12.9 Project Drainage Plan and Reservoir Spillway Designs

Memo

Eagle Mountain Pumped Storage Project - Project Drainage Plan and Reservoir Spillway Designs

Prepared by: Nick Miller, P.E. and Richard A. Westmore, P.E.

October 22, 2009

This Technical Memorandum (TM) was prepared in response to the Federal Energy Regulatory Commission's (FERC) letter referencing Schedule A: Deficiency of License Application, Project No. 13123-002---California Eagle Mountain Pumped Storage Project, Eagle Crest Energy Company (ECEC), specifically Item 5. *"Per section 4.41(g)(1), please provide detailed plan, section, and profile views of the spillway crest, spillway chute, energy dissipation structure and channel from the spillway to lower reservoir".* Based on the FERC's request, additional information and drawings regarding the spillway, chute, energy dissipation structure and channel have been developed.

This TM also addresses the FERC's letter referencing Schedule B: Additional Information Request for License Application, Project No. 13123-002-California Eagle Mountain Pumped Storage Project, Eagle Crest Energy Company, specifically Item 14, which requests additional information regarding the Probable Maximum Flood and the use of Eagle Creek for conveyance of storm-water flows emanating from drainages associated with the Pumped Storage Project.

As a related issue this TM also addresses compatibility of the surface water conveyance system for the Pumped Storage Project with storm-water conveyance facilities planned for the proposed Eagle Mountain landfill on adjacent lands. In addition, this TM addresses the following comments received from FERC relative to surface water resources of the Project:

In Exhibit E, section 2.2.1, page 2-2, you state that the project would be located entirely off-stream and would not intercept a surface water course. However, in Exhibit E, section 3.3.4.1, page 3-76, you state that Eagle Creek is an intermittent surface water source and in Exhibit A, section 1.3, page 1-6, and in Exhibit E, section 2.2.1, page 2-6, you suggest that Eagle Creek would discharge into the lower reservoir by indicating that Eagle Creek would be used to convey spilled flows from the upper reservoir. Please clarify if Eagle Creek or any other surface water courses would be used by the proposed project. In the hydrology calculations for the Probable Maximum Precipitation and Flood and resulting runoff inflow calculations to the reservoirs contained in the Standard Design Report (Exhibit F, Appendix B.1), you report the individual drainage area to the upper reservoir as approximately 1.17 square miles and the lower reservoir as 2.85 square miles. The U.S. Geological Survey (USGS) gage no. 10253600, Eagle Creek at Eagle Mountain, which was active from October 1, 1960 to September 30, 1966, reports the drainage area as 7.71 square miles. As indicated in AIR 13, your description of the proposed project and your proposal to use the Eagle Creek channel to route spilled flows into the lower reservoir suggest that the Eagle Creek drainage area should be included in your calculations. We estimate that the total drainage area of the lower reservoir would be about 9 square miles, not including the drainage area of the upper reservoir. Therefore, please provide the following information:

- a. a map clearly showing the location of the flow path from the upper reservoir spillway to the lower reservoir, including the location of Eagle Creek and the portion that would be used by the proposed project;
- b. revised calculations for the Probable Maximum Precipitation and Flood if the drainage area calculations used in the license application were incorrect;
- c. general descriptive information on Eagle Creek such as channel geomorphology, soil types, channel capacity, gradient, and other characteristics that could influence the ability of Eagle Creek to function as a conveyance channel for spilled flows; and
- d. any hydrologic information on Eagle Creek (excluding the information available from USGS gage no. 10253600) that would help to explain the seasonality and quantity of flow in this creek.

Existing Site Drainage Features and Watershed Conditions

There are two main surface drainage features at the project site, Eagle Creek and Bald Eagle Creek, which are shown on **Figure DLA5-1**. Both are ephemeral streams, and both currently drain into the East Mine Pit where flows are contained. Eagle Creek is artificially blocked in two locations by embankments in the main channel placed to divert flood flows into the existing East Pit of the mine (future site of the Lower Reservoir) as a means to provide flood protection at the Eagle Mountain town site. With the development of the Pumped Storage Project, Bald Eagle Creek and Eagle Creek will continue to flow into the Lower Reservoir, as they have in the past. The Upper Reservoir of the Project will intercept a small tributary of Eagle Creek.

Eagle Creek is generally dry throughout the year, except during large storm events, which occur infrequently in this area of California. USGS gage (10253600) data for Eagle Creek was collected between 1960 and 1966. During this period only three events were recorded, all having daily mean discharges less than 20 cfs. Hourly flow data were not reported for the gage. Eagle Creek has a watershed area of approximately

7.3 square miles (excluding the Upper Reservoir drainage basin) upstream of the Eagle Mountain town site and varies considerably in width and gradient. The watershed area was measured by GEI using available USGS mapping and the estimate is slightly smaller than the 7.7 square miles reported for the abandoned gaging station. The channel morphology is typical of streams draining the Eagle Mountains; steep incised channels in the higher elevations leading to broader less-defined channels that essentially disappear into the broad alluvial fans that lie along the foot of the steeper slopes. Bare desert soils exposed to rainfall are subjected to physical and chemical processes that change the hydraulic properties of the soil near the surface. When dried, a hard layer is formed in the soil surface that is often called "desert crust," commonly enriched in calcite or silica. Desert crust decreases the infiltration rate of soils, thereby increasing runoff and soil erosion, reducing the availability of water to the root zone, and impeding seedling and plant growth (Water/Science and Issues, 2003, Noam Weisbrod, 2003, Gale Group).

Prior to mine development and its engineered diversion into the East Pit, Eagle Creek discharged into the broad alluvial fan at the Eagle Mountain town site with dispersal of flow to the south and east away from the mine feature and the town site. Flood flows from the steeper portions of the watershed would have spread over a very broad area and flow depths during large flooding events would have been shallow in the numerous dry washes draining the alluvial fan. This spreading alluvial fan feature is clearly shown on Figure DLA5-1.

The landfill Report of Waste Discharge (GeoSyntec, 1992) does not provide descriptions of the Eagle Creek and Bald Eagle Creek channels and only shows and describes the surficial soils east of the town site (the alluvial fan or debris flow). We expect that the channels in the steeper portions of the watershed are incised into bedrock over overburden and are relatively stable. As the creek channels transition to the alluvial fan, we anticipate the stream channels of the region, including Eagle Creek, are incised by water-caused erosion into alluvial deposits and are less stable and more prone to erosion.

Currently, Eagle Creek is diverted in two locations by embankments in the main channel that direct flood flows into the existing East Pit of the mine (Lower Reservoir), engineered works that were completed many years ago during active mining operations to provide flood protection at the Eagle Mountain town site. This drainage pattern is proposed to be retained for development of the permitted first four phases of the landfill. The unpermitted fifth phase of the landfill involves using the East Pit for waste storage. When this would occur, according to previously published drainage plans (CM Engineering, 1991), the diversion of Eagle Creek to the East Pit would be eliminated and replaced with a new channel and detention basin constructed to manage storm-water runoff from the site. This system for the landfill project was intended to be designed for the 100-year rainfall event.

Proposed Pumped Storage Reservoirs

The proposed Pumped Storage Project will use the East Pit for water storage as part of a water cycling operation. Water will be pumped from the Lower Reservoir (East Pit) to the Upper Reservoir (Central Pit) during evening and weekend hours and subsequently released from the Upper Reservoir to generate energy in peak energy demand periods and as needed to support ancillary services for regional transmission grid operations. The volume of water that can normally be cycled between the two reservoirs is the "active" storage, which is 17,700 acre-feet. Because of the closed nature of the system, both reservoirs cannot be full at the same time. Minimum storage in the Upper Reservoir is 2,300 acre-feet and minimum storage in the Lower Reservoir is 4,200 acre-feet.

Upper Reservoir Hydrologic Design

The Upper Reservoir will be contained within the Central Pit of the Eagle Mountain Mine by the use of two dams. Each dam will have a 20-foot-wide crest at EL 2890, with a vertical upstream face and a 0.8H:1V downstream slope.

Design of the two dams that will form the Upper Reservoir will require conformance to stringent design standards to meet the regulatory requirements of the Federal Energy Regulatory Commission (FERC) and the State of California Division of Safety of Dams (DSOD). The hydrologic design standard for the Upper Reservoir dams is the Probable Maximum Flood (PMF). Based upon FERC and DSOD requirements, we have assumed that the Upper Reservoir is full to its maximum normal pool level (EI. 2485) at the onset of the Probable Maximum Precipitation (PMP), which will produce the PMF design flood. Dam design is also based upon an assumption that the large hydraulic capacity of the conveyance system between the two Project reservoirs is not available for flood management.

Consistent with FERC and DSOD guidance, the PMF for the Upper Reservoir was estimated using rainfall depths published in Hydrometerological Report No. 59 (HMR 59), and the USACE HEC-1 rainfall-runoff computer model. The 72-hour general storm PMP for the Upper Reservoir basin was estimated to be approximately 18.6 inches. The Upper Reservoir has a drainage basin area of approximately 1.74 square miles, with a maximum elevation of 3,535 feet to a minimum elevation of 2,230 feet. The USBR Flood Hydrology Manual was used to develop the unit hydrograph for the drainage basin assuming an average Manning's (Kn)¹ value of 0.045 for the basin. Losses due to soil infiltration or depression storage were very conservatively assumed to be zero based on the high potential for desert crust formation that limits infiltration, as described earlier. This means that all of the rainfall on the basin was assumed to produce runoff rather than just that portion of 1,730 acre-feet and peak inflow of 4,640 cfs.

¹ Kn is a representation of "basin roughness", which affects the rate at which runoff collects and flows to the outlet of a defined drainage basin.

There are two options for accommodating the PMF to prevent uncontrolled over-topping of the Upper Reservoir dams -(1) providing a spillway to safely pass the PMF or (2) providing adequate freeboard on the dam to store the PMF inflow.

Another factor that must be considered in Upper Reservoir design is an inadvertent "over-pumping" event from the Lower Reservoir to the Upper Reservoir. In a closed hydraulic system, such as the Eagle Mountain Project, this factor is less critical than in a system where the project's lower reservoir has a source of water that is significantly larger than the Upper Reservoir (e.g. the situation at the Taum Sauk Project where an inadvertent over-pumping action resulted in overtopping and failure of the upper reservoir dam).

Over-pumping to the Upper Reservoir could occur if pumping were to continue when the Lower Reservoir is below El. 925 (minimum pool). The amount of storage below El. 925 in the Lower Reservoir is 4,200 acre-feet. The minimum pool level provides the amount of submergence over the Lower Reservoir intake structure required to avoid vortex formation and unwanted air entrainment during the pumping cycle. Should the air be entrained into the intake and tunnel, serious problems could result in the system. These may include cavitation of hydraulic equipment and unwanted pressure fluctuations. Operators will receive warnings from reservoir level sensors and alarms should the Lower Reservoir pool drop below El. 925 or the Upper Reservoir pool rise above El. 2485. If the alarms should fail, there remains a limit on how long over-pumping could occur because of fixed storage available in the closed system. Similar to the PMF design requirement, over-pumping to the Upper Reservoir could be accommodated by providing spillway capacity (there was no spillway at the Taum Sauk upper reservoir) or additional storage capacity.

Providing added storage capacity in the Upper Reservoir for both the PMF and overpumping of the Lower Reservoir inactive storage would involve providing a maximum of 5,930 acre-feet of capacity above the normal maximum pool level. This would result in total storage capacity of 25,930 acre-feet below the nominal crest of the dam. Under this configuration, the two dam crests would be at El. 2511, and the normal freeboard between the normal maximum pool and the dam crest would be 26 feet at both dams.

Alternatively, a spillway could be provided to handle the PMF outflow or an overpumping event. This is ECEC's currently preferred configuration. The Upper Reservoir spillway in this configuration is planned to be a 100-foot-wide ogee crest at El. 2486, one-foot above normal maximum reservoir pool (20,000 acre-feet) to reduce potentials for water losses due to wave action. The ogee crest will be constructed integrally with Upper Reservoir Dam No.1. The peak PMF inflow to the Upper Reservoir is estimated to be about 4,640 cubic feet per second (cfs), with a peak reservoir stage of 2489.0 feet, providing one-foot of residual freeboard below the dam crest. The peak PMF outflow through the spillway is estimated to be about 2,060 cfs. The ogee spillway crest will have an approach depth of 10-feet, and 4-foot high vertical side walls. The ogee crest will transition to the stepped downstream face of the dam where considerable energy dissipation will occur. At the toe of the dam a USBR Type III Stilling Basin will be constructed to dissipate the remaining excess energy of the flood flows. The stilling basin will be 100-feet wide, approximately 30-feet long, and have 12.5-feet high basin side walls. The basin floor will be set approximately at EI. 2380, and transition to the spillway channel. The dam spillway and stilling basin plan, profile and section are shown on **Figure DLA5-2**.

The Upper Reservoir spillway will be able to discharge 3,120 cfs prior to over-topping the dam during an extreme worst-case scenario over-pumping event. As noted previously, the potential to overtop the Upper Reservoir dams by over-pumping from the Lower Reservoir is limited by the volume of storage in the Lower Reservoir. Spillway design capacity is about 8% greater than the pumping capacity of one pump-turbine unit.

