

October 22, 2012

Jeanine Townsend, Clerk to the Board State Water Resources Control Board 1001 I Street, 24th Floor Sacramento, CA 95814 Sent via email to commentletters@waterboards.ca.gov

RE: Comment Letter – Industrial General Permit

Dear Chair Hoppin and Board Members:

On behalf of California Coastkeeper Alliance ("CCKA"), representing 12 California Waterkeeper groups spanning the coast of California, Heal The Bay, and California Sportfishing Protection Alliance ("CSPA"), we appreciate the opportunity to provide comments on the State Water Resources Control Board's ("State Water Board") 2012 draft permit for storm water discharges associated with industrial activities. We incorporate by reference the comments submitted by CCKA and CSPA on April 29, 2011 ("2011 Comment Letter"), and offer additional comments below on the changes reflected in the July 16, 2012 draft of the Permit ("Draft Permit").

As demonstrated by the <u>1,432 letters</u> submitted to the State Water Board (*see* Attachment 1), California residents are deeply concerned about industrial storm water pollution, and are counting on the State Water Board to develop a permit that serves the greater public interest.³ Despite the 15-year timeframe since this permit's last reissuance, many facilities still have not implemented storm water controls necessary to protect human health and the environment. As shown in Attachment 1, the (now deferred) cost of compliance for many facilities can be quite low; yet, Californians continually bear the costs of the loss of use of our state waters as a result of the 7,294 documented impaired water body statewide.⁴

We therefore greatly appreciate the State Water Board's work on the provisions of the Draft Permit and efforts to improve the 1997 Permit. For example, we strongly support the State Water Board's elimination of group monitoring.⁵ In addition, we strongly support the State Water Board's step forward

 $http://maps.waterboards.ca.gov/webmap/303d/files/2010_USEPA_approv_303d_List_Final_122311wsrcs.xls.$

¹ National Pollutant Discharge Elimination System, General Permit for Storm Water Discharges Associated With Industrial Activities, Order No. ______, NPDES No. CAS000001.

² There are three elements to the Draft Permit: (1) the Order, (2) the Findings, and (3) the Fact Sheet. CCKA's comments refer to the Draft Permit generally, or to each of these elements within the Draft Permit with citation to the specific section and page number.

³ See Attachment 1, a statement of support for a strong, clear, enforceable Industrial Storm Water Permit submitted to the State Water Board by 1,432 Californians.

⁴ See California 2010, 303(d) list, available at:

⁵ See Fact Sheet Section I.D.12., at 12; see also Page 2, Finding #14, at 2.

to require all data and reports, including each facility's Storm Water Pollution Prevention Plan, to be filed electronically with the State Water Board, and electronically available for public review. This measure will reduce State Water Board's resources needed to administer the program, and shine a brighter light on each facility's storm water discharges. We urge the State Water Board to resist industry pressure to roll back even these modest advancements.

Unfortunately, in most ways, the Draft Permit is a step backwards—both from the 1997 Permit, and from the 2011 draft permit. Most notably, the Draft Permit does not provide a sampling scheme that will elicit better quantitative and qualitative data—an integral component of this permit revision identified by the Blue Ribbon Panel, ⁶ State Water Board staff and members, and environmental stakeholders. Additionally, the Draft Permit will be extremely resource-intensive for State Water Board and Regional Boards to enforce. The California Environmental Protection Agency found that "one of the greatest difficulties faced by enforcement staff is complicated, ambiguous and/or poorly written permits or multiple, conflicting and confusing regulatory requirements that are unenforceable." The Draft Permit's complex monitoring and reporting scheme threatens to undermine the implementation and enforcement of the Draft Permit, drain limited agency resources, and divert Permittees' resources from pollution controls, to generating reports.

Ultimately, the Draft Permit should ensure the collection of more and better data, achieve water quality objectives, and improve the use of pollution control technology, in a clear and objective way for all parties to determine compliance with the permit. In order to accomplish these goals, we urge the State Water Board to address the problems with the Draft Permit, summarized here and described in detail below:

- The Draft Permit impermissibly allows Permittees to self-regulate.
- The Draft Permit limits the scope of protection afforded under Porter-Cologne and the Clean Water Act.
- The Draft Permit's sampling scheme is inadequate to determine Permittee compliance.
- The State Water Board has not complied with its mandatory duties when establishing the Draft Permit's technology-based effluent limitations.
- The Draft Permit does not clearly delineate that a Permittee is required to strictly comply with water quality standards.
- The Draft Permit is inconsistent with existing, applicable Total Maximum Daily Loads and fails to incorporate Waste Load Allocations as water quality-based effluent limits.

CCKA provides proposed language for all the suggested revisions of the Draft Permit discussed below. *See* Attachment 2.

⁶ Fact Sheet Section II.K.2.b., at 45.

⁷ Memorandum from Terry Tamminen, Secretary, Cal/EPA to BDOs, p. 8 (November 30, 2004) ("Cal EPA Enforcement Initiative").

I. THE DRAFT PERMIT IMPERMISSIBLY ALLOWS PERMITTEES TO SELF-REGULATE.

The Draft Permit's allowance of self-regulation is contrary to sound public policy, violates fundamental provisions of the Clean Water Act, and has been expressly invalidated by the Ninth Circuit Court of Appeals. The State Water Board acknowledges that Permittees may not self-regulate, as the Ninth Circuit ruled in *Environmental Defense Center* and the Second Circuit ruled in *Waterkeeper Alliance*. Alliance, as the State Water Board is required to write permit terms and establish effluent limitations governing the level of pollutants, including any determinations of best available technology economically achievable/best conventional pollutant control technology ("BAT/BCT") for a facility, discharged from industrial facilities prior to extending permit coverage.

CCKA proposes language in Attachment 2 to remedy the Draft Permit's illegal scheme by clarifying that Permittees' cannot write their own permit terms. ¹² Absent CCKA's proposed revisions, each element of the Draft Permit that purports to allow Permittees to write and re-write permit terms must be subject to full NPDES permitting process.

A. The Draft Permit Authorizes Self-Regulation Because it Does Not Require Permittees to Implement Specific BMPs Nor Meet NALs.

In an effort to defend the Draft Permit's "flexible" approach to regulating Permittees' storm water discharges, the State Water Board claims that the Draft Permit does not run afoul of the Clean Water Act's prohibition on self-regulation because: "By requiring Dischargers to implement [] specific BMPs and meet NALs, this General Permit ensures that Dischargers do not write their own permit terms." However, the Draft Permit neither requires Permittees to implement minimum best management practices ("BMPs"), nor meet numeric action levels ("NALs"). Even if it were true that Permittees were not themselves establishing the generic, minimum BMPs, the fact that they are free to write their own BAT/BCT requirements through various off-ramps and reports is fatal to the Draft Permit's proposed scheme.

⁸ Environmental Defense Center v. EPA, 344 F.3d 832, 854-56 (9th Cir. 2003) (programs that are designed by regulated parties must, in every instance, be subject to meaningful review by an appropriate regulating entity to ensure that each such program reduces the discharge of pollutants to the level required by the Clean Water Act); see also Waterkeeper Alliance, Inc. v. EPA, 399 F.3d 486, 498-504 (2d Cir. 2005) (failing to provide for permitting authority review and public participation of effluent limitations developed by permitted dischargers is a violation of the Clean Water Act).

⁹ See Fact Sheet Section I.C., at 8-9.

¹⁰ The Fact Sheet is incorporated as Findings of the Order. *See* Finding #8, at 2. To avoid potential inconsistencies between the Draft Permit and the Fact Sheet, CCKA proposes that the Fact Sheet not be incorporated as Findings of the Order, and that Finding #8 be deleted. As such, CCKA has not provided proposed language for the Fact Sheet because the Fact Sheet need not be part of the Draft Permit. By not providing proposed language revising the Fact Sheet, CCKA in no way intends to approve of the language of the Fact Sheet. The State Water Board should ensure that the Fact Sheet is consistent with CCKA's proposed revisions to the Findings and the Order.

¹¹ See 33 U.S.C. §§ 1311(b)(1), 1314(b); see also Waterkeeper Alliance, Inc., 399 F.3d at 498-504.

¹² See Attachment 2.

¹³ Fact Sheet Section I.C., at 9.

1. The Draft Permit Authorizes Permittees to Unilaterally Determine What, if Any, BMPs Will Be Implemented at their Facility.

Section X.H.2. of the Draft Permit authorizes Permittees to exclude implementation of any BMP on the list of "Minimum BMPs" if the Permittee makes a unilateral determination that a BMP(s) is "inapplicable, infeasible, or inappropriate." This is the same flawed scheme used in the 1997 Permit. Permittees may also revise BMPs based on this same unilateral analysis. Thus, the Draft Permit does not require Permittees to implement "specific BMPs" as the State Water Board claims. The Ninth Circuit has held that BMPs reduce or restrict discharges of pollutants and thus are effluent limitations. Accordingly, by not making the Minimum BMPs mandatory, but instead allowing Dischargers to unilaterally decide whether to implement them, the Draft Permit allows Permittees to illegally self-regulate by establishing their own effluent limitations.

The State Water Board has no basis to not require Permittees to implement a "minimum" set of BMPs, while allowing them the ability to implement more site-specific BMPs as necessary. For example, in addition to basic housekeeping BMPs that all dischargers can conduct, the Draft Permit should require Permittees to implement BMPs that reduce discharge points, while giving them the flexibility to determine which BMPs would accomplish this but not interfere with the site's operations. ¹⁹ Thus, the six (6) Minimum BMPs set forth at Section X.H.2. of the Draft Permit must be mandatory, and must be established by the State Water Board. CCKA has provided proposed language in Attachment 2, which eliminates the illegal self-regulation from Section X.H.2.

2. The Draft Permit Does Not Require Permittees To Meet NALs.

Despite the above-referenced language in Fact Sheet Section I.D.1 which states that Permittees are required to meet NALs, the Draft Permit makes clear in several other places that compliance with NALs is not required. For example, the NALs established at Table 5 are not effluent limitations. An exceedance of an NAL does not constitute a violation of the permit terms. Further, as explained below in section I.B.1, a Permittee is not required to implement any pollution control measures even after an exceedance of an NAL. Permittees are not even required to compare sampling results to the NALs until 2014. And instantaneous NALs were only set for three pollutants: pH, TSS, and Oil & Grease.

¹⁴ Order Section X.H.2., at 30; *see also* Fact Sheet Section I.D.1., at 9 ("This General Permit requires Dischargers to implement a specific set of minimum BMPs unless they are determined to be inapplicable, infeasible, or inappropriate."); Finding #32, at 4.

¹⁵ See 1997 Permit, Section A.8., at 19. Thus the Draft Permit does not improve the 1997 Permit and the State Water Board is incorrect when it claims that the Draft Permit fixes the 1997 Permit's approach to allowing Permittees to simply "consider" which BMPs to implement by now requiring Minimum BMPs be implemented. See Fact Sheet Section I.D.1., at 9.

¹⁶ See Order Section X.H.2, at 30.

¹⁷ See Environmental Defense Center, 344 F.3d at 854-56.

¹⁸ See Environmental Defense Center, 344 F.3d at 854-56; Waterkeeper Alliance, Inc., 399 F.3d at 498-504.

¹⁹ CCKA's proposed Draft Permit revision to require BMPs to reduce discharge locations will also save Permittees costs as they will have fewer discharge locations to sample.

²⁰ See Finding #64-73, at 10-12; see also Fact Sheet Section II.K., at 44-48.

²¹ Finding #64-73, at 10-12.

²² Fact Sheet Section II.K., at 44-52

²³ See Order Section XII.E., at 48-51.

²⁴ Order Section XII.A.2., at 46.

Moreover, Permittees are allowed to develop self-imposed Alternate NALs. ²⁶ As such, the Draft Permit nowhere requires Permittees to "meet NALs" as the State Water Board claims in the Fact Sheet.

Given that neither of the reasons provided by the State Water Board for asserting the Draft Permit does not allow self-regulation are true, and because many provisions of the Draft Permit expressly allow dischargers to write and re-write their own permit terms, ²⁷ the State Water Board authorizes Permittees to self-regulate in violation of the Clean Water Act.

B. The Draft Permit's Reporting Scheme Allows Permittees to Write Their Own Permit Terms and Exempt Storm Water Discharges from Permit Terms.

The Draft Permit provides that Permittees may develop "Demonstration Technical Reports" to unilaterally claim that the Permittee is in compliance with the permit terms, that additional BMPs are not required, and that pollutants in the Permittees' discharges are exempt from permit terms. While the State Water Board has suggested that these reports are not designed to irrefutably determine compliance with the Permit, the plain language of the Draft Permit allows a contrary interpretation, and must be revised to ensure that no self-regulation occurs. There are three types of Demonstration Technical Reports that a Permittee could submit: (1) BAT/BCT Compliance Demonstration Technical Report, (2) Non-Industrial Source Pollutant Demonstration Technical Report, and (3) Natural Background Demonstration Technical Report. To ensure the Draft Permit complies with the Clean Water Act, any and all provisions in these Demonstration Technical Reports allowing Permittees to self-regulate must be deleted from the Draft Permit, as well as the corresponding sections of the Findings and Fact Sheet.

1. The Draft Permit's "BAT/BCT Compliance Demonstration Technical Report" Provision Will Be Interpreted By Dischargers As Authorizing Each Individual Permittee to Establish a BAT/BCT Effluent Limitation.

As the name "BAT/BCT Compliance Demonstration Technical Report" suggests, a Permittee may file the report and in the process claim to unilaterally re-write Effluent Limitation V.A and demonstrate compliance for that Permittees' facility. ³⁰ However, it is the State Water Board's mandatory duty to define BAT/BCT – and corresponding effluent limitations – prior to the issuance of the permit. ³¹ The Ninth Circuit, as well as other circuits, have unambiguously held that an NPDES permit that allows a discharger to write its own permit terms, including effluent limitations, violates the Clean Water Act. ³² The State Water Board acknowledges that it is illegal for Permittees to write their own effluent limitations. ³³ In *Environmental Defense Center v. EPA*, the Ninth Circuit held that storm water management plans written by Permittees constituted effluent limitations because those plans restricted the

²⁵ Order Table 5, at 42.

²⁶ See Order Section XII.E.3.g, at 49 and Section XIV.B.5.b, at 56; see also section I.B.1., below.

²⁷ See e.g., Order Section XII.E.3., at 48-49 (allowing dischargers to define the BMPs for their site as BAT/BCT).

²⁸ See Order Section XII.E.2, at 48; see also Order Section XII.D.b.iv, at 47 (a Permittee can submit a Demonstration Technical Report in lieu of implementing BMPs).

²⁹ See Order Section XII.E.3.-5., at 48-50.

³⁰ Fact Sheet Section II.K.4.a., at 49-50; see also Order Section XII.E.3.c., at 49; Finding #72, at 12.

³¹ See 33 U.S.C. §§ 1311(b)(1), 1314(b); see also section IV., below.

³² See Environmental Defense Center, 344 F.3d at 854-56; see also Waterkeeper Alliance, Inc., 498-504.

³³ See Fact Sheet Section I.C., at 8-9.

quantities, rates, and concentrations of pollutants in Permittees' discharges.³⁴ In the same way, as explained below, a BAT/BCT Compliance Demonstration Technical Report authorizes a Permittee to establish BAT/BCT, which constitutes an effluent limitation.

First, as set forth in Sections XII.E.3.c., XII.E.3.f., and XII.E.3.g. of the Draft Permit,³⁵ Permittees submitting a BAT/BCT Compliance Demonstration Technical Report set forth the BMPs they are currently implementing, and unilaterally define those BMPs as BAT/BCT for their own industrial facility. By defining which BMPs are BAT/BCT for their facility, Permittees are impermissibly writing their own effluent limitations.^{36,37}

Second, the Draft Permit goes further in allowing Permittees to illegally self-regulate because it authorizes a Permittee submitting a BAT/BCT Compliance Demonstration Technical Report to set its own NALs, which *replace* the NALs set by the State Water Board. ³⁸ The Permittee's individual NALs then become applicable to discharges from the site and no other action is required. ³⁹ The Permittee continues to remain in compliance with Effluent Limitation V.A. as long as the Permittee meets its own self-imposed NALs. ⁴⁰

Finally, Section X.H.7.c. ⁴¹ authorizes Permittees to submit a BAT/BCT Compliance Demonstration Technical Report in lieu of complying with the design storm standards for treatment control BMPs established in the Draft Permit. Thus Permittees are again allowed to exempt themselves from implementing BMPs by simply submitting a BAT/BCT Compliance Demonstration Technical Report. ⁴²

As explained in detail above, the Draft Permit appears to allow Permittees to rewrite vast and critical sections of the permit. To remedy these illegal provisions, CCKA provides proposed revisions to Sections XII.E.2., XII.E.3., XII.E.3.c., XII.E.3.f., XII.E.3.g., and X.H.7.c. as set forth in Attachment 2.

2. The Draft Permit's "Non-Industrial Source Pollutant Demonstration Technical Report" Provision Improperly Excludes Pollutants in Discharges from BMP Requirements.

³⁴ Environmental Defense Center, 344 F.3d at 854-56.

³⁵ Order, at 49.

³⁶ See Environmental Defense Center, 344 F.3d at 854-56.

³⁷ The State Water Board asserts that it will obtain information relevant to its analysis of BAT/BCT through the BAT/BCT Compliance Demonstration Technical Reports. However, only the worst performing Permittees will submit these reports. Yet, the State Water Board may only consider the "best performers" when conducting its BAT/BCT analysis. *See* section VI., below.

³⁸ See Order Section XII.E.3.g., at 49.

³⁹ See Order Section XII.E.2., at 48.

⁴⁰ *Id*.

⁴¹ Order, at 35.

⁴² No provision of the Draft Permit requires Permittees submitting a BAT/BCT Compliance Demonstration Technical Report to revisit their BAT/BCT analysis. The 1997 Permit has been in effect for the past 15 years. It is therefore possible that the next industrial storm water permit will not reissue for another 15 years, and Permittees could avoid implementing new technologies during that entire time. This is directly contrary to the technology-forcing purpose of the Clean Water Act. *See Weyerhaeuser v. Costle*, 590 F.2d 1011, 1075 (D.C. Cir. 1978) (noting technology-forcing nature of the Clean Water Act).

The Draft Permit allows a Permittee whose discharge contains pollutants that exceed an NAL to submit a "Non-Industrial Source Pollutant Demonstration Technical Report" to claim that the source of the pollutant(s) contributing to an NAL exceedance is due to "run-on from adjacent facilities, non-industrial portions of the Discharger's property, or aerial deposition." Permittees will view this provision as allowing a Permittee to exempt itself from compliance with permit terms. By submitting the Non-Industrial Source Pollutant Demonstration Technical Report, a Permittee will claim to exempt itself from having to implement additional BMPs to comply with Effluent Limitation V.A. 44,45 Permittees are allowed to submit this report even if the pollutant is associated with the Permittee's industrial activity, and/or if the "non-industrial" polluted water commingles with the site's "industrial" storm water. 46,47 Further, nowhere does the Draft Permit require that "run-on" or "aerial deposition" originate from "non-industrial" sources. By merely submitting this report, the Permittee is not required to implement BMPs to control the pollutants identified in the report.

This reporting scheme is impermissible and contrary to both the 1997 Permit and EPA's 2008 Multi-Sector General Permit ("MSGP"). ⁴⁹ First, under the 1997 Permit, dischargers are responsible for controlling run-on to their industrial facilities, and if they cannot are responsible for the pollutant in their discharge. ⁵⁰ The Draft Permit ⁵¹ no longer requires this same level of pollutant control by exempting run-on from permit terms. ⁵² The 2008 MSGP also requires a discharger address storm water run-on, including developing BMPs and preventing the run-on from flowing onto the site. ⁵³ This is true even if the run-on would not otherwise be regulated under an NPDES permit. ⁵⁴ To avoid backsliding and be consistent with the 2008 MSGP, the Draft Permit must be modified to reflect the requirements of 1997 Permit and the 2008 MSGP.

The illegal self-regulation arguably allowed by the Non-Industrial Pollutant Source Demonstration Technical Report provision is remedied if this provision is deleted from the Draft Permit. At a minimum, this report must be limited to a pollutant that is not associated with that Permittee's industrial activity, and the Permittee must be required to implement BMPs to control the pollutants identified in the report. CCKA provides proposed changes to Sections XII.E.4.b., XII.E.4.d., and

⁴³ Order Section XII.E.4., at 49-50; see also Finding #70, at 11; Fact Sheet Section II.K.4.b., at 50.

⁴⁴ The portion of the Fact Sheet relating to Non-Industrial Pollutant Source Demonstration Technical Reports suggests that Permittees submitting that report may also develop an alternate NAL. *See* Fact Sheet Section II.K.4.b., at 51. While it is unclear from the Fact Sheet, the Draft Permit, and the Findings how a Permittee would develop that alternate NAL, any alternate NAL would be illegal as explained in section I.B.1., above.

⁴⁵ See Order Section XII.E.2., at 48.

⁴⁶ Order, Section XII.E.4, at 49-50; see also Finding #70, at 11; Fact Sheet, Section II.K.4.b, at 50.

⁴⁷ As drafted, the Non-Industrial Pollutant Source Demonstration Technical Report is based on too limited a definition of "industrial activity." The Clean Water Act and its implementing regulations require NPDES permit coverage for all discharges of pollutants "associated with" industrial activity. 33 U.S.C. § 1342(p)(2)(B).

⁴⁸ See Finding #70, at 11 (noting that storm water run-on could be from adjacent facilities without excluding adjacent industrial facilities).

⁴⁹ Even if the pollutants in the discharge are from a non-industrial source, the failure to require BMPs for non-industrial sources of pollution contradicts the Blue Ribbon Panel's recommendation that the State Water Board require BMPs for non-industrial exposure. *See* Fact Sheet Section I.B, at 5.

⁵⁰ See, e.g., 1997 Permit Section A.8.a.viii., at 20.

⁵¹ Order, Section XII.E.4. at 49.

⁵² 33 U.S.C. § 1342(o).

⁵³ See 2008 MSGP Section 2.1, at 12 and Section 2.1.2.1, at 13.

⁵⁴ See 2008 MSGP, Section 1.1.2.3, at 1.

XII.E.4.f. of the Draft Permit that address these issues. 55

3. The Draft Permit's "Natural Background Demonstration Technical Report" Excludes Pollutants Associated with Industrial Activity From Permit Coverage.

Permittees who submit a Natural Background Demonstration Technical Report are not responsible for the pollutants identified in the report. Fermittees will argue that they are exempt from having to implement any BMPs to control the "natural background" pollutants even if the identified pollutant(s) are associated with the Permittee's industrial activity. Thus, by submitting the Natural Background Demonstration Technical Report, a Permittee will unilaterally claim it can exempt itself from controlling the pollution in its discharge, which the Draft Permit would otherwise require absent the filing of such a report.

This is impermissible self-regulation, which is remedied if the Draft Permit language is clarified to assure that Permittees remain subject to all permit terms regardless of whether a Natural Background Demonstration Technical Report has been submitted. At a minimum, the Draft Permit must be revised so that the report is not available for a pollutant that is associated with the Permittees' industrial activity. Otherwise, as drafted, these provisions are unlawful. CCKA has provided proposed changes to Sections XII.E.5.a. and XII.E.2. relating to the Natural Background Demonstration Technical Report that addresses the impermissible self-regulation in Attachment 2.

C. The Draft Permit's Reporting Scheme Must Be Revised or the State Water Board Will Be Required to Engage in a Separate NPDES Permit Process Each Time a Permittee Submits a Report.

In addition to the problems with the reporting scheme addressed above, a Permittee who submits any one of the three Demonstration Technical Reports "automatically returns to Baseline Status." In other words, the Permittees will claim that they are not required to take any further actions, including implementing additional BMPs, after submitting one of the reports. CCKA has proposed revisions to these sections that delete any perceived authorization for self-regulation and/or patent or tacit agency approval of permit modifications absent compliance with the NPDES permit process. In the event the State Water Board rejects CCKA's proposed revisions, the Board would be required to conduct a full NPDES permitting process for each report submitted because each report purports to allow a discharger to write its own effluent limits, and exempt pollutants in its discharges from permit requirements. 60

By the State Water Board's own estimate, there are approximately 10,000 industrial dischargers covered by the Draft Permit. As such, under the reporting scheme set up by the Draft Permit, the State Water Board would be burdened with facilitating the NPDES permitting process each time a Permittee

⁵⁵ See Attachment 2.

⁵⁶ See Finding #71, at 12; see also Fact Sheet Section II.K.4.c., at 51.

⁵⁷ See Finding #71, at 11-12.

⁵⁸ Order Section XII.E.2., at 48.

⁵⁹ See Attachment 2.

⁶⁰ See Environmental Defense Center, Inc., 344 F.3d at 854-56; see also Waterkeeper Alliance, Inc., 399 F.3d at 498-504.

submits a report attempting to establish a permit terms, or up to 30,000 occasions. ⁶¹ This is entirely unworkable, and creates additional, unnecessary burdens on limited staff resources. By either eliminating the Demonstration Technical Reports or revising the sections of the Draft Permit as CCKA has proposed, the State Water Board will avoid illegally authorizing Permittees to write their own effluent limits and the added strain on State Water Board resources that would otherwise be incurred.

II. THE DRAFT PERMIT LIMITS THE SCOPE OF PROTECTION AFFORDED UNDER PORTER-COLOGNE AND THE CLEAN WATER ACT.

A. The Draft Permit Should Apply to Both Waters of the State and Waters of the United States.

The protection of water quality provided by the Draft Permit is narrower in scope than the 1997 Permit. Most significantly, the Draft Permit limits the receiving water protections to discharges that go to "waters of the United States," implicitly excluding protection of waters of the State of California. ⁶² The Draft Permit removes protection over waters of the State, despite the clear mandate of the Porter-Cologne Water Quality Control Act ("Porter-Cologne"), which states "that activities and factors which may affect the quality of the waters of the state shall be regulated." ⁶³ The 1997 Permit ensured this mandate was met by not distinguishing between waters of the State, which Porter-Cologne protects, and waters of the United States (a subset of waters of the State), which the Clean Water Act protects.

At the October 17, 2012 workshop, the State Water Board Staff contended that the 1997 Permit was not intended to prohibit certain discharges to waters of the State, yet the 1997 Permit states that "[s]torm water discharges and authorized non-storm water discharges shall not cause or contribute to an exceedance of any applicable water quality standards contained in a Statewide Water Quality Control Plan or the applicable Regional Water Board's Basin Plan." ⁶⁴ The 1997 Permit language triggers protection of any State waters for which a Regional Water Board has developed specific water quality protection standards. By not distinguishing between waters of the State and waters of the United States, the 1997 Permit ensured that the protections afforded by the receiving water limitations in the 1997 Permit extended to all waters within the State Water Board's jurisdiction. Inexplicably, the State Water Board has included language in the Draft permit that limits protections provided by the Draft Permit to waters of the United States only.

To ensure the State Water Board takes action to protect all waters of the State, Porter-Cologne mandates that "[t]he state board shall take into consideration the effect of its actions pursuant to this chapter . . . on any other general or coordinated governmental plan looking toward the development, utilization, or conservation of the waters of the state." Porter-Cologne also provides that "the people of the state have a primary interest in the conservation, control, and utilization of the water resources of the state, and that the quality of all the waters of the state shall be protected for use and enjoyment by the people of the state." Further, Porter-Cologne sections 13260(a)(1) and 13263 provide the Regional Board with authority to regulate all discharges of pollution, not just those that reach waters of the United

⁶¹ The State Water Board staff claims that they will review these reports yet has insufficient resources as it is to review Permittees' Annual Reports submitted under the 1997 Permit.

⁶² Finding #36, at 5.

⁶³ Cal. Water Code § 13000.

⁶⁴ 1997 Permit, Receiving Water Limitation C.2, at 4.

⁶⁵ Cal. Water Code § 13145.

⁶⁶ Cal. Water Code § 13000.

States or waters of the State. Section 13260(a)(1) of Porter-Cologne mandates that "[a]ny person discharging waste, or proposing to discharge waste, within any region that *could affect the quality of the waters of the state*" must file a report of waste discharge with the appropriate Regional Board (emphasis added). The purpose of Porter-Cologne, and its application through issuance of waste discharge requirements, unambiguously directs the State Water Board to ensure that it takes action necessary to protect all waters of the State, not just waters of the United States.

Not only does the State Water Board's reference to "water of the United States" undermine the strength and protection of water quality required by Porter-Cologne, the inclusion of the term could allow a Permittee to argue certain permit provisions do not apply to it. This is particularly true given the United States Supreme Court's fractured decision in *Rapanos v. United States*. Subsequent to the Supreme Court's holding in *Rapanos*, lower courts' have issued conflicting interpretations of the term "water of the United States." Thus drawing a distinction between "waters of the United States" and "waters of the State" in the Draft Permit will undoubtedly lead to attempts by some Permittees to avoid compliance by lodging protracted, and costly challenges alleging that discharges are to waters of the State, but not waters of the United States. This is also unfair to the vast majority of Permittees who clearly discharge to waters of the United States as well as the State's waters.

Moreover, the State Water Board's current Water Quality Enforcement Policy aptly observes that "fair, firm and consistent enforcement depends on a foundation of solid requirements in law, regulations, policies, and the adequacy of enforceable orders. . . . The extent to which enforceable orders include *well-defined requirements* . . . affects the consistency of compliance and enforcement" (emphasis added). Given the current complexity surrounding what constitutes a water of the United States under the governing case law, the Draft Permit is inconsistent with the State Water Board's Enforcement Policy's directive that enforceable orders should specify well-defined requirements. In order to be consistent with the Enforcement Policy, the Draft Permit must include clear, unambiguous and thus enforceable receiving water limitations on all storm water discharges, not just those that reach "waters of the United States."

In sum, the State Water Board must replace the term "United States" with "State" in order to remove any question that the State Water Board is fulfilling its mandate to protect all waters of the State, not just waters of the United States.

B. The CEQA Exemption Allows the State Water Board to Issue a Comprehensive Permit Protective of all State Waters.

At the October 17, 2012 workshop, the State Water Board staff stated that one reason the Draft Permit distinguishes between waters of the United States and waters of the State is because the State Water Board must engage in the processes required by CEQA when regulating waters of the State. This is a misinterpretation of the State Water Board's regulatory powers. California Water Code section 13389 provides that an action to adopt an NPDES general permit is exempt from the provisions of the California

⁶⁷ Rapanos v. United States, 547 U.S. 715 (2006).

⁶⁸ See, e.g., Baykeeper v. West Bay Sanitary District, 791 F. Supp. 2d 719, 763-69 (N.D. Cal. 2011)(requiring significant private, public, and judicial resources to secure court order declaring that nine waterways, including seasonal creeks and streams, were Waters of the United States).

⁶⁹ State Water Board, February 19, 2002 Water Quality Enforcement Policy Section I.A., at 2 (http://www.swrcb.ca.gov/water_issues/programs/enforcement/policy.shtml).

Environmental Quality Act. In *City of Burbank v. State Water Resources Control Board*, the Court of Appeal explained that:

Water Code section 13389 not only relieves Regional Board of the requirement to prepare an EIR or cause an EIR to be prepared (Pub. Resources Code, § 21100, subd. (a)), but also relieves Regional Board of those CEQA obligations that ordinarily are satisfied through preparation and consideration of an EIR, including the obligation to consider potential environmental impacts, project alternatives, and mitigation measures. Regional Board's obligation in issuing an NPDES Permit is to ensure compliance with both secondary treatment requirements imposed by EPA and state water quality standards, as stated *ante*. CEQA imposes no additional procedural or substantive requirements in these circumstances.⁷⁰

This rule does not change depending on whether the State Water Board is regulating to protect waters of the State or waters of the United States in an NPDES permit. For example, in *Building Industry Association of San Diego v. State Water Resources Control Board*, 124 Cal.App.4th 866, the Fourth District Court of Appeal upheld a municipal storm sewer permit that required strict compliance with receiving water limits, where no EIR was prepared. As the court noted, the California Water Code states that:

the state board or the regional boards shall, as required or authorized by the [Clean Water Act], as amended, issue waste discharge requirements and dredged or fill material permits which apply and ensure compliance with all applicable provisions of the act and acts amendatory thereof or supplementary, thereto, together with any more stringent effluent standards or limitations necessary to implement water quality control plans, or for the protection of beneficial uses, or to prevent nuisance.⁷¹

The State Water Board was rightfully unconcerned with the issue it now raises when it adopted the 1997 Permit, which afforded protection to waters of the State and waters of the United States. In fact, as the 1997 Permit makes clear, "[t]his action to adopt an NPDES general permit is exempt from the provisions of the California Environmental Quality Act (Public Resources Code Section 21100, *et seq.*) in accordance with Section 13389 of the California Water Code."⁷² The State Water Board has included this same finding in the Draft Permit, yet fails to regulate to protect all waters of the State.⁷³

The State Water Board's failure to regulate under both Porter-Cologne and the Clean Water Act is a significant limitation on the scope of protection now afforded under the 1997 Permit. Further, the Clean Water Act itself authorizes states to incorporate state standards more stringent than federal standards into NPDES permits. Thus, including protections for receiving water standards of waters of the State is wholly consistent with the State Water Board's delegated authority under the Clean Water Act, consistent with its rights and duties under Porter-Cologne, and in no way creates any new obligation that the State Water Board perform CEQA analysis of the proposed permit.

⁷⁰ 4 Cal.Rptr.3d 27, 41 (Cal. App. 2003).

⁷¹ Cal. Water Code § 13377.

⁷² 1997 Permit Finding #7, at 2.

⁷³ Finding #5, at 1.

⁷⁴ See 33 U.S.C. §§ 1311(b)(1)(C), 1342(b), 1370.

C. The Draft Permit Fails to Adequately Regulate Discharges from Permittees' Facilities.

By providing numerous off-ramps to regulation and narrowing the scope of regulated discharges, the State Water Board goes out of its way to provide Permittees with the opportunity to avoid controlling pollution discharging from their facilities. This is not only bad policy, it directly contradicts the Clean Water Act's storm water permitting scheme, which requires NPDES permit coverage for all discharges of storm water "associated with industrial activity." To achieve this requirement, the United States Environmental Protection Agency ("EPA") defines discharges of "storm water associated with industrial activity" broadly, and the Clean Water Act and its implementing regulations apply to all discharges of storm water from facilities that conduct certain types of industrial activities. To provide clarity to dischargers about what facilities are required to obtain coverage, the EPA and the State Water Board require permit coverage be obtained by all facilities within certain Standard Industrial Classification ("SIC") codes. Consistent with the structure of the Clean Water Act and the EPA regulations, the 1997 Permit contained provisions to ensure that all Permittees controlled all discharges of storm water associated with industrial activity. The Draft Permit's regulation of only some storm water discharges associated with industrial activity is a significant departure from the 1997 Permit, and is inconsistent with the requirements of the Clean Water Act and EPA regulations.

The Draft Permit limits the scope of pollution control it provides by illegally narrowing the definition of areas of industrial activity that produce storm water associated with industrial activity, and by exempting pollutants in facilities' discharges or exempting the discharge in its entirety from compliance with permit terms. As a result, the Draft Permit fails to require implementation of pollution control measures for many of the pollutants in the regulated facilities' discharges. Examples of the Draft Permit's failure to regulate the discharge of storm water associated with industrial activity as required include:

- Limiting the definition of "storm water associated with industrial activity". The definition provided in Attachment H of the Draft Permit excludes the illustrative language from the EPA definition at 40 C.F.R. § 122.26(b)(14) that explains which discharges of storm water are discharges of "storm water associated with industrial activity." By leaving critical parts of the definition out, the State Water Board fails to provide adequate guidance to dischargers to ensure that they control polluted discharges from all portions of their facility as required.
- Failing to include areas of an industrial facility that produce storm water associated with industrial activity in the description of "Areas of industrial activity subject to this General Permit" defined in Section X.E.3.e. of the Draft Permit. 80 This description does not include access roads, areas of the facility where industrial activity has taken place in the past and significant materials remain, and other areas that produce storm water discharges associated with industrial activity. However, the State Water Board cannot narrow the

⁷⁵ 33 U.S.C. § 1342(p)(2)(B) (emphasis added).

⁷⁶ 40 C.F.R. § 122.26(b)(14).

⁷⁷ Id

⁷⁸ See, e.g., 1997 Permit Section A.2., at 11; 40 C.F.R. § 123.25(a)(9).

⁷⁹ Compare Draft Permit Attachment H to 40 C.F.R. § 122.26(b)(14).

⁸⁰ Order, at 27.

scope of areas at the site that produce storm water associated with industrial activity.⁸¹ Access roads, areas of past industrial activity, and buildings and other structures such as fences that limit access to a facility are associated with industrial activity. 82 These portions of an industrial facility can be significant sources of pollutants, and the State Water Board must ensure that Permittees have appropriate pollution control measures to reduce or eliminate discharges from these areas. Not only is excluding these areas from regulation by the permit illegal, it is contrary to the State Water Board's duty to protect water quality.

Allowing Permittees to produce a Non-Industrial Pollutant Source Demonstration Technical Report, which lets Permittees avoid addressing pollutants in their discharges of storm water associated with industrial activity by submitting a report claiming the pollutant is from non-industrial areas of its site, run-on, or aerial deposition. A Permittee may submit this report even if the pollutant it claims is from a non-industrial source is also associated with its industrial operations. And once the report is submitted, a regulated industrial facility could discharge storm water with pollutants associated with its industrial activity, but not be required to implement any BMPs to control these pollutants. The Clean Water Act and its implementing regulations require dischargers to address all discharges of pollutants "associated with" their industrial activity. However, the Draft Permit does the opposite and limits its scope and thus regulation to control only those pollutants from narrowly defined areas of industrial activity rather than those associated with industrial activity.

The off-ramps and narrowed scope of the Draft Permit contradict the Clean Water Act's requirement that the State Water Board regulate storm water associated with industrial activity. In Attachment 2, CCKA provides proposed revisions to the Draft Permit that address the limited scope and off-ramps that are currently provided.

III. THE DRAFT PERMIT'S SAMPLING SCHEME IS INADEQUATE TO DETERMINE PERMITTEE COMPLIANCE.

The State Water Board, the Blue Ribbon Panel, and the public all share the same goal of collecting more and better quality data. However, the Draft Permit's proposed sampling program will not yield the data needed, as it does not ensure more data is collected, does not require analysis of samples for more parameters, and is not designed to gather higher quality data. 83 As a result, the Draft Permitwill not achieve the State Water Board's data collection goals, and it will not result in the collection of data sufficient to determine Permittees' compliance with Discharge Prohibitions⁸⁴, Effluent Limitations⁸⁵, and Receiving Water Limitations, as required by the Clean Water Act. 86

⁸¹ See 40 C.F.R. § 123.25(a)(9) (requiring State Water Board to implement all provisions of 40 C.F.R. § 122.26).

⁸² Even parking lots at industrial facilities, if they provide access to industrial operation areas or if any aspect of the facility operations is conducted on them, produce storm water associated with industrial activity. See 40 C.F.R. § 122.26(b)(14). 83 *See* section IV.B., below.

⁸⁴ Order Section III., at 20.

⁸⁵ Order Section V., at 21-22.

⁸⁶ Order Section VI., at 22.

The Draft Permit's monitoring program must therefore be revised to satisfy the State Water Board's goals, follow the Blue Ribbon Panel's directives, and comply with the law.

A. The Draft Permit's Sampling Scheme Will Not Ensure Collection of Data.

One of the State Water Board's stated goals in establishing the Draft Permit's monitoring program is the collection of a more robust storm water discharge sampling data set. ⁸⁷ The Blue Ribbon Panel also instructed that additional storm water discharge data should be collected. ⁸⁸ CCKA agrees with this goal, and appreciates the Board's recognition that more data is needed. As proposed, however, the monitoring program will fail to meet this goal.

1. The Draft Permit's Qualifying Storm Event Provision Does Not Ensure that Permittees Will Collect Storm Water Samples.

As proposed, the Draft Permit definition of a Qualifying Storm Event (QSE) will not ensure that Permittees in fact collect storm water samples from their facility. ⁸⁹ The Draft Permit QSE provision requires sampling from "a storm event that has produced a minimum of 1/10 inch of rainfall within the preceding 24 hour period as measured by an on-site rainfall measurement device; and ... that was preceded by 72 hours of dry weather." ⁹⁰ These factors are cumbersome and must be assessed before a sample is even required to be collected. However, if a Permittee fails to sample a QSE, the Discharger is required to take a sample "from an additional QSE that produces a discharge in a subsequent quarter." ⁹¹ Thus, in the event no QSE occurs in a given quarter, no sample need be collected. ⁹² A Permittee could legally not collect any samples in a reporting year, though one or more storm water discharges (but not a QSE) in fact occurred.

The Draft Permit should be revised so that the definition of "Qualifying Storm Event" serves as a method for prioritizing sample collection, directing Permittees to collect samples from QSEs. 93 But Permittees must be required to collect samples if there is a discharge from the facility, even if the discharge did not result from a QSE, (e.g., if there were only 48 dry hours between rain events, not the 72 hours the Draft Permit requires). This revision will add no burden or costs to Permittees, and it will ensure that Permittees will actually collect samples. Moreover, the requirement that monitoring be conducted when actual discharges occur from the site is not only the same standard used by the EPA 94 but is easy to understand and comply with.

To remedy the identified deficiencies and ensure that the State Water Board has access to more storm water sampling data, the Draft Permit should require a minimum number of samples of storm water discharges from the facility be collected each year. Section XI.B.4. of the Draft Permit sets four (4) as the

⁸⁷ Fact Sheet Section II.D.4., at 20.

⁸⁸ Fact Sheet Section II.K.2.b., at 45.

⁸⁹ See Order Section XI.B.2., at 38.

⁹⁰ Order Section XI.B.2., at 38.

⁹¹ Order Section XI.B.4., at 38.

 $^{^{92}}$ *Id*

⁹³ In the event the State Water Board rejects CCKA's proposed revision, the State Water Board must revise the requirement that Permittees certify whether a QSE occurred at their facility according to an on-site rain gauge to require a neutral third-party measurement be included in the explanation of why no sample was collected.

⁹⁴ See MSGP Section 6.1.3, at 33 (defining "Measurable Storm Events" for all required monitoring).

maximum number of samples required for each location for the reporting year. ⁹⁵ The Draft Permit should also make clear that Permittees must collect a *minimum* of three (3) storm water samples. This will guarantee that a facility's storm water discharges, when they happen, will be sampled even if no QSE occurs. CCKA has proposed language revising Section XI.B. of the Draft Permit to achieve the State Water Board's data collection goals. ⁹⁶

2. The Draft Permit Sampling Scheme Does Not Ensure That All Pollutants in Permittees' Discharges Will Be Identified.

The Draft Permit provides that Permittees analyze samples for "pollutants identified in the pollutant source assessment." CCKA agrees that Permittees must conduct a pollutant source assessment but Section X.G.2. authorizes a discharger to unilaterally identify what pollutants to include in its sample analysis with little or no guidance to ensure samples are properly analyzed for all pollutants likely to be in the discharge. The State Water Board can remedy this ambiguity by incorporating into Section X.G. the language from the Fact Sheet that requires Permittees to "select additional site-specific analytical parameters based upon types of materials that are both exposed to and mobilized by contact with storm water," and to "select additional analytical parameters that are representative of materials handled at the facility (regardless of the degree of storm water contact or relative mobility)." Including this specific language in the Draft Permit's sampling requirements will ensure that the Permittee's pollutant source assessments will identify all pollutants discharging from a Permittee's facility, and that a Permittee's subsequent storm water sampling will be analyzed for all relevant pollutants. CCKA's proposed language is set forth in Attachment 2.

The Draft permit also contradicts the Blue Ribbon Panel's recommendation to the State Water Board to improve their monitoring requirements to require dischargers to sample for *more* pollutants than required by the current 1997 Permit: "The Board needs to ... collect new data as required and for additional water quality parameters." However, rather than add parameters to those that must be sampled and analyzed for, the State Water Board has reduced the parameters for which dischargers must analyze their samples. For example, the Board acknowledges the validity of sampling for specific conductance, and even directs the discharger to contact the Regional Board to obtain a numeric action level. There is no basis to remove this parameter from the sampling program. The State Water Board should also expand the list of parameters in Table 4 to provide clarity on what pollutant(s) Permittees must analyze their samples for since a considerable body of evidence demonstrates that many pollutants that may negatively impact water quality are discharged from almost all industrial facilities. For example, many facilities that are known to handle toxic materials such as PCBs and PAHs are not specifically required to sample for them as a parameter listed in Table 4. The State Water Board should heed the advice of the Blue Ribbon Panel and increase, not decrease the parameters required to be analyzed for in storm water discharge samples.

⁹⁵ See Order Section XI.B.4., at 38.

⁹⁶ See Attachment 2.

⁹⁷ Order Section X.G., at 28; *see also* Order Section XI.B.5.b., at 39 ("Dischargers shall analyze all effluent samples obtained for the following parameters: ... [a]dditional, applicable parameters selected by the Discharger on a facility-specific basis designed to indicate the presence of all industrial pollutants identified in the pollutant source assessment required (Section X.G.2.a).").

⁹⁸ Fact Sheet Section II.J.2.b., at 40.

⁹⁹ Fact Sheet Section II.K.2.b., at 45.

Finally, we reaffirm our comments of April 29, 2011, noting that sufficient data has been collected under the existing permit to broaden the list of constituents in Table 4 required to be monitored for discrete SIC codes. ¹⁰⁰

B. The Draft Permit Does Not Ensure Collection of Quality Data Sufficient to Determine Permittees' Compliance.

The State Water Board has identified the lack of quality data as an impediment to its permitting process, and has therefore referred to the Draft Permit as a "bridge permit" meant to collect quality storm water discharge data. ¹⁰¹ The Blue Ribbon Panel also concluded that better quality data needs to be collected. ¹⁰² Yet, the proposed sampling program will not ensure that Permittees collect quality storm water samples. Poor quality data also undermines the usefulness of the data collected for determining compliance with permit terms, and therefore violates the Clean Water Act requirement that NPDES permits include self-monitoring programs designed to demonstrate Permittees' compliance or non-compliance. ¹⁰³

1. The Draft Permit's Allowance for Combining Samples from Different Discharge Locations Will Result in Poor Quality Data.

Section XI.C.4. of the Draft Permit ¹⁰⁴ authorizes Permittees to combine samples from different drainage areas for analysis "if the industrial activities and physical characteristics (grade, surface materials, etc.) within each of the drainage areas are substantially similar to one another." Permittees may combine samples pursuant to this provision regardless of whether the same BMPs are employed at each discharge location sampled. Because the results from combining samples fail to focus on each discharge location and BMPs implemented at those locations, the Qualified Combined Samples provision will prevent a careful evaluation of the effectiveness of the facility's BMPs and the need for additional pollution control measures. Thus it will be difficult to know the true quality of the storm water discharging from a Permittee's facility, or to determine if the BMPs at the facility achieve BAT/BCT. In addition, by allowing the combination of samples, the State Water Board fails to follow the Blue Ribbon Panel's instruction to collect better quality data that actually demonstrates the contamination levels in each distinct discharge. ¹⁰⁶

Combination of samples is also authorized even if the water discharging from the combined sample location flows to different waterbodies with different water quality standards and impairments. As such, a Permittee's combined samples may not demonstrate whether its storm water discharges are in compliance with Receiving Water Limitations established in the Draft Permit.

¹⁰⁰ 2011 Comment Letter, at 12-13.

¹⁰¹ See Finding #32, at 4; see also Fact Sheet Section II.D.4., at 20.

¹⁰² Fact Sheet Section II.K.2.b., at 45.

¹⁰³ 33 U.S.C. §§ 1342(a)(2); 1318(a)(2); 40 C.F.R. §§ 122.44(i), 122.41(j).

¹⁰⁴ Order, at 43-44.

¹⁰⁵ Order Section XI.C.4.a., at 43-44.

¹⁰⁶ Fact Sheet Section II.K.2.b., at 45.

2. The Draft Permit's Allowance for the Elimination of Sampling Locations Risks Inaccurate Discharge and Performance Data Collection.

The proposed Sampling Location Reduction at Section XI.C.3 of the Draft Permit violates the requirement that NPDES permits must include a monitoring program "sufficient to yield data which is representative of the monitored activity." The proposed Sampling Location Reduction scheme will prevent Permittees, the State Water Board, and the public from meaningfully evaluating Permittees' compliance with permit terms. The Sampling Location Reduction and Qualified Combined Sampling provisions also fail to ensure that a larger data set will be collected because the Draft Permit authorizes Permittees to significantly reduce the number of sampling locations and data points analyzed.

The Sampling Location Reduction allows dischargers to choose which discharge locations to sample in each drainage area on the condition that "the industrial activities and physical characteristics for each sampling location are substantially similar." This provision is problematic. First, this section fails to require that Permittee implement substantially identical BMPs at each discharge locations before reduced sampling is conducted. Second, this provision requires only that industrial activities and physical characteristics of the sampling locations be "substantially similar" rather than "substantially identical" as required in the 1997 Permit. Third, there is no limit to the number of discharge locations a Permittee can eliminate in a given drainage area. So long as they are in the same drainage area, any number of discharge locations can be eliminated, even if similar BMPs are not in place at each location.

As a result, the Draft Permit's Sampling Location Reduction scheme not only authorizes Permittees to collect samples from fewer discharge locations, it authorizes Permittees to collect sampling data that provides incomplete information on the effectiveness of Permittees' BMPs. A Permittee's sampling data collected pursuant to the Sampling Location Reduction provision will therefore fail to demonstrate the Permittee's compliance with the permit terms throughout the facility. To avoid this unlawful provision, the Draft Permit must require sampling at each storm water discharge location, or maintain the "reduction in sampling location" scheme set out in the 1997 Permit. CCKA has proposed language in Attachment 2 to address the identified deficiencies in the Sampling Location Reduction provisions.

3. The Draft Permit's NAL/ERA Process Should Require That Each Effluent Sample Be Compared to an NAL Rather Than Allow the Averaging of All Data Before a Permittee Must Take a Response Action.

The Draft Permit attempts to build a bridge to better future technology-based effluent limits by requiring, in addition to the general mandate for facilities to install and implement BAT/BCT and comply with water quality standards, "Exceedance Response Actions" ("ERA") through which facilities review and revise their BMPs. These ERAs, however, are only triggered after either (1) all annual samples are averaged and still found to exceed the limits set forth in Table 5, or (2) two samples taken within a year exceed the instantaneous limits set forth in Table 5. This system is flawed, and compounds the problems discussed above of reducing the data quality in each sample. Averaging annual samples may mask daily or seasonal variations at a particular site that nevertheless has regular exceedances due to insufficient BMPs. Also, it is simply incorrect to call two discrete sample exceedances, potentially taken at different places and times, to be "instantaneous." Indeed, this construction is contrary to other instantaneous

¹⁰⁷ 33 U.S.C. §§ 1342(a)(2); 1318(a)(2); 40 C.F.R. §§ 122.44(i), 122.41(j).

¹⁰⁸ Order Section XI.C.3.a., at 43.

concentration limits set forth in numerous Regional Board basin plans, and the California Toxics Rule. This will undermine regulatory certainty. For each of these reasons, the sampling and reporting methodology provided in Draft Permit Section XVII.A will not result in ERAs that produce the highest quality assessment or improve BMPs at facilities statewide.

CCKA suggests that rather than allow averaging of samples and using the results to trigger submission of information pursuant to the ERA process, the State Water Board should require the information it seeks through the BAT/BCT Compliance Demonstration Technical Report through the Annual Reporting process. If the State Water Board's goal is to obtain information that will help it develop numeric technology based effluent limitations ("TBELs"), it must collect information on the technologies employed by the *best* performers. Further, obtaining cost information from all dischargers, not just the worst performers will assist the State Water Board in developing a defensible numeric TBEL based on identified BAT or BCT. To minimize the burden on staff and dischargers, the State Water Board should require rolling submission of the requested information (by SIC code for example), and only require submission of the required information once during the first three (3) years of the permit cycle. That way the State Water Board will have information it thinks it needs well in advance of the next permit adoption in five (5) years.

IV. THE STATE WATER BOARD HAS NOT COMPLIED WITH ITS MANDATORY DUTIES WHEN ESTABLISHING THE DRAFT PERMIT'S TECHNOLOGY-BASED EFFLUENT LIMITATIONS.

The Clean Water Act requires the State Water Board to incorporate or establish, and enforce, TBELs in its NPDES permits. ¹⁰⁹ Where EPA has yet to promulgate national effluent limitations guidelines ("ELGs") (to be implemented in NPDES permits as TBELs) for industrial dischargers, the State Water Board exercises its "best professional judgment" ("BPJ") to establish TBELs on a case-by-case basis. ¹¹⁰ For many dischargers subject to the Draft Permit, the EPA has not established ELGs, and thus the State Water Board must develop its own TBELs using its BPJ.

In the exercise of its BPJ, the State Water Board must consider the statutory factors for developing TBELs. There are three categories of TBELs that apply to existing dischargers, each of which requires pollutant reductions or elimination of pollutants achievable through application of increasingly stringent pollutant control: (1) "best practicable control technology currently available" ("BPT"), (2) "best conventional pollution control technology" ("BCT"), and (3) "best available technology economically achievable" ("BAT"). The levels of effluent limitations relevant to discharge of conventional and toxic pollutants authorized by the Draft Permit are BCT and BAT, respectively. 113

There are three major steps that the State Water Board must take when exercising BPJ to develop TBELs. The first step is to identify candidate (potential) technologies that represent BCT or BAT. ¹¹⁴ The second step is to consider the statutory and regulatory mandated factors to evaluate the technological

¹⁰⁹ 33 U.S.C. §§ 1311(b), 1314(b)(2).

¹¹⁰ Natural Res. Def. Council v. EPA, 863 F.2d 1420, 1424 (9th Cir. 1988).

¹¹¹ Natural Res. Def. Council, 863 F.2d at 1425; Texas Oil & Gas Ass'n v. EPA, 161 F.3d 923, 928-29 (5th Cir. 1998); see also 40 C.F.R. §§ 125.3(c)-(d).

¹¹² 33 U.S.C. § 1311(b).

¹¹³ See Order Section V.A., at 21.

¹¹⁴ 51 Fed. Reg. 24974, 24976 (July 9, 1986).

feasibility and economic achievability of the candidate technologies. ^{115,116} The third step is to derive TBELs that represent that degree of reduction – expressed in terms of amounts – achievable through the application of BCT and BAT. At the third step, once a technology or technologies that represent BCT or BAT are identified, the State Water Board must derive a specific TBEL equivalent to the pollutant reduction achievable through the application of that technology(ies). ¹¹⁷ TBELs may be numeric or narrative, but TBELs must be expressed as numerical limits, unless numeric limitations are infeasible. ¹¹⁸ Only where the permitting agency has properly determined that numeric limitations are infeasible, may it issue narrative TBELs. ¹¹⁹ In any event, whether expressed numerically or narratively, TBELs must be developed based upon consideration of the factors set forth at sections 1311(b) and 1314(b) of the Clean Water Act. ¹²⁰

Attachments 3 and 4 include an evaluation of current storm water quality trends, as well as a summary of recent performance and cost studies for existing industrial storm water management controls. These Attachments reflect and build upon recent efforts by the State of Washington, which recently implemented numeric effluent limitations ("NELs") in its 2012 Industrial Storm Water General Permit. This information indicates that NELs are feasible for all of California's industrial sectors, and that cost-effective technologies currently exist that would facilitate compliance with numeric limitations.

A. The State Water Board Has Not Considered the Statutorily Required BAT/BCT Factors When Developing TBELs in the Draft Permit.

Effluent Limitation V.A. ¹²¹ is a TBEL that requires Dischargers to implement BMPs that constitute BAT/BCT to prevent and reduce pollutant discharges. ¹²² However, the State Water Board has not engaged in the analysis required when a permitting authority establishes TBELs. In addition, nowhere in the Draft Permit, the Findings, or the Fact Sheet does the State Water Board identify or explain its consideration of the required factors. ¹²³ Thus, in establishing these TBELs, the State Water Board attempts to issue the Draft Permit in violation of the Clean Water Act.

First, the State Water Board has complied with its initial mandate to identify candidate technologies, a necessary step to form the basis of its BCT or BAT analyses. Nor does the State Water Board explain that it tried to identify candidate technologies, but it was unable to do so. In fact, the State Water Board admits that it has not considered the required factors: "the State Water Board does not have the information and resources needed to consider the many factors that must be considered when developing TBELs based on BPT, BAT, and BCT." Limited data and lack of resources are not valid excuses for failing to conduct the required analysis. And in this case, there is ample information available

¹¹⁵ 33 U.S.C. § 1311(b)(2)(E).

¹¹⁶ 33 U.S.C. § 1311(b)(2)(B).

¹¹⁷ See 40 C.F.R. § 122.44(k)(3); see also CBIA v. State Board at 16:5-8.

¹¹⁸ Citizens Coal Council v. EPA, 447 F.3d 879, 895 (6th Cir. 2006); 40 C.F.R. § 122.44(k)(3).

¹¹⁹ Citizens Coal Council, 447 F.3d at 896; see also Natural Res. Def. Council, Inc. v. Costle, 568 F.2d 1369, 1380 (D.C. Cir. 1977).

¹²⁰ Waterkeeper Alliance, Inc., 399 F.3d at 511-12.

¹²¹ Order, at 21.

¹²² See also Order Section X.C.1.b., at 25 and Section X.H.2., at 30.

¹²³ See Finding #30-35, at 4-5; see also Fact Sheet Section II.D.4., at 20.

¹²⁴ Fact Sheet Section II.D.4., at 20.

State Water Resources Control Board CCKA Comments on 2012 Draft Permit October 22, 2012 Page 20 of 26

to support the State Water Board's analysis. ¹²⁵ The materials submitted by CCKA (*see* Attachment 4) and others identify myriad potential candidate technologies, provide data on the performance of these technologies, and include information on the costs of implementing these technologies. The State Water Board cannot simply ignore this information and claim it does not have data it needs to undertake the required analyses. Further, where current information is lacking, the State Water Board not only has the authority, but the obligation to obtain that information prior to establishing TBELs. ¹²⁶ The State Water Board has had since 1992 the mandate to collect the information it must consider when establishing TBELs. ¹²⁷ Any shortage of necessary information is the responsibility of the State Water Board, and does not justify the State Water Board's failure to conduct the requisite analysis.

Second, without identifying candidate technologies for consideration under the required BAT and BCT factors, the State Water Board has necessarily failed to consider the factors required when determining BAT and BCT. Specifically, the State Water Board has not considered the cost-reasonableness of any candidate BCT technologies. Nor has it considered the costs of achieving pollutant reductions that will result in reasonable further progress toward *the national goal of eliminating the discharge of all pollutants* for any candidate BAT technologies.

Third, even assuming the State Water Board was legally able to postpone its BAT/BCT analyses to allow for collection of data under this "bridge" permit, the reporting and sampling requirements of the Draft Permit are not designed to collect information relevant to the statutory BAT/BCT factors. The BAT/BCT factors are to be applied to the "best" performing technologies. ¹²⁸ As discussed above, information collected under the Draft Permit reporting scheme will be from dischargers that exceed NALs and are thus not the best performers. ^{129,130} In addition, the sampling and monitoring provisions will not produce data on what BMPs are implemented at different drainage areas of the facility. ¹³¹ Thus sampling data collected under the Draft Permit will not correspond to a Permittee's technology performance.

Finally, the Draft Permit's identification of minimum BMPs does not satisfy the State Water Board's obligation to identify candidate technologies based on all available information. If the State Water Board has done so, it has failed to explain how--by conducting the required analyses of the statutorily mandated factors--the identified Minimum BMPs are BAT or BCT. The State Water Board is obligated to articulate its analysis when establishing permit terms. ¹³² Further, the State Water Board's reliance on the 2008 MSGP is no substitute for the analysis the State Water Board is required to conduct

¹²⁵ See Attachments 3 and 4; see also 2011 Comment Letter, at 4-14.

¹²⁶ See Cal. Water Code § 13267(b); see also Natural Res. Def. Council, 863 F.2d at 1426-27; 40 C.F.R. §§ 125.3(c), (d).

⁽d).

127 Apparently, the State Water Board only evaluated electronic data. *See* Fact Sheet Section I.B., at 7. The State Water Board therefore apparently failed to consider any data that preceded the submission of electronic data.

128 See U.S.C. § 1311(b); see also Ass'n of Pac. Fisheries v. EPA, 615 F.2d 794, 816 (9th Cir. 1980).

¹²⁹ Order Section XII.E.1-2, at 48 (only facilities reporting NAL exceedances are required to submit additional information); Section XI.C.6., at 44 (allows well-performing facilities to discontinue sampling); *see also* Fact Sheet Section II.D.4., at 20.

¹³⁰ To ensure that the sampling and reporting provisions of the Order are, in fact, designed to obtain relevant information, CCKA proposes Sections XI.C.3, XI.C.4, and XI.C.6 be revised as set forth in Attachment 2. 131 See, e.g., Order Section XI.C.3., at 43 (no requirement that "representative sampling locations" have same BMPs), and Section XI.C.4., at 43-44 (allows combination of storm water samples without regard to BMPs). 132 Topanga Ass'n for a Scenic Community v. County of Los Angeles, 11 Cal. 3d 506, 515 (1974).

when establishing TBELs. 133 Absent an explanation "bridging the analytical gap", the Draft Permit's TBELs are unlawful. 134

To comply with the Clean Water Act, the State Water Board is required to identify candidate BAT and BCT technologies, and to ascertain that they are BAT/BCT upon which the applicable TBEL is derived. The State Water Board does not have discretion to establish TBELs without considering the statutory factors. Yet that is exactly what the State Water Board will have done if it adopts the Draft Permit as proposed. The Draft Permit TBELs are unlawful, and the State Water Board must conduct the required analyses prior to establishing any TBEL to be included in the permit.

B. The State Water Board Has Not Properly Determined that Numeric TBELs Are Infeasible, a Prerequisite for Adopting BMP-based Narrative Effluent Limitations.

Section V. of the Draft Permit expresses narrative TBELs. ¹³⁸ Non-numerical effluent limitations are the exception, and are only permitted when deriving numeric effluent limitations is infeasible. ¹³⁹

1. The State Water Board Has Not Determined Whether It is Capable of Expressing the TBELs in the Draft Permit Numerically.

As the Clean Water Act requires the State Water Board to establish numeric TBELs unless doing so is infeasible, the State Water Board must first examine the feasibility of deriving a numeric TBEL before establishing narrative TBELs. Thus the relevant question the State Water Board must answer in establishing TBELs is whether the degree of pollutant reduction attainable through application of BAT and BCT is capable of being expressed numerically. The State Water Board must answer this question, and must make findings that document how it reached its conclusion. ¹⁴⁰ In order to include *only* BMP-based narrative effluent limitations, as the Draft Permit does, the State Water Board must first find that it cannot express numerically the pollutant reduction attainable with application of BAT and BCT, i.e., it must find numeric TBELs are infeasible. ¹⁴¹

The first step in this feasibility analysis is to identify candidate technologies based on consideration of available technologies and the performance data of those technologies. ¹⁴² Further, the State Water Board must consider *all available information*. ¹⁴³ The State Water Board has failed to satisfy the first step of the feasibility analysis, as it did not identify candidate technologies that represent BAT or BCT when adopting TBELs in the Draft Permit. ¹⁴⁴ Without identifying technologies as BAT or BCT, it is

¹³³ Finding #32, at 4-5; see also Fact Sheet Section II.D.4., at 20.

¹³⁴ Topanga Ass'n for a Scenic Community, 11 Cal. 3d at 515.

¹³⁵ 33 U.S.C. §§ 1311(b), 1314(b); 40 C.F.R. § 125.3(c), (d).

¹³⁶ See 40 C.F.R. § 125.3(c) and (d); see also Natural Res. Def. Council, 863 F.2d at 1425.

¹³⁷ See Fact Sheet Section II.D.4., at 20.

¹³⁸ Order, at 21.

¹³⁹ Costle, 568 F.2d at 1380.

¹⁴⁰ See NPDES Permit Writers Manual, Chapter 5.2.3.6; see also Topanga Ass'n for a Scenic Community, 11 Cal. 3d at 515.

¹⁴¹ See 40 C.F.R. § 122.44(k)(3); see also Costle at 1380; CBIA v. State Board at 16:5-8.

¹⁴² 40 C.F.R. § 125.3(c).

 $^{^{143}}$ Id

¹⁴⁴ See Finding #30-35, at 4-5; see also Fact Sheet Section II.D.4., at 20.

impossible for the State Water Board to have taken the next step of evaluating whether it is feasible to express the pollutant reductions achievable through implementation of those technologies numerically.

To facilitate the analysis the State Water Board must perform, CCKA has submitted substantial amounts of information on potential candidate technologies with its 2011 Letter, and submits additional information with these comments. Attachment 3 provides a statistical review of over 187,000 data points from the State Water Board's Storm Water Multiple Application and Report Tracking System (SMARTS) database, where storm water quality statistics are provided for 11 broad industrial sectors, based on data collected between 2005 and 2012. Attachment 4 includes a review of currently available storm water controls, including treatment performance and cost statistics.

2. The State Water Board May Not Use Lack of Information or Staff Resources as Factors for Evaluating the Feasibility of Numeric Effluent Limitations.

Rather than analyze the feasibility of deriving a numeric effluent limit based on the information available regarding performance of various BMPs/model technologies, the State Water Board has summarily concluded that "[i]t is infeasible ... to develop numeric TBELs ... at this time." ¹⁴⁶

Lack of information, whether perceived or actual, and lack of staff resources are not bases for failing to conduct the required analyses. The State Water Board is required to obtain the necessary information before concluding that a numeric TBEL is infeasible. Similarly, lack of staff resources is not an enumerated statutory factor when establishing TBELs, nor is it an appropriate consideration. He State Water Board may only find a numeric TBEL infeasible when the degree of pollutant reduction achievable through application of BAT and BCT is incapable of being expressed numerically, not when the State Water Board finds it "infeasible" to gather needed information or that it lacks resources to conduct the required analysis. The State Board's SMARTS database contains hundreds of thousands of data points on industrial storm water discharges, submitted by Permittees pursuant to their annual reporting requirements. This information has not been considered to date by the State Water Board, yet is analyzed in Attachment 3. This information can and should be used by the State Water Board to demonstrate (a) that numeric expression of TBELs is feasible and (b) the Permittees will be able to achieve compliance with numeric TBELs.

The State Water Board must conduct the required analysis to determine whether the degree of pollutant reduction achievable through application of BAT or BCT is capable of being expressed numerically before the State Water Board may establish Effluent Limitation V.A. of the Draft Permit as a narrative limit. The State Water Board has not conducted the required analysis, and thus the TBELs and the Draft Permit violate the Clean Water Act.

¹⁴⁵ See Attachments 3-4; see also 2011 Comment Letter, at 4-14 and Enclosures thereto.

¹⁴⁶ Fact Sheet Section II.D.4., at 20; Finding #32, at 4.

¹⁴⁷ Natural Res. Def. Council, 863 F.2d at 1425-27 (permitting agency lacks discretion and has mandatory duty to consider statutory factors); Weyerhaeuser v. Costle, 590 F.2d at 1026; 40 C.F.R. §§ 125.3(c), (d).

¹⁴⁸ See 33 U.S.C. § 1311(b); see also Natural Res. Def. Council, 863 F.2d at 1425; Costle, 568 F.2d at 1380 (EPA cannot cite its own administrative burdens as a reason for not implementing the Clean Water Act as required).

V. THE DRAFT PERMIT DOES NOT CLEARLY DELINEATE THAT A PERMITTEE IS REQUIRED TO STRICTLY COMPLY WITH WATER QUALITY STANDARDS.

The language of the Draft Permit injects ambiguity as to whether Permittees are in fact required to comply with all applicable water quality standards. The law, however, is clear – strict compliance with water quality standards is required. The Fact Sheet acknowledges this, stating, "the General Permit requires strict compliance with WQS." ¹⁵⁰

The California Toxics Rule and other sources of applicable water quality standards establish how to determine whether a Permittee is in compliance. ¹⁵¹ For example, under the California Toxics Rule, the criteria that establish whether beneficial uses are attained and water quality standards are met apply at the end of discharge pipe (i.e., at the point of discharge from the facility), unless a mixing zone has been established. ¹⁵²

Despite the clear requirements of the law, and the State Water Board's assertion that the Draft Permit requires strict compliance with water quality standards, Finding 36 and Section VI.A. of the Draft Permit (Receiving Water Limitations) creates confusion regarding a Permittee's obligation to ensure that their discharges do not cause or contribute to violations of WQS. Most significantly, Finding 36 states,

Water quality standards apply to the quality of the receiving water, not the quality of the industrial storm water discharge. Therefore, compliance with the receiving water limitations can generally not be determined solely by the effluent water quality characteristics.

These two sentences contradict the plain requirements of the CTR, which requires evaluation of water quality at the end of the discharge pipe. ¹⁵³ The only exception to this requirement is if there is a mixing zone, which has not been established under the Draft Permit. Therefore, by including these sentences in Finding 36, the State Water Board misstates the law, and causes confusion as to how to determine compliance when there is no mixing zone.

In addition to the ambiguity created by Finding 36, Section VI.A of the Draft Permit provides that "Dischargers shall ensure that industrial storm water discharges and authorized NSWDs do not cause or contribute to an exceedance of any applicable WQS in any affected receiving water." It is unclear what the State Water Board means by "any affected receiving water." By definition an "applicable WQS" would be the WQS for the receiving water(s) downstream from a Permittee's facility. This redundant language creates unnecessary confusion.

The Draft Permit further confuses the issue by only requiring monitoring of the discharge effluent from the permitted facility. If it is necessary to consider more than the quality of the effluent to ensure strict compliance with water quality standards, which it is not, then something besides effluent must be monitored.

¹⁴⁹ Defenders of Wildlife v. Browner, 191 F.3d 1159, 1165 (9th Cir. 1999).

Fact Sheet Section II.E., at 21.

¹⁵¹ 40 C.F.R. § 131.38(c)(2)(i); *Santa Monica Baykeeper v. Kramer Metals, Inc.*, 619 F. Supp. 2d 914, 927 (C.D. Cal. 2009); 65 Fed. Reg. 31682, 31701 (May 18, 2000).

¹⁵² 40 C.F.R. § 131.38(c)(2)(i).

¹⁵³ *Id*.

To address the confusion created by Finding 36 and Section VI.A, CCKA provides proposed modifications to the language of each in Attachment 2.

VI. THE DRAFT PERMIT IS INCONSISTENT WITH EXISTING, APPLICABLE TOTAL MAXIMUM DAILY LOADS AND FAILS TO INCORPORATE WASTE LOAD ALLOCATIONS AS WATER **QUALITY-BASED EFFLUENT LIMITS.**

NPDES Permits must be consistent with all existing, applicable total maximum daily loads ("TMDLs") and must incorporate waste load allocations ("WLAs") from those TMDLs as water qualitybased effluent limitations ("WQBELs"). 154 The Draft Permit fails to comply with these requirements and must be revised to incorporate all WLAs applicable to Permittees.

A. The Draft Permit Provides an Incomplete List of All Existing and Applicable WLAs.

Attachment D of the Draft Permit provides an incomplete list of TMDLs applicable to Permittees. Many TMDLs that establish WLAs for discharges from industrial facilities are missing from Attachment D. A list of applicable TMDLs missing from Attachment D is included with CCKA's comments as Attachment 5.

The State Water Board must ensure that all existing, applicable WLAs are incorporated into the permit, and must therefore revise Draft Permit Attachment D.

> B. The Draft Permit Illegally Delays Incorporation of Waste Load Allocations in Existing, Applicable Total Maximum Daily Loads as Water Quality-Based Effluent Limitations.

Numeric WLAs developed specifically for dischargers covered by the Draft Permit must be directly incorporated into the permit as WQBELs because WLAs are "a type of WQBEL." When developing water quality-based effluent limitations for NPDES permits, such as Section V.C. of the Draft Permit. 156 the permitting authority is required to ensure that "effluent limits are consistent with the assumptions and requirements of any available wasteload allocation for the discharge." ¹⁵⁷ It is EPA's longstanding position that NPDES permits must contain effluent limits and conditions that are consistent with the requirements of WLAs in established TMDLs. 158 The State Water Board is obligated to immediately incorporate existing, applicable WLAs as WOBELs into the adopted permit.

Contrary to these requirements, the Draft Permit defers incorporation of any WLAs as WQBELs for at least two (2) years. ¹⁵⁹ In addition, the State Water Board shifts its obligation to establish WQBELs

¹⁵⁷ 40 C.F.R. § 122.44(d)(1)(vii)(B); Communities, 1 Cal. Rptr. 3d at 80 (citing 40 C.F.R. § 122.44(d)(1)(vii)(B)).

¹⁵⁴ See 40 C.F.R. 122.44 (d)(1)(vii)(B); Communities for a Better Env't v. State Water Res. Control Bd. ("Communities"), 1 Cal. Rptr. 3d 76, 80 (2003) (citing 40 C.F.R. § 130.2(h)). ¹⁵⁵ Communities, 1 Cal. Rptr. 3d at 80 (citing 40 C.F.R. § 130.2(h)).

¹⁵⁶ Order, at 22.

¹⁵⁸ See U.S. E.P.A. "Revisions to the November 22, 2002 Memorandum Establishing Total Maximum Daily Load (TMDL) Wasteload Allocations (WLAs) for Storm Water Sources and NPDES Permit Requirements Based on Those WLAs", at 2 (Nov. 2010), available at http://www.epa.gov/npdes/pubs/establishingtmdlwla_revision.pdf. ¹⁵⁹ Order Section VII.A., at 22; Finding #37-41, at 5-7; Fact Sheet Section II.F., at 21-23.

to the Regional Boards. 160 Despite the State Water Board's contention that it will satisfy its mandatory duty to establish WQBELs consistent with existing, applicable WLAs by re-opening the permit to incorporate WLAs at a later date, ¹⁶¹ re-opening the permit to incorporate existing legal requirements does not fall within any of the limited, permissible reasons for a re-opener. ¹⁶² The Draft Permit, as proposed, may not be legally adopted. 163

As a practical matter, the State Water Board has articulated no legitimate basis for not incorporating the WLAs now. A review of TMDLs developed in California reveals that there are many numeric WLAs specifically developed and applicable to industrial dischargers covered by the Draft Permit. Some of these TMDLs include the Ballona Creek and Estuary Metals TMDL, the Los Angeles River Metals TMDL, the LA River Trash TMDL, the Calleguas Creek Watershed Metals and Selenium TMDL, and the Santa Monica Bay DDT and PCB TMDL, among others. Attachment 5 provides a complete list of TMDLs applicable to Permittees, as well as the text of the WLAs established by those TMDLs that regulate Permittees' discharges. These WLAs must be incorporated as WQBELs into the Draft Permit to ensure that the permit complies with legal mandates. 164

A delay in WLA incorporation is especially unjustified for TMDLs with expired compliance deadlines, such as the Santa Clara River Reach 3 Chloride TMDL, the Los Angeles Area Lakes Nitrogen, Phosphorus, Mercury, Trash, Organochlorine Pesticides and PCBs TMDLs, and the San Gabriel River Metals and Selenium TMDL. A complete list of TMDLs with expired deadlines is provided as Attachment 6.

Rather than deferring incorporation of WLAs to a later day and shifting the burden to the Regional Boards, the State Water Board must revise the Draft Permit to incorporate all existing, applicable WLAs as WOBELs prior to permit adoption.

VII. **CONCLUSION**

This permit is of the utmost importance to the watersheds and communities that our groups work to protect. California Waterkeepers and other groups have monitored and assessed industrial facilities discharging storm water since the original permit was issued in 1991, and have been consistently engaged in related regulatory processes for more than twenty years. Accordingly, we have a unique understanding of needed industrial storm water regulatory reforms. We urge the State Water Board to develop a permit that provides clarity to dischargers and the public, avoids self-regulation by dischargers, requires sampling and monitoring that ensures the collection of data to assess compliance and inform development of future permits, and ultimately improves pollution control measures and the protection of water quality.

¹⁶⁰ Fact Sheet Section II.F., at 22 ("The Regional Boards staff, with the assistance of the State Board staff, will develop proposed TMDL-specific permit requirements for each of the TMDLs listed in Attachment D by July 1, 2015.").
¹⁶¹ 40 C.F.R. § 122.62.

¹⁶² *Id*.

¹⁶³ To the extent the State Water Board does re-open the permit to incorporate WLAs at a later date, the State Water Board must provide a public comment period at that time. 40 C.F.R. § 122.62.

¹⁶⁴ See 40 C.F.R. § 122.44(d)(1)(vii)(B); Communities, 1 Cal.Rptr.3d at 80 (citing 40 C.F.R. § 122.44(d)(1)(vii)(B)).

We look forward to working with State Water Board members and staff in the coming months to develop a permit that achieves these objectives.

Sincerely,

Sara Aminzadeh, Acting Director California Coastkeeper Alliance sara@cacoastkeeper.org Kirsten James, Water Quality Director

Heal The Bay

kjames@healthebay.org

Bill Jennings, Executive Director
California Sportfishing Protection Alliance
deltakeep@me.com

Attachments:

- 1. Letters from California citizens in support of a strong, enforceable Industrial Storm Water Permit.
- 2. CCKA's Proposed Draft Permit Revisions and Language.
- 3. Statistical Review of California-Specific Industrial Storm Water Data Measured from 2005 to 2012.
- 4. Summary of Treatment Performance and Costs for Currently Available Industrial Storm Water Controls.
- 5. List of all applicable TMDLs/WLAs.
- 6. List of TMDLs with expired compliance deadlines.

ATTACHMENT 1

Submitted in substantially similar form by more than 1,432 Californians.

October 22, 2012

Charlie Hoppin, Chair and Members State Water Resources Control Board 1001 I Street Sacramento, CA 95812-0100 c/o Jeanine Townsend, Clerk to the Board

Dear State Water Board Members:

I appreciate the State Water Board's work to update the 15-year old Industrial General Stormwater Permit. Runoff from industrial facilities can contain heavy metals such as lead, zinc and copper. These pollutants are highly toxic and endanger the health of California communities and watersheds. Unfortunately, after more than two years of work, many aspects of the Permit reflect a step backward from the current permit, and even the 2011 draft permit.

I urge the State Water Board to work with staff to develop a streamlined permit that is clear and enforceable, and achieves the shared goal of collecting more and better data. California needs clear limits on the amount of stormwater pollutants discharged into our waterbodies in order to provide dischargers with a clear path to compliance, and facilitate efficient enforcement by the State and Regional Water Boards. Please develop a strong, enforceable Industrial Stormwater Permit that helps ensure that California waterways are safe for swimming, drinking, and fishing.

Thank you.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section	
	Findings			
Finding #8	The Fact Sheet is incorporated as findings of this General Permit.	Delete Finding.	Section I., fn. 10.	
Finding #29	This General Permit regulates industrial storm water discharges and authorized NSWDs from specific categories of industrial facilities identified in Attachment A hereto, and industrial storm water discharges and authorized NSWDs from facilities designated by the Regional Water Boards to obtain coverage under this General Permit. This General Permit does not apply to industrial storm water discharges and NSWDs that are regulated by other individual or general NPDES permits, including the current Statewide NPDES Construction General Permit.	This General Permit regulates storm water discharges associated with industrial activities and authorized NSWDs from specific categories of industrial facilities identified in Attachment A hereto, and industrial storm water discharges and authorized NSWDs from facilities designated by the Regional Water Boards to obtain coverage under this General Permit. This General Permit does not apply to industrial storm water discharges and NSWDs that are regulated by other individual or general NPDES permits, including the current Statewide NPDES Construction General Permit.	Section I.B.2. & Section II.C.	
Finding #30	Section 301(b) of the Clean Water Act and 40 C.F.R. section 122.44 require NPDES permits to include technology-based requirements at a minimum, and any more stringent effluent limitations necessary to meet applicable water quality standards. Clean Water Act section 402(p)(3)(A) requires that discharges of storm water runoff from industrial facilities comply with Clean Water Act section 301.	Section 301(b) of the Clean Water Act and 40 C.F.R. section 122.44 require NPDES permits to include technology-based requirements at a minimum, and any more stringent effluent limitations necessary to meet applicable water quality standards. Clean Water Act section 402(p)(3)(A) requires that storm water discharges associated with industrial activity comply with Clean Water Act section 301.	Section I.B.2. & Section II.C.	

^{*} CCKA has not provided proposed language for the Fact Sheet because the Fact Sheet need not be part of the Draft Permit. By not providing proposed language revising the Fact Sheet, CCKA in no way intends to approve of the language of the Fact Sheet. The State Water Board should ensure that the Fact Sheet is consistent with CCKA's proposed revisions to the Findings and the Order.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
Finding #36	This General Permit requires all Dischargers to comply with all applicable water quality standards for water of the United States that may be affected by their industrial storm water discharges and NSWDs. Water quality standards apply to the quality of the receiving water, not the quality of the industrial storm water discharge. Therefore, compliance with the receiving water limitations can generally not be determined solely by the effluent water quality characteristics. Compliance with water quality standards may, in some cases, require Dischargers to implement controls that are more protective than the controls that are necessary to meet the technology-based requirements in this General Permit.	This General Permit requires all Dischargers to comply with all applicable water quality standards for waters of the United States and/or the State. Compliance with water quality standards may, in some cases, require Dischargers to implement controls that are more protective than the controls that are necessary to meet the technology-based requirements in this General Permit.	Section II.A. & Section V.
Finding #51	A QISP III can perform the most advanced permit functions and duties, such as preparing Level 2 ERA Technical Reports and Demonstration Technical Reports. A QISP III can represent multiple facilities with any type of industrial activity. The QISP III training is the most advanced training required by this General Permit and is designed for environmental professionals.	A QISP III can perform the most advanced permit functions and duties, such as preparing Level 2 ERA Reports and Technical Reports. A QISP III can represent multiple facilities with any type of industrial activity. The QISP III training is the most advanced training required by this General Permit and is designed for environmental professionals.	Section I.B.
Finding #57	This General Permit complies with 40 C.F.R. section 122.44(i), which establishes monitoring requirements that must be included in storm water permits. Under this General Permit, Dischargers are required to: (a) conduct an Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation) to identify areas of the facility contributing pollutants to industrial storm water discharges, (b) evaluate whether measures to reduce industrial pollutant loads identified in the Discharger's	This General Permit complies with 40 C.F.R. section 122.44(i), which establishes monitoring requirements that must be included in storm water permits. Under this General Permit, Dischargers are required to: (a) conduct an Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation) to identify areas of the facility contributing pollutants to storm water discharges associated with industrial activities, (b) evaluate whether measures to reduce industrial pollutant loads identified in	Section I.B.2., Section II.C., and Section III.A.

Draft Permit Section*	Draft Permit Language	Proposed Language	CCKA Comment Letter Section
	SWPPP are adequate and properly implemented in accordance with the terms of this General Permit, and (c) determine whether additional control measures are needed.	the Discharger's SWPPP are adequate and properly implemented in accordance with the terms of this General Permit, and (c) determine whether additional control measures are needed.	
Finding #58	This General Permit contains additional monitoring requirements that are necessary to determine whether pollutants are being discharged, and whether response actions are necessary. This will in turn help the Discharger to evaluate BMP effectiveness and compliance with this General Permit. Visual observations are one form of monitoring. This General Permit requires the Discharger to perform a variety of visual observations designed to identify pollutants in industrial storm water discharges and their sources. To comply with this General Permit the Discharger shall: electronically self-report any discharge violations via SMARTS, comply with the Level 1 and Level 2 ERA requirements, when applicable, and adequately address and respond to any Regional Water Board comments on the Discharger's compliance reports.	This General Permit contains additional monitoring requirements that are necessary to determine whether pollutants are being discharged, and whether response actions are necessary. This will in turn help the Discharger to evaluate BMP effectiveness and compliance with this General Permit. Visual observations are one form of monitoring. This General Permit requires the Discharger to perform a variety of visual observations designed to identify pollutants in storm water discharges associated with industrial activity and their sources. To comply with this General Permit the Discharger shall: electronically self-report any discharge violations via SMARTS, comply with the Level 1 and Level 2 ERA requirements, when applicable, and adequately address and respond to any Regional Water Board comments on the Discharger's reports.	Section I.B. & Section II.C.
Finding #63	This General Permit reduces the number of qualifying sampling events required to be sampled each year when the Discharger demonstrates both consistent compliance with this General Permit and consistent effluent water quality sampling and analysis results that do not exceed NALs.	This General Permit reduces the number of sampling events required to be sampled each year when the Discharger demonstrates both consistent compliance with this General Permit and consistent effluent water quality sampling and analysis results that do not exceed NALs.	Section III.A.1.
Finding #64	This General Permit includes NALs, new comprehensive training requirements, Level 1 ERA Reports, Level 2 ERA Technical Reports, and Demonstration Technical	This General Permit includes NALs, new comprehensive training requirements, Level 1 ERA Reports, Level 2 ERA Reports, and Technical Reports as part of a multiple	Section I.B.

Draft Permit Section*	Draft Permit Language	Proposed Language	CCKA Comment Letter Section
	Reports as part of a multiple objective performance measurement system. There are two main objectives: (1) inform the Dischargers, the public and the Water Boards on the overall pollutant control performance at any given facility, and (2) inform the Dischargers, the public and the Water Boards on the overall performance of the industrial storm water program. Additionally, the State Water Board expects that this information and assessment process will provide the information needed to determine the feasibility of numeric effluent limitations for industrial sectors in the next reissuance of this General Permit, consistent with the recommendations of the Blue Ribbon Panel of Experts.	objective performance measurement system. There are two main objectives: (1) inform the Dischargers, the public and the Water Boards on the overall pollutant control performance at any given facility, and (2) inform the Dischargers, the public and the Water Boards on the overall performance of the industrial storm water program. Additionally, the State Water Board expects that this information and assessment process will provide the information needed to determine the feasibility of numeric effluent limitations for industrial sectors in the next reissuance of this General Permit, consistent with the recommendations of the Blue Ribbon Panel of Experts.	
Finding #70	Pollutants in storm water discharges that are solely attributable to non-industrial pollutant sources (such as run-on from adjacent facilities, non-industrial portions of the Discharger's property, or aerial deposition) are not subject to NALs, because the NALs are designed to provide feedback on industrial sources of pollutants. Dischargers may submit a Non-Industrial Source Pollutant Demonstration Technical Report to demonstrate that the sources are of the pollutants are non-industrial. Dischargers who submit a Non-Industrial Source Pollutant Demonstration Technical Report must continue to comply with BAT/BCT and receiving water limitations.	Delete Finding #70. If this proposed change is rejected at a minimum revise to say: Dischargers may submit a Non-Industrial Source Pollutant Technical Report only if the pollutant(s) included in the report are not associated with the Discharger's industrial activity. Dischargers who submit a Non-Industrial Source Pollutant Technical Report must continue to implement BMPs to comply with BAT/BCT and receiving water limitations for all pollutants in the discharge.	Section I.B.2.
Finding #71	Pollutants in storm water discharges that are solely attributable to natural background sources are not subject to NALs, because the NALs are designed to provide feedback on industrial sources of pollutants. Dischargers	Pollutants in storm water discharges that are not associated with the Discharger's industrial activity and are solely attributable to natural background sources are not subject to NALs, because the NALs are designed to	Section I.B.3.

CCKA Comment Letter 4 Attachment 2

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	may submit a Natural Background Demonstration Technical Report to demonstrate that the pollutants are naturally occurring. Dischargers who submit a Natural Background Demonstration Technical Report are not responsible for the naturally occurring pollutants identified in the Natural Background Demonstration Technical Report.	provide feedback on industrial sources of pollutants. Dischargers may submit a Natural Background Technical Report setting forth monitoring data and other information which they believe demonstrate that the pollutants are naturally occurring only if the pollutant(s) included in the report are not associated with the Discharger's industrial activity. Dischargers who submit a Natural Background Technical Report must continue to implement BMPs to comply with BAT/BCT and receiving water limitations for all pollutants in the discharge.	
Finding #72	Where a discharger has already designed, installed, and implemented operational any source control, treatment, and/or structural source control BMPs that are required to reduce or prevent pollutants in industrial storm water discharges in compliance with BAT/BCT, the Discharger may submit a BAT/BCT Compliance Demonstration Technical Report. Dischargers who submit a BAT/BCT Compliance Demonstration Technical Report must continue to comply with receiving water limitations.	Where a discharger has designed, installed, and implemented any source control, treatment, and/or structural source control BMPs that are required to reduce or prevent pollutants in storm water discharges associated with industrial activity consistent with BAT/BCT, the Discharger may submit a BAT/BCT Technical Report describing the source control, treatment, and/or structural source control BMPs and information which the discharger believes demonstrates the BMPs are achieving BAT/BCT. Dischargers who submit a BAT/BCT Technical Report must continue to comply with this Permit.	Section I.B.1. & Section II.C.
Finding #74	Compliance Groups are groups of Dischargers (Participants) that share common pollutant sources and industrial activity characteristics. Compliance Groups provide an opportunity for the Participants to pool resources and develop Consolidated Level 1 ERA Reports for Level 1 NAL exceedances and Consolidated	Technical Groups are groups of Dischargers (Participants) that share common pollutant sources and industrial activity characteristics. Technical Groups provide an opportunity for the Participants to pool resources and develop Consolidated Level 1 ERA Reports for Level 1 NAL exceedances and Consolidated	Section I.B.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	Level 2 ERA Technical Reports for Level 2 NAL exceedances that are representative of the entire Compliance Group. Compliance Groups also provide the Water Boards and the public with valuable information as to how industrial storm water discharges are affected by non-industrial background pollutant sources (including natural background) and geographic locations, and what constitutes BAT/BCT. When developing the next reissuance of this General Permit, the State Water Board expects to have a better understanding of the feasibility and benefits of sector-specific and watershed-based permitting approaches, which may include technology- or water quality-based numeric effluent limitations (NELs). The State Water Board intends that the effluent data, BMP performance data and other information provided from Compliance Groups' consolidated reporting will help inform the State Water Board on these issues.	Level 2 ERA Reports for Level 2 NAL exceedances that are representative of the entire Technical Group. Technical Groups also provide the Water Boards and the public with valuable information as to what may constitute BAT/BCT. When developing the next reissuance of this General Permit, the State Water Board expects to have a better understanding of the feasibility and benefits of sector-specific and watershed-based permitting approaches, which may include technology- or water quality-based numeric effluent limitations (NELs). The State Water Board intends that the effluent data, BMP performance data and other information provided from Technical Groups' consolidated reporting will help inform the State Water Board on these issues.	
Finding #79	Regional Water Boards are primarily responsible for enforcement of this General Permit. This General Permit recognizes that Regional Water Boards have the authority to protect the beneficial uses of receiving waters and prevent degradation of water quality. As such, Regional Water Boards may modify monitoring requirements and review, comment, approve or disapprove any Discharger reports required under this General Permit.	Regional Water Boards are primarily responsible for enforcement of this General Permit. This General Permit recognizes that Regional Water Boards have the authority to protect the beneficial uses of receiving waters and prevent degradation of water quality. As such, Regional Water Boards may, as authorized by law, modify monitoring requirements and review and comment upon, and seek to enforce any inadequacies of any Discharger reports required under this General Permit.	Section I.B. & Section I.C.
Finding #81	Regional Water Boards may revise the treatment design storm standard provided in this General Permit for a	Delete Finding.	Section I.B. & Section I.C.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	Discharger based upon (1) sampling data demonstrating that a higher or lower standard would be protective of water quality, and (2) the treatment technology associated with the revised design storm meets BAT/BCT.		
		General Permit Coverage	
Order Section I.A.1.	For the purposes of this General Permit, this coverage is called NOI coverage. The Discharger that discharges storm water associated with industrial activity to waters of the United States is required to meet all the requirements of this General Permit such as designing and implementing a SWPPP in compliance with BAT/BCT, and complying with the monitoring and Annual Monitoring Reporting requirements. The Discharger shall designate a Legally Responsible Person (LRP) to register for coverage under this General Permit by certifying and submitting Permit Registration Documents (PRDs) via the Stormwater Multi-Application Reporting and Tracking System (SMARTS) (http://smarts.waterboards.ca.gov), which consist of	For the purposes of this General Permit, this coverage is called NOI coverage. The Discharger that discharges storm water associated with industrial activity to waters of the United States and/or the State is required to meet all the requirements of this General Permit such as designing and implementing a SWPPP consistent with BAT/BCT, and complying with the monitoring and Annual Monitoring Reporting requirements. The Discharger shall designate a Legally Responsible Person (LRP) to register for coverage under this General Permit by certifying and submitting Permit Registration Documents (PRDs) via the Stormwater Multi-Application Reporting and Tracking System (SMARTS) (http://smarts.waterboards.ca.gov), which consist of	Section II.A. & Section II.C.
Order Section I.D.1.	The previous permit remains in effect until July 1, 2013. Existing Dischargers that have submitted NOIs for the previous permit shall continue coverage under the previous permit until July 1, 2013. Existing Dischargers that have submitted NOIs for the previous permit shall have until July 1, 2013 to register for NOI or NEC coverage. Existing Dischargers that have not submitted NOIs for the previous permit shall have until July 1, 2014	The previous permit remains in effect until July 1, 2013. Existing Dischargers that have submitted NOIs for the previous permit shall continue coverage under the previous permit until July 1, 2013. Existing Dischargers that have submitted NOIs for the previous permit shall have until July 1, 2013 to register for NOI or NEC coverage. Existing Dischargers that have not submitted NOIs for the previous permit shall immediately register	Section II.A.

Draft Permit Section*	Draft Permit Language	Proposed Language	CCKA Comment Letter Section
	to register for NOI or NEC coverage. Dischargers that have submitted NOIs for the previous permit that do not register for NOI or NEC coverage by July 1, 2013 may have their coverage administratively terminated. Upon administrative termination, Dischargers are subject to enforcement by the Regional Water Boards until coverage under this General Permit is obtained by designating an LRP to submit new PRDs pursuant to the provisions of Section II.	for NOI or NEC coverage. Dischargers that have submitted NOIs for the previous permit that do not register for NOI or NEC coverage by July 1, 2013 may have their coverage administratively terminated. Upon administrative termination, Dischargers are subject to enforcement by the Regional Water Boards until coverage under this General Permit is obtained by designating an LRP to submit new PRDs pursuant to the provisions of Section II.	
Order Section I.G.7.	Level 2 ERA Technical Reports (Section XII.D) and Demonstration Technical Reports for BAT/BCT, Non- Industrial, or Natural Background (Sections XII.E) shall be	Level 2 ERA Reports (Section XII.D) and Technical Reports for BAT/BCT, Non-Industrial, or Natural Background (Sections XII.E) shall be	Section I.B.
	Discharge Prohibitions		
Order Section III.C.	Industrial storm water discharges and authorized NSWDs shall not contain pollutants that cause or threaten to cause pollution, contamination, or nuisance as defined in section 13050 of the Water Code.	Storm water discharges associated with industrial activities and authorized NSWDs shall not contain pollutants that cause or threaten to cause pollution, contamination, or nuisance as defined in section 13050 of the Water Code.	Section II.C.
Order Section III.E.	Industrial storm water discharges and authorized NSWDs regulated by this General Permit shall not contain hazardous substances equal to or in excess of a reportable quantity listed in 40 C.F.R. section 110.6, 117.21, or 302.6.	Storm water discharges associated with industrial activities and authorized NSWDs regulated by this General Permit shall not contain hazardous substances equal to or in excess of a reportable quantity listed in 40 C.F.R. section 110.6, 117.21, or 302.6.	Section II.C.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
			1
		Effluent Limitations	
Order Section V.A.	Dischargers shall implement BMPs that constitute BAT/BCT to prevent and reduce pollutant discharges.	Facility operators covered by this General Permit must reduce or prevent pollutants associated with industrial activity in storm water discharges and authorized non-storm water discharges through implementation of BAT for toxic and non-conventional pollutants and BCT for conventional pollutants.	Section I.B. & Section I.C.
	Receiving Water Limitations		
Order Section VI.A.	Dischargers shall ensure that industrial storm water discharges and authorized NSWDs do not cause or contribute to an exceedance of any applicable WQS in any affected receiving water.	Dischargers shall ensure that storm water discharges and authorized NSWDs do not cause or contribute to an exceedance of any applicable WQS contained in a Statewide Water Quality Control Plan or the applicable Regional Water Board's Basin Plan.	Section II.AB. & Section V.
	Training Qualifications		
Order Section IX.Table 1	Level 2 ERA Technical Reports	Level 2 ERA Reports	Section I.B.
Order Section IX.Table 1	Demonstration Technical Reports	Technical Reports	Section I.B.
Order Section IX.Table 2	SWPPP, NEC, SFR, SLR, Level 1 ERA Evaluation and Report, and NOT. May not prepare the Level 2 Technical Report, and BAT/BCT, non-industrial, and Background	SWPPP, NEC, SFR, SLR, Level 1 ERA Evaluation and Report, and NOT. May not prepare the Level 2 ERA Report, and BAT/BCT, non-industrial, and Background	Section I.B.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	Demonstrations in Level 2 ERA	Technical Report in Level 2 ERA	
Order Section IX.Table 2	SWPPPs NEC, SFR, SLR, Level 1&2 ERA plus BAT/BCT, non-industrial, and Background Demonstration Technical Reports, BIER	SWPPPs NEC, SFR, SLR, Level 1&2 ERA Reports, plus BAT/BCT, Non-Industrial, and Background Technical Reports, BIER	Section I.B.
	Storm W	Vater Pollution Prevention Plans	
Order Section X.A.	CCKA proposes a new section be added.	The SWPPP has two major objectives: (a) to identify and evaluate sources of pollutants associated with industrial activities that may affect the quality of storm water discharges and authorized non-storm water discharges from the facility; and (b) to identify and implement site specific best management practices (BMPs) to reduce or prevent pollutants associated with industrial activities in storm water discharges and authorized non-storm water discharges. BMPs may include a variety of pollution prevention measures or other low-cost and pollution control measures. They are generally categorized as non-structural BMPs (activity schedules, prohibitions of practices, maintenance procedures, and other low-cost measures) and as structural BMPs (treatment measures, run-off controls, overhead coverage.) To achieve these objectives, facility operators should consider the five phase process for SWPPP development and implementation as shown in Table A. The SWPPP requirements are designed to be sufficiently flexible to meet the needs of various facilities. SWPPP requirements that are not applicable to a facility should not be included in the SWPPP.	Section II.C., and Section III.AB.

<u>Draft Permit</u> <u>Section</u> *	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
Order Section X.B.3.	List of Significant Materials	List of Materials	Section III.A.
Order Section X.D.1.a.	Identify and evaluate all sources of pollutants that may affect the quality of industrial storm water discharges and authorized NSWDs	Identify and evaluate all sources of pollutants that may affect the quality of storm water discharges and authorized NSWDs	Section II.C.
Order Section X.D.1.b.	Identify and describe the minimum BMPs (Section X.H.2), and additional facility-specific BMPs (Section X.H.4) to reduce or prevent pollutants in industrial storm water discharges and authorized NSWDs. BMPs shall be selected to achieve BAT/BCT and compliance with WQS	Identify and describe the minimum BMPs (Section X.H.2), and additional facility-specific BMPs (Section X.H.4) to reduce or prevent pollutants in storm water discharges and authorized NSWDs. BMPs shall be selected to achieve BAT/BCT and compliance with WQS	Section II.C.
Order Section X.F.3.b.	Locations of storm water collection and conveyance systems, associated points of discharge, and direction of flow. Include any structural control measures that affect industrial storm water discharges, authorized NSWDs, and run-on	Locations of storm water collection and conveyance systems, associated points of discharge, and direction of flow. Include any structural control measures that affect storm water discharges, authorized NSWDs, and run-on	Section II.C.
Order Section X.F.	List of Significant Materials	List of Materials	Section II.C.
Order Section X.G.1.d.	Significant Spills and Leaks	Spills and Leaks	Section II.C.
Order Section X.G.1.a.	Dischargers shall ensure that the SWPPP includes a narrative assessment of all areas of industrial activity with potential industrial pollutant sources. At a minimum, the assessment shall include	Dischargers shall ensure that the SWPPP includes a narrative assessment of all areas of industrial activity with potential industrial pollutant sources. Dischargers are required to select additional site-specific analytical parameters based upon the types of materials that are	Section III.A.2.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
		both exposed to and mobilized by contact with storm water. Dischargers are expected understand how to identify industrial materials that are handled outdoors and which of those materials can easily dissolve or be otherwise transported via storm water. At a minimum, the assessment shall include	
Order Section X.H.2	Dischargers shall implement the minimum BMPs identified in areas of the facility from which industrial storm water is discharged to waters of the United States. Dischargers may eliminate or revise any BMPs determined to be inapplicable, infeasible, inappropriate, or that require operational or physical revisions of the facility that exceed BAT/BCT and compliance with WQS. Dischargers shall document these reasons in the SWPPP. Dischargers shall determine the appropriate BMP inspection frequencies related to the minimum BMPs. Dischargers shall revise, replace and maintain all BMPs, as needed. The Discharger is not required to narratively describe the minimum BMP inspection results in the Annual Monitoring Report. The Annual Monitoring Report only requires a certification that minimum BMP inspections were completed.	Dischargers shall implement the minimum BMPs at the facility. Dischargers may eliminate or revise any BMPs not required to achieve compliance with this Permit including complying with BAT/BCT, or compliance with WQS. Dischargers shall document these reasons in the SWPPP. Dischargers shall inspect, revise, replace and maintain all BMPs, as needed. The Discharger must narratively describe the minimum BMP inspection results in the Annual Monitoring Report. The Annual Monitoring Report also requires a certification that minimum BMP inspections were completed.	Section I.B.1. & Section I.C.
Order Section X.H.7.c.	In lieu of complying with the design storm standards for treatment control BMPs in this section, Dischargers may certify and submit a BAT/BCT Compliance Demonstration Technical Report (Section XII.E.3).	Delete Section.	Section I.B.1. & Section I.C.
Order Section X.H.7.d.	The State Water Board Deputy Director of the Division of Water Quality may revise the treatment design storm standard provided in this General Permit in writing for a	The State Water Board may amend this General Permit to revise the treatment design storm standard for a Discharger or group of Dischargers based upon sampling	Section I.B.1. & Section I.C.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	Discharger or group of Dischargers based upon sampling data indicating that a revised design storm standard would be protective of water quality, or upon the Deputy Director's determination that the treatment technology associated with the revised design storm standard meets BAT/BCT.	data indicating that a revised design storm standard would be protective of water quality, or upon the State Water Board's determination that the treatment technology associated with the revised design storm standard meets BAT/BCT.	
	N	Ionitoring Requirements	
Order Section XI.A.	CCKA proposes a new section be added.	The objectives of the monitoring program are to: Ensure that storm water discharges are in compliance with the Discharge Prohibitions, Effluent Limitations, and Receiving Water Limitations specified in this General Permit. Ensure practices at the facility to reduce or prevent pollutants in storm water discharges and authorized non storm water discharges are evaluated and revised to meet changing conditions. Aid in the implementation and revision of the SWPPP required by Section A of this General Permit. Measure the effectiveness of best management practices (BMPs) to prevent or reduce pollutants in storm water discharges and authorized non-storm water discharges.	Section III.
		Much of the information necessary to develop the monitoring program, such as discharge locations,	

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
		drainage areas, pollutant sources, etc., should be found in the Storm Water Pollution Prevention Plan (SWPPP). The facility's monitoring program shall be a written, site specific document that shall be revised whenever appropriate and be readily available for review by employees or Regional Water Board inspectors.	
Order Section XI.B.1.	Dischargers shall ensure that collection of storm water samples are made at all locations that discharge storm water associated with industrial activity for the first QSE of each quarter in the reporting year. In addition, the first discharge of contained storm water that occurs in each quarter (as defined in this Section A.2.b, above) shall be sampled.	Dischargers shall ensure that collection of storm water samples are made at all discharge locations for the first QSE of each quarter in the reporting year. In addition, the first discharge of contained storm water that occurs in each quarter (as defined in this Section A.2.b, above) shall be sampled.	Section III.B.2.
Order Section XI.B.3.	Samples shall be collected from each drainage location within four (4) hours of: The start of the discharge, or The start of facility operations if the QSE occurs within the previous 12 hour period (storms that begin the previous night). Sample collection is required during scheduled facility operating hours and when sampling conditions are safe. (Section XI.C.5.a).	Samples shall be collected from each drainage location within: Within one (1) hour of the start of the discharge when feasible, or Within four (4) hours of the start of the discharge, or The start of facility operations if the QSE occurs within the previous 12 hour period (storms that begin the previous night). Sample collection is required during scheduled facility operating hours and when sampling conditions are safe. (Section XI.C.5.a).	Section III.A.1.
Order Section XI.B.4.	In the event that the first QSE in a quarter does not produce a discharge that can be sampled at one or more	In the event that the first QSE in a quarter cannot be sampled at one or more sampling locations, dischargers	Section III.A.1.

