ADVANCED TREATMENT SYSTEMS OVERVIEW State of Washington

CONFERENCE ON ADVANCED TREATMENT FOR CONSTRUCTION SITES

CalEPA - October 21, 2004

Clear Water Compliance Services, Inc.

Regulatory Permitting (NPDES Applications)

Stormwater Pollution Prevention Planning

Stormwater Treatment System Design

On-site Stormwater Management

Regulatory Compliance Monitoring

Full Service Stormwater and Process Water Management for Construction and Industrial Sites

Clear Water Compliance Services, Inc.

- Established September 1998.
- ♣ Certified in 1998 under the auspices of the City of Redmond and the Northwest Regional Office of the Department of Ecology to employ batch-operated chemical treatment systems on construction sites using the flocculant, Calgon CatFloc 2953.
- ♣ The first independent company in Washington State authorized to perform water treatment at construction sites for others.
- Developed its first proprietary auto-control filtration system in 2001; now manufacturing and employing third-generation systems with remote data logging and remote alarm capabilities.

LISTING OF SELECT PROJECTS AND CLIENTS

- Weyerhaeuser / Quadrant Homes
- **↓** Cam West Development
- Burnstead Construction
- **GLY Construction**
- **↓** Ferguson Construction
- **KLB Construction**
- North Forty Development
- Murray Franklyn Homes
- Costco
- Microsoft
- Home Depot
- Specified <u>by name</u> in bid documents issued by Wal-Mart for its retail centers.

Please Note: Most of these are repeat clients.

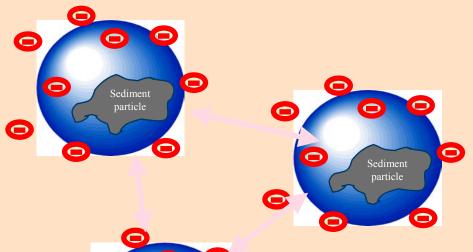
GOALS OF THIS PRESENTATION

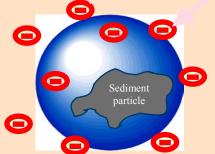
- Discuss Why Advanced Treatment is Needed
- Present an Overview of Various Treatment Technologies
- Discuss the Process Used for Selecting a Treatment Approach
- Managing and Treating Non-visible Pollutants
- **↓** Offer a Summary of the Presentation
- **↓** Issue a Request for Consistency in Enforcement of the Regulations

Why Advanced Treatment is Needed – 1

Why Advanced Treatment is Needed – 2

DESCRIPTION	SETTLING TIME
·	
GRAVEL	1 SEC.
	9.8 SEC.
COARSE SAND	
	48 SEC.
FINE SAND	67 SEC.
	125 SEC.
	47.6 MIN.
SILT	107 MIN.
	7.2 HRS.
	20.1 HRS.
CLAY	
	180 HRS.
	754 DAYS
COLLOIDAL PARTICLES	207 YEARS





Why Advanced Treatment is Needed – 3

Note: The diagram shows negative electrostatic charge; many soil particles exhibit a positive electrostatic charge.

These small particles remain suspended in stormwater because of their repellent charges and small mass.

Overview of Various Treatment Technologies – 1

- Gravity Settling
- Natural Filtration (Infiltration and/or Bio-filtration)
- Mechanical Filtration (no chemicals employed)
- Active Stormwater Treatment Chemical Coagulation & Flocculation
- Coagulation Using Sacrificial Electrodes (EC)
- Chemically Enhanced Filtration

Natural Settling

DESCRIPTION	SETTLING TIME
GRAVEL	1 SEC. ▼
	9.8 SEC.
COARSE SAND	
	48 SEC.
FINE SAND	67 SEC.
	125 SEC.
	47.6 MIN.
SILT	107 MIN.
	7.2 HRS.
	20.1 HRS. ▼
CLAY	
	180 HRS.
	754 DAYS
COLLOIDAL PARTICLES	207 YEARS

Sometimes soil particles will settle out quickly enough to achieve satisfactory discharge quality.