A final decision on the preferred Upper Reservoir dam configuration for managing the PMF and unlikely over-pumping will be made during final design. The option of constructing taller dams for added storage would increase the height of the Upper Reservoir Dam No. 1 from 120 to 141 feet and the height of Dam No. 2 from 60 to 81 feet.

Upper Reservoir Spillway Discharge Channel

The Upper Reservoir spillway will discharge to the spillway channel, which will convey the flows from the spillway to the ephemeral stream channel of Eagle Creek. The Upper Reservoir Spillway Channel will be about 4,230-feet long and descend from approximately El. 2380 to approximately El. 2200. The Upper Reservoir Spillway Channel was modeled using the USACE HEC-RAS computer program to estimate the required size and velocities within the channel. The Upper Reservoir Spillway Channel will transition from the 100-foot wide vertical side wall stilling basin at the dam toe to a 20-foot wide, 10-foot-high, 2H:1V side slope channel over a distance of approximately 500-feet. The first 500-feet will be concrete-lined channel, and the remaining portion of the channel will be provided with armoring to protect against high velocities, and/or with energy dissipation structures to reduce velocities and protect against scour and erosion. The Upper Spillway Channel will cross an existing road in two locations and then the spillway channel flows will be discharged into the Eagle Creek channel. The Upper Reservoir Spillway Channel plan, profile and sections are shown on **Figure DLA5-3**.

Aerial images indicate that downstream of the proposed channel and road crossings of the Upper Spillway Discharge Channel the natural Eagle Creek channel has been modified by mine road construction. Engineering surveys of the channel will verify dimensions and potential needs to increase its capacity. Releases from the Upper Reservoir will be smaller than the estimated 100-year flow from the 7.3 square mile Eagle Creek watershed, indicating that the natural channel should have adequate capacity.

Lower Reservoir Spillway and Drainage Considerations

Once flows from the Upper Reservoir are discharged to the Eagle Creek channel, they will join flows generated from the remainder of the Eagle Creek watershed (7.3 square miles). With the current measures implemented at the mine to divert Eagle Creek flows into the East Pit, any spill from the Upper Reservoir will reach the Lower Reservoir. For purposes of this analysis, we conservatively estimated the PMF and 100-year flows generated from the Eagle Creek watershed and the Bald Eagle Creek watershed, which also drains into the Lower Reservoir, as shown on **Figure DLA5-1**.

One challenge in assessing the potential impacts of the Pumped Storage Project on flood flows from these watersheds is selecting appropriate assumptions for the amount of water storage present in the Project reservoirs during the flood events. As noted in the previous section entitled Upper Reservoir Hydrologic Design, it is appropriate for dam and spillway design to assume that the Upper Reservoir is at EI. 2485 at the onset of the PMP. Although it is an extreme worst-case scenario, it is also appropriate, for purposes of dam design only, to assume that the large hydraulic capacity of the conveyance system between the two Project reservoirs is not available for flood management. However, if the Upper Reservoir is full to its normal maximum pool, the Lower Reservoir will have 17,700 acre-feet of empty storage space above EI. 925 to store runoff from Eagle Creek and Bald Eagle Creek. Depending on the timing of the PMP event, the empty storage space may be split between the two reservoirs. The total active reservoir volume for pumped storage (17,700 acre-feet) can be shifted between the two reservoirs in 18 hours, in comparison to the 72-hour duration of the general storm PMP. With monitoring of inflows, it will be possible to space available in either reservoir, as it is needed for runoff storage, by shifting water through the tunnel interconnecting the reservoirs.

The PMF runoff volume from the entire Eagle Creek watershed (1.74 and 7.30 square miles as shown on **Figure DLA5-1**) is 9,000 acre-feet, assuming no infiltration or initial losses (i.e., all rainfall is converted to runoff). Similarly, the PMF runoff volume from Black Eagle Creek watershed (2.85 square miles) is 2,520 acre-feet. The sum of these volumes (11,520 acre-feet) could be stored in the Lower Reservoir during the PMF event, as long as the volume of water in storage in the Lower Reservoir for Pumped Storage Project power operations and intake submergence is less than 10,380 acre-feet. If there is more water in storage in the Lower Reservoir than that amount and a large flooding event is occurring, up to 11,600 cfs of pumping capacity could be used to convey water to the Upper Reservoir for temporary storage thereby creating storage space in the Lower Reservoir to store runoff entering from Eagle Creek and Black Eagle Creek.

Full operation of the Pumped Storage Project requires that adequate storage space be available in the reservoir system to cycle the 17,700 acre-feet of active water volume used for energy storage and subsequent on-peak energy generation. Therefore, after a

flood event, in which runoff has been stored in the Lower Reservoir (or transferred to the Upper Reservoir temporarily), a period of time must be provided to release excess stored water from the system through a structure at the Lower Reservoir. During this period, pumped-storage operations would be altered and limited. Release of storm water stored in the reservoir system would be made at a measured rate to prevent downstream flooding. If the 100-year, 24-hour storm event is considered, the storm-water runoff entering the reservoir system is estimated to be 2,630 acre-feet.

The release system from the Lower Reservoir is proposed to be an overflow spillway and a channel from the southeast rim of the Lower Reservoir across mine property and the Colorado River Aqueduct. This channel would terminate at the location shown on **Figure DLA5-1**. From that location flows would spread laterally at shallow depths over the alluvial fan as they naturally would have prior to channel modifications and diversions to the lower pit made during previous mining operations.

For Project planning, the Lower Reservoir spillway has been assumed to be 15 feet wide, with an ogee crest at EL. 1094. The ogee crest will have an approach depth of 5.6 feet, and varying height sloped side walls. With the reservoir at El.1098, the spillway will discharge a maximum of approximately 460 cfs.

The ogee crest will discharge to the spillway channel, which would convey the flows from the spillway to an area on the east side of the CRA. The layout of this channel is presented on **Figure DLA5-4**. The Lower Reservoir Spillway Channel will be about 6,670 feet long and descend from approximately EI. 1088 to approximately EI. 985. The Lower Reservoir Spillway Channel was modeled using the USACE HEC-RAS computer program to estimate the required size and velocities within the channel. The Lower Reservoir Spillway Channel will transition from the 15-foot wide ogee crest with vertical side walls to a 10-foot wide, minimum 5-foot-high, 2H:1V side slope channel over a distance of approximately 250 feet. The first 250 feet will be a concrete-lined channel, and the remaining portion of the channel will be lined with riprap. The Lower Reservoir Spillway Channel will terminate at the location shown on **Figure DLA5-6**.

If the PMF flood volume (11,520 acre-feet) is stored in addition to the water used for energy storage, it will be necessary to change the normal pumped-storage operating procedures to cause this excess water to be spilled. With the small Lower Reservoir spillway described above, the excess PMF volume could be released over a period of 305 hours (13 days). The excess storage from the 100-year storm (2,630 acre-feet) could be released over a period of 70 hours (3 days).

Landfill Compatibility

This Pumped Storage Project drainage plan was intentionally developed to be compatible with the proposed Eagle Mountain Landfill Drainage Plan, as shown on **Figure DLA5-5**. For the permitted landfill development, the East Pit (Lower Reservoir) is planned to be used for storage of storm-water runoff. With the Pumped Storage Project

in operation, the East Pit will be used for water storage and its flood storage capacity will be reduced depending on the pumping and generating cycles. However, the ability to move large volumes of water between the two reservoirs when the Pumped Storage Project is completed and the fact that 17,700 acre-feet of storage will remain available, means that the flood management benefits of the mine pits will not be lost.

The dams creating additional storage at the Upper Reservoir are required to be designed to withstand all extreme loading conditions including the PMF and the maximum credible earthquake, and will pose no risk to the landfill,. Two regulatory agencies, FERC and DSOD, will assure that the Upper Reservoir dams meet very stringent design standards. The flood and earthquake design standards for all features of the Pumped Storage Project proposed by ECEC will meet or exceed those that govern final design of the landfill.

Because the Pumped Storage Project would be developed prior to the landfill, and drainage facilities constructed for the Pumped Storage Project will be designed with future landfill construction in mind, the cost of major portions of the drainage facilities at the site will therefore be borne by the Pumped Storage Project and not the landfill project.

References

CM Engineering Associates, Inc., 1991. Eagle Mountain Project -- Drainage Report. Prepared for: Mine Reclamation Corporation, Palm Springs, CA.

GeoSyntec Consultants, 1992. Report of Waste Discharge. Eagle Mountain Landfill and Recycling Center. Mine Reclamation Corporation, Palm Springs, CA.

Weisbrod, Naom. Water/Science and Issues, 2003, Gale Group. Discussion on Desert Soils.

Summary of Flood Estimates for the Eagle Mountain Project

10/22/2009

		Rainfall Depth		Runoff	Volume	Peak Inflow	
	Area	100-Yr 24-hr	PMP 72-hr	100-Yr	PMP	100-Yr	PMP
Basin	mi ²	in.	in.	AF	AF	cfs	cfs
Above Upper Reservoir	1.74	4.15	18.59	385	1,725	2,789	4,640
Eagle Creek to Lower Reservoir	7.3	4.15	18.68	1,616	7,273	6,455	15,320
Bald Eagle Creek to Lower Reservoir	2.85	4.15	16.60	631	2,523	4,410	6,900

In compliance with 18 C.F.R. § 4.39(e), ECE is filing any maps and drawings "showing project location information and details of project structures" as CEII, not for public disclosure. Figures DLA 5-1 through DLA 5-6 have been file under separate cover as CEII.

1**	* * * * * * * * * * *	******	******	*******	* *
*					*
*	FLOOD HYD	ROGRAPH	PACKAGE	(HEC-1L)	*
*		JULY	1998		*
*		VERSION	4.1(L)		*
*					*
*	RUN DATE	21AUG09) TIME	10:30:46	*
*					*
* *	********	*******	******	*******	* *

* * *	*****	* * *
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*
* * *	* * * * * * * * * * * * * * * * * * * *	* * *

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

	HEC-1L INPUT	PAGE 1
LINE	ID1	
1	ID PROJECT: Eagle Mountain	
2	ID CLIENT: Eagle Crest Engergy	
3	ID FILE NAME: EMURPMF.HC1 [Eagle Mountain, Upper Res., PMF storm]	
4		
	ID HISTORY: Created 8/19/09 by NDM	
5	ID PURPOSE: Estimate PMF-Storm for Upper Reservoir	
6	ID	
7	ID PRECIPITATION: HMR 59 PMP	
8	ID TEMPORAL DISTRIBUTION: 2/3 end weighted	
9	ID SUB-BASINS: none	
10	ID LOSS RATE: zero	
11	ID	
12	ID BASE FLOW: Zero	
13	ID UH (OVERLAND): USBR Synthetic, Southwest Desert, Kn = 0.045, 1-min duration	
14	ID	
15	ID	
16	ID ************************************	
	*	
17	IT 1 0 4500	
18		
	*	
19	KK Inflow> OVERLAND INFLOW TO RESERVOIR (excludes direct rainfall on reservoir	
	* SUB-BASIN AREA (sq. mi)	
20	BA 1.736	
20	*	
21	IN 60	
21	* ALL-SEASON GENERAL STORM PMP - BASIN B1	
	* (1-hr incr.; Mid-End Wt, FERC/HMR 59 alt. 6-hr Blocks; EXCESS RAINFALL ONLY)	
	* Applied HSG loss rates(A,B,C,D 0.000 0.000 0.000 0.000(in/hr)	
22	PI 0.061 0.061 0.061 0.061 0.061 0.061 0.068 0.068 0.068 0.068	
23	PI 0.071 0.071 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.112 0.112	
23	PI 0.071 0.071 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.112 0.112 PI 0.112 0.112 0.119 0.119 0.137 0.137 0.137 0.138 0.138 0.138	
25	PI 0.559 0.638 0.643 0.645 0.645 0.645 0.651 0.652 0.689 0.689	
26	PI 1.673 4.354 0.207 0.207 0.207 0.195 0.195 0.195 0.119 0.119	
27	PI 0.119 0.119 0.119 0.119 0.112 0.112 0.112 0.112 0.112 0.078 0.078	
28	PI 0.071 0.071 0.071 0.071 0.071 0.071 0.068 0.068 0.068 0.068	
29	PI 0.061 0.061 0.000	
	*	
	* BASEFLOW (SET TO ZERO)	
30	BF 00.0 0.0 1.0	
	*	
	* UNIFORM LOSS RATE, ZERO INIT. BUDGET (SAT'D). ZERO IMPERMIABLE.	
31	LU 0.0 0.000 0.0	
	*	
32	IN 1	
	 * Eagle Mountain Upper Reservoir, Kn = 0.045, 1-min UH 	
	* USBR UH, Kn = 0.045, duration = 1min.	
33	UI 15 27 39 52 73 107 150 201 267 349	
34	UI 463 624 863 1189 1516 1833 2158 2443 2739 2984	
35	UI 3081 3015 2901 2750 2570 2357 2143 1923 1700 1547	
36	UI 1413 1285 1164 1079 1000 928 860 792 742 695	
37	UI 653 623 594 566 541 516 494 472 453 436	
38	UI 417 401 385 368 353 338 324 310 295 285	
39	UI 273 261 249 240 231 221 212 203 195 187	
40	UI 179 171 164 158 152 146 140 134 128 123	
10	117 TT	