Draft Permit Section*	Draft Permit Language	Proposed Language	CCKA Comment Letter Section
	sampling locations, dischargers shall record which sampling locations were observed that did not discharge, and collect samples from those locations from the next QSE(s) that produces a discharge in that quarter. If the Discharger fails to collect a quarterly sample at one or more sampling locations that did produce a discharge within a quarter, the Discharger is required to fulfill the sampling requirement from an additional QSE that produces a discharge in a subsequent quarter. Dischargers shall provide an explanation in the Annual Report for uncompleted quarterly sample collection only for those quarters that at least one QSE occurs. For each discharge location, the maximum number of samples required per reporting year is four (4). The maximum number of samples collected for each discharge location per reporting year shall be reduced for each quarter in which a QSE does not occur or a QSE occurs but that does not produce a discharge.	shall record which sampling locations were observed that did not discharge (if any), and shall record which sampling locations discharged but a sample was not collected. Dischargers shall collect samples from those locations from the next QSE(s) in that quarter. To ensure a minimum of three samples are collected in each reporting year, if the Discharger fails to collect a sample in any quarter, the Discharger shall collect a sample from the next storm event that produces a discharge, whether it is a QSE or not. This requirement is in addition to the requirement that Dischargers collect a sample from one QSE per quarter (i.e., if the next storm event is the first QSE in the next quarter, the discharger is still obligated to collect an additional sample to make up for the sample missed in the previous quarter). Dischargers shall provide an explanation in the Annual Report for uncompleted quarterly sample collection. For each discharge location, the minimum number of samples required per reporting year is three (3).	
Order Section XI.B.5.	Dischargers shall analyze all effluent samples obtained for the following parameters	Dischargers shall analyze all effluent samples obtained for at least the following parameters	Section III.A.2.
Order Section XI.B.5.e.	Additional parameters required by the Regional Water Board. Dischargers shall contact the Regional Water Board to determine appropriate analytical methods for parameters not listed in Table 5; and	Additional parameters required by the Regional Water Board. Dischargers shall contact the Regional Water Board to determine appropriate analytical methods for parameters not listed in Table 5;	Section III.A.2.
Order Section XI.B.5.f.	Additional parameters specifically required by Subchapter N. Dischargers subject to ELGs shall contact the Regional Water Board to determine appropriate	Additional parameters specifically required by Subchapter N. Dischargers subject to ELGs shall contact the Regional Water Board to determine appropriate	Section III.A.2.

<u>Draft Permit</u> <u>Section</u> *	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	analytical methods for parameters not listed in Table 5;	analytical methods for parameters not listed in Table 5; and	
Order Section XI.B.5.g.	CCKA proposes a new section be added.	Dischargers are required to select additional site-specific analytical parameters based upon the types of materials that are both exposed to and mobilized by contact with storm water. Dischargers are expected to understand how to identify industrial materials that are handled outdoors and which of those materials can easily dissolve or be otherwise transported via storm water.	Section III.A.2.
Order Section XI.C.2.a.	Dischargers shall ensure that all storm water discharge sampling locations are representative of only those drainage areas associated with industrial activities. The storm water discharge observed and collected from these sampling locations shall be representative of the storm water discharge generated in each drainage area. For sheet flow, the Discharger shall determine the appropriate sampling location(s) which represent industrial storm water discharges generated from the corresponding drainage area.	Dischargers shall ensure that all storm water discharge sampling locations are representative of the storm water discharge generated in each drainage area. For sheet flow, the Discharger shall attempt to collect a sample, but may determine the appropriate sampling location(s) which represent industrial storm water discharges generated from the corresponding sheet flow drainage area.	Section III.B.
Order Section XI.C.2.b.	Dischargers shall identify practicable alternate sample collection locations representative of the facility's storm water discharge if	Dischargers may identify practicable alternate sample collection locations representative of the facility's storm water discharge if	Section III.B.2.
Order Section XI.C.2.b.i.	Specific drainage areas at the facility are affected by storm water run-on from off-site areas or on-site non-industrial areas;	Delete Section.	Section III.B.2.
Order Section	For each drainage area (or sub-drainage areas) with	For each drainage area (or sub-drainage areas) with	Section III.B.2.

Draft Permit Section*	Draft Permit Language	Proposed Language	CCKA Comment Letter Section
XI.C.3.a.	multiple discharge locations (e.g., roofs with multiple downspouts, equipment storage areas with multiple storm drain inlets), the Discharger may reduce the number of sample locations if a SLR report is prepared documenting that the industrial activities and physical characteristics (grade, surface materials, etc.) of the drainage areas for each sampling location are substantially similar to one another	multiple discharge locations (e.g., roofs with multiple downspouts, equipment storage areas with multiple storm drain inlets), the Discharger may reduce the number of sample locations if a SLR report is prepared documenting that the industrial activities, BMPs, and physical characteristics (grade, surface materials, etc.) of the drainage areas for each sampling location are substantially identical to one another	
Order Section XI.C.3.c.	Regional Water Boards may reject the SLR report and/or request additional supporting documentation. In such instances, the Discharger is not eligible for the SLR until the Regional Water Board provides SLR report approval. Revised SLR reports shall be certified and submitted via SMARTS by the Discharger's LRP.	Regional Water Boards may reject the SLR report and/or request additional supporting documentation. In such instances, the Discharger is not eligible for the SLR until the Regional Water Board provides SLR report approval. Revised SLR reports shall be certified and submitted via SMARTS by the Discharger's LRP. The Regional Water Board's review, comment, or failure to comment shall not be construed to be an acceptance or approval of an SLR report by the Regional Board.	Section III.B.2.
Order Section XI.C.4.a.	Dischargers may authorize the lab to combine samples of equal volume from as many as four (4) drainage areas if the industrial activities and physical characteristics (grade, surface materials, etc.) within each of the drainage areas are substantially similar to one another.	Dischargers may authorize the lab to combine samples of equal flow-weighted volume from as many as two (2) drainage areas if the industrial activities, BMPs, and physical characteristics (grade, surface materials, etc.) within each of the drainage areas are substantially identical to one another.	Section III.B.1.
Order Section XI.C.4.b.	Dischargers shall provide documentation supporting that the above conditions have been evaluated as part of the Annual Monitoring Report submittal. Regional Water Board approval is necessary to combine samples from more than four (4) drainage areas.	Dischargers shall provide documentation supporting that the above conditions have been evaluated as part of the Annual Monitoring Report submittal. Regional Water Board approval is necessary to combine samples from more than two (2) drainage areas.	

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
Order Section XI.C.6.a.	Dischargers are eligible to reduce the number of QSEs sampled each reporting year in accordance with the following requirements	Dischargers are eligible to reduce the number of QSEs sampled at a discharge location in a reporting year in accordance with the following requirements	Section III.A.1.
Order Section XI.C.6.a.i.	The Discharger has taken samples in eight (8) consecutive quarters where QSEs occurred that produced a discharge	The Discharger has taken samples in eight (8) consecutive quarters where QSEs occurred that produced a discharge at that discharge location(s)	Section III.A.1.
Order Section XI.C.a.ii.	Sampling results from the eight (8) QSEs did not exceed any NALs as defined in Section XII.A	Sampling results from the eight (8) QSEs at that discharge location(s) did not exceed any NALs as defined in Section XII.A	Section III.A.1.
Order Section XI.C.a.iii.	The Discharger is in full compliance with the requirements of this General Permit and has updated, certified and submitted via SMARTS all documents, data, and reports required by this General Permit during the same eight (8) consecutive quarters in which samples were collected from QSEs. Dischargers subject to enforcement actions by the Regional Water Boards may be excluded from eligibility.	The Discharger is in full compliance with the requirements of this General Permit, including compliance with water quality standards, and has updated, certified and submitted via SMARTS all documents, data, and reports required by this General Permit during the same eight (8) consecutive quarters in which samples were collected from QSEs at that discharge location(s). Dischargers subject to enforcement actions by the Regional Water Boards are excluded from eligibility.	Section III.A.1.
Order Section XI.C.6.c.	Upon submittal of a SFR report the Discharger shall collect and analyze samples from the first QSE producing a discharge occurring on or after October 1 of the next reporting year. Regional Water Boards may reject SFR report and/or request additional supporting documentation. In such instances, the Discharger is not eligible for the SFR until the Regional Water Board	Upon submittal of a SFR report the Discharger shall collect and analyze samples from the first QSE producing a discharge occurring on or after October 1 of the next reporting year, and from at least one (1) other QSE producing a discharge during the reporting year. Regional Water Boards may reject SFR report and/or request additional supporting documentation. In such	Section III.A.1. & Section I.C.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	provides SFR report approval. Revised SFR reports shall be certified and submitted via SMARTS by the Discharger's LRP.	instances, the Discharger is not eligible for the SFR until the Regional Water Board provides SFR report approval. Revised SFR reports shall be certified and submitted via SMARTS by the Discharger's LRP. The Regional Water Board's review, comment, or failure to comment shall not be construed to be an acceptance or approval of an SFR report by the Regional Board.	
	Exc	ceedance Response Actions	
Order Section XII.A.1.b.	Instantaneous maximum NAL exceedance: the Discharger shall compare all sampling and analytical results from each distinct sample (individual or combined) to the corresponding instantaneous maximum NAL values in Table 5. An instantaneous maximum NAL exceedance occurs when two or more analytical results for TSS, O&G, or pH from samples taken within a reporting year exceed the instantaneous maximum NAL value (or is outside the NAL pH range).	Instantaneous maximum NAL exceedance: the Discharger shall compare all sampling and analytical results from each distinct sample to the corresponding instantaneous maximum NAL values in Table 5. An instantaneous maximum NAL exceedance occurs when any analytical result from a sample taken within a reporting year exceeds the value (or is outside the NAL pH range) listed in Table 5.	Section I.B. & Section III.A.3.
Order Section XII.B.3.	Dischargers with Level 2 status will return to status upon certifying and submitting a Demonstration Technical Report.	Dischargers with Level 2 status will return to Baseline status upon certifying and submitting a Technical Report, and corrective action(s) to remedy the NAL exceedance has been completed.	Section I.B. & Section I.C.
Order Section XII.C.2.	Within 60 days of obtaining Level 1 status, Dischargers shall complete an evaluation of the facility's SWPPP and all the industrial pollutant sources at the facility. The evaluation shall identify whether additional operational source control BMPs and/or SWPPP implementation	Within 60 days of obtaining Level 1 status, Dischargers shall complete an evaluation of the facility's SWPPP and all the industrial pollutant sources at the facility. The evaluation shall identify what additional operational source control BMPs and/or SWPPP implementation	Section I.C.

<u>Draft Permit</u> <u>Section</u> *	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	measures are necessary to prevent or reduce all industrial pollutants in industrial storm water discharges in compliance with BAT/BCT. This evaluation shall not be limited to the parameter(s) exceeding the NAL(s).	measures are necessary to prevent or reduce all pollutants in storm water discharges in compliance with BAT/BCT and Water Quality Standards. This evaluation shall not be limited to the parameter(s) exceeding the NAL(s).	
Order Section XII.D.1.	A Discharger's Level 1 status for any parameter(s) immediately and automatically changes to Level 2 status for the same parameter(s) if sampling results indicate an NAL exceedance in any subsequent reporting year for the same parameter(s).	A Discharger's Level 1 status for any parameter(s) immediately and automatically changes to Level 2 status for the same parameter(s) if sampling results indicate two NAL exceedances for the same parameter(s).	Section III.B.3.
Order Section XII.D.2.b.	Certify and submit via SMARTS a Level 2 ERA Technical Report prepared by a QISP III that includes the following	Certify and submit via SMARTS a Level 2 ERA Report prepared by a QISP III that includes the following	Section I.B.
Order Section XII.D.2.b.iv.	If the Discharger intends to certify and submit a Demonstration Technical Report in lieu of additional structural and/or treatment control BMPs and SWPPP revisions for each parameter that exceeded an NAL, the Discharger shall certify and submit a schedule and a detailed description of the tasks required to complete the Demonstration Technical Report.	If the Discharger intends to certify and submit a Technical Report, the Discharger shall certify and submit a schedule and a detailed description of the tasks required to complete the Technical Report	Section I.B.
Order Section XII.D.3.	Based upon the above evaluation and Level 2 ERA Technical Report, the Discharger shall, as soon as practicable, but no later than one year from obtaining Level 2 status	Based upon the above evaluation and Level 2 ERA Report, the Discharger shall, as soon as practicable, but no later than one year from obtaining Level 2 status	Section I.B.
Order Section XII.E.	ERA Level 2 Demonstration Technical Reports	ERA Level 2 Technical Reports	Section I.B.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
Order Section XII.E.1.	At any time in Level 2 status the Discharger's QISP III may evaluate industrial pollutant sources, the SWPPP, non-industrial pollutant sources, natural background sources, and the impact of industrial storm water discharges to receiving waters, and prepare a Level 2 ERA Demonstration Technical Report (Demonstration Technical Report) as applicable. A Demonstration may address one or more pollutants and/or drainage areas.	At any time in Level 2 status the Discharger's QISP III may evaluate industrial pollutant sources, the SWPPP, natural background sources, and the impact of industrial storm water discharges to receiving waters, and prepare a Level 2 ERA Technical Report (Technical Report) as applicable. A Technical Report may address one or more pollutants and/or drainage areas.	Section I.B.
Order Section XII.E.2	Once a Demonstration Technical Report is submitted, the Discharger automatically returns to Baseline Status for that pollutant for NAL/ERA purposes. If a BAT/BCT Compliance Demonstration Technical Report is submitted, the Discharger remains responsible for compliance with receiving water limitations for the discharge identified in the Demonstration. If a Non-Industrial Source Pollutant Demonstration Technical Report is submitted, the Discharger remains responsible for compliance with BAT/BCT and receiving water limitations for the discharge identified in the Demonstration. If a Natural Background Demonstration Technical Report is submitted, the Discharger is not responsible for the identified parameter(s) in the drainage area(s) in the Demonstration Technical Report.	Once a Technical Report is submitted, the Discharger returns to Baseline Status for that pollutant for NAL/ERA purposes if corrective action(s) to remedy the NAL exceedance has been completed. If any Technical Report is submitted by a Discharger, the Discharger remains responsible for compliance with BAT/BCT and receiving water limitations for the discharge(s) identified in the Technical Report.	Section I.B. & Section I.C.
	BAT/BCT Technical Report		

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section	
Order Section XII.E.3	BAT/BCT Compliance Demonstration Technical Report	BAT/BCT Technical Report	Section I.B.1.	
Order Section XII.E.3.b.	A statement that the Discharger has identified and evaluated all pollutant source(s) associated with industrial activity that are causing an NAL exceedance	A statement that the Discharger has identified and evaluated all pollutant source(s) associated with industrial activity that may be causing the NAL exceedance	Section I.B.1. & Section I.C.	
Order Section XII.E.3.c	A statement that the Discharger has already designed, installed, and implemented operational source control, treatment, and/or structural source control BMPs that are required to reduce or prevent pollutants in industrial storm water discharges in compliance with BAT/BCT.	A statement that the Discharger has designed, installed, and implemented operational source control, treatment, and/or structural source control BMPs to reduce or prevent pollutants in industrial storm water discharges, which the Discharger believes have achieved BAT/BCT.	Section I.B.1. & Section I.C.	
Order Section XII.E.3.f	A description of all implemented BMPs that constitute BAT/BCT for the specific identified parameter(s) in the drainage area(s);	A description of all implemented BMPs for the specific identified parameter(s) in the drainage area(s)	Section I.B.1. & Section I.C.	
Order Section XII.E.3.g	Alternate NALs, if applicable, that correspond to the identified treatment/structural BMPs and reflect BAT/BCT level of control.	Delete Section.	Section I.B.1. & Section I.C.	
	Non-Industrial Pollutant Source Demonstration Technical Report			
Order Section XII.E.4.	The Non-Industrial Source Pollutant Demonstration Technical Report shall at a minimum, include the following	Delete Section. If this proposed change is rejected at a minimum revise to say:	Section I.B.2.	

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
		A Discharger can submit a Non-Industrial Source Pollutant Technical Report for a pollutant that exceeds an NAL only if that pollutant is not associated with the Discharger's industrial activity. The Non-Industrial Source Pollutant Technical Report shall at a minimum, include the following	
Order Section XII.E.4.b	A statement that the Discharger has determined that the pollutants causing the exceedances are solely attributable to storm water run-on to the facility from adjacent properties or non-industrial portions of the Discharger's property or from aerial deposition;	Delete Section. If this proposed change is rejected at a minimum revise to say: A statement that the Discharger has determined that the pollutants found in any discharge exceeding the concentrations in Table 5 are solely attributable to storm water run-on to the facility from non-industrial sources on an adjacent property, or from aerial deposition not associated with the Discharger's industrial operations	Section I.B.2. & Section I.C.
Order Section XII.E.4.d	A quantification of the relative contributions of the pollutant from (1) storm water run-on to the facility from adjacent properties or non-industrial portions of the Discharger's property or from aerial deposition and (2) from the storm water associated with the Discharger's industrial activity;	Delete Section. If this proposed change is rejected at a minimum revise to say: A quantification of the relative contributions of the pollutant from (1) storm water run-on to the facility from non-industrial sources on an adjacent property or from aerial deposition not associated with the Discharger's industrial operations and (2) from the storm water associated with the Discharger's industrial activity	Section I.B.2. & Section I.C.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
An evaluation of all on-site/off-site analytical monitoring data demonstrating that the NAL exceedances are solely attributable to pollutants in storm water run-on to the facility from adjacent properties or non-industrial portions of the Discharger's property or from aerial	Delete Section. If this proposed change is rejected at a minimum revise to say:	Section I.B.2. & Section I.C.	
	deposition.	An evaluation of all on-site/off-site analytical monitoring data demonstrating that the NAL exceedances are solely attributable to pollutants in storm water run-on to the facility from non-industrial sources on an adjacent property, or from aerial deposition not associated with the Discharger's industrial operations.	
	Natural Bac	ekground Demonstration Technical	
Order Section XII.E.5.	The Natural Background Demonstration Technical Report shall at a minimum, include the following	A Discharger can submit a Natural Background Technical Report for a pollutant that exceeds an NAL only if that pollutant is not associated with the Discharger's industrial activity. The Natural Background Technical Report shall at a minimum, include the following	Section I.B.3. & Section I.C.
Order Section XII.E.5.c.	A summary of any research and published literature that relates the pollutants evaluated at the facility as part of the Natural Background Demonstration	A summary of any research and published literature that relates the pollutants evaluated at the facility as part of the Natural Background	Section I.B.3. & Section I.C.
	Submitting	g Level 2 ERA Technical Reports	_
Order Section XII.E.6.	The Discharger shall certify and submit via SMARTS the Level 2 ERA Demonstration Technical Reports described in this Section.	The Discharger shall certify and submit via SMARTS Level 2 ERA Technical Reports described in this Section	Section I.B.2. & Section I.C.

CCKA Comment Letter 24 Attachment 2

Draft Permit Section*	Draft Permit Language	Proposed Language	CCKA Comment Letter Section
Order Section XII.E.7.	The State Water Board and Regional Water Board may review any ERA Technical Reports submitted in connection with an ERA Level 2 Technical Report or Demonstration Technical Report. Upon review of a Level 2 Technical Report or ERA Level 2 Demonstration Technical Report, the State Water Board Executive Director or the Regional Water Board may reject the ERA Level 2 Demonstration Technical Report direct the Discharger to take further action(s) to comply with this General Permit.	Pursuant to their respective enforcement authorities, the State Water Board and Regional Water Board may review any ERA Technical Reports submitted in connection with an ERA Level 2 Technical Report or Technical Report. Upon review of a Level 2 Technical Report or ERA Level 2 Technical Report, the State Water Board Executive Director or the Regional Water Board may reject the ERA Level 2 Technical Report direct the Discharger to take further action(s) to comply with this General Permit pursuant to the State and Regional Board's enforcement authorities. Any such enforcement activity by the State Board or Regional Board shall not be construed to be a determination of BAT/BCT for the Discharger unless the State Board or Regional Board formally amends this Permit to include such BAT/BCT determination for the Discharger.	Section I.B.2. & Section I.C.
Order Section XII.F.1. Order Section XII.F.1.d	Dischargers may document the need for additional time to implement treatment and/or structural control BMPs required under ERA Level 2 and/or to complete a Demonstration Technical Report by certifying and submitting a BIER through SMARTS. The BIER shall be prepared by a QISP III and include the following items, as applicable A description and schedule for completing specific tasks processory to support the Demonstration Technical	Dischargers may document the need for additional time to implement treatment and/or structural control BMPs required under ERA Level 2 and/or to complete a Technical Report by certifying and submitting a BIER through SMARTS. The BIER shall be prepared by a QISP III and include the following items, as applicable A description and schedule for completing specific tasks	Section I.B.2. & Section I.C. Section I.B.2. & Section I.B.2. &
XII.F.1.d. Order Section XII.F.2.	Regional Water Boards may review BIERs for completeness and adequacy. Regional Water Boards	Pursuant to their respective enforcement authorities, the State Water Board or Regional Water Boards may review	Section I.C. Section I.B.2. & Section I.C.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	may reject a BIER, identify additional tasks necessary to complete the Demonstration Technical Report, require the Discharger to implement additional temporary BMPs, or revise the time allowed to construct and/or implement the BMPs.	BIERs for completeness and adequacy. Regional Water Boards may reject a BIER, identify additional tasks necessary to complete the Technical Report, require the Discharger to implement additional temporary BMPs, or revise the time allowed to construct and/or implement the BMPs pursuant to the State and Regional Board's enforcement authorities. Any such enforcement activity by the State Board or Regional Board shall not be construed to be a determination of BAT/BCT for the Discharger unless the State Board or Regional Board formally amends this Permit to include such BAT/BCT determination for the Discharger.	
	Technical Report G	roups and Technical Report Group Leaders	
Order Section XIV.	COMPLIANCE GROUPS AND COMPLIANCE GROUP LEADERS	TECHNICAL REPORT GROUPS AND TECHNICAL REPORT GROUP LEADERS	Section I.B.2. & Section I.C.
Order Section XIV.A.	Baseline/Level 1 Compliance Group (CG1) and Baseline/Level 1 Compliance Group Leader (CGL1) Requirements	Baseline/Level 1 TG1 Technical Report Group (TG1) and Baseline/Level 1 Report Group Leader (TGL1) Requirements	Section I.B.2. & Section I.C.
Order Section XIV.A.1.	CG1 Qualification Requirements Any group of Dischargers of the same industry type may form a CG1. A CG1 shall consist of Dischargers that	TG1 Qualification Requirements Any group of Dischargers of the same industry type may form a TG1. A TG1 shall consist of Dischargers that	Section I.B.2. & Section I.C.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	operate facilities with similar types of industrial activities, pollutant sources, and pollutant characteristics (e.g., scrap metals recyclers differentiated from paper recyclers, truck vehicle maintenance differentiated from airplane vehicle maintenance, etc.). A Discharger participating in a CG1 is termed a CG1 Participant. Participation in a CG1 is not required.	operate facilities with similar types of industrial activities, pollutant sources, and pollutant characteristics (e.g., scrap metals recyclers differentiated from paper recyclers, truck vehicle maintenance differentiated from airplane vehicle maintenance, etc.). A Discharger participating in a TG1 is termed a TG1 Participant. Participation in a TG1 is not required.	
Order Section XIV.A.2.	CGL1 Qualification Requirements	TGL1 Qualification Requirements	Section I.B.2. & Section I.C.
	The CG1 shall select a CGL1 to assist the CG1 Participants with all compliance activities in this General Permit other than Level 2 ERA compliance activities. For example, the CGL1 shall assist with SWPPP development, monitoring, visual observations and inspections.	The TG1 shall select a TGL1 to assist the TG1 Participants with all compliance activities in this General Permit other than Level 2 ERA compliance activities. For example, the TGL1 shall assist with SWPPP development, monitoring, visual observations and inspections.	
	A CGL1 shall be either a representative of: an industry association or trade group; an engineering or environmental science consulting company; a coalition of public agencies and/or private companies; or any combination of the above.	A TGL1 shall be either a representative of: an industry association or trade group; an engineering or environmental science consulting company; a coalition of public agencies and/or private companies; or any combination of the above.	
	A CGL1 shall be a QISP II or III.	A TGL1 shall be a QISP II or III.	
Order Section XIV.A.3.	CGL1 Prepared Consolidated Level 1 ERA Reports	TGL1 Prepared Consolidated Level 1 ERA Reports	Section I.B.2. & Section I.C.
	A CGL1 may prepare a Consolidated Level 1 ERA Report for all CG1 Participants with Level 1 status. CG1 Participants who certify and submit these Consolidated Level 1 ERA Reports are subject to the same provisions	A TGL1 may prepare a Consolidated Level 1 ERA Report for all TG1 Participants with Level 1 status. TG1 Participants who certify and submit these Consolidated Level 1 ERA Reports are subject to the same provisions	

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	as individual Dischargers with Level 1 status, as described in Section XII.C. In the Consolidated Level 1 ERA Reports, the CGL1 shall, at a minimum, provide a description of the common industrial pollutant sources, BMPs, and ERAs as well as the industrial pollutant sources, BMPs and ERAs that are not common between the CG1 Participants. A Consolidated Level 1 ERA Report is equivalent to a Level 1 ERA Report.	as individual Dischargers with Level 1 status, as described in Section XII.C. In the Consolidated Level 1 ERA Reports, the TGL1 shall, at a minimum, provide a description of the common industrial pollutant sources, BMPs, and ERAs as well as the industrial pollutant sources, BMPs and ERAs that are not common between the TG1 Participants. A Consolidated Level 1 ERA Report is equivalent to a Level 1 ERA Report.	
Order Section XIV.A.4.	CGL1 Responsibilities The CGL1 shall be responsible for providing assistance to CG1 Participants that is consistent with this General Permit's requirements. To establish a CG1, a CGL1 shall register as a CGL1 via SMARTS. The registration shall include documentation demonstrating compliance with the CG1 qualification requirements, above, and a list of the CG1 Participants. The CGL1 shall inspect all the facilities of the CG1 Participants at a minimum of once per reporting year (July 1 to June 30). A CGL1 shall prepare a Consolidated Level 1 ERA Report that is consistent with the Level 1 ERA Requirements in Section XII.C. The CGL1 shall also	TGL1 Responsibilities The TGL1 shall be responsible for providing assistance to TG1 Participants that is consistent with this General Permit's requirements. To establish a TG1, a TGL1 shall register as a TGL1 via SMARTS. The registration shall include documentation demonstrating compliance with the TG1 qualification requirements, above, and a list of the TG1 Participants. The TGL1 shall inspect all the facilities of the TG1 Participants at a minimum of once per reporting year (July 1 to June 30). A TGL1 shall prepare a Consolidated Level 1 ERA Report that is consistent with the Level 1 ERA Requirements in Section XII.C. The TGL1 shall also	Section I.B.2. & Section I.C.
	provide a description of the common industrial pollutant sources, BMPs, and ERAs as well as the industrial pollutant sources, BMPs and ERAs that are not common between the CG1 Participants.	provide a description of the common industrial pollutant sources, BMPs, and ERAs as well as the industrial pollutant sources, BMPs and ERAs that are not common between the TG1 Participants.	

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	The CGL1 shall revise the Consolidated Level 1 ERA Report in accordance with any comments received from the Water Boards.	The TGL1 shall revise the Consolidated Level 1 ERA Report in accordance with any comments received from the Water Boards.	
	The CGL1 shall update the Consolidated Level 1 ERA Report as needed to address additional CG1 Participants that trigger the ERA Level 1 reporting requirements.	The TGL1 shall update the Consolidated Level 1 ERA Report as needed to address additional TG1 Participants that trigger the ERA Level 1 reporting requirements.	
Order Section XIV.A.5.	CG1 Participant Responsibilities Each CG1 Participant is responsible for permit compliance for the CG1 Participant's facility and for ensuring that the CGL1's activities related to the CG1 Participant's facility comply with this General Permit. CG1 Participants with Level 1 status shall certify and submit via SMARTS the Consolidated Level 1 ERA Report. Alternatively, the CG1 Participant may submit their own individual Level 1 ERA Report in accordance with the provisions in Section XII.C.2.	TG1 Participant Responsibilities Each TG1 Participant is responsible for permit compliance for the TG1 Participant's facility and for ensuring that the TGL1's activities related to the TG1 Participant's facility comply with this General Permit. TG1 Participants with Level 1 status shall certify and submit via SMARTS the Consolidated Level 1 ERA Report. Alternatively, the TG1 Participant may submit their own individual Level 1 ERA Report in accordance with the provisions in Section XII.C.2.	Section I.B.2. & Section I.C.
Order Section XIV.A.6.	The Executive Director of the State Water Board may review CG1 registrations for compliance with the requirements of this Section. The Executive Director may: Reject the CG1, or individual CG1 Participants within the CG1; or,	The Executive Director of the State Water Board may review TG1 registrations for compliance with the requirements of this Section. The Executive Director may: Reject the TG1, or individual TG1 Participants within the TG1; or	Section I.B.2. & Section I.C.
	Require the CGL1 to amend the submitted registration	TG1; or, Require the TGL1 to amend the submitted registration	

<u>Draft Permit</u> <u>Section</u> *	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	documents.	documents.	
Order Section XIV.B.	Level 2 Compliance Group (CG2) and Level 2 Compliance Group Leader (CGL2) Requirements	Level 2 Technical Group (TG2) and Level 2 Technical Group Leader (TGL2) Requirements	Section I.B.2. & Section I.C.
Order Section XIV.B.1.	CG2 Qualification Requirements A CG2 shall consist of Dischargers with Level 2 status that:	TG2 Qualification Requirements A TG2 shall consist of Dischargers with Level 2 status that:	Section I.B.2. & Section I.C.
	Operate facilities with similar types of industrial activities, pollutant sources, and pollutant characteristics (e.g., scrap metals recyclers differentiated from paper recyclers, truck vehicle maintenance differentiated from airplane vehicle maintenance, etc.). A Discharger participating in a CG2 is termed a CG2 Participant;	Operate facilities with similar types of industrial activities, pollutant sources, and pollutant characteristics (e.g., scrap metals recyclers differentiated from paper recyclers, truck vehicle maintenance differentiated from airplane vehicle maintenance, etc.). A Discharger participating in a TG2 is termed a TG2 Participant;	
	Reflect the industrial sector as a whole, by including a significant number of the Dischargers with Level 2 status in the industry sector type; and,	Reflect the industrial sector as a whole, by including a significant number of the Dischargers with Level 2 status in the industry sector type; and,	
	Choose to participate in a CG2.	Choose to participate in a TG2.	
Order Section XIV.B.3.	CGL2 Prepared Level 2 ERA Technical Reports	TGL2 Prepared Level 2 ERA Technical Reports	Section I.B.2. & Section I.C.
	A CGL2 may prepare a Consolidated Level 2 ERA Technical Report for CG2 Participants with Level 2 status. CG2 Participants who certify and submit these Consolidated Level 2 ERA Technical Reports are subject to the same provisions as individual Dischargers with Level 2 status, as described in Section XII.D. A	A TGL2 may prepare a Consolidated Level 2 ERA Technical Report for TG2 Participants with Level 2 status. TG2 Participants who certify and submit these Consolidated Level 2 ERA Technical Reports are subject to the same provisions as individual Dischargers with Level 2 status, as described in Section XII.D. A	

Draft Permit Section*	Draft Permit Language	Proposed Language	CCKA Comment Letter Section
	Consolidated Level 2 ERA Technical Report is equivalent to a Level 2 ERA Technical Report. The CGL2 may prepare information to be included in a CG2 Participant's Level 2 ERA Demonstration Technical Report. All Level 2 ERA Demonstration Technical Reports must be facility-specific.	Consolidated Level 2 ERA Technical Report is equivalent to a Level 2 ERA Technical Report. The TGL2 may prepare information to be included in a TG2 Participant's Level 2 ERA Technical Report. All Level 2 ERA Technical Reports must be facility-specific.	
Order Section XIV.B.4.	CGL2 Responsibilities The CGL2 shall be responsible for providing assistance to CG2 Participants that is consistent with this General Permit's requirements. To establish a CG2, a CGL2 shall register as a CGL2 via SMARTS. The registration shall include documentation demonstrating compliance with the CG2 qualification requirements, above, and a list of the CG2 Participants. The CGL2 shall inspect all the facilities of the CG2 Participants prior to preparing the Consolidated Level 2 ERA Technical Report. A CGL2 shall prepare a Consolidated Level 2 ERA Requirements in Section XII.D and with current, best practices documented in protocols prescribed herein (see Section XIV.B.7 below). The CGL2 shall revise the Consolidated Level 2 ERA Technical Report in accordance with comments received	TGL2 Responsibilities The TGL2 shall be responsible for providing assistance to TG2 Participants that is consistent with this General Permit's requirements. To establish a TG2, a TGL2 shall register as a TGL2 via SMARTS. The registration shall include documentation demonstrating compliance with the TG2 qualification requirements, above, and a list of the TG2 Participants. The TGL2 shall inspect all the facilities of the TG2 Participants prior to preparing the Consolidated Level 2 ERA Technical Report. A TGL2 shall prepare a Consolidated Level 2 ERA Requirements in Section XII.D and with current, best practices documented in protocols prescribed herein (see Section XIV.B.7 below). The TGL2 shall revise the Consolidated Level 2 ERA Technical Report in accordance with comments received	Section I.B.2. & Section I.C.

Draft Permit Section*	<u>Draft Permit Language</u>	Proposed Language	CCKA Comment Letter Section
	The CGL2 shall update the Consolidated Level 2 ERA Technical Report to address additional CG2 Participants that trigger the ERA Level 2 reporting requirements.	The TGL2 shall update the Consolidated Level 2 ERA Technical Report to address additional TG2 Participants that trigger the ERA Level 2 reporting requirements.	
Order Section XIV.B.5.	Each CG2 Participant is responsible for permit compliance for the CG2 Participant's facility and for ensuring that the CGL2's activities related to the CG2 Participant's facility comply with this General Permit. CG2 Participants shall certify and submit via SMARTS the Consolidated Level 2 ERA Technical Report prepared by their CGL2. The CG2 Participant shall certify that they have reviewed the Consolidated Level 2 ERA Technical Report and will implement the recommended additional BMPs that meet BAT/BCT and abide by any applicable alternate NALs associated with the BMPs. Alternatively, the CG2 Participant may submit their own individual Level 2 ERA Technical Report in accordance with the provisions in Section XII.D. If applicable, CG2 Participants shall certify and submit via SMARTS a site-specific Level 2 ERA Demonstration Technical Report. The CGL2 may assist in the preparation of the site-specific Level 2 ERA Demonstration Technical Report.	Each TG2 Participant is responsible for permit compliance for the TG2 Participant's facility and for ensuring that the TGL2's activities related to the TG2 Participant's facility comply with this General Permit. TG2 Participants shall certify and submit via SMARTS the Consolidated Level 2 ERA Technical Report prepared by their TGL2. The TG2 Participant shall certify that they have reviewed the Consolidated Level 2 ERA Technical Report and will implement the recommended additional BMPs and abide by any suggested alternate NALs associated with the BMPs. Alternatively, the TG2 Participant may submit their own individual Level 2 ERA Technical Report in accordance with the provisions in Section XII.D. If applicable, TG2 Participants shall certify and submit via SMARTS a site-specific Level 2 ERA Technical Report. The TGL2 may assist in the preparation of the site-specific Level 2 ERA Technical Report.	Section I.B.2. & Section I.C.
Order Section	The Executive Director of the State Water Board may	The Executive Director of the State Water Board may	Section I.B.2. &

Draft Permit Section*	Draft Permit Language	Proposed Language	CCKA Comment Letter Section
XIV.B.6.	review CG2 membership for compliance with the requirements of this Section. The Executive Director may: Reject the CG2, CGL2, or individual CG2 Participants within the CG2; or Require the CGL2 to amend the submitted registration documents.	review TG2 membership for compliance with the requirements of this Section. The Executive Director may: Reject the TG2, TGL2, or individual TG2 Participants within the TG2; or Require the TGL2 to amend the submitted registration documents.	Section I.C.
Order Section XIV.B.7.	By September 1, 2014, the State Water Board's Executive Director shall approve protocols for how to prepare Consolidated Level 2 ERA Technical Reports in compliance with this General Permit.	By September 1, 2014, the State Water Board's Executive Director shall approve protocols for how to prepare Consolidated Level 2 ERA Reports in compliance with this General Permit.	Section I.B.2. & Section I.C.
		Standard Conditions	
Order Section XXI.K.1.	All Permit Registration Documents (PRDs) for NOI and NEC coverage, Notices of Termination (NOTs), Annual Monitoring Reports, Level 1 ERA Report, Level 2 ERA Technical Reports, Level 2 ERA Demonstration Technical Reports, or any other document required by this General Permit shall be certified and submitted via SMARTS by the Discharger's LRP.	All Permit Registration Documents (PRDs) for NOI and NEC coverage, Notices of Termination (NOTs), Annual Monitoring Reports, Level 1 ERA Report, Level 2 ERA Reports, Level 2 ERA Technical Reports, or any other document required by this General Permit shall be certified and submitted via SMARTS by the Discharger's LRP.	Section I.B.2. & Section I.C.

ATTACHMENT 3

STATISTICAL REVIEW OF CALIFORNIA-SPECIFIC INDUSTRIAL STORMWATER DATA MEASURED FROM 2005 TO 2012

Ian Wren, CPSWQ QSD

Prepared on behalf of:

California Coastkeeper Alliance (CCKA) 785 Market Street, Suite 850 San Francisco, CA 94103

October 21, 2012

Contents

Introduction	1
Background	1
Industrial Stormwater Data from the SMARTS Database	2
Data Quantity and Quality	3
Data Classification	3
Data Distribution	7
Data Analysis Methods	12
Presentation of Results	13
Comparison to U.S. EPA benchmark levels	13
Data Analysis Results	15
pH	15
Oil and Grease	18
Total Suspended solids (TSS)	21
Zinc, Total	24
Copper, Total	27
Lead, Total	30
Nickel, Total	33
Iron, Total	36
Biological Oxygen Demand (BOD)	39
Discussion and Conclusion of Industrial Stormwater Data Analysis	42
General Data Distribution	42
Comparison among industrial sectors	42
Comparison to permit benchmarks and proposed action levels	45

Appendix 1	Statistical output from the Data Analysis Tool (DAT) for primary parameters47
Appendix 2 Industrial ar	Data Analysis Report: Evaluation of Monitoring Data from General NPDES Permits for and Construction Stormwater (WA State Dept. of Ecology)56
	Figures
Figure 1.	Distribution of pH levels, measured in industrial stormwater from 2005 to 2012, by industry sector
Figure 2.	Distribution of oil and grease concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector
Figure 3.	Distribution of TSS concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector
Figure 4.	Distribution of total zinc concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector
Figure 5.	Distribution of total copper concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector
Figure 6.	Distribution of total lead concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector
Figure 7.	Distribution of total nickel concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector
Figure 9.	Distribution of total iron concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector
Figure 10.	Distribution of biological oxygen demand concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector
	Tables
Table 1.	Number of facilities by industrial sector4
Table 2.	Total Number of facilities by industrial sub-sector5
Table 3.	Number of values per parameter, by industrial sector
Table 4.	Number of values per parameter, by industrial sub-sector9

Table 5.	Benchmark values from US EPA's Multi-Sector General Permit used for this analysis14
Table 6.	Summary statistics for pH, measured in industrial stormwater from 2005 to 2012, by industry sector
Table 7.	Summary statistics for oil and grease, measured in industrial stormwater from 2005 to 2012, by industry sector
Table 8.	Summary statistics for total suspended solids (TSS), measured in industrial stormwater from 2005 to 2012, by industry sector
Table 9.	Summary statistics for total zinc, measured in industrial stormwater from 2005 to 2012, by industry sector
Table 10.	Summary statistics for total copper, measured in industrial stormwater, by industry sector
Table 11.	Summary statistics for total lead, measured in industrial stormwater from 2005 to 2012, by industrial sector
Table 12.	Summary statistics for total nickel, measured in industrial stormwater from 2005 to 2012, by industry sector
Table 13.	Summary statistics for total iron, measured in industrial stormwater from 2005 to 2012, by industry sector
Table 14.	Summary statistics for Biological Oxygen Demand (BOD) concentrations measured from industrial stormwater, by industry sector
Table 15.	Coefficient of variation for parameters considered in this study, by sector43
Table 16.	Median values for parameters considered in this study, by sector44
Table 17	Percentage of samples exceeding benchmarks, by sector 46

1. Introduction

The purpose of this document is to analyze California-specific industrial stormwater data, available from the State Water Board's Storm Water Multiple Application and Report Tracking System (SMARTS) database, to document recent trends in stormwater quality from industrial facilities throughout the state, by sector. This data is also compared against benchmarks of stormwater quality to determine likely rates of compliance with California's NPDES General Permit for Stormwater Discharges Associated with Industrial Activities, NDPES No. CAS000001 (General Permit), as currently proposed. This information may be used to inform determinations of feasibility, regarding inclusion of numeric effluent limits in the General Permit, as well as evaluations of best available technology (BAT) or best conventional technology (BCT).

Analysis of around 187,000 unique data records, spanning from 2005 to 2012, from 6,300 California dischargers, indicates a significant proportion of facilities are currently meeting U.S. EPA benchmarks for common indicators of industrial stormwater quality, such as total suspended solids (TSS), heavy metals, and oil and grease. However, a large number of facilities are consistently exceeding benchmarks for these pollutants. Further analysis of this data would allow the State Board to identify high-performing facilities from a variety of industrial sectors, which could serve as a model for other facilities and help identify best management practices (BMPs) employed at these sites to establish BAT and BCT for a range of industrial sectors and sub-categories.

2. Background

Information contained in this report indicates much progress has been made since the State Board convened a panel of stormwater professionals in 2005 to provide advice regarding the feasibility of NELs. At that time, the State Board tasked the Panelists with addressing the following brief questions:

Is it technically feasible to establish numeric effluent limitations, or some other quantifiable limit, for inclusion in storm water permits? How would such limitations or criteria be established, and what information and data would be required?

The Panel was asked to consider these questions for construction, municipal, and industrial stormwater discharges, though the first two areas are outside the scope of this report. With regards to feasibility of numeric effluent limits (NELs) applicable to industrial activities, the Panel believed NELs were feasible for some industrial categories. Further, the Panel suggested that establishment of NELs for industrial stormwater should follow a process analogous to that used in the NPDES wastewater process from the 1970s. At that time, NELs were based upon the use of best currently available technology (BAT), which varied from industry type or category, with the recognition that each industry has its own specific problems and financial viability. To establish NELs for industrial sites, the Panel stated that a reliable

-

¹ Currier, B. et al. 2006. Storm Water Panel Recommendations to the California State Water Resources Control Board: The Feasibility of Numeric Effluent Limits Applicable to Discharges of Storm Water Associated with Municipal, Industrial and Construction Activities. Available at www.swrcb.ca.gov

database was required, 'describing the current emissions by industry types or categories, and performance of existing BMPs.'

In 2006, a database for collecting industrial stormwater emissions in California was unavailable and few manufacturers or researchers had tested the performance of available stormwater management controls. Since the Storm Water Panel on Numeric Limits was convened in 2006, California's SMARTS Database has matured significantly and a number of stormwater control manufacturers have released numeric performance data to the public. Also since 2006, several states, including New Jersey, Washington and Maryland, have put in place review processes for stormwater management controls, including the review of treatment performance tests. The state of Washington recently commissioned a *Literature Review of Existing Treatment Technologies for Industrial Stormwater*, which includes a database of available stormwater controls, along with treatment performance data and indicative costs, where available. This literature review was used to support the inclusion of NELs into the State of Washington's 2012 Industrial Stormwater Permit and has been provided as an appendix to an accompanying report, submitted in support of the California Coastkeeper Alliance's comments to the Draft General Permit.

Based on the conditions established by the 2006 State Water Panel on Numeric Limits, were this Panel convened again today, it is likely they would find ample data to support the feasibility of NELs for industrial stormwater dischargers. This report presents some of the data contained in the SMARTS data, though additional analysis is possible, including statistical analysis of industrial sub-sectors, and consideration of additional parameters not analyzed here.

3. Industrial Stormwater Data from the SMARTS Database

Pursuant to the current Industrial General Permit, Permittees are required to submit annual reports, including analytical results of stormwater monitoring. Prior to 2010, dischargers were granted a financial incentive to electronically-submit this data to SMARTS. Since that time, the State Board no longer offers this incentive, out of consideration that the current Draft Industrial Stormwater Permit requires Permittees to submit stormwater sampling data directly to SMARTS. On-going delay of the permit has resulted in the majority of Permittees no longer submitting data to the electronic database. However, between 2005 and 2012 over 6,000 Permittees submitted more than 300,000 unique sampling records to SMARTS, resulting in a robust database with enough statistical power to describe concentrations of stormwater-borne pollutants released from industrial dischargers in California.

California's SMARTS database now contains several hundred thousand data points from all nine Water Board regions, which were self-reported from thousands of industrial dischargers. This data was requested from the State Water Board to facilitate preparation of this report, which is in part modeled

² Herrera Environmental Consultants. 2011. *Draft Report: Literature Review of Existing Treatment Technologies for Industrial Stormwater*. Prepared on behalf of the Washington Department of Ecology. Available at http://www.wastormwatercenter.org

from and compared against a report prepared on behalf of the Washington State Department of Ecology, in support of their National Pollutant Discharge Elimination System (NPDES) permit program.³

3.1. Data Quantity and Quality

On August 31, 2012, the State Water Board's Office of Information Management and Analysis provided all available industrial stormwater data contained in the SMARTS database, spanning from the 2005/2006 to the 2011/2012 reporting period. This included over 310,000 unique data points, representing an array of parameters, which were organized and marginally 'cleaned', to create consistency among units and search for clear outliers and erroneous information. It is apparent the SMARTS system contains few controls and is subject to user error, accounting for approximately 2% of all data. Trends in the errors include:

- Entering zeros in place of values falling below detection level
- Mistaking the less than (<) and equals (=) symbol, possibly due to poorly designed user interaction in the SMARTS forms
- Mistaking units, such as micrograms (μg) and milligrams (mg)
- Consistency in particular users making obvious entry errors

For values marked as zeros, these values were converted to the lowest recorded detection limit for that parameter. Negative values and those of which were orders of magnitude greater than a reasonable value were thrown out. All other values were retained and no formal outlier detection tests were conducted, since industrial stormwater data is commonly characterized by wild spikes in pollutant concentrations, which could be erroneously flagged as outliers in an automated query.

Regardless of the presence of user entry error, erroneous values comprise a small fraction of the database, which is robust enough to extract useful information regarding industrial stormwater pollutant trends, by industrial sector.

3.2. Data Classification

To facilitate analysis of stormwater quality by industrial sector, as well as comparison against data presented from the State of Washington, stormwater quality data from 6,097 facilities was filtered into 11 general industrial categories, as defined in 40 Code of Federal Regulations (CFR) §122.26(b)(14) and restated in California's current 1997 General Industrial Stormwater Permit. Categories are defined by Standard Industrial Classification (SIC) codes within the statute, though some discretion is granted to regulators in regards to how some SIC codes are classified. To avoid inconsistency, only those SIC codes expressly defined in 40 CFR §122.26(b)(14) were categorized into the 11 defined categories. To account for the 369 facilities that did not easily fall into one of the broadly defined industrial sectors a twelfth category was created, identified as "Other Facilities".

³ Herrera Environmental Consultants, Inc. 2006. *Data Analysis Report: Evaluation of Monitoring Data from General NPDES Permits for Industrial and Construction Stormwater*. Prepared for Washington State Department of Ecology.

Table 1 identifies the industrial categories used for purposes of this analysis and indicates the number of facilities placed within each. No facilities fell under category 1, which include facilities subject to storm water effluent limitation guidelines, new source performance standards, or toxic pollutant effluent standards. Presumably, all such facilities are subject to individual stormwater permits. In addition, data was not found from categories 4, 7, and 10, since such facilities are generally subject to alternative permit programs.

Table 1. Number of facilities by industrial sector

Category	Number of Facilities
1 - Facilities with effluent limitations	0
2 - Manufacturing	1,180
3 - Mineral, metal, oil and gas	191
4 - Hazardous waste treatment, or disposal facilities	0
5 - Landfills	206
6 - Recycling facilities	637
7 - Steam Electric plants	0
8 - Transportation facilities	1,359
9 - Treatment works	71
10 - Construction activity	0
11 - Light industrial activity	2,084
Other facilities	369
Total	6,097

As evident from Table 1, the majority of sites fall into one of three categories: Manufacturing (2), Transportation Facilities (8), and Light Industrial Activity (11). This is consistent with the analysis conducted in Washington, which included analysis of 21,486 data points from 808 facilities. To more clearly illustrate the types of facilities represented from this data, facilities were further subdivided into industrial sectors based on the first two digits of their SIC codes, and compared against the full list of codes, as defined by the US Department of Labor. Table 2 lists the number of facilities falling into each of 61 industrial sub-sectors. Data analysis presented here is restricted to the 11 broad industrial sectors defined in Table 1. However, for several categories sufficient data exists to analyze data for particular sub-sectors.

4

⁴ For reference, the US Department of Labor lists Standard Industrial Classification (SIC) codes at http://www.osha.gov/pls/imis/sic_manual.html

Table 2. Total Number of facilities by industrial sub-sector

SIC Code	Sector	# of Facilities
01	Agricultural Production Crops	7
02	Agriculture production livestock and animal specialties	9
07	Agricultural Services	6
09	Fishing, hunting and trapping	1
10	Metal Mining	16
12	Coal Mining	1
13	Oil and Gas Extraction	39
14	Mining and Quarrying of Nonmetallic Minerals, Except Fuels	135
15	Building Construction General Contractors and Operative Builders	2
16	Heavy Construction other than Building Construction Contractors	10
17	Construction Special Trade Contractors	12
20	Food and Kindred Products	437
21	Tobacco Products	1
22	Textile Mill Products	18
23	Apparel and other Finished Products Made from Fabrics and Similar Materials	2
24	Lumber and Wood Products, Except Furniture	148
25	Furniture and Fixtures	37
26	Paper and Allied Products	92
27	Printing, Publishing and Allied Industries	40
28	Chemicals and Allied Products	351
29	Petroleum Refining and Related Industries	84
30	Rubber and Miscellaneous Plastics Products	234
31	Leather and Leather Products	3
32	Stone, Clay, Glass and Concrete Products	379
33	Primary Metal Industries	173
34	Fabricated Metal Products, Except Machinery and Transportation Equipment	485
35	Industrial and Commercial Machinery and Computer Equipment	139
36	Electronic and Other Electrical Equipment and Components, Except Computer Equipment	261
37	Transportation Equipment	217
38	Measuring, Analyzing and Controlling Instruments; Photographic, Medical and Optical Goods; Watches and Clocks	47
39	Miscellaneous Manufacturing Industries	37
40	Railroad Transportation	45
41	Local and Suburban Transit and Interurban Highway Passenger Transportation	372
42	Motor Freight Transportation and Warehousing	763
43	United States Postal Service	12
44	Water Transportation	59
45	Transportation By Air	129

SIC Code	Sector	# of Facilities
47	Transportation Services	9
48	Communications	1
49	Electric, Gas and Sanitary Services	368
50	Wholesale Trade-durable Goods	671
51	Wholesale Trade-non-durable Goods	101
52	Building Materials, Hardware, Garden Supply and Mobile Home Dealers	4
53	General Merchandise Stores	1
55	Automotive Dealers and Gasoline Service Stations	13
59	Miscellaneous Retail	1
63	Insurance Carriers	1
72	Personal Services	5
73	Business Services	53
75	Automotive Repair, Services and Parking	15
76	Miscellaneous Repair Services	15
79	Amusement and Recreation Services	6
82	Educational Services	4
86	Membership Organizations	1
87	Engineering, Accounting, Research, Management and Related Services	9
91	Executive, Legislative and General Government, Except Finance	1
95	Administration Of Environmental Quality and Housing Programs	2
96	Administration Of Economic Programs	1
97	National Security and International Affairs	4
99	Non-classifiable Establishments	3
NC	Not Classified	5
	Total	6,097

3.3. Data Distribution

Hundreds of parameters are represented in the SMARTS database, though a majority of the values are associated with a discrete group of commonly sampled parameters, which for the purposes of this report are referred to as 'primary parameters'. These include the following, represented by 187,823 entries subject to analysis in this report:

- Zinc, Total
- pH
- Oil and Grease
- Copper, Total
- Lead, Total

- Biological Oxygen Demand (BOD)
- Total Suspended solids (TSS)
- Nickel, Total
- Iron, Total

Tables 3 and 4 characterize the data by sector and sub-sector, respectively, showing that oil and grease, pH, and TSS maintain the largest record, reflecting common requirements among an array of sectors

Table 3. Number of values per parameter, by industrial sector

Category	Zinc, Total	рН	Oil and Grease	Copper, Total	Lead, Total	BOD	TSS	Nickel, Total	Iron, Total
1 - Facilities with effluent limitations									
2 - Manufacturing	3,081	9,880	7,427	1,356	821	98	9,916	339	3,673
3 - Mineral, metal, oil and gas	276	1,770	1,474	244	243	3	1,837	7	495
4 - Hazardous waste treatment, or disposal facilities									
5 - Landfills	342	2,823	2,119	210	829	54	2,853	63	2,285
6 - Recycling facilities	1,786	2,555	1,893	1,232	2,206	46	2,603	158	1,917
7 - Steam Electric plants									
8 - Transportation facilities	1,395	10,026	8,168	726	1,182	821	10,102	294	735
9 - Treatment works	9	808	618	18	32	26	826	17	14
10 - Small construction sites									
11 - Light industrial activity	5,191	20,340	15,787	1,757	1,435	613	20,336	1,196	3,496
Other facilities	375	3,684	3,012	308	335	52	3,708	185	1,296
Total	12,455	51,886	40,498	5,851	7,083	1,713	52,167	2,259	13,911

Table 4. Number of values per parameter, by industrial sub-sector

SIC Code	Sector	Zinc, Total	рН	Oil and Grease	Copper, Total	Lead, Total	BOD	TSS	Nickel, Total	Iron, Total
01	Agricultural Production Crops	4	35	17	0	4	0	35	0	4
02	Agriculture production livestock & animal specialties	1	68	43	0	0	22	63	0	0
07	Agricultural Services	0	44	43	0	0	0	44	0	0
09	Fishing, hunting and trapping	0	5	5	0	0	0	5	0	0
10	Metal Mining	21	224	162	10	11	0	210	7	15
12	Coal Mining	0	2	0	0	0	0	2	0	0
13	Oil and Gas Extraction	8	274	256	0	0	0	289	0	7
14	Mining and Quarrying of Nonmetallic Minerals, Except Fuels	247	1,271	1,056	234	232	3	1,336	0	473
15	Building Construction General Contractors and Operative Builders	0	12	5	0	0	0	12	0	0
16	Heavy Construction other than Building Construction Contractors	12	34	15	3	3	0	34	0	5
17	Construction Special Trade Contractors	35	86	81	33	32	0	84	19	19
20	Food and Kindred Products	124	4,837	3,764	31	70	476	4,778	10	39
21	Tobacco Products	0	33	12	0	0	0	33	0	0
22	Textile Mill Products	5	325	261	0	5	2	329	0	0
23	Apparel and other Finished Products Made from Fabrics and Similar Materials	0	7	7	0	0	0	7	0	0
24	Lumber and Wood Products, Except Furniture	363	1,364	1,063	87	16	48	1,365	18	64
25	Furniture and Fixtures	40	225	171	20	12	0	223	12	20
26	Paper and Allied Products	70	766	537	16	23	46	786	9	44
27	Printing, Publishing and Allied Industries	34	429	369	32	16	0	429	0	57
28	Chemicals and Allied Products	1,053	3,271	2,499	73	273	27	3,235	67	650
29	Petroleum Refining and Related Industries	101	766	597	87	83	5	772	53	168

SIC Code	Sector	Zinc, Total	рН	Oil and Grease	Copper, Total	Lead, Total	BOD	TSS	Nickel, Total	Iron, Total
30	Rubber and Miscellaneous Plastics Products	454	2,124	1,614	33	70	19	2,101	4	51
31	Leather and Leather Products	0	18	17	1	1	0	18	0	8
32	Stone, Clay, Glass and Concrete Products	203	3,008	2,152	135	158	10	3,033	56	2,136
33	Primary Metal Industries	996	1,291	1,065	868	143	2	1,283	51	402
34	Fabricated Metal Products, Except Machinery and Transportation Equipment	3,296	4,122	3,232	419	350	4	4,095	390	2,848
35	Industrial and Commercial Machinery and Computer Equipment	321	1,455	1,005	264	194	0	1,449	159	109
36	Electronic and Other Electrical Equipment and Components, Except Computer Equipment	415	2,607	1,943	625	399	24	2,558	424	115
37	Transportation Equipment	498	2,037	1,643	305	307	30	2,038	206	276
38	Measuring, Analyzing and Controlling Instruments; Photographic, Medical and Optical Goods; Watches and Clocks	171	580	449	86	69	11	591	55	110
39	Miscellaneous Manufacturing Industries	21	331	274	10	7	1	330	6	21
40	Railroad Transportation	55	476	411	55	55	0	474	44	0
41	Local and Suburban Transit and Interurban Highway Passenger Transportation	165	2,970	2,386	107	199	29	2,988	106	71
42	Motor Freight Transportation and Warehousing	633	5,371	4,234	271	341	156	5,345	57	325
43	United States Postal Service	111	126	130	108	104	0	131	0	0
44	Water Transportation	394	510	459	81	373	0	505	15	389
45	Transportation By Air	127	1,019	772	120	156	633	1,026	76	9
47	Transportation Services	8	82	41	0	0	0	82	0	0
48	Communications	1	1	1	0	0	0	1	0	0
49	Electric, Gas and Sanitary Services	409	4,845	3,781	299	919	84	4,877	119	3,301
50	Wholesale Trade-durable Goods	1,814	2,925	2,192	1,245	2,221	46	2,948	158	1,960
51	Wholesale Trade-non-durable Goods	34	736	574	15	14	13	735	11	13

SIC Code	Sector	Zinc, Total	рН	Oil and Grease	Copper, Total	Lead, Total	BOD	TSS	Nickel, Total	Iron, Total
52	Building Materials, Hardware, Garden Supply and Mobile Home Dealers	0	32	31	0	0	0	32	0	2
53	General Merchandise Stores	0	19	19	0	0	1	19	0	0
55	Automotive Dealers and Gasoline Service Stations	6	111	108	2	6	0	111	0	6
59	Miscellaneous Retail	0	24	8	0	0	0	24	0	0
63	Insurance Carriers	0	11	1	0	6	0	11	0	6
72	Personal Services	2	27	25	0	0	0	26	0	0
73	Business Services	52	382	345	48	43	0	381	45	96
75	Automotive Repair, Services and Parking	27	183	102	18	18	0	182	17	64
76	Miscellaneous Repair Services	19	125	58	1	17	0	126	1	0
79	Amusement and Recreation Services	0	106	74	0	15	15	110	0	0
82	Educational Services	2	114	110	2	2	6	114	2	0
86	Membership Organizations	0	6	6	0	0	0	6	0	0
87	Engineering, Accounting, Research, Management and Related Services	45	121	76	49	47	0	118	6	36
91	Executive, Legislative and General Government, Except Finance	0	17	17	0	0	0	17	0	0
95	Administration Of Environmental Quality and Housing Programs	0	27	19	0	0	0	28	0	0
96	Administration Of Economic Programs	0	8	8	0	0	0	8	0	0
97	National Security and International Affairs	56	163	163	56	68	0	163	56	8
99	Non-classifiable Establishments	2	28	26	2	1	0	28	0	2
NC	Not Classified	16	48	16	16	6	0	48	13	0

4. Data Analysis Methods

Rather than averaging the values for individual facilities or industrial categories, statistical analyses were carried out directly from the raw data, subsequent to categorization, as discussed above. This was to remain consistent with the State of Washington report, which conducted a similar review of industrial data in 2006, but also serves to preserve variation within the entire data set, instead of smoothing out extreme values from particular facilities. Tabular and graphical summaries were generated to illustrate the distribution of industrial stormwater data for particular sectors and parameters. Tabular summaries specifically present the following summary statistics for each monitoring parameter:

- Sample size
- · Percent detected
- Mean
- Minimum
- Maximum
- 10th percentile
- 90th percentile
- Lower Quartile (25th percentile)
- Median (50th percentile)
- Upper Quartile (75th percentile)

- Standard Deviation
- Coefficient of variance (CV)
- Lower 95% Confidence Limit about Mean
- Upper 95% Confidence Limit about Mean
- Inter Quartile Range
- Minimum Detected Value
- Maximum Detected Value
- Minimum Reporting Limit
- Maximum Reporting Limit

To account for the large presence of non-detects, Caltrans' Data Analysis Tool (DAT) was used to conduct most of this analysis - an Excel Add-In developed in the early 2000s to specifically address the presence of non-detects in stormwater data. The DAT uses regression on ordered statistics (ROS) to incorporate non-detectable results into standard statistical calculations, rather than reduce them to zeros, half the detection limit, or other methods with less scientific defensibility. Output of the DAT analysis for each primary pollutant considered is included in Appendix 1, which includes additional statistics not contained in the tables in Section 5. Analysis of pH values with the DAT was not necessary, given the inherent lack of non-detects associated with this parameter.

Unsupported by the DAT Add-In is calculation of the 10^{th} and 90^{th} percentile distribution, which was used for preparing the box and whisker plots. For these statistics, the ROS method was not used and instead, non-detects were set equal to ½ the minimum detection for the parameter of interest and the 10^{th} and 90^{th} percentile of the samples were calculated in Excel.

Although useful for some stormwater applications, particularly with smaller data sets, the DAT is poorly suited for applications involving moderately sized data sets (>7,000 values). The DAT was used given its use by Caltrans and other stormwater researchers in California, though alternatives, such as more recently developed modules for the R statistical package, are better suited for this purpose.

⁵ Helsel, D. 2012. *Statistics for Censored Environmental Data Using Minitab and R*. Hoboken, NJ: John Wiley and Sons, Inc.

Due to the large number of values for TSS and oil and grease, Caltrans' DAT was unable to process the volume of data available, when the data was compiled for all facilities, regardless of industrial sector. However, sector-specific analysis was conducted with the DAT for these two parameters. To generate statistics for the compiled data sets of TSS and oil and grease, values below detection level were set equal to 0.0025 and 0.25 mg/L, respectively, which is ½ the minimum recorded detection level for the parameter of interest.

4.1. Presentation of results

Section 5 of this report includes graphical data summaries consisting of box and whisker plots and tables of summary statistics for the nine (9) primary parameters identified previously. These summaries were organized to facilitate comparisons of the data across the 12 industrial categories listed in Table1. Summary statistics are accompanied by a brief summary of the data distribution, comparison among industrial sectors, and relative performance against current U.S. EPA benchmark levels and NALs in the Draft General Permit. Appendix 1 contains data not presented in Section 5, including several of the summary statistics listed above, percentage of non-detect values and indication of what values were derived through ROS statistical methods.

4.2. Comparison to U.S. EPA benchmark levels

In addition to presenting summary statistics, concentration data was compared against benchmark values developed by the U.S. Environmental Protection Agency (U.S. EPA) and published in the 2000 and/or 2008 Multi-Sector General Permit (MSGP).^{6,7} This is to estimate likely rates of compliance with the General Permit among industrial sectors for the primary parameters considered here.

In the 2000 version of the MSGP a single set of benchmark values were developed, though the 2008 MSGP features sector-specific benchmarks. For the sake of consistency, all sectors were compared against a single set of benchmarks. These benchmarks are listed in Table 5 and are consistent with the annual Numeric Action Levels (NAL) listed in Table 5 of the 2012 Draft General Permit. Some of the primary parameters considered here are referred to as hardness-dependent metals, given the fact that toxicity in freshwater receiving waters is in part dependent on hardness of that water. Consistent with the 2012 Draft General Permit, benchmarks used here assume receiving water hardness greater than 250 mg/L.

⁶ United States Environmental Protection Agency. 2000. Multi-Sector General Permit for Stormwater Discharges Associated with Industrial Activity (MSGP). Federal Register Vol. 65, No. 210. Available at: http://www.epa.gov/npdes/pubs/msgp2000-final.pdf

⁷ United States Environmental Protection Agency. 2008. Multi-Sector General Permit for Stormwater Discharges Associated with Industrial Activity (MSGP). Available at: epa.gov/npdes/pubs/msgp2008_finalpermit.pdf

Table 5. Benchmark values from US EPA's Multi-Sector General Permit used for this analysis

Parameter	Benchmark ^a
Total suspended solids	100
Nickel, Total ^b	1.02
Zinc, Total ^b	0.26
Iron, Total	1.00
рН	6.0 - 9.0 SU
Oil and Grease	15
Copper, Total ^b	0.0332
Lead, Total ^b	0.262
Biological oxygen demand ^c	30

- a) all units, with the exception of pH, in milligrams per liter (mg/L)
- b) based on the 2008 MSGP, assuming receiving water hardness >250 mg/L
- c) based on the 2000 MSGP, since the 2008 MSGP has several benchmarks for various sectors

5. Data Analysis Results

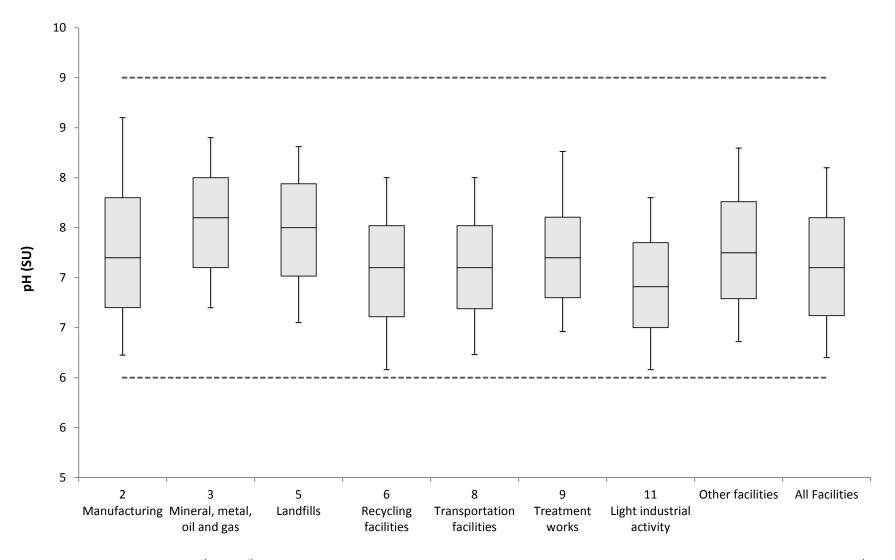
5.1. pH

Data distribution

Graphical and tabular data summaries of pH measurements taken from stormwater collected at California industrial facilities from 2005 to 2012, categorized by industrial sector, are provided in Figure 1 and Table 6.

A small proportion of the pH data in the database were erroneous or associated with user entry error, indicated by values below 1 and greater than 12, which, while possible, were probably misread or entered into SMARTS incorrectly. Such reported results accounted for 370 of 52,256 total data points (0.7%), which were removed, resulting in 51,886 values remaining for analysis. Minimum values from nearly all sectors were highly acidic and should be viewed as suspect. High pH values in the 11-12 range were reported as the maximum, although such values are more likely, given factors such as freshly poured concrete or other basic contaminants that could contribute to high pH results.

A majority of the samples, however, fell in the neutral range, with the average mean and median of all samples being 7.11 and 7.10, respectively. Box plots presented in Figure 1 illustrate little variation about the median.


Comparison among industrial sectors

Nearly all Permittees are required to sample for pH, resulting in a significant amount of data from each industrial sector (Table 6). Median values for all sectors were just slightly higher than a neutral value of pH 7. Sectors 3 (Mineral, metal, oil and gas) and 5 (Landfills) were slightly higher, at 7.6 and 7.5, respectively, though not high enough to warrant concern.

Comparison to permit benchmarks and proposed action levels

Benchmark values for pH found in the 2000 and 2008 Multi-Sector General Permit are 6 and 9, meaning that values below and above that range are indicative of poor site management and the presence of contaminants at potentially harmful levels. As shown in Figure 1, all sectors show consistently high attainment of benchmark values. For none of the sectors do the 10th or 90th percentile 'whiskers' fall outside the benchmark values.

The last column of Table 5 shows the percentage of sample failing to comply with benchmark levels. Manufacturing and recycling facilities display the poorest performance, with 12% and 10% of the samples from these respective sectors lying above or below the acceptable range. When compiled together, 9% of samples across all sectors exceeded benchmarks. This is lower than the compiled statistic from the Washington report, which indicated a pH exceedance rate of 14%.

Boxes show the 25^{th} to 75^{th} percentile range of values; line bisecting the boxes is the median value; whiskers indicate 10^{th} and 90^{th} percentile values; dashed horizontal line indicates EPA benchmark level.

Figure 1. Distribution of pH levels, measured in industrial stormwater from 2005 to 2012, by industry sector

Table 6. Summary statistics for pH, measured in industrial stormwater from 2005 to 2012, by industry sector

Category	n	Mean (SU)	Median (SU)	Minimum (SU)	Maximum (SU)	Lower Quartile - 25% (SU)	Upper Quartile - 75% (SU)	Std. Dev. (SU)	Coefficient of Variation	Exceedance of Benchmark ¹
2 - Manufacturing	9,880	7.31	7.20	1.40	12.00	6.70	7.80	1.06	0.15	12%
3 - Mineral, metal, oil and gas	1,770	7.56	7.60	1.80	11.80	7.10	8.00	0.83	0.11	6%
5 – Landfills	2,823	7.46	7.50	1.70	11.00	7.02	7.94	0.79	0.11	5%
6 - Recycling facilities	2,555	7.01	7.10	1.30	12.00	6.61	7.52	1.03	0.15	10%
8 - Transportation facilities	10,026	7.09	7.10	1.30	11.20	6.69	7.52	0.85	0.12	7%
9 - Treatment works	808	7.26	7.20	4.70	11.00	6.80	7.61	0.72	0.10	3%
11 - Light industrial activity	20,340	6.91	6.91	1.20	12.00	6.50	7.35	0.82	0.12	9%
Other facilities	3,684	7.26	7.25	1.28	11.00	6.79	7.76	0.91	0.12	7%
All Facilities	51,886	7.11	7.10	1.20	12.00	6.62	7.60	0.91	0.13	9%

Benchmark for pH is less than and greater than 6 and 9 standard units, respectively.

5.2. Oil and Grease

Data distribution

Graphical and tabular data summaries of oil and grease measurements taken from stormwater collected at California industrial facilities from 2005 to 2012, categorized by industrial sector, are provided in Figure 2 and Table 7. Full output of the DAT statistical analysis is presented in Appendix 1.

Due to the large number of oil and grease values of the database (52,167) Caltrans' DAT was unable to process the volume of data available for all facilities, although sector-specific analysis was conducted with the DAT. To generate statistics for all oil and grease values, as found in the final row of Table 8, values below detection level were set equal to 0.25 mg/L, which is equal to ½ the minimum recorded detection level for the parameter of interest, following removal of a few outliers, which were abnormally low detection levels. However, given the large number of non-detects (44%), the median was skewed heavily to the left, in comparison to the sector-specific analysis that relied on ROS methods. Based on this analysis, mean and median oil and grease concentrations were 9.23 and 0.25 mg/L, respectively. In comparison, values from the State of Washington (Appendix 2) were 7.6 and 5.0 mg/L. The significantly higher median value likely reflects a higher reporting limit, which in many instances is equal to 5 mg/L, and the fact that authors of that study did not rely on ROS methods for their analysis.

Extremely high values from a small proportion of facilities contributed to the right-skewed distribution. Forty-three (43) samples from 23 facilities resulted in oil and grease concentrations greater than 1,000 mg/L and 302 values from 184 facilities were greater than 100 mg/L. However, the vast majority of oil and grease measurements taken from facilities around California were well below such levels, indicated by the high proportion of non-detects (see Appendix 1) and low median values from the sector-specific analysis, as discussed below.

Comparison among industrial sectors

As with pH and TSS, a high proportion of Permittees are required to sample for oil and grease, resulting in large sample sizes for each industrial sector (Table 7). Highest median values are associated with sector 6 (Recycling Facilities), at 2.38 mg/L, whereas the lowest median was found from sector 3 (Mineral, metal, oil and gas). This compares with results from the State of Washington, where the highest values were reported from sector 6 and 8 (Transportation Facilities). As indicated in Figure 1, 10% of all samples from sector 6 were greater than 22.56 mg/L, while the same proportion of samples from Landfills (5) are greater than 12.40 mg/L.

Comparison to permit benchmarks and proposed action levels

For those sectors subject to mandatory total oil and grease monitoring in the 2008 Multi-Sector General Permit, the benchmark level is 15 mg/L, which is equal to the annual NAL in the Draft General Permit. Median values for all sectors are well below this standard, though 7% of all samples in the database exceed this benchmark. Approximately 3% of samples exceeded this same benchmark in the State of Washington (Appendix 2). In California, 15% of samples from Recycling Facilities exceeded the benchmark, whereas Washington's recyclers reported a 7% exceedance rate.

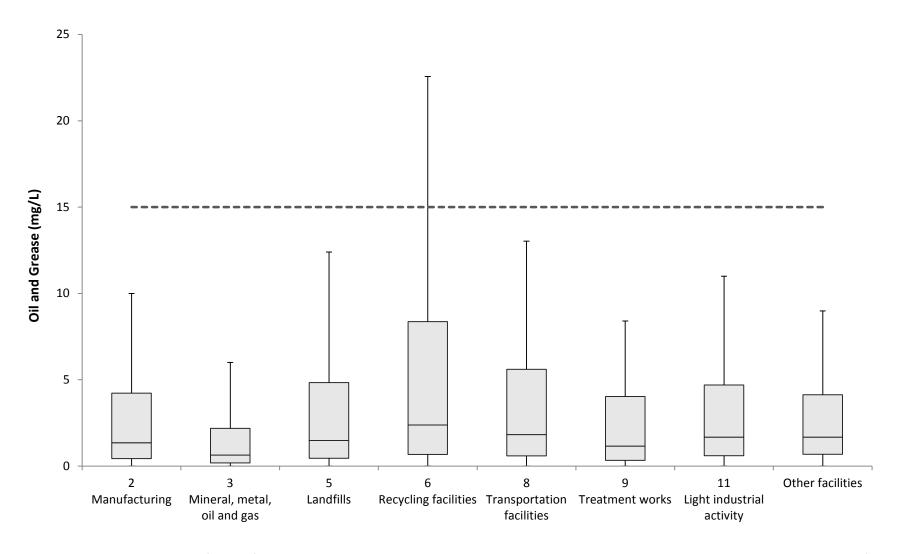


Figure 2. Distribution of oil and grease concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector

Table 7. Summary statistics for oil and grease, measured in industrial stormwater from 2005 to 2012, by industry sector

Category	n	Mean (mg/L)	Median (mg/L)	Minimum (mg/L)	Maximum (mg/L)	Lower Quartile - 25% (mg/L)	Upper Quartile - 75% (mg/L)	Std. Dev. (mg/L)	Coefficient of Variation	Exceedance of Benchmark ¹
2 - Manufacturing	7,427	13.67	1.35	0.0001	10,500	0.43	4.22	236.34	17.29	6%
3 - Mineral, metal, oil and gas	1,474	3.35	0.63	0.2100	393	0.18	2.18	15.88	4.74	3%
5 - Landfills	2,119	8.85	1.48	0.4000	1,640	0.45	4.84	61.96	7.00	8%
6 - Recycling facilities	1,893	20.95	2.38	0.5000	5,390	0.68	8.37	196.02	9.36	15%
8 - Transportation facilities	8,168	9.92	1.83	0.2270	3,400	0.59	5.61	74.45	7.51	8%
9 - Treatment works	618	47.86	1.15	1.0000	21,000	0.33	4.03	1,164.62	24.33	5%
11 - Light industrial activity	15,787	6.63	1.67	0.0200	5,200	0.60	4.69	67.05	10.11	6%
Other facilities	3,012	4.09	1.68	0.1400	210	0.68	4.13	9.42	2.30	4%
All Facilities	40,498	9.23	0.25	0.0001	21,000	0.25	5.00	158.79	17.21	7%

¹⁾ Benchmark for oil and grease placed at 15 mg/L, based on the 2000 and 2008 MSGP Caltrans' Data Analysis Tool (DAT) was unable to process the volume of data available for all facilities

5.3. Total Suspended solids (TSS)

Data distribution

Graphical and tabular data summaries of TSS measurements taken from stormwater collected at California industrial facilities from 2005 to 2012, categorized by industrial sector, are provided in Figure 3 and Table 8. Full output of the DAT statistical analysis is presented in Appendix 1.

Due to the large number of TSS values of the database (52,167) Caltrans' DAT was unable to process the volume of data available for all facilities, although sector-specific analysis was conducted with the DAT. To generate statistics for all TSS values, as found in the final row of Table 8, values below detection level were set equal to ½ the minimum recorded detection level for the parameter of interest. Based on this analysis, mean and median TSS concentrations were 187.3 and 38.0 mg/L, respectively. Extremely high values from a small proportion of facilities contributed to the right-skewed distribution, meaning that extremely positive values affect the statistics. Sixty-five (65) samples from 37 facilities resulted in TSS concentrations greater than 10,000 mg/L. However, the vast majority of measurements taken from facilities around California were well below such levels, indicated by the median of 38 mg/L. The upper quartile value for all samples is 105 mg/L, indicating that approximately 13,000 samples were greater than this value, while 10% of all samples are greater than 280 mg/L.

Comparison among industrial sectors

Similar to pH, nearly all Permittees are required to sample for TSS, resulting in large sample sizes for each industrial sector (Table 6). Median values for all sectors were roughly similar, though sector 5 (Landfills) and 3 (Mineral, metal, oil and gas) had positively skewed values. Upper quartile (75th percentile) values for sectors 5 and 3 were 194 and 241 mg/L, respectively, while 10% of all samples from these sectors resulted in TSS values greater than 869 and 685 mg/L. The best performing sector was Manufacturing (2), with median value of 36 mg/L, yet 25% of samples exceeded 109.4 mg/L. As expected, poorly performing facilities, with regard to TSS discharges, are typically those located outdoors and involved in earth moving activities, such as landfills.

Comparison to permit benchmarks and proposed action levels

For the purposes of this analysis, benchmark values for TSS were placed at 100 mg/L, based on the 2000 and 2008 MSGP, which is equal to the annual NAL in the Draft General Permit. As shown in Figure 1, median values across all sectors are below this standard, although sectors 3 and 5 recorded a significant proportion of samples above the median. In total, 25% of all values exceed benchmark, while sectors 3, 5, 6, and 9 measure exceedances over 30% of the time. Based on closer inspection of the data, exceedances are distributed among a number of facilities, indicating inconsistent performance among facilities and a general need for better source control and housekeeping throughout all sectors.

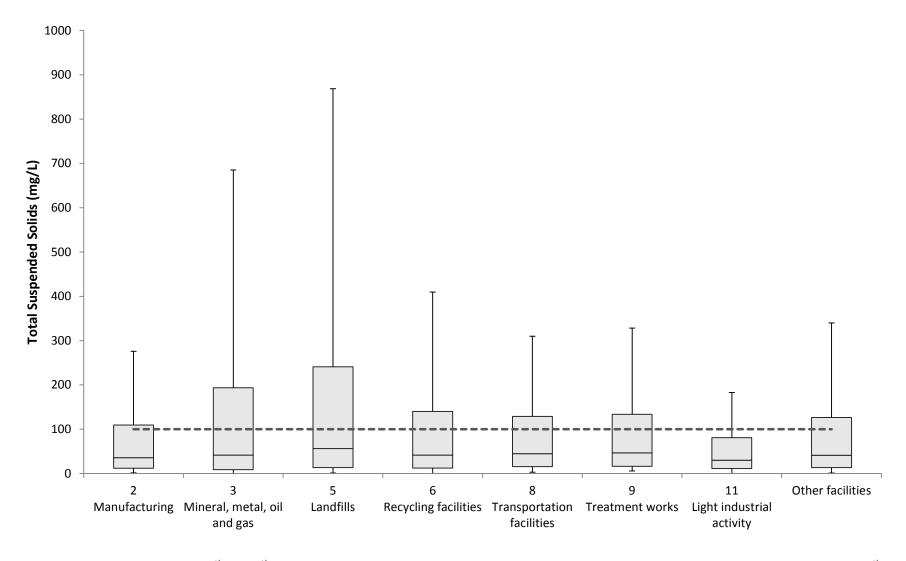


Figure 3. Distribution of TSS concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector

Table 8. Summary statistics for total suspended solids (TSS), measured in industrial stormwater from 2005 to 2012, by industry sector

Category	n	Mean (mg/L)	Median (mg/L)	Minimum (mg/L)	Maximum (mg/L)	Lower Quartile - 25% (mg/L)	Upper Quartile - 75% (mg/L)	Std. Dev. (mg/L)	Coefficient of Variation	Exceedance of Benchmark ¹
2 - Manufacturing	9,916	174.1	36.0	0.10	52,200	11.9	109.4	1,207.1	6.93	25%
3 - Mineral, metal, oil and gas	1,837	838.0	41.5	0.59	691,000	8.9	193.5	22,027.3	26.28	36%
5 - Landfills	2,853	578.9	56.6	1.00	73,000	13.3	240.9	3,063.2	5.29	38%
6 - Recycling facilities	2,603	180.9	41.7	0.02	28,000	12.4	140.4	747.0	4.13	32%
8 - Transportation facilities	10,102	169.4	45.0	0.50	134,000	15.7	128.9	1,722.7	10.17	29%
9 - Treatment works	826	163.0	46.8	1.00	14,770	16.4	133.6	714.7	4.39	31%
11 - Light industrial activity	20,322	94.9	30.2	0.12	52,200	11.2	80.9	631.8	6.66	19%
Other facilities	3,708	172.6	41.2	0.12	24,000	13.4	126.7	756.2	4.38	29%
All Facilities ²	52,167	187.3	38.0	0.02	691,000	12.0	105.0	3,284.0	17.53	25%

Benchmark for TSS placed at 100 mg/L, based on the 2000 and 2008 MSGP, though the 2008 MSGP has some variation across sectors.

Caltrans' Data Analysis Tool (DAT) was unable to process the volume of data available for all facilities. To generate the statistics found in the final row, values below detection level were set equal to ½ the minimum recorded detection level for the parameter of interest.

5.4. Zinc, Total

Data distribution

Graphical and tabular data summaries of total zinc measurements taken from stormwater collected at California industrial facilities from 2005 to 2012, categorized by industrial sector, are provided in Figure 4 and Table 9. Full output of the DAT statistical analysis is presented in Appendix 1.

Based on analysis of 12,471 total zinc values, mean and median concentrations were 27.80 and 0.16 mg/L, respectively. The extreme disparity between these values is due to extreme maximum values, reaching as high as 146,000 mg/L, which was reported from a galvanizing facility in Oakland, CA. Given the type of activity taking place there, and the presence of additional exceptionally high self-reported values, this value is likely accurate. However, the vast majority of measurements taken from facilities around California were well below such levels, indicated by the overall median of 0.157 mg/L.

Consistent with results from the State of Washington, total zinc data is highly right-skewed, as indicated by the large boxes and whiskers in Figure 2 towards the positive direction. However, the mean reported by Herrera Environmental Consultants (Appendix 2) was much lower, at 0.469, while the median was generally consistent with California data, at 0.139 mg/L. Across all data, the 90th percentile value was 1.760 mg/L in California, while in Washington this result was 0.692 mg/L. This indicates a higher percentage of facilities in California are associated with discharges posing a significant risk to receiving water quality, compared to Washington.

Comparison among industrial sectors

Sectors 2 (Manufacturing), 6 (Recycling Facilities), and 11 (Light Industry) reported values skewing much higher than sectors 3 (Mineral, metal, oil and gas), 5 (Landfills), 9 (Treatment works), and just slightly higher than sector 8 (Transportation Facilities). Sectors 2, 6, 8, and 11, however, constitute the majority of Permittees that submitted 92% of all reported total zinc values. This indicates significant exceedances across most sectors and a need to conduct more refined analysis at the sub-sector level.

Comparison to permit benchmarks and proposed action levels

For those sectors subject to mandatory total zinc monitoring in the 2008 Multi-Sector General Permit, the benchmark level is 0.26 mg/L, assuming a freshwater receiving water hardness >250 mg/L. This is equal to the annual NAL in the Draft General Permit. Compared against this benchmark, the median value for all sectors lies below this standard (Figure 2). However, as shown in Table 9, 44% of all total zinc values exceed this benchmark, with the rate of exceedance reaching 49% for Recycling Facilities, which is not surprising given the nature of operations at such facilities. The highest performing sector, in terms of benchmark attainment, is sector 3, though this sector represents only 2% of the total zinc data present in the database. Sectors 2, 6, 8, and 11 all have exceedance rates greater than 40%.

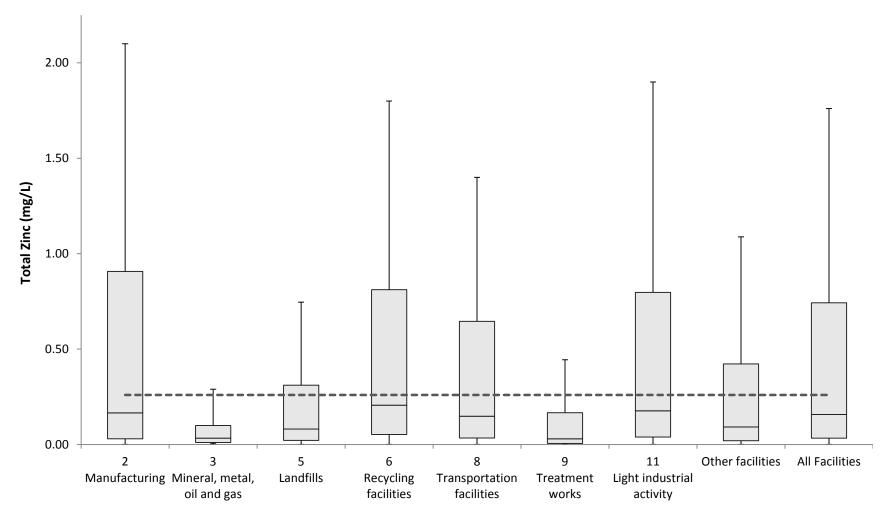


Figure 4. Distribution of total zinc concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector

Table 9. Summary statistics for total zinc, measured in industrial stormwater from 2005 to 2012, by industry sector

Category	n	Mean (mg/L)	Median (mg/L)	Minimum (mg/L)	Maximum (mg/L)	Lower Quartile - 25% (mg/L)	Upper Quartile - 75% (mg/L)	Std. Dev. (mg/L)	Coefficient of Variation	Exceedance of Benchmark ¹
2 - Manufacturing	3,081	15.46	0.166	0.166	4,800	0.030	0.907	135.86	8.79	44%
3 - Mineral, metal, oil and gas	276	0.13	0.033	0.033	4.79	0.011	0.100	0.426	3.19	11%
5 - Landfills	342	0.62	0.081	0.081	71.0	0.021	0.311	4.956	7.98	30%
6 - Recycling facilities	1,786	9.11	0.206	0.206	3,000	0.052	0.812	113.86	12.50	49%
8 - Transportation facilities	1,395	10.72	0.148	0.148	1,800	0.034	0.645	102.53	9.57	42%
9 - Treatment works	9	0.18	0.030	0.030	1.10	0.005	0.167	0.45	2.46	22%
11 - Light industrial activity	5,191	51.42	0.177	0.177	146,000	0.039	0.797	2,668.54	51.89	45%
Other facilities	375	1.89	0.092	0.092	385	0.020	0.422	26.38	13.98	37%
All Facilities	12,471	27.80	0.157	0.157	146,000	0.033	0.743	1,718.51	61.81	44%

Benchmark for total zinc placed at 0.26 mg/L, based on the 2008 MSGP, assuming receiving water hardness >250 mg/L

5.5. Copper, Total

Data distribution

Graphical and tabular data summaries of total copper measurements taken from stormwater collected at California industrial facilities from 2005 to 2012, categorized by industrial sector, are provided in Figure 5 and Table 10. Full output of the DAT statistical analysis is presented in Appendix 1.

Based on analysis of 5,867 total copper values, mean and median concentrations are 2.423 and 0.013 mg/L, respectively. The significant variance between these values is due to extreme maximum values, reaching as high as 1,500 mg/L, which was reported from a ship maintenance facility in San Francisco, CA. Due to first hand involvement in enforcement actions against this facility, this range of values can be confirmed as actual conditions at the site, where copper-coated hulls are routinely resurfaced and maintained. However, the vast majority of measurements taken from facilities around California were well below such levels, indicated by the median of 0.013 mg/L.

Compared with results from the State of Washington, as documented by Herrera Consultants (Appendix 2), both the central tendency and 90th percentile value for total copper concentrations in California are skewed to the right, indicating generally higher concentrations of copper from industrial facilities, as well as more extreme positive values. The median concentration of total copper in Washington was 0.022, slightly higher than in California, while the 90th percentile was 0.104 mg/l, compared to 0.209 mg/L in California.

Comparison among industrial sectors

Sector 2 (Manufacturing) recorded the highest total copper values, with 25% of all samples greater than 0.233 mg/L. In second place are Recycling Facilities, with 25% of samples greater than 0.103 mg/L. The remaining facilities displayed higher performance, though a significant number of samples from all sectors exceeded benchmarks, as discussed below, indicating the need to conduct more refined analysis at the sub-sector level.

Comparison to permit benchmarks and proposed action levels

For those sectors subject to mandatory total copper monitoring in the 2008 Multi-Sector General Permit, the benchmark level is 0.0332 mg/L, assuming a freshwater receiving water hardness >250 mg/L. This is equal to the annual NAL in the Draft General Permit. Compared against this benchmark, the median value for all sectors lies below this standard (Figure 5). However, as shown in Table 10, 43% of all total copper values exceed this benchmark, with the rate of exceedance reaching 50% for Recycling Facilities, which is consistent with the results of total zinc analysis. Treatment Works reported 56% of samples exceeding benchmarks, though with only 18 samples, statistical power is weaker compared to other sectors. Sectors 2, 6, 8, 9, and 11 all have exceedance rates greater than 40%, which are closely comparable to the results for total zinc.

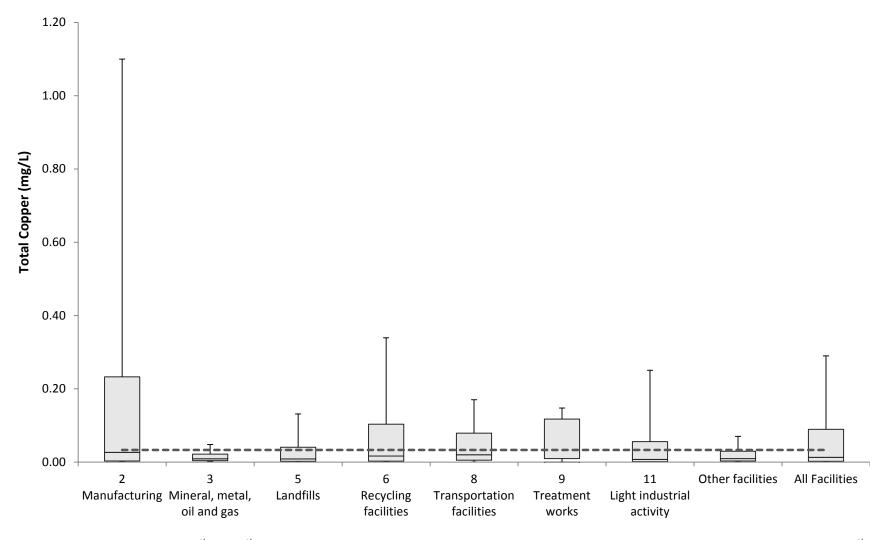


Figure 5. Distribution of total copper concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector

Table 10. Summary statistics for total copper, measured in industrial stormwater, by industry sector

Category	n	Mean (mg/L)	Median (mg/L)	Minimum (mg/L)	Maximum (mg/L)	Lower Quartile - 25% (mg/L)	Upper Quartile - 75% (mg/L)	Std. Dev. (mg/L)	Coefficient of Variation	Exceedance of Benchmark ¹
2 – Manufacturing	1,356	9.104	0.026	0.00011	1,500	0.0030	0.233	77.224	8.48	47%
3 - Mineral, metal, oil and gas	244	0.025	0.009	0.00011	1.00	0.0036	0.022	0.082	3.36	15%
5 - Landfills	210	0.063	0.009	0.00010	1.80	0.0019	0.040	0.187	2.99	33%
6 - Recycling facilities	1,232	0.384	0.016	0.00010	150	0.0025	0.103	5.600	14.59	50%
8 - Transportation facilities	726	0.202	0.020	0.00010	32	0.0051	0.079	1.547	7.65	46%
9 - Treatment works	18	0.041	0.000	0.00014	0.10	0.0095	0.058	0.033	0.80	56%
11 - Light industrial activity	1,757	0.697	0.007	0.00010	520	0.0009	0.056	16.071	23.06	40%
Other facilities	308	0.031	0.009	0.00010	0.66	0.0029	0.030	0.062	2.03	28%
All Facilities	5,867	2.423	0.013	0.00010	1,500	0.0018	0.089	38.116	15.73	43%

Benchmark for total copper placed at 0.0332 mg/L, based on the 2008 MSGP, assuming receiving water hardness >250 m

5.6. Lead, Total

Data distribution

Graphical and tabular data summaries of total lead measurements taken from stormwater collected at California industrial facilities from 2005 to 2012, categorized by industrial sector, are provided in Figure 6 and Table 11. Full output of the DAT statistical analysis is presented in Appendix 1.

Based on analysis of 7,088 total copper values, mean and median concentrations were 2.028 and 0.004 mg/L, respectively. The significant variance between these values is due to extreme maximum values, reaching as high as 3,600 mg/L, which was reported from a metal manufacturing facility in Livermore, CA. Given the type of activity taking place there, this value is likely accurate and 28 other samples greater than 100 mg/L were recorded from 17 separate facilities. However, the vast majority of total lead measurements taken from facilities around California were well below such levels, indicated by the median of 0.004 mg/L.

Compared with results from the State of Washington, as documented by Herrera Consultants (Appendix 2), mean total lead concentrations are significantly higher in California, with a value of 2.028 mg/L in CA, compared with 0.048 mg/L in WA. However, median concentrations are generally similar in CA and WA, at 0.004 mg/L and 0.012 mg/L, respectively. This suggests a small proportion of CA facilities are responsible for skewing the means by discharging lead at significant concentrations.

Comparison among industrial sectors

Similar to results found in WA, sector 6 (Recycling Facilities) recorded the highest total lead values, with 25% of all samples greater than 0.103 mg/L. In second place are Recycling Facilities, with 25% of samples greater than 0.030 mg/L. The remaining facilities displayed consistently higher performance, generally within EPA benchmarks, as discussed below.

Comparison to permit benchmarks and proposed action levels

For those sectors subject to mandatory total lead monitoring in the 2008 Multi-Sector General Permit, the benchmark level is 0.262 mg/L, assuming a freshwater receiving water hardness >250 mg/L. This is equal to the annual NAL in the Draft General Permit. Compared against this benchmark, the median value for all sectors lies well below this standard (Figure 6). As shown in Table 11, only 6% of all total lead values exceed this benchmark, though the rate of exceedance reaches 12% for Recycling Facilities, which is also the sector with consistently higher copper and zinc values.

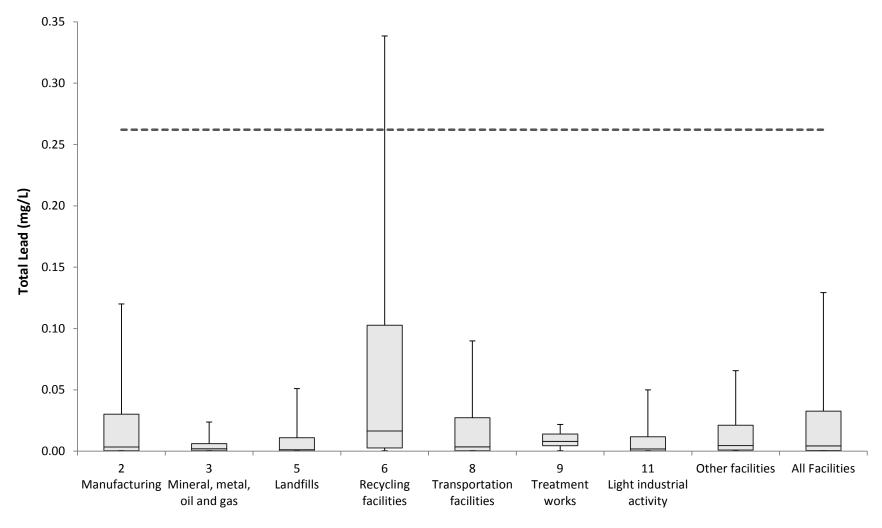


Figure 6. Distribution of total lead concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector

Table 11. Summary statistics for total lead, measured in industrial stormwater from 2005 to 2012, by industrial sector

Category	n	Mean (mg/L)	Median (mg/L)	Minimum (mg/L)	Maximum (mg/L)	Lower Quartile - 25% (mg/L)	Upper Quartile - 75% (mg/L)	Std. Dev. (mg/L)	Coefficient of Variation	Exceedance of Benchmark ¹
2 - Manufacturing	821	1.85	0.0034	0.0034	620.0	0.0004	0.030	27.829	15.02	5%
3 - Mineral, metal, oil and gas	243	0.03	0.0020	0.0020	2.5	0.0004	0.006	0.206	7.98	1%
5 - Landfills	829	0.66	0.0012	0.0012	200.0	0.0001	0.011	9.860	15.03	4%
6 - Recycling facilities	2,206	4.41	0.0165	0.0165	3,600.0	0.0026	0.103	98.830	22.39	12%
8 - Transportation facilities	1,182	1.96	0.0036	0.0036	982.0	0.0005	0.027	36.883	18.85	5%
9 - Treatment works	32	0.01	0.0080	0.0080	0.04	0.0045	0.014	0.008	0.79	0%
11 - Light industrial activity	1,435	0.27	0.0019	0.0019	132.0	0.0003	0.012	4.674	17.58	3%
Other facilities	335	0.23	0.0047	0.0047	30.0	0.0010	0.021	2.346	10.15	2%
All Facilities	7,088	2.03	0.0043	0.0043	3,600.0	0.0006	0.033	55.257	27.24	6%

Benchmark for total lead placed at 0.262 mg/L, based on the 2008 MSGP, assuming receiving water hardness >250 mg/L

5.7. Nickel, Total

Data distribution

Graphical and tabular data summaries of total nickel measurements taken from stormwater collected at California industrial facilities from 2005 to 2012, categorized by industrial sector, are provided in Figure 7 and Table 12. Full output of the DAT statistical analysis is presented in Appendix 1.

Based on analysis of 2,272 total nickel values, mean and median concentrations were 2.028 and 0.004 mg/L, respectively. The higher mean is due to a small number of facilities that consistently record total nickel concentrations in the 1-20 mg/L range. However, as shown in the DAT summary sheet in Appendix 1, 56% of all total nickel samples fall below detection level, resulting in the low median mentioned above.

Comparison among industrial sectors

Sectors 11 (Treatment Works) and 5 (Landfills) registered the highest median values of 0.0135 mg/L and 0.0065 mg/L, respectively, with most sectors recording a median in the single digit microgram (μ g) range.

Comparison to permit benchmarks and proposed action levels

For those sectors subject to mandatory nickel monitoring in the 2008 Multi-Sector General Permit, the benchmark level is 1.02 mg/L, assuming a freshwater receiving water hardness >250 mg/L. This is equal to the annual NAL in the Draft General Permit. Compared against this benchmark, the median value for all sectors lies well below this standard (Figure 7). As shown in Table 12, only 1% of all total nickel values exceed this benchmark. The Manufacturing sector (2) showed that 4% of 339 values exceeded benchmark values, which can be attributed to a total of six (6) facilities, based on closer inspection of the data.

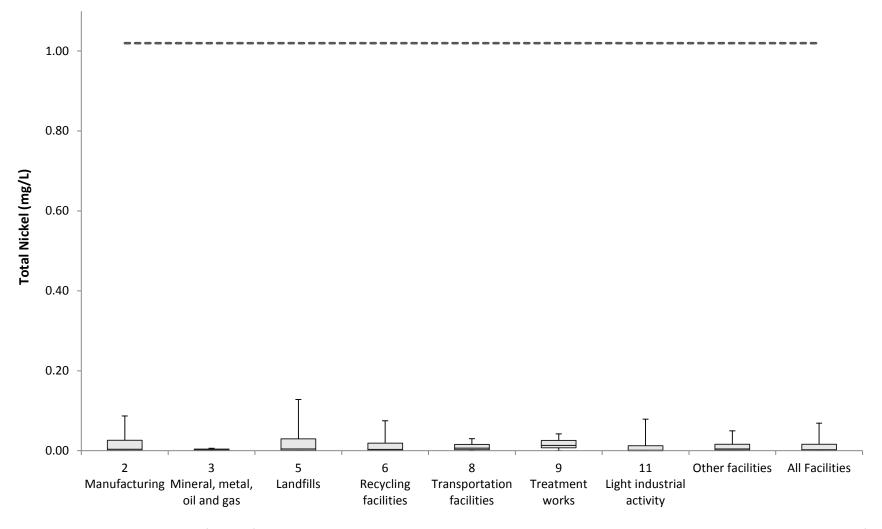


Figure 7. Distribution of total nickel concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector

Table 12. Summary statistics for total nickel, measured in industrial stormwater from 2005 to 2012, by industry sector

Category	n	Mean (mg/L)	Median (mg/L)	Minimum (mg/L)	Maximum (mg/L)	Lower Quartile - 25% (mg/L)	Upper Quartile - 75% (mg/L)	Std. Dev. (mg/L)	Coefficient of Variation	Exceedance of Benchmark ¹
2 - Manufacturing	339	0.277	0.0037	0.0001	18	0.0005	0.026	1.494	5.39	4%
3 - Mineral, metal, oil and gas	7	0.003	0.0018	0.0017	0.01	0.0008	0.004	0.004	1.39	0%
5 - Landfills	63	0.039	0.0046	0.0001	0.34	0.0007	0.030	0.065	1.65	0%
6 - Recycling facilities	158	0.084	0.0034	0.0001	10	0.0006	0.019	1.101	13.17	1%
8 - Transportation facilities	294	0.026	0.0065	0.0005	4	0.0027	0.016	0.305	11.76	0%
9 - Treatment works	17	0.020	0.0135	0.0060	0.07	0.0071	0.026	0.018	0.95	0%
11 - Light industrial activity	1,196	0.049	0.0014	0.0001	3	0.0002	0.013	0.191	3.93	1%
Other facilities	185	0.023	0.0043	0.0010	0.77	0.0011	0.016	0.076	3.25	0%
All Facilities	2,272	0.079	0.0023	0.0001	18	0.0003	0.016	0.634	8.00	1%

Benchmark for total nickel placed at 1.02 mg/L, based on the 2008 MSGP, assuming receiving water hardness >250 mg/

5.8. Iron, Total

Data distribution

Graphical and tabular data summaries of total iron measurements taken from stormwater collected at California industrial facilities from 2005 to 2012, categorized by industrial sector, are provided in Figure 8 and Table 13. Full output of the DAT statistical analysis is presented in Appendix 1.

