03	1.64E-04	0.25
Clay (sandy)	1.00E-05	3.28E-07	1.00
Liner - (fine tailings)	2.16E-06	7.09E-08	1.00

Table 1. Summary of Material Hydraulic Conductivities

The value for hydraulic conductivity of the rock in the Lower Reservoir was based on packer pressure testing conducted in 5 boreholes (borings 2, 3, 5A, 11 and 12). None of these boreholes were located within the Lower Reservoir, but are considered to be representative of the rock unit surrounding and within the reservoir. The calculated hydraulic conductivities ranged from 1 x 10-6 cm/s (centimeters/second) to 1 x 10-4 cm/s, with a geometric mean of 1 x 10-5 cm/s. The geometric mean was selected to represent the rock at the Lower Reservoir. Based on boreholes CH-10 (located in Upper Reservoir) and CH-5A (located on rim of Lower Reservoir), the rock at higher elevations is considered to be more fractured, which typically increases the hydraulic conductivity. Because the rock at the Upper Reservoir is considered to be more fractured than the rock in the Lower Reservoir, the hydraulic conductivity was increased by an order of magnitude to account for increased fracturing.

The alluvial deposits will have the highest conductivity and are represented by the sand category in Table 1. The hydraulic conductivity used for the sand category was based on the average of 17 empirical correlations between grain size and permeability. The range of hydraulic conductivities for the sand category was between 1 X 10-2 cm/s to 1 X 10-5 cm/sec, with an average of 5.0 X 10-3 cm/s.

The hydraulic conductivity used for the clay layer was based on an average of two laboratory permeability tests, which gave a value of 1.0 X 10-5 cm/s. Estimates of hydraulic conductivities for the fine tailings liner were based on an average of field and laboratory permeability tests. The results of field permeability tests on the fine tailings ranged from 9.2 X 10-9 to 4.3 X 10-7 cm/s; laboratory permeability test yielded results between 5.8 X 10-9 to 8.2 X 10-6 cm/s. The average hydraulic conductivity from these field and laboratory tests was 2.16 X 10-6 cm/s. This averaged hydraulic conductivity value was adjusted proportionally to evaluate varying thicknesses of the liner. Calculations for the hydraulic conductivity used for the various materials are presented in the Appendix.

West-East Profile Analysis Results

Seepage flow rates and gradients were estimated for both the Upper and Lower Reservoirs of the Eagle Mountain Pumped Storage Project at both the minimum and maximum water surface elevations. Seepage flow rates were also estimated using liner thicknesses of 3, 5, and 8 feet for both reservoirs, at minimum and maximum water storage elevations. The seepage blankets would only be placed on the reservoir floors and on zones of the reservoir basin slopes where ground slopes are flat enough to support stable fill placement under rapid draw-down reservoir conditions. For the initial analyses, only seepage blankets were considered. Other treatment measures to reduce reservoir seepage are described later in this memorandum.

The seepage flow rates were determined based on a unit width of the geologic section. To estimate the total seepage rate for the entire reservoir, the unit width seepage rate was multiplied by the average top width for that water surface elevation. The minimum and maximum average top widths for the two reservoirs are shown in Table 2.

Reservoir	Minimum Water Surface Elevation Average Top Width (feet)	Maximum Water Surface Elevation Average Top Width (feet)	Average Top Width Used for Average Annual Seepage Calculations (feet)
Central Pit Upper Reservoir	595	1485	1040
East Pit Lower Reservoir	680	1100	890

 Table 2. Reservoir Water Surface Elevation Average Top Widths

The estimated unit width seepage quantities and average annual seepage volumes for the Upper Reservoir are presented in Table 3. Seepage quantities and volumes for the Upper Reservoir with various liner options are also shown in Table 3. The resultant groundwater levels from seepage of the Upper Reservoir at maximum water surface elevation are shown on Figure 6.

Table 3. Upper Reservoir Seepage Analysis Results – Seepage Blanket Only

	Parameter	Max.	Min.	Average
IO JER	Unit Width Seepage Rate (cfs)	0.00195	0.00124	0.00160
Ž N LI Š	Annual Seepage (ac-ft/yr)	2097	535	1202

3' IICK VER	Unit Width Seepage Rate (cfs)	0.00178	0.00106	0.00142
	Annual Seepage (ac-ft/yr)	1913	456	1068
5' HICK INER	Unit Width Seepage Rate (cfs)	0.00174	0.00091	0.00133
THIC LINE	Annual Seepage (ac-ft/yr)	1874	394	1000
8' ICK VER	Unit Width Seepage Rate (cfs)	0.00170	0.00070	0.00120
	Annual Seepage (ac-ft/yr)	1823	303	903

cfs – cubic feet per second ac-ft/yr – acre-feet per year

Max. – Maximum Min. – Minimum

The estimated unit width seepage quantities and average annual seepage volumes for the Lower Reservoir are presented in Table 4. Seepage quantities and volumes for the Lower Reservoir with various liner options are also shown in Table 4. The resultant groundwater levels from seepage of the Lower Reservoir at maximum water surface elevation are shown on Figure 7. The remaining computer outputs of the analyses are included in the Appendix.

	Parameter	Max.	Min.	Average
NO INER	Unit Width Seepage Rate (cfs)	0.00356	0.00181	0.00269
L N	Annual Seepage (ac-ft/yr)	2836	891	1731
r CK IER	Unit Width Seepage Rate (cfs)	0.00348	0.00177	0.00262
3 THI LIN	Annual Seepage (ac-ft/yr)	2768	871	1690
; ICK IER	Unit Width Seepage Rate (cfs)	0.00347	0.00175	0.00261
5 THI LIN	Annual Seepage (ac-ft/yr)	2765	863	1683
s' ICK IER	Unit Width Seepage Rate (cfs)	0.00347	0.00175	0.00261
8 THI LIN	Annual Seepage (ac-ft/yr)	2764	860	1681

Table 4. Lower Reservoir Seepage Analysis Results – Seepage Blanket Only

cfs – cubic feet per second ac-ft/yr – acre-feet per year Max. – Maximum Min. – Minimum

Based on the seepage analyses of the Eagle Mountain Pumped Storage Project and assuming no reservoir seepage treatments, the estimated annual average seepage volume from the Upper Reservoir is approximately 1,200 acre-feet, and the estimated annual average seepage volume from the Lower Reservoir is approximately 1,700 acre-feet. The estimated annual seepage volume for the Lower Reservoir is about 500 acre-feet more than the Upper Reservoir because the eastern wall of the Lower Reservoir primarily consists of alluvial sediments and debris flow deposits, which have significantly higher hydraulic conductivities.

Based on the seepage analysis, the fine tailings blanket liner options for the Upper Reservoir reduce the average annual seepage volume. The estimated reduction in average annual seepage volume for the Upper Reservoir ranged from about 11 to 25 percent, depending on the liner thickness. The maximum reduction for the Upper Reservoir was approximately 300 acre-feet annually, with an eight-foot thick liner in place.

The fine tailings blanket liner in the Lower Reservoir was estimated to be relatively ineffective. This is because the upper half of the walls in the pit, which consist of the alluvium deposit, are too steep to support the fine tailings liner. And, since the majority of seepage from the Lower Reservoir will be through this alluvium deposit, the analyses indicated little change due to the various liner options. The estimated reduction in average annual seepage volume for the Lower Reservoir was about 2.5 percent, regardless of the liner thickness. The maximum reduction for the Lower Reservoir was approximately 50 acre-feet annually, with an eight-foot thick liner constructed where possible. Based on this analysis, additional seepage reduction measures beyond a fine tailings blanket liner will be required for the Lower Reservoir.

North-South Profile Analysis Results

Seepage and ground water elevations along a north-south profile toward the CRA were estimated for both the Upper and Lower Reservoirs of the Eagle Mountain Pumped Storage Project at both the minimum and maximum water surface elevations. The seepage analysis from the proposed Upper Reservoir at maximum water surface elevation is shown on Figure 8. Generally, the maximum water surface elevation in the Upper Reservoir is projected to cause the ground water levels near the location of the CRA to rise approximately 45 feet above the estimated existing ground water levels. Results of the seepage analysis from the proposed Lower Reservoir at maximum water surface elevation are shown on Figure 9. Generally, the maximum water surface elevation in the Lower Reservoir is projected to cause the ground water levels near the location of the CRA to rise approximately 150 feet above the estimated existing ground water levels. The remaining computer outputs of the analyses are included in the Appendix.

Potential Impacts from Reservoir Seepage

Concerns have been raised about the potential impacts of seepage from the reservoirs on the concrete lining of the Colorado River Aqueduct (CRA), which is owned and operated by MWD. The potential impacts to the CRA from reservoir seepage were analyzed using both west-east and north-south profiles for each of the project reservoirs. The impacts of seepage were expected to be the most noticeable in the west-east profiles due to the close proximity of the Lower Reservoir to the CRA; however, the impacts along the north-south profiles were also investigated to fully assess the seepage concerns.

Based on the west-east seepage analysis for the Lower Reservoir, assuming no seepage treatments and continuous seepage at the maximum reservoir water surface elevation, the estimated groundwater elevation near the location of the CRA is estimated to stabilize at approximately El. 915, as shown on Figure 7. The current static groundwater elevation at this location is about at El. 675, which is about 240 feet lower than the modeled ground water surface elevation with fully-developed reservoir seepage. The ground surface elevation near the CRA is approximately EI. 1000, which is about 85 feet higher than the groundwater elevation predicted under worse-case conditions for seepage from the Lower Reservoir. Because the estimated ground water elevation is predicted to be well below the ground surface, no uplift forces are predicted on the concrete lining of the CRA. Based on the north-south seepage analysis of seepage from the Upper and Lower Reservoirs, the Lower Reservoir produced the greatest increases from the estimated ground water elevations; therefore, the Lower Reservoir seepage results were used to analyze the impacts to the CRA facilities. The CRA facilities that could potentially be impacted by reservoir seepage along the north-south profiles include the CRA Pump Station and CRA channel near the pump station, as shown on Figure 1. Based on the north-south seepage analysis from the Lower Reservoir, and assuming no seepage treatments and continuous seepage at the maximum reservoir water surface elevation, the estimated ground water elevation near the location of the CRA is estimated to reach approximately El. 745 feet, as

shown on Figure 9. The current static ground water elevation at this location is assumed to be about at El. 580 feet. However, this elevation may be conservatively high, because ground water wells and elevation data are not available at this location, but data was extrapolated to develop a conservative estimate. Therefore, the existing ground water elevation is estimated to be about 165 feet lower than the modeled ground water surface elevation with fully developed reservoir seepage. The ground surface elevation near the CRA is approximately El. 985 feet, which is estimated to be about 240 feet higher than the ground water elevation predicted under worse-case conditions for seepage from the Lower Reservoir. Because the estimated ground water elevation is predicted to be well below the ground surface, no uplift forces are predicted on the concrete lining of the CRA or at the pump station.

In addition, we estimate that the steady-state groundwater profile for the Lower Reservoir shown on Figure 7 will take at least 15 years to fully develop from the estimated seepage volume, assuming a two year filling period and the reservoir remains at the maximum water surface elevation after filling. We also estimate that the steady-state groundwater profiles for the Upper Reservoir shown on Figures 6 and 8 will take at least 50 years to fully develop, assuming a two year filling period and the reservoir remains at the maximum water surface elevation after filling. Furthermore, it is estimated to take at least 30 years for groundwater levels near the Upper Reservoir to reach and daylight at the nearest surface drainage channel. If the groundwater levels do daylight in the adjacent surface drainage channels, any seepage will be collected and conveyed to the Lower Reservoir. However, the reservoirs can never be completely full at the same time, and reservoir levels will cycle up and down in response to energy demands and hydroelectric operations. Realistically, we expect that the estimated steady-state groundwater levels from seepage from the Eagle Mountain Project may not fully develop during the estimated project service life of 50 years.

Hydrocompaction has also been identified as a potential impact that could be associated with seepage from reservoirs of the Eagle Mountain Project. The potential for hydrocompaction in soils is related to the grain size of the sediments and how they were deposited. Fan deposits, such as those present near the project site, when deposited by flash-flood type of events, are highly susceptible to compaction when wetted either from above or below. Under worse-case conditions, our analyses indicate that groundwater levels will be about 80 feet below ground surface and will not reach the near-surface zones where hydrocompaction would be the most problematic.

Studies conducted for MWD in the Chuckwalla Aquifer (Upper Chuckwalla Groundwater Basin StorageGeoPentech 2003) addressed hydrocompaction. The studies suggested that to depths of 100 feet, hydrocompaction could range from 0.56 to 1.8 percent, depending on soil composition. As such, surface subsidence may total from 0.5 to 1.8 feet. Therefore, additional reduction of seepage is needed and seepage recovery wells are needed to reduce hydrocompaction to negligible levels.

Other Seepage Treatment and Monitoring Measures

The Project plans to limit seepage from the project reservoirs to the maximum extent possible. This includes the Upper Reservoir, Lower Reservoir, and the brine disposal ponds that will be part of the water quality management system for the project, which is described in the draft License Application. A more-detailed hydrogeologic analysis will be prepared during final design of the project. We will also undertake detailed geologic mapping of the reservoirs during project design. Upon completion of the hydrogeologic analysis and detailed geologic

mapping, engineering design solutions will be provided to reduce seepage from the project reservoirs in order to reduce the potential for hydrocompaction and impacts to groundwater levels and water quality.

Seepage control from the project reservoirs will be accomplished using systematic procedures and steps that have been applied successfully at similar projects. These procedures will include the following:

- After access to the site is obtained, a team of geologists and geotechnical engineers will conduct a detailed reconnaissance of the reservoir basins and pond areas to identify zones where leakage and seepage would be expected to occur. These areas will include faults, fissures and cracks in the bedrock, and zones that have direct connection to the alluvial deposits of the Chuckwalla Valley. During the reconnaissance, the team will evaluate the effectiveness of various methods for seepage and leakage control to mitigate the effects of these particular features.
- Seepage and leakage control methods will be further investigated utilizing data from the geologic reconnaissance and hydrogeologic modeling studies.
 Potential methods for seepage and leakage control will include curtain grouting of the foundation beneath the dam footprint and around the reservoir rim, as needed; backfill concrete placement and/or slush grouting of the faults, fissures and cracks recognized in the field reconnaissance; placement of low permeability materials, as technically feasible, over zones too large to be grouted and over areas of alluvium within the Lower Reservoir; seepage and leakage collection systems positioned based on the results of the hydrogeologic analyses; and clay or membrane lining of the brine ponds associated with the project's water quality management system. The collection systems would recycle water into the project reservoirs or the RO (reverse osmosis) system.
- Design and construction of the seepage and leakage control measures, which will be aided by the results of the groundwater modeling.
- Design and construction of a comprehensive monitoring program, consisting of observation wells and piezometers that will be used to assess the effectiveness of the seepage and leakage control measures.
- Based on monitoring results, additional actions may be taken to further control leakage and seepage from the reservoirs and ponds. Such measures may include curtain grouting and the expansion of seepage and leakage collection systems.

We modified the seepage model described above to reflect implementation of the above noted measures, in addition to the use of seepage blankets on the bottom and flatter-sloped areas of the two reservoirs. We assumed that the following measures would provide the indicated levels of seepage reduction:

> Grouting measures in fractured bedrock zones are expected to reduce the effective seepage area by 30% in the Upper Reservoir and 20% in the Lower Reservoir. Grouting in the Lower Reservoir was not assumed to be possible or effective in the exposed alluvium on the eastern end of the reservoir. The

percentage reduction due to grouting of fractured bedrock zones was estimated based on rock quality index (RQI) test results from the earlier subsurface exploration programs. The RQI for the top 100 feet of the boreholes was averaged for each reservoir. The percentage reduction was estimated assuming 100-RQI_{avg} divided by two.

The exposed alluvium in the eastern portion of the Lower Reservoir extends over a total perimeter distance of approximately 5,000 feet with the maximum depth of approximately 315 feet below the normal water surface elevation. The average slope of the pit walls in this zone is about 3 to 1 (horizontal: vertical), although the upper half of the pit has steep slopes near 1.5 to 1 in inclination. A possible treatment option, which will be investigated during final design for feasibility and effectiveness, would be to blanket the entire zone with a stepped RCC or soil cement overlay. This would reduce the effective seepage area by at least 80%. However, this approach could be very expensive. Therefore, other treatment options will be explored during final design.

Results of these analyses are presented below:

Table 5. Upper Reservoir Se	eepage Analysis Results – Grouting and Seepage
Blanket	

	Parameter	Max.	Min.	Average
E C -	Unit Width Seepage Rate (cfs)	0.00126	0.00078	0.00102
3 THI LIN	Annual Seepage (ac-ft/yr)	1351	338	768
ER C	Unit Width Seepage Rate (cfs)	0.00124	0.00072	0.00098
5 THIO	Annual Seepage (ac-ft/yr)	1332	310	738
ER CK	Unit Width Seepage Rate (cfs)	0.00122	0.00061	0.00092
8 THIG	Annual Seepage (ac-ft/yr)	1308	265	689

cfs – cubic feet per second ac-ft/yr – acre-feet per year Max. – Maximum Min. – Minimum

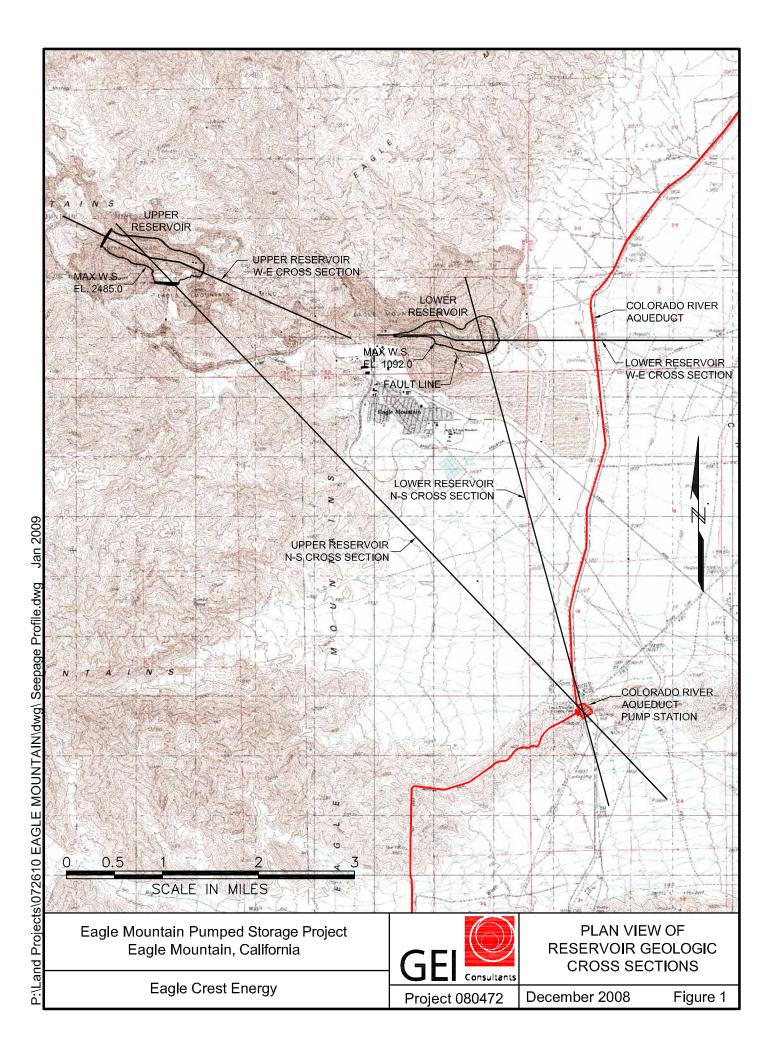
Table 6.	Lower Reservoir Seepage Analysis Results – Grouting, Seepage Blanket
	and RCC or Soil Cement Treatment over the Alluvium

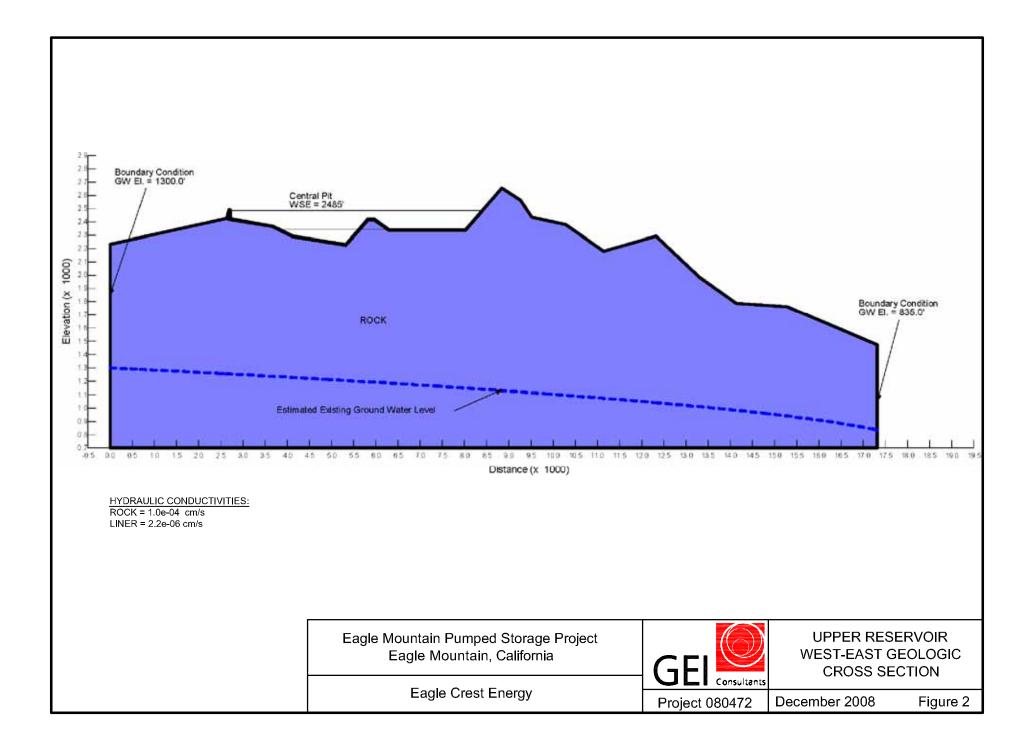
	Parameter	Max.	Min.	Average
ER C	Unit Width Seepage Rate (cfs)	0.00206	0.00135	0.00171
THI 3	Annual Seepage (ac-ft/yr)	1641	665	1099
ER C	Unit Width Seepage Rate (cfs)	0.00170	0.00106	0.00138
5 THI LIN	Annual Seepage (ac-ft/yr)	1358	521	890
ER C	Unit Width Seepage Rate (cfs)	0.00131	0.00090	0.00111
THI LIN	Annual Seepage (ac-ft/yr)	1045	443	713

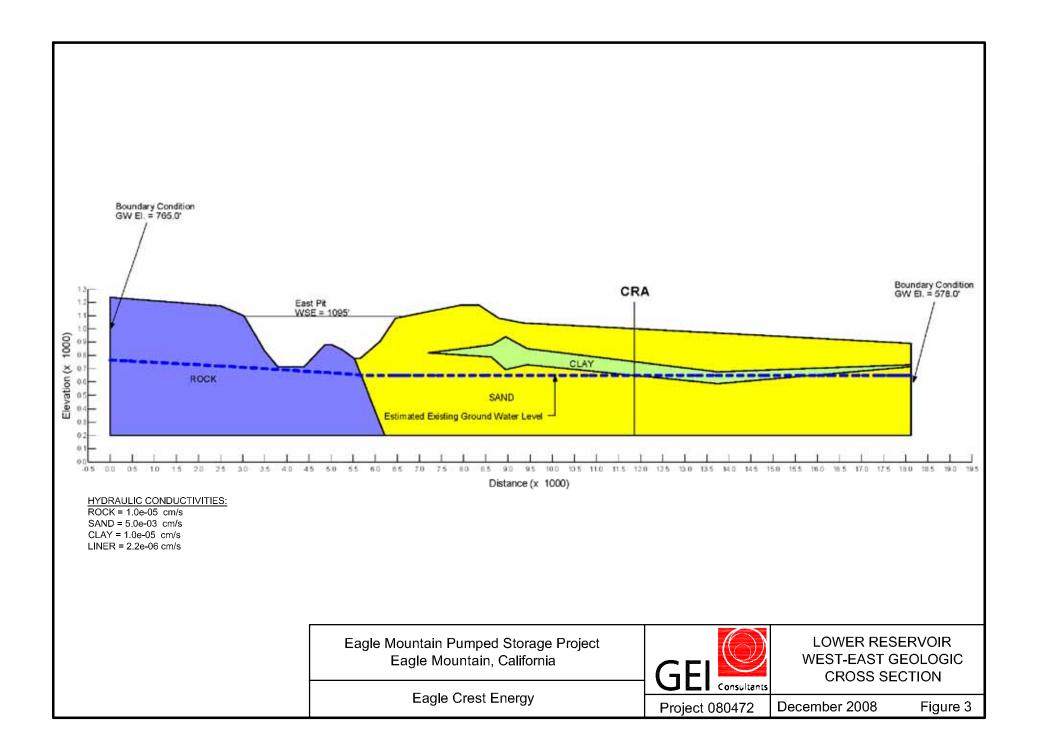
cfs – cubic feet per second ac-ft/yr – acre-feet per year

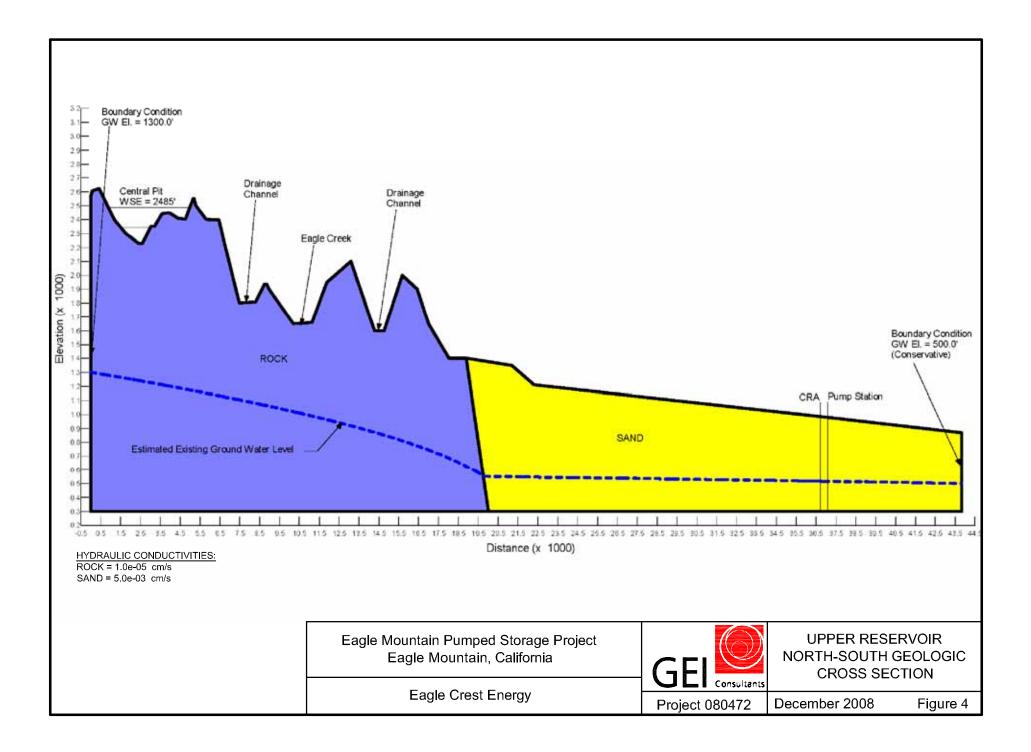
Max. – Maximum Min. – Minimum

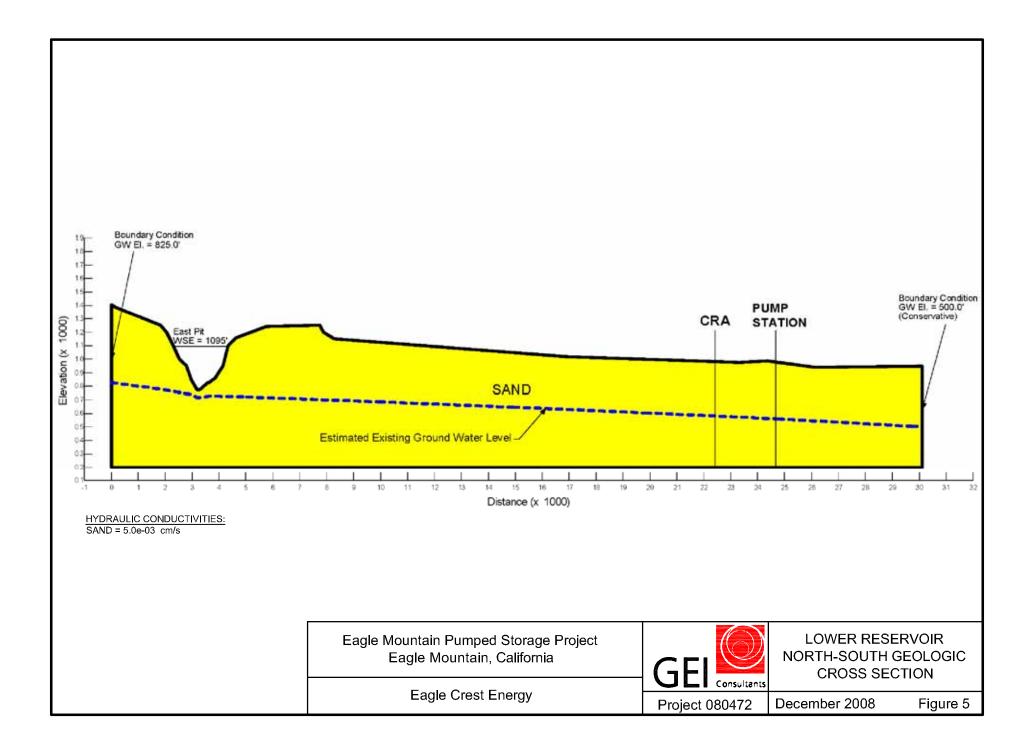
Based on the seepage analysis of the Upper Reservoir, the grouting of rock fractures could potentially reduce seepage from the reservoir an additional 200 to 300 acre-feet depending on the fine tailings blanket liner thickness. The estimated total reduction in average annual seepage volume from the Upper Reservoir, using both grouting and blanket liner, ranged from about 36 to 41 percent, depending on the liner thickness. The maximum reduction for the Upper Reservoir was approximately 500 acre-feet annually, with an eight-foot thick liner plus grouting in place. The estimated groundwater levels resulting from seepage from the Upper Reservoir utilizing the additional seepage control measures are shown on Figure 10 at maximum reservoir water surface elevation.

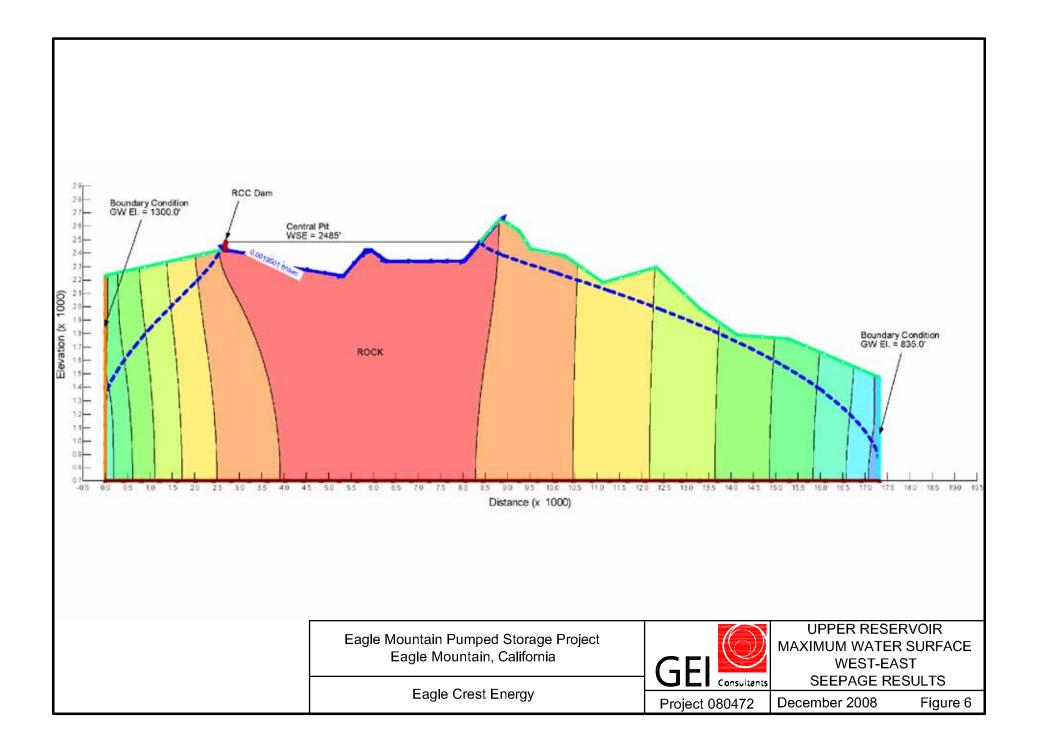

Based on the seepage analysis of the Lower Reservoir, the grouting of rock fractures and RCC or soil cement treatment on the alluvium could potentially reduce seepage from the reservoir an additional 600 to1,000 acre-feet depending on the fine tailings blanket liner thickness. The estimated total reduction in average annual seepage volume from the Lower Reservoir using a blanket liner, grouting rock fractures and treatment of alluvium, ranged from about 37 to 59 percent, depending on the liner thickness. The maximum reduction for the Lower Reservoir was approximately 1,000 acre-feet annually. The estimated groundwater levels resulting from seepage from the Lower Reservoir utilizing the additional seepage control measures are shown on Figure 11 at maximum reservoir water surface elevation.

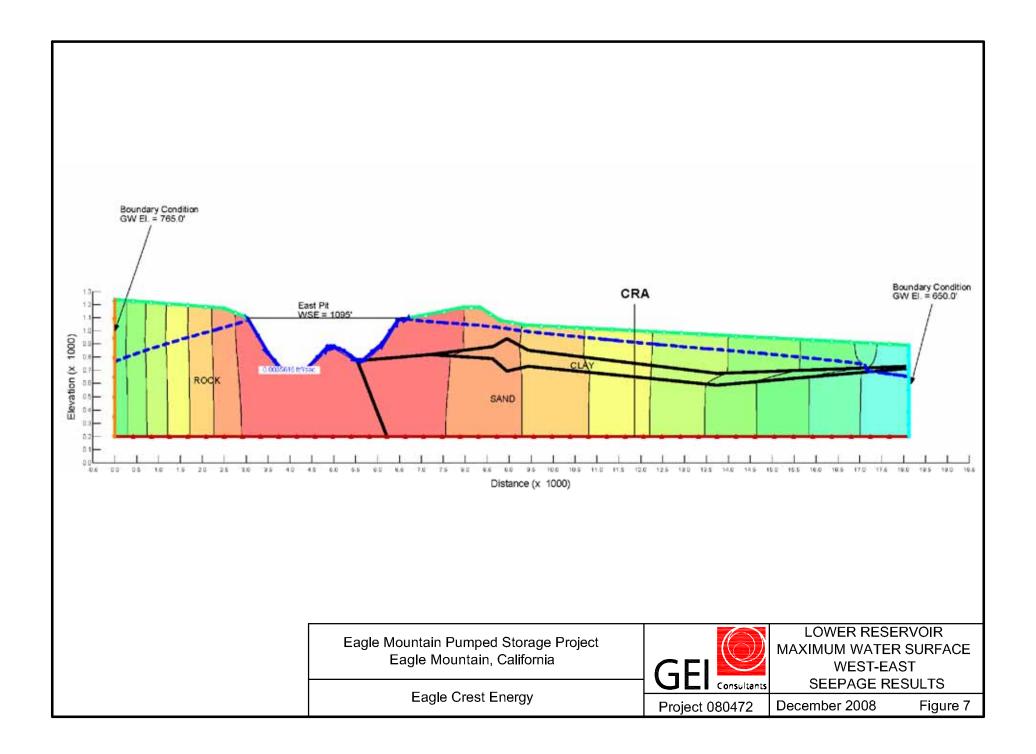

We anticipate that any water that may escape the engineered seepage and leakage solutions will be captured by groundwater wells that will be operated to mitigate above-normal hydrostatic pressures on the CRA. The groundwater level control wells will be operated to maintain the groundwater levels within <u>+5</u> feet of the historic levels in areas where hydrocompaction could potentially occur and adversely impact the CRA or other infrastructure. The combined pumping from the wells will be about 100 gpm from each of the proposed extraction wells for a total of 900 gpm. These wells will return the intercepted water to the Lower Reservoir. The wells, if found to be needed, will be located based on the results of detailed hydrogeologic modeling studies. Groundwater level and quality monitoring will be performed at monitoring wells and the project's extraction and water supply wells. Groundwater level and water quality sampling will be performed at:

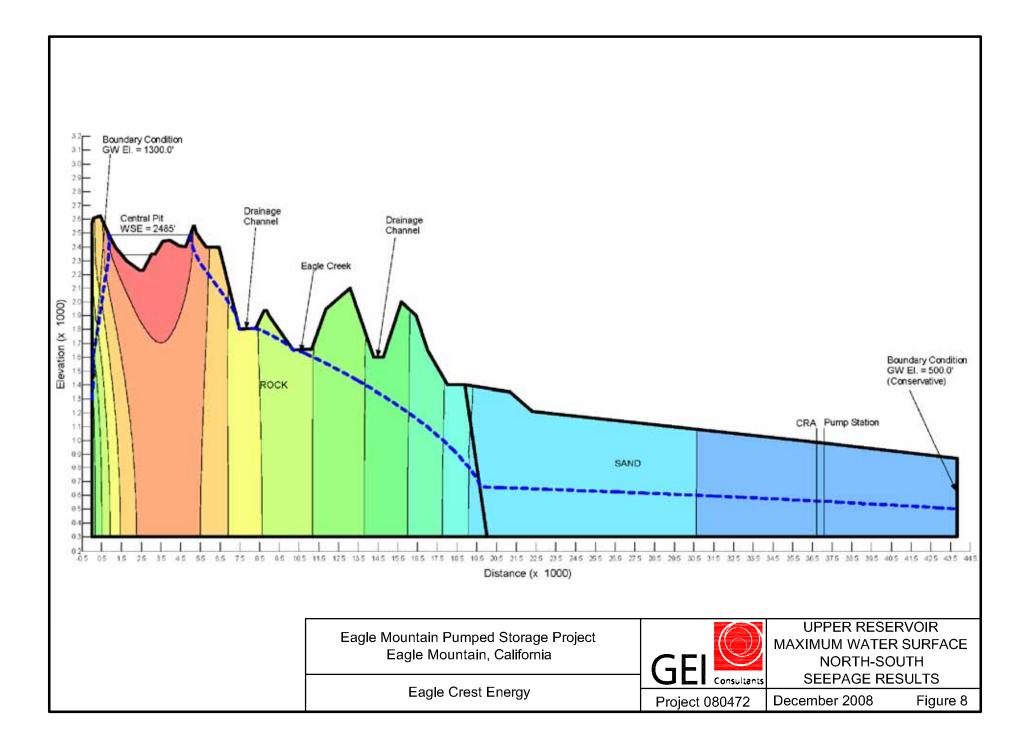

- One up-gradient and 3 to 5 down-gradient wells around each reservoir and the brine disposal pond to detect seepage.
- Nine monitoring wells in the valley sediments to assess changes related to seepage or from project pumping.
- Two residential/municipal wells nearest the project to ensure safe drinking water.
- Extraction wells
- Groundwater levels will initially be monitored on a monthly basis, which may later be extended to quarterly or annual monitoring. Water quality sampling and testing will be performed initially on a quarterly basis.

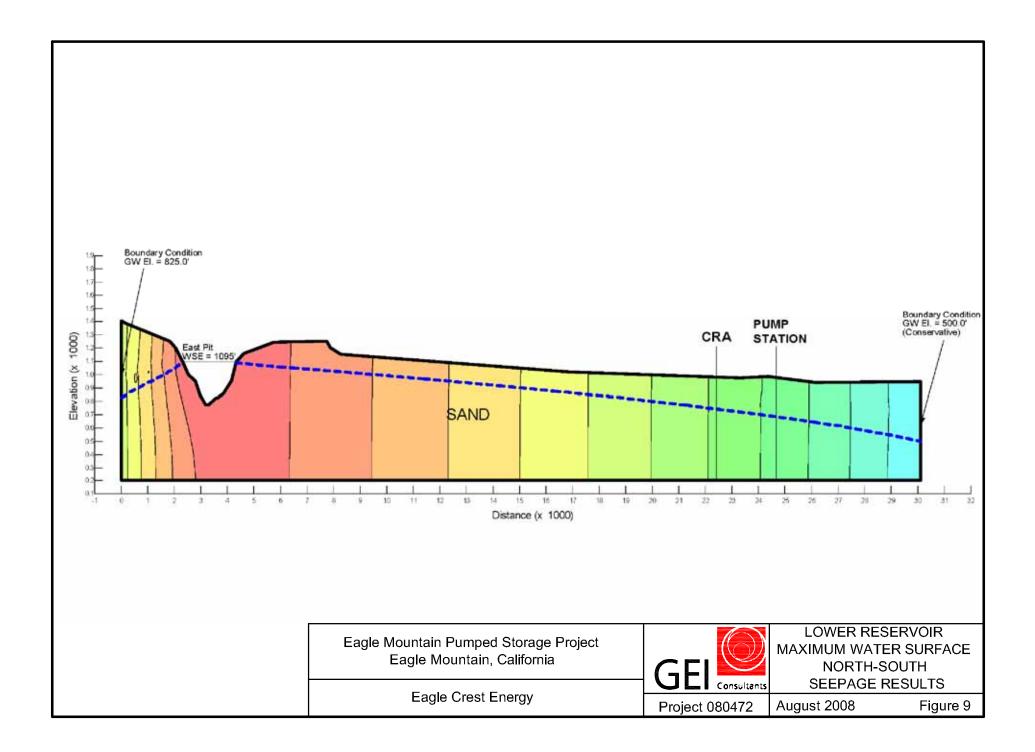

Based on implementation of the above-noted measures, we believe that our engineering design would mitigate any potential impacts to the CRA. The proposed measures to minimize and collect seepage will help insure that seepage emanating from the reservoirs is returned to the reservoirs prior to reaching the CRA.

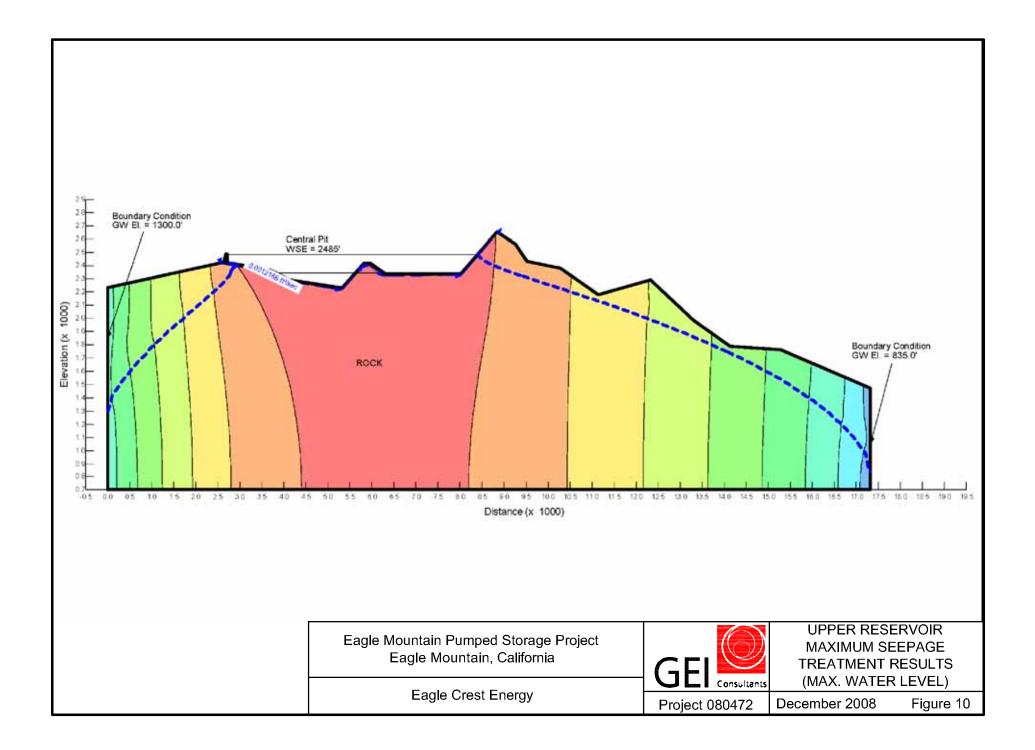

Source: GeoPentech, 2003. Upper Chuckwalla Groundwater Basin Storage, Draft Report. Produced for Metropolitan Water District.

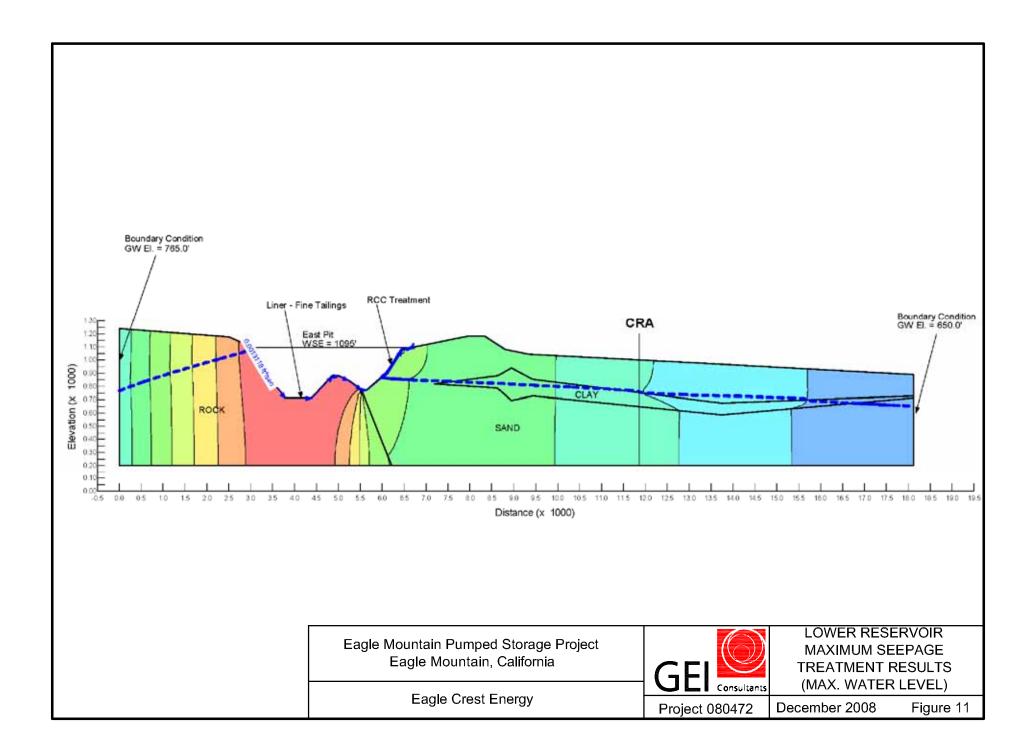












GEI Consultants, Inc.

EAGLE MOUNTAIN - CENTRAL PIT SEEPAGE RESULTS SEEPAGE BLANKET ONLY

Reservoir ParamtersMax WSE2485 ftMin WSE2343 ftMax Reservoir WSE Area48 acresMin Reservoir WSE Area191 acresMax WSE Average Top Width1485 ftMin WSE Average Top Width595 ftAverage Top Width1040 ft

	Parameter	Max	Min	Average
NO LINER	Unit Width Seepage Rate (cfs) Annual Seepage	0.00195	0.00124	0.00160
0 N	(ac-ft/yr)	2097	535	1202
3' THICK LINER	Unit Width Seepage Rate (cfs)	0.00178	0.00106	0.00142
3' TH LIN	Annual Seepage (ac-ft/yr)	1913	456	1068
THICK -INER	Unit Width Seepage Rate (cfs)	0.00174	0.00091	0.00133
5' TF LIN	Annual Seepage (ac-ft/yr)	1874	394	1000
8' THICK LINER	Unit Width Seepage Rate (cfs)	0.00170	0.00070	0.00120
11 II	Annual Seepage (ac-ft/yr)	1823	303	903

EAGLE MOUNTAIN - CENTRAL PIT SEEPAGE RESULTS GROUTING AND SEEPAGE BLANKET

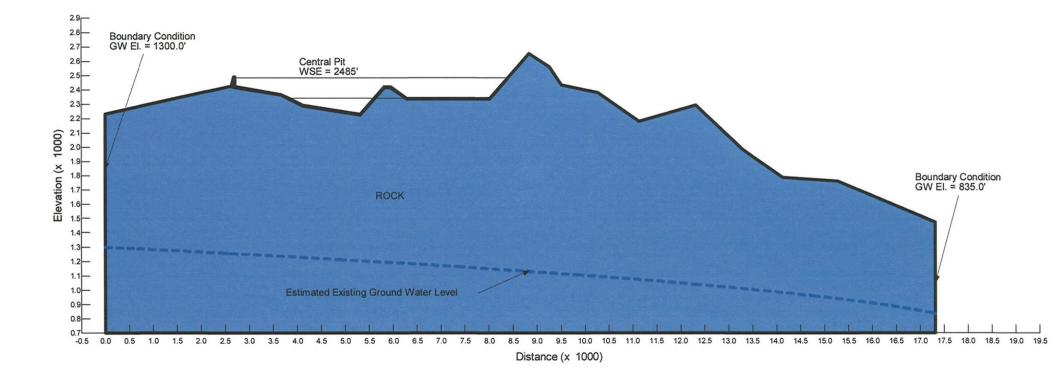
Reservoir Paramters		
Max WSE	2485 ft	
Min WSE	2343 ft	
Max Reservoir WSE Area	48 acres	
Min Reservoir WSE Area	191 acres	
Max WSE Average Top Width	1485 ft	
Min WSE Average Top Width	595 ft	
Average Top Width	1040 ft	

	Parameter	Max	Min	Average
NO LINER	Unit Width Seepage Rate (cfs) Annual Seepage	0.00195	0.00124	0.00160
	(ac-ft/yr)	2097	535	1202
3' THICK LINER	Unit Width Seepage Rate (cfs)	0.00126	0.00078	0.00102
	Annual Seepage (ac-ft/yr)	1351	338	768
5' THICK LINER	Unit Width Seepage Rate (cfs)	0.00124	0.00072	0.00098
	Annual Seepage (ac-ft/yr)	1332	310	738
8' THICK LINER	Unit Width Seepage Rate (cfs)	0.00122	0.00061	0.00092
	Annual Seepage (ac-ft/yr)	1308	265	689

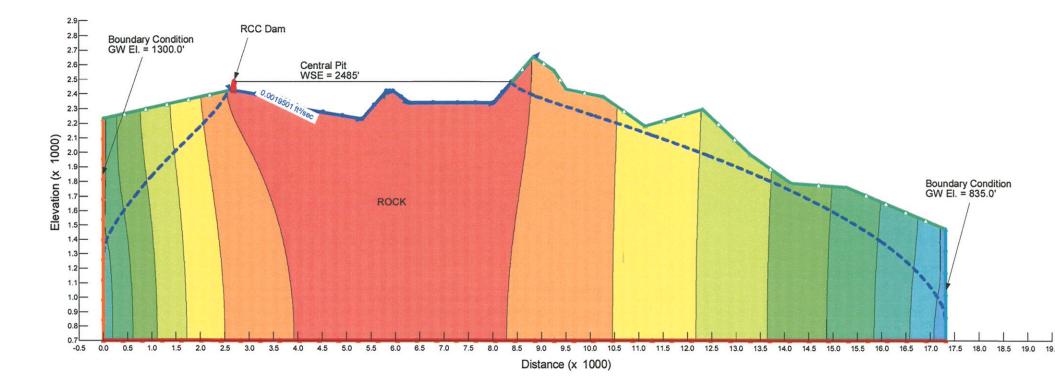
EAGLE MOUNTAIN - EAST PIT SEEPAGE RESULTS SEEPAGE BLANKET ONLY

Reservoir Paramters

Max WSE	1095 ft
Min WSE	925 ft
Max Reservoir WSE Area	163 acres
Min Reservoir WSE Area	63 acres
Max WSE Average Top Width	1100 ft
Min WSE Average Top Width	680 ft
Average Top Width	890 ft

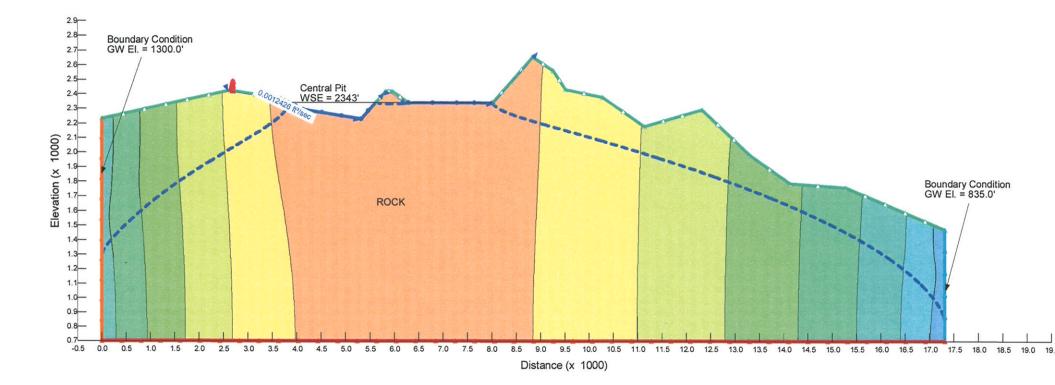

	Parameter	Max	Min	Average
NO LINER	Unit Width Seepage Rate (cfs) Annual Seepage (ac-ft/yr)	0.00356 2836	0.00181 891	0.00269 1731
3' THICK LINER	Unit Width Seepage Rate (cfs)	0.00348	0.00177	0.00262
	Annual Seepage (ac-ft/yr)	2768	871	1690
5' THICK LINER	Unit Width Seepage Rate (cfs)	0.00347	0.00175	0.00261
	Annual Seepage (ac-ft/yr)	2765	863	1683
8' THICK LINER	Unit Width Seepage Rate (cfs)	0.00347	0.00175	0.00261
	Annual Seepage (ac-ft/yr)	2764	860	1681

EAGLE MOUNTAIN - EAST PIT SEEPAGE RESULTS GROUTING, SEEPAGE BLANKET, AND RCC TREATMENT

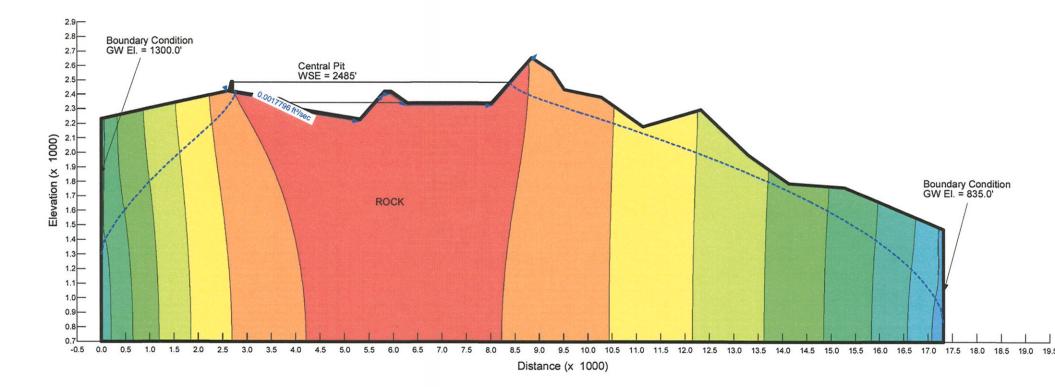

Reservoir Paramters

Max WSE	1095 ft
Min WSE	925 ft
Max Reservoir WSE Area	163 acres
Min Reservoir WSE Area	63 acres
Max WSE Average Top Width	1100 ft
Min WSE Average Top Width	680 ft
Average Top Width	890 ft
5 1	

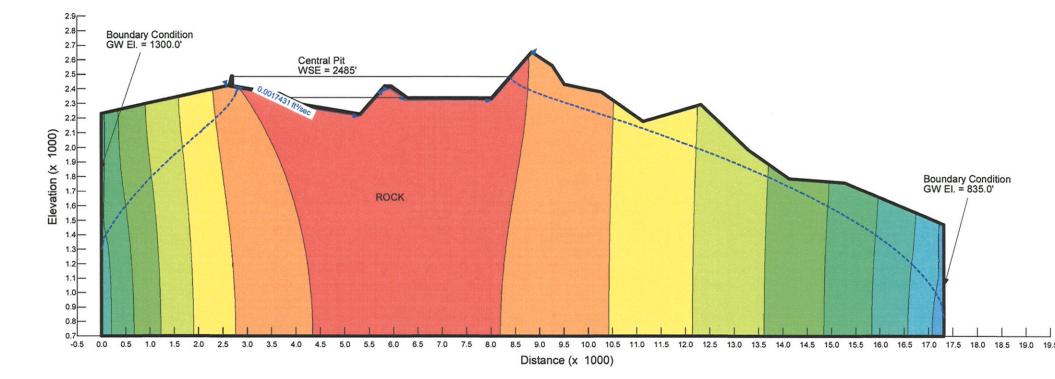
	Parameter	Max	Min	Average
NO LINER	Unit Width Seepage Rate (cfs)	0.00356	0.00181	0.00269
	Annual Seepage (ac-ft/yr)	2836	891	1731
3' THICK LINER	Unit Width Seepage Rate (cfs)	0.00206	0.00135	0.00171
	Annual Seepage (ac-ft/yr)	1641	665	1099
5' THICK LINER	Unit Width Seepage Rate (cfs)	0.00170	0.00106	0.00138
	Annual Seepage (ac-ft/yr)	1358	521	890
8' THICK LINER	Unit Width Seepage Rate (cfs)	0.00131	0.00090	0.00111
	Annual Seepage (ac-ft/yr)	1045	443	713

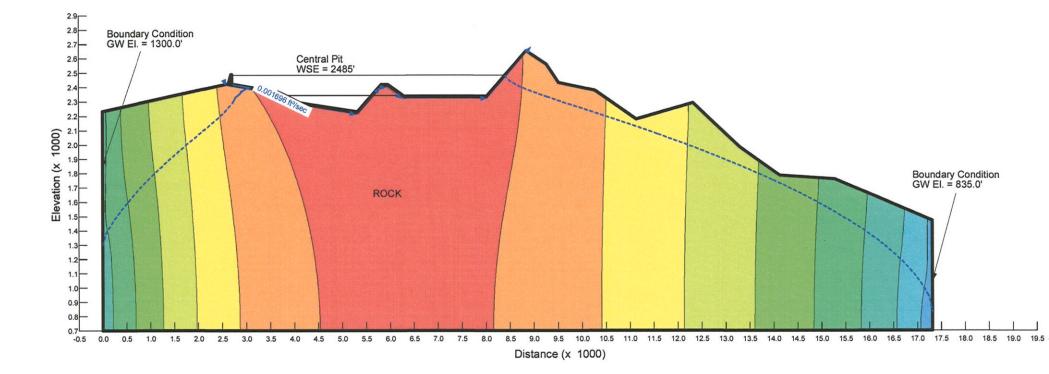


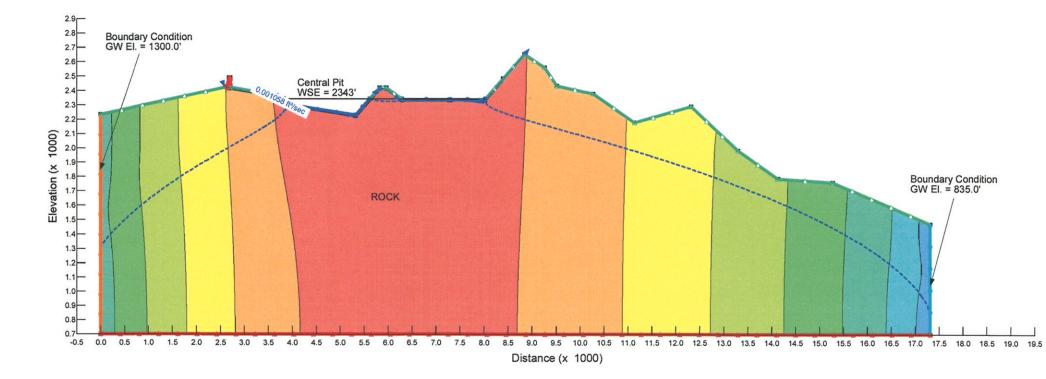
EXISTING CONDITIONS

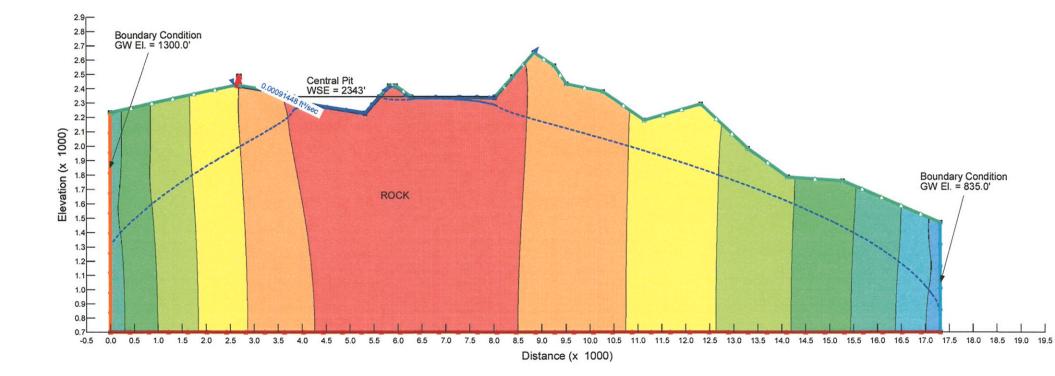


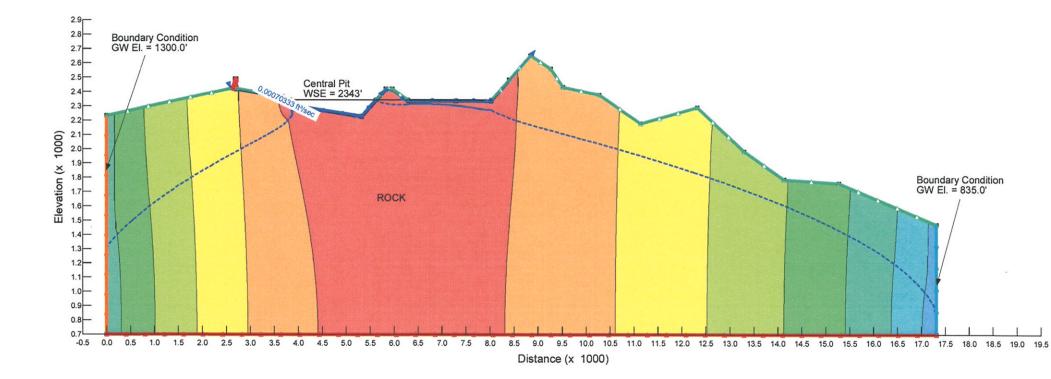
.