1				HEC-1	LL INPUT					PAGE 2	
	LINE	ID1	2	34.	5,	6	7	8	910		
	41 42	UI 118 UI 78		08 104 71 69	99 66	95 63	91 60		84 81 55 53		
	42	UI 78 UI 51		47 44	43	63 41	40		5 53 36 35		
	43	UI 34		30 29	28	27	26		24 23		
	45	UI 22		21 20	19	18	17		.6 16		
	46	UI 15		13 13	12	6					
		*									
		*									
		*									
		^									
	47	KK PMFout -	-> PMF OUTFL	OW THROUGH	SPILLWAY						
	48	KP 1									
	49	ко 0	2								
		* * INITIAL RE	עים זים מדרעומים	ATT ON							
	50	RS 1	ELEV 24								
		*									
		* ELEV-CAP T									
	51 52	SV 20000 SE 2485	20220 206 2486 24		21380 2492	21771 2494		2559 2295 2498 250			
	52	SE 2485 *	2480 24	88 2490	2492	2494	2496	2498 250	10		
	53	* SPILLWAY C SS 2486		ON: EL, L, .9 1.5	C, Exp						
	55	*									
		* DAM OVERTO * ST 2490			v/o spillv	/ay), C, 1	EXP				
		*	1200 5.0	1.5							
		*DIAGRAM *									
	54	ZZ									
1											
INPUT	SCHEMA	TIC DIAGRAM OF	STREAM NETWO	RK							
LINE	(V) ROUTING	S (>) DIVERSION	OR PUMP FLO	WC						
NO.	(.) CONNECT	COR (<) RETURN OF	DIVERTED OF	R PUMPED B	LOW					
19	Inflow V										
	v										
47	PMFout										
31 LU	UNIFC	ORM LOSS RATE									
			.00 INITIAL .00 UNIFORM								
			.00 PERCENT		5 AREA						
33 UI		UNITGRAPH, 136 15.0 27.0	ORDINATES, 39.0		L.00 73.0	107.0	150.0	201.0	267.0	349.0	
		13.0 27.0 63.0 624.0	863.0	1189.0	1516.0	1833.0	2158.0	2443.0	2739.0	2984.0	
		81.0 3015.0	2901.0	2750.0	2570.0	2357.0	2143.0	1923.0	1700.0	1547.0	
	14	13.0 1285.0	1164.0	1079.0	1000.0	928.0	860.0	792.0	742.0	695.0	
		53.0 623.0			541.0	516.0	494.0	472.0	453.0	436.0	
		401.0 401.0 273.0 261.0	385.0 249.0	368.0 240.0	353.0 231.0	338.0 221.0	324.0 212.0	310.0 203.0	295.0 195.0	285.0 187.0	
		.79.0 171.0	164.0		152.0	146.0	140.0	134.0	128.0	123.0	
		.18.0 113.0	108.0	104.0	99.0	95.0	91.0	88.0	84.0	81.0	
		78.0 74.0	71.0	69.0	66.0	63.0	60.0	58.0	55.0	53.0	
		51.0 49.0 34.0 31.0	47.0 30.0	44.0 29.0	43.0 28.0	41.0 27.0	40.0 26.0	38.0 25.0	36.0 24.0	35.0 23.0	
		22.0 21.0	21.0	20.0	19.0	18.0	17.0	17.0	16.0	16.0	
		15.0 13.0	13.0	13.0	12.0	6.0					
					* * *						
				RU FLOW IN CU	JNOFF SUMM		ND				
				- HOW TH CC	CALC LERT						

FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

	OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE F	LOW FOR MAXIM	IUM PERIOD	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
+	STATION	FIOW	FEAR	6-HOUR	24-HOUR	72-HOUR	AIGEA		MAA SIAGE	
+	HYDROGRAPH AT	Inflow	4636.	42.10	1563.	677.	289.	1.74		
+ +	ROUTED TO	PMFout	2059.	42.47	1263.	630.	243.	1.74	2489.02	42.47

*** NORMAL END OF HEC-1 ***

1**	* * * * * * * * * *	* * * * * * * * *	******	*********	* *
*					*
*	FLOOD HY	DROGRAPH	PACKAGE	(HEC-1L)	*
*		JULY	1998		*
*		VERSION	4.1(L)		*
*					*
*	RUN DATE	220CT09) TIME	11:08:20	*
*					*
* *	* * * * * * * * * *	* * * * * * * * *	******	* * * * * * * * * * *	**

1

* * * * * * * * * * * * * * * * * * * *	
* *	
* U.S. ARMY CORPS OF ENGINEERS *	
* HYDROLOGIC ENGINEERING CENTER *	
* 609 SECOND STREET *	
* DAVIS, CALIFORNIA 95616 *	
* (916) 756-1104 *	
* *	
* * * * * * * * * * * * * * * * * * * *	

х	Х	XXXXXXX	XX	XXX		Х
х	Х	х	х	Х		XX
х	Х	х	х			Х
XXXX	XXX	XXXX	х		XXXXX	Х
х	Х	х	х			Х
х	Х	х	х	Х		Х
Х	Х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-IL	INPUT						PAGE	1
LINE	ID	1	2	3	4	5,	6	7	8	9	10		
1	ID	DRATEOT	: Eagle	Mountain									
2	ID		Eagle C										
						Max		D = = 1	0.0 370	1			
3	ID				1 [Eagle					ormj			
4	ID				9 by NDM				JN				
5	ID	PURPOSE	: Estima	te 100 Y	R-Storm	for Uppe	r Reserv	oır					
6	ID												
7	ID		TATION:										
8	ID				Center w	eighted							
9	ID		INS: non										
10	ID	LOSS RA	TE: zero										
11	ID												
12	ID	BASE FL	OW: Zero										
13	ID	UH (OVE	RLAND):	USBR Syn	thetic,	Southwes	t Desert	, Kn = 0	.045, 1-	min dura	ation		
14	ID												
15	ID												
16	ID	* * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * * *	******	******	******	*****		
	*												
17	TΤ	1		0	4500								
18	IO	1	2	0	1500								
10	*	T	4										
	-												
10	1717	Trafl	> 01/00-1	AND THEFT	OW TO 55	CEDUCTE	(or a]	a diment		1			
19		Inflow -			OW TO RE	PTKAOTK	exclude	s urrect	. raintal	⊥ on res	ervolr		
		JB-BASIN	AREA (sq	. mı)									
20	BA	1.736											
	*												
	* 10	0-YR STO											
21	PH		0.01	0.490	0.90	1.56	1.86	2.08	2.55	3.35	4.15		
	*												
	* BA	ASEFLOW (SET TO Z	ERO)									
22	BF	00.0	0.0	1.0									
	*												
	* UN	IFORM LO	SS RATE.	ZERO IN	IT. BUDG	ET (SAT'	D). ZERO	IMPERMI	ABLE.				
23	LU		0.000	0.0		(-,						
25	*	0.0	0.000	0.0									
24	IN	1											
24	*		e Mounta	in Upper	Reservo	ir Kn -	0 045	1_min III	T				
		BR UH, K					0.045,	1-11111 01					
25	UI	15 15	27	39	52 52	73	107	150	201	267	349		
						1516	1833	2158	2443	2739	2984		
26	UI	463	624	863	1189								
27	UI	3081	3015	2901	2750	2570	2357	2143	1923	1700	1547		
28	UI	1413	1285	1164	1079	1000	928	860	792	742	695		
29	UI	653	623	594	566	541	516	494	472	453	436		
30	UI	417	401	385	368	353	338	324	310	295	285		
31	UI	273	261	249	240	231	221	212	203	195	187		
32	UI	179	171	164	158	152	146	140	134	128	123		
33	UI	118	113	108	104	99	95	91	88	84	81		
34	UI	78	74	71	69	66	63	60	58	55	53		
35	UI	51	49	47	44	43	41	40	38	36	35		
36	UI	34	31	30	29	28	27	26	25	24	23		
37	UI	22	21	21	20	19	18	17	17	16	16		
38	UI	15	13	13	13	12	6	± /	± /	10	10		
50	*	1.0	10	10	- L J	14	0						
	*												
	*												
	*												
	*				una 1-	TNDT						D3.05	~
					HEC-1L	TNF0.1.						PAGE	2
				_		_	-	_		_			
LINE	ID	1	2	3	4	5,	6	7	8	9.	10		
39		PMFout -	-> PMF O	UTFLOW I	HROUGH S	PILLWAY							
40	KP	1											
4.1	KO	0	2										
41													
41	*												
41	* * IN	NITIAL RE	SERVOIR	ELEVATIC	N								
41 42	* * IN RS	NITIAL RE 1	SERVOIR ELEV	ELEVATIC 2485	N								

	43 S 44 S *	E 2485 SPILLWAY CR	20220 20 2486 2 EST ELEVAT	488 249 ION: EL, L	0 2492 , C, Exp			2559 2295 2498 250		
	* * * *	DAM OVERTOP ST 2490 1 DIAGRAM	PING SUMMA			way), C, E	XP			
1	46 Z	Z								
	SCHEMATIC	DIAGRAM OF S	TREAM NETW	ORK						
INPUT LINE	(V) ROUTING	(>)	DIVERSION	OR PUMP F	LOW					
NO.	(.) CONNECTOR	(<)	RETURN OF	DIVERTED	OR PUMPED :	FLOW				
19	Inflow V V									
39	V PMFout									
(***) RUNO	OFF ALSO COMPUTED PRECIPITA	AT THIS LOC TION DATA	ATION							
21 PH	5-MIN 15	RO-35 -MIN 60-MIN 0.90 1.56	2-HR	т 3-нг 2.08	6-HR 12-1 2.55 3.	HR 24-HR 35 4.15	2-DAY	4-DAY 7	-DAY 10-D	AY
				STORM A	REA = 0	.01				
23 LU	CNS	TL 0. TL 0.		L LOSS M LOSS RAT T IMPERVIO						
25 UI	15.0 463.0 3081.0 1413.0 653.0 417.0 273.0 179.0 118.0 78.0 51.0 34.0 22.0	624.0 3015.0 1285.0 623.0 401.0 261.0 171.0 113.0 74.0	$\begin{array}{c} 39.0\\ 863.0\\ 2901.0\\ 1164.0\\ 594.0\\ 385.0\\ 164.0\\ 108.0\\ 71.0\\ 47.0\\ 30.0\\ 21.0\\ \end{array}$	$\begin{array}{c} 52.0\\ 1189.0\\ 2750.0\\ 1079.0\\ 566.0\\ 368.0\\ 240.0\\ 158.0\\ 104.0\\ 69.0\\ 44.0\\ 29.0\\ 29.0\\ 20.0 \end{array}$	$\begin{array}{c} 73.0\\ 1516.0\\ 2570.0\\ 1000.0\\ 541.0\\ 231.0\\ 152.0\\ 99.0\\ 66.0\\ 43.0\\ 28.0\\ 19.0\\ 12.0\\ \end{array}$	1833.0 2357.0 928.0 516.0 338.0 221.0 146.0 95.0 63.0 41.0	2158.02143.0860.0494.0324.0212.0140.091.060.040.0	$\begin{array}{c} 2443.0\\ 1923.0\\ 792.0\\ 472.0\\ 310.0\\ 203.0\\ 134.0\\ 88.0\\ 58.0\\ 38.0\\ \end{array}$	1700.0 742.0 453.0 295.0 195.0 128.0 84.0 55.0	2984.0 1547.0 695.0 436.0 285.0 187.0 123.0 81.0 53.0 35.0
					* * *					

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

	OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE FI	LOW FOR MAXIN	MUM PERIOD	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
+				6-HOUR	24-HOUR	72-HOUR				
+	HYDROGRAPH AT	Inflow	2789.	12.37	478.	193.	65.	1.74		
+ +	ROUTED TO	PMFout	116.	18.37	109.	70.	27.	1.74	2486.44	18.28

*** NORMAL END OF HEC-1L ***

1***	******	******	******	*********	**
*					*
*	FLOOD	HYDROGRAPH	H PACKAGE	(HEC-1L)	*
*		JULY	1998		*
*		VERSION	J 4.1(L)		*
*					*
*	RUN DAT	re 24AUG	9 TIME	14:03:08	*
*					*
:	* * * * * * * * *	*****	*******	*********	* *

1

* * *	*****	* * *
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*
* * *	* * * * * * * * * * * * * * * * * * * *	***