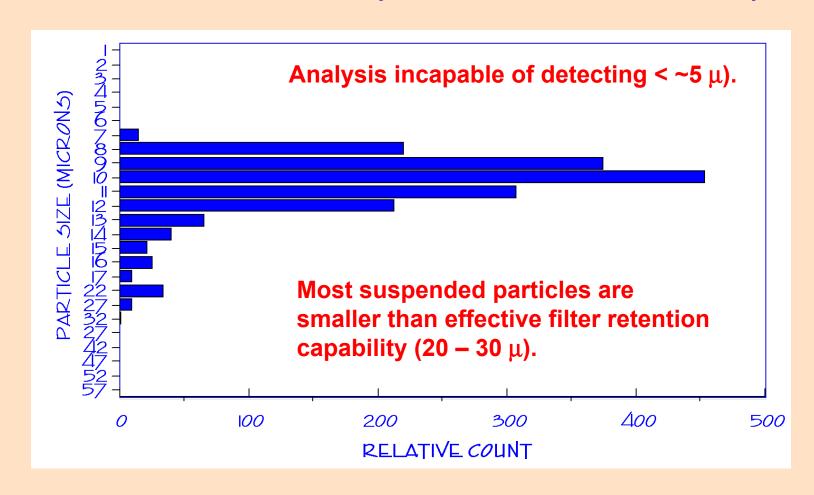
Frequently, however, they won't.

Gravity Settling

Most often, however, they won't.

Natural Filtration (Infiltration and/or Bio-filtration)

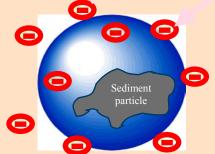
Mechanical Filtration (no filter-aid chemicals) - 1


Problems:

- 1. (Most) often it doesn't work.
- 2. Usually occludes filter in < 1 hour

Mechanical Filtration (no filter-aid chemicals) - 2

Advanced Treatment Active Stormwater Treatment (Chemically-enhanced Treatment)

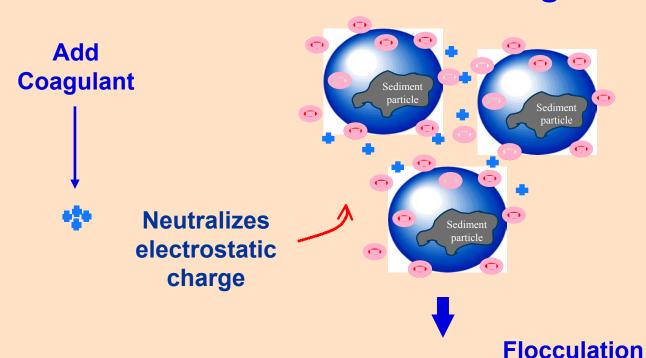


Remember:

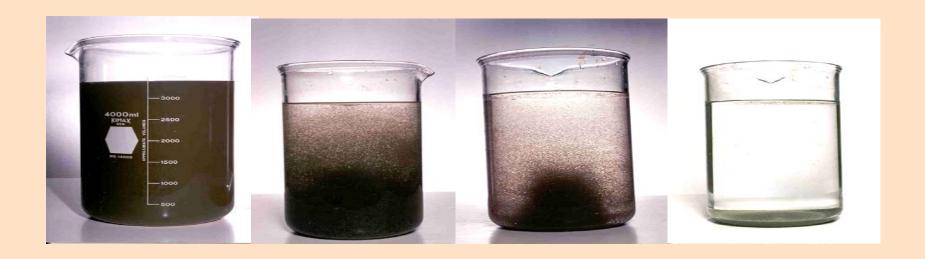
Note: The diagram shows negative electrostatic charge; many soil particles exhibit a positive electrostatic charge.