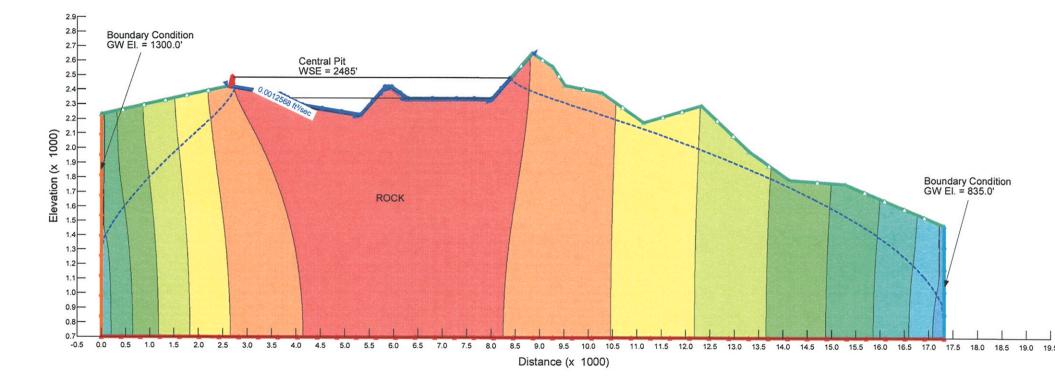

NO LINER

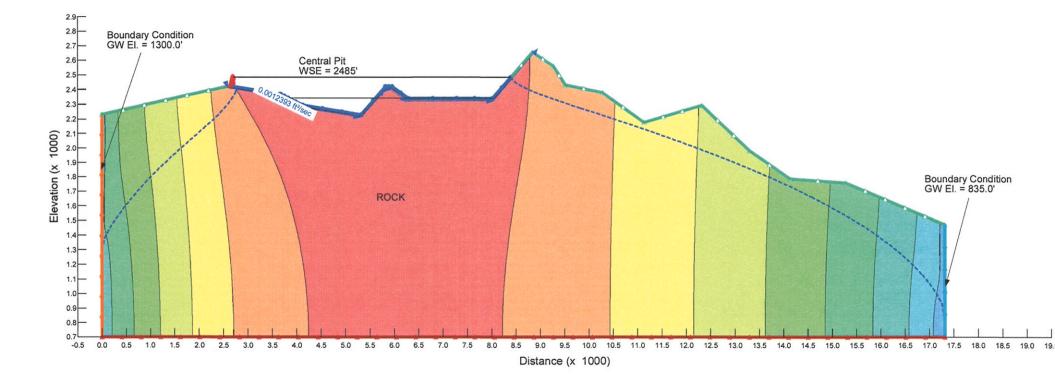

NO LINER

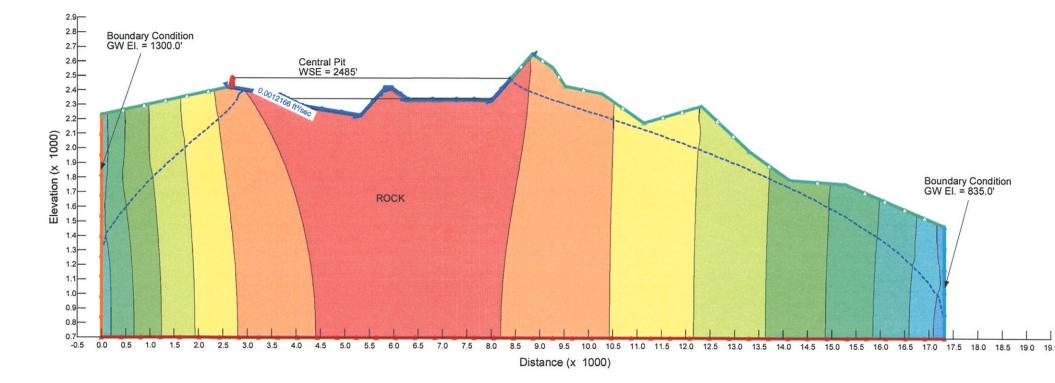

3' LINER

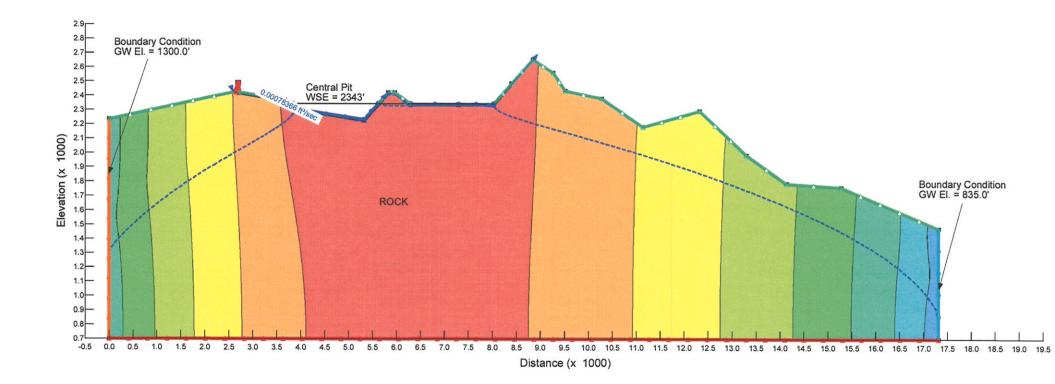


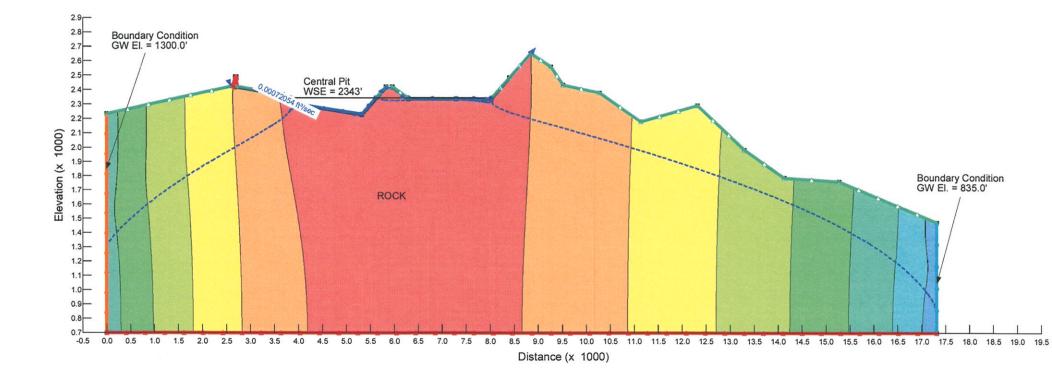

5' LINER

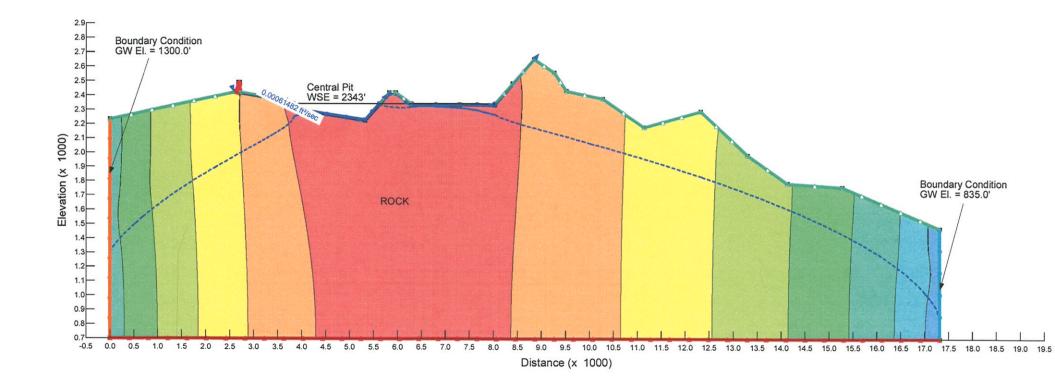


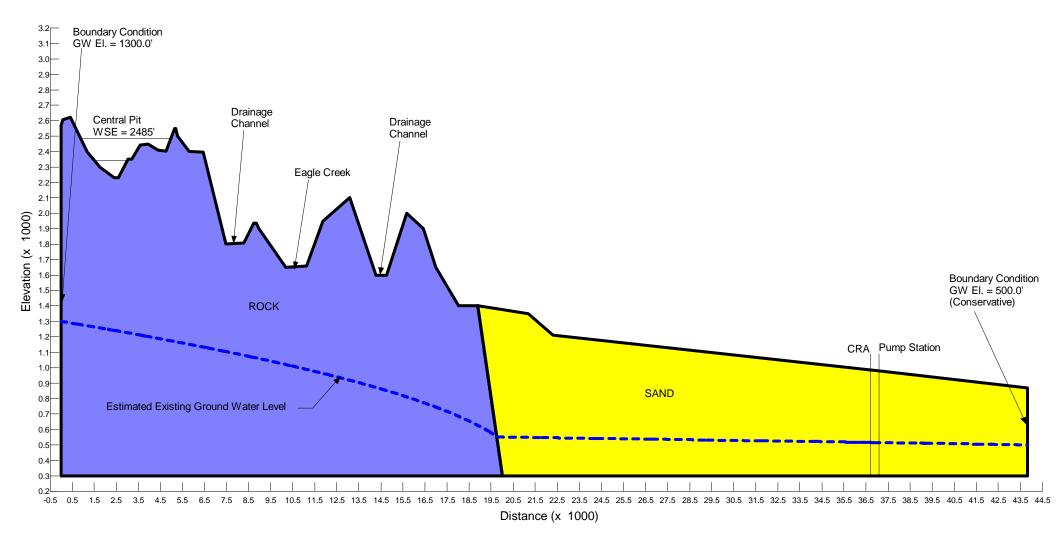

8' LINER

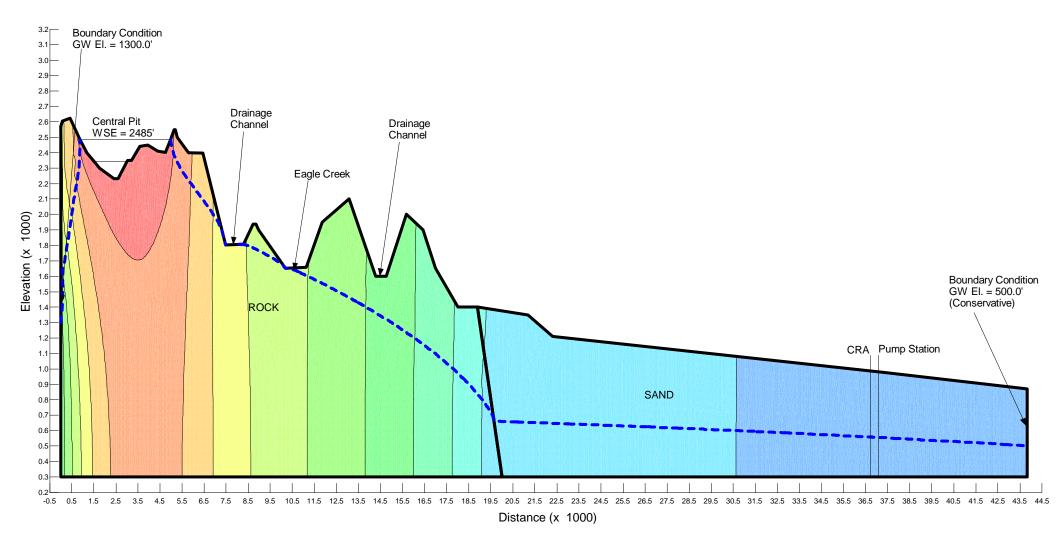


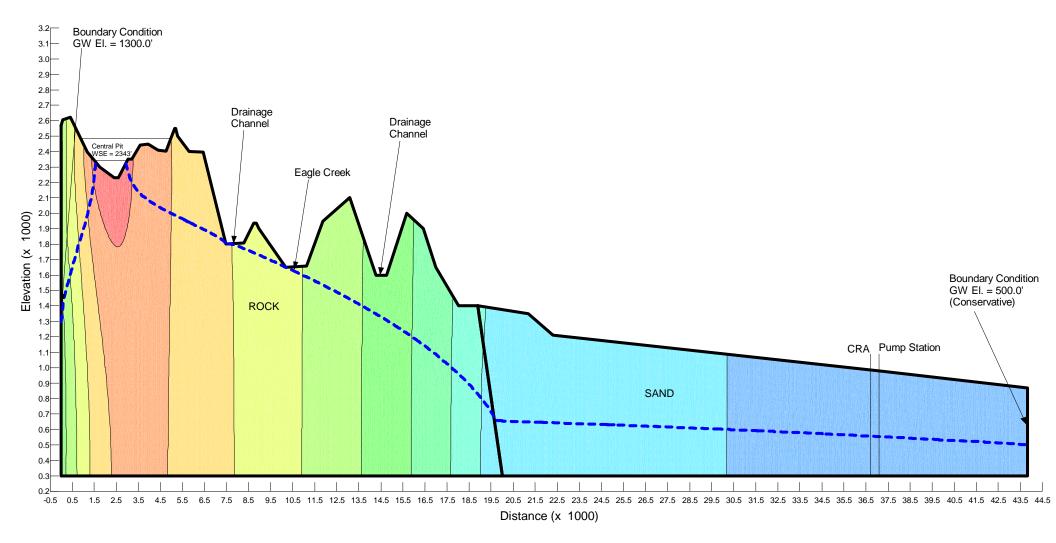


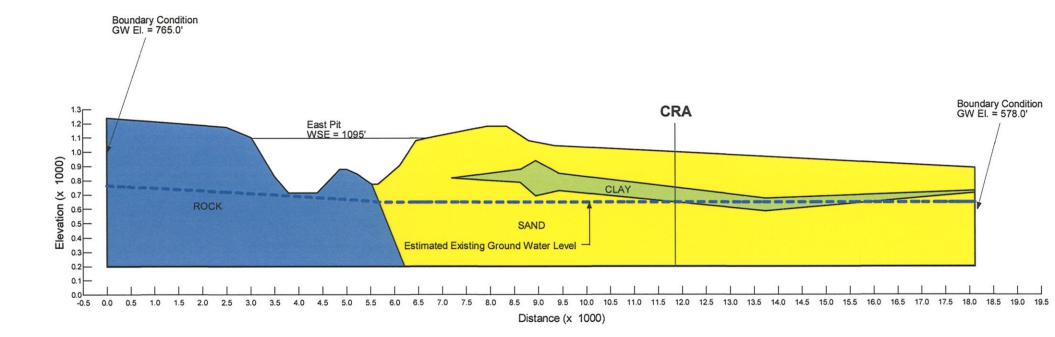


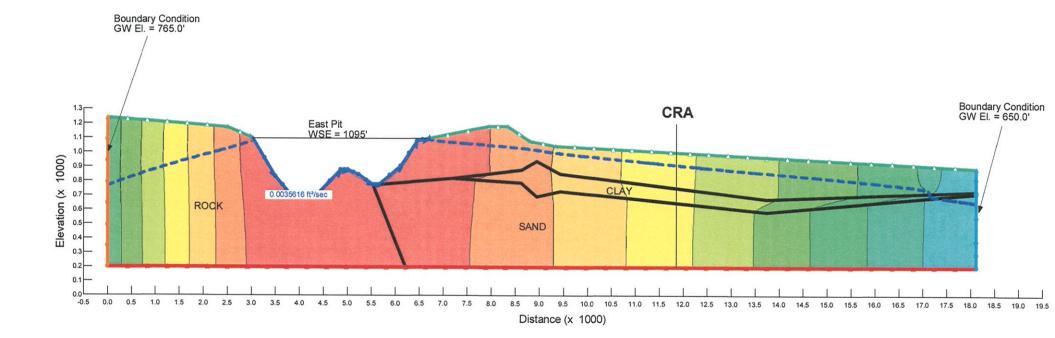


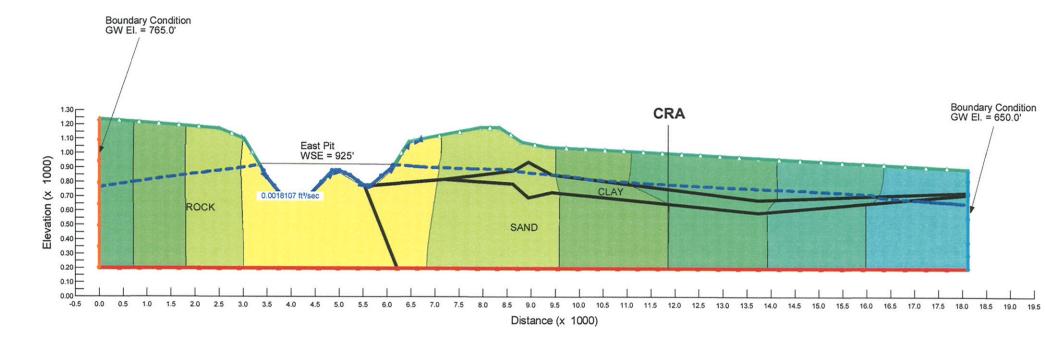


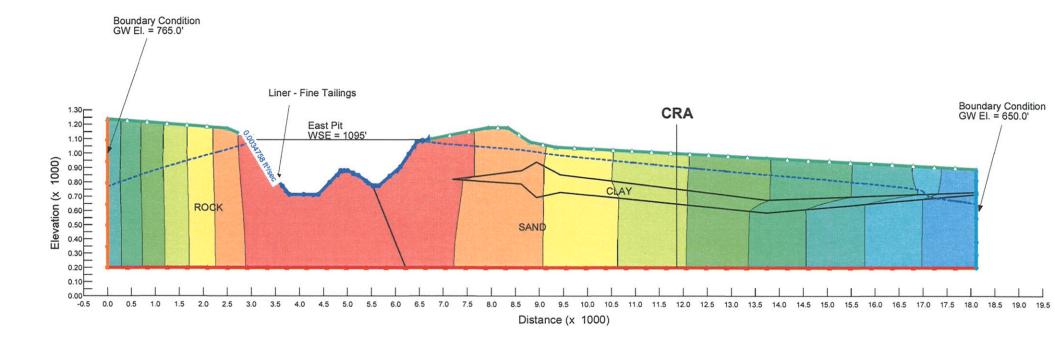


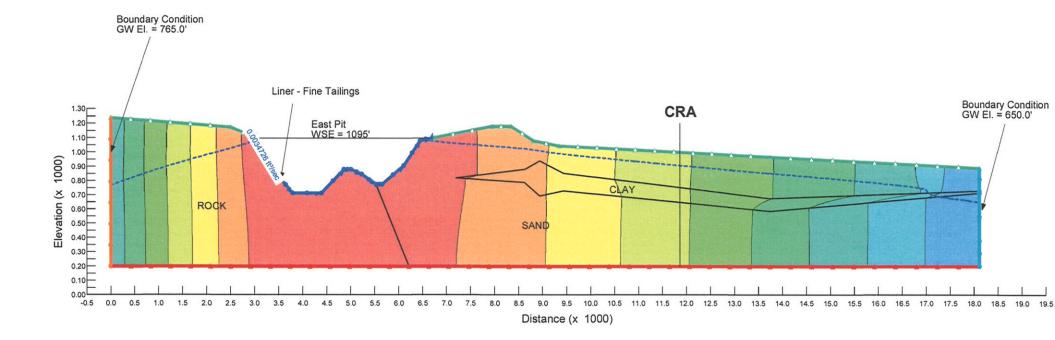


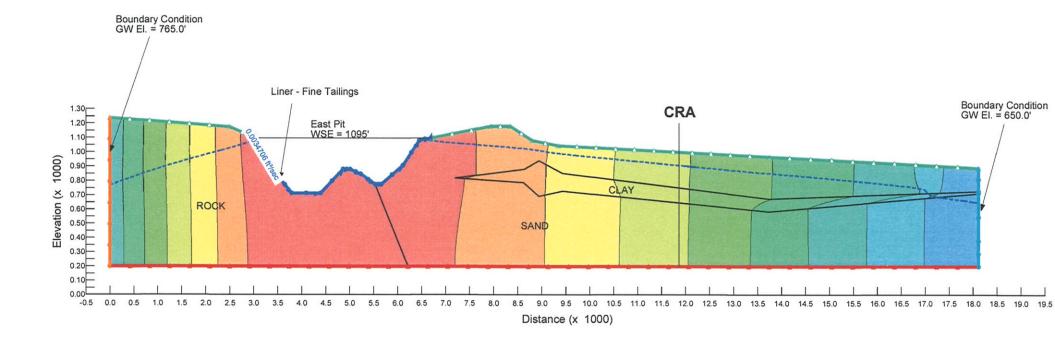


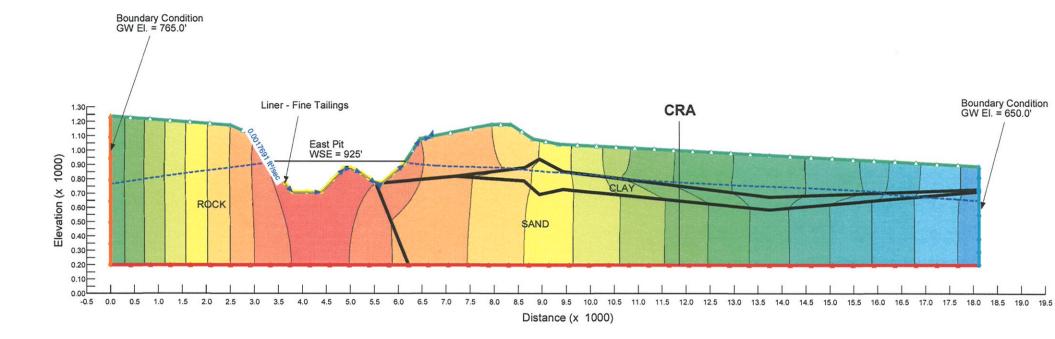


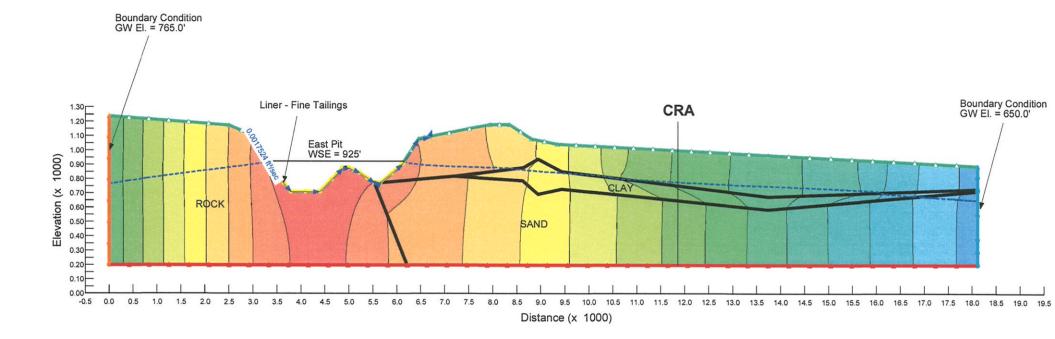


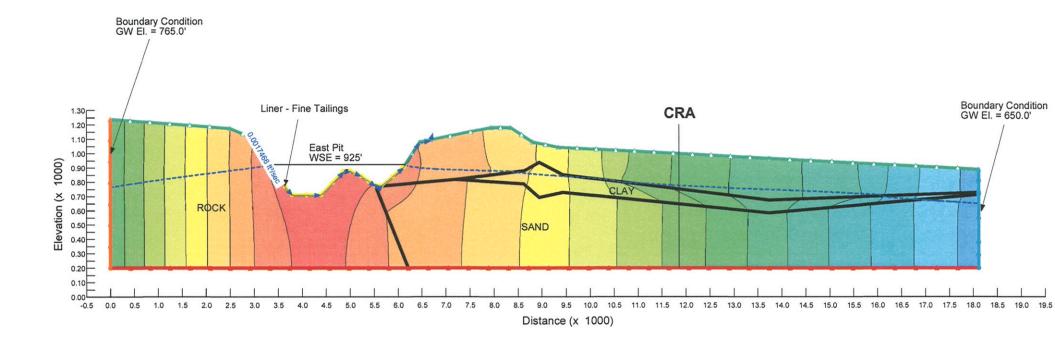

EXISTING CONDITIONS

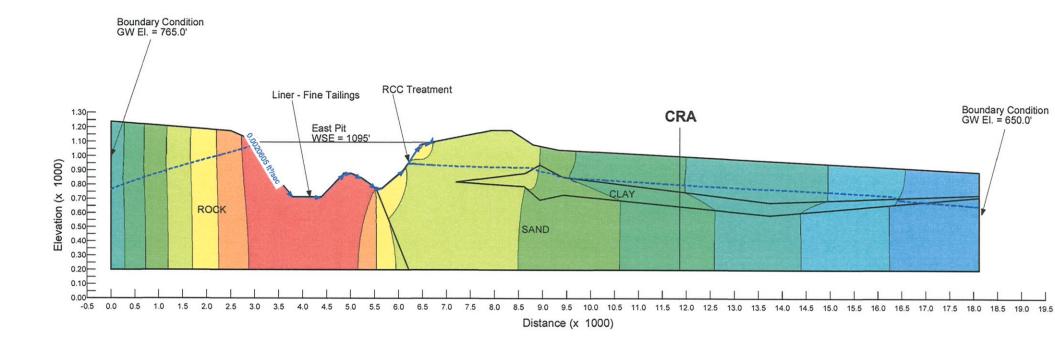


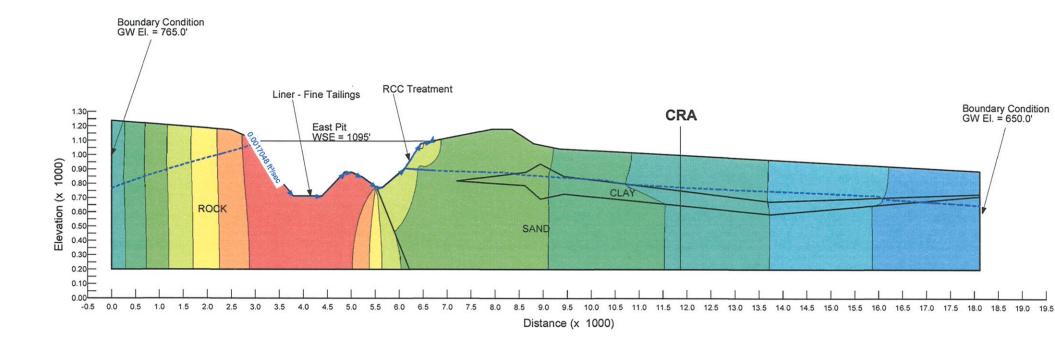

NO LINER

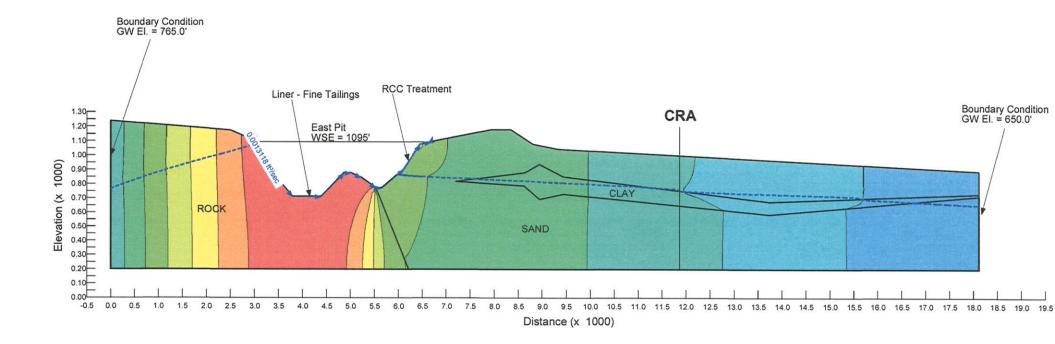


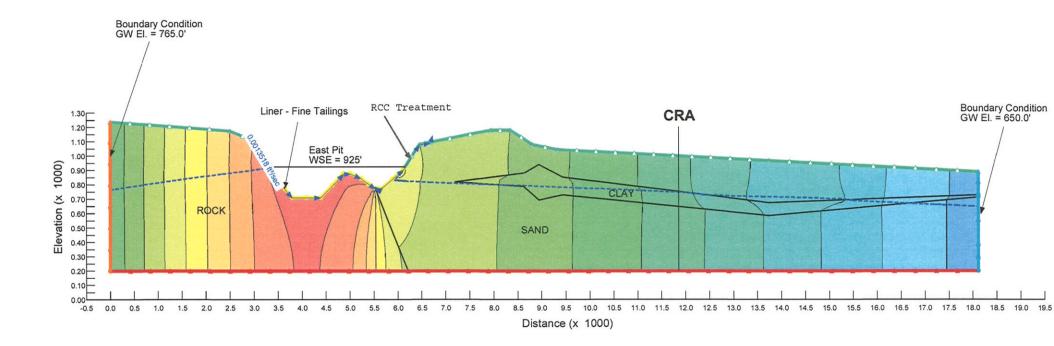

NO LINER

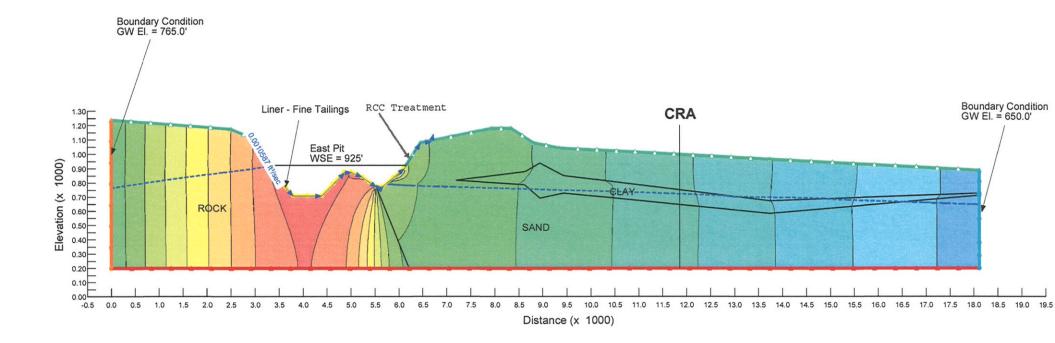


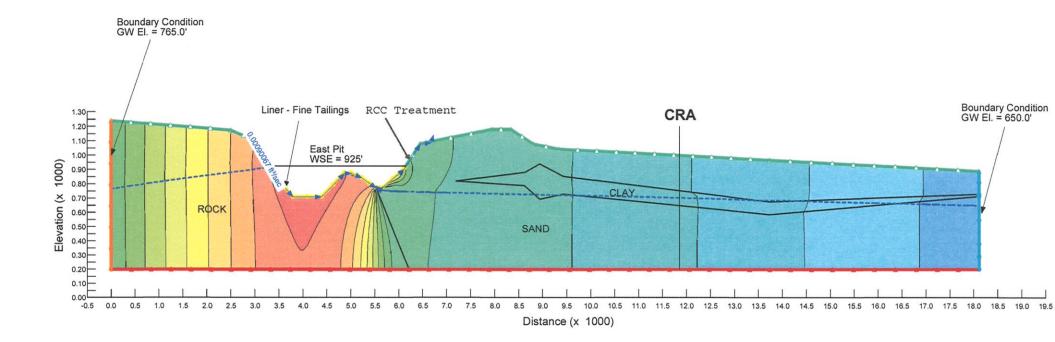


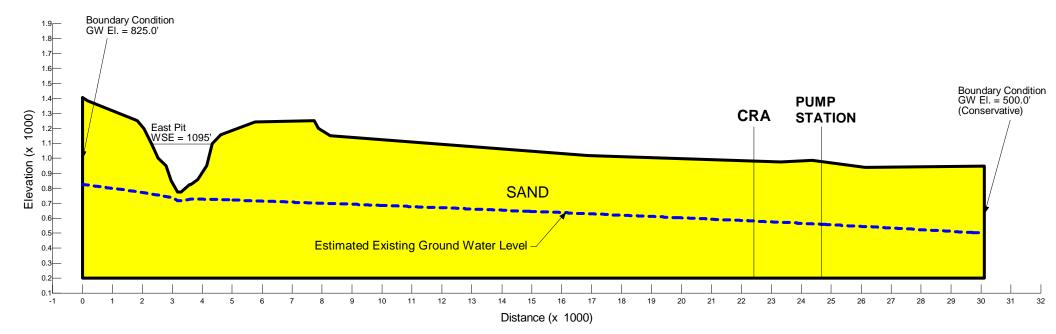


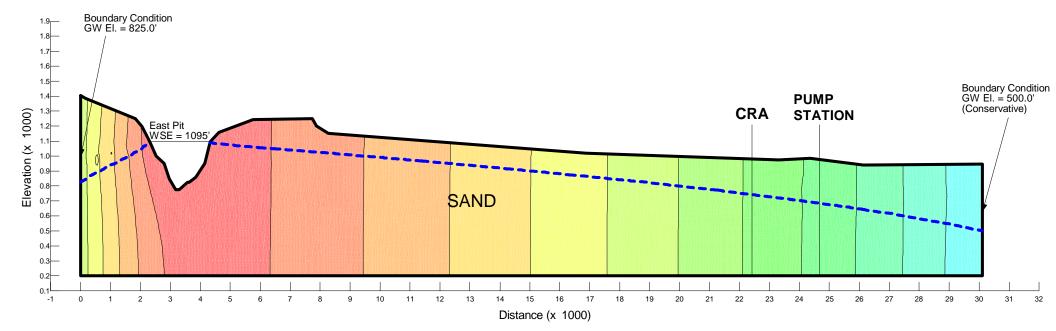


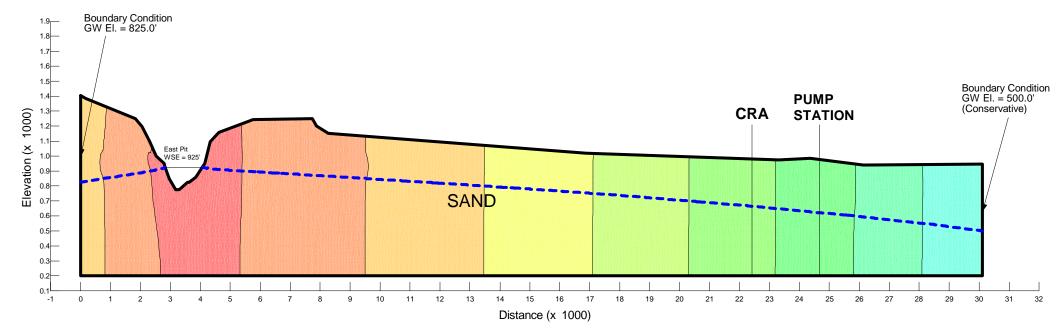







^{8&#}x27; LINER W/ GROUTING AND RCC TREATMENT




^{3&#}x27; LINER W/ GROUTING AND RCC TREATMENT

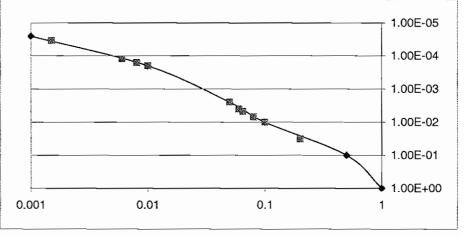
Material	Hydraulic Conductivity (cm/sec)	Hydraulic Conductivity (ft/sec)	Conductivity Ratio
Rock – Upper Reservoir			4
(Moderately Fractured) Rock – Lower Reservoir	1.00E-04	3.28E-06	1
(Slightly Fractured)	1.00E-05	3.28E-07	1
Sand	5.00E-03	1.64E-04	0.25
Clay (sandy)	1.00E-05	3.28E-07	1.00
Liner - (fine tailings)	2.16E-06	7.09E-08	1.00
RCC Treatment	1.00E-08	3.28E-10	1.00

Summary of SEEP/W Material Properties

Chuckwalla Report, Hydraulic Conductivities Summary

C-9 TP#2	Silty sand	SM SM	145	3.50E-05 1.20E-04
C-5 C-5	Clayey Sand Silty Sand	SC-SM	62	2.70E-07 3.00E-07
C-5	Fat Clay	СН	142	9.20E-10
C-1	Silty Sand	SM	322	3.00E-06
C-1	Clayey Sand	SC	201	2.10E-05
Boring C-1	Description Sand		Depth 201	(cm/sec) 1.00E-05
				Hydraulic Conductivity

SC


9.14E-05 1.06E-05

Emperical

				D5	Hydraulic Conductivity						
Boring	Description	USCS	Depth	(mm)	(cm/sec)						
C-1	Sand w/ Silt	SP-SM	17	0.08	7.00E-03						
C-1	Sand w/ Silt	SP-SM	58	0.06	4.00E-03						
C-1	Silty Sand	SM	101	0.0015	3.47E-05						
C-1	Sand w/ Silt	SP-SM	110	0.0015	3.47E-05						
C-1	Sand w/ Silt	SP-SM	123	0.008	1.61E-04						
C-1	Sand w/ Silt	SP-SM	423	0.06	4.00E-03						
C-5	Sand w/ Grave	SW	59	0.2	3.25E-02						
C-5	Gravel w/ S&S	GP-GM	81	0.05	2.50E-03						
C-5	Sand w/ Silt	SP-SM	101	0.1	1.00E-02						
C-5	Gravel w/ S&S	GP-GM	121	0.065	4.75E-03						
C-5	Sand w/ Silt	SP-SM	280	0.006	1.22E-04						
C-9	Sand w/ Silt	SW-SM	17	0.05	2.50E-03						
C-10	Sand w/ Silt	SP-SM	8	0.01	2.00E-04						
C-10	Sand w/ Silt	SP-SM	16	0.06	4.00E-03						
C-10	Sand	SP	78	0.08	7.00E-03						
C-10	Sand w/ Silt	SP	130	0.05	2.50E-03						
C-1	Sand	SP	201		1.00E-05						
Average 4.78E-											

Lookup Table

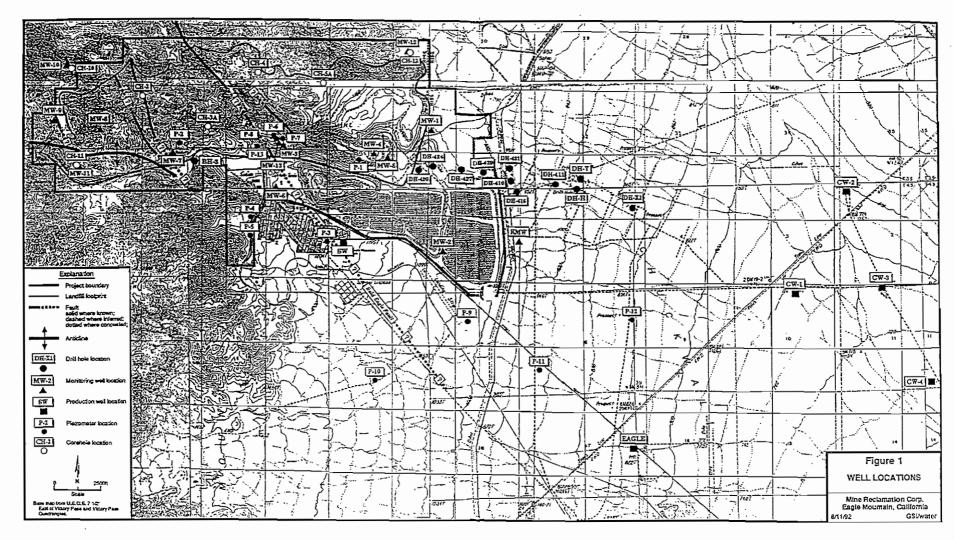
D5	Hydraulic Conductivity	
(mm)	(cm/sec)	Increment
0.001	2.50E-05	0.019444444
0.01	2.00E-04	0.057500000
0.05	2.50E-03	0.150000000
0.1	1.00E-02	0.225000000
0.5	1.00E-01	1.80000000
1	1.00E+00	1.000000000

Liner - Fine Tailings

Hydraulic Conductivities - cm/sec

riyaraano oo	11000	0111/000		
Test Type	Min	Max	Average	
Field	9.20E-09	4.30E-07	2.20E-07	
Lab	5.80E-09	8.20E-06	4.10E-06	
Average =	7.50E-09	4.32E-06	2.16E-06	cm/sec
	2.46E-10	1.42E-07	7.09E-08	ft/sec

1						сертн	CASING		SCREEN			DA	ULLING	HEIGHT	אדינב	ELEV.	516.92	\$20/52	6392	6/17/92	7/1/02	7/1592	7/2952	81352	1/21/32			r 200 1
SCHERCE	100	UDON .	GACIND	DEPTH	BOTTON	τo	BOLLON		NTERV	AL I	HOLE	0	ATES	OF	. 0 IST	OFIST	SWL	SYM_	SWL	SHL	SWL	SHA	SHA	SWL		SOREHOLE	REHARKS	
NO.	NORTHING	EASING	BEV.	DRILED	BÉV	BEDROCK	DEPTH	ELEV.	FROM	10	SZE	86GA	END	CASN3	WATER	WATER	ELEV.	ELEV.	ELEY.	ELEY.	BEV.	ELEY.	E.EV.	ELEV,	ELEV.	NQ.	1	
·~·]	STATION	OFFSET	គ	FT	ក	គ				1	N		1	FT	FT	FT	Fī	ក	173	FT	FT	FT.	FT.	FT	FT.		•	
MAN WELLS		COMMONTANT.	UNICASING:	-			DISTRICT OF								-	DK FLANA		COLORADOR MARCH	1.000	*****		12.075.00	Continitie IT	-	19216092	ACTIMELLS	HUMAN CONTRACTOR STATE	Charles and the second
M(#-1	6199558.371		1045.03	400		N/A	365		325	385			3/26/90	2.29	33824	705,791	206.15	705.37	705.57	725.78	705.95	706.63	708,44	705.15	705.15		MUD POTARY	SEE NOTE (1)
M7-2	618081481		1081.01	- 455		N/A	455			4551			44450	2.65		665111			692.84					68134	661.93		ARADIARY	(2)
CAN	61897739	22.2404.20	1048.84	360		- 1	1 350		223	- 350 (41050			760.41			764.011					756.01	751.74		REVEASE CHIC HANNER	(3)
4444	616642251	223/376-65	7673	140		ć			60	3408			32391			76.29	7830		733.68				7361	762.61	7273		REVERSE CONC HANNER	(2);
WA-3	618340.711	223160.12		245		· 25			180	240			32161			703.12			638.30					657Æ	666.73		REVERSE CHC. FAMMER	(5)
111-6	616696161	2225637	1347.80	640		460		7218	550	ŝ		(3/21/91					77214		772.55				749.39	766.56	7718		REVERSE CURC HAMMER	(3)
NOT-7	616416.641	2226557.46		765		-0							61451			81582		116.45	\$14.46	6120	SISA2	61574	\$73.73	015.A2	5185		ARHAMER	(2)
MWACLD)	619359.60	222201940	1768.54					NYA .	iwA .	NA (8/30/91			146.541											ARHAMMEN	(2) (4) (15)
WALKING MI	6:0050 48 (20201910	1768.54			1							42162		6.0	8054		699.23	67.26	2000	X6.64	10000	259.75	(33.00)	- 957 DA		ARHAMMER	151
MAN-9	6:9812.02	222205.54	226.00	1544				N/A		NA I			103191						1 1							wett-b	ARHAUMER .	(2) [4]
MM-10	628 8 28 1	221819.48	23135					113635		1173		21652		3.22		166.35	1464.85	1440,44			141527		12652		1202.82		IND HOTARY	(5)
NW-11	617755.19	222146753				20				916.7			3723/92			45025 j		1067		Sec. 17			\$15, <u>\$2</u>	¥1825			MUDROTARY AND ARHAMEH	(5) (12)
MA-12	624274.56	2236034.83		550		32				3			32592				663.65		656.11					645.44		MAY-12	ARRAMMER	151
MN-13	61600921	274245041			611.48		1 364,7						42552	1 23	310.0	741.48	776231	7/4.11	257.731	75277	753.61			760.04	758.4	E-MA	ARHAMAER	(5)
CONSTRUCTS:	001885112		100.000														21.20	1.1.7	Den Bar	12:29:324	water a		S	それのとや			States and an and a state of the	
CH+2	621263.17	222514.91		1129	110921		1 1179			NA			51392			1158.21				1120-201	1116,92	1115.57	1121.44		1117.29		0400	(\$) (14)
CHA	619921511	2223 5 50 70	1754.67		1077.67				IN/A	h∉A			3/21/92			NA (342	CORED	(+) (>) (15)
C1634	619921.91	2728510.79	1754.67			10							4/10/92		1 6591	836.67	976.75			207.33		207.59	91253	826 22			CORED'TRICONE 0:22	(14)
CH4	620160.421	2230915.46	1005.00			10							34992				1505.73	1501.73	1505-291	1496.06	1453.65	1491,65	1487.14	1487.9	1485.36		1004ED	(2) (7) (74)
Califa .	619921.911	2234444.35				13				N/A			42892													CHSA	0060	(5) (14)
Cri-10	622366.74				\$18.76		1369			80A			3552			664.76				120.50	1	131551		<u> </u>		CH-10	100HED	(¹) (14)
GH-11	517737381	2221490.64	1781.50			19				N/A			4/28/92			871.59	1									04-11	(CORED	(5)(14)(15)
CH-12	524300.12			- 53	662.09	37				N/A			51762			732.59				1						CH-12	CORED	(5)(14)
PERMINTON	3.000 A MAR	ACCESSION AND					975. X.C.T.L			2.9.40	. Story	347.92	45.04	1.950 600	RC101918	320341-41	44.7 Y C C C C	125-1200	100.00.000		1.5.27.5.16						MARANA MARAN	
P-1	615311.22		476.70			15							3/22/92					70027				601.73		607.33	597.66		AIR HAMMER	(6)
P-2	619059.91												4/22/92			669,16 681,77		917.49			918.91	\$20,25			10020		ARHANMER	(6)
3	613956.93	2234836.20	1241.77		566.77	181							4/28/92		354		736.49	736.31	13.4	76.19	735.27	734.97					ARHAMERESHCASE	(6)
4	615377,151					8							42892			862					81773	91925					AIRHAMMER & SALCASE	(5)
123	614425-18															767.51	-				779-51	918.08					ARHAMMER ISALCISE	(6)
P-6	619199.92						406						42692			76751	791.26		786.02	782-38				769.01	766.74		ARHAMAER	(6)
2-7	619091.96						1 423						4/26/92					765.39			756,14			754.38	751.84		ARTHAMMER	(6)
P-6	619090.92	27.0119					01 373						4265		5 475				599.58"	6 00 法		24,003		753.14	762.5		ARMAMER	(6)
P-p	•	}	1000		1506'	25							5652						159121	591,411			590.25	552.41	569.54		AIRHAMMER & SALCASE	(6)
P-10			1120		445	150							5/11/52												590.57		AIRHAMMER & SALCASE	(6)
P-11		<u>ا</u>	800			INA	470						5/18/82			506 H		576"	577.31		571.67	578.57	502.06	580.34	5/8		ARHAMMER & SALCASE	(6)
P-12		•	142		342	INA	500						5 6/3/95	2.5			_				800.71			503.B1	500.61		ARHAMMER & SMCASE	(6)
F-13			1328		ीद्धः –) (72		51 575	12			60.62	2	1 650				1 1				803.06	802.414	601.66	1413	ARHAMMER	(5)
MULICA:		ALE ELEVAIL	NOI Y	EL SOUTHE	120							KHIS DHE						GAMAD			includ	•						
1	(1) PIONEER													WHENDR	ω.			GULAN L										
1	(Z) BEYLKD	FLUNG									(71) VI	DEDFO	£					STAKEN										
1		WRONMENTA	LDRUUNG															BUDONE		-	~~~							
1	(4) NOT CON																ISANN S	ACCURA	e iontii	HUNEP								
	STONTOD	RUING		_																								
																											acherale LAIASLAMARY	ALC: I
																											UPDATED 8/27/92	- Calleria
																		_				_	_				Eagle Mountain Landil, Riverside Co. MIN: HECLAWATION CORPORA	
1																											MINE HELLAWALLIN CORPORA	GSiwater
1														_						<u> </u>								0.244/224


---- ---

.

BOREHOLE	LOCATO	*	GROLND	DEFTH	BOTTEM	DEPTH TO	CUSING		SCREENE	Ð	HOLE	DRIL			DEPTH TO 1ST	ELEV. OF 1ST	576522 SWL	5/20/52 5/4	6/392 5WL	6/17/52 SWL	7/1/62 544	7715992 SWL	7722922 SWL	67392 SWL	\$25.52 SWL	BORENZE	. REDWARKS
NO.	NOHTHENG	EASTING	BLEV. FT	FT	FT	BELROCK	DEPTH	ELEY.	FROM	10	SEZE N	BEGIN	END	CASNG	WATER	WATER	EEV.	EEV. FT	EEV. Fĩ	ELEY. FT	EEV.	BLEV.	EEV.	EEY.	EEV.	NO.	
DESERTIES	1		COMPLET ROCK	2443000	- ALARSAN -		Sur Birth	2 DUTINE	550 M 5 M 5 M 5	276757X	21763.21	TREETE			1-17-2-24		CHARDEN !	Marrie W	1. 10. 200	6110000	1000000	Sector States	1 5942.771	C) OFTEND		NEW PROPERTY	٢٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠
01420	617767.381	2240015.1	106273						L *				(-21			•	1	1	1 2525	660.11	860.44	65.44	658.44	660.33	DH-420	
01-21	617656.421				-93.46	570		I	1 - 1			11/2//54	12555 (666.18	645.03	00030	666.1	686.02	686.33	TEELS	EST L	245.07	DHAZI	
Di++11	61710426				1			<u> </u>						6.55			67219	673.03	673.17	6723	672.73	67267	672.03	1 670.74	6/1.42	DH411	
UHH (616745.201				14150	61		1				ារក្នុន		523				68438			656.89	6556	654.6		65185	DER	
Dh-Xi i	616114.491	2250430.42			398.71	12/5		<u> </u>	1 1			17742		12			645.45		64254		647.04	648.45	64529	1 648.85	644.21	DH+X;	
	617540.81	2478225	61508		63342	1155						2455	2:055	657			8522	675.56	675-63	6755	675.11	675.66	674.50	676.75	674.5	DHY	
		22453430			(<u> </u>	1 1					665			670.12	6922	660.92	66872	67120	669.08	66324	1 67034	666.45	01410	
06415	61666921 (2246550.52			1				1 1					02			622.68		684.17	662.84	T GROUGE	662.73	6212	664.5	GIZ MA	DH-415	
06424	617752.85	2245912.57			ł		<u> </u>		1	1				0.17			7.98.67	646.75	690.55	664.51	666.42	6668**	697.13	64715	608.13	Off-424	
HASC WELLS (であるのであるで、	10.000	#20mm		a substance	With Delivers	375.4	C. PERSON	222	マンドン	100102	STA1974	2 CUINN	20000	- CARANA	-	Since and	をようななど	2203208	28242200	ALCONE .	575024412	2002 16	3023862			AND THE REPORT OF THE PARTY OF
SCHOOL			1240		40.5	2:15	1 740	500					i	1.75				72.	1729	718.75	718.06*	718.46	716.62	716.25	718.33	50100	POIARY
CWan			74		1-666	1	• •												1			,				CWm	MUDROTARY
C1192	-		723		144.	1		25	3314					1.00				í .	1	4065	47042	456	469.34		464.83		MEDROTARY
CYACI			737		135	•		167	2/31	- 562				د _					1			(674.57	476.17	475.04		(MUD ROTARY
Christ	1		699		135	1	500	1169,	1/01	410									1								MLD ROTARY
KASERMA	6140222	2244687.13	978.49		1				1 1				1	2.25	1		\$69.41	669.16	666,41	66576	668.59	668.66	664.05	657.74	66759	KAISERMAN	4
					1	1			1						1						1						¢
						{	1								(-)							1	1			ł	1
							<u> </u>								1								-	1		1	1
					-		1	1	<u> </u>			-			•					L		1		1			1
					1	\$			1 1			<u> </u>			•												4
			<u> </u>		<u> </u>	1			<u> </u>			<u> </u>				i i						1		1			
				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	()			<u> </u>							1			•		· · · ·			
				<u> </u>	<u> </u>	1	<u> </u>	1	<u> </u>			<u> </u>						in the second second	•		_			-			· · · · · · · · · · · · · · · · · · ·
					1	<u> </u>			1 1						<u> </u>								ŧ	-			
					<u> </u>	1	<u> </u>	<u> </u>	!!							1							1	-			
				<u> </u>	<u> </u>	<u> </u>	·	<u> </u>	1 1				<u> </u>						1				f				
			I	<u> </u>		-	<u> </u>	<u> </u>			<u> </u>	<u> </u>							1				•	· ·	_		
			<u> </u>	<u> </u>					-			<u> </u>		1								ł					
			<u> </u>			<u> </u>		<u> </u>										<u> </u>	•			1.	•	1			
-			<u> </u>	<u> </u>		1		1			<u> </u>		1									1	1	1		1	
	<u> </u>	_	!		<u> </u>			<u> </u>	1										1		1		1	1			
	1 1		1	1	,		l	<u> </u>	<u>, </u>	_	1		1	٤					1		<u> </u>	1	1	1 1			
NOTES		ATE ELEVATO		EFOOT								:															
																											UPDATED 827/92 UPDATED 827/92 Eade Mourtain Lendel, Riverside County, Calornia
				_													_										MINE RECLAMATION CORPORATION

-

---- **

 \bigcirc

۰.

BORING	a LU	G	_						SCS
PROJECT: EA	ICLE HOUR	ITAN				HOLE / W	ET 6:	WW-1	
LOCATION :						DUMETER: 10"			
JOB NUMBER :	ະລ				TOTALD	EPTH: 4	icc '	(#3) db - thei 742(23: d7-bd	
GEOLOGIST / E	NGINEER :	3. GA	REACCE	o/K.	USTER	DATE ST	ARTED :	APRIL 27, 1989	\square
CRILLER: PO	NEER					CATE CO	MPLETE	MAY 18, 1989	
	AUNG FE					SAMPLA	KG DEVICE	: <u> </u>	
CRILING METH	00: MUC	ROTA	RY			PAGE :	1 0	F 7	
DEPTH SAMPLE	~~~	PLETON	N DETAL		SAUPLE	aLOW COUNTS/ FOOT	LSCS SYNIBOL	DESCRIPTION	ж
0			്രാഹം	etta XNG NALAT EA				D/RECT AIR ROTARY U STEEL CASING	SED TO SET
3 4 7 5 6	5* 5*		10.					LIGHT TAN SILTY FRE COARSE SAND WITH 2 BOULDERS > 1 FOOT BORCHOLE 1 FOOT GRANTE WITH EPIDO AND WHOR MAGNETT	S'N GRAVEL TO 2 OBSERVED N IS MOSTLY TE, VEN QUART2
7 8 9 	NO PYC		10	€764 R.				CRE	
10			*		1				
11-			88) 1						
12								MUD BOTARY	
13								MLD REMOVES FINES	
14-									
15									
1			8	~					
16	1		1.1		L				
16			*		1			1	
17									

BORING LOG

.~.

PROJECT : EAGL JOB NUMBER: 00					₽: M(W+1 3 CIF 7
DEPTH (FEET) SUMPLE	COMPLETION DETAIL	SAUPLE	BLOW COUNTS/ FOOT	USCS STUBOL	DESCRIPTION
100					SAME AS ABOVE 40% QUARTZ 40% FELDSPAR, 20% DARK COLORED GRANS
105	7 Dualita No PPC				CUTTINGS ARE COARSE SAND SIZED SOM CULARTZ, 40% FELDSPAR, 10% DARK COLORED GRANS
	CONCIST REMOVIT SPOLIT				45% QUARTZ 40% FELDSPAR, 15% DARK COLORED GRAINS
140					50% CUARTZ 35% FELDSPAR 15%
150					DARX COLORED GRAINS

BORING LOG

PROJECT : EACL JOB NUMBER: 01					JF: MEW-1 4 OF 7
DEPTH SAMPLE	COMPLETION DETAIL	SUPLE	BLOW COUNTS / FOOT	uscs Stwaal	DESCRIPTION
155					45%, QUARTZ, 40%, FELDSPAR, 15%, DARK COLORED GRANS
170	SUBSTRATE SUBJECT				180° - 246° SAT - CLAY, VERY LITTLE SAND IN CUTTINGS, SLOW DRILLING
200					

PROJECT: EAG COBINUMBER: 0			HOLE/WELL#: H.W-1 PAGE: 5 OF 7					
DEPTH (FEET) SAMPLE	COMPLETIC	IN DETAIL	SUPLE	BLOW COUNTS/ FOOT	3565 5711801	DESCRIPTION		
220 225 235 240 240 240 240 240 240 240 240 240 255	S' DAMETTR SO-régule B PC	CONSTITUTION				2004RSE SAND SIZED GRANS, SURROUNDED TO ANGLIAR 50% OUARTIZ 25% FELDSRAZ 25% EPIDOT IRON ORE, GRANITE FRAGMENTS 200° COBBLES - BOULDERS 264° COBBLES - BOULDERS		
		BENTCHITE						
280		a Montaner Suc						

BORING LOG

BORING LOG

		LE MOUN						.#: ₩₩-1 5 QF 7
DEPTH (FEET)	SUMPLE	1	IPLETICH DE	TAL	SAMPLE	BLOW COUNTS/ FOOT	usas snuea	DESCRIPTION
285 -				13 NOXTENEY				284'- 280' COBBLES - BOULDERS
290				SINC BROCES R HOLE				
		SINGETER	3333 3333					
				HOLE CAY{3				CCARSE SAND SIZED CUTTINGS, 30%
								QUARTZ, 30% FELDSPAR, 10% EPIDOTE
 			9355 1935					
J15								
			11111 11111	MATME				318" COBBLES - BOULDERS
1 1				301				
H H								228' - 330' COBBLES - BOULDERS
_								
-202		89. 19. 19. 19. 19. 19. 19. 19. 19. 19. 1						
30								
345								

PROJECT : EACLE MOUNTAIN 109 NUMBER: 0187073.03		
DEPTH (FEET) SUPLE		
250 355 365 3773 365 366 366 366 366 366 366 366 366 366 366 366 366 366 366 360 366 360		

ORIN		<u>JG</u>		_		_	_		SCS
PROJECT: E	AGLE MOU!	TAIN				HOLE	ELL : E	H 4 / MW 2	2711 Long boost Ser
LOCATION :						CIAMETE	R: 10*		Lang Sman, CA
CB NUMBER	1: 0187073	20 .				TOTALD	EFTH	455.	(213) 435 - 1644 743 (213) 627 - 3808
CEOLOGIST /	ENGINEER	€. G	ABRA	000		DATE ST	ARTED .	MARCH 25, 1990	
RILLER BE								D : APFUL 4, 1990	
RILL RIG . P									
SRILLING MET	HOD. AIR	ROTA	RY/MU		¥	FACE :	1	OF 9	
EPTH SAMPL	LE CO	MPLETA	ON DET	AR	SAMPLE 1	BLOW COUNTS/ FOOT	USCS SYMBOL	DESCRIPT	сн
	13" 10" 20METER STEEL PLAFACE CASHO DUNETER			LOCK-MG NORMENT CONCRETE GROUT TO SURFACE			\$2-50	START WITH AUGER T SURFACE CASING 0-15'-TAN - LIGHT BI SAND WITH GRAVEL BOULDERS (TO 6' O SUBANGULAR TO SU GRANITE, OLARTZITE 15'-60'- ORILLED WI HAMMER	COWN CLAYEY COBBLES AND SSERVED); SROUNDED; URON ORE; DRY
13 14 15 16 17 18 19 20	CARCH STEEL CUSHO MTM WELDED DOLPLING						SP	SAND WITH GRAVEL GRANITE WITH GREE ALTERATION, CALC S QUARTIZTE: IRON OF SMALLER FRACTION (FRAGMENTS OF LA 20'- SLIGHT CAVING	NSCHIST RUCATE ROCK E: NO CEMENT, IS MORE ANGULAI

PROJECT : EAG				GE . 2	9: BH 4/ MW 2 OF 9
DEPTH (FEET) SAMPLE	COMPLETION DETAIL	SAMPLE CO	UNTS; ONTS;	USCS SYMBOL	DESCRIPTION
	4- COMPLICING CO			SP SP-GW	40 - FINES ARE LOST FROM CYCLONE COARSE SAND AND GRAVEL TO 2 OSSERVED ANGULAR TO SUBROUNDED, GRANITE, IFON ORE QUARTZITE: NO CEMENT OR CLAY DESERVED 40 - 45 - BEGIN TO GET INTO CEMENTED ZONE, SEVERAL OF THE 0.1 - 0.2 ' GRAVEL GRAINS HAVE TAN CLAY COATINGS 60 - SWITCH TO 5 - TRICONE SIT SAND AND GRAVEL TO 1 ' OBSERVED. ANGULAR TO SUBROUNDED, WHOLE CLASTS AND PIECES OF LARGER ROCKS, NO CLAY OR CEMENT: GRANITE, QUARTZTE, IFON ORE PALE GREEN MARBLE, EPIDOTE; DRY 75 - TRACE CEMENT ON 0.1 - 0.2" GRAVEL 80 - 85 - SMALL PIECES OF GRAVEL ARE PARTLY COATED WITH CLAY CEMENT, LARGE QUANTITY OF FINE PROWN CLAY IN DUST FROM CYCLONE, COHESIVE WHEN WET; DRY

BORING

ROJECT : EAGLI OB NUMBER: 01	E MOUNTAIN 187073.09		PAC	3E. 3	9: EH 4/ MW 2 OF 9
DEPTH SAMPLE	COMPLETION DETAIL	SWIPLE	BLOW COUNTS/ FOOT	USCS SYMBOL	DESCRIPTION
					95 - GRAVEL HAS CLAY CCATINGS, VERY LITTLE CLAY IN FINES 100 CCARSE SAND WITH CLOX GRAVEL: FINES ARE NOT COHESIVE WHEN WET: GRAVEL HAS SAND GRAINS CEMENTED TO IT, DRY 105 - 110 SAND WITH 10 - 30% GRAVEL TO 1 - VERY UTTLE FINES; GRAVEL HAS CLAY CEMENT COATINGS, MOSTLY SUBBOUNDED; GRANTE FINE GRAINED CALC SUCATE ROCK EPIDDTE: WHITE GUARTETE, RED BROWN VESICULAR VOLCANIC OR DIKE ROCK 125 - SAME AS ABOVE 125 - SAME AS ABOVE

FROJECT EAG			KLE/WE⊟L GÆ: 4	#: 2H4/MW2 OF 9
DEPTH (FEET)	COMPLETION DETAIL	SUIPLE COUNTS/	USCS SYMBOL	DESCRIPTION
150	4. CABON A- CABON A- CA		sc	165'+ - CLAY RICH ZONE WITH SAND - 20% GRAVEL TO 0.5" (MOSTLY < 0.3") OBSERVED, SUBANGULAR TO SUBROUNDED, CLAY COATNOS ON SOME PIECES; META. ARKOSE, GRANITE, OUARTZITE, IRON ORE; DRY
 180	WELGED 1		sc.cc	180'- 185'+ - CLAY RICH ZONE WITH COARSE TO VERY COARSE SAND AND GRAVEL GRAVEL IS ANGULAR TO SUBROUNDED, GRANITE, QUARTZITE, IRON ORE; DRY
190			cı	1901 - CLAY FICH ZONE WITH < 20% SAND AND GRAVEL, CLAY IS LIGHT TAN (MEDIUM PINK: BROWN WHEN WET), GRAVEL INCLUDES GRANITE, IFON ORE (MAGNETITE), DORITE, OUARIZ, EPIDOTE
200			SP ∕ GW	195" - COARSE SAND AND GRAVEL TO 0.5", MOSTLY ANGULAR CHIPS OF GRANITE AND IRON ORE (MAGNETITE)
-			sc	205 - CLAY WITH SAND AND GRAVEL TO 0.5 - DESERVED, ANGULAR TO SUBROUNDED, GRANTE, IRON ORE, QUARTZITE, EPIDOTE; DRY

BOHING

ROJECT : EAGL			£/WELL4 ≆: 5	9: 6H.4/MW-2 OF 9
EPTH SAMPLE	 SAMPLE	BLOW COLNTS / FOOT	USCS SYMBOL	DESCRIPTION
	r		SP SC-GC SC-GC	GRANITE, MARIC DIKE ROOK, OUAH (216

PROJECT EAG				XL≣/WELL GE: 6	.#: BH #/ MW 2 OF 9
DEPTH (FEET) SAMPLE	COMPLETION DETAIL	SAMPLE	BLOW COLNTS (FOOT	USCS SYMBOL	JESCRIPTION
270	4 5 5 5 5 5 5 5 5 5 5 5 5 5			SP . GW	280°-300°- CLAY WITH OCARSE - VERY COARSE SAND AND GRAVEL TO 0.7° OSSERVED, MOSTLY ANGULAR CHIPS OF QUARTZITE AND GRANITE; SUBAOUNDED - ROUNDED IRON ORE, META-ARKOSE, GRANITE; DRY
310				SP	310°- CLAY WITH SAND AND <10% GRAVEL TO 0.5° OBSERVED, SUBROUNDED, DORTE, FINE GRANIED CALC SUCATE ROCK, OLIARTIZITE, MARC DIRE ROCK; AGGREGATES OF CEMENTED SAND; DRY
				SR-GW	25' - CLAY WITH SAND AND 10 - 20% GRAVEL TO 0.5 ' OBSERVED, MOSTLY ANGULAR TO SUBANGULAR, GRANTE, OUATIZITE, FINE GRANED CALD SULCATE ROCK: SOME GRANS HAVE CLAY COATINGS: DRY

BORING

PROJECT : EAGL	EMOUNTAIN			三/WELL	#: 2H4/MW2 OF 9
CB NUMBER: 01	87073.09		PAC BLOW		
DEPTH SAMPLE	COMPLETION DETAIL	SAMPLE	FOOT	USCS SYMEOL	DESCRIPTION
				sc	20 - CLAY RICH ZONE SAND WITH GRAVEL TO 1 - OBSERVED. SUBANGULAR, GRANITE, DRY
340				CL	340°- 345°- CLAY WITH APPROXIMATELY 10% SAND, CLAY HAS A TRACE OF MOISTURE
					346 - 347 - TRACE MOISTURE IN CLAY, GRAVEL HAS MOIST COATINGS 348 - RED IRON ORE IN CUTTINGS
*4	CUMETER				
360-				sc	365 - CLAY WITH SAND
370	SECTIONITE SECTION				- - 0 67
		LE33		G	375'- DRY 380'- CLAY WITH GRAVEL TO 0.5" CRESERVED, MOSTLY FINE GRAVED
380	20- STADLESS STEL BLANK CUSHO	BCTDR			OBSERVED, MOSTEL THE VERY CAL SUGATE ROCK CLAY IS VERY SUGATLY MOIST

PROJECT : EAG JOB NUMBER: 0				KE/W€LL GE: 8	.≇ EH 4/ MW 2 CF 3
DEPTH (FEET) SAMPLE	COMPLETION DETAIL	SAMPLE	BLOW COUNTS / FOCT	USCS STUBOL	DESCRIPTION
390		V ATTOR LEVEL LEVEL DEVELOP- LEVIT - 200"		SP	390 396 COARSE SAND AND GRAVEL WITH AGGREGATES OF SAND CEMENTED TOGETHER
400		V 3-79-60 WATER LEVEL AUSES TO 400 CVERWENT		SP	400 * - LET HOLE STAND OPEN ROR 15 MINUTES - NO WATER 405 * - CCARSE SAND WITH MINOR GRAVEL, GRANTE AND IRON ORE (MAGNETITE)
430	11				
420					INJECT WATER
				SW	425 - 430 - FINE TO COARSE SAND (NOT TYPICAL) WITH 410% GRAVEL TO 0.3 - OBSERVED, ANGULAR, CLEAN - NO CEMENT, MOSTLY GRANITE WITH TRACE MANGNETIC IRON ORE
					435 * 440 * DRILL THROUGH BOULDERS OF IRON ORE, CUTTINGS TURN RED
····				SP	440 ° - CCARSE SAND GRANITE, GLASSY OLARTZ, MAGNETITE - HEMATTTE IRON ORE
					TD - 440 ' WITH AIR ROTARY

Site / Locausa		1	Spuri calie		asie Dia Ground Elevators Borstella Ho.		1	*			
CENTRAL PIT			C2/16		14" 10	REMARKS:	SIL SI	3 22	(1 S N)	2 2	Material Classification
Contrinues / Stationing		1	Completion (d By B. WILCOXCN. Bocom a Screncie (ogs)	Water Cata Drilling Data	~ ·	Advance / Hulu Advance / Recovery	(Hill Flato (Hill / 5 A) Elevation (h)	Depth (h)	Physical Description
Dr:2 Make and Model			Calling Metry		REYNOLDS. B MARSH 1410' Fuid Top of Bedrock (bos) Frist Economicates "miler ()	Personnel Changes	3	2 2 č	Delt IMin /		
INGERSOL-RAND T + W			HALONER /					ž		1 1	
Daling Contractor			Sert Cap CO.	ID/Denta Total			!	_			
TONTO DRILLING SERVICES		1		tor IAT	Core Total Nutriber of State Water Levil		Ar	207 in		370	3500 . 380 5 PON OSE
REMARICS: Water Data Drilling Data Personnei Changes	fool Sue		Cral Raio (Mar / 5 M)	(a) (a)	g Material Classification and end Physical Description		lancar (2 hrs 30 min			Dat gray, brown, magneria-nch; hard, eznemály strong; minor gravn / brown raio-braise, actinolie, taus yebre / brown quarates.
•	8	₽¢¢.	d y	Dept	Św					380 -	360 0 - 400 0" CUARTZ MONZONITE Light years to reddish brown, sne graned; ha
Foreman: Wayne Beaupre Dril Crow A Montang) Driller: Frank Hight	18" 11 000me			-	No samples taken before 3107.						ver stor; minar green cale silentes (depoide / actualite).
Helperz Jan Waar Jason Vendi				-							
Onit Crew B (Attempoon) Deser, letter Bronson								390			
Heigens: Rick Gostevich		310		310 -	310.0 - 320.0" IRON CRE	350" depth at 1245 a.m., added 20" md, and resumed		27		390 -	
Wat McGnney		21			Dark gray, magnesia-non; compact, hard, extremely strong; containing minor quarterie, caro-sincules	added 23" rod, and resumed draining at 12:52 a.m. on 02/15/52.		in 1 hr			
No samples taken for the 5mm 310 faet.		55 mm						15 min		1	
3107 death at 550 p.m.											
310 depth at 500 p.m. added 27 md, and resumed dming at 505 p.m. on 02/16/92											
and a see but a an as					320 0 - 350 0 GUARTZITE					400 -	GOO 420.0" THON ORE: Dark gray to brown magnetis-humatis; hard.
				320 -	Yellow/brown, and grained; very hard, very strong, minor					1 1	errement sconet minor croon calc-shicales
					cale-sicans and disseminated magnetis/hematis/goefuls			[(diopende / accinolite).
				1				1			
a die						410 ⁴ (opth at 2.07 a.m.,		410		1	
		337		330 -		4107 2007 at 2017 a.m., added 2017 rod, and resumed driang at 219 a.m. on 02/19/92		20		410-	
330° depth at 6.00 p.m., added 27 md, and resumed		25				draing at 2:19 a.m. on 02/19/92		in: 3 hrs			
aniang at 6:15 p.m. on 02/18/92.		1 hr 30 min						32 mm			
		3 44		-							
					· ·						
	16				350.0 - 380 C IRON ORE:		-			420 -	420 D - 440 0 SKAGN: Dark gray cale-sizes(deciside / actinosite);
	Air			340-	Dark gray, brown, magnetie-rich; hard, sirong,						hard, moderately strong; ware dark gray
	Hammer				crimer presentarem calesticates, aconolita; vices yellembromm quartate.						Fan 2/9.
]							
				1							
				1		(27 deat - 1 55)		430		1 420	
350° depth at 7:45 p.m.,		3507	-	350 -		430" depth at 5:51 z.m., added 20" rod, and resumed		27		430 -	
action 27 md, and resumed triang at \$20 p.m. on 02/78/92		207 in				675607 at 6:01 a.m. on 02/59/52.		in 29 min		1	
		2 hrs								1	
				1							
							1				440.0 - 450 0 QUARTZ MONZONITE
				260						440 -	Reddah brown, and grained; very hard,
				360 -						1	very strong, minor dank green calos:emailes (Sopoide / activolite).
				1				1			
				1		450 0400 # 6.20					
370 depth at 10:00 p.m.						botted 27 rod, and resumed					
and an rat and murred		3707		370		1 5 42 2 5 - CO 02/15.92		450		450	450.0 - 450.0 MAFIC DIKE
BEAN AND DEAN	DATE	04/9				ALE DEAN 45	TAG			TI TI	PRA Group, Inc
ALANNO DEAN 4.5 CE					he PRA Group, Inc	SECURE DEAT AFTER	208				HAULTHO INGREES
AND THE REAL PROPERTY			010/1			1/1/8 Er L	2/ 000		5010/2		BOREHOLE LOG
1/1 901108 - 1000	DRAWN		TALA		BOREHOLE LOG MW-10	3 1 - 108 000	CHK				MW-10
Larcin to Ret alto	7) 6450	A HA	RAIS	AGLE MOUNT	MYV-10 TAIN LANDFILL RIVERSIDE COUNTY, CALIFORNIA	Star Gentlered Ha	1 49 PG		RRIE :		AIN LANDFILL RIVERSIDE COUNTY CALLECT
ENGINEERING DO	4770	0.40	ELDT		E RECLAMATION CORPORATION		147 -		TELDT	MIN	E RECLAMATION CORPORATION

REMARKS: Water Data Oraînç Data Personnei Chanços		Aufvance / Recovery	(MI RNIO (MI / 5 P)	Elevation (fi)	Depth (A) MANNAM LOD	Material Casterification and Physical Description	REMARIS: Waaro Data Data Personnet: Changes	Tool Site Borns / POD	Advance / Recovery	Orte Flate (Mn / 6 N) Efereiton (1)	(II) 11000	g Hateral Cases⊄casco 33 ກາງ⊮ແລ⊨ Description 25
	14" Air Hannar	20' in 3 hr 5 minu			450 1	450.0 - 460.0" MAFIC DIKE: Gray green, propinic alleration of feldspar, trace quartz.	~	ie* Air Hammer	20 in 1 hr 25 min		530	4706 - 500 (FICH CPE) Dark gray magnetie-banatile, with siner (bron whered mine throughout hard, strong,
					460 -	460.0 - 470.0' SKARN' Darc green calo-silicaies (diopside factinotite), with 50% magnetite-hematite cre					540 -	
4707 depth 21 947 2.7., added 207 nd, and neumed draing 21 9:58 2.7. on 02715/52.		170 20' in 2 hrs 17 min			470 -	4708 - 5405 IRON ORE Dans gray magnetis-nerrates, with shire / bronze colored mica (senote 3) throughout hard, strong	550 depth at 1.20 e.m., added 27 not, and resumed dating at 236 e.m. on 02/2052.		550 20 in 4 ha 43 min		550 -	
					480 -	480.0 · 490.0" Winer task graen celo-sitesses					560 -	
490 Gepth at 12:15 p.m., added 20 md, and mesumed graing at 2:10 p.m. on 02/19/92.		450' 20' in 5 hrs	7 1 2 MA 1/1444-1444-14		490 -	450,0 - 500,07 (nomese n dant graen celo-siceas). Decresse in ight graen celo-siceas,	570 dopth at 6.12 a.m., added 27 rod, and meximed drafing' at 6.20 a.m. on 02/25/52.		5707 207 20.0 ma 7 man		570-	
Deviation Survey = 1/2°,					500 -	500.0 - 540.77 Million dank graen szic-silisztes					580 -	
510" අනෙ 11 7.10 p.m., ක්රසේ 27 කර, කර පොහෙත අතිශ ක් 9.30 p.m. හා C2/19/52,		510' 20' in 2 bra			510		500 depth 2 227 a.m., addd 27 md, and meuniad draing 21 245 a.m. on 6272182.		5907 207 in 5 hn 15 mm		590 -	5000 - 600.0" SKARN: Dati green cate-sizates (dopaté actualité), Net, sittemety strang: mana magnetis.
				5	520 -		Denciation Survey = 1 *				600 -	502.0 - 525.0" CUARTZITE: Yetce (Storm, the graned; why hard, why strong; minor banding of calcolicates.
500 (Heron at 11:00 p.m.) added 20 not. and mouned (Heron p-1-155 p.m. Art. 11:1992	DATE	\$30'			530	·	SUU doors at 800 pm. door at 800 pm. crace trace 1 bits and trace trace 1 bits areas	DATE	6107		610	he PPA Group Inc
THE DEAN AFTER	JOB DATE	HO. G121 HO. EM11 IN JHA	-19 010/3 TALA			BOREHOLE LOG MW-10 N LANDREL RIVERSIDE COUNTY CALIFORNIA	Nº 1103	208 HC 2WG H 2RAWH GNED		NIO/4 TALA RRIS E		BOREHOLE LOG MW-10 IAIN LANDELL ENGE COUNTY CALIFOR E RECLAMATION CORPORATION

REMARKS: Water Data Drilling Data Personnel Charges	Yool Sire	Blown / ROD %	Advance / Recovery	(M6) / 5 A)	Elevation (h)	Depth (h)	. Minuka Loo	Maxeral Classification and Physical Description		AEMARICS; Water Cata Drilling Cata Personnel Charges	. Tod Ste	84045 / 1400 X	Advance / Recorery	Drift Flavo (Min / 5 4) Etaration (1)	Nopth (k)	Maintial Log	Material Classification and Physical Description
	14° Air Hammer		_			610	Yangariba	 <u>CUARTZITE</u> own, fine graned; very hard, ; minor bandling of calossicalies. 	•••• •		:3 3/4" Tai Cane		227 in 45 bras		690		EDO - TOOT ANDESITE. Hardum-dara gara, fina gramed: hart, were storg, monor into one and quart nortanne, trace spadote and smorte trait.
						620 -	Cat gry.	<u>ANDESITE</u> parphymat hard, vary storay; a menandra.							700		
			607			630 -	<u>630.0 - 540.0</u> Light yeach hard, way	<u>CUARTZ MONZONITE</u> r la nadozh strom, kne graned; stangt minor epadoja, talea caloria		710° decrit at 12:30 p.m., added 20° md, and resumed draling at 7:45 a.m. on 02/25/52.	-		7107 27 3 ha 45 min	-	710		·
						640 -	<u>640.0 - 650.0</u> Dark green very stong ismonta.	004577277E / gay, bre ganed; vey hard ; mnor epoces, semple, rais			13_1/2 Tri Cone	1			720		
650 depth at 950 p.m., added 20 md, and meaned draing at 11.01 p.m. on 02/02/52.		-	20 in 12 hrs 14 min			650 -	Cax gray.	ANDESTIE porphytica: Nati, very strang; z monzone.		730° depth at 11300 a.m., added 20° rod, and nasumed draing*at 11:15 a.m. on 02/2592			730 201 5 bra 25 gán		730		730.0 - 750.0" IPON ORE Dark gray magnesise-remaine: hard, strong; manar epidone.
Smar in hydraulic hose, rig shut down, Resumed aliang at 616 p.m. on 022232.						660 -					12 34 Tri Cone				740		
570 depth at 11:00 p.m., added 20 not, and resumed draing at 11:15 p.m. on 02/22/92.			677 27 15 hrs 45 nrs			670 -	670.0 - 690.0 Light gay way 1570g	QUARTIZITE ID Gaix pay green very hard, menor kinocrae,		750 6665 21 425 p.m., actual 20 rock, and mesunaci draing 21 430 p.m. on 0272592.			750 20 2 brin 25 min		750		7500 - 7600" ANDESITE: Medium-dark gray, fine grazned; hard, wer strong: minor fran ors and quart mounts, tabe epidots and finonts stan.
						680 -									760		TED.0 - 770 C OUARTZITE Tan gray to gray preso, the graned; wey hard, wey stong: more known starting.
500 dech z 300 pr. pose 20 rejenter te tern utro Denorthan Wo DEAN Argenter	PAT		690			690	De PRA G			The depose at 7.15 p.m., added 20 mer, and neurosed dramp at 2010 pm. pro-202522		AT2	770		770		PRA Group, Inc
Nº 1108		CD	G125 EM19 J HAT A HAP	010/5 ALA IRIS	EAG	E MOU	M	OLE LOG W-10 RIVERSIDE COUNTY CALIFORNIA	T Stratt	Nº 1108 Nº 1108 Granezonic Geologist	h	се на, Wg но, RAWN HCD PPD	G125- EM19 J HAT R HAR DAFF	010/6 ALA RIS	AGLE NO	UNTAIN	BOREHOLE LOG MW-10 NUNDELL RIVERSIDE COUNTY CALIFORNIA RECLAMATION CORPORATION

REMARIXS: Waser Data Drilling Cata Personnal Changes	Tool Ste		Drift Rate	Elevation (A)	Dopti (h)	Muterial Log	Melanal Classification and Physical Description		REMARKS: Water Cate Ording Data Personnel Changes	Tool Size	Blums / POD X	Advance I Flectrory	Driti Rame (Mich / 5 h)	Elevator (II)	Depth (A) Malecial Log	Melandi Ciasuricanon and Physical Descrution
	12 3/4" Tri Core	20.6			77	0	7709 - 7800 ANDESITE Macuna D Galt gray, the graved; hato, very school, mixing quarters and thouse stan, that inn one and spaces.	-		13 34 Trì Cone		207 in 2 hrs 45 min			850	8500 - 6600" CUARCONE Loga gray green, the graned; hard, very strong; more ron are and ancesta.
				na te desta da 'agriga da te se ancese a co	78	0	780.0 - 790.0" OUARTZ MONZONITE: - Luga yakar ib nabasi krima, ina pisaso; hard, maj sabag, minor kun ora, kiwa batawa stala.								860 -	8600 - 8000 ANDESITE Logi to care green, for graned: hard, resy scores, made knowe, ton ore, tage price.
37 Geph at 10:00 p.m., d 27 r.d, and recursoi g at 12:01 a.m. on 02/25:92.		750 20 6 N 27 A	,		79	0	790.0 - 810.0" GULATZITE: Loss pray prior, the grained; very hird, very strong manor from ore.		8707 depth at 7:30 p.m., actived 207 rod, and neuronad defiling at 7:45 p.m. on 02/22:52.			875			870	
Centation Survey a 2°	13 177 Tá Cone				80	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									880	
8107 depati au 8/25 a.m., Sendi 20 rodi, and recurrac Along at 8/35 a.m. on 02/26/52.		810 20 2 h 10 a	3		81	0			· · · ·		a provide a second s	3907			890-	890.0 - 970.0" QUANTZITE Bray - graen, trie graziec; wicy nard, wary sonney; million epidole
• •					82							1			900	
ESO' depontat 10:45 a.m., op 10 feoder Deem pumo. Oder 20' rock, and resumed neng at 4:50 p.m. on 02/25/62.	13 34° Tri Cone	833 20 2 h 57 c			83		810.0 - 850.0" ANDESTIE. Dent green to gray tan, the graned; hard, way strong, minor iton on way deseminated pyme, trace linonice.		913' doch at 204 a.m., added 27 md, and neumed dmiling at 219 a.m. on 02/27/52.	13 1/2 Tri Come		910 27 in 3 hrs 16 min			910 -	
					84	£						name and a factor of the first state of the first s			920 -	923.0 - 530.0" Trace tremaine and syme.
250 COPA 11 430 P.M. COPA 24 FORMATION TOWARD FOR 31 COLOL 10 100, 102 CO22		65			85	0	850.0 - 660.0° CUARTZTE:	~	EST depth at 535 km. active 27 md, and manened arting of efforting or actives		- ITA	5807 04/93	2		930	a PPA Group Inc
N2 1108	DATE 208 3 DRAW DRAW CRICE	ю. G1 *0. Eh к J1 R1	192 25-19 19010 (ATAL) (AFRIS (AFRIS			ICUNTA	BOREHOLE LOG MW-10 N. LANDELL RIVERSIDE COUNTY CALLEORNIA RECLAMATION CORPORATION	-	CEELOGIST		08 HD. WG NJ. Rawk KCD PFD	JHA	5-19 9010/8 TALA ARIS FELDT	EAC		e PRA Group, Inc BOREHOLE LOG MW-10 IN LANDEIL RIVERSIDE COUNTY CALIFOR RECLAMATION CORPORATION

REMARKS: Wiler Cata Drilling Cata Personnel Changes	Tool Stre	Rows / POD %	Advance / Recovery	DAU Flaid (MAn / 6 b)	Eleverion (h)	Depth (\$)	PANIMIN LOD	Material Classification and Physical Description	REMARKS: Water Data Dolling Data Personnel Changes	Tool Sire	(Bowe / FICID %	Аличисе / Песотеку	()-11 (1410 (1460 / 5 8)	Elovation (h)	Omrti (N)	Ministral Log	ຟລະຄະປີ ເວັນນະໂຄລະວາດ ລາດ ກາງນາລະ ປະເທດນາດດ
	13 1/2 Tri Cone					930		2000 - 570 <u>CUARTZITE</u> Gray - pres, ha granet, very hard, very strong: minor epocas,		13 3/4* Tri Cone					1010		1910.0 - 1070.0" ANDESTIE: Dark green to gray, fre graned; hard, wery strong; table knowne, 1910.0 - 1070.0" Sighty porphytic table magneti
						940			Lost ereason,						1020		
	13 34" Td					950			(1307 depin at 625 a.m., 030162						1030 -		
	Cone														1040 -	~~~~~	
						960											
5 - 4 -						970		<u>970.0 - 990.0" ANDESTE.</u> Dark green, Lee graned; hard, very strong: minor quantité, trace imonte.)						1050 -		1050.0 - 1060.0" Epidora, accinocia
						980									1060 -		1060.J - 1070.57 Trace cear quarz.
						990		990.0 - 1010.0" QUARIZIE Logn presi to gran to graned; very hard, very etang.		-					1070 -		1070.0 - 1090.0" IRON ORE: Dark gray magnetis-hanaster, hard, strong; abuncark pyrce, miror twincke.
Deviazion Survey = 1,5*				2		1000	4	1000,0 - 1010,0" Minor gray to light grawn andesha.							1080 -		1980.0 - 1050.0" Trace avezane.
1010 depen 12 317 8.2. Sed 20 per 24 (1997)			1010			1010	· ·	1010.0 - 1070.0 ANDESTE	- STRED GEOL		TE	10907			1090		1000.0 - 1195.0" ANDESITE:
Nº 1108		TE 8 20. 10 10.	J KA					BOREHOLE LOG MW-10 RENERSIDE COUNTY CALIFORNIA RECLAMATION CORPORATION			NG HO.	G12 EM1 J HA B HA		0			PRA Group, Inc INNE DOREHOLE LOG MW-10 V LANDEIL RIVERSIDE COUNTY CAUFORNI

REMARKS: Weser Data Drising Data Personnel Changes	Tort Sire	Binus / FIOD %	Autorice / Recurery	()41 (lata (Min / 6 N)	Elovation (h)	Depth (N)	Holefal Log	Material Classification and Physical Description		REMURICS: Water Data Onling Data Personnel Charges	Tool Sile	Giorra / FIO() %	Adrence / Recovery	Criti flate (Min / 6 N)	Elevation (A)	Depth (6)	Muterial Log	Malaral Casso Eczon and Physical Cescoscon
	ia 34 Tri Cone		:			1090		1090.0 - 1195.0" ANDESTE Dark graen to back, See grained: hard, way scropt minor magnetic and pyria, trace quart, exides, temolie, botto.	-		13 1/2 Tri Cone					1170		10000 - 11950" ANDESITE Date grant to black, fre graned; hard, very si minor magnetia and prime, their quarts, speci tranolis, botte.
						1100										1180		
	13 1/2 Tri Core			Barrows at		1110 -	العنديد فالرقية	•								1190		
						1120				1207 deen af 6.40 p.m., on 6340252						1200 -		11850 - 12150 QUARTZITE Ught grann - gray, way bie graned; wey kard, way stong; minor chlone, taka botta.
3.4						1130 -	******									1210 -		12120 - 1235.0° Monor Carle graden to black Andramae, taba formation stater.
						1140 -		1140.0 - 1150.0" Medium gray-green: meter quartitie and epicole.		;227 docth at 1201 a.m., on G3G332	[,	1220 -		1220.0 - 1235.0° Trace magnetice.
						1150		1152.0 - 1195.0" Dark gray - grøen.							1	1230 -		
	and a second dependence of the					1160		1160.0 - 1196.0° Trace magnetie.		1247 depth at 527 a.m., on 036352			-		1	1240 -		12350 - 14300 - ANDESTE: Dark green to black, fire graned, hard, very sub- minor magnetie and special, race kinowa stan
CCTERED GEOD		4 20.	1090 04/92 G125	-19		1170	The	PRA Group, Inc	K03 61-	AND DEAN AFE		NO	04/92 G125-1			250	he l	PRA Group, Inc
Nº 1108		NO MO. ULWIN ULWIN	EM19 J HA1 6 FA6		FAG	15 401	INTAIN	BOREHOLE LOG MW-10 LANDFIL FIVERSIDE COUNTY CALLEOFNIA	000 EC 16 PUTP	Se 1108	7 GR	1 NG. (#K	EM190 J HATA R HARR	LA.	EAGLE			BOREHOLE LOG MW-10 ANDFIL RIVERSIDE COUNTY CALIFORN

REMARXS: Water Cara Onling Cara Personnel Changes	Tool Size	Blims / ROO %	Athence / Recovery	Orm Rute (PAn / 6 ti)	Elevation (h)	(i) thope	Mulerial Log	Maseral Classification Stot Physical Description		REMARKS: Waser Cata Driffing Data Personner Changes	Tool Site	Bown / ROD 🛠	Advence / Recovery	Chél Hate (Min / 5 N)	Elevation (II)	Depth (h) Maintai Leo	Malenas Classikcason. and Physical Description
	13 1/2 Tr Cane					1250		1735.0 - 1400 (* 1400-5715) Earl green in toloc, file granet, turt, wey strong, more magnetie and epicitie, race intonee. 1250.0 - 1250// Winor geartine, race crystal cache	- - -		13 T	2				1330	12350 - 14500" <u>ANDESITE</u> Dark green to black line graned; hard, vicy strong; manor mägnette and epotca, race knows sam
1357 doch a 820 a.r 2010:62						1260		1250.0 - 1270.0" Abundant prik calicita, minor prik Velin guartz.								1340 -	1340.0 - 1350.07 Trace syma, actinoida.
						1270	****	1270,0 - 1280.5° Abundani pala green quatura, minet amphibole, quiere.								1350 -	
1237 Geoth at 400 p.m., 050392						1280										1360	
n ní t						1290 -		1250,0 - 1300.7 15% متوصفته, لاعتنه بريمية.								1370 -	1370.0 - 1390.0" Abundant kinonike, trace calare,
13007 depth at 5.54 a.m., 030492						1300 -										1380	
						1310										1390 -	1320.0 - 1400.0" Aburdan angilibole.
						1320										1400 -	1400.0 • 1410.0" Trace pyrma, num cale-trica and.
STATE DEAN ASSESS		но.	04/92 G125	19		1330	The	PRA Group, Inc		CIERED GEOLO		DATE JOS NO.	04/9	-		1410	e PRA Group, Inc
12 1108		0 NC. AWN RD	EM19 JHAT RHAP		EAG			BOREHOLE LOG (* *** MW-10 LANDELL RIVERSIDE COUNTY, CALFORNIA		Care Care 1108	H.	284WK	EM1	SOIC/1	1		BOREHOLE LOG MW-10 AIN LANDRIL RIVERSIDE COUNTY CAUFORNIA

Project Sale / Drill Sale				Sau	: Care (10	352	İ	Borene.	• Cia 3 3/4*	Ground Elenation 1051 42	30'000 MC NW-13
WEST END OF EAST PT Coordinated / Samary				Con	rint on	2	1	(append	67		Battarts of Sommore (Spt)
				1		7.52	1		PANTHAN	1 Top of Sectors (Scs)	First Encountered Wither Do
INGERSOLL RAND 74				0.4	ng Llac Air fi	oc smmer		Drilling f	Air	301 07 5460-0004 (3053)	3107
Colleg Consum				Suri	C:n 00	2.0m	n	Total Co		Total Number of	State Water Level (Ogs)
TONTO DALLING SERVICES.	NC			1160	20/15	1/210	1 15	Record	× N/A	Core Boxes N/A	
REMARCS; Were Dec: Drifing Data Personnel Changes	tal 261	52 02J	FIRCHING / BOO	Pechel Care Necret	Box Nunter	Elevation (A)	Cred M	litteksje log		Material Ci an Physicat D	15
Night Shit Gran: Driller Math Bornson Helbert: Jason Verao Stamm Banai Dev Stat Crew: Driller Rod Gostovch Helbert: Chris File Dave Capo	18 ⁺ Tri Core						10		Gray Club 3.0 · 1 Gray of G white of w	ARTIFICIAL FIL: , Genes (9), argular, ma of mad guarantee , 5megnaned, scattee , 5megnaned, scattee , 6magnaned, scattee , 6magnaned, service , 6magnaned, service , 10 and cetar , 1	ens and versions , magnetie and trin fracture fillings scally lineation present
19,07 Bettern of concurant raising,	19.0 13 3/6 A. Hammer						z	ستسعطه	and the second se		
							30	يديك ومعاد ال			
							4				
							50	1			
							50	للممسلم			
Casing near to TV. Resume draing on manuschat 041592							_	1			
ANTINE COLON AFTER			2 EN 	92 25-19 11901: HATAL HARR AFFE	3/1 A IIS	EAGL	5 46		BOR	Group, Inc EHOLE LOG MW-13 ILL AMERSIDE COUL MATION CORPORT	NTY CALIFORNIA
A GEOLOGIST	HIP .										

..