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:RED TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-11	INPUT						PAGE	1
LINE	ID	1	2	3	4	5,	6.	7.	8.	9.	10		
1	ID	PROJEC	T: Eagle	Mountain	n								
2	ID	CLIENT	: Eagle (Crest Eng	gergy								
3	ID	FILE N	AME: EMLF	RPMF.HC1	[Eagle M	ountain,	Lower 1	Res., PMI	F storm]				
4	ID	HISTOR	Y: Create	ed 8/19/0	09 by NDM	1							
5	ID	PURPOS	E: Estima	ate PMF-S	Storm for	Lower F	Reservoi	r					
6	ID												
7	ID	PRECIP	ITATION:	HMR 59 1	PMP								
8	ID	TEMPOR	AL DISTRI	BUTION:	2/3 end	weighted	1						
9	ID	SUB-BA	SINS: nor	ne									
10	ID	LOSS R	ATE: zero	2									
11	ID												
12	ID	BASE F	LOW: Zero	0									
13	ID	UH (OV	ERLAND):	USBR Syn	nthetic,	Southwes	st Deser	t, Kn = (0.045, 1.	-min dura	ation		
14	ID			-									
15	ID												
16	ID *	*****	*******	******	* * * * * * * * *	*******	******	* * * * * * * * *	*******	* * * * * * * * *	* * * * * * *		
17	TΤ	1		0	4500								
18	IO	1	2	0	1500								
10	*	1	2										
19	vv	Inflow	> OVERI	אוד רותר		CEDUATE	(exclude	a direct	- rainfa	ll on rea	arvoir		
19			AREA (so		LOW IO RE	SERVOIR	(excrude	es urrect	. failla	LI ON LES	SELVOIL		
20	BA	2.850											
21	* IN	60											
			N GENERAI	STORM I	PMP - BAS	STN B1							
			r.; Mid-H				6-hr Blo	ocks; EX(TESS RATI	IFALL ON	(Y)		
			SG loss 1						0.000(in)		,		
22	PI	0.046	0.046	0.046	0.046	0.046	0.046	0.061	0.061	0.061	0.061		
23	PI	0.076	0.076	0.080	0.080	0.080	0.080	0.080	0.080	0.091	0.091		
24	PI	0.091	0.091	0.113	0.113	0.116	0.116	0.116	0.159	0.159	0.159		
25	PI	0.529		0.577	0.587	0.613	0.620	0.657	0.660	0.665	0.735		
26	PI	1.288	4.005	0.180	0.180	0.180	0.168	0.168	0.168	0.113	0.113		
27	PI	0.113	0.113	0.113	0.113	0.091	0.091	0.091	0.091	0.080	0.080		
28	PI	0.076	0.076	0.076	0.076	0.076	0.076	0.061	0.061	0.061	0.061		
29	PI	0.046	0.046	0.000	0.070	01070	0.070	0.001	0.001	0.001	0.001		
	*												
	* B2	ASEFLOW	(SET TO 2	ZERO)									
30	BF *	00.0	0.0	1.0									
	* 11	NTEORM I.	OSS RATE	ZERO TI	ALL BIDG	EFT (SAT)	רט אדע (TMPFPM	DARLE				
31	LU	0.0	0.000	0.0	NII. BODG	BI (SAI	D). ZER	J INFERD	LADUE.				
31	*	0.0	0.000	0.0									
32	IN	1											
	*		le Mounta					1-min UH	Ŧ				
		SBR UH,			uration =								
33	UI	22	40	56	74	102	142	196	265	350	449		
34	UI	571	758	1012	1354	1833	2303	2756	3222	3642	4057		
35	UI	4497	4660	4727	4571	4374	4137	3867	3561	3255	2938		
36	UI	2615	2395	2199	2016	1833	1702	1585	1475	1377	1279		
37	UI	1188	1121	1054	996	953	911	872	835	799	767		
38	UI	736	706	681	655	629	607	583	560	538	517		
39	UI	496	476	455	440	424	406	389	375	362	348		
40	UI	335	322	309	297	286	274	264	253	243	235		
					HEC-11	INPUT						PAGE	2

	LINE	ID	1	2		4	5,.		7	8	9	10		
	41	UI	227	218	209	201	193	186	178	171	164	159		
	42	UI	152	145	140	135	130	126	121	115	111	107		
	43 44	UI UI	104 69	99 67	95 64	92 62	88 60	85 57	81 55	78 54	75 51	72 48		
	45	UI	46	45	43	42	40	38	37	36	35	34		
	46 47	UI UI	32 21	31 20	30 20	29 19	28 16	27 3	25	25	25	23		
	- /	*		20	20		20	5						
		*												
	48 49	KK KP	PMFout - 1	-> PMF	OUTFLOW 7	THROUGH	SPILLWAY							
	50	KO	0	2										
		*	NITIAL RE											
	51	RS	1 IIIAL	ELEV	1094	JIN								
		*		ADT D										
	52	SV	LEV-CAP T 4200	5891	10400	10400	15917	19438	21900 2	23244 2	5210			
	53	SE	925	950	1000	1025	1050	1076	1092	1100	1110			
		* * SI	PILLWAY C	REST EL	EVATION:	EL, L,	C, Exp							
	54	SS	1094	100	2.9	1.5	-							
		*												
			AGRAM											
	55	* ZZ												
1	000000													
INPUT	SCHEMA'	FIC DIA	AGRAM OF	STREAM	NETWORK									
LINE	(V) ROUTING		(>) DIVER	SION OR H	PUMP FLO	WC							
NO.	(.) CONNECTO	OR	(<) RETUR	N OF DIVH	ERTED OF	R PUMPED	FLOW						
19	Inflow													
	V V													
48	PMFout													
31 LU	UNIFOF	RM LOSS												
		STRTL CNSTL			ITIAL LOS IFORM LOS									
		RTIMP			RCENT IM		3 AREA							
33 UI	TNPUT	UNITGE	RAPH, 146	ORDINA	TES. VOI	UME = 1	1.00							
55 01	2	22.0	40.0	56	.0	74.0	102.0	142.0	196.0			350.0	449	0.0
		71.0 97.0	758.0 4660.0	1012 4727		54.0 71.0	1833.0 4374.0	2303.0 4137.0	2756.0 3867.0			3642.0 3255.0	4051 2938	
		,,.0 L5.0	2395.0	2199		16.0	1833.0	1702.0	1585.0	1475.		1377.0	1279	
		38.0	1121.0	1054		96.0	953.0	911.0	872.0	835.		799.0	767	
		36.0 96.0	706.0 476.0	681 455		55.0 40.0	629.0 424.0	607.0 406.0	583.0 389.0	560. 375.		538.0 362.0	517 348	
	33	35.0	322.0	309	.0 29	97.0	286.0	274.0	264.0	253.	0	243.0	235	5.0
		27.0 52.0	218.0 145.0	209 140		01.0 35.0	193.0 130.0	186.0 126.0	178.0 121.0			164.0 111.0	159 107	
	10	04.0	99.0	95	.0 9	92.0	88.0	85.0	81.0	78.	0	75.0	72	2.0
		59.0 16.0	67.0 45.0	64 43		52.0 42.0	60.0 40.0	57.0 38.0	55.0 37.0			51.0 35.0		8.0 4.0
		32.0	31.0	30		29.0	28.0	27.0	25.0			25.0		3.0
	2	21.0	20.0	20	.0 1	19.0	16.0	3.0						
							* * *							
							NORE OF	MADY						
						OW IN CU		MARY PER SECC IN SQUARE						
				PEAK	TIME OF	AVI	ERAGE FLO	W FOR MAX	MIMUM PERIC		ASIN			TIME OF
+	OPERATION	STAT	FION	FLOW	PEAK	6-	-HOUR	24-HOUR	72-HOU		AREA	STAC	θE	MAX STAGE
						-								
+	HYDROGRAPH AT	Inf	Elow	6902.	42.13	:	2345.	1022.	436	б.	2.85			
	D.01////DD ===					-								
+	ROUTED TO	PME	Fout	3185.	42.50	1	L930.	995.	424	4.	2.85			
+												1098	94	42.50

*** NORMAL END OF HEC-1 ***

1*******												
*					*							
*	FLOOD H	HYDROGRAPH	PACKAGE	(HEC-1L)	*							
*		JULY	1998		*							
*		VERSION	4.1(L)		*							
*					*							
*	RUN DATE	E 220CT09) TIME	11:04:16	*							
*					*							
* *	* * * * * * * * *	* * * * * * * * * * *	******	* * * * * * * * * * *	* *							

1

* * * * * * * * * * * * * * * * * * * *	k
* *	k
* U.S. ARMY CORPS OF ENGINEERS *	k
* HYDROLOGIC ENGINEERING CENTER *	k
* 609 SECOND STREET *	k
* DAVIS, CALIFORNIA 95616 *	k
* (916) 756-1104 *	k
k :	k
* * * * * * * * * * * * * * * * * * * *	k

х	Х	XXXXXXX	XX	XXX		Х
Х	Х	х	х	Х		XX
Х	Х	х	х			Х
XXXX	XXXX	XXXX	х		XXXXX	Х
Х	Х	х	х			Х
Х	Х	х	х	Х		Х
Х	Х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:RED TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-1L	INPUT						PAGE	1
LINE	ID	1	2	3	4	5,	6	7	8	9	10		
1 2 3 4 5	ID ID ID ID	CLIENT: FILE NA HISTORY	: Eagle Eagle C ME: EMLR : Create : Estima	rest Eng 100YR.HC d 8/19/0	ergy 1 [Eagle 9 by NDM	Revised	9/25/20	09 by NJ		orm]			
6 7 8 9 10	ID ID ID ID ID	TEMPORA SUB-BAS	TATION: L DISTRI INS: non TE: zero	BUTION: e	Center w	eighted							
11 12 13 14 15	ID ID ID ID ID	UH (OVE	OW: Zero RLAND):	USBR Syn									
16 17 18	ID * IT IO	******* 1 1	********	********	4500	*****	*****	*****	******	******	*****		
19	* SU	B-BASIN	-> OVERL AREA (sq		OW TO RE	SERVOIR	(exclude	s direct	rainfal	l on res.	ervoir		
20 21	*	2.850 0-YR STO	RM, (CEN		HTED, SE 0.90) 3.35	4.15		
21	* * BA	SEFLOW (00.0	SET TO Z		0.90	1.50	1.86	2.00	2.55	3.35	4.15		
23	*	IFORM LO	SS RATE, 0.000		IT. BUDG	ET (SAT'	D). ZERO	IMPERMI	ABLE.				
24	* IN *	1 Eagl	e Mounta					1-min UH					
25		BR UH, K			ration = 74	1min. 102		196	265	350	449		
	UI	22 571	40 758	56			142		265				
26	UI			1012	1354	1833	2303	2756	3222	3642	4057		
27	UI	4497	4660	4727	4571	4374	4137	3867	3561	3255	2938		
28	UI	2615	2395	2199	2016	1833	1702	1585	1475	1377	1279		
29	UI	1188	1121	1054	996	953	911	872	835	799	767		
30	UI	736	706	681	655	629	607	583	560	538	517		
31	UI	496	476	455	440	424	406	389	375	362	348		
32	UI	335	322	309	297	286	274	264	253	243	235		
33	UI	227	218	209	201	193	186	178	171	164	159		
34	UI	152	145	140	135	130	126	121	115	111	107		
35	UI	104	99	95	92	88	85	81	78	75	72		
36	UI	69	67	64	62	60	57	55	54	51	48		
37	UI	46	45	43	42	40	38	37	36	35	34		
38 39	UI UI *	32 21	31 20	30 20	29 19	28 16	27 3	25	25	25	23		
	*				HEC-1L	INPUT						PAGE	2
LINE	ID	1	2	3	4	5,	6	7	8	9	10		
40	KK	PMFout -	-> PMF O	UTFLOW I	HROUGH S	PILLWAY							
41	KP	1											
42	KO *	0	2 SERVOIR	ר די די די	NT								
43	RS RS	111AL RE	ELEV	1094	11								

	*								
	* ELEV	-CAP 1	ABLE						
44	SV	4200	5891	10400	10400	15917	19438	21900	23244
45					1025				
15	*	225	250	1000	1025	1050	10/0	1072	1100
	* 0011	TWAV C	יזק שמקמי	NO TRANS	EL, L, C	Erro			
10						., вхр			
46	*	1094	100	2.9	1.5				
	*								
	*DIAGR	AM							
	*								
47	ΖZ								
SCHEMATI	C DIAGR	AM OF	STREAM 1	NETWORK					
(V) ROUTING		(>	>) DIVERS	SION OR	PUMP FLOW	I			
(.) CONNECTOR		(<	-) RETURI	N OF DIV	ERTED OR	PUMPED B	LOW		
			, -						
Inflow									
V									
v									
PMFout									
FMFOUL									