Based on analysis of 13,911 total iron values, mean and median concentrations were 142.74 and 0.79 mg/L, respectively. The significant variance between these values is due to a number of extremely high values. For instance, one facility belonging to sector 3 (Mineral, metal, oil and gas) recorded a value of 440,000 mg/L, which is likely erroneous; yet 189 other samples from 64 separate facilities yielded total iron concentrations greater than 1,000 mg/L. Despite a number of high values, 53% of all samples were less than 1.0 mg/L, contributing to the relatively low overall median.

While median values of total iron may be low, 25% of all samples are above 5.20 mg/L and 10% of all samples are greater than 16 mg/L, indicating a need for enhanced controls or advanced treatment at particular facilities and sub-sectors.

Comparison among industrial sectors

Although Sector 9 (Treatment Works) yielded the highest median of 6.70 mg/L, the sample size was only 14. Sectors 3 (Minerals, metal, oil and gas), 5 (Landfills), and 6 (Recycling Facilities) all have sample sizes greater than 495 and median values of 2.20, 1.94, 0.79 mg/L, respectively. From sector 3, 25% of all samples were greater than 15.50 mg/L and the same proportion of samples from sector 5 were greater than 11.22 mg/L. Given sector 9's small sample size, sectors 3, 5, and 8 show the greatest cause of concern, as indicated by medians above benchmark and high values for both the standard deviation and coefficient of variance, indicating a number of samples well above benchmark within these sectors.

Comparison to permit benchmarks and proposed action levels

For those sectors subject to mandatory total iron monitoring in the 2008 Multi-Sector General Permit, the benchmark level is 1.0 mg/L. This is equal to the annual NAL in the Draft General Permit. Compared against this benchmark, the median value for all sectors combined lies below this standard (Figure 8). However, as shown in Table 10, 52% of all total iron values exceed this benchmark, with the rate of exceedance reaching 60% for sectors 3,5, and 9. This illustrates an effect of the ROS method for calculating the median, since the fact that 52% of samples exceed 1.0 mg/L suggests that the median should closely approximate the benchmark. Sector 11 registered the best performance, with 42% of samples exceeding EPA's benchmark.

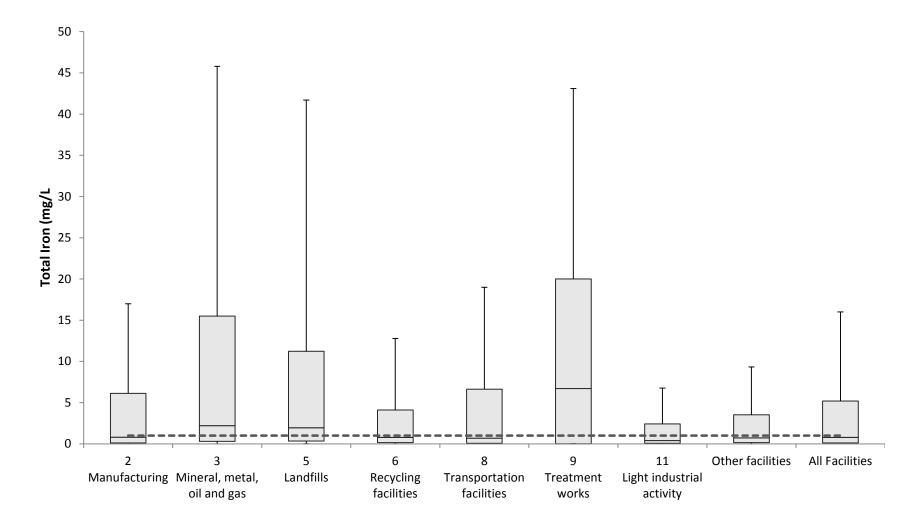


Figure 8. Distribution of total iron concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector

Table 13. Summary statistics for total iron, measured in industrial stormwater from 2005 to 2012, by industry sector

Category	n	Mean (mg/L)	Median (mg/L)	Minimum (mg/L)	Maximum (mg/L)	Lower Quartile - 25% (mg/L)	Upper Quartile - 75% (mg/L)	Std. Dev. (mg/L)	Coefficient of Variation	Exceedance of Benchmark ¹
2 - Manufacturing	3,673	165.10	0.81	0.0010	43,000	0.106	6.12	1,865.3	11.3	54%
3 - Mineral, metal, oil and gas	495	1,018.69	2.20	0.0011	440,000	0.312	15.50	28,369.8	27.9	69%
5 - Landfills	2,285	152.08	1.94	0.0010	90,000	0.337	11.22	2,488.9	16.4	63%
6 - Recycling facilities	1,917	66.01	0.79	0.0010	33,000	0.151	4.12	1,087.9	16.5	51%
8 - Transportation facilities	735	218.30	0.69	0.0011	26,000	0.072	6.62	1,704.8	7.8	55%
9 - Treatment works	14	16.93	6.70	0.0013	100.00	0.011	20.00	30.8	1.8	71%
11 - Light industrial activity	3,496	58.29	0.40	0.0010	42,300	0.066	2.41	996.5	17.1	42%
Other facilities	1,296	28.12	0.73	0.0010	8,700	0.149	3.53	379.9	13.5	51%
All Facilities	13,911	142.74	0.79	0.0010	440,000	0.119	5.20	4,808.3	33.7	52%

¹ Benchmark for total iron placed at 1.0 mg/L, based on the 2000 and 2008 MSGP

5.9. Biological Oxygen Demand (BOD)

Data distribution

Graphical and tabular data summaries of BOD measurements taken from stormwater collected at California industrial facilities from 2005 to 2012, categorized by industrial sector, are provided in Figure 9 and Table 14. Full output of the DAT statistical analysis is presented in Appendix 1.

Based on analysis of 1,713 BOD values, mean and median concentrations were 40.2 and 6.6 mg/L, respectively. Maximum values reaching as high as 7,710 mg/L skewed the distribution of all samples to the right, though this can be attributed to a relatively small number of facilities. Three soft drink and food distribution facilities reported values greater than 1,000 mg/L, which can be attributed to sugars and other organic compounds that likely escape the facility. In total, 44 facilities reported 110 samples greater than 100 mg/L, most of which were related to food and beverage, within sector 11, or Recycling Facilities (6).

Upper quartile values for all samples indicate 25% of all samples are greater than 22.1 mg/L, and 10% of all samples are greater than 62.0 mg/L, indicating greater need for greater source control and possibly advanced treatment, since BOD is difficult to treat with conventional stormwater control devices (e.g. wattles and drain inlet filters).

Comparison among industrial sectors

Relatively few sectors maintain requirements to test for BOD in industrial stormwater, resulting in variable sample sizes amongst sectors shown in Figure 9. Types of facilities required to conduct BOD testing include food and beverage distributors; recycling facilities where cans and bottles could contribute to BOD loading; and airports and other transportation facilities, where anti-freeze and deicing can result in high BOD concentrations. Sector 11 (Light Industrial Activity) has many food companies with highly variable results, as shown by the standard deviation of 497.2 mg/L. Whereas sector 6 (Recycling Facilities) registered a median of 24.5 mg/L and 25% of samples were greater than 92.8 mg/L, yet the sample size is only 46, compared to sector 8 (Transportation Facilities) with an n of 821 an fairly low overall concentrations.

Comparison to permit benchmarks and proposed action levels

Benchmark values for BOD, found in the 2008 Multi-Sector General Permit, are variable for different sectors. For consistency, as value of 30 mg/L was selected, which is consistent with the 2000 Multi-Sector General Permit, as well as the annual NAL in the Draft General Permit. Overall, 19% of all samples exceeded this standard, though this value is variable among sectors (Table 14). Sector 6 showed an exceedance rate of 41%, while sector 2 was at 12%. Sectors 5, 8, and 11 are all above 26%, indicating greater need to control this pollutant, which can contribute to low dissolved oxygen in receiving waters.

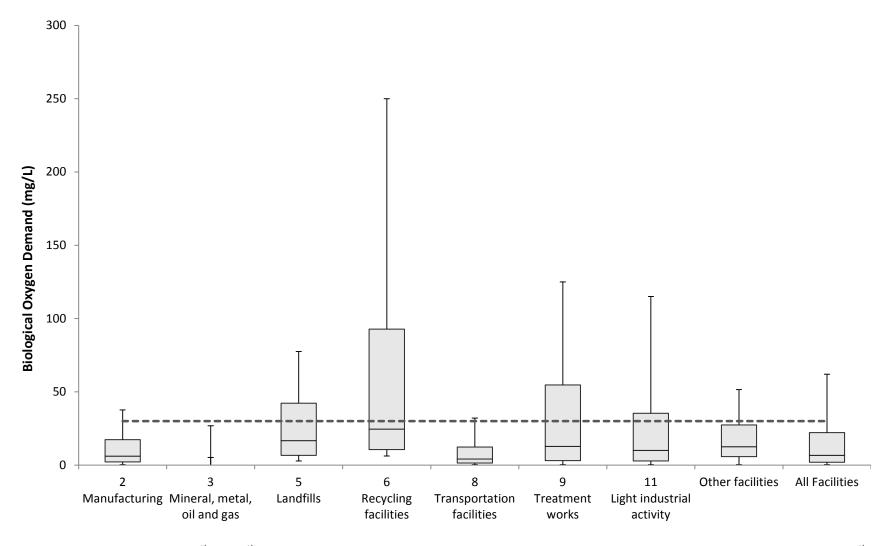


Figure 9. Distribution of biological oxygen demand concentration results, measured in industrial stormwater from 2005 to 2012, by industry sector

Table 14. Summary statistics for Biological Oxygen Demand (BOD) concentrations measured from industrial stormwater, by industry sector

Category	n	Mean (mg/L)	Median (mg/L)	Minimum (mg/L)	Maximum (mg/L)	Lower Quartile - 25% (mg/L)	Upper Quartile - 75% (mg/L)	Std. Dev. (mg/L)	Coefficient of Variation	Exceedance of Benchmark ¹
2 - Manufacturing	98	25.1	6.1	2.0	539	2.1	17.3	84.6	3.4	12%
3 - Mineral, metal, oil and gas	3			25.0	27					0%
5 - Landfills	54	35.0	16.6	1.5	170	6.6	42.2	44.3	1.3	37%
6 - Recycling facilities	46	76.6	24.5	5.1	453	10.5	92.8	108.2	1.4	41%
8 - Transportation facilities	821	13.3	4.1	0.7	480	1.4	12.3	28.6	2.1	11%
9 - Treatment works	26	66.6	12.7	1.2	700	3.0	54.7	165.7	2.5	38%
11 - Light industrial activity	613	77.0	10.0	1.7	7,710	2.8	35.3	497.2	6.5	26%
Other facilities	52	21.2	12.5	2.9	98	5.8	27.3	22.4	1.1	23%
All Facilities	1,713	40.2	6.6	0.7	7,710	1.9	22.1	301.0	7.5	19%

Benchmark for BOD placed at 30 mg/L, based on the 2000 MSGP, since the 2008 MSGP has several benchmarks for various sectors Std. Dev.: Standard Deviation

Insufficient data to calculate statistics for sector #3 (Mineral, metal, oil and gas) using regression on ordered statistics (ROS) methods.

6. Discussion and Conclusion of Industrial Stormwater Data Analysis

To remain consistent with Section 5, as well as the report provided as Appendix 2, this discussion of results considers the general distribution of the data, compares the industrial sectors and considers the rates of exceedance of existing benchmarks for the parameters considered in this study.

6.1. General Data Distribution

Consistent with general findings from the Washington State study, all parameters, with the exception of pH, showed a distinctly right-skewed distribution, given the number of extreme values in the positive direction. This is to be expected from stormwater data in general, where pollutant concentrations are in many cases a function of storm intensity. However, this industrial stormwater data shows that particular sectors, and in many cases a handful of facilities within those sectors, are responsible for skewing the distribution to the right.

California's industrial stormwater data is also characterized by high rates of variance across various parameters and sectors. As shown in Table 15, pH is characterized by an extremely low coefficient of variation across all sectors (0.13), while the value for zinc reaches 61.81. This is consistent with the Washington study, where the coefficient of variation was 0.12 for pH and 7.06 for zinc. California's notably higher value for zinc can be attributed to a higher number of facilities reporting extremely high concentrations, pointing to the need for greater enforcement of the worst performing Permittees.

6.2. Comparison among industrial sectors

In general, significant differences in median concentration values were found across sectors (Table 16). This was less the case for pH, copper, nickel and to some extent, TSS, though the low median values for copper and nickel account for this, while pH shows little variation in general; putting into question the general utility of using pH as an indicator parameter for industrial stormwater compliance. This is also reflected in Table 1, where difference in the coefficient of variation is quite extreme for parameters, including zinc and lead.

Observed differences among these broad industrial sectors suggests the need to conduct a similar analysis for sub-sectors, to further refine which sectors are posing the greatest risk to receiving water quality. Table 4 indicates a number of sub-sectors have sufficient sampling data to calculate relevant statistics, which will likely be conducted at a later time.

Table 15. Coefficient of variation for parameters considered in this study, by sector

	Coefficient of variation								
Category	рН	Oil and grease	TSS	Zinc, Total	Copper, Total	Lead, Total	Nickel, Total	Iron, Total	BOD
2 - Manufacturing	0.15	17.29	6.93	8.79	8.48	15.02	5.39	11.3	3.4
3 - Mineral, metal, oil and gas	0.11	4.74	26.28	3.19	3.36	7.98	1.39	27.9	
5 - Landfills	0.11	7.00	5.29	7.98	2.99	15.03	1.65	16.4	1.3
6 - Recycling facilities	0.15	9.36	4.13	12.50	14.59	22.39	13.17	16.5	1.4
8 - Transportation facilities	0.12	7.51	10.17	9.57	7.65	18.85	11.76	7.8	2.1
9 - Treatment works	0.10	24.33	4.39	2.46	0.80	0.79	0.95	1.8	2.5
11 - Light industrial activity	0.12	10.11	6.66	51.89	23.06	17.58	3.93	17.1	6.5
Other facilities	0.12	2.30	4.38	13.98	2.03	10.15	3.25	13.5	1.1
All Facilities	0.13	17.21	17.53	61.81	15.73	27.24	8.00	33.7	7.5

Table 16. Median values for parameters considered in this study, by sector

	Median (mg/L)								
Category	рН	Oil and grease	TSS	Zinc, Total	Copper, Total	Lead, Total	Nickel, Total	Iron, Total	BOD
2 - Manufacturing	7.20	1.35	36.0	0.166	0.026	0.0034	0.0037	0.81	6.1
3 - Mineral, metal, oil and gas	7.60	0.63	41.5	0.033	0.009	0.0020	0.0018	2.20	
5 - Landfills	7.50	1.48	56.6	0.081	0.009	0.0012	0.0046	1.94	16.6
6 - Recycling facilities	7.10	2.38	41.7	0.206	0.016	0.0165	0.0034	0.79	24.5
8 - Transportation facilities	7.10	1.83	45.0	0.148	0.020	0.0036	0.0065	0.69	4.1
9 - Treatment works	7.20	1.15	46.8	0.030	0.000	0.0080	0.0135	6.70	12.7
11 - Light industrial activity	6.91	1.67	30.2	0.177	0.007	0.0019	0.0014	0.40	10.0
Other facilities	7.25	1.68	41.2	0.092	0.009	0.0047	0.0043	0.73	12.5
All Facilities	7.10	0.25	38.0	0.157	0.013	0.0043	0.0023	0.79	6.6

6.3. Comparison to permit benchmarks and proposed action levels

Table 17 shows the percentage of samples falling below benchmark limits, by sector. Red cells indicate instances where less than 50% of samples are below benchmark and orange cells indicate where sectors are only attaining benchmark compliance 50-65% of the time. From this, a number of facilities are clearly discharging total iron at a consistently high rate, with an overall benchmark attainment rate of only 48% and reaching as low as 31% and 29% for sectors 3 (Mineral, metal, oil and gas) and 9 (Treatment Works), respectively. Rates of non-compliance are also high for copper and zinc, with sectors 2 (Manufacturing), 6 (Recycling), 8 (Transportation), and 11 (Light Industry) with the poorest performance rates. Table 17 also shows TSS being an issue for a number of facilities, with sectors 3 and 5 (Landfills) reporting compliance only around 63% of the time.

Clearly, particular sectors must do more to control discharges of some pollutants more than others. Yet for some parameters, including oil and grease, lead, nickel, and BOD, high rates of compliance have been reported across all sectors. This data set indicates a significant majority of facilities, across all sectors, are well below benchmark levels. To achieve compliance with existing benchmarks, or future numeric limitations, a number of facilities will require significant facility upgrades, including advanced treatment for some.

Table 17. Percentage of samples exceeding benchmarks, by sector

	Benchmark Exceedance Rate %								
Category	рН	Oil and grease	TSS	Zinc, Total	Copper, Total	Lead, Total	Nickel, Total	Iron, Total	BOD
2 - Manufacturing	88%	94%	75%	56%	53%	95%	96%	46%	88%
3 - Mineral, metal, oil and gas	94%	97%	64%	89%	85%	99%	100%	31%	100%
5 - Landfills	95%	92%	62%	70%	67%	96%	100%	37%	63%
6 - Recycling facilities	90%	85%	68%	51%	50%	88%	99%	49%	59%
8 - Transportation facilities	93%	92%	71%	58%	54%	95%	100%	45%	89%
9 - Treatment works	97%	95%	69%	78%	44%	100%	100%	29%	62%
11 - Light industrial activity	91%	94%	81%	55%	60%	97%	99%	58%	74%
Other facilities	93%	96%	71%	63%	72%	98%	100%	49%	77%
All Facilities	91%	93%	75%	56%	57%	94%	99%	48%	81%

Red cells indicate more than 50% of all samples exceed benchmark for a given parameter, within a sector. Orange cells indicate between 35% and 50% of samples exceed benchmark

Appendix 1 Statistical output from the Data Analysis Tool (DAT) for primary parameters

Table 1. Statistical summary output from the Data Analysis Tool for total zinc

Run ID	2 Manufacturing	3 Mineral, metal, oil and gas	5 Landfills	6 Recycling facilities	8 Transportation facilities	9 Treatment works	11 Light industrial activity	Other facilities	All Facilities
n	3,081	276	342	1,786	1,395	9	5,191	375	12,471
Percent detected	79.6%	90.2%	78.7%	83.7%	82.5%	33.3%	78.8%	76.3%	80.3%
Mean	15.456	0.132	0.621	9.106	10.715	0.184	51.423	1.886	27.803
Standard Deviation	135.857	0.421	4.954	113.861	102.526	0.454	2668.536	26.376	1718.512
Coefficient of Variation	8.790	3.188	7.980	12.504	9.568	2.460	51.893	13.984	61.811
Lower 95% Confidence Limit about Mean	10.659	0.082	0.096	3.825	5.335	-0.112	-21.171	-0.783	-2.359
Upper 95% Confidence Limit about Mean	20.254	0.182	1.146	14.387	16.095	0.481	124.018	4.556	57.964
Lower Quartile (25th percentile)	0.030	0.011	0.021	0.052	0.034	0.005	0.039	0.020	0.033
Median (50th percentile)	0.166	0.033	0.081	0.206	0.148	0.030	0.177	0.092	0.157
Upper Quartile (75th percentile)	0.907	0.100	0.311	0.812	0.645	0.167	0.797	0.422	0.743
Inter Quartile Range	0.876	0.089	0.289	0.760	0.611	0.161	0.758	0.402	0.710
Minimum Detected Value	0.002	0.0036	0.0025	0.0021	0.002	0.19	0.00208	0.0022	0.002
Maximum Detected Value	4,800	5	71	3,000	1,800	1	146,000	385	146,000
Minimum Reporting Limit	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001
Maximum Reporting Limit	0.56	0.02	0.1	0.1	0.05	0.05	0.845	0.2	0.845
Regression Equation	In(y) = -1.7980 + 2.5214*Z	In(y) = -3.4067 + 1.6352*Z	In(y) = -2.5097 + 1.9884*Z	In(y) = -1.5813+ 2.0361*Z	In(y) = -1.9074 + 2.1792*Z	In(y) = -3.4981 + 2.5311*Z	In(y) = -1.7335 + 2.2346*Z	In(y) = -2.3848 + 2.2589*Z	In(y) = -1.8517 + 2.3053*Z
						Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS). Estimates of distribution			
Note:	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	parameters become less accurate as the percent detected data decreases, and may be unacceptable below a 40% detection threshold.	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).

Table 2. Statistical summary output from the Data Analysis Tool for total suspended solids

Run ID	2 Manufacturing	3 Mineral, metal, oil and gas	5 Landfills	6 Recycling facilities	8 Transportation facilities	9 Treatment works	11 Light industrial activity	Other facilities	All Facilities ¹
N	9,916	1,837	2,853	2,603	10,102	826	20,322	3,708	52,167
Percent detected	90.7%	85.8%	90.3%	87.6%	91.5%	95.8%	89.4%	90.7%	
Mean	174.1	838.0	578.9	180.9	169.4	163.0	94.9	172.6	
Standard Deviation	1,207.1	22,027.3	3,063.2	747.0	1,722.7	714.7	631.8	756.2	
Coefficient of Variation	6.9	26.3	5.3	4.1	10.2	4.4	6.7	4.4	
Lower 95% Confidence Limit about Mean	150.4	-169.3	466.5	152.2	135.9	114.2	86.2	148.2	
Upper 95% Confidence Limit about Mean	197.9	1,845.4	691.3	209.5	203.0	211.7	103.6	196.9	
Lower Quartile (25th percentile)	11.9	8.9	13.3	12.4	15.7	16.4	11.2	13.4	
Median (50th percentile)	36.0	41.5	56.6	41.7	45.0	46.8	30.2	41.2	
Upper Quartile (75th percentile)	109.4	193.5	240.9	140.4	128.9	133.6	80.9	126.7	
Inter Quartile Range	97.6	184.6	227.6	128.0	113.2	117.2	69.6	113.3	
Minimum Detected Value	0.1	0.6	1.0	0.0	0.5	1.0	0.1	0.1	
Maximum Detected Value	52,200	691,000	73,000	28,000	134,000	14,770	52,200	24,000	
Minimum Reporting Limit	0.1	0.1	0.5	0.0	0.1	0.0	0.1	1.0	
Maximum Reporting Limit	100	50	50	100	100	50	100	100	
Regression Equation	In(y) = 3.5839 + 1.6486*Z	In(y) = 3.7259 + 2.2834*Z	In(y) = 4.0361 + 2.1482*Z	In(y) = 3.7306 + 1.8000*Z	In(y) = 3.8056+ 1.5621*Z	In(y) = 3.8449 + 1.5569*Z	In(y) = 3.4066 + 1.4631*Z	In(y) = 3.7173 + 1.6674*Z	
Note:	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	

¹⁾ Amount of data exceeded the capability of the Data Analysis Tool (DAT)

Table 3. Statistical summary output from the Data Analysis Tool for total oil and grease

Run ID	2 Manufacturing	3 Mineral, metal, oil and gas	5 Landfills	6 Recycling facilities	8 Transportation facilities	9 Treatment works	11 Light industrial activity	Other facilities	All Facilities ¹
n	7,427	1,474	2,119	1,893	8,168	618	15,787	3,012	40,498
Percent detected	42.4%	33.8%	45.4%	52.0%	48.4%	40.8%	43.9%	42.4%	
Mean	13.7	3.4	8.9	21.0	9.9	47.9	6.6	4.1	
Standard Deviation	236.3	15.9	62.0	196.0	74.5	1164.6	67.1	9.4	
Coefficient of Variation	17.3	4.7	7.0	9.4	7.5	24.3	10.1	2.3	
Lower 95% Confidence Limit about Mean	8.3	2.5	6.2	12.1	8.3	-44.0	5.6	3.8	
Upper 95% Confidence Limit about Mean	19.0	4.2	11.5	29.8	11.5	139.7	7.7	4.4	
Lower Quartile (25th percentile)	0.4	0.2	0.5	0.7	0.6	0.3	0.6	0.7	
Median (50th percentile)	1.3	0.6	1.5	2.4	1.8	1.2	1.7	1.7	
Upper Quartile (75th percentile)	4.2	2.2	4.8	8.4	5.6	4.0	4.7	4.1	
Inter Quartile Range	3.8	2.0	4.4	7.7	5.0	3.7	4.1	3.5	
Minimum Detected Value	0.0001	0.21	0.4	0.5	0.227	1	0.02	0.14	
Maximum Detected Value	10,500	393	1,640	5,390	3,400	21,000	5,200	210	
Minimum Reporting Limit	0.01	0.05	0.05	0.05	0.05	0.01	0.05	0.01	
Maximum Reporting Limit	20	20	20	17.9	20	10	20	20	
Regression Equation	In(y) = 0.2987 + 1.6921*Z	In(y) = -0.4559 + 1.8342*Z	In(y) = 0.3904 + 1.7593*Z	In(y) = 0.8678 + 1.8633*Z	In(y) = 0.6019 + 1.6647*Z	In(y) = 0.1422 + 1.85726*Z	ln(y) = 0.5144+ 1.5298*Z	In(y) = 0.5172 + 1.3373*Z	
	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS). Estimates of distribution parameters become less accurate as the percent detected data decreases, and may be unacceptable below a 40%	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered	
Note:	(ROS).	detection threshold.	statistics (ROS).						

¹⁾ Amount of data exceeded the capability of the Data Analysis Tool (DAT)

Table 4. Statistical summary output from the Data Analysis Tool for total lead

Run ID	2 Manufacturing	3 Mineral, metal, oil and gas	5 Landfills	6 Recycling facilities	8 Transportation facilities	9 Treatment works	11 Light industrial activity	Other facilities	All Facilities
n	821	243	829	2,206	1,182	32	1,435	335	7,088
Percent detected	55.9%	67.9%	39.7%	65.7%	53.6%	84.4%	40.2%	60.3%	54.2%
Mean	1.853	0.026	0.656	4.414	1.957	0.011	0.266	0.231	2.029
Standard Deviation	27.829	0.206	9.860	98.830	36.883	0.008	4.674	2.346	55.257
Coefficient of Variation	15.022	7.983	15.026	22.389	18.850	0.794	17.583	10.155	27.236
Lower 95% Confidence Limit about Mean	-0.051	0.000	-0.015	0.290	-0.146	0.008	0.024	-0.020	0.742
Upper 95% Confidence Limit about Mean	3.756	0.052	1.327	8.539	4.059	0.014	0.508	0.482	3.315
Lower Quartile (25th percentile)	0.000	0.000	0.000	0.003	0.000	0.005	0.000	0.001	0.001
Median (50th percentile)	0.003	0.002	0.001	0.016	0.004	0.008	0.002	0.005	0.004
Upper Quartile (75th percentile)	0.030	0.006	0.011	0.103	0.027	0.014	0.012	0.021	0.033
Inter Quartile Range	0.030	0.006	0.011	0.100	0.027	0.010	0.011	0.020	0.032
Minimum Detected Value	0.001	0.001	0.001	0.001	0.001	0.00236	0.001	0.001	0.001
Maximum Detected Value	620	2.5	200	3600	982	0.035	132	30	3600
Minimum Reporting Limit	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Maximum Reporting Limit	5	0.001	5	5	3	0.005	0.1	0.1	5
Regression Equation	In(y) = -5.6707 + 3.2193*Z	In(y) = -6.2760 + 2.1266*Z	In(y) = -6.6887 + 3.2312*Z	In(y) = -4.1072 + 2.71577*Z	In(y) = -5.6375 + 3.0189*Z	In(y) = -4.8331 + 0.8415*Z	In(y) = -6.2726 + 2.7155*Z	In(y) = -5.3688 + 2.2475*Z	In(y) = -5.4432 + 3.0006*Z
Note:	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS). Estimates of distribution parameters become less accurate as the percent detected data decreases, and may be unacceptable below a 40% detection threshold.	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).

Table 5. Statistical summary output from the Data Analysis Tool for total copper

Run ID	2 Manufacturing	3 Mineral, metal, oil and gas	5 Landfills	6 Recycling facilities	8 Transportation facilities	9 Treatment works	11 Light industrial activity	Other facilities	All Facilities
n	1,356	244	210	1,232	726	18	1,757	308	5,867
Percent detected	78.5%	98.4%	68.6%	76.0%	77.1%	72.2%	69.8%	69.2%	75.1%
Mean	9.104	0.025	0.063	0.384	0.202	0.041	0.697	0.031	2.423
Standard Deviation	77.224	0.082	0.187	5.600	1.547	0.033	16.071	0.062	38.116
Coefficient of Variation	8.482	3.360	2.992	14.592	7.650	0.805	23.059	2.028	15.728
Lower 95% Confidence Limit about Mean	4.994	0.014	0.037	0.071	0.090	0.026	-0.055	0.024	1.448
Upper 95% Confidence Limit about Mean	13.215	0.035	0.088	0.696	0.315	0.056	1.448	0.038	3.399
Lower Quartile (25th percentile)	0.003	0.004	0.002	0.003	0.005	0.010	0.001	0.003	0.002
Median (50th percentile)	0.026	0.009	0.009	0.016	0.020	-0.050	0.007	0.009	0.013
Upper Quartile (75th percentile)	0.233	0.022	0.040	0.103	0.079	0.058	0.056	0.030	0.089
Inter Quartile Range	0.230	0.018	0.039	0.101	0.074	0.048	0.055	0.027	0.087
Minimum Detected Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Maximum Detected Value	1,500	1	2	150	32	0	520	1	1,500
Minimum Reporting Limit	0.0001	0.0001	0.0001	0.0001	0.0001	0.05	0.0001	0.0001	0.0001
Maximum Reporting Limit	10	0.0005	0.1	0.2	0.2	0.05	0.06	0.05	10
Regression Equation	In(y) = -3.6309 + 3.2224*Z	In(y) = -4.729 + 1.3352*Z	In(y) = -4.7471 + 2.2824*Z	In(y) = -4.1220 + 2.7482*Z	In(y) = -3.9145 + 2.0372*Z	In(y) = -3.7472 + 1.3437*Z	In(y) = -4.9479 + 3.0508*Z	In(y) = -4.6732 + 1.7110*Z	In(y) = -4.3544 + 2.8747*Z
	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics
Note:	(ROS).								

Table 6. Statistical summary output from the Data Analysis Tool for total nickel

Run ID	2 Manufacturing	3 Mineral, metal, oil and gas	5 Landfills	6 Recycling facilities	8 Transportation facilities	9 Treatment works	11 Light industrial activity	Other facilities	All Facilities
n	339	7	63	158	294	17	1,196	185	2,272
Percent detected	63.4%	71.4%	68.3%	58.9%	48.0%	64.7%	48.6%	55.7%	52.7%
Mean	0.277	0.003	0.039	0.084	0.026	0.020	0.049	0.023	0.079
Standard Deviation	1.494	0.004	0.065	1.101	0.305	0.018	0.191	0.076	0.634
Coefficient of Variation	5.392	1.392	1.652	13.171	11.764	0.946	3.926	3.246	7.997
Lower 95% Confidence Limit about Mean	0.118	0.000	0.023	-0.088	-0.009	0.011	0.038	0.012	0.053
Upper 95% Confidence Limit about Mean	0.436	0.006	0.055	0.255	0.061	0.028	0.060	0.034	0.105
Lower Quartile (25th percentile)	0.001	0.001	0.001	0.001	0.003	0.007	0.000	0.001	0.000
Median (50th percentile)	0.004	0.002	0.005	0.003	0.006	0.013	0.001	0.004	0.002
Upper Quartile (75th percentile)	0.026	0.004	0.030	0.019	0.016	0.026	0.013	0.016	0.016
Inter Quartile Range	0.026	0.003	0.029	0.018	0.013	0.018	0.013	0.015	0.016
Minimum Detected Value	0.00007	0.00170	0.00012	0.00005	0.00047	0.00600	0.00005	0.00100	0.00005
Maximum Detected Value	18	0	0	10	4	0	3	1	18
Minimum Reporting Limit	0.00005	0.0001	0.00005	0.00005	0.00005	0.01	0.00005	0.00005	0.00005
Maximum Reporting Limit	0.1	0.0005	0.1	0.1417	0.05	0.04	20	0.02	20
Regression Equation	In(y) = -5.6015 + 2.9079*Z	In(y) = -6.3158 + 1.2311*Z	In(y) = -5.3800 + 2.7678*Z	In(y) = -5.6868 + 2.5546*Z	In(y) = -5.0386 + 1.3135*Z	In(y) = -4.3061 + 0.9501*Z	In(y) = -6.5836 + 3.2865*Z	In(y) = -5.4521 + 1.9532*Z	In(y) = -6.0643 + 2.8551*Z
Note:	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).

Table 7. Statistical summary output from the Data Analysis Tool for total iron

Run ID	2 Manufacturing	3 Mineral, metal, oil and gas	5 Landfills	6 Recycling facilities	8 Transportation facilities	9 Treatment works	11 Light industrial activity	Other facilities	All Facilities
n	3,673	495	2,285	1,917	735	14	3,496	1,296	13,911
Percent detected	83.4%	88.9%	91.1%	83.3%	84.8%	100.0%	78.1%	86.7%	83.9%
Mean	165.102	1,018.689	152.076	66.010	218.304	16.930	58.290	28.122	142.737
Standard Deviation	1,865.346	28,369.815	2,488.941	1,087.934	1,704.756	30.787	996.472	379.939	4,808.339
Coefficient of Variation	11.298	27.849	16.366	16.481	7.809	1.818	17.095	13.510	33.687
Lower 95% Confidence Limit about Mean	104.776	-1,480.563	50.023	17.308	95.058	0.803	25.258	7.437	62.833
Upper 95% Confidence Limit about Mean	225.428	3,517.940	254.129	114.712	341.551	33.057	91.322	48.808	222.642
Lower Quartile (25th percentile)	0.106	0.312	0.337	0.151	0.072	0.011	0.066	0.149	0.119
Median (50th percentile)	0.806	2.201	1.945	0.789	0.690	6.700	0.398	0.725	0.787
Upper Quartile (75th percentile)	6.117	15.500	11.224	4.117	6.623	20.000	2.410	3.527	5.202
Inter Quartile Range	6.011	15.187	10.887	3.966	6.551	19.989	2.344	3.378	5.082
Minimum Detected Value	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Maximum Detected Value	43,000	440,000	90,000	33,000	26,000	100	42,300	8,700	440,000
Minimum Reporting Limit	0.001	0.001	0.001	0.001	0.001		0.001	0.001	0.001
Maximum Reporting Limit	0.5	0.05	0.63	0.5	0.2		0.5	0.5	0.63
Regression Equation	In(y) = -0.2151 + 3.0054*Z	In(y) = 0.7887 + 2.8954*Z	In(y) = 0.6652 + 2.5998*Z	In(y) = -0.2365 + 2.4498*Z	In(y) = -0.3708 + 3.3541*Z	In(y) = 0.2353 + 4.1538*Z	In(y) = -0.9203+ 2.6701*Z	In(y) = -0.3215 + 2.3466*Z	In(y) = -0.2389 + 2.8003*Z
Note:	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	All data reported as detected. Bolded values are exact calculations.	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics (ROS).

Table 8. Statistical summary output from the Data Analysis Tool for total biological oxygen demand

Run ID	2 Manufacturing	3 Mineral, metal, oil and gas ¹	5 Landfills	6 Recycling facilities	8 Transportation facilities	9 Treatment works	11 Light industrial activity	Other facilities	All Facilities
n	98	3	54	46	821	26	613	52	1,713
Percent detected	64.3%	66.7%	94.4%	91.3%	62.6%	84.6%	74.6%	84.6%	69.8%
Mean	25.1		35.0	76.6	13.3	66.6	77.0	21.2	40.2
Standard Deviation	84.6		44.3	108.2	28.6	165.7	497.2	22.4	301.0
Coefficient of Variation	3.4		1.3	1.4	2.1	2.5	6.5	1.1	7.5
Lower 95% Confidence Limit about Mean	8.4		23.2	45.3	11.4	2.9	37.7	15.1	26.0
Upper 95% Confidence Limit about Mean	41.9		46.8	107.8	15.3	130.3	116.4	27.3	54.5
Lower Quartile (25th percentile)	2.1		6.6	10.5	1.4	3.0	2.8	5.8	1.9
Median (50th percentile)	6.1		16.6	24.5	4.1	12.7	10.0	12.5	6.6
Upper Quartile (75th percentile)	17.3		42.2	92.8	12.3	54.7	35.3	27.3	22.1
Inter Quartile Range	15.2		35.7	82.3	10.9	51.7	32.5	21.5	20.1
Minimum Detected Value	25.1		35.0	76.6	13.3	66.6	77.0	21.2	40.2
Maximum Detected Value	539	27.3	170	453	480	700	7,710	98	7,710
Minimum Reporting Limit	2	10	2.4	5	0.5	0.5	0.5	2	0.5
Maximum Reporting Limit	20	20	5	5	14	10	30	4	30
Regression Equation	In(y) = 1.8016 + 1.5587*Z		In(y) = 2.8116 + 1.3814*Z	In(y) = 3.3892+ 1.5532*Z	In(y) = 1.4191 + 1.6187*Z	In(y) = 2.5432+ 2.1635*Z	In(y) = 2.3038 + 1.8696*Z	In(y) = 2.5294 + 1.1537*Z	In(y) = 1.8804 + 1.8015*Z
	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics	Bolded values are exact calculations. Unbolded values are estimated using regression on ordered statistics
Note:	(ROS).								

¹⁾ Insufficient data to calculate ROS for this sector

Appendix 2 Data Analysis Report: Evaluation of Monitoring Data from General NPDES Permits for Industrial and Construction Stormwater (WA State Dept. of Ecology)

DATA ANALYSIS REPORT

Evaluation of Monitoring Data from General NPDES Permits for Industrial and Construction Stormwater

Prepared for

Washington State Department of Ecology P.O. Box 47600 Olympia, Washington 98504-7600

and

EnviroVision 1220 East 4th Avenue Olympia, Washington 98506

Prepared by

Herrera Environmental Consultants, Inc. 2200 Sixth Avenue, Suite 1100 Seattle, Washington 98121 Telephone: 206/441-9080

		PRINCE AND ADDRESS OF THE PRINCE AND ADDRESS
		- dela
		:

Contents

Introduction		•
Data Sources		***********
Industria	Stormwater	
	ta Source	
	ta Quantity	
	ta Quality	
	tion Stormwater	
	ta Source	
Da	ta Quantity	
	ta Quality	
Data Analysis	Methods	13
Data Dist	ribution	13
	son among Industrial Categories	
-	son to NPDES Permit Benchmarks and Action Levels	
	son to Hypothetical Water Quality Criteria	
	Results	
-	Stormwater	
	bidity	
•	al Zinc	
	and Grease	
	al Copper	
	al Lead	
	logical Oxygen Demand	
	imonia Nitrogen	
	rate + Nitrite Nitrogen	
	al Phosphorus	
	tion Stormwater	
	d Conclusion	
	ribution	
	ons Among Industrial Categories	
	mparison to NPDES Permit Benchmarks and Action Levels	
	mparison to Hypothetical Water Quality Criteria	
Appendix A	Summary Statistics for Monitoring Parameters Measured in Industrial by Industry Sector	
Appendix B	Percentages of Samples Exceeding State Water Quality Standards by I Category Given Hypothetical Receiving Water Conditions and Varyin Factors	

Tables

Table 1.	Total number of facilities by industrial category	4
Table 2.	Total number of facilities by industrial sector.	5
Table 3.	Total number of available data values by monitoring parameter identified in the general NPDES industrial stormwater permit.	6
Table 4.	Total number of data values for primary analysis parameters by industrial category	7
Table 5.	Total number of data values for primary analysis parameters by industrial category	8
Table 6.	Breakdown of reported values, unreported values, and no qualifying storm event values by quarter of the year.	11
Table 7.	Benchmark values and action levels identified in the general NPDES industrial stormwater permit.	14
Table 8.	Representative theoretical background concentrations of pollutants for receiving water conditions in western and eastern Washington	16
Table 9.	Assumed total suspended solids concentrations and associated translator values for converting total metal concentrations to dissolved concentrations for receiving waters in western and eastern Washington.	17
Table 10.	Hypothetical acute and chronic water quality criteria for metals in receiving waters of western and eastern Washington.	18
Table 11.	Summary statistics for turbidity levels measured in industrial stormwater by industry category.	20
Table 12.	Comparison of median concentrations for industrial stormwater pollutants across industrial sectors.	22
Table 13.	Percentage of turbidity samples exceeding the state water quality criterion given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50	23
Table 14.	Summary statistics for pH levels measured in industrial stormwater by industry category.	25
Table 15.	Summary statistics for total zinc concentrations measured in industrial stormwater by industry category.	28
Table 16.	Percentage of total zinc samples exceeding state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.	31

Table 17.	Summary statistics for oil & grease concentrations measured in industrial stormwater by industry category.	33
Table 18.	Summary statistics for total copper concentrations measured in industrial stormwater by industry category.	36
Table 19.	Percentage of total copper samples exceeding state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.	38
Table 20.	Summary statistics for total lead concentrations measured in industrial stormwater by industry category	40
Table 21.	Percentage of total lead samples exceeding state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.	43
Table 22.	Summary statistics for BOD measured in industrial stormwater by industry category	45
Table 23.	Summary statistics for ammonia nitrogen measured in industrial stormwater by industry category.	45
Table 24.	Summary statistics for nitrate + nitrite nitrogen measured in industrial stormwater by industry category.	49
Table 25.	Summary statistics for total phosphorus measured in industrial stormwater by industry category.	52
Table 26.	Summary statistics for transparency, turbidity, and TSS measured in stormwater from Western Washington construction sites.	55
Table 27.	Percentage of turbidity samples exceeding state water quality criterion at construction sites given hypothetical receiving water conditions for western Washington and dilution factors of 0, 2.5, 5, and 10	55
Table 28.	Dilution factors required to meet water quality criteria assuming effluent concentrations equal the benchmarks specified in the general NPDES permit for construction and industrial stormwater.	60

Figures

Figure 1.	Distribution of unreported values for industrial stormwater by database qualifier.	9
Figure 2.	Turbidity levels measured in industrial stormwater by industrial category	21
Figure 3.	Levels of pH measured in industrial stormwater by industrial category	26
Figure 4.	Total zinc concentrations measured in industrial stormwater by industrial category	29
Figure 5.	Oil and grease concentrations measured in industrial stormwater by industrial category	34
Figure 6.	Total copper concentrations measured in industrial stormwater by industrial category	37
Figure 7.	Total lead concentrations measured in industrial stormwater by industrial category	41
Figure 8.	Biological oxygen demand concentrations measured in industrial stormwater by industrial category.	46
Figure 9.	Ammonia nitrogen concentrations measured in industrial stormwater by industrial category.	47
Figure 10.	Nitrate + nitrite nitrogen concentrations measured in industrial stormwater by industrial category.	50
Figure 11.	Total phosphorus concentrations measured in industrial stormwater by industrial category.	53

Introduction

The Washington State Department of Ecology (Ecology) is currently implementing a study to evaluate monitoring and reporting requirements identified in the state's existing general National Point Discharge Elimination System (NPDES) permits for industrial and construction stormwater. This study is required pursuant to Engrossed Substitute Senate Bill (ESSB) 6415 that was passed by the state legislature on March 9, 2004. The ultimate goal of this study is to develop improved monitoring requirements for these permits to determine the effectiveness of stormwater best management practices and to ascertain compliance with state water quality standards.

One of the initial tasks related to this study was a compilation, review, and analysis of existing data that have been collected through the general NPDES permits for industrial and construction stormwater. The primary goal of this analysis is to evaluate the utility of these data for gauging permit compliance and understanding the level of water quality protection that is occurring. This report was prepared by Herrera Environmental Consultants (Herrera) to summarize the results from this analysis. In keeping with the overall goal of this study, the specific objectives of this report are as follows:

- Describe the general distribution of industrial and construction stormwater data including central tendency, variation, and presence or absence of outliers.
- Compare existing industrial stormwater data across industrial categories to determine if there are significant differences in pollutant concentrations.
- Compare industrial and construction stormwater data to applicable benchmarks and action levels established by the general permits.
- Compare industrial and construction stormwater data to hypothetical state water quality criterion that are derived based on representative receiving water conditions and dilution factors. (Note that compliance with actual state water quality standards cannot be assessed using data compiled through the general NPDES permits for industrial and construction stormwater. To predict compliance with standards would require additional site-specific data, receiving water data, and assessment of narrative standards and other policies.)

This report begins with a description of the data sources that were used in this analysis. The specific data analysis methods that were used to meet the study objectives identified above are then described in detail. The results from these analyses are then presented with supporting tabular and graphical data summaries provided as necessary. Finally, these results are discussed in relation to the primary goal of the study with major conclusions from this analysis summarized in the final section of the report.

The state of the s	
· · ·	
:	
:	
; ; ;	
· · · · · · · · · · · · · · · · · · ·	
:	

Data Sources

The specific sources for data that were analyzed within this report are summarized under separate subsections below for industrial and construction stormwater, respectively. Included are descriptions of how the data were compiled and the associated temporal and geographic coverage. The total quantity of data that was compiled from each source is also described along with any known quality assurance issues.

Industrial Stormwater

Data Source

Industrial stormwater data were compiled by Ecology from Discharged Monitoring Reports (DMRs) that were submitted by permittees pursuant to the monitoring and reporting requirements of the general NPDES industrial stormwater permit. These data were initially entered into a database system that is maintained at Ecology's headquarter office in Olympia and then exported to a Microsoft Excel® spreadsheet for subsequent analysis by Herrera. This spreadsheet included data from NPDES sampling that was conducted the second, third, and fourth quarters of 2003 and all four quarters of 2004 and 2005. These data were obtained from a total of 808 permitted facilities with 758 located in Western Washington, 45 in Eastern Washington, and 8 unclassified because no address information was provided in the database.

For subsequent analyses of the industrial stormwater data, these 808 facilities were subdivided into one of 11 general industrial categories that are defined in the NPDES permit and Code of Federal Regulations [40 CFR 122.26(b)(14)]. The associated category names were simplified to the descriptions used by the U.S. EPA to define categories of stormwater discharges (U.S. EPA, 2006). A twelfth category identified as "Significant Contributor (12)" was present in the dataset from Ecology, but not defined in the NPDES permit or Code of Federal Regulations. Finally, a thirteenth category, "No Category Specified", was added because several facilities within the dataset could not be classified within any of the other 12 categories. The names of all 13 categories and number of facilities that fall into each of these categories are provided in Table 1. These data indicate that the number of facilities in each category ranges from 0 to 238. However, 83 percent of the facilities were concentrated in just three categories: Manufacturing (02), Transportation Facilities (08), and Light Industrial Activity (11). Out of the remaining facilities, 15 percent were concentrated in the following four categories: Landfills (05), Recycling Facilities (06), Treatment Works (09), and No Category Specified. In general, the analyses performed in this report generally focused on the data from these seven categories.

The facilities were further subdivided into industrial sectors based on the first two digits of their Standard Industrial Classification (SIC) codes. SIC Codes are assigned in the permitting process based on the primary activities performed at a facility. Categorization at this level allows for a more detailed evaluation of the types of facilities that are represented in the database. For this analysis, 35 industrial sectors were identified based on SIC codes that were present in the

database. These 35 industrial sectors were generally derived from the 30 sectors of industrial activity that are defined in the Federal Register (Vol. 65, No. 210). However, some variation from the categories in the Federal Register exist due to the exclusion of some SIC codes entirely (e.g., Agricultural Services [07], Forestry [08]) and the combination of multiple SIC codes in a single sector (e.g., Sector Y includes Rubber and Miscellaneous Plastic Products [30] and Miscellaneous Manufacturing Industries [39]). The names of all 35 industrial sectors and number of facilities that fall into each of these sectors are provided in Table 2. These data show the number of facilities in each industrial sector ranges from 1 to 127, with an average of 22 facilities present in each industrial sector across all 35 categories. In general, the analyses performed in this report were not conducted at this level due to the low data volume within each industrial sector.

Table 1. Total number of facilities by industrial category.

Category	Number of Facilities
01 - Facilities with effluent limitations	1
02 - Manufacturing	233
03 - Mineral, metal, oil, and gas	4
04 - Hazardous waste treatment, or disposal facilities	0
05 - Landfills	20
06 - Recycling facilities	64
07 - Steam electric plants	2
08 - Transportation facilities	205
09 - Treatment works	12
10 - Construction sites > 5 acres	1
11 - Light industrial activity	238
12 - Significant contributor	1
NC - No category specified	27

Data Quantity

Overall, the data set obtained for industrial stormwater contained 21,486 values for a total of 22 different parameters. The number of values available for specific monitoring parameters can be divided into high, intermediate, and low categories depending on their associated monitoring requirements as identified in the NPDES permit. For example, turbidity, pH, total zinc, and oil & grease have the highest number of values because all facilities are required by the NPDES permit to conduct sampling for these parameters. As shown in Table 3, the total number of values for these parameters ranges from 2,651 to 4,479.

Table 2. Total number of facilities by industrial sector.

SIC Code	Sector	Number of Facilities
07	Agricultural Services	1
08	Forestry	1
10	Metal Mining	1
12	Coal Mining	1
17	Construction Special Trade Contractors	3
20	Food and Kindred Products	40
22	Textile Mill Products	3
24	Lumber and Wood Products	127
25	Furniture and Fixtures	3
26	Paper and Allied Products	14
27	Printing, Publishing and Allied Industries	2
28	Chemicals and Allied Products	40
29	Petroleum and Coal Products	6
30	Rubber and Miscellaneous Plastic Products	37
31	Leather and Leather Products	1
32	Stone, Clay and Glass Products	23
33	Primary Metals Industries	13
34	Fabricated Metal Products	62
35	Industrial & Commercial Machinery and Computer Equipment	28
36	Electronic and Other Electrical Equipment	7
37	Transportation Equipment	33
38	Measuring, Analyzing, and Controlling Instruments; Photographic; Optical Goods	1
39	Miscellaneous Manufacturing Industries	6
40	Railroad Transportation	11
41	Local and Interurban Passenger Transportation	23
42	Motor Freight Transportation and Warehousing	108
44	Water Transportation	30
45	Transportation by Air	21
47	Transportation Services	2
49	Electric, Gas, and Sanitary Services	42
50	Wholesale Trade-Durable Goods	63
51	Wholesale Trade Non-Durable Goods	23
52	Building Materials, Hardware, Garden Supply, & Mobile Home Dealers	2
82	Educational Services	1
95	Environmental Quality Programs	2
	Total	781

Table 3. Total number of available data values by monitoring parameter identified in the general NPDES industrial stormwater permit.

	Total Number of
Parameter	Values
Turbidity	4479
рН	4442
Zinc, Total	4264
Oil & Grease	2651
Copper, Total	1177
Lead, Total	1034
BOD, 5 day, 20 deg. C	1105
Phosphorus, Total	410
Nitrogen, Nitrite + Nitrate, Total	397
Solids, Total Suspended	146
Nitrogen, Ammonia, Total	70
Oxygen, Dissolved	51
Benzoic Acid	46
Phenol	46
P-Cresol (4-Methylphenol)	44
Alpha-Terpineol	40
Coliform, Fecal	18
Mercury, Total	7
Nitrogen, Nitrate, Total	7
Chromium, Total	4
Cadmium, Total	2
Total Dissolved Gas	1

Unlike the four parameters noted above, the NPDES permit only requires routine sampling for total copper, total lead, biochemical oxygen demand (BOD), ammonia nitrogen, nitrate + nitrite nitrogen, and total phosphorus for specific industrial sectors. For example, monitoring for total copper and total lead is only required at facilities that fall into one of the following five industry sectors: Primary Metals, Metal Mining, Automobile Salvage, Scrap Recycling, or Metals Fabricating. Additionally, sampling for these parameters is required if data from a particular facility indicates the benchmark for total zinc has been exceeded for two consecutive quarters. Because of these less stringent sampling requirements, these six parameters are classified as intermediate with regard to the number of data values that are available. As shown in Table 3, the total number of values in this category ranges from 70 to 1,177.

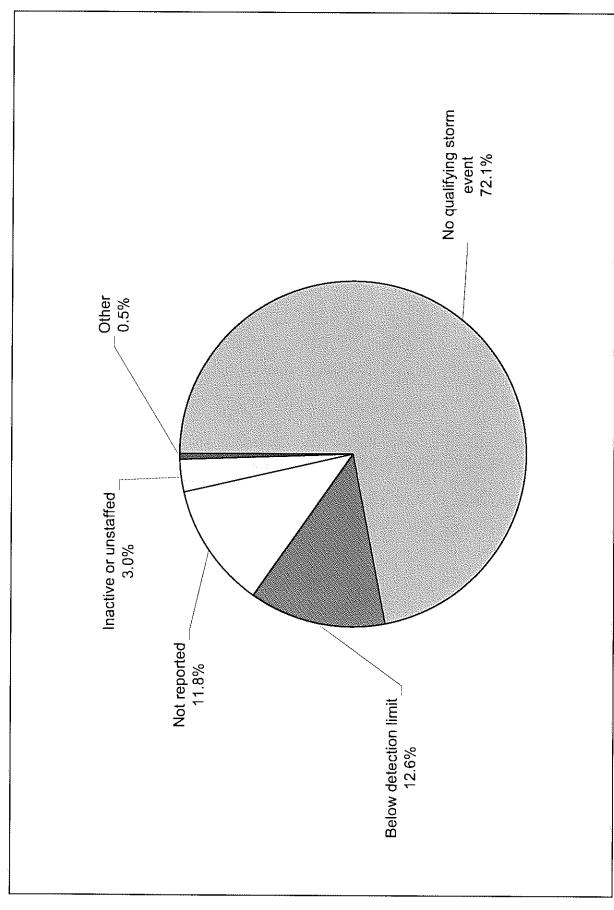
The remaining 12 parameters in Table 3 are classified as low with regard to the number of data values that are available. The total number of values in this category ranges from 1 to 146. Furthermore, there are no specific benchmark or action levels identified in the NPDES permit for these parameters. Due to these considerations, subsequent analyses presented in this report focused on parameters in the high to intermediate data quantity categories. These ten parameters (i.e., turbidity, pH, total zinc, oil & grease, total copper, total lead, BOD, ammonia nitrogen,

nitrate + nitrite nitrogen, and total phosphorus) are hereafter referred to as the "primary analysis parameters" within this report.

As noted above, data analyses presented within this report will examine trends in the industrial stormwater data across 13 industrial categories (see Table 1). The number of values that are available within each of these categories is shown in Table 4 for each of the primary analysis parameters. Similarly, the number of values that are available within each of the 35 industrial sectors is shown in Table 5 for these same parameters.

Table 4. Total number of data values for primary analysis parameters by industrial category.

	Number of Values per Parameter						
1.1				Oil &			
Industrial Category	Turbidity	pН	Zinc	Grease	Copper	Lead	BOD
01 - Facilities with effluent limitations	8	8	8	0	4	2	0
02 - Manufacturing	1327	1323	1233	722	280	230	743
03 - Mineral, metal, oil, and gas	24	24	23	23	1	1	0
04 - Hazardous waste treatment, or disposal facilities	0	0	0	0	0	0	0
05 - Landfills	135	135	120	75	22	21	64
06 - Recycling facilities	295	294	288	196	196	178	0
07 - Steam electric plants	3	3	3	1	0	0	0
08 - Transportation facilities	1010	988	959	557	196	169	8
09 - Treatment works	77	77	76	55	18	18	0
10 - Construction sites > 5 acres	6	6	6	6	0	0	0
11 - Light industrial activity	1450	1445	1412	950	440	396	275
12 - Significant contributor	7	7	4	0	0	0	0
NC - No category specified	137	132	132	66	20	19	15
Total	4479	4442	4264	2651	1177	1034	1105


Data Quality

The data quality for industrial stormwater was assessed based on a review of outliers, missing data, and data qualifiers that were present in the database that was obtained from Ecology. In total, there were 22,794 entries in the database with no value reported for various reasons. Three parameters (e.g., arsenic, chlorine, and guthion) had no results reported. There were also 181 facilities in the database that did not report any values. The primary reasons cited for not reporting values are summarized in Figure 1 based on the qualifiers present in the database. These data show that "No Qualifying Storm Event" was cited most frequently (72 percent of the time) for unreported values. Approximately 13 percent of the unreported values were listed as below detection limit; however, no detection limit was provided. Three additional qualifiers within the database (i.e., Not Reported, Value Not Submitted, and DMR Not Submitted) were cited 12 percent of the time for unreported values (these categories are collectively grouped under the "Not Reported" heading in Figure 1). The other frequently cited qualifiers for

unreported data include: consistent attainment, equipment failure, incorrect analysis, laboratory error, lost sample, no discharge, and other.

Table 5. Total number of data values for primary analysis parameters by industrial category.

		•	N	umber of	Values pe	r Parameter		
SIC Code	Category	Turbidity	pН	Zinc, Total	Oil & Grease	Copper, Total	Lead, Total	BOD
07	Agricultural Services	5	5	5	5			
08	Forestry	7	7	4				
10	Metal Mining	1	1	1	1	I	1	
12	Coal Mining	9	9	9	9			
17	Construction Special Trade Contractors	19	19	19	5	12	11	
20	Food and Kindred Products	268	265	269	213	58	55	221
22	Textile Mill Products	18	18	18	11	10	9	
24	Lumber and Wood Products	799	784	734	382	83	67	615
25	Furniture and Fixtures	14	14	12	9			
26	Paper and Allied Products	77	80	79	69	8	8	20
27	Printing, Publishing and Allied Industries	10	10	10				
28	Chemicals and Allied Products	226	226	221	156	49	43	159
29	Petroleum and Coal Products	27	27	23	18			
30	Rubber and Miscellaneous Plastic Products	207	206	202	129	43	33	
31	Leather and Leather Products	4	4	4	4			
32	Stone, Clay and Glass Products	109	111	100	51	12	4	
33	Primary Metals Industries	75	76	76	54	65	48	
34	Fabricated Metal Products	307	302	291	192	215	192	
35	Industrial & Commercial Machinery & Computer Equip.	86	91	79	36		1	
36	Electronic and Other Electrical Equipment	63	65	65	53	10	8	
37	Transportation Equipment	343	344	329	197	132	122	
38	Measuring, Analyzing, and Controlling Instruments; Photographic; Optical Goods	8	8	8	8			
39	Miscellaneous Manufacturing Industries	24	24	24	11	3	4	
40	Railroad Transportation	54	54	50	26	10	8	
41	Local and Interurban Passenger Transportation	101	100	101	54	13	9	
42	Motor Freight Transportation & Warehousing	529	526	502	302	127	111	6
44	Water Transportation	151	151	145	92	30	27	
45	Transportation by Air	154	137	146	74	15	15	
47	Transportation Services	4	4	4	3			2
49	Electric, Gas, and Sanitary Services	250	250	224	153	37	36	64
50	Wholesale Trade-Durable Goods	289	289	276	191	204	186	
51	Wholesale Trade Non-Durable Goods	89	88	88	67	16	13	3
52	Building Materials, Hardware, Garden Supply, & Mobile Home Dealers	2	2	1	1	-	-	-
82	Educational Services	1	1	1				
95	Environmental Quality Programs	12	12	12	9	4	4	
	Total	4342	4310	4132	2585	1157	1015	1090

- AAAAAAAAAAAAAAA

The reported and unreported values were also summarized for each quarter to determine if the time of year made a difference in the reporting frequency (Table 6). The number entries in the database with the "No Qualifying Storm Event" qualifier was also tallied on a quarterly basis to determine if a lack of rainfall during dry seasons was a primary influence on reporting frequency. These data show there are not substantial differences between the total number of values reported for each quarter; however, the first quarter of 2003 was not included in this dataset, thus the number of values in this quarter only represent two years of sampling instead of three years for the 2nd, 3rd, and 4th quarters. Although the number of values reported on a quarterly basis did not vary greatly, the values not reported and the no qualifying storm event categories do appear to be substantially higher in the 2nd and 3rd quarters. This suggests that reporting frequency was lower during the summer period (April – Sept.) primarily due to a lack of qualifying storm events.

Table 6. Breakdown of reported values, unreported values, and no qualifying storm event values by quarter of the year.

	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Values reported	5533	5880	4634	5439
Values not reported	4362	8343	7885	4424
No qualifying storm event	2159	5831	6200	2238

Construction Stormwater

Data Source

In general, sources for construction stormwater data are extremely limited due to a lack of monitoring and reporting requirements prior to the issuance of the revised general NPDES construction stormwater permit in November 2005. Construction stormwater data that are analyzed within this report were obtained from an Ecology (2005) study that was implemented over two winter wet seasons in 2003/04 and 2004/05. The primary objective of this study was to obtain representative data to characterize the quality of stormwater discharged from construction sites. To meet this objective, a "snap-shot" survey of construction sites was conducted to measure turbidity, transparency, and total suspended solids (TSS) in their associated runoff. In addition to the collection of these data, monitoring personnel also documented site conditions during the surveys including site size, stage of construction, and the types of best management practices (BMPs) that were in use.

In order to conduct this survey, a list of 183 eligible construction sites in four counties within Western Washington (i.e., King, Snohomish, Pierce, and Thurston) was developed using Ecology's Water Quality Permit Life Cycle System (WPLCS) database. Site visits were then conducted at these construction sites and samples were collected if stormwater was observed discharging off-site. In summary, a total of 44 unique sites were sampled in connection with this effort. Out of the remaining 139 sites from the WPLCS database, eight could not be located, 13 had already completed construction, 15 had not yet started construction, and 103 had no discharge at the time of the site visit.

As noted above, Ecology monitoring personnel documented the conditions at each of 44 sampling sites. Based on this information, 36 percent of the sites were described as large (i.e., > 20 acres), 48 percent as medium (i.e., between 5 and 20 acres), 14 percent as small (i.e., < 5 acres), and 2 percent unclassified due to a lack of data. All 44 sites also had at least one of the following BMPs: storm drain protection, stormwater pond or basin, and disturbed soil protection (e.g., mulch, plastic, vegetation, or erosion control blankets). Finally, the Ecology monitoring personnel indicated that six of the sites discharged directly to receiving waters, all of which were small streams with widths of 2 to 5 feet. The remainder of the sites either allowed the stormwater water to infiltrate into the ground or discharged it to a municipal stormwater collection system.

Data Quantity

A total of 47, 49, and 50 values were obtained for transparency, turbidity, and TSS, respectively from sampling conducted at the 44 sites identified above. (Note that multiple samples were collected from several of the 44 sites.) These numbers are consistent with Ecology's goal of collecting at least 45 samples that was established at the study's onset.

Data Quality

The primary data quality issues for construction stormwater are the limited geographic and temporal coverage of the sampling. For example, sampling for this study was limited to a relatively small number of sites spread throughout four counties in Western Washington. Furthermore, the monitoring only spanned two winter seasons, both of which were drier than normal (Ecology 2005). Finally, the total number of values obtained from this study is relatively small. Therefore, definitive conclusions regarding construction stormwater quality cannot be inferred based on these data.

Data Analysis Methods

Analysis methods for the industrial and construction stormwater data are described in the following sections. The presentation of this information is organized under separate subsections for each of the data analysis goals identified in the introduction to this report.

Data Distribution

Tabular and graphical summaries were generated to show the distribution of the compiled industrial and construction stormwater data including: central tendency, variation or spread, skewness, and presence or absence of outliers. The tabular summaries specifically present the following summary statistics for each monitoring parameter:

- Sample size (total number of values)
- Mean
- Median
- Minimum
- 10th Percentile
- 90th Percentile
- Maximum
- Standard deviation
- Coefficient of variance (CV).

Graphical data summaries consisting of "box and whisker" plots were generated to present the following information: the 10th and 90th percentiles of the data as the lower and upper whiskers, respectively; the 25th and 75th percentiles of the data as the lower and upper boundaries of the box, respectively; and the median as the point in the box.

For the industrial stormwater data, the tabular and graphical summaries were generated for the ten primary analysis parameters identified previously. These summaries were organized to facilitate comparisons of the data across the 13 industrial categories (see Table 1). Additional tabular summaries with a subset of the summary statistics identified above were also generated to facilitate comparisons of the data across the 35 industrial sectors (see Table 2). However, these latter summaries are not presented or discussed within the main body of this report; rather, they are presented in Appendix A for reference only.

Only tabular data summaries were prepared for the construction stormwater data. These summaries present the statistics identified above for the transparency, turbidity, and TSS data that were compiled from Ecology (2005).

Comparison among Industrial Categories

Statistical analyses were performed on the data from the ten primary analysis parameters to determine whether there were significant differences in median concentrations across the

industrial categories. To ensure that sufficient data were available to accurately describe the data distribution for each parameter, only those industrial categories with at least 25 samples were included in these analyses. In cases where more than two industrial categories had adequate numbers of samples, these statistical comparisons were made using a Kruskal Wallis test (Helsel and Hirch 1992). If the Kruskal Wallis test indicated that significant differences in median concentrations existed between one or more of the industrial categories, a follow-up nonparametric multiple range test (Zar 1984) was performed on the data to determine which specific categories were different from the others. In cases where only two industrial categories had adequate numbers of samples, the statistical comparisons were made using a Mann Whitney U test. For all tests, statistical significance was evaluated at an alpha level (α) of 0.05.

Comparison to NPDES Permit Benchmarks and Action Levels

In order to assess compliance with the general NPDES industrial stormwater permit, the compiled industrial stormwater data for turbidity, pH, total zinc, oil & grease, total copper, total lead, BOD, ammonia nitrogen, nitrite + nitrate nitrogen, and total phosphorus were compared to applicable benchmarks and action levels identified in Table 7. Similarly, the compiled construction stormwater data for turbidity were compared to the applicable benchmark (i.e., 50 nephelometric turbidity units [NTU]) and action level (i.e., 250 NTU) from the general NPDES construction stormwater permit. Based on these comparisons, the percentage of samples exceeding the benchmark and action levels was calculated. For the industrial stormwater data, these percentages were calculated for each individual industrial category in Table 1, Western Washington, Eastern Washington, and the entire state of Washington.

Table 7. Benchmark values and action levels identified in the general NPDES industrial stormwater permit.

Parameter	Benchmark	Action Level
BOD, 5 day, 20° C (mg/L)	30, 140 ^a	60
Copper (μg/L)	63.6	149
Lead (μg/L)	81.6	159
Nitrogen, Ammonia, Total (mg/L)	10 ^a , 21.8	38
Nitrogen, Nitrite + Nitrate, Total (mg/L)	0.68	1.36
Oil & Grease (mg/L)	15	30
pH	range 6-9	range 5-10
Phosphorus, Total (mg/L)	2	4
Turbidity (NTU)	25	50
Zinc, Total (μg/L)	117	372

mg/L: milligrams/liter.

μg/L: microgram/liter. NTU: nephelometric turbidity unit.

The 140 mg/L benchmark for BOD and 10 mg/L benchmark for ammonia nitrogen are associated with non-hazardous waste landfills listed in the industrial category 05-Landfills.

Comparison to Hypothetical Water Quality Criteria

The task to determine whether dischargers covered under a general permit are in compliance with the surface water quality standards presents significant challenges. Compliance with Washington's water quality standards requires assessment of the discharger's compliance with the numeric criteria and narrative standards and policies. These physical and chemical criteria have been determined by the U.S. Environmental Protection Agency to be protective of aquatic life, human health, and sediment quality. They are periodically revised to incorporate the best available science. In the case of an individual discharger, Ecology conducts a reasonable potential analysis that compares pollutant concentrations in the discharge with the physical and chemical properties of the receiving water to determine compliance with the numeric criteria.

Water quality standards take into account potential dilution, ratio of dissolved to total metals, water effects ratios, and background concentration. These are site specific parameters. The calculations used for this study take into account only dilution and dissolved to total metals ratio.

The narrative standards and policies portion of the water quality standards are more difficult to quantify. They include such prohibitions as: no toxic substances in toxic amounts, no resulting increase of pollutant concentrations above background (the antidegradation policy), or the loss of a beneficial use. Compliance with narrative standards and policies require conducting site-specific studies of the discharge and its physical, chemical, and biological impacts to receiving water. Assessing compliance with the narrative standards and policies portion of the water quality standards is beyond the scope of the programmatic approach used in this report.

In order to determine if the designated uses of a water body, as defined in WAC 173-201A, are adequately maintained through the general NPDES industrial stormwater permit, the compiled industrial stormwater data for turbidity, total zinc, total copper, and total lead were compared to hypothetical water quality criteria based on a set of representative receiving water conditions and dilution factors. A similar approach was applied to the compiled construction stormwater data for turbidity to determine if the designated uses of a water body are adequately maintained through the general NPDES construction stormwater permit. Based on these comparisons, the percentage of samples that would potentially exceed the water quality criteria was calculated using all the compiled data for each parameter and only those data that did not exceed the benchmark. For the industrial stormwater data, these percentages were also calculated for each individual industrial category identified in Table 1.

To assess the sensitivity of these analyses, these percentages were calculated using three separate sets of representative receiving water conditions to represent typical, worst case, and best case scenarios for the potential to exceed water quality standards. For example, all the conditions (e.g., receiving water background pollutant concentration and hardness) selected under the worst case scenario would make it more likely that the water quality criteria would be exceeded for any given parameter.

The specific steps that were used to compare sample concentrations to the water quality criteria are as follows:

1. Typical, worst case, and best case background concentrations for each parameter were generated for western and eastern Washington, respectively, based on queries of Ecology's Environmental Information Management System (EIM) database (Ecology, 2006). More specifically, the EIM database was queried to obtain data from river systems in each region of the state for the targeted parameters (i.e., turbidity, total zinc, total copper, and total lead). The typical scenario for total zinc, total copper, and total lead was developed using the mean value from the dataset for each parameter. The worst case scenario used the 75th percentile, and the best case the 25th percentile. The typical scenario for turbidity was developed using the mean value from the dataset, the worst case scenario used the 25th percentile, and the best case the 75th percentile. These concentrations are presented in Table 8.

Table 8. Representative theoretical background concentrations of pollutants for receiving water conditions in western and eastern Washington.

	Dissolved Copper µg/L	Dissolved Lead µg/L	Dissolved Zinc μg/L	Turbidity NTU
	W	estern Washing	ton	
Worst-Case	1.5	0.24	5.0	1.7
Typical	0.77	0.047	1.8	3.8
Best-Case	0.46	0.021	1.0	10
	E:	stern Washing	ton	
Worst-Case	1.18	0.3	33	1.4
Typical	0.71	0.088	3.3	3.8
Best-Case	0.49	0.023	1.0	10

Data source: Queries of Environmental Information Management system; Ecology (2006). µg/L: microgram/liter.

NTU: nephelometric turbidity unit.

2. Using the sample concentrations from the compiled industrial and construction stormwater, a theoretical receiving water concentration at the facility's point of discharge was calculated using the typical, worst case, and best case background concentrations from Step 1, and assumed dilution factors within the receiving water of 0, 10, 25, and 50 for the facility's stormwater discharge. The following equation was used to make these calculations for the 2.5, 5, and 10 dilution factors:

$$C_r = (1/F_d \times C_f) + ([1 - 1/F_d] \times C_b)$$

where:

 C_r = receiving water concentration at facility point of discharge F_d = dilution factor

 C_f = stormwater sample concentration from facility C_b = receiving water background concentration.

3. Theoretical receiving water concentrations computed for total zinc, total copper, and total lead from Step 2 were converted to dissolved concentrations to facilitate comparisons to the water quality criteria which are based on the dissolved forms of these metals. These conversions were made using "translator values" that were derived from guidance presented by Pelletier (1996). Because these translator values vary depending on the TSS concentration in the receiving water, the EIM database was again queried to obtain typical, worst case, and best case concentrations for this parameter in eastern and western Washington, respectively. The typical scenario was developed using the mean value from each dataset, the worst case scenario used the 25th percentile, and the best case the 75th percentile. These TSS concentrations and the associated translator values are presented in Table 9.

Table 9. Assumed total suspended solids concentrations and associated translator values for converting total metal concentrations to dissolved concentrations for receiving waters in western and eastern Washington.

	Assumed TSS Concentrations ^a (mg/L)	Copper Translator	Lead Translator	Zinc Translator
	West	tern Washington		
Worst-Case	2	1	0.466	1
Typical	5	1	0.466	1
Best-Case	14	0.931	0.466	0.973
	East	ern Washington		
Worst-Case	3	1	0.466	1
Typical	7	1	0.466	1
Best-Case	23	0.786	0.466	0.868

^a Data source: Queries of Environmental Information Management system; Ecology (2006).

4. Theoretical receiving water concentrations from Step 2 (turbidity only) and Step 3 (dissolved zinc, dissolved copper, and dissolved lead) were compared to hypothetical water quality criteria. Because state water quality standards for zinc, copper, and lead vary with the hardness of the receiving water, the EIM database was again queried to obtain typical, worst case, and best case concentrations for this parameter in eastern and western Washington, respectively. The typical scenario was developed using the mean value from each dataset, the worst case scenario used the 25th percentile, and the best case the 75th percentile. These hardness concentrations were used to determine the water quality criteria which are

presented in Table 10. The state water quality standard for turbidity requires that stormwater related increases in the receiving water not exceed background turbidity by 5 NTU. To assess compliance with the hypothetical water quality criterion in this analysis, the theoretical receiving water turbidity levels from Step 2 were compared to the background turbidity levels presented in Table 8. If more than a 5 NTU increase was observed, it was assumed that the water quality criterion for turbidity was exceeded.

Table 10. Hypothetical acute and chronic water quality criteria for metals in receiving waters of western and eastern Washington.

. .	Assumed	Dissolve	ed Copper	Dissolv	ed Lead	Dissol	ved Zinc
	Hardness ^a	Acute	Chronic	Acute	Chronic	Acute	Chronic
	(mg/L as CaCO ₃)	μg/L	μg/L	μg/L	μ g /L	μg/L	μg/L
		Weste	rn Washing	ton			
Worst-Case	18	3.4	2.6	9.6	0.37	27	24
Typical	25	4.6	3.5	14	0.54	35	32
Best-Case	36	6.5	4.7	21	0.81	48	44
		Eastei	rn Washing	ton			
Worst-Case	35	6.3	4.6	20	0.79	47	43
Typical	68	12	8.2	42	1.6	83	75
Best-Case	100	17	11	65	2.5	114	105

Hardness used to compute water quality criteria for copper, lead, and zinc. Data source: Queries of Environmental Information Management system; Ecology (2006).
 mg/L: milligrams/liter.
 µg/L: microgram/liter.

5. For each parameter, the percentage of samples exceeding the water quality criteria was calculated based on all the compiled data and only those data that did not exceed the benchmark. For the industrial stormwater data, these percentages were calculated for each individual industrial category identified in Table 1. These results were then compiled in summary tables.

Data Analysis Results

Data analysis results from the compiled monitoring data are presented herein. These results are organized under separate subsections for industrial and construction stormwater data.

Industrial Stormwater

Data analysis results for industrial stormwater are summarized below under separate sections for each of the primary analysis parameters. For each parameter, the results are presented in relation to the study objectives that were identified in the introduction to this report. Specifically, separate subsections present results for the each of the following analyses as described in the previous section: data distribution, comparison among industrial categories, comparison to NPDES permit benchmarks and action levels, and comparison to state water quality standards (if applicable).

Turbidity

Data Distribution

Tabular and graphical data summaries for turbidity levels are provided in Table 11 and Figure 2, respectively, by individual industrial category and for all categories combined. Tabular data summaries for turbidity are also provided in Appendix A by industrial sector; however, these data are presented for reference only and are not discussed herein. Turbidity had the largest quantity of data of all the parameters with 4,479 values across all the industrial categories. The mean and median values from these data were 66 and 15 NTU, respectively; and the coefficient of variation was 4.1. The asymmetrical shape of the box plots presented in Figure 2 indicate that the turbidity data have a right-skewed distribution due to the presence of numerous outliers in the upper end of the data range. Across all industrial categories, the 90th percentile and maximum values for the data were 120 and 9,700 NTU, respectively.

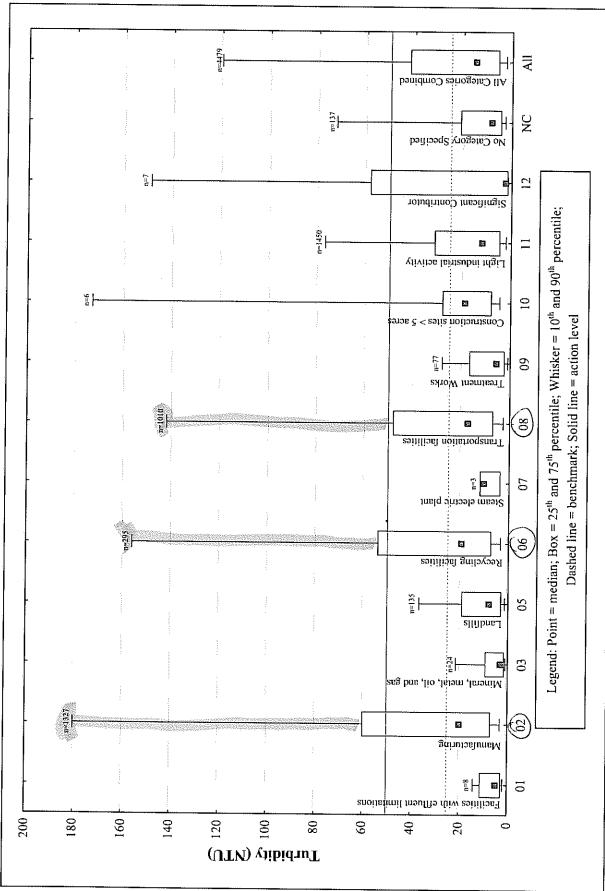
Comparison Among Industrial Categories

Sufficient amounts of data (i.e., n > 25) for statistical comparisons of turbidity levels were only available in the following seven industrial categories (Table 11). Results from these analyses (i.e., Kruskal Wallis test and follow-up multiple range test) indicate the data can generally be differentiated into two groups with low and high median turbidity levels, respectively (Table 12). Specifically, median levels for the Treatment Works (09), Landfills (05), No Category Specified, and Light Industrial Activity (11) categories were significantly lower than those for the remaining three categories: Transportation Facilities (08), Recycling Facilities (06), and Manufacturing (02).

Table 11. Summary statistics for turbidity levels measured in industrial stormwater by industry category.

Industry Category	Ц	Mean (NTU)	Median (NTU)	Minimum (NTU)	10 th Percentile (NTU)	90 th Percentile (NTU)	Maximum (NTU)	Std. Dev. (NTU)	Coefficient of Variation	Exceedance of Benchmark ^a	Exceedance of Action Level ^b
01 - Facilities with effluent limitations	∞	6.7	5.0	1.9	1.9	14	14	4.9	0.73	%0	%0
02 - Manufacturing	1,327	93	20	0.16	3.1	180	9,700	356	3.84	45%	27%
03 - Mineral, metal, oil, and gas	24	8.3	3.2	0.43	1:1	22	52	12	1.51	%8	4%
05 - Landfills	135	15	7.9	0.48	1.4	37	165	21	1.44	16%	4%
06 - Recycling facilities	295	58	19	0.0	3.3	156	710	104	1.80	42%	27%
07 - Steam electric plants	٣	6	10	3.7	3.7	12	12	4.4	0.50	%0	%0
08 - Transportation facilities	1,010	81	17	0	2.7	142	5,380	319	3.94	40%	24%
09 - Treatment works	11	13	5.7	0.4	1.0	28	100	18	1.39	10%	%8
10 - Construction sites > 5 acres	9	42	19	4.5	4.5	173	173	65	1.55	20%	17%
11 - Light industrial activity	1,450	45	12	0.05	2.1	77	5,490	189	4.17	31%	16%
12 - Significant contributor	7	31	2.5	1.5	1.5	149	149	99	1.80	29%	29%
No category specified	137	38	8.4	0.7	2.7	72	1,190	118	3.13	24%	15%
All categories	4,479	99	15	0	2.4	120	6,700	272	4.10	37%	21%
8 Danzle - All France, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,											

Benchmark for turbidity is 25 NTU.


Action level for turbidity is 50 NTU.

Std. Dev.: Standard Deviation.

wp4 /05-03123-000 data analysis report doc

-19, 2006

ò O

Turbidity levels measured in industrial stormwater by industrial category. Figure 2.

October 19, 2006

Table 12. Comparison of median concentrations for industrial stormwater pollutants across industrial sectors.

				Ind	ustrial Categ	зогу		
Parameter	p-value ^a	Low Me	an Rank				High Me	an Rank
Turbidity	< 0.0001	09	05	NC	. 11	08	06	02
рН	< 0.0001	11	NC	02	09	08	06	05
Total Zinc	< 0.0001	05	09	06	02	08	NC	11
Oil and Grease	< 0.0001	09	11	02	NC	05	08	06
Total Copper	0.4909	02		06		08		11
Total Lead	< 0.0001	11		02		08		06
BOD	< 0.0001	05			02			11

Values in bold indicate significant differences exist between industrial categories based on a Kruskal Wallis test (α = 0.05).
 Industrial categories connected by a single unbroken line are not significantly different based on a nonparametric multiple range test.

Comparison to NPDES Permit Benchmarks and Action Levels

Analyses performed across all 13 industrial categories showed that 37 and 21 percent of the samples had turbidity values that exceeded the applicable benchmark (25 NTU) and action level (50 NTU), respectively (Table 11). Considering only the seven industrial categories in Table 11 with a relatively large number of samples (i.e., n > 25), the benchmark and action level for turbidity were exceeded in at least 40 and 24 percent of the samples, respectively, in the following three industrial categories: Manufacturing (02), Recycling Facilities (06), and Transportation Facilities (08). The benchmark and action level for turbidity were exceeded in fewer than 31 and 16 percent of the samples, respectively, for the remaining four industrial categories: Landfills (05), Treatment Works (09), Light Industrial Activity (11), and No Category Specified.

Comparison to Hypothetical Water Quality Criteria

Results from the comparisons of sample concentrations to the hypothetical water quality criterion for turbidity are summarized in Table 13 for western Washington, eastern Washington, and the entire state. The results are subdivided within this table to show the percentage of samples exceeding the applicable criterion based on all collected samples versus only those samples with concentrations below the benchmark. The presentation of these results is also organized under separate subsections below based on these divisions of the data. Finally, Appendix B (Tables B-1 and B-2) provides a more detailed data summary with comparisons by industrial category for samples collected in eastern and western Washington.

All Collected Samples

Analyses of the compiled data showed high percentages of samples exceeding the hypothetical water quality criterion for turbidity with dilution factors of 0 and 10; however, these percentages declined considerably with dilution factors of 25 and higher (Table 13). For example, across the

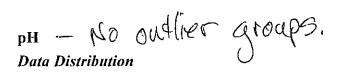
entire state of Washington and all 13 industrial categories, the percentages of samples that exceeded the criterion were 64 and 20 percent given the "typical" receiving water conditions described previously and dilution factors of 0 and 10, respectively. Given the same receiving water conditions and dilution factors of 25 and 50, these percentages dropped to 9 and 5 percent, respectively.

Table 13. Percentage of turbidity samples exceeding the state water quality criterion given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

			Exceedance of	Criterion (%)	q
	n	0 DF	10 DF	25 DF	50 DF
		All Samp	les		
Western Washington	4280	64	20	9	5
Western Washington	4200	(49-70)	(18-21)	(9)	(5)
Eastern Washington	184	80	27	17	8
Eastern washington	104	(65-87)	(25-30)	(15-17)	(8)
All Washington	4464	65	21	10	5
7 th 77 tionington	4404	(50-71)	(18-21)	(9-10)	(5)
	Sample	s with Values	≤ Benchmark		
Western Washington	2740	44	0	0	0
Western Washington	2/40	(21-54)	(0)	(0)	(0)
Eastern Washington	85	56	0	0	0
Pastern washington	92	(25-72)	(0)	(0)	(0)
All Washington	2026	44	0	0	0
All Washington	2825	(21-54)	(0)	(0)	(0)

Values represent the percentage of sample exceeding the water quality criterion based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses).

DF: Dilution factor.


Analyses of spatial patterns in the data indicated the percentage of samples exceeding the water quality standard for turbidity was somewhat higher in eastern Washington relative to western Washington (Table 13). For example, 80 to 27 percent of the samples in eastern Washington exceeded the criterion with the typical receiving water conditions and dilution factors of 0 and 10, respectively. With the same receiving water conditions and dilution factors, only 64 to 20 percent of the samples, respectively, exceeded the criterion in western Washington.

The analyses also showed there were substantial differences in the percentages of samples exceeding the water quality criterion for turbidity between industrial categories when lower dilution factors (e.g., 0 and 10) were assumed. For example, when comparing only those industrial categories in Table B-1 with a relatively large sample size (i.e., n > 25), the percentage of samples in western Washington that exceeded the criterion ranged from 39 percent for Treatment Works (09) to 72 percent for Manufacturing (02), assuming the typical receiving

water conditions and a dilution factor of 0. Similarly, the percentage of samples in eastern Washington that exceeded the criterion (Table B-1) ranged from 76 percent for Manufacturing (02) to 84 percent for Transportation Facilities (08) assuming the same receiving water conditions and dilution factor. When higher dilution factors (e.g., > 10) were assumed for both eastern and western Washington, the percentages of samples exceeding the water quality criterion were similarly low (<25 percent) across all categories.

Samples with Concentrations Below the Benchmark

In contrast to the results above, analyses performed on the subset of samples with concentrations below the benchmark showed that the hypothetical water quality criterion for turbidity was only exceeded when a dilution factor of 0 was assumed. More specifically, across the entire state of Washington and all 13 industrial categories, the percentage of samples that exceeded the criterion was 44 percent given the "typical" receiving water conditions and a dilution factor of 0 (Table 13). This percentage dropped to 0 assuming the same receiving water conditions and a dilution factor of 10 or higher.

Tabular and graphical data summaries for pH for individual industrial categories and for all categories combined are provided in Table 14 and Figure 3, respectively. Tabular data summaries by industrial sector for pH are also provided in Appendix A. Based on all 4,442 pH values present in the database, the mean and median levels for this parameter were 7.1 and 6.7, respectively, across all of the industrial categories; and the coefficient of variation was 0.12. The mean pH value from this study was generally similar to those reported from other studies. For example, Stenstrom and Lee (2005) reported mean pH values of 7.01 and 7.16 from monitoring data compiled from general NPDES industrial stormwater permits in Los Angeles County, CA and Sacramento County, CA, respectively. The same authors reported a slightly lower mean pH value (6.32) for the state of Connecticut. Coefficients of variation for pH in these same studies ranged from 0.17 to 0.95.

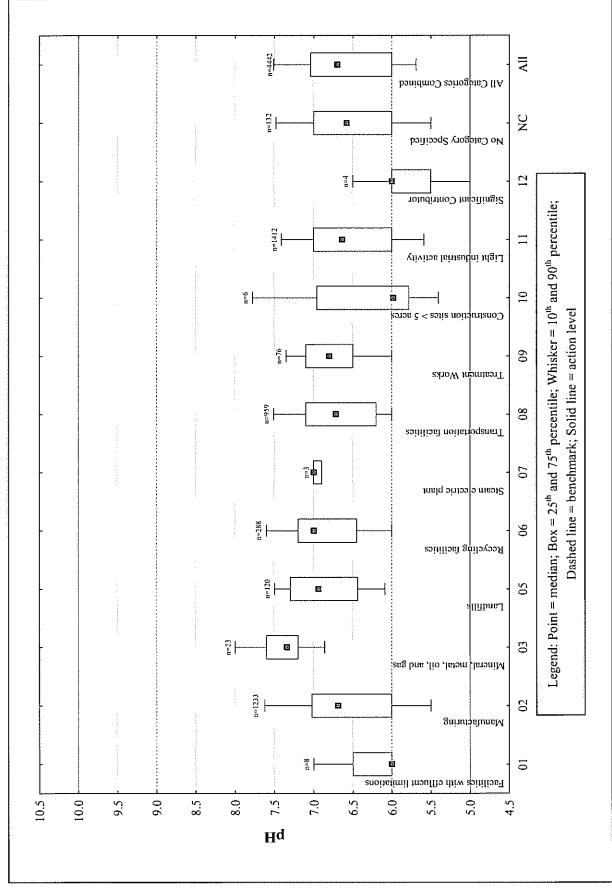
The box plots presented in Figure 3 indicate that the distribution of the data complied for this analysis is relatively symmetrical around the median. The 90th percentile and maximum values for the pH data were 7.6 and 11.6, respectively. (Note that five outliers were eliminated from the dataset prior to this analysis because they exceeded the acceptable range for pH [i.e., 0-14]).

Comparison Among Industrial Categories

Sufficient amounts of data (i.e., n > 25) for statistical comparisons of pH levels were only available in seven industrial categories (Table 14). Results from these analyses (Table 12) indicate that Light Industrial Activity (11) had a lower median concentration relative to Transportation Facilities (08), Landfills (05), and Recycling Facilities (06). Median turbidity levels in all other remaining industrial categories (Manufacturing (02), Treatment Works (09),

Table 14. Summary statistics for pH levels measured in industrial stormwater by industry category.

									The second secon		The state of the s
					10 th	4)06		Std	Coefficient	Exceedance of	Exceedance of
Industrial Category	п	Mean	Mean Median	Minimum	Percentile	Percentile	Maximum	Dev.	Variation	Benchmark ^a	Action Level b
01 - Facilities with effluent limitations	∞	6.3	6.0	6.0	6.0	7.0	7.0	0.46	0.07	%0	%0
02 - Manufacturing	1,323	9.9	6.7	2.0	5.5	7.7	11.6	0.97	0.15	18%	3%
03 - Mineral, metal, oil, and gas	24	7.4	7.3	6.4	6.9	8.0	8.0	0.44	90.0	%0	%0
05 - Landfills	135	6.9	6.9	5.0	6.1	7.5	8.3	0.58	0.08	%9	1%
06 - Recycling facilities	294	8.9	7.0	2.2	6.0	7.6	10.0	0.77	0.11	%8	1%
07 - Steam electric plants	£	7.0	7.0	6.9	6.9	7.0	7.0	90.0	0.01	%0	%0
08 - Transportation facilities	886	6.7	6.7	2.2	0.9	7.5	9.01	0.75	0.11	12%	1%
09 - Treatment works	11	8.9	8.9	5.4	0.9	7.4	7.9	0.53	0.08	%8	%0
10 - Construction sites > 5 acres	9	6.3	6.0	5.4	5.4	7.8	7.8	0.88	0.14	20%	%0
11 - Light industrial activity	1,445	9.9	9.9	1.0	5.6	7.4	10.0	0.78	0.12	16%	2%
12 - Significant contributor	7	5.8	6.0	5.0	5.0	6.5	6.5	0.49	0.08	43%	%0
No category specified	132	6.5	9.9	4.4	5.5	7.5	8.2	0.73	0.11	14%	1%
All categories	4,442	7.1	6.7	1.0	5.5	7.6	11.6	0.83	0.12	14%	2%


Benchmark for pH is <6 or >9.

Action level for pH is <5 or >10.
Std. Dev.: Standard Deviation.

Herrera Environmental Consultants

မှ

Data Analysis—Evaluation of Monitoring Data from General NPDES Permits

Levels of pH measured in industrial stormwater by industrial category. Figure 3.

and No Category Specified) were intermediate between these two groups and were generally not differentiated in the statistical analysis.

Comparison to NPDES Permit Benchmarks and Action Levels

As shown in Table 14, analyses performed across all 13 industrial categories showed that only 14 and 2 percent of the samples exceeded the applicable benchmark (pH <6 or pH >9) and action level (pH <5 or pH >10), respectively. Considering only the seven industrial categories in Table 14 with a relatively large number of samples (i.e., n > 25), Manufacturing (02) had the highest percentage of samples exceeding the benchmark and action level at 18 and 3 percent, respectively.

Total Zinc

Data Distribution

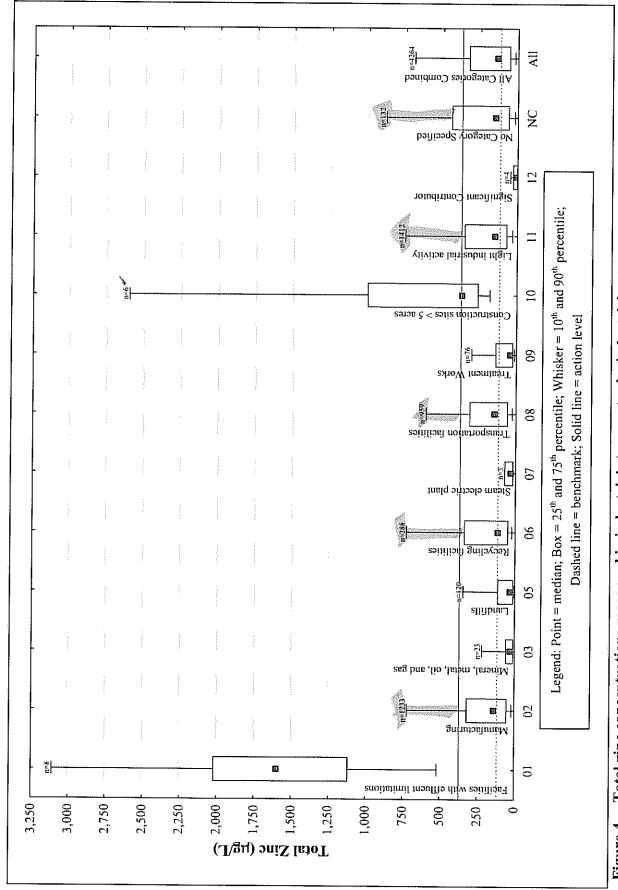
Tabular and graphical data summaries for total zinc concentrations are provided in Table 15 and Figure 4, respectively, by individual industrial category and for all categories combined. Tabular data summaries for total zinc are also provided in Appendix A by industrial sector. Based on all 4,264 total zinc values that were present in the database, the mean and median concentrations for this parameter were 469 and 139 micrograms per liter (μg/L), respectively, across all the industrial categories; and the coefficient of variation was 7.1. The mean value from this study was generally low relative to the mean value from other studies. For example, Stenstrom and Lee (2005) reported mean values ranging from 510 to 4,960 μg/L for total zinc based on data that were compiled through general NPDES industrial stormwater permits in the following jurisdictions: Los Angeles County, CA; Sacramento County, CA; and the State of Connecticut. The coefficients of variation for total zinc from this same dataset ranged from 7.59 to 13.85.

The asymmetrical shape of the box plots presented in Figure 4 indicate that the total zinc concentrations compiled for this analysis have a right-skewed distribution due to the presence of numerous outliers in the upper end of the data range. Across all industrial categories, the 90^{th} percentile value for the data was $692~\mu g/L$. The maximum (130,000 $\mu g/L$) represents an extreme outlier that may indicate the associated value was incorrectly entered in the DMR or database.

Comparison Among Industrial Categories

Sufficient amounts of data (i.e., n > 25) for statistical comparisons of total zinc concentrations were only available in seven industrial categories (Table 15). Results from these analyses (Table 12) indicate the data can be differentiated into two groups with low and high median total zinc concentrations, respectively. Specifically, median concentrations for the Landfills (05) and Treatment Works (09) categories were significantly lower than those for the remaining five categories: Manufacturing (02), Recycling Facilities (06), Transportation Facilities (08), Light Industrial Activity (11), and No Category Specified.

Table 15. Summary statistics for total zinc concentrations measured in industrial stormwater by industry category.


Industrial Category	п	Mean (µg/L)	Median (ug/L)	Minimum (ug/L)	10 th Percentile (µg/L)	90 th Percentile (ug/L)	Maximum (ue/L)	Std. Dev. (ug/L)	Coefficient of Variation	Exceedance of Benchmark a	Exceedance of Action Level b
01 - Facilities with effluent limitations	∞	1639	1600	520	520	3110	3,110	611	0.48	100%	100%
02 - Manufacturing	1,233	321	140	0.02	19.0	722	8,110	653	2.03	55%	22%
03 - Mineral, metal, oil, and gas	23	80.2	30.0	2.00	9.00	220	929	147	1.83	17%	4%
05 - Landfills	120	158	35.0	0.007	9.00	347	4,400	457	2.89	18%	%8
06 - Recycling facilities	288	308	119	2.00	24.0	730	6,410	580	1.88	20%	23%
07 - Steam electric plants	3	41.6	34.0	17.8	17.8	73.0	73	28.4	99.0	%0	%0
08 - Transportation facilities	959	318	146	0.136	25.1	604	16,200	810	2.54	57%	20%
09 - Treatment works	9/	122	43.6	1.00	12.0	300	1,140	199	1.63	767	7%
10 - Construction sites > 5 acres	9	962	368	180	180	2600	2,600	931	1.17	100%	20%
11 - Light industrial activity	1,412	774	150	0.00	32.6	750	130,000	5645	7.29	28%	23%
12 - Significant contributor	4	16.3	9.00	0.021	0.021	47.0	47.0	21.2	1.30	%0	%0
No category specified	132	533	149.5	0.255	20.0	881	18,200	1790	3.36	58%	28%
All categories	4,264	469	139	0	20.4	692	130,000	3317	7.06	25%	21%
a Demokratic for ming in 117 and							oreasemwayer or a				

a Benchmark for zinc is 117 μg/L.
 b Action level for copper is 372 μg/L.
 Std. Dev.: Standard Deviation.
 μg/L: microgram/liter.

np4 /05-03123-000 data analysis report doc

- 19, 2006

ò O

np4 /05-03123-000 data analysis report.doc

Comparison to NPDES Permit Benchmarks and Action Levels

As shown in Table 15, analyses performed across all 13 industrial categories showed that 55 and 21 percent of the samples had total zinc concentrations that exceeded the applicable benchmark (117 μ g/L) and action level (372 μ g/L), respectively. Considering only the seven industrial categories in Table 15 with a relatively large number of samples (i.e., n > 25), the benchmark and action level for total zinc were exceeded in at least 50 and 20 percent of the samples, respectively, in the following five industrial categories: Manufacturing (02), Recycling Facilities (06), Transportation Facilities (08), Light Industrial Activity (11), and No Category Specified. The benchmark and action level for total zinc were exceeded in fewer than 30 and 8 percent of the samples, respectively, for the remaining two industrial categories: Landfills (05) and Treatment Works (09).

Comparison to Hypothetical Water Quality Criteria

Results from the comparisons of sample concentrations to the hypothetical water quality criterion for dissolved zinc are summarized in Table 16 for western Washington, eastern Washington, and the entire state. The results are subdivided within this table to show the percentage of samples exceeding the applicable criterion based on all collected samples versus only those samples with concentrations below the benchmark. The presentation of these results is also organized under separate subsections below based on these divisions of the data. Finally, Appendix B (Tables B-3 and B-4) provides a more detailed data summary with comparisons by industrial category for samples collected in eastern and western Washington.

All Collected Samples

Similar to the results presented above for turbidity, analyses of the compiled data showed high percentages of samples exceeding the hypothetical water quality criterion for dissolved zinc with dilution factors of 0 and 10; however, these percentages declined considerably with dilution factors of 25 and higher (Table 16). For example, across the entire state of Washington and all 13 industrial categories, the percentages of samples that exceeded the criterion were 83 and 24 percent given the typical receiving water conditions and dilution factors of 0 and 10, respectively. Given the same receiving water conditions and dilution factors of 25 and 50, these percentages dropped to 7 and 3 percent, respectively. Nearly identical results were obtained from comparisons of the data to the chronic criterion for dissolved zinc (see Table 16).

Analyses of spatial patterns in the data indicated the percentage of samples exceeding the water quality criterion for dissolved zinc was only slightly higher in western Washington relative to eastern Washington (Table 16). For example, 84 to 24 percent of the samples in western Washington exceeded the criterion with the typical receiving water conditions and dilution factors of 0 and 10, respectively. With the same receiving water conditions and dilution factors, 70 to 10 percent of the samples, respectively, exceeded the criterion in eastern Washington. A similar pattern was observed in the data when comparisons were made to the chronic criterion for dissolved zinc (see Table 16).

Table 16. Percentage of total zinc samples exceeding state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

		Exceeda	ince of Ac	ute Criteri	on (%) ^a	Exceedar	ice of Chro	onic Crite	rion (%) ^a
	n	0 DF	10 DF	25 DF	50 DF	0 DF	10 DF	25 DF	50 DF
				All Sample	es				
Western	4066	84	24	7	3	85	26	9	4
Washington	4000	(79-88)	(16-35)	(5-14)	(2-6)	(80-88)	(17-39)	(6-16)	(2-6)
Eastern Washington	183	70	10	3	1	75	13	3	1
Eastern Washington	165	(58-83)	(4-50)	(1-25)	(1-12)	(60-85)	(5-58)	(1-33)	(1-16)
All Washington	4249	83	24	7	3	85	26	8	4
7th washington	4249	(78-88)	(15-36)	(5-14)	(2-6)	(79-88)	(17-40)	(5-16)	(2-7)
		s	amples wit	h Values 5	≦ Benchm	ark			
Western	1847	65	0	0	0	67	0	0	0
Washington	1047	(54-73)	(0)	(0)	(0)	(57-75)	(0)	(0)	(0)
Eastern Washington	70	23	0	0	0	34	0	0	0
Lastern Washington	70	(0-54)	(0)	(0)	(0)	(0-60)	(0)	(0)	(0)
All Washington	1917	63	0	0	O.	66	0	0	0
All washington	1311	(52-72)	(0)	(0)	(0)	(55-74)	(0)	(0)	(0)

^a Values represent the percentage of sample exceeding the water quality criteria based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses). DF: Dilution factor.

In comparisons made between the seven industrial categories in western Washington with a relatively large sample size (i.e., n > 25), the percentage of samples that exceeded the acute criterion for dissolved zinc ranged from 56 percent for Treatment Works (09) to 89 percent for Light Industrial Activity (11), assuming the typical receiving water conditions and a dilution factor of 0 (see Table B-3). Similarly, for the three industrial categories in eastern Washington with a large sample size, the percentage of samples that exceeded the criterion ranged from 47 percent for Transportation Facilities (08) to 87 percent for Manufacturing (02), assuming the same receiving water conditions and dilution factor. When higher dilution factors (e.g., > 10) were assumed for both eastern and western Washington, the percentages of samples exceeding the criterion were similarly low (< 25 percent) across all categories. Nearly identical results were obtained from comparisons of the data to the chronic criterion for dissolved zinc (see Table B-3).

Samples with Concentrations Below the Benchmark

Analyses performed on the subset of samples with concentrations below the benchmark showed that the acute and chronic water quality criteria for dissolved zinc were only exceeded when a dilution factor of 0 was assumed. For example, across the entire state of Washington and all 13 industrial categories, the percentage of samples that exceeded the acute criterion was 63 percent given the typical receiving water conditions and a dilution factor of 0 (Table 16). This

percentage dropped to 0 assuming the same receiving water conditions and a dilution factor of 10 or higher. Nearly identical results were obtained from comparisons of the data to the chronic criterion for dissolved zinc.