REMARKS When Data Driving Data Preserved Charges	Teed Stre	(x) (W)	FINCHINE / KNO	Purcert Cort Hocaracy	Box Nurth	Eleration (II)	(1) holog	lihologik (ag	Wateral Classification End Physical Description
	13 3/4* Ar Hammer			- University of the former can be a second and the			70 80-		23 - 142,5 CUARTETE. Gray, Energened, sostand varia and vehiles of care, tendra, sentenne, magnetis and white dopade (1). Sostando fair tratume taines of white and case grasum. Locally levels on present with black Fellg meents. Barely weathered, why tand, why storing. 85.0 - 100.07 Danker gray.
900 - 117 Curange to 34°.							90-		
							100-		
							110-		
1200 - 142 Cuttings to 341.							120-		-
							130-		
1420 - 155° Cutanga masany ne ward states.				w yer type a she black it was seen		and the state of t	140-		125.0 - 142.0 Upth gray. 142.0 - 155.0 HEVATHTE AND CLARTZITE Red and gray, Newyound with magnessa termine and mag grass; barely wearered, wery hard, very storg
TERED GEAL							150		
NE VOUSE AND		DATE .Ce HQ DHO HQ DHO HQ DHO HQ DHO	EN J I	92 25-19 119013 4414L HARR: AFFEL	a S	EAG	SLE MOL	INTAG	PRA Group, Inc BOREHOLE LOG MW-13 I LANDFILL RIVERSIDE COUNTY, CALIFORNIA RECLAMATION CORPORATION

REWARKS Wher Dia Differ Dia Anarym Charges	Tool Sus	(%) 0(%)	Fracturon / foot	Percent Core Neconery	Box Mundar	Eteration (n)	(ሠ භෞත	LUMPOK LOG	Waternal Cásselication and Poysical Cescription	REMARKS Vicer Data Direito Cau Prisotiae Changes	Tool Sire	R00 (x)	Fredures / feel	i		Elevetton (h)	Cepdi (t)	Lihologie Log	Materia: Classification and Physical Description
'ಲೆ-210 ದಿವಾಭ್ರ ಖಾ ಕಲಗ್ಗ • ಖಾ ಕಾರ್ಯಕ್ರಭಾತ ಜಾ ಮಾಕ.	13 344 Air Hammei						150		1420 - 1550 HEMATTE QUARTZITE. Red and gray, non-quanted. 1550 - 2100 CUARTZITE. Gray, fore-granued, semantalayers and workers of magnetic essentialayers actively, uncolous, entre quartz, atto- bactoria, uncolous, entre quartz, atto- Bactoria youndow, entre quartz, atto- entre qu	20° Cuargo precommenty fina and median cano state.	<u>+</u> _	r į					230		2100 - 2750 0F UMONETITE, HEMATITE, OMATIZITE INTERMIXED Dark gray, frequence, brita, 2010 - 275 0F Money Tragenesis, 2020 - 255.0F Pyrtas fragments in autorys.
			n i a në boshutit i Produkulë ë poj i visi du pu të së të				170				and a first the Art of the provide streaments and						250	بالمعمية مراجدينا	250,0 - 250,0" Ducease in percent magnetia and increase in percent hematia.
							180-		183.0 - 190 C' Increased percent of magnetic in colongs.					-			250	لىدەر بەلم بىمەم بە	
* <u>(</u>)			and and a set of the s				190		150.0 - 210.0" Approximately 40% of extings are magnetical trade mice and serventine, increased percent of magnetic with dapp.		a na a fana a fan ta fan an fan t						270	لمسمعكم ورويده	275.5 - 420.5 OUATIZITE:
	-						200										250		2730 - 4000 - Devizing Gray, the-particle, izalized values of magnatize Some fazzure Sing with pypion. Here because and Gradin in the quarter of most participant and sense in the quarter of most participant Sarety weathered, wery hard, wery strong, chloriae, epodes, mistic M
210-225 Cutings are mostly free and medium-graned sand solar.							210		2100 - 27500 WAGNETITE, HEVATITE OUARTZITE INTERMUXED: Date garg, Smegaranot, massic back magnetia, modern heratise and garg quatura. Minor verness and targenetise and garg quatura, mass, acanonia, and targenetine. Barely weathand, moderarally hard, vory storing, barde, Scattared (not maned factures.								250	معمط معمد	
25 22 Sange as fre True and a state of the State of the o		2472 2440 2440 2440 2440 2440 2440	EM1 J R/ P. H	5-19		EAGL	E NOU	NTAIN	PRA Group, Inc Motechills BOREHOLE LOG MW-13 LANDFIL RIVERSICE COUNTY CALIFORNIA ECLAMATION CORPORATION	JOST Cost & red of oght Lind on CA1592 From Her Board will at 100 Samo CA1592 Art Art Dialog at 100 Samo CA1592 Art Art Dialog at 100 NS VOR NS VOR N).		A A A A A A A A A A A A A A A A A A A	6/92 1125-11 1	13/4 1.a RIS	EAC	SLE MO		BOREHOLE LOG MW-13 NANOFILL SIVERSIDE COUNTY CALIFORNIA RECLAMATION CORPORATION

	i	1		1	[-			
REMARKS Were Data Definy Data Pristoria Charter			1001 / 60	Core	Auros	10		c log	Material Classification a and Physical Description
LEONE CLEON	Tool Sue	(x) 004	Frechilos /	PACANI C	100	Elevetion	Dageh (II)	(ihologic	
310 Dects a 7:30 2.5. on 04/17/52	12 1/4" Tá Cove	ĺ					310		275.0 - 420.0" OUARTELITE: Gray, ane-graned, scattered vendets of magnetic Some factors Bing with system. Few brecased paces with quarts, biologic and more, booking barrong
315' Begin roecting some water.									peces with quart, lettopar and mea, Locally banoing and lineaton in the quartule. Baraky weathered, very hard, very storg, mixing, epochs, calcus 21.
320 - 337 Držer reports very ogiti (as when day squeezes ti hose),							320-		320.0 - 333.0" Some breczeton, minor sementine and magnetite.
335° ವಿವರ್ಣ ಪ್ 10°ದಿ ಪಿಗ್ಗ an 340752							330-		350,0 - 340,0°. Sanding more notable.
							340		1400 - 1550, increase in percent and betta: Sazared occlass factors, some field with day, some banding and incaton.
350° Depth al 10:50 a.m. co 04/1922 350 - 360° Dräer records very bgm.							350		350 B - 358.0° Broccased (?), Naled, Min day and gouge (?).
							360-		355.0 - 375.0" Reddish brewn caper of autorys due to samanid nagregra vorst. Scattered nica, scaladob-ternolis receives. Scattand intro- stalned tracares.
377 End 627 stat on 94/17/52. And begin night stat on 64/17/62.							370		
							380-		375.0 - 420.0 Lpht greenish gray, breazilid with sattared more version of hematismagnestelenerations and vers of administration is a dayley gouge Sattared ron-rained traculas.
SSTERED GEOLOGIA							390		
(Nº 1108		277.2 204 1402	. 06/3		_		-	The	PRA Group, inc
)	140 140 24 440 24 460	1 ٢	19013/ IATALA	1	EAG	LE MOU	NTA!N	BOREHOLE LOG MW-13 (LANDFILL RIVERSIDE COUNTY, CALIFORNIA
CF CAUCEN		***	0 /	FFEL	DT				RECLAMATION CORPORATION

·

REMARKS Water Data Deling Data Personnel Changes	Tool Size	1400 (X)	Frectures / bot	Percent Com Perconary	Box Nurthe	Elevation (1)	Depath (H)	Librologic Log	Material Claysitheation and Physical Cescription
	12 1/4" Tri Cone						390 400	ang ang mang mang mang mang mang mang ma	2750 - 4200 OUARTZITE: Gray, Suegrand, katanic venets of magnetic Some Suttin Silling with graphin. Few Snecosor planes with grant, letting and mice. Locally banding and feesion in the grating. Barley weithered, with latd, very strong. Childing weiches, close M. 375.0 - 420.0 Light greenish gray.
							410-		• •
420 5° Complexed drilling on right shin on 0477/92							- 		Baters al Banahaie
							\$ 8		Tetat Depti 420 lioci Elevatori 531.48 leet
							401		
		- 4					450		
							40 40		
ATTERED GEAL		1	06/93	2	-		470		
MUD DEAN 447 (C) MUD DEAN 447 (C) N2 1108 (CONTRET	1 0 0		G:22 EM19 J HA R H			EAGL		rtain .	PRA Group, Inc BOREHOLE LOG MW-13 LANDFILL RIVERSIDE COUNTY, CALIFORNIA ECLAMATION CORPORATION

APPENDIX A

LITHOLOGIC DESCRIPTION

Eagle Mountain Piezometer No. 1

- 0 15ft ARTIFICIAL FILL
- 15 25ft QUARTZITE
- 25 45ft QUARTZITE AND QUARTZ MONZONITE
- 45 65ft QUARTZITE
- 65 80ft QUARTZ MONZONITE
- 80 196ft QUARTZITE
- 196 200ft QUARTZ MONZONITE WITH SOME QUARTZITE
- 200 205ft QUARTZITE WITH SOME QUARTZ MONZONITE
- 205 270ft QUARTZ MONZONITE

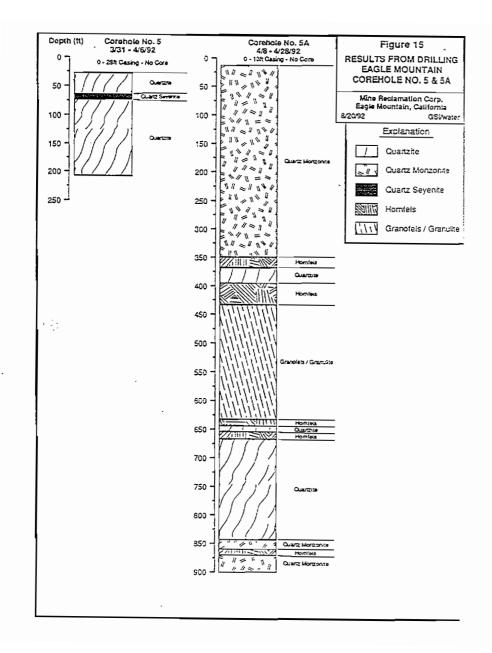
APPENDIX A

LITHOLOGIC DESCRIPTION

Eagle Mountain Piezometer No. 11

- 0- 10ft <u>POORLY GRADED SAND</u> (SP) : Trace coarse, angular to subrounded gravel; 10% fine, angular to subrounded gravei; 25% coarse, angular to subrounded sand; 60% medium, angular to subrounded sand; 5% fine, subangular to subrounded sand; brown, dry, maximum size = 25mm
- 10 20ft <u>POORLY GRADED SAND WITH GRAVEL</u> (SP) : 20% coarse, angular to subangular gravel; 15% fine, angular to subangular gravel; 30% coarse, angular to subrounded sand; 35% medium, angular to subrounded sand; trace fine sand; brown, dry, maximum size = 30mm
- 20 75ft <u>POORLY GRADED SAND WITH GRAVEL</u> (SP) : 5% coarse, angular to subangular gravel; 10% fine, angular to subangular gravel; 40% coarse, angular to subangular sand; 45% medium, angular to subangular sand; trace fine, subangular to subrounded sand; brown, dry, maximum size = 35mm
- 75 135ft <u>POORLY GRADED GRAVEL WITH SAND</u> (GP): 25% coarse, angular to subrounded gravel; 35% fine, angular to subrounded gravel; 20% coarse, angular to subrounded sand; 20% medium, angular to subrounded sand; trace fine sand; brown, dry, maximum size = 43mm
- 135 205ft <u>POORLY GRADED SAND WITH GRAVEL</u> (SP) : 10% coarse, angular to subrounded gravel; 15% fine, angular to subrounded gravel; 30% coarse, angular to subrounded sand; 40% meedium, angular to subrounded sand; 5% fine, subangular to subrounded sand; brown, moist (due to injection of water during drilling), maximum size = 37mm
- 205 210ft <u>POORLY GRADED GRAVEL</u> (GP): 80% coarse, subangular to subrounded gravel; 20% fine, subangular to subrounded gravel; trace coarse, subangular to subrounded sand; trace medium, subangular to subrounded sand; trace fine, subangular to subrounded sand; trace fines; no dilatancy, medium toughness, medium plasticity, medium dry strength; brown, moist (due to injection of water during drilling), maximum size = 40mm
- 210- 255ft <u>POORLY GRADED SAND</u> (SP): Trace coarse, subangular to subrounded gravel; trace fine, subangular to subrounded gravel; 15% coarse, subangular to subrounded sand; 65% medium, subangular to subrounded sand; trace fine, subangular to subrounded sand; brown, dry, maximum size = 39mm

LITHOLOGIC DESCRIPTION - Piezometer No. 11 (cont.)


- 255- 270ft <u>SANDY LEAN CLAY</u> (CL): Trace fine, angular to subrounded gravel; trace coarse, angular to subrounded sand; 10% medium, angular to subrounded sand; 20% fine, subangular to subrounded sand; 70% fines; no dilatancy, medium toughness, medium plasticity, medium dry strength; brown, moist (due to injection of water during drilling)
- 270- 310ft <u>CLAYEY SAND</u> (SC): Trace fine, angular to subrounded gravel; 5% coarse, angular to subrounded sand; 30% medium, angular to subrounded sand; 35% fine, subangular to subrounded sand; 30% fines; no dilatancy, medium toughness, medium plasticity, medium dry strength; brown, moist (due to injection of water during drilling)
- 310- 345ft <u>SANDY LEAN CLAY</u> (CL) : Trace fine, angular to subrounded gravel; trace coarse, angular to subrounded sand; 10% medium, subangular to subrounded sand; 30% fine, subangular to subrounded sand; 60% fines; no dilatancy, medium toughness, medium plasticity, medium dry strength; brown, moist (due to injection of water during drilling)
- 345- 365ft <u>CLAYEY SAND</u> (SC): Trace fine, angular to subangular gravel; 10% coarse, angular to subangular sand; 40% medium, angular to subrounded sand; 30% fine, subangular to subrounded sand; 20% fine no dilatancy, medium toughness, medium plasticity, medium dry strength; brown, moist (due to injection of water during drilling)
- 365- 485/t <u>POORLY GRADED SAND</u> (SP) : 5% fine, angular to subrounded gravei; 40% coarse, angular to subrounded sand; 55% medium, angular to subrounded sand; trace fine, subangular to subrounded sand; trace fines; brown, dry

APPENDIX A

LITHOLOGIC DESCRIPTION

Eagle Mountain Piezometer No. 12

- 0-10ft <u>POORLY GRADED SAND</u> (SP): 10% coarse, angular to subrounded gravel; 10% fine, angular to subrounded gravel; 45% coarse, angular to subrounded sand; 35% medium, angular to subrounded sand; trace fine sand; brown, dry, maximum size = 38mm
- 10 15ft <u>POORLY GRADED GRAVEL WITH SAND</u> (GP) : 25% coarse, angular to subrounded gravel; 35% fine, angular to subrounded gravel; 25% coarse, angular to subrounded sand; 15% medium, angular to subrounded sand; trace fine sand; brown, dry, maximum size = 40mm
- 15 30ft <u>POORLY GRADED SAND WITH GRAVEL</u> (SP) : 5% coarse, angular to subrounded gravel; 20% fine, angular to subrounded gravel; 40% coarse, angular to subrounded sand; 35% medium, angular to subrounded sand; trace fine sand; brown, dry, maximum size = 22mm
- 30 60ft <u>POORLY GRADED GRAVEL WITH SAND</u> (GP) : 30% coarse, angular to subrounded gravel; 35% fine, angular to subrounded gravel; 25% coarse, subangular to subrounded sand; 10% medium, subangular to subrounded sand; trace fine sand; brown, dry, maximum size = 31mm
- 60 115ft <u>POORLY GRADED SAND WITH GRAVEL</u> (SP) : 10% coarse, angular to subangular gravel; 20% fine, angular to subrounded gravel; 40% coarse, angular to subrounded sand; 30% medium, subangular to subrounded sand; trace fine sand; brown, dry, maximum size = 30mm
- 115 130ft <u>ELASTIC SILT</u> (ML) : 10% fine, subangular to subrounded sand; 90% fines; slow dilatancy, medium toughness, low plasticity, low dry strength; brown, dry
- 130- 155ft <u>POORLY GRADED SAND</u> (SP): Trace coarse, subangular to subrounded gravel; 10% fine, angular to subrounded gravel; 35% coarse, angular to subrounded sand; 50% medium, subangular to subrounded sand; 5% fine, subangular to subrounded sand; brown, dry, maximum size = 32mm
- 155- 370ft <u>POORLY GRADED SAND</u> (SP): Trace fine, subangular to subrounded gravel; trace coarse, subangular to subrounded sand; 60% medium, subangular to subrounded sand; 40% fine, subangular to subrounded sand; brown, dry
- 370- 500ft <u>POORLY GRADED SAND</u> (SP): Trace fine, subangular to subrounded gravel; 20% coarse, subangular to subrounded sand; 70% medium, subangular to subrounded sand; 10% fine, subangular to rounded sand; trace to 5% fines; slow dilatancy, medium toughness, medium plasticity, low dry strength; brown, dry

Project Sae / Dr2 Sae NORTH OF	EAST	PIT		1.00	402			1	3.55"		Ground Elevation 1657.2	Burenele No.	CH-5
Coordinates / Stationing				100	apiata 405	52		ها ا	20 40 BT	REYI	HOLDS, J. SUTHARD	Bertom of Boren 206	o₩ (EÇI)
DITE RIG MAKE AND MICHI				Dri	ling h	ethed.		9r	Eing Field		Top of Bedrock (bis)	First Encountered	Water ib
Drifting Concretor	20			Ser	1 00	25	arge d	To	MUD		23' Total Namber of Core Boses to	States Water Lov	d these
TONTO CRELING SERVIC	<u>es.</u> n	C.				412		A.	COTORY %		Cere Boses 20	1	
REMARKS. With Cata Dating Data Participal Changes	Tool Stre	ROD [K]	Finctures / fool	Percent Con Recovery	for Aurber	Eleration (II)	Depth (Ii)		Liveiagic Log		Wateria) Cr ar Physical O	e .	
	5 55 FAI CONE									<u>8</u> .	28 0 CASNG - NO CORE		
							11						
							20						
30° dept) al 10:10 am, 40252	HQ 3.85	0 0 31	_	100	28.0 8 0 X		3	0		8 d 8 k	- 65.0" CUARTZITE regard Soft to dan smen-g te-non banding 10-40 degre moderately factured, facture M.	ay Energizines es io 2111. Sister s sincout, sígniy	
Geologiat R. Reynoids	HOLE 2.406° CORE	74	۱	100	36.5 8								
49 decen z 200 pm, 452/92		82	•	100	2 45.5		4	0					
57 depit # 345 pm, 40292		ส ร	2	100	80X 350		5	0 					
607 depin az 700 pm, 440252		n	4	100	BOX		6	0					
70 with # \$15.50 \$1297.0		47 72	2	100	BOXS		7	0		α	 74.0° QUÁRTZ SEYENRÍ (gray, mana-grazed. Martí menor interstal quarta tra taras harty, séptay coor, i k is massine, hard, strong. 	Y K-laktenar	
	2\ L	ATE	7/5	-					The PR		Group, Inc		
SECURE DEAN AFE		00 HO	R.	25-19 1 1900 HUARF	us.				В	ORI	EHOLE LOG		
TEVEN ERTIFIED				MER!	_	EAC	i E k				L. RIVERSIDE COUNT MATION CORPORAT		1 67 3
TE OF CAUFORNIA	/												

Bit R (1) P, 4002 Bi	Wear Cea Drifing Cea Periodnet Charges	Jeel Sire	110 LKJ	Findwry per tud	Percent Con Percent	Bit Nunter	(hravon (h)	. (I)} 4idea			REMARKS Vicer Data Diffing Data Personnel Charges		Teol Site		Findary put foot	Rucerty Bar Marber	Elevation (1)	Dip'h (U)	Lithelayk Lag	Material Classification and Physical Description
Mark Hold Park Mark	2009 1 2: 1:15 pm, 402/32	3.85	20	4	100	<u>73.0</u> В		7¢		550 - 740 QUARTZ SEVENTE Phargey, carse-grando, Mosty K-McCoar, with motor menetial cuart and provides facers facer, sighty open-MnOz coaling, Reck is massive, hart, sitting.	150° 56059 42 3;45 pm. 46	24.92	НQ 3,85°	Í	- i	x 0 x	1			1 74.0 - 208.0 CUARTZITE Light to dark green, ins-grained, weak bo barriang. Hard, strong, subtry to moderat
Normal Norm Normal Normal	6007 zi 1035 pr., 40292	2406° CORE				6		ac		Light to dark green, frie-dramed, weak boots barding. Nard, strang, signity to moderately rectured Frammers mostly 40-50 and 10-500 degrees to and,	:67 depth al 5:15 pm, 45		2.405" CORE			α <u>157 (</u> 8	ল	160 -		STOOT, MITOR CAUSE M
Approx 2 - 33 ar. 4.0562 Approx 2 - 35 ar. 4.0562 Approx 2 - 35 ar. 4.0562 Approx 2 - 157 - 20462 of special ar 11 common. March 2 - 102	gst J. Suman					8								T	1	00 ¹⁵	1			
1 den a 6 12 an, 40502	56pin al 3:13 am, 603/52			·		1903		ŝ			1707 dapts at 11:00 pm, 4	64.52		1		Ĭ		170		
Carch & 5 12 an, 4052				- 1		x					Geologist: J. Suthard					<u>175.0</u>	1			
1 degin at \$20 pn, 4C352 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-†		3		100		1007 - 107 dialets of systems to 1° common	160° deoth ar 12.55 am, 4	45592			1	17 00		180		
define at 1035 on, 40362 44 2 00 1157 - 107 moor specie dates 44 2 00 1157 - 2007 moor specie dates 50 1 10 102 0 m, 40362 50 2 100 0 m, 40362 50 1 100 0 m, 50 m, 40362 50 1 100 0 m, 50 m, 5	نغرجة 11 \$30 pm, 403,92					103 5 8		110	ليستعنقه		190' cappy at 9:25 am. 46	05/92		\$2	T 1	80 X		190-		
1 depting 1 1225 pm, 40352 is 2 1 100 is 1 is 2 1 100 is 1 is 2 1 100 is 1 is 2 is 2				-		10			****	115 - 127 mizar spince cases				-		00 153 9 8 6	5			
r seph al 200 an, 40452 30 4 100 1220 130 130 - 135 Ialli 2014, Strematic Debus interence core banking mph 0 155 20 1 130 - 135 Ialli 2014, Strematic Seph al 200 an, 40452 21 6 100 220 - 1 210 - 1 Seph al 200 an, 40452 23 6 100 220 - 1 210 - 1 Seph al 200 an, 40452 12 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40452 10 - 1 10 - 1 10 - 1 Seph al 200 an, 40455 10 - 1 10 - 1 <	' depth at 10:25 pm, 403:92		52	2	100	XO		120			Deviation survey = <2 do	6/05/52 Green		- i	Ť	00 19 207 0	<u>6</u>	200		197.0" - 203.0" hydronormal alteration b
bioch mitering too bank 0 35 20 0 12 bioch mitering too bank 0 35 20 0 bioch mitering too bank 22 6 100 220 22 6 100 220 140 100 mit 100 220 140 150 100 mit 100 100 100 100 100 mit 100 10	60007 21 200 2m, 40452		30	4	:00	127.0		130		137-135 (auf) 2016, byscalad	205 stopped critics due is			7	5 9					TOTAL DEPTH 208.0 FEET
1 0007h # 200 pr. 40452 200 140 1 0007h # 200 pr. 40452 100 140 1 0007h # 200 pr. 40452 100 100 1 100 100 150 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 1	night			_		Ň					of antikation, 1:40 pm, 40	ж92						210		
Free construint Total	-		1			ВО		140	متعالمت									220-		
No DEAN 4775 DATE 762 The PRA Group, Inc			57	1		13		150								141 1.1.1 1.1.				
	1 Nº 1105		в но. То на.	G12 EM	5-19 19004	s				BOREHOLE LOG		7.3 . 7.3	10 6 6	9 MG 10 MG	GIZS EM 1	9004-3 NRAIS				DREHOLE LOG

ropect Site / Dritt Site	NORTH C	FEAST	PT	1.55	as Cel Cel	62.92		50/0 Mg 24 1.25	CIA	Ground Elevation	CH-5A
Continuing				100	tra fe Lia	_	i	488+d E	11 p	REYNOLDS, J. SUTHARD	Sottom at Berenste (best
and Rig Make and Model	acrus	5 56		- On	ш 14 илд Ш СС	eihed	1	A şazari MUD	la Ki	Top of Badracs (bgs;	First Encountere
TONI	0 07711343		25 W	S#	rt Cag	001:07	legia (Intal Car		Total Nember of	51atit Water Lavel (Dgs)
REMARKS:		1	8		• 1/2	101	13 1			Core Boter S	1
Vatar Cata Driling Cata Personnal Changes	- 5	800 K)	Frechter /	Percent Care Recovery	Bis hinter	(استام وا	Dires 13	Utroby: Lag		Haterial Clas and Physical Des	
	5 53 Tri Cane									CASING	
							10	• • • • •			
	HQ 325 Hole	75	<:	100	â				Parping	9.5 CUARTZ MONZONITE	139 przesł
20' dapat at 2:20' a.m., in 64/09/92.	Hole 2,436" Cons	38	3	100	X 1		~		Kosay !	ar prenonyst in 3 cm, and and, stong: signly to righty s variable	r Machured F
		77	1	100	22.0' 8		20 -		15.0 213. Li	28.5 haaring 10 and 20 4 19 open maar aacaa 14,	2 29929
30.0' depth at 3:11 a.m.		23	3	92	ž				26.5 · (10 203.	60.5 traditions 30, 60, 20,6 9 Slightly open, very mitter cal	0 caçmes log
		80	,	100	31.5' B		30 -				
40.0 6600 2 617 20.		72		100	C X 3		-				
040592		73	1	100	40 5·		40-				
50 0° depair at 5:24 a.m.		68	3	88	mox 4						
6409/92		12			<u>51.01</u> B		50 -				
		55			DCX 5						
60.07 dects at \$144 a.m.			<1		51.5		60-		s0.5 - 73	17 tamina tominisi, may	ದಾತಗತ್ತ
		с 0	کد اکد	48 25	BOX						
70 dects 2 1022 Lm. 0409/92					6		70				
CLOSHZ		LATE JOB HE		5-19			E	he F	RA G	roup, Inc	
SELAN SALES		0490 HG. 3844914 69600	N R H	19005/ TOOR (ARR/S	3 5	AGLE		E	SORE	HOLE LOG H-5A , RIVERSIDE COUNTY	Chursonwell
K (L)	<u> </u> ≈/	****	AC	JFF2L(DT		MI	NE RE	CLAMA	TION CORPORATIO	

FEMARKS Wither Data Drifting Data Predatypi Charges	Tool Stee	(X) (D)	Fractores / Koot	Percent Core Recovery	Box Jamber	Elevation (11)	Oepils (1)	Librologic Log	Katera: Classification and Physical Description
	HQ	10	->5	42	BOX		70		13.0 - 345.5 CUARTZ MONZONITE.
	3.65 Hickii 2.405 Core	82	4	100	6 76.5				Porphyme, pak gray, medium to coarse grannel. K-leieksnar phenotograf to 3 cm, azardziri occas Messy hand, somoy: sightly to highly formuled. frammes variable.
80.57 dects at 11:35 a.m., at 040862		π	5	100	8 0×		80		73.2 - 140.5 kw kadares, 50 - 73 cegnes to axis, weak chlores matrix.
		\$ 2	د1	60	7 850		the second s		*
90.0° decen az 1.25 p.m., on 0403/52.		88	ત	100	BOX		90		
		74	ત	80	а 95,5				-
100.07 depts at 5.15 p.m.,		71	1	100	E O X		100-		
on 040992.		100	٥	\$7	5 105.0				
		72	1	100	BC				
11000" dooth at 6:45 p.m., on 6409.92		.65	حا	100	10		110-		
		87	دا	100	115.5 0 X				
120.0" depth at 5"40 p.m., on 040362		68	1	100	11 124.0		120		
		w	<1	100	80X		1.1.1		
130.0° beeth at 10.30° p.m. on 04.06.72		87	d	100	12 <u>132.5</u> 8		130-		
		85	<1	100	N X II				
14007 decti at 1225 a.m. an 64/1072		57	2	100	141.0' B C X		140-		140.0" - 155.0" s5ghty tammad, 10, 60, ard 80 degrees to ans, calora coarrys.
ISON SHEER PREDINGEOL	1	52	2	100	14 1500		150		
ALL ALL AFFEIL	2 } }	ана. 1	07/92 3125-	19		E	×.	The	PRA Group, Inc
Nº 1108	6		N TOX	9R					BOREHOLE LOG
* ENOUSEERING		_	r hai D aff	RIS		EAG	L <u>E MOU</u> M		CH-5A
STATE OF CAUFOR					1	_	101		HECDAMATION COHPORATION 200

	3	(M) (D)	Fischers / Ioo)	Percent Core Recorrecy	Box Pavrow	Elevation (1)	(1) (1) (1)	Litrocopic Log	Waterat Classification and Physical Cascuption	REMARKS Were Cas Drifty Cas Pesannel Charges	Tool Site	(M) 000	Functores / fool	PRUMI CON	Bot Murber	Ebradian (11)	Daph (1)	l thoughs l og	Materat Classification and Physical Description
3 3 H 2	25	\$5	1	120	BC		150		<u>110 - 349.5 CUARTZ MONZONITE</u> Porshymic, park gazy, median ib casas gazined, Kleistagar (personartisti o 3 cm, zbancam bonks, Macty hazi, tangi, siliyiti ja najty fasanak,		HG 3.55* Hale	41	3	100	2315 0		230	-	13.0" - 349 S CUARTZ MONZONITE Porphymic, pink gray, medium to cease gray K-feichgar phenocrysts, to 3 cm, abundani bo
163.0° ceran at 3.00 p.m., CUTUNE2		•	-	0	X 15		150 -		Haminas vancula. 160.0° - 170.0° hogay taxamed, MAOT-stamed sahoy facture Sung, taxames 10 argunas to ans.	2400 depth 21 1230 p.m., on 0411/92	2.406* Core	10	4	100 100	240.07 23		240-		kasty kart, strong sighty to highly inclure transme variable. 234.5 - 243.0 frammes 10 - 43 degrees to ami; day, calore coastry; wear stocenootes
		2		3 5	154 5					on 64/11/92		0		60	a 0 x				243,7 - 250,6 Eachards 40 and 70-90 deg to and subject of the second se
170.07 death at 4550 p.m., in 047.052	ŀ	ה	-	900	anOx 16		170		17017 - 194,5 noderately to nythy barrand. Martines 70 - 50 degrees to aust, calcus (d.	250 01 depth at 1:50 p.m., on 04/1192,		۵ ٥	10 10		24 251.01		250 -		
		27		90 75	174.0" B					on 64/11/92.		30 0	2	103 0	BOX				
160,07 Sector at 8:30 p.m., 04/10/32		83	5	75	0 X 17		180			2500° depti at 11'40 p.m., on 0401/92		57 0	5 >5	100 100	ટક <u>૨૬૭ ૬</u>		260 -		250,0" - 300.5" (ractives 10-30 and 70-90 cognes to atta, irregular, day and calcus ili
		35		100 85	185.07 B C X							17	~ з	:00	BCX				
1920' depth at 9.40 p.m. on 0410'92	ł	31	1	75	13		190	*	194.5° - 234.5° tancunes 10-45, 60, and 60	ໄ		9	3	45	25	:	270-		
		47	2	50	195.5 9 0				iners - construction (vers, ou, and construct of degrades to acts, minor county, and groups th			11	يد بر	62 80	2745 8 0 X				•
200.07 dopth at 100 a.m., on 04411.52		28	ŧ	9 2	13 2015		200			250,07 depth at 8220 a.m., on 04/12/52		11	3	100	27 352 3		260-		
210.07 dects at 410 a.m., or 0431/52		22	4	\$5	BO× 8		210					56	2	100	E OX				
n 0411/92		27		92	212.5			••••		20,0 dops 21 10:20 2mg on 04/1252		30	3	100	25 753.01		290-		
220.0° depti at 6:50 a.m., on G4/1.52,		° 22	4	68 100	21		220			300.7 dept z 125 pm. on 047292		37 39	3 2	100 100	80 X 29 301.5		300-		300.5 · 309.5 tastans 10-20 and 40-70
		2	•	100	223.0 B O X					on 647252		35	2	100	â O X				Segres a LIS, CLICK E
M DATIVES STREED GEOLOGY	- 4		7/52	_	22		230	1 - Th		or OUT 2005 TERES UEDI		52	1	100	30		310		
		на. Сна. Е	M190	C5-3 >R				CONI	BOREHOLE LOG	ST CONTROLLAN AFREN	(F	NO HOL	EM190	05'4			T	The	BOREHOLE LOG
+ CERTIFED	-	5 C	AFF			EAG				+ CLERTISED	1.0	444444 (1467)		RAIS	_	AGLE	MOU	NTAIN	CH-5A LANDFILL RIVERSIDE COUNTY CALS RECLAMATION CORPORATION

RDUARS Victor Data Drilling Data Presidenti Changea	lool Stre	Picito (%)	Fiechers / foot	Percent Core	Landow	DOC TATHA	Elevertican (h)	Depth (FI)	lithologic Log	Natarial Classification and Physical Description	REMURKS Water Deta Diting Deta Pressmer Charges	Yool Ste	ticin (x)	Fractures / Icol	Parcent Core Nacorrer	Bot JAmbu	Eleveritan (FI)	(արձի (ո)	t Whotopics Log		Matanai Classification and Physical Gescription
	125	43	2	100		3		310		13.0" - 349.5" CUARTZ MONZONITE Porphymic, pink gray, median to course grained Kłedziga na menocijsta to 3 cm. abundani bote. Madzy hani, strong signiji to hody facemane.		HQ 3.25" Hole 2.435"	· ~	3	100		1	39			368.0 - 336.0 OUARTIGHE Where to medium gray, zones and dors of K-lefk and epistom-depision. Fractures 15-40 and 50-9 degrees to acts, caloris 92. Very hard, strong.
depth zt 550 p.m., 92	Core	x	2	1¤	21	11 2.5		320		crearization variable, 2005 S = 224.5 traceurus 40 and 70 degraes 10 autis, semi-simport to handly, sightly open.	400.07 Septh at 1201 p.m., on D47452	Care	37	2 >10	1	e x Q Q		40			3350 - 4340 HORNFES Gray to green gray, fine graved, bands of bot and failbast, Frankres variable prevision, set smooth, slightly open, mont calute si
		43 21	2	100 75	-	K				324.5° - 368.0° tractures 10, 40, and 70 degrees In acts, smooth to hardry, manor calora 50,			30	2		404	1				· · · · · · · · · · · · · · · · · · ·
ರಳಾದ ಖ 9:50 p.ನ., 92		8	5	75		20		330-			410.0" dept # 1210 a.m. on 047552		R	s	100	X	7	41	2		
		¢ 22	>5	1 53	3								33 52	2	100 56	th xou				a commence of	
deptrat 1220 a.m., 92.		מ	2	100	12			340-			4205 corm at 422 a.m., on 04/1562		50	3	92	H21 £	7	42			
7 dept: 21 4100 2.m., 372		52	2	100	34	121		350-		M9.5 - 368.0 - KORNFELS, Medium prov. Ene praived, equiprocedar, Alaemating	630 tr comm at 7.52 e.m., on 647 532		0	2	75	431.0	r	43			
		23	4	100		5				bands of biotes-anforbools-regiments and quart- lectopar. Hard, strong.	(1) (21232		0 13	75	1	- X				!	134.0 - 632.5 GRANOFELS / GRANULITE Medium pray, medium do caste graned, equipa
'depπ ± 200 p.m., ⊮92		13 0	>10	1				360-			443.0" depth at 1:10 p.m., on 644.562		25		100	439.	5	44			Medium gray, medium to cause granud, equipt Appears to be a plate muture of quart monto morphatikan departements. Nucl, medium son Common quart2-Medium causes to 6 454.0 - 470.0 fractures vanishs, signify open semi-sensiti, more cause 35.
		0	>10	1						365.C - 335.0 CUARTZTE_			0 37	>10 >10		45				Construction of the local sectors of the local sect	
රංදන at 3:30 ව.ක., ඉද		53	<1	100	\$			370-		When to medium prov, zones and dots of K-lexicour and epidomexicourds. Frances 15-40 and 60-50 cognises to and, calons 12. Very hard, strang.	450.0° daoin at 4340 p.m., on 047592		50 50 8	1	100	18		45			
රගත ස් 6:10 ස.ක ඉද		95	-1	:00	377	25		380			400.07 depth at 122 a.m.		a 0	2	1	457.5 B	ř.	455			
<i>5</i> 2.		\$1 68	<1 <1	100	- 3	5					on 647692		37	3	80	47 465.0					
ST DEAN AFFE		t	07/92		80	x		390	The	PRA Group, Inc	on Denser OFN THE OF	A L		3 07/92		BOX 48		470		l ne f	PRA Group, Inc
		-	3125 EM19 N TC R HA	005/5 CR			LAGLE			BOREHOLE LOG CH-SA LUNDERLI RIVERSIDE COUNTY CALIFORNIA	VI DEAN AFFE))	04 HQ. 7400 HQ. 24494 2449	emis n tox r hai	CR CR RRIS		EAC			E	BOREHOLE LOG CH-5A ANDFILL RIVERSIDE COUNTY, CALIFOR
RU GENLONST			R HA D AF		τ	ę	AGLE	MOUI M	NE I	A LANDFILL RIVERSIDE COUNTY, CALIFORNIA RECLAMATION CORPORATION	CECCOST				RRIS FELDI	r	EAC	ale Mk	MINE	AIN L	ANDFILL RIVERSIDE COUNTY CALL

FEMARXS Vess. Data Origing Date Prestruer Charges	bod Sita HOD (K) Fiectures / bos Percent Con Bust Pharbar	1 2 3	Material Classification Into Physical Description	RBALARKS Vitage Data Ditting Data Presonnel Charges	Tool Size	ROD (K)	Fractores / Mol	Percent Colo Hectorey	Dos Jambie	(t) (t)	Libotopic Log	Material Classedication and Physical Description
4300್ ಕ್ಲೂಗಿ ಪ 1250 ರಿ.ಇ. 047652 ವಿರಾಣ ದುವಾ housing on ದೇಶಗಳು	HQ 3.25 Koie 2.405 Core 50 <1 100 10	480	CAS 07 - 632.57 GRANOLFELS / GRANOLFEL Medium gray, mechan is course granes, experiments. Appears to be a pastor channel of quark mechanisma representations measurements. Common quark-leading wides to F. 470 - 5307 framese variable commandon, semi-succh to habby, signal posen, manar quark L.	500.07 dopin at \$45 a.m., on Der1852.	HO 3.85° Hole 2.405° Core	0	x5 x5 x5 4 2	100 100	8 0 57 57 557 55 8 0 X 565 5 565 5	550		LS40 - 5225 GRANCFELS / GRANLITE Hacking gray, macking to contrast spaneds, experiments Aspeans to be plastic mattered in part monitories morphilized negaselenerst. Nact, mechanistrop, Common quarti-Mechanistrast to 6. 5000 - 5500 framme platen random, families sightly open, semi-smooth, with mand day, FeOL and raione EL
	25 3 100 X 50 8 3 100 2 8 5 7 100 2 8 5 7 100 7 8 5 7 100 7 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5	51		570.07 (agon at 920 p.m., or 544852 Fig down for cetch adjustment	ana an ann an thu	15	2		B O X 59 575.5	570		
500.0° deeth at 3.50 a.m., 04/17/92	32 3 100 \$1 502 0 3 100 B X 35 2 100 52			550.0° depth at 1:22 p.m., on 040.592. Alg down for clutch repar		7 7 17	۰ ۲۶ ۲۶	84 78 62	60 X 60 58557	520		56007 - 605.07 (සංකාශය :0, 40, and 70 රංදාසන හා කාන, කාර්පය හි හා 187
510,27 depen at 5.40 a.m., 0447,732 520,97 depen at 6.30 p.m.,	33 C 733 511. 18 6 100 X 39 1 100 512 100 512	510		500 600 st 445 2.m. on 0472/92		0 C	کر عد 10	45 100 100	8 0 X 61 597.5 8	590		
500 5000 at 1000 p.m. 500 5000 at 1000 p.m. 641752	57 ct (00 5 58 s10 60 54 8 s10 60 59 50 50 50	530-	5000 - 550,00 Inaccure extrem random inaccures Lighting covers, letters-mouth and care, FeOt.	EDD 7 Seeh 2 950 a.m., on 0472/952. EDG enfang stochaet to nun packer tests on HO hoei referaet to NO hoe, resurred S47 am, 4/2592. 6100 foeth at 11:30 a.m., on 0407592.	HQ NQ 2,56 1,75 Con	0	>10 >10 	100 37	X	600		ವಸ್ತೆನ್ - ವರ್ಷೆ 'ಕಾರ್ಯಾಟ :0-20 ಖನ 40-70 ರತ್ತರಗಳ ರಾಜ್ಯ ಖಾಗ್ರಾಮರಾಗಿ ರಾಜುಗ್ರ, ತರ್ಧಿಗಿಗೆ ರಳಗು, ದಕ್ಕೆ ಖನ ಪ್ರದೇಶ ಟಿ.
5607 0eph at 1255 a.m., 04/1352	0 310 80 X 0 35 35 22 55 70 g 0 1 55 40 X		Los caistas fá.	52015 dep h at 12:55 p.m., on 04/25/97.		11 23	5	95 100	63 616.5 8 0 X 64	620		
SEND CEC RED GEN SENDENT OF DEAN AFFE WO	0 4 90 56 0 4 90 56 17 >5 100 54 17 >5 100 54 17 >5 100 54 17 >5 100 54 17 >5 100 54 17 >5 100 54 17 >5 100 54 17 >5 100 54 17 >5 100 54 17 >5 100 54 17 >5 100 54 17 >5 100 54 10 10 100 54 10 10 100 54 10 10 100 100 10 10 100 100 10 10 100 100 10 10 100 100 10 10 <td>EAGLE MOUNTAN</td> <td>BOREHOLE LOG CH-5A N LANDFILL RIVERSIDE COUNTY CALIFORNIA RECLAMATION CORPORATION</td> <td>m 0000 down a 210 p.m. m 00000 to 210 p.m. Mis VEAN AFREE Mis VEAN AFREE Mis VEAN AFREE Mis VEAN AFREE</td> <td></td> <td>овна. (мана. (жинн) жинн)</td> <td>EM190</td> <td>100 19 05/8 1R/S</td> <td>80X 66</td> <td>E MOU</td> <td>'NTA(N</td> <td>BOREHOLE LOG CH-SA NANDELL RIVERSIDE COUNTY, CALIFORNIA RECLAMATION CORPORATION</td>	EAGLE MOUNTAN	BOREHOLE LOG CH-5A N LANDFILL RIVERSIDE COUNTY CALIFORNIA RECLAMATION CORPORATION	m 0000 down a 210 p.m. m 00000 to 210 p.m. Mis VEAN AFREE Mis VEAN AFREE Mis VEAN AFREE Mis VEAN AFREE		овна. (мана. (жинн) жинн)	EM190	100 19 05/8 1R/S	80X 66	E MOU	'NTA(N	BOREHOLE LOG CH-SA NANDELL RIVERSIDE COUNTY, CALIFORNIA RECLAMATION CORPORATION

•

REMARKS Where Des Defining Los Preserve Chinges	Tool Size	נאן מנא	Freedores / tool	15	Lawa	Box Farrow	(burbon (1)	լոի կելու			Materia: Clarstification and Physical Description		REMARKS White Das Drifting Call Protocols Changes	Teel Stre	(×) 008 2	Freedores / hos		The barren	Elevation (1)			Lebologic Loy	Material Classification and Physical Description
730.0 Gent & 210 p.m. G4/27/52	1256 256 Hole 1.775	100	5		5 7		-	790	_	Ť,	SET.C - BASY CULATIZIE Machum to dara gay, ha to medium graned, waady bootad. Common cutor monitoria clases. Mostry hard, strong, hytyk (sacunda, Fracture verane commono, sighty open, wak day and sacia coardo		3705 000 to 1255 p.m. on 042592	NQ 2.98 Hicle 1.775 Care	42	1	130			9	70		<u>870.07 - 900.07 QUARTZ MONZOWITE</u> Internary city-attend, weakly to intrody bleached. Abundan homise tenositie. Notactary hard, moveraney strang, highly tenosities to throatene Practures variable, day and calcer 52.
800 5° берт 25 \$200 р.т. 194/27/92	Care	7	+	 		BOX 235		500			unandada, ang ng upan, man nag ang unan mang		880.07 Geografia at 2000 p.m. on 64/2252		7	>10	1	LEBC	30.0	e	10 10 11		880.0 - 863.0 faut briccia: custarie and quara norazonie casta in masta di custar-ceneraties cay
510.07 depts at 1258 a.m.		0	 >10 5	1	0	B O X X		8:0	ممليميدي				330.07 ರಂಭಾ ಪ 4:05 p.m ರಾ ರಿ42352		58		100	888	3.5	8	-02 -02		885.07 - 890,07 Iauxi bayoona, strong caxine certeri.
042252		2	 	1	0 ⁸¹	2.5		610	ليدودينا		·			and a cost of sound sector water	22	>13		9	2				895,0 - 900,0" laud bredda, clav-och mami
82007 depth at 200 a.m. : 04/28/92		0	ية 15	<u> </u> 		0 × ×		820	مديليمين				900.07 terat depth at 5.50 p.m. on 04/22/52					500		9	8 		TOTAL CEPTH 900'
8307 GODT 21 5.09 2.5. G472532		4	13	,	n	5 0 X		830	بليبية أعدي		827,07 - 828,07 ತಿರುಪಡೆವಾ: ರಾಜ್ಯಾ ಸಾರ್ಥವಿಗಾತ್ರಿ, 57ರಾಜ್ಯಗ ತಾತಾಕರ ಜ ಮತ್ತು ಕಾನ ತಲಾತಗುವರಡ 10 ಕಲ್ಲಿಗಳು ಅ ಸಿಜಾ												
64517 60071 21 8:25 2.7. 1 0472/52			1	1	5 20 54	80× 86		640	بالمعمداليدية		145.7 - 884.7 - CUARTZ UONZONTE. Strongy dan-Jerod and Daarse, adordani					-							
250.0 Soon & 525 2.7. 1 0472552		3		1	8	5 CX 87 25 8		\$50	ليبيعكم معيم		bona (>27%), Moderany hard, incornally storg, highly factured. Cay and cause tracture Sang.									A NUMBER OF A	للمعالممعط		
8605 3005 # 1120 205 a 647252		;	>	1	00 3	0 X S S S S		660	ليعيمكمانيه	A CONTRACTOR OF A DATA OF A DATA													
277 CRED DEAN		1	2		_	BOX 5		870			SEAS - BIDS - HORNERS Machine Davies Styl Lie grannet, Branners (D-70 General Davies, Machine , Franners (D-70 General Da Jan, Magnas, Machine , Si, Machi Fabr stan	. 5	S CSTERED DEDIA			07/92			1 =			(The	PPA Group Inc
			07/5 G12 EM1 K H R H	5-19 9005 00H	STATI S	_	EAG	E MC	NUN		BOREHOLE LOG CH-5A LANDFILL RIVERSIDE COUNTY DALIFORNIA ECLAMATION CORPORATION		Nº 1108 CENTRADI CENTRADI CENTRADI CENTRADI		***	EM19 K HC	CCS/1	ATTE	ir EA		40UN	TAIN	PRA Group, Inc BOREHOLE LOG CH-5A LANDRILL RIVERSIDE COUNTY, CALIFORNIA ECLAMATION CORPORATION

REMARKS View Dica Dietro Dica Pedonnie Chinom	Toxi Stre	(x) 00H	Fractions / box	Pacteri Con Recorrey	Bos famber	Elersitor (1)	ն։իսի նվ	(thatage tog	Waterar Glasskicanon and Physical Description	ABMARKS Waar Cata Drifing Data Planconal Charges	tool Sice	ROD (X)		Frechtin / hot	Percent Core Hecovery	Box Marten	Elevation (II)	Depth (t)		don showing	Materias Cigas Indenton and Physical Description
530.0 dects at 210 p.s., or 347552	NQ 258* Hole 1.775 Con	7	6 5	100 100	23 23 23 23 23 23 23 23 23 23 23 23 23 2		630		CALC - SELE GRANDFELS / GRANULTE Weden par, median to marce gamed, exprender Appears to be a plastic marce of quert monitoria and marginalized meruschenes, Nard, median strong,	710.07 depth at 3:15 p.m. on 04/2552	NG 2.56 Hola 1.775 Can	0	Ť	Ť	100 100	0 00 .		710			567 7 - 843 7 OULRIGHE. Nacium to dark grav, fee to medum graned, webby bodda: Connon garg motiones deves. Northy hard, strong, highly facured. Faculties require nomenzous, sightly good, weat carry and carries menzous, sightly good, weat carry and carries
543.0" Secth at 3:30 p.m., on 04/25/52	var	0		100 100	X 65 642.0		640 -		1 0225 - 5440 HORNETS. Light to headen gray, lies grande, legagravitat. Beine 20%, weaky fealand, iduales of granz. Mediawi, Hardi, Horny, Joly Instantel Finanzie. 20, 40, and 70 degrees to azis, ulignity open.	720.07 doesth at 5.05 p.m. an 04/26/92		67 0 13		1	*5 \$5 65	X 74		720			718.0° - 719.0° taun pouça, Sor pilor cay with hapmonis of quarteria.
550.0 Gents at 4:57 p.m., on 04/2552		13		ຍ 100	80× 651.0 BOY		650 -		THE CALLS. CALO - ESS CULATIONE: Proban gay, for is mechan gay, weaky black. Aundari bebase, more bone. Had, strod, hadry beamare. Fractures 40 and To degrees to au. skylor gae, weak calo and new calore 2. <u>ESS 5. 657.07 HCRNFES.</u> Proven gay, the graved, black. Strongy mammed	730.07 depth at 10:30 p.m. on 64.7592		0	,	10 .s	50	726.0 8 0 X 75 725.5		730			
600 7 6000 at 620 p.m., on 642592		i		100 100	4 63 560,57		650 -		anta pixi guang mengenana Fland, story bushi futurne Fingunas 20 and 50-70 depres to auto, sighty coen hactly, weak day and cultura atalang.	743,0° dooth 21 1°05 a.m. an 04/27/52		22	1	1	8 24	8 0 X 76		740			
6700: ಯಾಸಿ ಪ ಕಿ.55 p.ಇ. on 047592		25	>10	80 100 82	X 69 69 569.5 8 0 X		670 -		957.0" - 643.2" QUARTIZITE: Meanin to care provide a modum gravad, meany beck. Common quarte morturna posets. Moaty hard, arong, hepty fracting. Fracting values omenazion, sighty gean, meak cary and calors calors	752.07 depth at \$00 a.m. on 04/2752		27 0 13		6	86 60	745 <u>5</u> 80 X 77		75(the base of the second s	
680 07 04451 21 11 12 p.m., on 0475572		0 1	>10 5	100	70 578.0		680-			760.07 dagen az 5:40 a.m. on G4/27/92		23		5	24 30	756 D 8 0 X 78 78		760	1		
530 l' coph at 6:30 a.m. on 64/25/92		40		67 100	x 71		690-			770 <i>11 dec</i> m at 7.30 a.m. on 0427/52		33		- -	100 90	8 X 77		770	1		766 C + 772 C quarz monzorna sul
700.07 depah at 12:01 p.m., on 0472552		28	4	80 30 30	72 55 80		78			730.07 decth at 12.05 p.m. on 04/27.92		0	>	10		80 X 80 783.5		780	1		
7100 opp at 315 pm. on COSS7 FRED GEO No DENI AFF NO D	2 2 2 2	13 13 14 17 16 17 16 17 16 17 16 17 16 17 16 1	5 1 /92 (25-19 /19005 HOCH	STAT		EAGL	E MOU	NTAIN	PRA Group, Inc Inte Diseases BOREHOLE LOG CH-SA LAPORLE INVERSIGE COUNTY CALIFORNIA RECLAMATION CORPORATION	TRUE ACT REI DEAN NO COLORIST CREI DEAN Nº 1108 Nº 11		0 ATE	07/ G12 EM K 1	10	\$5 5/10 ISTAT	790 0				AIN	PRA Group, Inc No provide BOREHOLE LOG CH-SA LANDFILL RVERSIDE COUNTY CALIFORNIA ECLAMATION CORPORATION

	RAL PT	1		541	10 01	" œ73	52	30	185 THES		Ground Elevation 2307,76 FEET	Botanota Ne CH-10
Cocreterates / Stationing				0	a piec	ion Date (2/25		ی ا	93+4 Br	រ ខ្លា	R HARRIS, R. USREY HARD, D. VOLTURNO	Bortom of Borandia (201)
Cris Rig Mass and Model	56-6			201		CRE		Dr	Iding Fleid MUD		Top of Bedrock (tes)	First Encontered Water (p. 1309 log:
Drilling Contractor TONTO DRILLING	SERVIC	ES. 14	iC.	Ser		00/10/ 1551		Te Re	ан Сонь сотегу ¥. Эй	×	Total Rumber of Core Boses (51	Static Water Level (bgs)
REMARKS:			1		į					1		1
Weiser Care Onling Data		-		3_		E	9		601	-	Waterial	Classification
Personnel Charges	Ted Sire	ROD FL	Factoria	Prost of	Dox Number	Eleverion	Over 1		libalogic Log	in Printer		Description
FOREMANC WATNE SEALUPRE		i	1	i	1		i	-		1	0.0 . 7.0' SET CASING	
DALL CREW A: (Tan-Tan) Dalar: Shawn Autal	5.25° TR	1	1,1	1			1	i			No sample taken	
Heloans: Enc Owens John Gross	CONE							1			T.S - 15.4 QUARTZITE	
DRILL CREW B: 17pm-7am	нQ						1	-		-	Ught gray, fine-graned, ta	1707
Ordier: Just Filey Holpen: Elli Kertur	3.850	1	>10	42	80		1(Ļ			WALFORD	,
Grans Williams	HOLE	\vdash	<u>;</u>		x					-		
Geningst D. Volumo	2.400° CORE	1	>10	90	1		;	3			5.4 - 59.0 IRON ORE	
Casing set at 7.0 liet	20102	1	1							1-	Last order, both factor	đ
5egan comp at 4:30 pm on 02/13/52		١.			.10			1		1	very hard. Minor mica.	
Geologies: R Harris		ľ	۱ ۱)	B		20	1				
Siopped drilling 2: 17 -					X			1			23.5 One with imaginar in	****
problems repreving core. Replaced coung to 17		90	١	9 8	2 77 97						of light microd mineral (no	(calcio)
23.5 depth at 1040 pm, 273/52		80	`	:83	BOX		30	TTP-				
		47		74	B					and the second		
					OX 4		40					
		82	γiα	\$0 	45			Lass		-		
		35	4	ស	8			L.L.L.L				
			5	1 1 1 1	X			-		1		
hillion noticed that have made			>101	1	5		50	-		1		
menor amount of water		19	>10	ಟ								
		15	>10	75	86			1				
				-	BOX		60	11			15 - 65.3 IRON CRE BRI	
1250 000		13	4	54	6						Light hat extend togments matrix (70%). Fragments w Fractions copping 30-60 cog	(ಸ್.ಸ.) ೫ ೧೫ ೧೯೭೫ ೧೯೭೫
STERED GEOLOG		46	3		80			-		66	3 - 67.8 DICRITE DIKE	
Santo real Arren	n	40 1	31		2 X		70				Medum green, medum coal orthociase phenocryss, Fra Contact highly albord to cru	CONTRACTOR OF CONTRACTOR
N. WY TOXAL	//	-	392				Ť	Ť	he PRA			
Har Ben LANA	/ Г.—	NO .	0125			-					goup, Inc	
ENGINEERING DEL		4 HD.	BM 1		-				BOR		OLE LOG	AIGURE NO
GEOLOGIST	CHA	60	D. 14			EAG	E MO	NUN		, U	H-10	

REMARKS Wear Data Onling Otta Personal Charges	lod Size	ROD (%)	Findan per los	Paura Con Pacaver	Bos Number	Eleraton (N	Depik (Is)	thhotopic (++	Materia: Classification and Physica: Ceasustion
	1.850	10	3	96	1400		70		69 5 - 75 5 CRE BRECCUL
	1015 2406- 2075	47	2	64	74 0 B Q				vestnered chunks of lenance-staned diorna 76.0° to 76.5° highly leasured, with day gouge
	- Conc	85	4	100	х г		80		755 - 525 OKORITE Gray, the-graned matrix. Hard, scorg, heated traditions
Geologist D. Vohumo		52	2	100	80				less zone with heated fractures
		17	3	1100	9		90		
		_		100	8 0 0				925 - 1195 - 905204787 DIKE Green, aphanoc, Fine-graned pagodase phonodysts 2 - 5%, atemns to denie. Linowa stan m Instatus, Hard, Most Instance depung
		50	4	100	Х 10		100		inactures, Hard Most inactures depung 30 - 50 degrees.
		25	5	100	102.0				
		50	з	200	о х и				
<i>,</i> •		47	4	:00	<u>110 r</u> 8		110		highly allored zone - dark green epidece and chloma
		13	6	100	X 12		-		bremated, vaces of calore in vers
125 6002 21 4.55 20, 27.4.92		45	3	100	B		120		1195 . 1297 ORE BRECCIA: Ten to kont green annulur teaments. 40-50% Ingenens 1-6mm in black eve mann Fractures die 20-50 degrees. Very hurs, very
		69	3	1:00	X 13				Hactures do 20-60 degrees. Yery hard, very strong. Apenumes tight, some knorke stanning
130° depin at 5.55 pm, 2/14/92		54	4	100	8 0		130.		129.2 - 120.0" SCARN ZONE Increasing green stanzon. Excures with soft to medicin hard 62.
		25		100	X 14 :37 6		1		131.0" - 138.5" CORTE PORPHYRY DIKE. Gray, with leadspar phenocyst (67%), Fractures op theory. Health fractures with one Bang
147 depti 11 6/43 pm, 214/92		37	5	100	BOX		140		138,5 - 140 7 SKARN ZONE Green starzon, sob to mean hard 140,2 - 155,0" ORE BRECCIA
ESTERED GEOLOG		43	3	95	15 		150		Tan to fight gray angute hagmens 40-50% fragmens I-born in black on matter Magnetia Mentatar matter, with swind green ataration tands, Fractures tight, doping 20-60 degrees Sighty hard, moderately strong
AND UCAL AFFE	- F	ATE	378	z 25519				The PR	A Group, lác
Nº 1108	1/1		, DM	19006-	z			BC	REHOLE LOG
ENSINEERING LAT	-	HC0 HF2		NERT NEED	Ŧ	EAG	LE MOU M	NTAIN LAN	CH-10 DFILL RIVERSIDE COUNTY, CALIFORNIA LAMATION CORPORATION

odarks Near Dua Dring Daa Nearner Charges	Teol Site RaD (s) Finchers pet los Ferent Con Boot tuntue	Eleradon (H) Depth (N) Hendagic Log	Wasserwil Obsastication and Physical Description	REMARKS Year Da Dilling Das Practive Carryes	4 21.	Findiens per bot	1.5	Box Humber Elevation (II)	lık tu	litheingic Lag	Meteral Cassilication and Physical Desocrosuon
ech a 10.00 pm. 27482	HQ 32 5 100 15 3.8507 HCLE 2.4307 18 8 100 0	150	1027 - 1550" FON ORE SECON Tan to light grant, annuar Inghanas, 40-50 %, tagtered 1-6 con at black one mater Fragmens de 20-50 segmes. Sightly hard, nod utting. 1550" - 1570" FON ORE:	Geolopsi: D. Yotano 201 Geon at 200 an, 271592 Prodens et auto calca Geolopsi: R. Harra,	14Q 3,850" 0 HQLE	6	1 1	20 m	230	11	Z25 - 237.0" CULATIONE Light part, Seeganed. Yey hard, very strug, lineh. Kipny Factured Statuse opper 30 - 90 degrees, lyst, with herazte-informe stan.
	42 6 100 102 7 5	160	Rest Mark, Hony Instanted, Neary vertical so income cannot de at our win-haad. 1970 - 1845 - OUARTZITE Light prent, very insegrand. Steeply doorng backing, Hergh Yacarusal.	247 depth at 8.00 pm 2/15/92	0	8	100	X 25 241.25	240		237.5 - 245.5 CUARTZ MONZONITE DIKE Light prin-brown, kne-graned. Modersawy hard modersawy strong
ist J. Sustant Son al 11:00 pm, 2/1492	12 -3 100 X 18 171.07	170	164 97 - 173 0° SCHGTOSE METALAROSE Light grave with band to black, prax, 9060 Bands op 60 degness, Frazunes mesor, parsie bands, Moderatery hard, moderatery strong	2507 dayon x 800 pm, 2/1552	2	1	80	27 250,0	250 -		245.5 - 275.5' IRON CRE Namatie min, navy black, signtly rugby Moderatory hard, signtly wathered. Soztared bines and vers of skam materas 247.2' - 247.3' Green advances tang
	53 · I 90 8 C 77 2 100 13 1100 13		1720 - 1750 - ISCN CRE Farsy back, high factured, Magnetis rich 1750 - 1780 - CRE BRECCU: Fagners of mea-survey in magnetis on 1780 - 1855 - ISCN CRE,		65			mox 1	200 Contraction of the		(stam, calo-sicula mnerals) (stam, calo-sicula mnerals) 238.0 - 275.5 Sizm, dank green to reliow-green, some steepy doping banding
sch 21 1.00 2m, 20592	85 2 100 B X	180	Macroarching Lond Dialization tones toops down down shundart calca down down shundart calca down down 2555 167.07 CULART/TIE Generation way, why the sparsed down down	257 depth at 9:30 pm, 27592 Georgest, J. Subard	2	+	1	80 X	260		nearly vertical verts of calote
ain at 207 an, 271592	63 2 100 20 119.27 96 c1 100 C X	190	Very hard, vory strang, 1870 - 2295 - TAND ORE: Magnetizenen, name was where nationalities of quantum to 19025.		22		142	29 75/0 B O X	270		256.07 - 287.07 - 7297.0839 148.01 869.757 149557
agan at 406 am, 27592	85 1 100 21 1175 82 1 100 X	200	1903 - 2145 one with verts of white caus- stance, 2000 degrees from vertical. Magnesis with price, september, monor charals. Moderativy hair, moderately string. Very factured, brecasted, numerous beaks fracting.		24	(3	8	30 2714 0 X	290		275.5 - 294.0 OUARTZ MONZONITE DIKE. Freeyraned, pitebrann. Highly facund facuus shiphly open, will kinorashenaria atain. Yey fard, vay stong, bish
x51 au 5,18 am, 27552		210			0 X	3 2	62	31 233.2 8 0 X			252.0" increasing aleration, vens of ore
	58 3 100 23 274.55 71 1 100 6 X				4	1		32 292.5	290		231.07 - 234.07 Gouge light to dark green cruniby 254.07 - 319.77 IRON ORE Back think, hard, wey strong. Aburdant frash green. Alkor hardrons. Hard were
apr z 627 am, 27592	B3 <1 100 222.5 B3 − 1 100 222.5 B	220		300° depth at 547 ath, 2/16/52 Devason sarvey = 0.75 depters Geologist: D. Vaturno	100	2 <1	100	33 301.2	300		Hear pyras, which rescures have very to 1/2" of themona and caucity,
STERED GEOLOGIA	37 5 100 X 25 25 26 26 26 26 26 26 26 26 26 26 25	230	238 - 2310 CULATZTE: AGroup, Inc	STERED GERUS	100 DATE	0 <1	_	х 34 21	310		
ERGINEERING GEOLOGIST	DWE NO. EM 100000 DAAWN R. HARRIS CKCD D MERIT APPD D AFTELDT	BO EAGLE MOUNTAIN LAN	REHOLE LOG CH-10 IDFUL RIVERSIDE COUNTY, CAUFORNIA AMATION CORPORATION 3 of 12	Nº 1108		HO. 24 HO. 24 HO. 24 HO. 25 HO. 25 HO. 25		5 - 5	GLE MOU		A GROUP, Inc DREHOLE LOG CH-10 NOFILI RIVERSIDE COUNTY, CALIFORNIA LAMATION CORPORATION

MARKS Maran Casa Smithig Casa				Ē		3	Waternat Classification.	58447XS				1	ł			
ARTER CARDIN	- 12 R	Part Con	Nut.	Claradian	fist vsdag	lithelegic	and Physical Description	HEMANAS Wear Dea Onling Data Principal Charges			3	_	ŧ		3	Material Classification
	33 82 HO 100	1		5	310		294 0 - 319 7 : FON ORE	Personal Charges	A 510	(%) (I	FINCUM PM	Percent Con	40p	(II) (II)	likhalogia I	end Physical Description
	3.85	1	Ň				Black, Mean, hars, very strong. Abundant syste Menor framering, hard very of calors and memory to > 1/2.		8	ROD		2.2 J		390	3	387 - 3950 CUART257E
	2406		35						3.95" HOLE	49	5	100 B				Hust years to not nervate stan, moderately weathanto moderately hard, moderately transmid, transmit variate menation. Zones of protectionarepidous a textor
		1100	1 Š		320 -		319.7 - 341.0" QUARTZ MONZUNITE. Prectorem, the granud, highly traching. Fractures variable 6p, macry suesp, minor kinonie stan.		2.406 CORE	47	•	100 43	. [395,0" - 402,5" SKARH Fine graned, motiod with K-bidspar-opcore-comte- cular-promote. Kard, strong
		i 100	36				Viers and framunas eventable. Very hard, very \$7000	400° depth at 100 pm on 2/17/52 Develation survey = 0.75 degrees		53		100 8	-	400 -		402.5 - 428.0 IRON ORE:
R. Karo	0	1	6		330 -		-			60		X				Adundani itash pyrte zones up to 2" Moderately framurad; framuras tight duping ap to 60 degrees. Hard, strong, sightly weathered frames straned.
		100	37					4107 depth at 1:00 pm on 2/17/92		Ű	1	100 4	ĩ	410 -		
	33	_							-	80	,	100 X				412.8' - 415.7' moderately weathered sone, soundary, fmonte stant. Vups of remotint pyrite toxic with quarts.
	3		38		340-		341.0" - 589.5" SCHISTOSE META-ARKOSE Banded priverown, dark groen, work green, yellow green			ສ	4	100 47	5			
		120	3 202				Moderzały fractureć, wars healest fracturas wind is 'otow bedarzę. Slightly weattered, decreasing with septh.	420 depth at 1:48 pm on 2/17/52	ĺ	80	4	100 X		420 -		
•	0	130	1		350-							- G	ন			423.7 - 425.0" signby bacared with brooks-hemaina stain. Septby weathened
	3	100			330-			430' depth at 2:41 pm on 2/17.92		87	41	100 X 100 X		430-		478 0 - 436 Z OUARTZ MONZONITE Prik-brown coarse-graned Abundani K-letopar
	so	1 100	XC						-	ı	1	100 49 49	1			atarabon and pyrta in healed tractures Frances, minor Emonies stain, shalow do.
	я	1 100	300.5 B		360 -					a	э	100 20				436.7 - 452.0" IRON DRE Asundarit pyrtte, Very hard, very stong, besn Numerous vertosi fasturas with pyrtte álling
	25	1 100	X				365.5 immeasung chomp-opdote starsbon, increasing training dentity, immune open,	440' seech at 2:55 pm on 2/17/52		68	2	5		440-		,
t J. Suthard	۱.	1	367.5 B		370 -		Acted of the state	Geologist: R. Harts		Н		100 403	1			
çenerzior ladure, 903 pm, Resumed shilling 11.40 pm,	18	100	X 42		3/0					43	4	100 X		450		
	8	5 100	8 0 X		1			450" depth at 5:00 pm on 2/17/52		ສ	4	100 452	e.			4520" - 457 5 ANDESITE DIKE: Gramman gray, ana-granao. Hodaritahy alared hard stong to 456.4, boconing crammad softer
t D. Yotamo	. 11	· 100	7 1		380-		382 - 385 highly factures, highly started,			38	4	100 X	ł.	1 1 1		457 S = 610 fr CUARTZUE
	0	130	B				ביניגל השני אייניגל אייניגל אייניגל אייניגל אייניגל אייניגלא אייניגל	450° depth at 5.55 pm on 2/17/92	-	12	4	130 C	51	460-		Lipit gray, ine-graned, very hard, very stong Many ne-hasiad traducts with knotne up to 5 mm disping 0 - 10 degrees. Fractures spit, with spine, disping 30 - 45 degrees, kingular werds to 10 mm
P	0	:00	х 44		390		289.5 - 395 0 _QUARIENE_			100	01	X 100 1 47		1		
AU DEAN ANY EST	JO2 10.	1/22 G125-19					A Group, Inc	470 COLOR & R. H. J. P. S.		ន	0	100 1.00	5')	470		
1 Par Lat	DRAWN	EM 1900 R. HAR D. MER	RIS -		SIE MON		DREHOLE LOG CH-10 DRIL RIVERSIDE COUNTY, CALIFORNIA	STATISTICS DEALY AFFER		ate CB NO. WG NO		72 25-19 (19006-8		ļ		Group, Inc
GEOLOGIST		D, AFFE					AMATION CORPORATION 5 c'	Nº 1108		rann HCD	R.	KARAS WERIT	EAG			REHOLE LOG CH-10 DFILL RIVERSIDE COUNTY, CALIFORNIA
PIC OC ALLEORNIA								GEOLOGIST		P? D		AFFELDT		M	NE RECL	AMATION CORPORATION

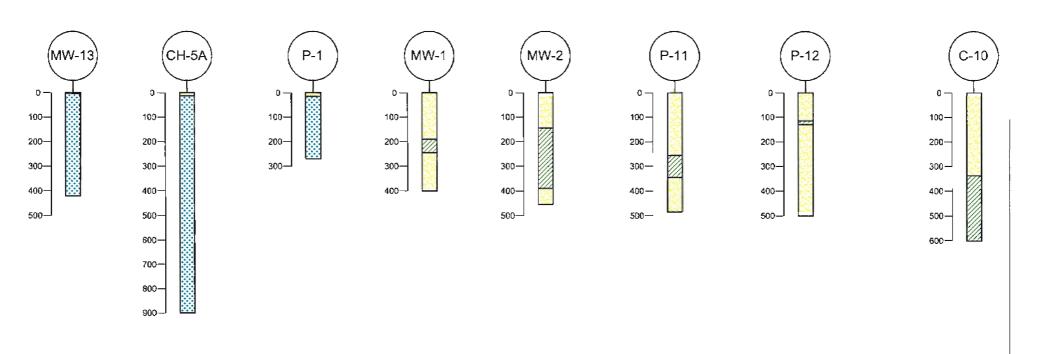
. .

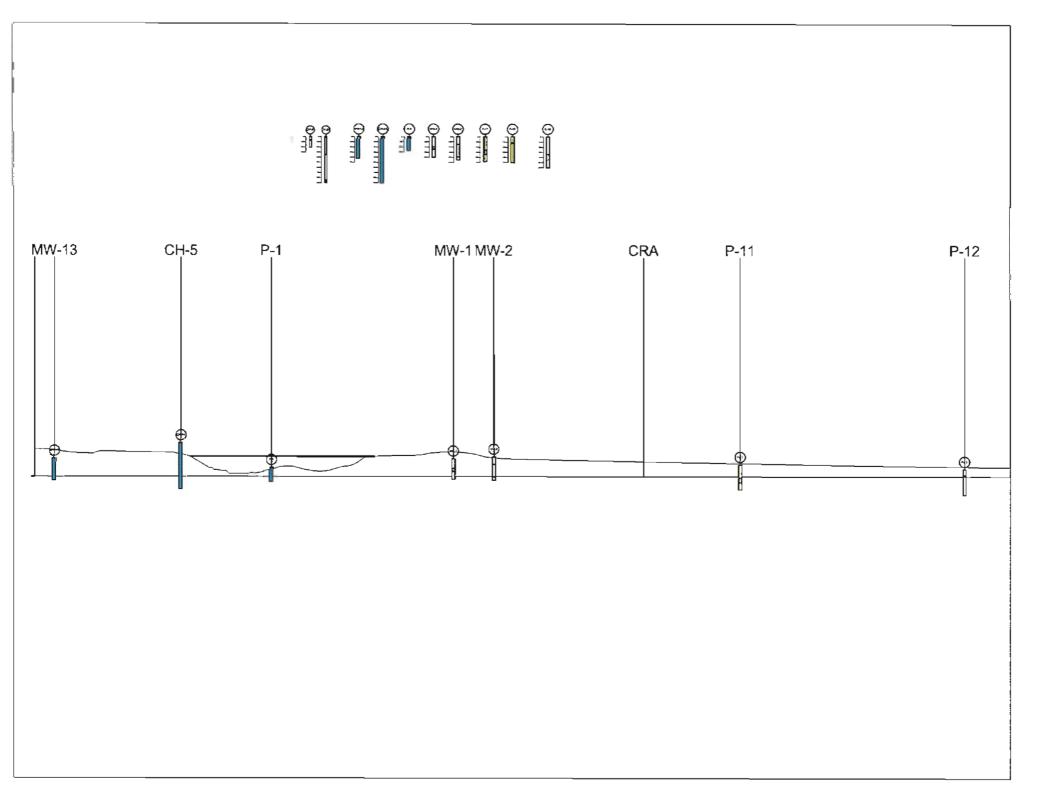
REMARKS Neur Des - Créfit des Persons Currys-	Teef Site	ROD (*)	FILLERIN PHE LOC	Percert Con		Eleradon (ti)	(ij) tidig	وها علونامطا	Meternal Charterceton and Physical Descration
	HQ 1857	ଘ	٢	100	ŏ				457 5 - 610.0 CUARTETE. Lots gray, bee-graned. Yery tard, very strong, Many re-realed tracting, with knowle, up to
	HOLE	53	4		54		1		Kany re-heave tractures, with amonta, up to 5 mm, doping 0 - 10 degrees. Fractures with pyrae, tipht, dip 20 -45 degrees. Imagidar quarte
80° depen az 4:13 am, 278.52	CORE	75	2	1 1	8]		איז
		4	3	100	x 55		480 -		423.57 + 484.5° gray sanatao, mili gravi
		13	٠		84.5" B				ender a constant gray scatter, and grave
IDD and tractures per foot averaged ar box 55 (7 come runs). 907 depth at 9:10 an, 2/18:92		(63)	(I)	100	55 56 57 51		490 -		
12) and tractures per foot averaged at tot. 57 (6 care (und),		(62)	(1)	130	B C X 57				
07 depth at 1:42 pm. 2/15/92				1	6		500-		500.07 - 547.07 light green, mit zones cl banding docung about 60 degrees. Fractures nearly mencel. Sognity less
Devezion survey = 1.5 degrees		ន	۱>		õ x				Fractures nearly versional. Sognity less hard and surong.
		100	<1	100	52		1.4		banding steepens with depth
10 dean at 440 pm, 2/18/52		100	٥	1 100	8		510-		
		E1	1	100	23 X 0				
		42	4		17 6				
207 depth at 7:35 pm, 218/92		37 50	3		BOX I		520 -		
		42	1		62 77 F				
CC depch at 12:00 am, 2/19-92		¥	٢	100	80		530 -		
		रु	٥	:00	61 38 57				
		83	¢١	130	8				
40° 64669 zi 236 zm, 279992		8	,	100	2 62		540-		
		100		100	8				547.0 - 550.0 Gray, banking nearly ament. Very hard, very storig. Dark green american
15 (00) 2 500 er 2/15/92	[65	;- -		ž	1	550		20mm.
SUSTENED GEOR		NTE 15 40.						The PR	A Group, Inc
ALCONTO DEAN 44 FE	~~ -		_	19006-7 A77915				BC	CH-10 -
Tu 2 1108	7/ H	11 D	01	ierit FFELDT		EAG			DFILL RIVERSIDE COUNTY, CAUFORNIA
EliGINEERING	1714						M	INE RECL	AMATION CORPORATION 7 of 1

REMARKS West Data Shing Data Penantel Charges	1001 \$110	800 [x]	fractures per loca	Percent Con Decompy	Boi Ikriter	Elevadon (li)	Dapit (II)	Lithelegic Log	Naterial Classification and Physical Cascrotion
Geologist D. Votamo	HQ	63	1	100	ecx si		550		457 6 - 610 CUARTZITE
	HOLE	67	1	1 100	554.0				Upht gray, bre-planted, Very hard, view strong Many re-healed transies with knorce sizan, up to 5 mm, doping 0 - 10 degrees. Tight transies with pyrta, do 20 - 45 degrees. Imgraar quare very
	2.406° CORE	8	2	100	Ŷ				ארד איד איד איד איד איד איד איד איד איד אי
550 dapa 2 930 an. 2/1952		53	2	1 100	64 5520		\$60 -		
•		53	2	, 100	з				•
		ទា	2	100	x				
570' depti at 10:55 am, 2/19.92				1	65		570		
		58	2	100	<u>ទារ</u>				
				1 1	B C X				575.0 - 578.5 abundant tight healed transities with calcing. One-calcin varies
		49	3	100	66				578.7 are ver, one intr, 90 degrees to tone acts.
550' Geoth at 2:15 pm, 2/19/92		40	4	100	<u>585.51</u> B		580 -		
					, v]		
1. S		80	<1	100	Б7				
550° 66pch al 3:25 pm. 2/15/52		49	3		542.0 ⁴ B		59C-		583.5 - 510.0 samtered quara monatoria glass, 2-8 motas, 30 -45 degrees to and
Geologist J. Suttant		-	1	~	ů X				Green alteration in quarterie
		52	3	100	68				
533' depth at 400 pm, 2/15/92 Deviation survey = 0.75 degraes				1	<u>अग</u> न 3				
,		ឆ	2	100	0 X		600 -		
			_	i. !	5				
		22	Z	100	501.21		1		
513' depth at 6.10 pm, 2/19/92		ศ	3	100	Ö X		610		610.0 - 660 ANDESTE DIKE
			Ĵ		70				Dark gray with ecologie-chloride-pyriatese-cylina attenzion. Apriantic proundinass with felospar phenocrysis to 1/4". Moderately fractured, hard,
		37	,	100	815.0°		1		strong, sapity weathered. Fractions sold, with quarter epidote, matter calcine, serpencine, Emotion
620° depth at 6:08 pm - 2/15/92					ů X		i		
		38	ī	100	71		620 -		
					5				
		55	2	100	50xR		1		
EST OWN STORE TO ATTE		TE	482		14		630		
STANG DEAN AFFE	\ <u>~</u>	8 ₩ 0.	G12						A Group, Inc
Nº 1108	1/1/	AWK	8 14	ers.		1			CH-10
farm from flight	ar u	*D	0, M	ERIT FELDT		EAC	LE MOU	NTAIN LAN	CH-10 NDFILL RIVERSIDE COUNTY, CALIFORNIA LAMATION CORPORATION

REMARKS Water Cells * Defing Geo Processil Changes	Teol Site ROD (%) frietness per kost Percent Core Decorery Districted (1)	Depis (U)	Wasariat Classofication and Physical Ossengues	REMARKS Wear Dea Ching Dea Pessonal Chinga	laci Bira NoD (x) Findret par box Percent Cara Dist Narria	Ebrasion (II) Depin ((I) Itherapic Leg	Waterai: ClassArcanen and Physical Description
	HQ 3.657 HQLE 2.056 50 2.100 0 1.100 50 2.100 0 X 1.100 50 1.100 50 50 1.100 50 50 50 50 50 50 50 50 50	530	SID 07 - 555 07 AND FORTE DYCE Lyng transparate Kancha war and Newy Storeg Mang weng and Kancha war sin fancta stan, up to 5 aan, dopeng 0. 10 degrees, Toph transmo wah pynas, dopeng 20 - 45 degrees, Whothar quara mene to 10 ers.	710" dapat al 210 am, 2/2092	HQ 25 4 100 21 325 8 4 100 21 HQLE 20 4 100 X	710	691 4' - 605 0' CUARTZITE Dark gray, vary Sne grained. Haaf, strong, inch to schitty weathered. Hodersawy tractured, apenness signity open dipping marty 0' - 30 degreas, micro importe
07 depth at 10:45 pm, 2/19.92	67 2 500 73 67 5 500 73	640 -	534.07 - 645.07 minor brionie stan, mieste in verz. Sighty weartered.	727 decen at 3:45 am, 2/20/92	2.405 52 CORE 52	720 -	stant, minor calota.
adogat R. Usray	33 2 100 B 52 2 2 00 X 67 2 100 X			Géologist J. Suitari	67 2 100 B O X	720	、
57 depth at 2:39 am, 2/20/52	45 2 100 74 5 2 100 545 £ 74 1 100 9	650		7537 depth at 4:45 pm, 2/20/92	75 2 100 83 1799 77 659 2 100 3 C	730 -	
	C 3 100 75 εs.σ		655.07-552.87 highly tazuned. Apenunes Sapity open, knowa szun, calais, coping 0 - 30 captes		73 T 100 54		
67 Gepth al 455 am, 2/2092	15 3 100 X	560 -	662.5 - 666.0" shar tone with sock, separates, the S is fractions.	743° depth at 5:47 pm, 220792	32 2 100 B X	740	
10 depin 21 5.40 am, 2/20192	22 4 100 <u>557 c</u> 3 16 2 100 X 77 <u>575 c</u> 17 <u>575 c</u> 18	670-	666.07.531.4 SKAEN Dat prece abaration n ancessis (?), with from one and cabas weins. Moderately hurt, moderately strong, moderately weathers:	5 7537 (appn at 6:50 pm, 2/20/92	52 1 100 245 60 2 100 85 75 75 75 75 75	750-	
U Capiti al 7:15 am, 2/2252	30 2 100 B 8 4 100 76 6 4 100 76	680		767 dept al 875 pm, 27042	58 2 100 8 X 31 1 100 87 7255	760	759.0° - 779.0° был золе; бекспазио, писи Беалбиц, писи зоце, писилися из по
achsgait D. Yoturna 907 depin ai 900 am. 2/2592	13 3 100 B C X 33 5 100 79 27 2 130 69:57	590	9914: 5057 021/37775 Dart gay, wer ke-gazes	770° depin at 8:46 pm, 2/21/92	0 >10 100 B 0 >10 100 X 68 0 >10 100 X 68	770 -	
10 genta 21 9 20 zm. 2/2052 Brazon survey = 1 caçter	><10	700	Rent Satong, Intol I Sagong, weath-end, Moderzah, Fachania Australia Signity, open, cipping, mostr () - 30 degrees, minor untorna 1984, minor muors.	Geologist R. Usray 787 depit at 11.25 pm, 2.2052	25 >10 100 X 23 4 100 7215	780 -	
o and a second provide the providence of the pro		7:0		790 dests <u>11215 ap</u> 22162	17 3 100 X 90 28 2 100 190m	790	
Nº 1108	108 HO. G12519		A Group, Inc REHOLE LOG CH-10 DEIL RIVERSIDE COUNTY CALIFORNIA AMATION CORPORATION	NE-J108	0478 402 108 HD G12518 DHO AV. EM 19005-12 DRAWN R. KURRS CHED D. MERIT APPO D. MERIT	EAGLE MOUNTAIN	PRA Group, Inc BOREHOLE LOG CH-10 ENDRIU, RIVERSIDE COUNTY, CALIFORNIA ECLAMATION COSPORATION