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION

1 INPUT LINE NO. 19

40

PRECIPITATION DATA

 21 PH
 DEPTHS FOR
 0-PERCENT HYPOTHETICAL STORM

 HYDRO-35
 TP-40
 TP-49

 5-MIN
 15-MIN
 60-MIN
 2-HR
 3-HR
 6-HR
 12-HR
 2-DAY
 4-DAY
 7-DAY
 10-DAY

 0.49
 0.90
 1.56
 1.86
 2.08
 2.55
 3.35
 4.15
 0.00
 0.00
 0.00

 STORM AREA =
 0.01

23 LU	UNIFORM LOS	S RATE								
	STRTL	0.	00 INITIAI	LOSS						
	CNSTL	0.	00 UNIFORM	I LOSS RAT	Έ					
	RTIMP	0.	00 PERCENT	IMPERVIC	US AREA					
25 UI	INPUT UNITG	RAPH, 146	ORDINATES,	VOLUME =	1.00					
	22.0	40.0	56.0	74.0	102.0	142.0	196.0	265.0	350.0	449.0
	571.0	758.0	1012.0	1354.0	1833.0	2303.0	2756.0	3222.0	3642.0	4057.0
	4497.0	4660.0	4727.0	4571.0	4374.0	4137.0	3867.0	3561.0	3255.0	2938.0
	2615.0	2395.0	2199.0	2016.0	1833.0	1702.0	1585.0	1475.0	1377.0	1279.0
	1188.0	1121.0	1054.0	996.0	953.0	911.0	872.0	835.0	799.0	767.0
	736.0	706.0	681.0	655.0	629.0	607.0	583.0	560.0	538.0	517.0
	496.0	476.0	455.0	440.0	424.0	406.0	389.0	375.0	362.0	348.0
	335.0	322.0	309.0	297.0	286.0	274.0	264.0	253.0	243.0	235.0
	227.0	218.0	209.0	201.0	193.0	186.0	178.0	171.0	164.0	159.0
	152.0	145.0	140.0	135.0	130.0	126.0	121.0	115.0	111.0	107.0
	104.0	99.0	95.0	92.0	88.0	85.0	81.0	78.0	75.0	72.0
	69.0	67.0	64.0	62.0	60.0	57.0	55.0	54.0	51.0	48.0
	46.0	45.0	43.0	42.0	40.0	38.0	37.0	36.0	35.0	34.0
	32.0	31.0	30.0	29.0	28.0	27.0	25.0	25.0	25.0	23.0
	21.0	20.0	20.0	19.0	16.0	3.0				

* * *

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

	OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE FI	LOW FOR MAXIM	NUM PERIOD	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
+		DIATION	1 Low	1 BAIC	6-HOUR	24-HOUR	72-HOUR	AIGIA	DIAGE	MAR DIAGE
+	HYDROGRAPH AT	Inflow	4410.	12.38	786.	317.	106.	2.85		
+ +	ROUTED TO	PMFout	749.	13.42	581.	279.	105.	2.85	1095.88	13.40

*** NORMAL END OF HEC-1 ***

1**	1***********												
*					*								
*	FLOOD 1	HYDROGRAPH	PACKAGE	(HEC-1L)	*								
*		JULY	1998		*								
*		VERSION	4.1(L)		*								
*					*								
*	RUN DAT	E 25SEP09) TIME	16:45:03	*								
*					*								
* *	* * * * * * * *	* * * * * * * * * * *	******	* * * * * * * * * * *	* *								

1 1

* *	* * * * * * * * * * * * * * * * * * * *	*
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*
* *	*********	*

х	Х	XXXXXXX	XX	XXX		Х
х	Х	х	х	Х		XX
х	Х	х	х			Х
XXXX	XXXX	XXXX	х		XXXXX	Х
х	Х	х	х			Х
х	Х	х	х	Х		Х
Х	Х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-11	. INPUT						PAGE	1
LINE	ID	1	2		4	5,	6.	7.	8 .	9.	10		
1	ID	DROTEC	T: Eagle	Mountair									
2	ID		: Eagle (
3	ID				[Eagle M	lountain	Facle (Treek D	WE storm	1			
4	ID)9 by NDM				ir Scorm	1			
5	ID				Storm for				/o proj	ect			
6	ID	1 0101 010.	D. DOCIM	acc ini i	JCOIM IOI	. Bugic (SICCR Wa	cer snea v	W/O Proj				
7	ID	DRECTD	ITATION:	HMR 59 1	т								
8	ID				2/3 end	weighter	4						
9	ID		SINS: noi		275 Clia	wergneed							
10	ID		ATE: zero										
11	ID	2000 10		5									
12	ID	BASE F	LOW: Zero	-									
13	ID				hthetic,	Southwes	at Deseri	- Kn = (045 1	-min dur:	ation		
14	ID	011 (011		00210 071	101100107	boutinet	Je Deber	.,		auri auri	401011		
15	ID												
16	ID	*****	******	*******	*******	******	******	******	******	******	******		
	*												
17	IT	5		0	900								
18	IO	1	2	-									
	*												
19	KK	Inflow	> OVERI	LAND INFI	LOW TO RE	SERVOIR	(exclude	es direct	: rainfa	ll on rea	servoir		
	* S	UB-BASIN	AREA (so	q. mi)									
20	BA *	7.07		-									
21	IN	60											
21		LL-SEASO	N GENERAL	. STORM I	MP - BAS	NTN B1							
		1-hr inc:					6-hr Blo	ocks; EX(TESS RAT	NFALL ON	(Y.)		
		pplied H							0.000(in				
22	PI	0.048	0.048	0.048	0.048	0.048	0.048	0.068	0.068	0.068	0.068		
23	PI	0.085	0.085	0.090	0.090	0.090	0.090	0.090	0.090	0.109	0.109		
24	PI	0.109	0.109	0.111	0.111	0.149	0.149	0.149	0.165	0.165	0.165		
25	PI	0.597	0.625	0.638	0.640	0.644	0.650	0.663	0.697	0.699	0.704		
26	PI	1.614	4.377	0.197	0.197	0.197	0.170	0.170	0.170	0.111	0.111		
27	PI	0.111	0.111	0.111	0.111	0.109	0.109	0.109	0.109	0.090	0.090		
28	PT	0.085	0.085	0.085	0.085	0.085	0.085	0.068	0.068	0.068	0.068		
29	PI	0.048	0.048	0.000									
	*												
	* в	ASEFLOW	(SET TO 2	ZERO)									
30	BF	00.0	0.0	1.0									
	*												
	* U	NIFORM L	OSS RATE	. ZERO IN	VIT. BUDG	GET (SAT	D). ZER) IMPERM	EABLE.				
31	LU *	0.0	0.000	0.0									
32	IN	5											
24	*		le Mount:	ain Eagle	e Creek R	eservoi	Kn = (045 1.	-min IIH				
	* 11	SBR UH, 1			ration =			5.015, I					
33	UI	42	79	156 156	291	503	863	1615	2611	3572	4463		
34	UI	4848	4525	4006	3357	2680	2241	1854	1602	1385	1195		
35	UI	1052	957	874	799	734	679	627	577	531	488		
36	UI	450	413	381	353	325	300	276	254	236	217		
37	UI	200	184	169	156	143	133	123	113	105	96		
38	UI	89	82	76	69	64	59	56	49	46	43		
39	UI	39	37	34	32	29	27	25	22	20	19		
	*		57	51	55		27	20		20			
	*												
	*												
	*												
	*												
	*DI	AGRAM											
	*												
					HEC-1	INPUT						PAGE	2

33 UI	INPUT UNITG	RAPH, 70	ORDINATES,	VOLUME =	1.00					
	42.0	79.0	156.0	291.0	503.0	863.0	1615.0	2611.0	3572.0	4463.0
	4848.0	4525.0	4006.0	3357.0	2680.0	2241.0	1854.0	1602.0	1385.0	1195.0
	1052.0	957.0	874.0	799.0	734.0	679.0	627.0	577.0	531.0	488.0
	450.0	413.0	381.0	353.0	325.0	300.0	276.0	254.0	236.0	217.0
	200.0	184.0	169.0	156.0	143.0	133.0	123.0	113.0	105.0	96.0
	89.0	82.0	76.0	69.0	64.0	59.0	56.0	49.0	46.0	43.0
	39.0	37.0	34.0	32.0	29.0	27.0	25.0	22.0	20.0	19.0

*** RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

	OPERATION	STATION	PEAK FLOW	TIME OF PEAK		OW FOR MAXIM		BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
+					6-HOUR	24-HOUR	72-HOUR			
	HYDROGRAPH AT									
+		Inflow	15319.	42.50	6046.	2768.	1182.	7.07		

*** NORMAL END OF HEC-1 ***

1**	* * * * * * * *	*********	******	*******	* *
*					*
*	FLOOD	HYDROGRAPH	PACKAGE	(HEC-1L)	*
*		JULY	1998		*
*		VERSION	4.1(L)		*
*					*
*	RUN DAT	TE 220CT09	9 TIME	11:12:09	*
*					*
**	* * * * * * * *	*********	* * * * * * * *	*******	* *

* * * * * * * * * * * * * * * * * * * *	
* *	
* U.S. ARMY CORPS OF ENGINEERS *	
* HYDROLOGIC ENGINEERING CENTER *	
* 609 SECOND STREET *	
* DAVIS, CALIFORNIA 95616 *	
* (916) 756-1104 *	
* *	
* * * * * * * * * * * * * * * * * * * *	

Х	Х	XXXXXXX	XX	XXX		х
х	Х	х	х	Х		XX
х	Х	х	х			Х
XXXX	XXXX	XXXX	х		XXXXX	Х
х	Х	х	х			Х
х	Х	х	х	Х		Х
х	Х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

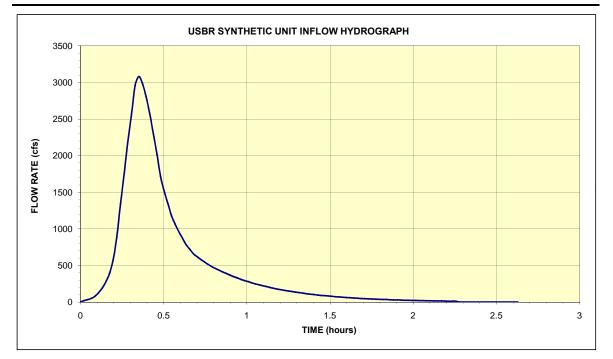
	HEC-1 INPUT	PAGE	1
LINE	ID12345,678910		
1	ID PROJECT: Eagle Mountain		
2	ID CLIENT: Eagle Crest Engergy		
3	ID FILE NAME: EMEC100YR.HC1 [Eagle Mountain, Eagle Creek, 100 YR storm]		
4	ID HISTORY: Created 8/19/09 by NDM Revised 9/24/09 by NJN		
5	ID PURPOSE: Estimate 100 YR-Storm for Eagle Creek Watershed w/o project		
6	ID		
7	ID PRECIPITATION: 100-YR		
8	ID TEMPORAL DISTRIBUTION: 2/3 end weighted		
9	ID SUB-BASINS: none		
10	ID LOSS RATE: zero		
11	ID		
12	ID BASE FLOW: Zero		
13	ID UH (OVERLAND): USBR Synthetic, Southwest Desert, Kn = 0.045, 1-min duration		
14	ID		
15	ID		
16	ID ************************************		
17	IT 5 0 900		
18	IO 1 2 *		
19	<pre>KK Inflow> OVERLAND INFLOW TO RESERVOIR (excludes direct rainfall on reservoir * SUB-BASIN AREA (sq. mi)</pre>		
20	BA 7.07 *		
	* 100-YR STORM, (CENTER-WEIGHTED, SEO GUIDELINES, IT or IN time step)		
21	PH 0.01 0.490 0.90 1.56 1.86 2.08 2.55 3.35 4.15 *		
	* BASEFLOW (SET TO ZERO)		
22	BF 00.0 0.0 1.0 *		
	* UNIFORM LOSS RATE, ZERO INIT. BUDGET (SAT'D). ZERO IMPERMEABLE.		
23	LU 0.0 0.000 0.0 *		
24	IN 5		
	* Eagle Mountain Eagle Creek Reservoir, Kn = 0.045, 1-min UH		
	* USBR UH, Kn = 0.045, duration = 5min.		
25	UI 42 79 156 291 503 863 1615 2611 3572 4463		
26	UI 4848 4525 4006 3357 2680 2241 1854 1602 1385 1195		
27	UI 1052 957 874 799 734 679 627 577 531 488		
28	UI 450 413 381 353 325 300 276 254 236 217		
29	UI 200 184 169 156 143 133 123 113 105 96		
30	UI 89 82 76 69 64 59 56 49 46 43		
31	UI 39 37 34 32 29 27 25 22 20 19 *		
	*		
	*		
	*		
	*		
	*DIAGRAM *		
32	22		

PRECIPITATION DATA

21 PH	DEPTHS FO	R 0-PERCENT	HYPOTHETICAL STO	RM	
	HYDRO-35	TP-40		TP	-49
	5-MIN 15-MIN 60-MIN 2-HR	3-HR 6-HR	12-HR 24-HR	2-DAY 4-DAY	7-DAY 10-DAY
	0.49 0.90 1.56 1.86	2.08 2.55	3.35 4.15	0.00 0.00	0.00 0.00
		STORM AREA =	0.01		
25 UI	INPUT UNITGRAPH, 70 ORDINATES,			1615 0 2611	0 3572 0 44

25 UI	INPUI UNIIG	RAPH, /U	ORDINALES,	VOLUME =	1.00					
	42.0	79.0	156.0	291.0	503.0	863.0	1615.0	2611.0	3572.0	4463.0
	4848.0	4525.0	4006.0	3357.0	2680.0	2241.0	1854.0	1602.0	1385.0	1195.0
	1052.0	957.0	874.0	799.0	734.0	679.0	627.0	577.0	531.0	488.0
	450.0	413.0	381.0	353.0	325.0	300.0	276.0	254.0	236.0	217.0
	200.0	184.0	169.0	156.0	143.0	133.0	123.0	113.0	105.0	96.0
	89.0	82.0	76.0	69.0	64.0	59.0	56.0	49.0	46.0	43.0
	39.0	37.0	34.0	32.0	29.0	27.0	25.0	22.0	20.0	19.0