Oil and Grease

Data Distribution

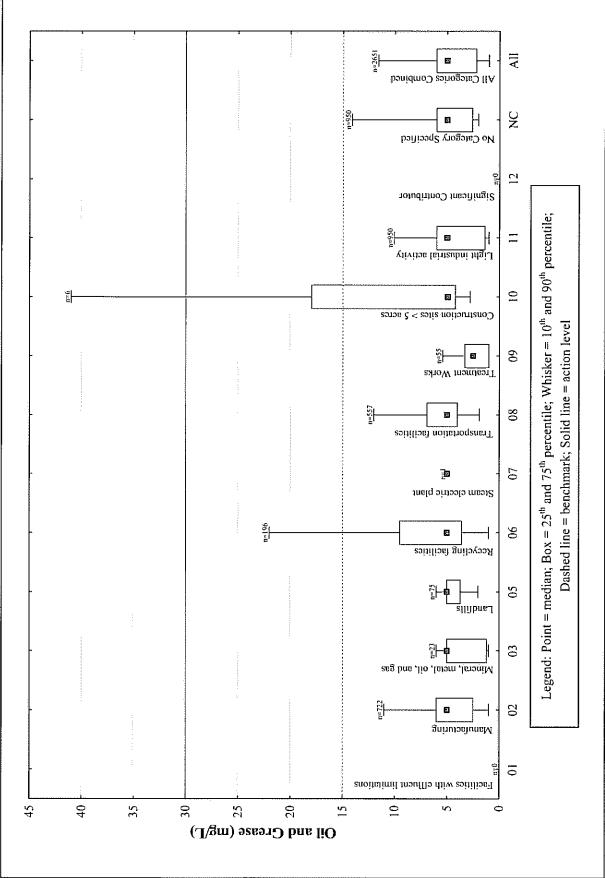
Tabular and graphical data summaries for oil and grease concentrations are provided in Table 17 and Figure 5, respectively, for each industrial category and for all of the categories combined. Tabular data summaries for oil and grease are also provided in Appendix A by industrial sector. Based on all 2,651 oil and grease values that were present in the database, the mean and median concentrations for this parameter were 7.6 and 5.0 milligram per liter (mg/L), respectively, across all the industrial categories; and the coefficient of variation was 3.3. For comparison, Stenstrom and Lee (2005) reported mean values ranging from 5.66 to 11.26 mg/L for oil and grease based on data that were compiled through general NPDES industrial stormwater permits in the following jurisdictions: Los Angeles County, CA; Sacramento County, CA; and the State of Connecticut. The coefficients of variation for total zinc from this dataset ranged from 1.61 to 14.57. The box plots presented in Figure 5 indicate that the oil and grease data frequently have a left-skewed distribution that is most likely related to large numbers of non detect values that are present in the database. Across all industrial categories, the 90th percentile and maximum values for oil and grease were 12 and 914 mg/L, respectively.

Comparison Among Industrial Categories

Sufficient amounts of data (i.e., n > 25) for statistical comparisons of oil and grease concentrations were only available in seven industrial categories (Table 17). Results from these analyses (Table 12) indicate the data can be differentiated into two groups with low and high median oil and grease concentrations, respectively. Specifically, median concentrations for the Treatment Works (09), Light Industrial Activity (11), and Manufacturing (02) categories were significantly lower than those for Recycling Facilities (06) and Transportation Facilities (08). The remaining two categories (No Category Specified and Landfills [05]) had median concentrations that were intermediate between these two groups and were generally not differentiated from the others in the statistical analysis.

Comparison to NPDES Permit Benchmarks and Action Levels

Analyses performed across all of the industrial categories showed that only 7 and 3 percent of the samples exceeded the applicable benchmark (15 mg/L) and action level (30 mg/L), respectively for oil and grease (Table 17). Considering only the seven industrial categories in Table 17 with a relatively large number of samples (i.e., n > 25), Recycling Facilities (06) had the highest percentage of samples exceeding the benchmark and action level at 16 and 7 percent, respectively.


Table 17. Summary statistics for oil & grease concentrations measured in industrial stormwater by industry category.

, and a second					to:	face			The state of the s		77.
		Mean	Median Minim	Е	10" Percentile	90''' Percentile	Maximum	Std.	Coefficient of	Hydeodanoe of	Typeodopo
Industrial Category	u	(µg/L)	(µg/L)	I _	(µg/L)	μg/L)	maximum (μg/L)	, μg/L)	Variation	Benchmark a	Action Level b
02 - Manufacturing	722	6.3	5.0	0.0	1.0	11	120	8.9	1.4	%9	2%
03 - Mineral, metal, oil, and gas	23	3.7	5.0	1.0	1.0	6.0	8.0	2.2	9.0	%0	%0
05 - Landfills	75	9.61	5.0	1.0	2.0	0.9	914	107	5.5	4%	3%
06 - Recycling facilities	196	12.2	5.0	8.0	1.0	22	232	27	2.2	16%	7%
07 - Steam electric plants	-	5.0	5.0	5.0	ŀ	ł	5.0	ı	I	%0	%0
08 - Transportation facilities	557	9.4	5.0	0	1.9	12	561	31	3.3	%6	4%
09 - Treatment works	55	5.1	2.5	1.0	1.0	5.4	82	12	2.4	5%	4%
10 - Construction sites > 5 acres	9	12.7	5.0	2.8	2.8	41	41	15	1.2	33%	17%
11 - Light industrial activity	950	5.9	5.0	0.0	1.0	10	151	6.7	1.6	2%	2%
No category specified	99	7.1	5.0	1.3	2.0	14	47	5.7	1.4	%8	%9
All categories	2,651	9.7	5.0	0	1.0	12	914	25	3.3	7%	3%
$\frac{a}{a}$ The second $\frac{a}{b}$ and $\frac{a}{b}$ and $\frac{a}{b}$ and $\frac{a}{b}$ and $\frac{a}{b}$ and $\frac{a}{b}$											

^a Benchmark for oil & grease is 15 mg/L. ^b Action level for oil & grease is 30 mg/L. Std. Dev.: Standard Deviation.

Herrera Environmental Consultants

I

Oil and grease concentrations measured in industrial stormwater by industrial category. Figure 5.

Total Copper Data Distribution

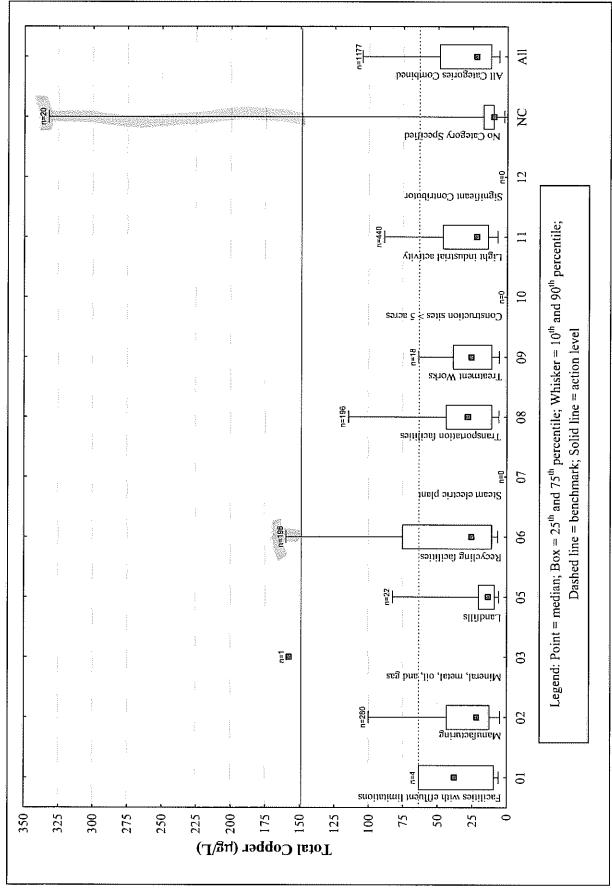
Tabular and graphical data summaries for total copper concentrations are presented in Table 18 and Figure 6, respectively, by individual industrial category and for all categories combined. Tabular data summaries for total copper are also provided in Appendix A for each industrial sector. Based on the 1,177 total copper values that were present in the database, the mean and median concentrations for this parameter were 73.1 and 22.2 μ g/L, respectively, across all the industrial categories; and the coefficient of variation was 5.6. For comparison, Stenstrom and Lee (2005) reported mean values ranging from 130 to 1,010 μ g/L for total copper based on data that were compiled through general NPDES industrial stormwater permits in the following jurisdictions: Los Angeles County, CA; Sacramento County, CA; and the State of Connecticut. The coefficients of variation for total copper from this same dataset ranged from 2.31 to 16.50.

The box plots presented in Figure 6 indicate the total copper concentrations compiled for this analysis have a right-skewed distribution due to the presence of numerous outliers in the upper end of the data range. Across all industrial categories, the 90^{th} percentile value for the data was $104~\mu g/L$. The maximum (11,000 $\mu g/L$) represents an extreme outlier that may indicate that the associated value was incorrectly entered in the DMR or database.

Comparison Among Industrial Categories

Sufficient amounts of data (i.e., n > 25) for statistical comparisons of total copper concentrations were only available in four industrial categories (Table 18). Results from these analyses (Table 12) indicate there were no significant differences in median total copper concentrations between these categories: Manufacturing (02), Recycling Facilities (06), Transportation Facilities (08), and Light Industrial Activity (11).

Comparison to NPDES Permit Benchmarks and Action Levels


As shown in Table 18, analyses performed across all 13 industrial categories showed that 21 and 6 percent of the samples had total copper concentrations that exceeded the applicable benchmark (63.6 μ g/L) and action level (149 μ g/L), respectively. Considering only the four industrial categories in Table 18 with a relatively large number of samples (i.e., n > 25), the benchmark was exceeded in 15 to 20 percent of the samples while the action level was exceeded in 5 to 10 percent.

Comparison to Hypothetical Water Quality Criteria

Results from the comparisons of sample concentrations to hypothetical water quality criteria for dissolved copper are summarized in Table 19 for western Washington, eastern Washington, and the entire state. The results are subdivided within this table to show the percentage of samples exceeding the criteria based on all collected samples versus only those samples with concentrations below the benchmark. The presentation of these results is also organized under

Table 18. Summary statistics for total copper concentrations measured in industrial stormwater by industry category.

		Most	Modion	Minima	10 th	90 th	Movies	Std.	Coeffee of the contract of		31
Industrial Category	П	(µg/L)	(μg/L) (μg/L)	(μg/L)	rercendie (µg/L)	reicenne (µg/L)	γιαχημητή (μg/L)	Dev. (μg/L)	Variation	Benchmark ^a	Action Level
01 - Facilities with effluent limitations	4	36	3.8	6.0	9	93.6	63.6	31.5	6.0	%0	%0
02 - Manufacturing	280	98	22	0.03	5	100	11000	629	9.7	21%	%9
03 - Mineral, metal, oil, and gas	-	158	158	158	1 1	;	158	;	1 1	100%	100%
05 - Landfills	22	78	14	2.1	5.9	83	1230	259	3,3	14%	2%
06 - Recycling facilities	196	117	26	2.0	6.7	160	5940	476	4.1	767	10%
08 - Transportation facilities	196	47	28	0.04	5.9	115	496	72	1.5	28%	%9
09 - Treatment works	18	37	26	5.2	5.7	64	224	49.5	1.4	11%	%9
11 - Light industrial activity	440	48	22	0.01	7	68	1700	111	2.3	%91	2%
No category specified	20	292	10	0.01	2.2	333	4930	1098	3.8	20%	10%
All categories	1177	73.1	22.2	0.01	9	104	11000	410	5.6	21%	%9
 Benchmark for copper is 63.6 μg/L. Action level for copper is 149 μg/L. Std. Dev.: Standard Deviation. 											

Total copper concentrations measured in industrial stormwater by industrial category. Figure 6.

separate subsections below based on these divisions of the data. Finally, Appendix B (Tables B 5 and B-6) provides a more detailed data summary with comparisons by industrial category for samples collected in eastern and western Washington.

Table 19. Percentage of total copper samples exceeding state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

		Exceeda	ance of Ac	ute Criter	ion (%) ^a	Exceeda	nce of Chr	onic Crite	rion (%) ^a
	n	0 DF	10 DF	25 DF	50 DF	0 DF	10 DF	25 DF	50 DF
				All Sample	? S				
Western Washington	1141	95	31	12	5	96	44	17	7
western wasnington	1141	(88-96)	(18-54)	(6-25)	(3-12)	(92-97)	(26-74)	(9-42)	(4-20)
Faster Washington	36	64	14	3	0	81	22	3	0
Eastern Washington	30	(47-86)	(3-25)	(0-8)	(0-3)	(58-92)	(8-31)	(3-14)	(0-3)
All Washington	1177	94	31	11	5	96	43	17	7
All Washington	1177	(87-96)	(17-53)	(6-24)	(3-11)	(91-97)	(25-73)	(9-41)	(4-20)
		S	amples wit	h Values :	Benchma	ark			
Waste- Washington	026	94	15	0	0	95	31	0	0
Western Washington	926	(86-96)	(0-43)	(0-8)	(0)	(90-96)	(9-68)	(0-28)	(0-2)
Eastern Washington	27	52	0	0	0	74	0	0	0
Eastern Washington	21	(30-81)	(0)	(0)	(0)	(44-89)	(0-7)	(0)	(0)
A 11 Wki-ata-	0.52	93	15	0	0	95	30	0	0
All Washington	953	(84-95)	(0-42)	(0-7)	(0)	(89-96)	(9-66)	(0-27)	(0-2)

^a Values represent the percentage of sample exceeding the water quality criteria based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses). DF: Dilution factor.

All Collected Samples

As with the parameters discussed previously, the analysis performed hereshowed high percentages of the collected samples exceeding the hypothetical water quality criterion for dissolved copper when dilution factors of 0 and 10 were applied; however, these percentages declined considerably with dilution factors of 25 and higher (see Table 19). For example, across the entire state of Washington and all 13 industrial categories, the percentages of samples that exceeded the acute criterion were 94 and 31 percent given the typical receiving water conditions and dilution factors of 0 and 10, respectively. Given the same receiving water conditions and dilution factors of 25 and 50, these percentages dropped to 11 and 5 percent, respectively. Nearly identical results were obtained from comparisons of the data to the chronic criterion for dissolved copper (Table 19).

Analyses of spatial patterns in the data indicated the percentage of samples exceeding the water quality criterion for dissolved copper was only slightly higher in western Washington relative to eastern Washington (Table 19). For example, 95 to 31 percent of the samples in western Washington exceeded the criterion with typical receiving water conditions and dilution factors of

0 and 10, respectively. With the same receiving water conditions and dilution factors, 64 to 14 percent of the samples exceeded the criterion in eastern Washington. A similar, though less pronounced pattern was observed in the data when comparisons were made to the chronic criterion for dissolved copper (see Table 19).

In comparisons that were made between the four industrial categories in western Washington with a relatively large sample size (i.e., n > 25), the percentage of samples that exceeded the acute criterion for dissolved copper (see Table B-5) ranged from 91 percent for Manufacturing (02) to 98 percent for both Recycling Facilities (06) and Light Industrial Activity (11), assuming typical receiving water conditions and a dilution factor of 0. When higher dilution factors (e.g., > 10) were assumed, the percentages of samples exceeding the criterion were similarly low (< 20 percent) across all the categories. Nearly identical results were obtained from comparisons of the data to the chronic criterion for dissolved copper (see Table B-5). However, there were insufficient data to make comparisons between the various industrial categories in eastern Washington.

Samples with Concentrations Below the Benchmark

The analysis performed here on the subset of samples with concentrations below the benchmark showed that the acute and chronic water quality criteria for dissolved copper were only exceeded when dilution factors of 0 and 10 were assumed. For example, across the entire state of Washington and all 13 industrial categories, the percentages of samples that exceeded the acute criterion were 93 and 15 percent given the typical receiving water conditions and dilution factors of 0 and 10, respectively. Given the same receiving water conditions and dilution factors of 25 and 50, these percentages dropped to 0. Nearly identical results were obtained from comparisons of the data to the chronic criterion for dissolved copper (Table 19).

Total Lead

Data Distribution

Tabular and graphical data summaries for total lead concentrations are provided in Table 20 and Figure 7, respectively, by individual industrial category and for all categories combined. Tabular data summaries for total lead are also provided in Appendix A by industrial sector. Based on the 1,034 total lead values present in the database, the mean and median concentrations for this parameter were 48 and 12 μg/L, respectively, across all the industrial categories; and the coefficient of variation was 4.0. For comparison, Stenstrom and Lee (2005) reported mean values ranging from 60 to 4,480 μg/L for total lead concentrations based on data that were compiled through general NPDES industrial stormwater permits in the following jurisdictions: Los Angeles County, CA; Sacramento County, CA; and the state of Connecticut. The coefficients of variation for total lead from this same dataset ranged from 3.82 to 14.12.

The box plots presented in Figure 7 indicate the total lead concentrations compiled for this analysis generally have a right-skewed distribution due to the presence of numerous outliers in the upper end of the data range. Across all industrial categories, the 90th percentile and maximum values for the data were 79 and 3,730 µg/L, respectively.

Table 20. Summary statistics for total lead concentrations measured in industrial stormwater by industry category

		:			10th	4Uth					The same of the sa
Industrial Category	c	Mean (μg/L)	Median (μg/L)	Median Minimum (μg/L)	Percentile (µg/L)	Percentile (μg/L)	Maximum (µg/L)	Std. Dev. (µg/L)	Coefficient of Variation	Exceedance of Benchmark ^a	Exceedance of Action Level ^b
01 - Facilities with effluent limitations	6	28	816	816	816	81.6	816	0	0	%0	%00
02 - Manufacturing	230	47	01	0.006	0.1	94.5	1,240	145	3.1	12%	4%
03 - Mineral, metal, oil, and gas	1	14	41	14	ŀ	ŧ	13.9	;	I	%0	%0
05 - Landfills	21	7	9	1.0	2.0	20.9	110	25	1.8	5%	%0
06 - Recycling facilities	178	107	25	0.1	2.6	170	3,730	347	3.2	21%	11%
08 - Transportation facilities	169	32	20	0.05	3.5	9.09	289	43	1.4	18%	2%
09 - Treatment works	18	9.4	7.0	6.0	1.2	24.6	30	8.4	6.0	%0	%0
11 - Light industrial activity	396	31	01	0.01	1.7	20	3,000	157	5.0	%9	3%
No category specified	19	53	10	0.007	2.0	235	576	137	2.6	11%	11%
All categories	1,034	48	12	900.0	1.7	62	3,730	190	4.0	12%	4%
t ve									-		

^a Benchmark for lead is 81.6 μg/L. b Action level for lead is 159 μg/L. Std. Dev.: Standard Deviation.

Total lead concentrations measured in industrial stormwater by industrial category. Figure 7.

October 19, 2006

Comparison Among Industrial Categories

Sufficient amounts of data (i.e., n > 25) for statistical comparisons of total lead concentrations were only available in four industrial categories (Table 20). Results from these analyses (Table 12) indicate the data can be differentiated into two groups with low and high median total lead concentrations, respectively. Specifically, median concentrations for the Light Industrial Activity (11), and Manufacturing (02) categories were significantly lower than those for Transportation Facilities (08) and Recycling Facilities (06).

Comparison to NPDES Permit Benchmarks and Action Levels

Analyses performed across all nine industrial categories reporting total lead concentrations showed that 12 and 4 percent of the samples had total lead concentrations that exceeded the applicable benchmark (81.6 μ g/L) and action level (159 μ g/L), respectively (Table 20). Considering only the four industrial categories in Table 20 with a relatively large number of samples (i.e., n > 25), the benchmark was exceeded in 6 to 21 percent of the samples while the action level was exceeded in 3 to 11 percent.

Comparison to Hypothetical Water Quality Criteria

Results from the comparisons of sample concentrations to hypothetical water quality criteria for dissolved lead are summarized in Table 21 for western Washington, eastern Washington, and the entire state. The results are subdivided within this table to show the percentage of samples exceeding the applicable criterion based on all collected samples versus only those samples with concentrations below the benchmark. The presentation of these results is also organized under separate subsections below based on these divisions of the data. Finally, Appendix B (Tables B-7 and B-8) provides a more detailed data summary with comparisons by industrial category for samples collected in eastern and western Washington.

All Collected Samples

Across the entire state of Washington and all 13 industrial categories, the percentages of samples that exceeded the acute criterion for dissolved lead were 31, 2, 1 and 0 percent given the typical receiving water conditions and dilution factors of 0, 10, 25, and 50, respectively. In comparison to these results, the percentages of samples exceeding the chronic criterion for dissolved lead were substantially higher. For example, across the entire state of Washington and all 13 industrial categories, the percentages of samples that exceeded the chronic criterion were 93, 51, 33, and 13 percent given the typical receiving water conditions and dilution factors of 0, 10, 25, and 50, respectively.

Analyses of spatial patterns in the data indicate that the percentage of samples exceeding the water quality criterion for dissolved lead was higher in western Washington relative to eastern Washington (Table 21). For example, 32 percent of the samples in western Washington exceeded the criterion with the typical receiving water conditions and a dilution factor of 0, whereas only 17 percent of the samples exceeded the criterion in eastern Washington given the

same receiving water conditions and dilution factor. A similar pattern was observed in the data when comparisons were made to the chronic criterion for dissolved lead (see Table 21).

Table 21. Percentage of total lead samples exceeding state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

		Exce	edance of	Acute Std.	(%) ^a	Excee	dance of C	Chronic Sto	i. (%) ^a
	п	0.DF	10 DF	25 DF	50 DF	0 DF	10 DF	25 DF	50 DF
				All Sample	e s				
Western	999	32	2	1	0	93	52	33	13
Washington	,,,	(17-40)	(2-3)	(1-2)	(0-1)	(89-97)	(45-79)	(18-62)	(9-47)
Eastern Washington	35	17	0	0	0	86	26	17	11
Dastern Washington	33	(11-23)	(0)	(0)	(0)	(69-91)	(23-51)	(11-26)	(6-23)
All Washington	1034	31	2	1	0	93	51	33	13
	1037	(17-39)	(2-3)	(1-2)	(0-1)	(89-97)	(44-78)	(18-61)	(9-46)
		Sa	ımples wii	th Values ≤	≦ Benchma	ark			
Western	909	25	0	0	0	93	47	27	5
Washington	907	(9-34)	(0)	(0)	(0)	(88-97)	(40-77)	(10-59)	(0-42)
Eastern Washington	29	0	0	0	0	83	10	0	0
Edistern Washington	29	(0-7)	(0)	(0)	(0)	(62-90)	(7-41)	(0-10)	(0-7)
All Washington	938	24	0	0	0	92	46	26	4
	<i>93</i> 0	(9-33)	(0)	(0)	(0)	(87-96)	(39-76)	(9-57)	(0-41)

Values represent the percentage of sample exceeding the water quality criteria based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses). DF: Dilution factor.

In comparisons that were made between the four industrial categories in western Washington with a relatively large sample size (i.e., n > 25), the percentage of samples that exceeded the acute criterion for dissolved lead (see Table B-7) ranged from 24 percent for Light Industrial Activity (11) to 47 percent for Recycling Facilities (06), assuming the typical receiving water conditions and a dilution factor of 0. For the same four industrial categories in Western Washington, the percentage of samples that exceeded the chronic criterion ranged from 87 percent for Manufacturing (02) to 96 percent for both Recycling Facilities (06) and Transportation Facilities (08), assuming the same receiving water conditions and dilution factor. There were insufficient data to make comparisons between industrial categories in eastern Washington.

Samples with Concentrations Below the Benchmark

Analyses performed on the subset of samples with concentrations below the benchmark showed that the acute water quality criterion for dissolved lead was only exceeded when a dilution factor of 0 was assumed. More specifically, across the entire state of Washington and all 13 industrial categories, the percentage of samples that exceeded the acute criterion was 24 percent given the

typical receiving water conditions and a dilution factor of 0 (see Table 21). This percentage dropped to 0 given the same receiving water conditions and a dilution factor of 10 or higher. In comparison to these results, the percentages of samples exceeding the chronic criterion for dissolved lead were substantially higher. For example, across the entire state of Washington and all 13 industrial categories, the percentages of samples that exceeded the chronic criterion were 92, 46, 26, and 4 percent given the typical receiving water conditions and dilution factors of 0, 10, 25, and 50, respectively.

Biological Oxygen Demand

Data Distribution

Tabular and graphical data summaries for BOD are provided in Table 22 and Figure 8, respectively, by individual industrial category and for all categories combined. Tabular industrial sector summaries for BOD are also provided in Appendix A. Overall, there were 1,105 BOD values present in the database with mean and median concentrations of 37 and 10 mg/L, respectively. The coefficient of variation for these data was 1.9. The box plots presented in Figure 8 indicate the BOD concentrations generally have a right-skewed distribution due to the presence of outliers in the upper end of the data range. Across all industrial categories, the 90th percentile and maximum values for the data were 101 and 639 mg/L, respectively.

Comparison Among Industrial Categories

Sufficient amounts of data (i.e., n > 25) for statistical comparisons of BOD concentrations were available for three of the five industrial categories reporting data (Table 22). Results from these analyses (Table 12) indicate the data can be differentiated into two groups with low and high median BOD concentrations, respectively. Specifically, the median concentration for the Landfills (05) category was significantly lower than those for Manufacturing (02) and Light Industrial Activity (11).

Comparison to NPDES Permit Benchmarks and Action Levels

Analyses performed across the five industrial categories reporting BOD values showed that 25 and 16 percent of the samples exceeded the applicable benchmark (30 mg/L, 140 mg/L for non-hazardous waste landfills) and action level (60 mg/L), respectively (Table 22). Considering only the three industrial categories in Table 22 with a relatively large number of samples (i.e., n > 25), the benchmark was exceeded in 13 to 27 percent of the samples while the action level was exceeded in 0 to 17 percent.

Ammonia Nitrogen

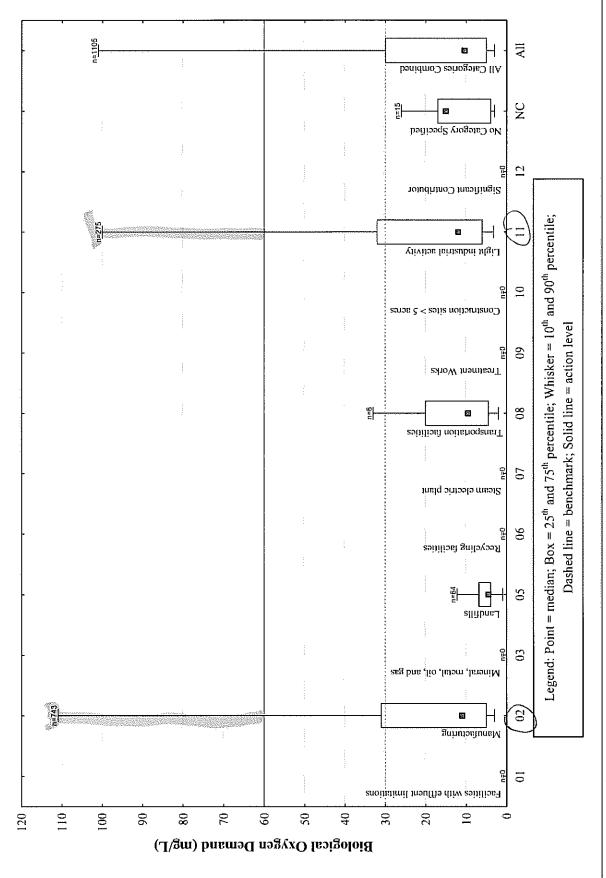
Data Distribution

Tabular and graphical data summaries for ammonia nitrogen are provided in Table 23 and Figure 9, respectively, by individual industrial category and for all categories combined. Tabular

Summary statistics for BOD measured in industrial stormwater by industry category. Table 22.

					10 th	90 th		:			
Industrial Category	п	Mean (mg/L)	Mean Median (mg/L)	Minimum (mg/L)	Percentile (mg/L)	Percentile (mg/L)	Maximum (mg/L)	Std. Dev. (mg/L)	Coefficient of Variation	Exceedance of Benchmark ^a	Exceedance of Action Level b
02 - Manufacturing	743	40	111	0.5	3	1111	639	77	1.9	27%	17%
05 - Landfills	64	7.0	4.5	0.2	1.0	12	39	7.8	1:	%0	1
08 - Transportation facilities	∞	13	9.5	2.0	C 1	33	33	Ξ	6.0	13%	%0
11 - Light industrial activity	275	35	12	2.0	3.3	001	340	58	1.7	27%	16%
No category specified	15	17	15	3.0	3.0	26	06	21	1.2	7%	7%
All categories	1,105	37	10	0.2	3.0	101	639	70	1.9	25%	16%
								***************************************		The state of the s	

^a Benchmark for BOD is 30 mg/L with the exception of category 05 which has a benchmark of 140 mg/L.
^b Action level for BOD is 60 mg/L.


Summary statistics for ammonia nitrogen measured in industrial stormwater by industry category. Table 23.

Industrial Category	=	Mean (mg/L)	Mean Median Minimun (mg/L.) (mg/L.) (mg/L.)	Minimum (mg/L.)	10th Percentile (mø/L.)	90th Percentile (mg/L)	Maximum (mg/l.)	Std. Dev.	Coefficient of	Exceedance of Benchmark	Exceedance of Action Level b
(1921)	;	(=,G)	((=====)	(m.E. Z.)	(=,2,)	(= ,G ==)	(B)		- 1	i regon peres
05 - Landfills	99	0.27 0.08	0.08	0.005	0.01	0.64	8.4	0.64	2.4	%0	%0
11 - Light industrial activity	4	6.9 8.7	8.7	0.10	0.1	10.21	10.2	4.8	7.0	%0	0%
All categories	70	70 0.65 0.10	0.10	0.005	0.01	96.0	10.2	1.9	3.0	%0	%0

^a Benchmark for ammonia nitrogen is 21.8 mg/L, except for Landfills (05) which is 10 mg/L.

^b Action level for ammonia nitrogen is 38 mg/L.

October 19, 2006

Biological oxygen demand concentrations measured in industrial stormwater by industrial category. Figure 8.

np4 705-03123-000 data analysis report doc October 19

9

Ammonia nitrogen concentrations measured in industrial stormwater by industrial category Figure 9.

summaries are also provided in Appendix A by industrial sector. Based on the 70 total ammonia nitrogen values present in the database, the mean and median concentrations for this parameter were 0.65 and 0.10 mg/L, respectively, across all the industrial categories; and the coefficient of variation was 3.0. Similarly, the 90th percentile and maximum values were 0.96 and 10.2 mg/L, respectively.

Comparison Among Industrial Categories

Statistical comparisons of the median concentrations for ammonia nitrogen were not performed because there were insufficient numbers of samples.

Comparison to NPDES Permit Benchmarks and Action Levels

The applicable benchmarks (21.8 mg/L, 10 mg/L for non-hazardous waste landfills) and action level (38 mg/L) for ammonia nitrogen were not exceeded in any sample (Table 23).

Nitrate + Nitrite Nitrogen

Data Distribution

Tabular and graphical data summaries for nitrate + nitrite nitrogen are provided in Table 24 and Figure 10, respectively, by individual industrial category and for all categories combined. Tabular summaries for each industrial sector are also presented in Appendix A. Overall, there were 397 values for nitrate + nitrite nitrogen present in the database. The mean and median concentrations from these values were 2.2 and 0.5 mg/L, respectively: and the coefficient of variation was 4.0. The 90th percentile value for the data was 3.1 mg/L. The maximum value (100 mg/L) represents an extreme outlier that may indicate that the associated value was incorrectly entered in the DMR or database.

Comparison Among Industrial Categories

Sufficient amounts of data (i.e., n > 25) for statistical comparisons of nitrate + nitrite nitrogen concentrations were only available for two of the industrial categories reporting nitrate + nitrite data: Manufacturing (02) and Light Industrial Activity (11). Results from these analyses (i.e., Mann Whitney U test) indicated that the median concentration for Manufacturing (02) was significantly higher than that for Light Industrial Activity (11).

Comparison to NPDES Permit Benchmarks and Action Levels

Exceedances of the applicable benchmark (0.68 mg/L) and action level (1.36 mg/L) for nitrate + nitrite occurred in 38 and 21 percent of the samples, respectively (Table 24). Considering only the two industrial categories in Table 24 with a relatively large number of samples (i.e., n > 25), the benchmark and action level were exceeded in 45 and 25 percent of the samples, respectively, for Manufacturing (02) and 34 and 20 percent of the samples, respectively, for Light Industrial Activity (11).

Table 24. Summary statistics for nitrate + nitrite nitrogen measured in industrial stormwater by industry category.

Industrial Category	נו	Mean (mg/L)	Mean Median Minimu (mg/L) (mg/L) (mg/L	Minimum (mg/L)	10 th Percentile (mg/L)	90 th Percentile (mg/L)	Maximum (mg/L)	Std. Dev. (mg/L)	Std. Dev. Coefficient (mg/L) of Variation	Exceedance of Benchmark a	Exceedance of Action Level b
02 - Manufacturing	142	2.5	9.0	0.01	0.18	4	83.7	9.5	3.8	45%	25%
08 - Transportation facilities	2	20	20	0.5	0.5	100	100	70	4.1	20%	20%
11 - Light industrial activity	249	1.6	0.4	0.01	0.061	2.68	19	5.3	3.3	34%	20%
No category specified	4	0.8	0.3	0.2	0.202	2.38	2.4	1.0	1.3	25%	25%
All categories	397	2.2	0.5	0.01	0.089	3.1	100	8.6	4.0	38%	21%
									117		

^a Benchmark for nitrate + nitrite nitrogen is 0.68 mg/L.

^b Action level for nitrate + nitrite nitrogen is 1.36 mg/L.

October 19, 2006

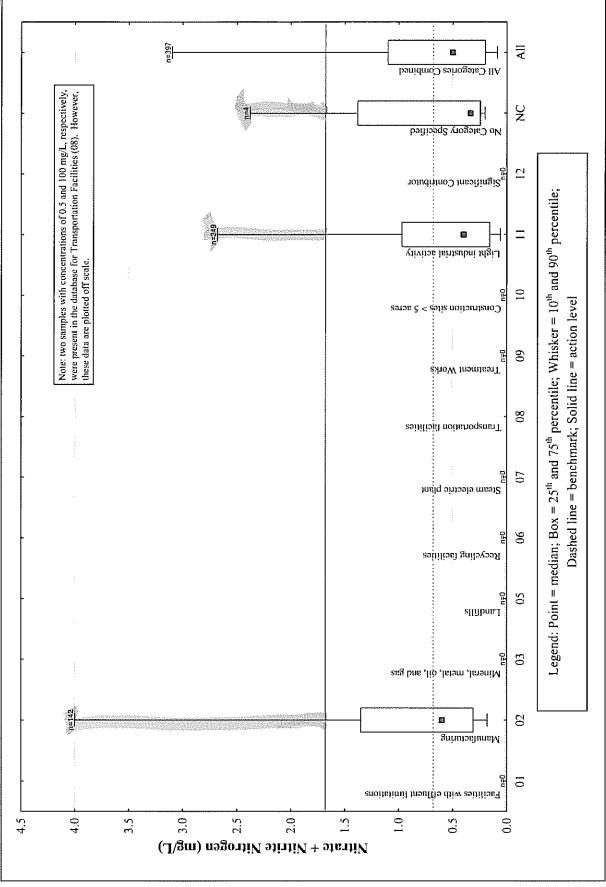


Figure 10. Nitrate + nitrite nitrogen concentrations measured in industrial stormwater by industrial category.

ည

Total Phosphorus

Data Distribution

Tabular and graphical data summaries for total phosphorus are provided in Table 25 and Figure 11, respectively, by individual industrial category and for all categories combined. Tabular data summaries by industrial sector are also provided in Appendix A. Based on the 410 total phosphorus values in the database, the mean and median concentrations were 1.4 and 0.2 mg/L, respectively, across all five of the industrial categories reporting data; and the coefficient of variation was 5.2. For comparison, Stenstrom and Lee (2005) reported a mean value of 0.45 mg/L for total phosphorus concentrations based on data that were compiled through general NPDES industrial stormwater permits in the state of Connecticut. The coefficient of variation from the Connecticut, dataset was 4.3. The 90th percentile value for data compiled through this study was 2.5 mg/L. The maximum value (175 mg/L) represents an extreme outlier that may indicate that the associated value was incorrectly entered in the DMR or database.

Comparison Among Industrial Categories

Sufficient amounts of data (i.e., n > 25) for statistical comparisons of TP values were only available for the following two industrial categories: Manufacturing (02) and Light Industrial Activity (11). Results from these analyses indicated that the median concentration for Manufacturing (02) was significantly higher than that for Light Industrial Activity (11).

Comparison to NPDES Permit Benchmarks and Action Levels

As shown in Table 25, analyses performed for all five industrial categories reporting total phosphorus values showed that only 11 and 7 percent of the samples exceeded the applicable benchmark (2 mg/L) and action level (4 mg/L), respectively. Considering only the two industrial categories in Table 25 with a relatively large number of samples (i.e., n > 25), the benchmark and action level for TP was exceeded in 9 and 8 percent of the samples for Manufacturing (02) and 12 and 6 percent of the samples for Light Industrial Activity (11).

Construction Stormwater

Data analysis results for construction stormwater are summarized below. Specifically, separate subsections present results for each of the following analyses that are described in the Data Analysis Methods section: data distribution, comparison to NPDES permit benchmarks and action levels, and comparison to hypothetical water quality criteria (if applicable). As noted in the Data Sources section, the construction stormwater data presented herein were analyzed previously in Ecology (2005). Due to this consideration, this section only highlights the major trends from these data. For a more detailed analyses of these data, the reader should refer to the earlier Ecology report.

Table 25. Summary statistics for total phosphorus measured in industrial stormwater by industry category.

								Std.			
Industrial Cateoory	5	Mean (mo/L)	Mean Median Minimur	Median Minimum	10 th Percentile (mø/L)	90 th Percentile	Maximum	Dev.	Coefficient of Variation	Exceedance of	Exceedance of
mension careford	:	(1,9,)	(4.8.11)	(111E/ 17)	(m/g,m)	(T.E.T.)	(T/8m)	(11/Sin)	or variation	Dellemair	ACHOII LEVEL
02 - Manufacturing	135	1.8	0.13	0.004	0.05	1.3	137	12	6.7	%6	%8
06 - Recycling facilities	2	12	12	0.08	0.081	23	23	91	1.4	50%	20%
08 - Transportation facilities	2	3.2	3.2	1.2	1.2	5.1	5.1	2.8	6.0	20%	%05
11 - Light industrial activity	592	1.1	0.26	0.005	0.042	2.5	23	2.9	2.5	12%	%9
No category specified	5	0.08	0.05	0.04	0.044	0.18	0.2	90'0	0.7	%0	%0
All categories	410	410 1.4	0.2	0.004	0.05	2.5	137	7.3	5.2	11%	7%

Benchmark for total phosphorus is 2 mg/L.
 b Action level for total phosphorus is 4 mg/L.

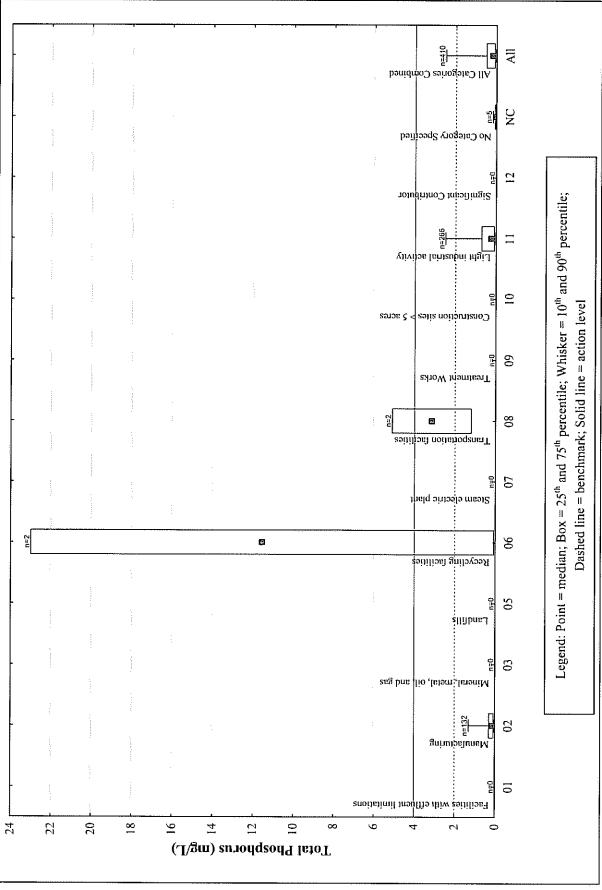


Figure 11. Total phosphorus concentrations measured in industrial stormwater by industrial category.

October 19, 2006

Data Distribution

A tabular summary for transparency, turbidity, and TSS data collected from Western Washington construction sites is provided in Table 26. In total, there were 47, 49, and 50 values for transparency, turbidity, and TSS, respectively, in the dataset. The mean and median values for transparency were 31 and 27 cm, respectively; and the coefficient of variation was 0.7. Similarly, the mean and median values for turbidity were 69 and 29 NTU, respectively; and the coefficient of variation was 1.3. Finally, the mean and median concentrations for TSS were 256 and 14 mg/L, respectively; and the coefficient of variation was 4.4.

Comparison to NPDES Permit Benchmarks and Action Levels

Turbidity was the only parameter monitored with associated benchmark values and action levels. Exceedances of the applicable benchmark (50 NTU) and action level (250 NTU) occurred in 29 and 6 percent of the samples, respectively.

Comparison to Hypothetical Water Quality Criteria

Results from the comparisons of sample concentrations to state water quality criteria for turbidity are summarized in Table 27. When all collected samples were considered in the analyses, the percentage of samples that exceeded the state water quality criterion for turbidity ranged from 86 to 6 percent given typical receiving water conditions and dilution factors of 0 and 50, respectively. Analyses performed on the subset of samples with concentrations below the benchmark showed that the water quality standard was only exceeded when a dilution factor of 0 was assumed.

Summary statistics for transparency, turbidity, and TSS measured in stormwater from Western Washington construction sites. Table 26.

Parameter	и	Mean	Median	Minimum	10 th Percentile	90 th Percentile	Maximum	Std. Dev.	Coefficient of Variation	Exceedance of Benchmark ^a	Exceedance of Action Level ^b
Transparency (cm)	47	31	27	0.7	4.6	09	09	22	0.7	ļ	1
Turbidity (NTU)	49	69	29	2.3	6.2	194	430	94	1.3	29%	%9
TSS (mg/L)	20	256	†	1.0	3.0	123	7470	1115	4,4	ţ	ŀ

Benchmark for turbidity is 50 NTU.
 Action level for turbidity is 250 NTU.

Table 27. Percentage of turbidity samples exceeding state water quality criterion at construction sites given hypothetical receiving water conditions for western Washington and dilution factors of 0, 2.5, 5, and 10.

	-	Ξ	xceedance of	Exceedance of Criterion (%)	(0
	G	0 DF	10 DF	25 DF	50 DF
		All Samples	les		
Worker Workington	0.0	98	27	18	9
western washington	,	(73-90)	(27-29)	(18)	(9)
	Samples	with Values	Samples with Values & Benchmark		
$W_{cotton} M_{cotton}$	3.5	80	0	0	0
western washington	CC	(93-89)	(0)	(0)	(0)

Herrera Environmental Consultants

DF: Dilution factor.

A Values represent the percentage of sample exceeding the water quality criterion based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses).

· · · · · · · · · · · · · · · · · · ·		

Discussion and Conclusion

This section provides a discussion of the data presented herein and summarizes major conclusions from these data relative to the study objectives that were identified in the introduction to this report. To maintain consistency with the previous section, this information is presented under separate subsections for each of the following analyses: data distribution, comparison among industrial categories, comparison to NPDES permit benchmarks and action levels, and comparison to state water quality standards.

Data Distribution

In general, the analyses presented in this report indicate that most of the industrial stormwater parameters exhibited a distinctly right-skewed distribution due to the presence of numerous outliers in the upper end of the data range. This distribution is commonly observed in water quality data that are collected during storm sampling due to the influence of sporadic, high flow events that are associated with high pollutant concentrations. Furthermore, the maximum concentrations for several of the parameters (e.g., total zinc, total copper, nitrate + nitrite nitrogen, total phosphorus) appeared to be extreme outliers that may indicate that the associated values were incorrectly entered in the DMR or database.

The results also indicate that the data for many of the industrial and construction stormwater parameters exhibit a very high degree of variability. For example, the coefficients of variation calculated from these data ranged from 0.12 for pH to 7.06 for total zinc. Similarly, the coefficients of variation calculated from the compiled construction stormwater data ranged from 0.7 for transparency to 4.4 for total suspended solids. The high degree of variability in these data is generally consistent with the findings from other studies of compiled data from general NPDES industrial stormwater permits. For example, Strenstrom and Lee (2005) reported coefficients of variation ranging from 0.2 to 17 for data from a suite of sixteen monitoring parameters that were compiled through general NPDES industrial stormwater permits in the following jurisdictions: Los Angeles County, CA; Sacramento County, CA; and the state of Connecticut.

As noted previously, the available data for the construction stormwater parameters are extremely limited in terms of the total number of samples and geographic coverage. Therefore, additional data are required for these parameters in order to draw more definitive conclusions regarding their associated distributions.

Comparisons Among Industrial Categories

Statistical analyses indicated there were significant differences in median concentrations among industrial categories for all the parameters that were evaluated, with the exception of total

copper. (As noted previously, these analyses could not be performed for ammonia nitrogen because there were insufficient data.) However, even where there were significance differences between industrial categories, the overall utility of this information was limited because few meaningful patterns could be discerned in the results from the multiple range tests (see Table 12). More specifically, these tests generally showed little consistency with regard to the industrial categories that were identified as having high or low concentrations across all the parameters or within particular categories parameters (e.g., metals). The only possible exceptions to this broad generalization were observed for the following three industrial categories: Recycling Facilities (06), Treatment Works (09), and Transportation Facilities (11). Recycling Facilities (06) and Transportation Facilities (11) appeared to be differentiated from the majority of other categories due to high turbidity levels and high oil and grease concentrations, whereas Treatment Works (09) could be differentiated based on low total zinc and oil and grease concentrations.

It should be noted that the industrial categories are groupings of different types of facilities at a very broad level. For example, the following industrial sectors from Table 2 are all grouped under the Manufacturing (02) industrial category: Lumber and Wood Products (24--), Chemical and Allied Products (26--), and Primary Metals Industries (33--). Therefore, it is possible that more meaningful results could be obtained if additional comparisons were made at the industrial sector level. However, due to the large number of industrial sectors that are represented in the database and the associated inconsistencies in the amount of available data (see Tables 2 and 5), it was not practical to collectively analyze the industrial sectors using the conventional statistics that were applied in the comparisons of the industrial categories.

Comparison to NPDES Permit Benchmarks and Action Levels

With the exception of ammonia nitrogen, all of the primary monitoring parameters identified in the general NPDES permit for industrial stormwater were measured at levels that exceeded the benchmarks and action thresholds. However, there was a large range in terms of the frequency and magnitude of the exceedances exhibited for each of the parameters. Each parameter was classified as being of high, moderate, and low concern based on the frequency of these exceedances. Specifically, total zinc is identified as the only parameter of high concern because over 50 percent of the associated samples exceeded the applicable benchmark and 21 percent exceeded the action level. Turbidity, total copper, BOD, and nitrate + nitrite nitrogen are identified as being of moderate concern because between 20 and 50 percent of the samples exceeded the benchmark. Finally, pH, oil and grease, total lead, total phosphorus, and ammonia nitrogen are classified as being of low concern because less than 20 percent of the collected samples exceeded the applicable benchmark.

The results for construction stormwater also showed that the applicable benchmark for turbidity was routinely exceeded. However, due to the limited number of samples in this data set, it is difficult to make definitive conclusions regarding the level of concern that should be applied to this parameter.

Comparison to Hypothetical Water Quality Criteria

The existing data compiled through the general NPDES permit for industrial and construction stormwater cannot be used to assess compliance with state water quality standards. The following is a list of the information that would be required in order to make these determinations. Only one of these (i.e., effluent pollutant concentration) is available through the current NPDES permit database.

- Effluent pollutant concentration
- Effluent discharge rate
- Receiving water background pollutant concentration
- Receiving water discharge rate
- Receiving water hardness concentration (for metals only)
- Appropriate translator values (for metals only).

In an effort to further evaluate this question, a set of representative receiving water conditions was generated for each monitoring parameter based on queries of Ecology's EIM database and values from the literature. These representative receiving water conditions were then used to evaluate whether hypothetical water quality criteria would be exceeded given the actual effluent pollutant concentration from the permits and by assuming different dilution factors within the receiving water. However, it should be recognized that this approach seeks to make broad generalizations for processes that are driven almost entirely by site-specific conditions and interactions.

Furthermore, there are several assumptions used in this simplified approach that warrant further discussion, the first being potential correlations between input parameters. Specifically, in highly developed watersheds, background pollutant concentrations frequently show a positive correlation with discharge in the receiving water (Herrera 2001, 2004, 2005). This would tend to make it more difficult to meet water quality criteria for some parameters (e.g., metals) and more easy for other parameters (e.g., turbidity). In addition, hardness frequently shows a negative correlation with discharge due to dilution of ground water inputs to the receiving water that have naturally high mineral concentrations. This would tend to make it more difficult to meet water quality criteria for metals. These relationships were not fully captured in this approach to assessing water quality criteria, although the associated sensitivity analyses do provide some measure of the potential impact. For example, the worst case scenario used higher pollutant concentrations and lower hardness values relative to the typical scenario which, as noted above, are the conditions that would likely prevail if the correlations described above are present in the data.

Another assumption in this approach that warrants further discussion relates to the translator values that were used to estimate dissolved metal concentrations in the receiving water from total metal concentrations in the effluent. The translator values used in this analysis were taken from Pelletier (1996) and represent the 95th percentile value for the predicted dissolved metal concentration in the receiving water. Thus, they provide a conservative estimate relative to what might be expected if the translator values were predicting an average or median concentration.

To evaluate the effect of this assumption on the overall results of this analysis, the EIM database was queried to obtain data on the dissolved and total fractions of zinc from samples collected in western and eastern Washington, respectively. The average ratio of these fractions was then computed for each region (i.e., 0.362 and 0.660 for eastern and western Washington, respectively) and used in place of the values from Pelletier (1996) to predict the percentage of samples exceeding the state water quality standard based on the typical receiving water scenario and a dilution factor of 0. This analysis showed the translator values have a modest impact on the overall results for zinc. For example, the percentages of samples in western Washington that exceeded the water quality criterion for zinc were 84 and 60 percent using the Pelletier (1996) and alternative translator values, respectively. Similarly, the percentages of samples in eastern Washington that exceeded the criterion were 70 and 60 percent using the Pelletier (1996) and alternative translator values, respectively.

A relatively wide range of dilution factors was used in this analysis (i.e., 0, 10, 25, and 50) in order to determine the minimum required dilution necessary to meet water quality criteria. However, the actual dilution factor required to meet water quality criteria can also be calculated for each parameter given its associated benchmark and assumed receiving water conditions. For reference, these required dilution factors are presented in Table 28.

Table 28. Dilution factors required to meet water quality criteria assuming effluent concentrations equal the benchmarks specified in the general NPDES permit for construction and industrial stormwater.

		Zi	nc ^b	Cor	oper ^c	Le	ad d	
	Turbidity a	Acute	Chronic	Acute	Chronic	Acute	Chronic	Turbidity ^e
			Wester	n Washing	ton			
Worst-Case	4.7	5.1	5.8	33	56	4.0	190	9.7
Typical	4.2	3.4	3.8	17	23	2.7	76	9.2
Best-Case	3.0	2.4	2.6	10	14	1.8	48	8.0
			Easter	n Washing	ton			
Worst-Case	4.7	6.0	8.5	12	18	1.9	75	
Typical	4.2	1.4	1.6	5.7	8.4	0.9	25	
Best-Case	3.0	0.9	1.0	3.0	4.5	0.6	15	

^a Required dilution factors assuming benchmark for turbidity from the general NPDES permit for industrial stormwater (25 NTU).

The results from the analyses of the industrial stormwater data indicate that a high percentage of samples exceed the water quality criteria when dilution factors of 0 and 10 are assumed. Total copper is of particular concern given that over 90 percent of the samples in both eastern and western Washington exceeded the acute and chronic criteria with a dilution factor of 0. Total

h Required dilution factors assuming benchmark for zinc from the general NPDES permit for industrial stormwater (117 µg/L).
Required dilution factors assuming benchmark for copper from the general NPDES permit for industrial stormwater (63.8

Required dilution factors assuming benchmark for lead from the general NPDES permit for industrial stormwater (81.6 μg/L).
 Required dilution factors assuming benchmark for turbidity from the general NPDES permit for construction stormwater (50 NTU)

zinc and turbidity are identified as being of moderate concern with between 40 and 90 percent of the samples in both eastern and western Washington exceeding the associated criteria with a dilution factor of 0. Finally, lead is identified as being of lower concern with less than 40 percent of the samples exceeding the acute criterion in both eastern and western Washington with a dilution factor of 0. However, it should be noted that a high percentage of samples (> 90 percent) still exceeded the chronic criterion for lead with a dilution factor of 0. The percentage of exceedance for all parameters dropped to less than 35 percent with a dilution factor of 25, and less than 15 percent with a dilution factor of 50. Based on these results, it can be concluded that, when little or no dilution is available in the receiving water, discharges of industrial stormwater may be contributing to exceedances of the water quality criteria; however, the number of exceedances drops rapidly when relatively moderate levels of dilution are available.

Analyses performed on the subset of samples from industrial stormwater with concentrations below the benchmark showed that the water quality criteria were typically only exceeded when a dilution factor of 0 was assumed. The only notable exception was the chronic criterion for dissolved lead which exhibited a fairly high percentage of sample exceedances with a dilution factor of 10 in addition to a dilution factor of 0. These results suggest that water quality criteria are generally met if the benchmark values are achieved by the permittees, and a relatively small amount of dilution is assumed in the receiving water.

Analyses performed on the construction stormwater data showed similar trends to those observed for the industrial stormwater data. Specifically, a high percentage of samples exceed the water quality criterion for turbidity when dilution factors of 0 and 10 are assumed; however, the percentage of exceedance dropped off rapidly with higher dilution factors. Analyses performed on the subset of samples with concentrations below the benchmark showed that the water quality criterion was only exceeded when a dilution factor of 0 was assumed.

	Particular Company
Ý	
	-
1	
÷	

References

40 CFR 122.26. 1998. Storm water discharges (applicable to State NPDES programs, see 123.25). Code of Federal Regulations.

Ecology. 2005. Stormwater Quality Survey of Western Washington Construction Sites, 2003-2005. Publication No. 05-03-028. Washington State Department of Ecology, Olympia, Washington.

Ecology. 2006. Database retrieval: Water quality data from river systems for hardness, total suspended solids, turbidity, total zinc, total copper, and total lead. Environmental Information Management (EIM) system (http://www.ecy.wa.gov/eim/index.htm), Washington State Department of Ecology, Olympia, Washington. March 17, 2006.

Helsel, D.R. and R.M. Hirsch. 1992. Statistical Methods in Water Resources. Studies in Environmental Science 49. Elsevier Publications.

Herrera. 2001. Five-Year Project Report: City of Des Moines Water Quality Monitoring Program. Prepared for the City of Des Moines by Herrera Environmental Consultants, Inc., Seattle, Washington.

Herrera. 2004. Years 2001-2002 Water Quality Data Report: Green Duwamish Watershed Water Quality Assessment. Prepared for King County Department of Natural Resources by Herrera Environmental Consultants, Inc., Seattle, Washington.

Herrera. 2005. Year 2003 Water Quality Data Report: Green Duwamish Watershed Water Quality Assessment. Prepared for King County Department of Natural Resources by Herrera Environmental Consultants, Inc., Seattle, Washington.

Pelletier, G. 1996. Applying Metals Criteria to Water Quality-Based Discharge Limits, Empirical Models of the Dissolved Fraction of Cadmium, Copper, Lead, and Zinc. Watershed Assessments Section, Environmental Investigations and Laboratory Services Program, Washington State Department of Ecology, Olympia, Washington.

Stenstrom, M. K. and H. Lee. 2005. Industrial Storm Water Monitoring Program – Existing Statewide Permit Utility and Proposed Modifications. Final Report. University of California, Civil and Environmental Engineering Department, Los Angeles, California.

U.S. EPA. 2006. Sectors of Industrial Activity that Require Permit Coverage. Obtained February 7 from U.S. Environmental Protection Agency (U.S. EPA) website: http://cfpub.epa.gov/npdes/stormwater/swcats.cfm. February 7, 2006.

WAC 173-201A. 2003. Water Quality Standards for Surface Waters of the State of Washington. Washington Administrative Code. July 1, 2003.

Zar, J.H. 1984. Biostatistical Analysis. 2nd edition. Prentice Hall, Inc., Englwood Cliffs, New Jersey.

Summary Statistics for Monitoring Parameters Measured In Industrial Stormwater by Industry Sector

Berry	
:	

Ą

Table A-1. Summary statistics for turbidity levels measured in industrial stormwater by industry sector.

		# of	# of	Mean	Median	Minimum	Median Minimum Maximum	Std. Dev.	Coefficient	Exceedance	Exceedance
		facilities	values	(NTU)	(NTU)	(NTU)	(NTU)	(NTU)	of variation	of benchmark ^a	of action level ^b
'n	Agricultural services	-	5	24	16	9.8	99	21	0.9	%0	%0
86	Forestry	-	7	31	2.5	1,5	149	26	60.	%60	%BC
01	Metal mining	τ-	τ-	25	25	25	25	ŀ	1	100%	100%
12	Coal mining	Ψ	თ	ო	2.7	1.3	유	ന	0.8	%0	~ %C
- :	Construction special trade contractors	က	19	171	27	3.9	778	240	4.1	58%	%/E
8	Food and kindred products	40	268	103	22	0.1	5490	402	9.6	46%	28% 28%
22	Fextile mill products	က	12	20	12	1.7	25	18	6.0	33%	, 57 80,
23	Apparel and other finished products made from fabrics and similar material	~	9	51	44	18	85	56	0.5	83%	33%
54	Lumber and wood products	127	799	129	27	0.2	9200	452	3.5	51%	33%
25	Furniture and fixtures	ო	14	25	22	4.8	91	25	1.0	%50	14%
56	Paper and allied products	7	77	21	9	0.5	190	33	. 	21%	29%
27	Printing, publishing and allied industries	2	10	=	6.8	1.2	33	‡	0.0	20%	% %
28	Chemicals and allied products	40	226	28	4	0.4	193	38	6	31%	70,7
73	Petroleum and coal products	9	27	55	28	2.3	220	9	5 5	56%	37%
30	Rubber and miscellaneous plastic products	37	207	32	15	0.5	460	, <u>C</u>	. . i a	34%	0/ /C
<u>ب</u>	Leather and leather products	-	4	10	10	1.4	16	; _{(C}	. C	2,4%	20%
32	Stone, clay and glass products	23	109	51	16	0.3	980	116) r	7.0	0,0
33	Primary metals industries	13	75	28	12	0.5	580	2.2	, c	736/	23.70
쫎	Fabricated metal products	62	307	48	18	0.2	1150	114	2.5	%0£	100
32	Industrial & commercial machinery & computer equip.	28	98	32	4	0.05	235	22	. 4	3/66	13/0
36	Electronic and other electrical equipment	7	63	13	6.5	0.5	78	17	, ,	16%	10%
37	Transportation equipment	33	343	23	8.4	0.5	560	· <u>7</u> -	i 6	18%	8 2
38	Measuring, analyzing, and controlling instruments;	-	89	9	5.2	5.	=	, m	9.0	%2	0.V0
	photographic, medical and optical goods; watches and clocks							ı	}	2	8
39	Miscellaneous manufacturing industries	9	24	23	£	1.2	80	24	T-	7326	170/
40	Railroad transportation		54	115	34	0.6	1990	292	٠. د	22 /8	9/ /-
4	Local and interurban passenger transportation	23	101	35	12	10.	490	76	5.0	20 %	0,00,70
45	Motor freight transportation & warehousing	108	529	116	23	0.3	5380	423	3.7	48%	%UE
4	Water transportation	30	151	36	18	0.3	343	56	4	36%	21%
5	Transportation by air	71	154	19	5.3	0	069	25	. e.	13%	79%
47	Transportation services	7	4	133	115	20	250	87	0.7	100%	75%
6 1	Electric, gas, and sanitary services	45	250	23	8.0	0.4	640	56	2.5	17%	%
20	Wholesale trade-durable goods	83	289	25	19	0	710	103	8.	42%	27%
נה נ	Wholesale trade non-durable goods	23	89	59	4	0.1	929	74	2.5	28%	% 5
25	Building materials, hardware, garden supply, and mobile	2	7	101	101	2.1	200	140	1.4	20%	50%
Ċ	ווסווופ חבשופו א										
22 2	Educational services	.	-	4	3.8	3.8	3.8	ı	1	%0	%0
S	Environmental quality programs	2	12	Ţ.	÷	2.5	28	89	0.7	8%	%0
	IND SECTOR Specified	26	137	38	8.4	0.7	1190	118	3.1	24%	15%
e G	a Benchmark for turbidity in 25 NT11										

^a Benchmark for turbidity is 25 NTU ^b Action level for tubidity is 50 NTU

Table A-2. Summary statistics for pH levels measured in industrial stormwater by industry sector.

SIC Se 07 Ag 08 Fo 08 Fo 110 Mk 112 Cc 17 Cc	Sector	facilities	values	-1	듩	Minimum	Movim				7 T T T T T T T T T T T T T T T T T T T
	and the second s							Std. Dev.	of variation	of benchmark"	or action level
	Agricultural services		5	7.7	7.8	6.5	8.4	0.71	60.0	%0	%0
	Forestry		7	5.8	6.0	5.0	6.5	0.49	0.08	43%	%0
	Metal mining		-	7.2	7.2	7.2	7,2	ı	ı	%0	%0
	Coal mining	-	6	7.8	8.0	7.5	8.0	0.23	0.03	%0	%0
	Construction special trade contractors	ю	19	6.9	6.9	6.0	8.7	0.76	0.11	%0	%0
	Food and kindred products	40	265	9.9	6.7	3.8	9.7	0.77	0.12	15%	3%
22 Te	Textile mill products	ю	12	6.5	6.7	5.3	7.3	09'0	60.0	17%	%0
23 Ap	Apparel and other finished products made from fabrics and similar material	-	o O	6.0	6.0	6.0	6.0	0.00		%0	% <u>0</u>
24 Lu	Lumber and wood products	127	784	6.5	6.5	2.0	6	0.91	0.14	19%	3%
	Furniture and fixtures	က	14	6.5	6.5	5.6	7.2	0.51	0.08	14%	%0
26 Pa	Paper and allied products	4	80	6.7	6.9	4.0	9.1	0.80	0.12	19%	4%
27 Pri	Printing, publishing and allied industries	2	10	6.2	6.4	5.0	7.0	0.76	0.12	20%	%0
28 Ch	Chemicals and allied products	40	226	6.7	6.8	4.3	10.7	0.92	0.14	14%	4%
	Petroleum and coal products	9	27	6,8	7.0	5.4	7.9	0.73	0.11	19%	%0
	Rubber and miscellaneous plastic products	37	206	6.2	6.1	4.0	8.4	0.72	0.12	23%	1%
	Leather and leather products	-	4	7.1	7.2	6.9	7.2	0.14	0.02	%0	%0
	Stone, clay and glass products	23	111	7.0	7.0	3.9	11.6	1.04	0.15	%6	4%
	Primary metals industries	1 3	92	6.8	7.0	3.2	9.6	1.03	0.15	42	4%
_	Fabricated metal products	62	300	6.7	6.8	2.3	9.9	0.95	0.14	15%	3%
_	Industrial & commercial machinery & computer equip,	28	91	6.7	6.7	5.6	8.5	0.86	0.13	13%	1%
	Electronic and other electrical equipment	7	65	6.8	7.0	2.7	8.0	0.83	0.12	8%	3%
	Transportation equipment	33	344	6.7	6.8	3.8	10.0	0.65	0.10	10%	0.3%
88 Ā.E.£	Measuring, analyzing, and controlling instruments; photographic, medical and optical goods; watches and		ω	6.6	6.5	6.0	7.0	0.42	0.0	% 0	%0
oc Mi		ú	ć	ď	ď	4	•	ć	Ç	ò	ò
	Miscensi leous manutaciding muusines Railmad transportation	o #	, r	່ດ		ָ טַת	10.4	6.50	0.0	337/0 09/.	% 6
	ocal and interurban passenger transportation	. 6	5 5	9 6	9 6	, 4 8	5 G	0.0	0.12	10%	1%
	Motor freight transportation & warehousing	10°	526	9 6	, LC) C	9 0	27.0	0.0	12%	- 4
-	Water transportation) E	151	9 6	9 6	. r.	9 60	0.74	2.12	7%	%- %
	Transportation by air	2.7	137	6.9	59	4.5	10.6	0.88	0.13	10%	%.
47 Tr	Transportation services	2	4	7.0	7.0	6.0	8.1	0.95	0.14	%0	%0 '
	Electric, gas, and sanitary services	42	250	6.9	7.0	5.0	6.0	0.59	0.09	%9	0.4%
	Wholesale trade-durable goods	63	289	6.8	6.9	2.2	10.0	0.79	0.12	8%	1%
51 W	Wholesale trade non-durable goods	23	88	6.5	6.5	5.0	7.6	0.61	0,09	16%	%0
52 Bu	Building materials, hardware, garden supply, and mobile home dealers	2	7	5.8	5.8	5.0	6.5	1.06	0.18	%0	%0
82 Ed	Educational services	τ	τ-	9.9	9.9	9.9	9.9	l	ŧ	%0	%0
	Environmental anality programs	۰ ,	. 6		, c	i u	2:5	96.0	200	86	S è
	Environmental quality programs No sector specified	26 26	132	6.5	6.6	4.4	8.2	0.36 0.73	0.05	14%	%%
3erich	^a Berichmark for pH is <6 or >9										
۳	ր level for pH is <5 or >10										

Table A-3. Summary statistics for total zinc concentrations measured in industrial stormwater by industry sector.

		# of	jo#	Mean	Median	Minimum	Maximum	Std. Dev.	Coefficient	Exceedance	Exceedance
SIC	Sector	facilities	values	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	of variation	of benchmark ^a	of action level ^b
6	Agricultural services	-	5	12	10	0.01	40	16	1.4	%0	%0
88	Forestry	-	4	16	9.0	0.021	47	21	1.3	%0	%0
9	Metal mining	•	-	297	297	297	297	1	ı	100%	%0
12	Coal mining	₩.	6	42	Ξ	2.0	220	69	1.6	11%	%0
17	Construction special trade contractors	ო	19	379	392	0.98	1040	278	0.7	79%	53%
50	Food and kindred products	40	569	362	204	0.12	2882	449	1.2	%69	29%
22	Textile mill products	ო	12	582	288	87	3400	912	1.6	95%	42%
23	Apparel and other finished products made from fabrics	-	9	288	225	94	561	191	0.7	83%	33%
	and similar material										
54	Lumber and wood products	127	734	224	119	0.362	2600	312	4.1	20%	17%
22	Furniture and fixtures	ო	12	144	49	10	800	230	1.6	25%	8%
56	Paper and allied products	14	79	300	06	œ	7950	922	3,1	41%	16%
27	Printing, publishing and allied industries	7	10	84	11	0.149	250	69	0.8	20%	%0
28	Chemicals and allied products	40	221	328	179	0.02	8110	643	2.0	61%	27%
53	Petroleum and coal products	9	23	344	140	20.8	2600	558	1.6	21%	22%
8	Rubber and miscellaneous plastic products	37	202	318	160	5.0	2960	435	4.1	62%	22%
9	Leather and leather products	-	4	40	32	12.4	82	31	0.8	%0	%0
32	Stone, clay and glass products	23	100	920	135	0.03	39400	4497	4.9	26%	16%
33	Primary metals industries	13	92	346	100	1.0	5160	881	2.5	41%	14%
8	Fabricated metal products	62	291	2593	310	1.58	130000	11964	4.6	75%	45%
35	Industrial & commercial machinery & computer equip.	28	79	409	96	0.0	9410	1245	3.0	43%	16%
36	Electronic and other electrical equipment	7	65	289	88	5.0	3500	642	2.2	37%	14%
37	Transportation equipment	33	329	249	120	0.05	5300	496	2.0	25%	16%
38	Measuring, analyzing, and controlling instruments; photographic, medical and optical goods; watches and	-	в	24	70	2.0	99	18	0.8	%0	%0
	clocks										
33	Miscellaneous manufacturing industries	9	54	244	169	19	1200	276	1.1	%29	17%
40	Railroad transportation	-	20	290	183	0.34	1800	338	1.2	%02	22%
4	Local and interurban passenger transportation	23	101	173	103	4.7	1210	193	7:	46%	10%
42	Motor freight transportation & warehousing	108	502	377	162	0.14	16200	1023	2.7	62%	21%
44	Water transportation	8	145	380	244	0.7	4000	515	1.4	74%	34%
42	Transportation by air	21	146	230	20	1.56	6300	694	3.0	32%	12%
47	Transportation services	2	4	1134	283	71	3900	1848	1.6	75%	20%
49	Electric, gas, and sanitary services	45	224	138	37	0.002	4400	361	2.6	21%	7%
20	Wholesale trade-durable goods	63	276	317	120	2.0	6410	587	1.9	53%	23%
51	Wholesale trade non-durable goods	23	88	323	168	0.37	3110	200	5.7	63%	23%
25	Building materials, hardware, garden supply, and mobile	2	-	7840	7840	7840	7840	ı	I	100%	100%
	home dealers										
85	Educational services	-	-	19	19	19	19	ł	ŀ	%0	%0
92	Environmental quality programs	7	12	66	72	70	300	91	6.0	25%	%0
	No sector specified	26	132	533	150	0.255	18200	1790	3.4	58%	28%
μ α	a Renchmark for zinn is 117o/l										

 $^{^{\}rm a}$ Benchmark for zinc is 117 $\mu g/L$ $^{\rm b}$ Action level for zinc is 372 $\mu g/L$

-000 Appendix A Tables_101306.xls

Table A-4. Summary statistics for oil and grease concentrations measured in industrial stormwater by industry sector.

	and the second s	jo#	jo#	Mean	Median	Minimum	Maximum	Std. Dev.	Coefficient	Exceedance	Exceedance
SIC	C Sector	facilities	values	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	of variation	of benchmark ^a	of action level ^b
07	Agricultural services	-	5	3.6	5.0	1.0	5.0	1.9	0.5	%0	%0
10	Metal mining	_	←	8:	1.8	1.8	6 .	:	1	%0	%0
12	Coal mining	•	6	1 .3	1.0	1.0	2.0	0.4	0.3	%0	%0
17	Construction special trade contractors	က	ĸ	5.5	9.9	2.0	7.2	2.1	0.4	%0	%0
20	Food and kindred products	40	213	8.7	5.0	1.0	151.0	14,4	1.7	12%	2%
22	Textile mill products	က	თ	4.6	5,0	3.0	5.0	6.0	0.2	%0	%0
23	Apparel and other finished products made from fabrics	•	2	3.6	3.6	3.6	3.6	ı	1	%0	%0
24	Lumber and wood products	127	382	7.2	5.0	0.0	120.0	10.3	4.1	8%	2%
25	Furniture and fixtures	က	6	5.5	5.3	5.0	5.9	0.3	0.1	%0	%0
26	Paper and allied products	14	69	5.1	3.7	1.0	70.0	8.4	1.7	3%	1%
28	Chemicals and allied products	40	156	4.8	4.3	0.3	26.0	4.1	6.0	3%	%0
29	Petroleum and coal products	9	48	7.8	5.0	1.0	41.0	9.1	1.2	11%	%9
30	Rubber and miscellaneous plastic products	37	129	5.0	4.0	0.0	39.1	5.5	1.1	4%	2%
31	Leather and leather products	•	4	5.6	5.4	5.4	6.0	0.3	0.1	%0	%0
32	Stone, clay and glass products	23	5	6.3	5.0	1.0	34.0	6.3	1.0	%9	4%
33	Primary metals industries	13	54	2.8	2.0	0.0	9.6	2.1	0.8	%0	%0
34	Fabricated metal products	62	192	7.1	5.0	0.0	83.3	8.3	1.2	8%	3%
35	Industrial & commercial machinery & computer equip.	28	36	12.9	5.1	0.0	106.0	20.9	1.6	19%	8%
36	Electronic and other electrical equipment	7	53	4.5	5.0	0.0	5.4	د .	0.3	%0	%0
37	Transportation equipment	33	197	2.5	1.0	0.0	38.0	3.6	1.4	1%	1%
38	Measuring, analyzing, and controlling instruments;	_	6 0	ر ن	1.0	1.0	2.7	0.7	0.5	%0	%0
39	Miscellaneous manufacturing industries	9	7	7.8	7.1	1,0	16.0	4.2	0.5	%6	%0
40	Railroad transportation	=	56	7.3	6.5	2.0	18.8	4.3	0.6	12%	%0
4	Local and interurban passenger transportation	23	54	14.6	5.0	1.0	223.0	37.6	2.6	13%	%6
42	Motor freight transportation & warehousing	108	302	9.6	5.0	1.0	359.0	22.0	2.6	10%	4%
44	Water transportation	30	92	12.1	5.0	0.0	561.0	57.9	4.8	4%	1%
45	Transportation by air	21	74	6.3	5.0	1.0	96.3	11.2	8.4	4%	1%
47	Transportation services	2	က	20.9	7.9	6.9	48.0	23.4	1.	33%	%0
49	Electric, gas, and sanitary services	42	153	12.5	5.0	1.0	914.0	75.5	0.9	5%	3%
20	Wholesale trade-durable goods	63	191	12.5	5.0	0.8	232.0	27.4	2.2	17%	8%
5	Wholesale trade non-durable goods	23	29	6.8	5.0	1.0	82.0	10.3	1.5	3%	3%
25	Building materials, hardware, garden supply, and mobile	7	-	7.1	7.1	7.1	7.1	1	i	%0	%0
95	Environmental quality programs	7	6	5.6	2.5	2.5	3.0	0.2	0.1	%0	%0
	No sector specified	26	99	7.1	5.0	1.3	46.8	9.7	1.4	8%	%9

^a Benchmark for oil & grease is 15 mg/L ^a Action level for oil & grease is 30 mg/L

Table A-5. Summary statistics for total copper concentrations measured in industrial stormwater by industry sector.

		jo #	# of	Mean	Median	Minimum Maximum	Maximum	Std. Dev.	Coefficient	Exceedance	Exceedance
) 등	SIC Sector	facilities	values	(µg/L)	(µg/L)	(hg/L)	(ria/L)	(na/L)	of variation	of heirchmark ^a	of action level ^b
9	Metal mining	-	_	158.0	158.0	158.0	158 O) 		400%	4008/
11	Construction special trade contractors	က	12	106.3	99.0	7.1	222.0	82 Q	8	67% 67%	236
20	Food and kindred products	40	58	47.7	20.5	0.8	734.0	98.4	, c	47%	٥/ كې ۱۹/
22	Textile mill products	ന	9	46.0	23.5	6.7	140.0	50.6		%6E	0/0 /0C
23	Apparel and other finished products made from	-	4	21.0	24.0	5.0	31.0	11.6	0.6	%	%0
54	Lumber and wood products	127	83	35.7	21.4	0.1	0.009	68.0	6.	17%	%
26	Paper and allied products	14	80	50.5	25.0	20.0	140.0	45.7	6.0	25%	%0 0
78	Chemicals and allied products	40	49	42.3	25.9	5.0	300.0	51.7	1.2	18%	4%
8	Rubber and miscellaneous plastic products	37	43	65.3	20.0	3.6	530.0	116.0	1.8	26%	12%
35	Stone, clay and glass products	23	12	938.1	19.2	10.0	11,000.0	3,168.7	3.4	8%	8%
33	Primary metals industries	13	65	61.4	18.0	0.4	473.0	101.0	1.6	28%	12%
8	Fabricated metal products	62	215	59.9	24.0	0.0	1,700.0	144.4	2.4	21%	7%
36	Electronic and other electrical equipment	7	10	21.5	50.6	3.2	54.3	15.9	0.7	%0	%0
37	Transportation equipment	33	132	29.4	22.8	0.0	177.0	24.5	0.8	8%	1%
<u></u>	Miscellaneous manufacturing industries	9	က	7.0	7.1	4.0	10.0	3.0	0,4	%0	%0
40	Railroad transportation	=	9	67.2	22.3	5.0	490.0	149.1	2.2	10%	10%
4	Local and interurban passenger transportation	23	13	18.5	15.5	7.0	41.0	11.4	9.0	%0	%0
2 :	Motor freight transportation & warehousing	108	127	50.3	29.4	3.8	496.0	72.9	1,5	19%	%9
4 4	Water transportation	30	30	49.3	36.3	0.0	194.0	46.7	6.0	20%	%2
45	Transportation by air	21	15	39.5	7.0	5.0	150.0	52.9	1.3	27%	%/
49	Electric, gas, and sanitary services	42	37	61.9	16.7	1.0	1,230.0	201,4	9.3	14%	5%
20	Wholesale trade-durable goods	63	204	113.5	22.7	2.0	5,940.0	467.2	4.1	27%	10%
5	Wholesale trade non-durable goods	23	16	18.2	16.5	2.0	63.6	19.3	-	%0	%0
92	Environmental quality programs	7	4	22.8	25.0	11.0	30.0	9.1	0.4	%0	%0
	No sector specified	26	20	292.3	10.0	0.0	4,930.0	1,098.1	3.8	20%	10%

^a Benchmark for copper is 63.6 µg/L ^D Action level for copper is 149 µg/L

1-000 Appendix A Tables_101306.xls

Table A-6. Summary statistics for total lead concentrations measured in industrial stormwater by industry sector.

		Jo #	# O£	Mean	Median	Minímum	Maximum	Std. Dev.	Coefficient	Exceedance	Exceedance
SIC	SIC Sector	facilities	values	(hg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	of variation	of benchmark ^a	of action level ^b
10	Metal mining	٦	-	13.9	13.9	13.9	13.9	ı	ŧ	%0	%0
17	Construction special trade contractors	ო	Ţ.	53	33	1.7	20	24	0.8	%0	%0
20	Food and kindred products	40	55	20	9	0.05	200	33	1.6	4%	2%
22	Textile mill products	ю	5	6.3	ဖ	ဖ	7.56	7.0	0.1	%0	%0
23	Apparel and other finished products made from fabrics	_	4	4	6.5	4	37	16	1.2	%0	%0
24	Lumber and wood products	127	29	20	œ	900.0	332	47	2.4	3%	3%
26	Paper and allied products	14	8	34	40	+	110	36	1.1	13%	%0
28	Chemicals and allied products	40	43	65	40	2	262	130	2.0	12%	%6
30	Rubber and miscellaneous plastic products	37	33	5	7	0.08	40	15	1.0	%0	%0
32	Stone, clay and glass products	23	4	53	22	22	40	7.5	0.3	%0	%0
33	Primary metals industries	13	48	98	10	0.01	1240	278	2.9	21%	8%
34	Fabricated metal products	62	192	22	22	0.02	3000	223	4.1	11%	2%
35	Industrial & commercial machinery & computer equip.	28		1.7	1.7	1.7	1.7	1	ı	%0	%0
36	Electronic and other electrical equipment	7	8	5	6.5	1.44	78	56	1.7	%0	%0
37	Transportation equipment	33	122	7	3.3	0.01	89.7	=	1.6	1%	%0
33	Miscellaneous manufacturing industries	9	4	3.9	4	1.8	2.7	1 .8	0.5	%0	%0
40	Railroad transportation	7	8	43	40	7.5	81	22	0.5	%0	%0
4	Local and interurban passenger transportation	23	6	15	4.5	-	40	17	1.2	%0	%0
42	Motor freight transportation & warehousing	108	111	31	15	7	289	49	1.6	%9	4%
44	Water transportation	30	27	33	13	0.05	144	38	1.2	11%	%0
45	Transportation by air	21	5	37	40	22	50	7.3	0.2	%0	%0
49	Electric, gas, and sanitary services	42	36	5	7	6.0	110	19	1.5	3%	%0
50	Wholesale trade-durable goods	63	186	104	22	0.1	3730	339	3.2	22%	10%
51	Wholesale trade non-durable goods	23	1 3	53	20	2	81.6	28	1.0	%0	%0
95	Environmental quality programs	7	4	3.3	7	1.6	9.7	2.9	6.0	%0	%0
	No sector specified	26	19	53	10	0.007	576	137	2.6	11%	11%
l											

^a Benchmark for lead is 81.6 µg/L ^D Action level for lead is 159 µg/L

A-7

Table A-7. Summary statistics for biological oxygen demand concentrations measured in industrial stormwater by industry sector.

		ţo#	# of	Mean	Median	Minimum	Maximum	Std. Dev.	Coefficient	Exceedance	Exceedance
SIC	SIC Sector	facilities	values	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	of variation	of benchmark ^a	of action level ^b
20	Food and kindred products		221		13.0	2.0	340.0	58.6	1.6	73%	16%
24	Lumber and wood products	127	615	46.7	14.0	0.5	639.0	82.6	1.8	30%	21%
56	Paper and allied products	14	20	10.2	9.0	4.0	27.0	6.1	9.0	%0	%0
28	Chemicals and allied products	40	159	17.2	6.0	1.5	320.0	40.9	2.4	%6	4%
42	Motor freight transportation & warehousing	108	9	7.3	5.5	2.0	14.0	5.0	0.7	%0	%0
47	Transportation services	2	7	29.5	29.5	26.0	33.0	4.9	0.2	20%	%0
49	Electric, gas, and sanitary services	42	64	7.0	4.5	0.2	39.0	7.8	1.1	%0	ı
5	Wholesale trade non-durable goods	23	ო	6.8	7.0	4.0	9.3	2.7	0.4	%0	%0
	No sector specified	56	15	17.4	15.0	3.0	90.0	21.3	1.2	7%	7%

 $^{^{\}rm a}$ Benchmark for BOD is 30 mg/L with the exception of sector 49 which has a benchmark of 140 mg/L $^{\rm p}$ Action level for BOD is 60 mg/L

1-000 Appendix A Tables_101306.xls

Table A-8. Summary statistics for ammonia nitrogen concentrations measured in industrial stormwater by industry sector.

		Jo #	jo #	Mean	Median	Minimum	Mean Median Minimum Maximum	Std. Dev.	Std. Dev. Coefficient	Exceedance	Exceedance
SIC	SIC Sector	facilities	values (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	of variation	of benchmark ^a	of action level ^b
32	Stone, clay and glass products	23	3	9.5	10.1	7.2	10.2	2	0.2	%0	%0
33	Miscellaneous manufacturing industries	9	-	0.1	0.1	0.1	0.1	1	ı	%0	%0
49	Electric, gas, and sanitary services	42	99	0.3	0.1	0.0	4.8	9.0	2.4	%0	%0

^a Benchmark for ammonia nitrogen is 21.8 mg/L for all sectors except for 49 which has a benchmark of 10 mg/L ^b Action level for ammonia nitrogen is 38 mg/L

A-9

Table A-9. Summary statistics for nitrate + nitrite nitrogen concentrations measured in industrial stormwater by industry sector.

		# of	ţo #	Mean	Median	Minimum N	Maximum	Std. Dev.	Coefficient	Exceedance	Exceedance
Sic	SIC Sector	facilities	values	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	of variation	of benchmark ^a	of action level ^b
20	Food and kindred products	40	217	1.5	0.4	0.01	61.0	4.9	3.3	34%	21%
28	Chemicals and allied products	40	174	2.5	9.0	0.01	83.7	9.5	3.7	43%	22%
47	Transportation services	2	7	50.3	50.3	0.5	100.0	70.4	4.1	20%	20%
	No sector specified	26	4	9.0	0.3	0.2	2.4	1.0	1,3	25%	25%

^a Benchmark for nitrate + nitrite nitrogen is 0.69 mg/L ^D Action level for nitrate + nitrite nitrogen is 1.36 mg/L

Table A-10. Summary statistics for total phosphorus concentrations measured in industrial stormwater by industry sector.

	†ö #	₩ of	Mean	Median	Minimum	Maximum	Std. Dev.	Coefficient	Exceedance	Exceedance
SIC Sector	facilities	values	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	of variation	of benchmark ^a	of action level ^b
20 Food and kindred products	40	230	-	ı	0.005	23	3.1	2.4	14%	7%
28 Chemicals and allied products	40	170	4.1	0.1	0.004	137	10.7	7.4	7%	%9
47 Transportation services	2	2	3.2	3.2	1.2	5.1	2.8	6.0	20%	20%
50 Wholesale trade-durable goods	63	2	11.5	11.5	0.081	23	16.2	1.4	20%	20%
51 Wholesale trade non-durable goods	23	_	0.1	0.1	0.12	0.12	1	1	%0	%0
No sector specified	26	ιΩ	90.0	0.1	0.044	0.18	0.1	0.7	%0	%0

 $^{^{\}rm a}$ Benchmark for total phosphorus is 2 mg/L $^{\rm p}$ Action level for total phosphorus is 4 mg/L

Percentages of Samples Exceeding State
Water Quality Standards by
Industrial Category Given Hypothetical
Receiving Water Conditions and
Varying Dilution Factors

Table B-1. Percentage of turbidity samples that potentially exceed state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

		·····		
ת	0 DF	10 DF	25 DF	50 DF
Q	25	0	0	0
.0	(0-38)	(0)	(0)	(0)
1706	72	27	14	8
1200	(58-76)	(24-27)	(14-15)	(7-8)
	22	0	0	0
23	(13-26)	(0)	(0)	(0)
	48	4	1	0
1.13	(30-54)	(3-4)	(1)	(0)
205	71	25	1.2	4
295	(57-76)	(22-27)	(11-12)	(4)
	67	0	n	0
3	(0-67)	(0)	(0)	(0)
	68	23	10	5
960	(53-75)			(5)
		•		0
74	(27-45)	(3-8)		(0)
	.			
6				0
	(30-83)	(17)	(17)	(0)
1370	58	15	5	3
	(42-65)	(13-15)	(4-5)	(2-3)
7	29	29	14	0
/	(29)	(14-29)	(14)	(0)
112	50	14	5	4
113	(35-61)	(14)	(5)	(4)
.1200	64	20	9	5
4200	(49-70)	(18-21)	(9)	(5)
41	76	22	22	7
• •	(68-90)	(22-24)	(20-22)	(7)
1	100	0	0	0
•	(100)	(0-100)	(0)	(0)
50	84	30	24	14
20	(66-88)	(26-36)	(18-24)	(14)
3	67	0	0	0
-	(33-67)	(0)	(0)	(0)
80	79	30	14	6
au	(66-84)	(28-30)	(13-14)	(6)
	00	22	0	0
o	89			
9	89 (44-100)	(22)	(0)	(0)
et and announce them to be to the style of the time them a et and some				(0) 8
9 184	(44-100)	(22)	(0)	- an anno an de de la completa del la completa de l
	8 1286 23 135 295 3 960 74	8 25 (0-38) 1286 72 (58-76) 23 22 (13-26) 135 48 (30-54) 295 71 (57-76) 3 67 (0-67) 960 68 (53-75) 74 39 (27-45) 6 67 (50-83) 1370 58 (42-65) 7 29 (29) 113 50 (35-61) 4280 64 (49-70) 41 76 (68-90) 1 100 (100) 50 84 (66-88) 3 67 (33-67)	n 0 DF 10 DF 8 25 0 (0-38) (0) 1286 72 27 (58-76) (24-27) 23 22 0 (13-26) (0) 135 48 4 (30-54) (3-4) 295 71 25 (57-76) (22-27) 3 67 0 (0-67) (0) 960 68 23 (53-75) (21-23) 74 39 8 (27-45) (3-8) 6 67 17 (50-83) (17) 1370 58 15 (42-65) (13-15) 7 29 29 (29) (14-29) 113 35-61) (14) 4280 64 20 (49-70) (18-21) 41 76 22 (68-90) <t< td=""><td>8</td></t<>	8

^a Values represent the percentage of sample exceeding the water quality standard based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses). DF: Dilution factor.

Table B-2. Percentage of turbidity samples with levels less than the benchmark that potentially exceed state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

				of Std. (%	
Category	n	0 DF	10 DF	25 DF	50 DF
Western Washington					
		25	0	0	0
01 - Facilities with effluent limitations	8	(0-38)	(0)	(0)	(0)
07. 14. (7.)	212	49	0	0	0
02 - Manufacturing	713	(24-57)	(0)	(0)	(0)
03 - Mineral, metal, oil, and gas	22	18	0	0	0
03 - witherar, metat, on, and gas	22	(9-23)	(0)	(0)	(0)
05 - Landfills	113	38	0	0	0
	113	(17-45)	(0)	(0)	(0)
06 - Recycling facilities	170	49	0	0	0
ov - Recycling tuchnica	170	(25-59)	(0)	(0)	(0)
07 - Steam electric plants	3	67	0	0	0
or - Scaro electric plants	د	(0-67)	(0)	(0)	(0)
D9 Temperation finitis	ED.4	48	0	0	0
08 - Transportation facilities	584	(23-59)	(0)	(0)	(0)
00 T		32	0	0	0
09 - Treatment works	66	(18-38)	(0)	(0)	(0)
10.0		33	0	0	0
10 - Construction sites > 5 acres	3	(0-67)	(0)	(0)	(0)
		40	0	0	0
11 - Light industrial activity	968	(19-51)	(0)	(0)	(0)
		0	0	0	0
12 - Significant contributor	5	(0)	(0)	(0)	(0)
Manager 177 1	0.5	33	0	0	0
No category specified	85	(13-48)	(0)	(0)	(0)
All Western Washington	2740	44	0	0	0
An Western Washington	2/40	(21-54)	(0)	(0)	(0)
Eastern Washington					
02 - Manufacturing	19	47	0	0	0
	17	(32-79)	(0)	(0)	(0)
08 - Transportation facilities	.20	60	0	0	0
	.20	(15-70)	(0)	(0)	(0)
09 - Treatment works	3	67	0	0	0
	Ţ.	(33-67)	(0)	(0)	(0)
11 - Light industrial activity	38	55	0	0	0
		(29-66)	(0)	(0)	(0)
No category specified	5	80	0	0	0
The state of the s	transfilationers (m) of safetimen is an elementarion	(0-100)	(0)	(0)	(0)
All Eastern Washington	85	56	0	0	0
· ·		(25-72)	(0)	(0)	(0)
All Washington	2825	44	0	0	0
· · · · · · · · · · · · · · · · · · ·	2,52,5	(21-54)	(0)	(0)	(0)

^a Values represent the percentage of sample exceeding the water quality standard based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses). DF: Dilution factor.

Table B-3. Percentage of total zinc samples that potentially exceed state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

_		***	eedance of .		(%)"	Exce	edance of (Chronic Sto	J. (%)³
Category	Л	0 DF	10 DF	25 DF	50 DF	0 DF	10 DF	25 DF	50 DF
Western Washington									
01 - Facilities with effluent limitations	8	100 (100)	100 (100)	88 (63-88)	38 (13-88)	100 (100)	100 (100)	88 (88-100)	63 (13-88)
02 - Manufacturing	1194	83 (78-86)	25 (16-36)	7 (5-14)	3 (2-6)	84 (79~87)	26 (17-40)	9 (6-16)	3 (2-6)
03 - Mineral, metal, oil, and gos	22	36 (27-50)	5 (5)	0 (0-5)	0 (0)	41 (32-50)	5 (5-14)	0 (0-5)	(0)
05 - Landfills	120	82 (76-91)	31 (25-38)	21 (21-24)	20 (19-21)	85 (79-94)	34 (26-41)	22 (21-25)	20 (19-21)
06 - Recycling facilities	288	84 (78-88)	26 (19-33)	8 (4-18)	2 (1-5)	85 (80-89)	27 (20-37)	9 (5-19)	3 (1-7)
07 - Steam electric plants	3	33 (33-67)	0 (0)	0 (0)	0 (0)	67 (33-67)	0 (0)	0 (0)	0 (0)
08 - Transportation facilities	909	85 (80-90)	24 (13-37)	6 (4-12)	3 (1-5)	87 (81-90)	26 (16-40)	7 (5-13)	3 (1-5)
09 - Treatment works	73	56 (45-74)	7 (5-15)	1 (0-5)	0 (0-1)	59 (48-75)	8 (5-15)	4 (1-5)	0 (0-1)
10 - Construction sites > 5 acres	6	100 (100)	50 (33-83)	33 (17-33)	17 (17)	100 (100)	67 (33-83)	33 (17-33)	17 (17-33)
11 - Light industrial activity	1331	89 (85-92)	26 (17-37)	8 (6-15)	4 (3-7)	90 (86-93)	27 (19-40)	9 (6-16)	5 (3-7)
12 - Significant contributor	4	25 (0-25)	0 (0)	0 (0)	0 (0)	25 (25)	0 (0)	0 (0)	0 (0)
No category specified	108	84 (83-87)	33 (25-44)	12 (9-22)	6 (4-9)	85 (83-87)	37 (27-47)	15 (9-24)	6 (5-10)
All Western Washington	4066	84 (79-88)	24 (16-35)	7 (5-14)	3 (2-6)	85 (80-88)	26 (17-39)	9 (6-16)	4 (2-6)
Eastern Washington									
02 - Manufacturing	39	87 (74-92)	8 (0-64)	0 (0-15)	0 (01-0)	90 (74-92)	10 (3-74)	0 (0-38)	0 (0-10)
03 - Mineral, metal, oil, and gas	1	100 (100)	0 (0-100)	0 (0)	0 (0)	100 (100)	0 (0-100)	0 (0-100)	0 (0)
98 - Transportation facilities	50	47 (39-71)	6 (4-29)	4 (2-14)	2 (2-8)	57 (39-73)	8 (6-39)	4 (2-14)	2 (2-12)
09 - Treatment works	3	0 (0-67)	0 (0)	0 (0)	0 (0)	33 (0-67)	0 (0)	0 (0)	0 (0)
11 - Light industrial activity	81	79 (63-86)	14 (6-57)	4 (1-35)	1 (1-16)	80 (67-90)	17 (7-62)	5 (1-41)	1 (1-22)
No category specified	9	67 (67)	11 (0-56)	0 (0-44)	0 (0-11)	67 (67)	11 (0-67)	0 (0-44)	0 (0-22)
All Eastern Washington	183	70 (58-83)	10 (4-50)	3 (1-25)	1 (1-12)	75 (60-85)	13 (5-58)	3 (1-33)	1 (1-16)
All Washington	4249	83 (78-88)	24 (15-36)	7 (5-14)	3 (2-6)	85 (79-88)	26 (17-40)	8 (5-16)	4 (2-7)

^a Values represent the percentage of sample exceeding the water quality standard based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses). DF: Dilution factor.

Table B-4. Percentage of total zinc samples with concentrations less than the benchmark that potentially exceed state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

		Excee	dance of	Acute Std	. (%)°	Exc	eedance of	Chronic Std	. (%) ^a
Category	n	0 DF	10 DF	25 DF	50 DF	0 DF	10 DF	25 DF	50 DF
Western Washington									
02 - Manufacturing	547	63 (51-70)	0 (0)	0 (0)	0 (0)	65 (5 5- 71)	0 (0)	0 (0)	0 (0)
03 - Mineral, metal, oil, and gas	19	26 (16-42)	0 (0)	0 (0)	0 (0)	32 (21-42)	0 (0)	0 (0)	0 (0)
05 - Landfills	90	33 (30-39)	0 (0)	0 (0)	0 (0)	36 (32-42)	0 (0)	0 (0)	0 (0)
06 - Recycling facilities	143	69 (57-76)	0 (0)	0 (0)	0 (0)	70 (59-78)	0 (0)	0 (0)	0 (0)
07 - Steam electric plants	3	33 (33-67)	0 (0)	0 (0)	0 (0)	67 (33-67)	0 (0)	0 (0)	0 (0)
08 - Transportation facilities	381	65 (52-75)	0 (0)	0 (0)	0 (0)	68 (55-77)	0 (0)	0 (0)	0 (0)
09 - Treatment works	51	37 (22-63)	0 (0)	0 (0)	0 (0)	41 (25-65)	0 (0)	0 (0)	0 (0)
11 - Light industrial activity	570	74 (64-82)	0 (0)	0 (0)	0 (0)	76 (67-84)	0 (0)	0 (0)	0 (0)
12 - Significant contributor	4	25 (0-25)	0 (0)	0 (0)	0 (0)	25 (25)	0 (0)	0 (0)	0 (0)
No category specified	39	56 (54-64)	0 (0)	0 (0)	0 (0)	59 (54-64)	0 (0)	0 (0)	0 (0)
All Western Washington	1847	65 (54-73)	0 (0)	0 (0)	0 (0)	67 (57-75)	0 (0)	0 (0)	0 (0)
Eastern Washington									
02 - Manufacturing	9	44 (0-67)	0 (0)	0 (0)	0 (0)	56 (0-67)	0 (0)	0 (0)	0 (0)
08 - Transportation facilities	30	13 (0-53)	0 (0)	0 (0)	0 (0)	30 (0-57)	0 (0)	0 (0)	0 (0)
09 - Treatment works	3	0 (0-67)	0 (0)	0 (0)	0 (0)	33 (0-67)	0 (0)	0 (0)	0 (0)
II - Light industrial activity	25	32 (0-56)	0 (0)	0 (0)	0 (0)	36 (0-68)	0 (0)	0 (0)	(0)
No category specified	3	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
All Eastern Washington	70	23 (0-54)	0 (0)	0 (0)	0 (0)	34 (0-60)	0 (0)	0 (0)	0 (0)
All Washington	1917	63 (52-72)	0 (0)	0 (0)	0 (0)	66 (55-74)	0 (0)	0 (0)	0 (0)

^a Values represent the percentage of sample exceeding the water quality standard based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses). Df: Dilution factor.

Table B-5. Percentage of total copper samples that potentially exceed state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

_		-	edance of					Chronic Sta	J. (%)"
Category	П	0 DF	10 DF	25 DF	50 DF	0 DF	10 DF	25 DF	50 DF
Western Washington									
01 - Facilities with effluent limitations	4	100	50	0	0	100	50	0	0
or - Facilities with critical annuations	7	(75-100)	(0-50)	(0-50)	(0)	(100)	(50)	(0-50)	(0-50)
02 - Manufacturing	276	91	29	12	5	92	44	17	7
oz - manufatnig	270	(84-92)	(18-54)	(6-24)	(3-12)	(88-92)	(24-75)	(8-41)	(4-21)
05 - Landfills	22	91	23	5	5	91	23	14	5
ob - Bandigg		(82-95)	(14-23)	(5-23)	(5-9)	(91-95)	(23-59)	(5-23)	(5-18)
06 - Recycling facilities	196	98	41	18	7	99	49	28	12
oo weeyemig tactities	170	(89-99)	(28-53)	(10-37)	(5-18)	(93-99)	(38-70)	(13-48)	(7-31)
08 - Transportation facilities	184	95	30	11	4	96	51	15	5
		(88-96)	(15-58)	(5-19)	(2-11)	(91-98)	(21-73)	(9-48)	(3-16)
09 - Treatment works	18	100	22	6	6	100	50	6	6
		(89-100)	(6-56)	(6-17)	(0-6)	(100)	(17-67)	(6-44)	(0-11)
11 - Light industrial activity	421	98	29	9	3	99	40	15	6
- Light Managera Lot, May	721	(91-99)	(15-55)	(5-24)	(2-9)	(95-99)	(25-78)	(8-38)	(2-17)
No category specified	20	85	20	15	10	85	20	20	10
·····		(85)	(20)	(10-20)	(10-15)	(85-90)	(20-45)	(15-20)	(10-20)
All Western Washington	1141	95	31	12	5	96	44	17	7
An Western Washington	1141	(88-96)	(18-54)	(6-25)	(3-12)	(92-97)	(26-74)	(9-42)	(4-20)
Eastern Washington									
	_	75	0	0	0	100	0	0	0
02 - Manufacturing	4	(25-100)	(0)	(0)	(0)	(50-100)	(0)	(0)	(0)
03 - Mineral, metal, oil, and gas		100	100	0	0	100	100	U	0
55 - Willeran, Inclast, On, and gas	l	(100)	(0-100)	(0-100)	(0)	(100)	(100)	(0-100)	(0)
08 - Transportation facilities	12	58	25	8	0	75	42	8	0
Transportation facilities	12	(50-92)	(8-42)	(0-17)	(0-8)	(58-100)	(17-42)	(8-25)	(8-0)
1 - Light industrial activity	19	63	5	O	0	79	11	0	0
- a.g meaning nearing	• /	(47-79)	(0-16)	(0)	(0)	(58-84)	(0-26)	(0-5)	(0)
All Eastern Washington	36	64	14	3	0	81	22	3	0
zu wegenn ar dammeren	30	(47-86)	(3-25)	(0-8)	(0-3)	(58-92)	(8-31)	(3-14)	(0-3)
All Washington	1177	94	31	11	5	96	43	17	7
en masunigion	1177	(87-96)	(17-53)	(6-24)	(3-11)	(91-97)	(25-73)	(9-11)	(4-20)

^a Values represent the percentage of sample exceeding the water quality standard based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses). DF: Dilution factor.

Table B-6. Percentage of total zinc samples with concentrations less than the benchmark that potentially exceed state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

		Exceed	lance of A	Acute Std	. (%)	Exceeda	nce of Ch	ronic Std	. (%)"
Category	n	0 DF	10 DF	25 DF	50 DF	0 DF	10 DF	25 DF	50 DF
Western Washington									
01 - Facilities with effluent limitations	4	100 (75-100)	50 (0-50)	0 (0-50)	0 (0)	100 (100)	50 (50)	0 (0-50)	0 (0-50)
02 - Manufacturing	222	89 (81-90)	12 (0-42)	0 (0-5)	0 (0)	90 (85-91)	31 (5-69)	0 (0-27)	0 (0-1)
05 - Landfills	19	89 (79-95)	11 (0-11)	0 (0-11)	0 (0)	89 (89-95)	11 (11-53)	0 (0-11)	0 (0-5)
06 - Recycling facilities	140	97 (85-99)	18 (0-34)	(0-11)	0 (0)	99 (90-99)	29 (13-59)	0 (0-28)	0 (0-4)
08 - Transportation facilities	155	94 (85-95)	17 (0-50)	0 (0-4)	0 (0)	95 (89-97)	41 (6-68)	0 (0-38)	0 (0)
09 - Treatment works	16	100 (88-100)	13 (0-50)	0 (0-6)	0 (0)	100 (100)	44 (6-63)	0 (0-38)	0 (0)
11 - Light industrial activity	354	97 (90-98)	16 (0-46)	0 (0-9)	0 (0)	98 (94-99)	29 (11-74)	0 (0-26)	0 (0-2)
No category specified	16	81 (81)	0 (0)	0 (0)	0 (0)	81 (81-88)	0 (0-31)	0 (0)	0 (0)
All Western Washington	926	94 (86-96)	15 (0-43)	0 (0-8)	0 (0)	95 (90-96)	31 (9-68)	0 (0-28)	0 (0-2)
Eastern Washington									
02 - Manufacturing	4	75 (25-100)	0 (0)	0 (0)	0 (0)	100 (50-100)	0 (0)	0 (0)	0 (0)
08 - Transportation facilities	7	29 (14-86)	0 (0)	0 (0)	0 (0)	57 (29-100)	0 (0)	0 (0)	0 (0)
11 - Light industrial activity	16	5 6 (38-75)	0 (0)	0 (0)	0 (0)	75 (50-81)	0 (0-13)	0 (0)	0 (0)
All Eastern Washington	27	52 (30-81)	0 (0)	0 (0)	0 (0)	74 (44-89)	0 (0-7)	0 (0)	0 (0)
All Washington	953	93 (84-95)	15 (0-42)	0 (0-7)	0 (0)	95 (89-96)	30 (9-66)	(0-27)	0 (0-2)

^a Values represent the percentage of sample exceeding the water quality standard based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses). DF: Dilution factor.