FEWARKS Water Data Datag Data Datag Data Personal Changes	Taol Gite	ROD (N)	_	22		Elevertion (fi)	Depth ((1)	Lithulazis Leg	Kettrati Clessification and Poysical Description	REMARKS mear Cas Dating Cas Penanter Charges	ıl 6ire	1×10		Percent Core Percenty	Nartbei	Eleradon (11)	(i) (i)	llihelogic Log	Material Caradication and Populat Description
	90 1857 HOLE 2406	1		100			790		Stir, - soor - chiartinii Dat con, way fan-grand Hard, strong, fanh to sighty waarverd. Hoorenay factured, sooren, sooren, dooren maay 0 - 30 degree, minor incorte taa, more calca.)70 نورت ین ۱۱:40 am, 22162	32 HQ 325 HQL3	100	i	100	8 8 0 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	8	870		2052' - 2520' META-ARKOSE Lipt gray, generally cure-new muter determine mene, Fart, strog, nonerally weathered Mederably factured, mid-day speen allocation
00° depon at 4:01 zm, 2/21/92 emation survey = 1 depone	une.	47		100	BOX R		800		805 5 - 532 7 META-LIRKOSE	ESC depth at 1:43 pm, 2/21/52 Geograf J. Suthat	2.406 CORI	2/	1 3	IW I	- 1		880		along taxines. Apartunis sign; were co 20-00 degrees.
310° depth at 5:14 am, 2/21/92		43 43	2 1		BOX		810		Uph gray, generally quarte-col, much doomics tares. Modernamy hard to hard, modernamy strong to strong, modernamy watering. Modernamy stratures with dark green attention sidney tratumes. Apendines tight, ward 20 - 30 degrees.	550° decen az 627° pm, 2/21.92		35 27		100	B 0 X 102		890	مامسمران	
527 depth at 6.25 am, 271,52		60		:80	5 0 X		820					68	 	180	1220				8207 - 505 5 OUATTZ MONZONICE Lynu gan, coarse graned, Kielscrar phenocrysis Epocia in Industrie, rational ecolar 1-2 % 8927 - 857 graen anderse dise
		18			54 74 0 74 0 74 0 74 0		يفيف فريل فينف ف			9007 dapon al 10:00 pm, 2/21/62 Demazon sunvity = 1.0 dagnee Gaeniogat R. Ustry		19 10		130	103 100 100 100		900		904.4" - 621.0" SKARN: Dark grain, for grained, versical for terrars
2007 daeth at 7:33 am, 2721,52 Secondist D. Vollumo		\$		100	95 32.3' 3		830			SIT depts at 3:10 am, 2/22/52		מ		100 100	104 910.01 8 0 X		910	***	Provension of the space in verse Marn. Provension of the section
347 Cappi at 5.25 am. 221/62		\$ \$	2	:00	X 95 HCX		840		509.07 - 846.5° brecannad zones, highly alland Hanind factures won missive post-brown quartz vecus, startor raktar verd.	520° 6607: 21 4115: 271, 272292		57			:05 918 7 9 8 0 X		920	بادينية المحمد	971 07 - 524 07 OUAFIT2 MONZONITE Graenstray, regione stande. Eddias-Size vents 1-3 and, prostane-for James, Mari, strong.
550 රංඛාන 21 9:45 201, 221/62		60 27	1	100	97 507 B O X		850 -			557 secti al 5:40 an. 272:52		42 65	-	100	:06 927.5 0 X		930	مامعمعمامه	signty taxing. <u>924.07 - 550.07 QUARTZITE</u> Light gray, ine grand, shalland appearance, with date from Alassave quart bo 1 on Ver hair of pok-brain massive quart bo 1 on Ver hair, very storp, unmaisterd sichty
857 depth at 1058 am, 2/21/92		2 2	2	100	58 547 8 0		860		853,67 - 868,07 breaze zone ern gouge	540 5607 at 7.50 an, 272252 Geologet D. Yatumo		83 12 83	1> 0		ĬX		940	معلمهما	lapónimad, inchi intinor Galoria (d. 1937 - 5465 scalitariad cha voind ko 2 cm.
875 6007 31.11-15 37 221.52	 	27	>10	100			870	The PR	A Group, Inc	557 Geoff at 922 am. 22252		z)		1	108 144.0 19 102 103		950		
- Nº 1108	H	08 NO. NG KO ALWA NCD	EM R F	5008-11 ARFA'S		EAG	15 400	BI NTAIN LA	DREHOLE LOG CH-10 IDELL RIVERSIDE COUNTY, CALLEORNIA LAMATION CORPORATION	SERED GEO HIG VEAN AFREE Y2 ANOS THE NO AFREE Y2 ANOS THE NO AFREE		owe >	o. (1) 10. (1) 1 R	25-19 1 19000				1	RA Group, Inc BOREHOLE LOG CH-10 CH-10 COUNTY, CALIFORNIA

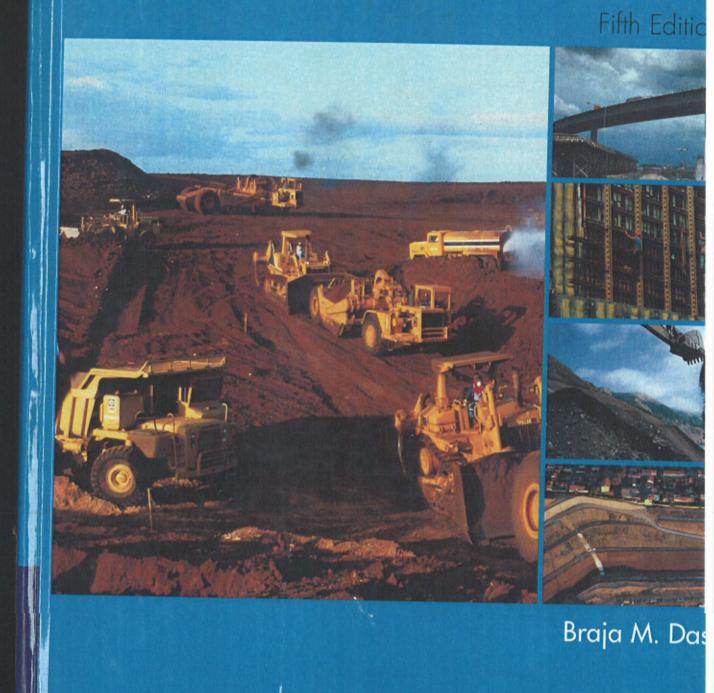

EHARKS	1	i					1	÷				1	j	i :		,	3	,		
ALLANKS Macan Data Datang Data		-	per lox	-		-	-		2	Katonat Classification	AEMARKS		İ	ž		÷				
THE CHINE	88	£	1		Hurthor	(W) wa		E	ologic L	and Physical Deacrotion	Wider Carls Onling: Des Personnel: Changes			2	ð,	*			5	Material Clasadication
	18	ĝ	Fractures	Parcent	īg	Ehration	,	Under	i teo			Ste	(X) 008	Factures	Percari Haconary	Nurber	Ebration	Depth (1)	state	Physical Description
	Ř	ы	3	:30	109		- 58	2		51 0 - 952 B IRON ORE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8		100	108 10		<u>යි </u> 1030	<u> </u>	1 1007 B 1054 (7 1204 025
	HOLE	<u> </u>		. 	1			3		Black magnetis-hon, abundan materie orna- tempion-sensite, marce knorke stan. Calce abundari in lindanse bi I non.			-	1 1		Ŏ X				1027 5 - 1054.5 IRON ORE. Elack, magnette-noti, Moderalley factured
	2405	80	1	100	X		1	1		SSET - SSET OUARTZ MONZONITE		1.65 HOL3	1	2		119	1	-1		sightly open, tip sleep to variati, with the Hard, strong, very sightly weathered.
ann at 10:35 an. 27252		56	1 2	100	- 110 951 0		96	so 1		Greensh, highly atland. Calcille abundant in horaphial traduities. Hoderately to very traduitie.		2,605			Ĩ	a	İ	1		
			_	1	- 8	1]		hard, strong, slightly-weathered, 945 th - 975 St TRON CRE / SKURN	1040" capeti at 1:15 am, 2/22/92		ສ	2		Š,	· ·	1040 -		
		87	<1	100	X		5	-		955 0 - 973 5 TR2N CRE / SOLRN TURK press b Suck highly bland. Abunctini magnetics, price, paik massive quark const			57	İ, İ	100	120		3		
		_			111			-		Sighty fractured with calors vers to 1 min. Mostly hard to very hard, storing to very storing		· ·	Ľ			0450		1.1.1		
depin at 11'45 am, 272252		47	1	100	5	1	97	70		11 WE2 746 160.	1050° capita at 2.25 am, 272392		25	1	100	E OX]		
	1	-			1 9	l		-		370 5 - 977 1' ANDESITE DIKE Dark gray, sightly porphyrital, aphanolo groundmast						125		1050 -		
		67		100	112	1		1		Sighty to moteriasy framme, social and calors liking Aperiants slighty open, minor umbore slight mart, stong umbalaneed.			23	2	100	254.2				1045 9' - 1067 4' SKARN
dente al 1.55 pm, 27292		<u> </u>		·	<u>9782</u>	1	-			977 (1 - <u>981 (1 - 1904) CRE</u>						B C X				Mand start menanations on ore inte Macerically weathered.
igat J Schart			510				50	\$0 -		Red, brown, olacz: namasla, minor magraura Picthy washend, sut, crumbh, ruggy	1067 04031 21 4:00 23, 272352		27	3	100	122	1	050 -		
		67	1	100	113			1					-		-	061.0		1		
	1	0	3	85	9075	4				561 11 - 1027 SKARN Generic enforme, eoudop, transpuse, with one reins (magnetise + pyme) to 2 workes. Socialized quarture tones	Geningst D. Yoturno		28	2	100	5 QX		1		
Cepta at 4:00 pm, 2/22/52		-			Ô	!	5	90		אטבאבושא אבעראל איז באני לא אורי לעראל איז איז איז איז איז איז איז איז איז איז			0	>10	100	1		1		1067 4" - 1081 3" ANDESITE DIKE
	-	2	2	130	114		ļ				1070" depth at 5.50 am, 2723-52		0			<u> </u>	1	070 -		Green-gray, highly altered, abundant intern Moscy highly famund to sharanid. Sight hard, slighty strong, highly weathered
		72	4	100	-	1		1.4				1	\vdash			B		i		
		50	1	1:00	- B	1		1					17	>10		×		-		
i depon az 5:32 pm, 2/22:92 Laon sunney + 1 degme	1		1 3	1			100	∞-j			1080' deput at 8.47 am, 222352	·	20	3		124	Ì	1		
		42	2	100	1003	9					100 0000 20 0.47 20, 02252		17	5	100	e	1	1080 -		1021 3" - 1109.0" CUARTZITE Prokish Iza, preen, pray Pernasye priorite
	1.000		_		E O X			1					53	<u> </u>	100	X				atteration. Calcha in voins 1-5 mm, minor Hand to very hard, very strong, suchtly to m
		73	1	100							1		í			125	Ì	3		tramined, apertures signity open
depth at 9:35 pm, 2/22/92			1	<u> </u> }	1011	u,	101	10 -			1090" depth at 2.37 pm, 2/23/92		67	1,	:00	<u>0445</u>		(- 090		
		40	2	100	10								57	1		ō į				
		_	<u>-</u>	1	X 117			1					1			126	ļ	-		
depth # 1035 pm 2/22.52		ស	<1	100	-	c	102	20					9	2	100	8		- 1		
ogst R. Larry		-	/ 	1	- Ş	1					1100 depth at 350 pm, 2/23-92 Georgest J. Schard		-			x	1	100		
		67	4	100	X 118			4.4		1277.5 - 1054.5 IRON CRE. Black, magnetia-net, Koderatery Instance apertures sight,	Deviation survey + 15 degrees		72	2		127				
		a	1	100	100	5				open, do steo to socia viti finova sze - turc, stang, wey sighty wastered.					i 1	8		1		
AND STORES	1	1	i 4%	;	1:9		103				1110 000 2-60 00-622.92		78	1	100	X 128		1		1109 0 - 11120 ANDESITE OKE
WHO DEAN AFFE	~15	-	Gì	25-16						A Group, Inc	SSICILO OCOLOGI		ATE	450				T	he PR	A Group, Inc
Nº 108 78	di la	****	R, I	KAFE	s					CH-10	Statis DEAN AFFERE	Δa	108 MQ.). E¥	25-19 19005-1-		-	C C		OREHOLE LOG
ner the first	⁄/⊢⊢	NCD -		NERT AFFE	_	E	agle	NOUN M	ITAIN LA	DFILL RIVERSIDE COUNTY, CALIFORNIA	Nº 1108	1.11			KARAIS NERIT		ELC!	= 100		CH-10 NOFILL RIVERSIDE COUNTY, CALIFOR
GEOLOGIST	1.5		v .							LAMATION CORPORATION 10 of 1		<i>///</i>			AFTELS)	T	CAUC			CLAMATION CORPORATION
Pla an ico RMIA											GEOLOGIST	/								


REMARKS	í				i					
When Dets Drilling Data	1		3			-		3	Material Classification	
Penazai Chingai	Site	E	2	18 _	Ę.	roken (lif	Ē		and Physical Calcription	
	300	100	- Indered	Preser C	Tart In	Decal	Depth	l ihalogic		
	1 10	1	4	-	BOX	-	1110 3		109 0 . 1112 0 ANDESTTE DIKE	
	3.85" HOLE	17	<1	100	128				Green, highly altered, highly celormed Moderziew to slightly hard, moderately to slightly strong	
		0	5	85	8				1112 0 - 1116.5 FAULT GOUSE	
	2.406° CORE	Ŀ	1	<u> ~</u>	, X				Green to yakine, stator enovial stan;	
37 depin at 9:15 pm, 2/2352		12	3	100	125		1120			
				<u> </u>	1 B				1116.5 - 1164 3 CUARTERE GRENETYAR SCREW WITHING MODERALLY INTERES	
		42	3	100	°Č x				Greeversytan' Sighty weinered moderatory factored tractined tractines sighty heave, many 5-20 degrees from and, with otherweik (a) thronde stain	
			i		120					
30° 66531 # 1000 pm, 22352		43	3	100	11205		1130-			
		_	1		i i				-	
		47		1:00	x		; -]			
NOCEST R. USINY		1	2	1.00	131					
47 Coppi E 1225 2m. 22492			í .		B		1746			
		65	1	100	Öx					
			<u> </u>	, i	122					
;		52	3	100	nac					
57 depon al 225 am. 22452		-	<u> </u>	Ì	лo		1150			
		72	2	130	X					
ologist O. Yotumo	1	\vdash	<u> </u>	-	123					
adgs. U. Takata		ភ	2	100	B					
60° depth at 455 am, 2/2492	ŀ	-	 	-	С Х		1160 -			
	1	R	2	100	134		1			
		70	1 2	1	1164.21				1164.5 - 1178 9 OUATTZ WONZONITE	
		67	1	100	B C X				Gray to perkah green encusions of green stareo quartina. Kart to very hard, storig, slightly weathered. Moderate chonta-epocie-pynte starston	
77 66000 at 8:01 am, 2/24/92		6,	1	1.00	L I				Westered Moderate ovoris-exects-pyrite siteration Calors verst, hading to 1 cm	
		52	1	100	125		1170-			
				[]	3					
		33	2	1:20	Ň		į i			
90° Geran 16 9 40 2m, 22892		1	1		136		1		1178 5 1195.5 QUARIZITE	
			Γ.		1997		1180 -		Wedum part-gray. Highly tracticed, heated with dark green attenti-epidote-synte.	
		53	2	100	8				harding to 3 cm, 19-30 degrees from and Very hard, very strong, slightly weathered	
		-			ľ					
NO Gooth at 11:12 att. 2/24-92	1	83	c1	:30	127		1160			
STERED GEOL		478	492	_					A Group, Inc	
SIGNIC DEAN AFFE		DS 80.				-				
AN CONTRACT			R F	ARRI	s				BOREIOLE LOG	
I No BIN A	_	46'2 46'2	D. N	ERIT		EAC	OLE MOU	NTAIN LAN	CH-10 DEILL RIVERSIDE COUNTY CALIFORNIA AMATION CORPORATION	

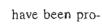
	1	í.			1		1 1		5
REMARKS			-		1				:
Hinter Data Drilling Data Personnel Charges			2 2	5_		£		110	Haterial Classification
HIGHTIN CARION	212	E	FIRMER &	Percent Co	Retber	Ebration	(i) •	liheiegic	Physical Description
	100	BOD	ž	12.5	5	Ę,	Cepik	41	<u> </u>
1190" depch al 11:12 am, 2/24/92	ю	6	Ι.	130	3		1190		1178.9 - 11950 CUARTZITE
	3.85	-	[C X				Madum pukkyray, kiphly kactured, mostly hazled ann dark preen chlome-epidote-syntie, haufure to 3 cm, 10-30 degrees from stat. Very hard,
	HOLE 2.406*	13	>10	100	138]		to 3 cm, 10-30 degrees from size. Very hard, very scong, signly weathered.
1200 depth at 12:30 pm, 2/24-52	CORE		1		1194.5		i		1195.0 - 1198 5" SKARN:
Deviation survey + <1.5 degrades		25	3	100	0		1200-		Very sark green to black, highly shored; oral vers with syme. Hoderstely hard, moderstely
Geologist J. Suttant		1	1	1.2	X				stong, moderately vestigered, highly fractured, spectros moderately open.
		0	12	1:00	226.0		1 1		198.7 - 1203 5 ANDESITE.
		61	1	100	ыÇ				Dark gray, porphymic. Moderately is highly tactured. Winor epidote-calina EL
1210 depin at 440 pm, 2/24/92		12	1 2	100	X		1210-		1203 5" - 1223 5" DORITE Medum gray to graen, fine to medium grained, Green
		_	<u> </u>		142		1		pyme), Moderately factured, tota to moderately open.
		٥	1 3	100	80				vons of epidore-crimia, knonce stan - Hard, strong
		50	5	100	ž				
1227 depun at 6.30 pm, 2/24-92		16	4	65	141 1772 2		1220-		2 C C C C C C C C C C C C C C C C C C C
			1	í	1 1				1220 5 - 1236 G ANDESITE
		18	3	68	80X				Dark pray, sphanno, signty porphysic. Moderately to highly fractured spertures tight to sightly open with epidote-pyrra 12, kinomia state, thard, strong,
			1		142				ביקאין אונוארי אין אומיים אבר אבט אין דער גער גער גער גער גער גער גער גער גער ג
1230" decth at 9:55 pm, 2/24/92	i	11	1	\$2	231.0		1230-		1
			i –		8				
		52	2	100	X				1236 0" + 1238 5" CULARTZ MONZONITE Pok is brown, medium grained. Frazieres mostly haved
Georgest R Using	1	36	12	100	143				Prix to brown, medium grained. Fractures mostly has/ed harine to 3 mm, 10-30 degrees from acts, with calote 55, knowle stam. Very hard, very strong, slightly weather
1242 depth at 3:40 am. 2/25/92				100	6		1240-		1238 5 - 1252.0 CUARTZITE
Gaologist D. Voltumo	İ.	0	14	100	X				Conv the max monthed tender. Clifer into the handed
		3	3	100	144		-		with black to green startator tones. Younger tractures hered, with soundart calories, spentrums slightly to mocerately ener, mostly near-wormal. Hard, strong.
		\vdash	1		5				house of the court for the second
1250° Casar at 9:50 am, 22592		4	2	100	0		1250-		
				, 	145		1		
		14	>10	100	756 0		1		
	1	13	2	1:00	8				
1250" capon az 12:05 pm, 2/25/92					x		1260-		
•		53	1	100	146				1252.0 - 1275.5 CUARTZ MONZONITE
	1		1		BC		j		Gray-brown, coarse-grained, Kard, strong, Robertaley Instituted, with calors ES, slightly open
	1	47	:	:00	x				Statered swifed masses of quarters
1270 000 002 00 225.52		67	1 2	i 100 i	147		1270		
SSIENCE OFO			352 G12					he PR	A Group, Inc
AND DEAN AFFE		ra xo.			-16	+=			DREHOLE LOG
Nº 1108-77 4	#/\!		R.)	W FFI					CH-10
Some states the fi	′ //⊢	***		KERIT KFFELS		EAC			ADFILL RIVERSIDE COUNTY, CALIFORNIA

	1 1 4 2 5 5			
REWARKS Vaur Data Johny Cata Perantas Campan	led Sue R00 (%) Firetures per lock Percent Core Percent Core Electron (c) Electron (c) Electron (c)	Materiai Giasasheziyen and Physicat Describuon	REMARKS Wear Data Drifty Data Pressras Cargos	
1270 deșm 21 200 pm, 27592	HO 147 2 100	1292.0" - 1276.5" CULARIZ MCAZONITE. Gray-brown, marte-primed. Hard, sitting Moderstay tracting with calling 32, speniers signly open. Scalared a winder dataset or cylaritie	差 差 え え こ こ 二 1357 deph # 1015 an, 272592 HG 11 100 100 2001 1050 1000 - 1326 7 CUARTZTE.	
1287 Séptin at 405 pm, 27592 Seologue J. Sumare	2 cor cor 74 1 100 1256 50 3 1 60 5 1280 0 100 X 40 2 100 X 161 100 X 163 1 164 1 100 100 1 100 100 100 100 100 100 100 100 100 100	1276.5 - 1285.6 LIVESTOVE. Grappen, with abuncan calors views and harme fractions with back (on?) 51. Hard, strong, noderably fractional aberturies slightly over forcesting moderable with whith 1285.5 - 1283.07 CULARTZ MCNZCANTE	1360° depth zr 12:00 pm, 2725/2 12 5 100 1252.2 1360° 1360	ĸ
290° depah at 11°57 pm, 22562 Jeologal R. Usay	2 100 B 120 120 57 3 100 150 120	Some and pay, make with more preventions quarters that, store, they washered moderatory tactined, with opdora-calms 14, browns start 1228 of - 1226 ST CUARTZITE. Date pay, won 35 mm on worst Hart store; Moderatory instante apendume signity store with calma- cuerta-spoces 33	1370° depth at 2.17 pm, 2/28/92	
Geologur D. Volumo 1300 esem at 11:52 am, 22852 Deviator survey = 1.5 degrees	57 2 1000 5 13000 58 1 1000 1511 13000 44 2 1000 6 1	12057 - 13307 - 33434 Gray, Subck, preve, ರಾಜ್ಯಕ್ಷ ಅನೆಗೆ ಸಿಮ್ಮಕರ ಬಿನಂಕ ರ ದ್ವಾಮದಾ ಕಾರ್ಯಕ್ರಿ ಶಿಕ್ಷ 25% ಇದೆ ಕಾರ್ಯಕ್ರಿ ತಿರಿಯಾದು ಶ್ರೀಮಾನ್ ಕಿಂಡ ಸಂಗ್ಯಾತ, ತಿರ್ಯಕ್ಷ ಕಾರಿತಿಗಳು, ಕೆಂಡಿ ತಿರುಗಿ ತಿರುಗಿ ಶಿಕ್ಷಮಾತ್, ಮಿಕ್ಷಣಿಗಳು, ಕಾರಿತಿಗಳು, ಕೆಂಡಿ ತಿರುಗಿ ತಿರುಗಿತ್ತು ಸಿಮ್ಮನಕ್ಕೆ ಮಿಕ್ಷಣಿಗಳು, ಕಾರ್ಯಕ್ಷತೆಗಳು, ಕಾರಿತಿಗಳು, ಕೆಂಡಿ ತಿರುಗಿತ್ತು ಸಿಮ್ಮನಕ್ಕೆ 1327 ಮುಂದಿಕಾ ಸ ಕಾರ್ಯಕ್ಷ	Genologist: J. Surgardi 5:079-13 1386" Genole at 5:10 pm. 2723/52 81 <1	
310 depin at 2:10 pm, 2/25/52 Beologist J. Sustant	13 3 130 X 152 25 3 100 8 2		E7 c1 100 151 1 100	
225 Geoth at 515 pm, 222552 Totan drive chain - fig colim una 247 am, 22252	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i	. 1400 -	
acciegat R. Utany 3007 Geom at 127 am. 277/92	100 <1 100 236 100 1 ≤1 100 2336 1330 - 1330 1337 - 1307 CHARTITE Liptignes is medum dan gray, Sne-priling is rithous. Vary han, vary strong utereaters Moderzely hananati thaturas haatal is signay open Catere-addia wers, harde is 5 mm, 0-50 degnes is ata	1410		
340 apps 21 4 00 2m 272552	0 >10 0		1420-	
George D Valence 1307 Sector June 271992 Stor De Dur No DEAN AFRE AR 1108 AR 11	947 5 100 157 1350 947 492 Соннативе Соннативе 10 157 1350 Соннативе 10 157 1350 Соннативе 10 157 1350 Соннативе 10 157 1350 Соннативе 10 157 Соннативе Соннативе <	A Group, Inc DREHOLE LOG CH-10 NDFILL RIVERSIDE COUNTY, CALIFORNIA LAMATION CORPORATION 17 DI 15	DEN AGE DEN AGE Nº 1108 Nº 1108 Nº 1108 DEN AGE Nº 1108 DEN AGE DEN	AINA 10 81

m the second s



DRAFT


			ble E.1 Su	mmary o	Sol La	poratory					
	ample laform		la-skiu	te-site Dry				ve/Ilydram			Hy4raolic
Boring	Sample No	Depth	Water	Unit	Atlerte	ng Lionits	-44	-1200	(< 5µm)	USCS Group	Cenductivity
		(ft)	Content, %	Weight, pcf	LL	81	(%)	(%)	(%)	Symbol	(cm/s)
C-1	3	17	1.7	112.4			91	1.3		SP-SM	
	7	58	1,1	111.4			97.3	9,3		SP-SM	
	12	101	2,1	111.6	NP	Ne	38,3	14.6	ł.	SM	
	8	110				-	99.4	11.7	- 4	SP-SM	
	\$4	120-125*	-	•		-	81.6	8.7	3	(SP-SM)g	
	15	141	-		-	-	99.4	25.4	19	SM-SC	
	16	160	•	•	-		92.5	16.5	10	SM-SC	
	17	177	-		· ·	•	65.4	13.1	-	(Shi)s	
	18	199	-			· · ·	99.7	27.9	16	\$C	
	19	201	5.3	169.9	31 NP	9 NP	94.1	18,1	11	SC.	
		240-250*	<u>-</u>			• • •	91.9	23.3	- 13	SM-SC	
	26	262	7.7	104.8	24	4	91.9	+		SC-SM	
_	27	263-272*		- · · ·			95.7	19	8	SM	
	28	265-275*	-		•		71.9	14.9	7	(SM)e	
	29	240-295*					98,3	16.4	· ·	\$M	
	32	322	5,6	126,1	•	-	9t,1	25.1	13	SM	
	34-2	380	-	-	21	3	•	-	•	SM	
	37	400-420*		-	40	26	•	•	-	Cl.	
	38	420-426*	-		-		99.9	Ř,	•		
	42-2	460	15.3	113,1	23	3	· -	· · ·	•	SC-SM	
.	123	460	· ·	-	22	6	*	-		SC-SM	
C-5		n/a n/a			_ <u>-</u>	-	97.6 92.4	19 14,4	- 15	SC-SM	-
	4.2	20	2.6	124.2	- <u>-</u>	· · ·	74.6	13,3	1	(SM)#	
				-		•	99.7	16	- 13	SM	
		59	•		•		58.6	2.8		(SW)s	
	10.3	62	2,9	112.4		•	91.9	22	16	SC-SM	2,700-07
		B/a	7	-		, · · ·	¥3.6	14,5	4	(SM)s	
	12-3	- 11	2	113.5	-	<u> </u>	15	9.8	· ·	(CP-CM)	
	u	(0)			•		94.5	4,8	•	SP-SM	
									·····		
	14 16	121	23.5	93.2	58	35	52.7	6,7	20	(GP-GM)J CH	9.208-10
		a/a					100	962	53	MUCI.	9,200-10
	23	206	83	109.1	36	lā	100	75,6	0	(ML)s	
	25	241					29.7	42.3	18	SM	
		276		•	-	•	100	33.4	-	SM	
	29	210				•	100	8.2	7.4	SP-SM	
	38	399	+		-	•	100	41.5	18	SM-SC	
	MC-I	344**	31.6	92	100	5%		91.7	-	CH	
C-9	ذ	13	0.4	102.4			90.4	9.2		SW-SM	
		35-45*		•	•	-	94,6	16,6	•	SM	
	11	59-77*		-	49	32	-	-		С.	
	15	12 17-94*	2).6	90.5	41	24	100	68.6	30 6	s(CL) 'SM	
	17	95-105*	_ <u>.</u>			-	\$7.1	10.2	4	SP-SM	
	MC-I	145	5.9	107,9		· · · · ·	94.6	23		SM	3,506-05
C-10		0-15.5*			· · ·	·	93.5	7.9		SP-SM	
		14	3.9	115.6			\$3.2	7,4	•	SP-SM	
	2	17-30	-	-	•	•	97.5	10,8	2	M2-38	
		10-63*	•	•	•••	•	97.1	5.8	-	SP-SM	
	5	63-93*	•	-		•	91.2	3.7	3	SP	
	· • •	\$5	•	м.,	•	· -	SI.4	12.4	ŝ	SP-SM	
	14	100	2.1	115,8			51,3	9.5	•	SP-SM	
	12	101-121*	. <u>`</u>		•	•	91	162	11	SM .	
	່ນ	122-(19*	_ ·		•	•	78.4	- 1	5	(SP-SM)	
		175-191*	· · ·				59.6 73.4	<u>- 5,4</u> 	- 7 - 6	SP-SM (SP-SM)5	
	17	198	2.1	100.5	•	•	66.9	5.6	•	(SP-SM)S	
	20						94.5	15,7	*	SM	
	21	240-250*			- <u>;</u> -		\$3,1	12,1	6	SP-SM	
	22		- <u>-</u> -				- 99	10.5	•	SP-SM	
	29	359	0,4	110.3	47	24	100	\$3,6	\$3	((1)5	
	H. H	428-442*	-	•	6	31	100	91,3	50	CH	
	35		•	•	59	32	100	443	35	CII	
	37	469-470*	•	-	59	37	99.6	86.7	70	CH	
	39	500-520	-		St	29	98.2	\$0.4	59	(CH)	
	23										

Principles of Geotechnical Engineering

ity

ι.

efficient), Hazen y in the form

(6.23)

ose, clean, filter soil, may change

luctivity for fine-

(6.24)

timating the hyn equation. The s are referred to pplication of the

(6.25)

ation can be re-

(6.26)

w conditions may be valid for these onditions usually on granular soils to 25.4 mm. The o 12. All permenese tests showed

(6.27)

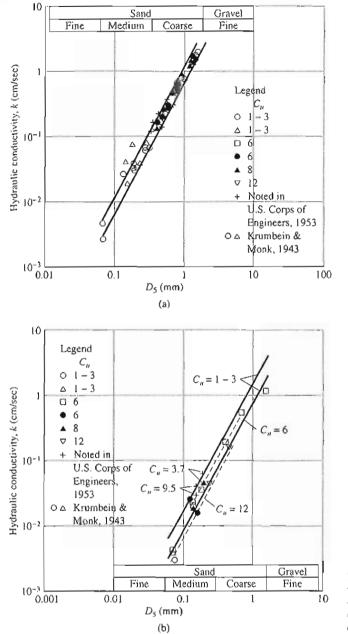


Figure 6.8 Results of permeability tests on which Eq. (6.27) is based: (a) results for $C_u = 1-3$; (b) results for $C_u > 3$ (after Kenney, Lau, and Ofoegbu, 1984)

where D_5 = diameter (mm) through which 5% of soil passes. Figures 6.8a and 6.8b show the results on which Eq. (6.27) is based.

On the basis of laboratory experiments, the U.S. Department of Navy (1971) provided an empirical correlation between k (ft/min) and D_{10} (mm) for granular soils with the uniformity coefficient varying between 2 and 12 and $D_{10}/D_5 < 1.4$. This correlation is shown in Figure 6.9.

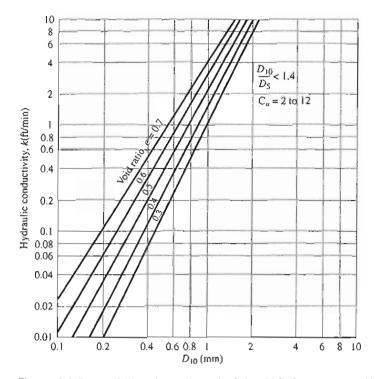


Figure 6.9 Permeability of granular soils (after U.S. Department of Navy, 1971)

According to their experimental observations, Samarasinghe, Huang, and Drnevich (1982) suggested that the hydraulic conductivity of normally consolidated clays (see Chapter 10 for definition) can be given by

$$k = C_3 \left(\frac{e^n}{1+e}\right) \tag{6.28}$$

where C_3 and n are constants to be determined experimentally. This equation can be rewritten as

$$\log[k(1+e)] = \log C_3 + n \log e$$
(6.29)

Hence, for any given clayey soil, if the variation of k with the void ratio is known, a loglog graph can be plotted with k(1 + e) against e to determine the values of C_3 and n.

Some other empirical relationships for estimating the hydraulic conductivity in sand and clayey soils are given in Table 6.3. One should keep in mind, however, that any empirical relationship of this type is for estimation only, because the magnitude of k is a highly variable parameter and depends on several factors.

Tavenas et al. (1983) also gave a correlation between the void ratio and the hydraulic conductivity of clayey soil. This correlation is shown in Figure 6.10. An important point to note, however, is that in Figure 6.10, PI, the plasticity index, and CF, the clay-size fraction in the soil, are in *fraction* (decimal) form.

6.5 Empirical Relations for Hydraulic Conductivity 153

Type of Soil	Source	Relationship ^a	Comments
Sand	Amer and Awad (1974)	$k = C_2 D_{10}^{2.32} C_u^{0.6} \frac{e^3}{1+e}$	
	Shahabi, Das, Tarquin (1984)	$k = 1.2C_2^{0.735} D_{10}^{0.89} \frac{e^3}{1+e}$	Medium to fine sand
Clay	Mesri and Olson (1971)	$\log k = A' \log e + B'$	
	Taylor (1948)	$\log k = \log k_0 - \frac{e_0 - e}{C_k}$ $C_k \approx 0.5e_0$	For <i>e</i> < 2.5,

Table 6.3 Empirical Relationships for Estimating Hydraulic Conductivity

 $^{a}D_{10} = \text{effective size}$

 C_{μ} = uniformity coefficient

 $C_2 = a \text{ constant}$

 $k_0 = in situ$ hydraulic conductivity at void ratio e_0

k = hydraulic conductivity at void ratio e

 C_k = permeability change index

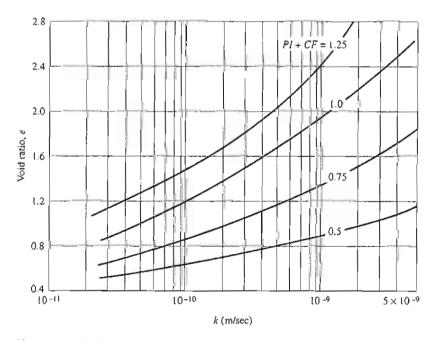


Figure 6.10 Variation of void ratio with hydraulic conductivity of clayey soils (based on Tavenas et al., 1983)

araano oonuuctivity

eral empirical equations for estimating hydraulic conductivity have been proed in the past. Some of these are briefly discussed in this section.

For fairly uniform sand (that is, sand with a small uniformity coefficient), Hazen i0) proposed an empirical relationship for hydraulic conductivity in the form

$$k (\text{cm/sec}) = c D_{10}^2$$
 (6.23)

te c = a constant that varies from 1.0 to 1.5

 D_{10} = the effective size, in mm

ation (6.23) is based primarily on Hazen's observations of loose, clean, filter s. A small quantity of silts and clays, when present in a sandy soil, may change ydraulic conductivity substantially.

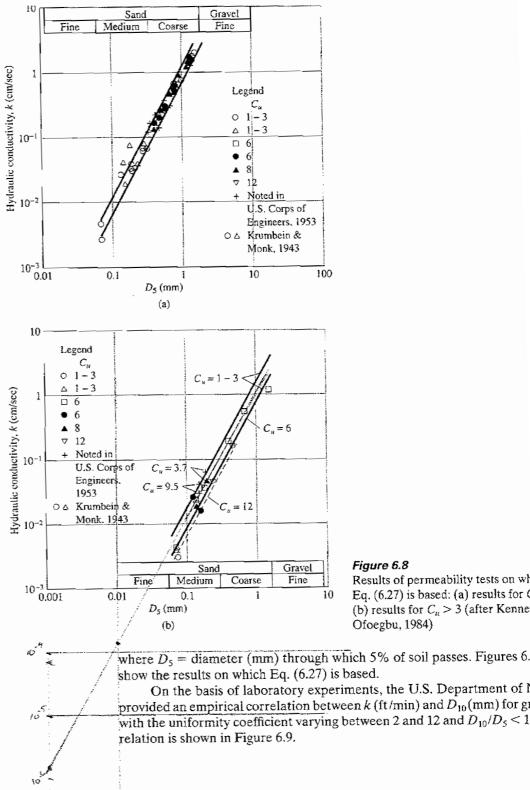
Casagrande proposed a simple relationship for hydraulic conductivity for fineedium clean sand in the form

$$k = 1.4e^2 k_{0.85} \tag{6.24}$$

e k = hydraulic conductivity at a void ratio e $_{0.85}$ = the corresponding value at a void ratio of 0.85

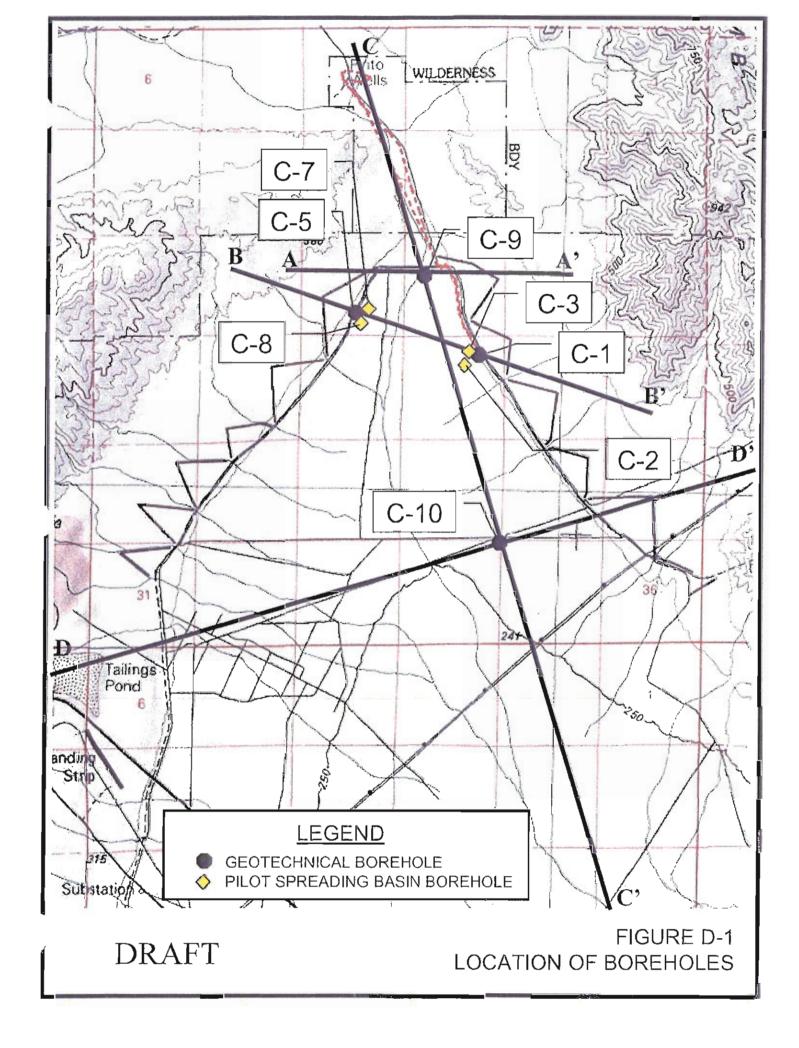
Another form of equation that gives fairly good results in estimating the hyic conductivity of sandy soils is based on the Kozeny-Carman equation. The ation of this equation is not presented here. Interested readers are referred to dvanced soil mechanics book (for example, Das, 1997). An application of the ay-Carman equation yields

$$k \propto \frac{e^3}{1+e} \tag{6.25}$$


k = hydraulic conductivity at a void ratio of *e*. This equation can be ren as

$$k = C_1 \frac{e^3}{1+e}$$
(6.26)

 $C_1 = a \text{ constant}.$


Aention was made at the end of Section 6.1 that turbulent flow conditions may 1 very coarse sands and gravels, and that Darcy's law may not be valid for these als. However, under a low hydraulic gradient, laminar flow conditions usually Lenney, Lau, and Ofoegbu (1984) conducted laboratory tests on granular soils :h the particle sizes in various specimens ranged from 0.074 to 25.4 mm. The nity coefficients, C_{μ} , of these specimens ranged from 1.04 to 12. All permetests were conducted at a relative density of 80% or more. These tests showed c laminar flow conditions.

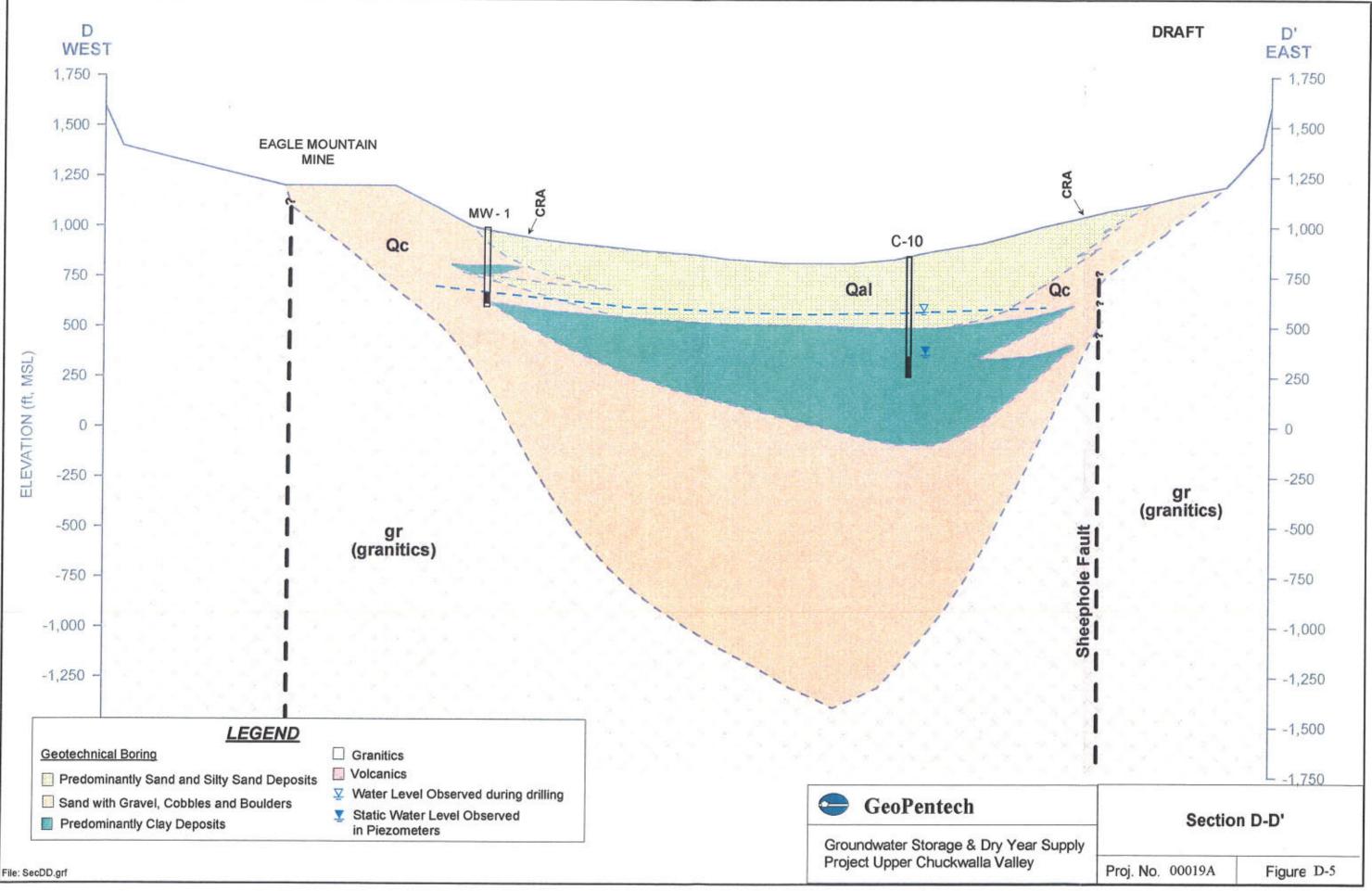

$$\overline{K} \,(\mathrm{mm}^2) = (0.05 \,\mathrm{to}\, 1) D_5^2$$
(6.27)

Figure 6.8

Results of permeability tests on wh Eq. (6.27) is based: (a) results for ((b) results for $C_n > 3$ (after Kenne Ofoegbu, 1984)



GEI Consultants, Inc. 080470 Eagle Mountain Pumped Storage Project Reservoir Seepage Analysis (SEEP/W) 7/24/2008 NDM

East Pit - Top	Widths
WSE = 1095'	WSE = 925'
495.9	783.9
912.7	876.3
1451.8	1047.3
1749.8	1169.1
1888.0	1178.1
1953.6	1170.2
2000.5	1132.3
2044.8	1083.4
2057.2	987.3
2032.3	900.1
1974.3	729.1
1911.7	615.9
1859.0	519.3
1805.4	505.7
1739.0	511.0
1667.5	507.9
1598.0	508.9
1502.0	547.0
1315.9	546.7
1224.5	570.9
1196.6	736.9
1190.8	818.8
1204.2	825.3
1224.6	841.5
1255.2	854.9
1272.6	865.4
1279.3	880.4
1294.3	897.9
1301.0	748.4
1311.1	637.2
1317.2	561.9
1327.2	498.3
1333.1	455.9
1322.0	423.9
1274.3	378.7
1031.9	321.9
938.4	239.2
880.3	174.3
824.7	116.8
784.7	40.4
730.0	40.4
654.1	
581.7	
523.8	
466.2	
411.5	
362.8	
319.5	
281.6	
255.0	
226.4	
209.2	
196.4	
197.7	
189.9	
136.2	
113.4	
1098	680

SKETCH:

Min WSE = 925'

Average =

Note: Top widths were obtained every 100 feet across surface area from east to west

GEI Consultants, inc. 080470 Eagle Mountain Pumped Storage Project Reservoir Seepage Analysis (SEEP/W) 7/24/2008 NDM

Central Pit - Top Widths

Central Pit - T	op Widths
WSE = 2485'	WSE = 2343'
316.4	696.2
600.1	554.7
788.4	168.7
870.1	145.5
906.4	171.2
932.8	124.6
1148.6	246.7
1254.2	333.6
1413.9	405.9
1481.7	441.9
1655.1	428.0
1797.9	426.3
1828.9	428.8
1856.7	896.3
1878.9	886.6
1902.9	933.4
1929.9	958.3
1956.5	968.5
1982.8	960.B
2008.0	952.7
2028.8	950.2
2016.7	954.5
2029.5	979.8
2054.9	989.2
1978.9	953.0
1903.9	904.3
1804.2	851.3
1742.6	800.1
1560.2	757.7
1569.5	721.9
1566.4	691.5
1578.7	662.5
1601.6	603.7
1622.1	512.0
1643.8	421.2
1657.1	373.3
1667.2	342.7
1675.0	318.7
1673.4	297.8
1673.6	265.7
1668.7	180.0
1653.3	215.9
1623.8	2.10.0
1579.6	
1520.1	
1469.0	
1430.9	
1401.0	
1381.9	
1369.0	
1369.5	
1368.8	
1340.2	
1302.2	
1263.0	
1224.3	
1188.2	
1165.4	
1165.4 1147.6	
1147.6	
1147.6 1109.0	
1147.6 1109.0 1096.8	
1147.6 1109.0 1096.8 1070.9	
1147.6 1109.0 1096.8 1070.9 1038.5	

SKETCH:

Max WSE = 2485'

Note: Top widths were obtained every 100 feet across surface area from east to west

GEI Consultants, Inc. 080470 Eagle Mountain Pumped Storage Project Reservoir Seepage Analysis (SEEP/W) 9/4/2008 NDM

Borehole CH-5A Average RQD for Top 100' =	58.0	Borehole CH-10 Average RQD for Top 100' =	39.8
Depth	RQD Values	<u>Depth</u>	RQD Values
15	75	28	40
20	38	32	90
25	77	38	47
30	23	43	82
35	80	47	39
40	72	48	0
45	73	50	0
50	68	55	19
55	12	59	19
60	95	64	13
65	0	69	46
70	0	74	40
74	10	79	47
79	82	84	85
83	72	89	82
88	92	93	17
93	88	98	50
98	74	100	0
100	71		

12.6 Seepage Recovery Assessment

Eagle Mountain Pumped Storage Project – Seepage Recovery Assessment

Prepared by: Richard Shatz [C.E.G. 1514], David Fairman, Donghai Wang, GEI Consultants May 13, 2009, Revised November 24,2009

Introduction

Eagle Crest Energy Company (ECEC) is in the licensing stages of a two reservoir hydroelectric project known as the Eagle Mountain Pumped Storage Project (Project). The Colorado River Aqueduct (CRA) passes within about one mile east of the Lower Reservoir, and is located between the reservoir and the proposed location of the groundwater supply wells, near Desert Center, that will be used to draw water for the initial fill and annual makeup water for the reservoirs. The potential effects of Project operations on groundwater elevations beneath the CRA are of particular interest, since significant changes in the subsurface saturated conditions could result in land subsidence and impact the integrity and function of the CRA.

Two particular groundwater-related issues associated with the Project are: 1) the potential effects of groundwater extraction in the Desert Center area as water supply for the initial filling and replacement of annual losses from evaporation and seepage; and 2) the potential effects of seepage from the reservoirs. The first issue is addressed in a separate memorandum titled *Groundwater Supply Pumping Effects*, dated April 20, 2009. This memorandum describes the approach and results to address the second issue, the potential impacts of seepage from the reservoirs on groundwater levels.

Approach

This technical memorandum provides an assessment of the groundwater impacts due to seepage, and seepage recovery schemes to address the Lower and Upper reservoirs separately. Different approaches are required to address the Lower and Upper reservoirs since subsurface conditions are dramatically different. The Lower Reservoir is partially situated on unconsolidated alluvium and is evaluated using a groundwater flow model to develop a seepage recovery system design. The Upper Reservoir sits atop fractured bedrock, and a seepage recovery system is defined by performing a review of known faults that intersect the reservoir footprint.

For the Lower Reservoir, the model set-up, analysis results, and proposed seepage recovery design are discussed. For the Upper Reservoir, this memo includes a description of the geology beneath the reservoir and the proposed seepage recovery system. A groundwater model was not developed for the Upper Reservoir as application of the model would require data that does not currently exist.

Lower Reservoir Seepage Assessment

Portions of the Lower Reservoir overlie saturated alluvium, while the remainder sits atop fractured bedrock. A groundwater model was developed to assess the effects of seepage from the reservoir on local groundwater conditions for the portion overlying saturated alluvium. Because of the close proximity of the bedrock to the saturated alluvium it was assumed that the faults and fractures would be hydraulically connected to the alluvium.

Upon review of the geologic conditions at the Project site, it was decided that a numerical model built in MODFLOW would be the most cost-effective and beneficial approach to evaluating groundwater conditions in the vicinity of the CRA. The model was developed using MODFLOW-2000 (version 1.18.00, released on 8/23/2007).

Modeling Goals and Objectives

Upon filling of the Lower Reservoir, some seepage from the reservoir is expected. That seepage needs to be controlled to prevent adverse changes in water elevations beneath the CRA that could cause subsidence and hydrocompaction.

The model objectives are to:

- Create a model that can accurately simulate current groundwater conditions in the vicinity of the Lower Reservoir and the CRA based on the available data.
- Evaluate the impacts of seepage from the Lower Reservoir into the saturated alluvium.
- Simulate the effects of seepage recovery wells to capture the seepage lost from the Lower Reservoir.
- Prepare a plan for the seepage recovery array to adequately capture Lower Reservoir seepage, but not significantly raise or depress the groundwater elevations beneath the CRA.

This analysis defines an optimum number and spacing of the recovery wells, and presents hydrographs at hypothetical observation wells located adjacent to the CRA to document the effects of seepage/pumping on the CRA. The potential impacts of seepage from the Lower Reservoir and extraction from the seepage recovery wells were determined by comparing the baseline model results with those of the different scenarios.

Final design of the monitoring and recovery well system will be based upon a refined modeling effort during final engineering design based upon measured aquifer hydraulic characteristics. The model developed for this evaluation can be re-applied to support the final design phase.

Hydrogeology

Figure 1 shows the general project area. The regional hydrogeology and the basis for model development are based on:

- Water elevations obtained from monitoring wells constructed for the Eagle Mountain Landfill and Recycling Center Project.
- Subsurface logs from coring performed for the Eagle Mountain Mine.
- Well drillers' logs from Eagle Mountain Mine water supply wells.
- Cross-sections developed by ECEC, shown on Figures 2 and 3.
- Cross-sections developed by GeoPentech for a groundwater banking project in the area, shown on Figures 4 and 5.
- Geophysical survey (gravity survey) from GeoPentech shown on Figure 6.

The regional hydrogeology is characterized by fractured bedrock at the surface, with recent and older alluvium overlapping onto the sloping surface of the bedrock. The alluvium is part of the Chuckwalla Groundwater Basin. The alluvium in the upper portions of the Chuckwalla Groundwater Basin can be grouped into three units with similar sediments and hydraulic parameters. Figures 2 through 5 show the geologic layering of the alluvial sediments in the vicinity of the Lower Reservoir.

The first alluvial layer is about 300 feet thick and consists of sand and gravel with a few discontinuous layers of silt and clay. Approximately 150 feet of the alluvium is saturated. Exposures of the alluvium in the eastern face of the Lower Reservoir were described as a coarse fanglomerate (CH2MHill, 1996). Underlying the first layer are lake deposits consisting primarily of clay. The lakebed thickness varies and may be thinner near the margins of the basin and thicker towards the central portions of the basin based on geophysical surveys (gravity). However, no wells have fully penetrated the lakebeds to determine their actual thickness. One well (CW-1) penetrated over 900 feet of clayey lakebed deposits before being terminated. The lakebed deposits are potentially underlain by coarser sediments, based on geophysical surveys, but there are no wells to confirm the presence of this layer (GeoPentech, 2003). The sediments are likely to have a lower permeability than the first alluvial layer because of compaction and development of clay due to weathering.

The alluvial sediments were deposited on an irregular bedrock surface. Geophysical surveys suggest the bedrock surface is a large bowl opposite the reservoirs (GeoPentech, 2003). The southern edge of the bowl aligns with a narrow bedrock ridge that juts easterly into the basin. The upper coarse-grained sediments were deposited above the bowl rim, whereas the lakebed sediments are below the rim. This configuration would create confining conditions in the underlying coarse sediment and prevent outflow from these sediments. The northern edge of the bowl connects to the Pinto Groundwater Basin where inflow into the Chuckwalla Groundwater Basin occurs. A basalt flow and several faults are present, as shown on Figure 4, but their effects on groundwater levels are not defined.

The bedrock beneath the Lower Reservoir is broken by the inactive East Pit Fault. The East Pit Fault appears to offset the bedrock by about 300 feet, which creates a near vertical bedrock contact on the western side of the valley starting near the reservoirs and extending to the south. Figure 2 shows the difference in the bedrock surface. West of the fault the alluvium is thin and unsaturated. Portions of the CRA, south of hypothetical monitoring well OW03 (Figure 1), rests on this unsaturated alluvium. The East Pit fault consists of about a 30-foot zone of broken rock and is in hydraulic continuity with the alluvial deposits.

Groundwater level measurements near the reservoirs are available for a two-year period between 1992 and 1994, after the time when significant pumping for the Eagle Mountain Mine and jojoba agricultural activities occurred in the 1960's through the1980s. The measurements occurred during a period when there were no quantifiable or significant stresses applied to the aquifer that could be used for calibration. There was some pumping in the Desert Center area for domestic uses and limited agricultural uses during this period.

Groundwater occurs in the sediments above the lakebeds at a depth of about 25 feet below the lowest point in the East Pit, in the west bowl. The west bowl of the East Pit is the western portion of the East Pit, and is outside and to the west of, the portion of the East Pit proposed to be used for the project's lower reservoir. The groundwater surface generally is deeper, progressing easterly into the valley. The nature of the sediments infer – and groundwater levels show – that the aquifer is unconfined.

Only one groundwater level measurement is available for the lakebed deposits at groundwater monitoring well (C-10) located near the eastern edge of the model area. It showed the groundwater level was about 60 feet below the top of the clay surface and over 200 feet below the water surface in the overlying sediments as shown on Figure 4. There is great uncertainty regarding this single data point due to this significant difference.

No groundwater levels are available for the coarse-grained sediments underlying the lakebeds. If present, this aquifer would be confined.

The groundwater flow direction in the alluvium is relatively uniform while flow in the bedrock is variable. Figure 1 shows the groundwater flow directions. The flow direction in the saturated alluvium above the lakebeds is generally to the southeast (CH2MHill, 1996). Groundwater flow in the bedrock is towards the Eagle Creek Canyon, from both the northwest and southwest.

Hydraulic characteristics of the sediments overlying the lakebeds were estimated during the investigation for the landfill. The hydraulic conductivities were estimated to be between 0.02 and 7.1 feet per day as shown in Table 1. Descriptions of the fanglomerate from monitoring well construction describe the sediments as ranging from boulders to coarse sand, and therefore the estimated K appear to be too low. Typical K values for well-sorted sand and gravel are from 3 to 180 feet/day (Fetter, 1988). Because the fanglomerate are part of older continental deposits and could be weathered and compacted, a conservative K of 25 feet per day and an S of 0.05 were used in the model.

Conceptual Model

The model area was defined to include both the Upper and Lower Reservoirs, but is centered on the Lower Reservoir and the closest portion of the CRA as shown in Figure 1. The area modeled is the alluvial aquifers, which will extend from the alluvium–bedrock contact at the Lower Reservoir to about 2 miles east of the CRA. As described above, the model is only set up to simulate groundwater conditions for the portion of the model area overlying saturated alluvium, with the portion of the model overlying bedrock, including the Upper Reservoir, designated as *inactive*. The following assumptions were made in development of the model:

 A 3-layer model simulates the geologic conditions present in the vicinity of the reservoir. Layer 1 represents the saturated alluvium above the lakebeds, Layer 2 represents the lakebeds, and Layer 3 represents the underlying coarse-grained sediments.

- 2. The model is run under steady-state conditions because of the short period of available groundwater level measurements, and those data obtained during a period when there was little to no stress on the aquifer to calibrate the model.
- 3. The model boundaries are generally oriented to be parallel and perpendicular with the regional groundwater flow direction in the alluvial basin.
- 4. Layer 3, the confined aquifer, has no outflow, either naturally or by pumping wells. The aquifer is full and water is neither flowing into nor out of the aquifer. Therefore, assigning very small hydraulic conductivities is appropriate to both Layers 2 and 3, essentially making the model a 1-layer model at this time. The deeper layers are built into the model for use during final engineering design.
- 5. The upgradient and downgradient boundaries are specified to keep the system in balance under current conditions so the seepage from the Lower Reservoir can be added after the model performance is verified.
- 6. Seepage from the reservoir instantaneously percolates through the unsaturated sediments and reaches the groundwater surface.
- 7. There are no other sources or outflows of water such as wells, streams, evaporation, or precipitation.

Model Development

The groundwater flow model was developed as follows.

Model Grid

The model cells are square, with a two-step nodal spacing. The node spacing in the central portion of the model area, which is in the vicinity of the Lower Reservoir and the closest stretch of CRA, is 200 feet by 200 feet. The node spacing expands to 400 feet by 400 feet for the extremities of the model area. Figure 7 shows the model grid.

Layers

The model was constructed with three layers to simulate the hydrogeologic conditions in the Upper Chuckwalla Groundwater Basin. Layer 1 is the saturated sands and gravels above the lakebeds. Layer 2 is the lakebed deposits. Layer 3 is the coarse sediments that may underlie the lakebeds.

The top of Layer 1 is the groundwater surface and was determined from the general gradient in the area and extrapolated as a uniform planar surface to best fit actual groundwater elevations, particularly in those areas close to the reservoir and aqueduct as shown on Figure 8. Given the limited measurements available, Layer 1 has been assigned a uniform thickness of 150 feet over the entire modeled area. This assumed thickness resulted in a reasonable fit to the few clay surface elevations shown on Figure 9. Layer 1 slopes to the southeast with edges partially controlled by the bedrock contact and partially by no flow and constant head boundaries as discussed in the Boundary Conditions section of this memo.

The lakebed deposits extent is poorly defined and may have a variable thickness as shown on Figures 4 and 5. Because of the limited data points available an average and uniform thickness of 400 feet was used to create Layer 2. Definition of Layer 3 is also limited, so an average and uniform thickness of 850 feet was used. Both Layer 2 and Layer 3 surfaces were assumed to be parallel to the top of Layer 1. Both layers were created to extend throughout the modeled area.

Seepage Infiltration

The average seepage from the Lower Reservoir assuming a 0.5 foot thick seepage blanket is constructed would have seepage losses of about 890 acre-feet per year (AFY), or about 550 gpm (GEI, *Seepage Analyses for Upper and Lower Reservoirs*, dated January 5, 2009). The maximum seepage would be about 1,600 AFY if only limited seepage control improvements were made. For the current analysis, the average seepage was distributed evenly over the eastern portion of the reservoir overlying alluvium, even though it is possible that some of the seepage could migrate through the bedrock via the crushed zone of the East Pit Fault. Based on this interpretation of the subsurface conditions, it appears the fault intersects the alluvium near the Lower Reservoir. To simplify the modeling approach and provide a reasonable worst-case scenario, all seepage is assumed to be entering the system through the alluvial sediments.

Aquifer Parameters

Layer 1 was assigned a hydraulic conductivity (K) of 25 feet per day (ft/day) and a storativity (S) of 0.05. Layers 2 and 3 were assigned a $K = 3 \times 10^{-6}$ ft/day (1 x 10⁻⁹ centimeters per second) and S = 0.0001, which creates an essentially impermeable lower boundary for Layer 1. The aquifer characteristics of these deeper layers may be adjusted based upon measurements made to support final engineering design.

Initial and Boundary Conditions

The model is oriented such that the east and west boundaries are parallel to the direction of groundwater flow and therefore are no-flow boundaries. The upgradient and downgradient boundaries are general head boundaries assuming a total volumetric flow of 6,625 AFY (estimated outflow through the southern edge of the modeled area) through the system (790,120 ft³/day), and an aquifer thickness of 150 feet. The flow was distributed across an up gradient length of 20,600 feet and across a down gradient length of 14,600 feet. The down gradient length is shorter due to the model area coinciding with a bedrock ridge that juts easterly into the valley.

The initial heads for Layer 1 were based on groundwater levels measured in monitoring wells constructed for the landfill. A uniform planar surface was developed that provided a best fit near the Lower Reservoir. Because Layers 2 and 3 have no hydraulic head measurements the heads were assumed to be at the top of Layer 2.

Modeling Runs

The overall approach to simulating the groundwater conditions in the vicinity of the Lower Reservoir and CRA was performed using the model runs outlined below. All runs are steady-state simulations.

Run 1 – Simulate current groundwater conditions and compare results of model analysis with current groundwater elevations interpolated by observation wells to evaluate the model performance.

Run 2 – Add seepage from the Lower Reservoir to Run 1 and observe changes in water elevations around the reservoir and at simulated observation wells along the CRA.

Run 3 – Add seepage recovery wells to Run 2 and observe changes in water elevations around the reservoir and at simulated observation wells along the CRA.

Transient simulations were performed for both Runs 2 and 3 to develop hydrographs showing the projected changes in groundwater levels beneath the CRA and when steady state conditions are reached. This allows the timing of groundwater changes in response to seepage, and seepage mitigation, to be evaluated. Water balance results for each modeling run are also provided.

Run 1 - Model Performance

The model performance was evaluated by observing the model's ability to replicate the current groundwater conditions using the given aquifer parameters, boundary conditions, and initial conditions. General agreement was observed between the initial groundwater gradient and the steady-state elevations simulated by the model after Run 1. As shown on Figure 10, the up gradient and down gradient elevations were accurately estimated and the model reasonably matched the uniform initial gradient.

It was expected that the uniform gradient projected over the entire alluvial portion of the model would not be as accurately replicated near the encroaching bedrock contact along the southwestern portion of the model since the extrapolated gradient does not take into account the no-flow boundary effects. It would appear that the model better approximated the groundwater elevations in this area. Overall, the model appears to reasonably replicate the current groundwater conditions in the alluvial area.

Run 2 – Seepage

Run 2 was performed following verification of the model's ability to replicate the current groundwater conditions. The purpose of Run 2 was to assess the impacts of seeping 890 AFY from the Lower Reservoir on groundwater elevations and did not include seepage recovery wells. The estimated seepage is based on the analysis found in the Technical Memorandum on Seepage (Section 12.5). Run 2 is based on an assumed placement of a 5-feet thick liner consisting of grouting, seepage blanket, and RCC or soil cement treatment over alluvium.

As shown in Figure 11, Run 2 showed that a groundwater mound is created in the vicinity of the Lower Reservoir and a rise in groundwater elevations occur across the model. Groundwater levels rose about 8 feet beneath the reservoir, far less than the 25 feet of unsaturated alluvium. A series of hypothetical observation wells were placed along the CRA as monitoring points to evaluate groundwater elevation changes. As shown on Figures 12 through 14, groundwater elevations at the closest observation well, OW05, rose 1.88 feet in response to seepage from the Lower Reservoir. Down gradient observation well OW03.2 rose about 2.65 feet.

A transient analysis was performed to evaluate the change of groundwater elevations over time. Figure 12 showed that groundwater elevations at OW05 rose 1.64 feet (87 percent of elevation change at steady state) after three years in response to seepage from the Lower Reservoir, and reached 1.87 feet (99 percent) after 10 years.

Run 3 – Seepage Recovery and Alternatives Evaluation

Run 3 consisted of multiple runs varying the number, pumping rates, and preliminary locations of the seepage recovery wells. In all runs the seepage from the reservoirs was captured, using 5 to 7 wells, but the drawdown beneath the CRA varied from about 1 to 4 feet. Consideration was given to placement of the wells away from the reservoir to effectively capture the seepage. Model Run 2 showed that a saturated mound would not rise high enough to connect to the reservoir bottom. Therefore, the seepage will migrate mostly vertically through unsaturated alluvium before reaching the water surface. To allow the

seeped water to reach the groundwater surface the recovery wells' array design consisted of six wells distributed about 1500 to 2000 feet from the eastern and southern edges of the Lower Reservoir at a spacing of about 1000 feet, each pumping 92 gpm. The locations of the wells are shown on Figure 15. Figure 16 shows the results of Run 3. Groundwater elevations in the vicinity of the CRA were maintained between 0 and 3 feet below the initial groundwater conditions. Pumping the seepage recovery wells would result in less than 6 feet of drawdown in these wells.

A transient analysis was performed to evaluate the change of groundwater elevations over time. Figures 12 through 14 show that the seepage recovery wells reduced the water elevations at OW05 to 1.86 feet (89 percent of elevation change at steady state) below the initial groundwater elevations after three years, and reached 2.08 feet (greater than 99 percent) after 10 years. The other observation wells reached steady state conditions in a similar time frame.

Water Balances

Figure 17 shows the mass balance for all three runs. The inflow and outflow values are within a fraction of a percent of each other, indicating that model parameters are being accounted for and the model is valid.

Upper Reservoir Seepage Assessment

The Upper Reservoir is entirely underlain by bedrock. The bedrock is fractured and seepage from the Upper Reservoir will likely be through these fractures. These groundwater conditions do not readily lend themselves to modeling. Therefore, a geologic assessment of the major faulting pattern was prepared to develop a preliminary seepage recovery well network to capture all of the seepage from the Upper Reservoir.

Hydrogeology

Bedrock geologic units present at the site can be generally classified as igneous or metasedimentary (including the iron ore) with little to no primary permeability. The metasediments have been folded into an anticline with the Upper Reservoir on the north limb. Subsequent to the folding and fracturing volcanic dikes intruded the rock in a northeast– southwest trend.

Fracturing and faulting of the rock created secondary permeability that can convey water from the reservoir. Geologic mapping of the Upper Reservoir was performed prior to the excavation of the pit by the Eagle Mountain Mine and shows the location of the major faults. Figure 18 shows the location of these major faults (digitized from Proctor, 1992). For purposes of this analysis, it was assumed that the fractures would be connected to these major faults. The faults near and beneath the Upper Reservoir (Fault "A") have a similar northwest-southeast trend to the East Pit Fault, which crosses through the Lower Reservoir. Although no dips are provided for faults in the Upper Reservoir it is believed they would be similar to the East Pit Fault, which is nearly vertical (dips about 80 degrees to the east).

Two borings were completed in the Upper Reservoir site vicinity (MW-10 and CH-10). Rock core obtained from boring CH-10 provides insights on the hydrogeologic character of the bedrock. The boring was drilled to a total depth of 1,389 feet. Water was first observed at a depth of 1,309 feet. Rock in the upper 350 feet of the boring was found to be moderately fractured, interbedded igneous and meta-sedimentary rock. Monitoring well MW-10 was drilled to a total depth of 1,214 feet. Water was first encountered at a depth of 506 feet. The water surface subsequently dropped and later stabilized at a depth of 1,018 feet. The

observations suggest that water may be present in joints and fractures at various depths and that lower fractures are either dry or at lower heads.

The groundwater flow direction in the bedrock is regionally towards the southeast, in the direction of Eagle Creek Canyon as shown on Figure 1 (CH2MHill, 1996). It is possible there are either faults or fractures in the rock that are concealed beneath the thin alluvium in the canyon. Faults and fractures typically create weak zones where erosion can create canyons. The orientation of the canyon would suggest a fault or fracture could convey water to the east into the saturated alluvium where it could be captured by the Lower Reservoir seepage recovery wells.

The depth to groundwater in the bedrock beneath portions of the CRA is about 450 feet below ground surface, as shown on Figure 2. Groundwater levels in the bedrock would have to rise by about 180 feet before saturating the alluvium overlying bedrock.

Hydraulic Characteristics

Hydraulic characteristics of the bedrock joint and fractures were estimated during the investigation for the landfill. The hydraulic conductivities were estimated to be between 0.02 and 5.1 feet per day as shown in Table 1.

Few wells in the area obtain water from the fractured bedrock. The former Eagle Mountain school well (School Well) was drilled to a depth of about 750 feet before encountering adequate flow to support a small well. The well could be pumped at a rate of about 75 gpm.

Seepage

The Upper Reservoir may seep an average of 738 acre-feet of water annually or about 460 gallons per minute (GEI, *Seepage Analyses for Upper and Lower Reservoirs*, dated January 5, 2009). Raising and lowering of water levels in the reservoir during normal operations would allow some of the seepage, especially in the sidewalls, to drain back into the reservoir during low water level periods.

Seepage Recovery Wells

A preliminary seepage recovery network was designed assuming that the average well would be capable of pumping only 70 gallons per minute, similar to the School Well. About seven seepage recovery wells may be needed. Five of the seven seepage recovery wells were positioned around the Upper Reservoir outside of the landfill perimeter at currently known locations of faults that extend beneath the reservoir. Figure 18 shows the location of the proposed seepage recovery well system.

In addition to the seepage recovery well system near the Upper Reservoir, additional seepage recovery wells will be constructed along the axis of the Eagle Creek Canyon at the intersections of the faults that cross beneath the Upper Reservoir. These wells in conjunction with the wells near the Upper Reservoir will be used to maintain the water levels below the elevation of the liner for the proposed landfill operations in this area and to prevent a rise in groundwater levels in the bedrock beneath the CRA.

Conclusions

The results of the MODFLOW model for the Lower Reservoir indicate that groundwater levels in the vicinity of the CRA would increase by up to three feet by seepage from the Lower Reservoir if not controlled through seepage recovery wells. A preliminary seepage recovery well array design consists of six wells, each pumping 92 gpm, and resulted in capture of all of the seepage, with groundwater elevations only being reduced beneath the CRA by about three feet. The absolute elevations are reflected in Figure 13 with the elevation increasing from about 629 feet msl to about 632 feet msl without the network and decreasing from about 629 to 626 with the network. Although the seeped water could be allowed to flow unimpeded to offset drawdown related to water supply pumping, this does not allow for unanticipated conditions. Therefore, seepage recovery wells will be installed and equipped. Once the reservoirs are at full capacity and the actual operating conditions are observed, groundwater management alternatives will be employed to minimize groundwater level changes beneath the CRA.

The maximum seepage from the Lower Reservoir with limited seepage control improvements is estimated to be about 1,600 AFY, about double the average seepage that was analyzed in this assessment. Therefore, worst case projections would suggest the seepage, if not controlled by pumping, would raise groundwater levels by about 6 feet beneath the CRA. The seepage could be controlled by pumping wells.

Seepage from the Upper Reservoir will be along joints, fractures, and faults that cross beneath the reservoir. About seven seepage control wells will be needed to control the seepage losses, assuming they will each pump about 70 gpm. Since the faults are near-vertical angle drilling may be an effective method. Additional seepage recovery wells will be constructed along the axis of the Eagle Creek Canyon to provide secondary control to prevent groundwater levels from rising beneath this area of the proposed landfill.

Mitigation Measures

Mitigation SR-1:

Aquifer tests will be performed during final engineering design to confirm the seepage recovery well pumping rates and aquifer characteristics. The tests will be performed by constructing one of the seepage recovery wells and pumping the well while observing the drawdown in at least two seepage recovery or monitoring wells. If available, additional observation wells will be monitored. Upon completion of this testing the model will be re-run and the optimal locations of the remainder of the seepage recovery wells will be determined to effectively capture water from the Lower Reservoir and maintain groundwater level rises and drawdown at less than significant levels beneath the CRA.

Mitigation SR-2:

A testing program will also be employed for seepage recovery wells for the Upper Reservoir. However, the purpose of these tests is to assess the interconnectedness of the joints and fractures and the pumping extraction rate. Drawdown observations will be made in nearby observation wells to support final engineering design.

Mitigation SR-3:

A groundwater level monitoring network will be developed to confirm that seepage recovery well pumping is effective at managing groundwater levels beneath the CRA and in the Eagle Creek Canyon portion of the proposed landfill. The monitoring network will consist of both existing and new monitoring wells to assess changes in groundwater levels beneath the landfill and the CRA. In addition to the proposed monitoring wells, groundwater levels, water quality, and production will be recorded at the Project seepage recovery wells.

Mitigation SR-4:

Seepage from the upper reservoir will be maintained below the bottom elevation of the landfill liner. Seepage from the Lower Reservoir will be maintained to prevent significant rise in water levels beneath the CRA.

Alternative Mitigation Measure:

As shown in the analyses for the Project water supply well pumping assessment, the cumulative change in groundwater levels beneath the CRA (near OW03) over the 50-year life of the Project are projected to be drawn down by about 14 feet as a result of pumping for the proposed projects – pumped-storage project, landfill project, and solar projects – and other existing uses in the basin (GEI, 2009). The Project water supply pumping will result in about 6 feet of drawdown. Project pumping drawdown could be mitigated by managing seepage from the reservoirs, which, if left unimpeded, could raise groundwater levels by up to 3 feet. Implementation of this option would require confirmation of groundwater level rises and water quality of the resulting seepage.

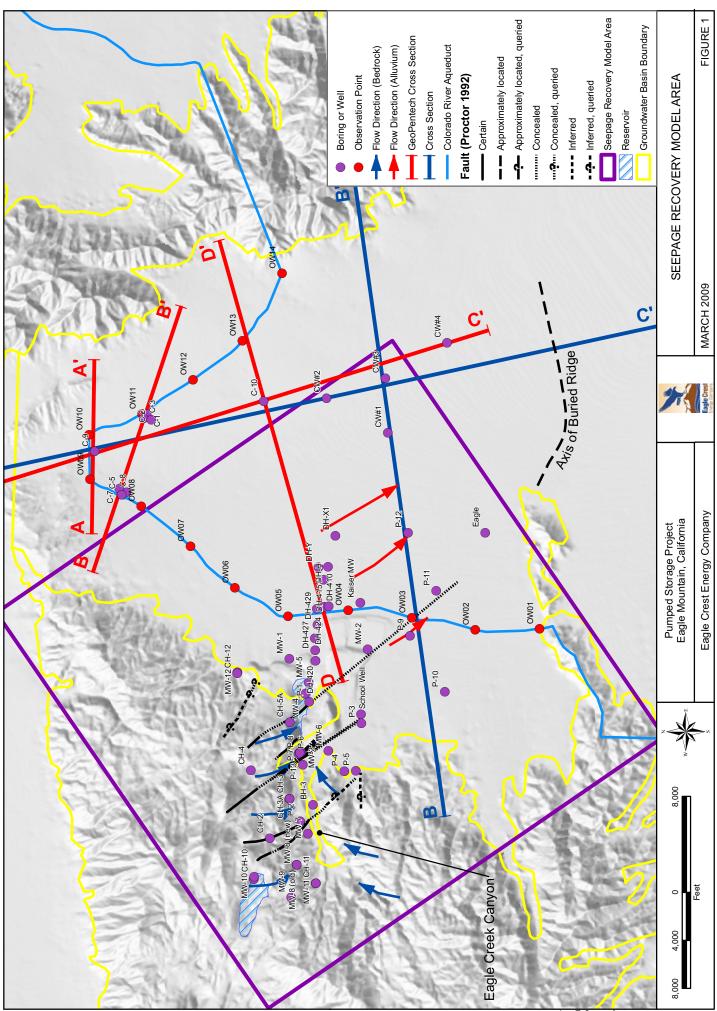
Mitigation SR-5:

Groundwater monitoring will be performed on a quarterly basis for the first four years of Project pumping and thereafter may be extended to bi-annually or annually depending on the findings. Annual reports will be prepared and distributed to interested parties.

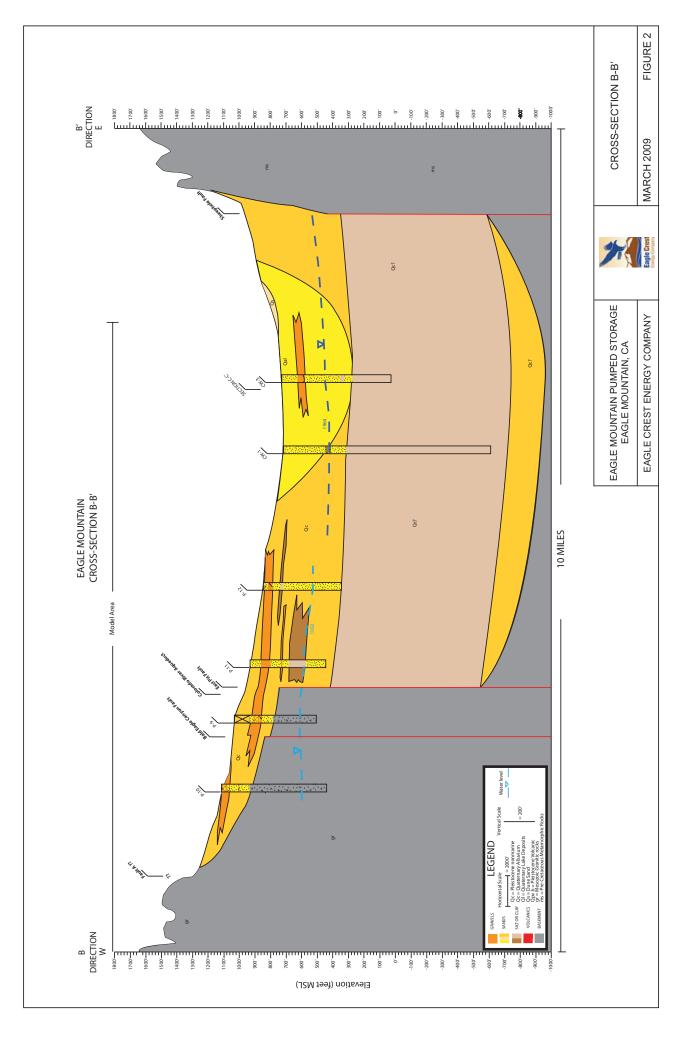
References

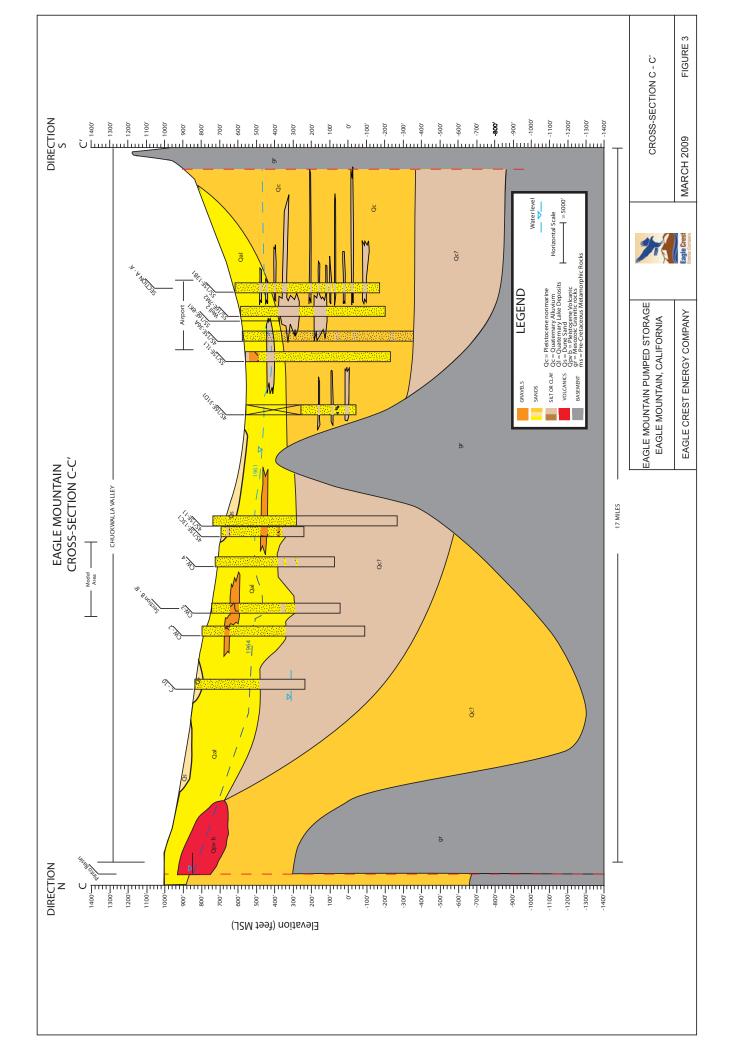
CH2M Hill, 1996. Eagle Mountain Landfill and Recycling Center Project, Produced for Riverside County and Bureau of Land Management.