These small particles remain suspended in stormwater because of their repellent charges and small mass.

Coagulation and Flocculation

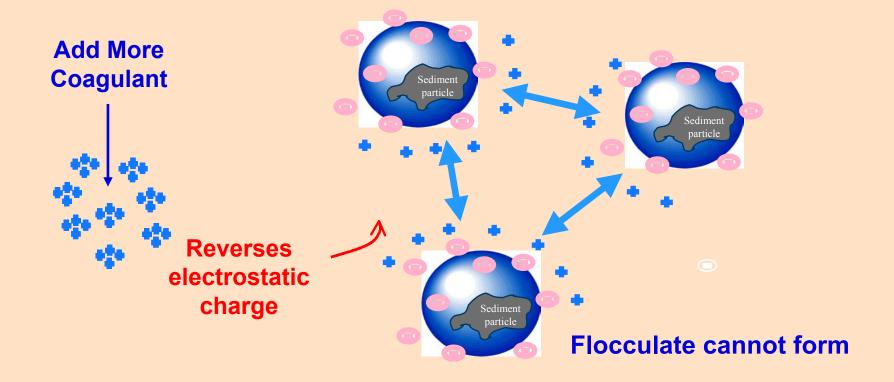

- Often used interchangeably, but are, in fact, two distinct processes.
- Coagulation is the destabilization of colloids by neutralizing the charges that keep them apart. As a result, the particles can collide to form larger particles (flocs).
- Flocculation is the action by which polymers facilitate the binding of floc particles into large clumps by providing adsorption sites onto which the particles can attach.

The Process of Coagulation and Flocculation – a Good Thing


Once suspended particles are flocculated into larger particles, they can usually be removed from the liquid by settling, floating, filtering, or centrifuging.

Coagulation and Flocculation Demonstrated

(Chitosan Acetate added to form flocculate)


No Treatment At 30 Seconds

At 60 Seconds At 30 Minutes

Over Dosing – Too Much of a Good Thing

Active (Chemically-enhanced) Stormwater Treatment

- **↓** Types of Coagulants and Flocculants (anionic, cationic, or non-ionic) -
 - Organic Polymers e.g. chitosan, guars, modified starches
 - Inorganic Polymers e.g. Polyaluminumhydroxychloride, alum, ferric chloride
 - Polyacrylamides (PAM)
- Separation of Suspended Sediment from Treated Water
 - Gravity Settling, or
 - Filtering
 - Centrifuging

Active Stormwater Treatment Methods

- **↓** Batch Treatment
 - Ponds
 - Tanks
- Flow-through Treatment
 - Upstream Chemical Injection (Ponds or Tanks)
 - Downstream Chemical Injection (Ponds or Tanks)

Stormwater Treatment in Washington

- **♣ City of Redmond mid-1990s pioneered the first methodical approach to temporary large-scale water treatment in the State.**
- ♣ Resulted from the nexus of environmentally-conscious corporate developers (Microsoft), stringent environmental regulations, and two forward-looking (and independent thinking) regulators Guy Oliver (City of Redmond) and Ron Devitt (Ecology).
- **♣ NPDES and State Waste Discharge General Permit for Stormwater Discharges Associated with Construction Activities reissued in Nov. 1995.**
- **4** August 1999 WA State Dept. of Ecology issues draft Best Management Practice for the implementation of construction chemical stormater treatment.

WA Turbidity Standards

- **↓**Turbidity Standards for Discharges to Surface Waters Vary with the Turbidity of Receiving Waters.
- **↓**Turbidity Shall not Exceed:
 - **↓5 NTU over background** turbidity when the background turbidity is 50 NTU or less.

OR

- **+10** percent higher than background when background turbidity is more than 50 NTU.
- **4** Other, more stringent standards may be required.

Active Batch Treatment

- 1. Effective.
- 2. May require extended settling time.
- 3. Requires large footprint.
- 4. May require polishing filter at discharge.