Table B-7. Percentage of total lead samples that potentially exceed state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

		Exce	edance of	Acute Std	. (%)"	Excee	lance of C	hronic Std	l. (%) [†]
Category	n	0 DF	10 DF	25 DF	50 DF	0 DF	10 DF	25 DF	50 DF
Western Washington									
01 - Facilities with effluent limitations	2	100	0	0	0	100	001	100	100
01 - Lacinties with efficient initiations	2	(100)	(0)	(0)	(0)	(100)	(100)	(100)	(0-100)
02 - Manufacturing	226	32	3	1	0	87	48	33	12
02 - Mananacianng	220	(14-38)	(2-3)	(1-2)	(0-1)	(87-92)	(41-77)	(14-60)	(10-12)
05 - Landfills	21	10	0	0	0	95	24	10	5
vo gorariis		(10-14)	(0)	(0)	(0)	(95-100)	(19-71)	(10-38)	(5-24)
06 - Recycling facilities	178	47	6	4	1	96	64	49	29
00 - Recycling facilities	170	(39-53)	(5-8)	(2-4)	(1-2)	(94-99)	(60-87)	(39-75)	(21-63)
08 - Transportation facilities	157	39	0	0	0	96	66	43	11
to - Hanspottation tachtics	137	(17-49)	(0-1)	(0)	(0)	(94-99)	(55-90)	(17-77)	(4-57)
09 - Treatment works	18	6	0	0	0	94	28	6	0
0) - Headhell Works	10	(0-11)	(0)	(0)	(0)	(83-100)	(17-72)	(0-44)	(0-22)
11 - Light industrial activity	378	24	i	0	0	94	46	24	8
The English model of the Control of	270	(11-34)	(1)	(0-1)	(0)	(86-98)	(39-72)	(12-54)	(5-41)
No category specified	19	21	5	0	0	95	37	26	11
		(11-26)	(5-11)	(0-5)	(0)	(95)	(32-79)	(11-58)	(11-32)
All Western Washington	999	32	2	1	0	93	52	33	13
, in the case of t	///	(17-40)	(2-3)	(1-2)	(0-1)	(89-97)	(45-79)	(18-62)	(9-47)
Eastern Washington									
02 - Manufacturing	4	50	0	0	0	100	50	50	50
02 - Manufacturing	4	(50)	(0)	(0)	(0)	(75-100)	(50-75)	(50)	(25-50)
		0	0	0	0	100	0	0	O
03 - Mineral, metal, oil, and gas	1	(0)	(0)	(0)	(0)	(100)	(0-100)	(0)	(0)
		25	0	0	0	92	33	25	17
08 - Traosportation facilities	12	(17-33)	(0)	(0)	(0)	(75-100)	(33-42)	(17-33)	(8-33)
		6	0	0	0	78	17	6	0
11 - Light industrial activity	18	(0-11)	(0)	(0)	(0)	(61-83)	(11-50)	(0-17)	(0-11)
		17	0	0	0	86	26	17	11
All Eastern Washington	35	(11-23)	(0)	(0)	(0)	(69-91)	(23-51)	(11-26)	(6-23)
		31	2	1	0	93	51	33	13
All Washington	1034	(17-39)	(2-3)	(1-2)	(0-1)	(89-97)	(44-78)	(18-61)	(9-46)

DF: Dilution factor.

^a Values represent the percentage of sample exceeding the water quality standard based on representative receiving water conditions for the typical secoario (value not in parentheses) and the best and worst case scenarios (values in parentheses).

Table B-8. Percentage of total lead samples with concentrations less than the benchmark that potentially exceed state water quality criteria given hypothetical receiving water conditions for eastern and western Washington and dilution factors of 0, 10, 25, and 50.

		Exceedance of Acute Std. (%)				Exceedance of Chronic Std. (%) ³			
Category	n	0 DF	10 DF	25 DF	50 DF	0 DF	10 DF	25 DF	50 DF
Western Washington									
01 - Facilities with effluent limitations	2	100 (100)	0 (0)	0 (0)	0 (0)	001 (100)	100 (100)	100 (100)	100 (0-100)
02 - Manufacturing	204	25 (5-31)	0 (0)	0 (0)	0 (0)	85 (85-91)	42 (35-75)	25 (5-56)	2 (5-36)
θ5 - LandΠills	20	5 (5-10)	0 (0)	0 (0)	0 (0)	95 (95-100)	20 (15-70)	5 (5-35)	0 (0-20)
06 - Recycling facilities	140	32 (22-40)	0 (0)	0 (0)	0 (0)	95 (93-99)	54 (49-83)	35 (22-68)	9 (0-53)
08 - Transportation facilities	150	37 (13-47)	0 (0)	0 (0)	0 (0)	96 (94-99)	64 (53-90)	41 (13-76)	7 (0-55)
09 - Treatment works	18	6 (0-11)	0 (0)	0 (0)	0 (0)	94 (83-100)	28 (17-72)	6 (0 -4 4)	0 (0-22)
11 - Light industrial activity	358	20 (6-30)	0 (0)	0 (0)	0 (0)	94 (85-98)	43 (36-70)	20 (7-52)	3 (0-38)
No category specified	17	12 (0-18)	0 (0)	0 (0)	0 (0)	94 (94)	29 (27-76)	18 (0-53)	0 (0-24)
All Western Washington	909	25 (9-34)	0 (0)	0 (0)	0 (0)	93 (88-97)	47 (40-77)	27 (10-59)	5 (0-42)
Eastern Washington									
02 - Manufacturing	2	0 (0)	0 (0)	0 (0)	0 (0)	100 (50-100)	0 (0-50)	0 (0)	0 (0)
03 - Mineral, metal, oil, and gas	1	0 (0)	0 (0)	0 (0)	0 (0)	100 (100)	0 (0-100)	0 (0)	0 (0)
08 - Transportation facilities	9	0 (0-11)	0 (0)	0 (0)	0 (0)	89 (67-100)	11 (11-22)	0 (0-11)	0 (0-11)
II - Light industrial activity	17	0 (0-6)	0 (0)	0 (0)	0 (0)	76 (59-82)	12 (6-47)	0 (0-12)	0 (0-6)
All Eastern Washington	29	0 (0-7)	0 (0)	0 (0)	0 (0)	83 (62-90)	10 (7 -41)	0 (0-10)	0 (0-7)
All Washington	938	24 (9-33)	0 (0)	0 (0)	0 (0)	92 (87-96)	46 (39-76)	26 (9-57)	4 (0-41)

DF: Dilution factor.

^a Values represent the percentage of sample exceeding the water quality standard based on representative receiving water conditions for the typical scenario (value not in parentheses) and the best and worst case scenarios (values in parentheses).

Appendix II

EVALUATION OF MONITORING METHODS FOR INDUSTRIAL AND CONSTRUCTION NPDES PERMITS

Visual Inspection of Stormwater BMPs

Prepared for

Washington State Department of Ecology P.O. Box 47600 Olympia, Washington 98504-7600

and

EnviroVision Corporation 1220 Fourth Avenue E. Olympia, Washington 98506

Prepared by

Herrera Environmental Consultants, Inc. 2200 Sixth Avenue, Suite 1100 Seattle, Washington 98121 Telephone: 206/441-9080

October 11, 2006

West of the second seco
"Source
)
:

Contents

Introduction.		1
	lance and Requirements for Visual Inspections	
Construc Industria	tion Sites	2
	1P Inspection Procedures	
Summary of i	Findings	6
Construc	tion Site Visual Inspections	6
Industria	l Site Visual Inspections	6
	ecommendations	
References		9
Appendix A	Guidance for Washington State Department of Ecology Industrial Facility Stormwater BMP Visual Inspection Checklist	
Appendix B Appendix C	Industrial Site Stormwater Facility Inventory Industrial Site Stormwater Inspection Checklist	
	•	

Introduction

The Washington State Department of Ecology (Ecology) is evaluating monitoring methods for National Pollutant Discharge Elimination System (NPDES) construction and industrial stormwater general permits. As part of this effort, Ecology is interested in determining if visual inspections are adequately identifying the pollution issues present on site, and if the issues being identified during inspections are reflective of water quality monitoring data.

This report has been prepared to assist Ecology in determining if modifications to visual inspection requirements and protocols for onsite best management practices (BMPs) are warranted for NPDES permittees, and to offer recommendations for improved inspections as appropriate. Ecology recently revised its construction site inspection form and has set forth requirements for a training program for construction site inspectors that will be a key component of NPDES construction permit compliance beginning in October 2006. This inspector training program will include visual examples of effective and ineffective BMP applications. It is expected that this required training will provide a strong basis for guiding inspectors to perform productive visual inspections at construction sites. Therefore, this report focuses primarily on suggestions to improve industrial site visual inspections with only a few observations and suggestions related to construction sites.

Background

All NPDES general permit holders have to prepare a Stormwater Pollution Prevention Plan (SWPPP). The purpose of a SWPPP is to outline actions that will be followed to reduce or eliminate pollutants that come in contact with precipitation and stormwater runoff on a site and therefore better protect receiving water quality. Within a SWPPP, stormwater BMPs are identified to reduce or eliminate stormwater pollutants onsite. These BMPs can be structural or nonstructural. Examples of structural BMPs include catch basin filter inserts, vegetated swales, and oil/water separators that capture stormwater pollutants before they leave the site. Examples of nonstructural BMPs include good housekeeping techniques and practices designed to prevent potential pollutants from coming in contact with precipitation and stormwater runoff, such as sweeping of loading docks and installing covers over waste material storage areas. A monitoring plan which includes water quality sampling and visual inspections is also required to be included in a SWPPP.

Periodic visual inspections are required to identify potential stormwater pollutants and determine areas where improvements are needed. A visual inspection should determine if the SWPPP has been implemented, if BMPs are working properly and are being maintained, and if there are other issues of concern for water quality protection. After completing a visual inspection, results must be summarized in an inspection report or recorded on a checklist/inspection form and filed onsite with the SWPPP to comply with the conditions of the general construction permit and general industrial stormwater permit. If the inspection indicates any problems, the report must

include a summary of actions that will be taken to address the problem. Reporting any non-compliance with the permit is required.

Existing Guidance and Requirements for Visual Inspections

Construction Sites

Ecology recently produced a guidance document for monitoring at construction sites that describes how to conduct stormwater monitoring and provides limited guidance on visual inspections (Ecology 2006). This document is called "How to do Stormwater Monitoring: A Guide for Construction Sites" (Ecology publication number 06-10-020). In this document, an example site inspection checklist is provided for use by inspectors. This checklist relies upon assignment of a good, fair, or poor rating for the condition and functionality of each BMP in use on the site. There is, however, no explanation given in the guidance document on how to make these assignments; the visual inspection section of this document is vague and provides only a few examples.

Although Ecology's written guidance for visual inspections at construction sites is limited, starting in October 2006, the person conducting the visual inspections must be a Certified Erosion and Sediment Control Lead (CESCL). To become a CESCL an individual must take a certification course. It is anticipated that this course will train inspectors to conduct inspections and properly rate the condition and functionality of the onsite BMPs. Although the training required for the CESCLs will provide this background, the large numbers of courses and trainers that will be involved are an indication that more written detail in the guidance document will still be helpful in standardizing the visual inspection ratings.

Consistency in visual inspections is important not only for fairness in enforcement actions, but it also allows for analysis of the overall effectiveness of stormwater programs at the municipal, county, or state level. If the inspection reports provide enough detail, Ecology may be able to determine, for instance, that the biggest problem affecting runoff interception swales is the lack of maintenance. The lack of maintenance may allow sediment buildup and decrease swale capacity. This level of detail will become increasingly important as communities and permittees deal with waste load allocations under total maximum daily load (TMDL) regulations and begin estimating whether their actions are yielding the required reductions in pollutant loads.

Industrial Sites

The Industrial Stormwater General Permit requires visual monitoring to be conducted at all applicable industrial sites at least quarterly during storm events and at least once during the dry season (Ecology 2005). As part of visual inspections, the general permit also requires each Permittee to identify BMPs that are inadequate or pollutant sources that are not identified or poorly described in the SWPPP. When visual monitoring identifies inadequacies in the SWPPP, due to the actual discharge of or potential to discharge a significant amount of any pollutant, the SWPPP must be modified and BMPs adjusted to correct the deficiency (Ecology 2005).

Although Ecology has published a guidance document that describes how to sample stormwater at an industrial site, it provides limited guidance on how to conduct a visual site inspection at an industrial site (Ecology 2002). Ecology's Guidance Manual for Preparing/Updating a SWPPP for Industrial Facilities (Ecology 2004) describes the process of creating a SWPPP for industrial facilities, but there is little guidance on how to conduct visual site inspections. The appendix for the guidance manual contains a form (worksheet #11) that is the basis for documenting visual BMP inspections. The worksheet contains a table that consists of five columns. In the table the user is to record the date of the inspection, identify the surface or ground water body that receives stormwater discharged from the site, pollutants observed in the stormwater, and recommended action steps. No specific questions are asked, there are no examples given, and very little guidance is provided to promote effective visual inspections and associated record-keeping. The only instructions are found in the form header:

"List of observed pollutants and descriptions of intensities of each. Include floatables, oil sheen, discoloration, turbidity, odor, etc. in the SW."

Worksheet #11 does not list structural BMPs or nonstructural BMPs, or give guidance on how to inspect them. Using this form, an inspector would have a difficult time knowing what issues to look for onsite, especially if he/she were not trained to understand runoff pollutant sources and corresponding BMP options. Currently, Ecology does not require industrial site inspectors to be certified and there are no training courses readily available for these inspectors. Industrial site inspectors are often foremen, onsite engineers, or site safety officers. They are not required to have a background in stormwater pollution prevention and may not have a clear understanding of what is contributing to stormwater pollution. The worksheet requires that the person making the observations sign a certificate that states, under the penalty of law, that the form is true, accurate, and complete. Without adequate guidance, many of the industrial site employees who conduct the inspections may be reluctant to sign this.

It would be beneficial if Ecology distributed a guidance document describing how to inspect the structural BMPs and what good housekeeping items to look for on the site while conducting a visual inspection. Examples include: how to inspect catch basins and oil/water separators to know when maintenance is required, and what general maintenance is needed on site to keep pollutants out of stormwater.

Survey of BMP Inspection Procedures

As part of the effort to create a new industrial site inspection checklist for Ecology, an extensive web search was conducted to determine how other jurisdictions conduct visual BMP inspections at industrial sites. As noted above, since Ecology has already established a relatively rigorous program for training of construction site BMP inspectors, the review was limited to industrial site inspections. Many industrial site inspection forms were found that are used by cities and state agencies across the country. The majority of these forms were intended to be used by the industrial stormwater permit holders to show compliance with their permit requirements. Forms from nine jurisdictions were selected for closer examination. These jurisdictions included:

- City of Portland, Oregon Industrial Facility Stormwater Inspection Report (City of Portland undated).
- Sacramento County, California Checklist Summary of Violations for Stormwater Program (Sacramento County 2004).
- EPA NPDES Industrial Stormwater Worksheet (Industrial) (EPA 2005).
- Minnesota Pollution Control Agency Site Inspection Form for Industrial Activities (MPCA 1999).
- City of Austin, Texas Annual SWP3 Comprehensive Site Compliance Evaluation Inspection (City of Austin 2002).
- Wisconsin Department of Natural Resources Annual Facility Site Compliance Inspection Report (WDNR 2005).
- City of Bellevue, Washington Public Inspection and Maintenance Checklists (City of Bellevue 2002).
- Seattle Public Utilities Business Inspection Program Checklist (City of Bellevue 2002).
- Caltrans Storm Water Quality Handbooks, Maintenance Staff Guide (Caltrans 2003).

A summary of the positive and negative aspects of the inspection forms reviewed were documented and compared to the existing form used in Washington State (worksheet #11 from Ecology's industrial SWPPP guidance manual). The information from these forms was used to create an expanded visual inspection checklist for industrial NPDES permit holders in the State of Washington.

Several questions were considered when reviewing each form. These questions helped to determine what should be included in the Ecology checklist. The following questions were considered:

- Is the length of the form appropriate? Is it too long or too short?
- Is it easy to use? (Is it obvious what is being asked? Are examples provided so the inspector knows what potential sources of stormwater pollutants are possible on the site?)
- If the inspector does not have a background in stormwater management will they be able complete the inspection based on the information

provided in the form? In other words, is the form simple enough for the lay person to complete?

- Are the appropriate questions being asked on the form?
- Is the form complete for most situations (i.e., are all common structural and nonstructural industrial BMPs included and described)?
- Are there items included that are not relevant in the State of Washington that should not appear in Ecology's inspection form?
- Can the information in the form be compiled and analyzed to identify trends on a regional or statewide basis?

The inspection forms from the nine jurisdictions reviewed vary greatly in length, format, and content. The length of the forms range between one and six pages and the format varies between fill-in-the-blank questions, *yes*, *no*, or *N/A* questions, and check boxes. The majority of the forms address nonstructural, good housekeeping techniques and many of them are very thorough in describing what the inspector should be looking for onsite concerning nonstructural BMPs. Most of the forms do not address structural BMPs, and if they are addressed there is very little information about how to inspect the structural BMPs and only a limited number of them are addressed.

In general, the forms that are longer appear to be easier to use. The long forms generally provide more guidance and ask more questions that would help an inspector identify potential stormwater issues onsite. The questions that could be answered with a yes, no, N/A, or check box are the easiest to understand. The fill-in-the-blank questions are often too open-ended and could be difficult for a person without a background in stormwater pollution control to answer. The best fill-in-the-blank questions are specific and include example answers so that the inspector knows what is being asked. For example, the Minnesota Pollution Control Agency's site inspection form asks if there are raw, intermediate, or final products exposed to stormwater. It then lists the following examples: log, coal, salt, sand, gravel, lumber, scrap, metal products, vehicle parts, etc. Having these examples is important because an inspector may have noticed these products onsite but may have not thought to list them. In addition, because of the wide range of products listed the question is applicable to several different types of industries.

Overall, two forms were deemed the easiest to use. These forms are also the most comprehensive of the forms reviewed in this research effort. These inspection forms were prepared by the City of Portland and Seattle Public Utilities. These forms were used as templates in creating a new checklist for Ecology's consideration.

Summary of Findings

Construction Site Visual Inspections

Ecology's guidance and training for construction site BMP inspectors should promote effective BMP inspections and maintenance. However, the value of construction site BMP inspection documentation could be improved through formalizing a joint BMP review process with Ecology inspectors and permittee inspectors. Ecology could use the joint review results to evaluate whether visual BMP inspections are being done consistently and thoroughly and to then refine the CESCL training program to further improve BMP inspections.

Industrial Site Visual Inspections

The web search described above provided background information on how various jurisdictions conduct visual inspections at industrial sites and ideas for improving Ecology's industrial BMP inspection worksheet and guidance materials. After comparing inspection materials from other jurisdictions with the identified needs for NPDES permittees in the State of Washington, five key findings were identified. Each of these findings is presented in this section.

- 1. For ease of use the visual inspection form should consist mainly of check boxes and yes/no questions. This format allows an inspector to quickly and easily answer the questions. Fill-in-the-blank questions are too openended for someone without a background in stormwater management unless there are many examples listed. Examples of potential sources of stormwater pollutants are necessary to give the inspector an idea of what to look for and what could potentially be a stormwater pollutant. The more focused and directed the questions are that are presented in the form of check boxes, the easier it will be for Ecology to discern larger trends.
- 2. Any questions on the visual inspection form should be specific. Many of the inspection forms that were reviewed are general and do not include specific questions. An example of a general question, from the Minnesota Pollution Control Agency's form, is:

Determine if the nonstructural and structural BMPs as indicated on your plan are installed and functioning properly. Please describe corrective actions needed to repair nonfunctioning BMPs.

Even if the inspector had the pollution prevention plan with them, and knew what structural and nonstructural BMPs were being referred to, would they know how to determine if the BMPs are installed and functioning properly? It is better to ask detailed questions or a series of specific questions to address the potential issues associated with the individual BMPs. For example, to determine if catch basins are

functioning properly or in need of repair or maintenance, Seattle Public Utilities asks the following series of questions on its inspection form:

Are catch basins present on site? Y/N If yes how many? Are catch basins equipped with outlet traps? Select outlet trap type PVC elbow Metal Elbow Has material accumulated to fill over 60% of the capacity of the CB? Y/N Select material(s) in catch basin sediment plants trash Is there evidence of contamination in catch basins? Y/N Select contaminant Oil/grease Paint Solvent Sewage Unknown

This series of questions tells the inspector exactly what to look for rather than just asking if the catch basin is functioning properly.

Detailed questions make the inspection form longer but allow for a more complete inspection and easier comparisons between visual inspections, regardless of the inspector. Also, for an inspector without knowledge of stormwater management, a more detailed inspection form would be useful to help identify all potential issues on a site; when using a general form it is much easier to overlook or ignore a stormwater pollution problem.

- 3. The inspection form should include both structural and nonstructural BMPs. None of the inspection forms that were reviewed from other jurisdictions effectively address both types of BMPs. The majority of the inspection forms that were reviewed focus on nonstructural, good housekeeping techniques. Common structural BMPs should also be listed along with a description of the BMP and common maintenance and performance issues.
- 4. The majority of the forms assume more understanding of stormwater pollution than is most likely appropriate, given most industrial site inspectors have no training or background in stormwater management. For this reason it is important that the forms be easy to use and ask simple questions. The more broad or difficult the questions are to answer, the more likely the inspector will overlook a stormwater pollution issue onsite.
- 5. Ecology currently does not provide enough guidance, nor is training readily available, for the typical inspector to effectively inspect BMPs at an industrial site. If a training program similar to that for construction site inspectors is not implemented for industrial site inspectors in the State of Washington, then more detailed guidance needs to be provided. The industrial SWPPP guidance manual should be expanded to provide more

information on visual inspections and their importance for overall water quality protection, and to explain how to use a more detailed inspection checklist and why the issues listed in the checklist are important. Having training available for industrial site inspectors would further improve the ability of the inspectors to conduct a thorough visual inspection.

The conclusions reached as part of the industrial site BMP inspection form review were used to create a new visual inspection checklist that Ecology could provide to industrial NPDES permittees. All five of the issues noted above were considered when creating this expanded visual inspection checklist. The expanded checklist asks specific questions that are easy to understand. These questions are aimed at inspectors without formal stormwater management knowledge. The expanded checklist is comprehensive, including the most common structural and nonstructural BMPs used on industrial sites. In addition to the checklist, an accompanying guidance document was prepared to be used with the checklist as a reference. This guidance document is included as Appendix A to this report. It is recommended that this guidance document and the expanded visual inspection checklist be incorporated into Ecology's industrial SWPPP guidance manual.

The information included in the expanded visual inspection checklist was divided into two sections. The inspection of permanent, or relatively consistent, site features was separated from the onsite conditions that could change relatively frequently as a result of activities occurring on the site. The conditions that remain relatively consistent over time are included in Form B - Industrial Site Stormwater Facility Inventory (see Appendix B to this report). The conditions that could change frequently are included in Form C - Industrial Site Stormwater Inspection Checklist (see Appendix C to this report).

Prior to filling out Form C, the inspector should complete Form B. Once Form B has been completed one time it does not need to be completed again unless site operations change, the site is expanded or otherwise reconfigured in a way that alters potential sources of stormwater pollution, or there are changes in the stormwater facilities onsite. Form C should be used each time that routine site inspections are conducted to satisfy the industrial general permit requirements.

Separating the expanded checklist into two forms allows the site specific stormwater issues to be identified (using Form B, or a comparable form) prior to documenting routine inspections (using Form C, or a comparable form tailored to the site). Form B can be used to direct the contents of the routine inspection checklist (Form C). This allows the routine inspections to focus on specific site activities that may generate pollutants in runoff and the BMPs that are used to control pollutants at those locations. A shorter routine inspection checklist will likely increase the likelihood of an inspector using it.

Additional Recommendations

Some other potential changes to Ecology's visual inspection programs for both industrial and construction sites might include:

- Adjusting which visual parameters are emphasized, depending on industry type. For example, oil sheens should be emphasized for sites with many vehicles, turbidity should be emphasized for sites with exposed soils, and identification of galvanized surfaces should be emphasized for sites with a prevalence of exposed structural metal.
- Collecting visual inspection data from construction sites simultaneous to collecting water quality data. Comparison of the visual inspection data with the water quality sampling results would allow assessment of the effectiveness of the visual inspections.
- Implementing independent inspections by Ecology staff to independently rate industrial and/or construction BMP performance using the checklists provided to permittees and then compare them with the onsite inspector's ratings as a means of evaluating effectiveness and consistency of the checklists.

The expanded visual inspection checklist (Form C included in Appendix C to this report) is intended to be an example that should be tailored for a particular site. The industrial general permit covers so many different types of industries and site characteristics that it is impossible to generate a series of forms that would effectively represent all permittees' sites, such that a specific permittee could choose from a collection of inspection forms created by Ecology to pick the one that is best suited to their site. Furthermore, the types of BMPs implemented at different facilities under the same industry category might also vary. Thus, the contents of Form C focus on the different types of BMPs that may be used on a site, and this format requires less than a dozen categories on the visual inspection checklist. Individual permittees should be encouraged to tailor Forms B and C to their site, with site-specific guidance and assistance provided by Ecology personnel as needed to ensure that the resultant visual inspection documentation is as useful as possible to reduce stormwater pollution.

References

Austin, City of. 2002. Annual SWP3 Comprehensive Site Compliance Evaluation Inspection, Storm Water Pollution Prevention Plan, Austin Bergstrom International Airport. City of Austin, Texas. Obtained on May 12, 2006 from city website:

http://www.ci.austin.tx.us/austinairport/downloads/siteinspect.pdf.

Bellevue, City of. 2002. Utilities Surface Water Maintenance Standards for Public and Private Systems. Public Inspection and Maintenance Checklists. City of Bellevue, Washington. Obtained from SCVURPPP website: http://www.scvurppp-w2k.com/bmp om forms.htm>.

Caltrans. 2003. Storm Water Quality Handbooks, Maintenance Staff Guide. Publication number CTSW-RT-02-057. California Department of Transportation.

Ecology 2002. How to do Stormwater Sampling. A guide for Industrial Facilities. Washington State Department of Ecology, Olympia, Washington. Obtained on May 12, 2006 from agency website: http://www.ecy.wa.gov/pubs/0210071.pdf>

Ecology. 2004. Guidance Manual for Preparing/Updating a SWPPP for Industrial Facilities. Washington State Department of Ecology, Olympia, Washington. Obtained on May 12, 2006 from agency website: http://www.ecy.wa.gov/pubs/0410030.pdf>.

Ecology. 2006. How to do Stormwater Monitoring A guide for construction sites. Washington State Department of Ecology, Olympia, Washington. Obtained on May 12, 2006 from agency website: http://www.ecy.wa.gov/biblio/0610020.html.

Ecology. 2005. The Industrial Stormwater General Permit: A National Pollutant Discharge Elimination System and State Waste Discharge General Permit for Stormwater Discharges Associated with Industrial Activities. Washington Department of Ecology, Olympia, Washington. Obtained on September 27, 2006 from agency website:

http://www.ecy.wa.gov/programs/wq/stormwater/industrial/final%20ISWGP%20Permit%20modification%20after%20comment.pdf

EPA. 2005. National Pollutant Discharge Elimination System (NPDES) Compliance Inspection Manual. Appendix P: NPDES Industrial Storm Water Investigation and Case Development Worksheet (Industrial). Environmental Protection Agency. Obtained on May 12, 2006 from agency website:

http://epa.gov/compliance/resources/publications/monitoring/inspections/npdesinspect/npdesinspectappp.pdf.

Golding, Stephen. 2006. A Survey of Zinc Concentrations in Industrial Stormwater Runoff. Publication No. 06-03-009. Washington Department of Ecology, Olympia, Washington.

Herrera. 2006. Data Analysis Report: Evaluation of Monitoring Data from General NPDES Permits for Industrial and Construction Stormwater. Prepared for the Washington State Department of Ecology and EnviroVision Corporation by Herrera Environmental Consultants, Inc., Seattle, Washington.

King County. Undated. Oil/Water Separator Fact Sheet. King County, Washington. Obtained on May 12, 2006 from county website: http://dnr.metrokc.gov/wlr/indwaste/OW_8.5x11.pdf.

MPCA. 1999. Site Inspection Form, NPDES/SDS General Storm Water Permit MNG611000 for Industrial Activity. Minnesota Pollution Control Agency. Obtained on May 12, 2006 from agency website: http://www.pca.state.mn.us/water/pubs/sw-isiteins.pdf>.

Portland, City of. Undated. Industrial Facility Stormwater Inspection Report. City of Portland, Oregon. Obtained on May 12, 2006 from city website: http://www.portlandonline.com/shared/cfm/image.cfm?id=53790.

Sacramento County. 2004. Checklist Summary of Violations for Stormwater Program. Sacramento County, California. Obtained on May 12, 2006 from county website: http://www.emd.saccounty.net/WP/EMDstormwater.htm.

SPU. 2003. SPU Business Inspection Program Checklist. Seattle Public Utilities, Seattle, Washington.

WDNR. 2005. Annual Facility Site Compliance Inspection Report. Wisconsin Department of Natural Resources. Obtained on May 12, 2006 from agency website: http://prodwbin99.dnr.state.wi.us/org/water/wm/nps/pdf/stormwater/3400176.pdf>.

SUMMARY OF TREATMENT PERFORMANCE AND COSTS FOR CURRENTLY AVAILABLE INDUSTRIAL STORMWATER CONTROLS

Ian Wren, CPSWQ QSD

Prepared on behalf of:

California Coastkeeper Alliance (CCKA) 785 Market Street, Suite 850 San Francisco, CA 94103

October 21, 2012

Introduction

The purpose of this document is to summarize findings of a document prepared on behalf of the Washington State Department of Ecology, which supported inclusion of numeric effluent limits (NELs) in Washington's 2012 National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges Associated with Industrial Activities (General Permit). The document, titled *Literature Review of Existing Treatment Technologies for Industrial Stormwater* (Literature Review), was drafted in 2011 and represents a recent review of a number of stormwater management control devices suitable across many industrial sectors. ¹

This brief report summarizes treatment performance and cost-related information contained in the Literature Review by Herrera Environmental, Inc., which produced a series of reports in support of Washington's efforts to include NELs in the most recent iteration of their General Permit. This report also evaluates whether the stormwater management controls evaluated in the Literature Review are likely capable of assisting California Permittees achieve existing benchmarks developed by the U.S. Environmental Protection Agency (EPA) for industrial stormwater quality. Information contained in this report and the attached Literature Review could be used by California's State Water Board to help establish Best Available Technology (BAT) and Best Conventional Technology (BCT) for an array of industrial sectors, as well as inform a determination of the feasibility regarding inclusion of NELs in California's General Permit.

¹ Herrera Environmental Consultants. 2011. *Draft Report: Literature Review of Existing Treatment Technologies for Industrial Stormwater*. Prepared on behalf of the Washington Department of Ecology. Available at http://www.wastormwatercenter.org

Summary of Current Stormwater Management Controls

In the last decade, researchers and regulators have expressed an increased interest in evaluating stormwater management controls currently on the market, which are generally categorized as drain inlet inserts, hydrodynamic separators, media filtration units, oil/water separators, chemical filtration units, bioretention/biofiltration systems, and electro-coagulation facilities. The market for stormwater controls is unregulated and manufacturers have generally resisted publication of treatment performance data or costs. However, this trend is shifting and several states, including New Jersey, Washington and Maryland, have put in place review processes for stormwater management controls. This has increased pressure on manufacturers to conduct performance tests and present the results to regulators and customers. In addition, manufacturers are increasingly willing to publicize installation and O&M costs. Regulators have an increasing opportunity to determine the feasibility of establishing NELs in NPDES permits and evaluate the best performing treatment systems, which could set a baseline for establishing BAT/BCT.

The Literature Review, prepared on behalf of Washington State Department of Ecology, was used to support the selective inclusion of NELs into the State of Washington's 2012 Industrial Stormwater Permit and has been provided here as Appendix 1. A summary of the results is presented in Table 1. Additional information is available within the Literature Review, though a number of stormwater management controls failed to make available either treatment performance data or indicative cost estimates for installation and on-going maintenance. Controls included in Table 1 include those systems for which the most information was made available.

Manufacturers of the stormwater treatment systems, rather than independent researchers, typically provided information regarding treatment performance, making comparison across treatment systems difficult. Confounding factors include limited information regarding test conditions and replicability of results; lack of data indicating how the systems perform under various conditions; wide variety amongst influent concentrations, which may affect treatment performance; and lack of consistency regarding which constituents are tested. However, several treatment systems provide treatment performance data for several common parameters, including total suspended solids (TSS), total copper, total lead and total zinc.

Treatment performance in comparison with U.S. EPA benchmarks

Table 1 includes treatment performance data for several parameters, which can be compared against benchmarks and actual California-specific industrial stormwater data, to indicate whether implementation of one or more of the products listed are capable of achieving compliance with benchmarks. Benchmarks used for the purposes of this comparison are listed in Table 2, taken

Table 1. Select performance and cost data, summarized from the literature review prepared on behalf of the State of Washington²

Treatment System Type	System Name (Manufacturer Name)	Performance Indicators	TSS (mg/L)	Total Copper (mg/L)	Total Zinc (mg/L)	Total Lead (mg/L)	Estimated Costs	\$
Bioretention/		median influent	27.5	0.0081	0.384	NA	installation	1,200-7500
Filtration	Filterra Curb Inlet System (Filterra, DBA Americast, Inc.)	median effluent	4.2	0.0034	0.102	NA	10014	200 2 000
	(titeerra) 2 3 trainetreast, mer	% removal	85%	54%	56%	NA	annual O&M	300-3,000
		median influent	27.5	0.0081	0.384	NA	installation	1,200-7500
	Filterra Roof Drain System (Filterra, DBA Americast, Inc.)	median effluent	4.2	0.0034	0.102	NA	annual O&M	200 2 000
	(Titterra, DDA Americase, me.)	% removal	85%	54%	56%	NA	annuai O&ivi	300-3,000
	Nandy law Matley of Contains Lineau	median influent	27.5	0.04	0.24	NA	installation	12,000-25,000
	Modular Wetland System - linear (Modular Wetland Systems, Inc./ BioClean Environmental Services)	median effluent	4.2	NA**	NA**	NA	annual	8.26-10.50
		% removal	85%	>50%	>79%	NA	0&M*	/gallon
Drain Inlet	StormBasin (Fabco Industries, Inc.)	median influent	112	NA	0.335	0.018	installation	750-2,000
Insert		median effluent	3	NA	0.175	0.0049	annual O&M	200-800
		% removal	98%	NA	48%	73%	annual Oxivi	
	Bio Clean Grate Inlet Skimmer Box (BioClean Environmental Services, Inc.)	median influent	978	1.9	13.7	1.5	installation	635-1,800
		median effluent	329	0.1	0.73	0.2		0.15-0.40
		% removal	66%	95%	95%	87%	annual O&M	/gallon
Hydrodynamic	Nutrient Separating Baffle Box	median influent	366	0.017	0.088	0.014	installation	10,000-200,000
Separation	(BioClean Environmental Services,	median effluent	48	0.01	0.038	0.0065		0.33-0.84
	Inc.)	% removal	87%	41%	57%	54%	annual O&M	/gallon
		median influent	250	0.08	0.3	0.79	installation	2,000-15,000
	UniScreen (Environment 21)	median effluent	175	0.06	0.18	0.56	annual O&M	2,000
	,	% removal	80%	20%	40%	27%	ailliuai UQIVI	2,000

² Herrera Environmental Consultants. 2011. *Draft Report: Literature Review of Existing Treatment Technologies for Industrial Stormwater*. Prepared on behalf of the Washington Department of Ecology. Available at http://www.wastormwatercenter.org

Treatment System Type	System Name (Manufacturer Name)	Performance Indicators	TSS (mg/L)	Total Copper (mg/L)	Total Zinc (mg/L)	Total Lead (mg/L)	Estimated Costs	\$
Hydrodynamic		median influent	NA	0.08	0.5	0.79	installation	2,000-15,000
Separation (cont.)	V2B1 Treatment System (Environment 21)	median effluent	NA	0.05	0.09	0.35		2 000
(cont.)	(Environment 21)	% removal	NA	40%	70%	55%	annual O&M	2,000
		median influent	30	0.152	0.425	0.03	installation	5,000-150,000
	Aquip Enhanced Stormwater Filtration System(StormwateRx)	median effluent	3.39	0.008	0.061	0.006	annual O&M	0.0003-0.003
		% removal	83%	94%	85%	79%	armaar Octivi	/gallon
		median influent	70	0.052	0.25	0.15	installation	10,000-200,000
Media Filtration	Perk Filter™ (Kristar Enterprises, Inc.)	median effluent	11	0.02	0.1	0.05	annual O&M	1 200 10 000
		% removal	82%	62%	61%	68%	aiiiiuai O&ivi	1,200-10,000
	PuriStorm (Environment 21)	median influent	250	0.08	0.5	0.79	installation	3,000-25,000
		median effluent	175	0.04	0.06	0.28	annual O&M	0-10,000
	,	% removal	80%	50%	80%	65%		
	Stormfilter using ZPG Media	median influent	83	0.04	0.23	0.12	installation	10,000- 2,500,000
	(CONTECH Stormwater Solutions	median effluent	23	0.03	0.13	0.04	annual 00 M	0.00008-0.00024
	Inc.)	% removal	82%	47%	62%	24%	annual O&M	/gallon
	ecoStorm + ecoStorm Plus®	median influent	200	0.019	0.17	0.005	installation	8,900-37,500
	(Royal Environmental Systems,	median effluent	26	0.009	0.073	0.002	annual O&M	F00 13 000
Inc./Water Tect	Inc./Water Tectonics, Inc.)	% removal	87%	53%	57%	60%	allitual Oxivi	500-12,000
		median influent*	200	150	2500	500	installation	NA
	Baker Tank with Sand Filter (Baker Corp.)	median effluent**	10	75	1000	200	annual O&M	NA
		% removal	95%	50%	60%	40%		

Treatment System Type	System Name (Manufacturer Name)	Performance Indicators	TSS (mg/L)	Total Copper (mg/L)	Total Zinc (mg/L)	Total Lead (mg/L)	Estimated Costs	\$
Media Filtration		median influent*	74	78	1.45	35	installation	NA
(cont.)	JellyFish™ Filter (Imbrium Systems Corp.)	median effluent*	8	0.3	0.6	5	annual O&M	NA
		% removal	89%	99%	59%	86%	allitual Oxivi	NA
Chemical		median influent	NA	0.341	2.12	0.25	installation	25,000-400,000
Treatment	ACISTBox® (Water Tectonics, Inc.)	median effluent	NA	0.0179	1.04	0.05	annual O&M	NA
		% removal	NA	95%	51%	80%	ariiruai OQIVI	NA
Oil/Water	Clara Gravity Stormwater Separator	median influent	284.5	0.516	2.82	0.088	installation	20,000-52,000
Separator	Vault (StormwateRX)	median effluent	173.5	0.078	1.21	0.072	10014	0.0005-0.01
		% removal	47%	30%	32%	26%	annual O&M	/gallon
Electro-	OilTrap ElectroPulse Water	median influent	600	12.1	151	14.1	installation	25,000- 2,200,000
coagulation	Treatment System(Oil Trap Environmental)	median effluent	10	0.072	0.34	0.039	annual O&M	0.0005-0.01
		% removal	98%	99.4%	99.9%	99.7%	alifiual Oalvi	/gallon
		median influent	200	4.8	0.516	0.253	installation	60,000-850,000
	Wavelonics™ (Oil Trap Environmental)	median effluent	5	0.0074	0.0315	0.003		0.0008-0.008
	(Oil Trap Environmental)	% removal	98%	99.9%	94%	99%	annual O&M	/gallon

^{*}Units provided by vendor appear to be anomalous

^{**} Data provided suggests results were non-detects, though reported in the Herrera report as NA.

from the U.S. EPA's Multi-Sector General Permit (MSGP) and are consistent with the annual Numeric Action Levels (NAL) listed in Table 5 of the 2012 Draft General Permit.³ Only 4 parameters are considered here, yet TSS and the heavy metals listed here are useful, serving as indicator parameters for a number of other common industrial stormwater contaminants.

Table 2. Benchmark values from US EPA's Multi-Sector General Permit used for this analysis

Parameter	Benchmark (mg/L)
Total suspended solids	100
Zinc, Total ^a	0.26
Copper, Total ^a	0.0332
Lead, Total ^a	0.262

a) based on the 2008 MSGP, assuming receiving water hardness >250 mg/L

To inform necessary rates of treatment, Table 3 includes the upper quartile concentrations of the parameters listed in Table 3. These values were taken from the data analysis report, which accompanies this report, provided as Attachment 3 to California Coastkeeper Alliance's (CCKA) comment letter on the Draft General Permit. These values mark the parameter concentrations at which 75% of all samples from a given industrial sector are less than or equal to. In other words, only 25% of the samples contain pollutants at concentrations greater than this value. Since this captures a large proportion of the data, as discussed in Attachment 3, this value provides a useful benchmark from which to compare whether treatment controls could reduce contaminant concentrations by an amount necessary to satisfy U.S. EPA benchmarks.

Granted, this analysis does not consider the 25% of samples associated with the poorest performing facilities. Yet for facilities where influent concentrations are higher or where difficult to remove non-conventional pollutants are persistently found in high concentration, two or more passive treatment systems could operate in series to achieve the standards. Where passive systems are insufficient or infeasible, due to space constraints, for example, active treatment systems can be employed at higher expense. Examples of active treatment systems include chemical treatment or electrocoagulation.

Values listed in Table 3 highlighted in bold are concentrations which exceed benchmarks. The adjacent percentage rank is the reduction level necessary to reduce the concentration to a level equivalent with benchmark values. Assuming the treatment performance rates listed in Table 1 are achievable for the range of TSS and heavy metal concentrations expected here, several stormwater treatment controls are capable of reducing concentrations to benchmarks.

³ United States Environmental Protection Agency. 2000. Multi-Sector General Permit for Stormwater Discharges Associated with Industrial Activity (MSGP). Federal Register Vol. 65, No. 210. Available at: http://www.epa.gov/npdes/pubs/msgp2000-final.pdf

Table 3. Upper quartile concentrations and % reductions necessary to meet benchmarks

	Upper Quartile (75 th percentile) Concentrations (mg/L) and % reduction necessary to meet benchmarks								
Category	TSS Zinc, Total Copper, Total Lead, Total								
2 - Manufacturing	109.4 (9%)	0.907 (71%)	0.233 (86%)	0.030 (0%)					
3 - Mineral, metal, oil and gas	193.5 (48%)	0.100 (0%)	0.022 (0%)	0.006 (0%)					
5 - Landfills	240.9 (58%)	0.311 (16%)	0.040 (17%)	0.011 (0%)					
6 - Recycling facilities	140.4 (29%)	0.812 (68%)	0.103 (68%)	0.103 (0%)					
8 - Transportation facilities	128.9 (22%)	0.645 (60%)	0.079 (58%)	0.027 (0%)					
9 - Treatment works	133.6 (25%)	0.167 (0%)	0.058 (43%)	0.014 (0%)					
11 - Light industrial activity	80.9 (0%)	0.797 (67%)	0.056 (41%)	0.012 (0%)					
Other facilities	126.7 (21%)	0.422 (38%)	0.030 (0%)	0.021 (0%)					
All Facilities	105.0 (5%)	0.743 (65%)	0.089 (63%)	0.033 (0%)					

For example, the Bio Clean Grate Inlet Skimmer Box[™], a passive drop-inlet system, is reportedly capable of reducing copper concentrations from 1.9 to 0.1 mg/L and zinc from 13.7 to 0.73 mg/L, a 95% reduction for each. However, given such high influent concentrations, additional measures would be required to achieve benchmark concentrations. In such circumstances, sedimentation or pre-filtration would likely be incorporated, which could reasonably result in benchmark attainment. Under more moderate influent concentrations, the Aquip system, a media filtration unit manufactured by StormwateRx, is capable of reducing concentrations of copper from 0.152 to 0.008 mg/L and zinc from 0.425 to 0.061 mg/L, a reduction of 94% and 85%, respectively. More impressive is the JellyFish™ Filter by Imbrium Systems Corp., which reports an 89% reduction in TSS, from 74 to 8 mg/L and a 99% reduction in copper, from 78 to 0.3 mg/L. Active filtration systems are reliably capable of extreme pollutant removal efficiencies, though the variably high cost may be prohibitive for less profitable industries or individual facilities.

Appendix 1 DATA REPORT: Literature Review of Existing Treatment Technologies for Industrial Stormwater

DATA REPORT

Literature Review of Existing Treatment Technologies for Industrial Stormwater

Prepared for

Science Applications International Corporation

and

Washington State Department of Ecology

Note:

Some pages in this document have been purposely skipped or blank pages inserted so that this document will copy correctly when duplexed.

DATA REPORT

Literature Review of Existing Treatment Technologies for Industrial Stormwater

Prepared for

Science Applications International Corporation 18912 North Creek Parkway, Suite 101 Bothell, Washington 98101

and

Washington Department of Ecology Northwest Regional Office 3190 160th Avenue SE Bellevue, Washington 98003

Prepared by

Herrera Environmental Consultants 2200 Sixth Avenue, Suite 1100 Seattle, Washington 98121 Telephone: 206.441.9080

Contents

1.0	Intro	oduction	1
1.0	111110		-
2.0	Meth	hods	3
3.0	Resu	ults	9
4.0	D:		1.1
4.0	Disc	cussion	11
	4.1	Treatment Technology Applications	11
		4.1.1 Passive Treatment	11
		4.1.2 Active Treatment	
	4.2	Logistical Issues for Monitoring Treatment System Performance	14
	4.3	Data Gaps	
	4.4	Recommended Future Research	16
5.0	Refe	erences	17
Apr	endix	x A Technology Summary Sheets	
	endix		
	endix		
	endix		

Figures

Figure 1. Treatment type categories for active and passive treatment systems.

Tables

- Table 1. Passive treatment systems that could be used to treat industrial stormwater in the Lower Duwamish basin.
- Table 2. Active treatment systems that could be used to treat industrial stormwater in the Lower Duwamish basin.
- Table 3. Treatment removal performance for total metals.
- Table 4. Treatment removal performance for dissolved metals.
- Table 5. Treatment removal performance for total suspended solids.
- Table 6. Treatment removal performance for total petroleum hydrocarbons and oil and grease.
- Table 7. Treatment removal performance for total phosphorus.
- Table 8. Treatment removal performance for SVOCs, PCBs, dioxins, and CPAHs.
- Table 9. System design information for passive treatment systems.
- Table 10. System design information for active treatment systems.
- Table 11. Installation and annual operation and maintenance costs for passive treatment systems.
- Table 12. Installation and annual operation and maintenance costs for active treatment systems.
- Table 13. TAPE and NJCAT approvals for passive stormwater treatment technologies.
- Table 14. Treatment system applications.

1.0 Introduction

The Washington State Department of Ecology (Ecology) and the U.S. Environmental Protection Agency (EPA) are working to clean up contaminated sediments and control sources of recontamination in the Lower Duwamish Waterway (LDW) under an Administrative Order on Consent with the City of Seattle, King County, the Port of Seattle, and The Boeing Company. The LDW site is an approximately 5.5-mile portion of the Lower Duwamish River which flows into Elliott Bay. The sediments along the river contain a wide range of contaminants due to years of industrial activity and runoff from residential areas. These contaminants include polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), chlorinated dioxins and furans, metals, and phthalates.

Ecology is leading contaminant source control efforts in the LDW in cooperation with the City of Seattle, the Port of Seattle, King County, the City of Tukwila, and EPA. Source control is the process of finding and controlling releases of contaminants to the LDW. In order to support Ecology's source control efforts, Herrera Environmental Consultants (Herrera) conducted a literature review to identify technologies that could be used to treat industrial or municipal stormwater for the contaminants of concern in sediments within the LDW. In addition, Herrera has also compiled information on technologies that could be used to treat contaminated groundwater for this same suite of contaminants.

This report summarizes information on the specific stormwater treatment technologies that were identified through this review. It includes a methods section that describes the procedures that were used to compile information about each treatment technology. The compiled information for each treatment technology is then summarized in a results section under the following general categories:

- Vendor information
- Treatment performance
- System design
- Installation and operation and maintenance (O&M) costs

Finally, a discussion section provides guidance on the appropriate application(s) for each general category of treatment technology and identifies logistical issues for monitoring their performance. The discussion section also identifies key data gaps in our understanding of treatment system performance and recommends future research to fill these data gaps.

It should be noted that this review is not intended to constitute a formal analysis of "all known, available, and reasonable methods of treatment", or AKART analysis as defined in Ecology (2010a). An AKART analysis consists of a review of all available technologies for a well-characterized waste stream (such as industrial process wastewaters or fully-characterized and quantified stormwater runoff), and an evaluation of the economic impact of such technologies for the specified site or business. This project, as currently conceived, would not be considered a complete AKART analysis, nor could it be approved by Ecology as such.

This report was prepared by Herrera under Ecology's "Hazardous Substances Site Investigation & Remediation for the Toxics Cleanup Program Contract No. C0700034" between Science Applications International Corporation (SAIC) and Ecology. Herrera is a subcontractor to SAIC under this contract.

2.0 Methods

As described above, Herrera conducted a literature review to identify technologies that could be used to treat industrial or municipal stormwater for the contaminants of concern in sediments within the LDW. This review was intended to identify a broad range of possible technologies for different treatment applications within the LDW, including:

- Runoff treatment at end-of-pipe or point of compliance
- Treatment at the point of entry for runoff to stormwater conveyance system
- Above ground treatment of runoff prior to its point of entry to the conveyance system (e.g., roof-runoff interception)

Since the stormwater treatment technologies in the LDW will typically be used for retrofit applications, this review was not limited to technologies that have been approved through the Technology Assessment Protocol – Ecology (TAPE) process (Ecology 2008). This study primarily focused on proprietary stormwater treatment technologies that are not listed in Volume V of the Stormwater Management Manual for Western Washington (Ecology 2005). Most of the non-proprietary stormwater treatment technologies listed in Volume V of the Stormwater Management Manual for Western Washington (Ecology 2005) were removed from further research for this study due to aboveground footprint or infiltration requirements as summarized in the Step 3 (Screening Criteria) section below. If in the rare instance a large footprint best management practice (BMP) such as a wet pond or an infiltrating BMP such as bioretention or a media filter drain are deemed appropriate for a site, the reader should refer to Volume V of the Stormwater Management Manual for Western Washington (Ecology 2005); the Low Impact Development Technical Guidance Manual for Puget Sound (PSAT 2005); or the Washington State Department of Transportation Highway Runoff Manual (WSDOT 2010) for additional information on the BMP of interest. Only two non-proprietary stormwater treatment systems are included in this report: underground sand filters (e.g., Delaware Sand Filters and DC Sand Filters) since they may be applicable to retrofits in the LDW. Finally, source control BMPs such as street sweeping and catch basin cleaning discussed in Volume IV of the Stormwater Management Manual for Western Washington (Ecology 2005) are also not the focus of this study, but are critical for pollution prevention in the LDW.

The actual literature review and data compilation steps that were performed in conjunction with this effort are as follows:

- 1. Identify candidate treatment technologies
- 2. Categorize treatment technologies
- 3. Screen treatment technologies for potential application in the LDW
- 4. Compile detailed information on each treatment technology
- 5. Identify logistical issues for monitoring of each treatment technology

Each of these steps is described in more detail below.

Step 1. Identify Candidate Treatment Technologies

A candidate list of stormwater treatment technologies was compiled using the following resources:

- Web search
- Technologies approved through TAPE (Ecology 2008) and/or New Jersey Corporation for Advanced Technology (NJCAT) using the Technology Acceptance and Reciprocity Partnership [TARP] protocol (TARP 2003).
- Caltrans Treatment BMP Technology Report (Caltrans 2008)
- Stormwater Management Manual for Western Washington (Ecology 2005)

Step 2. Categorize Treatment Technologies

Stormwater treatment technologies were then classified as one of two main types:

- Active treatment systems: systems that require electricity to operate
- Passive treatment systems: systems that do not require electricity to operate and are generally lower cost alternatives when compared to active treatment systems

Within the active treatment system category, treatment systems were further classified into one of the following subcategories (see Figure 1):

- Chemical filtration
- Chemical treatment
- Electrocoagulation
- Filtration
- Ion exchange
- Reverse osmosis

Filtration was further categorized as one of the following types based on the technology description:

- Disc
- Media
- Pressure

Within the passive treatment system category, treatment systems were classified into one of the following subcategories (see Figure 1):

- Bioretention/filtration
- Drain inlet insert
- Hydrodynamic separation
- Media filtration
- Oil/water separator

Drain inlet inserts and media filtration systems were further categorized based on the technology description. Drain inlet inserts can generally be considered one of the following types (see Figure 1):

- Absorbent boom/fabric
- Media filtration
- Media filtration (cartridge)
- Combination system (screen and absorbent boom/fabric)
- Combination system (screen and media filtration)

Media filtration can generally be considered one of the following types (see Figure 1):

- Above ground (pump required)
- Cartridge
- Combination system (with hydrodynamic separation)
- Combination system (with oil/water separator)
- Up-flow

Step 3. Screen Treatment Technologies for Potential Application in the LDW

Technologies were subsequently screened for potential application in the LDW based on a list of screening criteria. These screening criteria reflect the unique logistical issues for treating stormwater in the LDW given the presence of historical sediment contamination, flat site topography, high groundwater table, and a broad list of target contaminants in runoff.

The screening criteria for active treatment systems are as follows:

- Systems must be designed for long-term (i.e., permanent) installation.
- Systems must be designed to treat a relatively wide range of flows and concentrations that are associated with stormwater runoff

The screening criteria for passive treatment systems are as follows:

- Systems must have a minimal aboveground footprint due to the limited space available for retrofits (e.g., larger aboveground systems such as constructed wetlands, wet ponds, and Austin sand filters were removed).
- Systems must not rely on infiltration for treatment due to high water table and presence of historical soil and/or groundwater contamination (e.g., treatment technologies such as infiltration trenches, bioretention, and proprietary systems that provide storage for underground infiltration were removed).
- Systems must be able to effectively handle a large petroleum or chemical spill from industrial activities (e.g., porous pavement was removed).
- Systems should remove pollutants of concern; those systems with a focus on gross litter and debris removal were not considered (e.g., proprietary systems that have a trash basket catch basin insert design were removed).
- System design should be for a permanent installation; those systems with a construction site or temporary installation focus were not considered (e.g., catch basin filter sock designs were removed).
- Systems must be readily available; those systems with inactive vendor websites or discontinued product lines were not included.

Step 4. Compile Detailed Information on Each Treatment Technology

Once the list of potential active and passive stormwater treatment technologies was narrowed down to those that could potentially be useful in the LDW, the following steps were taken to collect information on each of the systems:

- Review and compile publically available information from vendor websites
- Send questionnaire to vendors
- Conduct follow-up phone contacts with vendors

The vendor questionnaire requested the following specific information:

- Manufacturer name
- Technology name
- Contact information (name, e-mail, phone, website)
- Treatment type/application

- Number of installations in the state of Washington
- Estimated installation cost [range]
- Estimated annual O&M cost [range]
- Design flow rate [range]
- System footprint [range]
- Required head loss [range]
- Internal or external bypass
- Above or below grade
- Median influent concentration [see parameter list below]
- Median effluent concentration [see parameter list below]
- Median percent removal [see parameter list below]

Based on the contaminants of concern in the LDW and the required monitoring parameters in the National Pollutant Discharge Elimination System (NPDES) Industrial Stormwater General Permit (Ecology 2010b), treatment performance data for the following parameters were requested from the each vendor:

- Total suspended solids (TSS) [required for Timber Product Industry (24xx), Paper and Allied Products (26xx), and discharges to 303(d)-listed waters; many pollutants can also be associated with sediment particles, thus TSS removal can also be an indicator of pollutant removal of other parameters]
- Total phosphorus [required for Chemical and Allied Products (28xx), Food and Kindred Products (20xx), and discharges to 303(d)-listed waters]
- Total petroleum hydrocarbons (TPH) [required for Primary Metals (33xx), Metals Mining (10xx), Automobile Salvage and Scrap Recycling (5015 and 5093), and Metals Fabricating (34xx)]
- Oil and grease [this parameter is measured instead of TPH in some portions of the country]
- Total and dissolved copper [total copper is required for all Industrial Stormwater permittees]
- Total and dissolved lead [total lead is required for Primary Metals (33xx), Metals Mining (10xx), Automobile Salvage and Scrap Recycling (5015 and 5093), Metals Fabricating (34xx), and discharges to 303(d)-listed waters]
- Total and dissolved zinc [total zinc is required for all Industrial Stormwater permittees]
- Semivolatile organic compounds (SVOCs) [contaminant of concern in the LDW]

- Polycholrinated biphenyls (PCBs) [contaminant of concern in the LDW]
- Dioxins [contaminant of concern in the LDW]
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) [contaminant of concern in the LDW]

Additional monitoring parameters (turbidity, pH, and oil sheen) are required by the NPDES Industrial Stormwater General Permit for all industries; however, these parameters were not listed as contaminants of concern in the LDW or are not commonly used for determining pollutant removal performance; thus, data for these parameters were not requested from the vendors. Specific industrial groups are also required to collect additional monitoring parameters (ammonia total as nitrogen, biochemical oxygen demand [BOD₅], chemical oxygen demand [COD], nitrate/nitrite as nitrogen, and additional metals); however, since these parameters are not required for multiple industries and were not listed as contaminants of concern in the LDW, they were not included as part of this literature review.

Information compiled for each technology was summarized on a two-page Technology Summary Sheets that provides a picture or diagram of each system, and a consistent framework for presenting data on system design, treatment performance, installation costs, O&M costs, and the number of installations in Washington. In addition, more detailed product brochures, drawings, specifications, and O&M information that were obtained from the vendors for each technology were compiled for reference within this document.

3.0 Results

Using the methods identified in the previous section, a total of 91 passive and 18 active systems were identified for possible use in treating industrial or municipal stormwater for the contaminants of concern in sediments within the LDW. Tables 1 and 2 identify these passive and active systems, respectively, with their associated treatment subcategories and vendor contact information. The Technology Summary Sheets that were prepared for each system are provided in Appendix A. The appendix includes a divider to separate information for passive and active systems; the Technology Summary sheets for individual systems are then organized alphabetically by system name.

Information presented in the Technology Summary Sheets was derived in part from questionnaire responses from the vendors for each system (see description of questionnaires in *Methods* section). Questionnaire responses were received from vendors for 58 percent of the passive systems and 67 percent of the active systems; these questionnaire responses are documented in Appendix B. The appendix includes a divider to separate information for passive and active systems; questionnaire responses for individual systems are then organized alphabetically by system name.

When no questionnaire response was obtained from a vendor for a specific treatment system, efforts were made to obtain the required information for this report based on a review of publically available information on that system from the vendor. Limited information was obtained through these reviews for 15 percent of the passive systems and 11 percent of the active system. Publically available product information (e.g., brochures, drawings, specifications, and O&M information) for all the treatment systems identified in Tables 1 and 2 has been compiled in Appendix C (provided electronically on CD). The appendix includes a divider to separate information for passive and active systems; product information for individual systems is then organized alphabetically by system name.

In addition to the appendices described above, the following summary tables are provided in the main body of this report to facilitate rapid comparisons of different treatment system attributes:

- Table 3. Treatment system removal performance for total metals.
- Table 4. Treatment system removal performance for dissolved metals.
- Table 5. Treatment system removal performance for TSS.
- Table 6. Treatment system removal performance for total petroleum hydrocarbons and oil and grease.
- Table 7. Treatment system removal performance for total phosphorus.
- Table 8. Treatment system removal performance for SVOCs, PCBs, dioxins, and cPAHs.

- Table 9. Design information for passive systems.
- Table 10. Design information for active systems.
- Table 11. Installation and annual operation and maintenance costs for passive treatment systems.
- Table 12. Installation and annual operation and maintenance costs for active treatment systems.

The information contained in Tables 3 through 12 has also been compiled in a separate Microsoft Excel® file to allow rapid sorting and review of the system treatment attributes; this file is designated Appendix D to this document and is provided electronically on CD.

In reviewing the aforementioned tables and appendices, it is important to note that most of the associated data were supplied by the treatment system vendors and have not been verified by an independent third-party. In a few select cases, independent verification of some treatment system attributes has occurred through TAPE and/or NJCAT. System attributes that are verified through TAPE may include removal performance for basic (TSS), enhanced (dissolved metals), phosphorus, and oil treatment. Typical system maintenance schedules are also verified through TAPE. NJCAT only verifies removal performance for TSS. Neither program verifies installation and annual operation and maintenance costs. The specific treatment systems that have been verified through TAPE and/or NJCAT are identified in Table 13. More detailed information on the systems that have been verified through TAPE is available through Ecology's website for emerging stormwater treatment technologies:

http://www.ecy.wa.gov/programs/wq/stormwater/newtech/index.html. Detailed information on treatment systems that have been verified through NJCAT may also be obtained through the following website for the State of New Jersey Department of Environmental Protection: http://www.njstormwater.org/treatment.html.

4.0 Discussion

This section provides guidance on the appropriate application(s) for each general category of treatment technology, identifies logistical issues for monitoring performance, identifies key data gaps in our understanding of treatment system performance, and recommends future research to fill these data gaps.

4.1 Treatment Technology Applications

In general, land use in drainage basins to the LDW is predominantly industrial, although there are some limited areas of mixed residential/commercial land use in adjacent neighborhoods (e.g., South Park and Georgetown). Because industrial areas in the LDW are largely built-out (i.e., all the available space is either paved or occupied by buildings), many of the non-proprietary stormwater treatment technologies identified in the *Stormwater Management Manual for Western Washington* (Ecology 2005) are impractical due to their large aboveground footprint. Instead, proprietary treatment technologies that have been specifically designed for retrofit applications will generally be more useful for treating the contaminants of concern in the LDW. To overcome the numerous design restraints in built-out environments, these systems are typically designed to have a small footprint, have low head-loss requirements, and are easily scalable. Because of these attributes, these technologies can be more easily installed in a variety of sites and applications.

The most common treatment applications in industrial areas are the treatment of roof runoff (e.g., for treatment of zinc from galvanized metal roofs) or the treatment of stormwater from pollution generating impervious surfaces at the inlet to the storm drain system or at end-of-pipe. Pumping and treating groundwater, though not technically stormwater, is also a common application in industrial areas. A large variety of treatment technologies is generally available for these applications, including both passive and active systems. In general, passive treatment systems are less expensive to install, operate, and maintain than active systems; however, they typically do not provide as high a level of treatment in comparison to active systems. For the same level of treatment, a passive system usually occupies more space than an active system. The higher level of treatment achieved by active systems typically involves a multi-step process to optimize performance; due to this increased complexity, active systems often require a higher level of operator knowledge and have increased O&M costs.

Description of the most common treatment applications for the general treatment technology categories defined in this report are provided below. Table 14 also identifies common treatment applications for the specific treatment systems that are identified in Tables 1 and 2.

4.1.1 Passive Treatment

1. *Biofiltration/Filtration* – Bioretention systems (e.g., rain gardens) have been shown to achieve a high level of pollutant removal (Davis et al. 2009; Hsieh and

Davis 2005). Manufacturers have taken this technology and adapted it to the ultraurban environment. These systems have a relatively small footprint and in general are not easily scalable. The majority of bioretention systems are easy to maintain. Bioretention systems are most commonly used to treat stormwater from pollution generating impervious surfaces either at the inlet to the storm drain system or at the end-of-pipe.

- 2. Drain Inlet Insert These systems are small devices that occupy a catch basin or are inserted into the inlet of a storm drain. Because they are not scalable and occupy existing inlets, it is difficult to correctly size these technologies. They are relatively inexpensive, require minimal head loss, and need to be distributed throughout the site to treat large areas. Drain inserts are most commonly used to treat stormwater from pollution generating impervious surfaces at the inlet to the storm drain system; however, some of these systems are also configured to treat roof runoff.
- 3. *Hydrodynamic Separation* These devices can treat high flows in a very small footprint. Maintenance is similar to standard catch basin cleaning. Because these systems are not filters, they do not target dissolved pollutants and, in general, cannot remove fine silt and clay sized particles (Kim and Sansalone 2008). Hydrodynamic separators require minimal head loss. Hydrodynamic separation systems are most commonly used to treat stormwater from pollution generating impervious surfaces at end-of-pipe.
- 4. *Media Filtration* Media filters are scalable systems that require head loss (varies from system to system) to drive the water through the filter media. They achieve a relatively high level of treatment for dissolved and particulate pollutants (Geosyntec and Wright Water 2008) but are generally more expensive to maintain than other passive treatment types. Media filtration systems are most commonly used to treat stormwater from pollution generating impervious surfaces either at the inlet to the storm drain system or at the end-of-pipe.
- 5. Oil/Water Separators These systems target hydrocarbons with simple baffle technologies. They do not target other pollutants but are effective at reducing high concentrations of hydrocarbons and can provide some limited TSS and metals removal via sedimentation. These systems are most commonly used to treat stormwater from pollution generating impervious surfaces at the inlet to the storm drain system.

4.1.2 Active Treatment

1. Chemical Filtration – Media filtration is more effective if the average particle size in the stormwater is large. Chemical filtration entails the addition of a flocculent to the stormwater prior to filtration in order to enhance the filtration process.

Because the large particles cannot penetrate the media, surface occlusion is an

issue. Many systems use a backflush device to prevent surface occlusion. As with most active treatment devices, water is pumped into these systems and thus head loss restrictions are not an issue. In addition, most active treatment systems are above ground installations and consequently require a large footprint on the site (though less than conventional stormwater ponds). Chemical filtration systems can be used to treat stormwater from pollution generating impervious surfaces at end-of-pipe using a pump system; they are also commonly used to treat contaminated groundwater.

- 2. Chemical Treatment To target specific analytes, these technologies are simple devices that add a chemical to the influent stormwater. Chemical treatment systems can be used to treat stormwater from pollution generating impervious surfaces at end-of-pipe using a pump system; they are also commonly used to treat contaminated groundwater.
- 3. Electrocoagulation This technology applies a charge to the influent stream to generate flocculation. The device then settles or filters the floc to generate a clean waste stream. Removal of settled floc is a required and frequent maintenance procedure. This is an effective treatment method that can target dissolved and particulate pollutants, though operation and maintenance can be onerous. Electrocoagulation systems can be used to treat stormwater from pollution generating impervious surfaces at end-of-pipe using a pump system; they are also commonly used to treat contaminated groundwater.
- 4. Filtration Pressurized filtration enhances the filtration process by increasing the pressure of the water as it moves through the filter. The filtration process is usually followed by a backflushing process to clean the media. As with all system with a backflush, the collected solids must be removed on a regular basis. Filtration systems can be used to treat stormwater from pollution generating impervious surfaces at end-of-pipe using a pump system; they are also commonly used to treat contaminated groundwater.
- 5. *Ion Exchange* Ion exchange is a polishing step that specifically targets polar dissolved constituents. Pretreatment is required prior to ion exchange as suspended solids will clog the exchange columns. Ion exchange systems can be used to treat stormwater from pollution generating impervious surfaces at end-of-pipe using a pump system; they are also commonly used to treat contaminated groundwater.
- 6. Reverse Osmosis These systems are highly effective at removing dissolved contaminants. Using a pump, these systems can be used to treat stormwater from pollution generating impervious surfaces at end-of-pipe and contaminated groundwater. These systems also require pre-treatment as particulate matter can foul the ion selective membrane and reduce performance.

4.2 Logistical Issues for Monitoring Treatment System Performance

In order to ensure that source control efforts in the LDW are effective, some monitoring of stormwater treatment system performance may be required pursuant to future permit requirements or other regulatory drivers. At a minimum, this monitoring would likely involve sampling to characterize contaminant concentrations in treatment system effluent to ensure they are below levels that could contribute to sediment recontamination in the LDW. Influent samples might also be required to determine the actual pollutant removal efficiency of the treatment system.

In general, the following logistical issues are frequently encountered when collecting samples to characterize influent and effluent contaminant concentrations for propriety treatment systems that are designed for retrofit applications:

- The conveyance system for stormwater entering and leaving the treatment system is below grade and not directly accessible; therefore, there is no convenient collection point for influent and/or effluent samples. This situation is most often encountered with systems that are designed to treat stormwater from pollution generating impervious surfaces at end-of-pipe (e.g., biofiltration/filtration, hydrodynamic separation, and media filtration systems).
- Effluent from the stormwater treatment system is discharged directly into a conveyance pipe containing water from another up-gradient source; therefore, it is difficult to obtain a representative effluent sample that is uncontaminated by this other source. This situation is most often encountered with systems that are designed to treat stormwater from pollution generating impervious surfaces at the inlet to the storm drain system (e.g., drain inlet inserts).
- The stormwater treatment system is configured in a manner that allows bypass water to mix directly with treated effluent; therefore, it is difficult to obtain a representative effluent sample that is not contaminated by the bypass water. This situation is frequently encountered with systems that are designed to treat stormwater from pollution generating impervious surfaces at the inlet to the storm drain system (e.g., drain inlet inserts) and at end-of-pipe (e.g., biofiltration/filtration, hydrodynamic separation, and media filtration systems).
- Influent enters the stormwater system as diffuse sheet flow; therefore, the flow is not sufficiently concentrated to facilitate collection of an influent sample. This situation is most often encountered with systems that are designed to treat stormwater from pollution generating impervious surfaces at the inlet to the storm drain system (e.g., drain inlet inserts).

It is often possible to identify sampling procedures to overcome these logistical issues. For example, in situations where there is no convenient collection point for effluent samples at the direct outlet for a treatment system, it is often possible to collect samples at a downgradient access point in the stormwater conveyance system if no additional stormwater inputs have occurred from sources other than the treatment system. However, these sampling strategies typically need to be worked out on a case-by-case basis given the wide variety of treatment system configurations that exist and unique attributes of the stormwater conveyance system at any given monitoring site. Given this consideration, it is not practical to offer generalized sampling strategies to overcome the logistical issues for monitoring that are identified above.

4.3 Data Gaps

Although there are many stormwater treatment technology options, not all of them have been rigorously field tested. This is primarily due to the fact that field testing is expensive and many government agencies do not require field data to approve systems for use in their jurisdictions. Table 13 presents those systems which have gone through the TAPE or TARP field testing process, but even for these rigorously tested systems, there exists a lack of data related to the removal of toxic pollutants. Specifically, few have been tested for any metals besides copper and zinc, SVOCs, PCBs, dioxins, and cPAHs removal. This data gap exists for a number of reasons:

- 1. Removal of these toxics from stormwater is not the primary concern for the majority of the market.
- 2. Collection and analysis of these parameters is expensive.
- 3. Influent concentrations are highly variable, and thus achieving target reduction goals consistently is difficult.

The lack of rigorous field or laboratory testing by independent third parties is another major data gap that needs to be addressed before informed decisions can be made regarding selection of proprietary stormwater treatment systems. There is an obvious conflict of interest when companies test their own products and report the results as fact. In order to address this issue, many more jurisdictions have begun to require third-party verified data to support the performance claims of treatment technology vendors. Still others have been establishing their own verification protocols because the existing protocols (e.g., TAPE and TARP), do not address issues which can be locally important. For instance, TAPE and TARP do not require long-term monitoring to assess system performance over time, or maintenance past the 1- to 2-year time scale. Stormwater managers in Oregon have identified this as a data gap and have begun the process of establishing a monitoring protocol for long-term maintenance and system lifecycle assessments. However, until this monitoring protocol begins to produce results, the long-term performance of these systems and lifecycle expectations will remain a data gap.

4.4 Recommended Future Research

Though there any many treatment technologies on the market, few have been rigorously tested under variable field conditions. Even fewer have been subjected to long-term testing to quantify system lifecycles and long-term O&M requirements. It is recommended that more of these studies be conducted by third party entities so that objective results are available for a wide variety of systems. This is a difficult prospect for treatment technology manufacturers because of their rapid research and development timelines and the large investment required for long-term studies. Due to this consideration, local jurisdictions and/or Industrial Stormwater permittees may need to take on this monitoring themselves in order to reach more informed decisions on which treatment technologies are appropriate and effective for various stormwater treatment applications. As mentioned above, stormwater managers in Oregon have already initiated this process. In Washington, the Port of Seattle also has a long history of monitoring stormwater treatment system performance, including various downspout media filter configurations and oyster shell augmented filtration swales.

Though rigorous field studies exist for a select few treatment technologies, these studies have primarily addressed metals, nutrients, and solids removal. Very little data exist for the removal of toxic pollutants. It is recommended that future studies analyze other metals in addition to copper and zinc (e.g., mercury, cadmium, and chromium), SVOCs, PCBs, dioxins, and cPAHs. Such studies would need to occur in industrial areas because treatment cannot be verified unless influent concentrations are elevated. Alternatively, because of the expense and difficulty of conducting studies of toxics in stormwater, research on toxic pollutant affinity for various particle sizes could be conducted. Such a study would segregate and analyze various particle size fractions for concentrations of SVOCs, PCBs, dioxins, and cPAHs. This approach has been used by researchers to relate metals to particle size classes (Ran et al. 2000; Ranville et al. 1999); a similar approach could be used here for toxic organic chemicals. Once a relationship between particle size and pollutant concentration is developed, removal of various particle size categories by treatment technologies can be used as a proxy for removal of difficult-to-measure toxics.

5.0 References

Caltrans. 2008. Treatment BMP Technology Report. CTSW-RT-08-167.02.02. California Department of Transportation, Division of Environmental Analysis, Sacramento, California. April 2008.

Davis, A.P., W.F. Hunt, R.G. Traver, and M. Clar. 2009. Bioretention Technology: Overview of Current Practice and Future Needs. *Journal of Environmental Engineering-ASCE* 135(3):109-117.

Ecology. 2005. Stormwater Management Manual for Western Washington. Publication No. 05-10-029 through 05-10-033. Washington State Department of Ecology. Water Quality Program, Olympia, Washington. February 2005.

Ecology. 2008. Guidance for Evaluating Emerging Stormwater Treatment Technologies. Technology Assessment Protocol – Ecology (TAPE). Publication Number 02-10-037. Washington State Department of Ecology, Olympia, Washington.

Ecology. 2010a. Water Quality Permit Writer's Manual. Publication No. 92-109. Washington State Department of Ecology. Water Quality Program, Olympia, Washington. November 2010.

Ecology. 2010b. National Pollutant Discharge Elimination System Industrial Stormwater General Permit. Washington State Department of Ecology, Olympia, Washington. January 1, 2010.

Geosyntec and Wright Water. 2008. Analysis of Treatment System Performance: International Stormwater Best Management Practices (BMP) Database [1999-2008]. Prepared for Water Environment Research Foundation, American Society of Civil Engineers (Environmental and Water Resources Institute/Urban Water Resources Research Council), U.S. Environmental Protection Agency, Federal Highway Administration, and American Public Works Association, by GeoSyntec Consultants and Wright Water Engineers, Inc., Chicago, Illinois.

Hsieh, C.H. and A.P. Davis. 2005. Multiple-Event Study of Bioretention for Treatment of Urban Storm Water Runoff. *Water Science and Technology* 51(3-4):177-181.

Kim, J.Y. and J.J. Sansalone. 2008. Hydrodynamic Separation of Particulate Matter Transported by Source Area Runoff. *Journal of Environmental Engineering-ASCE* 134(11):912-922.

PSAT. 2005. Low Impact Development Technical Guidance Manual for Puget Sound. Puget Sound Action Team (PSAT) and Washington State University Pierce County Extension, Olympia, Washington. January 2005.

Ran, Y., J.M. Fu, G.Y. Sheng, R. Beckett, and B.T. Hart. 2000. Fractionation and Composition of Colloidal and Suspended Particulate Materials in Rivers. *Chemosphere* 41(1-2):33-43.

Ranville, J.F., D.J. Chittleborough, F. Shanks, R.J.S. Morrison, T. Harris, F. Doss, and R. Beckett. 1999. Development of Sedimentation Field-Flow Fractionation-Inductively Coupled Plasma Mass-Spectrometry for the Characterization of Environmental Colloids. *Analytica Chimica Acta* 381(2-3):315-329.

TARP. 2003. Protocol for Stormwater Best Management Practice Demonstrations. Prepared by the Technology Acceptance Reciprocity Partnership (http://www.dep.state.pa.us/dep/deputate/pollprev/techservices/tarp/pdffiles/Tier2protocol.pdf).

WSDOT. 2010. Highway Runoff Manual. Publication No. M 31 16.02. Washington State Department of Transportation, Olympia, Washington. May 2010.

FIGURES AND TABLES

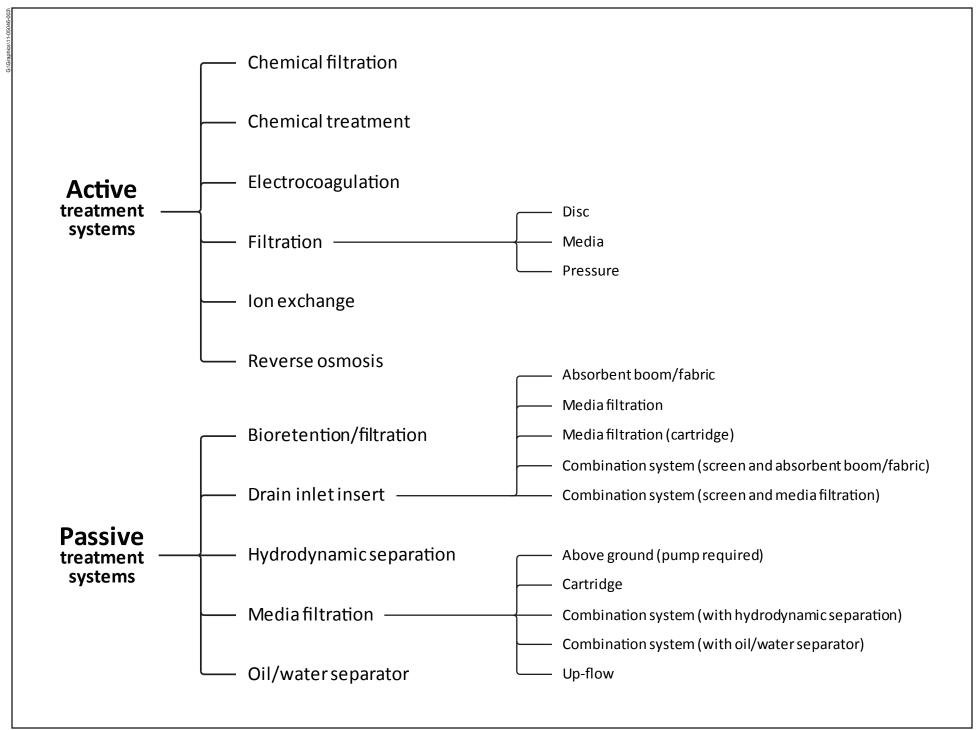


Figure 1. Treatment type categories for active and passive treatment systems.

Table 1. Passive treatment systems that could be used to treat industrial stormwater in the Lower Duwamish basin.

Treatment Type	Treatment System Name	Manufacturer/Vendor Name	Website	Contact Phone No.
Bioretention/Filtration	•			
	Filterra® Curb Inlet System	Filterra, DBAAmericast, Inc.	www.filterra.com	877-345-1450
	Filterra® Roof Drain System	Filterra, DBAAmericast, Inc.	www.filterra.com	877-345-1450
	Modular Wetland System - Linear	Modular Wetland Systems, Inc./BioClean Environmental Services, Inc.	www.biocleanenvironmental.com	760-433-7640
	Silva Cell	DeepRoot Partners	www.deeproot.com	800 458 7668
	TREEPOD® Biofilter	Kristar Enterprises, Inc.	www.kristar.com	800-579-8819
	UrbanGreen BioFilter	CONTECH Stormwater Solutions Inc.	www.contech-cpi.com	800-548-4667
Drain Inlet Insert				
Absorbent Boom/Fabric	ADsorb-It	Eco-Tec, Inc.	www.adsorb-it.com	888-668-8982
	Enviro-Drain®	Enviro-Drain, Inc.	www.enviro-drain.com	206-363-0316
	EnviroSafe TM Storm Safe HF10	Transpo Industries, Inc.	www.transpo.com	503-674-9180
	Ultra-Urban Filter™	Abtech Industries	abtechindustries.com	480-874-4000
Media Filtration	EcoVault™ Baffle Box	EcoSense International	www.ecosenseint.com	321-449-0324
	EnviroSafe TM	Transpo Industries, Inc.	www.transpo.com	503-674-9180
	HUBER Hydro Filt	Huber Technology, Inc.	www.huber-technology.com	425-392-0491
	Hydro-Kleen TM	ACF Environmental, Inc.	www.acfenvironmental.com	800-448-3636
	Raynfiltr™	Environmental Filtration, Inc.	www.raynfiltr.org	800-333-5234
Media Filtration (Cartridge)	StormBasin TM	Fabco Industries, Inc.	www.fabco-industries.com	631-393-6024
	StormPod TM	Fabco Industries, Inc.	www.fabco-industries.com	631-393-6024
	Triton Drop Inlet Insert	Revel Environmental Manufacturing, Inc./CONTECH Stormwater Solutions Inc.	www.contech-cpi.com	800-548-4667
Combination System (Screen and Absorbent	Bio Clean Curb Inlet Basket	BioClean Environmental Services, Inc.	www.biocleanenvironmental.com	760-433-7640
Boom/Fabric)	Bio Clean Downspout Filter	BioClean Environmental Services, Inc.	www.biocleanenvironmental.com	760-433-7640
	Bio Clean Flume Filter	BioClean Environmental Services, Inc.	www.biocleanenvironmental.com	760-433-7640
	Bio Clean Grate Inlet Skimmer Box	BioClean Environmental Services, Inc.	www.biocleanenvironmental.com	760-433-7640
	Bio Clean Trench Drain Filter	BioClean Environmental Services, Inc.	www.biocleanenvironmental.com	760-433-7640
	Clean Way Downspout Filtration Unit	Clean Way	www.cleanwayusa.com	800-723-1373
	DrainPac TM	United Storm Water, Inc.	www.unitedstormwater.com	877-71-STORM
	EnviroTrap Catch Basin Insert	Environment 21	www.ENV21.com	800-809-2801
	FloGard® Downspout Filter	Kristar Enterprises, Inc.	www.kristar.com	800-579-8819
	FloGard® LoPro Matrix Filter	Kristar Enterprises, Inc.	www.kristar.com	800-579-8819
	FloGard® LoPro Trench Drain Filter	Kristar Enterprises, Inc.	www.kristar.com	800-579-8819
	FloGard+PLUS®	Kristar Enterprises, Inc.	www.kristar.com	800-579-8819
	FloGard® Trash & Debris Guard	Kristar Enterprises, Inc.	www.kristar.com	800-579-8819
	Inceptor®	Stormdrain Solutions	www.stormdrains.com	877-OUR-PIPE
	StormClean Catch Basin Insert	Clean Way	www.cleanwayusa.com	800-723-1373
	StormClean Curb Inlet Insert	Clean Way	www.cleanwayusa.com	800-723-1373
	StormClean Wall Mount Filtration Unit	Clean Way	www.cleanwayusa.com	800-723-1373
	Storm PURE TM	Nyloplast/Hancor, Inc.	www.hancor.com	253-255-6302
	SwaleGard® Pre-filter	Kristar Enterprises, Inc.	www.kristar.com	800-579-8819
Combination System (Screen and Media	Aqua-Guardian™ Catch Basin Insert	AquaShieldTM, Inc.	www.aquashieldinc.com	888-344-9044
Filtration)	ClearWater BMP	ClearWater Solutions, Inc.	www.clearwaterbmp.com	800-758-8817
	Coanda Curb Inlet Filter	Coanda, Inc.	www.coanda.com	714-389-2113
	Coanda Downspout Filter	Coanda, Inc.	www.coanda.com	714-389-2113

11-05046-003 Tables 1 & 2 - Passive and Active systems list.xls

Table 1. Passive treatment systems that could be used to treat industrial stormwater in the Lower Duwamish basin.

Treatment Type	Treatment System Name	Manufacturer/Vendor Name	Website	Contact Phone No.
Drain Inlet Inserts (cont.)				
	RSF (Rapid Stormwater Filtration) 100	EcoSol Wastewater Filtration Systems	www.ecosol.com.au	+61 8 8262 2528 (Australia)
	RSF (Rapid Stormwater Filtration) 1000	EcoSol Wastewater Filtration Systems	www.ecosol.com.au	+61 8 8262 2528 (Australia)
	RSF (Rapid Stormwater Filtration) 4000	EcoSol Wastewater Filtration Systems	www.ecosol.com.au	+61 8 8262 2528 (Australia)
Hydrodynamic Separation				
	Aqua-Swirl Concentrator	AquaShieldTM, Inc.	www.aquashieldinc.com	888-344-9044
	BaySeparator®	BaySaver Technologies, Inc.	www.BaySaver.com	301-829-6470
	CDS TM Stormwater Treatment System	CONTECH Stormwater Solutions Inc.	www.contech-cpi.com	800-548-4667
	Downstream Defender	Hydro International, Inc.	www.hydro-international.biz	207-756-6200
	FloGard® Dual-Vortex Hydrodynamic Separator	Kristar Enterprises, Inc.	www.kristar.com	800-579-8819
	HydroGuard	Hydroworks	www.hydroworks.com	888-290-7900
	Nutrient Separating Baffle Box	BioClean Environmental Services, Inc.	www.biocleanenvironmental.com	760-433-7640
	Stormceptor®	Imbrium Systems Corp	www.imbriumsystems.com	503-706-6193
	StormTrooper®	Park USA	www.park-usa.com	888-611-PARK
	StormTrooper® EX Extra-Duty	Park USA	www.park-usa.com	888-611-PARK
	Terre Kleen TM	Terre Hill Concrete Products	www.terrehill.com	800-242-1509
	UniScreen	Environment 21	www.ENV21.com	800-809-2801
	UniStorm	Environment 21	www.ENV21.com	800-809-2801
	V2B1 Treatment System	Environment 21	www.ENV21.com	800-809-2801
	Vortechs System	CONTECH Stormwater Solutions Inc.	www.contech-cpi.com	800-548-4667
Media Filtration				
Above ground (pump required)	Aquip® Enhanced Stormwater Filtration System	StormwateRx	www.stormwaterx.com	503-233-4660
Cartridge	BayFilter®	BaySaver Technologies, Inc.	www.BaySaver.com	301-829-6470
	EcoSense TM Stormwater Filtration Systems	EcoSense International	www.ecosenseint.com	321-449-0324
	Perk Filter TM	Kristar Enterprises, Inc.	www.kristar.com	800-579-8819
	PuriStorm	Environment 21	www.ENV21.com	800-809-2801
	Sorbtive™ FILTER	Imbrium Systems Corp	www.imbriumsystems.com	503-706-6193
	Stormfilter using ZPG Media	CONTECH Stormwater Solutions Inc.	www.contech-cpi.com	800-548-4667
	StormSafe TM Helix	Fabco Industries, Inc.	www.fabco-industries.com	631-393-6024
Sand Filter	Perimeter Sandfilter (Delaware Sandfilter)	Rotondo Environmental Solutions, LLC	www.rotondo-es.com	703-212-4830
Sand Pitter	Underground Sandfilter (DC Sandfilter)	Rotondo Environmental Solutions, LLC	www.rotondo-es.com	703-212-4830
Combination System	Aqua-Filter System	AquaShieldTM, Inc.	www.aquashieldinc.com	888-344-9044
(with Hydrodynamic Separation)	ecoStorm + ecoStorm Plus®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	www.watertectonics.com	866-402-2298
	Go-Filter	AquaShieldTM, Inc.	www.aquashieldinc.com	888-344-9044
Combination System	CrystalCombo Hybrid Polisher	CrystalStream Technologies	http://crystalstream.com	800-748-6945
(with Oil/Water Separator)	HydroFilter	Hydroworks	www.hydroworks.com	888-290-7900
(on which separator)	11, dioi noi	11, dio works	" " " " " Julo " Olko Colli	550 270 1700
Up-Flow	Bio Clean Water Polisher	BioClean Environmental Services, Inc.	www.biocleanenvironmental.com	760-433-7640
	Jellyfish™ Filter	Imbrium Systems Corp	www.imbriumsystems.com	503-706-6193
	Up-Flo™ Filter	Hydro International, Inc.	www.hydro-international.biz	207-756-6200

11-05046-003 Tables 1 & 2 - Passive and Active systems list.xls

Table 1. Passive treatment systems that could be used to treat industrial stormwater in the Lower Duwamish basin.

Treatment Type	Treatment System Name	Manufacturer/Vendor Name	Website	Contact Phone No.
Oil/Water Separator				
	ADS® Water Quality Unit	Advanced Drainage Systems, Inc	www.adspipe.com	800-821-6710
	BioSTORM	Bio-Microbics, Inc.	www.biomicrobics.com	800-753-3278
	Clara® Gravity Stormwater Separator Vault	StormwateRx	www.stormwaterx.com	503-233-4660
	CrystalClean Separator	CrystalStream Technologies	http://crystalstream.com	800-748-6945
	ecoLine A®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	www.watertectonics.com	866-402-2298
	ecoLine B®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	www.watertectonics.com	866-402-2298
	ecoSep®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	www.watertectonics.com	866-402-2298
	ecoTop®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	www.watertectonics.com	866-402-2298
	First Flush 1640FF	ABT, Inc.	www.abtdrains.com	800-438-6057
	Hancor Storm Water Quality Unit	Hancor, Inc.	www.hancor.com	253-255-6302
	Kleerwater TM	Brown-Minneapolis Tank Co./Kleerwater Technologies, LLC	www.kleerwater.net	800-999-TANK (8265)
	PSI Separator	PSI International, Inc.	www.psinternational.com	605-332-1885
	SNOUT®	Nyloplast/Hancor, Inc.	www.hancor.com	253-255-6302
	VortClarex	CONTECH Stormwater Solutions Inc.	www.contech-cpi.com	800-548-4667

Table 2. Active treatment systems that could be used to treat industrial stormwater in the Lower Duwamish basin.

Treatment Type	Treatment System Name	Manufacturer/Vendor Name	Website	Contact Phone No.
Chemical Filtration				
	Baker Tank with Sand Filter	BakerCorp	www.bakercorp.com	425-347-8811
	Chitosan-Enhanced Sand Filtration Using FlocClear TM	Clear Creek Systems	www.clearcreeksystems.com	661-979-2525
	Purus® Stormwater Polishing System	StormwateRx	www.stormwaterx.com	503-233-4660
Chemical Treatment				
	ACISTBox® pHATBox® Wetsep	Water Tectonics, Inc. Water Tectonics, Inc. Waste & Environmental Technologies Ltd.	www.watertectonics.com www.watertectonics.com http://wetsep.com	866-402-2298 866-402-2298 (65) 64560040
Electrocoagulation				
	High-Flo Electrocoagulation OilTrap ElectroPulse Water Treatment System	Kaselco OilTrap Environmental	www.kaselco.com www.oiltrap.com	361-594-3327 360-943-6495
	Redbox WaveIonics TM	Morselt Borne BV Water Tectonics, Inc.	www.morselt.com www.watertectonics.com	317-449-0324 866-402-2298
Filtration				
Disc	Arkal Filter (Spin Klin System)	Arkal Filtration Systems/PEP (U.S. Distributor)	www.arkal-filters.com	(972)-4-6775140 (Israel)
Media	Fuzzy Filter	Schreiber		
rvicuia	WaterTrak Pressurized Media Filter WaterTrak Ultrafiltration	Aquatech Aquatech	www.aquatech.com www.aquatech.com	724-746-5300 724-746-5300
Pressure	Arkal Media Filter	Arkal Filtration Systems/PEP (U.S. Distributor)	www.arkal-filters.com	(972)-4-6775140 (Israel)
Ion Exchange				
6	Wastewater Ion Exchange System (WWIX)	Siemens Water Technologies Inc.	www.siemens.com	860-593-2063
	WaterTrak Ion Exchange	Aquatech	www.aquatech.com	724-746-5300
Reverse Osmosis				
	WaterTrak Reverse Osmosis	Aquatech	www.aquatech.com	724-746-5300

Table 3. Treatment removal performance for total metals.

			Total Coppe	er		Total Lead			Total Zinc		
		Median	Median		Median	Median		Median	Median		1
		Influent	Effluent	Median	Influent	Effluent	Median	Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	Notes
Passive Treatment Technologies		•		•							
Bioretention/Filtration											
	Filterra® Curb Inlet System	0.0081	0.0034	54%	NA	NA	NA	0.384	0.102	56%	
	Filterra® Roof Drain System	0.0081	0.0034	54%	NA	NA	NA	0.384	0.102	56%	
	Modular Wetland System - Linear	0.04	NA	>50%	NA	NA	NA	0.24	NA	>79%	
	Silva Cell	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	TREEPOD® Biofilter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	UrbanGreen BioFilter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Drain Inlet Insert											
Absorbent Boom/Fabric	ADsorb-It	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1	Enviro-Drain®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	EnviroSafe TM Storm Safe HF10	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Ultra-Urban Filter TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Media Filtration	EcoVault TM Baffle Box	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	EnviroSafe TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	HUBER Hydro Filt	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Hydro-Kleen TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Raynfiltr TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Media Filtration (Cartridge)	StormBasin TM	NA	NA	NA	0.018	0.0049	73%	0.335	0.175	48%	
ritedia i madion (Cartinage)	StormPod TM	NA	NA	NA	0.018	0.0049	73%	0.335	0.175	48%	
	Triton Drop Inlet Insert	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Combination System (Source and Absorbant	Bio Clean Curb Inlet Basket	NA	NA	NA	NA	NA	NA	24.3	10.4	79%	Units reported by vendor appear to be anomalous
Combination System (Screen and Absorbent Boom/Fabric)	Bio Clean Downspout Filter	NA NA	NA	76%	NA NA	NA NA	96%	NA	NA	69%	Chits reported by vehicor appear to be anomalous
Boolivi dolle)	Bio Clean Flume Filter	NA NA	NA	NA	NA	NA	17%	NA	NA	NA	
	Bio Clean Grate Inlet Skimmer Box	1.9	0.1	95%	1.5	0.2	87%	13.7	0.73	95%	Units reported by vendor appear to be anomalous
	Bio Clean Trench Drain Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	Cintis reported by vendor appear to be unormatous
	Clean Way Downspout Filtration Unit	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	DrainPac TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	EnviroTrap Catch Basin Insert	0.08	0.07	9%	0.79	0.68	14%	0.3	0.24	20%	Testing is not complete for metals; therefore, these values are estimated.
	FloGard® Downspout Filter	NA	NA	NA	NA	NA	NA	10	6	60%	Units reported by vendor appear to be anomalous
	FloGard® LoPro Matrix Filter	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	10	6	60%	Units reported by vendor appear to be anomalous
	FloGard® LoPro Trench Drain Filter	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	10	6	60%	Units reported by vendor appear to be anomalous
	FloGard+PLUS®	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	10	6	60%	Units reported by vendor appear to be anomalous
	FloGard® Trash & Debris Guard	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	Topoted of vendor appear to be anomalous
	Inceptor®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	StormClean Catch Basin Insert	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	StormClean Curb Inlet Insert	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	StormClean Wall Mount Filtration Unit	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Storm PURE TM	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	
	SwaleGard® Pre-filter	NA NA	NA	NA	NA	NA	NA	10	6	60%	Units reported by vendor appear to be anomalous
			•			•		-	-		

.i			Total Coppe	r		Total Lead			Total Zinc			
		Median	Median		Median	Median		Median	Median			
		Influent	Effluent	Median	Influent	Effluent	Median	Influent	Effluent	Median		
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	Notes	
Drain Inlet Insert (continued)												
Combination System (Screen and Media	Aqua-Guardian™ Catch Basin Insert	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Filtration)	ClearWater BMP	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	Coanda Curb Inlet Filter	NA	NA	NA	NA	NA	NA	48	15		Units reported by vendor appear to be anomalous	
	Coanda Downspout Filter	NA	NA	NA	NA	NA	NA	48	15	69%	Units reported by vendor appear to be anomalous	
	RSF (Rapid Stormwater Filtration) 100	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	RSF (Rapid Stormwater Filtration) 1000	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	RSF (Rapid Stormwater Filtration) 4000	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Hydrodynamic Separation												
rry ar out marine Separation	Aqua Shield Aqua-Swirl Concentrator	NA	NA	NA	NA	NA	NA	NA	NA	NA		
	BaySeparator®	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	CDS TM Stormwater Treatment System	NA	NA	NA	NA	NA	NA	NA	NA	NA		
	Downstream Defender	NA	NA	NA	NA	NA	NA	NA	NA	NA		
	FloGard® Dual-Vortex Hydrodynamic Separator	NA	NA	NA	NA	NA	NA	NA	NA	NA		
	HydroGuard	NA	NA	NA	NA	NA	NA	NA	NA	NA		
	Nutrient Separating Baffle Box	0.017	0.01	41%	0.014	0.0065	54%	0.088	0.038	57%		
	Stormceptor®	NA	NA	NA	NA	NA	NA	NA	NA	NA		
	StormTrooper®	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	StormTrooper® EX Extra-Duty	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	Terre Kleen TM	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	UniScreen			1,2	1,2						Testing is not complete for metals; therefore, these values are	
	Ollisciccii	0.08	0.06	20%	0.79	0.56	27%	0.3	0.18		estimated. Testing is not complete for metals; therefore, these values are	
	UniStorm	0.08	0.06	20%	0.79	0.56	27%	0.3	0.18		estimated.	
	WOD1 TO A CO.										Testing is not complete for metals; therefore, these values are	
	V2B1 Treatment System	0.08	0.05	40%	0.79	0.35	55%	0.5	0.09	70%	estimated.	
	Vortechs System	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Media Filtration												
Above ground (pump required)	Aquip® Enhanced Stormwater Filtration System	0.152	0.008	94%	0.03	0.006	79%	0.425	0.061	85%		
Cartridge	BayFilter®	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	EcoSense TM Stormwater Filtration Systems	NA	NA	NA	NA	NA	NA	NA	NA	NA		
	Perk Filter TM	0.052	0.02	62%	0.15	0.05	68%	0.25	0.1	61%		
	D 'C.										Testing is not complete for metals; therefore, these values are	
	PuriStorm	0.08	0.04	50%	0.79	0.28	65%	0.5	0.06	80%	estimated.	
	Sorbtive™ FILTER	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	Stormfilter using ZPG Media	0.04	0.03	47%	0.12	0.04	24%	0.23	0.13	62%		
	StormSafe™ Helix	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Sand Filter	Perimeter Sandfilter (Delaware Sandfilter)	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	Underground Sandfilter (DC Sandfilter)	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Combination System	Agua Shiald Agua Filter System	NA	NA	NA	NA	NA	NT A	NA	NA	NA		
Combination System (with Hydrodynamic Separation)	Aqua Shield Aqua-Filter System ecoStorm + ecoStorm Plus®	0.019	NA 0.009	NA 53%	NA 0.005	0.002	NA 60%	0.17	NA 0.073	NA 57%		
(mai riyaroaynanne oeparanon)	Go-Filter	0.019 NA	0.009 NA	NA	0.003 NA	0.002 NA	NA	NA	0.073 NA	37% NA		
Combination System (with Oil/Water Separator)	CrystalCombo Hybrid Polisher HydroFilter	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
•	•											
Up-Flow	Bio Clean Water Polisher	NA •	NA	NA	NA	NA	NA	NA	NA	NA		
	Jellyfish™ Filter Up-Flo™ Filter	78 ND	0.3 ND	99% ND	35 ND	5 ND	86% ND	1.45 ND	0.6 ND	59% ND	Zinc concentrations are in mg/L.	

			Total Coppe	ap-		Total Lead			Total Zinc		
		Median	Median	,1	Median	Median	•	Median	Median	•	
		Influent	Effluent	Median	Influent	Effluent	Median	Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	Notes
Oil/Water Separator											
	ADS® Water Quality Unit	ND	ND	74%	ND	ND	74%	ND	ND	74%	Information obtained from product literature
	BioSTORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Clara® Gravity Stormwater Separator Vault	0.516	0.078	29.5	0.088	0.072	25.8	2.82	1.21	32	
	CrystalClean Separator	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ecoLine A®	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	ecoLine B®	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	ecoSep®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ecoTop®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	First Flush 1640FF	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Hancor Storm Water Quality Unit	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Kleerwater TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	PSI Separator	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	SNOUT®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	VortClarex	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Active Treatment Technologies											
Chemical Filtration											
	Baker Tank with Sand Filter	150	75	50%	500	200	40%	2500	1000	50%	Units reported by vendor appear to be anomalous
	Chitosan-Enhanced Sand Filtration Using FlocClear TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Purus® Stormwater Polishing System	NA	NA	NA	NA	NA	NA	0.28	0.083	86%	
Chemical Treatment											
	ACISTBox®	0.341	0.0179	95	0.25	0.05	80	2.12	1.04	51	
	pHATBox®	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Wetsep	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Electrocoagulation											
Electi ocoaguiation	High-Flo Electrocoagulation	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	OilTrap ElectroPulse Water Treatment System	12.1	0.072	99.4%	14.1	0.039	99.7%	151	0.34		Units reported by vendor appear to be anomalous
	Redbox	NA	NA	NA	NA	NA	NA	NA	NA	NA	onits reported by vehiclor appear to be anomalous
	WaveIonics TM	4.8	0.0074	100%	0.253	0.003	99%	0.516	0.0315	94%	
	Wavelonies	1.0	0.0071	100%	0.233	0.003	<i>7771</i> 0	0.510	0.0313	J 170	
Filtration											
Disc	Arkal Filter (Spin Klin System)	ND	ND	ND	ND	ND	ND	ND	ND	99.9%	Information obtained from product literature
Media	Fuzzy Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
ivicuia	WaterTrak Pressurized Media Filter	ND ND	ND	NA ND	ND	ND	ND	NA ND	ND	ND	
	WaterTrak Ultrafiltration	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
	waici itak Otuaniuauon	עאו	ND	ND	מאו	ND	ND	עא	ND	ND	
Pressure	Arkal Media Filter	ND	ND	ND	ND	ND	ND	ND	ND	99.9%	Information obtained from product literature
Ion Exchange											
	Wastewater Ion Exchange System (WWIX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	WaterTrak Ion Exchange	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Reverse Osmosis											
	WaterTrak Reverse Osmosis	ND	ND	ND	ND	ND	ND	ND	ND	ND	
- Crose Gamonia	WaterTrak Reverse Osmosis	ND	ND	ND	ND	ND	ND	ND	ND	ND	

mg/L = milligrams per liter

NA = not available; vendor filled out treatment system questionnaire, but did not provide all data

ND = no data; vendor did not fill out treatment system questionnaire

Table 4. Treatment removal performance for dissolved metals.