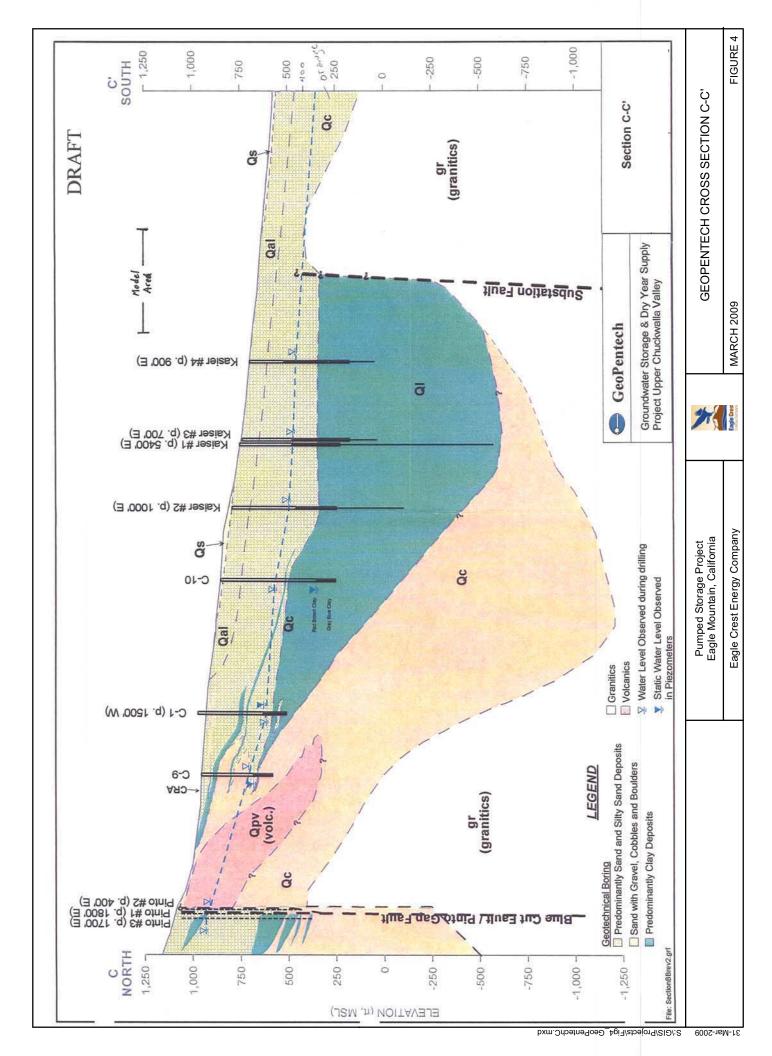
GEI, January 5, 2009. Eagle Mountain Pumped Storage Project: Seepage Analyses for the Upper and Lower Reservoirs.

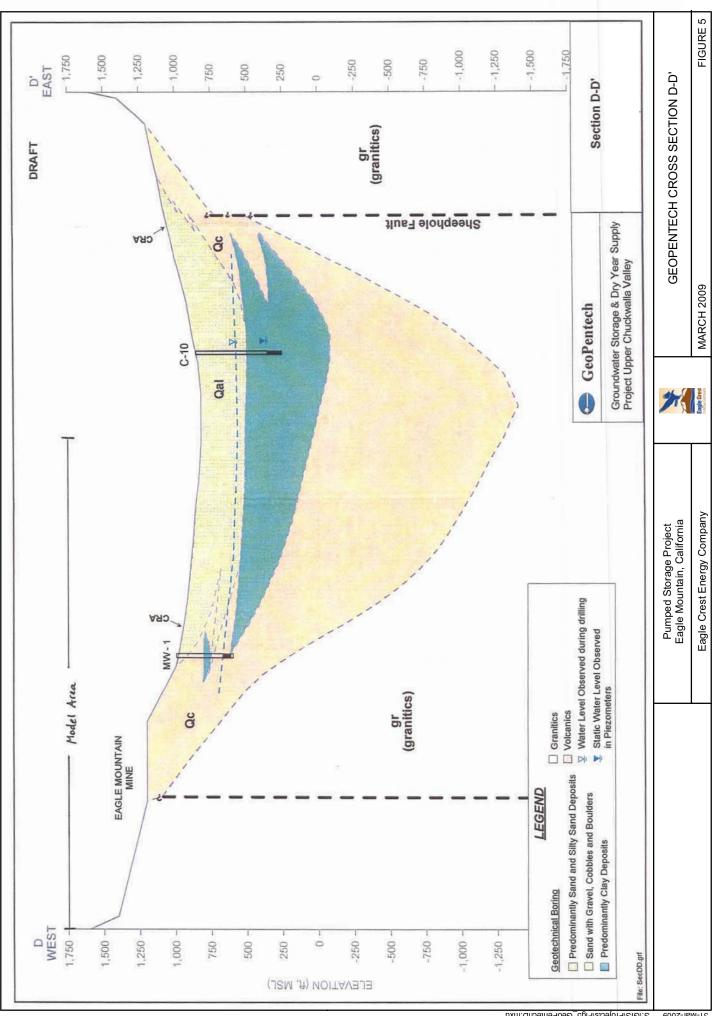

GEI, April 20, 2009. Groundwater Supply Pumping Effects.

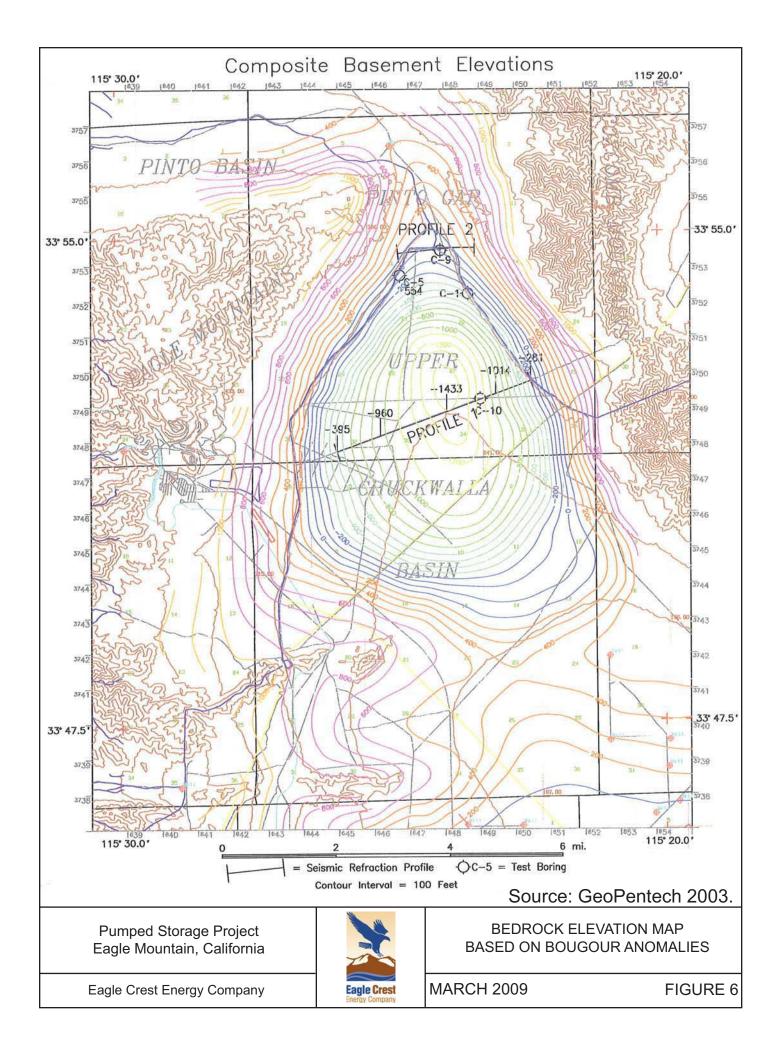
GeoPentech, 2003. Upper Chuckwalla Groundwater Basin Storage, Draft Report (not for public release). Produced for Metropolitan Water District.

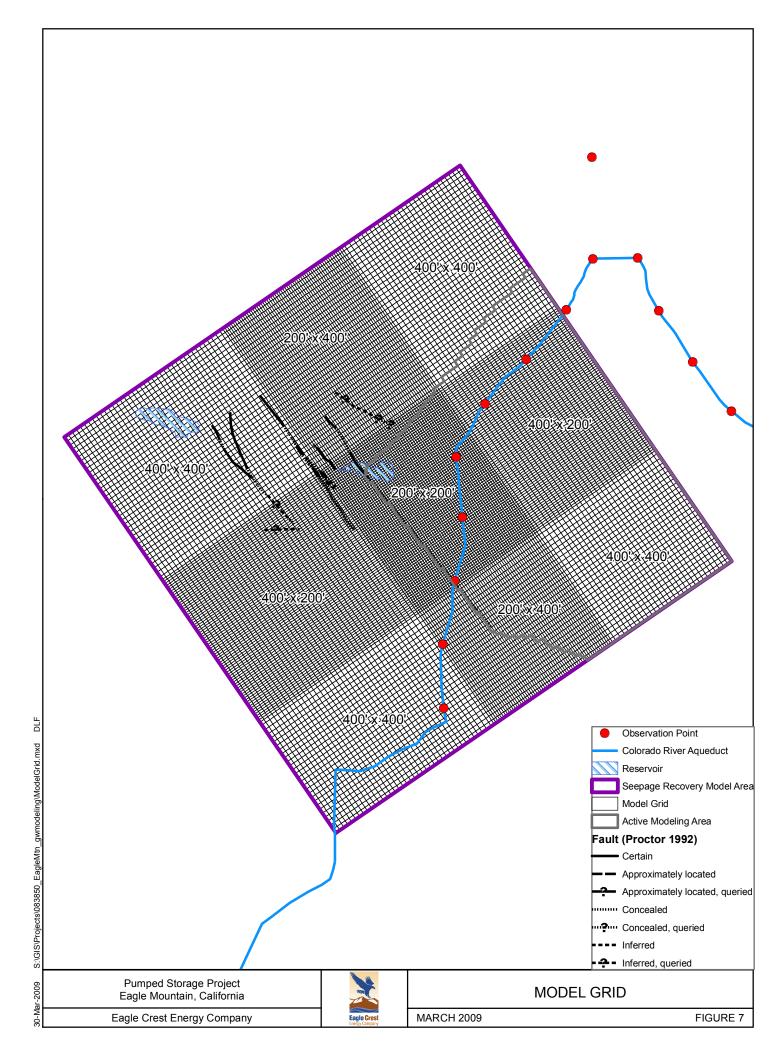

Greystone, 1994. Eagle Mountain Pumped Storage License Application. Produced for Eagle Crest Energy Company.

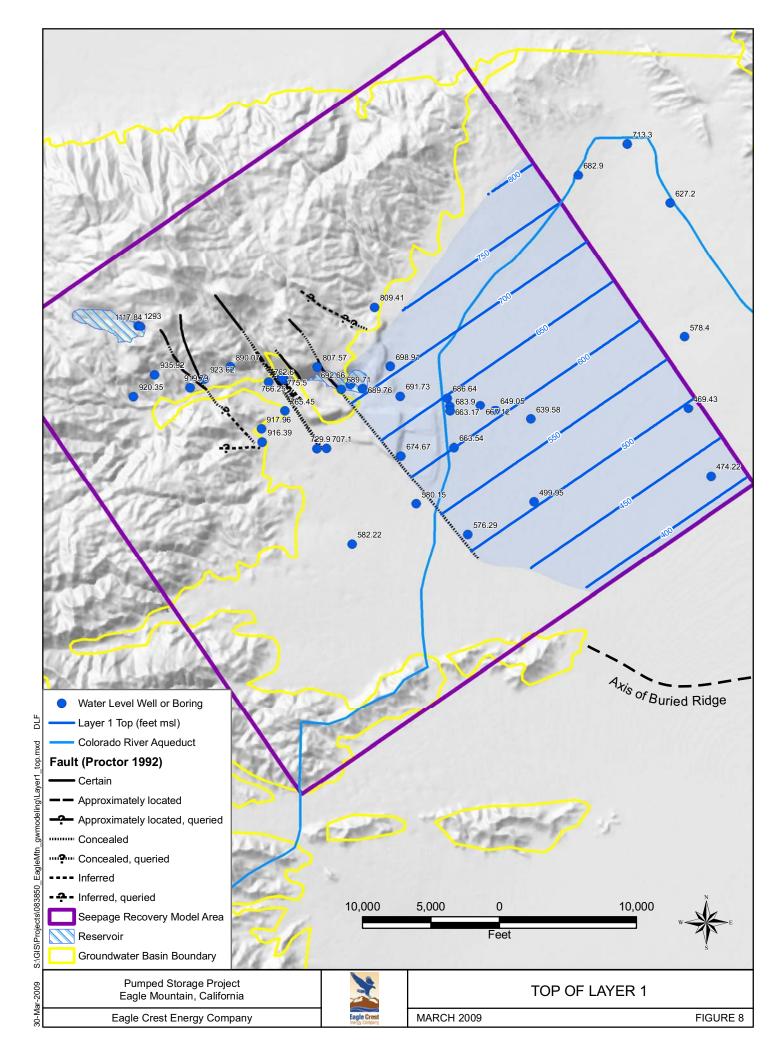

Proctor, Richard J., July 31, 1992. Largest Faults and General Geologic Units at Eagle Mtn. Landfill Site, Plate 1.

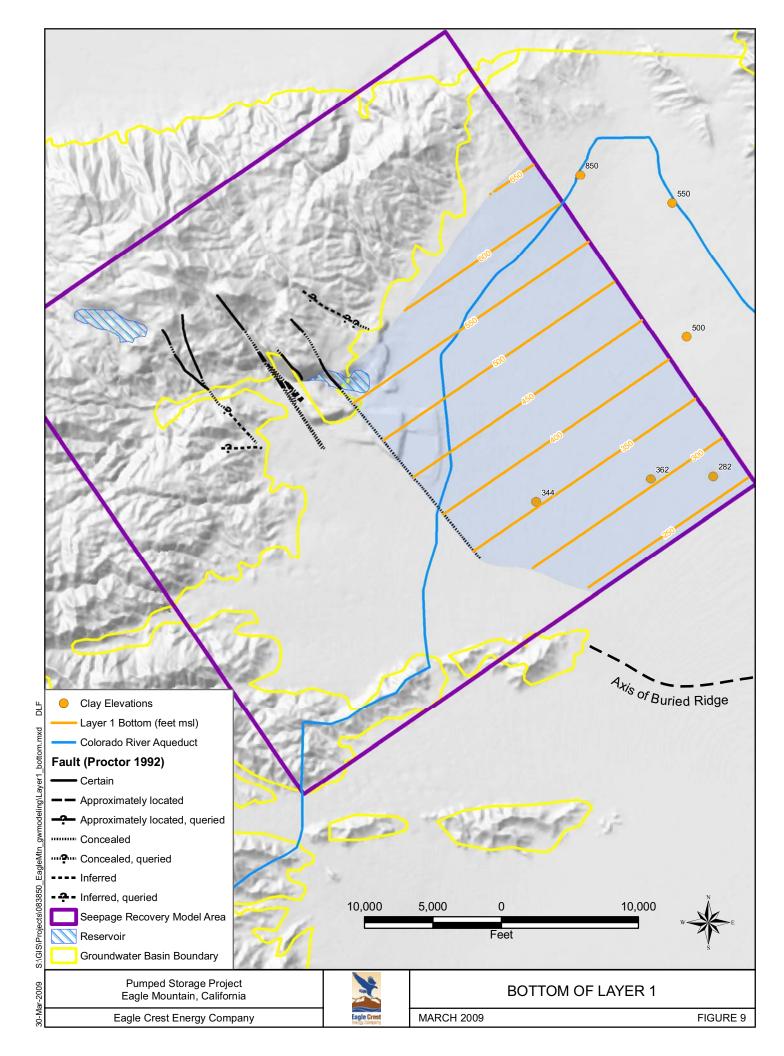

j:\eagle crest energy\project\083852_groundwater assessment\seepage recovery well analysis\memo_seepage recovery assessment_draft.docx

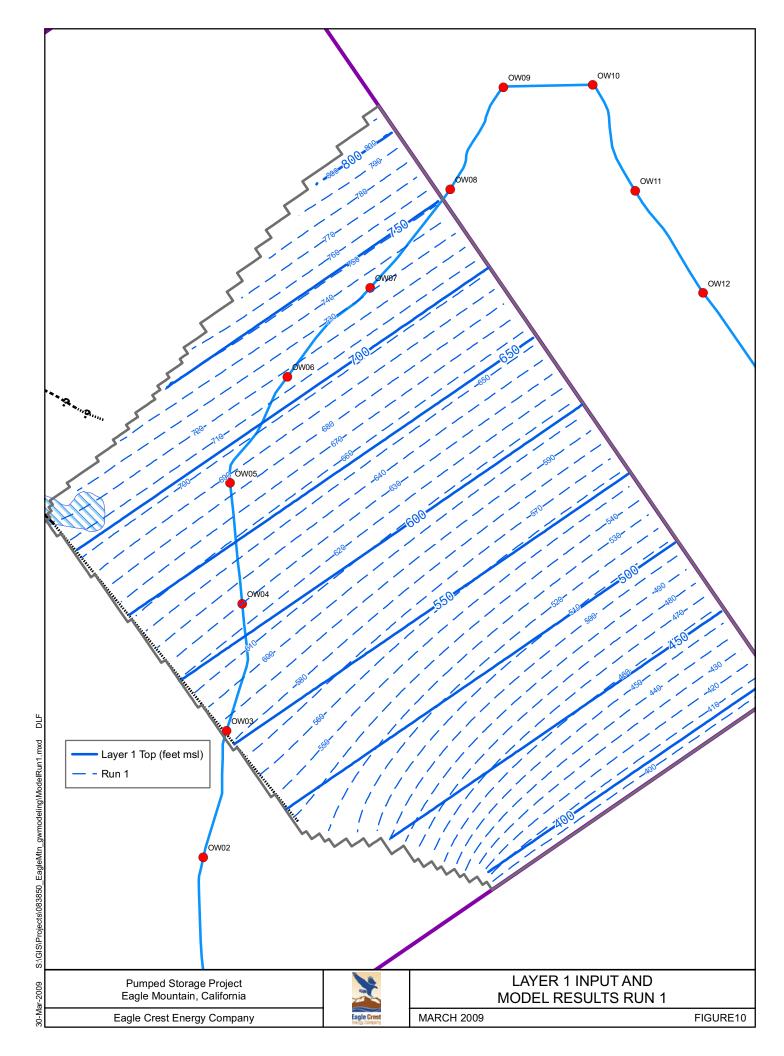


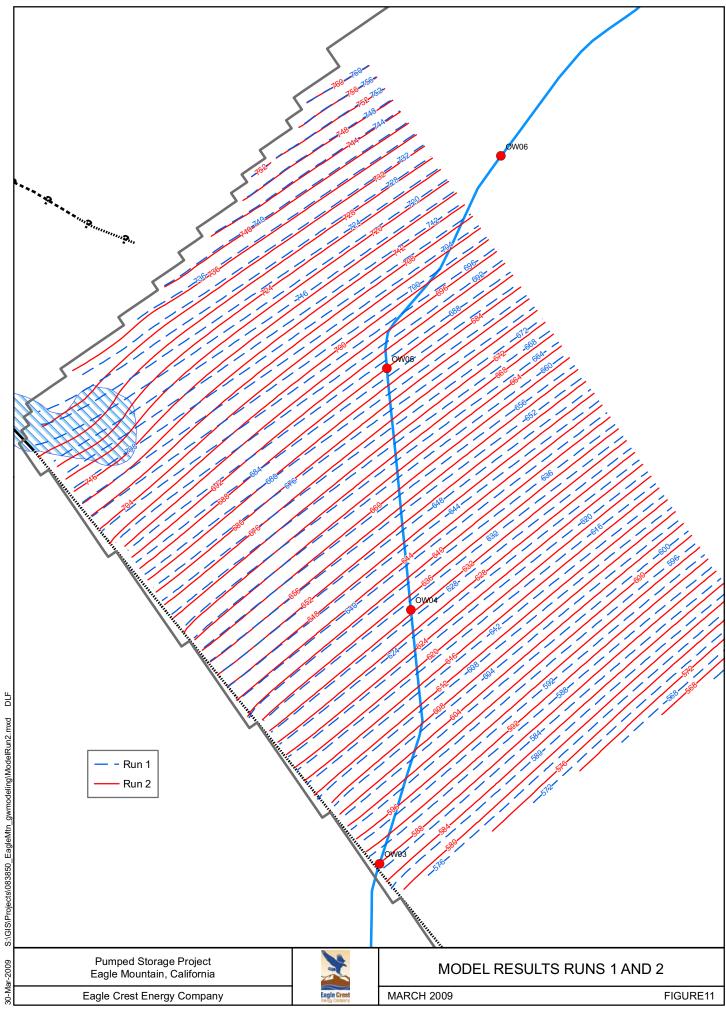

31-Mar-2009 S:/GIS/Projects/Fig1_SeepRecovModelArea.mxd DLF











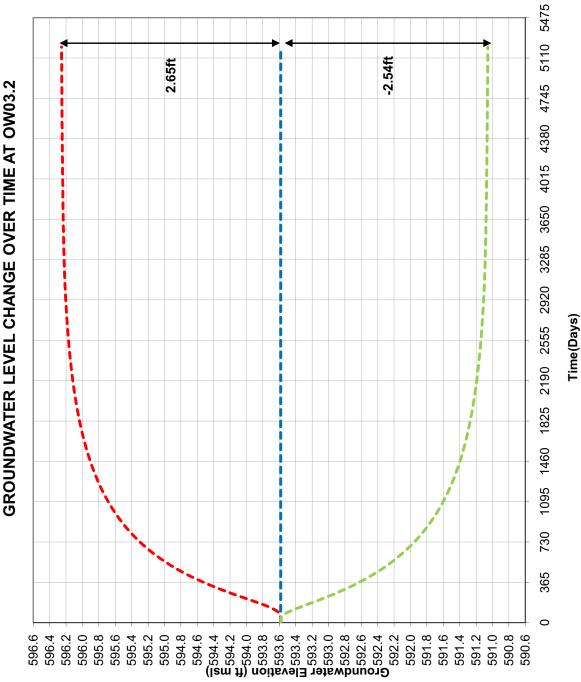
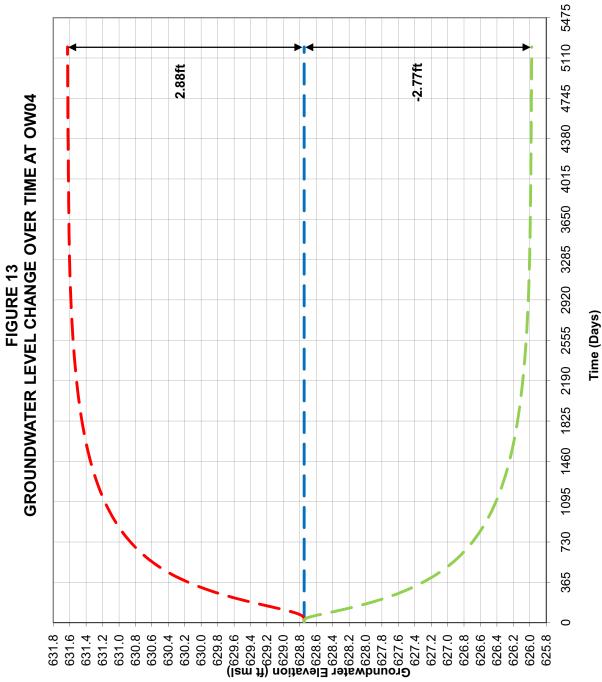



FIGURE 12 GROUNDWATER LEVEL CHANGE OVER TIME AT 0W03.2 ----- Run 1 (OW03.2) ----- Run 2 (OW03.2) ----- Run 3 (OW03.2)

I

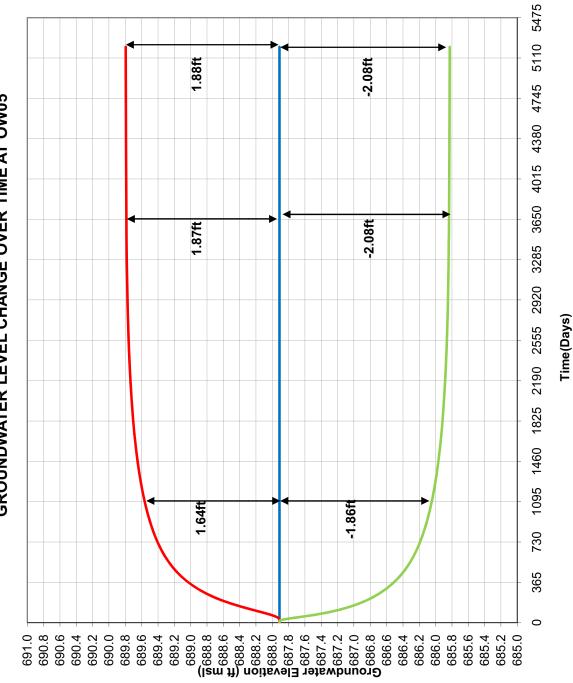
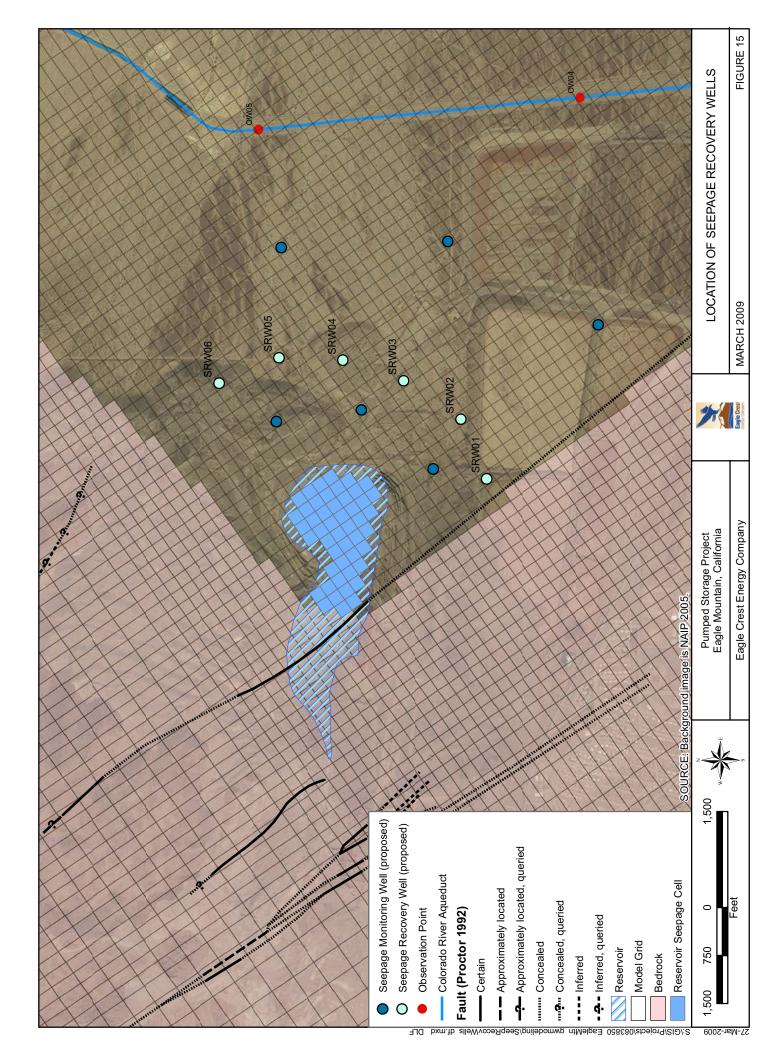
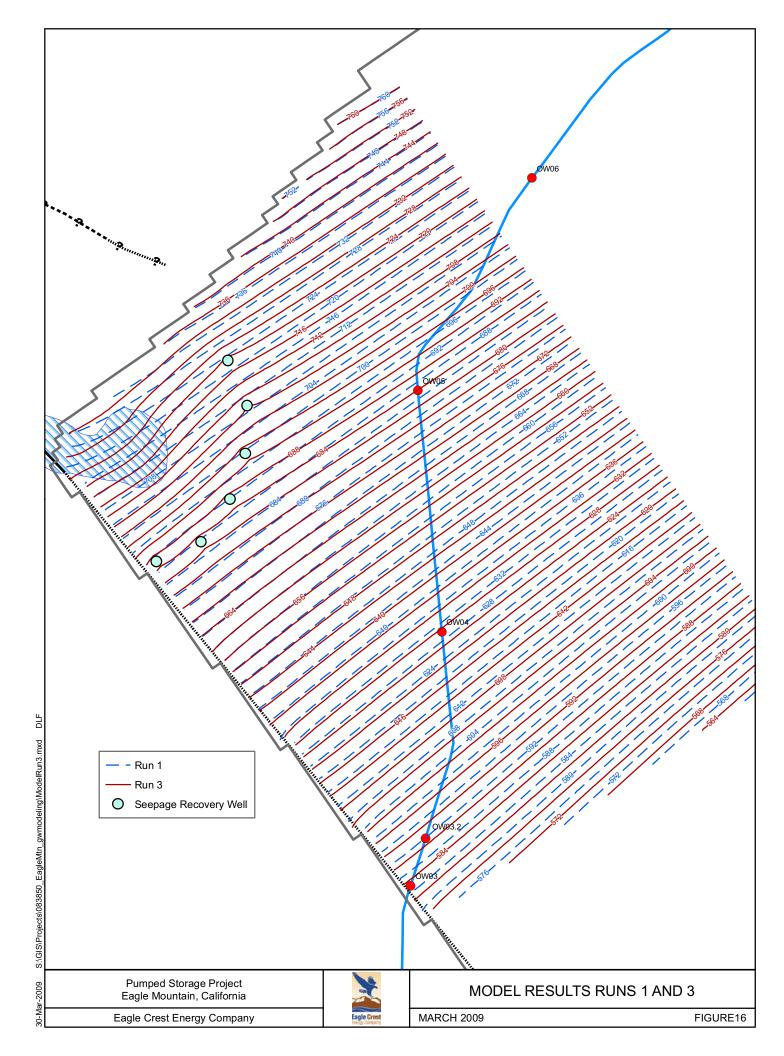




FIGURE 14 GROUNDWATER LEVEL CHANGE OVER TIME AT OW05



Figure 17 Mass Balance for Three Model Runs

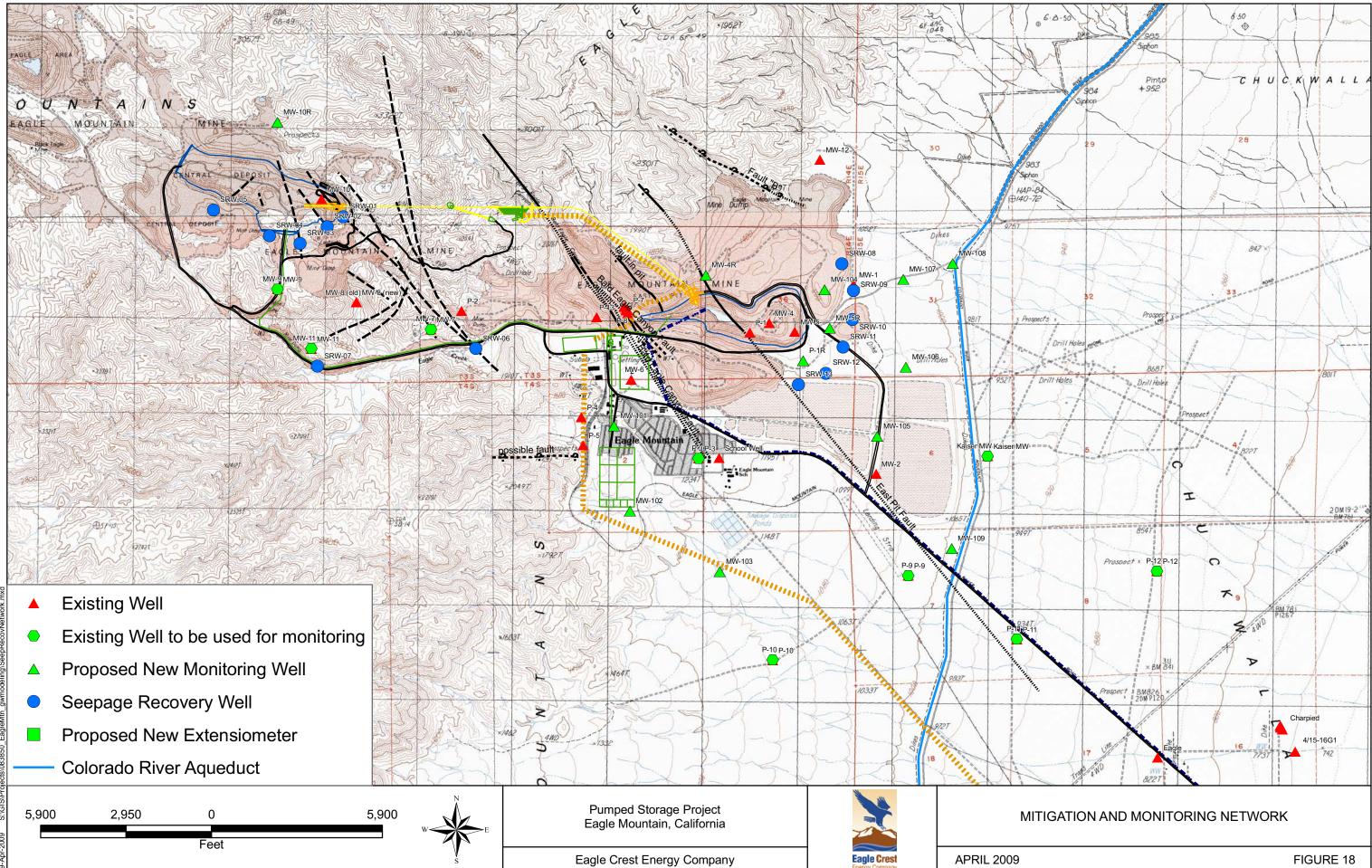


Table 1Aquifer Characteristics Near Project Site

Well No./Name	Aquifer Material	Screen Interval (feet bgs)	Flow Rate (gpm)	Drawdown (feet)	Saturated Aquifer Thickness (feet)	Hydraulic Conductivity (ft/day)	Transmissivity (gpd/ft)
MW-1	Alluvium	325 - 385			51	7.1	2,700
MW-2	Alluvium	394-455	33	37	65	0.02	10
MW-2					65	0.37	180
MW-3	Bedrock	289 - 350	3.3	33			200
MW-4	Bedrock	60 - 140	3.5	47	40	0.02	6
MW-4					40	0.50	150
MW-5	Alluvium	180 - 240	20	25	30	2.0	450
MW-5					30	2.2	500
MW-5					30	7.1	1,600
MW-6	Bedrock	560 - 620	5	12	65	0.1	50
					65	1.4	680
					65	1.8	870
School Well	Bedrock	475-740	75	11	265	0.5	1,000
					265	5.1	10,105

Source: CH2MHill, 1996

TABLE 2

Proposed Mitigation Well Network and Maximum Allowable Changes From Seepage Recovery Pumping¹

Evicting	Monitoring	Walle or	Piezometer

Well No./Name	Aquifer Material	Monitoring Purpose	Total Borehole Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	(feet	Interval bgs)	Maximum Allowable Drawdown (feet)	Maximum Allowable Water Elevation (fee msl)
						Тор	Bottom		
P-2	Bedrock	Water Level Beneath Landfill	960	6.5	2	905	955		1,620
P-3	Bedrock	Brine Pond Downgradient	675	6.0	Unknown	613	663		
P-4	Bedrock	Brine Pond Upgradient	625	5.5	Unknown	575	625		
P-5	Bedrock	Brine Pond Upgradient	625	5.5	Unknown	575	625		
P-9	Bedrock	Lower Reservoir Seepage	525	5.6	Unknown	470	520		
P-10	Bedrock	Upper Reservoir Seepage	675	5.6	Unknown	625	675		
P-11	Alluvium	Lower Reservoir Seepage	485	5.5	Unknown	350	470	2	
MW-7	Bedrock	Water Level Beneath Landfill	785	10.6	4	666	726		1,560
MW-8	Bedrock	Water Level Beneath Landfill	871	13.5	Unknown	792	844		1,880
MW-9	Bedrock	Water Level Beneath Landfill	1,544	6.5	Unknown	Unknown	Unknown		2,350
MW-11	Bedrock	Water Level Beneath Landfill	1,130	13.5	Unknown	663	917		1,940
Kaiser MW	Alluvium	CRA	Unknown	Unknown	Unknown	Unknown	Unknown	3	
P-1R MW-4R	itoring Wells to be R Alluvium Bedrock	Lower Reservoir Pumping Contol Background Lower Reservoir	550 774	10 10	4	490 704	540 764	6	
								0	
MW-5R	Alluvium	Lower Reservoir Pumping Contol	418	10	4	348	408	6	
MW-10R	Bedrock	Background Upper Reservoir	1,672	10	4	1,558	1,662		1,464
MW-101A	ing Wells to be Cons Alluvium	Brine Pond Downgradient	110	10	4	60	100	dry	
MW-101B	Bedrock	Brine Pond Downgradient	599	10	4	549	589		
MW-102A	Alluvium	Brine Pond Downgradient	110	10	4	60	100	dry	
MW-102B	Bedrock	Brine Pond Downgradient	658	10	4	608	648		
MW-103A	Alluvium	Brine Pond Downgradient	200	10	4	150	190	dry	
MW-103B	Bedrock	Brine Pond Downgradient	658	10	4	608	648		
MW-104	Alluvium	Lower Reservoir Pumping Contol	575	10	4	525	565	6	
	Alluvium	Lower Reservoir Seepage	552	10	4	502	542	4	
MW-105			383	10	4	333	373	4	
	Alluvium	Lower Reservoir Seepage							
MW-105	Alluvium Alluvium	Lower Reservoir Seepage	353	10	4	303	343	4	
MW-105 MW-106				10 10	4	303 268	343 308	4	

Seepage Recovery Wells to be Constructed

Well No./Name	Aquifer Material	Purpose	Total Borehole Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screen Int bg	is)	Maximum Allowable Drawdown (feet)	Maximum Allowable Water Elevation (feet
						Тор	Bottom	()	msl)
SRW-01	Bedrock	Upper Reservoir Seepage Recovery	1,477	10	6	1,353	1,467		2,540
SRW-02	Bedrock	Upper Reservoir Seepage Recovery	1,421	10	6	1,297	1,411		586
SRW-03	Bedrock	Upper Reservoir Seepage Recovery	1,359	10	6	1,235	1,349		586
SRW-04	Bedrock	Upper Reservoir Seepage Recovery	1,297	10	6	1,173	1,287		586
SRW-05	Bedrock	Upper Reservoir Seepage Recovery	1,522	10	6	1,398	1,512		586
SRW-06	Bedrock	Upper Reservoir Seepage Recovery	696	10	6	614	686		940
SRW-07	Bedrock	Upper Reservoir Seepage Recovery	1,043	10	6	969	1,033		2,060
SRW-08	Alluvium	Lower Reservoir Seepage Recovery	650	18	12	493	640	7	
SRW-09	Alluvium	Lower Reservoir Seepage Recovery	495	18	12	328	485	7	
SRW-10	Alluvium	Lower Reservoir Seepage Recovery	645	18	12	463	635	7	1,560
SRW-11	Alluvium	Lower Reservoir Seepage Recovery	575	18	12	385	565	7	
SRW-12	Alluvium	Lower Reservoir Seepage Recovery	640	18	12	453	630	7	
SRW-13	Alluvium	Lower Reservoir Seepage Recovery	695	18	12	513	685	7	

Footnote: ¹ Drawdown projections soley due to Seepage Recovery Pumping

12.7 Schedule, Manpower, and Equipment Utilization During Construction of the Eagle Mountain Pumped Storage Project

Eagle Mountain Pumped Storage Project – Schedule, Manpower and Equipment Utilization During Construction

Prepared by: Richard Westmore, P.E., GEI Consultants, Inc.

April 9, 2009

Preparation of an environmental evaluation of the Eagle Mountain Pumped Storage Project under the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA) includes an assessment of construction-related impacts associated with the project. These impacts typically include: air quality (fugitive dust and carbon emissions from construction equipment operation); noise generated during construction; night-time light "pollution"; water quality concerns (erosion and sedimentation entering surface water bodies, as well as hazardous spills that might affect surface and ground water supplies); and socio-economic impacts on the region. Assessment of these construction-related impacts requires an evaluation of the probable construction schedule and the estimated quantities of work (excavation, fill placement, concrete production and placement, tunneling by boring machine and conventional methods, etc.) to identify the types and numbers of equipment pieces that are likely to be used over time, as well as the required labor force.

At this early stage in project design and given the complexity of the Eagle Mountain Project, it is difficult to develop an overall schedule of equipment and man-power that will closely follow what actually will occur during construction. However, the estimates provided in Attachment 1 represent a reasonable estimate of the type, schedule and monthly use of construction equipment, as well as the monthly man-power utilization during construction of the project. These estimates are based on an overall construction period of about 4 years and engineering judgment and experience relative to construction methods and procedures. The estimated construction schedule is provided on Figure 1. Key features of the estimated schedule are summarized below:

First Year of Construction

General:

- Mobilize and construct temporary office, storage, maintenance and staging facilities.
- Construct and improve permanent and construction access roads.

Water Conduits:

Proceed and erect Tunnel Boring Machine and start excavation of tailrace tunnel.

Power Plant:

• Construct access tunnel portal and start excavation of access tunnel.

Upper Reservoir:

• Excavation of approach channel to inlet/outlet works.

Production Wells:

Begin Construction

Lower Reservoir:

- Start moving unstable tailings pile.
- Start to line lower reservoir.

Monitoring Wells:

Begin Construction

Switchyard:

• Start switchyard construction.

Transmission Line:

• Start construction of transmission line foundations.

Second Year of Construction

Upper Reservoir:

- Complete excavation of approach tunnel.
- Complete construction of the south and west dams.
- Start Construction of inlet/outlet structures.
- Start lining of Reservoir.

Production Wells:

Complete Construction

Lower Reservoir:

- Complete moving unstable tailings pile.
- Seepage control liner blanketing.
- Construct inlet/outlet works.

- Install water pipeline from wells, pumping plant, and reverse osmosis system.
- Begin to fill lower reservoir.

Monitoring Wells:

Complete Construction

Water Conduits:

- Complete tailrace tunnel, manifold and draft tube tunnels.
- Move and erect Tunnel Boring Machine and excavate upper pressure tunnel.
- Excavate lower pressure tunnel, manifold and penstock tunnels.
- Start to excavate pressure shaft.
- Start Installation of steel tunnel linings.

Power Plant:

- Complete majority of underground power plant access.
- Finish excavation of access tunnel.
- Excavate powerhouse cavern.
- Excavate transformer gallery caverns.
- Embed spiral cases and draft tube liners.
- Start to install pump/turbines and generators.
- Start first stage and second stage concrete.
- Start to install electrical and mechanical equipment.

Transmission Line:

- Build foundations and towers.
- String high voltage transmission wires.

Switchyard:

• Complete switchyard and install equipment.

Third Year of Construction

Upper Reservoir:

- Seepage Control by blanketing with fines and grouting.
- Complete inlet/outlet works.

Lower Reservoir:

Continue filling lower reservoir.

Water Conduits:

- Finish excavation of pressure shaft.
- Construct downstream surge chambers.
- Concrete line penstock and draft tube manifolds.
- Install steel linings in penstocks and concrete linings in draft tube tunnels.

Power Plant:

- Complete excavation of transformer gallery caverns.
- Construct cable tunnel and shaft.
- Complete first stage concrete.
- Start and complete superstructure concrete.
- Continue installation of pump/turbines.

- Continue installation of motor/generators.
- Continue installation of other mechanical and electrical equipment.
- Install water delivery pipeline, pump, and reverse osmosis system.
- Installation of mechanical and electrical equipment.

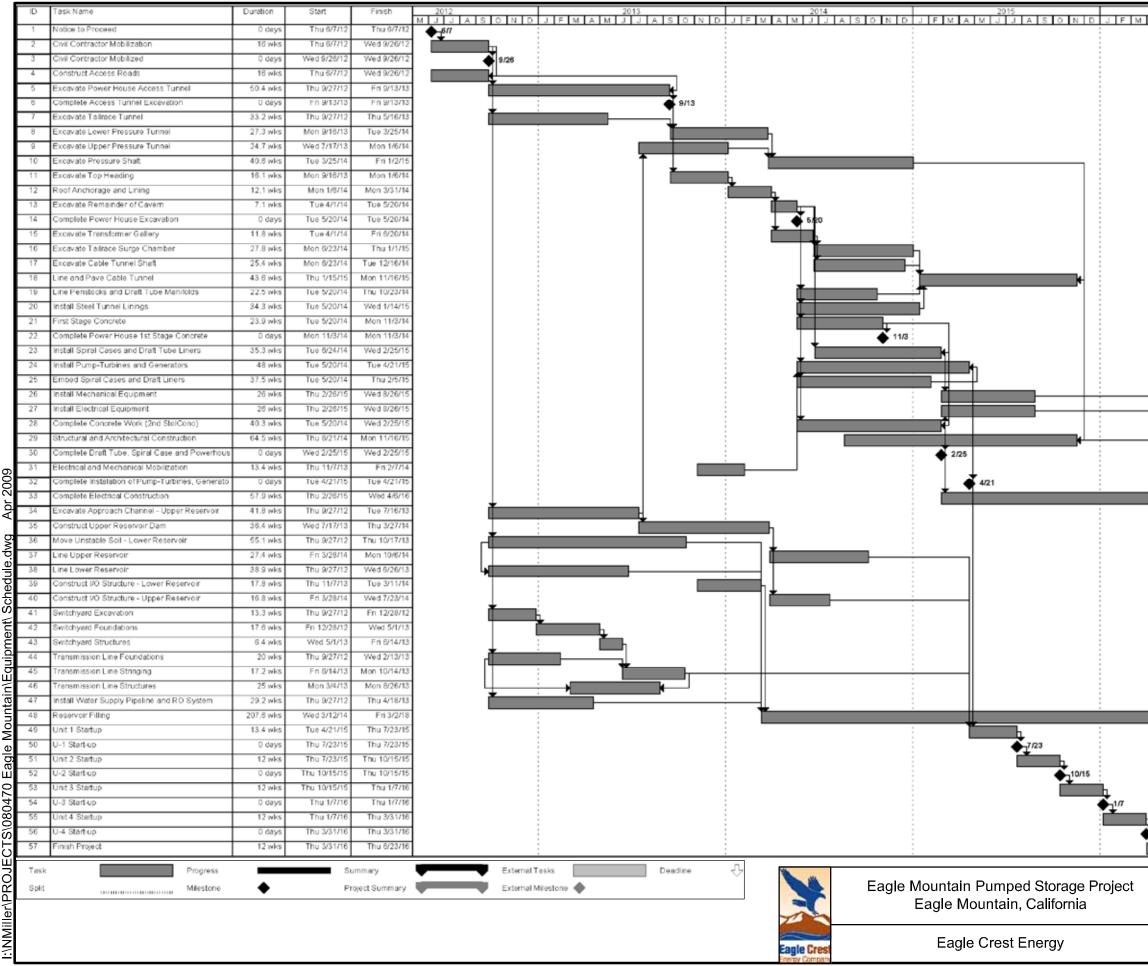
Fourth Year of Construction

Power Plant:

- Finish installation of pump/turbines.
- Finish installation of motor/generators.
- Continue and Finish installation of other mechanical and electrical equipment.
- Start architectural construction.
- Start startup and testing of units.
- Commission unit 1.
- Commission units 2, 3 and 4 at three month intervals ending the beginning of April.
- Complete architectural work.

Transmission Line:

• Test and energize high voltage transmission line.


Commercial Operation:

June 2016.

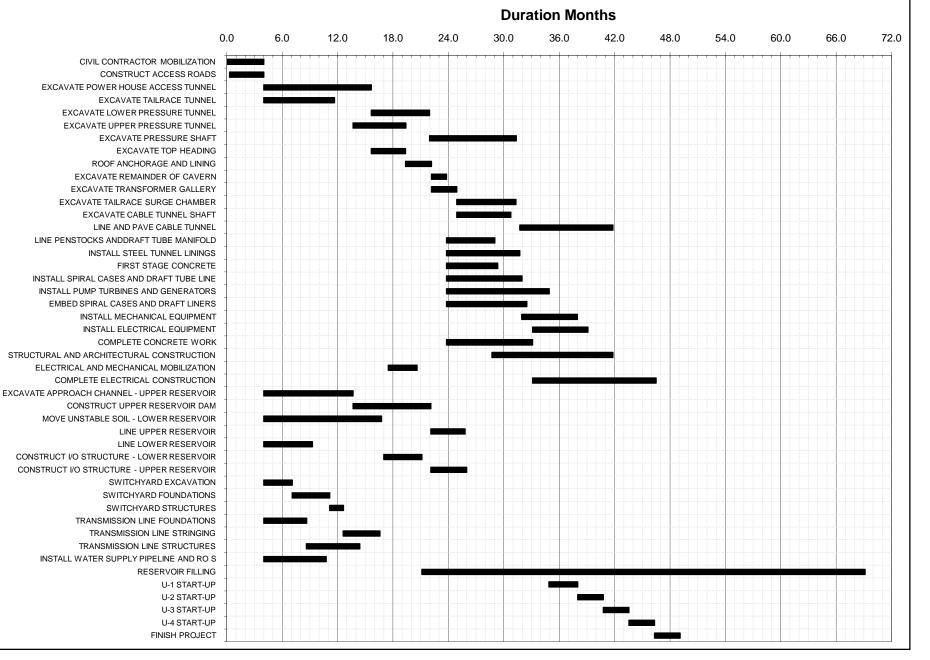
Attachment 1 is organized as follows:

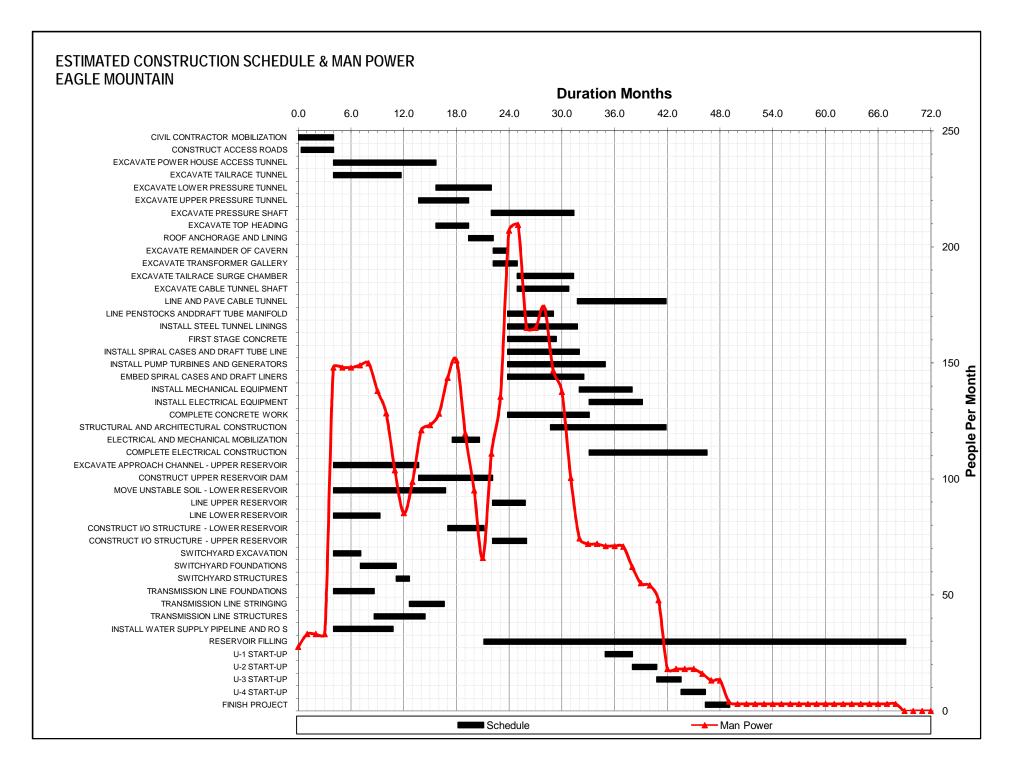
- Bar chart showing the major features of the project construction and the estimated duration in months for construction.
- The schedule bar chart with an overlay graph showing the total number of persons working on the project per month. The peak work force is estimated to be 209 laborers. The total work force is estimated to be 4,674 person months over the duration of construction.
- The schedule bar chart with an overlay graph showing the total number of on-site equipment items, daily concrete trucks (on-site), and daily heavy trucks (on-site) required for the project per month. The peak monthly on-site equipment items are estimated to be 150 items. The peak daily concrete trucks (on-site) are estimated to be 210 trucks. This estimate assumes the trucks are traveling to and from an on-site batch plant. The peak daily heavy trucks (on-site) are estimate assumes the trucks are hauling materials to and from locations on-site.
- The schedule bar chart with an overlay graph showing the total number of off-site trucks working on the project per month. The peak monthly off-site truck volume is estimated to be 75 trucks. The total off-site truck volume is estimated to be 925 trucks for the duration of construction. This estimate assumes the off-site trucks are importing the necessary construction materials to the site such as steel linings, steel reinforcement, electrical components, etc.

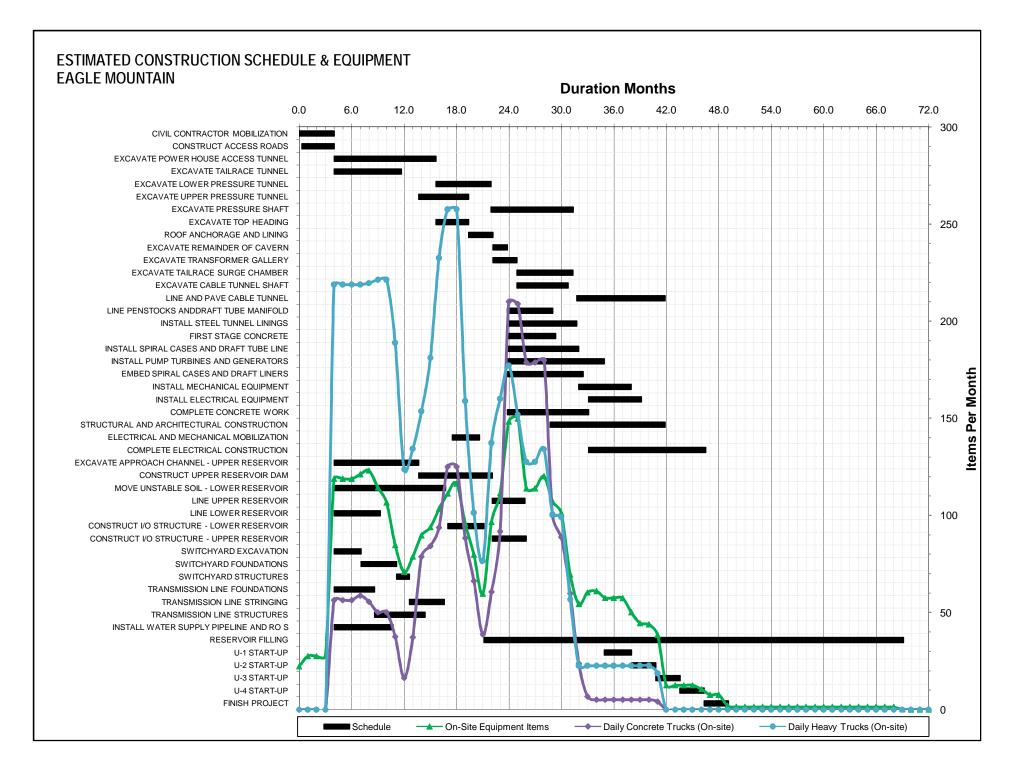
- The schedule bar chart with an overlay graph showing the total labor cost for staff working on the project per month. The peak monthly labor cost is estimated to be \$2.51 million.
- The schedule bar chart with an overlay graph showing the cumulative total labor cost for staff working on the project. The cumulative labor cost for the project is estimated to be \$58 million.
- A summary table showing the average crew size for each major feature of the project construction, the associated average duration in months, and the total number of person months for each item and for the complete project.
- A summary table showing the type and total number of equipment required for each major feature of the project construction.
- A summary table showing estimates of construction crew member's basic hourly wages and hourly wages including the contractor's overhead and profit.
- A summary table showing a typical pumped-storage project operations crew, and their associated annual salaries. Also shown is a table presenting the annual operations and maintenance costs expected to occur over the project duration.
- A table showing the typical equipment and task production rates used in calculations for the duration and quantity of equipment required for each major feature of the project construction.
- A list of major construction activities and items required for the pumped-storage project.
- Equipment and crew size calculation spreadsheets for each major feature of the project construction. Only project features with construction durations are presented.
- Tunnel excavation advancement rate calculation spreadsheet. The spreadsheet includes advancement rates for Tunnel Boring Machine (TBM) and Drill and Blast (D&B) excavation methods.
- Project features and cost estimate spreadsheet. Includes quantities and unit prices for major project features.
- Project reservoir filling calculations and associated charts.