Active Flow-through Treatment – Dosing at Inlet

- 1. Effective and inexpensive.
- 2. Measure inlet flow and turbidity.
- 3. Liquid coagulant delivered in proportion to flow and turbidity.
- 4. Floc settles in pond.
- 5. Clean water decanted to discharge area.

Active Flow-through Treatment – Dosing at Outlet

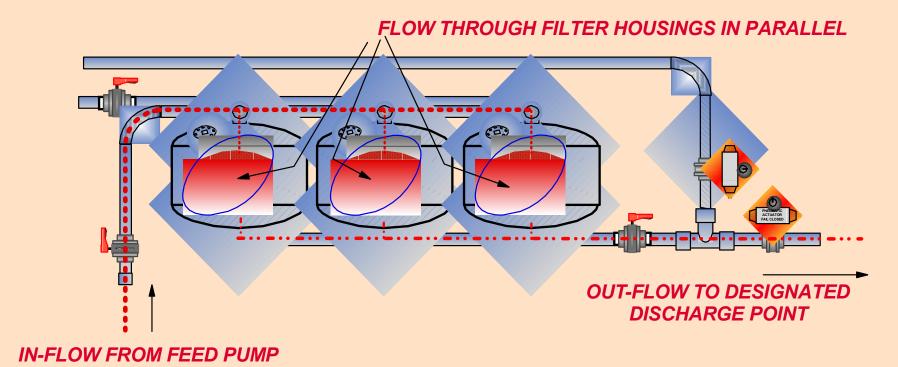
- 1. Effective and inexpensive.
- 2. Passive chemical delivery (e.g. Gel-Floc).
- 3. Coagulant delivered in proportional to flow.
- 4. Floc removed by bio-filtration.

Coagulation using Sacrificial Electrodes (EC)

- 1. Technology described this morning by Jim Mothersbaugh of *Water Techtonics*.
- 2. Effective, safe, flow-through treatment process.
- 3. Currently under review by WA Dept. of Ecology.

CHEMICAL ENHANCED SAND FILTRATION

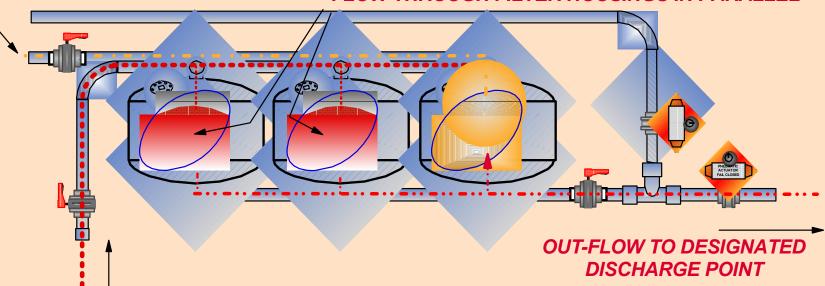
CHEMICAL ENHANCED SAND FILTRATION



THE MOST COST EFFECTIVE PROCESS AVAILABLE FOR LARGE-VOLUME, FLOW-THROUGH STORMWATER TREATMENT

CHEMICAL ENHANCED SAND FILTRATION PROCESS FLOW DIAGRAM

NORMAL FLOW



CHEMICAL ENHANCED SAND FILTRATION PROCESS FLOW DIAGRAM

BACKWASH FLOW TO INLET SIDE COLLECTION POND

IN-FLOW FROM FEED PUMP

BACKWASH FLOW - CYCLE 1

OPERATIONAL CAPABILITIES OF ENHANCED FILTRATION

WHEN PROPERLY OPERATED AND MAINTAINED:

- □ OPERATES OVER THE pH RANGE OF 6.5 TO 8.5 (ENTIRE RANGE FOR ALLOWABLE DISCHARGES)
- ☐ < 10 NTU 100% OF TIME WHEN INLET TURBIDITY < 400 500 NTU
 </p>
- □ < 10 NTU 100% OF TIME WITH PRE-TREATMENT OF INLET WATER
 WHEN INLET TURBIDITY > 400 500 NTU