			Dissolved Cop	per		Dissolved Le	ad		Dissolved Zi	nc	
		Median	Median	•	Median	Median		Median	Median		
		Influent	Effluent	Median	Influent	Effluent	Median	Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	Notes
Passive Treatment Technologies				_							
Bioretention/Filtration											
	Filterra® Curb Inlet System	0.0056	0.0033	44%	NA	NA	NA	0.194	0.082	54%	
	Filterra® Roof Drain System	0.0056	0.0033	44%	NA	NA	NA	0.194	0.082	54%	
	Modular Wetland System - Linear	0.757	0.0552	93%	0.543	0.1	81%	0.95	0.185	80%	
	Silva Cell	NA	NA	90%	NA	NA	NA	NA	NA	90%	
	TREEPOD® Biofilter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	UrbanGreen BioFilter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Drain Inlet Insert											
Absorbent Boom/Fabric	ADsorb-It	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1	Enviro-Drain®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1	EnviroSafe TM Storm Safe HF10	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Ultra-Urban Filter TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Media Filtration	EcoVault TM Baffle Box	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	EnviroSafe TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	HUBER Hydro Filt	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Hydro-Kleen TM	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Raynfiltr TM	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	
	•										
Media Filtration (Cartridge)	StormBasin TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	StormPod TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Triton Drop Inlet Insert	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Combination System (Screen and Absorbent	Bio Clean Curb Inlet Basket	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Boom/Fabric)	Bio Clean Downspout Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Bio Clean Flume Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Bio Clean Grate Inlet Skimmer Box	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Bio Clean Trench Drain Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Clean Way Downspout Filtration Unit	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	DrainPac TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	EnviroTrap Catch Basin Insert	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	FloGard® Downspout Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	FloGard® LoPro Matrix Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	FloGard® LoPro Trench Drain Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	FloGard+PLUS®	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	FloGard® Trash & Debris Guard	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Inceptor®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	StormClean Catch Basin Insert	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	StormClean Curb Inlet Insert	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	StormClean Wall Mount Filtration Unit	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Storm PURE TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	SwaleGard® Pre-filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	

		<u> </u>	Dissolved Cop	ner		Dissolved Lea	ad		Dissolved Zin	nc	
		Median	Median	PC-	Median	Median	•••	Median	Median		1
		Influent	Effluent	Median	Influent	Effluent	Median	Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	Notes
Drain Inlet Insert (cont)	·	Ì	<u> </u>		<u> </u>	<u> </u>	, ,	, 0 ,		`	
Combination System (Screen and Media	Aqua-Guardian™ Catch Basin Insert	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Filtration)	ClearWater BMP	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Coanda Curb Inlet Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Coanda Downspout Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	RSF (Rapid Stormwater Filtration) 100	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	RSF (Rapid Stormwater Filtration) 1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	RSF (Rapid Stormwater Filtration) 4000	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Hydrodynamic Separation											
	Aqua Shield Aqua-Swirl Concentrator	NA	NA	NA	NA	NA	NA	NA	NA	NA	
l l	BaySeparator®	ND	ND	42%	ND	ND	ND	ND	ND	38%	Information obtained from product literature
	CDS TM Stormwater Treatment System	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Downstream Defender	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1	FloGard® Dual-Vortex Hydrodynamic Separator	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	HydroGuard	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1	Nutrient Separating Baffle Box	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Stormceptor®	NA	NA	28%	NA	NA	42%	NA	NA	35%	
	StormTrooper®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1	StormTrooper® EX Extra-Duty	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Terre Kleen TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	UniScreen	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	UniStorm	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	V2B1 Treatment System	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Vortechs System	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Media Filtration											
Above ground (pump required)	Aquip® Enhanced Stormwater Filtration System	0.084	0.006	93%	0.008	0.007	51%	0.196	0.06	73%	
Cartridge	BayFilter®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	EcoSense TM Stormwater Filtration Systems	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Perk Filter TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	PuriStorm	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Sorbtive TM FILTER	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Stormfilter using ZPG Media	0.0046	0.0042	11%	NA	NA	NA	0.060	0.053	15%	
	StormSafe™ Helix	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Sand Filter	Perimeter Sandfilter (Delaware Sandfilter)	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Underground Sandfilter (DC Sandfilter)	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Combination System	Aqua Shield Aqua-Filter System	NA	NA	NA	NA	NA	NA	NA	NA	NA	
(with Hydrodynamic Separation)	ecoStorm + ecoStorm Plus®	NA	NA	NA	NA	NA	NA	0.066	0.042	36%	
	Go-Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Combination System	CrystalCombo Hybrid Polisher	ND	ND	ND	ND	ND	ND	ND	ND	ND	
(with Oil/Water Separator)	HydroFilter	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Up-Flow	Bio Clean Water Polisher	0.57	0.12	79%	0.38	0.01	98%	0.75	0.16	78%	
_	Jellyfish™ Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Up-Flo™ Filter	ND	ND	ND	ND	ND	ND	ND	ND	ND	

		Γ	Dissolved Cop	per		Dissolved Lea	ad		Dissolved Zin	1C	
		Median	Median		Median	Median		Median	Median		1
		Influent	Effluent	Median	Influent	Effluent	Median	Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	Notes
Oil/Water Separator											
	ADS® Water Quality Unit	ND	ND	74%	ND	ND	74%	ND	ND	74%	Information obtained from product literature
	BioSTORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Clara® Gravity Stormwater Separator Vault	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	CrystalClean Separator	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ecoLine A®	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	ecoLine B®	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	ecoSep®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ecoTop®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	First Flush 1640FF	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Hancor Storm Water Quality Unit	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Kleerwater TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	PSI Separator	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	SNOUT®	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	VortClarex	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Active Treatment Technologies		<u> </u>									<u> </u>
Chemical Filtration											
	Baker Tank with Sand Filter	20	10	50%	40	20	50%	400	40	90%	Units reported by vendor appear to be anomalous
	Chitosan-Enhanced Sand Filtration Using FlocClear TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Purus® Stormwater Polishing System	NA	NA	NA	NA	NA	NA	0.06	0.0074	88%	
Chemical Treatment											
	ACISTBox®	NA	NA	NA	NA	NA	NA	0.817	0.744	9%	
	pHATBox®	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Wetsep	0.007	0.001	86%	0.018	< 0.001	94%	NA	NA	NA	Zinc concentrations are in mg/L.
Electrocoagulation											
G	High-Flo Electrocoagulation	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	OilTrap ElectroPulse Water Treatment System	8.2	0.072	99%	10.9	0.039	100%	78.6	0.34	99.9%	
	Redbox	NA	NA	99%	NA	NA	99%	NA	NA	99%	
	WaveIonics TM	0.0235	0.005	79%	0.0157	0.0031	80%	0.12	0.02	83%	
Filtration											
Disc	Arkal Filter (Spin Klin System)	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	· (-F / / / / / / / / / /		- 12-	- 1,2	2	- 12	_ ,	- 1.2	- 12	- 1.25	
Media	Fuzzy Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	WaterTrak Pressurized Media Filter	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	WaterTrak Ultrafiltration	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Pressure	Arkal Media Filter	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Ion Exchange											
- Lacining	Wastewater Ion Exchange System (WWIX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	WaterTrak Ion Exchange	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	
D											
Reverse Osmosis	W. T.I.P. O.	NE	M	175	ME	MD) T) T) III	177	
	WaterTrak Reverse Osmosis	ND	ND	ND	ND	ND	ND	ND	ND	ND	

mg/L = milligrams per liter

NA = not available; vendor filled out treatment system questionnaire, but did not provide all data

ND = no data; vendor did not fill out treatment system questionnaire

Table 5. Treatment removal performance for total suspended solids.

		Total S	uspended Sol	ida (TCC)	
		Median	Median	ius (155)	
		Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	Notes
Passive Treatment Technologies	11040110110 55 500111 (41110	(1119/22)	(1118/12)	1101110 (111 (110)	11000
Bioretention/Filtration					
	Filterra® Curb Inlet System	27.5	4.2	85%	
	Filterra® Roof Drain System	27.5	4.2	85%	
	Modular Wetland System – Linear	270	3	98%	
	Silva Cell	NA	NA	80%	
	TREEPOD® Biofilter	NA NA	NA	NA	
	UrbanGreen BioFilter	NA NA	NA NA	NA NA	
	OrdanGreen Biorinei	INA	INA	NA	
Drain Inlet Insert					
Absorbent Boom/Fabric	ADsorb-It	V	V	80-99%	
A COSOTOCIIL BOOTINT ADTIC	Enviro-Drain®	ND	ND	ND	
	Enviro-Blain® EnviroSafe TM Storm Safe HF10	ND ND	ND	ND	
	Ultra-Urban Filter TM	NA	NA	80%	mm range.
Media Filtration	EcoVault TM Baffle Box	NA	NA	NA	
	EnviroSafe TM	ND	ND	ND	
	HUBER Hydro Filt	ND	ND	ND	
	Hydro-Kleen TM	ND	ND	ND	
	Raynfiltr TM	NA	NA	NA	
	Rayllillu	INA	INA	NA	
Media Filtration (Cartridge)	StormBasin TM	112	3	98%	
	$StormPod^{TM}$	112	3	98%	
	Triton Drop Inlet Insert	NA	NA	NA	
Combination System (Screen and Absorben	t Die Clean Cook Inlet Dealert	NIA	NTA	020/*	*Mass Balance was used for the Suspended Solids Retention Test and therefore mg/L and number of samples does not apply. An OK-90
Boom/Fabric)	Bio Clean Curb Inlet Basket	NA	NA	93%*	Sand gradation was used for the testing.
					*Mass Balance was used for the Suspended Solids Retention Test and therefore mg/L and number of samples does not apply. An OK-90
	Bio Clean Downspout Filter	NA	NA	93%*	Sand gradation was used for the testing.
	Bio Clean Flume Filter	73	51.6	29%	
	Bio Clean Grate Inlet Skimmer Box	978	329	66%	Units reported by vendor appear to be anomalous
	Bio Clean Trench Drain Filter	NA	NA	NA	omes reported by vendor appear to be anomalous
	Clean Way Downspout Filtration Unit	ND	ND	ND	
	DrainPac TM	ND ND	ND ND	ND ND	
	Dianif ac ····	ND	ND	ND	
	EnviroTrap Catch Basin Insert	250	175	30%	The TSS removal efficiency is also dependent upon the Particle Size Distribution (PSD). For this product, the assumption of a PSD with
	1				a d50 of 180 microns was used.
	FloGard® Downspout Filter	100	20	80%	
	FloGard® LoPro Matrix Filter	100	20	80%	
	FloGard® LoPro Trench Drain Filter	100	20	80%	
	FloGard+PLUS®	100	20	80%	
	FloGard® Trash & Debris Guard	NA	NA	NA	
	Inceptor®	ND	ND	ND	
	StormClean Catch Basin Insert	ND	ND	ND	
	StormClean Curb Inlet Insert	ND	ND	ND	
	StormClean Wall Mount Filtration Unit	ND	ND	ND	
	Storm PURETM	ND ND	ND	ND	
	SwaleGard® Pre-filter	100	20	80%	
		100	20		
Combination System (Screen and Media	Aqua-Guardian™ Catch Basin Insert	43	5	80%	
Filtration)	ClearWater BMP	ND	ND	ND	

		Total Suspended Solids (TSS)		ids (TSS)	
		Median			
		Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	Notes
Drain Inlet Insert (cont.)		4.700		0~	
Combination System (Screen and Media	Coanda Curb Inlet Filter	1,500	1,376	8%	Units reported by vendor appear to be anomalous
Filtration)	Coanda Downspout Filter	1,500	1,376	8%	Units reported by vendor appear to be anomalous
	RSF (Rapid Stormwater Filtration) 100	ND	ND	65%	Information obtained from product literature
	RSF (Rapid Stormwater Filtration) 1000	ND	ND	49%	Information obtained from product literature
	RSF (Rapid Stormwater Filtration) 4000	ND	ND	91%	Information obtained from product literature
Hydrodynamic Separation					
-	Aqua Shield Aqua-Swirl Concentrator	137	12	86%	
	BaySeparator®	ND	ND	80%	Information obtained from product literature
	CDS TM Stormwater Treatment System	154	26	95%	
	Downstream Defender	ND	ND	50%	Information obtained from product literature
	FloGard® Dual-Vortex Hydrodynamic Separator	202	80	60%	
	HydroGuard	ND	ND	70%	Information obtained from product literature
	Nutrient Separating Baffle Box	366	48	87%	Information obtained from product merature
	Stormceptor®	159	59	53%	
	StormTrooper®	ND	ND	ND	
	StormTrooper® EX Extra-Duty	ND ND	ND ND	ND ND	
	Terre Kleen TM	ND ND	ND ND	78%	Information obtained from product literature
	Terre Riceri	ND	ND	7670	The TSS removal efficiency is also dependent upon the Particle Size Distribution (PSD). For this product, the assumption of a PSD with
	UniScreen	250	175	80%	a d50 of 110 microns was used.
		200	1,0	0070	The TSS removal efficiency is also dependent upon the Particle Size Distribution (PSD). For this product, the assumption of a PSD with
	UniStorm	250	175	80%	a d50 of 110 microns was used.
	V2B1 Treatment System	ND	ND	63.8%	Information obtained from product literature
	Vortechs System	108	28	93%	
3.5 11 TO 11					
Media Filtration					
Above ground (pump required)	Aquip® Enhanced Stormwater Filtration System	30	3.39	83%	
Cartridge	BayFilter®	ND	ND	80%	Information obtained from product literature
Cartridge	EcoSense TM Stormwater Filtration Systems	NA	NA	NA	information obtained from product incrature
	Perk Filter TM	70	11	82%	
		, ,	11	0276	The TSS removal efficiency is also dependent upon the Particle Size Distribution (PSD). For this product, the assumption of a PSD with
	PuriStorm	250	175	80%	a d50 of 60 microns was used.
	Sorbtive™ FILTER	ND	ND	84%	Information obtained from product literature
	Stormfilter using ZPG Media	83	23	82%	
	StormSafe™ Helix	NA	NA	NA	
Sand Filter	Perimeter Sandfilter (Delaware Sandfilter)	ND	ND	ND	
	Underground Sandfilter (DC Sandfilter)	ND	ND	ND	
Combination System	Aqua Shield Aqua-Filter System	43	5	80%	
(with Hydrodynamic Separation)	ecoStorm + ecoStorm Plus®	200	26	87%	
	Go-Filter	NA	NA	NA	
Combination System	CrystalCombo Hybrid Polisher	ND	ND	ND	
(with Oil/Water Separator)	CrystalCombo Hybrid Polisher HydroFilter	ND ND	ND ND	ND ND	
(with Oil Water Separator)	Trydrormer	שא	ND	ND	
Up-Flow	Bio Clean Water Polisher	84.6	12.4	85%	
	Jellyfish TM Filter	74	8	89%	
	Up-Flo™ Filter	ND	ND	91%	Information obtained from product literature
	1			2 - 70	

		Total S	uspended Soli	ide (TSS)	
		Median	Median	ius (133)	
		Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	Notes
Oil/Water Separator	·	, g	<u>, , , , , , , , , , , , , , , , , , , </u>	· · ·	
	ADS® Water Quality Unit	ND	ND	80%	Information obtained from product literature
	BioSTORM	227	7.9	95.3%	
	Clara® Gravity Stormwater Separator Vault	284.5	173.5	47%	
	CrystalClean Separator	ND	ND	ND	
	ecoLine A®	NA	NA	NA	
	ecoLine B®	NA	NA	NA	
	ecoSep®	ND	ND	ND	
	ecoTop®	ND	ND	ND	
	First Flush 1640FF	NA	NA	NA	
	Hancor Storm Water Quality Unit	ND	ND	ND	
	Kleerwater TM	NA	NA	NA	
	PSI Separator	ND	ND	ND	
	SNOUT®	ND	ND	ND	
	VortClarex	NA	NA	NA	
Active Treatment Technologies		•			
Chemical Filtration					
	Baker Tank with Sand Filter	200	10	95%	
	Chitosan-Enhanced Sand Filtration Using FlocClear™	NA	NA	NA	
	Purus® Stormwater Polishing System	NA	NA	NA	
Chemical Treatment					
Chemical Treatment	ACISTBox®	NA	NA	NA	
	pHATBox®	NA NA	NA NA	NA NA	
	Wetsep	112	<2	98%	
	weisep	112	\ 2	90 %	
Electrocoagulation					
	High-Flo Electrocoagulation	NA	NA	NA	
	OilTrap ElectroPulse Water Treatment System	600	10	98%	Units reported by vendor appear to be anomalous
	Redbox	NA	NA	99%	**
	WaveIonics TM	200	5	98%	
Filtration					
Disc	Arkal Filter (Spin Klin System)	ND	ND	ND	
Media	Fuzzy Filter	10	2	70-95%	
	WaterTrak Pressurized Media Filter	ND	ND	ND	
	WaterTrak Ultrafiltration	ND	ND	ND	
Pressure	Arkal Media Filter	ND	ND	ND	
Ion Exchange					
	Wastewater Ion Exchange System (WWIX)	NA	NA	NA	
	WaterTrak Ion Exchange	ND	ND	ND	
Reverse Osmosis					
increise Osinosis	WaterTrak Reverse Osmosis	ND	ND	ND	
	11 arci itak ikevetse Oshiosis	ND	עוו	ND	

mg/L = milligrams per liter

NA = not available; vendor filled out treatment system questionnaire, but did not provide all data

ND = no data; vendor did not fill out treatment system questionnaire

V = varies

Table 6. Treatment removal performance for total petroleum hydrocarbons and oil and grease.

			TPH Oil and Grease				ase			
		Median								
		Influent	Effluent	Median	Influent	Effluent	Median			
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	Notes		
Passive Treatment Technologies										
Bioretention/Filtration										
	Filterra® Curb Inlet System	43.4	1.2	97%	6.2	5.0 U	>18%			
	Filterra® Roof Drain System	43.4	1.2	97%	6.2	5.0 U	>18%			
	Modular Wetland System – Linear	19	0	>99%	4	U	>99%			
	Silva Cell	NA	NA	NA	NA	NA	NA			
	TREEPOD® Biofilter	NA	NA	NA	NA	NA	NA			
	UrbanGreen BioFilter	NA	NA	NA	NA	NA	NA			
Drain Inlet Insert										
Absorbent Boom/Fabric	ADsorb-It	V	V	99-100%	V	V	99-100%			
ı	Enviro-Drain®	ND	ND	ND	ND	ND	ND			
	EnviroSafe TM Storm Safe HF10	ND	ND	ND	ND	ND	ND			
	Ultra-Urban Filter TM	>100	<10	90%	>100	<10	85%			
Media Filtration	EcoVault™ Baffle Box	NA	NA	NA	NA	NA	NA			
	EnviroSafe TM	ND	ND	ND	ND	ND	ND			
	HUBER Hydro Filt	ND	ND	ND	ND	ND	ND			
	Hydro-Kleen TM	ND	ND	ND	ND	ND	ND			
	Raynfiltr TM	NA	NA	NA	NA	NA	NA			
	Nayiiitu	1471	1471	1471	1471	1471	1171			
Media Filtration (Cartridge)	StormBasin TM	NA	NA	NA	59.5	<5	>90%			
	StormPod TM	NA	NA	NA	59.5	<5	>90%			
	Triton Drop Inlet Insert	NA	NA	NA	NA	NA	NA			
Combination System (Screen and Absorbent	Bio Clean Curb Inlet Basket	NA	NA	NA	NA	NA	NA			
Boom/Fabric)	Bio Clean Downspout Filter	NA	NA	NA	223.5	29.5	87%	Units reported by vendor appear to be anomalous		
	Bio Clean Flume Filter	223	29.5	87%	360	62	83%	Units reported by vendor appear to be anomalous		
	Bio Clean Grate Inlet Skimmer Box	NA	NA	NA	189	10.43	95%	Units reported by vendor appear to be anomalous		
	Bio Clean Trench Drain Filter	NA	NA	NA	NA	NA	NA			
	Clean Way Downspout Filtration Unit	ND	ND	ND	ND	ND	ND			
	DrainPac TM	ND	ND	ND	ND	ND	ND			
	EnviroTrap Catch Basin Insert	400	150	63%	400	150	63%	Any oil based removal depends on the droplet size and specific gravity of the oil. For this product,		
								accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of		
	FloGard® Downspout Filter	35	7	80%	35	7	80%	0.89 are used. The removal efficiencies are estimated.		
	FloGard® LoPro Matrix Filter	35	7	80%	35	7	80%			
	FloGard® LoPro Trench Drain Filter	35	7	80%	35	7	80%			
	FloGard+PLUS®	35	7	80%	35	7	80%			
	FloGard® Trash & Debris Guard	NA	NA	NA	NA	NA	NA			
	Inceptor®	ND	ND	ND	ND	ND	ND			
	StormClean Catch Basin Insert	ND	ND	ND	ND	ND	ND			
	StormClean Curb Inlet Insert	ND	ND	ND	ND	ND	ND			
	StormClean Wall Mount Filtration Unit	ND	ND	ND	ND	ND	ND			
	Storm PURE TM	ND	ND	ND	ND	ND	ND			
	SwaleGard® Pre-filter	35	7	80%	35	7	80%			
			,	2070		,	3070			

			ТРН		Oil and Grease		ase	
		Median	Median		Median	Median		1
		Influent	Effluent	Median	Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	Notes
Drain Inlet Insert (cont)								
Combination System (Screen and Media	Aqua-Guardian™ Catch Basin Insert	NA	NA	NA	NA	NA	NA	
Filtration)	ClearWater BMP	NA	NA	NA	NA	NA	NA	
	Coanda Curb Inlet Filter	NA	NA	NA	NA	NA	NA	
	Coanda Downspout Filter	NA	NA	NA	NA	NA	NA	
	RSF (Rapid Stormwater Filtration) 100	ND	ND	ND	ND	ND	ND	
	RSF (Rapid Stormwater Filtration) 1000	ND	ND	ND	ND	ND	ND	
	RSF (Rapid Stormwater Filtration) 4000	ND	ND	ND	ND	ND	ND	
	Total (Taple Stormwater Financia) 1000	1,12		11,12	112		112	
Hydrodynamic Separation								
	Aqua Shield Aqua-Swirl Concentrator	NA	NA	NA	NA	NA	NA	
	BaySeparator®	ND	ND	ND	ND	ND	80%	Information obtained from product literature
	CDS TM Stormwater Treatment System	NA	NA	NA	22	5	64%	
	Downstream Defender	NA	NA	NA	NA	NA	NA	
	FloGard® Dual-Vortex Hydrodynamic Separator	NA	NA	NA	NA	NA	NA	
	HydroGuard	ND	ND	ND	ND	ND	ND	
	Nutrient Separating Baffle Box	NA	NA	NA	4	ND	>99%	
	Stormceptor®	29	4	73%	NA	NA	NA	
	StormTrooper®	ND	ND	ND	ND	ND	ND	
	StormTrooper® EX Extra-Duty	ND	ND	ND	ND	ND	ND	
	Terre Kleen TM	ND	ND	ND	ND	ND	ND	
	UniScreen	400	150	63%	400	150	63%	Any oil based removal depends on the droplet size and specific gravity of the oil. For this product
	Olligereen	400	130	03 70	400	130	03 70	accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of 0.89 are used. The removal efficiencies are estimated.
	UniStorm	400	150	63%	400	150	63%	Any oil based removal depends on the droplet size and specific gravity of the oil. For this product accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of
								0.89 are used. The removal efficiencies are estimated.
	V2B1 Treatment System	400	150	63%	400	150	63%	Any oil based removal depends on the droplet size and specific gravity of the oil. For this product
	V2B1 Heatment System	400	130	0370	400	130	03%	accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of
								0.89 are used. The removal efficiencies are estimated.
	Vortechs System	NA	NA	NA	NA	NA	NA	0.69 are used. The removal efficiencies are estimated.
	Volteens bystem	11/1	1471	1121	1171	1171	1171	
Media Filtration						_		
Above ground (pump required)	Aquip® Enhanced Stormwater Filtration System	NA	NA	NA	9.9	3	70%	
Cartridge	BayFilter®	ND	ND	ND	ND	ND	80%	Information obtained from product literature
	EcoSense TM Stormwater Filtration Systems	NA	NA	NA	NA	NA	NA	The common common nom product morning
	Perk Filter TM	20	5	75%	20	5	75%	
	PuriStorm	400	80	80%	400	80	80%	Any oil based removal depends on the droplet size and specific gravity of the oil. For this product
	Turistoriii	400	00	00 70	400	00	30 %	accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of 0.89 are used. The removal efficiencies are estimated.
	Sorbtive™ FILTER	ND	ND	ND	ND	ND	ND	0.09 are used. The removal efficiencies are estillated.
	Stormfilter using ZPG Media	NA NA	NA	NA	NA	NA	NA	
	StormSafe TM Helix	NA	NA	NA	NA	NA	NA	
Sand Filter	Perimeter Sandfilter (Delaware Sandfilter)	ND	ND	ND	ND	ND	ND	
	Underground Sandfilter (DC Sandfilter)	ND	ND	ND	ND	ND	ND	
Combination System	Aqua Shield Aqua-Filter System	NA	NA	NA	NA	NA	NA	
(with Hydrodynamic Separation)	ecoStorm + ecoStorm Plus®	NA NA	NA	NA NA	NA NA	NA	NA NA	
C	Go-Filter	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
	GO I IIIOI	NA .	11/1	11/1	14/1	11/1	11/1	
Combination System	CrystalCombo Hybrid Polisher	ND	ND	ND	ND	ND	ND	
(with Oil/Water Separator)	HydroFilter	ND	ND	ND	ND	ND	ND	
Up-Flow	Bio Clean Water Polisher	1.4	0	>99%	69.8	6.5	91%	
	Jellyfish™ Filter	NA	NA	NA	NA	NA	NA	
	Up-Flo™ Filter	ND	ND	ND	ND	ND	ND	

		1	ТРН			Oil and Grea	950	
		Median	Median		Median	Median	isc	
		Influent	Effluent	Median	Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	Notes
Oil/Water Separator			<u> </u>		· • /	<u> </u>		
•	ADS® Water Quality Unit	ND	ND	ND	ND	ND	80%	Information obtained from product literature
	BioSTORM	NA	NA	NA	NA	NA	NA	·
	Clara® Gravity Stormwater Separator Vault	NA	NA	NA	NA	NA	NA	
	CrystalClean Separator	ND	ND	ND	ND	ND	ND	
	ecoLine A®	NA	NA	NA	NA	NA	NA	
	ecoLine B®	NA	NA	NA	NA	NA	NA	
	ecoSep®	ND	ND	ND	ND	ND	ND	
	ecoTop®	ND	ND	ND	ND	ND	ND	
	First Flush 1640FF	NA	NA	NA	NA	NA	NA	
	Hancor Storm Water Quality Unit	ND	ND	ND	ND	ND	ND	
	Kleerwater TM	NA NA	NA	NA NA	NA	NA	NA	
	PSI Separator	ND	NA ND	NA ND	NA ND	NA ND	NA ND	
	SNOUT®	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
	VortClarex	NA NA					ND NA	
	Voriciarex	NA	NA	NA	NA	NA	NA	
Active Treatment Technologies								
Chemical Filtration								
	Baker Tank with Sand Filter	NA	NA	NA	NA	NA	NA	
	Chitosan-Enhanced Sand Filtration Using FlocClear™	NA	NA	NA	NA	NA	NA	
	Purus® Stormwater Polishing System	NA	NA	NA	NA	NA	NA	
		·		·	·			
Chemical Treatment								
	ACISTBox®	3.12	0.38	88%	NA	NA	NA	
	pHATBox®	NA	NA	NA	NA	NA	NA	
	Wetsep	NA	NA	NA	NA	NA	NA	
Electrocoagulation		3.7.		27.	3.7.1	27.		
	High-Flo Electrocoagulation	NA 50	NA	NA	NA	NA	NA	
	OilTrap ElectroPulse Water Treatment System	78	0.27	100%	136	<5.0	>96.3%	Units reported by vendor appear to be anomalous
	Redbox	NA	NA	NA	NA	NA	NA	
	WaveIonics TM	45.6	0.25	99%	197	4.76	98%	Units reported by vendor appear to be anomalous
Filtration								
Disc	Arkal Filter (Spin Klin System)	ND	ND	ND	ND	ND	ND	
	That I not (opin thin obscin)	110	110	110	110	1110	ND	
Media	Fuzzy Filter	NA	NA	NA	NA	NA	NA	
	WaterTrak Pressurized Media Filter	ND	ND	ND	ND	ND	ND	
	WaterTrak Ultrafiltration	ND	ND	ND	ND	ND	ND	
Pressure	Arkal Media Filter	ND	ND	ND	ND	ND	ND	
Ion Exchange								
TOH Exchange	Wastewater Ion Exchange System (WWIX)	NA	NA	NA	NA	NA	NA	
		NA ND	NA ND		NA ND	NA ND	NA ND	
	WaterTrak Ion Exchange	ND	ND	ND	ND	ND	ND	
Reverse Osmosis								
	WaterTrak Reverse Osmosis	ND	ND	ND	ND	ND	ND	
				- :=		= :=		

mg/L = milligrams per liter

NA = not available; vendor filled out treatment system questionnaire, but did not provide all data

ND = no data; vendor did not fill out treatment system questionnaire

TPH = Total Petroleum Hydrocarbons

U = at or below detection limit

V = varies

 $\label{thm:continuous} \textbf{Table 7. Treatment removal performance for total phosphorus.}$

		Tot	al Phosphorus	s (TP)	
		Median	Median		
m m	T	Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	Notes
Passive Treatment Technologies					
Bioretention/Filtration		0.15	0.14	50	T. T. D
	Filterra® Curb Inlet System	0.15	0.14	7%	during TAPE study. 69.5% efficiency ratio
	Filterra® Roof Drain System	0.15	0.14	7%	during TAPE study. 69.5% efficiency ratio
	Modular Wetland System – Linear	NA	NA	NA	
	Silva Cell	NA	NA	68%	
	TREEPOD® Biofilter	NA	NA	NA	
	UrbanGreen BioFilter	NA	NA	NA	
Drain Inlet Insert					
Absorbent Boom/Fabric	ADsorb-It	NA	NA	NA	
	Enviro-Drain®	NA	NA	NA	
	EnviroSafe TM Storm Safe HF10	NA	NA	NA	
	Ultra-Urban Filter™	NA	NA	NA	
Media Filtration	EcoVault™ Baffle Box	NA	NA	NA	
	EnviroSafe TM	NA	NA	NA	
	HUBER Hydro Filt	ND	ND	ND	
	Hydro-Kleen TM	ND	ND	ND	
	Raynfiltr TM	NA	NA	NA	
Media Filtration (Cartridge)	StormBasin TM	0.57	0.3	47%	
	StormPod TM	0.57	0.3	47%	
	Triton Drop Inlet Insert	NA	NA	NA	
Combination System (Screen and	Bio Clean Curb Inlet Basket	85.8	73.4	71-96%	anomalous
Absorbent Boom/Fabric)	Bio Clean Downspout Filter	NA	NA	NA	
	Bio Clean Flume Filter	NA	NA	NA	
	Bio Clean Grate Inlet Skimmer Box	18.6	0.452	98%	anomalous
	Bio Clean Trench Drain Filter	NA	NA	NA	
	Clean Way Downspout Filtration Unit	ND	ND	ND	
	DrainPac TM	ND	ND	ND	
	EnviroTrap Catch Basin Insert	ND	ND	ND	

		Total	al Phosphorus	s (TP)	
		Median	Median		
		Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	Notes
Drain Inlet Insert (cont.)					
	FloGard® Downspout Filter	NA	NA	NA	
	FloGard® LoPro Matrix Filter	NA	NA	NA	
	FloGard® LoPro Trench Drain Filter	NA	NA	NA	
	FloGard+PLUS®	NA	NA	NA	
	FloGard® Trash & Debris Guard	NA	NA	NA	
	Inceptor®	ND	ND	ND	
	StormClean Catch Basin Insert	ND	ND	ND	
	StormClean Curb Inlet Insert	ND	ND	ND	
	StormClean Wall Mount Filtration Unit	ND	ND	ND	
	Storm PURE TM	ND	ND	ND	
	SwaleGard® Pre-filter	NA	NA	NA	
Combination System (Screen and Media	Aqua-Guardian™ Catch Basin Insert	NA	NA	NA	
Filtration)	ClearWater BMP	ND	ND	ND	
	Coanda Curb Inlet Filter	NA	NA	NA	
Combination System (Screen and Media	Coanda Downspout Filter	NA	NA	NA	
Filtration)	RSF (Rapid Stormwater Filtration) 100	NA	NA	40%	
	RSF (Rapid Stormwater Filtration) 1000	NA	NA	30%	
	RSF (Rapid Stormwater Filtration) 4000	NA	NA	30%	
Hydrodynamic Separation					
	Aqua Shield Aqua-Swirl Concentrator	NA	NA	80%	
	BaySeparator®	NA	NA	19.4%	
	CDS TM Stormwater Treatment System	NA	NA	NA	
	Downstream Defender	NA	NA	NA	
	FloGard® Dual-Vortex Hydrodynamic Separator	NA	NA	NA	
	HydroGuard	NA	NA	NA	
	Nutrient Separating Baffle Box	1.49	0.44	70%	
	Stormceptor®	0.275	0.175	21.8%	
	StormTrooper®	ND	ND	ND	
	StormTrooper® EX Extra-Duty	ND	ND	ND	
	Terre Kleen TM	NA	NA	NA	
	UniScreen	ND	ND	ND	
	UniStorm	ND	ND	40%	Information obtained from product literature

		Tot	al Phosphorus	s (TP)	
		Median	Median		
		Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	Notes
Hydrodynamic Separation (cont)					
	V2B1 Treatment System	ND	ND	40%	Information obtained from product literature
	Vortechs System	NA	NA	NA	
Media Filtration					
Above ground (pump required)	Aquip® Enhanced Stormwater Filtration System	NA	NA	NA	
Cartridge	BayFilter®	NA	NA	>50%	
	EcoSense TM Stormwater Filtration Systems	NA	NA	NA	
	Perk Filter TM	NA	NA	NA	
	PuriStorm	ND	ND	ND	
	Sorbtive™ FILTER	ND	ND	>77%	Information obtained from product literature
	Stormfilter using ZPG Media	NA	NA	NA	
	StormSafe [™] Helix	NA	NA	NA	
Sand Filter	Perimeter Sandfilter (Delaware Sandfilter)	ND	ND	ND	
	Underground Sandfilter (DC Sandfilter)	ND	ND	ND	
Combination System	Aqua Shield Aqua-Filter System	NA	NA	NA	
(with Hydrodynamic Separation)	ecoStorm + ecoStorm Plus®	NA	NA	NA	
	Go-Filter	NA	NA	NA	
Combination System	CrystalCombo Hybrid Polisher	ND	ND	ND	
(with Oil/Water Separator)	HydroFilter	ND	ND	ND	
Up-Flow	Bio Clean Water Polisher	2.07	0.63	70%	
	Jellyfish™ Filter	NA	NA	50%	
	Up-Flo™ Filter	NA	NA	NA	
Oil/Water Separator					
	ADS® Water Quality Unit	NA	NA	>43%	
	BioSTORM	NA	NA	NA	
	Clara® Gravity Stormwater Separator Vault	NA	NA	NA	
	CrystalClean Separator	ND	ND	ND	
	ecoLine A®	NA	NA	NA	
	ecoLine B®	NA	NA	NA	

		Tota	al Phosphorus	s (TP)	
		Median	Median		
T 4 T	T	Influent	Effluent	Median	N
Treatment Type Oil/Water Separator (cont.)	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	Notes
On water Separator (cont.)	222 5220	ND	ND	ND	
	ecoSep® ecoTop®	ND ND	ND ND	ND ND	
	First Flush 1640FF	ND NA	NA	ND NA	
		NA ND	NA ND	NA ND	
	Hancor Storm Water Quality Unit				
	Kleerwater TM	NA	NA	NA	
	PSI Separator	ND	ND	ND	
	SNOUT®	ND	ND	ND	
	VortClarex	NA	NA	NA	
Active Treatment Technologies					
Chemical Filtration					
	Baker Tank with Sand Filter	NA	NA	NA	
	Chitosan-Enhanced Sand Filtration Using FlocClear TM	NA	NA	NA	
	Purus® Stormwater Polishing System	NA	NA	NA	
	ranase storm and resisting system	1,12	1,11	1,11	
Chemical Treatment					
	ACISTBox®	NA	NA	NA	
	pHATBox®	NA	NA	NA	
	Wetsep	13.4	1.9	86%	
Electrocoagulation					
Electrocougulation	High-Flo Electrocoagulation	NA	NA	NA	
	OilTrap ElectroPulse Water Treatment System	NA	NA	NA	
	Redbox	NA	NA	NA	
	WaveIonics TM	NA	NA	NA	
Filtration					
Disc	Arkal Filter (Spin Klin System)	NA	NA	NA	
Media	Fuzzy Filter	NA	NA	NA	
uvicuia	WaterTrak Pressurized Media Filter	NA ND	NA ND	NA ND	
	Water Trak Pressurized Media Filter WaterTrak Ultrafiltration	ND ND	ND ND	ND ND	
	watei Hak Oluaniuation	עאו	ND	מא	
Pressure	Arkal Media Filter	NA	NA	NA	

		Tota	al Phosphorus	s (TP)	
		Median	Median		
		Influent	Effluent	Median	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	Notes
Ion Exchange					
	Wastewater Ion Exchange System (WWIX)	NA	NA	NA	
	WaterTrak Ion Exchange	ND	ND	ND	
Reverse Osmosis					
	WaterTrak Reverse Osmosis	ND	ND	ND	

mg/L = milligrams per liter

NA = not available; vendor filled out treatment system questionnaire, but did not provide all data

ND = no data; vendor did not fill out treatment system questionnaire

Table 8. Treatment removal performance for SVOCs, PCBs, dioxins, and CPAHs.

			SVOCs			PCBs			Dioxins		CPA	Hs	
		Median	Median		Median	Median		Median	Median		Median	Median	
		Influent	Effluent	Median	Influent	Effluent	Median	Influent	Effluent	Median	Influent	Remova	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	l (%)	Notes
Passive Treatment Technologies		•									-		
Bioretention/Filtration													
	Filterra® Curb Inlet System	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Filterra® Roof Drain System	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Modular Wetland System - Linear	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Silva Cell	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	TREEPOD® Biofilter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	UrbanGreen BioFilter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Drain Inlet Insert													
Absorbent Boom/Fabric	ADsorb-It	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
resorbent Boons rubite	Enviro-Drain®	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	EnviroSafe TM Storm Safe HF10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Ultra-Urban Filter™	180	>4.4	40%	NA	NA	NA	NA	NA	NA	>100	605	Units reported by vendor appear to
								·				000	be anomalous
Media Filtration	EcoVault TM Baffle Box	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	EnviroSafe TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	HUBER Hydro Filt	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Hydro-Kleen TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Raynfiltr TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Media Filtration (Cartridge)	StormBasin TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
riodia i initation (Caranage)	StormPod TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Triton Drop Inlet Insert	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	-												
Combination System (Screen and	Bio Clean Curb Inlet Basket	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Absorbent Boom/Fabric)	Bio Clean Downspout Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Bio Clean Flume Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Bio Clean Grate Inlet Skimmer Box	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Bio Clean Trench Drain Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Clean Way Downspout Filtration Unit	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	DrainPac TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	EnviroTrap Catch Basin Insert	400	150	0.625	400	150	0.625	400	150	0.625	400	63%	Any oil based removal depends on
													the droplet size and specific gravity
													of the oil. For this product,
													accurate, analyzed data is
													unavailable; therefore a mean oil
													droplet size of 100 micron and a
													spgr of 0.89 are used. The removal
		. · ·	***	***	***	***	***	***	***	**.	2.5		efficiencies are estimated.
	FloGard® Downspout Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	35	7%	1
	FloGard® LoPro Matrix Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	35	7%	
	FloGard® LoPro Trench Drain Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	35	7%	
	FloGard+PLUS®	NA	NA	NA	NA	NA	NA	NA	NA	NA	35	7%	
	FloGard® Trash & Debris Guard	NA	NA	NA ND	NA	NA	NA	NA	NA	NA	NA	NA	
	Inceptor®	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	
	StormClean Catch Basin Insert	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	
	StormClean Curb Inlet Insert	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	
	StormClean Wall Mount Filtration Unit	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Storm PURETM	ND NA	ND	ND NA	ND	ND	ND NA	ND NA	ND	ND NA	ND	ND	
	SwaleGard® Pre-filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	35	7%	
Combination System (Screen and Media	Aqua-Guardian TM Catch Basin Insert	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Filtration)	ClearWater BMP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
•	Coanda Curb Inlet Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

			SVOCs			PCBs			Dioxins		CPA		
		Median	Median		Median	Median		Median	Median		Median	Median	
		Influent	Effluent	Median	Influent	Effluent	Median	Influent	Effluent	Median	Influent	Remova	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	l (%)	Notes
Drain Inlet Insert (cont)	County Design out Filter	NIA	NTA	NIA	NIA	NIA	NT A	NT A	NT A	NIA	NT A	NT A	
	Coanda Downspout Filter RSF (Rapid Stormwater Filtration) 100	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	
		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	
	RSF (Rapid Stormwater Filtration) 1000 RSF (Rapid Stormwater Filtration) 4000			ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND	
	RSF (Rapid Stormwater Filtration) 4000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Hydrodynamic Separation													
	Aqua Shield Aqua-Swirl Concentrator	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	BaySeparator®	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	CDS TM Stormwater Treatment System	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Downstream Defender	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	FloGard® Dual-Vortex Hydrodynamic Separator	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	HydroGuard	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Nutrient Separating Baffle Box	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Stormceptor®	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	StormTrooper®	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	StormTrooper® EX Extra-Duty	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Terre Kleen TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	UniScreen	400	150	63%	400	150	63%	400	150	63%	400	63%	Any oil based removal depends on
				0376			03.70			os n		0376	the droplet size and specific gravity of the oil. For this product, accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of 0.89 are used. The removal efficiencies are estimated.
	UniStorm	400	150	63%	400	150	63%	400	150	63%	400	63%	Any oil based removal depends on the droplet size and specific gravity of the oil. For this product, accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of 0.89 are used. The removal
	V2B1 Treatment System	400	150	63%	400	150	63%	400	150	63%	400	63%	efficiencies are estimated. Any oil based removal depends on the droplet size and specific gravity of the oil. For this product, accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of 0.89 are used. The removal efficiencies are estimated.
	Vortechs System	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Modio Filtuotia-													
Media Filtration	Aguin@ Enhanced Stammyraton Eilterti Senten	NT A	NT A	N/ A	NT A	NI A	NI A	NT A	NT A	NT A	NT A	NT A	
Above ground (pump required)	Aquip® Enhanced Stormwater Filtration System	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Cartridge	BayFilter®	ND NA	ND	ND NA	ND NA	ND	ND NA	ND NA	ND	ND NA	ND NA	ND	
	EcoSense TM Stormwater Filtration Systems	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 20	NA	
	Perk Filter™	NA	NA	NA	NA	NA	NA	NA	NA	NA	20	75%	Units reported by vendor appear to
													be anomalous
	PuriStorm	400	80	80%	400	80	80%	400	80	80%	400		Any oil based removal depends on the droplet size and specific gravity of the oil. For this product, accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of 0.89 are used. The removal efficiencies are estimated.

			SVOCs			PCBs			Dioxins		CPA		
		Median	Median		Median	Median		Median	Median		Median	Median	
		Influent	Effluent	Median	Influent	Effluent	Median	Influent	Effluent	Median	Influent	Remova	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	l (%)	Notes
Cartridge (cont'd)	Sorbtive™ FILTER	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Stormfilter using ZPG Media	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.12	42%	
	StormSafe TM Helix	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Sand Filter	Perimeter Sandfilter (Delaware Sandfilter)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Sand Priter	Underground Sandfilter (DC Sandfilter)	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	
	Onderground bandriner (De bandriner)	IV.D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Combination System	Aqua Shield Aqua-Filter System	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
(with Hydrodynamic Separation)	ecoStorm + ecoStorm Plus®	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Go-Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	C + IC + II + I I I I	NID	ND	MD	NID	NID	ND	ND	NID	ND	NID	MD	
Combination System (with Oil/Water Separator)	CrystalCombo Hybrid Polisher HydroFilter	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
(with Oil/ water Separator)	HydroFilter	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Up-Flow	Bio Clean Water Polisher	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1	Jellyfish TM Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Up-Flo™ Filter	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	<u>-</u>												
Oil/Water Separator													
	ADS® Water Quality Unit	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	BioSTORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Clara® Gravity Stormwater Separator Vault	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	CrystalClean Separator												
	ecoLine A®	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	ecoLine B®	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	ecoSep® ecoTop®												
	First Flush 1640FF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Hancor Storm Water Quality Unit	INA	INA	NA	INA	IVA	IVA	INA	IVA	IVA	IVA	INA	
	Kleerwater TM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	PSI Separator				2.22							1111	
	SNOUT®												
	VortClarex	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
							•						
Active Treatment Technologies													
Chemical Filtration	D. 1. 17. 17. 17. 17. 17. 17. 17. 17. 17.			XX.	***	***	27.4	***	27.1	NY 1	NY 1		
	Baker Tank with Sand Filter	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	
	Chitosan-Enhanced Sand Filtration Using FlocClear TM Purus® Stormwater Polishing System	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
	1 drus Stormwater 1 onsining System	INA	INA	NA	INA	IVA	IVA	IVA	IVA	NA.	IVA	INA	
Chemical Treatment													
	ACISTBox®	0.0199	0.00002	99.9%	NA	NA	NA	NA	NA	NA	0.00028	93%	
	pHATBox®	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Wetsep	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Electrocoagulation													
	High-Flo Electrocoagulation	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	OilTrap ElectroPulse Water Treatment System	28	0.43	98.4%	NA	NA	NA	NA	NA	NA	NA		Units reported by vendor appear to
	Redbox	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	WaveIonics TM	2.34	0.00002	100%	0.0024	0.00011	95.5%	NA	NA	NA	0.091	99.98%	
Filtration													
Disc	Arkal Filter (Spin Klin System)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Media	Fuzzy Filter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	WaterTrail Ultra filter	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	
	WaterTrak Ultrafiltration	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Pressure	Arkal Media Filter	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	l

			SVOCs			PCBs			Dioxins		CPA	Hs	
		Median	Median		Median	Median		Median	Median		Median	Median	
		Influent	Effluent	Median	Influent	Effluent	Median	Influent	Effluent	Median	Influent	Remova	
Treatment Type	Treatment System Name	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	(mg/L)	Removal (%)	(mg/L)	l (%)	Notes
Ion Exchange													
	Wastewater Ion Exchange System (WWIX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	WaterTrak Ion Exchange	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Reverse Osmosis													
	WaterTrak Reverse Osmosis	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

mg/L = milligrams per liter

NA = not available; vendor filled out treatment system questionnaire, but did not provide all data

ND = no data; vendor did not fill out treatment system questionnaire

PCBs = polychlorinated biphenyls

SVOCs = semivolatile organic compounds

Table 9. System design information for passive treatment systems.

		Design Flov	v Rate (gpm)	System Fo	otprint (sf)	Required Hea	ad Loss (feet)	Internal or External	Above or Below	
Treatment Type	Treatment System Name	Low	High	Low	High	Low	High	Bypass	Grade	Bypass Notes
Bioretention/Filtration										
	Filterra® Roofdrain System	8.5	>50	16	72	2.5	2.5	Internal/External	Both	System footprint obtained from Western Washington
	Therras Rootaram System	0.5	250	10	12	2.3	2.3	Internal/External	Dom	Engineering Design Assistance Kit
	Filterra® System	8.5	>50	16	72	2.5	2.5	Internal/External	Both	System footprint obtained from Western Washington
	•									Engineering Design Assistance Kit
	Modular Wetland System – Linear	22.4	120	16	84	2	4	Internal	Both	External bypass in some situations
	Silva Cell	20 in/hr	3 in/hr	NA	NA	NA	NA	Internal/External	Below	
	TREEPOD® Biofilter UrbanGreen BioFilter	16	72 60	24 0	84 0	0 3	0.5	Internal Internal/External	Both Below	
	Organiciem Biornier	4	00	U	U	3	6	internal/External	Delow	
Drain Inlet Insert										
Absorbent Boom/Fabric	Adsorb-It	80/SF	100/SF	V	V	NA	NA	NA	Below	Per individual application
AUSOIDER BOOM/I doile	Enviro-Drain®	2	71	0	0	NA	NA	NA	Below	Information obtained from product literature
	EnviroSafe TM Storm Safe HF10	900	9000	0	0	NA	NA	External	Below	Information obtained from product literature
1	Ultra-Urban Filter TM	190	500	0	0	0.5	1.5	Internal	Below	information obtained from product increases
1				-						
Media Filtration	EcoVault TM Baffle Box	1,346	48,000	NA	NA	V	V	Internal/External	Below	
	EnviroSafe TM	115	230	0	0	NA	NA	External	Below	Information obtained from product literature
	HUBER Hydro Filt	ND	ND	0	0	ND	ND	ND	Below	r
	Hydro-Kleen™	ND	ND	ND	ND	ND	ND	ND	Below	
	Raynfiltr TM	0	900	0	0	NA	NA	NA	Below	
	·									
Media Filtration (Cartridge)	StormBasin TM	50	2,500	4	200	1.25	2.5	Internal/External	Below	
-	StormPod TM	50	2,500	4	200	1.25	2.5	Internal/External	Below	
	Triton Drop Inlet Insert	100	5,404	0	0	NA	NA	Internal/External	Below	
Combination System (Screen and	Bio Clean Curb Inlet Basket	381	898	0	0	0.5	2	External	Below	Installed in catch basin - does not affect basin hydraulics
Absorbent Boom/Fabric)	Bio Clean Downspout Filter	249	1,145	0.31 CF	1.57 CF	1	2	Internal	Above	High flow unimpeded - UPC approved and tested
riosorochi Booniir dorrey	•			0.51 C1		•				Internal bypass up to specific flow - configured to allow for
	Bio Clean Flume Filter	116	583	1	6	0.083	0.5	Internal/External	Above	high flow external bypass
	Bio Clean Grate Inlet Skimmer Box	224	8,980	0	0	0.5	2	Internal	Below	High flow rate
	Bio Clean Trench Drain Filter	28	86	0	0	4	12	Internal/External	Below	Internal bypass up to specific flow - configured to allow for
						4			Below	high flow external bypass
	Clean Way Downspout Filtration Unit	ND	ND	ND	ND	ND	ND	ND	Above	
	DrainPac TM	ND	ND	ND	ND	ND	ND	ND	Below	
	EnviroTrap Catch Basin Insert	0	2700	NA	NA	0	0.5	NA	Below	
	FloGard® Downspout Filter	30	325	0.5	1.0	0	0.5	Internal	Above	
	FloGard® LoPro Matrix Filter	45	800	0.75	16	0	0.5	Internal	Above	
	FloGard® LoPro Trench Drain Filter	200	500	1.0	20	0	0.25	Internal	Above	
	FloGard+PLUS®	100	2,000	1.0	10	0	0.25	Internal	Above	
	FloGard® Trash & Debris Guard	50	500	0.5	4	0	0.25	Internal	Above	
	Inceptor®	ND	ND	ND	ND	ND	ND	ND	Below	
	StormClean Catch Basin Insert	ND	ND	ND	ND	ND	ND	ND	Below	
	StormClean Curb Inlet Insert	ND	ND	ND	ND	ND	ND	ND	Below	
	StormClean Wall Mount Filtration Unit	ND	ND	ND	ND	ND	ND	ND	Above	
	Storm PURETM	ND	ND	ND	ND	ND	ND	ND	Below	
	SwaleGard® Pre-filter	100	800	4	16	0	0.5	Internal	Above	

			v Rate (gpm)	System Fo	otprint (sf)	Required Hea	ad Loss (feet)	Internal or External	Above or Below	
Treatment Type	Treatment System Name	Low	High	Low	High	Low	High	Bypass	Grade	Bypass Notes
Orain Inlet Insert (cont)	v		J					VI		VI
Combination System (Screen and	Aqua-Guardian™ Catch Basin Insert	5/400*	100/940*	NA	NA	0	0	Internal/External	Below	* $x/x = flow thru perlite/flow thru perlite + filter cloth$
(Iedia Filtration)	ClearWater BMP	200	200	5	6	NA	NA	External	Above	Information obtained from product literature
,	Coanda Curb Inlet Filter	50	360,000	2	2000	1.5	3	Internal	Above	Optional internal bypass is provided.
	Coanda Downspout Filter	50	360,000	2	2000	1.5	3	Internal	Above	Optional internal bypass is provided.
	RSF (Rapid Stormwater Filtration) 100	1,784	7,000	0	0	0.5	0.5	Internal	Below	Information obtained from product literature
	RSF (Rapid Stormwater Filtration) 1000	12,000	18,162	0	0	0.5	0.5	Internal	Below	Information obtained from product literature
	RSF (Rapid Stormwater Filtration) 4000	837	68,270	0	0	0.5	0.5	Internal	Below	Information obtained from product literature
ydrodynamic Separation										
	Aqua Shield Aqua-Swirl Concentrator	100	2,600	NA	NA	0.25	0.25	Internal/External	Below	
	BaySeparator®	450	1,350	0	0	NA	NA	NA		Information obtained from product literature
	CDS TM Stormwater Treatment System	20	44,900	NA	NA	0.1	0.1	Internal/External	Below	
	Downstream Defender	500	7,800	0	0	0.5	0.9	NA	Below	Information obtained from product literature
	FloGard® Dual-Vortex Hydrodynamic Separator	150	6,500	7	113	0	3	Internal	Below	
	HydroGuard	360	3,232	0	0	0	2	NA	Below	Information obtained from product literature
	Nutrient Separating Baffle Box	148	8,858	0	0	0	0	Internal	Below	External bypass in some situations
	Stormceptor®	0	11,000	NA	NA	0.22	0.22	Internal	Below	
	StormTrooper®	ND	ND	ND	ND	ND	ND	ND	Below	
	StormTrooper® EX Extra-Duty	ND	ND	ND	ND	ND	ND	ND	Below	
	Terre Kleen TM	1.5	100	0	0	NA	NA	Internal	Below	Information obtained from product literature
	UniScreen	0	15700	20	135	0	0.5	Both	Above	
	UniStorm	0	15700	20	135	0	0.5	Both	Above	
	V2B1 Treatment System	0	63000	20	800	0	0.5	Both	Above	
	Vortechs System	50	22,450	NA	NA	0.1	0.1	Internal/External	Below	
edia Filtration										
bove ground (pump required)	Aquip® Enhanced Stormwater Filtration System	10	350	14	320	4	7	External	Above	
artridge	BayFilter®	15	30	0	0	ND	ND	ND	Below	Information obtained from product literature
-	EcoSense™ Stormwater Filtration Systems	25	1,662	NA	NA	V	V	Internal		Hooded
	Perk Filter™	12	1,000	10	150	1.7	3.5	Internal	Below	
	PuriStorm	0	2000	9	600	0	0.5	Both	Above	
	Sorbtive™ FILTER	ND	ND	ND	ND	ND	ND	ND	Below	
	Stormfilter using ZPG Media	2	44,900	8	6,050	1.8	12	Internal/External	Below	
	StormSafe™ Helix	3	9	160	250	0	3	Internal/External	Below	
nd Filter	Perimeter Sandfilter (Delaware Sandfilter)	ND	ND	ND	ND	ND	ND	ND	Below	
	Underground Sandfilter (DC Sandfilter)	ND	ND	ND	ND	ND	ND	ND	Below	

		Design Flor	w Rate (gpm)	System Fo	otprint (sf)	Required Hea	d Loss (feet)	Internal or External	Above or Below	
Treatment Type	Treatment System Name	Low	High	Low	High	Low	High	Bypass	Grade	Bypass Notes
Media Filtration (cont)										
Combination System (with Hydrodynamic Separation)	Aqua Shield Aqua-Filter System	25	>960	NA	NA	0.8	0.8	Internal/External	Below	
(with rhydrodynamic Separation)	ecoStorm + ecoStorm Plus®	NA	180	NA	NA	0.41 (a)	NA	Internal/External	Below	Head loss based on: - Current monitoring configuration: 1 ecoStorm upstream of 2 ecoStorm plus units 360 gpm through the system, 180 gpm per filter Site specific model calibrated onsite at known flow rates Headloss negating effects of drop structure were neglected (located between the ecoStorm and ecoStorm plus units) Filters assumed to be at the point of required maintenance (twice the head loss measured for new filters).
	Go-Filter	50	675	NA	NA	0.5	0.5	Internal/External	Below	(twice the field 1055 fledstred for flew fleds).
Combination System	CrystalCombo Hybrid Polisher	ND	ND	ND	ND	ND	ND	ND	Below	
(with Oil/Water Separator)	HydroFilter	ND	ND	ND	ND	ND	ND	ND	Below	
Up-Flow	Bio Clean Water Polisher	191	528	0	0	1	2	Internal	Below	High Flow Unimpeded
	Jellyfish™ Filter	60	2,300	12	113	1	2	Internal/External	Below	
	Up-Flo™ Filter	147	448	0	0	1.7	2.5	Internal	Below	Information obtained from product literature
Oil/Water Separator										
	ADS® Water Quality Unit	1,800	126,000	0	0	NA	NA	External	Below	
	BioSTORM	225	4,800	45	162	0.5	0.17	External	Below	
	Clara® Gravity Stormwater Separator Vault	5	1,120	0	150	0.5	1.5	Internal	Below	
	CrystalClean Separator	ND	ND	ND	ND	ND	ND	ND	Below	
	ecoLine A®	25	626	12	70	6	6	V	Below	
	ecoLine B®	50	1,110	NA	NA	6	6	V	Below	
	ecoSep®	ND	ND	ND	ND	ND	ND	ND	Below	
	ecoTop®	ND	ND	ND	ND	ND	ND	ND	Below	
	First Flush 1640FF	449	538	0	0	0	0	NA	Below	
	Hancor Storm Water Quality Unit	ND	ND	ND	ND	ND	ND	ND	Below	
	Kleerwater TM	25	10,000	NA	NA	0	0	External	Below	
	PSI Separator	ND	ND	ND	ND	ND	ND	ND	Below	
	SNOUT®	ND	ND	ND	ND	ND	ND	ND	Below	
	VortClarex	100	2,000	0	0	0.1	0.1	Internal/External	Below	

CF = cubic feet

gpm = gallons per minute

in/hr = inches per hour

NA = not available; vendor filled out Treatment System Summary form, but did not provide all data

ND = no data; vendor did not fill out Treatment System Summary form

SF = square foot

V = varies

Table 10. System design information for active treatment systems.

		Design Flo	w Rate (gpm)	System Fo	ootprint (sf)	(feet)	Internal or External	Above or Below	
Treatment Type	Treatment System Name	Low	High	Low	High	Low	High	Bypass	Grade	Notes
Chemical Filtration										
	Baker Tank with Sand Filter	15	>1000	1000	2500	NA	NA	NA	Above	
	Chitosan-Enhanced Sand Filtration Using FlocClear TM	< 25	> 2,000	< 25	> 2,000	NA	NA	External	Above	Offline facility
	Purus® Stormwater Polishing System	5	210	10	90	70	120	External	Above	
Chemical Treatment										
	ACISTBox®	100	> 1,000	200	> 2,000	NA	NA	NA	Above	
					ŕ					(a) Packaged in 4' -6' (w) x 2.5' (d) x 4' (t) industrial steel box w/hinged top opening lid. Additional storage space for
	pHATBox®	250	350	10	24	NA (a)	NA (a)	NA	Above	additive will depend on volume of additive storage (up to 35 gal drums in box, larger must go external) - plus secondary containment).
	Wetsep	20	260	NA	NA	40	40	External	NA	
Electrocoagulation										
	High-Flo Electrocoagulation	2.5	> 1,200	40	4,000	2	20	External	Above	
	OilTrap ElectroPulse Water Treatment System	5	500	40	1,500	5	15	Internal/External	Above	
	Redbox	0.5	150	NA	NA	NA	NA	NA	Above	
	WaveIonics™	50	> 1,000	200	> 4,000	NA	NA	NA	Above	
Filtration										
Disc	Arkal Filter (Spin Klin System)	100	4400	16	16	0.1	14	NA	Above	Information obtained from product literature
Media	Fuzzy Filter	70	Unlimited	NA	NA	35	35	External	Above	
	WaterTrak Pressurized Media Filter	27	905	43	119	ND	ND	ND	Above	Information obtained from product literature
	WaterTrak Ultrafiltration	38	377	31	62	ND	ND	ND	Above	Information obtained from product literature
Pressure	Arkal Media Filter	44	150	16	16	3	28	NA	Above	Information obtained from product literature
Ion Exchange										
	Wastewater Ion Exchange System (WWIX)	1	5000	NA	NA	20	20	NA	Above	
	WaterTrak Ion Exchange	23	866	65	113	ND	ND	ND	Above	Information obtained from product literature
Reverse Osmosis										
	WaterTrak Reverse Osmosis	65	275	143	243	350	350	ND	Above	Information obtained from product literature

gpm = gallons per minute

NA = not available; vendor filled out Treatment System Summary form, but did not provide all data

ND = no data; vendor did not fill out Treatment System Summary form

SF = square foot

Table 11. Installation and annual operation and maintenance costs for passive treatment systems.

		Installa	tion Cost	Annual C	0&M Cost	
Treatment Type	Treatment System Name	Low	High	Low	High	Notes
Bioretention/Filtration	•					
	Filterra® Curb Inlet System	\$1,200	\$7,500	\$300	\$3,000	
	Filterra® Roof Drain System	\$1,200	\$7,500	\$300	\$3,000	
	Modular Wetland System - Linear	\$12,000	\$25,000	\$8.26/gal	\$10.50/gal	
	Silva Cell	\$4,000-5,600	\$10,000-14,000	\$100-200	100-200	Depends on selected tree species (small or large)
	TREEPOD® Biofilter	\$10,000	\$50,000	\$400	\$750	
	UrbanGreen BioFilter	\$10,000	\$250,000	\$0.0001/gal	\$0.0003/gal	
Drain Inlet Insert						
Absorbent Boom/Fabric	ADsorb-It	\$0.91/SF	\$0.91/SF	\$0.91/SF	\$0.91/SF	
	Enviro-Drain®	ND	ND	ND	ND	
	EnviroSafe™ Storm Safe HF10	ND	ND	ND	ND	
	Ultra-Urban Filter™	\$400	\$1,700	NA	NA	
Media Filtration	EcoVault™ Baffle Box	\$25,000	\$125,000	\$200	\$1,800	
	EnviroSafe TM	ND	ND	ND	ND	
	HUBER Hydro Filt	ND	ND	ND	ND	
	Hydro-Kleen TM	ND	ND	ND	ND	
	Raynfiltr TM	\$531	\$554	NA	NA	
Media Filtration (Cartridge)	StormBasin™	\$750	\$2,000	\$200	\$800	
(StormPod TM	\$750	\$2,000	\$200	\$800	
	Triton Drop Inlet Insert	\$300	\$2,500	\$0.000002/gal	\$0.00008/gal	
Combination System (Screen and	Bio Clean Curb Inlet Basket	\$445	\$1,600	\$0.20/gal	\$0.40/gal	
Absorbent Boom/Fabric)	Bio Clean Downspout Filter	\$1,035	\$1,200	\$0.16/gal	\$0.22/gal	
	Bio Clean Flume Filter	\$660	\$1,302	\$0.23/gal	\$0.74/gal	
	Bio Clean Grate Inlet Skimmer Box	\$635	\$1,800	\$0.15/gal	\$0.40/gal	
	Bio Clean Trench Drain Filter	\$660	\$1,302	\$0.23/gal	\$0.74/gal	
	Clean Way Downspout Filtration Unit	ND	ND	ND	ND	
	DrainPac™	ND	ND	ND	ND	
	EnviroTrap Catch Basin Insert	\$200	\$1000	\$0	\$1000	
	FloGard® Downspout Filter	\$1,500	\$3,500	\$75	\$250	
	FloGard® LoPro Matrix Filter	\$400	\$1,000	\$75	\$300	
	FloGard® LoPro Trench Drain Filter	\$600	\$3,000	\$75	\$350	
	FloGard+PLUS®	\$250	\$1,800	\$75	\$350	
	FloGard® Trash & Debris Guard	\$450	\$1,500	\$50	\$200	
	Inceptor®	ND	ND	ND	ND	

	ı	Installa	ation Cost	Annual C)&M Cost	
Treatment Type	Treatment System Name	Low	High	Low	High	Notes
Drain Inlet Insert (cont)						
	StormClean Catch Basin Insert	ND	ND	ND	ND	
	StormClean Curb Inlet Insert	ND	ND	ND	ND	
	StormClean Wall Mount Filtration Unit	ND	ND	ND	ND	
	Storm PURE TM	ND	ND	ND	ND	
	SwaleGard® Pre-filter	\$4,500	\$4,500	\$75	\$300	
Combination System (Screen and	Aqua-Guardian™ Catch Basin Insert	V	V	V	V	
Media Filtration)	ClearWater BMP	ND	ND	ND	ND	
	Coanda Curb Inlet Filter	\$2,000	\$3,500	\$0	\$0	
	Coanda Downspout Filter	\$2,000	\$3,500	\$0	\$0	
	RSF (Rapid Stormwater Filtration) 100	ND	ND	ND	ND	
	RSF (Rapid Stormwater Filtration) 1000	ND	ND	ND	ND	
	RSF (Rapid Stormwater Filtration) 4000	ND	ND	ND	ND	
Hydrodynamic Separation						
	Aqua Shield Aqua-Swirl Concentrator	V	V	V	V	
	BaySeparator®	ND	ND	ND	ND	
	CDS TM Stormwater Treatment System	\$10,000	\$2,500,000	\$0.00001/gal	\$0.00001/gal	
	Downstream Defender	ND	ND	ND	ND	
	FloGard® Dual-Vortex Hydrodynamic Separator	\$10,000	\$100,000	\$300	\$3,500	
	HydroGuard	ND	ND	ND	ND	
	Nutrient Separating Baffle Box	\$10,000	\$200,000	\$0.33/gal	\$0.84/gal	
	Stormceptor®	\$3,000	\$15,000	\$500	\$5,000	
	StormTrooper®	ND	ND	ND	ND	
	StormTrooper® EX Extra-Duty	ND	ND	ND	ND	
	Terre Kleen TM	ND	ND	ND	ND	
	UniScreen	\$2000	\$15000	0	\$2000	
	UniStorm	\$2000	\$15000	0	\$2000	
	V2B1 Treatment System	\$2000	\$15000	0	\$2000	
	Vortechs System	\$20,000	\$500,000	\$0.00001/gal	\$0.00004/gal	
Media Filtration						
Above ground (pump required)	Aquip® Enhanced Stormwater Filtration System	\$5,000	\$150,000	\$0.0003/gal	\$0.003/gal	
Cartridge	BayFilter®	ND	ND	ND	ND	
	EcoSense TM Stormwater Filtration Systems	\$400	\$2,000	\$100	\$500	
	Perk Filter TM	\$10,000	\$200,000	\$1,200	\$10,000	
	PuriStorm	\$3000	\$25000	\$0	\$10000	
	Sorbtive TM FILTER	ND	ND	ND	ND	
	Stormfilter using ZPG Media	\$10,000	\$2,500,000	\$0.00008/gal	\$0.00024/gal	

		Installa	tion Cost	Annual O	&M Cost	
Treatment Type	Treatment System Name	Low	High	Low	High	Notes
Media Filtration (cont)						
	StormSafe TM Helix	\$20,000	\$60,000	\$2,000	\$6,000	
Sand Filter	Perimeter Sandfilter (Delaware Sandfilter)	ND	ND	ND	ND	
Sund I liter	Underground Sandfilter (DC Sandfilter)	ND	ND	ND	ND	
	Chaciground Sunamer (20 Sunamer)	1,12	112	112	ND	
Combination System	Aqua Shield Aqua-Filter System	V	V	V	V	
(with Hydrodynamic Separation)	ecoStorm + ecoStorm Plus®	\$8,900 (a)	\$37,500 (a)	NA (b)	NA (b)	 (a) Cost varies based on combination of units, number of units, and final design requirements. (b) \$500 - \$1000 per cleaning/backflush event; Minimum of 1X per year to monthly for stormwater.
	Go-Filter	V	V	V	V	
Combination System	CrystalCombo Hybrid Polisher	ND	ND	ND	ND	
(with Oil/Water Separator)	HydroFilter	ND	ND	ND	ND	
Up-Flow	Bio Clean Water Polisher Jellyfish™ Filter Up-Flo™ Filter	\$25,000 NA ND	\$125,000 NA ND	\$5.24/gal NA ND	\$7.85/gal NA ND	
Oil/Water Separator						
	ADS® Water Quality Unit BioSTORM Clara® Gravity Stormwater Separator Vault	\$500 \$20,000	\$2,000 \$52,000	\$400 \$0.0005/gal	\$4,000 \$0.01/gal	

		Installation Cost		Annual O	&M Cost	
Treatment Type	Treatment System Name	Low	High	Low	High	Notes
Oil/Water Separator (cont.)						
	CrystalClean Separator	ND	ND	ND	ND	
	ecoLine A®	\$6,700	\$44,250	NA	NA	Gravity flow system has no moving parts or power requirement. Oil coalescing media pack can be removed, rinsed, and replaced. In the event of damage to the coalescing media, new coalescing panels can be purchased for a low cost.
	ecoLine B®	\$8,200	\$81,900	NA	NA	Gravity flow system has no moving parts or power requirement. Oil coalescing media pack can be removed, rinsed, and replaced. In the event of damage to the coalescing media, new coalescing panels can be purchased for a low cost.
	ecoSep®	ND	ND	ND	ND	
	ecoTop®	ND	ND	ND	ND	
	First Flush 1640FF	\$5,000	\$10,000	\$500	\$3,000	
	Hancor Storm Water Quality Unit	ND	ND	ND	ND	
	Kleerwater TM	V	V	V	V	
	PSI Separator	ND	ND	ND	ND	
	SNOUT®	ND	ND	ND	ND	
	VortClarex	\$10,000	\$300,000	\$0.00008/gal	\$0.001/gal	

gal = gallon

NA = not available; vendor filled out treatment system questionaire, but did not provide all data

ND = no data; vendor did not complete treatment system questionaire

SF = square foot

V = varies

Table 12. Installation and annual operation and maintenance costs for active treatment systems.

		Install	ation Cost	Annual O	&M Cost	
Treatment Type	Treatment System Name	Low	High	Low	High	Notes
Chemical Filtration						
	Baker Tank with Sand Filter	NA	NA	NA	NA	
	Chitosan-Enhanced Sand Filtration Using FlocClear TM	\$15,000	>\$250,000	<\$0.001/gal	>0.003/gal	
	Purus® Stormwater Polishing System	\$10,000	\$140,000	\$0.0024/gal	\$0.0047/gal	
Chemical Treatment						
	ACISTBox®	\$25,000	\$400,000	NA	NA	Demands on hyffering
	pHATBox®	\$19,500	\$28,500	NA	NA	Depends on buffering capacity of waterstream, flow rate, total volume processed, specific pH adjustment additive selected, and final pH point required.
	Wetsep	\$1,000	\$2,500	\$100/day	\$250/day	
Electrocoagulation						
	High-Flo Electrocoagulation	\$2,500	\$2,200,000	\$0.0005/gal	\$0.01/gal	
	OilTrap ElectroPulse Water Treatment System	\$25,000	\$500,000	\$0.002/gal	\$0.005/gal	
	Redbox WaveIonics TM	\$42,000 \$60,000	\$1,000,000 \$850,000	\$1,000 \$0.0008/gal	\$20,000 \$0.008/gal	
Filtration						
Disc	Arkal Filter (Spin Klin System)	ND	ND	ND	ND	
Media	Fuzzy Filter	NA	NA	NA	NA	
	WaterTrak Pressurized Media Filter	ND	ND	ND	ND	
	WaterTrak Ultrafiltration	ND	ND	ND	ND	
Pressure	Arkal Media Filter	ND	ND	ND	ND	
Ion Exchange						
	Wastewater Ion Exchange System (WWIX)	\$3,000	\$250,000	\$3,000	\$500,000	
	WaterTrak Ion Exchange	ND	ND	ND	ND	
Reverse Osmosis						
	WaterTrak Reverse Osmosis	ND	ND	ND	ND	
gal = gallon						•

gal = gallon

NA = not available; vendor filled out treatment system questionaire, but did not provide all data

ND = no data; vendor did not complete treatment system questionaire

Table 13. TAPE and NJCAT approvals for passive stormwater treatment technologies.

Freatment Type	Treatment System Name			ssment Protocol - I	Ecology (TAPE)			Advanced Technology (NJCAT)
		Pretreatment	Basic	Enhanced	Phosphorus	Oil	50% TSS Removal	80% TSS Removal
ioretention/Filtration								
	Filterra® Curb Inlet System		GULD	GULD		GULD		
	Silva Cell		GULD	GULD				
lydrodynamic Separation								
	Aqua Shield Aqua-Swirl Concentrator	GULD					X	
	BaySeparator®	CULD					X	
	CDS™ Stormwater Treatment System	GULD	GULD			PULD	X	
	Downstream Defender	GULD					X	
	FloGard® Dual-Vortex Hydrodynamic Separator						X	
	HydroGuard						X	
	Nutrient Separating Baffle Box						X	
	Stormceptor®						X	
	Terre Kleen™						X	
	V2B1 Treatment System	PULD					X	
	Vortechs System	GULD					X	
Media Filtration								
Cartridge	BayFilter®		CULD	CULD	CULD			X
	Perk Filter™		GULD		GULD			
	Stormfilter using ZPG Media		GULD					X
Combination System	Aqua Shield Aqua-Filter System		PULD	PULD	PULD	PULD		X
with Hydrodyanamic Separation)	ecoStorm + ecoStorm Plus®		CULD					
	Jellyfish™ Filter		PULD					X
	Up-Flo TM Filter		PULD					X
Oil/Water Separator								
	ecoSep®					PULD		

CULD = Conditional Use Level Designation

GULD = General Use Level Designation

PULD = Pilot Use Level Designation

TSS = Total Suspended Solids

Herrera Environmental Consultants

Table 14. Treatment system applications.

Treatment Type	Treatment System Name	Treatment of Roof Runoff	Treatment at Inlet to Storm Drain System	Treatment at End-of-pipe	Treatment of Pumped Groundwater
Bioretention/Filtration					
	Filterra® Roofdrain System	•			
	Filterra® System		•		
	Modular Wetland System – Linear		•	•	
	Silva Cell		•		
	TREEPOD® Biofilter		•	•	
	UrbanGreen BioFilter		•	•	
Drain Inlet Insert					
Absorbent Boom/Fabric	Adsorb-It		•		
	Enviro-Drain®		•		
	EnviroSafe™ Storm Safe HF10		•		
	Ultra-Urban Filter™		•		
Media Filtration	EcoVault™ Baffle Box		•		
	EnviroSafe TM		•		
	HUBER Hydro Filt		•		
	Hydro-Kleen™		•		
	Raynfiltr TM		•		
Media Filtration (Cartridge)	StormBasin TM		•		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	StormPod TM		•		
	Triton Drop Inlet Insert		•		
Combination System (Screen and	Bio Clean Curb Inlet Basket		•		
Absorbent Boom/Fabric)	Bio Clean Downspout Filter	•			
	Bio Clean Flume Filter		•		

Treatment Type	Treatment System Name	Treatment of Roof Runoff	Treatment at Inlet to Storm Drain System	Treatment at End-of-pipe	Treatment of Pumped Groundwater
Drain Inlet Insert (cont)					
	Bio Clean Grate Inlet Skimmer Box		•		
	Bio Clean Trench Drain Filter		•		
	Clean Way Downspout Filtration Unit	•			
	DrainPac TM		•		
	EnviroTrap Catch Basin Insert		•		
	FloGard® Downspout Filter	•			
	FloGard® LoPro Matrix Filter		•		
	FloGard® LoPro Trench Drain Filter		•		
	FloGard+PLUS®		•		
	FloGard® Trash & Debris Guard		•		
	Inceptor®		•		
	StormClean Catch Basin Insert		•		
	StormClean Curb Inlet Insert		•		
	StormClean Wall Mount Filtration Unit		•		
	Storm PURE TM		•		
	SwaleGard® Pre-filter		•		
Combination System (Screen and	Aqua-Guardian™ Catch Basin Insert		•		
Media Filtration)	ClearWater BMP		•		
	Coanda Curb Inlet Filter		•		
	Coanda Downspout Filter	•			
	RSF (Rapid Stormwater Filtration) 100		•		
	RSF (Rapid Stormwater Filtration) 1000		•		
	RSF (Rapid Stormwater Filtration) 4000		•		
Hydrodynamic Separation					
	Aqua Shield Aqua-Swirl Concentrator			•	
	BaySeparator®			•	
	CDS™ Stormwater Treatment System			•	
	Downstream Defender			•	

Treatment Type	Treatment System Name	Treatment of Roof Runoff	Treatment at Inlet to Storm Drain System	Treatment at End-of-pipe	Treatment of Pumped Groundwater
Hydrodynamic Separation (cont)					
	FloGard® Dual-Vortex Hydrodynamic Separator			•	
	HydroGuard			•	
	Nutrient Separating Baffle Box			•	
	Stormceptor®			•	
	StormTrooper®			•	
	StormTrooper® EX Extra-Duty			•	
	Terre Kleen™			•	
	UniScreen			•	
	UniStorm			•	
	V2B1 Treatment System Vortechs System			•	
	voiteens system			•	
Media Filtration					
Above ground (pump required)	Aquip® Enhanced Stormwater Filtration System			•	
Cartridge	BayFilter®			•	
	EcoSense™ Stormwater Filtration Systems		•		
	Perk Filter™		•	•	
	PuriStorm		•	•	
	Sorbtive™ FILTER			•	
	Stormfilter using ZPG Media		•	•	
	StormSafe™ Helix			•	
Combination System	Aqua Shield Aqua-Filter System			•	
(with Hydrodyanamic Separation)	ecoStorm + ecoStorm Plus®			•	
	Go-Filter			•	

		Treatment of Roof	Treatment at Inlet to	Treatment at	Treatment of Pumped
Treatment Type	Treatment System Name	Runoff	Storm Drain System	End-of-pipe	Groundwater
Media Filtration (cont)					
Combination System (with Oil/Water Separator)	CrystalCombo Hybrid Polisher HydroFilter			•	
Up-Flow	Bio Clean Water Polisher Jellyfish™ Filter Up-Flo™ Filter			•	
Oil/Water Separator					
	ADS® Water Quality Unit BioSTORM Clara® Gravity Stormwater Separator Vault CrystalClean Separator ecoLine A® ecoLine B® ecoSep® ecoTop® First Flush 1640FF Hancor Storm Water Quality Unit Kleerwater™ PSI Separator SNOUT® VortClarex		•	•	•
Chemical Filtration					
	Baker Tank with Sand Filter Chitosan-Enhanced Sand Filtration Using FlocClear™ Purus® Stormwater Polishing System			•	•
Chemical Treatment					
	ACISTBox® pHATBox® Wetsep			•	•

Treatment Type	Treatment System Name	Treatment of Roof Runoff	Treatment at Inlet to Storm Drain System	Treatment at End-of-pipe	Treatment of Pumped Groundwater
Electrocoagulation					
	High-Flo Electrocoagulation			•	•
	OilTrap ElectroPulse Water Treatment System			•	•
	WaveIonics™			•	•
	Redbox			•	•
Filtration					
Disc	Arkal Filter (Spin Klin System)			•	•
Media	Fuzzy Filter			•	•
Filtration (cont)					
	WaterTrak Pressurized Media Filter			•	•
	WaterTrak Ultrafiltration			•	•
Pressure	Arkal Media Filter			•	•
Ion Exchange					
	Wastewater Ion Exchange System (WWIX)			•	•
	WaterTrak Ion Exchange			•	•
Reverse Osmosis					
	WaterTrak Reverse Osmosis			•	•

APPENDIX A

Technology Summary Sheets

Appendix A Index (by Treatment System Name)

Treatment System Name	Manufacturer/Vendor Name	Page Number
Active Treatment Systems		
ACISTBox®	Water Tectonics, Inc.	105
Arkal Filter (Spin Klin System)	Arkal Filtration Systems/PEP (U.S. Distributor)	107
Arkal Media Filter	Arkal Filtration Systems/PEP (U.S. Distributor)	109
Baker Tank with Sand Filter	BakerCorp	111
Chitosan-Enhanced Sand Filtration Using FlocClear TM	Clear Creek Systems	113
Fuzzy Filter	Schreiber	115
High-Flo Electrocoagulation	Kaselco	117
		117
OilTrap ElectroPulse Water Treatment System	OilTrap Environmental	
pHATBox®	Water Tectonics, Inc.	121
Purus® Stormwater Polishing System	StormwateRx	123
Redbox	Morselt Borne BV	125
WaterTrak Ion Exchange	Aquatech	127
WaterTrak Pressurized Media Filter	Aquatech	129
WaterTrak Reverse Osmosis	Aquatech	131
WaterTrak Ultrafiltration	Aquatech	133
WaveIonics TM	Water Tectonics, Inc.	135
Wetsep	Waste & Environmental Technologies Ltd.	137
Wastewater Ion Exchange System (WWIX)	Siemens Water Technologies Inc.	139
Passive Treatment Systems	Advanced Drainage Systems Inc	143
ADS® Water Quality Unit	Advanced Drainage Systems, Inc	
ADsorb-It	Eco-Tec, Inc.	145
Aqua-Filter System	AquaShieldTM, Inc.	147
Aqua-Guardian TM Catch Basin Insert	AquaShieldTM, Inc.	149
Aqua-Swirl Concentrator	AquaShieldTM, Inc.	151
Aquip® Enhanced Stormwater Filtration System	StormwateRx	153
BayFilter®	BaySaver Technologies, Inc.	155
BaySeparator®	BaySaver Technologies, Inc.	157
Bio Clean Curb Inlet Basket	BioClean Environmental Services, Inc.	159
Bio Clean Downspout Filter	BioClean Environmental Services, Inc.	161
Bio Clean Flume Filter	BioClean Environmental Services, Inc.	163
Bio Clean Grate Inlet Skimmer Box	BioClean Environmental Services, Inc.	165
Bio Clean Trench Drain Filter	BioClean Environmental Services, Inc.	167
Bio Clean Water Polisher	BioClean Environmental Services, Inc.	169
BioSTORM	Bio-Microbics, Inc.	171
	CONTECH Stormwater Solutions Inc.	
CDS TM Stormwater Treatment System		173
Clara® Gravity Stormwater Separator Vault	StormwateRx	175
Clean Way Downspout Filtration Unit	Clean Way	177
ClearWater BMP	ClearWater Solutions, Inc.	179
Coanda Curb Inlet Filter	Coanda, Inc.	181
Coanda Downspout Filter	Coanda, Inc.	183
CrystalClean Separator	CrystalStream Technologies	185
CrystalCombo Hybrid Polisher	CrystalStream Technologies	187
Downstream Defender	Hydro International, Inc.	189
DrainPac™	United Storm Water, Inc.	191
ecoLine A®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	193
ecoLine B®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	195
EcoSense TM Stormwater Filtration Systems	EcoSense International	197
ecoSep®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	199
•		
ecoStorm + ecoStorm Plus®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	201
ecoTop®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	203
EcoVault TM Baffle Box	EcoSense International	205
Enviro-Drain®	Enviro-Drain, Inc.	207
EnviroSafe TM	Transpo Industries, Inc.	209
EnviroSafe TM Storm Safe HF10	Transpo Industries, Inc.	211
EnviroTrap Catch Basin Insert	Environment 21	213
Filterra® Curb Inlet System	Filterra, DBAAmericast, Inc.	215
Filterra® Roof Drain System	Filterra, DBAAmericast, Inc.	217
First Flush 1640FF	ABT, Inc.	219
FloGard+PLUS®	Kristar Enterprises, Inc.	221
FloGard® Downspout Filter	Kristar Enterprises, Inc. Kristar Enterprises, Inc.	223
•		225
FloCord® Dual Vortax Hydrodymamic Computer		
FloGard® Dual-Vortex Hydrodynamic Separator FloGard® LoPro Matrix Filter	Kristar Enterprises, Inc. Kristar Enterprises, Inc.	223 227

Appendix A Index (by Treatment System Name)

Treatment System Name	Manufacturer/Vendor Name	Page Number
Passive Treatment Systems (cont.)		
FloGard® Trash & Debris Guard	Kristar Enterprises, Inc.	231
Go-Filter	AquaShieldTM, Inc.	233
Hancor Storm Water Quality Unit	Hancor, Inc.	235
HUBER Hydro Filt	Huber Technology, Inc.	237
HydroFilter	Hydroworks	239
HydroGuard	Hydroworks	241
Hydro-Kleen TM	ACF Environmental, Inc.	243
Inceptor®	Stormdrain Solutions	245
Jellyfish TM Filter	Imbrium Systems Corp	247
IZI TM	Brown-Minneapolis Tank Co./	240
Kleerwater TM	Kleerwater Technologies, LLC	249
Maria Walangara	Modular Wetland Systems, Inc./	251
Modular Wetland System – Linear	BioClean Environmental Services, Inc.	251
Nutrient Separating Baffle Box	BioClean Environmental Services, Inc.	253
Perimeter Sandfilter (Delaware Sandfilter)	Rotondo Environmental Solutions, LLC	255
Perk Filter TM	Kristar Enterprises, Inc.	257
PSI Separator	PSI International, Inc.	259
PuriStorm	Environment 21	261
Raynfiltr TM	Environmental Filtration, Inc.	263
RSF (Rapid Stormwater Filtration) 100	EcoSol Wastewater Filtration Systems	265
RSF (Rapid Stormwater Filtration) 1000	EcoSol Wastewater Filtration Systems	267
RSF (Rapid Stormwater Filtration) 4000	EcoSol Wastewater Filtration Systems	269
Silva Cell	DeepRoot Partners	271
SNOUT®	Nyloplast/Hancor, Inc.	273
Sorbtive™ FILTER	Imbrium Systems Corp	275
Storm PURETM	Nyloplast/Hancor, Inc.	277
StormBasin TM /StormPod TM	Fabco Industries, Inc.	279
Stormceptor®	Imbrium Systems Corp	281
StormClean Catch Basin Insert	Clean Way	283
StormClean Curb Inlet Insert	Clean Way	285
StormClean Wall Mount Filtration Unit	Clean Way	287
Stormfilter using ZPG Media	CONTECH Stormwater Solutions Inc.	289
StormSafe TM Helix	Fabco Industries, Inc.	291
StormTrooper®	Park USA	293
StormTrooper® EX Extra-Duty	Park USA	295
SwaleGard® Pre-filter	Kristar Enterprises, Inc.	297
Terre Kleen TM	Terre Hill Concrete Products	299
TREEPOD® Biofilter	Kristar Enterprises, Inc.	301
TREEF OD BIOTHE	Revel Environmental Manufacturing, Inc./	501
Triton Drop Inlet Insert	CONTECH Stormwater Solutions Inc.	303
Ultra-Urban Filter™	Abtech Industries	305
Underground Sandfilter (DC Sandfilter)	Rotondo Environmental Solutions, LLC	
UniScreen	Environment 21	307 309
UniStorm	Environment 21 Environment 21	311
Up-Flo TM Filter	Hydro International, Inc.	313
UrbanGreen BioFilter	CONTECH Stormwater Solutions Inc.	315
V2B1 Treatment System	Environment 21	317
VortClarex	CONTECH Stormwater Solutions Inc.	319
Vortechs System	CONTECH Stormwater Solutions Inc.	321

Appendix A Index (by Manufacturer/Vendor Name)

Manufacturer/Vendor Name	Treatment System Name	Page Number
Active Treatment Systems		
Aquatech	WaterTrak Ion Exchange	127
Aquatech	WaterTrak Pressurized Media Filter	129
Aquatech	WaterTrak Reverse Osmosis	131
Aquatech	WaterTrak Ultrafiltration	133
Arkal Filtration Systems/PEP (U.S. Distributor)	Arkal Filter (Spin Klin System)	107
Arkal Filtration Systems/PEP (U.S. Distributor)	Arkal Media Filter	109
BakerCorp	Baker Tank with Sand Filter	111
Clear Creek Systems	Chitosan-Enhanced Sand Filtration Using FlocClear™	113
Kaselco	High-Flo Electrocoagulation	117
Morselt Borne BV	Redbox	125
OilTrap Environmental	OilTrap ElectroPulse Water Treatment System	119
Schreiber	Fuzzy Filter	115
Siemens Water Technologies Inc.	Wastewater Ion Exchange System (WWIX)	139
StormwateRx	Purus® Stormwater Polishing System	123
Waste & Environmental Technologies Ltd.	Wetsep	137
Water Tectonics, Inc.	ACISTBox®	105
Water Tectonics, Inc.	pHATBox®	121
Water Tectonics, Inc.	WaveIonics TM	135
Table 1 sectomes, mer	, a resource	
Passive Treatment Systems		
ABT, Inc.	First Flush 1640FF	219
Abtech Industries	Ultra-Urban Filter™	305
ACF Environmental, Inc.	Hydro-Kleen TM	243
Advanced Drainage Systems, Inc	ADS® Water Quality Unit	143
AquaShieldTM, Inc.	Aqua-Filter System	147
AquaShieldTM, Inc.	Aqua-Guardian™ Catch Basin Insert	149
AquaShieldTM, Inc.	Aqua-Swirl Concentrator	151
AquaShieldTM, Inc.	Go-Filter	233
BaySaver Technologies, Inc.	BayFilter®	155
BaySaver Technologies, Inc.	BaySeparator®	157
BioClean Environmental Services, Inc.	Bio Clean Curb Inlet Basket	159
BioClean Environmental Services, Inc.	Bio Clean Downspout Filter	161
BioClean Environmental Services, Inc.	Bio Clean Flume Filter	163
BioClean Environmental Services, Inc.	Bio Clean Grate Inlet Skimmer Box	165
BioClean Environmental Services, Inc.	Bio Clean Trench Drain Filter	167
BioClean Environmental Services, Inc.	Bio Clean Water Polisher	169
BioClean Environmental Services, Inc.		253
	Nutrient Separating Baffle Box BioSTORM	
Bio-Microbics, Inc.	BIOSTORM	171
Brown-Minneapolis Tank Co./	Kleerwater TM	249
Kleerwater Technologies, LLC	Class Was Dames and Ellerting Hair	177
Clean Way	Clean Way Downspout Filtration Unit	177
Clean Way	StormClean Catch Basin Insert	283
Clean Way	StormClean Curb Inlet Insert	285
Clean Way	StormClean Wall Mount Filtration Unit	287
ClearWater Solutions, Inc.	ClearWater BMP	179
Coanda, Inc.	Coanda Curb Inlet Filter	181
Coanda, Inc.	Coanda Downspout Filter	183
CONTECH Stormwater Solutions Inc.	CDS TM Stormwater Treatment System	173
CONTECH Stormwater Solutions Inc.	Stormfilter using ZPG Media	289
CONTECH Stormwater Solutions Inc.	UrbanGreen BioFilter	315
CONTECH Stormwater Solutions Inc.	VortClarex	319
CONTECH Stormwater Solutions Inc.	Vortechs System	321
CrystalStream Technologies	CrystalClean Separator	185
CrystalStream Technologies	CrystalCombo Hybrid Polisher	187
DeepRoot Partners	Silva Cell	271
EcoSense International	EcoSense™ Stormwater Filtration Systems	197
EcoSense International	EcoVault™ Baffle Box	205
EcoSol Wastewater Filtration Systems	RSF (Rapid Stormwater Filtration) 100	265
EcoSol Wastewater Filtration Systems	RSF (Rapid Stormwater Filtration) 1000	267
EcoSol Wastewater Filtration Systems	RSF (Rapid Stormwater Filtration) 4000	269
Eco-Tec, Inc.	ADsorb-It	145
Enviro-Drain, Inc.	Enviro-Drain®	207

Appendix A Index (by Manufacturer/Vendor Name)

Manufacturer/Vendor Name	Treatment System Name	Page Number
Passive Treatment Systems (cont.)	•	
Environment 21	EnviroTrap Catch Basin Insert	213
Environment 21	PuriStorm	261
Environment 21	UniScreen	309
Environment 21	UniStorm	311
Environment 21	V2B1 Treatment System	317
Environmental Filtration, Inc.	Raynfiltr™	263
Fabco Industries, Inc.	StormBasin TM /StormPod TM	279
Fabco Industries, Inc.	StormSafe™ Helix	291
Filterra, DBAAmericast, Inc.	Filterra® Curb Inlet System	215
Filterra, DBAAmericast, Inc.	Filterra® Roof Drain System	217
Hancor, Inc.	Hancor Storm Water Quality Unit	235
Huber Technology, Inc.	HUBER Hydro Filt	237
Hydro International, Inc.	Downstream Defender	189
Hydro International, Inc.	Up-Flo™ Filter	313
Hydroworks	HydroFilter	239
Hydroworks	HydroGuard	241
Imbrium Systems Corp	Jellyfish TM Filter	247
Imbrium Systems Corp	Sorbtive TM FILTER	275
Imbrium Systems Corp	Stormceptor®	281
Kristar Enterprises, Inc.	FloGard+PLUS®	221
Kristar Enterprises, Inc.	FloGard® Downspout Filter	223
Kristar Enterprises, Inc.	FloGard® Dual-Vortex Hydrodynamic Separator	225
Kristar Enterprises, Inc. Kristar Enterprises, Inc.	FloGard® LoPro Matrix Filter	227
Kristar Enterprises, Inc. Kristar Enterprises, Inc.	FloGard® LoPro Trench Drain Filter	229
Kristar Enterprises, Inc. Kristar Enterprises, Inc.	FloGard® Trash & Debris Guard	231
Kristar Enterprises, Inc. Kristar Enterprises, Inc.	Perk Filter TM	257
Kristar Enterprises, Inc. Kristar Enterprises, Inc.	SwaleGard® Pre-filter	297
Kristar Enterprises, Inc. Kristar Enterprises, Inc.	TREEPOD® Biofilter	301
Modular Wetland Systems, Inc./	TREEF OD BIOTHET	301
BioClean Environmental Services, Inc.	Modular Wetland System – Linear	251
Nyloplast/Hancor, Inc.	SNOUT®	273
• •	Storm PURE TM	277
Nyloplast/Hancor, Inc. Park USA	StormTrooper®	293
Park USA	StormTrooper® EX Extra-Duty	295
PSI International, Inc.	PSI Separator	259 259
· · · · · · · · · · · · · · · · · · ·	r Si Separatoi	239
Revel Environmental Manufacturing, Inc./ CONTECH Stormwater Solutions Inc.	Triton Drop Inlet Insert	303
Rotondo Environmental Solutions, LLC	Perimeter Sandfilter (Delaware Sandfilter)	255
·	· · · · · · · · · · · · · · · · · · ·	307
Rotondo Environmental Solutions, LLC Royal Environmental Systems, Inc./Water Tectonics, Inc.	Underground Sandfilter (DC Sandfilter)	193
Royal Environmental Systems, Inc./Water Tectonics, Inc. Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoLine A®	195
	ecoLine B®	193
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoSep® ecoStorm + ecoStorm Plus®	
Royal Environmental Systems, Inc./Water Tectonics, Inc.		201 203
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoTop®	
Stormdrain Solutions	Inceptor®	245
StormwateRx	Aquip® Enhanced Stormwater Filtration System	153
StormwateRx	Clara® Gravity Stormwater Separator Vault	175
Terre Hill Concrete Products	Terre Kleen TM	299
Transpo Industries, Inc.	EnviroSafe TM	209
Transpo Industries, Inc.	EnviroSafe TM Storm Safe HF10	211 191
United Storm Water, Inc.	DrainPac™	191

Active

Estimated Installation Cost:

Estimated Annual O&M Cost:

Treatment Technology Summary Report

	rer/Vendor:	WaterTect	onics						
Name of Te		ACIST							
Technology	Туре:	Chemical T	reatment						
Schematic	;					System D	esign In	formatio	n
						Design Flor	w Rate (σ	nm)·	
_				RoadSide AC	IST™	low:	100	ριτι , .	
				System Layou	t Design	high:	>1000	_	
	RoadSide ACIST					o		_	
		=		Genset		System Foo	otprint (s 200-2000	q. ft.):	
	0	00			_	Required H	lead Loss	(ft):	-
ĵΪ						Internal or	External auto recirc		-
						Application		<u> </u>	-
						Stormwater		Vater/	
						Wastewater			
			Treat	ment Perfori	mance *				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	•								
	uent (mg/L):	<u> </u>		3.12		0.0199			0.00028
	uent (mg/L):			0.38		0.00002			0.00002
Median Rer	moval (%):			88		99.9			93
			Total Met	ale	Diss	olved Metal	<u> </u>	٦	
		Cu	Pb	Zn	Cu	Pb	Zn	-	
Number of	samnles:	Cu	FU	211	Cu	FU	211	+	
	uent (mg/L):	0.341	0.25	2.12			0.817	+	
	uent (mg/L):	0.0179	0.05	1.04			0.744	†	
Median Rer		95	80	51			9	1	
	s indicate no info	rmation w	as received f	rom vendor	!	W.		→	
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil]	Other A	pprovals:	
TAPE							<u> </u>		
					7	-			
	50% TSS Rei	moval	80% TS	S Removal	-				
NJCAT							-		
			Lo	ocal Installat	ions				
					-				
# of Installa	tions in Washing	ton:		5					
_	· ·				-				

Estimated Costs

low: \$25,000

low:

high: \$400,000 high:

Manufacturer/Vendor:	WaterTectonics
Name of Technology:	ACIST
Technology Type:	Chemical Treatment

Treatment Notes

Field by operator; in-line real-time with sensors/d	lata loggers for turbidity	\prime and pH; in-house and i	ndependent party grab	/composite
sampling; in-house and 3rd party independent an	alytical laboratory testin	ng.		

Additional Notes

Provided under DOE issued GULD as Chitosan-Enhanced Sandfiltration (CESF), a stand alone system. Water Tectonics expands CESF application for removal of LNAPL, NWTPH, cPAH/PAH's, and metals by system modification to include oil/water separation, enhanced pre-treatment, post SF micron filtration, and granular activated carbon and/or other media adsorption. As a stand-alone technology it is designated for turbidity and pH. If raw water turbidity is >600 NTU, pretreatment is required. CESF has limited to no ability to remove turbidity consisting of rock dust, rock flour, or other rock source fines that have not been geochemically weathered over time. Chitosan performance is typically compromised by acidic or alkaline pH conditions out side the neutral range. Performance data presented is from from full-scale use at temporary projects where RSA CESF technology was used in accordance with GULD specifications with modifications for enhanced removal components (e.g., granular activated carbon). Untreated construction water ranging from >25 NTU to > 5000 NTU (with pretreatment if over 600 NTU) have all been reduced to <10 NTU, but typically to <5 NTU. Flow ranges for various conventional system sizes range from 100 to over 1000 gpm for 24/7 continuous operations.

of Installations in Washington:

Estimated Installation Cost: Estimated Annual O&M Cost:

Treatment Technology Summary Report

Arkal Filtration Systems/PEP (U.S. Distributor) Manufacturer/Vendor: Name of Technology: Arkal Filter (Spin Klin System) Technology Type: Filtration(Disc) Schematic **System Design Information** Design Flow Rate (gpm): low: 100 high: 4400 System Footprint (sq. ft.): 16 Required Head Loss (ft): 0.1,14 Internal or External Bypass: **Application** Treatment Performance * TSS TPH Oil & grease **SVOCs PCBs** Dioxins CPAHs TP Number of samples: Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): **Total Metals Dissolved Metals** Cu Pb Zn Pb Number of samples: Median Influent (mg/L): ND Median Effluent (mg/L): ND Median Removal (%): 99.9 * Blank cells indicate no information was received from vendor **Approvals** Pretreatment Basic Enhanced **Phosphorus** Oil Other Approvals: TAPE 50% TSS Removal 80% TSS Removal NJCAT **Local Installations**

Estimated Costs

high:

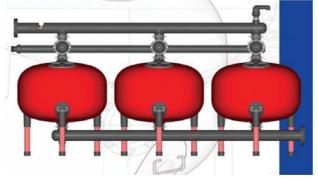
low:

Manufacturer/Vendor: Name of Technology: Technology Type:

Arkal Filtration Systems/PEP (U.S. Distributor)

Arkal Filter (Spin Klin System) Filtration(Disc) **Treatment Notes**

Additional Notes



Manufacturer/Vendor: Name of Technology: Technology Type: Arkal Filtration Systems/PEP (U.S. Distributor)

Arkal Media Filter

Filtration(Pressure)

Schematic

System Design Information

Design Flow Rate (gpm):

low: 44 high: 150

System Footprint (sq. ft.):

16

Required Head Loss (ft):

3,28

Other Approvals:

Internal or External Bypass:

Application

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

	Total Metals			Dissolved Metals		ls
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):			ND			
Median Effluent (mg/L):			ND			
Median Removal (%):			99.9			

^{*} Blank cells indicate no information was received from vendor

Pretreatment Basic Enhanced Phosphorus

Approvals

ГАРЕ		
	50% TSS Removal	80% TSS Removal
NJCAT		

Local Installations

of Installations in Washington:

Estimated Costs

Estimated Installation Cost:	low:	high:
Estimated Annual O&M Cost:	low:	high:

Manufacturer/Vendor: Name of Technology:

Arkal Filtration Systems/PEP (U.S. Distributor) Arkal Media Filter Technology Type: Filtration(Pressure) **Treatment Notes Additional Notes**

Estimated Installation Cost: Estimated Annual O&M Cost:

Treatment Technology Summary Report

					3 7	•			
Manufactu	rer/Vendor:	BakerCorp)						
Name of Te	chnology:	Baker Tanl	k with Sand Fil	ter					
Technology	Туре:	Filtration(I	Media)						
Schematio	 C					System	Design I	nformati	on
						,	,	,	
			= = ==			Design Flo		gpm):	
						low:	15	_	
	- 10					high:	1,000+	_	
		ONLY TORRES	OH THE THE			System Fo	ootprint (1000-2500		
						Required	Head Los NA	s (ft):	-
						Internal o	or Externa NA	l Bypass:	
						Application	on		-
						Stormwate			
						Wastewate	er/Ground	water	
			Ireatr	nent Perforn					
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of									
	uent (mg/L):	200							
Median Rer	uent (mg/L):	10 95							
ivieulali Kei	iiovai (⁄oj.	95					<u> </u>		
			Total Met	als	Disso	lved Meta	ls	1	
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of	samples:							1	
Median Infl	luent (mg/L):	150	500	2500	20	40	400]	
	uent (mg/L):	75	200	1000	10	20	40		
Median Rer		50	40	50	50	50	90		
* Blank cell	s indicate no info	rmation w	as received f						
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE]			
	50% TSS Rei	moval	80% TS	S Removal]				
NJCAT]				
			In	cal Installati	ons				
			20		J.,,				
# of Installa	tions in Washing	ton:		1	-				

Estimated Costs

low:

high: _____

Manufacturer/Vendor:	BakerCorp							
Name of Technology:	Baker Tank with Sand Filter							
Technology Type:	Filtration(Media)							
Treatment Notes								
TSS, total metals, and dissolve	ed metals removal will depend upon the degree that they will absorb to particulate matter. The values							
provided for these parameter	rs are based upon a study done by Dungeness Environmental during 2009-2010. Dungeness							
Environmental does not have	e relevant data for the organics listed in this table. For any questions, please contact Chris Palczewski at							
Dungeness Environmental: 4	425-481-0600 or cpalczewski@dungenessenviro.com. Thank you.							
Additional Notes								

Manufacturer/Vendor: Name of Technology: Technology Type: Clear Creek Systems, Inc.