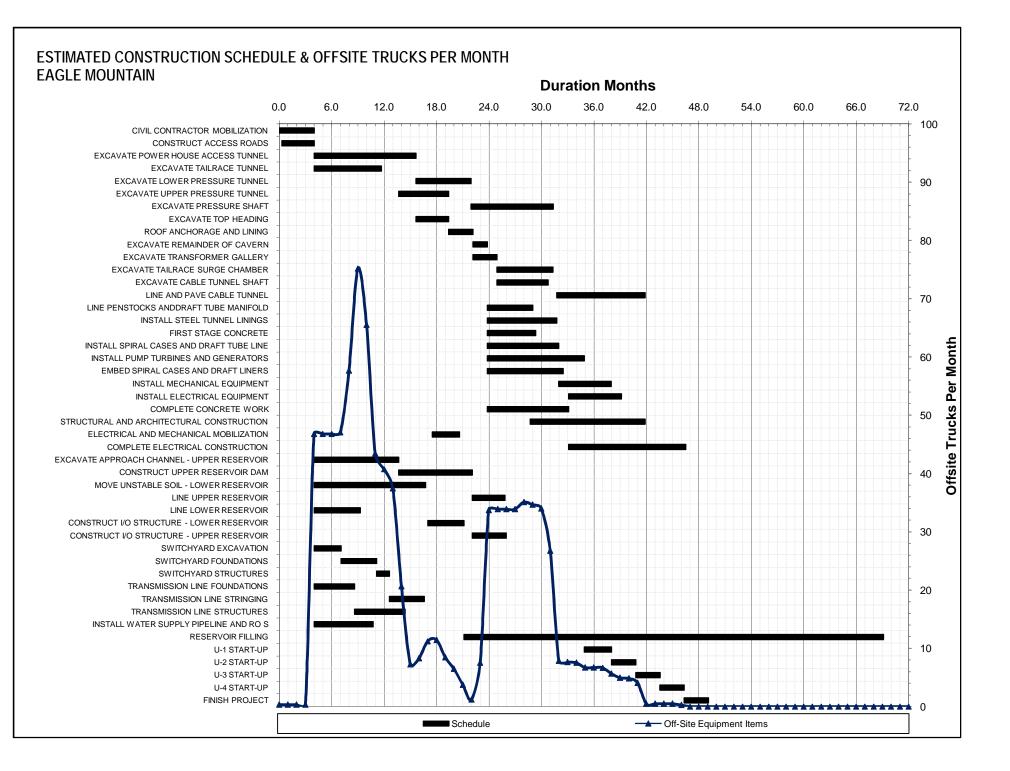
AM	201 J	6 JASOND	2017 JFMAMJJASOND	JFM
_				
_				
₽				
		:		:
Ъ				
↓ 3/31				
	•			:
	F	Project 080472	ESTIMATED PROJE	
			CONSTRUCTION SCH	EDULE
		~~~		4
		GEI 🌺	February 2009 F	igure 1

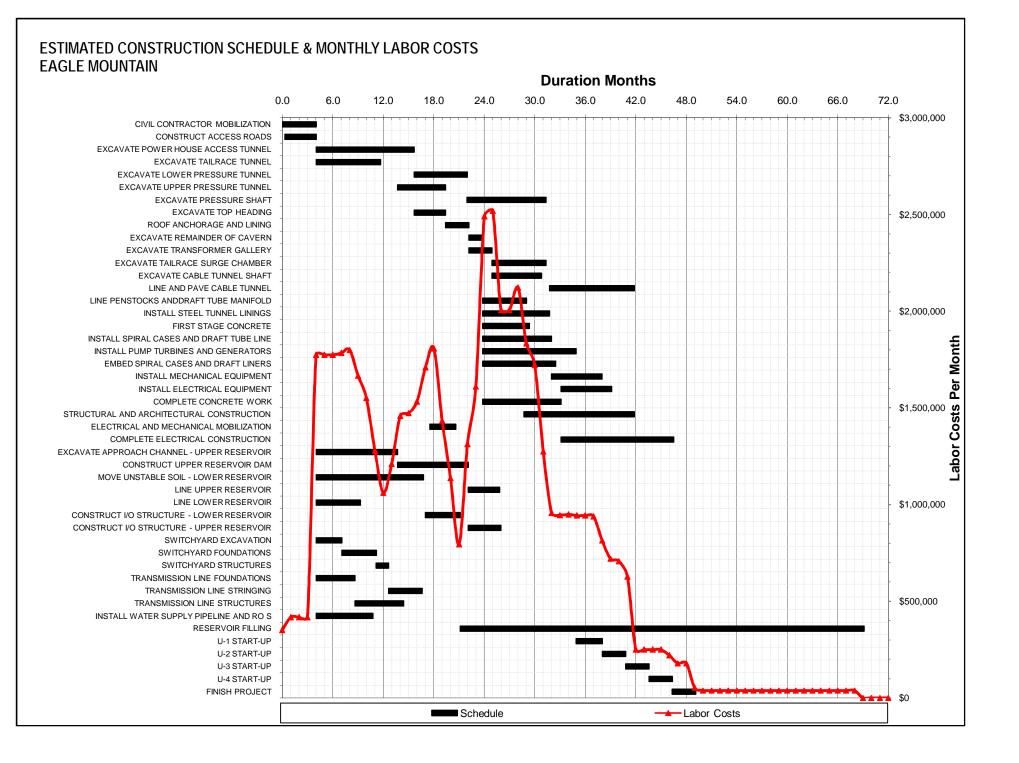


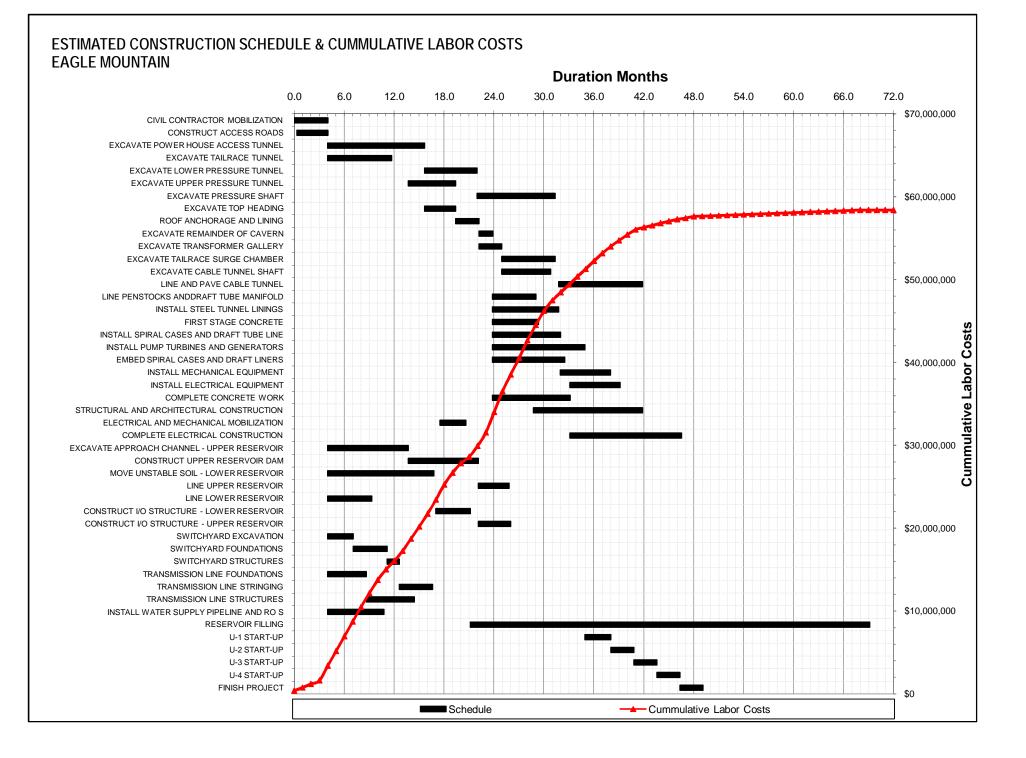




# ATTACHMENT 1


# EAGLE MOUNTAIN PUMPED STORAGE PROJECT


# SCHEDULE, EQUIPMENT, AND MAN POWER ESTIMATES


# ESTIMATED CONSTRUCTION SCHEDULE EAGLE MOUNTAIN














#### ESTIMATED CONSTRUCTION WORK FORCE EAGLE MOUNTAIN PUMPED-STORAGE PROJECT

CONSTRUCTION	AVERAGE CREW	AVERAGE DURATION	S	HIFTS (3)	PERSON	
SEGMENT	SIZE (1)	(MONTHS) (2)	NUMBER	LENGTH (HRS)	MONTHS (4)	
CIVIL CONTRACTOR MOBILIZATION	15	4	1	8	60	
CONSTRUCT ACCESS ROADS	18	4	1	8	67	
EXCAVATE POWER HOUSE ACCESS TUNNEL	23	12	1	8	268	
EXCAVATE TAILRACE TUNNEL	26	8	1	8	199	
EXCAVATE LOWER PRESSURE TUNNEL	16	6	1	8	101	
EXCAVATE UPPER PRESSURE TUNNEL	29	6	1	8	166	
EXCAVATE OFFERTREGOORE FORMEE	29	9	1	8	188	
EXCAVATE TOP HEADING	20	4	1	8	100	
ROOF ANCHORAGE AND LINING	6	3	1	8	100	
EXCAVATE REMAINDER OF CAVERN	27	2	1	8	44	
EXCAVATE REMAINDER OF CAVERN	18		1	0 8	44 49	
EXCAVATE TRANSFORMER GALLERT		3	· · · · · · · · · · · · · · · · · · ·			
EXCAVATE TAILRACE SURGE CHAMBER	16	6	1	8	103	
	11	6	·	8	65	
LINE AND PAVE CABLE TUNNEL	6	10	1	8	61	
LINE PENSTOCKS ANDDRAFT TUBE MANIFOLD	36	5	1	8	187	
INSTALL STEEL TUNNEL LININGS	22	8	1	8	175	
FIRST STAGE CONCRETE	19	6	1	8	105	
INSTALL SPIRAL CASES AND DRAFT TUBE LINE	8	8	1	8	65	
INSTALL PUMP TURBINES AND GENERATORS	8	11	1	8	89	
EMBED SPIRAL CASES AND DRAFT LINERS	7	9	1	8	61	
INSTALL MECHANICAL EQUIPMENT	9	6	1	8	54	
INSTALL ELECTRICAL EQUIPMENT	8	6	1	8	48	
COMPLETE CONCRETE WORK	15	9	1	8	140	
STRUCTURAL AND ARCHITECTURAL CONSTRUCTION	30	13	1	8	394	
ELECTRICAL AND MECHANICAL MOBILIZATION	15	3	1	8	46	
COMPLETE ELECTRICAL CONSTRUCTION	8	13	1	8	107	
EXCAVATE APPROACH CHANNEL - UPPER RESERVOIR	23	10	1	8	222	
CONSTRUCT UPPER RESERVOIR DAM	38	8	1	8	320	
MOVE UNSTABLE SOIL - LOWER RESERVOIR	19	13	1	8	242	
LINE UPPER RESERVOIR	23	4	1	8	85	
LINE LOWER RESERVOIR	18	5	1	8	95	
CONSTRUCT I/O STRUCTURE - LOWER RESERVOIR	26	4	1	8	107	
CONSTRUCT I/O STRUCTURE - UPPER RESERVOIR	27	4	1	8	105	
SWITCHYARD EXCAVATION	10	3	1	8	31	
SWITCHYARD FOUNDATIONS	11	4	1	8	45	
SWITCHYARD STRUCTURES	9	1	1	8	13	
TRANSMISSION LINE FOUNDATIONS	10	5	1	8	46	
TRANSMISSION LINE STRINGING	7	4	1	8	28	
TRANSMISSION LINE STRUCTURES	12	6	1	8	69	
INSTALL WATER SUPPLY PIPELINE AND RO S	19	7	1	8	128	
RESERVOIR FILLING	3	24	1	8	72	
U-1 START-UP	7	3	1	8	22	
U-2 START-UP	7	3	1	8	19	
U-3 START-UP	7	3	1	8	19	
U-4 START-UP	7	3	1	8	19	
FINISH PROJECT	10	3	1	8	28	
		Ť.	<b>.</b>	TOTAL	4674	

(1) Average number of people on site during a construction activity, rounded to the nearest person.

(2) Estimated time to complete a construction activity if completed independent of other construction activities and without consideration of other construction and schedule constraints, rounded to the nearest month.

(3) Number and length of daily shifts.

(4) Rounded to nearest person month. One person month is equal to 173 hours. Calculated prior to rounding crew sizes and durations.

TYPE OF CIVIL CONTRACTOR ACCESS POWER HOUSE EXCAVATE EXCAVATE LOWER EXCAVATE UPPER EXCAVATE EXCAVATE ROOF ANCHORAGE EXCAVATE EQUIPMENT MOBILIZATION TAILRACE TUNNEL PRESSURE TUNNEL PRESSURE TUNNEL PRESSURE SHAFT TOP HEADING REMAINDER OF CABIN ROADS ACCESS TUNNEL AND LINING DURATION 4 4 12 8 6 9 4 3 2 6 On-site Air Compressor 0.0 1.3 0.0 0.0 0.0 0.0 1.3 3.8 1.3 1.3 Backhoe / Front End Loader, Wheeled 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Backhoe, Tracked 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Compactor, Sheepsfoot, Self-Propelled 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Compactor, Vibratory, Self-Propelled 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Concrete Pump 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Crane - 40 Ton 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Crane - 70 Ton 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 Dozer, D5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dozer, D6 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dozer, D8 0.0 1.3 0.0 0.0 0.0 0.0 1.3 2.5 0.0 2.5 1.3 3.8 Drill, Tracked 0.0 2.5 1.3 0.0 1.3 1.3 3.8 1.3 Dump Truck, End Dump, 15 Ton 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dump Truck, Off-Highway, 34 Ton 0.0 3.8 5.0 2.5 6.3 2.5 5.0 0.0 5.0 6.3 Excavator, 325 0.0 1.3 1.3 1.3 1.3 0.0 1.3 2.5 0.0 2.5 Forklift, Rough Terrain 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 2.5 2.5 1.3 0.0 Front End Loader, Wheeled 2.5 2.5 5.0 5.0 1.3 1.3 0.0 1.3 1.3 1.3 Fuel Truck / Support Truck 0.0 0.0 1.3 1.3 Generator - Diesel 1.3 1.3 1.3 1.3 1.3 1.3 1.3 2.5 1.3 2.5 0.0 Grout Pump 0.0 0.0 1.3 1.3 1.3 1.3 0.0 1.3 0.0 Motor Grader 1.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 2.5 2.5 0.0 2.5 0.0 Pump truck - Concrete 0.0 0.0 Truck, Flatbed 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 Tunnel Rig 0.0 0.0 1.3 1.3 1.3 1.3 0.0 0.0 0.0 0.0 Water Pump, Diesel 1.3 0.0 1.3 1.3 1.3 1.3 1.3 0.0 0.0 0.0 Water Truck 0.0 1.3 0.0 0.0 0.0 0.0 0.0 1.3 0.0 1.3 Welder and Generator Set 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TOTAL 10.0 17.5 17.5 18.8 15.0 12.5 18.8 27.5 7.5 25.0 Daily Vehicles⁽³ Daily Concrete Mixer Truck - 8 CY 0.0 0.0 16.3 31.3 31.3 62.5 31.3 0.0 3.8 0.0 Daily Semi Trailer Truck 0.0 0.0 71.3 97.5 76.3 81.3 30.0 75.0 0.0 50.0 Off-Site Vehicles 1.3 11.3 16.3 0.0 2.5 Total Offsite Flatbed/Semi Trucks 0.0 6.3 32.5 8.8 0.0

(1) Rounded to nearest unit of equipment.
(2) Sum of estimated pieces of equipment times duration of construction activity. Calculated prior to rounding duration and equipment quantities. One equipment month is equal to 173 hours of operation.

 (3) Number of daily vehicles on site.
 (4) Pieces of equipment not equal to a whole number represent equipment not being utilized for entire duration of the activity.

TYPE OF	EXCAVATE	EXCAVATE TAILRACE	EXCAVATE CABLE	LINE AND PAVE	LINE PENSTKS	INSTALL STEEL	FIRST STAGE	INSTALL CASES	INSTALL PUMP	EMBED CASES
EQUIPMENT	TRANSFORMER GALLERY	SURGE CHANBER	TUNNEL SHAFT	CABLE TUNNEL	DRAFT TUBE MAN.	TUNNEL LINES	CONCRETE	DRAFT TUBE LINE.	TURBIN. AND GEN.	AND DRAFT LINERS
DURATION (5)	3	6	6	10	5	8	6	8	11	9
On-site										
Air Compressor	1.3	1.3	1.3	1.3	2.5	1.3	0.0	0.0	1.3	0.0
Backhoe / Front End Loader, Wheeled	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Backhoe, Tracked	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Compactor, Sheepsfoot, Self-Propelled	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Compactor, Vibratory, Self-Propelled	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Concrete Pump	0.0	0.0	0.0	1.3	0.0	0.0	0.0	1.3	0.0	0.0
Crane - 40 Ton	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0
Crane - 70 Ton	0.0	0.0	0.0	1.3	0.0	0.0	1.3	0.0	1.3	0.0
Dozer, D5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dozer, D6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dozer, D8	1.3	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0
Drill, Tracked	2.5	1.3	1.3	1.3	0.0	1.3	0.0	0.0	0.0	0.0
Dump Truck, End Dump, 15 Ton	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dump Truck, Off-Highway, 34 Ton	3.8	1.3	1.3	0.0	3.8	2.5	0.0	0.0	0.0	0.0
Excavator, 325	1.3	1.3	1.3	0.0	1.3	1.3	0.0	0.0	0.0	0.0
Forklift, Rough Terrain	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0
Front End Loader, Wheeled	2.5	2.5	2.5	0.0	3.8	2.5	0.0	0.0	0.0	0.0
Fuel Truck / Support Truck	1.3	1.3	1.3	1.3	1.3	1.3	1.3	0.0	1.3	1.3
Generator - Diesel	1.3	1.3	1.3	1.3	2.5	1.3	1.3	1.3	1.3	0.0
Grout Pump	0.0	0.0	0.0	1.3	0.0	0.0	1.3	0.0	0.0	0.0
Motor Grader	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pump truck - Concrete	0.0	1.3	0.0	0.0	5.0	2.5	2.5	0.0	0.0	1.3
Truck, Flatbed	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0
Tunnel Rig	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Pump, Diesel	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Truck	1.3	1.3	0.0	0.0	1.3	1.3	1.3	0.0	0.0	1.3
Welder and Generator Set	0.0	0.0	0.0	0.0	0.0	1.3	0.0	1.3	1.3	0.0
TOTAL	16.3	12.5	11.3	10.0	22.5	17.5	8.8	5.0	6.3	3.8
Daily Vehicles ⁽³⁾										
Daily Concrete Mixer Truck - 8 CY	0.0	0.0	0.0	1.3	62.5	31.3	31.3	1.3	0.0	5.0
Daily Semi Trailer Truck	50.0	18.8	3.8	0.0	50.0	25.0	0.0	0.0	0.0	0.0
Off-Site Vehicles										
Total Offsite Flatbed/Semi Trucks	0.0	1.3	0.0	2.5	11.3	192.5	10.0	13.8	10.0	3.8

Rounded to nearest unit of equipment.
 Sum of estimated pieces of equipment times duration of construction activity. Calculated prior to rounding duration and equipment quantities. One equipment month is equal to 173 hours of operation.

(3) Number of daily vehicles on site.
 (4) Pieces of equipment not equal to a whole number represent equipment not being utilized for entire duration of the activity.

	ESTIMATE	D AVERAGE PIECES C	OF EQUIPMENT FOR (	CONSTRUCTION ACTIN	/ITIES ⁽¹⁾					
TYPE OF EQUIPMENT	INSTALL MECH. EQUIPMENT	INSTALL ELECT. EQUIPMENT	COMPLETE CONCRETE WK.	STRUCTURAL AND ARCHIT. CONST.	ELECTRICAL AND MECH. MOBE.	COMPLETE ELEC. CONSTRUCTION	EXCAVATE APPR. CHANNEL - UPPER	CONSTRUCT UPPER DAM	MOVE UNSTABLE SOIL - LOWER	LINE UPPER RESERVOIR
DURATION (5)	6	6	9	13	3	13	10	8	13	4
On-site	-	-	-		-			-		-
Air Compressor	1.3	1.3	0.0	1.3	0.0	1.3	1.3	2.5	0.0	0.0
Backhoe / Front End Loader, Wheeled	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0
Backhoe, Tracked	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Compactor, Sheepsfoot, Self-Propelled	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Compactor, Vibratory, Self-Propelled	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	1.3
Concrete Pump	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Crane - 40 Ton	0.0	0.0	1.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0
Crane - 70 Ton	1.3	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0
Dozer, D5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0
Dozer, D6	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0
Dozer, D8	0.0	0.0	0.0	0.0	0.0	0.0	2.5	0.0	2.5	1.3
Drill, Tracked	0.0	0.0	0.0	1.3	0.0	0.0	2.5	0.0	0.0	0.0
Dump Truck, End Dump, 15 Ton	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3	0.0	0.0
Dump Truck, Off-Highway, 34 Ton	0.0	0.0	0.0	1.3	0.0	0.0	7.5	5.0	6.3	12.5
Excavator, 325	0.0	0.0	0.0	1.3	0.0	0.0	1.3	0.0	1.3	2.5
Forklift, Rough Terrain	0.0	1.3	0.0	2.5	1.3	1.3	0.0	0.0	0.0	0.0
Front End Loader, Wheeled	0.0	0.0	0.0	2.5	0.0	0.0	2.5	2.5	0.0	2.5
Fuel Truck / Support Truck	1.3	1.3	1.3	2.5	1.3	1.3	1.3	2.5	1.3	1.3
Generator - Diesel	1.3	1.3	1.3	2.5	1.3	2.5	0.0	0.0	0.0	0.0
Grout Pump	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0
Motor Grader	0.0	0.0	0.0	0.0	1.3	0.0	0.0	2.5	1.3	0.0
Pump truck - Concrete	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Truck. Flatbed	0.0	0.0	0.0	0.0	1.3	2.5	0.0	0.0	0.0	0.0
Tunnel Rig	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Pump, Diesel	0.0	0.0	0.0	1.3	1.3	0.0	0.0	0.0	0.0	0.0
Water Truck	0.0	0.0	1.3	0.0	0.0	0.0	1.3	2.5	1.3	1.3
Welder and Generator Set	2.5	1.3	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	7.5	6.3	6.3	21.3	10.0	8.8	20.0	33.8	13.8	22.5
Daily Vehicles ⁽³⁾							i i			
Daily Concrete Mixer Truck - 8 CY	0.0	0.0	16.3	3.8	0.0	0.0	0.0	0.0	0.0	0.0
Daily Semi Trailer Truck	0.0	0.0	0.0	22.5	0.0	0.0	50.0	0.0	0.0	0.0
Off-Site Vehicles										
Total Offsite Flatbed/Semi Trucks	6.3	5.0	12.5	53.8	1.3	6.3	0.0	0.0	0.0	0.0

Rounded to nearest unit of equipment.
 Sum of estimated pieces of equipment times duration of construction activity. Calculated prior to rounding duration and equipment quantities. One equipment month is equal to 173 hours of operation.

(3) Number of daily vehicles on site.
 (4) Pieces of equipment not equal to a whole number represent equipment not being utilized for entire duration of the activity.

TYPE OF	LINE LOWER	CONSTRUCT I/O	CONSTRUCT I/O	SWITCHYARD	SWITCHYARD	SWITCHYARD	TRANS. LINE	TRANS. LINE	TRANS. LINE	INSTALL H20	RESERVOIR
EQUIPMENT	RESERVOIR	STRUC LOWER	STRUC UPPER	EXCAVATION	FOUNDATIONS	STRUCTURES	FOUNDATIONS	STRINGING	STRUCTURES	SUPPLY AND RO S	FILLING
DURATION (5)	5	4	4	3	4	1	5	4	6	7	24
On-site											
Air Compressor	0.0	1.3	1.3	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0
Backhoe / Front End Loader, Wheeled	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Backhoe, Tracked	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Compactor, Sheepsfoot, Self-Propelled	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	1.3	0.0
Compactor, Vibratory, Self-Propelled	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Concrete Pump	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Crane - 40 Ton	0.0	0.0	0.0	0.0	0.0	0.0	1.3	2.5	2.5	0.0	0.0
Crane - 70 Ton	0.0	1.3	1.3	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0
Dozer, D5	0.0	0.0	0.0	1.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0
Dozer, D6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dozer, D8	1.3	1.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.0
Drill, Tracked	0.0	1.3	1.3	0.0	1.3	0.0	1.3	0.0	0.0	0.0	0.0
Dump Truck, End Dump, 15 Ton	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3	0.0
Dump Truck, Off-Highway, 34 Ton	6.3	5.0	6.3	6.3	6.3	0.0	0.0	0.0	0.0	0.0	0.0
Excavator, 325	2.5	1.3	1.3	1.3	0.0	0.0	0.0	0.0	0.0	1.3	0.0
Forklift, Rough Terrain	0.0	0.0	0.0	0.0	0.0	1.3	0.0	1.3	1.3	0.0	0.0
Front End Loader, Wheeled	2.5	1.3	1.3	1.3	0.0	0.0	1.3	0.0	0.0	1.3	0.0
Fuel Truck / Support Truck	1.3	1.3	1.3	1.3	1.3	2.5	1.3	2.5	2.5	1.3	1.3
Generator - Diesel	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0
Grout Pump	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Motor Grader	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0
Pump truck - Concrete	0.0	2.5	2.5	0.0	1.3	0.0	1.3	0.0	0.0	0.0	0.0
Truck, Flatbed	0.0	0.0	0.0	0.0	0.0	1.3	0.0	1.3	1.3	0.0	0.0
Tunnel Rig	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Pump, Diesel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Truck	1.3	1.3	1.3	1.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0
Welder and Generator Set	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0	2.5	1.3	0.0
TOTAL	16.3	17.5	18.8	12.5	15.0	8.8	6.3	7.5	11.3	13.8	1.3
Daily Vehicles ⁽³⁾											
Daily Concrete Mixer Truck - 8 CY	0.0	31.3	31.3	0.0	2.5	0.0	8.8	0.0	0.0	0.0	0.0
Daily Semi Trailer Truck	0.0	25.0	25.0	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.0
Off-Site Vehicles											
Total Offsite Flatbed/Semi Trucks	0.0	11.3	0.0	0.0	1.3	12.5	30.0	0.0	200.0	260.0	0.0

 Rounded to nearest unit of equipment.
 Sum of estimated pieces of equipment times duration of construction activity. Calculated prior to rounding duration and equipment quantities. One equipment month is equal to 173 hours of operation.

 (3) Number of daily vehicles on site.
 (4) Pieces of equipment not equal to a whole number represent equipment not being utilized for entire duration of the activity.

							ESTIMATED
TYPE OF	U-1	U-2	U-3	U-4	FINISH		EQUIPMENT
EQUIPMENT	START-UP	START-UP	START-UP	START-UP	PROJECT		MONTHS ⁽²⁾
DURATION ⁽⁵⁾	3	3	3	3	3		
On-site							
Air Compressor	1.3	1.3	1.3	1.3	1.3		220
Backhoe / Front End Loader, Wheeled	0.0	0.0	0.0	0.0	0.0		9
Backhoe, Tracked	0.0	0.0	0.0	0.0	0.0		5
Compactor, Sheepsfoot, Self-Propelled	0.0	0.0	0.0	0.0	0.0		13
Compactor, Vibratory, Self-Propelled	0.0	0.0	0.0	0.0	0.0		53
Concrete Pump	0.0	0.0	0.0	0.0	0.0		23
Crane - 40 Ton	0.0	0.0	0.0	0.0	0.0		57
Crane - 70 Ton	0.0	0.0	0.0	0.0	0.0		81
Dozer, D5	0.0	0.0	0.0	0.0	0.0		42
Dozer, D6	0.0	0.0	0.0	0.0	0.0		9
Dozer, D8	0.0	0.0	0.0	0.0	0.0		125
Drill, Tracked	0.0	0.0	0.0	0.0	0.0		188
Dump Truck, End Dump, 15 Ton	0.0	0.0	0.0	0.0	0.0		95
Dump Truck, Off-Highway, 34 Ton	0.0	0.0	0.0	0.0	0.0		629
Excavator, 325	0.0	0.0	0.0	0.0	0.0		190
Forklift, Rough Terrain	0.0	0.0	0.0	0.0	0.0		90
Front End Loader, Wheeled	0.0	0.0	0.0	0.0	0.0		328
Fuel Truck / Support Truck	0.0	0.0	0.0	0.0	3.8		340
Generator - Diesel	1.3	1.3	1.3	1.3	1.3		264
Grout Pump	0.0	0.0	0.0	0.0	0.0		83
Motor Grader	0.0	0.0	0.0	0.0	0.0		50
Pump truck - Concrete	0.0	0.0	0.0	0.0	0.0		179
Truck, Flatbed	0.0	0.0	0.0	0.0	0.0		72
Tunnel Rig	0.0	0.0	0.0	0.0	0.0		39
Water Pump, Diesel	0.0	0.0	0.0	0.0	0.0		83
Water Truck	0.0	0.0	0.0	0.0	0.0		127
Welder and Generator Set	0.0	0.0	0.0	0.0	0.0		98
TOTAL	2.5	2.5	2.5	2.5	6.3	TOTAL	3492
Daily Vehicles ⁽³⁾							
Daily Concrete Mixer Truck - 8 CY	0.0	0.0	0.0	0.0	0.0		-
Daily Semi Trailer Truck	0.0	0.0	0.0	0.0	0.0		-
Off-Site Vehicles							
Total Offsite Flatbed/Semi Trucks	0.0	0.0	0.0	0.0	0.0		924

 Rounded to nearest unit of equipment.
 Sum of estimated pieces of equipment times duration of construction activity. Calculated prior to rounding duration and equipment quantities. One equipment month is equal to 173 hours of operation.

 (3) Number of daily vehicles on site.
 (4) Pieces of equipment not equal to a whole number represent equipment not being utilized for entire duration of the activity.

# Labor Costs

Client:	Eagle Crest Energy	Project	080473	Page	1
Subject:	Eagle Mountain Construction Schedule and Equipment	Date Checked Approved	3/19/2009	By By By	NDM

#### LABOR COSTS

		Hourly Wages	
	Hourly Wages	(including O &P)	
Crew	(\$/hr)	(\$/hr)	Source
Blaster	\$33.60	\$52.10	R.S. Means 2009, Crew B-47, Blast Foreman
Carpenters	\$39.95	\$61.95	R.S. Means 2009, Carpenters
Cement Finisher	\$38.30	\$56.05	R.S. Means 2009, Cement Finishers
Driller	\$31.60	\$49.00	R.S. Means 2009, Crew B-47, Driller
Electricians	\$47.00	\$69.95	R.S. Means 2009, Electricians
Equipment Operators	\$41.35	\$62.15	R.S. Means 2009, Equipment Operator (Medium)
Grade Setter	\$41.35	\$62.15	R.S. Means 2009, Equipment Operator (Medium)
Foreman	\$42.85	\$66.35	R.S. Means 2009, Foreman Average (Outside)
Labor Foreman	\$33.60	\$52.10	R.S. Means 2009, Labor Foreman (Outside)
Laborers	\$31.60	\$49.00	R.S. Means 2009, Common Building Laborers
Mechanics	\$42.70	\$64.20	R.S. Means 2009, Equipment Operator, Master Mechanics
Painter	\$35.20	\$52.75	R.S. Means 2009, Painters, Ordinary
Pile Driver	\$38.50	\$62.50	R.S. Means 2009, Pile Drivers
Pipe Foreman	\$49.35	\$74.05	R.S. Means 2009, Pipe Fitter
Pipe Layer	\$40.85	\$63.25	R.S. Means 2009, Skilled Worker
Plumber	\$48.75	\$73.15	R.S. Means 2009, Plumber
Rigger	\$40.85	\$63.25	R.S. Means 2009, Skilled Worker
Survey/Rodmen	\$39.75	\$60.80	R.S. Means 2009, Average of: Instrument Man, Rodmen/Chainmen
Steel Worker	\$44.70	\$79.65	R.S. Means 2009, Structural Steel Workers
Steel Worker Foreman	\$46.70	\$83.20	R.S. Means 2009, Structural Steel Foremen
Truck Drivers	\$31.95	\$49.15	R.S. Means 2009, Truck Drivers (Heavy)
Welder	\$44.70	\$79.65	R.S. Means 2009, Welders

# **Operations Labor Costs**

Client:	Eagle Crest Energy	Project	080473	Page	1
Subject:	Eagle Mountain Operations	Date Checked	1/21/2009	By By	NDM
		Approved		Ву	

#### OPERATIONS

Crew	Shift Quantity	Number of Daily Shifts	Total Operations Crew	Annual Salaries¹ (\$/year)	Annual Labor Costs (\$)
Mechanical Engineer	2	2	4	\$63,000	\$252,000
Electrical Engineer	2	2	4	\$63,000	\$252,000
Project Engineer	1	2	2	\$62,000	\$124,000
Project Manager	1	2	2	\$75,000	\$150,000
Construction Manager	1	2	2	\$70,000	\$140,000
Manager	1	2	2	\$54,000	\$108,000
Power Plant Operator	2	2	4	\$58,000	\$232,000
Plant Engineer	1	2	2	\$63,000	\$126,000
Mechanical Maintenance Technician	1	2	2	\$37,000	\$74,000
Scheduler	1	2	2	\$57,000	\$114,000
Field Service Engineer	1	2	2	\$53,000	\$106,000
Administration Staff	1	2	2	\$57,000	\$114,000
TOTAL =	15		30		\$1,792,000

1) Source: http://www.simplyhired.com/a/salary/search/q-Hydro+Power (3/19/2009)

#### **OPERATIONS AND MAINTENANCE COSTS**

The operation and maintenance costs are those associated with Project operation and upkeep. They include the cost of the direct salaries and administrative support of plant administration, operating and maintenance personnel, and of maintenance equipment and materials and repairs and spare parts.

#### Eagle Mountain Pumped Storage Estimated Annual Project Costs

Operating Costs Elements	Amount (\$/year)
Property Tax	\$8,390,000
Land Leases	\$2,000,000
Makeup Water and Pumping	\$2,400,000
Water Treatment	\$720,000
Property Insurance	\$4,200,000
Salaries	\$1,800,000
Home Office Administration	\$900,000
Supplies and Parts	\$2,500,000
FERC Fees	\$1,500,000
Total Annual Operating Cost	\$24,410,000

Note:

Table from Draft License Application - Exhibit D

Client:	Eagle Crest Energy	Project 080473	Page 1
Subject:	Eagle Mountain Construction Schedule and Equipment	Date 1/21/2009	By NDM
		Checked	By
		Approved	By

#### EAGLE MOUNTAIN PUMPED-STORAGE PROJECT --- TYPICAL EQUIPMENT AND TASK PRODUCTION RATES

TASK/EQUIPMENT	TYPICAL PRODUCTION RATES (SINGL	E CREW ONLY)
Tunnel Boring Machine	45 - 120	ft/day
Drill and Blast Excavation	200 - 400	cy/day
Benching Excavation	500	cy/day
Trench Excavation	200	lcy/hr
Prelining Shotcrete	200 - 300	sy/day
Concrete	100 - 200	cy/day
Grouting	450	cf/day
Roof & Wall Support	2000 - 2500	sf/day
Rock Anchors	400	lf/day
Misc. Steel	20	tons/day
Steel Liner	50	lf/day
Elevator Shaft	50	lf/day
Excavator	200 - 300	cy/hr
Compactor (large)	850	cy/hr
Compactor (small)	120	cy/hr
Grading	1200	cy/day
Gravel Placement	1500	cy/day
RCC Dams	1500	cy/day
Trashrack Installation	200	sf/day
Peir Foundations	4 - 10	peirs/day
Fencing Installation	300	lf/day
Transmission Line Stringing	8000	ft/day
Pipeline Installation	1000	ft/day

GEI Consultants, Inc. 080473 Eagle Mountain Pumped Storage Project Construction Schedule Item List 1/20/2009 NDM

57 FINISH PROJECT

**1 NOTICE TO PROCEED 2 CIVIL CONTRACTOR MOBILIZATION 3 CIVIL CONTRACTOR MOBILIZED 4 CONSTRUCT ACCESS ROADS** 5 EXCAVATE POWER HOUSE ACCESS TUNNEL 6 COMPLETE ACCESS TUNNEL EXCAVATION **7 EXCAVATE TAILRACE TUNNEL** 8 EXCAVATE LOWER PRESSURE TUNNEL 9 EXCAVATE UPPER PRESSURE TUNNEL 10 EXCAVATE PRESSURE SHAFT 11 EXCAVATE TOP HEADING 12 ROOF ANCHORAGE AND LINING 13 EXCAVATE REMAINDER OF CAVERN 14 COMPLETE POWER HOUSE EXCAVATION 15 EXCAVATE TRANSFORMER GALLERY 16 EXCAVATE TAILRACE SURGE CHAMBER **17 EXCAVATE CABLE TUNNEL SHAFT** 18 LINE AND PAVE CABLE TUNNEL 19 LINE PENSTOCKS ANDDRAFT TUBE MANIFOLD 20 INSTALL STEEL TUNNEL LININGS 21 FIRST STAGE CONCRETE 22 COMPLETE POWER HOUSE 1ST STAGE CONCRETE 23 INSTALL SPIRAL CASES AND DRAFT TUBE LINE 24 INSTALL PUMP TURBINES AND GENERATORS 25 EMBED SPIRAL CASES AND DRAFT LINERS 26 INSTALL MECHANICAL EQUIPMENT 27 INSTALL ELECTRICAL EQUIPMENT 28 COMPLETE CONCRETE WORK **29 STRUCTURAL AND ARCHITECTURAL CONSTRUCTION** 30 COMPLETE DRAFT TUBE, SPIRAL CASE AND POWERHOUSE, 2ND STAGE CONCRETE **31 ELECTRICAL AND MECHANICAL MOBILIZATION 32 COMPLETE INSTALLATION OF PUMP-TURBINES, GENERATOR 33 COMPLETE ELECTRICAL CONSTRUCTION 34 EXCAVATE APPROACH CHANNEL - UPPER RESERVOIR** 35 CONSTRUCT UPPER RESERVOIR DAM 36 MOVE UNSTABLE SOIL - LOWER RESERVOIR **37 LINE UPPER RESERVOIR** 38 LINE LOWER RESERVOIR **39 CONSTRUCT I/O STRUCTURE - LOWER RESERVOIR** 40 CONSTRUCT I/O STRUCTURE - UPPER RESERVOIR **41 SWITCHYARD EXCAVATION** 42 SWITCHYARD FOUNDATIONS 43 SWITCHYARD STRUCTURES 44 TRANSMISSION LINE FOUNDATIONS 45 TRANSMISSION LINE STRINGING **46 TRANSMISSION LINE STRUCTURES 47 INSTALL WATER SUPPLY PIPELINE AND RO S 48 RESERVOIR FILLING** 49 UNIT-1 START-UP 50 U-1 START-UP 51 UNIT-2 START-UP 52 U-2 START-UP 53 UNIT-3 START-UP 54 U-3 START-UP 55 UNIT-4 START-UP 56 U-4 START-UP

## 2 Civil Contractor Mobe

Client:	Eagle Crest Energy	Project 080473	Page	1
Subject:	Eagle Mountain Construction Schedule and Equipment	Date 1/21/2009 Checked Approved	By By By	NDM

EQUIPMENT	Quantity
On Site	
Air Compressor	
Backhoe / Front End Loader, Wheeled	1
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	1
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	1
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	1
Generator - Diesel	1
Grout Pump	
Hydroseed Sprayer, Truck Mounted	
Motor Grader	1
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	1
Tunnel Rig	
Water Pump, Diesel	1
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	1
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	2
Cement Finisher	
Driller	
Electricians	2
Equipment Operators	5
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	1
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	1
Welder	

Total Crew Size	
Monthly Labor Cost	

15 \$195,100 Duration: 4.0 Months 16.0 Weeks
NOTES:

NOTES: Mobilization to include installing field offices, preparing staging area, minor road grading, temporary utility connections, security fencing, bringing equipment to site, prepartion of equipment, and lighting

### 4 Accesss Roads

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Client:
Client: Subject:

EQUIPMENT	Quantity	7
On Site		-1
Air Compressor	1	-
Backhoe / Front End Loader, Wheeled		
Backhoe, Tracked	1	
Chipper, Wood		
Compactor, Sheepsfoot, Self-Propelled	1	
Compactor, Vibratory, Self-Propelled		
Concrete Pump		-
Crane - 40 Ton		-
Crane - 70 Ton		-
Dozer, D5		
Dozer, D6		
Dozer, D8	1	
Dozer, D10		
Drill, Tracked	1	-
Dump Truck, End Dump, 15 Ton		-
Dump Truck, Off-Highway, 34 Ton	3	hauling onsite
Dump Truck, Semi-Trailer		
Excavator, 325	1	
Forklift, Rough Terrain		
Front End Loader, Tracked		
Front End Loader, Wheeled	1	
Fuel Truck / Support Truck	1	
Generator - Diesel	1	
Grout Pump/Plant		
Hydroseed Sprayer, Truck Mounted		
Grader, H14	1	
Pile Driver		
Pump Truck - Concrete		
Powder Truck		
Scraper, Self-propelled, 21 CY		
Truck, Flatbed		
Tunnel Rig (TBM) (3)		
Water Pump, Diesel		
Water Truck	1	Dust Control
Welder and Generator Set		
Total Offsite Flatbed/Semi Trucks		-
Daily Concrete Mixer Truck - 8 CY		
Daily Semi Trailer Truck		

Crew	Quantity
Blaster	2
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	6
Grade Setter	1
Foreman	1
Labor Foreman	
Laborers	
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	5
Welder	

Total Crew Size Monthly Labor Cost



Duration: 3.7 Months 16.0 Weeks

Project Date

Checked Approved 080473 1/21/2009

g Unpaved Mining Roads				
1.1 Construction Road to Saddle Dams			13,800	LF
1.2 Road from South Dam to Intake Platfo	rm		1,800	LF
Total Existing			15,600	LF
Width			30	FT
Depth			2	FT
Volume			34,667	CY
Production Rate	900	FT/DAY	2000	CY/DAY
			10	HR/DAY
			216.25	HRS/MONTH
Initial Duration			0.8	MONTHS
Contingency			15	%
Final Duration			0.9	MONTHS
Final Duration			4.0	WEEKS
rt Roads 1.3 Road from intake platform down to Cha	annol		2.000	LF
1.4 Road from South Dam to Power Tunne		Conet	10.100	LF
1.5 Extension to Cable, Elevator Shafts &			4,400	LF
1.5 Access road to Lower Inlet Platform	ourge rai	IK	4.000	LF
1.6 Inlet Platform Down to Channel			3.000	LF
Total Existing			23.500	LF
Width			30	FT
Depth			2	FT
			52.222	CY
Volume			1000	CY/DAY
	450	FT/DAY		
Volume	450	FT/DAY	10	HR/DAY
Volume	450	FT/DAY		HR/DAY HRS/MONTH
Volume	450	FT/DAY	10	
Volume Production Rate Initial Duration	450	FT/DAY	10 216.25	HRS/MONTH
Volume Production Rate	450	FT/DAY	10 216.25 2.4	HRS/MONTH MONTHS

Page By By

Вý

. NDM

Assumptions: New road construction will require rock blasting and excavtion. Hauling of material (onsite)

Survey control Dust control

Grading

### Compacting Access Roads:

Access koads: Equipment: Air Compressor, Backhoe, Sheepsfoot Compactor, Dozer, Tracked Drill, Dump Trucks, Excavator, FE Loader, Support Truck, Generator, Grader, Water Truck. Crew: 1 Driller, 2 Blasters, 6 Equip Opr., 2 survey, 3 DT Driver, 1 Foreman, 1 Grade Setter, 2 Survey. Schedule: Additive activities, Existing + New.

### **5 Power House Access Tunnel**

Project

Date Checked

Approved

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Client: Subject:

EQUIPMENT	Quantity	1
On Site	Quantity	
Air Compressor		
Backhoe / Front End Loader, Wheeled		
Backhoe, Tracked		
Chipper, Wood		
Compactor, Sheepsfoot, Self-Propelled		
Compactor, Vibratory, Self-Propelled		
Compactor, vibratory, Sell-Propelled		
Crane - 40 Ton		
Crane - 70 Ton		
Dozer, D5		
Dozer, D6		
Dozer, D8		
Dozer, D10		
Drill, Tracked	2	
Dump Truck, End Dump, 15 Ton	2	
Dump Truck, Off-Highway, 34 Ton	4	Haul Cuttings
Dump Truck, Semi-Trailer	4	Haul Cullings
Excavator, 325	1	
Forklift, Rough Terrain	'	
Front End Loader, Tracked		
Front End Loader, Wheeled	2	Load cuttings
Fuel Truck / Support Truck	2	Load cuttings
Generator - Diesel	1	
Grout Pump/Plant	1	
Hydroseed Sprayer, Truck Mounted	'	
Grader, H14		
Pile Driver		
Pump Truck - Concrete	1	
Powder Truck	1	
Scraper, Self-propelled, 21 CY		
Truck, Flatbed		
Tunnel Rig (TBM)	1	
Water Pump, Diesel	1	
Water Truck	'	
Welder and Generator Set		
weider and Generator Set		
Total Offsite Flatbed/Semi Trucks	9	
Daily Concrete Mixer Truck - 8 CY	13	
Daily Concrete Mixer Truck - 8 C F	57	
Daily Serii Haller Huck	57	1
-		-
Crew	Quantity	4
Blaster	2	1
Carpenters		1
Cement Finisher		
Driller	2	]
Electricians		1
Equipment Operators	5	1
Grade Setter		1
Foreman	2	1
Labor Foreman		1
Laborers	4	1
Mechanics	1	1
Deinter		

roreman	2
Labor Foreman	
Laborers	4
Mechanics	1
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	5
Welder	

Total Crew Size Monthly Labor Cost 23 \$275.600

### Duration: 11.6 Months 50.4 Weeks

CONSTANTS: 10 HR/DAY 216.25 HRS/MONTH

080473

1/21/2009

Page

By

By

Βý

1 of 2

NDM

2.0 - CONSTRUCTION TUNNELS SCHEDULE				
2.1 To Machine Hall Roof			2,900	СҮ
2.2 To Transformer Hall Roof			1,700	CY
2.3 To Power Shaft Construction			8,500	CY
2.4 To Tailrace Surge Tank Construe	ction Access		1,900	CY
Total Volume			15,000	CY
D&B Production Rate	38	FT/DAY	250	CY/DAY
Initial Duration			2.8	MONTHS
Contingency			25	%
Final Duration			3.5	MONTHS
Final Duration			15.0	WEEKS
EQUIPMENT/TRUCKING				
DUMP TRUCKS			30	CY/TRUCK
			500	# OF TRUCKS FOR TASK
			9	LOADS/DAY
			1.0	CYCLE TIME (HRS)
			1	REQUIRED # OF TRUCKS
SEMIS			20	CY/TRUCK
			750	# OF TRUCKS FOR TASK
			13	TRUCKS/DAY

### 3.0 - ACCESS TUNNEL 3.0 - ACCESS TOTALE SCHEDULE 3.1 Main Access Tunnel (6628') to Power House 3.1.1 Excavation (TBM) Duration (from Tunnel Exc. Spreadsheet) 192,500 CY 27.1 WEEKS 27.1 1,136 25 7.8 Average Production Rate Contingency CY/DAY % MONTHS Final Duration Final Duration 33.9 WEEKS Prelining Shotcrete( w/wire-mesh) Production Rate 3.1.2 20.600 SY SY/DAY MONTHS 200 Duration 4.8 25 6.0 % MONTHS Contingency Final Duration 25.8 2.0 WEEKS WEEKS Final Duration Lag Maximum Duration 27.8 WEEKS 3.1.3 Invert concrete 6,900 CY 100 3.2 25 CY/DAY MONTHS Production Rate Duration Contingency % MONTHS 4.0 17.3 2.0 Final Duration Final Duration WEEKS Lag Maximum Duration 19.3 WEEKS 314 Rock anchors (15' long) 5 000 FΑ Total Bolt Length Production Rate FT FT/DAY 75,000 800 4.3 25 5.4 (2 crews) Duration MONTHS Contingency % MONTHS Final Duration WEEKS WEEKS WEEKS Final Duration 23.4 2.0 Lag Maximum Duration 25.4 3.2 Drainage Gallery Access Tunnel (L=80') 3.2.1 Excavation D&B Production Rate 38 800 250 CY CY/DAY FT/DAY 0.1 25 0.2 Initial Duration MONTHS Contingency % MONTHS Final Duration Final Duration WEEKS 0.8 CY 3.2.2 Invert Concrete 10 Production Rate Duration 100 0.005 CY/DAY MONTHS 25 0.006 0.025 % MONTHS WEEKS Contingency Final Duration Final Duration 0.5 Lag WEEKS Maximum Duration WEEKS 200 200 3.2.3 Prelining SY Production Rate SY/DAY Duration 0.0 MONTHS Contingency 25 % MONTHS Final Duration 0.1 Final Duration 0.3 WEEKS 0.5 0.8 WEEKS Lag Maximum Duration

### **5 Power House Access Tunnel**

Client:	Eagle Crest Energy	Project 080473	Page	2 of 2	
Subject:	Eagle Mountain Construction Schedule and Equipment	Date 1/21/2009	By	NDM	
		Checked	By		
		Approved	Bv		

3.3 Tailrace Rock Trap Access Tunn	el (L = 100')	100	LF		
D&B Production Rate		37	FT/DAY		
Initial Duration		0.1	MONTHS		
Contingency		25	%		
Final Duration		0.2	MONTHS		
Final Duration		0.7	WEEKS		
EQUIPMENT/TRUCKING					
DUMP TRUCKS		193954	TOTAL VOLUME, CY		
		30	CY/TRUCK		
		6,417	# OF TRUCKS FOR TASH		
		38	LOADS/DAY		
		1.0			
		4	REQUIRED # OF TRUCK		
OFFSITE TRUCKS		168	TOTAL WEIGHT, TONS		
Assume 2lbs/ft of rebar/rockbolts; 12ft of rebar	/c.y. of conc;	20	TONS/TRUCK		
1lbs of reinforcment/s.y. of shotcrete		9	# OF TRUCKS		
CONCRETE TRUCKS		8643	TOTAL VOLUME, CY		
		8	CY/TRUCK		
		1.080	# OF TRUCKS FOR TASH		
		13	TRUCKS/DAY		
CONCRETE PUMP TRUCKS	(15 TRUCKS)>	120	CY/DAY		
	(	1	# OF TRUCKS		
SEMIS		20	CY/TRUCK		
SEIVIIS					
		9,698	# OF TRUCKS FOR TASH		
		57	TRUCKS/DAY		

Assumptions: Const. Tunnel Diameter = 15', = 177sf D&B advancement rate = 37 ft/day, = 250cy/day Excavation Then Haul Offsite Survey Control Shotcrete/Prelining = 3" thick **Construction Tunnels:** Process: Drill, Blast, Excavate, Load, Haul, Dump, Load, Haul offsite. Equipment: Track Drill, Excavate, Loade, Te Loader, Dump Trucks, FE Loader, Semis. Crew: 1 Driller, 2 Blasters, 4 Equip Opr., 2 survey, 1 DT Driver Access Tunnels: Process: TBM bore, Excavate, Loade, Haul, Dump, Load, Haul offsite; Rock Anchors; Shotcrete; Invert Concrete. Equipment: TBM, Excavator, FE Loader, Dump Trucks, FE Loader, 2 Track Drill, Semis; Grout Pump; Concrete

### 7 Excavate Tailrace Tunnel

Client:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Page By By Ву

. NDM

EQUIPMENT	Quantity	
On Site	,	-1
Air Compressor		
Backhoe / Front End Loader, Wheeled		
Backhoe, Tracked		
Chipper, Wood		
Compactor, Sheepsfoot, Self-Propelled		
Compactor, Vibratory, Self-Propelled		
Concrete Pump		
Crane - 40 Ton		
Crane - 70 Ton		
Dozer, D5		
Dozer, D6		
Dozer, D8		
Dozer, D10		
Drill, Tracked	1	
Dump Truck, End Dump, 15 Ton		
Dump Truck, Off-Highway, 34 Ton	5	Haul Cuttings
Dump Truck, Semi-Trailer		-
Excavator, 325	1	
Forklift, Rough Terrain		
Front End Loader, Tracked		
Front End Loader, Wheeled	2	Load cuttings
Fuel Truck / Support Truck		Ŭ
Generator - Diesel	1	
Grout Pump/Plant	1	
Hydroseed Sprayer, Truck Mounted		
Grader, H14		
Pile Driver		
Pump Truck - Concrete	2	
Powder Truck		
Scraper, Self-propelled, 21 CY Truck, Flatbed		
Truck, Flatbed		
Tunnel Rig (TBM)	1	
Water Pump, Diesel Water Truck	1	
Welder and Generator Set		
Total Flatbed/Semi Trucks	5	
Daily Concrete Mixer Truck - 8 CY	25	
Daily Semi Trailer Truck	78	
Crew	Quantity	
Blaster	2	
Carpenters		
Cement Finisher		
Driller	1	
Electricians		
Equipment Operators	3	
Grade Setter		
Foreman	1	
Labor Foreman	1	
Laborers	8	
Mechanics	1	
Painter		
Pile Driver		
Pipe Foreman		
Pipe Layer		

Electricians	
Equipment Operators	3
Grade Setter	
Foreman	1
Labor Foreman	1
Laborers	8
Mechanics	1
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	7
Welder	
Total Crew Size	26
Monthly Labor Cost	\$298,700

### Duration: 7.7 Months 33.2 Weeks

CONSTANTS: 10 HR/DAY 216.25 HRS/MONTH

)	-	T/	AIL	.R	A	CE	ΞT	U	Ν	ľ
	_	-		_						

12.0 - TAILRACE TUNNEL SCHEDULE			
12.1 Tailrace Tunnel Excavation (TBM)		223,100	CY
Duration (from Tunnel Exc. S	Spreadsheet)	23.1	WEEKS
Average Production Rate	• •	1,544	CY/DAY
Contingency		25	%
Final Duration		6.7	MONTHS
Final Duration		28.9	WEEKS
12.2 Prelining Shotcrete & Support		78,700	SY
Production Rate	(3-4 crews)	800	SY/DAY
Duration	(0 4 010103)	4.5	MONTHS
Contingency		25	%
Final Duration		5.7	MONTHS
Final Duration		24.6	WEEKS
Lag		2.0	WEEKS
Maximum Duration		26.6	WEEKS
12.3 Plug Concrete Construction		3,400	СҮ
Production Rate		200	CY/DAY
Duration		0.8	MONTHS
Contingency		25	%
Final Duration		1.0	MONTHS
Final Duration		4.3	WEEKS
12.4 Plug Grout Injection		4,273	SY
12.4 Plug Grout Injection Production Rate	(1.5 crews)	4,273	SY SY/DAY
Duration	(1.5 ciews)	0.7	MONTHS
Contingency		25	%
Final Duration		0.8	MONTHS
Final Duration		3.6	WEEKS
Lag		0.5	WEEKS
Maximum Duration		4.1	WEEKS
12.5 Tailrace Rock Trap Construction		1,133	СҮ
D&B Production Rate		250	CY/DAY
Duration		0.21	MONTHS
Contingency		25	%
Final Duration		0.26	MONTHS
Final Duration		1.1	WEEKS
12.6 Evenuete Teilteen Surge Teelt (eheure e	n different och odule	took)	
12.6 Excavate Tailrace Surge Tank (shown o	n different schedule	task)	
EQUIPMENT/TRUCKING			
DUMP TRUCKS		224,233	
		30	CY/TRUCK
		7,474	# OF TRUCKS FOR TASK
		46 1.0	LOADS/DAY CYCLE TIME (HRS)
		5	REQUIRED # OF TRUCKS
		5	REQUIRED # OF TRUCKS
OFFSITE TRUCKS		80	TOTAL WEIGHT, TONS
Assume 2lbs/ft of rebar/rockbolts; 12ft of rebar/c.y.	of conc:	20	TONS/TRUCK
1lbs of reinforcment/s.y. of shotcrete		5	# OF TRUCKS
CONCRETE TRUCKS		9958	TOTAL VOLUME, CY
		8930	CY/TRUCK
		1,245	# OF TRUCKS FOR TASK
		25	TRUCKS/DAY
		100	
CONCRETE PUMP TRUCKS	(15 TRUCKS)>	120	CY/DAY
		2	# OF TRUCKS
SEMIS		20	CYTRUCK
SEIVIS		20	CY/TRUCK
		11,212	# OF TRUCKS FOR TASK
		78	TRUCKS/DAY

Assumptions: Excavation Then Haul Offsite Survey Control

Shotcrete/Prelining = 3" thick Tailrace Tunnel:

 Tailrace Tunnel:

 Process: TBM bore, Excavate, Load, Haul, Dump, Load, Haul offsite; Shotcrete; Plug Concrete.

 Equipment: TBM, Excavator, FE Loader, Dump Trucks, FE Loader, Semis; Grout Pump; Concrete Pump Truck.

 Crew: 1 TBM Operator, 2 TBM Laborers, 3 Equip Opr., 2 survey, 5 DT Drivers;

 (Activities do not overlap, therefore use maximum of activities to find equimpent and crew estimates)

 Tailrace Rock Trap:

 Process: Drill, Blast, Excavate, Load, Haul, Dump, Load, Haul offsite.

 Equipment: Track Drill, Excavator, FE Loader, Dump Trucks, FE Loader, Semis.

 Crew: 1 Driller, 2 Blasters, 3 Equip Opr., 2 survey, 1 DT Driver

 Schedule: Excavation and Plug construction = duration, other activies + lag are less, Rock trap constructed concurrently.

### 8 Excavate Lower Pres. Tunnel

Client: Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

EQUIPMENT	Quantity	1
On Site		1
Air Compressor		1
Backhoe / Front End Loader, Wheeled		1
Backhoe, Tracked		1
Chipper, Wood		1
Compactor, Sheepsfoot, Self-Propelled		1
Compactor, Vibratory, Self-Propelled		1
Concrete Pump		
Crane - 40 Ton		
Crane - 70 Ton		
Dozer, D5		
Dozer, D6		
Dozer, D8		
Dozer, D10		
Drill, Tracked	1	
Dump Truck, End Dump, 15 Ton		
Dump Truck, Off-Highway, 34 Ton	2	haul cuttings
Dump Truck, Semi-Trailer		
Excavator, 325	1	
Forklift, Rough Terrain		
Front End Loader, Tracked		
Front End Loader, Wheeled	2	Load cuttings
Fuel Truck / Support Truck		
Generator - Diesel	1	
Grout Pump/Plant	1	
Hydroseed Sprayer, Truck Mounted		
Grader, H14		
Pile Driver		
Pump Truck - Concrete	2	
Powder Truck		
Scraper, Self-propelled, 21 CY		
Truck, Flatbed		
Tunnel Rig (TBM)	1	
Water Pump, Diesel	1	
Water Truck		
Welder and Generator Set		
Total Offsite Flatbed/Semi Trucks	13	
Daily Concrete Mixer Truck - 8 CY	25	1
Daily Semi Trailer Truck	61	1
	01	1
C	Quantitu	1

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	3
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	4
Mechanics	1
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	4
Welder	

Total Crew Size Monthly Labor Cost

16 \$190,600

Months Weeks 6.3 27.3 Duration:

CONSTANTS: HR/DAY 216.25 HRS/MONTH 10

Project Date Checked

Approved

080473

1/21/2009

Page By By

Вý

NDM

8.0 - LOWER PRESSURE TUNNEI

8.0 - LOWER PRESSURE TUNNEL								
SCHEDULI 8 1		sure Tunnel Excavatio	n (TRM)		52.600	СҮ		
0.1	Lower Pres	Duration (from Tunnel		heet)	52,600 6.9	WEEKS		
		Average Production Ra		neet)	1,214	CY/DAY		
		Contingency	ate		25	%		
	Final Durati				2.0	MONTHS		
	Final Durati	on			8.7	WEEKS		
8.2	Prelining Sh	notcrete & Support (6")		(0	13,900	SY		
		Production Rate Duration		(2 crews)	500 1.3	SY/DAY MONTHS		
		Contingency			25	%		
	Final Durati				1.6	MONTHS		
	Final Durati				7.0	WEEKS		
	Lag				2.0	WEEKS		
	Maximum D	Juration			9.0	WEEKS		
	The second second				14,300	СҮ		
0.3	Tunnel Linir	Production Rate			200	CY/DAY		
		Duration			3.3	MONTHS		
		Contingency			25	%		
	Final Durati				4.1	MONTHS		
	Final Durati				17.9	WEEKS		
	Lag				2.0	WEEKS		
	Maximum D	Juration			19.9	WEEKS		
84	Miscellaneo	us Concrete (bends, plu	ia etc.)		5,900	CY		
0.4	wiscellaried	Production Rate	ig, eic.)		5,900 200	CY/DAY		
		Duration			1.4	MONTHS		
		Contingency			25	%		
	Final Durati				1.7	MONTHS		
	Final Durati	on			7.4	WEEKS		
0.5	Contract Cre				10,700	CF		
6.5	Contact Gro	Production Rate			450	CF CF/DAY		
		Duration			1.10	MONTHS		
		Contingency			25	%		
	Final Durati				1.37	MONTHS		
	Final Durati				5.9	WEEKS		
	Lag				1.0	WEEKS		
	Maximum D	Juration			6.9	WEEKS		
	0				5 000	05		
8.6	Curtain Gro				5,800 450	CF CF/DAY		
		Production Rate Duration			450	MONTHS		
		Contingency			25	%		
	Final Durati				0.75	MONTHS		
	Final Durati	on			3.2	WEEKS		
	Lag				1.0	WEEKS		
	Maximum D	Juration			4.2	WEEKS		
	T/TRUCKI	IG						
DUMP TRU					52,600	TOTAL VOLUME, CY		
	-				30	CY/TRUCK		
					1,753	# OF TRUCKS FOR TASK		
					13	LOADS/DAY		
					1.0	CYCLE TIME (HRS)		
					2	REQUIRED # OF TRUCKS		
OFFSITE T	RUCKS				249	TOTAL WEIGHT, TONS		
		/rockbolts; 12ft of rebar/	c.y. of conc:		245	TONS/TRUCK		
		. of shotcrete	, ,		13	# OF TRUCKS		
CONCRET	E TRUCKS				23,128	TOTAL VOLUME, CY		
					8	CY/TRUCK		
					2,891 25	# OF TRUCKS FOR TASK TRUCKS/DAY		
					25	TRUCKS/DAT		
CONCRET	E PUMP TR	UCKS	(15 T	RUCKS)>	120	CY/DAY		
			<b>v</b> -	/				
					2	# OF TRUCKS		
OF MIC					22			
SEMIS					20	CY/TRUCK		
					2,630	# OF TRUCKS FOR TASK		
					61	TRUCKS/DAY		

Assumptions: Excavation Then Haul Offsite Survey Control Shotcrete/Prelining = 3" thick Lower Pressure Tunnel: Process: TBM bore, Excavate, Load, Haul, Dump, Load, Haul offsite; Shotcrete; Concrete Lining, Grouting. Equipment: TBM, Excavator, FE Loader, Dump Trucks, FE Loader, Semis; Concrete Pump Truck; Drill, Grout Crew: 1 TBM Operator, 2 TBM Laborers, 3 Equip Opr., 2 survey, 2 DT Drivers; Schedule: Tunnel lining + Misc. Concrete = duration, other activies + lag are less, other activies constructed concurrently.

## 9 Excavate Upper Pres. Tunnel

Client:	Eagle Crest Energy				Project	080473		Page	1
Subject:	Eagle Mountain Cons	truction Schedule an	d Equipment		Date	1/21/200	)9	By	NDM
					Checked			By	
					Approved			Ву	
EQUIPMENT	Quantity		Duration:	5.7	Months	24.7	Weeks		
On Site								-	
Air Compressor			CONSTANTS:	10	HR/DAY		216.25	HRS/MON	ІТН
Backhoe / Front End Loader, Wheeled									
Backhoe, Tracked			5.0 - UPPER PRESSUR	E TUNNE	L				
Chipper, Wood			SCHEDULE						
Compactor, Sheepsfoot, Self-Propelled			5.1 Upper Press					133,300	
Compactor, Vibratory, Self-Propelled					rom Tunne		eadsheet)	16.6	WEEKS
Concrete Pump					roduction F	Rate		1,284	CY/DAY
Crane - 40 Ton				Contingen	су			25	% MONTHO
Crane - 70 Ton			Final Duratio					4.8	MONTHS
Dozer, D5 Dozer, D6			Final Duratio	1				20.8	WEEKS
Dozer, D8			5.2 Prelining Sho	toroto 8 S	upport (6")			35,300	SY
Dozer, D10				Production			(2 crews)		SY/DAY
Drill, Tracked				Duration	intato		(2 010110)	3.3	MONTHS
Dump Truck, End Dump, 15 Ton	1			Contingen	cv			25	%
Dump Truck, Off-Highway, 34 Ton	5	haul cuttings	Final Duratio		- /			4.1	MONTHS
Dump Truck, Semi-Trailer	Ť		Final Duratio					17.7	WEEKS
Excavator, 325	1		Lag					2.0	WEEKS
Forklift, Rough Terrain			Maximum Du	ration				19.7	WEEKS
Front End Loader, Tracked									
Front End Loader, Wheeled	1	Load cuttings	5.3 Tunnel Lining					36,300	CY
Fuel Truck / Support Truck	1			Production	Rate		(2 crews)	400	CY/DAY
Generator - Diesel	1			Duration				4.2	MONTHS
Grout Pump/Plant				Contingen	су			25	%
Hydroseed Sprayer, Truck Mounted			Final Duratio					5.2	MONTHS
Grader, H14			Final Duratio	n				22.7	WEEKS
Pile Driver			Lag					2.0	WEEKS
Pump Truck - Concrete			Maximum Du	ration				24.7	WEEKS
Powder Truck								=	01/
Scraper, Self-propelled, 21 CY			5.4 Miscellaneou			olug, etc.)		5,400	CY
Truck, Flatbed Tunnel Rig (TBM)	1			Productior Duration	Rate			200	CY/DAY MONTHS
Water Pump, Diesel	1			Contingen	~			1.2 25	%
Water Truck			Final Duratio		cy			1.6	MONTHS
Welder and Generator Set			Final Duratio					6.8	WEEKS
			- Indi Barado					0.0	THE ROOM
Total Offsite Flatbed/Semi Trucks	26		5.5 Contact Grou	iting				27,200	CF
Daily Concrete Mixer Truck - 8 CY	50			Production	Rate			450	CF/DAY
Daily Semi Trailer Truck	65			Duration				2.80	MONTHS
				Contingen	су			25	%
		_	Final Duratio	n				3.5	MONTHS
Crew	Quantity		Final Duratio	n				15.1	WEEKS
Blaster			Lag					1.0	WEEKS
Carpenters			Maximum Du	ration				16.1	WEEKS
Cement Finisher				_					
Driller			EQUIPMENT/TRUCKIN	3				105	
Electricians	<u> </u>		DUMP TRUCKS					/	TOTAL VOLUME, CY
Equipment Operators	4							30	CY/TRUCK
Grade Setter	4							4,443	# OF TRUCKS FOR TASK
Foreman	1							43	LOADS/DAY CYCLE TIME (HRS)
Labor Foreman	1 10							1.0 5	REQUIRED # OF TRUCKS
Laborers Mechanics	10							5	NEQUINED # OF IRUCKS
Painter			OFFSITE TRUCKS					518	TOTAL WEIGHT, TONS
Pile Driver			Assume 2lbs/ft of rebar/r	ockholte.	12ft of robo	r/c v of ~	nc.	20	TONS/TRUCK
Pipe Foreman			1lbs of reinforcment/s.y.					20	# OF TRUCKS
Pipe Layer				2. 0. 01010				20	
Plumber	1		CONCRETE TRUCKS					45,649	TOTAL VOLUME, CY
Rigger	1							-3,0-3	CY/TRUCK
Survey/Rodmen	2							5,706	# OF TRUCKS FOR TASK
Steel Worker	1							50	TRUCKS/DAY
Steel Worker Foreman	1								
Truck Drivers	10		CONCRETE PUMP TRU	CKS		(1	5 TRUCKS)>	> 120	CY/DAY
Welder						```		4	# OF TRUCKS
		•							
Total Crew Size	29		SEMIS					20	CY/TRUCK
Monthly Labor Cost	\$332,200							6,665	# OF TRUCKS FOR TASK
								65	TRUCKS/DAY

Assumptions: Excavation Then Haul Offsite Survey Control

Shotcrete/Prelining = 3" thick

Shotcrete/Prelining = 3* thick Lower Pressure Tunnel: Process: TBM bore, Excavate, Load, Haul, Dump, Load, Haul offsite; Shotcrete; Concrete Lining, Grouting. Equipment: TBM, Excavator, FE Loader, Dump Trucks, FE Loader, Semis; Concrete Pump Truck; Grout Pump, Crew: 1 TBM Operator, 2 TBM Laborers, 3 Equip Opr., 2 survey, 5 DT Drivers; Schedule: Maximum of All Activities = duration, other activies + lag are less, other activies constructed concurrently.

## **10 Excavate Pressure Shaft**

Client: Subject:	Eagle Crest Energy Eagle Mountain Co	/ nstruction Schedule a	nd Equipment		Project Date Checked Approved	080473 1/21/2009	1	Page By By By	1 of 2 NDM
EQUIPMENT	Quantity	7	Duration:	9.4	Months	40.6	Weeks		
On Site								-	
Air Compressor	1		CONSTANTS:	10	HR/DAY		216.25	HRS/MO	NTH
Backhoe / Front End Loader, Wheeled									
Backhoe, Tracked			7.0 - POWER SHAFT						
Chipper, Wood			SCHEDULE						
Compactor, Sheepsfoot, Self-Propelled			7.1 Power Sha	aft Excavat	ion (D&B)			40,600	CY
Compactor, Vibratory, Self-Propelled					(from Tunnel	Exc. Sprea	adsheet)	11.6	WEEKS
Concrete Pump					Production R			467	CY/DAY
Crane - 40 Ton				Continger				50	%
Crane - 70 Ton	1	shaft work	Final Dura		.0)			4.0	MONTHS
Dozer, D5		ondit from	Final Dura					17.4	WEEKS
Dozer, D6		-	T indi B di di						1122110
Dozer, D8	1	Benching	7.2 Shaft Preli	nina & Supr	oort			2,200	SF
Dozer, D10	1		z onan i fell	Productio				100	SF/DAY
Drill, Tracked	1	-		Duration				1.0	MONTHS
Dump Truck, End Dump, 15 Ton	1	-		Continger	ncv			25	%
Dump Truck, Off-Highway, 34 Ton	2	-	Final Dura		- 1			1.3	MONTHS
Dump Truck, Semi-Trailer	-	-	Final Dura					5.5	WEEKS
Excavator, 325	1	Larger Model	Lag					2.0	WEEKS
Forklift, Rough Terrain	1		Maximum	Duration				7.5	WEEKS
Front End Loader, Tracked	1	-							
Front End Loader, Wheeled	2	-	7.3 Concrete L	.inina				11,100	CY
Fuel Truck / Support Truck	1	-	. 10 00110101010	Productio	n Rate			200	CY/DAY
Generator - Diesel	1	-		Duration				2.6	MONTHS
Grout Pump/Plant	1	-		Continger	ncv			25	%
Hydroseed Sprayer, Truck Mounted	1	-	Final Dura		;			3.2	MONTHS
Grader, H14	1	-	Final Dura					13.9	WEEKS
Pile Driver			Lag					2.0	WEEKS
Pump Truck - Concrete	2	-	Maximum	Duration				15.9	WEEKS
Powder Truck	-	-	Maxintum					10.0	
Scraper, Self-propelled, 21 CY	1	-	7.4 Contact Gr	outing				9,300	CF
Truck, Flatbed	1	-		Productio	n Rate			450	CF/DAY
Tunnel Rig (TBM)	1	-		Duration				1.0	MONTHS
Water Pump, Diesel	1	1		Continger	ncv			25	%
Water Truck	1	-	Final Dura		- 1			1.2	MONTHS
Welder and Generator Set		1	Final Dura					5.2	WEEKS
	1	-	Lag					2.0	WEEKS
Total Offs	8	1	Maximum	Duration				7.2	WEEKS
Daily Concrete Mixer Truck - 10 CY	25								-
Daily Semi Trailer Truck	24	1	EQUIPMENT/TRUCK	ING					
•			DUMP TRUCKS					40,600	TOTAL VOLUME, CY
	(3)							30	CY/TRUCK
Crew	Quantity							1,353	# OF TRUCKS FOR 1
Blaster	2	-						16	LOADS/DAY
Carpenters	1 -	-						1.0	CYCLE TIME (HRS)
	1	-						2	REQUIRED # OF TRU
		-						-	
Cement Finisher	1							133	TOTAL WEIGHT, TO
Cement Finisher Driller	1		OFFSITE TRUCKS						TONS/TRUCK
Cement Finisher Driller Electricians	1 4	-		r/rockbolts:	12ft of rebai	/c.y. of con	C;	20	
Cement Finisher Driller Electricians Equipment Operators			Assume 2lbs/ft of reba			/c.y. of con	с;		
Cement Finisher Driller Electricians Equipment Operators Grade Setter	4					/c.y. of con	С;	20	# OF TRUCKS
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman			Assume 2lbs/ft of reba 1lbs of reinforcment/s.	y. of shotcre		/c.y. of con	С;	20 7	# OF TRUCKS
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman Labor Foreman	4		Assume 2lbs/ft of reba	y. of shotcre		/c.y. of con	С;	20 7	# OF TRUCKS TOTAL VOLUME, CY
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman Labor Foreman Labores	4		Assume 2lbs/ft of reba 1lbs of reinforcment/s.	y. of shotcre		/c.y. of con	с;	20 7 11,628 8	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman Labor Foreman Laborers Wechanics	4 1 4 4		Assume 2lbs/ft of reba 1lbs of reinforcment/s.	y. of shotcre		/c.y. of con	с;	20 7 11,628 8 1,453	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR T
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman _abor Foreman _aborers Mechanics Painter	4 1 4 4		Assume 2lbs/ft of reba 1lbs of reinforcment/s.	y. of shotcre		/c.y. of con	с;	20 7 11,628 8	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman _abor Foreman _aborers Mechanics Painter Pile Driver	4 1 4 4		Assume 2lbs/ft of reba 1lbs of reinforcment/s. CONCRETE TRUCKS	y. of shotcro				20 7 11,628 8 1,453 25	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR 1 TRUCKS/DAY
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman Labor Foreman Laborers Mechanics Painter Pile Driver Pile Foreman	4 1 4 4		Assume 2lbs/ft of reba 1lbs of reinforcment/s.	y. of shotcro			c; TRUCKS)	20 7 11,628 8 1,453 25 > 120	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR T TRUCKS/DAY CY/DAY
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman Labor Foreman Laborers Mechanics Painter Pile Driver Pipe Foreman Pipe Layer	4 1 4 4		Assume 2lbs/ft of reba 1lbs of reinforcment/s. CONCRETE TRUCKS	y. of shotcro				20 7 11,628 8 1,453 25	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR 1 TRUCKS/DAY
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman .abor Foreman .aborers Mechanics Painter Pile Driver Pipe Foreman Pipe Layer Plumber	4 1 4 4		Assume 2lbs/ft of reba 1lbs of reinforcment/s. CONCRETE TRUCKS CONCRETE PUMP TI	y. of shotcro				20 7 11,628 8 1,453 25 > 120 2	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR T TRUCKS/DAY CY/DAY # OF TRUCKS
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman Labor Foreman Laborers Mechanics Painter Pile Driver Pipe Foreman Pipe Layer Plumber Rigger	4 1 4 1 1		Assume 2lbs/ft of reba 1lbs of reinforcment/s. CONCRETE TRUCKS	y. of shotcro				20 7 11,628 8 1,453 25 > 120 2 20	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR 1 TRUCKS/DAY CY/DAY # OF TRUCKS CY/TRUCK
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman Labor Foreman Laborers Mechanics Painter Pile Driver Pile Driver Pipe Foreman Pipe Layer Plumber Rigger Survey/Rodmen	4 1 4 4		Assume 2lbs/ft of reba 1lbs of reinforcment/s. CONCRETE TRUCKS CONCRETE PUMP TI	y. of shotcro				20 7 11,628 8 1,453 25 > 120 2 20 2,030	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR T TRUCKS/DAY CY/DAY # OF TRUCKS CY/TRUCK # OF TRUCKS FOR T
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman .abor Foreman .aborers Mechanics Painter Pile Driver Pile Driver Pile Driver Pipe Layer Plumber Rigger Survey/Rodmen Steel Worker	4 1 4 1 1		Assume 2lbs/ft of reba 1lbs of reinforcment/s. CONCRETE TRUCKS CONCRETE PUMP TI	y. of shotcro				20 7 11,628 8 1,453 25 > 120 2 20	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR T TRUCKS/DAY CY/DAY # OF TRUCKS CY/TRUCK
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman Labor Foreman Laborers Mechanics Painter Pile Driver Pipe Foreman Pipe Layer Plumber Rigger Survey/Rodmen Steel Worker Esteel Worker Foreman			Assume 2lbs/ft of reba 1lbs of reinforcment/s. CONCRETE TRUCKS CONCRETE PUMP TI	y. of shotcro				20 7 11,628 8 1,453 25 > 120 2 20 2,030	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR T TRUCKS/DAY CY/DAY # OF TRUCKS CY/TRUCK # OF TRUCKS FOR T
Cement Finisher Driller Electricians Equipment Operators Grade Setter Foreman .abor Foreman .aborers Mechanics Painter Pile Driver Pile Driver Pile Driver Pipe Layer Plumber Rigger Survey/Rodmen Steel Worker	4 1 4 1 1		Assume 2lbs/ft of reba 1lbs of reinforcment/s. CONCRETE TRUCKS CONCRETE PUMP TI	y. of shotcro				20 7 11,628 8 1,453 25 > 120 2 20 2,030	# OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR T TRUCKS/DAY CY/DAY # OF TRUCKS CY/TRUCK # OF TRUCKS FOR T

20 \$237,200 6.1 Shaft Excavation (D&B) Production Rate 8,900 CY 400 CY/DAY 1.0 MONTHS 1.0 25 1.3 Duration % MONTHS Contingency Final Duration WEEKS Final Duration 5.6 35,300 500 3.3 25 6.2 Benching Excavation Production Rate Duration CY CY/DAY MONTHS Contingency % Final Duration Final Duration MONTHS WEEKS 4.1 17.7

### **10 Excavate Pressure Shaft**

Client:	Eagle Crest Energy	Project	080473	Page	2 of 2
Subject:	Eagle Mountain Construction Schedule and Equipment	Date	1/21/2009	By	NDM
		Checked		By	
		Approved		By	

6.3 Concrete Works		700	CY
Production Rate		100	CY/DAY
Duration		0.3	MONTHS
Contingency		25	%
Final Duration		0.4	MONTHS
Final Duration		1.8	WEEKS
Lag		2.0	WEEKS
Maximum Duration		3.8	WEEKS
EQUIPMENT/TRUCKING			
OFFSITE TRUCKS		8	TOTAL WEIGHT, TONS
Assume 2lbs/ft of rebar/rockbolts; 12ft of rebar	r/c.y. of conc;	20	TONS/TRUCK
1lbs of reinforcment/s.y. of shotcrete		1	# OF TRUCKS
CONCRETE TRUCKS		700	TOTAL VOLUME, CY
		8	CY/TRUCK
		88	# OF TRUCKS FOR TASK
		13	TRUCKS/DAY
CONCRETE PUMP TRUCKS	(15 TRUCKS)>	120	CY/DAY
		1	# OF TRUCKS
CEMIC .		20	
SEMIS			CY/TRUCK
		2,210	
		20	TRUCKS/DAY

Assumptions: Excavation Then Haul Offsite

Survey Control Shotcrete/Prelining = 3" thick

Power Shaft:

Process: Drill, Blast, Excavate, Crane Hoist, Load, Haul, Dump, Load, Haul offsite. Equipment: Track Drill, Excavator, Crane, FE Loader, Dump Trucks, FE Loader, Semis; Grout Pump, Concrete Crew: 1 Driller, 2 Blasters, 4 Equip Opr., 2 survey, 2 DT Driver;

### Surge Tank:

Surge Tank: Process: D&B: Drill, Blast, Excavate, Crane Hoist, Load, Haul offsite. Equipment: D&B: Track Drill, Excavator, Crane, FE Loader, Dump Trucks, FE Loader, Semis; Grout Pump, Crew: 1 Driller, 2 Blasters, 4 Equip Opr., 2 survey; Schedule: Shaft Exc. + Surge Exc. + Bench Exc. = duration, other activies + lag are less, other activies constructed consurversity.

constructed concurrently.

## 11 Excavate Top Heading

Client:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

EQUIPMENT	Quantity	1
On Site		
Air Compressor	3	
Backhoe / Front End Loader, Wheeled		
Backhoe, Tracked		
Chipper, Wood		
Compactor, Sheepsfoot, Self-Propelled		
Compactor, Vibratory, Self-Propelled		
Concrete Pump		
Crane - 40 Ton		
Crane - 70 Ton		
Dozer, D5		
Dozer, D6		
Dozer, D8	2	
Dozer, D10		
Drill, Tracked	3	
Dump Truck, End Dump, 15 Ton		
Dump Truck, Off-Highway, 34 Ton	4	
Dump Truck, Semi-Trailer		
Excavator, 325	2	Larger Model
Forklift, Rough Terrain		
Front End Loader, Tracked		
Front End Loader, Wheeled	4	
Fuel Truck / Support Truck	1	
Generator - Diesel	2	
Grout Pump/Plant		
Hydroseed Sprayer, Truck Mounted		
Grader, H14		
Pile Driver		
Pump Truck - Concrete		
Powder Truck		
Scraper, Self-propelled, 21 CY		
Truck, Flatbed		
Tunnel Rig (TBM) (3)		
Water Pump, Diesel		
Water Truck	1	
Welder and Generator Set		
Total Offsite Flatbed/Semi Trucks		
Daily Concrete Mixer Truck - 8 CY		
Daily Semi Trailer Truck	60	l

Crew	Quantity
Blaster	6
Carpenters	
Cement Finisher	
Driller	3
Electricians	
Equipment Operators	8
Grade Setter	
Foreman	2
Labor Foreman	
Laborers	1
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	5
Welder	

Total Crew Size Monthly Labor Cost

27 \$326,000

Equipment		Checked Approved			By By	
Duration:	3.7	Months	16.1	Weeks		
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	ΙТН
13.0 MACHINE HALL SCHEDULE						
	Excava oductio uration		l. 85)	(3 crews)	64,000 1,200 2,5	CY CY/DAY MONTHS
Co Final Duration Final Duration	ontinger	су			25 3.1 13.3	% MONTHS WEEKS
13.1-D Roof Excavation Pr Du Cr Final Duration	on (El. 8 oductio uration ontinger	n Rate		(2-3 crews)	9,900 900 0.5 25 0.6	CY CY/DAY MONTHS % MONTHS
Final Duration					2.8	WEEKS
DUMP TRUCKS					73,900 30 2,463 40 1.0 4	TOTAL VOLUME, CY CYTRUCK # OF TRUCKS FOR TASK LOADS/DAY (MAX.) CYCLE TIME (HRS) REQUIRED # OF TRUCKS
SEMIS					20 3,695 60	CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY

Assumptions: Excavation Then Haul Offsite Survey Control

Excavate Top Heading Process: Drill, Blast, Excavate, Load, Haul, Dump, Load, Haul offsite. Equipment: Track Drills, 2 Excavators, 2 Dozers, 4 FE Loaders, Dump Trucks, Semis, Water Truck, Support Truck.

Crew: 3 Drillers, 6 Blasters, 8 Equip Opr., 2 survey, 4 DT Drivers, 2 Foreman, 1 Water Truck Driver, 1 Support Driver.

## 12 Roof Anchorage and Lining

Final Duration

Total Length

Assume 1 bolt per:

Assume Bolts Lengths are:

Production Rate

Duration

Contingency

NA Rock Bolts

Client:
Subject:

Eagle Crest Energy
Eagle Mountain Construction Schedule and Equipment