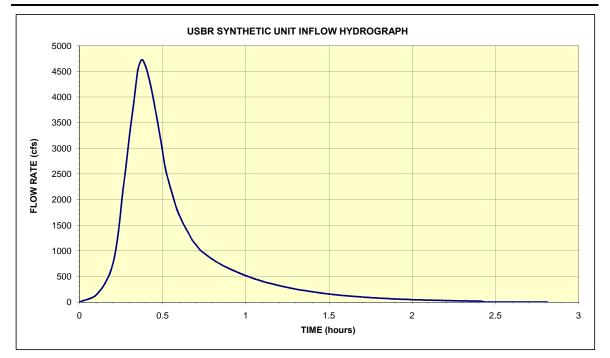
*** RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES


+	OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE FLO	W FOR MAXIMUN 24-HOUR	4 PERIOD 72-HOUR	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
+	HYDROGRAPH AT	Inflow	6455.	12.92	1935.	783.	263.	7.07		

*** NORMAL END OF HEC-1 ***

Eagle Mountain Upper Reservoir, Kn = 0.045, 1-min UH

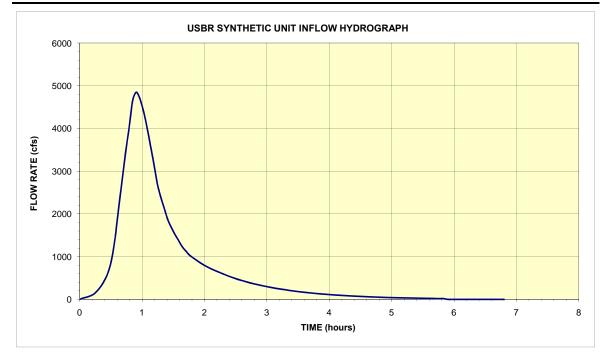
27-Aug-09


Lag Reduction	to Peak UH (%) =	0%				
D	Prainage Area, A =	1.74	sq. miles	s Lg+D/2 =	0.44	Hours
Basin Slope, S =		430.2	ft/mile	Basin Factor =	0.05	(L*Lca/S^0.5)
Length of Watercourse, L =		2.22	miles	(Vol. 1" rain, ft ³)*(days/sec), V' =	(Vol. 1" rain, ft ³)*(days/sec), V ' = 46.68 cfs*day	
Length to Centroid, Lca =		0.45	miles	Quotient X for $X^*q = Q_s$; X =	106.6	V'/(Lg+D/2)
	Kn =	0.045	* avg. Ma	anning's "n" (weighted by stream length f	or principle v	watercourses)
Estimated:	Lag Time, Lg =	0.43	Hours	Duration of Unit Rainfall to define	ne peak, D =	5 minutes
$Lg = 26^{\circ}$	*Kn*(L*Lca/S^0.5)^0.33			Minimum Timestep (D) for < 120 UH in	crements* =	1 minutes
				Minimum Timestep (D) for < 200 UH in	crements* =	1 minutes
For UH: Duration of Unit Rainfall, D =			1 minutes, round down to nearest: 5, D must equal time step used for co			

	1 UI RECORDS			-min Duration				JI (cfs) =	3081	
ITER/	ΑΤΕ ΡΕΑΚ ΤΟ ΤΑ	RGET 1.000 -	>	Unit Runoff (i	nch) =	0.99987	Absolute Pea	ak (cfs) =	3081	
UI	15	27	39	52	73	107	150	201	267	349
UI	463	624	863	1189	1516	1833	2158	2443	2739	2984
UI	3081	3015	2901	2750	2570	2357	2143	1923	1700	1547
UI	1413	1285	1164	1079	1000	928	860	792	742	695
UI	653	623	594	566	541	516	494	472	453	436
UI	417	401	385	368	353	338	324	310	295	285
UI	273	261	249	240	231	221	212	203	195	187
UI	179	171	164	158	152	146	140	134	128	123
UI	118	113	108	104	99	95	91	88	84	81
UI	78	74	71	69	66	63	60	58	55	53
UI	51	49	47	44	43	41	40	38	36	35
UI	34	31	30	29	28	27	26	25	24	23
UI	22	21	21	20	19	18	17	17	16	16
UI	15	13	13	13	12	6				

Eagle Mountain Lower Reservoir, Kn = 0.045, 1-min UH

Lag Reduction	to Peak UH (%) =	0%				
D	rainage Area, A =	2.85	sq. miles	s Lg+D/2 =	0.47	Hours
Basin Slope, S =		912.7	ft/mile	Basin Factor =	0.06	(L*Lca/S^0.5)
Length of	Watercourse, L =	2.46	miles	(Vol. 1" rain, ft ³)*(days/sec), V' =	76.64	cfs*day
Length to Centroid, Lca =		0.73	miles	Quotient X for $X^*q = Q_s$; X =	163.5	V'/(Lg+D/2)
	Kn =	0.045	* avg. Ma	anning's "n" (weighted by stream length f	or principle v	watercourses)
Estimated:	Lag Time, Lg =	0.46	Hours	Duration of Unit Rainfall to define	ne peak, D =	5 minutes
$Lg = 26^{\circ}$	Kn*(L*Lca/S^0.5)^0.33			Minimum Timestep (D) for < 120 UH in	crements* =	1 minutes
				Minimum Timestep (D) for < 200 UH in	crements* =	1 minutes
For UH: Duration of Unit Rainfall, D =			1 minutes, round down to nearest: 5, D must equal time step used for co			


	RECORDS			in Duration	Unit Rain			JI (cfs) =	4727	
ITERATE	PEAK TO TAR	GET 1.000	> U	nit Runoff (i	nch) =	1.00020	Absolute Pea	ak (cfs) =	4727	
UI	22	40	56	74	102	142	196	265	350	449
UI	571	758	1012	1354	1833	2303	2756	3222	3642	4057
UI	4497	4660	4727	4571	4374	4137	3867	3561	3255	2938
UI	2615	2395	2199	2016	1833	1702	1585	1475	1377	1279
UI	1188	1121	1054	996	953	911	872	835	799	767
UI	736	706	681	655	629	607	583	560	538	517
UI	496	476	455	440	424	406	389	375	362	348
UI	335	322	309	297	286	274	264	253	243	235
UI	227	218	209	201	193	186	178	171	164	159
UI	152	145	140	135	130	126	121	115	111	107
UI	104	99	95	92	88	85	81	78	75	72
UI	69	67	64	62	60	57	55	54	51	48
UI	46	45	43	42	40	38	37	36	35	34
UI	32	31	30	29	28	27	25	25	25	23
UI	21	20	20	19	16	3				

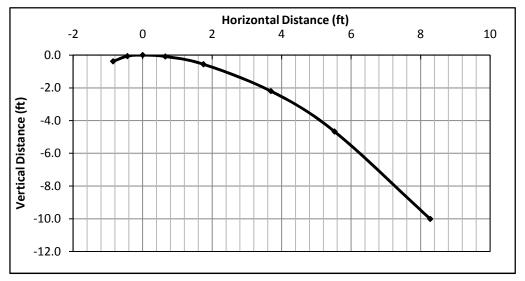
27-Aug-09

Eagle Mountain Eagle Creek Reservoir, Kn = 0.045, 1-min UH

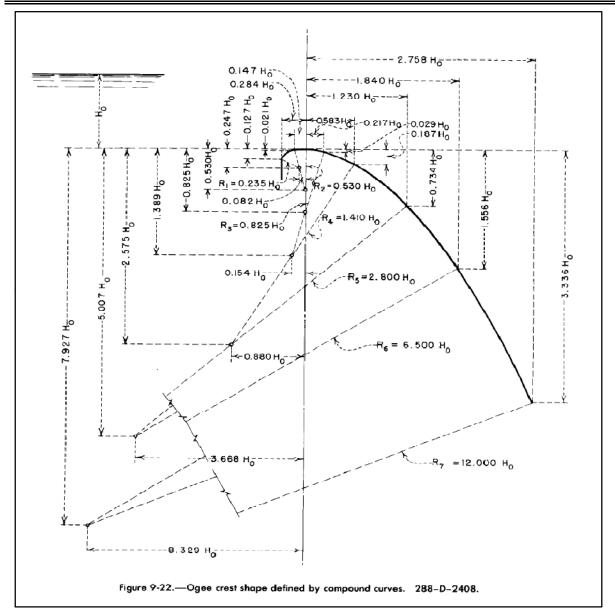
22-Oct-09

Lag Reduction	n to Peak UH (%) =	0%	,			
	Drainage Area, A =	7.07	sq. miles	s Lg+D/2 =	1.13	Hours
Basin Slope, S =		313.9	ft/mile	Basin Factor = 0.81 (L*Lca/S		(L*Lca/S^0.5)
Length o	of Watercourse, L =	5.51	miles	(Vol. 1" rain, ft ³)*(days/sec), V' =	190.11	cfs*day
Length to Centroid, Lca =		2.61	miles	Quotient X for $X^*q = Q_s; X = 167.7 V'/(Lg+D/2)$		
	Kn =	0.045	* avg. M	lanning's "n" (weighted by stream length f	or principle v	watercourses)
Estimated: Lg = 20	Lag Time, Lg = 6*Kn*(L*Lca/S^0.5)^0.33		Hours	Duration of Unit Rainfall to defir Minimum Timestep (D) for < 120 UH in Minimum Timestep (D) for < 200 UH in	crements* =	3 minutes
For UH:	or UH: Duration of Unit Rainfall, D =			5 minutes, round down to nearest: 5,D must equal time step used for co		, , ,

	UI RECORDS		-	-min Duration	Unit Rain	fall		UI (cfs) =	4848	
ITERAT	TE PEAK TO TAR	GET 1.000	>	Unit Runoff (i	nch) =	1.00001	Absolute Pea	ak (cfs) =	4848	
UI	42	79	156	291	503	863	1615	2611	3572	4463
UI	4848	4525	4006	3357	2680	2241	1854	1602	1385	1195
UI	1052	957	874	799	734	679	627	577	531	488
UI	450	413	381	353	325	300	276	254	236	217
UI	200	184	169	156	143	133	123	113	105	96
UI	89	82	76	69	64	59	56	49	46	43
UI	39	37	34	32	29	27	25	22	20	19

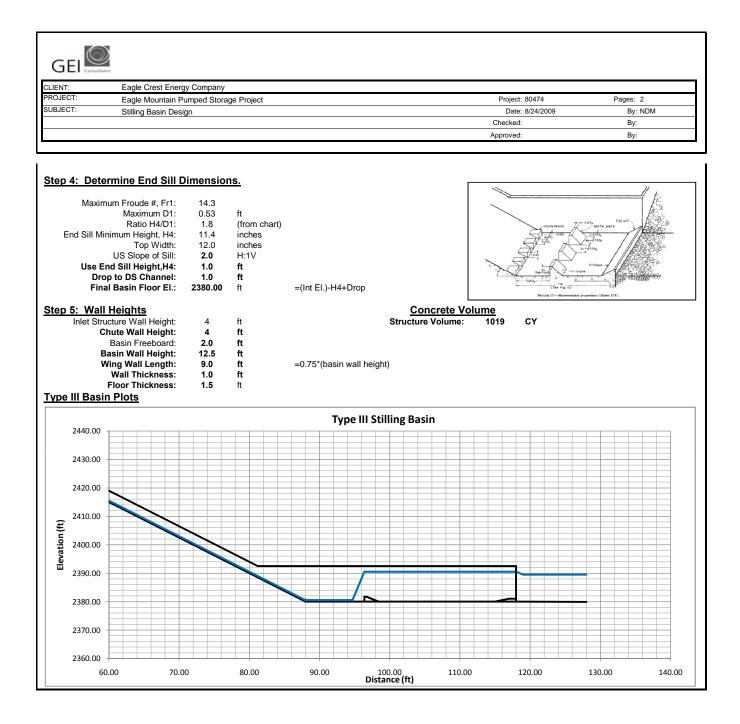

GEI Consultants, Inc. 080474 Eagle Mountain Pumped Storage Project Task 3 Schedule A: Deficiency of License Application 8/18/2009 NDM

UPPER RESERVOIR OGEE CREST GEOMETRY


Design Head, Ho:	3 ft
Approach Depth, P:	10 ft
Is P > 0.5Ho:	YES
Use USBR Fig. 9.22:	YES

	X Points	Y Points			
-X2 =	-0.852 ft	-Y2 =	-0.381 ft		
-X1 =	-0.441 ft	-Y1 =	-0.063 ft		
X Origin =	0 ft	Y Origin =	0 ft		
X1 =	0.651 ft	Y1 =	-0.087 ft		
X2 =	1.749 ft	Y2 =	-0.561 ft		
X3 =	3.69 ft	Y3 =	-2.202 ft		
X4 =	5.52 ft	Y4 =	-4.668 ft		
X5 =	8.274 ft	Y5 =	-10.008 ft		