Chitosan-Enhanced Sand Filtration Using FlocClear

Chemical Filtration

Schematic

System Design Information

Design Flow Rate (gpm):

low: < 25 high: > 2,000

System Footprint (sq. ft.):

< 25 -> 2,000

Required Head Loss (ft):

NA

Internal or External Bypass:

External - Offline Facility

Application

Stormwater/Process water/ Groundwater/Wastewater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} Blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
PE						
	50% TSS Ren	noval	80% TS	S Removal		

Local Installations

of Installations in Washington: > 15 on the West Coast

Estimated Costs

 Estimated Installation Cost:
 low: \$15,000
 high: >\$250,000

 Estimated Annual O&M Cost:
 low: <\$0.001/gal</th>
 high: >\$0.003/gal

Manufacturer/Vendor:

Clear Creek Systems, Inc.

Chitosan-Enhanced Sand Filtration Using FlocCle

Name of Technology:	Chitosan-Enhanced Sand Filtration Using FlocClear
Technology Type:	Chemical Filtration
Treatment Notes	
	from grab samples that were analyzed by an accredited laboratory.
	6 , , , , ,
Additional Notes	
Additional Notes	

Estimated Installation Cost: Estimated Annual O&M Cost:

Treatment Technology Summary Report

Manufactur Name of Te Technology	chnology:	Schreiber LLC Fuzzy Filter Filtration(Media)								
Schematic				Was Was		System	Design I	nformati	on	
						Design Floi low: high: System For Required Internal or Application Stormwater Wastewater	70 unlimited potprint (Head Los 3.5 or External External on	sq. ft.): s (ft): Il Bypass: Water/		
			Treatn	nent Perforn	nance *					
		TSS	TP	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Number of	•									
	uent (mg/L):	10								
	uent (mg/L):	2								
Median Rer	noval (%):	70-95								
			Total Met	alc	Disso	lved Meta	lc	٦		
		Cu	Pb	Zn	Cu	Pb	Zn	1		
Number of	samples:	Cu	1.5	211	Cu	1.0				
	uent (mg/L):							†		
	uent (mg/L):							1		
Median Rer								7		
* Blank cell	s indicate no info	rmation w	as received f	rom vendor				-		
				Approvals						
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	1	Other Ap	provals:		
TAPE]				
					 1					
	50% TSS Rer	noval	80% TS	S Removal						
NJCAT					J					
			Lo	cal Installati	ons					
# of Installa	tions in Washingt	ton:		0	-					
_			F	stimated Cos	sts					

low:

high: ____

Manufacturer/Vendor:	Schreiber LLC							
Name of Technology:	Fuzzy Filter							
Technology Type:	Filtration(Media)							
Treatment Notes								
	de solids 4 microns and above. The media is compressible so that pore size can be adjusted thru changes							
	a via the integral actuator connected to a perforated compression plate. Influent solids should be less							
than 100 mg/l with many typ	ical applications processing water streams containing 20 mg/l and less.							
Additional Notes								
Additional Notes								

 Manufacturer/Vendor:
 KASELCO, LLC

 Name of Technology:
 High-Flo Electrocoagulation

 Technology Type:
 Electrocoagulation

Schematic

System Design Information

Design Flow Rate (gpm): low: 2.5 high: 1,200+

System Footprint (sq. ft.):

40 - 4000

Required Head Loss (ft):

2,20

Internal or External Bypass:

External

Other Approvals:

Application

Stormwater/Process Water/ Groundwater/Wastewater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} Blank cells indicate no information was received from vendor

Pretreatment Basic Enhanced Phosphorus

Approvals

Oil

TAPE						1	
<u></u>	ļ					4	
	50% TSS Ren	noval	80% TSS	S Removal			
NJCAT]		

Local Installations

of Installations in Washington: 0 in WA, 2 in Vancouver

Estimated Costs

Estimated Installation Cost:low: \$25,000high: \$2,200,000Estimated Annual O&M Cost:low: \$0.0005/galhigh: \$0.01/gal

Manufacturer/Vendor:	KASELCO, LLC
Name of Technology:	High-Flo Electrocoagulation
Technology Type:	Electrocoagulation

Treatment Notes

System Performance has been evaluated in lab as well as in field research applications and existing installations. Grab samples are	
analyzed both internally as well as by a third party lab.	

Additional Notes

Additional Notes	
Have attached actual test result parameters. supply those results as available.	We are currently in the process of having detailed third party test evaluations and will

Manufacturer/Vendor: Name of Technology: Technology Type: OilTrap Environmental Prod

OilTrap ElectroPulse Water Treatment System

Electrocoagulation

Schematic

System Design Information

Design Flow Rate (gpm):

low: 5 high: 500

System Footprint (sq. ft.):

40-1500

Required Head Loss (ft):

5,15

Internal or External Bypass:

Either

Application

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	600		78	136	28	NA	NA	NA
Median Effluent (mg/L):	10		0.27	<5.0	0.43	NA	NA	NA
Median Removal (%):	98.3		99.6	>96.3	98.4	NA	NA	NA

		Total Met	als	Dissolved Metals		
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):	12.1	14.1	151	8.2	10.9	78.6
Median Effluent (mg/L):	0.072	0.039	0.34	0.072	0.039	0.34
Median Removal (%):	99.4	99.7	99.9	99.1	99.6	99.9

^{*} Blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
		•	•			<u> </u>
	50% TSS Rer	noval	80% TS	S Removal		

	_			
Inc	al I	ncta	llat	innc

of Installations in Washington: 33

Estimated Costs

Estimated Installation Cost:low: \$25,000high: \$500,000Estimated Annual O&M Cost:low: \$0.002/galhigh: \$0.005/gal

Manufacturer/Vendor: Name of Technology: Technology Type: OilTrap Environmental Prod

OilTrap ElectroPulse Water Treatment System

Technology Type:	Electrocoagulation
Treatment Notes	
Samples were collected as	routine grab samples and tested by an EPA certified laboratory.
Additional Notes	
We have not worked with	wastewater with PCB or dioxins. We generally see 90%+ in reduction of pesticides also.

 Manufacturer/Vendor:
 WaterTectonics

 Name of Technology:
 pHATBox

 Technology Type:
 Chemical Treatment

Schematic

System Design Information

Design Flow Rate (gpm): low: 250 high: 350

System Footprint (sq. ft.):

10-24 (b)

Required Head Loss (ft):

N/A

Internal or External Bypass:

N/A

Other Approvals:

Application Stormwater

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	(c)		(c)	(c)	(c)	(c)	(c)	(c)
Median Effluent (mg/L):	(c)		(c)	(c)	(c)	(c)	(c)	(c)
Median Removal (%):	(c)		(c)	(c)	(c)	(c)	(c)	(c)

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	(c)	(c)	(c)	(c)	(c)	(c)	
Median Effluent (mg/L):	(c)	(c)	(c)	(c)	(c)	(c)	
Median Removal (%):	(c)	(c)	(c)	(c)	(c)	(c)	

^{*} Blank cells indicate no information was received from vendor

Basic

Pretreatment

Approvals

Phosphorus

Oil

TAPE			
		1	-
	50% TSS Removal	80% TSS Removal	
NJCAT			

	Local	Instal	lations
--	-------	--------	---------

of Installations in Washington: 20+

Estimated Costs

Enhanced

 Manufacturer/Vendor:
 WaterTectonics

 Name of Technology:
 pHATBox

 Technology Type:
 Chemical Treatment

_								
п	re	at	m	er	٦t	N	nτ	es

IICati	ment Notes
Field.	Real-time with in-line probes. 2-point buffer calibration.

Additional Notes

- (a) Depends on buffering capacity of waterstream, flow rate, total volume processed, specific pH adjustment additive selected, and final pH point required.
- (b) Packaged in 4'-6' (w) x 2.5' (d) x 4' (t) industrial steel box w/hinged top opening lid. Additional storage space for additive will depend on volume of additive storage (up to 35-gal drums in box, larger must go external) plus secondary containment). Unit has inline pH probe for real time monitoring and data logger expandable for dual pH adjustment (multi injection/mixing loops), and flow recording. pH set-point(s) programmable into controller.
- (c) Adjusts pH. System performance data not applicable.

Additional Notes:

- -Effective for controlling alkaline waters from cement/concrete operations using carbon dioxide.
- -Suitable for inclusion as pH adustment component in variety of water treatment systems.
- -pH set-points (high/low) variable for application.

 Manufacturer/Vendor:
 StormwateRx LLC

 Name of Technology:
 Purus Stormwater Polishing System

 Technology Type:
 Chemical Filtration

Schematic

System Design Information

Design Flow Rate (gpm): low: 5

high: 210

System Footprint (sq. ft.):

10,90

Required Head Loss (ft):

70 - 120

Internal or External Bypass:

External

Other Approvals:

Application Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):			YES		YES	YES		YES

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):			0.28			0.06	
Median Effluent (mg/L):			0.083			0.0074	
Median Removal (%):			86			88	

Basic Enhanced Phosphorus

Pretreatment

Approvals

Oil

Local Installations

of Installations in Washington: YES

Estimated Costs

 Estimated Installation Cost:
 low: \$10,000
 high: \$140,000

 Estimated Annual O&M Cost:
 low: \$0.0024/gal
 high: \$0.0047/gal

^{*} Blank cells indicate no information was received from vendor

Manufacturer/Vendor:	StormwateRx LLC Purus Stormwater Polishing System Chemical Filtration							
Name of Technology:								
Technology Type:								
Treatment Notes								
	d as grab samples by StormwateRx, consulting engineers, and facility treatment system operators. All							
The state of the s	party certified analytical lab. Non-detects were assumed to have the value of one half the detection							
limit.								
Additional Notes								
Additional pollutant removal i	includes bacteria (>99%), PCBs, PAHs and toxic organics.							

Manufacturer/Vendor:	Morselt Borne BV
Name of Technology:	Redbox
Technology Type:	Electrocoagulation

Schematic

System Design Information

Design Flow Rate (gpm): low: 0.5 high: 150

System Footprint (sq. ft.):

Required Head Loss (ft):

Internal or External Bypass:

NA

Application

Wastewater/Process Water

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):	99							

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):				99	99	99	

^{*} Blank cells indicate no information was received from vendor

of Installations in Washington:

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals
TAPE						
		•				
	50% TSS Removal		80% TSS Removal			
NJCAT						•

Estimated Costs

 Estimated Installation Cost:
 low: \$42,000
 high: \$1,000,000

 Estimated Annual O&M Cost:
 low: \$1,000
 high: \$20,000

Manufacturer/Vendor:	Morselt Borne BV							
Name of Technology:	Redbox							
Technology Type:	Electrocoagulation							
Treatment Notes								
Third part analysis has been	performed in many cases. Results show very high removal rates, especially for heavy metals.							
Additional Notes								

Estimated Installation Cost:

Estimated Annual O&M Cost:

Treatment Technology Summary Report

Manufactu	rer/Vendor:	Aquatech									
Name of Te	chnology:	WaterTral	k Ion Exchange								
Technology	туре:	Ion Exchange									
Schemati				Design Flow: high: System For	ow Rate (23 866 cotprint (65,113 Head Los	- - sq. ft.):	ion				
			Treatr	ment Perform	nance *				-		
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAH		
Number of	samples:	133	I F	1711	Oil & grease	34003	FCDS	DIOXIIIS	CFAII		
	luent (mg/L):		1								
	luent (mg/L):										
Median Re								<u> </u>			
	(, - / -	ļ				ļ			ļ		
			Total Met	als	Dissolved Metals			1			
		Cu	Pb	Zn	Cu	Pb	Zn	1			
Number of	samples:							†			
	luent (mg/L):							†			
	luent (mg/L):							1			
Median Re								†			
	s indicate no info	rmation v	vas received	from vendor	L			1			
				Approvals							
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Ī	Other Ap	provals:			
TAPE						İ					
					1						
	50% TSS Re	moval	80% TS	S Removal							
NJCAT											
			In	cal Installati	ons						
# of Installa	ations in Washing	ton:	20	ca. mstanuti	<i></i>						

Estimated Costs

low:

high: ____

Treatment Technology Summary Report

	rer/Vendor:	Aquatech							
Name of Te		WaterTrak	Pressurized N	∕ledia Filter					
Technology	у Туре:	Filtration(I	Media)						
Schemati	ic	-		h		-	ow Rate (nformati	on
						-	27	=	
			4.6			high:	905	_	
	Ý.						ootprint (: 43,119		
		-					Head Los		
	1						or Externa	I Bypass:	
			2			Application	on		
			Treatn	nent Perforn	nance *				
		TSS	ТР	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAH
Number of	samples:								
	fluent (mg/L):								
	fluent (mg/L):								
Median Re	moval (%):								
			•	•	•		•	_	
			Total Met	als	Disso	ved Meta	ls	1	
		Cu	Pb	Zn	Cu	Pb	Zn	<u> </u>	
Number of	•							<u> </u>	
	fluent (mg/L):							<u> </u>	
	fluent (mg/L):							<u> </u>	
Median Re								1	
* Blank cel	ls indicate no info	rmation w	as received						
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE									
			•		_	<u>-</u> '			
	50% TSS Rer	moval	80% TS	S Removal					
NJCAT									
			Lo	cal Installati	ons				
# of Installa	ations in Washing	ton:			-				
			E	stimated Co	sts				
Ectimated	Installation Cost:		low:		high:				
	Annual O&M Cost	•	low:		high:		=		
		•	.044.				_		

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Aquatech
WaterTrak Pressurized Media Filter
Filtration(Media)

Additional Notes

Manufactu	rer/Vendor:	Aquatech							
Name of Te	echnology:	WaterTrak	Reverse Osm	osis					
Technology	у Туре:	Reverse Os	smosis						
Schemati						Design Floring	ow Rate (65 275 cotprint (143,243 Head Los 350 or Externa	- - sq. ft.): s (ft):	on
			Treatr	nent Perforn	nance *				-
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAH
Number of	samples:								
	luent (mg/L):								
	luent (mg/L):								
Median Re	moval (%):								
					T			7	
			Total Met			ved Meta	1	<u> </u>	
		Cu	Pb	Zn	Cu	Pb	Zn	<u> </u>	
Number of								<u> </u>	
	luent (mg/L):							1	
	luent (mg/L):							<u> </u>	
Median Re								1	
* Blank cel	ls indicate no info	rmation w	as received						
				Approvals		_			
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE									
					1				
	50% TSS Rer	noval	80% TS	S Removal					
NJCAT									
			Lo	cal Installati	ons				
# of Installa	ations in Washingt	ton:			-				
			E.	stimated Cos	sts				
.									
	Installation Cost:		low:		high:		_		
Estimated A	Annual O&M Cost	:	low:		high:		_		

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Aquatech
WaterTrak Reverse Osmosis
Reverse Osmosis

Additional Notes

Estimated Installation Cost: Estimated Annual O&M Cost:

Treatment Technology Summary Report

Manufactu	rer/Vendor:	Aquatech							
Name of Te	•		k Ultrafiltration	<u> </u>					
Technology	• •	Filtration(
recimology	Type.	Theracion	iviculaj						
Schemati	С					System	Design I	nformati	on
1	The state of					Design Flo	ow Rate (gpm):	
		AND DATE .	-	-		low:	38	_	
DI		THE PERSON NAMED IN	4	44		high:	377	_	
						System Fo		sq. ft.):	
						Required	31,62 Head Los	s (ft):	-
						Internal o	r Externa	l Bypass:	<u>-</u>
						Application	on		-
									•
			Treatr	nent Perforn	nance *				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	СРАН
Number of									
	luent (mg/L):								
	luent (mg/L):								
Median Re	moval (%):								
			Total Met	ale	Disso	lved Meta	le .	Т	
		Cu	Pb	Zn	Cu	Pb	Zn	†	
Number of	samples:	Cu	1.5		cu			†	
	luent (mg/L):		1					†	
	luent (mg/L):							†	
Median Re	moval (%):							†	
	ls indicate no info	rmation v	vas received	from vendor			Į.	1	
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Ī	Other A	provals:	
TAPE						İ			
	50% TSS Re	moval	80% TS	S Removal					
NJCAT]				
			10	cal Installati	ons				
			LO	cai iiistuiiUli	UIIS				
# of Installa	ations in Washing	ton:			_				

Estimated Costs

low:

high: _____

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Additional Notes

Manufacturer/Vendor:	WaterTectonics
Name of Technology:	Wavelonics
Technology Type:	Electrocoagulation

Schematic

System Design Information

Design Flow Rate (gpm):

low: 50 high: >1000

System Footprint (sq. ft.):

200-4000

Required Head Loss (ft):

NA

Internal or External Bypass:

NONE-auto recirculation

Application

Stormwater/Process

Water/Wastewater/Ground water

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):		200	45.6	197	2.34	0.0024		
Median Effluent (mg/L):		5	0.25	4.76	0.00002	0.00011		
Median Removal (%):		98	99	98	100	95		

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	4.8	0.253	0.516	0.0235	0.0157	0.12	
Median Effluent (mg/L):	0.0074	0.003	0.0315	0.005	0.0031	0.02	
Median Removal (%):	100	99	94	79	80	83	

^{*} Blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
ГАРЕ						
	•		•	•		<u> </u>
	50% TSS Rer	noval	80% TS	S Removal		·
NJCAT						

Loca	1100	+~!!	~+:~"	•

of Installations in Washington: 35+

Estimated Costs

Estimated Installation Cost:low: \$60000high: \$850000Estimated Annual O&M Cost:low: \$0.0008/galhigh: \$0.008/gal

Manufacturer/Vendor:	WaterTectonics
Name of Technology:	Wavelonics
Technology Type:	Electrocoagulation

Treatment Notes

Field via hand-held instruments, Technology's in-line and real-time water quality monitoring system, Oversight Engineers/Project Owners, 3rd party analytical testing laboratories using both instantaneous grab and composting methods (manual and automated). System performance "Median" data presented below does not accommodate analytical data results for parameters report as ND (<MDL's, or <MCL's). All ND data was utilized in the calculations as the value of the MDL or MCL. Influent data is limited in that our Clients typically do not incur cost expenditure to evaluate raw water characteristics once the system has been designed, installed, and made operational. They focus on monitoring effluent quality. Further, effluent data generated by our Clients/System Owners do not typically provide us with DMR's they submit to Ecology or other regulatory agencies. Effluent data points do not reflect technology ability to achieve lower than reported results. Permit discharge limitations have historically varied from site to site, permit to permit, and therefore data reflect treatment efforts and not technology limitations.

Additional Notes

Wavelonics electrocoagulation (EC) reactions will depend on the nature of constituents present, their reaction chemistry, pH sensitivity, and water conductivity. Bacteria disinfection has been demonstrated at laboratory and full-scale applications. Technology viability and optimization is recommended for non-conventional constituents of concern, or for complex matrices where interferences and competing conditions are problematic to conventional advanced treatment processes. System Performance data fields (above) call for "Median" data points that do not allow for presentation of worst-case conditions, nor do they adequately reflect "mean" conditions, both of which are more elevated than the "Median" data presented for influent characteristics. Effluent "median" data do not reflect <MDL or <MCL data as reported by laboratories. However, ND results utilized in the calculation were the numeric value of the actual MDL or MCL. SVOC and cPAH data reflect a summation of all individual constituents in SVOC or cPAH parameter suites as totals. PCB's are totals of all Arochlor congeners. Oil and Grease data reflect both Freon and Hexane extraction analytical methods. Technology has not been used to specifically remove Dioxins and when technology was utilized, Dioxins were not targeted for analytical testing. Other data available upon request for: bacteria; other heavy metals; color from humics, etc.

Estimated Installation Cost:

Estimated Annual O&M Cost:

Treatment Technology Summary Report

Manufactur	er/Vendor:	Waste & E	nvironmental	Technologies Ltd	d.				
Name of Te	chnology:	Wetsep							
Technology	Туре:	Chemical Treatment							
Schematic	;					System	Design I	nformati	on
	Flow Diag	Efflue		S T HELLOW TO		Danier El	D-4 /		
		Disch	Top Decking	g Plate		Design Flo		gpm):	
	Weir Plate to check flow		Oil Skim	0.000			20	_	
	EffI		- Coagula Injectio	ant		high:		_	
	Circular — Incline Plate	Impl	nging, am			System Fo	ootprint (sq. ft.):	
		CE.	Inline N	dixer		Required	Head Los	s (ft):	-
							40 feet	- (-/	
		180	_ Floccul	ant		Internal c	r Externa	l Bypass:	_'
		Sludge	Injectio	n			ternal Byp	ass	_
			impent			Application			
						Stormwate	er/Wastew	ater	-
			Treatr	nent Perforn	nance *				
			HEULI	nent Perjoin	idiice				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	samples:								
Median Infl	uent (mg/L):	112	13.4						
Median Effl	uent (mg/L):	<2	1.9						
Median Ren	moval (%):	98	86						
			Total Met	als	Disso	lved Meta	ls	7	
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of	samples:							1	
Median Infl	uent (mg/L):				7 μg/L	18 μ g/L		1	
Median Effl	uent (mg/L):				1 μ g/L	<1 μg/L]	
Median Ren	noval (%):				86	94			
* Blank cells	s indicate no info	rmation w	as received f						
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	1	Other A	provals:	
TAPE	Tretreatment	Dasic	Limaneca	Thosphorus	O.I.		Other A	provais.	
IAIL	<u> </u>	-		ļ.	<u>I</u>	1			
	50% TSS Re	moval	80% TS	S Removal]				
NJCAT]				
			10	cal Installati	ons				
			LO	cai mstanati	Uris				
# of Installa	tions in Washing	ton:		1					
					-				
			E	stimated Cos	sts				

low:

\$1000

low: \$100/day

high: \$2500

high: \$250/day

Manufacturer/Vendor:	Waste & Environmental Technologies Ltd.
Name of Technology:	Wetsep
Technology Type:	Chemical Treatment

Treatment Notes

The data can be stored and downloaded from data logger for flowrate, pH and Turbidity. Grab samples can also be taken at various
points in the system to be varified by a third party (i.e. laboratory).
Please aslo find the Field Study for the WetSep filtration System

Additional Notes
The WetSep system was used in the State of Washington at the Canada/US border crossing. The main Contractor for this job was JE
Dunn Construction. The main use of the unit was for treatment of construction waste runoff.

of Installations in Washington:

Treatment Technology Summary Report

Manufactu	rer/Vendor:	Siemens		ge System (WW					
Name of Te									
Technology	Туре:								
Schematic						System D	esign Inf	formation	<u> </u>
1	NCOMING								
	NSEWATERS					Design Flov	v Rate (gp	m):	
- (1)	CARTRIDGE	ION EXCHANGE				low:	1gpm	_	
	PLTERS	CANISTERS		WATER RE-USE		high:	5000gpm	<u> </u>	
1		7 10 1		System Foo	otprint (sq	ı. ft.):			
		ARBON	NO NO NO NO NO NO NO NO NO NO NO NO NO N	EFFLUENT TO DISCHARGE		Required H		(ft):	-
RECEP	gue .	5 5	pH ADJUST (F NECESSARY)			Internal or	20psi	Pypace:	-
			- Actions			iiiteiiiai oi	None	oypass.	
						Application			-
						Stormwater		ater/	
						Wastewater			
			Treat	ment Perfori	mance *				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	•								
	luent (mg/L):								
	luent (mg/L):	_							
Median Rer	moval (%):								
			Total Met	als	Diss	olved Metals	s	7	
		Cu	Pb	Zn	Cu	Pb	Zn	1	
Number of	samples:								
Median Infl	luent (mg/L):								
Median Effl	luent (mg/L):								
Median Rei									
* Blank cell	s indicate no inf	ormation w	as received f	rom vendor					
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other A	provals:	
TAPE	<u> </u>						-		
	50% TSS R	omoval	900/ TC	S Removal					
NJCAT	50% 135 K	amoval	5U% 15	o Kemovai			-		
INCAI			1						

Estimated Costs

>500

Local Installations

Estimated Installation Cost:low: \$3,000high: \$250,000Estimated Annual O&M Cost:low: \$3,000high: \$500,000

Manufacturer/Vendor:	Siemens								
Name of Technology:	Waste Water Ion Exchange System (WWIX)								
Technology Type:	Ion Exchange								
Treatment Notes									
	stems Siemens has media tailored to achieve low discharge levels as low as 1ppb and 12ppt for mercury. y sampled by customer and checked with on site test kits or samples shipped to local certified laboratories								
for evaluation.	y sampled by customer and checked with on site test kits of samples shipped to local certified laboratories								
Tor Evaluation.									
Additional Notes									

Passive

Manufacturer/Vendor:	Advanced Drainage Systems, Inc
Name of Technology:	ADS® Water Quality Unit
Technology Type:	Oil/Water Separator

_						-
Sc	h	^	m	~	+	ir

System Design Information

Design Flow Rate (gpm):

	10W: 1800
BYPASS PIPE LOCATED DV THE STIC ID: THE	high:126000_
ASS VATER QUALITY UNIT ACCESS RISERS	System Footprint (sq. ft.):
	Required Head Loss (ft):
SEEMENT DAWISER	Internal or External Bypass:
	Application

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	ND	NA		ND				
Median Effluent (mg/L):	ND	NA		ND				
Median Removal (%):	80	>43		80				

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	ND	ND	ND	ND	ND	ND	
Median Effluent (mg/L):	ND	ND	ND	ND	ND	ND	
Median Removal (%):	74	74	74	74	74	74	

^{*} blank cells indicate no information was received from vendor

Estimated Installation Cost: Estimated Annual O&M Cost:

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:				
TAPE										
					,					
	50% TSS Rer	noval	80% TS	S Removal						
NJCAT										
	•		•							
			Lo	cal Installatio	ns					
# of Installations in Washington:										
	· ·		-							
			Ε	stimated Cost	:s					
					-					

low:_____

high: ____

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Advanced Drainage Systems, Inc

ADS* Water Quality Unit

Oil/Water Separator

Treatment Notes

Additional Notes

Manufacturer/Vendor: Eco-Tec, Inc
Name of Technology: ADsorb-it

Technology Type: Drain Inlet Inset (Absorbent Boom/Fabric)

Schematic

System Design Information

Design Flow Rate (gpm):

 low:
 80/SF

 high:
 100/SF

System Footprint (sq. ft.):

Varies

Required Head Loss (ft):

NA

Internal or External Bypass:

Per individual application

Application

Stormwater, Groundwater, Wastewater, Process Water

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	Varies		Varies	Varies				
Median Effluent (mg/L):	Varies		Varies	Varies				
Median Removal (%):	80-99		99-100	99-100				

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):	Varies	Varies	Varies	Varies	Varies	Varies	

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
	50% TSS Rer	noval	80% TS	S Removal		
NJCAT						
	*					

Local	l Instal	lations
-------	----------	---------

of Installations in Washington: 61

Estimated Costs

Estimated Installation Cost:low: \$0.91/SFhigh: \$0.91/SFEstimated Annual O&M Cost:low: \$0.91/SFhigh: \$0.91/SF

Manufacturer/Vendor: Eco-Tec, Inc
Name of Technology: ADsorb-it

Technology Type: Drain Inlet Inset (Absorbent Boom/Fabric)

Treatment Notes

A variety of sampling methods have been implemented over the years based on specific installations of the ADsorb-it Filtration Fabric and associated application specific product configurations manufactured from the ADsorb-it Fabric. ADsorb-it is designed to be versatile in its installation for diverse filtration applications, thus it can be configured for Downspout, Drain Inlet Inset, Below Ground Vault, Above Ground Vault, Shoreline, Oil Water Separator, and General Stormwater applications. ADsorb-it is approved by the Department of Ecology (Ecology) for use as a Catch Basin Insert and is used by Ecology for spill response and general oil/water related issues.

Additional Notes

As can be seen on our web site at www.eco-tec-inc.com, miles of ADsorb-it Fabric were deployed along the Gulf Coast Shoreline as an Oil Fence to provide effective removal of advancing oils from the BP Deepwater Horizon Release. Additional testing data can be accessed on our web site simply by clicking on "Test Data" in the left hand column. As a note, ADsorb-it is highly effective at removing hydrocarbons, including fats, oils and greases (FOG) from water, thus any other contaminants that would be attached to the hydrocarbon such as PCBs would be removed in conjuncton with hydrocarbon / FOG removal. ADsorb-it is an environmentally compatible product in that it is: Made from waste fibers from the textile manufacturing industry, it effectively removes hydrocarbons and associated / attached contaminants from the environment, it can be cleaned and reused indefinitely, it can be disposed of as a fuel source with a higher BTU per pound value than coal and less than 1% residual ash.

Manufacturer/Vendor: Name of Technology:

AquaShield, Inc.

Aqua-Filter

Technology Type: Media Filtration(Combination System (with Hydrodyanamic Separation))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 25 high: 960+

System Footprint (sq. ft.):

NA

Required Head Loss (ft):

8.0

Internal or External Bypass:

Both

Other Approvals:

Application

Stormwater/ Process Water

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:	160							
Median Influent (mg/L):	43							
Median Effluent (mg/L):	5							
Median Removal (%):	80							

		Total Metals			Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn		
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

Enhanced Phosphorus

Basic

Pretreatment

Approvals

Oil

50% TSS Removal 80% TSS Removal
TAPE PULD PULD PULD PULD

Local Installations

of Installations in Washington:

Estimated Costs

Estimated Installation Cost: low: Site-specific high: Site-specific **Estimated Annual O&M Cost:** low: Site-specific high: Site-specific

^{*} blank cells indicate no information was received from vendor

Manufacturer/Vendor:	AquaShield, Inc. Aqua-Filter							
Name of Technology:								
Technology Type:	Media Filtration(Combination System (with Hydrodyanamic Separation))							
Treatment Notes								
Independent lab by grab sam	ples. Field by auto-composite sampling, 6 sample pairs per TARP qualifying storm.							
Additional Notes								
	e has been verified by NJCAT. AF5.3 model is currently undergoing independent TARP Tier II field g 96% TSS removal. Anticipate completion in 2012. AF-4.2 model field tested at Univeristy of New							
	er, 80% TSS removal. Afficiency (see above parameters).							
Trampsmire Stormwater Cent	er, 80% 133 removal emclency (see above parameters).							

Manufacturer/Vendor: Name of Technology: AquaShield, Inc.
Aqua-Guardian

Technology Type: Drain Inlet Insert(Combination System (Screen and Media Filtration))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 5/400* high: 100/940*

System Footprint (sq. ft.):

NA

Required Head Loss (ft):

0

Internal or External Bypass:

Both

Other Approvals:

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:	160							
Median Influent (mg/L):	43							
Median Effluent (mg/L):	5							
Median Removal (%):	80							

		Total Metals			Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn		
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

^{*} blank cells indicate no information was received from vendor

Basic

Pretreatment

Approvals

Phosphorus

Oil

TAPE				
			_	
	50% TSS Removal	80% TSS Removal		
NJCAT				

Local Installations

of Installations in Washington: 15

Estimated Costs

Estimated Installation Cost:low: Site-specifichigh: Site-specificEstimated Annual O&M Cost:low: Site-specifichigh: Site-specific

Enhanced

Manufacturer/Vendor:	AquaShield, Inc.
Name of Technology:	Aqua-Guardian
Technology Type:	Drain Inlet Insert(Combination System (Screen and Media Filtration))

_					
Tre	n+n	200	+ 1	๚๛	tnc

	* x/x = flow thru perlite/flow thru perlite + filter cloth. See Aqua-Filter, since this device uses same media. Independent lab by grab
	samples. Field by auto-composite sampling, 6 sample pairs per TARP qualifying storm.
ı	
ı	

Additional Notes

See Aqua-Filter since this device uses same filter media. Aqua-Filter filtration cartridge has been verified by NJCAT. AF-5.3 model is
currently undergoing independent TARP Tier II field testing in Maryland averaging 96% TSS removal. Anticipate completion in 2012.
AF-4.2 model field tested at Univeristy of New Hampshire Stormwater Center, 80% TSS removal efficiency (see above parameters).

Manufacturer/Vendor:	AquaShield, Inc.	
Name of Technology:	Aqua-Swirl	
Technology Type:	Hydrodynamic Separation	
Schematic		System Design Information
	1000	Design Flow Rate (gnm)

low: 100 high: 2,600

System Footprint (sq. ft.):

Required Head Loss (ft):

0.25

Internal or External Bypass:

Both

Application

Stormwater/Process Water

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:	192							
Median Influent (mg/L):	137							
Median Effluent (mg/L):	12							
Median Removal (%):	86							

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Ennanced	Pnospnorus	Oil	Other Approvals:
TAPE	GULD					
	50% TSS Rer	noval	80% TSS	S Removal		
NJCAT	Х					

Local Ins	talla	itions
-----------	-------	--------

of Installations in Washington:

Estimated Costs

Estimated Installation Cost: low: Site-specific high: Site-specific low: Site-specific high: Site-specific **Estimated Annual O&M Cost:**

Manufacturer/Vendor:	AquaShield, Inc.						
Name of Technology:	Aqua-Swirl						
Technology Type:	Hydrodynamic Separation						
Treatment Notes							
Lab tested by Tennessee Tec	h University using autosamplers. Field by auto-composite sampling, 6 sample pairs per TARP.						
Additional Notes							
	derway per TARP Tier II in Maryland, anticipate completion in 2011. 16 storms and 14 inches of rain						
-	ameters above are for field test. Lab testing verified by NJCAT.						

Manufacturer/Vendor: Name of Technology: Technology Type: StormwateRx LLC

Aquip Enhanced Filtration System

Media Filtration(Above ground (pump required))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 10 high: 350

System Footprint (sq. ft.):

14 - 320

Required Head Loss (ft):

4 - 7

Other Approvals:

Internal or External Bypass:

External

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	30			9.9				
Median Effluent (mg/L):	3.39			3				
Median Removal (%):	83		YES	70	YES	YES		YES

		Total Meta	als	Dissolved Metals				
	Cu Pb Zn Cu Pb					Zn		
Number of samples:								
Median Influent (mg/L):	0.152	0.03	0.425	0.084	0.008	0.196		
Median Effluent (mg/L):	0.008	0.006	0.061	0.006	0.007	0.06		
Median Removal (%):	94	79	85	93	51	73		

^{*} blank cells indicate no information was received from vendor

Basic

Pretreatment

Approvals

Phosphorus

Oil

TAPE		
	50% TSS Removal	80% TSS Removal
NJCAT		

Local	1	nstal	ı	a	ti	O	n	S

of Installations in Washington: 30

Estimated Costs

Estimated Installation Cost:low: \$5,000high: \$150,000Estimated Annual O&M Cost:low: \$0.0003/galhigh: \$0.003/gal

Enhanced

Manufacturer/Vendor:
Name of Technology:
Technology Type:

StormwateRx LLC

Aquip Enhanced Filtration System

Media Filtration(Above ground (pump required))

T		~4			-+	N	_	tes
	re	aı	ш	ıe	nι	IV	u	ιes

These samples were collected as grab samples by StormwateRx, consulting engineers, and facility treatment system operators. All
analytical data is from a third party certified analytical lab. Non-detects were assumed to have the value of one half the detection limit

Additional Notes

Non-detects were assumed to have the value of one half the detection limit.

Aquip removes PCBs, PAHs and other toxic organics through particle filtration and absorption to one of the filtration media in the bed. VOC and SVOC removal is through absorption and biological degradation.

The Aquip is a secondary defense against oil and grease and removes TPH and soluble oils through biodegredataion, absorption and bio-mechanical means.

HERRERA Treatment Technology Summary Report

Manufactuu		Day Cay car	Taabaalaaiaa l	la a						
Manufacturer/Vendor: Name of Technology: Technology Type:		BaySaver Technologies, Inc. BayFilter® Media Filtration(Cartridge)								
Schematic	;					System	Design I	nformati	on	
	INLET PLATE					Design Fla	ow Rate (anm).		
	MEDIA SPIRAL #1	•	<u>26.00</u> ″			Design Flow Rate (gpm): low: 15 high: 30				
	INLET DRAINAGE MATERIAL	6								
	DUTLET DRAINAGE MATERIAL POLYMER SEAL		2.00*					_		
	DUTLET PIPE		DUTLET CHA-	(BER		System Footprint (sq. ft.):				
	AIR RELEASE VALVE									
	FLOV CONTROL DRIFT	ICE		28.75*		Required Head Loss (ft): Internal or External Bypass:				
	FILTER LEG	is-								
	8			OUTLET COLLECTION MANIFOLD		Application				
			Treatr	nent Perforn	nance *					
		<u> </u>			idiice					
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Number of	•									
	uent (mg/L):	ND	NA		ND					
	uent (mg/L):	ND	NA . 50		ND			1		
Median Rer	movai (%):	80	>50		80					
			Total Met	als	Disso	lved Meta	7			
		Cu	Pb	Zn	Cu	Pb	Zn	1		
Number of	samples:							1		
Median Infl	uent (mg/L):							1		
Median Effl	uent (mg/L):							7		
Median Rer	moval (%):]		
* blank cells	s indicate no info	rmation wa	as received fr	om vendor		•	•	-		
				Approvals						
	Pretreatment	Basic	Enhanced	Phosphorus	Oil]	Other A	provals:		
TAPE		CULD	CULD	CULD]				
	T				1					
NUCAT	50% TSS Re	moval	80% TS	S Removal						
NJCAT				X						
			Lo	cal Installati	ons					
# of Installa	tions in Washing	gton:			_					
			E	stimated Cos	sts					
	nstallation Cost:		low:		high:		_			
Estimated A	Annual O&M Cos	·· low· high				h·				

Treatment Technology Summary Report

					3 ,	, ,					
Manufactu	rer/Vendor:	BaySaver T	Technologies, I	nc.							
Name of Te	echnology:	BaySepara	BaySeparator®								
Technology	у Туре:	Hydrodynamic Separation									
Schematic	C					System	Design I	nformati	on		
	34	AYSEPARATOR UNIT				Design El	ow Pate (mm).			
		Design Flow Rate (gpm): low: 450 high: 1350									
	INLET PIPE-		FERNOD CO	DUPLER				_			
		CONNECTIN PIPE				System F	ootprint (sq. ft.):			
	PRIMARY	MANHOLE	RUBBER BOOT			Required	Head Los	s (ft):	•		
	,					Internal o	r Externa	l Bypass:	-		
STORAGE MANHOLE							Application				
						-			-		
			Treatn	nent Perforn	nance *						
				_							
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs		
Number of	samples:										
	luent (mg/L):	ND	NA		ND						
	luent (mg/L):	ND	NA		ND						
Median Re	moval (%):	80	19		80				<u> </u>		
			Tatal Mat	-1-	Diago	NA	1-	7			
		Cu	Total Met	ais Zn	Cu	Ived Meta Pb	zn Zn	_			
Number of	camples:	Cu	PD	211	Cu	PU	ZII				
	luent (mg/L):				ND		ND	1			
					ND ND		ND	1			
Median Effluent (mg/L): Median Removal (%):					42		38				
	s indicate no infor	mation wa	s received fro	om vendor		!	1 33	4			
				Approvals							
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:					
TAPE	CULD										
			000/ 000		1						
NUCAT	50% TSS Re	moval	80% TSS Removal								
NJCAT	X]						
			Lo	cal Installati	ons						
# of Installa	ations in Washing	ton:			-						
			E	stimated Cos	sts						
Estimated Installation Cost:			low:		high:						
Estimated Annual O&M Cost:			low:		high:	_					

Manufacturer/Vendor:	BaySaver Technologies, Inc.									
Name of Technology:	BaySeparator®									
Technology Type:	Hydrodynamic Separation									
Treatment Notes										
Additional Notes										

Manufacturer/Vendor: Name of Technology: Technology Type: Bio Clean Environmental

Bio Clean Curb Inlet Basket

Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 381 high: 898

System Footprint (sq. ft.):

0

Required Head Loss (ft):

0.5-2

Internal or External Bypass:

Other Approvals:

External

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	NA	85.8	NA	NA	NA	NA	NA	NA
Median Effluent (mg/L):	NA	73.4	NA	NA	NA	NA	NA	NA
Median Removal (%):	93*	14	NA	NA	NA	NA	NA	NA

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	NA	NA	24.3	NA	NA	NA	
Median Effluent (mg/L):	NA	NA	10.4	NA	NA	NA	
Median Removal (%):	NA	NA	79	NA	NA	NA	

^{*} blank cells indicate no information was received from vendor

Pretreatment Basic Enhanced Phosphorus

Approvals

Oil

					J	
TAPE						
	•	•	•	•		<u> </u>
	50% TSS Rer	noval	80% TS	S Removal		
NJCAT						
	•				•	

	Local	' Instal	lations
--	-------	----------	---------

of Installations in Washington: 0 WA

Estimated Costs

Estimated Installation Cost:low:\$445high:\$1,600Estimated Annual O&M Cost:low:\$0.20/galhigh:\$0.40/gal

Manufacturer/Vendor: Name of Technology: Technology Type: Bio Clean Environmental
Bio Clean Curb Inlet Basket

Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Treatment Notes

The Curb Inlet Basket has been in use since the mid 90's. Several field and laboratory studies have been performed on the system. For this reason several reports are being listed below.

- --Univerisity of Southern California Independent Field Testing (Turbidity in NTUs)
- --Suspended Solids Retention Testing Full Scale Lab Testing

Additional Notes
*Mass Balance was used for the Suspended Solids Retention Test and therefore mg/L and number of samples does not apply. An OK
90 Sand gradation was used for the testing.

Manufacturer/Vendor: Name of Technology: Technology Type: Bio Clean Environmental

Bio Clean Downspout Filter

Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic LOW PATH TERS HIGH FLOW BYPASS POWDER COATED HITER HOUSING HIGH FLOW BYPASS MAINTENANCE HANDLES (for easy removal) STAINLESS STEEL FILTER CARTRIDGE BIOSORB HYDROCARBON BOOM (wrapped around cartridge) (additional filter media available)

System Design Information

Design Flow Rate (gpm):

low: 249 high: 1,145

System Footprint (sq. ft.):

0.31-1.57 (cu ft)

Required Head Loss (ft):

1,2

Other Approvals:

Internal or External Bypass:

Internal Bypass - High Flow

Unimpeded

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	NA	NA		223.5	NA	NA	NA	NA
Median Effluent (mg/L):	NA	NA		29.5	NA	NA	NA	NA
Median Removal (%):	93*	NA		87	NA	NA	NA	NA

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	NA	NA	NA	NA	NA	NA	
Median Effluent (mg/L):	NA	NA	NA	NA	NA	NA	
Median Removal (%):	76	96	69	NA	NA	NA	

Basic Enhanced Phosphorus

Pretreatment

Approvals

Oil

TAPE					-		
			•	•	7		
	50% TSS Rer	noval	80% TSS	S Removal		_	
NJCAT							

Local Installations

of Installations in Washington: 17 (Port of Olympia)

Estimated Costs

Estimated Installation Cost: low: \$1,035 high: \$1,200
Estimated Annual O&M Cost: low: \$0.16/gal high: \$0.22/gal

^{*} blank cells indicate no information was received from vendor

Manufacturer/Vendor: B
Name of Technology: B
Technology Type:

Bio Clean Environmental
Bio Clean Downspout Filter

Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Treatment Notes

The Bio Clean Downspout Filter has been used since 2003. It has been tested and approved by IAMPO. The downspout filter has UPC certification. The filter has been tested under the IAMPO to verify treatment and bypass flow rates. The filter also meets the protocol's minimum pollutant removal specification of at least 60% TSS at a concentration of 150 mg/L over a several hour period up to the storage capacity of the product. The filter has also been tested in full scale labratory testing.

--Full Scale Laboratory Testing D-Tek Analytical

--X-Tex-Z-200 Testing for Metals - From Xextex Corporation, USA

Additional Notes
*Mass Balance was used for the TSS Tesing and therefore mg/L and number of samples does not apply. Turbidity in NTUs. This
filter is made of all stainless steel and is istalled inline with new or existing downspouts. The Bio Clean Downspout Filter is also available with added for ion exchange embedded filter fabric for enhanced removal of metals. The filter is adaptable to downspousizes 4" to 12".

Manufacturer/Vendor: Name of Technology:

Bio Clean Environmental

echnology: Bio Clean Flume Filter

Technology Type: Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 116 high: 583

System Footprint (sq. ft.):

1,6

Required Head Loss (ft):

0.083,0.5

Internal or External Bypass:

Internal Bypass

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	73	NA	223	360	NA	NA	NA	NA
Median Effluent (mg/L):	51.6	NA	29.5	62	NA	NA	NA	NA
Median Removal (%):	29	NA	87	83	NA	NA	NA	NA

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	NA	NA	NA	NA	NA	NA	
Median Effluent (mg/L):	NA	NA	NA	NA	NA	NA	
Median Removal (%):	NA	17	NA	NA	NA	NA	

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Ennanced	Phosphorus	0	Other Approvais:
TAPE						
	<u> </u>	•				
	50% TSS Rer	noval	80% TSS	S Removal		
NJCAT		•				
					!	

Local Install	ations
---------------	--------

of Installations in Washington: 0 WA

Estimated Costs

Estimated Installation Cost:low:\$660high:\$1,302Estimated Annual O&M Cost:low:\$0.23/galhigh:\$0.74/gal

 Manufacturer/Vendor:
 Bio Clean Environmental

 Name of Technology:
 Bio Clean Flume Filter

 Technology Type:
 Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

reatment Notes		
	been tested indepedently in a full scale d over a period of two days. The Flume F	
Full Scale Laboratory Testing	D-Tek Analytical	
Additional Notes		

Manufacturer/Vendor: Name of Technology:

Bio Clean Environmental

Bio Clean Grate Inlet Skimmer Box

Technology Type: Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 224 high: 8,980

System Footprint (sq. ft.):

0

Required Head Loss (ft):

0.5,2

Internal or External Bypass:

Internal - High Flow Rate

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	NA	18.6	NA	189	NA	NA	NA	NA
Median Effluent (mg/L):	NA	0.452	NA	10.43	NA	NA	NA	NA
Median Removal (%):	86*	98	NA	95	NA	NA	NA	NA

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	1.9	1.5	13.7	NA	NA	NA	
Median Effluent (mg/L):	0.1	0.2	0.73	NA	NA	NA	
Median Removal (%):	95	87	95	NA	NA	NA	

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
	•	•	•			<u>-</u>
	50% TSS Rer	noval	80% TSS	S Removal		

Local Installations

of Installations in Washington: 0 WA, 123 OR

Estimated Costs

Estimated Installation Cost: low: \$635 high: \$1,800
Estimated Annual O&M Cost: low: \$0.15/gal high: \$0.40/gal

Manufacturer/Vendor: Name of Technology: Technology Type: Bio Clean Environmental

Bio Clean Grate Inlet Skimmer Box

Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Treatment Notes

The Grate Inlet Skimmer Basket has been in use since the mid 90's. Several field and laboratory studies have been performed on the system. For this reason several reports are being listed below.

- --Longo Toyota Independent Field Testing
- --Suspended Solids Retention Testing Full Scale Lab Testing
- --Reedy Creek Improvement District Independent Field Testing
- -- UC Irvine Independent Testing
- --Whitman's Pond
- --Creech Engineering

Additional Notes
*Mass Balance was used for the Suspended Solids Retention Test and therefore mg/L and number of samples does not apply. An OK-
90 Sand gradation was used for the testing.

Manufacturer/Vendor: Name of Technology:

Bio Clean Environmental

Bio Clean Trench Drain Filter

Technology Type: Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 28 high: 86

System Footprint (sq. ft.):

0

Required Head Loss (ft):

4,12

Internal or External Bypass:

Internal Bypass

Other Approvals:

Application Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	NA	NA	NA	NA	NA	NA	NA	NA
Median Effluent (mg/L):	NA	NA	NA	NA	NA	NA	NA	NA
Median Removal (%):	NA	NA	NA	NA	NA	NA	NA	NA

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	NA	NA	NA	NA	NA	NA	
Median Effluent (mg/L):	NA	NA	NA	NA	NA	NA	
Median Removal (%):	NA	NA	NA	NA	NA	NA	

^{*} blank cells indicate no information was received from vendor

Pretreatment Basic Enhanced Phosphorus

Approvals

Oil

TAPE						
	50% TSS Rem	anual .	900/ TC	S Removal	1	
NJCAT	50% 133 Kell	iovai	80% 133	Keiliovai	-	

Local	Instal	lations
-------	--------	---------

of Installations in Washington: 0

Estimated Costs

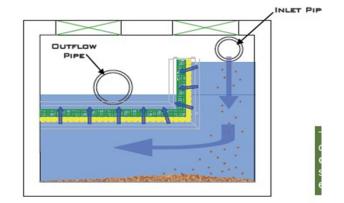
Estimated Installation Cost:low:\$660high:\$1,302Estimated Annual O&M Cost:low:\$0.23/galhigh:\$0.74/gal

Manufacturer/Vendor: Name of Technology: Technology Type: Bio Clean Environmental

Bio Clean Trench Drain Filter

Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Technology Type.	met moert eomomation system (serven and rissorbent boom) rabitely
Treatment Notes	
No testing has been done on the trencl	h drain filter.
Additional Notes	
The Bio Clean Trench Drain Filter come	es standard with BioSorb Hydrocarbon booms or can use BioMediaGREEN. The filter is
designed to utilize varoius media based	d upon pollutants of concern. The Trench Drain Filter can be used in various size trench drains
S .	



Manufacturer/Vendor: Name of Technology: Technology Type: Bio Clean Environmental

Bio Clean Water Polisher - Up Flow Filter

Hydrodynamic Separation(Up-Flow)

Schematic

System Design Information

Design Flow Rate (gpm):

low: 191 high: 528

System Footprint (sq. ft.):

0

Required Head Loss (ft):

1,2

Internal or External Bypass:

Internal Bypass - High Flow

Unimpeded

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	84.6	2.07	1.4	69.8	NA	NA	NA	NA
Median Effluent (mg/L):	12.4	0.63	0	6.5	NA	NA	NA	NA
Median Removal (%):	85	70	>99	91	NA	NA	NA	NA

		Total Met	als	Dissol	ved Meta	ls
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):	NA	NA	NA	0.57	0.38	0.75
Median Effluent (mg/L):	NA	NA	NA	0.12	0.01	0.16
Median Removal (%):	NA	NA	NA	79	98	78

^{*} blank cells indicate no information was received from vendor

Protroatment Basis Enhanced Phoenhorus

Approvals

	Pretreatment	Dasic	Ellilanceu	Phosphorus	l Oii	Other Approvais:
TAPE						
	•		•	•		
	50% TSS Rer	noval	80% TS	S Removal		·
NJCAT						

Local Installations

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low:\$25,000high:\$125,000Estimated Annual O&M Cost:low:\$5.24/galhigh:\$7.85/gal

Manufacturer/Vendor: Name of Technology: Technology Type: Bio Clean Environmental

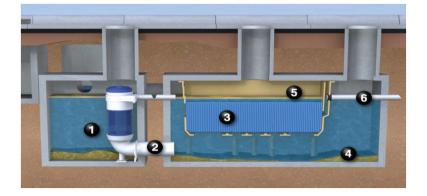
Bio Clean Water Polisher - Up Flow Filter

Hydrodynamic Separation(Up-Flow)

Treatment Notes

The Bio Clean Water Polisher is a unique upflow media filter designed as a stand alone treatment unit or incorporated with the Nutrient Separating Baffle Box to form a complete treatment train. The Bio Clean Water Polisher utilizes the revolutionary filter media, BioMediaGREEN. The BioMediaGREEN has been independently tested in full scale labaratory testing. Media surface loading rate during the testing averaged 2-5 gpm with minimal head. A series of 8 composite influent and effluent grab samples we collected over a perioud of two days.

BioMediaGREEN Performance Testing by Waves Environmental - Independent Full Scale Lab Testing


Additional Notes

The Bio Clean Water Polisher utilizes the revolutionary filter media, BioMediaGREEN. This material is made of billions of small fibers formed into solid blocks. The media composition consists of various oxides to allow for ion exchange and precipitation of dissolved pollutants. The physical structure of the media provides high peformance for the entrapment of particulate pollutants. The media has 80% void space which allows for double the hydraulic retention time when compared to granular media which leads to better overall performance. Another result of the void space is a high hydraulic conductivity. The media surface area loading rate for the media is approximately 7 gpm/sq ft surface area at a head pressure of 18".

Manufacturer/Vendor:	Bio-Microbics, Inc.
Name of Technology:	BioStorm®
Technology Type:	Oil/Water Separator

Schematic

System Design Information

Design Flow Rate (gpm):

low: 225 high: 4,800

System Footprint (sq. ft.):

45 - 162

Required Head Loss (ft):

0.5 - 0.17

Internal or External Bypass:

External

Other Approvals:

Application

Stormwater/Groundwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	227							
Median Effluent (mg/L):	7.9							
Median Removal (%):	95.3							

		Total Met	als	Disso	ved Meta	ls
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):						
Median Effluent (mg/L):						
Median Removal (%):						

^{*} blank cells indicate no information was received from vendor

Pretreatment Basic Enhanced Phosphorus

Approvals

Oil

TAPE				
	_	1	_	
	50% TSS Removal	80% TSS Removal		
NJCAT				

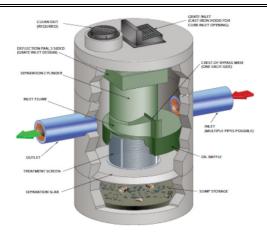
	lations

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low: \$500high: \$2,000Estimated Annual O&M Cost:low: \$400high: \$4,000

Manufacturer/Vendor:	Bio-Microbics, Inc.
Name of Technology:	BioStorm®
Technology Type:	Oil/Water Separator
Treatment Notes	
	nples done in a lab setting. Unit was tested from 50% of design flow up to 125%. Numbers reported
below are at 100% of design	flow.
Additional Notes	
Installation costs and O&M co	osts are estimates for the Washington area and do not include equipment or tank costs. Drawings and
further information on the pr	roduct can be obtained on our website at the following url: http://biomicrobics.com/?p=77



Manufacturer/Vendor: Name of Technology: Technology Type: CONTECH Stormwater Solutions, Inc.

CDS

Hydrodynamic Separation

Schematic

System Design Information

Design Flow Rate (gpm):

low: 20 high: 44,900

System Footprint (sq. ft.):

NA

Required Head Loss (ft):

0.1

Internal or External Bypass:

Both Available

Other Approvals:

Application

Stormwater

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	154			22				
Median Effluent (mg/L):	26			5				
Median Removal (%):	95			64				

		Total Met	als	Disso	ved Meta	ls
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):						
Median Effluent (mg/L):						
Median Removal (%):						

Enhanced

Pretreatment

Approvals

Phosphorus

Oil

	50% TSS Rem	noval	80% TSS Rem	noval
TAPE	GULD	GULD		PULD

	50% TSS Removal	80% TSS Removal
NJCAT	X	

Basic

Local Installations

of Installations in Washington: > 250

Estimated Costs

Estimated Installation Cost:low: \$10,000high: \$2.5MEstimated Annual O&M Cost:low: \$0.00001/galhigh: \$0.00001/gal

^{*} blank cells indicate no information was received from vendor

Manufacturer/Vendor: CONTECH Stormwater Solutions, Inc.

Name of Technology:	CDS				
Technology Type:	Hydrodynamic Separation				
Treatment Notes					
The Manasquan Savings Ban	sk Stormwater Treatment System Field Evalutaion: CDS Unit (2010). Field, Peer-Reviewed, Composite.				
Additional Notes					
Oil & Grease laboratory dat	a using sorbents at flow rates of 25, 50, and 75% of design.				
I					
1					

Manufacturer/Vendor: Name of Technology: **Technology Type:**

StormwateRx LLC Clara Plug Flow Separator

Hydrodynamic Separation

Schematic

System Design Information

Design Flow Rate (gpm):

low: 5 high: 1120

System Footprint (sq. ft.):

0 - 150

Required Head Loss (ft):

0.5 - 1.5

Internal or External Bypass:

Internal

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	284.5							
Median Effluent (mg/L):	173.5							
Median Removal (%):	47		YES	YES				

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	0.516	0.088	2.82				
Median Effluent (mg/L):	0.078	0.072	1.21				
Median Removal (%):	30	26	32				

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
			1	-		
	50% TSS Rer	noval	80% TS	S Removal		

Local	Instal	lations

of Installations in Washington:

Estimated Costs

Estimated Installation Cost: low: \$20,000 high: \$52,000 low: \$0.0005/gal **high:** \$0.001/gal **Estimated Annual O&M Cost:**

Manufacturer/Vendor: Name of Technology: **Technology Type:**

StormwateRx LLC Clara Plug Flow Separator

Hydrodynamic Separation

Tre	atm	n۵n	t N	otes
116	auı	ıen	LIV	ULES

These samples were collected as grab samples by StormwateRx, consulting engineers, and facility treatment system operators. A
analytical data is from a third party certified analytical lab. Non-detects were assumed to have the value of one half the detectio
limit.

Additional Notes
The Clara uses four pre-engineered chambers with an internal high-flow bypass to trap pollutants such as heavy solids and oil and
grease.

Estimated Installation Cost:

Estimated Annual O&M Cost:

Treatment Technology Summary Report

Clean Way Manufacturer/Vendor: Name of Technology: Clean Way Downspout Filtration Unit **Technology Type:** Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric)) Schematic **System Design Information** Design Flow Rate (gpm): low: high: System Footprint (sq. ft.): Required Head Loss (ft): **Internal or External Bypass: Application** Treatment Performance TPH Oil & grease **TSS** TP **SVOCs PCBs** Dioxins | CPAHs Number of samples: Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): **Total Metals Dissolved Metals** Zn Cu Pb Cu Pb Zn Number of samples: Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): blank cells indicate no information was received from vendor **Approvals Pretreatment Basic Enhanced Phosphorus** Oil Other Approvals: TAPE 50% TSS Removal 80% TSS Removal **NJCAT Local Installations** # of Installations in Washington: **Estimated Costs**

low: ____

low:____

high: ____

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Clean Way
Clean Way
Clean Way
Downspout Filtration Unit
Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Additional Notes

Manufacturer/Vendor: ClearWater Solutions, Inc. * Name of Technology: ClearWater BMP **Technology Type:** Drain Inlet Insert(Combination System (Screen and Media Filtration))

_				•
Sr	no	m	~T	"

System Design Information

Design Flow Rate (gpm): low: 200 high: 200 System Footprint (sq. ft.): 5,6 Required Head Loss (ft):

Internal or External Bypass:

Application

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
						<u></u>
	50% TSS Rer	noval	80% TS	S Removal		
NJCAT						
			10	cal Installatio	ons	

Local	Instal	llations

# of Installations in Washington:		
	Estimated Costs	

Estimated Installation Cost:	low:	high:
Estimated Annual O&M Cost:	low:	high:

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

ClearWater Solutions, Inc. *

ClearWater BMP

Drain Inlet Insert(Combination System (Screen and Media Filtration))

Additional Notes

Manufacturer/Vendor: Name of Technology:

Coanda, Inc.
Curb Inlet

Technology Type:

Drain Inlet Insert(Combination System (Screen and Media Filtration))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 50 high: 360,000

System Footprint (sq. ft.):

2-2000

Required Head Loss (ft):

1.5-3

Internal or External Bypass:

Internal

Application

Stormwater/Wastewater/

Process Water

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	1500							
Median Effluent (mg/L):	1376							
Median Removal (%):	8							

		Total Me	tals	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):			48				
Median Effluent (mg/L):			15				
Median Removal (%):			69				

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
	•					
	50% TSS Ren	noval	80% TSS	S Removal		

Local Installations

of Installations in Washington:

A handful of private downspouts and area drains.

Estimated Costs

Estimated Installation Cost:low:\$2,000high:\$3,500Estimated Annual O&M Cost:low:\$-0-high:\$-0-

Manufacturer/Vendor:	Coanda, Inc.
Name of Technology:	Curb Inlet
Technology Type:	Drain Inlet Insert(Combination System (Screen and Media Filtration))

Treatment Notes

USC (University of Southern California) obtained trash from Los Angeles Sanitation Services and United Stormwater. The Coanda BMP was filled with trash to evaluate the hydraulic performance. The test was conducted by running water from water trucks onto the street. The water then entered the BMP at approximately 635 gallons per minute (gpm). The BMP was evaluated for pollutant removal potential by collecting water quality samples before it reached the BMP and then from under the BMP at different time intervals. The samples were evaluated by USC using chemical analysis to determine the water quality.

Additional Notes

A summary of the USC report can be found at: http://www.coanda.com/products/documents/usc_research_project.pdf.

Other case studies have been performed, demonstrating removal of trash, nutrients, metals, pesticides, and bacteria: http://www.coanda.com/products/documents/Rowlett_Case_Study_I.pdf

Manufacturer/Vendor: Name of Technology: Coanda, Inc.
Downspouts

Technology Type:

Drain Inlet Insert(Combination System (Screen and Media Filtration))

Schematic

DOWNSPOUTS

System Design Information

Design Flow Rate (gpm):

low: 50 high: 360,000

System Footprint (sq. ft.):

2-2000

Required Head Loss (ft):

1.5-3

Internal or External Bypass:

Internal

Application

Stormwater/Wastewater/

Process water

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	1500							
Median Effluent (mg/L):	1376							
Median Removal (%):	8							

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):			48				
Median Effluent (mg/L):			15				
Median Removal (%):			69				

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
		•		•		<u></u>
	50% TSS Removal		80% TSS Removal			
NJCAT						

Local Installations

of Installations in Washington:

A handful of private downspouts and area drains.

Estimated Costs

Estimated Installation Cost:low:\$2,000high:\$3,500Estimated Annual O&M Cost:low:\$-0-high:\$-0-

Manufacturer/Vendor:	Coanda, Inc.
Name of Technology:	Downspouts
Technology Type:	Drain Inlet Insert(Combination System (Screen and Media Filtration))

Treatment Notes

USC (University of Southern California) obtained trash from Los Angeles Sanitation Services and United Stormwater. The Coanda BMP was filled with trash to evaluate the hydraulic performance. The test was conducted by running water from water trucks onto the street. The water then entered the BMP at approximately 635 gallons per minute (gpm). The BMP was evaluated for pollutant removal potential by collecting water quality samples before it reached the BMP and then from under the BMP at different time intervals. The samples were evaluated by USC using chemical analysis to determine the water quality.

Additional Notes

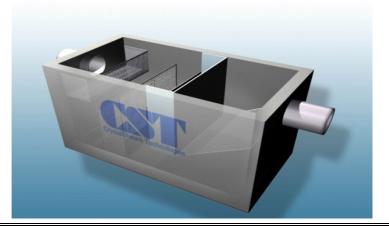
A summary of the USC report can be found at: http://www.coanda.com/products/documents/usc_research_project.pdf.

Other case studies have been performed, demonstrating removal of trash, nutrients, metals, pesticides, and bacteria: http://www.coanda.com/products/documents/Rowlett_Case_Study_I.pdf

Manufacturer/Vendor: CrystalStream Technologies Name of Technology: CrystalClean Separator **Technology Type:** Oil/Water Separator Schematic System Design Information Design Flow Rate (gpm): low: high: System Footprint (sq. ft.): Required Head Loss (ft): **Internal or External Bypass: Application** Treatment Performance * TPH Oil & grease **TSS** TP **SVOCs PCBs** Dioxins | CPAHs Number of samples: Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Dissolved Metals **Total Metals** Pb Zn Cu Cu Pb Zn Number of samples: Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): blank cells indicate no information was received from vendor **Approvals** Pretreatment **Basic Enhanced Phosphorus** Oil Other Approvals: TAPE 50% TSS Removal 80% TSS Removal NJCAT **Local Installations** # of Installations in Washington: **Estimated Costs** low:____ **Estimated Installation Cost:** high: _____ **Estimated Annual O&M Cost:**

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Oil/Water Separator


Treatment Notes

Additional Notes

Schamatic	System Design Information
Technology Type:	Media Filtration(Combination System (with Oil/Water Separator))
Name of Technology:	CrystalCombo Hybrid Polisher
Manufacturer/Vendor:	CrystalStream Technologies

Schematic

S	ystem	Design	Inform	natior

ow:
igh:
ystem Footprint (sq. ft.):
leguired Head Loss (ft):
. ,
nternal or External Bypass:
pplication

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

	Total Metals			Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
	50% TSS Rer	naval	909/ TC	S Removal		
NJCAT	50% 133 Ker	novai	80% 153	S Removai		
						-
			Lo	cal Installation	S	
# of Instal	lations in Washingt	on:				
			E	stimated Costs		
Estimated	Installation Cost:		low:		high:	

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

CrystalStream Technologies

CrystalCombo Hybrid Polisher

Media Filtration(Combination System (with Oil/Water Separator))

Additional Notes

Manufactu	rer/Vendor:	Hvdro Inte	ernational, Inc.						
Name of Te			am Defender						
Technology			amic Separatio	n					
Schemati	C	Oil & flo	atables			System	Design I	nformati	on
		storage v	volume			Design Fl	ow Rate (gpm):	
						low:	500	OF,	
						high:	7800	_	
								_	
	-					System F	ootprint (sq. ft.):	
		-	3				0		-
						Required	Head Los	s (ft):	
			-			Internal	0.5-0.9	l Dunaga.	<u>-</u>
						internar	or Externa	п Буразз.	
						Applicati	on		-
				sediment rage zone					_
			Treatr	nent Perforn	nance *				
		TSS	ТР	TDU	Oil 9 avassa	SVOCe	DCDs	Diavina	CPAHs
Number of	samples:	133	IP IP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	СРАПЗ
	luent (mg/L):	ND							
	luent (mg/L):	ND							
Median Re		50							
					.			7	
		<u> </u>	Total Met	1		Ived Meta	1	_	
Number of	camples	Cu	Pb	Zn	Cu	Pb	Zn	+	
	luent (mg/L):							+	
	luent (mg/L):							†	
Median Re								+	
	s indicate no info	rmation wa	s received fro	om vendor		<u>I</u>	1		
				Approvals					
	_					=			
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other A	oprovals:	
TAPE	GULD								
	50% TSS Re	moval	909/ TC	S Removal]				
NJCAT	30% 133 Ke	IIIOVai	80% 13.	Kelliovai					
Itical	Α								
			Lo	cal Installati	ons				
# of Installa	ations in Washing	ton:							
					•				
			E	stimated Cos	sts				
			_						
	Installation Cost:	. .	low:		high:		_		
Estimated /	Annual O&M Cost	τ:	low:		high:	high:			

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Hydro International, Inc.
Downstream Defender
Hydrodynamic Separation

Treatment Notes

Treatment Technology Summary Report

Manufacti	urer/Vendor:	United Sto	orm Water, Inc						
	echnology:	DrainPac™							
Technolog				nation System (S	creen and Absor	bent Boom	/Fabric))		
J			,	, ,					
Schemat	ic					System	Design I	nformati	on
	5.00	- 1	STATE OF THE PARTY			Design Fl	ow Rate (gpm):	
						low:		_	
	-			-		high:		_	
	/ /	*		4					
	Z	The same	100	4		System F	ootprint (sq. ft.):	
	400	1		No.		Required	Head Los	s (ft):	-
		Perce.				Internal o	or Externa	l Bypass:	-
	- Mari	3		55 (5)		Application	on		-
									-
			Treatr	nent Perforn	nance *				
		TSS	ТР	ТРН	Oil 9 grassa	SVOCs	PCBs	Dioxins	CPAHs
Number o	f samples:	133	IP	IPH	Oil & grease	3000	PCBS	DIOXIIIS	СРАПЗ
	fluent (mg/L):								
	fluent (mg/L):								
	emoval (%):								
Wicaiaii ik	emovai (70).	.1				1			
			Total Met	als	Disso	lved Meta	ls	1	
		Cu	Pb	Zn	Cu	Pb	Zn	1	
Number o	f samples:							1	
	fluent (mg/L):							1	
	fluent (mg/L):							1	
	emoval (%):							1	
* blank cel	lls indicate no infor	mation wa	as received fro	om vendor		•	•	→	
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil]	Other Ap	provals:	
TAPE									
			· -		1				
	50% TSS Re	moval	80% TS	S Removal					
NJCAT									
			1-	cal Installati					
			LO	cai installati	ons				
# of Install	lations in Washing	ton:			-				
			E	stimated Cos	sts				
	Installation Cost:		low:				=		
Estimated	Annual O&M Cost	::	low:		high:	igh:			

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

United Storm Water, Inc.
Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Additional Notes

Manufacturer/Vendor: Name of Technology:

Royal Environmental Systems

ecoLine a

Technology Type: Oil/Water Separator

Schematic

System Design Information

Design Flow Rate (gpm):

low: 25 high: 626

System Footprint (sq. ft.):

12-70

Required Head Loss (ft):

6.00" with clean coalescer

Internal or External Bypass:

Site specific design required

Application

Stormwater/Process Water/ Wastewater/Groundwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	(b)		(b)	(b)	(b)	(b)	(b)	(b)
Median Effluent (mg/L):	(b)		(b)	(b)	(b)	(b)	(b)	(b)
Median Removal (%):	(b)		(b)	(b)	(b)	(b)	(b)	(b)

	Total Metals			Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	(b)	(b)	(b)	(b)	(b)	(b)	
Median Effluent (mg/L):	(b)	(b)	(b)	(b)	(b)	(b)	
Median Removal (%):	(b)	(b)	(b)	(b)	(b)	(b)	

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
		•				<u></u>
	50% TSS Rer	noval	80% TS	S Removal		<u> </u>
NJCAT						

Loca		Insta	ılla	Itio	ons
------	--	-------	------	------	-----

of Installations in Washington: 6

Estimated Costs

Estimated Installation Cost:low:\$ 6,700high:\$ 44,250Estimated Annual O&M Cost:low:(a)high:(a)

Manufacturer/Vendor: Name of Technology: Technology Type: **Royal Environmental Systems**

ecoLine a

Oil/Water Separator

Treatment Notes

CEN EN 858-1 Test Method for Class I Coalescing Separator

Light liquid: Fuel oil, per ISO 8217, designation ISO-F-DMA with density of 0.85 g/cm3* (Solubility of light liquid nil, unsaponifiable)

Water: Potable or purified surface water

Water turn over: Minimum four volumes of test units

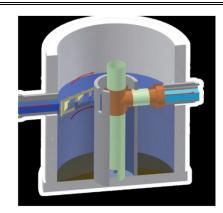
Liquid flux: 25-40 m³/m²-h (10-15 gpm/ft²)

Max. residual light liquid: 5 mg/L (Hydrocarbon content analysis by prescribed infrared spectroscopy procedure)

Additional Notes

(a) Gravity flow system has no moving parts or power requirement. Oil coalescing media pack can be removed, rinsed, and rep	laced.
In the event of damage to the coalescing media, new coalescing panels can be purchased for a low cost.	

(b)	Report Form's System	performance data	ı fields are not appl	icable. Product	removes free-p	hase fluids such	as floating c	oil and
oth	er petroleum hydrocai	rbon products (LNA	APL - Light Non-Aqu	eous Phase Liqu	uids).			


Manufacturer/Vendor: Name of Technology:

Royal Environmental Systems

ecoLine b

Technology Type: Oil/Water Separator

Schematic

System Design Information

Design Flow Rate (gpm):

low: 50 high: 1110

System Footprint (sq. ft.):

N/A

Required Head Loss (ft):

6.00" with clean coalescer

Internal or External Bypass:

Site specific design required

Application

Stormwater/Process

Water/Wastewater/Ground Water

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	(b)		(b)	(b)	(b)	(b)	(b)	(b)
Median Effluent (mg/L):	(b)		(b)	(b)	(b)	(b)	(b)	(b)
Median Removal (%):	(b)		(b)	(b)	(b)	(b)	(b)	(b)

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	(b)	(b)	(b)	(b)	(b)	(b)	
Median Effluent (mg/L):	(b)	(b)	(b)	(b)	(b)	(b)	
Median Removal (%):	(b)	(b)	(b)	(b)	(b)	(b)	

^{*} blank cells indicate no information was received from vendor

Approvals

TAPE					
-	•		-		<u> </u>
	50% TSS Ren	noval	80% TSS Removal		
NJCAT					

Local		Inst	all	at	tic	on	S
-------	--	------	-----	----	-----	----	---

of Installations in Washington: 7

Estimated Costs

Estimated Installation Cost: low: \$ 8,200 high: \$ 81,900 Estimated Annual O&M Cost: low: (a) high: (a)

Manufacturer/Vendor: Name of Technology: Technology Type:

Royal Environmental Systems

ecoLine b

Oil/Water Separator

Treatment Notes

CEN EN 858-1 Test Method for Class I Coalescing Separator

Light liquid: Fuel oil, per ISO 8217, designation ISO-F-DMA with density of 0.85 g/cm3* (Solubility of light liquid nil, unsaponifiable)

Water: Potable or purified surface water

Water turn over: Minimum four volumes of test units

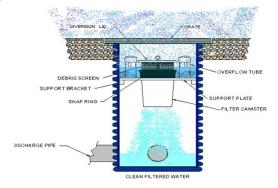
Liquid flux: 25-40 m³/m²-h (10-15 gpm/ft²)

Max. residual light liquid: 5 mg/L (Hydrocarbon content analysis by prescribed infrared spectroscopy procedure)

Additional Notes

(a) Gravity flow system has no moving parts or power requirement. Oil coalescing media pack can be removed, rinsed, and repla	aced.
In the event of damage to the coalescing media, new coalescing panels can be purchased for a low cost.	

(b) Repo	rt Form's System	n performance data	a fields are not ap	plicable. Pro	oduct removes	free-phase flu	uids such as	floating of	oil and
other pet	roleum hydroca	rbon products (LN	APL - Light Non-Ad	queous Phas	e Liquids).				



Manufacturer/Vendor: Name of Technology: Technology Type: EcoSense International Inc.

EcoSense Stormwater Filtertration systems, Catch basin inserts

Media Filtration(Cartridge)

Schematic

System Design Information

Design Flow Rate (gpm):

low: 25 high: 1,662*

System Footprint (sq. ft.):

Required Head Loss (ft):

Varies*

Internal or External Bypass:

Internal, Hooded

Other Approvals:

Application

Stormwater/Process Water/ Wastewater/Groundwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

	Total Metals			Dissolved Metals		
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):						
Median Effluent (mg/L):						
Median Removal (%):						

^{*} blank cells indicate no information was received from vendor

Pretreatment Basic Enhanced Phosphorus

Approvals

Oil

50% TSS Removal 80% TSS Removal	APE				•		
		EO9/ TCC Bon	noval	900/ TC	Pomoval	1	
	·Τ	50% 155 Ken	novai	80% 153	Kemovai		

	lations

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low: \$400high: \$2,000Estimated Annual O&M Cost:low: \$100high: \$500

Manufacturer/Vendor: Name of Technology: Technology Type: EcoSense International Inc.

EcoSense Stormwater Filtertration systems, Catch basin inserts

Media Filtration(Cartridge)

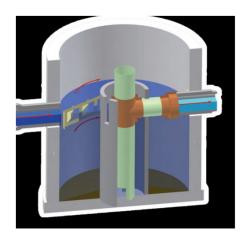
_												
т	^	-	•	m	e	м		N	\sim		^	•
	c	а	ш				ıL	13	u	w	c	3

Third party lab and simulated field studies have been done in US, Italy, New Zealand and Canada on filters loaded with Melt Blown Polypropylene only. One study performed Grab samples on canisters loaded with surfactant modified zeolite and impregnated polyester pads. Results will be included with this submittal.

Additional Notes

EcoSense offers two media types for canister filters, but other media may be easily loaded. The system incorporates media filter canisters for low flows and "clean pass" hooded over-flows pipes. Multiple filters and over-flows may be installed depending on space available. Hooded over-flow effectively prevent floatables from bypassing canister filters. Debris, sediment, oils and grease (and contaminant associated) are effectively captured by the system. Debris collection baskets are also available especially designed to remove organic debris and trash. These systems are modular so that depending on catch basin sizes multiple baskets or filters or both may be installed.

	rer/Vendor:		ronmental Sys	tems, Inc./Wate	r Tectonics, Inc.				
	echnology:	ecoSep®							
Technolog	у Туре:	Oil/Water	Separator						
Schemati	ic					System	Design I	nformati	on
	3						ow Rate (gpm):	
			1			low:	-	_	
		10 6		Î		high:		_	
			6			System F	ootprint (sq. ft.):	
						Required	Head Los	s (ft):	•
						Internal o	r Externa	l Bypass:	
						Application	on		•
									•
			Treat	ment Perfor	mance				
			,	1	T	1		·	
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	•								
	fluent (mg/L):								
	fluent (mg/L):								
Median Re	emoval (%):								
			Total Met	als	Disco	lved Meta	le .	7	
		Cu	Pb	Zn	Cu	Pb	Zn	_	
Number of	f samples:	Cu	PU	211	Cu	FU	211		
	fluent (mg/L):							1	
	fluent (mg/L):							1	
	emoval (%):							1	
	ls indicate no infor	mation wa	I as received fro	l om vendor		ļ		1	
Diamit cer	is maleate no imor		.5 10001100 110	Approvals					
	Ductus atmosph	Dania	Fuhanaad	Dhaanhama	0:1	1	Oth or Ar		
TAPE	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	pprovais:	
TAPE		<u> </u>			PULD]	-		
	50% TSS Rei	moval	80% TS	S Removal	1				
NJCAT	30% 133 Kei	iiovai	3070 13.	J Kemovai	-		-		
III					J				
			Lo	cal Installati	ons				
# of Install	ations in Washing	ton:			-				
			E.	stimated Cos	sts				
	Installation Cost:		low:		_		_		
Estimated	Annual O&M Cost	•	low:		high:				


Manufacturer/Vendor: Name of Technology:

Royal Environmental Systems

ecoStorm & ecoStorm Plus

Technology Type: Media Filtration(Combination System (with Hydrodyanamic Separation))

Schematic

System Design Information

Design Flow Rate (gpm):

 low:
 No Min

 high:
 180

System Footprint (sq. ft.):

N/A

Required Head Loss (ft):

0.41' (c)

Internal or External Bypass:

Internal &/or External

Application

Stormwater/Process Water/ Wastewater/Ground Water

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	200							
Median Effluent (mg/L):	26							
Median Removal (%):	87							

		Total Met	als	Disso	ved Meta	s
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):	0.019	0.005	0.17			0.066
Median Effluent (mg/L):	0.009	0.002	0.073			0.042
Median Removal (%):	53	60	57			36

^{*} blank cells indicate no information was received from vendor

Approvals

		Enhanced	Phosphorus		
	CULD				
		•			<u> </u>
50% TSS Removal		80% TSS	S Removal		
_	50% TSS Ren			+ *** + + + + + + + + + + + + + + + + +	

Local		Insta	ılla	ıtic	ons
-------	--	-------	------	------	-----

of Installations in Washington: 9

Estimated Costs

 Estimated Installation Cost:
 low: \$8,900 (a)
 high: \$37,500 (a)

 Estimated Annual O&M Cost:
 low: (b)
 high: \$0

Manufacturer/Vendor: Name of Technology: Technology Type: Royal Environmental Systems ecoStorm & ecoStorm Plus

Media Filtration(Combination System (with Hydrodyanamic Separation))

Treatment Notes

Field monitoring at the McRedmond Park site located in Redmond, WA. Auto sampler for flow-portional composite and time-based discrete collections. Independent analytical laboratory, and 3rd party data validation/statistical analysis of data points and sets.

Additional Notes

ecoStorm and ecoStorm plus can be utilized as separate stand-alone technologies or combined in serial component installation. Combined technologies are currently under TAPE evaluation through WADOE for stormwater. Performance data reflects both stormwater and non-stormwater installations.

- (a) Cost varies based on combination of units, number of units, and final design requirements.
- (b) \$500 \$1000 per cleaning/backflush event; Minimum of 1x per yr. to monthly for stormwater.
- (c) Headloss based on:
- Current monitoring configuration: 1 ecoStorm upstream of 2 ecoStorm plus units.
- 360 gpm through the system, 180 gpm per filter.
- Site specific model calibrated onsite at known flow rates.
- Headloss negating effects of drop structure were neglected (located between the ecoStorm and ecoStorm plus units).
- Filters assumed to be at the point of required maintenance (twice the headloss measured for new filters).

System Performance Data results shown are for qualifying events only, per Washington State TAPE requirements:

- Per TAPE requirements, removal requirements for influent concentration less than 100 mg/l are that effluent must be less than or equal to 20 mg/l.
- For parameters with no results presented above, they are not being monitored or were present at concentrations are below measurable thresholds.

Estimated Annual O&M Cost:

Treatment Technology Summary Report

Manufactui	rer/Vendor:	Royal Envi	ronmental Sys	tems, Inc./Wate	r Tectonics, Inc.				
Name of Te		ecoTop®							
Technology	Type:	Oil/Water	Separator						
Schematic		BO	ecolow ve grade oil-w	OP AIER-SEPARATOR		Design Flo low: high: System Fo Required Internal of	ow Rate (- - sq. ft.): s (ft):	on -
			Treat	ment Perfori	mance				
		TSS	ТР	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	samples:								
	uent (mg/L):								
Median Effl	uent (mg/L):								
Median Rer	noval (%):								
								7	
		6	Total Met			ved Meta	1	-	
Number of		Cu	Pb	Zn	Cu	Pb	Zn	+	
Number of								 	
	uent (mg/L):							+	
Median Rer	uent (mg/L):							+	
	novai (%): s indicate no infor	mationwa	s received fr	l om vondor				1	
Dialik Cells	s mulcate no mior	IIIation wa	as received in	Approvals					
				Approvuis					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE		1 2000							
		4	-1			4			
	50% TSS Re	moval	80% TS	S Removal					
NJCAT]				
			Lo	cal Installati	ons				
# of Installa	tions in Washing	ton:							
			E	stimated Cos	sts				
Estimated I	nstallation Cost:		low		high				

low:

high:

HERRERA	Tr	eatment	t Technol	ogy Summ	ary Rep	ort		
Manufacturer/Vendor:	EcoSense I	nternational Ir	nc.					
Name of Technology:	EcoVault							
Technology Type:	Drain Inlet	Insert(Media	Filtration)					
Schematic					Design Flow low: high: System Food Required Food Internal or Eight Application Stormwater	w Rate (gr 1,346 48,000 otprint (so NA dead Loss Varies* External in	om): - - - - (ft): Bypass:	n
		Treat	ment Perfoi	rmance *				
	-		1	_ _				
	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								

	Total Meta	le	Dies	olyad Matal	c		
	rotal Meta	IS	Dissolved Metals				

Number of samples:

Median Influent (mg/L):

Median Effluent (mg/L):

Median Removal (%):

Estimated Installation Cost:

Estimated Annual O&M Cost:

Approvals

ТАРЕ						
			1			
	50% TSS Ren	noval	80% TSS	S Removal		
NJCAT						
	•		•			
			Lo	ocal Installatio	ons	
# of Installa	tions in Washingt	on:		0		
			E	Estimated Cos	ts	

high: \$125,000

high: \$1,800

low: \$25,000

low: \$200

^{*} blank cells indicate no information was received from vendor

Manufacturer/Vendor:	EcoSense International Inc.
Name of Technology:	EcoVault
Technology Type:	Drain Inlet Insert(Media Filtration)

Treatment Notes

A study has not been completed on this specific system. Studies have been performed on other manufactures version of the Type II Baffle Box. Minimum Performance claims are based on model studies performed at the Florida Institute of Technology: Pandit and Gopatakrishnan, 1996. The study mentioned was performed with a scale model Type 1 Baffle Box. Improvements such as media filtration and horizontal debris collection system were subsequently added.

Additional Notes

The EcoVault is unique among Type II baffle boxes. The standard model incorporates a high performance media filter into the last internal weir which treats low flows and remove a wide variety of contaminants including bacteria, mobile phosphate, ammonia, dissolved heavy metals and orgainics. TSS removal is expect to be 80% at the flows mentioned above. Course organic materials are captured and stored above the static WL greatly increasing overall nutrient removal. * Head Loss varies depending on the media filter's top elevation and is directly proportional. Debris loading also effects head loss.

	rer/Vendor:	Enviro-Dra							
Name of Te		Enviro-Dra							
Technology	у Туре:	Drain Inlet	: Insert(Absorb	ent Boom/Fabri	c)				
Schematio						Design Flo low: high: System Fo	ow Rate (g 2 71 cootprint (s Head Loss or Externa	- - sq. ft.): s (ft):	on
			Treat	ment Perfor	mance				
			rreat	ment Perjon	nunce				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	samples:								
Median Inf	luent (mg/L):								
Median Eff	luent (mg/L):								
Median Rei	moval (%):								
								-	
			Total Met	als	Disso	ved Meta	ls		
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of									
	luent (mg/L):								
	luent (mg/L):								
Median Rei									
* blank cell:	s indicate no infor	mation wa	s received fro						
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE									
		•		•		. !			
	50% TSS Re	moval	80% TS	S Removal					
NJCAT							-		
			Lo	cal Installati	ons				
# of Installa	ations in Washing	ton:							
			E.	stimated Cos	sts				
Estimated I	nstallation Cost:		low:		high:		_		
Estimated A	Annual O&M Cost	::	low:		high:		_		

Manufacturer/Vendor:	Enviro-Drain, Inc.								
Name of Technology:	Enviro-Drain®								
Technology Type:	Drain Inlet Insert(Absorbent Boom/Fabric)								
Treatment Notes									
Additional Notes									
Additional Notes									

Manufacturer/Vendor: Transpo Industries, Inc.									
Name of Te	echnology:	EnviroSafe	тм						
Technology	туре:	Drain Inlet	: Insert(Media	Filtration)					
Schemati	C					System	Design II	nformati	on
						Design Flo	ow Rate (gpm):	
						low:	115	,	
						high:	230	_	
						_		_	
						System Fo	ootprint (s	sq. ft.):	
	1					Required	Head Los	s (ft):	
						Internal o	or Externa	l Bypass:	
-						Application	on		
									-
			Treat	ment Perfor	mance				
			T	T	T				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	•								
	luent (mg/L):								
	luent (mg/L):								
Median Re	moval (%):								
			Total Mat	ala	Dissol	ved Meta	la	7	
		<u></u>	Total Met	Zn	•		1	1	
Number of	camples	Cu	Pb	Zn	Cu	Pb	Zn	1	
	luent (mg/L):							1	
	luent (mg/L):							1	
Median Re								1	
	s indicate no infor	mation wa	s received fr	l om vendor			<u> </u>		
DIATIK CEII	s malcate no mio	mation wa	is received in	Approvals					
				<i></i>					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE									
	1		Т		1				
	50% TSS Re	moval	80% TS	S Removal					
NJCAT]				
			Lo	cal Installati	ons				
# of Installa	ations in Washing	ton:			-				
			E	stimated Cos	sts				
	nstallation Cost:		low:		high:		_		
Estimated A	Annual O&M Cost	t:	low:		high:		=		

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Treatment Notes

Additional Notes

Transpo Industries, Inc.
EnviroSafe™
Drain Inlet Insert(Media Filtration)

Treatment Notes

Manufactu	ırer/Vendor:	Transpo In	ndustries, Inc.								
Name of To			e™ Storm Safe	HF10							
Technolog		Drain Inlet Insert(Absorbent Boom/Fabric)									
Schemati	ic					System	Design I	nformati	on		
						Design Fl	ow Rate (gpm):			
				dillino		low:	900	. ,			
						high:	9000	_			
			Marine .					_			
		And				System F	ootprint (sq. ft.):			
		Cocco				Required	Head Los	s (ft):	-		
						Internal o	or Externa	l Bypass:			
	Filter tube cut- showing helica					Application	on		-		
									-		
			Treat	ment Perfor	mance						
				•							
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs		
Number of	f samples:										
Median Inf	fluent (mg/L):										
Median Eff	fluent (mg/L):										
Median Re	emoval (%):										
								7			
			Total Met		Disso	lved Meta	ls				
		Cu	Pb	Zn	Cu	Pb	Zn				
Number of											
	fluent (mg/L):										
	fluent (mg/L):	ļ									
	emoval (%):	<u> </u>		<u> </u>]			
* blank cell	ls indicate no infor	mation wa	as received from								
				Approvals							
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	1	Other Ap	provals:			
TAPE											
			•			=					
	50% TSS Re	moval	80% TS	S Removal							
NJCAT											
			Lo	cal Installati	ons						
# of Install	ations in Washing	ton:									
			E	stimated Cos	sts						
	Installation Cost:		low:				_				
Estimated	Annual O&M Cost	::	low:		high:		_				

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Transpo Industries, Inc.

EnviroSafe™ Storm Safe HF10

Drain Inlet Insert(Absorbent Boom/Fabric)

Treatment Notes

Additional Notes

Manufacturer/Vendor: Name of Technology:

Environment 21

EnviroTrap Catch Basin Insert

Technology Type: Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 0 high: 2700

System Footprint (sq. ft.):

NA

Required Head Loss (ft):

0-0.5

Internal or External Bypass:

NΑ

Application

Stormwater

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	*250		**400	**400	**400	**400	**400	**400
Median Effluent (mg/L):	*175		**150	**150	**150	**150	**150	**150
Median Removal (%):	*30		**62.5	**62.5	**62.5	**62.5	**62.5	**62.5

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	***0.08	***0.79	***0.3	NA	NA	NA	
Median Effluent (mg/L):	***0.07	***0.68	***0.24	NA	NA	NA	
Median Removal (%):	***9	***13.6	***20	NA	NA	NA	

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
	•	•	•			<u>-</u>
	50% TSS Rer	noval	80% TSS	S Removal		

10001	Inctal	lations

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low:\$200high:\$1,000Estimated Annual O&M Cost:low:0high:\$1,000

Manufacturer/Vendor: Name of Technology: Technology Type: Environment 21
EnviroTrap Catch Basin Insert

Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Treatment Notes

*The TSS removal efficiency is also dependent upon the Particle Size Distribution (PSD). For this product, the assumption of a PSD with a d50 of 180 microns was used.

**Any oil based removal depends on the droplet size and specific gravity of the oil. For this product, accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of 0.89 are used. The removal efficiencies are estimated.

***Testing is not complete for metals; therefore, these values are estimated.

Additional Notes		

Manufacturer/Vendor: Name of Technology: Technology Type: Filterra, DBA Americast, Inc.
Filterra Curb Inlet System
Bioretention/Filtration

Schematic

System Design Information

Design Flow Rate (gpm):

low: 8.5 high: 50+

System Footprint (sq. ft.):

Required Head Loss (ft):

2.5

Internal or External Bypass:

Can be either

Application Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:	10	12	12					
Median Influent (mg/L):	27.5	0.15	43.4					
Median Effluent (mg/L):	4.2	0.14	1.2					
Median Removal (%):	84.7	6.7	97.2					

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:				29		29	
Median Influent (mg/L):				0.0056		0.194	
Median Effluent (mg/L):				0.0033		0.082	
Median Removal (%):				44		54	

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE		GULD	GULD		GULD	
	•	<u></u>	•	•		
	50% TSS Ren	noval	80% TSS	S Removal		·
NJCAT						

Local Installations

of Installations in Washington: 186

Estimated Costs

Estimated Installation Cost:low: \$1,200high: \$7,500Estimated Annual O&M Cost:low: \$300high: \$3,000

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Filterra, DBA Americast, Inc.
Filterra Curb Inlet System
Bioretention/Filtration

Treatment Notes

For third party field monitoring at the Port of Tacoma Industrial site in WA, samples were collected via automatic flow-weighted composite samplers. Trapezoidal flumes and V-notch weirs with associated bubbler systems were installed to intercept influent and effluent stormwater, respectively, for flow measurements. Water levels within flumes were recorded using 5-minute intervals. A rain guage was installed in association with the units locations to continuously monitor precipitation totals in the drainage areas, and was interfaced with the autosampler and bubbler equipment.

Additional Notes

Data from Technical Evaluation Report (2009) produced by Herrera Environmental Consultants for Washington Department of Ecology. TSS data in the influent range accepted by Ecology(20 mg/L and greater). TP data in the influent range accepted by Ecology (0.1 to 0.5 mg/L). Low TP removal due to anomalous phosphorus data collected at the Port of Tacoma included very low TP influent concentrations and a high fraction of soluble reactive phosphorus. Dissolved copper data in the influent range accepted by Ecology (0.002 to 0.02 mg/L). Dissolved zinc data in the influent range accepted by Ecology (0.02 to 0.6 mg/L). TPH data in the influent range accepted by Ecology (10 mg/L or greater).

Manufacturer/Vendor: Name of Technology: Technology Type: Filterra, DBA Americast, Inc. Filterra Roof Drain System Bioretention/Filtration

Schematic

System Design Information

Design Flow Rate (gpm):

low: 8.5 high: 50+

System Footprint (sq. ft.):

Required Head Loss (ft):

2.5

Internal or External Bypass:

Internal

Other Approvals:

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:	10	12	12					
Median Influent (mg/L):	27.5	0.15	43.4					
Median Effluent (mg/L):	4.2	0.14	1.2					
Median Removal (%):	84.7	6.7	97.2					

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:				29		29	
Median Influent (mg/L):				0.0056		0.194	
Median Effluent (mg/L):				0.0033		0.082	
Median Removal (%):				44		54	

^{*} blank cells indicate no information was received from vendor

Basic

Pretreatment

Approvals

Phosphorus

Oil

APE	GULD	GULD	GULD
	50% TSS Removal	80% TSS Removal	
NICAT			

10001	Inctal	lations

of Installations in Washington:

Estimated Costs

Estimated Installation Cost:low: \$1,200high: \$7,500Estimated Annual O&M Cost:low: \$300high: \$3,000

Enhanced

Manufacturer/Vendor: Name of Technology: Technology Type: Filterra, DBA Americast, Inc.
Filterra Roof Drain System
Bioretention/Filtration

Treatment Notes

For third party field monitoring at the Port of Tacoma Industrial site in WA, samples were collected via automatic flow-weighted composite samplers. Trapezoidal flumes and V-notch weirs with associated bubbler systems were installed to intercept influent and effluent stormwater, respectively, for flow measurements. Water levels within flumes were recorded using 5-minute intervals. A rain guage was installed in association with the units locations to continuously monitor precipitation totals in the drainage areas, and was interfaced with the autosampler and bubbler equipment.

Additional Notes

Data from Technical Evaluation Report (2009) produced by Herrera Environmental Consultants for Washington Department of Ecology. TSS data in the influent range accepted by Ecology(20 mg/L and greater). TP data in the influent range accepted by Ecology (0.1 to 0.5 mg/L). Low TP removal due to anomalous phosphorus data collected at the Port of Tacoma included very low TP influent concentrations and a high fraction of soluble reactive phosphorus. Dissolved copper data in the influent range accepted by Ecology (0.002 to 0.02 mg/L). TPH data in the influent range accepted by Ecology (10 mg/L or greater).

Manufactu	rer/Vendor:	ABT, Inc.							
Name of Te	echnology:	First Flush							
Technology	у Туре:	Oil/water S	Separator						
Schemati	C					System I	Design Ir	nformatio	on
1						Design Flo	w Rate (g	gpm):	
						low:	449	-	
						high:	538	-	
						_		-	
						System Fo	otprint (s	q. ft.):	
							NA		
						Required	Head Loss	; (ft):	•
						Internal o	r External	Bypass:	•
						Application	n		•
						Stormwate			
La La									•
			Treatr	nent Perforn	nance *				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	samples:								
Median Inf	luent (mg/L):								
Median Eff	luent (mg/L):								
Median Re	moval (%):								
								_	
			Total Meta	1	Disso	lved Meta			
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of								_	
	luent (mg/L):							_	
	luent (mg/L):							_	
Median Re									
* blank cell	s indicate no infor	mation wa	is received fro						
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE									
	•				_	•			
	50% TSS Re	moval	80% TS	S Removal					
NJCAT									
			Lo	cal Installati	ons				
# of Installa	ations in Washing	ton:		0					
			E	stimated Co	sts				
	Installation Cost:			\$5,000		\$10,000	_		
Estimated A	Annual O&M Cost	::	low:	\$500	high:	\$3.000			

Manufacturer/Vendor: Name of Technology: First Flush
Technology Type: Oil/water Separator

Treatment Notes

Lab test results are provided on the filter media performance and system hydraulic performace based on design capabilites. The installation cost if factoring material and cost of installation together...or an installed cost.

Additional Notes

Manufacturer/Vendor:Kristar Enterprises, Inc.Name of Technology:FloGard Plus

Technology Type: Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 100 high: 2000

System Footprint (sq. ft.):

1,10

Required Head Loss (ft):

0,0.25

Internal or External Bypass:

Internal

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	100		35	35				35
Median Effluent (mg/L):	20		7	7				
Median Removal (%):	80		80	80				7

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):			10				
Median Effluent (mg/L):			6				
Median Removal (%):			60				

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
•		•			•	
	50% TSS Rer	noval	80% TS	S Removal		
NJCAT						
					-	

Local Installations	Local	Instal	lations
---------------------	-------	--------	---------

of Installations in Washington: 100

Estimated Costs

Estimated Installation Cost:low: \$250high: \$1800Estimated Annual O&M Cost:low: \$75high: \$350

Manufacturer/Vendor:	Kristar Enterprises, Inc.						
Name of Technology:	FloGard Plus						
Technology Type:	Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))						
Treatment Notes							
ab - UCLA, Univeristy of Haw	vaii, City of Auckland, NZ, CSUS - OWP. Field Study - University of Hawaii and City of Auckland						
Additional Notes							

Manufacturer/Vendor: Kri
Name of Technology: Flo

Kristar Enterprises, Inc.

FloGard Downspout Filter

Technology Type: Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 30 high: 325

System Footprint (sq. ft.):

0.5,1

Required Head Loss (ft):

0,1.5

Internal or External Bypass:

Internal

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	100		35	35				35
Median Effluent (mg/L):	20		7	7				
Median Removal (%):	80		80	80				7

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):			10				
Median Effluent (mg/L):			6				
Median Removal (%):			60				

^{*} blank cells indicate no information was received from vendor

Approvals

TAPE						
-	•		-			<u> </u>
	50% TSS Removal		80% TSS	80% TSS Removal		
NJCAT						

	Local	' Instal	lations
--	-------	----------	---------

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low: \$1500high: \$3500Estimated Annual O&M Cost:low: \$75high: \$250

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Lab - UCLA, Univeristy of Hawaii, City of Auckland, NZ, CSUS - OWP. Field Study - University of Hawaii and City of Auckland

Additional Notes

Additional Notes

Manufacturer/Vendor: Name of Technology: Technology Type: Kristar Enterprises, Inc.
FloGard Dual Vortex Seperator
Hydrodynamic Separation

_				•
Sr	nn	m	~+	

System Design Information

Design Flow Rate (gpm):

low: 150 high: 6,500

System Footprint (sq. ft.):

7 - 113

Required Head Loss (ft):

0 - 3

Internal or External Bypass:

Internal

Other Approvals:

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	202							
Median Effluent (mg/L):	80							
Median Removal (%):	60							

		Total Metals			Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn		
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

Enhanced Phosphorus

Basic

Pretreatment

Approvals

Oil

TAPE			
			7
	50% TSS Removal	80% TSS Removal	
NJCAT	X		

Local	1	nstal	ı	a	ti	O	n	S

of Installations in Washington: 10

Estimated Costs

Estimated Installation Cost:low: \$10,000high: \$100,000Estimated Annual O&M Cost:low: \$300high: \$3,500

^{*} blank cells indicate no information was received from vendor

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Kristar Enterprises, Inc. FloGard Dual Vortex Seperator

Technology Type:	Hydrodynamic Separation					

Treatment Notes Internal lab testing performed by Kristar. Third party lab testing was performed by Alden Research laboratories based in Holden Massachussets. No field studies have been completed at this date.

Additional Notes	
No field studies have been completed at this time. C	Correlation of TSS removal with other POCs would indicate similar removal of Total
metals.	

Manufacturer/Vendor: Name of Technology: Kristar Enterprises, Inc.

FloGard LoPro Matrix Filter

Technology Type: Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 45 high: 800

System Footprint (sq. ft.):

0.75,16

Required Head Loss (ft):

0,0.5

Internal or External Bypass:

Internal

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	100		35	35				35
Median Effluent (mg/L):	20		7	7				
Median Removal (%):	80		80	80				7

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):			10				
Median Effluent (mg/L):			6				
Median Removal (%):			60				

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
		•		·		·
	50% TSS Rer	noval	80% TSS	S Removal		
NJCAT						

Local I	nstali	ations
---------	--------	--------

of Installations in Washington: 10

Estimated Costs

Estimated Installation Cost:low: \$400high: \$1000Estimated Annual O&M Cost:low: \$75high: \$300

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Lab - UCLA, Univeristy of Hawaii, City of Auckland, NZ, CSUS - OWP. Field Study - University of Hawaii and City of Auckland

Additional Notes

Additional Notes

Manufacturer/Vendor: Name of Technology:

Kristar Enterprises, Inc.

FloGard LoPro Trench Drain Filter

Technology Type: Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 200 high: 500

System Footprint (sq. ft.):

1,20

Required Head Loss (ft):

0,0.25

Internal or External Bypass:

Internal

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	100		35	35				35
Median Effluent (mg/L):	20		7	7				
Median Removal (%):	80		80	80				7

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):			10				
Median Effluent (mg/L):			6				
Median Removal (%):			60				

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
			T .			
	50% TSS Rer	noval	80% TS	S Removal		
NJCAT						
IIICAI						

	Local	' Instal	lations
--	-------	----------	---------

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low: \$600high: \$3000Estimated Annual O&M Cost:low: \$75high: \$350

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Lab - UCLA, Univeristy of Hawaii, City of Auckland, NZ, CSUS - OWP. Field Study - University of Hawaii and City of Auckland

Additional Notes

Additional Notes

Manufacturer/Vendor: Name of Technology: Technology Type: Kristar Enterprises, Inc.

FloGard Trash & Debris Guard

Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 50 high: 500

System Footprint (sq. ft.):

0.5 - 4

Required Head Loss (ft):

0 - 0.25

Internal or External Bypass:

Internal

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:	
TAPE							
	•	•	•	•		<u> </u>	
	50% TSS Removal 80% TSS		S Removal				

Local Installations	Local	Instal	lations
---------------------	-------	--------	---------

of Installations in Washington: 0

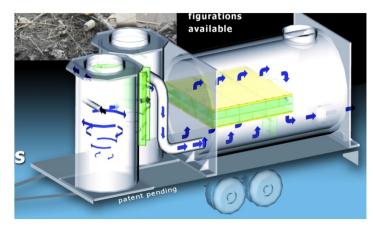
Estimated Costs

Estimated Installation Cost:low: \$450high: \$1,500Estimated Annual O&M Cost:low: \$50high: \$200

Manufacturer/Vendor:
Name of Technology:
Technology Type:

| FloGard Trash & Debris Guard | Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

| Treatment Notes | No Data Available | Additional Notes | Additional Note



 Manufacturer/Vendor:
 AquaShield, Inc.

 Name of Technology:
 Go-Filter

 Technology Type:
 Media Filtration(Combination System (with Hydrodyanamic Separation))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 50 high: 675

System Footprint (sq. ft.):

Required Head Loss (ft):

0.5

Internal or External Bypass:

Both

Application

Stormwater/Process water

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
•	•	•	•	•		<u> </u>
	50% TSS Removal		80% TSS Removal			
NJCAT						
	•					

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low:Site-specifichigh:Site-specificEstimated Annual O&M Cost:low:Site-specifichigh:Site-specific

Manufacturer/Vendor:	AquaShield, Inc.								
Name of Technology:	Go-Filter								
Technology Type:	Media Filtration(Combination System (with Hydrodyanamic Separation))								
Treatment Notes									
See Aqua-Filter for lab and fie	eld testing.								
Additional Notes									
	e principle as Aqua-Filter. Useful on construction sites for turbidity reduction in addition to sediment								
removal. Device components	have been verified by NJCAT.								