```
Page
         .
NDM
By
Βv
Βv
```

WEEKS

LF/DAY

MONTHS

11.0

20.0 LF 100.0 SF 19340.0 LF

400

2.2

25 %

EQUIPMENT	Quantity	
On Site		
Air Compressor	1	
Backhoe / Front End Loader, Wheeled		
Backhoe, Tracked		
Chipper, Wood		
Compactor, Sheepsfoot, Self-Propelled		
Compactor, Vibratory, Self-Propelled		
Concrete Pump		
Crane - 40 Ton		
Crane - 70 Ton		
Dozer, D5		
Dozer, D6		
Dozer, D8		
Dozer, D10		
Drill, Tracked	1	drill anchor holes
Dump Truck, End Dump, 15 Ton		
Dump Truck, Off-Highway, 34 Ton		
Dump Truck, Semi-Trailer		
Excavator, 325		
Forklift, Rough Terrain		
Front End Loader, Tracked		
Front End Loader, Wheeled		
Fuel Truck / Support Truck	1	
Generator - Diesel	1	
Grout Pump/Plant	1	shotcrete
Hydroseed Sprayer, Truck Mounted		
Grader, H14		
Pile Driver		
Pump Truck - Concrete		
Powder Truck		
Scraper, Self-propelled, 21 CY		
Truck, Flatbed	1	
Tunnel Rig (TBM)		
Water Pump, Diesel		
Water Truck		
Welder and Generator Set		_
Total Offsite Flatbed/Semi Trucks	2	
Daily Concrete Mixer Truck - 8 CY	3	
Daily Semi Trailer Truck		1

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	1
Welder	

### Total Crew Size Monthly Labor Cost

6 \$67,500

Duration:	2.8	Months	12.1	Weeks	_		
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	NTH	
13.0 MACHINE HALL SCHEDULE	-						
13.2 Roof & Wa	alls Support	: (3")			96,700	SF	
	Productio	on Rate		(1 crew)	2,200	SF/DAY	
	Duration				2.0	MONTHS	
	Continge	ncy			25	%	
Final Dura	tion	-			2.5	MONTHS	

### MONTHS Final Duration 2.8 WEEKS Final Duration 12.1 EQUIPMENT/TRUCKING TOTAL WEIGHT, TONS OFFSITE TRUCKS 25 Assume 2lbs/ft of rebar/rockbolts; 12ft of rebar/c.y. of conc; 20 TONS/TRUCK 1lbs of reinforcment/s.y. of shotcrete # OF TRUCKS 2 CONCRETE TRUCKS 895 TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY 8 112 3

Assumptions: Roof and Walls Support is 3" thick shotcrete Grout for rockbolts is included in shotcrete volume

Roof and Walls Support:

Process: Drill, Install Rock Bolts, Grout Bolts, Shotcrete Surface. Equipment: Track Drill, Support Truck, Flatbed Truck for rock bolts. Crew: 1 Driller, 3 Laborers, 1 Foreman, 1 Truck Driver.

## **13 Excavate Remainder of Cavern**

Client:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	2
Dozer, D10	
Drill, Tracked	3
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	4
Dump Truck, Semi-Trailer	
Excavator, 325	2
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	4
Fuel Truck / Support Truck	1
Generator - Diesel	2
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	1
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	40

Crew	Quantity
Blaster	6
Carpenters	
Cement Finisher	
Driller	3
Electricians	
Equipment Operators	8
Grade Setter	
Foreman	1
Labor Foreman	1
Laborers	1
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	5
Welder	

Total Crew Size Monthly Labor Cost 27 \$322,900

Duration:	1.6	Months	7.1	Weeks	
					_

CONSTANTS: HR/DAY 216.25 HRS/MONTH 10

13.0 MACHINE HALL			
SCHEDULE			
13.1-A Excavation Draft Tubes (El16, El36)		4,600	CY
Production Rate	(2 crews)	800	CY/DAY
Duration		0.3	MONTHS
Contingency		25	%
Final Duration		0.3	MONTHS
Final Duration		1.4	WEEKS
13.1-B Benching Excavation (El16, El. 18)		22,700	CY
Production Rate	(2-3 crews)	1,000	CY/DAY
Duration		1.0	MONTHS
Contingency		25	%
Final Duration		1.3	MONTHS
Final Duration		5.7	WEEKS
EQUIPMENT/TRUCKING			
DUMP TRUCKS		27,300	TOTAL VOLUME, CY
		30	CY/TRUCK
		910	# OF TRUCKS FOR TASK
		33	LOADS/DAY (MAX.)
		1.0	CYCLE TIME (HRS)
		4	REQUIRED # OF TRUCKS
SEMIS		20	CY/TRUCK
		1,365	# OF TRUCKS FOR TASK
		40	TRUCKS/DAY
		-	

Assumptions: Excavation Then Haul Offsite Survey Control

Excavate Remainder of Cavern Process: Drill, Blast, Excavate, Load, Haul, Dump, Load, Haul offsite. Equipment: Track Drills, 2 Excavators, 2 Dozers, 4 FE Loaders, Dump Trucks, Semis, Water Truck, Support Truck.

Crew: 3 Drillers, 6 Blasters, 8 Equip Opr., 2 survey, 4 DT Drivers, 2 Foreman, 1 Water Truck Driver, 1 Support Driver.

## **15 Excavate Transformer Gallery**

CI	ient:
Sι	ient: ıbject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

1/21/2009

Page By Ву Βv

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	1
Dozer, D10	
Drill, Tracked	2
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	3
Dump Truck, Semi-Trailer	
Excavator, 325	1
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	2
Fuel Truck / Support Truck	1
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	1
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	40

Crew	Quantity
Blaster	2
Carpenters	
Cement Finisher	
Driller	2
Electricians	
Equipment Operators	5
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	1
Mechanics	1
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	4
Welder	

Total Crew Size Monthly Labor Cost

18 \$218,800

Duration:	2.7	Months	11.8	Weeks

CONSTANTS: 10 HR/DAY

Approved

216.25 HRS/MONTH

. NDM

	210.25		
15.1 TRANSFORMER HALL EXCAVATION (D&E	3)		
SCHEDULE	-,		
15.1-A Transformer Hall Excavation		30,900	CY
Production Rate	(2 crews)	800	CY/DAY
Duration	. ,	1.8	MONTHS
Contingency		25	%
Final Duration		2.2	MONTHS
Final Duration		9.7	WEEKS
15.1-B Nishe Excavation		2,700	CV
	(4)	,	CY/DAY
Production Rate Duration	(1crew)	400 0.3	MONTHS
		0.3 25	MUNTH5 %
Contingency Final Duration		25 0.4	% MONTHS
Final Duration			
		1.7	WEEKS CY
15.1-C Cable Gallery Excavation Production Rate	(4)	700 400	CY/DAY
	(1crew)	400	MONTHS
Duration		25	MUNTH5 %
Contingency Final Duration		25 0.1	% MONTHS
Final Duration		0.4	WEEKS
15.1-D A/C Gallery Excavation		100	CY
Production Rate	(1crew)	400	CY/DAY
Duration	(101011)	0.0	MONTHS
Contingency		25	%
Final Duration		0.0	MONTHS
Final Duration		0.0	WEEKS
EQUIPMENT/TRUCKING		04.402	TOTAL VOLUME OV
DUMP TRUCKS			TOTAL VOLUME, CY
		30	CY/TRUCK
		,	# OF TRUCKS FOR TASK
		27	LOADS/DAY (MAX.)
		1.0	CYCLE TIME (HRS)
		3	REQUIRED # OF TRUCKS
SEMIS		20	CY/TRUCK
		1,720	
		40	TRUCKS/DAY
		.0	

Assumptions: Excavation Then Haul Offsite

Survey Control

Excavate Transformer Gallery: Process: Drill, Blast, Excavate, Load, Haul, Dump, Load, Haul offsite. Equipment: Track Drills, 1 Excavators, 1 Dozer, 3 FE Loaders, Dump Trucks, Semis, Water Truck, Support Truck.

Crew: 2 Drillers, 4 Blasters, 5 Equip Opr., 2 survey, 3 DT Drivers, 1 Foreman, 1 Water Truck Driver, 1 Support Driver.

## 16 Exc. Tailrace Surge Chamber

_						
	Client:	Eagle Crest Energy	Project	080473	Page	
	Subject:	Eagle Mountain Construction Schedule and Equipment	Date	1/21/2009	By	J,
			~		-	

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	1
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	1
Dump Truck, Semi-Trailer	
Excavator, 325	1
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	2
Fuel Truck / Support Truck	1
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	1
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	1
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	1
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	15

Crew	Quantity
Blaster	2
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	3
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	4
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	3
Welder	

16 \$188,600

uipment	Date Checked Approved	1/21/2009		By By By By	NDM
Duration: 6.4	Months	27.8	Weeks	=	
CONSTANTS: 10	HR/DAY		216.25	HRS/MON	ITH
12.6 D/S Surge Tank Construc SCHEDULE	· · /				
NA Surge Tank Excavati Product Duratio Conting Final Duration Final Duration	ion Rate	d Production - L	(1 crew) imited Access)	19,000 300 2.9 25 3.7 15.8	CY CY/DAY MONTHS % MONTHS WEEKS
NA Roof & Walls Suppor Product Duratio Conting Final Duration Final Duration	ion Rate		(1 crew)	105,000 2,200 2.2 25 2.8 11.9	SF SF/DAY MONTHS % MONTHS WEEKS
EQUIPMENT/TRUCKING					
DUMP TRUCKS				19,000 30 633 10 1.0 1	TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK LOADS/DAY (MAX.) CYCLE TIME (HRS) REQUIRED # OF TRUCKS
OFFSITE TRUCKS Assume 2lbs/ft of rebar/rockbolt 1lbs of reinforcment/s.y. of shoto		r/c.y. of cond	;	6 20 1	TOTAL WEIGHT, TONS TONS/TRUCK # OF TRUCKS
SEMIS				20 950 15	CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY

1

### Assumptions:

Excavation Then Haul Offsite Survey Control

Excavate Transformer Gallery: Process: Drill, Blast, Excavate, Load, Haul, Dump, Load, Haul offsite.

Equipment: Track Drill, 1 Excavators, 2 FE Loaders, Dump Truck, Semis, Water Truck, Support Truck. Crew: 1 Driller, 2 Blasters, 3 Equip Opr., 2 survey, 1 DT Driver, 1 Water Truck Driver, 1 Support Driver. Shotcrete Crew: 1 Forman, 2 Laborers, 1 CPT Driver. Schedule: Activities are additive.

### **17 Excavate Cable Tunnel Shaft**

Client: Subject:

EQUIPMENT	Quantity	T
On Site		t
Air Compressor	1	1
Backhoe / Front End Loader, Wheeled		1
Backhoe, Tracked		1
Chipper, Wood		1
Compactor, Sheepsfoot, Self-Propelled		1
Compactor, Vibratory, Self-Propelled		1
Concrete Pump		
Crane - 40 Ton		1
Crane - 70 Ton		
Dozer, D5		
Dozer, D6		
Dozer, D8		
Dozer, D10		
Drill, Tracked	1	
Dump Truck, End Dump, 15 Ton		
Dump Truck, Off-Highway, 34 Ton	1	
Dump Truck, Semi-Trailer		
Excavator, 325	1	Larger Model
Forklift, Rough Terrain		
Front End Loader, Tracked		
Front End Loader, Wheeled	2	
Fuel Truck / Support Truck	1	
Generator - Diesel	1	
Grout Pump/Plant		
Hydroseed Sprayer, Truck Mounted		
Grader, H14		
Pile Driver		
Pump Truck - Concrete		
Powder Truck		
Scraper, Self-propelled, 21 CY		
Truck, Flatbed		
Tunnel Rig (TBM)		
Water Pump, Diesel	1	
Water Truck		
Welder and Generator Set		
Total Offsite Flatbed/Semi Trucks		4
		4
Daily Concrete Mixer Truck - 8 CY Daily Semi Trailer Truck	3	4
Daily Semi Haller Huck	3	1

Crew	Quantity
Blaster	2
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	4
Grade Setter	
Foreman	
Labor Foreman	
Laborers	1
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	1
Welder	

Total Crew Size Monthly Labor Cost

11 \$134,600

	Eagle Crest Energy	gy Project	080473	Page 1
	Eagle Mountain C	Construction Schedule and Equipment Date	1/21/2009	By NDM
	0	Checked		By
		Approved		By
				<u>, '</u>
	Quantity	Duration: 5.9 Months	25.4 Weeks	
	1	CONSTANTS: 10 HR/DAY	216.25	HRS/MONTH
		15.1-E CABLE SHAFT EXCAVATION		
		SCHEDULE		
		NA Cable Shaft Excavation (D&B)		4,700 CY
		Production Rate	(1 crew)	50 CY/DAY
			roduction - restricted work area)	4.3 MONTHS
		Contingency	roduction - restricted work area)	35 %
_				
		Final Duration		5.9 MONTHS
		Final Duration		25.4 WEEKS
		FOUR		

EQUIPMENT/TRUCKING		
DUMP TRUCKS	4,700	TOTAL VOLUME, CY
	30	CY/TRUCK
	157	# OF TRUCKS FOR TASK
	2	LOADS/DAY (MAX.)
	1.0	CYCLE TIME (HRS)
	1	REQUIRED # OF TRUCKS
SEMIS	20	CY/TRUCK
	235	# OF TRUCKS FOR TASK
	3	TRUCKS/DAY

Assumptions: Excavation Then Haul Offsite Survey Control

Survey Control Excavate Transformer Gallery: Process: Drill, Blast, Excavate, Crane Hoist, Load, Haul, Dump, Load, Haul offsite. Equipment: Track Drill, Excavator, Crane, FE Loader, Dump Truck, FE Loader, Semis, Support Truck. Crew: 1 Driller, 2 Blasters, 4 Equip Opr., 2 survey, 1 DT Driver, 1 Support Driver.

## 18 Line and Pave Cable Tunnel

Client:
Subject

bject:

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	1
Crane - 40 Ton	
Crane - 70 Ton	1
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	1
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	1
Generator - Diesel	1
Grout Pump/Plant	1
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	1
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	1
Welder and Generator Set	1
••••	
Total Offsite Flatbed/Semi Trucks	2
Daily Concrete Mixer Truck - 8 CY	1
Daily Semi Trailer Truck	1

Eagle Crest Energy

Crew	Quantity
	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	1
Welder	

### Total Crew Size Monthly Labor Cost

6 \$67,500

Eagle Crest Energie Eagle Mountain C	ay onstruction Schedule and	I Equipment		Date Checked Approved	080473 1/21/2009		Page By By By	1 NDM	
Quantity		Duration:	10.1	Months	43.6	Weeks	_		
1	- -	CONSTANTS:	10	HR/DAY		216.25	HRS/MON	ΝТΗ	
		15.0 TRANSFORME	R HALL						
		15.2-E Roof & Wa	alls Support	- Cable Sha	aft		56,900	SF	
			Production			(1 crew)	500	SF/DAY	
1			Duration		duction - restrie	ted work area)		MONTHS	
			Contingen	су			25	%	
1		Final Dura					6.6	MONTHS	
		Final Dura					28.5	WEEKS	
		NA Rock Bolts							
			olts Lengths	are:			5.5	LF	
		Assume 1					45.0	SF	
1		Total Leng					6954	LF	
			Production	n Rate			200	LF/DAY	
			Duration		duction - restric	ted work area)		MONTHS	
			Contingen	су			25	%	
		Final Dura					2.0	MONTHS	
		Final Dura					8.7	WEEKS	
		NA Ladders, F		able Installa	ition				
		Total Leng					1300	LF	
1			Productior	n Rate			50	LF/DAY	
1			Duration				1.2	MONTHS	
1			Contingen	су			25	%	
		Final Dura	ition				1.5	MONTHS	

080473

Page

Project

### Final Duration 6.5 WEEKS Final Duration EQUIPMENT/TRUCKING OFFSITE TRUCKS TOTAL WEIGHT, TONS 36 Assume 2lbs/ft of rebar/rockbolts; 12ft of rebar/c.y. of conc; 1lbs of reinforcment/s.y. of shotcrete TONS/TRUCK 20 2 # OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK CONCRETE TRUCKS 527 8 66 TRUCKS/DAY 1

Assumtions: Roof and Walls Support is 3" thick shotcrete

### Grout for rockbolts is included in shotcrete volume

Roof and Walls Support:

Process: Drill, Install Rock Bolts, Grout Bolts, Shotcrete Surface, Install Equipment. Equipment: Track Drill, Hoist, Support Truck, Flatbed Truck for rock bolts, Pump. Crew: 1 Driller, 3 Laborers, 1 Foreman, 1 Truck Driver.

### 19 Penstock & Draft Tube Man.

ſ	Client:	Eagle Crest Energy	Project	080473	Page	1
	Subject:	Eagle Mountain Construction Schedule and Equipment	Date	1/21/2009	By	NDM
			Checked		By	
			Approved		By	

EQUIPMENT	Quantity
On Site	
Air Compressor	2
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	1
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	3
Dump Truck, Semi-Trailer	
Excavator, 325	1
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	3
Fuel Truck / Support Truck	1
Generator - Diesel	2
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	4
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	1
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	9
Daily Concrete Mixer Truck - 8 CY	50
Daily Semi Trailer Truck	40

Crew	Quantity
Blaster	4
Carpenters	
Cement Finisher	
Driller	2
Electricians	
Equipment Operators	5
Grade Setter	
Foreman	3
Labor Foreman	3
Laborers	9
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	8
Welder	

Total Crew Size Monthly Labor Cost

36 \$417,400

Duration:	5.2	Months	22.5	Weeks	-	
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	итн
9.0 PENSTOCK MAN SCHEDULE	IFOLD					
9.1 Manifold T					7,400	CY
	Productio Duration	n Rate		(2 crews)	800 0.4	CY/DAY MONTHS
	Continger	ncy			25	%
Final Dura Final Dura					0.5 2.3	MONTHS WEEKS
		ing & Support (	(3", 75%)		2,3	SY
	Productio		,	(2 crews)	500	SY/DAY
	Duration Continger	ncv			0.2 25	MONTHS %
Final Dura	tion				0.3	MONTHS
Final Dura 9.3 Concrete I					1.2	WEEKS CY
	Productio	n Rate		(2 crews)	400	CY/DAY
	Duration Continger	201			0.2 25	MONTHS %
Final Dura		icy			0.3	MONTHS
Final Dura					1.1	WEEKS
9.4 Concrete F	Productio	n Rate		(1crew)	10,700 200	CY CY/DAY
	Duration			. ,	2.5	MONTHS
Final Dura	Continger tion	ncy			25 3.1	% MONTHS
Final Dura					13.4	WEEKS
	ING					
EQUIPMENT/TRUCK DUMP TRUCKS	UNG				7,400	TOTAL VOLUME, CY
					30	CY/TRUCK
					247 27	# OF TRUCKS FOR TASK LOADS/DAY (MAX.)
					1.0	CYCLE TIME (HRS)
					3	REQUIRED # OF TRUCKS
OFFSITE TRUCKS					151	TOTAL WEIGHT, TONS
Assume 2lbs/ft of reba			y. of conc;		20	TONS/TRUCK
1lbs of reinforcment/s.	.y. of shotcre	ete			8	# OF TRUCKS
CONCRETE TRUCKS	8				12700	TOTAL VOLUME, CY
					8	CY/TRUCK
					1,588 50	# OF TRUCKS FOR TASK TRUCKS/DAY
CONCRETE PUMP T						
	noono		(15 T	RUCKS)>		CY/DAY # OF TRUCKS
			(15 T	RUCKS)>	4	# OF TRUCKS
SEMIS			(15 T	RUCKS)>	4 20	# OF TRUCKS CY/TRUCK
			(15 T	RUCKS)>	4	# OF TRUCKS
SEMIS			(15 T	RUCKS)>	4 20 370	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK
SEMIS 11.0 DRAFT TUBE M SCHEDULE	ANIFOLD		(15 T	RUCKS)>	4 20 370 40	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY
SEMIS	ANIFOLD		(15 T		4 20 370 40 7,400	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY
SEMIS 11.0 DRAFT TUBE M SCHEDULE	ANIFOLD		(15 T	RUCKS)> (2 crews)	4 20 370 40 7,400 800 0.4	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T	ANIFOLD unnel Excav Productio Duration Continger	n Rate	(15 T		4 20 370 40 7,400 800 0.4 25	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY CY/DAY MONTHS %
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T Final Dura	ANIFOLD unnel Excav Productio Duration Continger tion	n Rate	(15 T		4 20 370 40 7,400 800 0.4 25 0.5	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY CY/DAY MONTHS % MONTHS
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T	ANIFOLD unnel Excav Productio Duration Continger tion unnel Prelin	n Rate ncy ing & Support (		(2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS WEEKS SY
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T Final Dura Final Dura Final Dura	ANIFOLD Unnel Excav Productio Duration Continger tion Unnel Prelin Productio	n Rate ncy ing & Support (			4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 500	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS WEEKS SY SY SY DAY
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T Final Dura Final Dura Final Dura	ANIFOLD unnel Excav Productio Duration Continger tion tion Productio Duration	n Rate ncy ing & Support ( n Rate		(2 crews)	4 20 370 40 7,400 800 0.4 25 2.3 2,400 500 0.2	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS WEEKS SY
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T Final Dura 11.2 Manifold T Final Dura	ANIFOLD Unnel Excav Productio Duration Continger tion Productio Duration Continger tion	n Rate ncy ing & Support ( n Rate		(2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 500 0.2 25 0.3	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % MONTHS % MONTHS
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T Final Dura Final Dura 11.2 Manifold T Final Dura Final Dura Final Dura	ANIFOLD unnel Excav Productio Duration Continger tion Unnel Prelin Productio Duration Continger tion	n Rate ncy ing & Support ( n Rate		(2 crews)	4 20 370 40 7,400 800 0.4 25 2.3 2,400 500 0.2 25 0.2 25 0.3 1.2	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY CY/DAY MONTHS % MONTHS WEEKS SY SY/DAY MONTHS %
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T Final Dura 11.2 Manifold T Final Dura	ANIFOLD unnel Excav Productio Duration Continger tion Unnel Prelin Productio Duration Continger tion Continger tion Productio Productio Productio Productio Productio	n Rate ncy ing & Support ( n Rate ncy		(2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 500 0.2 25 0.3 1.2 1,600 400	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % SY DAY MONTHS % MONTHS % MONTHS % WEEKS CY CY/DAY CY/DAY
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T Final Dura Final Dura 11.2 Manifold T Final Dura Final Dura Final Dura	ANIFOLD unnel Excav Productio Duration Continger tion Uration Continger tion Continger tion Productio Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Duration Du	n Rate		(2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 500 0.2 25 0.3 1.2 1,600 400 0.2	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS WEEKS SY SY SYDAY MONTHS WEEKS CY CY/DAY MONTHS
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T Final Dura Final Dura 11.2 Manifold T Final Dura Final Dura Final Dura	ANIFOLD 'unnel Excav Productio Duration Continger tion Unnel Prelin Productio Duration Continger Duration Duration Continger Duration Continger	n Rate		(2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 500 0.2 25 0.3 1.2 1,600 400	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % SY DAY MONTHS % MONTHS % MONTHS % WEEKS CY CY/DAY CY/DAY
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T Final Dura Final Dura Final Dura Final Dura 11.3 Concrete I	ANIFOLD Tunnel Excav Productio Duration Continger tion Continger tion Duration Productio Duration Continger tion Continger tion	n Rate		(2 crews)	4 20 370 40 7,400 800 0.4 25 2.3 2,400 500 0.2 25 0.3 1.2 1,600 400 0.2 25	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY CY/DAY MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % CY CY/DAY CY/DAY CY/DAY MONTHS %
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unration Continger tion Continger tion Continger tion Continger tion Lining Productio Duration Continger tion Continger tion	n Rate		(2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 500 500 0.2 25 0.3 1.2 1,600 400 0.2 25 0.3	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unration Continger tion Continger tion Continger tion Continger tion Lining Productio Duration Continger tion Continger tion	n Rate		(2 crews) (2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2,400 500 0.2 25 0.3 1.2 1,600 400 0.2 25 0.2 1.0 	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % SY DAY MONTHS % MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS % MONTHS % MONTHS % MONTHS % MONTHS %
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unration Continger tion Continger tion Continger tion Continger tion Lining Productio Duration Continger tion Continger tion	n Rate		(2 crews) (2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2.400 5.00 0.2 25 0.3 1.2 0.3 1.600 400 0.2 25 0.3 1.600 400 0.2 25 0.3 1.600 400 0.2 2.5 0.3 1.600 400 0.2 3.1 7,400 400 0.2 3.1 7,400 400 0.2 3.1 7,400 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 400 1.600 1.600 400 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % TOTAL VOLUME, CY CY/TRUCK
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unration Continger tion Continger tion Continger tion Continger tion Lining Productio Duration Continger tion Continger tion	n Rate		(2 crews) (2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2,400 500 0.2 25 0.3 1.2 1,600 400 0.2 25 0.2 1.0 	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % SY DAY MONTHS % MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS % MONTHS % MONTHS % MONTHS % MONTHS %
SEMIS 11.0 DRAFT TUBE M SCHEDULE 11.1 Manifold T Final Dura Final Dura Final Dura Final Dura 11.3 Concrete I Final Dura	ANIFOLD unnel Excav Productio Duration Continger tion Unration Continger tion Continger tion Continger tion Continger tion Lining Productio Duration Continger tion Continger tion	n Rate		(2 crews) (2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 500 0.2 25 0.2 1,600 400 0.2 25 0.2 1,2 1,600 400 0.2 25 0.2 1,2 1,600 400 2,400 500 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS WEEKS SY SY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY CY CY CY CY CY CY CY CY CY CY CY
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unration Continger tion Continger tion Continger tion Continger tion Lining Productio Duration Continger tion Continger tion	n Rate		(2 crews) (2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 5,400 0.2 25 0.3 1.2 2,5 0.3 1.600 400 0.2 25 0.3 1.2 2,5 0.3 1.2 2,5 0.3 1.2 2,5 0.3 1.2 2,5 0.3 1.2 2,5 0.3 1.2 2,5 0.3 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK LOADS/DAY (MAX.)
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unration Continger tion Continger tion Continger tion Duration Continger tion Lining Productio Duration Continger tion Lining Productio Duration Continger tion Lining Productio Duration Continger tion Lining Productio Duration Continger tion Lining Productio Duration Continger tion Lining Productio Duration Continger tion Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Duration Continger Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Productio Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lining Dir Lini	n Rate	(3*, 75%)	(2 crews) (2 crews)	4 20 370 40 7,400 804 25 0.5 2.3 2,400 500 0.2 25 0.3 1,600 400 0.2 25 0.3 1,600 400 0.2 25 0.3 1,600 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 2,10 1,600 40 0.2 25 0.3 2,10 2,5 0.3 2,10 2,10 2,5 0.3 2,12 1,600 400 0.2 25 0.3 2,12 1,600 400 0.2 25 0.3 1,10 1,00 2,5 0.3 1,10 1,00 2,5 0.3 1,10 1,00 2,5 0,2 1,00 2,5 0,2 2,5 0,3 1,00 2,5 0,2 1,00 2,5 1,00 2,0 2,5 1,00 2,2 1,00 2,5 1,00 2,5 1,00 2,7 1,00 2,5 1,00 2,7 1,00 2,5 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % CY CY/DAY MONTHS % MONTHS WEEKS CY CY/DAY MONTHS % TOTAL VOLUME, CY CY/TRUCK % TOTAL VOLUME, CY CY CY TOTAL VOLUME, CY CY CY TOTAL VOLUME, CY CY CY TOTAL VOLUME, CY CY CY CY TOTAL VOLUME, CY CY CY CY TOTAL VOLUME, CY CY CY CY TOTAL VOLUME, CY CY CY TOTAL VOLUME, CY CY CY CY TOTAL VOLUME, CY CY CY CY CY CY CY CY CY CY CY CY CY C
SEMIS	ANIFOLD Unnel Excav Productio Duration Continger tion Unnel Prelin Productio Duration Continger tion Continger tion Continger tion Ling Productio Duration Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger Continger tion Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Contin	n Rate ing & Support i n Rate ncy n Rate ncy 12ft of rebar/c.	(3*, 75%)	(2 crews) (2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2.400 500 0.2 25 0.3 1.20 1.600 400 0.2 25 0.3 1.20 1.600 400 0.2 25 0.3 1.20 1.600 400 0.2 25 0.3 1.20 1.600 400 0.2 25 0.3 1.200 1.600 400 0.2 25 0.3 1.600 400 0.2 25 0.3 1.600 400 0.2 25 0.3 1.600 400 0.2 25 0.3 1.600 400 0.2 25 0.3 1.600 400 0.2 25 0.3 1.600 400 0.2 25 0.3 1.000 2.2 2.5 0.3 1.000 2.2 2.5 0.2 2.5 0.3 1.000 2.2 2.5 0.2 2.5 0.3 1.000 3.0 2.0 2.5 0.2 2.5 0.3 1.000 3.0 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.3 1.000 3.0 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 1.000 3.0 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 1.000 3.0 2.5 0.2 2.5 0.2 2.5 1.00 2.5 0.2 2.5 1.00 2.5 2.5 1.00 2.5 2.5 1.00 2.5 2.5 1.00 2.5 2.5 1.00 2.5 2.5 1.00 2.5 2.5 1.00 2.5 2.5 1.00 2.5 2.5 1.00 2.5 2.5 2.5 1.00 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS WEEKS SY SYDAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/CLE THUCKS FOR TASK LOADS/DAY (MAX) CYCLE TIME (HRS) REQUIRED # OF TRUCKS CY CYCLE TIME (HRS) REQUIRED # OF TRUCKS
SEMIS	ANIFOLD Unnel Excav Productio Duration Continger tion Unnel Prelin Productio Duration Continger tion Continger tion Continger tion Ling Productio Duration Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger Continger tion Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Contin	n Rate ing & Support i n Rate ncy n Rate ncy 12ft of rebar/c.	(3*, 75%)	(2 crews) (2 crews)	4 20 370 40 7,400 804 25 0.5 2.3 2,400 500 0.2 25 0.3 1,600 400 0.2 25 0.3 1,600 400 0.2 25 0.3 1,600 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 40 0.2 25 0.3 2,10 2,10 1,600 40 0.2 25 0.3 2,10 2,5 0.3 2,10 2,10 2,5 0.3 2,12 1,600 400 0.2 25 0.3 2,12 1,600 400 0.2 25 0.3 1,10 1,00 2,5 0.3 1,10 1,00 2,5 0.3 1,10 1,00 2,5 0,2 1,00 2,5 0,2 2,5 0,3 1,00 2,5 0,2 1,00 2,5 1,00 2,0 2,5 1,00 2,2 1,00 2,5 1,00 2,5 1,00 2,7 1,00 2,5 1,00 2,7 1,00 2,5 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 2,7 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % MONTHS WEEKS SY SYDAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/TRUCK # OF TRUCKS FOR TASK LOADS/DAY (MAX.) CYCLE TIME (HRS) REQUIRED # OF TRUCKS TOTAL WEIGHT, TONS TONS/TRUCK # OF TRUCKS
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unrel Prelin Productio Duration Continger tion Continger tion ING Ar/rockbolts; y. of shotcre	n Rate ing & Support i n Rate ncy n Rate ncy 12ft of rebar/c.	(3*, 75%)	(2 crews) (2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 500 0.2 25 0.2 1,600 400 0.2 25 0.2 25 0.2 1,600 400 0.2 25 0.2 25 0.2 1,600 400 0.2 25 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 2,400 30 2,400 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/CY/DAY MONTHS % MONTHS WEEKS CY CY/TRUCK % MONTHS WEEKS CY CY/TRUCK # OF TRUCKS FOR TASK LOADS/DAY (MAX.) CY/LE TIME (HRS) REQUIRED # OF TRUCKS TOTAL WEIGHT, TONS TONS/TRUCK # OF TRUCKS TOTAL WEIGHT, TONS TONS/TRUCK # OF TRUCKS TOTAL VOLUME, CY
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unrel Prelin Productio Duration Continger tion Continger tion ING Ar/rockbolts; y. of shotcre	n Rate ing & Support i n Rate ncy n Rate ncy 12ft of rebar/c.	(3*, 75%)	(2 crews) (2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 5.2 3 2,400 0.2 25 0.3 1.2 400 0.2 25 0.3 1.2 2.5 0.3 1.600 400 0.2 25 0.3 1.600 400 0.2 25 0.3 1.2 1.600 400 0.2 25 0.3 1.2 1.600 400 0.2 25 0.3 1.2 0.2 2.5 0.3 1.2 0.2 2.5 0.3 1.2 0.2 2.5 0.3 1.2 0.2 2.5 0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS % MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/TRUCK # OF TRUCKS FOR TASK LOADS/DAY (MAX.) CYCLE TIME (HRS.) REQUIRED # OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unrel Prelin Productio Duration Continger tion Continger tion ING Ar/rockbolts; y. of shotcre	n Rate ing & Support i n Rate ncy n Rate ncy 12ft of rebar/c.	(3*, 75%)	(2 crews) (2 crews)	4 20 370 40 7,400 800 0.4 25 0.5 2.3 2,400 500 0.2 25 0.2 1,600 400 0.2 25 0.2 25 0.2 1,600 400 0.2 25 0.2 25 0.2 1,600 400 0.2 25 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 25 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 1,2 0.2 2,400 30 2,400 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/CY/DAY MONTHS % MONTHS WEEKS CY CY/TRUCK % MONTHS WEEKS CY CY/TRUCK # OF TRUCKS FOR TASK LOADS/DAY (MAX.) CY/LE TIME (HRS) REQUIRED # OF TRUCKS TOTAL WEIGHT, TONS TONS/TRUCK # OF TRUCKS TOTAL WEIGHT, TONS TONS/TRUCK # OF TRUCKS TOTAL VOLUME, CY
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unnel Prelin Productio Duration Continger tion Continger tion Continger tion Continger tion Continger tion Automation Continger tion Source Source	n Rate ing & Support i n Rate ncy n Rate ncy 12ft of rebar/c.	(3", 75%)	(2 crews) (2 crews) (2 crews)	4 20 370 40 800 0.4 25 0.5 2.3 2.400 500 0.2 25 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.2 25 0.3 1.2 0.3 1.2 0.2 25 0.3 1.2 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.3 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 1.0 0.2 25 1.0 0.2 25 1.0 0.2 25 1.0 0.2 25 1.0 0.2 25 1.0 0.2 25 5 0.2 1.0 0.2 25 5 0.2 25 5 0.2 25 5 0.2 25 5 0.2 25 5 0.2 25 5 0.2 25 5 0 20 25 5 5 5 5 5 5 5 5 5 5 5 5 5	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY MONTHS % MONTHS WEEKS SY SYDAY MONTHS WEEKS CY CY/DAV MONTHS WEEKS CY CY/DAV MONTHS WEEKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK LOADS/DAY (MAX.) CYCLE TIME (HRS) REQUIRED # OF TRUCKS TOTAL WEIGHT, TONS TONS/TRUCK # OF TRUCKS OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK CY/TRUCK # OF TRUCKS FOR TASK TONS/TRUCK
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unnel Prelin Productio Duration Continger tion Continger tion Continger tion Continger tion Continger tion Automation Continger tion Source Source	n Rate ing & Support i n Rate ncy n Rate ncy 12ft of rebar/c.	(3", 75%)	(2 crews) (2 crews)	4 20 370 40 800 0.4 25 0.5 2.3 2.400 500 0.2 25 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.2 25 0.3 1.2 0.3 1.2 0.2 25 0.3 1.2 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.3 1.2 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.3 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 0.2 1.0 0.2 25 1.0 0.2 25 1.0 0.2 25 1.0 0.2 25 1.0 0.2 25 1.0 0.2 25 1.0 0.2 25 5 0.2 1.0 0.2 25 5 0.2 25 5 0.2 25 5 0.2 25 5 0.2 25 5 0.2 25 5 0.2 25 5 0 20 25 5 5 5 5 5 5 5 5 5 5 5 5 5	# OF TRUCKS CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY CY/DAY MONTHS % MONTHS WEEKS SY SY SYDAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS CY CY/DAY MONTHS WEEKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK TOTAL VOLUME, CY CY/TASK 0 FTRUCKS FOR TASK TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK TOTAL VOLUME, CY CY/TASK
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unnel Prelin Productio Duration Continger tion Continger tion Continger tion Continger tion Continger tion Automation Continger tion Source Source	n Rate ing & Support i n Rate ncy n Rate ncy 12ft of rebar/c.	(3", 75%)	(2 crews) (2 crews) (2 crews)	4 20 370 40 7,400 804 25 0.5 2,3 2,400 500 0.2 25 0.3 1,600 400 0.2 25 0.3 1,2 1,600 400 0.2 25 0.3 1,2 1,400 30 2,47 2,7 1,0 3 20 20 20 1 1800 8 225 50 120 4 4	# OF TRUCKS CV/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY CY/DAY MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % CY CY CY/DAY MONTHS % MONTHS % TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK LOADS/DAY (MAX.) CYCLE TIME (HRS) REQUIRED # OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY/DAY # OF TRUCKS
SEMIS	ANIFOLD unnel Excav Productio Duration Continger tion Unnel Prelin Productio Duration Continger tion Continger tion Continger tion Continger tion Continger tion Automation Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger tion Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Continger Conting	n Rate ing & Support i n Rate ncy n Rate ncy 12ft of rebar/c.	(3", 75%)	(2 crews) (2 crews) (2 crews)	4 20 370 40 7,400 800 0,4 25 0,5 2,3 2,400 500 0,2 25 0,3 1,600 400 0,2 25 0,3 1,600 400 0,2 25 0,3 1,600 400 0,2 25 0,3 1,600 400 0,2 25 0,3 1,600 400 0,2 25 0,3 1,600 400 0,2 25 0,3 1,600 400 0,2 25 0,3 1,600 400 0,2 25 0,3 1,600 400 0,2 25 0,3 1,1 1,600 400 0,2 25 0,3 1,1 1,600 400 0,2 25 0,3 1,1 1,600 400 0,2 25 0,3 1,1 1,600 400 0,2 25 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	# OF TRUCKS CV/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY CY CY/DAY MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % MONTHS % TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK LOADS/DAY (MAX.) CYCLE TIME (HRS) REQUIRED # OF TRUCKS TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK TOTAL VOLUME, CY CY/TRUCK # OF TRUCKS FOR TASK TRUCKS/DAY

Assumptions: Excavation Then Haul Offsite Survey Control (Activities do not overlap, therefore use maximum of activities to find equimpent and crew estimates)

### 20 Install Steel Tunnel Linings

Client: Subject: Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	1
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	2
Dump Truck, Semi-Trailer	2
Excavator, 325	1
Forklift, Rough Terrain	1
Front End Loader, Tracked	
Front End Loader, Wheeled	2
Fiel Truck / Support Truck	1
Generator - Diesel	1
Grout Pump/Plant	· · ·
Hydroseed Sprayer, Truck Mounted Grader, H14	
Pile Driver	2
Pump Truck - Concrete	Z
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	1
Welder and Generator Set	1
Total Offsite Flatbed/Semi Trucks	154
Daily Concrete Mixer Truck - 8 CY	25
Daily Semi Trailer Truck	20
Crew	Quantity
Blaster	2
Carpenters	
Cement Finisher	1

Diaster	2
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	3
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	4
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	2
Steel Worker Foreman	
Truck Drivers	5
Welder	2

Total Crew Size Monthly Labor Cost

22 \$278,800

### Duration: 7.9 Months Weeks 34.3

Project Date Checked

Approved

216.25 HRS/MONTH CONSTANTS: 10 HR/DAY

080473

1/21/2009

Page By By

Вý

, NDM

10.0 PENSTOCKS			
SCHEDULE		10.000	01/
10.1 Penstock Tunnel Excavation - D&B Production Rate (1 c	rew)	18,900 400	CY CY/DAY
Duration	(ew)	2.2	MONTHS
Contingency		25	%
Final Duration		2.7	MONTHS
Final Duration		11.8	WEEKS
10.2 Penstock Tunnel Prelining & Support (3", 30%)		3,800	SY
	rew)	200	SY/DAY
Duration Contingency		0.9 25	MONTHS %
Final Duration		1.1	⁷⁰ MONTHS
Final Duration		4.8	WEEKS
10.3 Steel Liner Installation		3,000	TONS
Assumed Unit Weight of Steel Liner		475	LBS/CF
Tunnel Diameter		15	FT
Thickness		1.625	INCHES
Unit Weight		1.5	TONS/FT
Length		2,000	FT
Production Rate Duration		50 1.8	LF/DAY MONTHS
Contingency		25	WONTH5
Final Duration		25	‰ MONTHS
Final Duration		10.0	WEEKS
10.4 Concrete Filling Around Liner		5,200	CY
	rews)	400	CY/DAY
Duration	,	0.6	MONTHS
Contingency		25	%
Final Duration		0.8	MONTHS
Final Duration		3.3	WEEKS
10.5 Contact Grouting		2,000	LF
Diameter		15	FT
Contact Grouting Area Percent		25	%
Grout Volume Production Rate (1 c	rew)	5,890 450	CF CF/DAY
Duration	lew)	450	MONTHS
Contingency		25	%
Final Duration		0.8	MONTHS
Final Duration		3.3	WEEKS
10.6 Curtain Grouting			
Assumed Grout Curtain Diameter		30	FT
Grout Curtain Thickness		1	FT
Penstock Diameter		15	FT
Number of Penstocks		4	05
Volume of Grout Production Rate		2,200	CF CF/DAY
Duration		450 0.23	MONTHS
Contingency		25	%
Final Duration		0.28	MONTHS
Final Duration		1.2	WEEKS
EQUIPMENT/TRUCKING			
DUMP TRUCKS		18,900	TOTAL VOLUME, CY
		30	CY/TRUCK
		630	# OF TRUCKS FOR TASK
		13	LOADS/DAY (MAX.)
		1.0 2	CYCLE TIME (HRS) REQUIRED # OF TRUCKS
		2	NEQUINED # OF TRUCKS
CONCRETE TRUCKS		5816	TOTAL VOLUME, CY
		8	CY/TRUCK
		727	# OF TRUCKS FOR TASK
		25	TRUCKS/DAY
CONCRETE PUMP TRUCKS (15 TRUCK	(S)>	120	CY/DAY
	,	2	# OF TRUCKS
OFFSITE TRUCKS		3064	TOTAL WEIGHT, TONS
Assume 2lbs/ft of rebar/rockbolts; 12ft of rebar/c.y. of conc;		20	TONS/TRUCK
1lbs of reinforcment/s.y. of shotcrete		154	# OF TRUCKS
SEMIS		20	CY/TRUCK
		945	# OF TRUCKS FOR TASK
		20	TRUCKS/DAY

Assumptions: Excavation Then Haul Offsite Survey Control Penstock & Draft Tube Manifolds:

Persock & Draft Tube manifolds: Process: Drill, Blast, Excavate, Load, Haul, Dump, Load, Haul offsite; Shotcrete; Steel Lining, Concrete Lining, Contact Grouting, Curtain Grouting. Equipment: Track Drill, 1 Excavator, 2 FE Loaders, Dump Trucks, Semis, Water Truck, Support Truck. Crew: 1 Driller, 2 Blasters, 3 Equip Opr., 2 survey, 2 DT Drivers, 1 Foreman, 1 Water Truck Driver, 1 Support Crew. 1 Dimer, 2 Diasters, 3 Equip Opr., 2 Survey, 2 Di Divers, 1 Foreman Driver. Steel Lining Crew: 2 Welders, 2 Steel Workers, 1 Equip Opr. Shotcrete/Concrete/Grouting Crew: 1 Foreman, 4 Laborers, 2 CPT Drivers. Schedule: Activities are additive.

## 21 First Stage Concrete

Duration:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Months

5.5

080473

1/21/2009

23.9

Weeks

NDM

EQUIPMENT	Quantity
On Site	
Air Compressor	
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	1
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	1
Generator - Diesel	1
Grout Pump/Plant	1
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	2
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	1
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	8
Daily Concrete Mixer Truck - 8 CY	25
Daily Semi Trailer Truck	

Crew	Quantity	
Blaster		
Carpenters		
Cement Finisher	2	
Driller		
Electricians		
Equipment Operators	1	
Grade Setter		
Foreman	1	
Labor Foreman	1	
Laborers	9	form work
Mechanics		
Painter		
Pile Driver		
Pipe Foreman		
Pipe Layer		
Plumber		
Rigger		
Survey/Rodmen		
Steel Worker	2	rebar
Steel Worker Foreman		
Truck Drivers	3	
Welder		

Total Crew Size Monthly Labor Cost

19 \$225,300

CONSTANTS:	10	HR/DAY	216.25	HRS/MON	ІТН
FIRST STAGE CONCI	RETE - MU	ILTIPLE ITEMS			
SCHEDULE 13.3-B Machine Ha	all (FL -16 F	1 -12)		2,700	СҮ
	Productio	,	(1 crew)	200	CY/DAY
	Duration		· · · ·	0.6	MONTHS
	Continger	псу		25	%
Final Durati				0.8	MONTHS
Final Durati				3.4	WEEKS
13.3-C Machine Ha	III (EI12,E Productio	,	(1	10,100 200	CY CY/DAY
	Duration	n Rate	(1 crew)	200 2.3	MONTHS
	Continger			2.3	%
Final Durati		icy		2.9	MONTHS
Final Durati				12.6	WEEKS
15.2-A Roof & Wal	Support 1	ransformer Hal		44,300	SF
	Productio	n Rate	(1 crew)	2,200	SF/DAY
	Duration			0.9	MONTHS
	Continger	псу		25	%
Final Durati				1.2	MONTHS
Final Durati	-			5.0	WEEKS
15.2-B Roof & Wal	Productio			2,500 500	SF SF/DAY
	Duration		(1 crew) on - restricted work area)	0.2	MONTHS
	Continger		on - resulcted work area)	25	%
Final Durati		loy		0.3	MONTHS
Final Durati				1.3	WEEKS
15.2-C Roof & Wal	I Support	Cable Gallery		3,200	SF
	Productio	n Rate	(1 crew)	500	SF/DAY
	Duration		on - restricted work area)	0.30	MONTHS
	Continger	псу		25	%
Final Durati				0.37	MONTHS
Final Durati 15.2-D Roof & Wal				1.6 100	WEEKS SF
15.2-D ROUL & Wal	Productio		(1 crew)	500	SF/DAY
	Duration		on - restricted work area)	0.01	MONTHS
	Continger		on realified work area)	25	%
Final Durati		,		0.01	MONTHS
Final Durati	on			0.1	WEEKS
EQUIPMENT/TRUCKI	NG				
OFFSITE TRUCKS				156	TOTAL WEIGHT, TONS
Assume 2lbs/ft of rebai			y. of conc;	20	TONS/TRUCK
1lbs of reinforcment/s.y	/. of shotcr	ete		8	# OF TRUCKS
CONCRETE TRUCKS				13,264 8	TOTAL VOLUME, CY CY/TRUCK
				o 1.658	# OF TRUCKS FOR TASK
				25	TRUCKS/DAY
CONCRETE PUMP TF	RUCKS		(15 TRUCKS)>	120 2	CY/DAY # OF TRUCKS

Assumptions: Process: Form, Pump, Finish.

Equipment: Concrete Trucks, Concrete Pump Trucks, 1 Water Truck, 1 Support Truck, Hoist Crane. Crew: 1 Foreman, 1 Laborer Foreman, 8 Laborers, 2 Cement Finishers, 2 Steel Workers, 1 Water Truck Driver, 1 Support Driver, 2 CPT Drivers, 1 Crane Oper.

Client: Subject:

## 23 Spiral Cases & Draft Tube

Duration:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

8.2

Approved

Months

080473

1/21/2009

35.3

Weeks

NDM

EQUIPMENT Quantity On Site Air Compresso Backhoe / Front End Loader, Wheeled Backhoe, Tracked Chipper, Wood Compactor, Sheepsfoot, Self-Propelled Compactor, Vibratory, Self-Propelled Concrete Pump 1 Crane - 40 Ton 1 Crane - 70 Ton Dozer, D5 Dozer, D6 Dozer, D8 Dozer, D10 Drill, Tracked Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton Dump Truck, Semi-Trailer Excavator, 325 Forklift, Rough Terrain Front End Loader, Tracked Front End Loader, Wheeled Fuel Truck / Support Truck Generator - Diesel Grout Pump/Plant Hydroseed Sprayer, Truck I Grader, H14 Pile Driver Pump Truck - Concrete Powder Truck Scraper, Self-propelled, 21 Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck

		Fi
d		Fi
	1	EQUIPMENT
		CONCRETE "
Mounted		
		OFFSITE TRI
CY		
		Assumptions
		Process: Stee
	1	E autore a set O

11

1

CONSTANTS:	10	HR/DAY	21	6.25	HRS/MON	ΙТΗ
13.4 Spiral Cases & D SCHEDULE	Praft Tube	Liners				
13.4-A Draft Tube	Steel Liner				220	TONS
	Assumed	I Unit Weight	t of Steel Liner		475	LBS/CF
	Average	Draft Tube D	Diameter		10	FT
	Thicknes	s			1.625	INCHES
	Unit Weig	ght			1.0	TONS/FT
	Length				300	FT
	Productio	on Rate		crew)	5	LF/DAY
	Duration		(Very low production			MONTHS
	Continge	ncy	restricted wo	rk areaj	25	%
Final Durat					3.5	MONTHS
Final Durat					15.0	WEEKS
10.5 Contact Gr					8,100	CF
	Productio	on Rate		crew)	100	CF/DAY
	Duration		(Very low production restricted wo		0	MONTHS
	Continge	ncy	restricted wo	rk area,	25	%
Final Durat					4.7	MONTHS
Final Durat	ion				20.3	WEEKS
EQUIPMENT/TRUCKI	NG					
CONCRETE TRUCKS					300	TOTAL VOLUME, CY
					8	CY/TRUCK
					38	# OF TRUCKS FOR TASK
					1	TRUCKS/DAY
OFFSITE TRUCKS					220	TOTAL WEIGHT, TONS
					20	TONS/TRUCK
					11	# OF TRUCKS

### is:

el Lining, Contact Grouting.

Equipment: Crane, Concrete Pump, Welder. Steel Lining Crew: 1 Welders, 2 Steel Workers, 1 Equip Opr.

Grouting Crew: 1 Foreman, 2 Laborers, 1 CPT Drivers. Schedule: Activities are additive.

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller (3)	
Electricians	
Equipment Operators	1
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	2
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	2
Steel Worker Foreman	
Truck Drivers	1
Welder	1

Total Crew Size Monthly Labor Cost

Welder and Generator Set

Total Offsite Flatbed/Semi Trucks

Daily Concrete Mixer Truck - 8 CY Daily Semi Trailer Truck

8 \$111,400

Client: Subject:

## 24 Pump Turbines and Generators

Client:
Subject:

12

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

NDM

UNITS/TRUCK

# OF TRUCKS FOR TASK TRUCKS/DAY

0.5

8 1

On Site       1         Air Compressor       1         Backhoe / Front End Loader, Wheeled       9         Backhoe, Tracked       1         Chipper, Wood       0         Compactor, Sheepsfoot, Self-Propelled       0         Concrete Pump       0         Crane - 40 Ton       1         Dozer, D5       0         Dozer, D6       0         Dozer, D8       0         Dump Truck, End Dump, 15 Ton       0         Dump Truck, Semi-Trailer       0         Excavator, 325       7         Forklift, Rough Terrain       7         Front End Loader, Tracked       1         Grout Pump/Plant       1         Hydroseed Sprayer, Truck Mounted       1         Grader, H14       9         Pile Driver       9         Pump Truck, Self-propelled, 21 CY       1         Truck, Flatbed       1         Tunnel Rig (TBM)       Water Truck         Welder and Generator Set       1		
Air Compressor       1         Backhoe / Front End Loader, Wheeled       1         Backhoe / Front End Loader, Wheeled       1         Backhoe, Tracked       1         Chipper, Wood       1         Compactor, Sheepsfoot, Self-Propelled       1         Compactor, Vibratory, Self-Propelled       1         Concrete Pump       1         Crane - 40 Ton       1         Dozer, D5       1         Dozer, D6       1         Dozer, D8       1         Dozer, D10       1         Drill, Tracked       1         Dump Truck, End Dump, 15 Ton       1         Dump Truck, Semi-Trailer       1         Excavator, 325       1         Forklift, Rough Terrain       1         Front End Loader, Tracked       1         Front End Loader, Tracked       1         Generator - Diesel       1         Grout Pump/Plant       1         Hydroseed Sprayer, Truck Mounted       1         Grader, H14       1         Pile Driver       1         Pump Truck - Concrete       1         Powder Truck       1         Scraper, Self-propelled, 21 CY       1         Truck	EQUIPMENT	Quantity
Backhoe / Front End Loader, Wheeled         Backhoe / Front End Loader, Wheeled         Backhoe, Tracked         Compactor, Sheepsfoot, Self-Propelled         Compactor, Vibratory, Self-Propelled         Compactor, Vibratory, Self-Propelled         Concrete Pump         Crane - 40 Ton         Dozer, D5         Dozer, D6         Dozer, D8         Dozer, D10         Drill, Tracked         Dump Truck, End Dump, 15 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck         1         Grauer - Diesel         1         Grader, H14         Pile Driver         Pump Truck - Concrete         Powder Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Truck         Welder and Generator Set         1         Truck         Scraper, Self-propelled, Semi Trucks         8         Daily Concrete Mixer Truck - 8 CY <td>On Site</td> <td></td>	On Site	
Backhoe, Tracked         Chipper, Wood         Compactor, Sheepsfoot, Self-Propelled         Compactor, Vibratory, Self-Propelled         Concrete Pump         Crane - 40 Ton         Crane - 70 Ton         Dozer, D5         Dozer, D6         Dozer, D10         Drill, Tracked         Dump Truck, End Dump, 15 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Tracked         Front End Loader, Tracked         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck       1         Generator - Diesel       1         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Powder Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Truck         Welder and Generator Set       1         Total Offsite Flatbed/Semi Trucks       8         Daily Concrete Mixer Truck - 8 CY		1
Chipper, Wood         Compactor, Sheepsfoot, Self-Propelled         Compactor, Vibratory, Self-Propelled         Concrete Pump         Crane - 40 Ton         Crane - 70 Ton         Dozer, D5         Dozer, D6         Dozer, D8         Dorder, Self-Propelled         Dorder, D6         Dozer, D8         Dozer, D8         Dump Truck, End Dump, 15 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Tracked         Fuel Truck / Support Truck         Generator - Diesel         1         Grader, H14         Pile Driver         Pump Truck, Flatbed         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Pump, Diesel         Water Truck         Welder and Generator Set         1         Total Offsite Flatbed/Semi Trucks         8         Daily Concrete Mixer Truck - 8 CY	Backhoe / Front End Loader, Wheeled	
Compactor, Sheepsfoot, Self-Propelled         Compactor, Vibratory, Self-Propelled         Concrete Pump         Crane - 40 Ton         Crane - 70 Ton         Dozer, D5         Dozer, D6         Dozer, D8         Dozer, D10         Drill, Tracked         Dump Truck, End Dump, 15 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck         Generator - Diesel         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Pump Truck, Flatbed         Tunnel Rig (TBM)         Water Pump, Diesel         Water Truck         Welder and Generator Set         1         Total Offsite Flatbed/Semi Trucks         8         Daily Concrete Mixer Truck - 8 CY	Backhoe, Tracked	
Compactor, Vibratory, Self-Propelled         Concrete Pump         Crane - 40 Ton         Crane - 70 Ton         Dozer, D5         Dozer, D6         Dozer, D8         Dozer, D10         Drill, Tracked         Dump Truck, End Dump, 15 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck       1         Generator - Diesel       1         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Pump Truck - Concrete         Powder Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Pump, Diesel         Water Pump, Diesel         Water Truck         Welder and Generator Set       1         Total Offsite Flatbed/Semi Trucks       8         Daily Concrete Mixer Truck - 8 CY	Chipper, Wood	
Concrete Pump         Crane - 40 Ton         Crane - 70 Ton         Dozer, D5         Dozer, D6         Dozer, D10         Drill, Tracked         Dump Truck, End Dump, 15 Ton         Dump Truck, Cff-Highway, 34 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck         Grauer, H14         Pile Driver         Pump Truck - Concrete         Powder Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Truck         Welder and Generator Set       1         Total Offsite Flatbed/Semi Trucks       8         Daily Concrete Mixer Truck - 8 CY	Compactor, Sheepsfoot, Self-Propelled	
Crane - 40 Ton       1         Crane - 70 Ton       1         Dozer, D5       1         Dozer, D6       1         Dozer, D8       1         Dozer, D10       1         Drill, Tracked       1         Dump Truck, End Dump, 15 Ton       1         Dump Truck, Gff-Highway, 34 Ton       1         Dump Truck, Semi-Trailer       1         Excavator, 325       1         Forklift, Rough Terrain       1         Front End Loader, Tracked       1         Grout Pump/Plant       1         Hydroseed Sprayer, Truck Mounted       1         Grader, H14       1         Pile Driver       1         Powder Truck       2         Scraper, Self-propelled, 21 CY       1         Trunel Rig (TBM)       Water Pump, Diesel         Water Pump, Diesel       1         Welder and Generator Set       1         Total Offsite Flatbed/Semi Trucks       8         Daily Concrete Mixer Truck - 8 CY       1	Compactor, Vibratory, Self-Propelled	
Crane - 70 Ton       1         Dozer, D5	Concrete Pump	
Dozer, D5         Dozer, D6         Dozer, D8         Dozer, D10         Drill, Tracked         Dump Truck, End Dump, 15 Ton         Dump Truck, Colf-Highway, 34 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck       1         Generator - Diesel       1         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Powder Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Pump, Diesel         Water Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunck         Welder and Generator Set       1         Total Offsite Flatbed/Semi Trucks       8         Daily Concrete Mixer Truck - 8 CY	Crane - 40 Ton	
Dozer, D6         Dozer, D8         Dozer, D10         Drill, Tracked         Dump Truck, End Dump, 15 Ton         Dump Truck, Off-Highway, 34 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Tracked         Front End Loader, Tracked         Fort Lock / Support Truck         Generator - Diesel         1         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Powder Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Truck         Welder and Generator Set         1         Total Offsite Flatbed/Semi Trucks         8         Daily Concrete Mixer Truck - 8 CY	Crane - 70 Ton	1
Dozer, D8         Dozer, D10         Drill, Tracked         Dump Truck, End Dump, 15 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck         Generator - Diesel         1         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Powder Truck         Scraper, Self-propelled, 21 CY         Trunnel Rig (TBM)         Water Pump, Diesel         Water Truck         Welder and Generator Set         1         Total Offsite Flatbed/Semi Trucks         8         Daily Concrete Mixer Truck - 8 CY	Dozer, D5	
Dozer, D10         Drill, Tracked         Dump Truck, End Dump, 15 Ton         Dump Truck, Off-Highway, 34 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck         Generator - Diesel         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Powder Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Pump, Diesel         Welder and Generator Set         1         Total Offsite Flatbed/Semi Trucks         8         Daily Concrete Mixer Truck - 8 CY	Dozer, D6	
Drill, Tracked       Dump Truck, End Dump, 15 Ton       Dump Truck, Off-Highway, 34 Ton       Dump Truck, Semi-Trailer       Excavator, 325       Forklift, Rough Terrain       Front End Loader, Tracked       Front End Loader, Wheeled       Fuel Truck / Support Truck       Generator - Diesel       Grout Pump/Plant       Hydroseed Sprayer, Truck Mounted       Grader, H14       Pile Driver       Powder Truck       Scraper, Self-propelled, 21 CY       Truck, Flatbed       Tunnel Rig (TBM)       Water Pump, Diesel       Water and Generator Set       1       Total Offsite Flatbed/Semi Trucks       8       Daily Concrete Mixer Truck - 8 CY	Dozer, D8	
Drill, Tracked       Dump Truck, End Dump, 15 Ton       Dump Truck, Off-Highway, 34 Ton       Dump Truck, Semi-Trailer       Excavator, 325       Forklift, Rough Terrain       Front End Loader, Tracked       Front End Loader, Wheeled       Fuel Truck / Support Truck       Generator - Diesel       Grout Pump/Plant       Hydroseed Sprayer, Truck Mounted       Grader, H14       Pile Driver       Powder Truck       Scraper, Self-propelled, 21 CY       Truck, Flatbed       Tunnel Rig (TBM)       Water Pump, Diesel       Water and Generator Set       1       Total Offsite Flatbed/Semi Trucks       8       Daily Concrete Mixer Truck - 8 CY	Dozer, D10	
Dump Truck, Off-Highway, 34 Ton         Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck         Generator - Diesel         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Pump Truck - Concrete         Powder Truck         Scraper, Self-propelled, 21 CY         Trunnel Rig (TBM)         Water Pump, Diesel         Water Truck         Total Offsite Flatbed/Semi Trucks         8         Daily Concrete Mixer Truck - 8 CY		
Dump Truck, Semi-Trailer         Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck         Generator - Diesel         1         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Powder Truck         Scraper, Self-propelled, 21 CY         Trunel Rig (TBM)         Water Pump, Diesel         Water Truck         Total Offsite Flatbed/Semi Trucks         Baily Concrete Mixer Trucks	Dump Truck, End Dump, 15 Ton	
Excavator, 325         Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck         Generator - Diesel         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Powder Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Pump, Diesel         Water Truck         Total Offsite Flatbed/Semi Trucks         Baily Concrete Mixer Truck	Dump Truck, Off-Highway, 34 Ton	
Forklift, Rough Terrain         Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck         Generator - Diesel         1         Grout Pump/Plant         Hydroseed Sprayer, Truck Mounted         Grader, H14         Pile Driver         Powder Truck - Concrete         Powder Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Truck         Welder and Generator Set         1         Total Offsite Flatbed/Semi Trucks         Baily Concrete Mixer Truck - 8 CY	Dump Truck, Semi-Trailer	
Front End Loader, Tracked         Front End Loader, Wheeled         Fuel Truck / Support Truck       1         Generator - Diesel       1         Grout Pump/Plant       1         Hydroseed Sprayer, Truck Mounted       1         Grader, H14       1         Pile Driver       1         Pump Truck - Concrete       1         Powder Truck       1         Scraper, Self-propelled, 21 CY       1         Tunnel Rig (TBM)       1         Water Pump, Diesel       1         Welder and Generator Set       1         Total Offsite Flatbed/Semi Trucks       8         Daily Concrete Mixer Truck - 8 CY       1	Excavator, 325	
Front End Loader, Wheeled Fuel Truck / Support Truck 1 Generator - Diesel 1 Grout Pump/Plant Hydroseed Sprayer, Truck Mounted Grader, H14 Pile Driver Pump Truck - Concrete Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck Welder and Generator Set 1 Total Offsite Flatbed/Semi Trucks 8 Daily Concrete Mixer Truck - 8 CY	Forklift, Rough Terrain	
Fuel Truck / Support Truck     1       Generator - Diesel     1       Grout Pump/Plant     1       Hydroseed Sprayer, Truck Mounted     1       Grader, H14     1       Pile Driver     1       Powder Truck     1       Scraper, Self-propelled, 21 CY     1       Truck, Flatbed     1       Water Pump, Diesel     1       Water Truck     1       Total Offsite Flatbed/Semi Trucks     8       Daily Concrete Mixer Truck - 8 CY     1		
Fuel Truck / Support Truck     1       Generator - Diesel     1       Grout Pump/Plant     1       Hydroseed Sprayer, Truck Mounted     1       Grader, H14     1       Pile Driver     1       Powder Truck     1       Scraper, Self-propelled, 21 CY     1       Truck, Flatbed     1       Water Pump, Diesel     1       Water Truck     1       Total Offsite Flatbed/Semi Trucks     8       Daily Concrete Mixer Truck - 8 CY     1	Front End Loader, Wheeled	
Grout Pump/Plant Hydroseed Sprayer, Truck Mounted Grader, H14 Pile Driver Pump Truck - Concrete Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck Welder and Generator Set Total Offsite Flatbed/Semi Trucks Baily Concrete Mixer Truck - 8 CY		1
Hydroseed Sprayer, Truck Mounted Grader, H14 Pile Driver Pump Truck - Concrete Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck Welder and Generator Set Total Offsite Flatbed/Semi Trucks Baily Concrete Mixer Truck - 8 CY	Generator - Diesel	1
Grader, H14 Pile Driver Pump Truck - Concrete Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck Welder and Generator Set 1 Total Offsite Flatbed/Semi Trucks 8 Daily Concrete Mixer Truck - 8 CY	Grout Pump/Plant	
Pile Driver       Pump Truck - Concrete       Powder Truck       Scraper, Self-propelled, 21 CY       Truck, Flatbed       Tunnel Rig (TBM)       Water Pump, Diesel       Water Truck       Welder and Generator Set       Total Offsite Flatbed/Semi Trucks       Baily Concrete Mixer Truck - 8 CY	Hydroseed Sprayer, Truck Mounted	
Pump Truck - Concrete         Powder Truck         Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Pump, Diesel         Water Truck         Welder and Generator Set         Total Offsite Flatbed/Semi Trucks         Baily Concrete Mixer Truck - 8 CY	Grader, H14	
Powder Truck       Scraper, Self-propelled, 21 CY       Truck, Flatbed       Tunnel Rig (TBM)       Water Pump, Diesel       Water Truck       Total Offsite Flatbed/Semi Trucks       Baily Concrete Mixer Truck - 8 CY	Pile Driver	
Scraper, Self-propelled, 21 CY         Truck, Flatbed         Tunnel Rig (TBM)         Water Pump, Diesel         Water Truck         Welder and Generator Set         Total Offsite Flatbed/Semi Trucks         8         Daily Concrete Mixer Truck - 8 CY	Pump Truck - Concrete	
Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck Welder and Generator Set Total Offsite Flatbed/Semi Trucks Baily Concrete Mixer Truck - 8 CY	Powder Truck	
Tunnel Rig (TBM) Water Pump, Diesel Water Truck Welder and Generator Set Total Offsite Flatbed/Semi Trucks Daily Concrete Mixer Truck - 8 CY	Scraper, Self-propelled, 21 CY	
Water Pump, Diesel         Water Truck         Welder and Generator Set         1         Total Offsite Flatbed/Semi Trucks         8         Daily Concrete Mixer Truck - 8 CY	Truck, Flatbed	
Water Truck Welder and Generator Set 1 Total Offsite Flatbed/Semi Trucks 8 Daily Concrete Mixer Truck - 8 CY	Tunnel Rig (TBM)	
Welder and Generator Set 1 Total Offsite Flatbed/Semi Trucks 8 Daily Concrete Mixer Truck - 8 CY	Water Pump, Diesel	
Total Offsite Flatbed/Semi Trucks 8 Daily Concrete Mixer Truck - 8 CY	Water Truck	
Daily Concrete Mixer Truck - 8 CY	Welder and Generator Set	1
Daily Concrete Mixer Truck - 8 CY		
	Total Offsite Flatbed/Semi Trucks	8
	Daily Concrete Mixer Truck - 8 CY	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	2
Equipment Operators	1
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	
Welder	1

Total Crew Size Monthly Labor Cost

8 \$107,200

Duration:	11.1	Months	48.0	Weeks	-	
CONSTANTS:	10	HR/DAY		216.25	HRS/MO	NTH
14.0 TURBINES & GENI SCHEDULE	ERATO	२ऽ				
14.1 & .2 Install Water	to Wire I	Package			4	EA
F	roductio	on Rate			50	DAYS/EA
C	Ouration				9.2	MONTHS
0	Continge	ncy			20	%
Final Duration	า	•			11.1	MONTHS
Final Duration	า				48.0	WEEKS

080473

1/21/2009

EQUIPMENT/TRUCKING OFF SITE FLATBED SEMIS

Assumptions:

Equipment: Crane, Welder, Air Compressor (tools), Support Truck, Generator, Semis. Installation Crew: 1 Welder, 2 Electricians, 1 Equip Opr., 1 Foreman, 2 Laborers, 1 Support Truck Driver.

## 25 Embed Spiral Case&Draft Tube

Client: Subject: Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

NDM

EQUIPMENT	Quantity
On Site	
Air Compressor	
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	1
Generator - Diesel	
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	1
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	1
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	3
Daily Concrete Mixer Truck - 8 CY	4
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	1
Driller	
Electricians	
Equipment Operators	
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	2
Welder	

Total Crew Size Monthly Labor Cost

7 \$79,600

Duration:	8.7	Months	37.5	Weeks	_		
CONSTANTS:	10	HR/DAY		216.25	HRS/MOI	NTH	
13.0 MACHINE HAI SCHEDULE	LL						
13.3-A Concrete	e Draft Tubes	(El41,El1	6)		4,500	CY	
	Productio	on Rate		(1 crew)	30	CY/DAY	
	Duration			roduction - ver		MONTHS	
	Continge	ncy	restri	cted work area	) 25	%	
Final Du	ration				8.7	MONTHS	

080473

1/21/2009

i mai Duration		0.7	MONTHO
Final Duration		37.5	WEEKS
EQUIPMENT/TRUCKING			
EQUIFMENT/TRUCKING			
OFFSITE TRUCKS		54	TOTAL WEIGHT, TONS
Assume 2lbs/ft of rebar/rockbolts; 12ft of rebar/c.y.	of conc;	20	TONS/TRUCK
1lbs of reinforcment/s.y. of shotcrete		3	# OF TRUCKS
CONCRETE TRUCKS		4,500	TOTAL VOLUME, CY
		8	CY/TRUCK
		563	# OF TRUCKS FOR TASK
		4	TRUCKS/DAY
CONCRETE PUMP TRUCKS	(15 TRUCKS)>	120	CY/DAY
	, ,	1	# OF TRUCKS

Assumptions: Process: Form, Pump, Finish.

Equipment: Concrete Trucks, Concrete Pump Truck, 1 Water Truck, 1 Support Truck. Crew: 1 Foreman, 2 Laborers, 1 Cement Finisher, 1 Water Truck Driver, 1 Support Driver, 1 CPT Driver.

## 26 Install Mech. Equip.

Client: Subject: Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Approved

Page Bу Вy By

NDM

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	1
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	1
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	2
Total Offsite Flatbed/Semi Trucks	5
Daily Concrete Miyer Truck 9 CV	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	
Equipment Operators	1
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	2
Steel Worker Foreman	
Truck Drivers	
Welder	2

Daily Concrete Mixer Truck - 8 CY Daily Semi Trailer Truck

Total Crew Size Monthly Labor Cost

9 \$128,600

Duration:	6.0	Months	26.0	Weeks	_	
CONSTANTS:	10	HR/DAY		216.25	HRS/MO	NTH
INSTALL MECHANICA	L EQUIP	MENT				
SCHEDULE						
13.8 96" Dia. Sph					4	EA
	Productio	n Rate			20	DAYS/EA
	Duration				3.7	MONTHS
	Continge	ncy			25	%
Final Duration	n				4.6	MONTHS
Final Duration	on				20.0	WEEKS
NA 350 Ton Brid	dge Crane	)			1.0	EA
	Productio	n Rate			24	DAYS/EA
	Duration				1.1	MONTHS
	Continge	ncy			25	%
Final Duration	on				1.4	MONTHS
Final Duratio	on				6.0	WEEKS
EQUIPMENT/TRUCKIN	IG					
OFFSITE FLATBED SE	MIS				1.0	UNITS/TRUCK
					5	# OF TRUCKS FOR TASK
					1	TRUCKS/DAY

080473

1/21/2009

Assumptions: Equipment: Crane, Welder, Air Compressor (tools), Support Truck, Generator, Semis.

Installation Crew: 2 Welders, 2 Steel Workers, 1 Equip Opr., 1 Foreman, 2 Laborers, 1 Support Truck Driver. Schedule: Activities are additive.

## 27 Install Elec. Equip.

Client: Subject: Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Project Date

NDM

080473 1/21/2009 Checked Approved

By

EQUIPMENT	Quantity
On Site	-
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	1
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	1
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	1
Total Offsite Flatbed/Semi Trucks	4
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	2
Equipment Operators	1
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	
Welder	1

Total Crew Size Monthly Labor Cost

8 \$107,200

### Duration: Months 6.0 26.0 Weeks

CONSTANTS: HR/DAY 216.25 HRS/MONTH 10

# INSTALL ELECTRICAL EQUIPMENT SCHEDULE

NA Install Electrical Equipment (1300 MW)	1,300	MW
Production Rate	60	MW/WEEK
Duration	5.0	MONTHS
Contingency	20	%
Final Duration	6.0	MONTHS
Final Duration	26.0	WEEKS

Assumptions: Equipment: Forklift, Welder, Air Compressor (tools), Support Truck, Generator. Installation Crew: 1 Welder, 2 Electricians, 1 Equip Opr., 1 Foreman, 2 Laborers, 1 Support Truck Driver.

## 28 Complete Concrete Work

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

NDM

EQUIPMENT Quantity On Site Air Compresso Backhoe / Front End Loader, Wheeled Backhoe, Tracked Chipper, Wood Compactor, Sheepsfoot, Self-Propelled Compactor, Vibratory, Self-Propelled Concrete Pump Crane - 40 Ton 1 Crane - 70 Ton Dozer, D5 Dozer, D6 Dozer, D8 Dozer, D10 Drill, Tracked Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton Dump Truck, Semi-Trailer Excavator, 325 Forklift, Rough Terrain Front End Loader, Tracked Front End Loader, Wheeled Fuel Truck / Support Truck 1 Generator - Diesel 1 Grout Pump/Plant Hydroseed Sprayer, Truck Mounted Grader, H14 Pile Driver Pump Truck - Concrete 1 Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck 1 Welder and Generator Set Total Offsite Flatbed/Semi Trucks 10 Daily Concrete Mixer Truck - 8 CY 13

Crew	Quantity	
Blaster		1
Carpenters		
Cement Finisher	2	
Driller		
Electricians		
Equipment Operators	1	
Grade Setter		
Foreman	1	
Labor Foreman		
Laborers	5	
Mechanics		
Painter		
Pile Driver		
Pipe Foreman		
Pipe Layer		
Plumber		
Rigger		
Survey/Rodmen	2	
Steel Worker	2	rebar
Steel Worker Foreman		
Truck Drivers	2	
Welder		

Total Crew Size Monthly Labor Cost

Daily Semi Trailer Truck

15 \$187,200

Duration: 9.3 Months 40.3 Weeks
---------------------------------

:	10	HR/DAY	216.25	HRS/MONTH
•	10	TINDAT	210.20	

080473

1/21/2009

<b>CONSTANTS:</b> 10 HR/DAY 216.25 H	HRS/MON	ITH
COMPLETE CONCRETE WORK (2ND STAGE) - MULTIPLE ITEMS		
SCHEDULE 13.3-D Machine Hall (El.9,El.19)	1,100	СҮ
Production Rate (1 crew)	100	CY/DAY
	0.5	MONTHS
Duration (Half Production - Detailed Finishing) Contingency	25	%
Final Duration	0.6	⁷⁰ MONTHS
Final Duration	2.8	WEEKS
13.3-E Machine Hall (El.19,El.21)	1,900	CY
Production Rate (1 crew)	1,900	CY/DAY
Duration (Half Production - Detailed Finishing)	0.9	MONTHS
Contingency	25	%
Final Duration	1.1	MONTHS
Final Duration	4.8	WEEKS
13.3-F Machine Hall Slab (El.38)	1,000	CY
Production Rate (1 crew)	100	CY/DAY
Duration (Half Production - Detailed Finishing)	0.5	MONTHS
Contingency	25	%
Final Duration	0.6	MONTHS
Final Duration	2.5	WEEKS
13.3-G Machine Hall Walls (El.9,El.18)	500	CY
Production Rate (1 crew)	100	CY/DAY
Duration (Half Production - Detailed Finishing)	0.2	MONTHS
Contingency	25	%
Final Duration	0.3	MONTHS
Final Duration	1.3	WEEKS
13.3-H Machine Hall Walls (El.18,El.85)	5,100	CY
Production Rate (1 crew)	100	CY/DAY
Duration (Half Production - Detailed Finishing)	2.4	MONTHS
Contingency	25	%
Final Duration	2.9	MONTHS
Final Duration	12.8	WEEKS
13.3-I Machine Hall Roof	2,600	CY
Production Rate (1 crew)	100	CY/DAY
Duration (Half Production - Detailed Finishing)	1.2	MONTHS
Contingency	25	%
Final Duration	1.5	MONTHS
Final Duration	6.5	WEEKS
15.3 Transformer Hall Concrete Works	3,900	СҮ
Production Rate (1 crew)	100	CY/DAY
Duration (Half Production - Detailed Finishing)	1.8	MONTHS
Contingency	25	%
Final Duration	2.3	MONTHS
Final Duration	9.8	WEEKS
EQUIPMENT/TRUCKING		
OFFSITE TRUCKS	193	TOTAL WEIGHT, TONS
Assume 2lbs/ft of rebar/rockbolts; 12ft of rebar/c.y. of conc;	20	TONS/TRUCK
1lbs of reinforcment/s.y. of shotcrete	10	# OF TRUCKS
CONCRETE TRUCKS	16,100	TOTAL VOLUME, CY
	8	CY/TRUCK
	2,013	# OF TRUCKS FOR TASK
	13	TRUCKS/DAY
· · · · · · · · · · · · · · · · · · ·		
CONCRETE PUMP TRUCKS (15 TRUCKS)>	120	CY/DAY
	1	# OF TRUCKS

### Assumptions:

Process: Form, Pump, Finish.

Equipment: Concrete Trucks, Concrete Pump Truck, 1 Water Truck, 1 Support Truck, Hoist Crane. Crew: 1 Foreman, 4 Laborers, 2 Cement Finishers, 2 Steel Workers, 1 Water Truck Driver, 1 Support Driver, 1 CPT Driver, 1 Crane Oper., 2 Survey

Client: Subject:

### 29 Struc. & Archit. Construct.

Client[.] Subject: Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Project	080473	Page
Date	1/21/2009	By
Checked		By
Approved		By

. NDM

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	1
Crane - 70 Ton	1
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	1
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	1
Dump Truck, Semi-Trailer	
Excavator, 325	1
Forklift, Rough Terrain	2
Front End Loader, Tracked	
Front End Loader, Wheeled	2
Fuel Truck / Support Truck	2
Generator - Diesel	2
Grout Pump/Plant	1
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	1
Water Truck	
Welder and Generator Set	1
	10
Total Offsite Flatbed/Semi Trucks	43
Daily Concrete Mixer Truck - 8 CY	3
Daily Semi Trailer Truck	18
<u> </u>	
Crew	Quantity
Blaster	2
Carpenters	4
Cement Finisher	
Driller	1
Electricians	<u> </u>
Equipment Operators	4
Grade Setter	
Foreman	2
Labor Foreman	
Laborers	5
Mechanics	1
Painter	2
Pile Driver	1

Laborers	5
Mechanics	1
Painter	2
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	2
Rigger	
Survey/Rodmen	2
Steel Worker	2
Steel Worker Foreman	
Truck Drivers	2
Welder	1
Total Crew Size	30
Monthly Labor Cost	\$390,100

### Duration: 13.1 Months 64.5 Weeks

CONSTANTS: 10 HR/DAY 216.25 HRS/MONTH

STRUCTURAL & ARCHITECTURAL CONSTRUCTION SCHEDULE		
NA Structural & Architectural Construction		
Machine Hall Volume	144,000	CY
Transformer Hall Volume	27,300	CY
Total Struc, & Arch, Const, Volume	171,300	CY
Production Rate	1,000	CY/DAY
Duration	7.9	MONTHS
Contingency	25	%
Final Duration	9.9	MONTHS
Final Duration	42.8	WEEKS
13.5 Elevator Shaft Construction	1,250	LF
Production Rate	50	LF/DAY
Duration	1.2	MONTHS
Contingency	25	%
Final Duration	1.4	MONTHS
Final Duration	6.3	WEEKS
13.6 Miscellaneous Metal Works - Machine Hall	0.3	WEEKS
Assumed Steel Weight	250	TONS
Production Rate	20	TONS/DAY
Duration	0.6	MONTHS
Contingency	25	%
Final Duration	0.7	MONTHS
Final Duration	3.1	WEEKS
NA Drainage Gallery Excavation - D&B	6,200	CY
D&B Production Rate	200	CY/DAY
Duration	1.4	MONTHS
Contingency	25	%
Final Duration	1.8	MONTHS
Final Duration	7.8	WEEKS
13.7 Drainage Gallery S&A Construction Volume	6,200	CY
Production Rate	1,000	CY/DAY
Duration	0.3	MONTHS
Contingency	25	%
Final Duration	0.4	MONTHS
Final Duration	1.6	WEEKS
13.6 Miscellaneous Steel - Transformer Hall		
Assumed Steel Weight	240	TONS
Production Rate	20	TONS/DAY
Duration	0.6	MONTHS
Contingency	25	%
Final Duration	0.7	MONTHS
Final Duration	3.0	WEEKS
EQUIPMENT/TRUCKING		
DUMP TRUCKS	6.200	TOTAL VOLUME, CY
	30	CY/TRUCK
	207	# OF TRUCKS FOR TASK
	7	LOADS/DAY (MAX.)
1	1.0	CYCLE TIME (HRS)
	1.0	REQUIRED # OF TRUCKS
		REGUILED # OF TROOKS
CONCRETE TRUCKS (Elevator Construction)	463	TOTAL VOLUME, CY
	463	CY/TRUCK
1	8 58	
		# OF TRUCKS FOR TASK
1	3	TRUCKS/DAY
		TOTAL MELOUIT TOUS
OFFSITE FLATBED SEMIS (MISC. METAL)	490	TOTAL WEIGHT, TONS
1	20	TONS/TRUCK
	25	# OF TRUCKS FOR TASK
	7	TRUCKS/DAY
1		
OFFSITE FLATBED SEMIS (STRUCT. & ARCH. WORK)	355	TOTAL WEIGHT, TONS
(assume 1 ton of materials per 500 CY of Volume)	20	TONS/TRUCK
1	18	# OF TRUCKS FOR TASK
	1	TRUCKS/DAY
SEMIS - DUMP	20	CY/TRUCK
	310	# OF TRUCKS FOR TASK
1	10	TRUCKS/DAY

Assumptions: Structural & Architectural work consists of interior walls (i.e. wood, alum., drywall, offices, restrooms, etc.) Excavation Then Haul Offsite

Excavation Their hadronsite Survey Control Structural, Architectural, & Misc. Metal Work: Equipment: Crane Hoist, Air Compressor, Generator, Flatbed Semis, Fork Lifts, Support Truck. Crew: 1 Equip. Oper., 2 Foremans, 4 Carpenters, 4 Laborers, 2 Painters, 2 Plumbers, 1 Welder, 2 Steel Workers.

Workers. Elevator & Drainage Gallery Construction: Process: Drill, Blast, Excavate, Crane Hoist, Load, Haul, Dump, Load, Haul offsite; Shotcrete. Equipment: Track Drill, Excavator, Crane, FE Loader, Dump Truck, FE Loader, Semis; Grout Pump, Support Truck, Water Pump. Crew: 1 Driller, 2 Blasters, 4 Equip Opr., 2 survey, 1 DT Driver; Shotecrete/Concrete: 2 Laborers, 1 Forman, 1 Support Driver. Schedule: Activities are additive.

## 31 Elec. and Mech. Mobe

Client:	Eagle Crest Energy	Project 080473	Page 1	
Subject:	Eagle Mountain Construction Schedule and Equipment	Date 1/21/2009	By NDM	
		Checked	Ву	
		Approved	Ву	

EQUIPMENT	Quantity
On Site	
Air Compressor	
Backhoe / Front End Loader, Wheeled	1
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	I
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	1
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	1
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	1
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	1
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	1
Tunnel Rig (TBM)	
Water Pump, Diesel	1
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	1
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantitu
	Quantity
Blaster	
Carpenters	2
Cement Finisher	
Driller	
Electricians	2
Equipment Operators	5
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	1
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	1
Welder	

Total Crew Size Monthly Labor Cost 15 \$195,100

NOTES: Mobilization to include installing field offices, preparing staging area, minor road grading, temporary utility connections, security fencing, bringing equipment to site, prepartion of equipment, and lighting

## 33 Complete Elec. Const.

Client:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Project Date Checked

Approved

1/21/2009

By

NDM

MONTHS

MONTHS

WEEKS

0.8

25 %

1.0

4.3

EQUIPMENT	Quantity
On Site	Quantity
	1
Air Compressor Backhoe / Front End Loader, Wheeled	1
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	1
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	1
Generator - Diesel	2
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	2
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	5
Daily Concrete Mixer Truck - 8 CY	-
Daily Semi Trailer Truck	

Crew	Quantity
	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	4
Equipment Operators	1
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	2
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	
Welder	

Total Crew Size Monthly Labor Cost

8 \$109,600

Duration:	13.4	Months	57.9	Weeks	=	
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	ITH
COMPLETE ELECTR SCHEDULE	ICAL COI	NSTRUCTIO	N			
NA Complete I	Electrical (	Construction				
	Machine	Hall Volume			144,000	CY
	Transform	ner Hall Volur	ne		27,300	CY
	Total Elec	ctircal Const.	Volume		171,300	CY
	Productio	n Rate			800	CY/DAY
	Duration				9.9	MONTHS
	Continger	псу			25	%
Final Durat	ion				12.4	MONTHS
Final Durat	ion				53.5	WEEKS
13.5 Cable Shat	t Electrica	I Constructio	n		1,300	LF
	Productio	n Rate			75	LF/DAY

080473

Assumptions: Completing electrical work consists of wiring lighting, power outlets, controls systems, IT requirments, etc. Equipment: Fork Lift, Air Compressor, Generator, Flatbed Trucks, Semis, Support Truck. Crew: 1 Equip. Oper., 4 Electricians, 1 Foreman, 2 Laborers.

Schedule: Activities are additive.

Final Duration

Final Duration

Duration

Contingency

## 34 Exc. Approach Channel Upper

Duration:

CONSTANTS:

Client:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

9.7

10

Approved

Months

HR/DAY

080473

1/21/2009

41.8

Weeks

216.25 HRS/MONTH

NDM

# OF TRUCKS FOR TASK

TRUCKS/DAY

3.763

40

EQUIPMENT Quantity On Site Air Compresso Backhoe / Front End Loader, Wheeled Backhoe, Trackeo Chipper, Wood Compactor, Sheepsfoot, Self-Propelled Compactor, Vibratory, Self-Propelled Concrete Pump Crane - 40 Ton Crane - 70 Ton Dozer, D5 Dozer, D6 Dozer, D8 2 Dozer, D10 Drill, Tracked 2 Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton 6 Dump Truck, Semi-Trailer Excavator, 325 1 Forklift, Rough Terrain Front End Loader, Tracked Front End Loader, Wheeled 2 Fuel Truck / Support Truck 1 Generator - Diesel Grout Pump/Plant Hydroseed Sprayer, Truck Mounted Grader, H14 Pile Driver Pump Truck - Concrete Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck 1 Welder and Generator Set

UPPER RESERVOIR INTAKE APPROACH CHANNEL EXCAVATION SCHEDULE	ON	
NA Excavate Approach Channel	376,250	СҮ
Excavator Hourly Production Rate	225	CY/HR
Assume: cycle time = 40 sec, 3.0 cy bucket, 8	3% eff.	
# of Excavators	1	
Production Rate	2.250	CY/DAY
Duration	7.7	MONTHS
Contingency	25	%
Final Duration	9.7	MONTHS
Final Duration	41.8	WEEKS
NA Approach Channel Rock Excavation (D&B) (20%)	75,250	CY
Production Rate (2 crew)	800	CY/DAY
Duration	4.3	MONTHS
Contingency	25	%
Final Duration	5.4	MONTHS
Final Duration	23.5	WEEKS
EQUIPMENT/TRUCKING		
DUMP TRUCKS	,	TOTAL VOLUME, CY
	30	CY/TRUCK
	12,542	
	75	LOADS/DAY (MAX.)
	0.75	CYCLE TIME (HRS)
	6	REQUIRED # OF TRUCKS
SEMIS	20	CY/TRUCK
	0 700	

### Assumptions:

dust control

40

Quantity

Δ

2

5

Standard Excavation Haul & Dump Onsite

Rock Excavation Haul Offsite

Survey Control

Drilling and blast rock sections (~20%) while excavator works concurrently, therefore use maximum. Upper Reservoir Approach Channel Excavation:

Process: Excavate, Load, Haul, Dump; Drill, Blast, Excavate, Load, Haul offsite.

Equipment: Track Drills, 1 Excavator, 2 Dozers, 2 FE Loaders, Dump Trucks, Semis, Water Truck, Support Truck.

Crew: 2 Drillers, 4 Blasters, 5 Equip Opr., 1 Laborer, 2 survey, 6 DT Drivers, 1 Foreman, 1 Water Truck Driver, 1 Support Driver.

Schedule: Activities are additive.

Foreman	1
Labor Foreman	
Laborers	2
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	7
Welder	

Total Offsite Flatbed/Semi Trucks

Daily Concrete Mixer Truck - 8 CY

Dailv Semi Trailer Truck

Crew

Blaster

Carpenters

Electricians Equipment Operators

Grade Setter

Cement Finisher Driller

Total Crew Size Monthly Labor Cost 23 \$270,000

## 35 Construct Upper Res Dams

Chent:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Approved

080473

1/21/2009

NDM

EQUIPMENT	Quantity	
On Site		
Air Compressor	2	Тоо
Backhoe / Front End Loader, Wheeled		
Backhoe, Tracked		
Chipper, Wood		
Compactor, Sheepsfoot, Self-Propelled		
Compactor, Vibratory, Self-Propelled	4	
Concrete Pump		
Crane - 40 Ton		
Crane - 70 Ton		
Dozer, D5	4	
Dozer, D6		
Dozer, D8		
Dozer, D10		
Drill, Tracked		
Dump Truck, End Dump, 15 Ton	5	
Dump Truck, Off-Highway, 34 Ton	4	
Dump Truck, Semi-Trailer		
Excavator, 325		
Forklift, Rough Terrain		
Front End Loader, Tracked		
Front End Loader, Wheeled	2	
Fuel Truck / Support Truck	2	
Generator - Diesel		
Grout Pump/Plant		
Hydroseed Sprayer, Truck Mounted		
Grader, H14	2	
Pile Driver		
Pump Truck - Concrete		
Powder Truck		
Scraper, Self-propelled, 21 CY		
Truck, Flatbed		
Tunnel Rig (TBM)		
Water Pump, Diesel		
Water Truck	2	
Welder and Generator Set		
Total Offsite Flatbed/Semi Trucks		
Daily Concrete Mixer Truck - 8 CV		

Crew	Quantity	
Blaster		
Carpenters	4	form work
Cement Finisher		
Driller		
Electricians		
Equipment Operators	12	
Grade Setter		
Foreman	2	
Labor Foreman		
Laborers	6	
Mechanics	1	
Painter		
Pile Driver		
Pipe Foreman		
Pipe Layer		
Plumber		
Rigger		
Survey/Rodmen	2	
Steel Worker		
Steel Worker Foreman		
Truck Drivers	11	
Welder		

Total Crew Size Monthly Labor Cost

Daily Concrete Mixer Truck - 8 CY Daily Semi Trailer Truck

38 \$464,700

Duration:	8.4	Months	36.4	Weeks	-	
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	ITH
4.0 UPPER RESER SCHEDULE	VOIR SADE	DLE DAMS				
4.1 South Si	addle Dam				218,400	CY
	Productic	n Rate			1.500	CY/DAY
	Duration				6.7	MONTHS
	Continge	ncv			25	%
Final Du					84	MONTHS
Final Du					36.4	WEEKS
4.2 West Sa	ddle Dam				72,100	CY
	Productio	n Rate			1,500	CY/DAY
	Duration				2.2	MONTHS
	Continge	ncy			25	%
Final Du					2.8	MONTHS
Final Du	ration				12.0	WEEKS
EQUIPMENT/TRUC DUMP TRUCKS (fo		material, 90%	6)			TOTAL VOLUME, CY
		(End	Dump 15 Tor	1)	15	CY/TRUCK
					,	# OF TRUCKS FOR TAS
					100	LOADS/DAY (MAX.)
(From proc	essed material	stockpile onsite,	to batch plan	t)	0.50 5	CYCLE TIME (HRS) REQUIRED # OF TRUCK
CONCRETE TRUC	KS (assume	10% of mate	rial)		29,050 8	TOTAL VOLUME, CY CY/TRUCK
					3,631 38	# OF TRUCKS FOR TAS TRUCKS/DAY
DUMP TRUCKS RO	CC MATERIA	AL.			290,500	TOTAL VOLUME, CY
		(End	Dump 34 Tor	1)	30	CY/TRUCK
					9,683	# OF TRUCKS FOR TAS
					100	LOADS/DAY (MAX.)
		(From batch pla	nt to dam site	e)	0.33	CYCLE TIME (HRS)
					4	REQUIRED # OF TRUCK

### Assumptions:

South and West dams will be constructed concurrently, therefore, equipment and labor is additive for this task. Survey Control

### Upper Reservoir Dams:

Process: Haul Materials, Mix Batch, Haul to Dam Site, Place, Spread, Vibrotory Compaction.

Equipment: Dump Trucks (15,34 ton), 2 FE Loaders, 4 Dozers, 2 Graders, 4 Compactors, Water Trucks, Support Trucks.

Crew: 12 Equip Opr., 4 Laborers, 4 Carpenters, 2 survey, 9 DT Drivers, 2 Foreman, 2 Water Truck Driver, 2 Support Driver, 1 Mechanics. Schedule: Activities are additive.

## 36 Move Unstable Soil LR

Client:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

12.7

Approved

Months

NDM

EQUIPMENT	Quantity
On Site	
Air Compressor	
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	2
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	5
Dump Truck, Semi-Trailer	
Excavator, 325	1
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	1
Generator - Diesel	
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	1
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	1
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	
Equipment Operators	6
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	4
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	6
Welder	

Total Crew Size Monthly Labor Cost

19 \$227,700

				-	
CONSTANTS:	10	HR/DAY	216.25	HRS/MON	ITH
MOVE UNSTABLE SCHEDULE	SOIL - LOV	VER RESERVOIF	2		
16.1 Platform	Excavation			661,000	CY
	Excavato	r Hourly Producti	on Rate	300	CY/HR
	Assume:	cycle time = 30 s	ec, 3.0 cy bucket, 8	33% eff.	
	# of Exca	vators		1	
	Productio	n Rate		3,000	CY/DAY
	Duration			10.2	MONTHS
	Continge	ncy		25	%
Final Du	ration			12.7	MONTHS
Final Du	ration			55.1	WEEKS
EQUIPMENT/TRUC	KING				
DUMP TRUCKS				330,500	TOTAL VOLUME, CY
(assume 50% move	d by trucks,	50% moved by e	quipment)	30	CY/TRUCK
				11,017	# OF TRUCKS FOR TASK
				100	LOADS/DAY (MAX.)
				0.50	CYCLE TIME (HRS)
				5	REQUIRED # OF TRUCKS

080473

1/21/2009

55.1 Weeks

Duration:

Assumptions: Standard Excavation Haul & Dump Onsite Survey Control

50% of material moved by Dozers & Loaders, other 50% loaded onto dump trucks and hauled to onsite location.

Move Unstable Soil Lower Reservoir:

Process: Excavate, Load, Haul, Dump.

Equipment: 1 Excavator, 1 Grader, 2 Dozers, 2 FE Loaders, Dump Trucks, Water Truck, Support Truck.

Crew: 6 Equip Opr., 3 Laborers, 2 survey, 5 DT Drivers, 1 Foreman, 1 Water Truck Driver, 1 Support Driver.

## 37 Line Upper Res.

Duration:

L CI	ient:
Sι	ubject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

3.7

Approved

Months

080473

1/21/2009

27.4

Weeks

NDM

EQUIPMENT Quantity On Site Air Compresso Backhoe / Front End Loader, Wheeled Backhoe, Tracked Chipper, Wood Compactor, Sheepsfoot, Self-Propelled Compactor, Vibratory, Self-Propelled 1 Concrete Pump Crane - 40 Ton Crane - 70 Ton Dozer, D5 Dozer, D6 Dozer, D8 1 Dozer, D10 Drill, Tracked Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton 10 Dump Truck, Semi-Trailer Excavator, 325 2 Forklift, Rough Terrain Front End Loader, Tracked Front End Loader, Wheeled 2 Fuel Truck / Support Truck 1 Generator - Diesel Grout Pump/Plant Hydroseed Sprayer, Truck Mounted Grader, H14 Pile Driver Pump Truck - Concrete Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck 1 Welder and Generator Set Total Offsite Flatbed/Semi Trucks

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	
Equipment Operators	6
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	11
Welder	

Daily Concrete Mixer Truck - 8 CY Daily Semi Trailer Truck

Total Crew Size Monthly Labor Cost

23 \$270,300

LINE UPPER RESERVOIR SCHEDULE NA Upper Reservoir Lining (Bottom 3rd of reservoir) Lining Depth 3 Total Lining Volume 385,587	FT					
Lining Depth 3	FT CY					
0	CY					
Total Liping Volume 385 587	-					
	CY/HR					
Excavator Hourly Production Rate 300						
Assume: cycle time = 30 sec, 3.0 cy bucket, 83% eff.						
# of Excavators 2						
Production Rate 6,000	CY/DAY					
Duration 3.0	MONTHS					
Contingency 25	%					
Final Duration 3.7	MONTHS					
Final Duration 16.1	WEEKS					
NA Compaction of Upper Reservoir Lining 385,587	SY					
Compactor Hourly Production Rate 847	CY/HR					
Assume: Drum Width = 84", Lift = 12", Passes = 6, V = 4	asses = 6, V = 4mph					
# of Compactors 1						
Production Rate 8,470	CY/DAY					
Duration 2.1	MONTHS					
Contingency 25	%					
Final Duration 2.6	MONTHS					
Final Duration 11.4	WEEKS					
EQUIPMENT/TRUCKING						
DUMP TRUCKS 385,587	TOTAL VOLUME, CY					
30	CY/TRUCK					
	# OF TRUCKS FOR TASK					
200	LOADS/DAY (MAX.)					
0.50	CYCLE TIME (HRS)					
10	REQUIRED # OF TRUCKS					

### Assumptions:

Standard Excavation Haul & Dump Onsite

Survey Control

Line Upper Reservoir:

Process: Excavate, Load, Haul, Dump, Compact.

Equipment: 2 Excavators, 1 Dozer, 1 Compactor, 2 FE Loaders, Dump Trucks, Water Truck, Support Truck. Crew: 6 Equip Opr., 2 Laborers, 10 DT Drivers, 1 Foreman, 1 Water Truck Driver, 1 Support Driver, 2 survey.

## 38 Line Lower Res.

Duration:

Client:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

5.3

Approved

Months

080473

1/21/2009

38.9

### Page Bу Вy

NDM

By

Weeks

EQUIPMENT Quantity On Site Air Compresso Backhoe / Front End Loader, Wheeled Backhoe, Tracked Chipper, Wood Compactor, Sheepsfoot, Self-Propelled Compactor, Vibratory, Self-Propelled 1 Concrete Pump Crane - 40 Ton Crane - 70 Ton Dozer, D5 Dozer, D6 Dozer, D8 1 Dozer, D10 Drill, Tracked Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton 5 Dump Truck, Semi-Trailer Excavator, 325 2 Forklift, Rough Terrain Front End Loader, Tracked Front End Loader, Wheeled 2 Fuel Truck / Support Truck 1 Generator - Diesel Grout Pump/Plant Hydroseed Sprayer, Truck Mounted Grader, H14 Pile Driver Pump Truck - Concrete Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck 1 Welder and Generator Set

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	
Equipment Operators	6
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	6
Welder	

Total Offsite Flatbed/Semi Trucks

Daily Concrete Mixer Truck - 8 CY Daily Semi Trailer Truck

Total Crew Size Monthly Labor Cost

18 \$217,100

					-			
CONSTANTS:	10	HR/DAY	2	216.25	HRS/MON	ITH		
LINE LOWER RESERVOIR								
SCHEDULE								
NA Lower Res	servoir Linir	546,920	SY					
	Lining De	pth			3	FT		
	Total Linir	ng Volume			546,920	CY		
	Excavator	Hourly Produce	ction Rate		300	CY/HR		
	Assume:	cycle time = 30	) sec, 3.0 cy b	ucket, 8	33% eff.			
	# of Exca	vators			2			
	Production	n Rate			6,000	CY/DAY		
	Duration				4.2	MONTHS		
	Continger	псу			25	%		
Final Dura	ition				5.3	MONTHS		
Final Dura					-	WEEKS		
NA Compaction of Upper Reservoir Lining					546,920	SY		
Compactor Hourly Production Rate					847	CY/HR		
	Assume: Drum Width = 84", Lift = 12", Pa				sses = 6, V = 4mph			
	# of Comp				1			
	Production	n Rate			8,470	CY/DAY		
	Duration				3.0	MONTHS		
	Continger	псу			25	%		
Final Dura	ition				3.7	MONTHS		
Final Dura	ition				16.1	WEEKS		
EQUIPMENT/TRUCKING								
DUMP TRUCKS	-				546,920	TOTAL VOLUME, CY		
					30	CY/TRUCK		
					18,231	# OF TRUCKS FOR TASK		
					200	LOADS/DAY (MAX.)		
					0.25	CYCLE TIME (HRS)		
					5	REQUIRED # OF TRUCKS		

### Assumptions:

Standard Excavation Haul & Dump Onsite

Survey Control Line Lower Reservoir:

Process: Excavate, Load, Haul, Dump, Compact.

Equipment: 2 Excavators, 1 Dozer, 1 Compactor, 2 FE Loaders, Dump Trucks, Water Truck, Support Truck. Crew: 6 Equip Opr., 2 Laborers, 5 DT Drivers, 1 Foreman, 1 Water Truck Driver, 1 Support Driver, 2 survey.

### **39 Construct IO Struc. Lower**

Ľ	Client:
	Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Approved