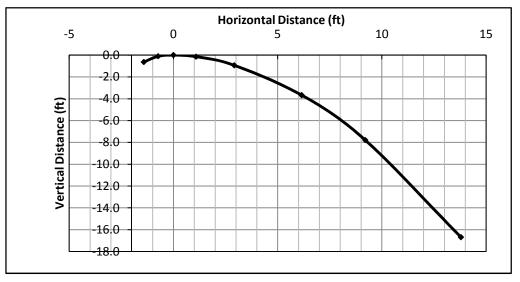
RADIU	RADIUS LENGTHS		RADIUS CENTER POINT						
R1 =	0.705 ft	X1 =	-0.246 ft	Y1 =	-0.741 ft				
R2 =	1.59 ft	X2 =	0 ft	Y2 =	-1.59 ft				
R3 =	2.475 ft	X3 =	0 ft	Y3 =	-2.475 ft				
R4 =	4.23 ft	X4 =	-0.462 ft	Y4 =	-4.167 ft				
R5 =	8.4 ft	X5 =	-2.64 ft	Y5 =	-7.725 ft				
R6 =	19.5 ft	X6 =	-11.004 ft	Y6 =	-15.021 ft				
R7 =	36 ft	X7 =	-24.987 ft	Y7 =	-23.781 ft				


GEI Consultants, Inc. 080474 Eagle Mountain Pumped Storage Project Task 3 Schedule A: Deficiency of License Application 8/18/2009 NDM

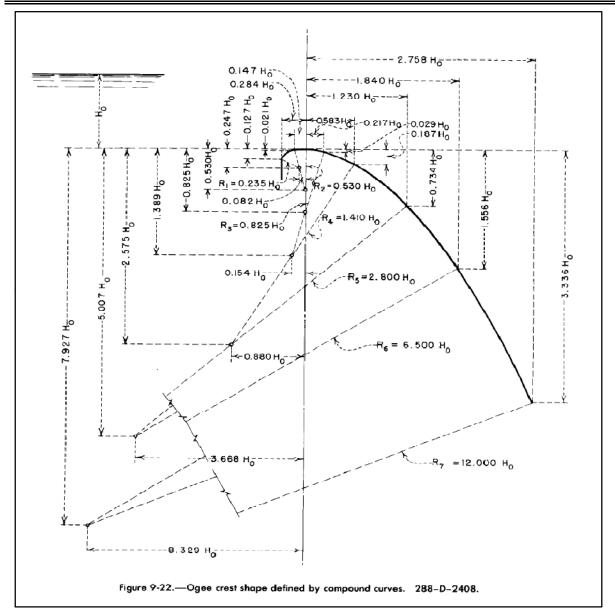
UPPER RESERVOIR OGEE CREST GEOMETRY

	agle Crest Energ	v Company							
	agle Mountain P		e Proiect				Project: 8	30474	Pages: 2
	tilling Basin Desi							3/24/2009	By: NDM
		•					Checked:		By:
							Approved:		By:
	stimate minimu eservoir.	um dimensio	ns for the chute	and Type III still	ing basin struc	ure required at	Eagle Mountair	n Upper	
Procedure: F	ollow design st	eps presente	ed in <i>Design of</i>	Small Canals - C	h. II Conveyar	ce Structures -	F. Chutes.		
	ISBR (1978). D ISBR (1984). E			ures. 25, Hydraulic De	sign of Stilling	Basins and Ene	ergy Dissipators		
nput Variables:									
Initial De	Start El.:	2490.0	ft						
initiai Ba	sin Floor El.: Difference:	2380.0 110.0	ft ft						
	Chute Slope:	0.8	H:1V						
	ute Width, B:	100.00	ft						
	ssume 50% of lead at toe:	energy is dis 55	sipated on chu ft	te slope					
	umed Depth:	0.53	ft						
	locity at Toe:	59.2	ft/sec						
				<u>TYPE III</u>	STILLING	<u> BASIN</u>			
Step 1: Inflow Va	<u>riables.</u>								
		Upstream	Upstream		Unit	Downstream	Velocity Downstream,		
D)ischarge, Q	Depth, D1	Velocity, V1	Upstream	Discharge, q	Depth, D2	V2		
	(Cfs)	(ft)	(ft/sec)	Froude #, F1	(cfs/ft)	(ft)	(ft/sec)		
	3120	0.53	59.2	14.3	31.20	10.48	2.98		
N Calculated E	e Basin Len roude #, Fr1: /laximum D2: Ratio L/D2: Basin Length: asin Length:	14.3 10.48 2.8 29.4 30.0	ft (from chart) ft ft		- 		· Catilles Table 11 Be	9	
							F1 = -	0 a i+	
							F1 = $\sqrt{2}$	The second secon	
	<u>ie Chute Blo</u>	ocks and I	Baffle Pier D	imensions.		Photos	n 12 Length of jump on her in • 0. Ehg		
						Photos	n 12 Length of jump on her in • 0. Ehg	ntol floor (Resins I, II, and III)	
	ne Chute Blo Height: Width:	ocks and I 8.0 8.0	Baffle Pier D inches inches	imensions. =D1 at max. flo =D1 at max. flo	w, Min. = 8"	Force	* 12—Length of Jump on herize	Intel from (Resting I, II), and III)	
Chute Blocks:	Height: Width: Spacing:	8.0 8.0 8.0	inches	=D1 at max. flo	w, Min. = 8" w, Min. = 8"	Force	• D. Efrig • D. Efrig • Stope H	Intel from (Resting I, II), and III)	-Barre plare
<u>Chute Blocks:</u> # o	Height: Width: Spacing: f Full Blocks:	8.0 8.0 8.0 75.0	inches inches	=D1 at max. flo =D1 at max. flo	w, Min. = 8" w, Min. = 8"	Force	• D. Efrig • D. Efrig • Stope H	Intel from (Resting I, II), and III)	- Barre piers
Chute Blocks: # o	Height: Width: Spacing:	8.0 8.0 8.0	inches inches	=D1 at max. flo =D1 at max. flo	w, Min. = 8" w, Min. = 8"	Force	• D. Efrig • D. Efrig • Stope H	Intel from (Resting I, II), and III)	
Chute Blocks: # o P	Height: Width: Spacing: f Full Blocks:	8.0 8.0 8.0 75.0	inches inches	=D1 at max. flo =D1 at max. flo	w, Min. = 8" w, Min. = 8"	Force	• D. Efrig • D. Efrig • Stope H	Intel from (Resting I, II), and III)	- Barre piers
<u>Chute Blocks:</u> # o P <u>3affle Piers:</u> Maximum F	Height: Width: Spacing: f Full Blocks: artial Blocks: roude #, Fr1:	8.0 8.0 8.0 75.0 0.0	inches inches inches	=D1 at max. flo =D1 at max. flo	w, Min. = 8" w, Min. = 8"	Force	• D. Efrig • D. Efrig • Stope H	Intel from (Resting I, II), and III)	- Barre piers
Chute Blocks: # o P Baffle Piers: Maximum F	Height: Width: Spacing: f Full Blocks: artial Blocks: roude #, Fr1: Maximum D1:	8.0 8.0 75.0 0.0 14.3 0.53	inches inches inches	=D1 at max. flo =D1 at max. flo	w, Min. = 8" w, Min. = 8"	Force	• D. Efrig • D. Efrig • Stope H	Inter Chaine J, 77, and 772	- Barre piers
Chute Blocks: # o P Baffle Piers: Maximum F N	Height: Width: Spacing: f Full Blocks: artial Blocks: roude #, Fr1: /aximum D1: Ratio H3/D1:	8.0 8.0 75.0 0.0 14.3 0.53 3.0	inches inches inches ft (from chart)	=D1 at max. flo =D1 at max. flo	w, Min. = 8" w, Min. = 8"	Force	• D.Ehg • D.Ehg • Shpa ki offia piers	not give (Reduct 1, 71, and 112) $E = \frac{1}{\sqrt{2}}$ $E = \frac{1}{\sqrt{2}}$ $E = \frac{1}{\sqrt{2}}$ $E = \frac{1}{\sqrt{2}}$	End sili
P <u>Baffle Piers:</u> Maximum F N	Height: Width: Spacing: f Full Blocks: artial Blocks: roude #, Fr1: Maximum D1:	8.0 8.0 75.0 0.0 14.3 0.53	inches inches inches	=D1 at max. flo =D1 at max. flo	w, Min. = 8" w, Min. = 8"	Force	• D.Ehg • D.Ehg • Shpa ki offia piers	Inter Chaine J, 77, and 772	End sili
Chute Blocks: # o P Baffle Piers: Maximum F N Baffle Pier: Use Baffle Pier	Height: Width: Spacing: f Full Blocks: artial Blocks: roude #, Fr1: Maximum D1: Ratio H3/D1: s Height, H3:	8.0 8.0 75.0 0.0 14.3 0.53 3.0 19.1 20.0	inches inches inches ft (from chart) inches inches	=D1 at max. flo =D1 at max. flo =D1 at max. flo	w, Min. = 8" w, Min. = 8"	Force	• D.Ehg • D.Ehg • Shpa ki offia piers	not give (Reduct 1, 71, and 112) $E = \frac{1}{\sqrt{2}}$ $E = \frac{1}{\sqrt{2}}$ $E = \frac{1}{\sqrt{2}}$ $E = \frac{1}{\sqrt{2}}$	End sili
Chute Blocks: # o P Baffle Piers: Maximum F N Baffle Pier: Use Baffle Pier	Height: Width: Spacing: f Full Blocks: artial Blocks: roude #, Fr1: Maximum D1: Ratio H3/D1: s Height, H3: r Height, H3: r Width, Pw:	8.0 8.0 75.0 0.0 14.3 0.53 3.0 19.1 20.0 15.0	inches inches inches ft (from chart) inches inches inches	=D1 at max. flo =D1 at max. flo =D1 at max. flo =0.75(H3)	w, Min. = 8" w, Min. = 8"	Force	• D.Ehg • D.Ehg • Shpa ki offia piers	not give (Reduct 1, 71, and 112) $E = \frac{1}{\sqrt{2}}$ $E = \frac{1}{\sqrt{2}}$ $E = \frac{1}{\sqrt{2}}$ $E = \frac{1}{\sqrt{2}}$	End sili
Chute Blocks: # o P Baffle Piers: Maximum F N Baffle Pier: Use Baffle Pein Baffle Pein	Height: Width: Spacing: f Full Blocks: artial Blocks: artial Blocks: roude #, Fr1: Maximum D1: Ratio H3/D1: s Height, H3: r Height, H3: r Width, Pw: Top Width:	8.0 8.0 75.0 0.0 14.3 0.53 3.0 19.1 20.0	inches inches inches ft (from chart) inches inches	=D1 at max. flo =D1 at max. flo =D1 at max. flo =0.75(H3) =0.20(H3)	w, Min. = 8" w, Min. = 8"	Force	• D.Ehg • D.Ehg • Shpa ki offia piers	not glave (Reside 1, 71, and 712) End will r_{1} , r_{2} End will r_{1} , r_{2} r_{3} , r_{3} $r_{1} = \frac{V}{\sqrt{g(t)}}$, r_{3}	End sili
Chute Blocks: # o P Baffle Piers: Maximum F M Baffle Pier: Use Baffle Pein Baffle Pein	Height: Width: Spacing: f Full Blocks: artial Blocks: roude #, Fr1: Maximum D1: Ratio H3/D1: s Height, H3: r Height, H3: r Width, Pw: Top Width: Spacing, Ps: # of Blocks:	8.0 8.0 75.0 0.0 14.3 0.53 3.0 19.1 20.0 15.0 4.0	inches inches inches ft (from chart) inches inches inches inches	=D1 at max. flo =D1 at max. flo =D1 at max. flo =0.75(H3)	w, Min. = 8" w, Min. = 8"	Force	• D.Ehg • D.Ehg • Shpa ki offia piers	not glave (Reside 1, 71, and 712) End will r_{1} , r_{2} End will r_{1} , r_{2} r_{3} , r_{3} $r_{1} = \frac{V}{\sqrt{g(t)}}$, r_{3}	End sili