A SIMILAR SYSTEM CAN BE ADAPTED FOR RECYCLING OF WHEEL-WASH WATER

Selecting a Treatment Approach

- Evaluate physical site conditions
- **Lesson** Evaluate capacity of site to handle rainfall and runoff
- Determine required system capacity
- Conduct bench-scale testing

Evaluate Site Conditions

♣ Area

4 Surface Conditions & Vegetation

4 Topography

+ Downstream Conditions

4 Soil Characteristics

+ Other Off-Site Conditions

Water Characteristics

4 Chemical Use on Site

Evaluate Capacity of Site to Handle Rainfall and Runoff

- **Historical rainfall volumes, durations, intensities**
- Anticipated runoff generated from rainfall
- **4** Maximum allowable rate(s) for discharging treated water
- **4** Actual / potential temporary storage volume for runoff

Determine Required System Capacity

(Runoff Volume – Storage Volume)

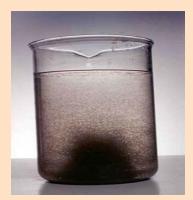
Design Storm Duration = Required System Capacity

Required System Capacity < Allowable Discharge Rate

IF

Required System Capacity > Allowable Discharge Rate

MUST INCREASE STORAGE VOLUME



Conduct Bench-scale Testing

♣ Evaluate filterability of water both before and after treatment.

- **+Try different coagulants and flocculants**
- **↓** Try different dose rates
- **♣Determine optimum product and dose**

Managing and Treating Non-visible Pollutants

- **+** Phosphorus
- **4** Dissolved Metals
- **Solvents**
- **4** Emulsified Hydrocarbons
- **4** Any Material Stored on Site
- **4** Other non-visible pollutants

pH

	pH 14	Concentrated caustic soda
	pH 13	Drain cleaner
	pH 12	Concrete wash-out water
	pH 11	Runoff from fresh concrete
	pH 10	Runoff from fresh concrete
	pH 9	Baking soda in water
	pH 8.5	Highest pH for discharge
	pH 8.0	Nearly neutral
	pH 7.5	Nearly neutral
	pH 7	NEUTRAL
	pH 6.5	Lowest pH for discharge
	pH 6	Nearly neutral
•	pH 5	(Some) Rainwater
	pH 4	Cola
	pH 3	Lemon juice
•	pH 2	Strong acid
	pH 1	Strong acid
·	pH 0	Concentrated sulfuric acid

This pH range will not harm fish.

Manage pH

♣ CO₂ (solid, liquid, or gas)

♣ H₂SO₄

♣ NaHCO₃

♣ NaOH



Hydrocarbon Filtration

Carbon-Clay Polishing Media

Oil/Water Separator

TPH out 5 to 50 ppm (typical); Discharge to sanitary sewer.

Summary

- Why Advanced Treatment?
- Overview of Various Treatment Technologies
- Process Used for Selecting a Treatment Approach
- Managing and Treating Non-visible Pollutants

- **AT** needed because suspended sediment particles will not settle naturally in a timely manner.
- **AT** use coagulants to cause suspended sediment to agglomerate and settle or be filtered out.
- No one treatment methodology is appropriate for all conditions.
- Selection should account for site characteristics, soil and water characteristics, physical constraints, and applicable discharge water-quality criteria.

Stormwater Treatment Technician's Dream

Clearly defined requirements

4 Uniformly enforced from jurisdiction to jurisdiction

Clear Water Compliance Services, Inc.

Regulatory Permitting (NPDES Applications)

Stormwater Pollution Prevention Planning

Stormwater Treatment System Design

On-site Stormwater Management

Regulatory Compliance Monitoring

Full Service Stormwater and Process Water Management for Construction and Industrial Sites