```
080473
1/21/2009
```

Ву Βv

NDM

Bv

EQUIPMENT Quantity On Site Air Compressor 1 Backhoe / Front End Loader, Wheeled Backhoe, Tracked Chipper, Wood Compactor, Sheepsfoot, Self-Propelled Compactor, Vibratory, Self-Propelled Concrete Pump Crane - 40 Ton Crane - 70 Ton Dozer, D5 1 Dozer, D6 Dozer, D8 1 Dozer, D10 Drill, Tracked 1 Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton 4 Dump Truck, Semi-Trailer xcavator, 325 1 Forklift, Rough Terrain Front End Loader, Tracked Front End Loader, Wheeled 1 Fuel Truck / Support Truck 1 Generator - Diesel Grout Pump/Plant Hydroseed Sprayer, Truck Mounted Grader, H14 Pile Driver Pump Truck - Concrete 2 Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck Welder and Generator Set Total Offsite Flatbed/Semi Trucks 9 Daily Concrete Mixer Truck - 8 CY 25

Crew	Quantity
Blaster	2
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	4
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	9
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	7
Welder	

### Total Crew Size Monthly Labor Cost

Daily Semi Trailer Truck

26 \$297,600

20

Duration:	4.1	Months	17.8	Weeks	=	
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	ІТН
CONSTRUCT LOWER	r I/O stru	CTURE				
16.3 Intake Stru	cture Exca	vation			13,900	CY
		r Hourly Proc			225	CY/HR
	Assume: # of Exca	cycle time =	40 sec, 3.0	cy bucket, 8	33% eff. 1	
	Productio				2,250	CY/DAY
	Duration				0.3	MONTHS
	Continge	ncy			25	%
Final Durat					0.4	MONTHS
Final Durat		E	D0D) (000)		1.5	WEEKS
NA Intake Stru	Productio		D&B) (20%	) (1 crew)	2,780 400	CY CY/DAY
	Duration	II Rale		(I Clew)	0.3	MONTHS
	Continge	ncv			25	%
Final Durat		- ,			0.4	MONTHS
Final Durat					1.7	WEEKS
16.2 Access Tu					180	CY
	Productio	n Rate		(1 crew)	200	CY/DAY
	Duration				0.0 25	MONTHS
Final Durat	Continge	ncy			25 0.1	% MONTHS
Final Durat					0.1	WEEKS
16.4 Intake Stru		rete			6,400	CY
	Productio	n Rate		(1 crew)	200	CY/DAY
	Duration				1.5	MONTHS
<b>F 1 B</b>	Continge	ncy			25	%
Final Durat					1.8	MONTHS
Final Durat 16.5 Trashracks		ale			8.0	WEEKS TONS
10.0 110311000		Unit Weight	of Steel		475	LBS/CF
	Area	onit trongin	0. 0100.		5,040	SQ FT
	Thicknes	S			6	INCHES
	Percent C				85	%
	Unit Weig				35.6	LBS/SQ FT
	Productio Duration	n Rate			200 1.2	SQ FT/DAY MONTHS
	Continger	~~~			25	%
Final Durat		ncy			1.5	⁷⁰ MONTHS
Final Durat					6.3	WEEKS
						-
EQUIPMENT/TRUCK DUMP TRUCKS	ING				13,900	TOTAL VOLUME, CY
					30	CY/TRUCK
					463	# OF TRUCKS FOR TASK
					75	LOADS/DAY (MAX.)
					0.50	CYCLE TIME (HRS)
					4	REQUIRED # OF TRUCKS
					170	TOTAL WEICHT TONS
OFFSITE TRUCKS Assume 2lbs/ft of reba	r/rockholts	12ft of rebar	/c v of con	<b>··</b>	179 20	TOTAL WEIGHT, TONS TONS/TRUCK
1lbs of reinforcment/s.			/c.y. 01 com	σ,	9	# OF TRUCKS
	,					
SEMIS					20	CY/TRUCK
					139	# OF TRUCKS FOR TASK
					20	TRUCKS/DAY
CONCRETE TRUCKS					6,580	TOTAL VOLUME, CY
CONCILLE INUCKS	,				6,580 8	CY/TRUCK
					823	# OF TRUCKS FOR TASK
					25	TRUCKS/DAY
CONCRETE PUMP T	RUCKS		(15 ]	rrucks)>		CY/DAY
					2	# OF TRUCKS

Assumptions: Standard Excavation Haul & Dump Onsite Rock Excavation Haul Offsite

Survey Control

Lower Reservoir I/O Structure:

Process: Excavate, Load, Haul, Dump; Drill, Blast, Excavate, Load, Haul offsite.

Equipment: Track Drill, 1 Excavator, 1 Dozers, 1 FE Loader, Dump Trucks, Semis, CP Trucks, Water Truck, Support Truck, Crane.

Crew: 1 Driller, 2 Blasters, 4 Equip Opr., 8 Laborers, 2 survey, 4 DT Drivers, 1 Foreman, 1 Water Truck Driver, 2 CPT Drivers, 1 Support Driver.

## 40 Construct IO Struc. Upper

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Approved

080473

1/21/2009

NDM

EQUIPMENT Quantity On Site Air Compresso Backhoe / Front End Loader, Wheeled Backhoe, Tracked Chipper, Wood Compactor, Sheepsfoot, Self-Propelled Compactor, Vibratory, Self-Propelled Concrete Pump Crane - 40 Ton Crane - 70 Ton 1 Dozer, D5 Dozer, D6 Dozer, D8 1 Dozer, D10 Drill, Tracked 1 Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton 5 Dump Truck, Semi-Trailer Excavator, 325 1 Forklift, Rough Terrain Front End Loader, Tracked Front End Loader, Wheeled 1 Fuel Truck / Support Truck 1 Generator - Diesel Grout Pump/Plant Hydroseed Sprayer, Truck Mounted Grader, H14 Pile Driver Pump Truck - Concrete 2 Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck 1 Welder and Generator Set

Crew	Quantity
Blaster	2
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	4
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	9
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	8
Welder	

Total Offsite Flatbed/Semi Trucks Daily Concrete Mixer Truck - 8 CY

Daily Semi Trailer Truck

Total Crew Size Monthly Labor Cost

27 \$308,300

25

20

Duration:	3.9	Months	16.8	Weeks	=	
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	ITH
	I/O STRU	CTURE				
4.3.1 Intake Struc	ture Exca	vation			12,000	СҮ
4.0.1 Indate Office		r Hourly Produ	uction Rate	e	299	CY/HR
		cycle time = 3				
	# of Exca	vators			1	
	Productio	on Rate			2,990	CY/DAY
	Duration				0.2	MONTHS
Final Duratio	Continge	ncy			25 0.2	% MONTHS
Final Duratio					1.0	WEEKS
NA Intake Struc		Excavation (D	0&B) (20%	)	2,400	CY
	Productio	n Rate	, (	(1 crew)	400	CY/DAY
	Duration				0.3	MONTHS
	Continge	ncy			25	%
Final Duratio					0.3	MONTHS
Final Duratio 4.3.2 Intake Struc		roto			1.5 6,400	WEEKS CY
4.3.2 IIIlake Struc	Productic			(1 crew)	200	CY/DAY
	Duration	in reale		(10000)	1.5	MONTHS
	Continge	ncy			25	%
Final Duration	on				1.8	MONTHS
Final Duration					8.0	WEEKS
16.5 Trashracks,					100	TONS
	Assumed Area	I Unit Weight o	of Steel		475	LBS/CF
	Thicknes	c			5,040 6	SQ FT INCHES
	Percent (				85	%
	Unit Weid				35.6	LBS/SQ FT
	Productio	on Rate			200	SQ FT/DAY
	Duration				1.2	MONTHS
	Continge	ncy			25	%
Final Duratio					1.5	MONTHS
Final Duration	on				6.3	WEEKS
EQUIPMENT/TRUCKIN	IG					
DUMP TRUCKS	-				12,000	TOTAL VOLUME, CY
					30	CY/TRUCK
					400	# OF TRUCKS FOR TASK
					100	LOADS/DAY (MAX.)
					0.50	CYCLE TIME (HRS)
					5	REQUIRED # OF TRUCKS
OFFSITE TRUCKS					177	TOTAL WEIGHT, TONS
Assume 2lbs/ft of rebar	/rockbolts	: 12ft of rebar/	c.v. of con	c:	20	TONS/TRUCK
1lbs of reinforcment/s.y				-,	9	# OF TRUCKS
SEMIS					20	CY/TRUCK
					120	# OF TRUCKS FOR TASK
					20	TRUCKS/DAY
CONCRETE TRUCKS					6,400	TOTAL VOLUME, CY
					8	CY/TRUCK
					800 25	# OF TRUCKS FOR TASK TRUCKS/DAY
l						
CONCRETE PUMP TR	UCKS		(15 1	RUCKS)>		CY/DAY
					2	# OF TRUCKS

### Assumptions:

Standard Excavation Haul & Dump Onsite

Rock Excavation Haul Offsite

Survey Control Upper Reservoir I/O Structure:

Process: Excavate, Load, Haul, Dump; Drill, Blast, Excavate, Load, Haul offsite.

Equipment: Track Drill, 1 Excavator, 1 Dozers, 1 FE Loader, Dump Trucks, Semis, CP Trucks, Water Truck, Support Truck, Crane.

Crew: 1 Driller, 2 Blasters, 4 Equip Opr., 8 Laborers, 2 survey, 5 DT Drivers, 1 Foreman, 1 Water Truck Driver, 2 CPT Drivers, 1 Support Driver.

Client: Subject:

## 41 Switchyard Exc.

Client: Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Approved

080473

1/21/2009

NDM

EQUIPMENT Quantity On Site Air Compresso Backhoe / Front End Loader, Wheeled Backhoe, Tracked Chipper, Wood Compactor, Sheepsfoot, Self-Propelled Compactor, Vibratory, Self-Propelled Concrete Pump Crane - 40 Ton Crane - 70 Ton Dozer, D5 1 Dozer, D6 Dozer, D8 Dozer, D10 Drill, Tracked Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton 5 Dump Truck, Semi-Trailer Excavator, 325 1 Forklift, Rough Terrain Front End Loader, Tracked Front End Loader, Wheeled 1 Fuel Truck / Support Truck 1 Generator - Diesel Grout Pump/Plant Hydroseed Sprayer, Truck Mounted Grader, H14 Pile Driver Pump Truck - Concrete Powder Truck Scraper, Self-propelled, 21 CY Fruck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck 1

Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	
Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Driller Electricians	
	3

Equipment Operators	3
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	3
Welder	

Total Crew Size Monthly Labor Cost

10 \$118,500

Duration:	3.1	Months	13.3	Weeks	=	
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	ITH
SWITCHYARD EXCAV	ATION					
NA Switchyard	Excavatio	n			107,860	CY
,	Excavatio	on Depth			5	FT
	Excavato	r Hourly Prod	uction Rate	е	299	CY/HR
	Assume:	cycle time = 3	30 sec, 3.0	cy bucket, 8	33% eff.	
	# of Exca	vators			1	
	Productio	n Rate			2,988	CY/DAY
	Duration				1.7	MONTHS
	Continge	ncy			25	%
Final Duration					2.1	MONTHS
Final Duration	-				9.0	WEEKS
NA Transfer Sta		0			20,370	
	Productio	n Rate			1,200	CY/DAY
	Duration				0.8	MONTHS
	Continge	ncy			25	%
Final Durati	0				1.0	MONTHS
Final Duration	on				4.2	WEEKS
EQUIPMENT/TRUCKI	NG					
DUMP TRUCKS					107,860	TOTAL VOLUME, CY
(Assume haul and dum	p onsite)				30	CY/TRUCK
					3,595	# OF TRUCKS FOR TASK
					100	LOADS/DAY (MAX.)
					0.50	CYCLE TIME (HRS)
					5	REQUIRED # OF TRUCKS

## Assumptions:

Standard Excavation Haul & Dump Onsite

Upper Reservoir I/O Structure:

Process: Excavate, Load, Haul, Dump, Grading.

Equipment: 1 Excavator, 1 Dozers, 1 FE Loader, Dump Trucks, Water Truck, Support Truck. Crew: 3 Equip Opr., 2 Laborers, 5 DT Drivers, 1 Foreman, 1 Water Truck Driver, 1 Support Driver. Schedule: Activities are additive.

## 42 Switchyard Foundations

Chent:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Bу Вy By

NDM

Page

080473 1/21/2009 Approved

EQUIPMENT Quantity On Site Air Compresso Backhoe / Front End Loader, Wheeled Backhoe, Tracked Chipper, Wood Compactor, Sheepsfoot, Self-Propelled 1 Compactor, Vibratory, Self-Propelled Concrete Pump Crane - 40 Ton Crane - 70 Ton Dozer, D5 1 Dozer, D6 Dozer, D8 Dozer, D10 Drill, Tracked 1 Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton 5 Dump Truck, Semi-Trailer Excavator, 325 Forklift, Rough Terrain Front End Loader, Tracked Front End Loader, Wheeled Fuel Truck / Support Truck 1 Generator - Diesel Grout Pump/Plant Hydroseed Sprayer, Truck Mounted Grader, H14 1 Pile Driver Pump Truck - Concrete 1 Powder Truck Scraper, Self-propelled, 21 CY Truck, Flatbed Tunnel Rig (TBM) Water Pump, Diesel Water Truck 1 Welder and Generator Set Total Offsite Flatbed/Semi Trucks

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	3
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	3
Welder	

Daily Concrete Mixer Truck - 8 CY

Daily Semi Trailer Truck

Total Crew Size Monthly Labor Cost

11 \$129,100

1

2

Duration:	4.1	Months	17.6	Weeks	=	
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	ітн
SWITCHYARD FOUN	DATIONS					
SCHEDULE	Foundatio		ire)			
NA Switchyard		ns (assume pe ons Area (assu		f oron)	27.500	SQ FT
	Area per	```	Jille 5% 0	i alea)	27,500	SQ FT
	Peir Depi				30	FT
	Peir Dian				1	FT
	Number				552	#
	Productio				10	" PEIRS/DAY
	Duration				2.6	MONTHS
	Continge	ncv			25	%
Final Durat					3.2	MONTHS
Final Durat					13.8	WEEKS
NA Gravel Bas	-	nt			10,185	CY
	Productio	n Rate			1,500	CY/DAY
	Duration				0.3	MONTHS
	Continge	ncy			25	%
Final Durat	ion				0.4	MONTHS
Final Durat	ion				1.7	WEEKS
NA Compaction	n of Gravel	Base (assume	e 3' thick)		10,185	CY
	Compact	or Hourly Prod	luction Ra	te	120	CY/HR
	Assume:	Drum Width =	50", Lift =	= 4", Passes	= 6, V = 4n	nph
	# of Com				1	
	Productio	n Rate			1,204	CY/DAY
	Duration				0.4	MONTHS
	Continge	ncy			25	%
Final Duration					0.5	MONTHS
Final Durat	ion				2.1	WEEKS
EQUIPMENT/TRUCKI	NG					
DUMP TRUCKS (grav	el base)				10,185	TOTAL VOLUME, CY
					30	CY/TRUCK
					340	# OF TRUCKS FOR TASK
					50	LOADS/DAY (MAX.)
					1.0	CYCLE TIME (HRS)
					5	REQUIRED # OF TRUCKS
OFFSITE TRUCKS					6	
	r/rool/bolto	10th of robor/			6 20	TOTAL WEIGHT, TONS TONS/TRUCK
Assume 2lbs/ft of reba 1lbs of reinforcment/s.			c.y. or con	iC,	20	# OF TRUCKS
TIDS OF TEILIIOTCITIETIUS.		ele			1	# OF TRUCKS
CONCRETE TRUCKS					482	TOTAL VOLUME, CY
					8	CY/TRUCK
					60	# OF TRUCKS FOR TASK
					2	TRUCKS/DAY
CONCRETE PUMP TH	RUCKS		(15	TRUCKS)>	120	CY/DAY
			(15		120	
					1	# OF TRUCKS

Process: Drill and Pour Peirs, Place Gravel Base, Compact Gravel Base.

Equipment: 1 Track Drill, 1 Dozer, 1 Grader, 1 Vibro. Compactor, Dump Trucks, Conc. Pump Truck, Water Truck, Support Truck.

Crew: 1 Driller, 3 Equip Opr., 2 Laborers, 5 DT Driver, 1 Foreman, 1 Water Truck Driver, 2 CPT Driver, 1 Support Driver.

Schedule: Activities are additive.

## 43 Switchyard Structures

Cile	
Sub	iect:

On Site

Dozer, D5 Dozer, D6 Dozer, D8 Dozer, D10 Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Approved

080473

1/21/2009

Page Bу Вy By

NDM

EQUIPMENT Quantity Air Compresso Backhoe / Front End Loader, Wheeled Backhoe, Tracked Chipper, Wood Compactor, Sheepsfoot, Self-Propelled Compactor, Vibratory, Self-Propelled Concrete Pump Crane - 40 Ton Crane - 70 Ton 1 Drill, Tracked Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton

Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	1
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	2
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	1
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	1
Total Offsite Flatbed/Semi Trucks	10
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	
Equipment Operators	2
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	2
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	2
Steel Worker Foreman	
Truck Drivers	
Welder	2

Total Crew Size Monthly Labor Cost

9 \$131,500

Duration:	1.5	Months	6.4	Weeks	=	
CONSTANTS:	10	HR/DAY		216.25	HRS/MOI	NTH
SWITCHYARD STRUC	CTURES					
NA Switchyard	Large Stru	ictures				
	Number of	of Structures			6	#
	Assumed	Structure Hei	ght		100	FT
	Productio	n Rate			50	FT/DAY
	Duration				0.6	MONTHS
	Continge	ncy			25	%
Final Durati	on				0.7	MONTHS
Final Durati	on				3.0	WEEKS
NA Switchyard	Small Stru	ictures				
	Number of	of Structures			6	#
	Assumed	Structure Hei	ght		30	FT
	Productio	n Rate			50	FT/DAY
	Duration				0.2	MONTHS
	Continge	ncy			25	%
Final Durati	on				0.2	MONTHS
Final Durati	on				0.9	WEEKS
15.5-C Switchyard	Fencing				3,200	LF
	Productio	n Rate			300	LF/DAY
	Duration				0.5	MONTHS
	Continge	ncy			15	%
Final Durati					0.6	MONTHS
Final Durati	on				2.5	WEEKS

Assumptions: Equipment: 1 Crane, 1 Flatbed Truck, 2 Support Trucks, 1 Forklift, Generator, Welder. Crew: 1 Crane Opr., 1 Equip. Opr., 2 Laborers, 2 Steel Workers, 1 Foreman, 2 Welders. Schedule: Activities are additive.

# 44 Trans. Line Foundations

Client:	Eagle Crest Energy	Project 080473	Page 1
Subject:	Eagle Mountain Construction Schedule and Equipment	Date 1/21/2009	By NDM
		Checked	By
		Approved	By

EQUIPMENT	Quantity
On Site	
Air Compressor	
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	1
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	1
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	1
Fuel Truck / Support Truck	1
Generator - Diesel	
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	1
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	24
Daily Concrete Mixer Truck - 8 CY	7
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	1
Electricians	
Equipment Operators	3
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	2
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	2
Steel Worker Foreman	
Truck Drivers	1
Welder	

10 \$131,700

		Approved			Бу Ву	
Duration:	4.6	Months	20.0	Weeks	_	
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	NTH
RANSMISSION LIN	NE FOUNDA	TIONS				
NA Transmis	sion Line Fo	Indations - C	ncrete			
INA Hansinis	Line Lend		JICIELE		10	MILES
		Structures/M	ile		8	#/MILE
		Structure			4	#/STRUCTURE
	Total # of				320	#
		d Length of Pe	eirs		50	FT
	Peir Dian				3	FT
	Total Vol	ume			4,189	CY
	Productio	n Rate			4	PEIRS/DAY
	Duration				3.7	MONTHS
	Continge	ncy			25	%
Final Dur					4.6	MONTHS
Final Dur	ation				20.0	WEEKS
NA Transmis	sion Line Fo	undations - St	eel			
	Total # of	Peirs			320	#
	Estimated	d Length of Pe	eirs		50	FT
	Peir Dian	neter			3	FT
	# of Bars	/Sq. ft			5	#/SQ FT
	Bar Size				6	#
	Bar Weig	ht Per Foot			1.5	LBS/FT
	Shear Re	inforcement E	8ar Size		4	#
	Shear Re	inforcement V	Veight Per	Foot	0.67	LBS/FT
	Total We	ght			475	TONS
QUIPMENT/TRUC						
CONCRETE TRUCK	S				4,189	TOTAL VOLUME, CY
					8	CY/TRUCK
					524	# OF TRUCKS FOR TAS
					7	TRUCKS/DAY
CONCRETE PUMP	TRUCKS		(15	TRUCKS)>	• 120	CY/DAY
					1	# OF TRUCKS
OFFSITE FLATBED	SEMIS (rein	forcement)			20	TONS/TRUCK
		ioroement)			20	# OF TRUCKS FOR TAS
					1	TRUCKS/DAY

Assumptions: Process: Drill Peirs, Place Steel, Pour Concrete, Finish Work. Equipment: 1 Tracked Drill, 1 Front End Loader, 1 Crane, 1 Flatbed Truck, 1 Support Truck, 1 Conc. Pump

Truck.

Crew: 3 Equip. Opr., 2 Laborers, 2 Steel Workers, 1 Foreman, 1 CPT Driver.

## 45 Trans. line stringing

Client:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Page By By . NDM 1/21/2009 Βv

4.0 17.2

MONTHS WEEKS

EQUIPMENT	Quantity
On Site	
Air Compressor	
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	2
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	1
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	2
Generator - Diesel	
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	1
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	
Equipment Operators	3
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	
Welder	

Total Crew Size Monthly Labor Cost 7 \$86,600

Duration:	4.0	Months	17.2	Weeks	

CONSTANTS: 10 HR/DAY 216.25 HRS/MONTH

### TRANSMISSION LINE STRINGING SCHEDULE NA Transmission Line Stringing Transmission Line Length 10 MILES # of Lines 8 # Sag Factor Total Line Length Production Rate 1.30 549,200 FT 8,000 FT/DAY Duration 3.2 MONTHS Contingency 25 %

Assumptions: Equipment: 2 Cranes, 1 Flatbed Truck, 2 Support Truck, 1 Forklift. Crew: 3 Equip. Opr., 3 Laborers, 1 Foreman.

Final Duration Final Duration

## 46 Trans. line structures

Client:	Eagle Crest Energy	Project 080473	Page 1	
Subject:	Eagle Mountain Construction Schedule and Equipment	Date 1/21/2009	By NDM	
		Checked	By	
		Approved	By	

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	2
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	1
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	2
Generator - Diesel	
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	1
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	2
Total Offsite Flatbed/Semi Trucks	160
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	2
•	•

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	
Equipment Operators	3
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	2
Steel Worker Foreman	1
Truck Drivers	
Welder	2

Total Crew Size Monthly Labor Cost

12 \$173,600

		Approved			Ву Ву	
Duration:	5.8	Months	25.0	Weeks	=	
CONSTANTS:	10	HR/DAY		216.25	HRS/MOI	NTH
TRANSMISSION LI SCHEDULE	NE STRUCT	URES				
NA Transmis						
	Line Len				10	MILES
		d Structures/Mi	ile		8	#/MILE
	Total # o	f Structures			80	#
	Assumed	Structure We	ight		40	TONS
	Total Ste	el Weight			3,200	TONS
	Productio	on Rate			0.8	STRUCTURES/DAY
	Duration				4.6	MONTHS
	Continge	ncy			25	%
Final Du	ration				5.8	MONTHS
Final Du	ration				25.0	WEEKS
EQUIPMENT/TRUC	KING					
OFFSITE FLATBED	-				20	TONS/TRUCK
					160	# OF TRUCKS FOR TASK
					2	TRUCKS/DAY

Assumptions: Process: Deliver Steel, Cut, Bolt, and Erect Steel Structure. Equipment: 2 Cranes, 1 Flatbed Truck, 2 Support Truck, 1 Forklift, 1 Air compressor, 2 Generator/Welder Set.

Crew: 3 Equip. Opr., 3 Laborers, 2 Steel Workers, 2 Welders, 1 Steel Foreman, 1 Foreman.

# 47 Inst. H2O Supply Pipe & RO S

Client:
Subject:

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Approved

Page By By . NDM By

EQUIPMENT	Quantity
On Site	
Air Compressor	
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	1
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	1
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	5
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	1
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	1
Fuel Truck / Support Truck	1
Generator - Diesel	
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	1
Total Offsite Flatbed/Semi Trucks	208
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantity
	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	
Equipment Operators	4
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	3
Mechanics	
Painter	
Pile Driver	
Pipe Foreman	1
Pipe Layer	2
Plumber	
Rigger	
Survey/Rodmen	2
Steel Worker	
Steel Worker Foreman	
Truck Drivers	6
Welder	

19 \$233,600

Duration:	6.7	Months	29.2	Weeks	=	
CONSTANTS:	10	HR/DAY		216.25	HRS/MON	ІТН
INSTALL WATER SUP SCHEDULE	PLY LINE					
NA Pipeline Exc	cavation					
	Excavatio				75,000	FT
		on Unit Volum			1.6	CY/FT
		30 Steel pipe		m, 3' Backf		21
		on Total Volur r Hourly Prod			120,000	LCY/HR
	# of Exca		uction Rate		200 1	LCT/HR
	Productio				2.000	CY/DAY
	Duration	initiate			2,000	MONTHS
	Continger	ncv			25	%
Final Durati		- ,			3.5	MONTHS
Final Durati	on				15.0	WEEKS
NA Pipeline Be			Backfill)		25,500	CY
	Productio	n Rate			1,000	CY/DAY
	Duration				1.2	MONTHS
	Continger	ncy			25	%
Final Durati					1.5	MONTHS
Final Durati Lag from Ex					6.4 2.0	WEEKS WEEKS
Maximum D					2.0 8.4	WEEKS
NA Pipeline Ins					75,000	FT
	Productio	n Rate			1,000	FT/DAY
	Duration				3.5	MONTHS
	Continger	ncy			25	%
Final Durati	on				4.3	MONTHS
Final Durati					18.8	WEEKS
Lag from Ex					4.0	WEEKS
Maximum D					22.8	WEEKS
NA Compaction					102,000 120	CY CY/HR
		or Hourly Pro Drum Width =				
	# of Com		- 50 , Lint -	+,1 00000	- 0, v - 41	ipii
	Productio				1.204	CY/DAY
	Duration				3.9	MONTHS
	Continger	ncy			25	%
Final Durati	on				4.9	MONTHS
Final Durati	on				21.2	WEEKS
Lag from Ins					4.0	WEEKS
Maximum D	uration (in	cl. this lag + i	nstall lag)		29.2	WEEKS
EQUIPMENT/TRUCKI	NG					
DUMP TRUCKS (bedd		al onsite)			25,500	TOTAL VOLUME, CY
(Assume bedding mate	rial is 25%	of backfill)			15	CY/TRUCK
					1,700	# OF TRUCKS FOR TASK
					80	LOADS/DAY (MAX.)
					0.50	CYCLE TIME (HRS)
					5	REQUIRED # OF TRUCKS
OFFSITE SEMIS (pipe					360	LF/TRUCK
(Assume 40' sticks, 9 p	er truck)				208	# OF TRUCKS FOR TASK
					3	TRUCKS/DAY

Assumptions: Upper Reservoir I/O Structure:

Upper Reservoir I/O Structure: Process: Excavate, Place Bedding, Install Pipe, Backfill, Compact. Equipment: 1 Excavator, 1 Dozers, 1 FE Loader, 1 Sheepsfoot Compactor, Dump Trucks, Water Truck, Support Truck, Welder. Crew: 4 Equip Opr., 2 Laborers, 5 DT Drivers, 1 Foreman, 1 Water Truck Driver, 1 Support Driver, 1 Pipe Forman, 2 Pipe Layers, 2 Survey. Schedule: Activities are additive.

## **48 Reservoir Filling**

Client: Subject: Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

48.0

Approved

Months

Page Bу Вy By

NDM

EQUIPMENT	Quantity
On Site	
Air Compressor	
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	1
Generator - Diesel	
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	
Equipment Operators	1
Grade Setter	
Foreman	
Labor Foreman	
Laborers	1
Mechanics	1
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	
Welder	

Total Crew Size Monthly Labor Cost 3 \$38,000

CONSTANTS: HR/DAY 216.25 HRS/MONTH 20 RESERVOIR FILLING SCHEDULE NA Reservoir Filling Reservoirs Active Storage 17,700 AC-FT Upper Reservoir Inactive Storage 2,300 AC-FT Lower Reservoir Inactive Storage Total Storage AC-FT 4,200 24,200 AC-FT

080473

1/21/2009

207.6 Weeks

Annual Seepage	1,628	AC-FT
Annual Evaporation	1,763	AC-FT
Pumping Rate	6,000	GPM
Final Duration (From Reservoir Filling Calculations, attached)	48.0	MONTHS
Final Duration	207.6	WEEKS

Duration:

Assumptions: Equipment: Support Truck. Crew: 1 Equip Opr., 1 Laborer, 1 Mechanic.

## 49 U 1 START

Clier	nt:
Subj	ect:

Ba

Backhoe, Tracked Chipper, Wood

Concrete Pump

Crane - 40 Ton Crane - 70 Ton Dozer, D5 Dozer, D6 Dozer, D8 Dozer, D10 Drill, Tracked

Compactor, Sheepsfoot, Self-Propelled Compactor, Vibratory, Self-Propelled

Dump Truck, End Dump, 15 Ton Dump Truck, Off-Highway, 34 Ton Dump Truck, Semi-Trailer

Client:	Eagle Crest Energy			Project	080473		Page	1
Subject:	Eagle Mountain Construction Schedule and Equipment			Date	1/21/2009		Ву	NDN
				Checked			By	
				Approved			By	
EQUIPMENT	Quantity	Duration:	3.1	Months	13.4	Weeks	_	
On Site							-	
Air Compressor	1	CONSTANTS:	10	HR/DAY		216.25	HRS/MON	TH
Backhoe / Front End Loader, Wheeled								

UNIT 1 START-UP

Assumptions: Process: Start-up involves inspections and testing of all electrical and mechanical equipment prior to unit initiation.

. NDM

Equipment: Air Compressor, Generator. Crew: 3 Electricians, 3 Mechanics, 1 Foreman.

Total Crew Size	
Monthly Labor Cost	

7 \$101,500

Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	
Crew	Quantity
Blaster	
Carpoptors	

Carpenters	
Cement Finisher	
Driller	
Electricians	3
Equipment Operators	
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	
Mechanics	3
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	
Welder	

# **51 U 2 START**

Client:
Client: Subject:

	Eagle Crest Energy	Project	080473	Page	1
et:	Eagle Mountain Construction Schedule and Equipment	Date	1/21/2009	Ву	NDM
		Checked		By	
		Approved		By	

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	3
Equipment Operators	
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	
Mechanics	3
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	
Welder	

Total Crew Size Monthly Labor Cost

7 \$101,500

### Duration: Months 12.0 Weeks 2.8

CONSTANTS: 10 HR/DAY

216.25 HRS/MONTH

# UNIT 2 START-UP

Assumptions: Process: Start-up involves inspections and testing of all electrical and mechanical equipment prior to unit initiation.

Equipment: Air Compressor, Generator. Crew: 3 Electricians, 3 Mechanics, 1 Foreman.

## **53 U 3 START**

Client:	
Subject:	

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	3
Equipment Operators	
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	
Mechanics	3
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	
Welder	

Total Crew Size Monthly Labor Cost 7 \$101,500

Months 12.0 Weeks Duration: 2.8 CONSTANTS:

Project Date Checked

Approved

10 HR/DAY

216.25 HRS/MONTH

Page By By

Βv

. NDM

UNIT 3 START-UP

Eagle Crest Energy Eagle Mountain Construction Schedule and Equipment

Assumptions: Process: Start-up involves inspections and testing of all electrical and mechanical equipment prior to unit initiation.

080473 1/21/2009

Equipment: Air Compressor, Generator. Crew: 3 Electricians, 3 Mechanics, 1 Foreman.

# **55 U 4 START**

C	lie	nt:		
Sı	ub	iec	t:	

nt:	Eagle Crest Energy	Project	080473	Page	1
ject:	Eagle Mountain Construction Schedule and Equipment	Date	1/21/2009	Ву	NDM
		Checked		By	
		Approved		By	

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	3
Equipment Operators	
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	
Mechanics	3
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	
Truck Drivers	
Welder	

Total Crew Size Monthly Labor Cost

7 \$101,500

### Duration: Months 12.0 Weeks 2.8

CONSTANTS: 10 HR/DAY 216.25 HRS/MONTH

# UNIT 4 START-UP

Assumptions: Process: Start-up involves inspections and testing of all electrical and mechanical equipment prior to unit initiation.

Equipment: Air Compressor, Generator. Crew: 3 Electricians, 3 Mechanics, 1 Foreman.

## **57 FINSIH PROJECT**

Client: Subject:	Eagle Crest Energy Eagle Mountain Constr	uction Schedule and Equipment		Project Date Checked	080473 1/21/2009	1	Page By By	1 NDM	
EQUIPMENT	Quantity	Duration:	2.8	Approved Months	12.0	Weeks	By		

EQUIPMENT	Quantity
On Site	
Air Compressor	1
Backhoe / Front End Loader, Wheeled	
Backhoe, Tracked	
Chipper, Wood	
Compactor, Sheepsfoot, Self-Propelled	
Compactor, Vibratory, Self-Propelled	
Concrete Pump	
Crane - 40 Ton	
Crane - 70 Ton	
Dozer, D5	
Dozer, D6	
Dozer, D8	
Dozer, D10	
Drill, Tracked	
Dump Truck, End Dump, 15 Ton	
Dump Truck, Off-Highway, 34 Ton	
Dump Truck, Semi-Trailer	
Excavator, 325	
Forklift, Rough Terrain	
Front End Loader, Tracked	
Front End Loader, Wheeled	
Fuel Truck / Support Truck	3
Generator - Diesel	1
Grout Pump/Plant	
Hydroseed Sprayer, Truck Mounted	
Grader, H14	
Pile Driver	
Pump Truck - Concrete	
Powder Truck	
Scraper, Self-propelled, 21 CY	
Truck, Flatbed	
Tunnel Rig (TBM)	
Water Pump, Diesel	
Water Truck	
Welder and Generator Set	
Total Offsite Flatbed/Semi Trucks	
Daily Concrete Mixer Truck - 8 CY	
Daily Semi Trailer Truck	
Daily Geni Haller Huck	

Crew	Quantity
Blaster	
Carpenters	
Cement Finisher	
Driller	
Electricians	3
Equipment Operators	
Grade Setter	
Foreman	1
Labor Foreman	
Laborers	2
Mechanics	3
Painter	
Pile Driver	
Pipe Foreman	
Pipe Layer	
Plumber	
Rigger	
Survey/Rodmen	
Steel Worker	
Steel Worker Foreman	1
Truck Drivers	
Welder	

Total Crew Size Monthly Labor Cost

10 \$140,700

CONSTANTS: 10 HR/DAY 216.25 HRS/MONTH

## FINISH PROJECT

## Assumptions:

Finish Project involves final inspections and testing of all major electrical and mechanical equipment, final tunnel and I/O structures inspections, and all other ancillary structures and equipment inspections and testing. Equipment: 3 Support Trucks, Air Compressor, Generator. Crew: 3 Electricians, 3 Mechanics, 1 Steel Worker Foreman, 2 Laborers, 1 Foreman.

### GEI Consultants, Inc. 080473 Eagle Mountain Pumped Storage Project Construction Schedule & Excavation Advancement Rates 1/20/2009 NDM

TBM Advancement Rates - Lookup Table						
Type A	120	ft/day				
Туре В	95	ft/day				
Type C	45	ft/day				

D&B Advancement Rates - Lookup Table						
D&B Rate Reduction Factor (%) = 25						
Туре А	37	ft/day				
Туре В	32	ft/day				
Туре С	17	ft/day				

## Upper Pressure Tunnel

Begin Sta. (ft)	End Sta. (ft)	Length (ft)	Rock Type (A, B, C)	Geologic Rock Description	Excavation Method (TBM, D&B)	Advancement Rate (ft/day)	Duration (days)	Cummulative Duration (days)
0	500	500	В	Granite	TBM	95	5	5
500	1500	1000	С	Quartzite	TBM	45	22	27
1500	2500	1000	С	Schistose meta-arkose	TBM	45	22	50
2500	3000	500	С	Quartzite	TBM	45	11	61
3000	4000	1000	С	Schistose meta-arkose	TBM	45	22	83
	Total =	4000 ft				Total =	83	16.7 weeks
	Contingency (%) =							
		104	20.8 weeks					

Original Construc	tion Sc	hedule E	stimate
Durat	ion =	22.2	weeks

Length =	4000	ft	
Advancement Rate =	36	ft/day	

Calc. Advancement Rate = 39 ft/day

Begin Sta. (ft)	End Sta. (ft)	Length (ft)	Rock Type (A, B, C)	Geologic Rock Description	Excavation Method (TBM, D&B)	Advancement Rate (ft/day)	Duration (days)	Cummulative Duration (days)	
0	300	300	В	Granite	D&B	32	9	9	
300	600	300	В	Granite	D&B	32	9	19	
600	900	300	В	Granite	D&B	32	9	28	
900	1200	300	С	Schistose meta-arkose	D&B	17	18	46	
1200	1398	198	С	Schistose meta-arkose	D&B	17	12	58	
	Total =	1398 ft				Total =	58	11.6 weeks	
					(	Contingency (%) =	50		
				Estima	ted Total Constr	uction Duration =	87	17.4 weeks	Calc.

Original Construction Sc	hedule E	stimate
Duration =	39.8	weeks
Length -	1308	ft

Length =	1398	ft
Advancement Rate =	7	ft/day

Calc. Advancement Rate = 16 ft/day

## Lower Pressure Tunnel

Begin Sta. (ft)	End Sta. (ft)	Length (ft)	Rock Type (A, B, C)	Geologic Rock Description	Excavation Method (TBM, D&B)	Advancement Rate (ft/day)	Duration (days)	Cummulative Duration (days)
0	200	200	С	Granite	TBM	45	4	4
200	500	300	С	Quartz Monzonite	TBM	45	7	11
500	1000	500	С	Granite	TBM	45	11	22
1000	1200	200	С	Schistose meta-arkose	TBM	45	4	27
1200	1560	360	С	Schistose meta-arkose	TBM	45	8	35
	Total =	1560 ft				Total =	35	7 weeks
Contingency (%) =						25		
	Estimated Total Construction Duration							8.7 weeks

Original Construction Schedule Estim	ate
--------------------------------------	-----

Duration =	32.6	weeks
Length =	1560	ft
Advancement Rate =	10	ft/day

Calc. Advancement Rate = 36 ft/day

### GEI Consultants, Inc. 080473 Eagle Mountain Pumped Storage Project Construction Schedule & Excavation Advancement Rates 1/20/2009 NDM

## Penstocks & Draft Tubes

Begin Sta. (ft)	End Sta. (ft)	Length (ft)	Rock Type (A, B, C)	Geologic Rock Description	Excavation Method (TBM, D&B)	Advancement Rate (ft/day)	Duration (days)	Cummulative Duration (days)
0	350	350	С	Granite	D&B	17	21	21
350	850	500	С	Granite	D&B	17	30	51
850	1200	350	С	Granite	D&B	17	21	72
1200	1200	0	С	-	D&B	17	0	72
1200	1200	0	С	-	D&B	17	0	72
	Total =	1200 ft				Total =	72	14.4 weeks
	Contingency (%) =						50	
	Estimated Total Construction Duration =							21.6 weeks

Original Construction Sc	hedule E	stimate
Duration =	22.6	weeks
Length =	1200	ft
Advancement Rate =	11	ft/day

Calc. Advancement Rate = 11 ft/day

## Tailrace Tunnel

Begin Sta. (ft)	End Sta. (ft)	Length (ft)	Rock Type (A, B, C)	Geologic Rock Description	Excavation Method (TBM, D&B)	Advancement Rate (ft/day)	Duration (days)	Cummulative Duration (days)
0	600	600	В	Granite	TBM	95	6	6
600	2500	1900	С	Quartz Monzonite	TBM	45	42	49
2500	4000	1500	В	Granite	TBM	95	16	64
4000	5000	1000	В	Schistose meta-arkose	TBM	95	11	75
5000	6835	1835	С	Schistose meta-arkose	TBM	45	41	116
	Total =	6835 ft				Total =	116	23.2 weeks
					(	Contingency (%) =	25	
				Estima	ted Total Constr	uction Duration =	145	29 weeks

Original Construction Sc	hedule E	stimate
Duration =	31.2	weeks
Length =	6835	ft
Advancement Rate =	44	ft/day

Calc. Advancement Rate = 47 ft/day

## Access Tunnel

Begin Sta. (ft)	End Sta. (ft)	Length (ft)	Rock Type (A, B, C)	Geologic Rock Description	Excavation Method (TBM, D&B)	Advancement Rate (ft/day)	Duration (days)	Cummulative Duration (days)
0	500	500	В	Granite	TBM	95	5	5
500	2000	1500	С	Quartz Monzonite	TBM	45	33	39
2000	4000	2000	С	Granite	TBM	45	44	83
4000	4500	500	В	Schistose meta-arkose	TBM	95	5	88
4500	6625	2125	С	Schistose meta-arkose	TBM	45	47	136
	Total =	6625 ft				Total =	136	27.2 weeks
						Contingency (%) =	25	
				Estima	ted Total Constr	ruction Duration =	169	33.9 weeks

### Original Construction Schedule Estimate Duration = 48.6 weeks

Duration -	40.0	weeks
Length =	6625	ft
Advancement Rate =	27	ft/day

Calc. Advancement Rate = 39 ft/day

### Cable Shaft

Begin Sta. (ft)	End Sta. (ft)	Length (ft)	Rock Type (A, B, C)	Geologic Rock Description	Excavation Method (TBM, D&B)	Advancement Rate (ft/day)	Duration (days)	Cummulative Duration (days)
0	500	500	В	Granite	D&B	32	16	16
500	1000	500	В	Quartz Monzonite	D&B	32	16	31
1000	1500	500	В	Granite	D&B	32	16	47
1500	2010	510	С	Schistose meta-arkose	D&B	17	30	77
2010	2010	0	С	-	D&B	17	0	77
	Total =	2010 ft				Total =	77	15.5 weeks
						Contingency (%) =	50	
		116	23.3 weeks					

Original Construction Sc	hedule E	stimate
Duration =	26	weeks
Length =	2010	ft
Advancement Rate =	15	ft/day

Calc. Advancement Rate = 17 ft/day

## GEI Consultants, Inc.

080473 Eagle Mountain Pumped Storage Project

**Tunnel Boring Maching Advancement Rates** 

1/20/2009

NDM

		Averag	e Advancment Rate	120	ft/day	Franklar	1
		St	d. Dev. (rounded) =	50	ft/day	Equation	
Assumptions:		Туре	A (std. TBM Exc.) =	120	ft/day	Average Value	
Work days/week:	5	Type B	(CIP Liner Reg'd) =	95	ft/day	Average Value - (1/2) Std. Dev.	
Work Hours/Day:	20	Type C (Diff. E	xc w/ Conc. Liner) =	45	ft/day	Average Value - (1.5) Std. Dev.	
Diameter (ft)	Rock Type	Advancement Rate	Units	Advance ment Rate (ft/day)		Source	
16	A - Std. TBM Exc.	225	m/week	148		t MacDonald Tunnel Estimating Databas	
16	B - CIP Liner	195	m/week	128	Appendix	D of VLHC in Northern Illinios, Fermi Nat	ional Accelerator Labs
16	C - Difficult Exc. Conc Liner	102	m/week	67			
NA	NA	16	m/day	52	http://www	r-project.slac.stanford.edu/lc/local/docum	entation/pdf/TBM-
NA	Limestone	8.8	ft/hr	176	Peter J. Ta	arkoy, Predicting TBM Penetration Rates	in Selected Rock
	Shale & Siltstone	9.5	ft/hr	190		jure 3, Plot of group averages, 1973.	
	Sandstone	11.2	ft/hr	224	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	
	Orthoquartzite	5.2	ft/hr	104			
	Quartzite	3.6	ft/hr	72			
NA	Schist	3.5	ft/hr	70			
	1						
						volving Robbins Equipment reported by	TunnelBuilder.com,
11.5	Sandstone	55.0	m/day	180	Bolivia, Mi		
16.2	Hardrock	28.8	m/day	94	China, Sh		
13.3	NA	39.1	m/day	128	Ecuador, I		
32.8	Hardrock	30.0	m/day	98		and, Manapouri	
18.7	NA	38.0	m/day	125	Peru, Chir		
18.2	Limestone	57.2	m/day	188		ates, Illinios	
10.4	Sandstone, shale	58.1	m/day	191	United Sta	ates, Colorado, Plateau Creek	
11	Sandstones	50	ft/day	50	Jacobs As	sociates. Beatriz Reservoir Intake Tunne	l, Tunnel Feasibility
NA	Quartzite	20	m/day	66	EM 1110-2	2-2901, May 30, 1997, Low values used (	of Drilling Rate Index
NA	Basalt	30	m/day	98		en in Table C-10.	0
NA	Gneiss	30	m/day	98			
NA	Mica Gneiss/Coarse Granite	30	m/day	98			
NA	Schist/Phyllite	35	m/day	115			
NA	Med/Fine Granite	30	m/day	98			
NA	Limestone	50	m/day	164			
NA	Shale	55	m/day	180			
NA	Sandstone	45	m/day	148	1		
NA	Siltstone	60	m/day	197			

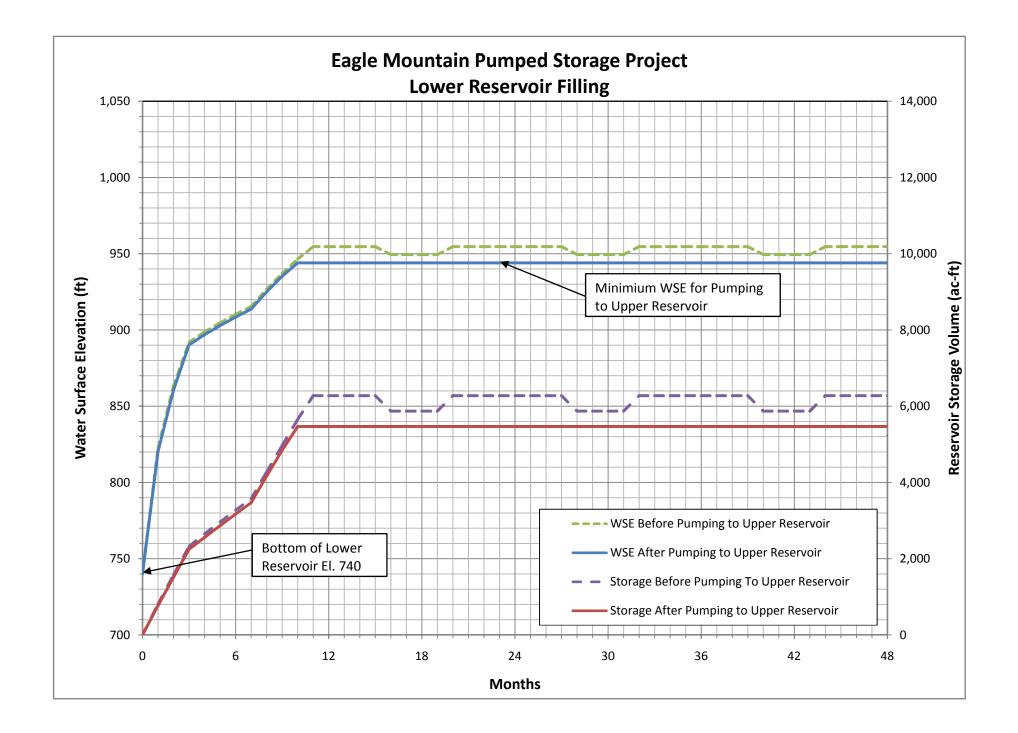
## PROJECT FEATURES & COSTS

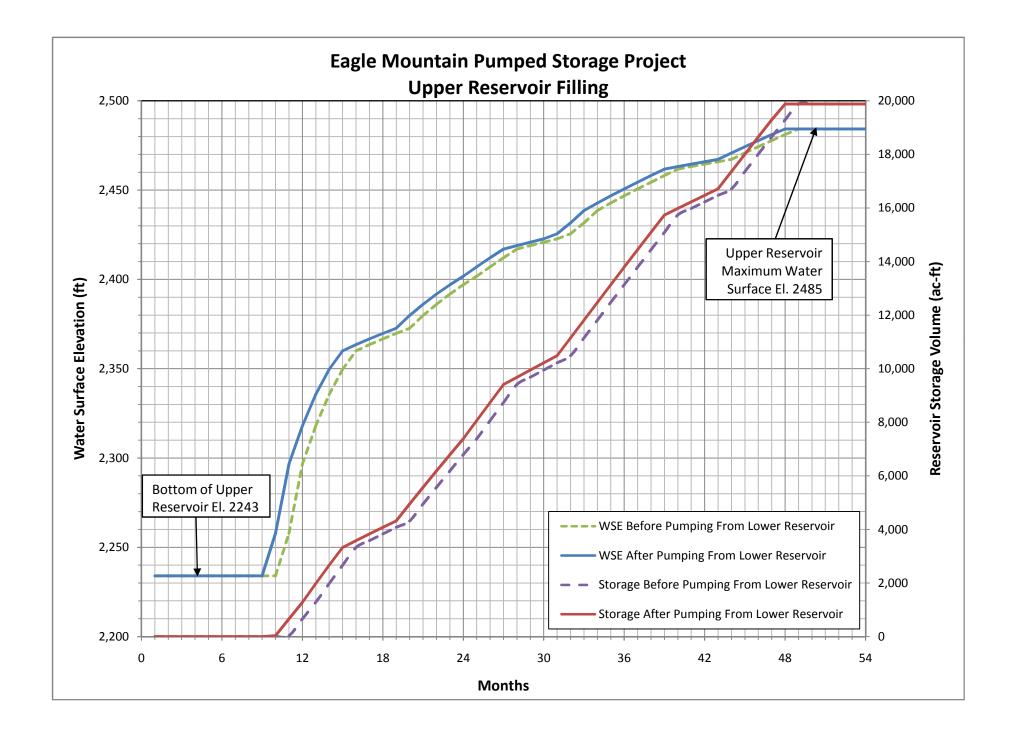
ltem	& COSTS Description	Unit	Quantity	Unit Cost	Cost	1
item	Description	Onic	quantity	oniccosc	COSI	
1	CONSTRUCTION AND ACCESS ROADS					
	1.1 Construction Road to Saddle Dams* 1.2 Road from South Dam to Intake Platform*	LF	13,800	\$95 \$95	1,306,800 170,500	
	1.3 Road from intake platform down to Channel	LF LF	1,800 2,000	\$95 \$95	189,400	
	1.4 Road from South Dam to Power Tunnel Portal Const	IF	10,100	\$95 \$95 \$95	956,400	
	1.5 Extension to Cable, Elevator Shafts & Surge Tank 1.5 Access road to Lower Inlet Platform	LF LF	4,400 4,000	\$95	416,700 378,800	
	1.6 Inlet Platform Down to Channel	LF	3,000	\$95 \$95	284,100	
	* Existing unpaved mining road		-,			3,702,700
2	2.1 To Machine Hall Roof	CY	2,900	\$208	603,200	
	2.2 To Transformer Hall Roof	CY	1,700	\$208	353,600	
	2.3 To Power Shaft Construction 2.4 To Tailrace Surge Tank Construction Access	CY CY	8,500	\$208	1,768,000 395,200	
	2.4 To Tailrace Surge Tank Construction Access	CY	1,900	\$208	395,200	3.120.000
3	ACCESS TUNNELS					3,120,000
	3.1 Main Access Tunnel (6628')					
	3.1.1 Excavation	CY	192,500	\$208	40,040,000	
	3.1.2 Prelining Shotcrete( w/wire-mesh) 3.1.3 Invert concrete	SY CY	20,600 6,900	\$109 \$500	2,245,400 3,450,000	
	3.1.4 Rock anchors (15' long)	EA	5,000	\$300	1,500,000	
	3.2 Drainage Gallery Access Tunnel (L=80')	~~~		<b>\$</b> 000	100,100	
	3.2.1 Excavation 3.2.2 Invert Concrete	CY CY	800 10	\$208 \$500	166,400 5,000	
	3.2.3 Prelining	SY	200	\$72	14,400	
1	3.3 Tailrace Rock Trap Access Tunnel (L = 100')	LF	100	\$780	78,000	
4	UPPER RESERVOIR					47,499,200
4	4.1 South Saddle Dam	CY	218,400	\$100	21,840,000	
	4.2 West Saddle dam	CY	72,100	\$100	7,210,000	
	4.3 Upper Reservoir Intake Structure		12,000			
	4.3.1 Excavation 4.3.2 Concrete	CY CY	12,000 6,400	\$25 \$878	300,000 5.616.000	
	4.3.2 Concrete 4.3.3 Trashracks, Gares, miscl. Metals	Tons	100	\$878 \$10,000	5,616,000 1,000,000	
-						35,966,000
	UPPER PRESSURE TUNNEL ( 3963') 5.1 Tunnel Excavation - TBM	CY	133,300	\$156	20,794,800	
	5.2 Tunnel Prelining & Support (3")	SY CY	35,300	\$72 \$1,080	2,541,600	
	5.3 Tunnel Lining		36,300		39,204,000	
	5.4 Miscellaneous Concrete (bent, plug etc) 5.5 Contact Grouting	CY CF	5,400 27,200	\$1,080 \$42	5,832,000 1,142,400	
	5.5 Contact Oroding		21,200	Ψ-7-	1,172,700	69,514,800
6	SURGE TANK					
	6.1 Shaft Excavation - D/B 6.2 Benching Excavation	CY CY	8,900 35,300	\$208 \$150	1,851,200 5,295,000	
	6.3 Concrete Works	CY	700	\$878	614,300	
						7,760,500
7	POWER SHAFT (1348') 7.1 Power Shaft Excavation (1208') - D/B	CY	40,600	8009	8,444,800	
	7.1 Power Shart Excavation (1208) - D/B 7.2 Shaft Prelining & support	SF	40,600 2,200	\$208 \$72	158,400	
	7.3 Concrete Lining	CY	11,100	\$1,080	11,988,000	
	7.4 Contact Grouting	CF	9,300	\$42	390,600	00.004.000
8	LOWER PRESSURE TUNNEL (1563')					20,981,800
	LOWER PRESSURE TUNNEL (1563') 8.1 Tunnel Excavation - TBM 8.2 Tunnel Prelining & Support (6'')	CY SY	52,600 13,900	\$156 \$109	8,205,600 1,515,100	
	8.2 Tunnel Prelining & Support (6")	SY	13,900		1,515,100	
	8.3 Tunnel Lining 8.4 Miscellaneous Concrete (bent plug etc)	CY	14,300	\$1,080 \$1,080	15,444,000	
	8.4 Miscellaneous Concrete (bent, plug etc) 8.5 Contact Grouting	CY CF	5,900 10,700	\$1,080 \$42	6,372,000 449,400	
1	8.6 Curtain Grouting	CF	5,800	\$42	243,600	
٩	PENSTOCK MANIFOLD ( 350')					32,229,700
	9.1 Manifold Tunnel Excavation - D/B	CY	7,400	\$208 \$72	1,539,200	
	9.1 Manifold Tunnel Excavation - D/B 9.2 Manifold Tunnel Prelining & Support (3*, 75%)	CY SY	2,400	\$72	172,800	1
	9.3 Concrete Lining 9.4 Concrete Plug	CY	1,800 10,700	\$1,080 \$1,080	1,944,000	
		CY	10,700	\$1,080	11,556,000	15,212,000
10	PENSTOCKS (500')	<b> </b>		[]		
1	10.1 Penstock Tunnel Excavation - D/B 10.2 Penstock Tunnel Prelining & Support (3", 30%)	CY SY	18,900 3,800	\$208 \$72	3,931,200 273,600	
	10.2 Penstock Tunnel Prelining & Support (3", 30%) 10.3 Steel liner installation	Tons	3,800 3,000	\$72 \$12,000	36,000,000	
	10.4 Concrete Filling around Liner	CY	5,200	\$1,080	5,616,000	
	10.5 Contact Grouting	LF LS	2,000	\$59	118,000	
	10.6 Curtain Grouting	LS	1	\$92,000	92,000	46,030,800
11	DRAFT TUBE MANIFOLD ( 350')	<b> </b>				,,
	11.1 Manifold Tunnel Excavation - D/B 11.2 Manifold Tunnel Prelining & Support (3", 75%)	CY SY	7,400 2,400	\$208 \$72 \$1,080	1,539,200 172,800	
	11.2 Manifold Tunnel Prelining & Support (3", 75%) 11.3 Concrete Lining	SY CY	2,400 1,600	\$/2 \$1.080	172,800 1,728,000	
	11.4 Tube Fingers Excavation (Total L=620')	CY	6,500	\$208	1,352,000 295,200	
	11.4 Tube Fingers Excavation (Total L=620) 11.5 Tube Fingers Prelining	CY SY	6,500 4,100	\$208 \$72	295,200	1
1	11.6 Tube Fingers Concrete	CY	1,200	\$1,080	1,296,000	6,383,200
12	TAILRACE TUNNEL (6635')					0,000,200
ſ	12.1 Tailrace Tunnel Excavation - TBM	CY	223,100	\$156	34,803,600	
	12.2 Tailrace Tunnel Prelining & Support (3*, 100%) 12.3 Plug Concrete Construction	SY CY	78,700 3,400	\$109 \$1,080	8,578,300 3,672,000	
	12.4 Plug -Radial Grout injection	LS	1	\$1,080 \$92,000 \$950,000	92.000	
	12.4 Plug Radial Grout injection 12.5 Rock Trap Construction	LS LS			950,000	
1	12.6 D/S Surge Tank Construction	LS	1	\$6,000,000	6,000,000	54,095,900
1		1	I	I I		34,095,900

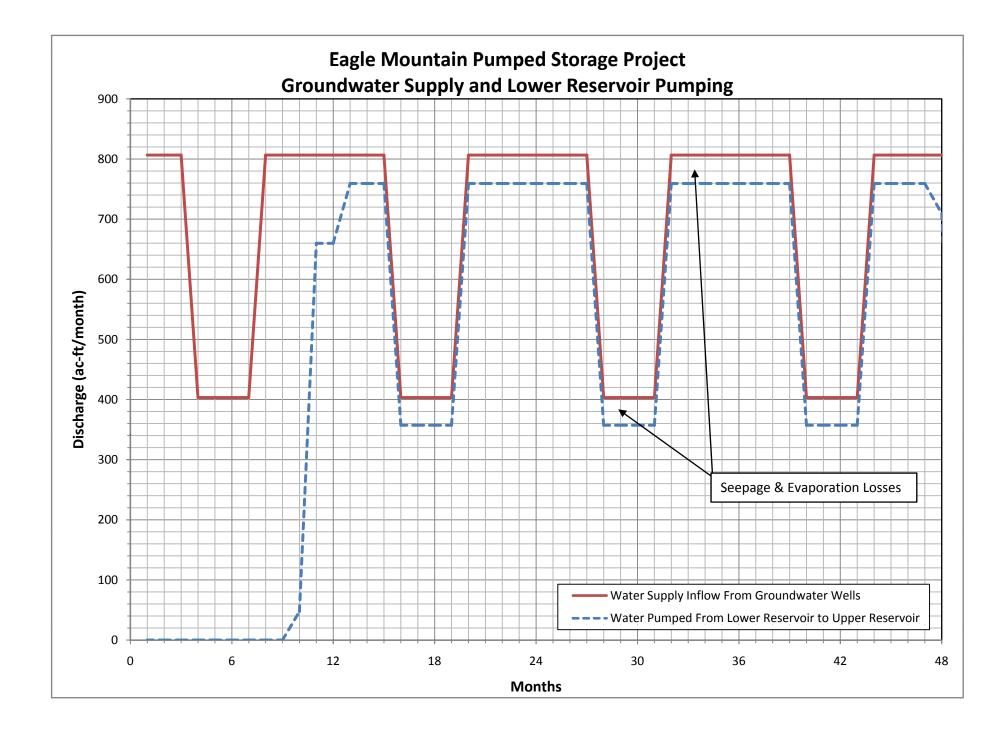
	& COSTS					
Item	Description	Unit	Quantity	Unit Cost	Cost	
13 [	MACHINE HALL					
-	13.1 Excavation Draft Tubes(EI16,EI36)	CY	4,600	\$208	956,800	
-	Benching excavation (EI16,18)	CY CY	22,700	\$156	3,541,200	
-	Hall Benching excavation (El.18,El.85)		64,000	\$156	9,984,000	
	Roof excavation (El.85 , 100)	CY	9,900	\$208	2,059,200	
-	12.2 Poof 8)//alla Support (M/2" abstarata)	SF	06 700	¢40	4 092 700	
-	13.2 Roof & Walls Support (W/3" shotcrete)	51	96,700	\$42	4,082,700	
	13.3 Concrete					
-	Draft Tubes EI41, EL16	CY	4,500	\$1,000	4,500,000	
-	Machine Hall FL-16 FL-12	CY	2,700	\$800	2 160 000	
	Machine Hall EI16, EI12 Machine Hall EI12, EI.+9	CY CY	10,100	\$800 \$1,000	2,160,000 10,100,000	
-	Machine Hall El.9, El. 19	CY	1,100	\$1,000	1,100,000	
-	Machine Hall El.19, El.21	CY	1,900	\$800	1,520,000	
	Machine Hall slab El. 38	CY	1,000	\$1,000	1,000,000	
F	Machine Hall Walls El. 9, El.18	CY	500	\$1,000	500,000	
ľ	Machine Hall Walls El. 9, El.18 Machine Hall Walls El.18, El.85	CY CY	500 5,100	\$1,000 \$1,000	500,000 5,100,000	
[	Machine Hall Roof	CY	2,600	\$1,000	2,600,000	
. [						
Ľ	13.4 Draft Tube Liner	Tons	220	\$12,000	2,640,000	
L	Draft Tube Contact Grouting	LS	1	\$340,000	340,000	
		10				
	13.5 Elevator Shaft Construction	LS	1	\$1,194,647	1,194,600	
L						
	13.6 Miscellaneous Metal works	LS	1	\$500,000	500,000	
L						
L	13.7 Drainage Gallery Construction	LS	1	\$852,013	852,000	
-	13.8 96" Dia. Spherical Valve	EA	4	\$360,000	1,440,000	
						56,170,500
14	TURBINES/GENERATORS	E A	4	\$60,000,000	240.000.000	
-	14.1 Water to Wire Package	EA	4	\$60,000,000	240,000,000	
	14.2 Installation	EA	4	\$15,000,000	60,000,000	300,000,000
15	TRANSFORMER HALL					300,000,000
13	15.1 Excavation					
	Transformer Hall Excavation	CY	30,900	\$156 \$208	4,820,400	
-	Nishe Excavation	CY	2,700	\$208	561 600	
-	Cable Gallery Excavation	CY	700	\$208	561,600 145,600	
-	A/C Gallery Excavation	CY	100	\$208	20,800	
T T	Cable Shaft Excavation	CY	4,700	\$156	733,200	
		Πi	ihāā			
r i	15.2 Roof & Wall Support					
r	Transformer Hall	SF	44,300	\$35	1,566,500	
ľ	Nishe	SF SF	44,300 2,500	\$35 \$12	1,566,500 30,400	
ľ	Cable Gallery	SF	3,200	\$12	38,900	
. [	A/C Gallery Cable Shaft	SF	100 56,900	\$12 \$12	1,200	
	Cable Shaft	SF	56,900	\$12	691,200	
L						
L.	15.3 Concrete works	CY	3,900	\$1,000	3,900,000	
-						
-	15.4 Miscellaneous Steel	LS	1	\$472,764	472,800	
-	45.5.T. ( 0.1.4					
F	15.5 Transfer Station	<u> </u>	000	640	0.000	
	Grading Gravel Base	CY CY	820	\$10 \$40	8,200 16,400	
-	Gravel Base	LS	410 1	\$40 \$20,000	10,400	
	Fence Towers	Tops	7	\$20,000 \$15,000	20,000	
	Footings	Tons LS	1	\$15,000	105,000 18,000	
- F	O/H Transmission Lines, (Two pll. each 0.9 mile long)	Mile	1.8	\$300,000	540,000	
ŀ	even manamedien zines, (1 wo pil. eden e.e mile long)			\$000,000	0-10,000	13,690,200
16	LOWER RESERVOIR	CY				,,
·····	16.1 Platform Excavation	CY	661,000	\$25	16,525,000	
F	16.2 Access tunnel portal concrete	CY CY	180	\$500	90,000	
F	16.3 Intake structure excavation	CY	13,900	\$40	556,000	
r	16.4 Intake structure concrete	CY	6,400	\$800	5,120,000	
r	16.4 Intake structure concrete 16.5 Trashracks, Gares, miscl. Metals	Tons	6,400 100	\$800 \$10,000	5,120,000 1,000,000	23,291,000
F		[				
17 1	Unlisted Items (10% of all other items)	LS	1	\$73,564,800	73,564,800	73,564,800
				Total	809,213,100	
1	Base Construction Subtotal (BCS)				\$809,213,100	
	Mobilization @ 5% of BSC				\$40,460,700	
Ļ	Construction Contingencies (15% of BCS+Mob.)				\$127,451,100	
_						
Ľ	Direct Construction Subtotal (DCS)				\$977,124,900	
F	Design Engineering (4% of DCS)				\$39,085,000	
F	Permitting (.5% of DCS)				\$4,885,600	
H	Legal and Administrative Costs (.3% of DCS)				\$2,931,400	
. F	Construction Administration and Engineering (5% of DCS	)			\$48,856,200	
I.	Opinion of Brobable Construction Costs (OBCC) 2009				\$1 072 990 000	
	Opinion of Probable Construction Costs (OPCC) 2008				\$1,072,880,000	

## PROJECT FEATURES & COSTS

# GEI Consultants, Inc. 080473 Eagle Mountain Pumped Storage Project Reservoir Filling Calculations 4/7/2009 NDM


# **RESERVOIR FILLING CALCULATIONS**


Purpose:	Estimate the time required to fill the Eagle Mountain Pumped Storage Project Reservoirs to full operating capacity.
Procedure:	Calculate inflow, losses, and final reservoir levels based on a monthly time step.
Calculation Steps:	<ol> <li>Determine volume of groundwater pumped from wells to Lower Reservoir (varies by month).</li> </ol>
	<ol> <li>Determine Lower Reservoir storage and water surface elevation after inflow from groundwater wells.</li> </ol>
	3. Subtract seepage and evaporation losses from Lower Reservoir.
	4. If Lower Reservoir level is above 25% active capacity, pump available water up to the Upper Reservoir.
	5. Determine the Upper Reservoir storage and water surface elevation after inflow from Lower Reservoir.
	6. Subtract seepage and evaporation losses from Upper Reservoir.
	7. Repeat steps 1 through 6 until Upper Reservoir is at full capacity.
	See attached calculation table and required inputs.
Attached Charts:	<ol> <li>See attached calculation table and required inputs.</li> <li>Eagle Mountain Pumped Storage Project Lower Reservoir Filling: This graph shows the Lower Reservoir storage and water surface elevation just before pumping to the Upper Reservoir and the storage and water surface elevation after pumping to the Upper Reservoir, for each monthly time step.</li> </ol>
Attached Charts:	<ol> <li>Eagle Mountain Pumped Storage Project Lower Reservoir Filling: This graph shows the Lower Reservoir storage and water surface elevation just before pumping to the Upper Reservoir and the storage and water surface</li> </ol>


GEI Consultants, Inc. 080473 Eagle Mountain Pumped Storage Project Reservoir Filling 4/7/2009 NDM

INPUT DAT	A		SEEPAG	E DATA	
First Filling Month	March		LR Seepage at Max. El.:	2765	AF/yr
Pumping Duration Oct-May, t1:	24	hrs	LR Seepage at Min. El.:	863	AF/yr
Pumping Duration Jun-Sept, t2:	12	hrs	Begin LR Seepage Pumpback Month:	12	
Pumping Rate, Q:	6,000	gpm	UR Seepage at Max. El.:	1913	AF/yr
Pumping Rate, Q:	13.37	cfs	UR Seepage at Min. El.:	456	AF/yr
Pumping Rate, Q1:	9679	AF/yr	Begin UR Seepage Pumpback Month:	24	
Pumping Rate, Q2:	4839	AF/yr			
Evaporation Rate:	7.5	ft/yr			

			Lower Reservoir												Upper Reservoir										
Month Count	Month	Water Supply Pipeline Discharge (ac-ft)	Starting Elevation (ft)	Starting Storage (ac-ft)	(ac-ft)	After Filling Elevation (ft)	Evaporation (ac-ft)	Seepage (ac-ft)	Intermediate Storage Volume (ac-ft)	Intermediate Water Surface Elevation (ft)	Percent of Total Capacity (%)	Final Storage Volume (ac-ft)	(ft)	Available Pumping Volume to UR (ac-ft)	UR Starting Elevation (ft)	Starting Storage (ac-ft)	Ending Storage (ac-ft)	Volume Pumped (ac-ft)	Ending Elevation (ft)	Evaporation (ac-ft)	Seepage (ac-ft)	Final Storage Volume (ac-ft)	Final Water Surface Elevation (ft)	Percent of Total Capacity (%)	
1	March	807	740.0	0	807	822.6	7 12	32	768 1515	820.2 860.6	3.5%		820.2	0	2234	0	0.0	0.0	2234.0	0.0	0.0		2234.0 2234.0		
2	April May	807 807	820.2 860.6	768 1515	1575 2322	863.3 892.0	12	48	2247	860.6	6.9% 10.3%		860.6 890.2	0	2234 2234	0	0.0	0.0	2234.0 2234.0	0.0	0.0		2234.0		
4	June	403	890.2	2247	2651	898.7	30	62	2559	896.9	10.3%		896.9	0	2234	0	0.0		2234.0	0.0	0.0				
5	July	403	896.9	2559	2963	904.7	32	64	2867	902.9	13.1%	2867	902.9	0	2234	0	0.0	0.0	2234.0	0.0	0.0	0.0	2234.0		
6	August	403	902.9	2867	3270	910.2	34	66	3170	908.4	14.5%		908.4	0	2234	0	0.0		2234.0	0.0	0.0		2234.0		
7	September	403	908.4	3170	3573	915.4	36	68	3469	913.7	15.8%		913.7	0	2234	0	0.0		2234.0	0.0	0.0				
8	October November	807 807	913.7 925.0	3469 4164	4276 4971	926.7 937.0	38 42	74	4164 4846	925.0 935.2	19.0% 22.1%		925.0 935.2	0	2234 2234	0	0.0	0.0	2234.0	0.0	0.0		2234.0 2234.0		
10	December	807	935.2	4846	5652	946.5	42	92	5516	944.6	25.2%		944.0	47	2234	0	47.4	47.4	2259.0	0.6	8.7		2257.9		
11	January	807	944.0	5469	6275	954.7	47	100	6128	952.8	28.0%		944.0	660	2258	38	697.8	659.8	2297.9	10.0	22.3		2296.6		
12	February	807	944.0	5469	6275	954.7	47	100	6128	952.8	28.0%		944.0	660	2297	666	1325.3	659.8	2319.2	17.5	29.7		2317.9		
13	March	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2318	1278	2037.4	759.3	2336.9	24.6	35.9		2335.5		
14 15	April Mav	807 807	944.0 944.0	5469 5469	6275 6275	954.7 954.7	47	0	6228 6228	954.0 954.0	28.4%		944.0 944.0	759 759	2336 2350	1977 2662	2736.2 3420.9	759.3 759.3	2350.9 2361.3	30.0 39.5	44.7		2349.6		
16	June	403	944.0	5469	5872	949.4	40	0	5826	948.8	26.6%		944.0	357	2360	3328	3685.0	357.2	2364.8	45.8	56.6		2363.5		
17	July	403	944.0	5469	5872	949.4		0	5826	948.8	26.6%	5469	944.0	357	2363	3583	3939.8	357.2	2368.1	47.2	59.4	3833.2	2366.7	19.2%	
18	August	403	944.0	5469	5872	949.4	46	0	5826	948.8	26.6%		944.0	357	2367	3833	4190.4	357.2	2371.1	50.1	62.0		2369.8		
19	September October	403 807	944.0 944.0	5469	5872	949.4 954.7	46 47	0	5826	948.8	26.6%		944.0 944.0	357	2370	4078	4435.5 5078.8	357.2	2374.0 2381.1	51.5	64.5		2372.6		
20 21	November	807	944.0	5469 5469	6275 6275	954.7	47	0	6228 6228	954.0 954.0	28.4%		944.0	759	2373 2380	4319 4953	5078.8	759.3 759.3	2381.1 2387.4	55.7 61.4	70.6		2379.7		
22	December	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2386	5575	6333.8	759.3	2393.1	65.3	80.8		2391.8		
23	January	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2392	6188	6947.0	759.3	2398.3	72.9	85.2		2397.0		
24	February	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2397	6789	7548.2	759.3	2403.0	76.5	89.3		2401.7		
25	March	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2402	7382	8141.6	759.3	2407.6	80.3	0.0		2407.0		
26 27	April May	807 807	944.0 944.0	5469 5469	6275 6275	954.7 954.7	47	0	6228 6228	954.0 954.0	28.4%		944.0 944.0	759 759	2407 2412	8061 8738	8820.6 9497.4	759.3 759.3	2412.7 2417.6	82.5 85.6	0.0		2412.1 2417.0		
27	lune	403	944.0	5469	5872	949.4	47	0	5826	948.8	26.6%		944.0	357	2412	9412	9769.1	357.2	2417.0	87.5	0.0		2417.0		
29	July	403	944.0	5469	5872	949.4	46	0	5826	948.8	26.6%		944.0	357	2419	9682	10038.8	357.2	2421.4	88.5	0.0		2420.8		
30	August	403	944.0	5469	5872	949.4	46	0	5826	948.8	26.6%		944.0	357	2421	9950	10307.5	357.2	2423.3	89.7	0.0		2422.7		
31	September	403	944.0	5469	5872	949.4	46	0	5826	948.8	26.6%		944.0	357	2423	10218	10575.1	357.2	2427.4	90.8	0.0		2425.6		
32	October November	807 807	944.0 944.0	5469 5469	6275 6275	954.7 954.7	47	0	6228 6228	954.0 954.0	28.4%		944.0 944.0	759 759	2426 2432	10484 11151	11243.6 11910.0	759.3 759.3	2432.2 2439.2	92.9 96.1	0.0		2431.6 2438.6		
34	December	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2432	11131	12573.3	759.3	2435.2	99.3	0.0		2438.0		
35	January	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2443	12474	13233.3	759.3	2447.4	101.6	0.0		2446.7		
36	February	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2447	13132	13891.0	759.3	2451.3	104.7	0.0		2450.6		
37	March	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2451	13786	14545.7	759.3	2455.0	107.7	0.0		2454.4		
38 39	April May	807 807	944.0 944.0	5469 5469	6275 6275	954.7 954.7	47	0	6228 6228	954.0 954.0	28.4%		944.0 944.0	759 759	2454 2458	14438 15088	15197.3 15847.2	759.3 759.3	2458.8 2462.4	109.4 110.9	0.0		2458.1 2461.8		
40	June	403	944.0	5469	5872	949.4	47	0	5826	948.8	26.6%		944.0	357	2458	15088	16093.6	357.2	2462.4	110.5	0.0		2401.8		
41	July	403	944.0	5469	5872	949.4	46	0	5826	948.8	26.6%		944.0	357	2463	15982	16339.2	357.2	2465.1	112.4	0.0		2464.5		
42	August	403	944.0	5469	5872	949.4	46	0	5826	948.8	26.6%		944.0	357	2465	16227	16584.0	357.2	2466.5	112.4	0.0		2465.9		
43	September	403	944.0	5469	5872	949.4	46	0	5826	948.8	26.6%		944.0	357	2466	16472	16828.9	357.2	2467.9	113.0	0.0		2467.2		
44 45	October	807 807	944.0 944.0	5469 5469	6275 6275	954.7 954.7	47 47	0	6228 6228	954.0 954.0	28.4% 28.4%		944.0 944.0	759 759	2467 2471	16716 17361	17475.2 18120.8	759.3 759.3	2471.4 2474.9	113.7 115.1	0.0		2470.8 2474.3		
45	November December	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2471	1/301	18120.8	759.3	2474.9	115.1	0.0		2474.3		
47	January	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2478	18649	19407.9	759.3	2481.7	117.1	0.0		2481.1		
48	February	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		944.0	759	2481	19291	20000.0	709.2	2484.9	118.5	0.0		2484.2		
49	March	807	944.0	5469	6275	954.7	47	0	6228	954.0	28.4%		954.0	759	2484	19881	20000.0	118.5	2484.9	119.2	0.0		2484.2		
50 51	April May	807 807	954.0 963.5	6228 6985	7035 7791	964.1 973.1	50 52	0	6985 7739	963.5 972.5	31.9% 35.3%		963.5 972.5	1516 2270	2484 2484	19881 19881	20000.0 20000.0	119.2 119.2	2484.9 2484.9	119.2 119.2	0.0		2484.2		
51	June	403	963.5	7739	8142	973.1	52	0	8088	972.5	35.3%		972.5	2620	2484	19881	20000.0	119.2	2484.9	119.2	0.0		2484.2		
53	July	403	976.5	8088	8492	981.1	55	0	8437	980.4	38.5%		980.4	2968	2484	19881	20000.0	119.2	2484.9	119.2	0.0		2484.2		
54	August	403	980.4	8437	8840	984.9	56	0	8784	984.3			984.3	3315	2484	19881	20000.0	119.2	2484.9	119.2	0.0		2484.2		
55	September	403	984.3	8784	9187	988.7	57	0	9130	988.0			988.0	3661	2484	19881	20000.0	119.2	2484.9	119.2	0.0		2484.2		
56	October November	807 807	988.0	9130 9877	9936 10684	996.5 1004.1	59	0	9877 10623	995.9 1003.5	45.1% 48.5%		995.9 1003.5	4409	2484 2484	19881 19881	20000.0	119.2 119.2	2484.9	119.2 119.2	0.0		2484.2		
57 58	December	807	995.9 1003.5	9877	10684	1004.1	61 63	0	10623	1003.5	48.5%		1003.5	5154 5897	2484	19881	20000.0	119.2	2484.9	119.2	0.0		2484.2		
59	January	807	1010.8	11366	12172	1011.5	65	0	12108	1018.0	55.3%		1018.0	6639	2484	19881	20000.0	119.2	2484.9	119.2	0.0		2484.2	99.4%	
60	February	807	1018.0	12108	12914	1025.5	67	0	12847	1024.8	58.7%		1024.8	7379	2484	19881	20000.0	119.2	2484.9	119.2	0.0	19880.8	2484.2		