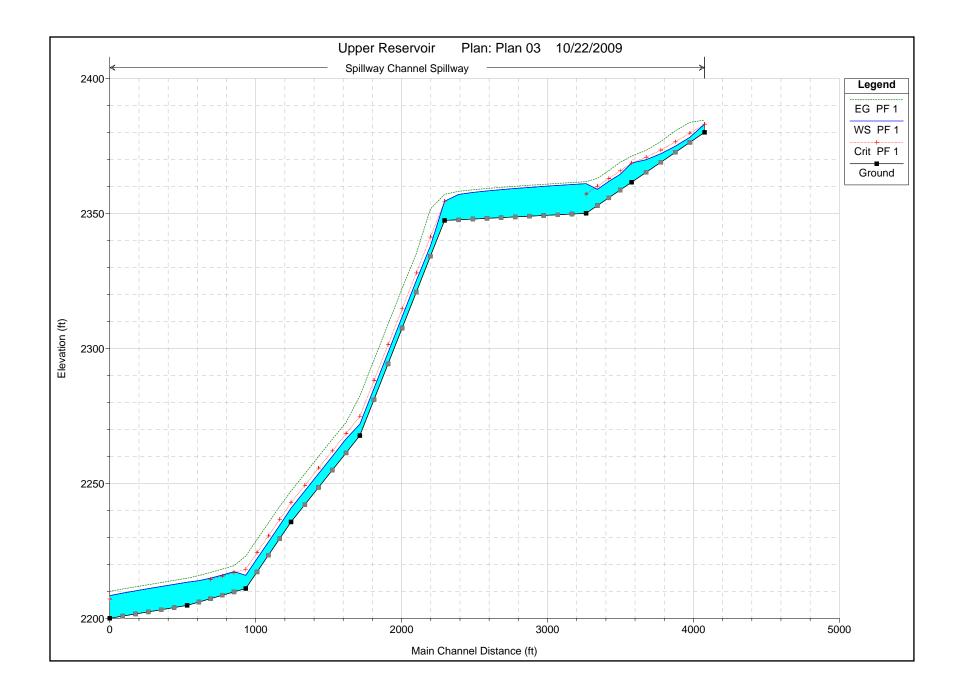
Γ

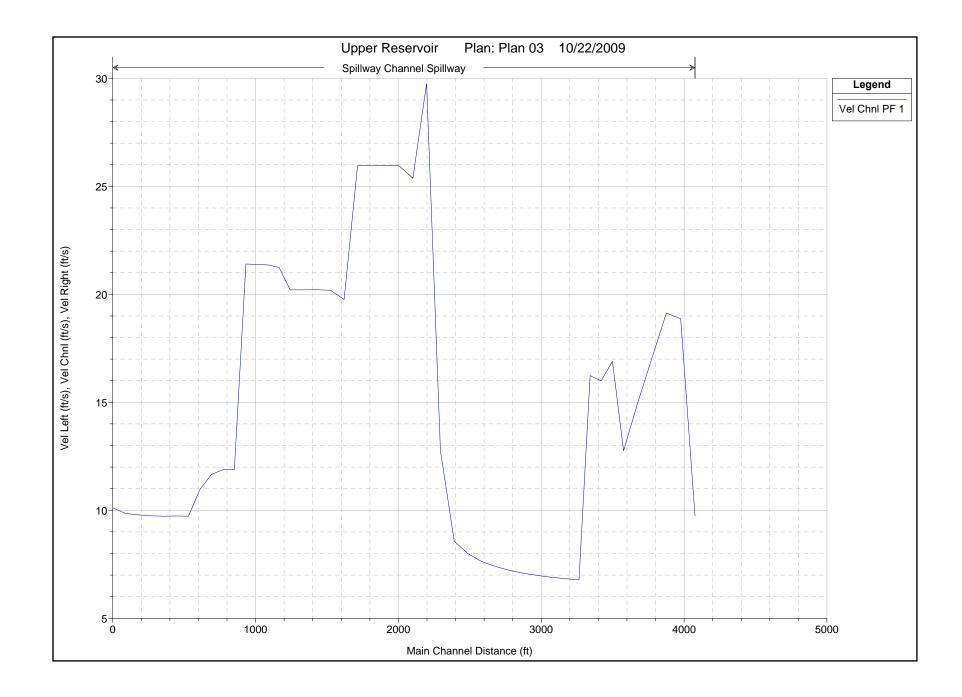

GEI Consultants, Inc. 080474 Eagle Mountain Pumped Storage Project Task 3 Schedule A: Deficiency of License Application 8/18/2009 NDM

LOWER RESERVOIR OGEE CREST GEOMETRY

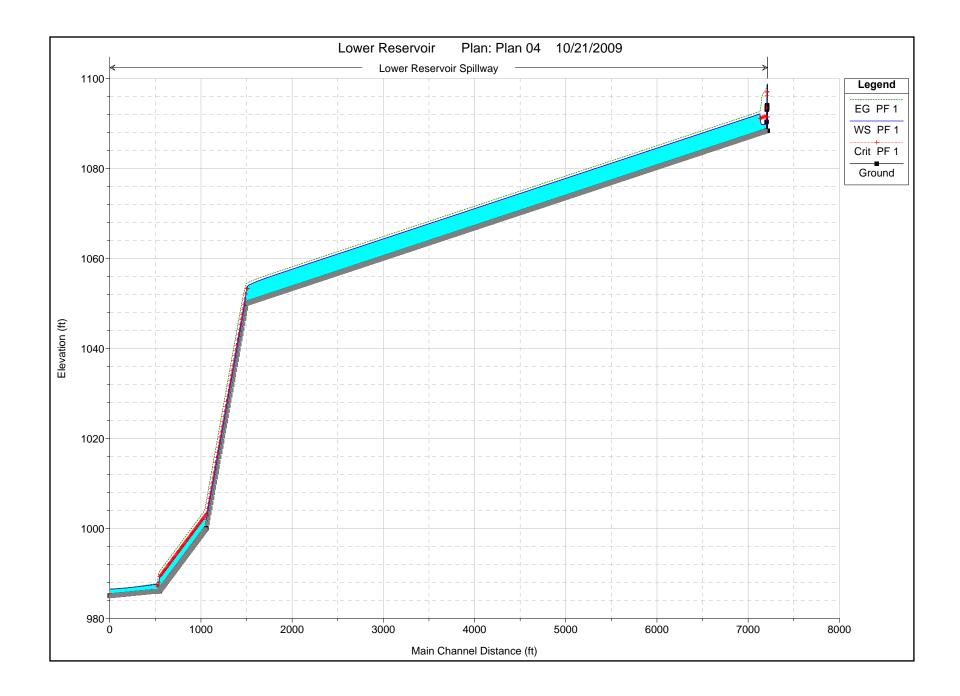

Design Head, Ho:	5 ft
Approach Depth, P:	5 ft
Is P > 0.5Ho:	YES
Use USBR Fig. 9.22:	YES

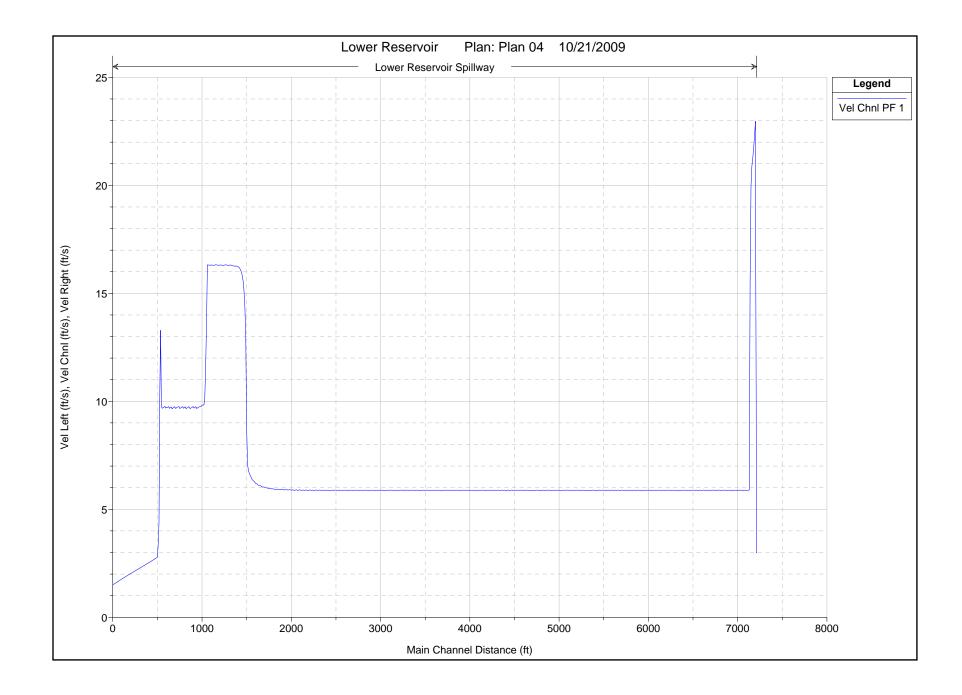
	X Points	Y Points			
-X2 =	-1.42 ft	-Y2 =	-0.635 ft		
-X1 =	-0.735 ft	-Y1 =	-0.105 ft		
X Origin =	0 ft	Y Origin =	0 ft		
X1 =	1.085 ft	Y1 =	-0.145 ft		
X2 =	2.915 ft	Y2 =	-0.935 ft		
X3 =	6.15 ft	Y3 =	-3.67 ft		
X4 =	9.2 ft	Y4 =	-7.78 ft		
X5 =	13.79 ft	Y5 =	-16.680 ft		


RADIU	JS LENGTHS		RADIUS CENTER POINT							
R1 =	1.175 ft	X1 =	-0.41 ft	Y1 =	-1.235 ft					
R2 =	2.65 ft	X2 =	0 ft	Y2 =	-2.65 ft					
R3 =	4.125 ft	X3 =	0 ft	Y3 =	-4.125 ft					
R4 =	7.05 ft	X4 =	-0.77 ft	Y4 =	-6.945 ft					
R5 =	14 ft	X5 =	-4.4 ft	Y5 =	-12.875 ft					
R6 =	32.5 ft	X6 =	-18.34 ft	Y6 =	-25.035 ft					
R7 =	60 ft	X7 =	-41.645 ft	Y7 =	-39.635 ft					



GEI Consultants, Inc. 080474 Eagle Mountain Pumped Storage Project Task 3 Schedule A: Deficiency of License Application 8/18/2009 NDM


LOWER RESERVOIR OGEE CREST GEOMETRY



HEC-RAS Plan: Plan 03 River: Spillway Channel Reach: Spillway Profile: PF 1

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Max Chl Dpth	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Power Chan
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		(lb/ft s)
Spillway	0	PF 1	3120.00	2380.00	2383.05	3.05	2383.05	2384.53	0.001518	9.75	320.13	109.77	1.01	2.65
Spillway	-500	PF 1	3120.00	2361.52	2368.66	7.14	2368.66	2371.18	0.018903	12.76	244.55	48.54	1.00	70.93
Spillway	-812	PF 1	3120.00	2350.00	2361.01	11.01	2357.14	2361.72	0.003205	6.78	460.50	60.00	0.43	9.35
Spillway	-1782	PF 1	3120.00	2347.36	2354.50	7.14	2354.50	2357.02	0.018903	12.76	244.55	48.54	1.00	70.93
Spillway	-2362	PF 1	3120.00	2267.68	2271.90	4.22	2274.82	2282.37	0.137373	25.96	120.17	36.90	2.54	688.02
Spillway	-2834	PF 1	3120.00	2235.68	2240.79	5.11	2242.82	2247.13	0.067782	20.21	154.41	40.44	1.82	308.11
Spillway	-3144	PF 1	3120.00	2211.02	2215.91	4.89	2218.16	2223.03	0.079672	21.40	145.76	39.57	1.97	370.51
Spillway	-3545	PF 1	3120.00	2204.76	2213.38	8.62		2214.85	0.008977	9.73	320.80	54.46	0.71	29.87
Spillway	-4075	PF 1	3120.00	2200.00	2208.39	8.39	2207.13	2209.98	0.010001	10.12	308.38	53.54	0.74	33.88

HEC-RAS Plan: Plan 04 River: Lower Reservoir Reach: Spillway Profile: PF 1

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Max Chl Dpth	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Power Chan
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		(lb/ft s)
Spillway	0	PF 1	460.00	1088.36	1098.62	10.26	1091.43	1098.76	0.000082	2.99	153.95	15.00	0.16	0.07
Spillway	-5	PF 1	460.00	1088.36	1098.62	10.26		1098.76	0.000082	2.99	153.95	15.00	0.16	0.07
Spillway	-5.1	PF 1	460.00	1093.36	1098.04	4.68		1098.71	0.000682	6.55	70.25	15.00	0.53	0.80
Spillway	-5.7	PF 1	460.00	1093.47	1097.99	4.52		1098.70	0.000754	6.79	67.77	15.00	0.56	0.90
Spillway	-6.43	PF 1	460.00	1094.00	1097.07	3.07	1097.07	1098.62	0.002305	9.99	46.05	15.00	1.00	3.13
Spillway	-7.51	PF 1	460.00	1093.85	1096.53	2.68	1096.92	1098.57	0.003460	11.46	40.15	15.00	1.23	4.88
Spillway	-9.34	PF 1	460.00	1093.06	1095.18	2.12	1096.13	1098.43	0.007002	14.48	31.77	15.00	1.75	10.45
Spillway	-12.58	PF 1	460.00	1090.33	1091.86	1.53	1093.40	1098.10	0.019020	20.04	22.96	15.00	2.85	30.24
Spillway	-14.18	PF 1	460.00	1088.33	1089.67	1.34	1091.40	1097.85	0.029096	22.96	20.03	15.00	3.50	47.29
Spillway	-65	PF 1	460.00	1088.00	1089.72	1.72	1091.22	1095.89	0.202178	19.94	23.06	16.87	3.01	328.43
Spillway	-2700	PF 1	460.00	1050.00	1053.22	3.22	1053.22	1054.39	0.019483	8.69	52.94	22.88	1.01	22.93
Spillway	-3140	PF 1	460.00	1000.00	1002.01	2.01	1003.22	1006.14	0.113915	16.32	28.19	18.04	2.30	172.25
Spillway	-3655	PF 1	460.00	986.00	988.96	2.96	989.22	990.44	0.026844	9.75	47.16	21.85	1.17	33.16
Spillway	-3700	PF 1	460.00	986.00	987.56	1.56		987.68	0.003373	2.78	165.29	112.45	0.40	0.86
Spillway	-3800	PF 1	460.00	985.00	986.49	1.49	985.54	986.52	0.001000	1.50	306.50	211.91	0.22	0.14