Manufactu	ırer/Vendor:	Hancor, In	c.						
Name of To		Hancor Sto	orm Water Qua	ality Unit					
Technology	у Туре:	Oil/Water	Separator						
Schemati	ic					System	Design I	nformati	on
FLOW		ASS PIPE LOCATED ON HE STORM WATER QUA				low: high:	ow Rate (- -	
	SEDIMENT CHA	MBER	OF CHAN	ABER J		Required Internal o	Head Los or Externa		
						Application	on		
									•
			Treat	ment Perfori	mance				
		TSS	ТР	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	f samples:				on engineers				
	fluent (mg/L):								
	fluent (mg/L):								
	emoval (%):								
		1				1	1		
			Total Met	als	Disso	lved Meta	ls	1	
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of	f samples:							1	
	fluent (mg/L):							†	
	fluent (mg/L):							†	
	emoval (%):							†	
	Is indicate no infor	mation wa	s received fro	om vendor	<u> </u>	ļ.	ļ	4	
				Approvals					
	T _	T	T = .	T	T	1		_	
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE									
	50% TSS Re	moval	909/ TC	S Removal	1		-		
NJCAT	50% 133 Ke	liovai	80% 13	5 Kelliovai	-				
NJCAT									
			Lo	cal Installati	ons				
# of Install	ations in Washing	ton:			-				
			E	stimated Cos	sts				
Ectimated	Installation Cost:		la		hich.				
	Installation Cost:	•	low:		high:	-	-		

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Manufactu	rer/Vendor:	Huber Tec	hnology, Inc.								
Name of Te	echnology:	HUBER Hy	dro Filt								
Technology	туре:	Drain Inlet	: Insert(Media	Filtration)							
Schemati	c					Design Flo		nformati gpm):	on		
	7					System For Required	0				
			4			Internal c	or Externa	l Bypass:	•		
		Conf. Conf.	real cases cases			Application	on				
			Treat	ment Perfor	mance						
			ricat	inche i cijon	Trance						
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs		
Number of	•										
	luent (mg/L):										
	luent (mg/L):										
Median Re	moval (%):										
					1			7			
			Total Met	1	Disso	ved Meta	ls				
		Cu	Pb	Zn	Cu	Pb	Zn	<u> </u>			
Number of								<u> </u>			
	luent (mg/L):							<u> </u>			
	luent (mg/L):										
Median Re								<u> </u>			
* blank cell	s indicate no infor	mation wa	is received fro								
				Approvals							
	Pretreatment	Basic	Enhanced	Phosphorus	Oil]	Other Ap	provals:			
TAPE											
	•	•	•	•	_	•					
	50% TSS Re	moval	80% TS	S Removal							
NJCAT											
			Lo	cal Installati	ons						
# of Installa	ations in Washing	ton:			-						
			E	stimated Cos	sts						
	nstallation Cost:		low:		high:		=				
Estimated Annual O&M Cost:			low:		high:		_				

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Huber Technology, Inc.
HUBER Hydro Filt
Drain Inlet Insert(Media Filtration)

Treatment Notes

	ırer/Vendor:	Hydrowor								
Name of To	echnology:	HydroFilte	r							
Technolog	у Туре:	Media Filti	ration(Combin	ation System (w	th Oil/Water Sep	parator))				
Schemati	ic	0				System	Design II	nformati	on	
	17		7			Design Flo	ow Rate (gpm):		
	\ \					low:		_		
		7				high:		_		
	_	-		<u> </u>		System F	ootprint (sq. ft.):		
	-	-111				Required	Head Los	s (ft):	-	
						Internal o	or Externa	l Bypass:	-	
						Application	on		<u>-</u>	
									-	
			Treat	ment Perfor	mance					
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Number of	f samples:									
Median Inf	fluent (mg/L):									
Median Eff	fluent (mg/L):									
Median Re	emoval (%):									
		-						7		
			Total Met		Disso	ved Meta	ls			
		Cu	Pb	Zn	Cu	Pb	Zn			
Number of										
	fluent (mg/L):									
	fluent (mg/L):									
	emoval (%):	<u> </u>		<u> </u>]		
* blank cell	ls indicate no infor	mation wa	is received fro							
				Approvals						
	Pretreatment	Basic	Enhanced	Phosphorus	Oil]	Other Ap	provals:		
TAPE				-			-	•		
ļ.	- !	···	*	!		4				
	50% TSS Re	moval	80% TS	S Removal						
NJCAT										
					-					
			Lo	cal Installati	ons					
# of Install	ations in Washing	ton:								
			E	stimated Cos	sts					
	Installation Cost:		low:		high:	-	_			
Ectimated	Annual O&M Cost	٠.	low.		high:					

Manufacturer/Vendor:	Hydroworks
Name of Technology:	HydroFilter
Technology Type:	Media Filtration(Combination System (with Oil/Water Separator))
•	
Treatment Notes	
Additional Notes	

Manufactu	rer/Vendor:	Hydroworl	ks						
Name of Te	echnology:	HydroGua	rd						
Technology	у Туре:	Hydrodyna	amic Separatio	n					
Schemati	c	, in the second	and American	pid		-		nformatio	on
	Inlet Pipe			Low Flow Path High Flow Path Flow in Inner Ch Flow in Middle C		Design Flow: high:	360 3232	gpm): - -	
	Inner Chamber Inle					System Fo	ootprint (s	sq. ft.):	
	Innér Chamber Quile			Middle Chamber Outet		Required	Head Los 0-2	s (ft):	
						Internal o		l Bypass:	
				d		Application	on		
			Treat	ment Perfori	mance				
		TSS	ТР	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	samples:	133	i ir	1711	Oil & grease	30003	PCD3	DIOXIIIS	CFAIIS
	fluent (mg/L):	ND							
	luent (mg/L):	ND							
Median Re		70							
				I				L	
			Total Met	als	Disso	lved Meta	ls		
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of									
	luent (mg/L):								
Median Eff	luent (mg/L):								
Median Re									
* blank cell	s indicate no infor	mation wa	as received fro						
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE									
	50% TSS Re	moval	80% TS	S Removal					
NJCAT	Х								
			Lo	cal Installati	ons				
# of Installa	ations in Washing	ton:							
			E	stimated Cos	its				
	Installation Cost:		low:		high:		_		
Estimated A	Annual O&M Cost	:	low:		high:				

Manufacturer/Vendor:	Hydroworks
Name of Technology:	HydroGuard
Technology Type:	Hydrodynamic Separation
Treatment Notes	
Additional Notes	

Manufactu	rer/Vendor:	ACF Enviro	nmental, Inc.						
Name of Te	echnology:	Hydro-Klee	en™						
Technology	туре:	Drain Inlet	Insert(Media	Filtration)					
Schematic			TISE! ([WEUIA	THE AUDITY		System Design Flo low: high: System Fo Required Internal of	ootprint (s	- - sq. ft.): s (ft):	on
			Troat	mont Dorfor	WA GUA CO				
			reat	ment Perfor	mance				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	samples:					01000			0.70
	luent (mg/L):								
	luent (mg/L):								
Median Re									
					_			-	
			Total Meta	als	Dissol	ved Meta	ls		
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of								<u> </u>	
	luent (mg/L):								
	luent (mg/L):							<u> </u>	
Median Re								<u> </u>	
* blank cell	s indicate no infor	mation wa	is received fro						
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil]	Other Ap	nrovalsi	
TAPE	Fretteatment	Dasic	Ellianceu	Pilospilorus	Oii		Other Ap	provais.	
IAPE									
	50% TSS Re	moval	80% TS	S Removal]		-		
NJCAT	30% 133 Ke	illovai	8078 133	J Kemovai	-		-		
III					J				
			10	cal Installati	ons				
			20	Jan III Julia	J.13				
# of Installa	ations in Washing	ton:			-				
			E	stimated Cos	sts				
	nstallation Cost:		low:				_		
Estimated A	Annual O&M Cost	:	low:		high:		_		

Estimated Installation Cost:

Estimated Annual O&M Cost:

Treatment Technology Summary Report

Manufacturer/Vendor: Stormdrain Solutions Name of Technology: Inceptor® **Technology Type:** Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric)) **Schematic System Design Information** Design Flow Rate (gpm): low: high: System Footprint (sq. ft.): Required Head Loss (ft): **Internal or External Bypass: Application** Treatment Performance TPH Oil & grease **TSS** TP **SVOCs PCBs** Dioxins | CPAHs Number of samples: Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Dissolved Metals **Total Metals** Pb Zn Cu Cu Pb Zn Number of samples: Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): blank cells indicate no information was received from vendor **Approvals Pretreatment Basic Enhanced Phosphorus** Oil Other Approvals: TAPE 50% TSS Removal 80% TSS Removal **NJCAT Local Installations** # of Installations in Washington:

Estimated Costs

high: ____

low:____

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Stormdrain Solutions
Inceptor*
Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Additional Notes

HERRERA Treatment Technology Summary Report

Manufactui	rer/Vendor:	Imbrium S	vstems						
Name of Te		Jellyfish Fil							
Technology			ration(Up-Flow	<i>(</i>)					
0,	<i>,</i> ,			•					
Schematic						System	Design I	nformati	on
				,		Design El	ow Data /	~~~\.	
						Design Flow:	60 60	gpm):	
	4					high:	2300	_	
						ıngıı.	2300	_	
			3			System F	nothrint (sa. ft.)·	
		da				o you can i	12 - 113	oq,.	
						Required		s (ft):	-
	1		RI HILL			•	1,2		
						Internal o	r Externa	l Bypass:	-
							or Externa	al Bypass	=,
		AND SHAPE				Application	on		
						Stormwate	er		<u>-</u>
				. 5 .	<u> </u>				
			Treatn	nent Perforn	nance *				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	samples:								
Median Infl	uent (mg/L):	74							
Median Effl	uent (mg/L):	8							
Median Rer	moval (%):	89							
					T			7	
			Total Meta	1		lved Meta		4	
Normala are af		Cu	Pb	Zn	Cu	Pb	Zn	1	
Number of		78	35	1.45				1	
	uent (mg/L): uent (mg/L):	0.3	5	0.6				+	
Median Rer		99	86	59				†	
	indicate no infor					ļ	<u> </u>	_	
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	1	Other Ap	nrovals	
TAPE	rieticatilielit	PULD	Lilliancea	riiospiiorus	Oii		Other Ap	provais.	
IAIL		FOLD				1			
	50% TSS Re	moval	80% TSS	S Removal			-		
NJCAT				X					
	ı				ı				
			Lo	cal Installati	ons				
# of Installa	tions in Washing	ton:		1					
				<u> </u>					
			E	stimated Cos	sts				
Estimated I	nstallation Cost:		low:		high:				
Estimated A	Annual O&M Cost	::	low:		high:		_		

Manufacturer/Vendor:	Imbrium Systems
Name of Technology:	Jellyfish Filter
Technology Type:	Media Filtration(Up-Flow)
Treatment Notes	
	rd-party field study at University of Florida conducted according to the TARP protocol. Samples
collected were grab samples	of the entire crossection of flow. Twenty-one storm events have been monitored to date.
Additional Notes	
* *	micrograms per liter. Zinc concentrations are in milligrams per liter. Lead concentraions are in
micrograms per liter. The O&	kM cost ranges from \$0.001/gal to \$0.003/gal. Installation costs range from \$8000 to \$125,000.

Estimated Installation Cost:

Estimated Annual O&M Cost:

Treatment Technology Summary Report

Manufactu	rer/Vendor:	Brown Mir	nneapolis Tank						
Name of Te		Kleerwate							
Technology	<i>т</i> уре:	Oil/Water	Separator						
Schemati	<u>с</u>					System	Design I	nformatio	on
Scheman	and		Consover	Custor Conductor with builts		Design Floring Iow: high: System For Required Internal or Application	25 10,000 cotprint (see Figure 1) The second of the second	gpm): - - sq. ft.): s (ft):	
						Stormwate		ater	
							,		•
			Treatr	nent Perforn	nance *				
		TSS	TP	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	samples:	133	I F	IFN	Oii & grease	3000	PCDS	DIOXIIIS	СРАПЗ
	luent (mg/L):								
	luent (mg/L):								
Median Re									
			Total Met	als	Disso	lved Meta	lc	7	
		Cu	Pb	Zn	Cu	Pb	Zn	1	
Number of	samples:							†	
	luent (mg/L):							†	
	luent (mg/L):							†	
Median Re								†	
	s indicate no infor	mation wa	as received fro	ıom vendor	<u> </u>	<u> </u>		4	
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	1	Other Ap	nrovals:	
TAPE	rietieatillellt	Dasic	Limanceu	Tilospilorus	- Jii	-	Julei A	pi Ovais.	
<u>-</u>	1	 	+	l .	l .	1			
	50% TSS Re	moval	80% TS	S Removal]				
NJCAT									
			Lo	cal Installati	ons				
# of Installa	ations in Washing	ton:							
			E	stimated Cos	sts				

low: Varies

low: Varies

high: Varies

high: Varies

Manufacturer/Vendor: Name of Technology: Technology Type:

Brown Minneapolis Tank	
Kleerwater	
Oil/Water Separator	

Treatment Notes

All data collected and verified by third party inspectors and Underwriters Laboratories (UL).

Additional Notes

- Underwriters Laboratories tested and listed per UL-2215
- Designed for no internal or confined space entry when performing routine maintenance.
- Kleerwater™ can handle larger influent flows, allowing for smaller separator tanks. With smaller separation tanks, less installation costs.
- Kleerwater™ separators utilizes Stokes Law for defining rates of rise of oil spheres in a liquid medium
- Unique patented oil separation process enhances oil from water separation efficiencies
- Separation efficiencies down to 5 ppm & lower.

Note:

Kleerwater™will not remove oils with a specific gravity of less than 0.95, dissolved hydrocarbons, or volatile organic compounds. For additional information, please visit www.kleerwater.net

Manufacturer/Vendor: Name of Technology: Technology Type: Modular Wetland Systems, Inc.
Modular Wetland Systems - Linear

Bioretention/Filtration

Schematic

System Design Information

Design Flow Rate (gpm):

low: 22 high: 120

System Footprint (sq. ft.):

16-84

Required Head Loss (ft):

2,4

Internal or External Bypass:

Internal (External in Some

Situations)
Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	270		19	4	NA	NA	NA	NA
Median Effluent (mg/L):	3		0	ND	NA	NA	NA	NA
Median Removal (%):	98		>99	>99	NA	NA	NA	NA

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	0.04	ND	0.24	0.757	0.543	0.95	
Median Effluent (mg/L):	ND	ND	ND	0.0552	0.1	0.185	
Median Removal (%):	>50		>79	93	81	80	

^{*} blank cells indicate no information was received from vendor

Approvals

<u> </u>	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
	•	•	•			<u> </u>
	50% TSS Rer	moval	80% TS9	S Removal		·
	30/0 133 NEI	110 Vai	00/0.00			

Incal Inc	talla	tion	c

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low:\$12,000high:\$25,000Estimated Annual O&M Cost:low:\$8.26/galhigh:\$10.50/gal

Manufacturer/Vendor: Name of Technology: Technology Type: Bio Clean Environmental
Nutrient Separating Baffle Box

Hydrodynamic Separation

Schematic

System Design Information

Design Flow Rate (gpm):

low: 148 high: 8,858

System Footprint (sq. ft.):

0

Required Head Loss (ft):

0

Internal or External Bypass:

Other Approvals:

Internal (External in Some

Situations)

Application Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:	2	4	NA	2	NA			NA
Median Influent (mg/L):	366	1.49	NA	4	NA			NA
Median Effluent (mg/L):	48	0.44	NA	n/d	NA			NA
Median Removal (%):	86.8	70	NA	>99	NA			NA

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:	2	NA	0	NA	NA	NA	
Median Influent (mg/L):	0.07	NA	0.318	NA	NA	NA	
Median Effluent (mg/L):	0.042	NA	0.222	NA	NA	NA	
Median Removal (%):	40	NA	30.25	NA	NA	NA	

Enhanced

Basic

Pretreatment

Approvals

Phosphorus

Oil

TAPE			
			<u></u>
	50% TSS Removal	80% TSS Removal	
NJCAT	X		

Local Installations

of Installations in Washington: 0 WA, 4 UT, 3 OR

Estimated Costs

 Estimated Installation Cost:
 low:
 \$10,000
 high:
 \$200,000

 Estimated Annual O&M Cost:
 low:
 \$0.33/gal
 high:
 \$0.84/gal

^{*} blank cells indicate no information was received from vendor

Manufacturer/Vendor: Name of Technology: Technology Type: Bio Clean Environmental

Nutrient Separating Baffle Box
Hydrodynamic Separation

Treatment Notes

The Nutrient Separating Baffle Box has been in use since for over 10 years. Several field and laboratory studies have been performed on the system. For this reason several reports are being listed below. N/A stands for information not available - pollutant not tested in the report

- --City of Santa Monica field data is independent and was performed over the course of 1 year.
- --Brevard County field testing is independent and was peformed over 4 storm events Micco & Indiatlantic
- -- NJ CAT Full Scale Labratory Testing Tier 1

Additional Notes
The Nutrient Separating Baffle Box employees screening, three chambered hydrodynamic spearation and absoptive polymer media
for the removal of gorss solids, TSS, particulate pollutants and hydrocarbons.

Manufacturer/Vendor: Name of Technology: **Technology Type:**

Rotondo Environmental Solutions, LLC

Perimeter Sandfilter (Delaware Sandfilter)

Media Filtration (Sand Filter)

Svstem	Design	Intor	mation

Design F low: high:	low Rate (gpm):	
System	Footprint (sq. ft.):	
Require	d Head Loss (ft):	_
Internal	or External Bypass:	_
Applicat	ion	_

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} blank cells indicate no information was received from vendor

Estimated Annual O&M Cost:

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
	1					
	50% TSS Ren	noval	80% TSS	S Removal		
NJCAT						

Local	Instal	llations

# of Installations in Washington:		<u> </u>	
	Estimated	Costs	
Estimated Installation Cost:	low:	high:	

high:

low:

Manufacturer/Vendor: Name of Technology: Technology Type: Rotondo Environmental Solutions, LLC
Perimeter Sandfilter (Delaware Sandfilter)

Media Filtration (Sand Filter)

-			
Treatment Notes			
ļ.	-		
Additional Notes			

Manufacturer/Vendor:	Kristar Enterprises, Inc.
Name of Technology:	Perk Filter
Technology Type:	Media Filtration(Cartridge)

Schematic

POD SYSTEM CONFIGURATION

System Design Information

Design	Flow	Rate	(gpm):
low.		12	

high: 1000

System Footprint (sq. ft.):

10,150

Required Head Loss (ft):

1.7,3.5

Internal or External Bypass:

Internal

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	70		20	20				20
Median Effluent (mg/L):	11		5	5				5
Median Removal (%):	82		75	75				75

		Total Meta	als	Disso	lved Meta	ls
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):	0.052	0.15	0.25			
Median Effluent (mg/L):	0.02	0.05	0.1			
Median Removal (%):	62	68	61			

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE		GULD		GULD		
•	•		•			
	50% TSS Rer	noval	80% TS	S Removal		·
NJCAT						

Local Installations

of Installations in Washington: 15

Estimated Costs

Estimated Installation Cost:low: \$10000high: \$200000Estimated Annual O&M Cost:low: \$1200high: \$10000

Manufacturer/Vendor:	Kristar Enterprises, Inc.
Name of Technology:	Perk Filter
Technology Type:	Media Filtration(Cartridge)
Treatment Notes	
Internal lab testing performe	d by Kristar. Third party lab testing was performed by CSUS - OWP for TSS and subsequent "street
Sweeipings" testing for metal	ls and nutrients. Third Party field testing for GULD by Herrera.
Additional Notes	

Manufactu	rer/Vendor:	PSI Interna	itional, Inc.						
Name of Te	echnology:	PSI Separa	tor						
Technology	/ Type:	Oil/Water	Separator						
Schemati	С					System	Design I	nformati	on
		raneru	eak Monitor Tubes Co	Rectangular alescer Manway		-	_		
	Alarm n oncrete Pad**	nonitor*	/ \	/ He Vent	Piping**	Design Fl	ow Rate (gpm):	
	Commence of the Commence of th		Il Pump-Out Pi	pe/	11	low:			
	Round Acce Manw				2002	high:		_	
	Inlet Car	1) Oil		Lifting Li				_	
	Lifting Lug	Level		Out	let	System F	ootprint (sq. ft.):	
I	nlet Nozzle	3. Lev	el Sensor						_
	Corrugated			(E) (O)	d D own	Required	Head Los	s (ft):	
	Corrugated Plate Separator			A NOT	Straps*			_	-
			-		st Pad**	Internal o	or Externa	l Bypass:	
	Corrugated Parálle Plate Separator	Sludge	Baffle Polyp	ropylene alescer		<u> </u>			-
		* Optio		vailable from PS Int Installer supplied e		Application	on		
				installer supplied e	equipment				=
			Troat	ment Perfor	mance				
			Heut	ment Perjon	munce				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	camples:	133	1.5	1711	Oil & grease	30003	FCDS	DIOXIIIS	CFAIIS
	luent (mg/L):								
	luent (mg/L):								
Median Re									
iviculari itc	707.	<u> </u>		1	1	1			<u> </u>
			Total Met	als	Disso	lved Meta	ls		
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of	samples:							1	
	luent (mg/L):							1	
	luent (mg/L):							1	
Median Re	moval (%):							1	
* blank cell	s indicate no infor	mation wa	s received fro	om vendor		•	•	-	
				Approvals					
						_			
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE									
					7				
	50% TSS Re	moval	80% TS	S Removal					
NJCAT]				
			Lo	cal Installati	ons				
# of Installa	ations in Washing	ton:							
					-				
			E	stimated Cos	sts				-
Estimated I	Installation Cost:		low:		high:	;			
	Annual O&M Cost	,• ,•	low:		high:		_		
					-		_		

Manufacturer/Vendor: Name of Technology:

Environment 21

PuriStorm

Technology Type: Media Filtration(Cartridge)

Schematic

System Design Information

Design Flow Rate (gpm):

low: 0 high: 2000

System Footprint (sq. ft.):

9-600

Required Head Loss (ft):

0-0.5

Internal or External Bypass:

Both

Other Approvals:

Application

Stormwater

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	*250		**400	**400	**400	**400	**400	**400
Median Effluent (mg/L):	*175		**80	**80	**80	**80	**80	**80
Median Removal (%):	*80		**80	**80	**80	**80	**80	**80

		Total Met	als	Disso	ved Meta	ls
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):	***0.08	***0.79	***0.3	NA	NA	NA
Median Effluent (mg/L):	***0.04	***0.28	***0.06	NA	NA	NA
Median Removal (%):	***50	***65	***80	NA	NA	NA

^{*} blank cells indicate no information was received from vendor

Pretreatment Basic Enhanced Phosphorus

Approvals

Oil

TAPE				-	
					7
NUCAT	50% TSS Rer	noval	80% TSS	Removal	4
NJCAT					J

Local	Insta	llations

of Installations in Washington:

Estimated Costs

Estimated Installation Cost:low:\$3,000high:\$25,000Estimated Annual O&M Cost:low:0high:\$10,000

Manufacturer/Vendor:
Name of Technology:
Technology Type:

| Media Filtration(Cartridge)

| Media Filtration(Cartridge)

| Treatment Notes
| Treatment Notes
| Treatment Stremoval efficiency is also dependent upon the Particle Size Distribution (PSD). For this product, the assumption of a PSD with a dSO of 60 microns was used.
| **Any oil based removal depends on the droplet size and specific gravity of the oil. For this product, accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of 0.89 are used. The removal efficiencies are estimated.
| ***Testing is not complete for metals; therefore, these values are estimated.
| Additional Notes | Complete Street St

Manufactu	ırer/Vendor:	Environmental Filtration Inc.										
	echnology:	Raynfiltr Drain Inlet Insert(Media Filtration										
Technolog	у Туре:											
Schemati	ic	_				System	Design I	nformati	on			
				Keep top of		Design Flo	ow Pate (anm).				
				canister within 12" from the		low:	Ow Nate (gpiii).				
		Raynf	Filtr*	bottom of the grate.		high:	900	_				
				Use risers when needed				_				
	畫					System F	ootprint (sq. ft.):				
		-				Required	Head Los	ss (ft):				
				- Riser		Internal o	or Externa	al Bypass:				
	Process Assessed		Catcle			Application	on		-			
						Stormwate						
									•			
			Treatr	nent Perforn	nance *							
		TSS	ТР	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs			
Number of	f samples:	133	ir ir	1711	On & grease	3000	PCDS	DIOXIIIS	CFAIIS			
	fluent (mg/L):	+										
	fluent (mg/L):											
	emoval (%):											
			•	•	•							
			Total Met	als	Disso	lved Meta	ls					
		Cu	Pb	Zn	Cu	Pb	Zn					
Number of												
	fluent (mg/L):											
	fluent (mg/L):											
	emoval (%):					ļ	ļ					
* blank cel	ls indicate no info	rmation wa	as received tro	Approvals								
						_						
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other A	pprovals:				
TAPE]						
	FOO/ TCC D		000/ TC	C D	1							
NUCAT	50% TSS Re	movai	80% 153	S Removal	<u> </u>							
NJCAT					J		-					
			Lo	cal Installati	ons							
# of Install	ations in Washing	ton:	1 (a	irport)	-							
			E	stimated Cos	sts							
Estimated	Installation Cast		la	¢521	h!al-	¢EE4						
	Installation Cost:	. .		\$531	_	\$554	_					
Estimated	Estimated Annual O&M Cost:		iow:		nign:		_					

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Costs per catch basin

Manufacturer/Vendor: Name of Technology: **Technology Type:**

EcoSol Wastewater Filtration Systems

RSF (Rapid Stormwater Filtration) 100

Drain Inlet Insert(Combination System (Screen and Media Filtration))

Schematic

System	Design	Inform	ation
JVJLEIII	Desiuii	111101111	uuu

Design Flow Rate (gpm):

1784 low: high: 7000

System Footprint (sq. ft.):

Required Head Loss (ft):

0.5

Internal or External Bypass:

Application

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	ND	NA						
Median Effluent (mg/L):	ND	NA						
Median Removal (%):	65	40						

	Total Metals			Dissolved Metals		
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):						
Median Effluent (mg/L):						
Median Removal (%):						

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:	
TAPE							
•	•	•	•	•			
	50% TSS Rer	noval	80% TS	S Removal			
NJCAT							
•			•				

10001	Inctal	lations

# of Installations in Washington:		
	Estimated Costs	

Estimated Installation Cost:	low:	high:
Estimated Annual O&M Cost:	low:	high:

Manufacturer/Vendor: Name of Technology: Technology Type: **EcoSol Wastewater Filtration Systems**

RSF (Rapid Stormwater Filtration) 100

Drain Inlet Insert(Combination System (Screen and Media Filtration))

Treatment Notes		
Additional Notes		

Manufacturer/Vendor: Name of Technology: Technology Type: **EcoSol Wastewater Filtration Systems**

RSF (Rapid Stormwater Filtration) 1000

Drain Inlet Insert(Combination System (Screen and Media Filtration))

Schematic

System	Design	Inform	ation
JVJLEIII	Desiuii	111101111	uuu

Design Flow Rate (gpm):

low: 12000 high: 18162

System Footprint (sq. ft.):

0

Required Head Loss (ft):

0.5

Internal or External Bypass:

Application

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	ND	NA						
Median Effluent (mg/L):	ND	NA						
Median Removal (%):	49	30						

	Total Metals			Dissolved Metals		
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):						
Median Effluent (mg/L):						
Median Removal (%):						

^{*} blank cells indicate no information was received from vendor

Estimated Annual O&M Cost:

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE]
			200/ 70/			
	50% TSS Rer	noval	80% TS	S Removal		
NJCAT						
	ı					

10001	Inctal	lations

# of Installations in Washington:		_	
	Estimated C	osts	
Estimated Installation Costs	lowe	high:	

high:

low:__

Manufacturer/Vendor: Name of Technology: Technology Type: **EcoSol Wastewater Filtration Systems**

RSF (Rapid Stormwater Filtration) 1000

Drain Inlet Insert(Combination System (Screen and Media Filtration))

	2.4	 201 0 0 111 0 111 0 0 10 10 10 10 10 10 1	
Treatment Notes			
Additional Notes			

Manufacturer/Vendor: Name of Technology:

EcoSol Wastewater Filtration Systems

RSF (Rapid Stormwater Filtration) 4000

Technology Type: Drain Inlet Insert(Combination System (Screen and Media Filtration))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 837 high: 68270

System Footprint (sq. ft.):

Required Head Loss (ft):

0.5

Internal or External Bypass:

Application

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	ND	NA						
Median Effluent (mg/L):	ND	NA						
Median Removal (%):	91	30						

	Total Metals			Dissolved Metals		
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):						
Median Effluent (mg/L):						
Median Removal (%):						

^{*} blank cells indicate no information was received from vendor

Approvals

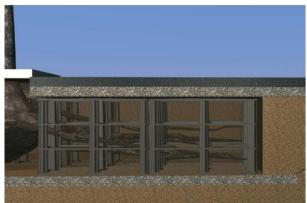
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE]
			200/ 70/			
	50% TSS Rer	noval	80% TS	S Removal		
NJCAT						
	ı					

10001	Inctal	lations

# of Installations in Washington:		
	Estimated Costs	

Estimated Installation Cost:	low:	high:
Estimated Annual O&M Cost:	low:	high:

Manufacturer/Vendor: Name of Technology:


EcoSol Wastewater Filtration Systems

RSF (Rapid Stormwater Filtration) 4000

Technology Type:	Drain Inlet Insert(Combination System (Screen and Media Filtration))
Treatment Notes	
Treatment Notes	
Additional Notes	

Schematic		System Design Information
Technology Type:	Bioretention/Filtration	
Name of Technology:	Silva Cell	
Manufacturer/Vendor:	Deep Root Partners, L.P.	

Design Flow Rate (gpm): low: 20"/hour high: 3"/hour

System Footprint (sq. ft.):

Required Head Loss (ft):

n/a

Internal or External Bypass:

Optional

Application Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):	80	68						

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):				90+		90+	

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE		GULD	GULD			
	•		•	•		,
	50% TSS Rer	noval	80% TS	S Removal		•
			†			

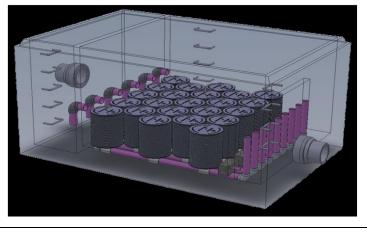
10001	Inctal	lations

of Installations in Washington:

Estimated Costs

Estimated Installation Cost: low: \$4,000-\$5,600 high: \$10,000-\$14,000 high: \$100-\$200 **Estimated Annual O&M Cost: low:** \$100-\$200

Deep Root Partners, L.P. Silva Cell						
ch. The water quality filtering values are based on research by Davis at University of Maryland and						
arolina.						
er Manual, British Columbia Stormwater Manual, State of Washington Department of Ecology						
er Mandal, British Columbia Stormwater Mandal, State of Washington Department of Ecology						


Manufactu	rer/Vendor:	Nyloplast/I	Hancor, Inc.						
Name of Te		SNOUT®							
Technology		Oil/Water	Separator						
Schematic	C					System	Design II	nformati	on
		-				Design Flow:	ow Rate (g	gpm):	
		/		No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa		high:		<u>-</u> _	
		/	SNOUT	Stormwater and trush enter structure: through grate or pipe		System F	ootprint (sq. ft.):	
		*	5			Required	Head Los	s (ft):	
		Change water exits from under SNOUT	IL *	Oil and fixatable boters on surface carries as pas		Internal o	or Externa	l Bypass:	•
		Grees particles and some suspended solids sink	100	and the same		Application	on		•
			Treat	ment Perfor	mance				•
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	samples:								
Median Inf	luent (mg/L):								
Median Eff	luent (mg/L):								
Median Rei	moval (%):								
					Γ			7	
			Total Met			ved Meta			
		Cu	Pb	Zn	Cu	Pb	Zn	1	
Number of								<u> </u>	
	luent (mg/L):							<u> </u>	
	luent (mg/L):							<u> </u>	
Median Rei				<u> </u>				<u> </u>	
* blank cells	s indicate no infor	mation wa	s received fro						
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE									
			ı		1				
	50% TSS Rer	noval	80% TS	S Removal					
NJCAT									
			Lo	cal Installati	ons				
# of Installa	tions in Washingt	ton:			-				
			E	stimated Cos	sts				
Estimated I	nstallation Cost:		low:		high				
	Annual O&M Cost		low:		nign: high:		=		
Louinated A	amuai Odivi Cost	•	iow:		nign:		_		

Manufacturer/Vendor:	Nyloplast/Hancor, Inc.						
Name of Technology:	SNOUT®						
Technology Type:	Oil/Water Separator						
Treatment Notes							
Additional Notes							

Manufacturer/Vendor:Imbrium Systems CorpName of Technology:Sorbtive™ FILTERTechnology Type:Media Filtration(Cartridge)

System Design Information	7
Design Flow Rate (gpm):	
low:	
high:	
System Footprint (sq. ft.):	
Required Head Loss (ft):	
Internal or External Bypass:	
Application	

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	ND	ND						
Median Effluent (mg/L):	ND	ND						
Median Removal (%):	84	>77						

	Total Metals			Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} blank cells indicate no information was received from vendor

Estimated Annual O&M Cost:

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
	•	•			_	
	50% TSS Rer	noval	80% TS	S Removal		
NJCAT						
	•		•			
_			Lo	cal Installatio	ons	
# of Install	lations in Washingt	on:				
			E	stimated Cos	ts	
Estimated	Installation Costs		love		high	

low:__

high:

Manufacturer/Vendor:
Name of Technology:
Technology Type:

| Media Filtration(Cartridge)

| Treatment Notes

| Additional Notes | Media Filtration | Media Filtratio

Manufactui	er/Vendor:	Nyloplast/l	oplast/Hancor, Inc.						
Name of Te	chnology:	Storm PURE™							
Technology	Туре:	Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))							
Schematic Schematic		Drain Inlet	Insert(Combin	nation System (S	creen and Absor	System Design Flo low: high: System Fo Required	Design Ir ow Rate (g ootprint (s Head Loss or Externa	- sq. ft.): s (ft):	on
		The second second	Treat	ment Perfor	mance				
		TSS	ТР	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	samples:								
	uent (mg/L):								
	uent (mg/L):								
Median Rer									
	,	l	•	l	1	I			
			Total Meta	als	Dissol	ved Meta	ls]	
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of	samples:							1	
	uent (mg/L):							1	
	uent (mg/L):							1	
Median Rer								1	
* blank cells	indicate no infor	mation wa	s received fro	om vendor		!	•	-	
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE				p			2 c. 7 \p		
17.1 -	<u> </u>			ļ.		l			
	50% TSS Rer	noval	80% TSS	S Removal					
NJCAT	00,1100110								
	L				I				
			Lo	cal Installati	ons				
# of Installa	tions in Washingt	on:							
			E:	stimated Cos	its				
	nstallation Cost:		low:		high:		_		
Estimated A	Innual O&M Cost	•	low:		high:		=		

Manufacturer/Vendor: Name of Technology: Technology Type: FABCO industries

Stormbasin/Stormpod

Drain Inlet Insert(Media Filtration (Cartridge))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 50 high: >2500

System Footprint (sq. ft.):

4 - 200

Required Head Loss (ft):

1.25 - 2.5

Internal or External Bypass:

Both

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	111.9	0.57		59.5				
Median Effluent (mg/L):	2.7	0.3		<5				
Median Removal (%):	97.8	47		>90				

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):		0.018	0.335				
Median Effluent (mg/L):		0.0049	0.175				
Median Removal (%):		73	48				

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Oth
APE						
	•		•	•	-	
	50% TSS Rer	noval	80% TSS	Removal		
NJCAT						·

	Local	' Instal	lations
--	-------	----------	---------

of Installations in Washington: <20

Estimated Costs

Estimated Installation Cost:low: \$750high: \$2,000Estimated Annual O&M Cost:low: \$200high: \$800

Manufacturer/Vendor:	FABCO industries
Name of Technology:	Stormbasin/Stormpod
Technology Type:	Drain Inlet Insert(Media Filtration (Cartridge))

Treatment Notes

FABCO stormbasin/stormpod has been tested in the lab and the field by 1st+3rd party's data was collected according to established protocols and consisted of barious methods including grab, auto, semi-auto and single event or composite samples

Additional Notes

Additional Notes
FABCO was awarded a competition bid-soil source spec for large scale municupal deployment in the urban/ms4 stormdrain system
of nassau county, long island, ny. Since 2009 FABCO was installed over 2000 stormbasins. Our performance approval as part of this
spec-sediment TSS removal> 50% d50: 110 um. Hydrocarbons/oil&grease: >80%Phosphorus: >50%. Nitrogen >40%. Bacteria.
>70%. Stormbasin is a great retrofit device for industrial facilities and is considered a structural BMP for pretreatment, source
control or in spcc + swpp plans.

	EKKEKA	• •	catillelli	· recimore	gy Sammi	ary nep	,,,,					
Manufactu	rer/Vendor:	Imbrium S	ystems									
Name of Te		Stormcept										
Technology	Туре:	Hydrodynamic Separation										
Schematic	5 -					System	Design I	nformati	on			
		750		1		Design Flo		gpm):				
			-			low:	0	_				
						high:	11000	_				
						System Fo	ootprint (sq. ft.):				
						Danishad	110001100	- /£4\.	-			
	d					Required	0.22	s (π):				
	u					Internal c		l Rynass:	-			
						internare	Internal	і Буразз.				
						Application			=			
		-	The same of the sa			Stormwate						
									•			
			Treatr	nent Perforn	nance *							
		TSS	TP	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs			
Number of	samples:	57	38	15								
Median Inf	uent (mg/L):	159	0.275	29								
Median Eff	uent (mg/L):	59	0.175	4								
Median Rei	moval (%):	53	21.8	73								
			Total Met	als	Disso	lved Meta	lc .	٦				
		Cu	Pb	Zn	Cu	Pb	Zn	-				
Number of	samples:					1.2		†				
	uent (mg/L):							†				
	uent (mg/L):							1				
Median Rei					27.5	41.8	35.3	1				
* blank cells	s indicate no infor	mation wa	s received fr	om vendor	•	•	•	→				
				Approvals								
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	7	Other Ar	provals:				
TAPE	Tretreatment	Basic	Limaneca	Thosphorus	Oii		Other Ap	provais.				
			'	*	1	4						
	50% TSS Re	moval	80% TS	S Removal								
NJCAT	Х											
			Lo	cal Installati	ons							
# of Installa	itions in Washing	ton:	5	10+								
					-							
			_	stimated Co	ctc							

Estimated Installation Cost: low: \$3,000 high: \$15,000 **Estimated Annual O&M Cost:** low: \$500 high: \$5,000

Manufacturer/Vendor:	Imbrium Systems
Name of Technology:	Stormceptor
Technology Type:	Hydrodynamic Separation

Treatment Notes

The data detailed below is aggregate of many field studies (8) as well as lab studies (2) including the NJCAT TARP program. Most
studies were conducted 3rd party with both automatic and grab samplers. Individual test reports are available upon request.

Additional Notes

Despite the above averages, the Stormceptor system, when sized with PCSWMM for Stormceptor has a 0.94 correlation (r-squared regression value) with field performance when an accurate PSD is used to size the unit. Therefore the Stormceptor can be confidently and accurately sized for TSS removal goals on the order of 80% TSS, if the proper consideration like a true PSD are taken into account. Furthermore, the laboratory evaluation indicates that the Stormceptor unit can achieve DOE level performance at flow rates larger than the indicated treatment flow rate on the DOE GULD. The flow rates listed in the DOE GULD are merely a hydraulic marker within the system that indicates when the unit begins to inhibit scour from the unit.

Estimated Installation Cost:

Estimated Annual O&M Cost:

Treatment Technology Summary Report

Clean Way Manufacturer/Vendor: Name of Technology: StormClean Catch Basin Insert **Technology Type:** Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric)) **System Design Information** Schematic Design Flow Rate (gpm): low: high: System Footprint (sq. ft.): Required Head Loss (ft): **Internal or External Bypass: Application** Treatment Performance TPH Oil & grease **TSS** TP **SVOCs PCBs** Dioxins | CPAHs Number of samples: Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): **Total Metals Dissolved Metals** Pb Zn Cu Cu Pb Zn Number of samples: Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): blank cells indicate no information was received from vendor **Approvals Pretreatment Basic Enhanced Phosphorus** Oil Other Approvals: TAPE 50% TSS Removal 80% TSS Removal **NJCAT Local Installations** # of Installations in Washington: **Estimated Costs**

low:____

low:

high: ____

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Treatment Notes

Additional Notes

Manufactu	ırer/Vendor:	Clean Way	/						
Name of T	echnology:	StormClea	n Curb Inlet In	sert					
Technology Type: Drain Inlet Insert(Combination System (Screen						bent Boom	/Fabric))		
Schemati	ic					System	Design I	nformati	on
	AT					Design Flow:	ow Rate (gpm):	
	-					high:		_	
	The second					System F	ootprint (sq. ft.):	
	1 21-1		J. 17.	Assistant d		Required	Head Los	s (ft):	•
						Internal o		l Bypass:	
		PECT 1	THE RESERVE OF THE PERSON NAMED IN	5		Application	on		•
			Treat	ment Perfor	mance				
		TSS	TP	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	f samples:								
Median In	fluent (mg/L):								
Median Ef	fluent (mg/L):								
Median Re	emoval (%):								
					1			7	
			Total Met		Disso	lved Meta			
		Cu	Pb	Zn	Cu	Pb	Zn	1	
Number of	_							1	
	fluent (mg/L):							1	
	fluent (mg/L):							1	
	emoval (%):	L		<u> </u>					
* blank cel	ls indicate no infori	mation wa	as received fro						
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil]	Other Ap	provals:	
TAPE]			
	50% TSS Rer	noval	80% TS	S Removal]				
NJCAT									
			10	cal Installati	ons				
			LO	cai mstanati	Ulis				
# of Install	ations in Washingt	on:			-				
			E.	stimated Cos	sts				
Estimated	Installation Cost:		low:		high:				
	Annual O&M Cost	:	low:				_		

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Clean Way
StormClean Curb Inlet Insert
Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Additional Notes

Manufacturer/Vendor:

Clean Way

Name of Te	echnology:	StormClean	ormClean Wall Mount Filtration Unit								
Technology	<i>т</i> уре:	Drain Inlet	Insert(Combin	nation System (S	creen and Absor	bent Boom	/Fabric))				
Schematic	С					System	Design II	nformatio	on		
	in the second se	Clean W				Design Flow: high: System For	ow Rate (gpm): - - sq. ft.): s (ft):	on		
			Treat	ment Perfori	mance						
		.	_								
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs		
Number of											
	luent (mg/L):										
	luent (mg/L):										
Median Rei	moval (%):										
								7			
			Total Met	1	Disso	ved Meta					
		Cu	Pb	Zn	Cu	Pb	Zn	<u> </u>			
Number of	•										
	luent (mg/L):										
	luent (mg/L):										
Median Rei	· /										
* blank cell:	s indicate no infor	mation wa	is received fro	om vendor							
				Approvals							
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:			
TAPE							•	•			
	1	<u> </u>		<u> </u>		ļ					
	50% TSS Rer	noval	80% TS	S Removal							
NJCAT											
	1		<u> </u>								
			Lo	cal Installati	ons						
# of Installa	ations in Washingt	on:									
			E	stimated Cos	its						
.											
	nstallation Cost:		low:				_				
Estimated A	Annual O&M Cost	:	low:		high:		_				

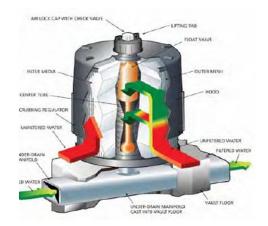
Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Clean Way
StormClean Wall Mount Filtration Unit
Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Additional Notes



 Manufacturer/Vendor:
 CONTECH Construction Products Inc.

 Name of Technology:
 StormFilter - ZPG

Technology Type: Media Filtration(Cartridge)

Schematic

System Design Information

Design Flow Rate (gpm):

low: 2 high: 44900

System Footprint (sq. ft.):

8 - 6,050

Required Head Loss (ft):

1.8 - 12

Internal or External Bypass:

Both available

Other Approvals:

Application Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	83							0.12
Median Effluent (mg/L):	23							0.062
Median Removal (%):	82							42

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	0.0425	0.12	0.225	0.00464		0.0599	
Median Effluent (mg/L):	0.0335	0.0435	0.12767	0.00423		0.0532	
Median Removal (%):	47	24	62	11		15	

Enhanced

Basic

Pretreatment

Approvals

Phosphorus

Oil

Local Installations

of Installations in Washington: > 500

Estimated Costs

 Estimated Installation Cost:
 low: \$10K
 high: \$2.5 M

 Estimated Annual O&M Cost:
 low: \$0.00008/gal
 high: \$0.00024/gal

^{*} blank cells indicate no information was received from vendor

Manufacturer/Vendor:	CONTECH Construction Products Inc.
Name of Technology:	StormFilter - ZPG
Technology Type:	Media Filtration(Cartridge)

Treatment Notes

a) Stormwater Management StormFilter Basic Treatment Application for General Use Level Designation (2005): field,flow-weighted, peer reviewed, composite samples; b) Milwaukee Riverwalk ETV; Third Party, Field, Flow weighted. c) Heritage Marketplace Field Evalution (2004): field, flow-weighted, peer reviewed, composite samples; d) EvTec Lake Union Ultra-Urban Stormwater Technology Evaluation Stormwater Management StormFilter (2008): field, third party, composite.

Additional Notes
TSS reference a; Metals references b & c; cPAHs reference d. cPAHs used Chrysene as the parameter as it was the median
performance for the suite of requested analytes. Ranges were 33% to 47% for the entire suite. cPAH data contained 10% more GAC (by volume) than standard ZPG.

Manufactu	rer/Vendor:	Fabco Indu	ustries						
Name of Te	chnology:	Stormsafe	-helix						
Technology		Media Filtr	ration(Cartridg	ge)					
Schematic	<u> </u>					System	Design II	nformati	on
						Design Flo	ow Rate (gpm):	
						low:	3	· ·	
			Marine			high:	9	-	
		Mo						=	
		A Contractor				System Fo	ootprint (s 160 - 250	sq. ft.):	
	Managan					Required		s (ft):	•
	Filter tube						0 - 3		
	showing he	lical filters				Internal o	or Externa both	l Bypass:	
						Application	on		•
						Stormwate	er		•
			Treatr	nent Perforn	nance *				
			77.00.0						
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of									
	luent (mg/L):								
	luent (mg/L):								
Median Rei	moval (%):								
			Total Met	als	Disso	ved Meta	ls	1	
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of	samples:							†	
	luent (mg/L):								
	luent (mg/L):							1	
Median Rei								1	
	s indicate no infor	mation wa	s received fro	om vendor		!	•	4	
				Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil]	Other Ap	nrovals	
TAPE	Tretreatment	Dasic	Limaneca	Thosphorus	O.I.		Other Ap	provais.	
IALL	<u> </u>					1			
	50% TSS Rei	moval	80% TS	S Removal]				
NJCAT									
					•				
			Lo	cal Installati	ons				
# of Installa	ntions in Washing	ton:	n	one					
			E.	stimated Cos	sts				
Estimated I	nstallation Cost:		low:	\$20,000	high:	\$60,000			
	Annual O&M Cost	:		\$2,000	-	\$6,000	_		

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Media Filtration(Cartridge)

Treatment Notes

We have conducted lab and field studies as descried in our online reports, we are currently undergoing 3rd party field testing at a wastewater treatment plant, treating 10 acres of stormwater runoff.

Additional Notes

Manufactu	rer/Vendor:	Park USA									
Name of Te	echnology:	StormTroc	per®								
Technology	у Туре:	Hydrodyna	amic Separatio	n							
<u> </u>						<u> </u>	<u> </u>	<i>.</i>			
Schemati	C					System	Design II	njormati	on		
		Summator II	Service of the servic	CONTROL MANHOLE		Design Flo	ow Rate (g	gpm):			
		-	8	STORMWATER		low:	0	,			
	- 5	S.E.		RUNOFF DEBRIS SCREEN		high:	11000	=			
	ì			BYPASS		Ū	-	=			
	TORMWATER UNOFF.			<u> </u>		System F	ootprint (s	sq. ft.):			
	iunor)					Required	Head Los	s (ft):	-		
			COALESCING	TO STORM SEWER		-	0.22				
			MEDIA PACK INTERCEPTOR			Internal o	or Externa	l Bypass:	•		
						Application	on		<u>-</u>		
									-		
			Treat	ment Perfori	mance						
		-		_							
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs		
Number of	•										
	luent (mg/L):										
	luent (mg/L):										
Median Re	moval (%):										
			Total Met	als	Disso	ved Meta	ls	1			
		Cu	Pb	Zn	Cu	Pb	Zn	-			
Number of	samples:							†			
	luent (mg/L):							†			
	fluent (mg/L):							†			
Median Re								Ì			
	s indicate no infor	mation wa	s received fro	om vendor	!		Į.	4			
				Approvals							
	Pretreatment	Basic	Enhanced	Phosphorus	Oil]	Other Ap	provals:			
TAPE							•	•			
			-		•	•					
	50% TSS Rei	moval	80% TS	S Removal							
NJCAT											
			10	cal Installati	ons						
			20	cai mstanati	0113						
# of Installa	ations in Washing	ton:									
			E.	stimated Cos	sts						
Estimated	Installation Cost		ها		h: ~L.						
	Installation Cost:		low:		high:		_				

Manufacturer/Vendor:	Park USA
Name of Technology:	StormTrooper®
Technology Type:	Hydrodynamic Separation
Treatment Notes	
Additional Notes	

Manufactu	rer/Vendor:	Park USA							
Name of Te	echnology:	StormTroo	per® EX Extra-	-Duty					
Technology	Type:	Hydrodyna	amic Separatio	n					
Schematic	c					System	Design II	nformati	on
						D! El	D-4 /-	\	
		·		DETRICAL MEHICLE			ow Rate (g	gpm):	
		1		ORSEWATER JNOFF		low: high:		-	
			-	IIINE SI PRILIM		ılığıı.		=	
	J			YPA SIS SIER		System F	ootprint (sq. ft.):	
	ENGF	-				Required	Head Los	s (ft)·	•
			The second second	STORM		псципси	ricaa Los	3 (10).	
	- 11		COALESCING MEDIAPACK IN TERCEPTOR	WER		Internal o	or Externa	l Bypass:	•
	- 10					Application	on		
	-						-		
									•
			Treat	ment Perfor	mance				
				T	T	1			
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	•								
	luent (mg/L):								
Median Rei	luent (mg/L):								
IVICUIAII INCI	illovai (70).		<u> </u>						
			Total Met	als	Disso	ved Meta	ls		
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of	samples:								
	luent (mg/L):								
Median Eff	luent (mg/L):								
Median Re								<u> </u>	
* blank cells	s indicate no infor	mation wa	is received fro						
				Approvals					
	Buston star and	D:-	Fulcasia	Dii	0:1	1	O41 4		
TAPE	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provais:	
TAPE			<u> </u>]			
	50% TSS Rei	moval	80% TS	S Removal]				
NJCAT									
	1				1		-		
			Lo	cal Installati	ons				
# of Installa	ations in Washing	ton:							
			E	stimated Cos	sts				
F-41	matallatic - C:		1		Lt.I				
	nstallation Cost:		low:				=		
Estimated A	Annual O&M Cost	:	low:		high:		_		

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

Park USA
StormTrooper® EX Extra-Duty
Hydrodynamic Separation

Treatment Notes

Manufacturer/Vendor:

Kristar Enterprises, Inc.

Name of Technology:

SwaleGard

Technology Type: Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 100 high: 800

System Footprint (sq. ft.):

4 - 16

Required Head Loss (ft):

0 - 0.5

Internal or External Bypass:

Internal

Other Approvals:

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	100		35	35				35
Median Effluent (mg/L):	20		7	7				
Median Removal (%):	80		80	80				7

		Total Met	als	Disso	ved Meta	ls
	Cu	Pb	Zn	Cu	Pb	Zn
Number of samples:						
Median Influent (mg/L):			10			
Median Effluent (mg/L):			6			
Median Removal (%):			60			

Basic Enhanced Phosphorus

Pretreatment

Approvals

Oil

APE					
					7
	50% TSS Remo	val	80% TSS	Removal	_
NJCAT					

Local	Instal	lations
-------	--------	---------

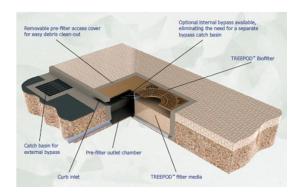
of Installations in Washington: 2

Estimated Costs

Estimated Installation Cost:low: \$4,500high: \$4,500Estimated Annual O&M Cost:low: \$75high: \$300

^{*} blank cells indicate no information was received from vendor

Manufacturer/Vendor:	Kristar Enterprises, Inc.
Name of Technology:	SwaleGard
Technology Type:	Drain Inlet Insert(Combination System (Screen and Absorbent Boom/Fabric))
Treatment Notes	
	ii, City of Auckland, NZ, CSUS - OWP. Field Study - University of Hawaii and City of Auckland
, , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Additional Notes	


Manufactu	rer/Vendor:	Terre Hill (Concrete Produ	ucts					
Name of Te	echnology:	Terre Klee	n™						
Technology	<i>т</i> уре:	Hydrodyna	amic Separatio	n					
Schematio	C					Design Flo low: high: System Fo Required Internal of	ow Rate (g 1.5 100 cotprint (s 0 Head Loss	- - sq. ft.): s (ft):	on
			Treat	ment Perfori	mance				
			T	T		T	T	T	
Number of	samples:	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
	luent (mg/L):	ND							
	luent (mg/L):	ND							
Median Rei		78							
Wicaiaii itci	1110 vai (70).	1 70							
			Total Meta	als	Disso	lved Meta	ls	1	
		Cu	Pb	Zn	Cu	Pb	Zn	_	
Number of	samples:	1						1	
	luent (mg/L):	1						1	
	luent (mg/L):	1						1	
Median Rei		1						1	
	s indicate no infor	mation wa	as received fro	ı om vendor		ļ	L	1	
				Approvals					
	Duotus atma acrt	Dos!s	Fuherras -	Dhoorban	0:1	1	Other A		
TADE	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	pprovais:	
TAPE									
	50% TSS Re	moval	90% TC	S Removal					
NJCAT	30% 133 Ke	illovai	80/6 13.	Keillovai					
NJCAI	Λ								
			Lo	cal Installati	ons				
# of Installa	ations in Washing	ton:							
			E	stimated Cos	its				
	nstallation Cost:		low:		high:		_		
Estimated A	Annual O&M Cost	: :	low:		high:				

Manufacturer/Vendor:	Kristar Enterprises, Inc.
Name of Technology:	TreePod Biofilter
Technology Type:	Bioretention/Filtration

Schematic

System Design Information

Design Flow Rate (gpm): low: 16

high: 72

System Footprint (sq. ft.):

24 - 84

Required Head Loss (ft):

0 - 0.5

Internal or External Bypass:

Internal

Application

Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	TBD		TBD	TBD				TBD
Median Effluent (mg/L):	TBD		TBD	TBD				TBD
Median Removal (%):	TBD		TBD	TBD				TBD

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	TBD	TBD	TBD	TBD	TBD	TBD	
Median Effluent (mg/L):	TBD	TBD	TBD	TBD	TBD	TBD	
Median Removal (%):	TBD	TBD	TBD	TBD	TBD	TBD	

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
		•				<u></u>
	50% TSS Rer	noval	80% TSS	S Removal		
NJCAT						<u></u>

Local Installations

of Installations in Washington:	0

Estimated Costs

Estimated Installation Cost:low: \$10,000high: \$50,000Estimated Annual O&M Cost:low: \$400high: \$750

 Manufacturer/Vendor:
 CONTECH Stormwater Solutions, Inc.

 Name of Technology:
 Triton Drop Inserts

 Technology Type:
 Drain Inlet Insert(Media Filtration (Cartridge))

Schematic

System Design Information

Design Flow Rate (gpm):

low: 100
high: 5404

System Footprint (sq. ft.):

Required Head Loss (ft):

Internal or External Bypass:

Both available

Application
Stormwater

Other Approvals:

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

Basic Enhanced Phosphorus

Pretreatment

Approvals

Oil

APE					
		_			7
CAT	50% TSS Rem	noval	80% TSS	S Removal	_
LAI					

Local Installations

of Installations in Washington: > 100

Estimated Costs

 Estimated Installation Cost:
 low:
 \$300
 high:
 \$2,500

 Estimated Annual O&M Cost:
 low:
 \$0.000002/gal
 high:
 \$0.00008/gal

^{*} blank cells indicate no information was received from vendor

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes

CONTECH Stormwater Solutions, Inc.

Triton Drop Inserts
Drain Inlet Insert(Media Filtration (Cartridge))

Additional Notes

Manufacturer/Vendor: Name of Technology: Technology Type: AbTech Industries
Ultra Urban Filter

Drain Inlet Inset (Absorbent Boom/Fabric)

Schematic

System Design Information

Design Flow Rate (gpm):

low: 190 high: 500

System Footprint (sq. ft.):

0

Required Head Loss (ft):

0.5 - 1.5

Internal or External Bypass:

Internal Bypass

Application

Stormwater/Process Water

Other Approvals:

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):			>100	>100	180			>100
Median Effluent (mg/L):			<10	<10	>4.4			>10
Median Removal (%):	*80		90	85	**40			**60

		Total Met	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} blank cells indicate no information was received from vendor

Pretreatment Basic Enhanced Phosphorus

Approvals

Oil

	ct. catille	245.0		111000110100	J	other Approvator
TAPE						
						<u> </u>
	50% TSS Rer	noval	80% TS	S Removal		
NJCAT						
					<u>-</u> '	

Local Ins	talla	itions
-----------	-------	--------

of Installations in Washington:

Estimated Costs

Estimated Installation Cost:low: \$400high: \$1,700Estimated Annual O&M Cost:low: NAhigh: NA

Manufacturer/Vendor: Name of Technology: Technology Type: AbTech Industries
Ultra Urban Filter

Drain Inlet Inset (Absorbent Boom/Fabric)

Treatment Notes

Primary analysis of AbTech Industries Ultra Urban Filter (UUF) was conducted in laboratory studies conducted by third parties using grab samples from established test protocols developed by federal and state regulatory entities. Field data was collected during studies conducted by municipalities to evaluate the effectiviness of the UUFs for deployment in the localized watershed. The testing methods used by the municipalities were governed by the state regulatory body, in which that municipality was located.

Additional Notes

- * Data based on Particle Size Distribution (PSD) and not on mg/L. Samples tested were evaluated using a medium sand in the 0.355-0.300 mm range.
- **Reduction of soluble dissolved hydrocarbons occurs when they become partitioned in the dispersed hydrocarbons and are removed simultaneously. Filtration of dissolved phase hydrocarbons through AbTech's UUFs will not occur, in substantial percent volumes, without the presence of dispersed hydrocarbons. Bench scale testing can be conducted on field samples to establish viability in a specific environment or to meet a specific discharge standard.

Total Metals Removal: Based on TSS testing the UUF has the ability to physically separate Total Metals from the water column, but AbTech products have no Chemical or Biological exchange during the filtration of Total Metals.

Manufacturer/Vendor: Name of Technology: Technology Type: Rotondo Environmental Solutions, LLC Underground Sandfilter (DC Sandfilter)

Media Filtration (Sand Filter)

C-1				: _
Sch	าค	m	пt	ır

System	Design	Inf	formation
--------	--------	-----	-----------

Design Flow Rate (gpm): low: high:
System Footprint (sq. ft.):
Required Head Loss (ft):
Internal or External Bypass:
Application

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} blank cells indicate no information was received from vendor

of Installations in Washington:

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
			·			
	50% TSS Rer	noval	80% TS	S Removal		
NJCAT						
	•		•			
			Lo	cal Installatio	ons	

Estimated Costs

Estimated Installation Cost:	low:	high:
Estimated Annual O&M Cost:	low:	high:

Manufacturer/Vendor: Name of Technology: Technology Type: Rotondo Environmental Solutions, LLC
Underground Sandfilter (DC Sandfilter)

Media Filtration (Sand Filter)

Technology Type:	Media Filtration (Sand Filter)
Treatment Notes	
Additional Notes	
Additional Notes	

Manufacturer/Vendor: Name of Technology:

Environment 21

UniScreen

Technology Type: Hydrodynamic Separation

Schematic

System Design Information

Design Flow Rate (gpm):

low: 0 high: 15,700

System Footprint (sq. ft.):

20-135

Required Head Loss (ft):

0-0.5

Internal or External Bypass:

Both

Application

Stormwater

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	*250		**400	**400	**400	**400	**400	**400
Median Effluent (mg/L):	*175		**150	**150	**150	**150	**150	**150
Median Removal (%):	*80		**62.5	**62.5	**62.5	**62.5	**62.5	**62.5

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	***0.08	***0.79	***0.3	NA	NA	NA	
Median Effluent (mg/L):	***0.06	***0.56	***0.18	NA	NA	NA	
Median Removal (%):	***20	***27	***40	NA	NA	NA	

^{*} blank cells indicate no information was received from vendor

Approvals

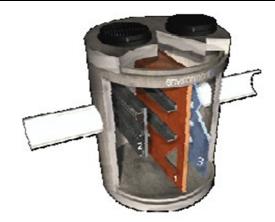
	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
		•			•	
	50% TSS Rer	noval	80% TSS	S Removal		
NJCAT		•				

Loco	. 1 1 1 1	-+11	-+	-

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low:\$2,000high:\$15,000Estimated Annual O&M Cost:low:0high:\$2,000


Manufacturer/Vendor: Name of Technology:

Environment 21

UniStorm

Technology Type: Hydrodynamic Separation

Schematic

System Design Information

Design Flow Rate (gpm):

low: 0 high: 15,700

System Footprint (sq. ft.):

20-135

Required Head Loss (ft):

0-0.5

Internal or External Bypass:

Α

Application

Stormwater

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	*250	ND	**400	**400	**400	**400	**400	**400
Median Effluent (mg/L):	*175	ND	**150	**150	**150	**150	**150	**150
Median Removal (%):	*80	80	**62.5	**62.5	**62.5	**62.5	**62.5	**62.5

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	***0.08	***0.79	***0.3	NA	NA	NA	
Median Effluent (mg/L):	***0.06	***0.56	***0.18	NA	NA	NA	
Median Removal (%):	***20	***27	***40	NA	NA	NA	

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil	Other Approvals:
TAPE						
	•		•		•	
	50% TSS Ren	noval	80% TSS	S Removal		

	Local	' Instal	lations
--	-------	----------	---------

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low:\$2,000high:\$15,000Estimated Annual O&M Cost:low:0high:\$2,000

Manufacturer/Vendor:		Hydro Inte	ernational, Inc.								
Name of Technology:		Up-Flo™ F	ilter								
Technology	у Туре:	Media Filtration(up flow)									
Schemati						System	Desian I	nformati	on		
	Inlet grate					-,	_ co.g	,			
			ETTERN .			Design Fl	ow Rate (gpm):			
						low:	147				
				Bypass siphon		high:	448	_			
		(TA)		_with floatables baffle		_		_			
				Outlet module		System F	ootprint (sq. ft.):			
	Filter module			Oddet moddle			0		_		
	Media pack			Drain down port		Required	Head Los	s (ft):			
	Angled screen	1		Outlet pipe			1.7-2.5		_		
						Internal o	or Externa	l Bypass:			
	Sump								<u>-</u>		
						Applicati	on				
									-		
											
			ireat	ment Perfor	mance						
			T	T	T = =		T	T =			
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs		
Number of	•	<u> </u>									
	luent (mg/L):	ND									
	fluent (mg/L):	ND									
Median Re	moval (%):	91									
			Tatal Nast	-1-	Diago	l	la .	7			
		<u> </u>	Total Met		t	Ived Meta	1				
Number of	i aamanlaa	Cu	Pb	Zn	Cu	Pb	Zn	_			
Number of		 						_			
	fluent (mg/L):							+			
	fluent (mg/L):	 						_			
Median Re	ls indicate no info	rmation	s received fr	l om vondor			ļ				
· Dialik Celi	is maicate no mio	IIIIauon wa	as received in								
				Approvals							
	Ductucctuccut	Pasis	Enhanced	Dhaanhausa	0:1	7	Othor A				
TADE	Pretreatment	Basic	Ennanced	Phosphorus	Oil		Other A	oprovals:			
TAPE		PULD		<u> </u>							
	50% TSS Re	moval	90% TS	S Removal	1						
NJCAT	30% 133 Re	Kemovai 80% 15		X	-						
NJCAT				Λ	J						
			LO	cal Installati	ons						
# of Installa	ations in Washing	ton:			_						
			E	stimated Cos	sts						
Estimated	Installation Cost:		low:		high:		_				
Estimated A	Annual O&M Cos	t:	low:		high:						

Manufactu	rer/Vendor:	CONTECH	Stormwater So	olutions, Inc.					
Name of Te	chnology:	UrbanGree	en BioFilter						
Technology	туре:	Bioretenti	on/Filtration						
Schematic	С	4-564				System	Design II	nformatio	on
						Design Flo low: high: System Fo	600	-	
						Required Internal of	3,6	l Bypass:	
						Application Stormwater	on		
			Treatn	nent Perforn	nance *				
				,					
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of									
	luent (mg/L):								
	luent (mg/L):								
Median Rei	moval (%):								
			Total Meta	ale.	Disso	ved Meta	le .	7	
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of	camples:	Cu	Pb	211	Cu	PU	ZII		
	luent (mg/L):							1	
	luent (mg/L):							1	
Median Rei								1	
	s indicate no infor	mation wa	ı İs received fro	m vendor			<u> </u>		
	<u> </u>			Approvals					
	Pretreatment	Basic	Enhanced	Phosphorus	Oil]	Other Ap	provals:	
TAPE				-					
		•				•			
	50% TSS Re	moval	80% TS	S Removal					
NJCAT									
			lo	cal Installati	ons				
# of Installa	ations in Washing	ton:		· 25					
			E	stimated Cos	its				
Estimated I	nstallation Cost:		low:	\$10k	high	\$250K			
	Annual O&M Cost	t:	low:		_	\$0.0003/ga	<u>-</u> I		

Manufacturer/Vendor: Name of Technology: Technology Type: **Environment 21**

V2B1 Treatment System
Hydrodynamic Separation

Schematic

System Design Information

Design Flow Rate (gpm):

low: 0 high: 63000

System Footprint (sq. ft.):

20-800

Required Head Loss (ft):

0-0.5

Internal or External Bypass:

Both

Application

Stormwater

Treatment Performance

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	*250	ND	**400	**400	**400	**400	**400	**400
Median Effluent (mg/L):	*175	ND	**150	**150	**150	**150	**150	**150
Median Removal (%):	*80	40	**62.5	**62.5	**62.5	**62.5	**62.5	**62.5

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):	***0.08	***0.79	***0.3	NA	NA	NA	
Median Effluent (mg/L):	***0.05	***0.35	***0.09	NA	NA	NA	
Median Removal (%):	***40	***55	***70	NA	NA	NA	

^{*} blank cells indicate no information was received from vendor

Approvals

	Pretreatment	Basic	Enhanced	Phosphorus	Oil
TAPE	PULD				
	•	•			
	50% TSS Rer	noval	80% TSS	S Removal	
NJCAT	Х				

	Local	' Instal	lations
--	-------	----------	---------

of Installations in Washington: 0

Estimated Costs

Estimated Installation Cost:low:\$2,000high:\$15,000Estimated Annual O&M Cost:low:0high:\$2,000

Manufacturer/Vendor: Environment 21

Name of Technology: V2B1 Treatment System

Technology Type: Hydrodynamic Separation

Treatment Notes

A dd:4: - - - | N - 4 - -

*The TSS removal efficiency is also dependent upon the Particle Size Distribution (PSD). For this product, the assumption of a PSD with a d50 of 110 microns was used.

Any oil based removal depends on the droplet size and specific gravity of the oil. For this product, accurate, analyzed data is unavailable; therefore a mean oil droplet size of 100 micron and a spgr of 0.89 are used. The removal efficiencies are estimated. *Testing is not complete for metals; therefore, these values are estimated.

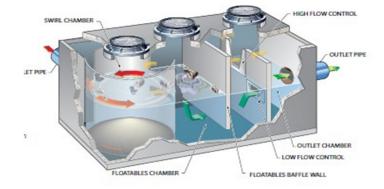
dditional Notes

	rer/Vendor:	CONTECH	Stormwater So	olutions, Inc.					
Name of Technology: VortClarex									
Technology	туре:	Oil/Water	Separator						
Schemati	С					System	Design II	nformatio	on
	нат	CH -				Design Flo	ow Rate (gpm):	
	MANHOLE					low:	100		
				OUTLET		high:	2000	<u></u>	
		The second second	Page 1						
				OUTLET T-PIPE		System Fo	ootprint (sq. ft.):	
						Required	Head Los	s (ft):	
		1000	S ASSA			Internal c	r Externa		
		solids	COALESCING BAFFLE WALL	MEDIA			oth availab	le	
						Application			
						Stormwate	er		
			Treatr	nent Perforn	nance *				
			Heath	nent renjoin	idiree				
		TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of	•								
	luent (mg/L):								
	luent (mg/L):	_							
Median Re	moval (%):								
			Total Met	als	Disso	lved Meta	ls	1	
		Cu	Pb	Zn	Cu	Pb	Zn		
Number of	samples:					1.2		1	
	luent (mg/L):								
	luent (mg/L):								
Median Re									
	s indicate no infor	mation wa	s received fro	om vendor	!			4	
				Approvals					
	T =		T = .	T		7			
	Pretreatment	Basic	Enhanced	Phosphorus	Oil		Other Ap	provals:	
TAPE]			
	50% TSS Re		909/ TC	S Removal	1				
NJCAT	50% 133 Ke	liovai	80% 13	Kelliovai	-				
NJCAT					J				
			Lo	cal Installati	ons				
# of Installa	ntions in Washing	ton:		>25					
			E.	stimated Cos	its				
	nstallation Cost:		low:		high:		_		
Estimated A	Annual O&M Cost	:	low:	\$0.00008/gal	high:	\$0.001/gal	_		

Manufacturer/Vendor:
Name of Technology:
Technology Type:

Treatment Notes

Additional Notes


CONTECH Stormwater Solutions, Inc.

VortClarex
Oil/Water Separator

Manufacturer/Vendor:	CONTECH Stormwater Solutions, Inc.
Name of Technology:	Vortechs
Technology Type:	Hydrodynamic Separation

Schematic

System Design Information

Design Flow Rate (gpm):

low: 50 high: 22450

System Footprint (sq. ft.):

NA

Required Head Loss (ft):

0.1

Internal or External Bypass:

Both Available

Application Stormwater

Treatment Performance *

	TSS	TP	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Number of samples:								
Median Influent (mg/L):	108							
Median Effluent (mg/L):	28							
Median Removal (%):	93							

		Total Meta	als	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn	
Number of samples:							
Median Influent (mg/L):							
Median Effluent (mg/L):							
Median Removal (%):							

^{*} blank cells indicate no information was received from vendor

Approvals

•	•	-		
SS Removal	80% TS	S Removal		
Х				
	SS Removal X	SS Removal 80% TS X	SS Removal 80% TSS Removal X	SS Removal 80% TSS Removal X

Local Installations

of Installations in Washington: > 100

Estimated Costs

 Estimated Installation Cost:
 low: \$20K
 high: \$500K

 Estimated Annual O&M Cost:
 low: \$0.00001/gal
 high: \$0.00004/gal

APPENDIX B

Technology Questionnaire Responses

Appendix B Index (by Treatment System Name)

Γreatment System Name	Manufacturer/Vendor Name	Page Number
Active Treatment Systems		
ACISTBox®	Water Tectonics, Inc.	331
Baker Tank with Sand Filter	BakerCorp	332
Chitosan-Enhanced Sand Filtration Using FlocClear TM	Clear Creek Systems	333
Puzzy Filter	Schreiber	334
ligh-Flo Electrocoagulation	Kaselco	335
DilTrap ElectroPulse Water Treatment System	OilTrap Environmental	336
HATBox®	Water Tectonics, Inc.	337
Purus® Stormwater Polishing System	StormwateRx	338
Redbox	Morselt Borne BV	339
Vastewater Ion Exchange System (WWIX)	Siemens Water Technologies Inc.	340
VaveIonics TM	Water Tectonics, Inc.	341
Vetsep	Waste & Environmental Technologies Ltd.	342
Passive Treatment Systems	Ego Too Ing	245
ADsorb-It	Eco-Tec, Inc.	345
Aqua-Filter System	AquaShieldTM, Inc.	346
Aqua-Guardian™ Catch Basin Insert	AquaShieldTM, Inc.	347
Aqua-Swirl Concentrator	AquaShieldTM, Inc.	348
Aquip® Enhanced Stormwater Filtration System	StormwateRx	349
Bio Clean Curb Inlet Basket	BioClean Environmental Services, Inc.	350
Sio Clean Downspout Filter	BioClean Environmental Services, Inc.	351
io Clean Flume Filter	BioClean Environmental Services, Inc.	352
io Clean Grate Inlet Skimmer Box	BioClean Environmental Services, Inc.	353
io Clean Trench Drain Filter	BioClean Environmental Services, Inc.	355
Sio Clean Water Polisher	BioClean Environmental Services, Inc.	356
ioSTORM	Bio-Microbics, Inc.	357
DSTM Stormwater Treatment System	CONTECH Stormwater Solutions Inc.	358
Clara® Gravity Stormwater Separator Vault	StormwateRx	359
Coanda Effect	Coanda, Inc.	360
Oownstream Defender	Hydro International, Inc.	361
coLine A®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	362
coLine B®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	363
coSense TM Stormwater Filtration Systems	EcoSense International	364
coStorm + ecoStorm Plus®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	365
coVault TM Baffle Box	EcoSense International	366
EnviroTrap Catch Basin Insert	Environment 21	367
*		368
ilterra® Curb Inlet System	Filterra, DBAAmericast, Inc.	
ilterra® Roof Drain System irst Flush 1640FF	Filterra, DBAAmericast, Inc.	369
	ABT, Inc.	370
loGard® Downspout Filter	Kristar Enterprises, Inc.	371
loGard® Dual-Vortex Hydrodynamic Separator	Kristar Enterprises, Inc.	372
loGard® LoPro Matrix Filter	Kristar Enterprises, Inc.	373
loGard® LoPro Trench Drain Filter	Kristar Enterprises, Inc.	374
loGard+PLUS®	Kristar Enterprises, Inc.	375
loGard® Trash & Debris Guard	Kristar Enterprises, Inc.	376
io-Filter	AquaShieldTM, Inc.	377
ellyfish™ Filter	Imbrium Systems Corp	378
□ Cleerwater TM	Brown-Minneapolis Tank Co./	379
LICCI Water ***	Kleerwater Technologies, LLC	319
Modular Wetland System - Linear	Modular Wetland Systems, Inc./	380
Modular Wetland System – Linear	BioClean Environmental Services, Inc.	360
Jutrient Separating Baffle Box	BioClean Environmental Services, Inc.	381
erk Filter TM	Kristar Enterprises, Inc.	383
uriStorm	Environment 21	384
aynfiltr TM	Environmental Filtration, Inc.	385
ilva Cell	DeepRoot Partners	386
tormBasin TM	Fabco Industries, Inc.	387
tormceptor®	Imbrium Systems Corp	388
1	CONTECH Stormwater Solutions Inc.	
tormfilter using ZPG Media tormSafe™ Helix		389
	Fabco Industries, Inc.	390
waleGard® Pre-filter	Kristar Enterprises, Inc.	391
TREEPOD® Biofilter	Kristar Enterprises, Inc.	392

Appendix B Index (by Treatment System Name)

Treatment System Name	Manufacturer/Vendor Name	Page Number
Passive Treatment Systems (cont.)		
Triton Door Inlet Insent	Revel Environmental Manufacturing, Inc./	202
Triton Drop Inlet Insert	CONTECH Stormwater Solutions Inc.	393
Ultra-Urban Filter™	Abtech Industries	394
UniScreen	Environment 21	395
UniStorm	Environment 21	396
Up-Flo™ Filter	Hydro International, Inc.	397
UrbanGreen BioFilter	CONTECH Stormwater Solutions Inc.	398
V2B1 Treatment System	Environment 21	399
VortClarex	CONTECH Stormwater Solutions Inc.	400
Vortechs System	CONTECH Stormwater Solutions Inc.	401

Appendix B Index (by Manufacturer/Vendor Name)

Manufacturer/Vendor Name	Treatment System Name	Page Number
Active Treatment Systems		
BakerCorp	Baker Tank with Sand Filter	332
Clear Creek Systems	Chitosan-Enhanced Sand Filtration Using FlocClear TM	333
Kaselco	High-Flo Electrocoagulation	335
Morselt Borne BV	Redbox	339
OilTrap Environmental	OilTrap ElectroPulse Water Treatment System	336
Schreiber	Fuzzy Filter	334
Siemens Water Technologies Inc.	Wastewater Ion Exchange System (WWIX)	340
StormwateRx	Purus® Stormwater Polishing System	338
Waste & Environmental Technologies Ltd.	Wetsep	342
Water Tectonics, Inc.	ACISTBox®	331
Water Tectonics, Inc.	pHATBox®	337
Water Tectonics, Inc.	WaveIonics TM	341
Passive Treatment Systems		
ABT, Inc.	First Flush 1640FF	370
Abtech Industries	Ultra-Urban Filter™	394
AquaShieldTM, Inc.	Aqua-Filter System	346
AquaShieldTM, Inc.	Aqua-Guardian™ Catch Basin Insert	347
AquaShieldTM, Inc.	Aqua-Swirl Concentrator	348
AquaShieldTM, Inc.	Go-Filter	377
BioClean Environmental Services, Inc.	Bio Clean Curb Inlet Basket	350
BioClean Environmental Services, Inc.	Bio Clean Downspout Filter	351
BioClean Environmental Services, Inc.	Bio Clean Flume Filter	352
BioClean Environmental Services, Inc.	Bio Clean Grate Inlet Skimmer Box	353
BioClean Environmental Services, Inc.	Bio Clean Trench Drain Filter	355
BioClean Environmental Services, Inc.	Bio Clean Water Polisher	356
BioClean Environmental Services, Inc.	Nutrient Separating Baffle Box	381
Bio-Microbics, Inc.	BioSTORM	357
Brown-Minneapolis Tank Co./	Kleerwater TM	379
Kleerwater Technologies, LLC Coanda, Inc.	Coanda Effect	360
CONTECH Stormwater Solutions Inc.	CDS TM Stormwater Treatment System	358
CONTECH Stormwater Solutions Inc.	Stormfilter using ZPG Media	389
CONTECH Stormwater Solutions Inc.	UrbanGreen BioFilter	398
CONTECH Stormwater Solutions Inc.	VortClarex	400
CONTECH Stormwater Solutions Inc.	Vortechs System	401
DeepRoot Partners	Silva Cell	386
EcoSense International	EcoSense TM Stormwater Filtration Systems	364
EcoSense International	EcoVault TM Baffle Box	366
Eco-Tec, Inc.	ADsorb-It	345
Environment 21	EnviroTrap Catch Basin Insert	367
Environment 21	PuriStorm	384
Environment 21	UniScreen	395
Environment 21	UniStorm	396
Environment 21	V2B1 Treatment System	399
Environmental Filtration, Inc.	Raynfiltr™	385
Fabco Industries, Inc.	StormBasin TM	387
Fabco Industries, Inc.	StormSafe TM Helix	390
Filterra, DBAAmericast, Inc.	Filterra® Curb Inlet System	368
Filterra, DBAAmericast, Inc.	Filterra® Roof Drain System	369
Hydro International, Inc.	Downstream Defender	361
Hydro International, Inc.	Up-Flo™ Filter	397
Imbrium Systems Corp	Jellyfish™ Filter	378
Imbrium Systems Corp	Stormceptor®	388
Kristar Enterprises, Inc.	FloGard® Downspout Filter	371
Kristar Enterprises, Inc.	FloGard® Dual-Vortex Hydrodynamic Separator	372
Kristar Enterprises, Inc.	FloGard® LoPro Matrix Filter	373
Kristar Enterprises, Inc.	FloGard® LoPro Trench Drain Filter	374
	FloGard+PLUS®	375
Kristar Enterprises, Inc.	Tio Gard T E e B e	373
Kristar Enterprises, Inc. Kristar Enterprises, Inc. Kristar Enterprises, Inc.	FloGard® Trash & Debris Guard Perk Filter [™]	376 383

Appendix B Index (by Manufacturer/Vendor Name)

Manufacturer/Vendor Name	Treatment System Name	Page Number
Kristar Enterprises, Inc.	SwaleGard® Pre-filter	391
Passive Treatment Systems (cont.)		
Kristar Enterprises, Inc.	TREEPOD® Biofilter	392
Modular Wetland Systems, Inc./	Madular Watland Crystons Lincon	380
BioClean Environmental Services, Inc.	Modular Wetland System – Linear	380
Revel Environmental Manufacturing, Inc./	Triton Duon Inlot Incont	393
CONTECH Stormwater Solutions Inc.	Triton Drop Inlet Insert	393
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoLine A®	362
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoLine B®	363
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoStorm + ecoStorm Plus®	365
StormwateRx	Aquip® Enhanced Stormwater Filtration System	349
StormwateRx	Clara® Gravity Stormwater Separator Vault	359

Active

Manufacturer: Name of Technology: # of Installations in Washington: Downspout Drain Inlet Insert Below Ground Vault	AC		ent Type/App Filtration (med Filtration (fabri	ia) c)	mail: hone: /ebsite:	jim@wate 866 www.wat	mosis	Stormwater Groundwater Wastewater
Above Ground Vault	Floatables Ba	affle	Filtration (chen	nically enhance	ed)	✓ Chemical T	reatment	✓ Process water
			Estim	nated Cos	its			
Estimated Installation (Estimated Annual O&N	•		uction cost):		low:	\$ 25,000	high: high:	\$ 400,000
Design Flow Rate (gpm System aboveground for Required head loss (ft): Internal or External Byp	ootprint (sq ft	•	System Hy low: low: low: recirculation	100 200 N/A	Design/ high: high: high:	>2000		
			System	Perform	ance			
Briefly describe how data were collected (field, lab, third party, grab sample, auto-composite, etc.) Field by operator; in-line real-time with sensors/data loggers for turbidity and pH; in-house and independent party grab/composite sampling; in-house and 3rd party independent analytical laboratory testing.								
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs]
Median Influent (mg/L)		3.12		0.0199			0.00028	
Median Effluent (mg/L)):	0.38		0.00002			0.00002	_
Median Removal (%):		88%		99.9%			93%]

Median Influent (mg/L):	3.12	0.0199		0.00028
Median Effluent (mg/L):	0.38	0.00002		0.00002
Median Removal (%):	88%	99.9%		93%

		Total Met	als	Dis	solved M	solved Metals		
	Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L):	0.341	0.25	2.12			0.817		
Median Effluent (mg/L):	0.0179	0.05	1.04			0.744		
Median Removal (%):	95%	80%	51%			9%		

Notes, Comments, Additional References

Provided under DOE issued GULD as Chitosan-Enhanced Sandfiltration (CESF), a stand alone system. Water Tectonics expands CESF application for removal of LNAPL, NWTPH, cPAH/PAH's, and metals by system modification to include oil/water separation, enhanced pre-treatment, post SF micron filtration, and granular activated carbon and/or other media adsorption. As a stand-alone technology it is designated for turbidity and pH. If raw water turbidity is >600 NTU, pretreatment is required. CESF has limited to no ability to remove turbidity consisting of rock dust, rock flour, or other rock source fines that have not been geochemically weathered over time. Chitosan performance is typically compromised by acidic or alkaline pH conditions out side the neutral range. Performance data presented is from from full-scale use at temporary projects where RSA CESF technology was used in accordance with GULD specifications with modifications for enhanced removal components (e.g., granular activated carbon). Untreated construction water ranging from >25 NTU to > 5000 NTU (with pretreatment if over 600 NTU) have all been reduced to <10 NTU, but typically to <5 NTU. Flow ranges for various conventional system sizes range from 100 to over 1000 gpm for 24/7 continuous operations.

Manufacturer:		Bake	erCorp		Contact N	ame:	Tim	Ferris	
Name of Technology:			with Chitosan		Contact E	mail·	tferris@baker	orn com	
# of Installations in					Contact Phone:			93-6136	
Washington:			1		Contact V			orp.com	
							•		
□ D	V	Oil/Water Sep		ype/Applicati		all that a			C
Downspout		•	11411011	✓ Filtration (med	ia)			ange column	✓ Stormwater
Drain Inlet Insert		Settling		✓ Filtration (fabri	c)		Reverse	osmosis	✓ Groundwater
Below Ground Vault	Ш	Hydrodynamic	Separation	Filtration (biofil	tration)		Electroc	oagulation	✓ Wastewater
Above Ground Vault		Floatables Baf	fle	✓ Filtration (chen	nically enhance	ed)	✓ Chemica	al Treatment	✓ Process water
				Estimated	Costs				
Estimated Installation	Cost	(unit cost a	nd constru	iction cost):		low:		high:	
Estimated Annual O&N	/I Cos	st (\$/gallon	treated):			low:		high:	
			Sı	ystem Hydrau	lics/Desid	gn			
Design Flow Rate (gpm):		- 4	low:			1,000gpm+		
System aboveground for	ootp	rint (sq ft):		low:	1,000sq ft	•	2,500sq ft		
Required head loss (ft)				low:		high:			
Internal or External By	pass	: _							
				System Perfo	rmance				
		TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L):	200	1711	On & grease	34003	rebs	DIOXIIIS	CFAIIS	
Median Effluent (mg/L		10							
Median Removal (%):		95							
								,	
			Total Me	1		solved Me			
Median Influent (mg/L)	١٠	Cu	Pb	Zn	Cu	Pb	Zn		
Median Effluent (mg/L)		150 75	500 200	2500 1000	20 10	40 20	400		
Median Removal (%):	<i>j</i> ·	50	40	50	50	50	90		
						!		i.	
			Notes. Co	omments, Add	itional R	eference	s		
TSS, total metals, and dissol parameters are based upon the organics listed in this tal	a stu	netals remova dy done by D	l will depend ungeness Env	l upon the degree the vironmental during 2	nat they will a 2009-2010. I	absorb to pa Dungeness E	articulate ma Environmenta	al does not ha	ave relevant data for
cpalczewski@dungenessen			-	ontact Chris Faiczev	vaki at Duligt	LIICOS LIIVII U	minerital. 42	.5 401-0000 0	
		,							

Manufacturer:	Clear Creek						Ziemer	
Name of Technology:	Multiple 1						creeksystems.co	<u>m</u>
# of Installations in			Contact Phone:			253 67	70 4054	
Washington:	> 15 on th	e West Coast	_	Contact W	/ebsite:	www.clearcree	eksystems.com	
	Tre	atment T	ype/Applicati	on (check	all that c	apply)		
✓ Downspout	✓ Oil/Water Sep	-	Filtration (medi				nange column	✓ Stormwater
Drain Inlet Insert	✓ Settling		Filtration (fabri	c)		✓ Reverse	osmosis	✓ Groundwater
Below Ground Vault	Hydrodynami	c Separation	Filtration (biofil	•		☐ Electroco	oagulation	✓ Wastewater
Above Ground Vault	Floatables Ba	ffle	✓ Filtration (chen	•	ed)	_	al Treatment	✓ Process water
			Estimated	Costs				
Estimated Installation Co	act funit cost :	and constru			low	• 15,000	high	>250,000
Estimated Installation Co	•		ction cost,		low		·	> 0.003
LJuniaca / unica.	(7/8							7 0.003
		Sy	stem Hydraul	lics/Desig				
Design Flow Rate (gpm):			low:	< 25	high			
System aboveground for	otprint (sq ft):		low:	< 25	high			
Required head loss (ft):	222	Fytornal	Offling Eacility	NA	high	: NA		
Internal or External Bypa	ass.	EXternar-	Offline Facility					
			System Perfo	rmance				
Briefly describe how dat		•			-	mposite, e	tc.)	
Attached data was collected f	from grab sample	es that were ar	nalyzed by an accre	dited labora	tory.			
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L):						1		
Median Effluent (mg/L):								
Median Removal (%):								
		= - 100				. 1	r	
	Cu	Total Met			solved Me	_	}	
Median Influent (mg/L):	Cu	Pb	Zn	Cu	Pb	Zn	}	
Median Effluent (mg/L):			+			+ +	}	
Median Removal (%):			+			+		
Median Nemovai (70).					<u> </u>		ı	
		Notes, Co	mments, Add	litional R	eference	 2s		
Clear Creek Systems, Inc. (CCS	S) provides a wide						, mixed medi	ia absorption, ion
exchange, oil/water seperato	rs, UV, RO, chem	ical treatment	and chemically enl	hanced sand	filtration. C	Our treatment	t systems are	sized for specific sit
requirements using the West	_						-	
either laboratory or field trea		•			•	-		
We have attached some data		•				•	-	
about CCS can be found at wy share the data that has been	•		e have attached sor	ne data for y	our review	, but most of	our clients ha	ave not released us t
share the data that has been	collected at their	Sites.						

Manufacturer:	Schreiber LLC	_	Contact Name:	William Kunzman	
Name of Technology:	Fuzzy Filter	_	Contact Email: Contact Phone:	billk@schreiberwater.com	
Technology Category:		205-655-7466			
Technology Process:		Contact Website:	www.schreiberwater.com		
# of Installations in Was	shington:	0			
	Treatment T	ype/Applic	ation (check all ti	hat apply)	
Downspout	Oil/Water Separartion	✓ Filtration	(media)	Ion exchange column	✓ Stormwater
Drain Inlet Insert	Settling	Filtration	(fabric)	Reverse osmosis	✓ Groundwater
Below Ground Vault	Hydrodynamic Separatio	n 🗌 Filtration	(biofiltration)	Electrocoagulation	✓ Wastewater
Above Ground Vault	Floatables Baffle	Filtration	(chemically enhanced)	Chemical Treatment	✓ Process water
		Estimat	ed Costs		
Estimated Installation C	ost: lov	v:	high:		
Estimated Annual O&M		-	high:	_	
		Custom	ludumuliaa		
Design Flavo Data (anna)	. la	-	lydraulics		
Design Flow Rate (gpm) Required head loss (ft):			high: unlimited	1	
Internal or External Byp		3.5 ernal			
- Internal of External byp	433. CAT				
		System Pe	rformance		
Breifly describe how da	ta were colected (field	l lab third n	arty grah sample	auto-composite etc.)	
Fuzzy Filter removes suspe					adjusted thru
changes in compressioon of				·	-
should be less than 100 mg		_			
particle distribution analys	is for removal of suspen	ded solids fro	n river water. Two re	ecent projects under cont	ruction include
filtration of contaminated		ithin chemica	plants. We also have	e several CSO installation	s, one of which can
process 85 MGD for the cit	ty of Atlanta.				
Parameter:	TSS TP	Dis. Cu	Dis. Zn Dis. Cd	Dis. Pb TPH	cPAHs PCBs
# of sample:					
Median Influent (mg/L):	10				
Median Effluent (mg/L):	2				
% Removal:	70-95%				
			dditional Refere		
Fuzzy Filter removes suspe				·	
changes in compressioon of should be less than 100 mg		_			
particle distribution analys		-	_		
filtration of contaminated					
process 85 MGD for the cit					,

Manufacturer:	KASE	_	Contact N	ame:	De	ouglas Herber				
Name of Technology:	High-Flo Ele	ctocoagulation	_	Contact Email:			r@kaselco.co	<u>m</u>		
# of Installations in				Contact P	hone:	3	61-594-3327			
Washington:	0 in WA, 2	in Vancouver	_	Contact V	/ebsite:	www	.kaselco.com			
		Treatm	ent Type/App	lication I	check all	that annly	,)			
Downspout	✓ Oil/Water Sep		Filtration (med		cricck arr	_	hange column	1	Stormwater	
☐ Drain Inlet Insert	Settling			,			e osmosis		☐ Groundwater	
Below Ground Vault	Hydrodynami	: Separation	Filtration (fabri				coagulation		_	
_	Floatables Ba			Filtration (chemically enhanced)			al Treatment		✓ Wastewater ✓ Process water	
Above Ground Vault	Floatables ba	inc	Flitration (cher	nically ennance	ea)	☐ Crieniic	ai ireatinent	l	✓ Process water	
			Estim	ated Cos	ts					
Estimated Installation Co	ost (unit cost	and constr	uction cost):		low:	\$25,000	h	igh:	\$2,200,000	
Estimated Annual O&M						\$0.0005	-	igh:	\$0.01	
							-			
			System Hy	draulics/	Design					
Design Flow Rate (gpm):			low:	2.5		1,200+	_Can link syste	ems in p	parallel for	
System aboveground for	otprint (sq ft)	:	low:	40	high:	4000	larger capaci	ity		
Required head loss (ft):			low:	2	high:	20	_			
Internal or External Bypa	ass:	E	xternal							
			Sustam	Performo	nco					
			System	reijoiiii	ince					
Briefly describe how dat	a were collec	ted (field. I	ab. third narty.	grah samn	le, auto-c	omnosite	etc.)			
System Performance has been								are analy	zed both internall	v as well
as by a third party lab.								,		,
, , ,										
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs			
Median Influent (mg/L):										
Median Effluent (mg/L):										
Median Removal (%):										
							7			
		Total Me	tals	Diss	olved Me	tals				
	Cu	Pb	Zn	Cu	Pb	Zn	1			
Median Influent (mg/L):							1			
Median Effluent (mg/L):							1			
Median Removal (%):							1			
			es, Comments							
Have attached actual test res	ult parameters.	We are curre	ently in the process	of having de	tailed third	party test e	valuations and	will supp	ply those results a	S
available.										

Manufacturer: OilTrap Environmental Prd.				lame:	Mike Davis							
Name of Technology: OilTrap ElectroPulse			_	mail:	mike@oiltrap.com							
# of Installations in Washington: 33					hone:	360.943.6495						
			_	Vebsite:	www.oiltrap.com							
		Tre	atment 1	ype/Applicati	on (check	k all that a	pply)					
Downspout		Oil/Water Sep	aration	Filtration (media)			☐ Ion exch	nange column	Stormwater			
Drain Inlet Insert		Settling		Filtration (fabric)			Reverse osmosis		Groundwater			
Below Ground Vault		Hydrodynamic	Separation	Filtration (biofiltration)			 ✓ Electrocoagulation 		─ Wastewater			
Above Ground Vault		Floatables Bat	fle	Filtration (chen	ed)	Chemica	al Treatment	Process water				
				Estimated	Costs							
Estimated Installation Cost (unit cost and construction cost): low: 25,000 high: 500000												
			S	ystem Hydrau	lics/Desi	gn						
Design Flow Rate (gpm):			low:	5	high:	500	_				
System aboveground for	-	rint (sq ft):		low:	40	high:	1500					
Required head loss (ft):				low:	5	_ high:	15	_				
Internal or External Byp	ass	-		either								
				System Perfo	ormance							
				0,000								
Briefly describe how da	ita w	vere collect	ed (field, la	ab, third party, g	rab sampl	e, auto-co	mposite, e	tc.)				
Samples were collected as re	outin	e grab sample	es and tested	by an EPA certified	laboratory.							
		TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs				
Median Influent (mg/L)		600	78	136	28	Unknown	Unknown	Unknown				
Median Effluent (mg/L)):	10	0.27	<5.0	0.43	Unknown	Unknown	Unknown				
Median Removal (%):		98.3	99.6	>96.3	98.4	Unknown	Unknown	Unknown				
			T	1.1.	D **			Ī				
		Cu	Total Me Pb			solved Me Pb						
Median Influent (mg/L)	١٠	Cu 12.1		Zn 151	Cu 8.2		Zn 78.6					
Median Effluent (mg/L)		0.072	0.039	0.34	0.072	0.039	0.34					
Median Removal (%):	·	99.4	99.7	99.9	99.1	99.6	99.9					
Wicalan Removal (70).		33.4	33.7	33.3	33.1	33.0	33.3	l				
			Notes, Co	omments, Add	litional R	eference	s					
I have not worked with wast	tewat					-						

Manufacturer:	Water	Tectonics	Contact Name:				thersbaugh	_				
Name of Technology:	Contact Email:				rtectonics.com	_						
# of Installations in				Contact Pl			402-2298	_				
Washington:	-	40 +	_	Contact W	ebsite:	www.wate	rtectonics.com	_				
		Treatme	nt Type/Appli	cation (c	heck all tl	hat apply)						
Downspout	Oil/Water Se	paration	Filtration (medi	a)		☐ Ion exchang	e column	✓ Stormwater				
Drain Inlet Insert	Settling		Filtration (fabric	c)		Reverse osm	✓ Groundwater					
Below Ground Vault	Hydrodynam	ic Separation	Filtration (biofil	tration)	lation	✓ Wastewater						
✓ Above Ground Vault	Floatables B	affle	Filtration (chem	nically enhance	d)	✓ Chemical Tre	eatment	✓ Process water				
			Estima	ted Cost	S							
Estimated Installation Estimated Annual O&N	•		uction cost):		low:	\$ 19,500 (a)	high high					
Littiliated Allifdal Odi	n cost (3/gano	ii ti catcuj.			1044.	(a)	IIIgII	:(a)				
			System Hyd	raulics/D	Pesign							
Design Flow Rate (gpm			low:	250	high:	350						
-	System aboveground footprint (sq ft): low: 10 (b) high: 24 (b)											
Required head loss (ft)			low:	N/A	high:	N/A						
Internal or External By	pass:	-	N/A									
			System P	erformai	псе							
			-	-								
Briefly describe how da	ata were collec	cted (field, la	ab, third party, g	rab sampl	e, auto-co	mposite, etc.)					
Field. Real-time with in-line	probes. 2 point	burier calibrat	ion.									
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	٦				
Median Influent (mg/L		(c)	(c)	(c)	(c)	(c)	(c)	+				
Median Effluent (mg/L		(c)	(c)	(c)	(c)	(c)	(c)	†				
Median Removal (%):	(c)	(c)	(c)	(c)	(c)	(c)	(c)	†				
, , ,		, , ,		, ,	, ,		` ,	_				
		Total Me	tals	solved M	etals							
	Cu	Pb	Zn	Cu	Pb	Zn						
Median Influent (mg/L		(c)	(c)	(c)	(c)	(c)						
Median Effluent (mg/L		(c)	(c)	(c)	(c)	(c)						
Median Removal (%):	(c)	(c)	(c)	(c)	(c)	(c)						
			s, Comments,									
(a) Depends on buffering ca		ream, flow rate	e, total volume proc	essed, specif	ic pH adjust	ment additive se						
(b) Packaged in 4' -6' (w) x 2	5' (d) x 4' (t) indu	ream, flow rate ustrial steel bo	e, total volume proc x w/hinged top oper	essed, specif ning lid. Add	ic pH adjust	ment additive so	dtive will depend o	n volume of additive				
(b) Packaged in 4' -6' (w) x 2 storage (up to 35-gal drums	5' (d) x 4' (t) indu in box, larger mu	ream, flow rate ustrial steel boost st go external)	e, total volume proce x w/hinged top oper) - plus secondary co	essed, specif ning lid. Add intainment).	ic pH adjust itional stora Unit has in-	ment additive so ge space for add line pH probe fo	ftive will depend o r real time monitor	n volume of additive				
(b) Packaged in 4' -6' (w) x 2	5' (d) x 4' (t) indu in box, larger mu Istment (multi inj	ream, flow rate istrial steel boo st go external) ection/mixing	e, total volume proce x w/hinged top oper) - plus secondary co	essed, specif ning lid. Add intainment).	ic pH adjust itional stora Unit has in-	ment additive so ge space for add line pH probe fo	ftive will depend o r real time monitor	n volume of additive				
(b) Packaged in 4'-6' (w) x 2 storage (up to 35-gal drums expandable for dual pH adju (c) Adjusts pH. System perf	5' (d) x 4' (t) indu in box, larger mu Istment (multi inj	ream, flow rate istrial steel boo st go external) ection/mixing	e, total volume proce x w/hinged top oper) - plus secondary co	essed, specif ning lid. Add intainment).	ic pH adjust itional stora Unit has in-	ment additive so ge space for add line pH probe fo	ftive will depend o r real time monitor	n volume of additive				
(b) Packaged in 4' -6' (w) x 2 storage (up to 35-gal drums expandable for dual pH adju	5' (d) x 4' (t) indu in box, larger mu istment (multi injormance data - no	ream, flow rate ustrial steel boo st go external) ection/mixing ot applicable.	e, total volume proc x w/hinged top oper) - plus secondary co loops), and flow rec	essed, specif ning lid. Add ntainment). ording. pH s	ic pH adjust itional stora Unit has in- et-point(s) p	ment additive so ge space for add line pH probe fo	ftive will depend o r real time monitor	n volume of additive				

-Suitable for inclusion as pH adustment component in variety of water treatment systems.

-pH set-points (high/low) variable for application.

Manufacturer: Name of Technology: # of Installations in	Name of Technology:				Contact Na Contact Er Contact Ph Contact W	mail: none:	ayng@storn 800.68	eneres nwaterx.com 30.3543	
			'ES					iwaterx.com	
Downspout		Tre Oil/Water Sepa		Type/Applicati ✓ Filtration (medi		all that a	_	ange column	✓ Stormwater
Drain Inlet Insert		Settling		Filtration (fabri	c)		Reverse	osmosis	Groundwater
Below Ground Vault		Hydrodynamic	Separation	Filtration (biofil	tration)		Electroco	oagulation	Wastewater
✓ Above Ground Vault		Floatables Baf	fle	Filtration (chen	Chemica	I Treatment	Process water		
				Estimated	Costs				
Estimated Installation C Estimated Annual O&M			treated):			low:		high: high:	140000 0.0047
			S	ystem Hydrau	lics/Desig	ŋn			
Design Flow Rate (gpm)				low:	5	high	210		
System aboveground for	-	rint (sq ft):		low:	10	high			
Required head loss (ft):		_	_	low:	70	high	120		
Internal or External Byp)ass:	-	E	External					
				System Perfo	rmance				
Briefly describe how da			•			-			
These samples were collecte from a third party certified a									,
		TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L)	:	155		on a grease	31003	. 655	Dioxiiis	0.75	
Median Effluent (mg/L)									
Median Removal (%):			YES		YES	YES		YES	
		<u> </u>							
			Total Me			olved Me			
Madian Influent /mg/I		Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L) Median Effluent (mg/L)		 		0.28			.060 0.0074		
Median Removal (%):	•			86			88		
median nemoval (70)		L					- 00		
			Notes. Co	omments, Add	itional R	eference	S		
Additional pollutant remova	l incl					-,	<u> </u>		

Manufacturer:	Morselt Bo	orne BV	Co	ntact Name	:	Harry A	Assink		
Name of Technology:	me of Technology: Redbox Contact Email:						selt.com	-	
Technology Category:			Co	ntact Phone	e:	317426	61166	_	
Technology Process:						www.mor	selt.com	_	
# of Installations in Was	shington:							_	
	Treat	tment Type/	'Applica	tion (chec	k all that	apply)			
Downspout	Oil/Water Sep		Filtration (m	-		Ion exchange	column	Storm	nwater
Drain Inlet Insert	Settling		Filtration (fa	oric)		Reverse osm	osis	Groun	ıdwater
Below Ground Vault	Hydrodynamic		Filtration (bi			Electrocoagu			ewater
Above Ground Vault	Floatables Bat			emically enhanc	ed)	Chemical Tre		_	ss water
		F	stimate	d Costs					
Estimated Installation C Estimated Annual O&M		low: \$42 low: \$1		high: \$1, high: \$2		-			
Estimated Annual Octivi			-		20,000	-			
			stem Hy	draulics					
Design Flow Rate (gpm)			0.5	high:	150	-			
Required head loss (ft):		n.a.							
Internal or External Byp	ass:	n.a.							
		Sys	tem Per	formance					
D : (1 1 1 1 1 1		1/6: 11 1 1							
Third part analysis has bee								", motals	
Tilliu part allalysis ilas bee	en periorinea in	illally cases. Ne	Suits Silov	very mgm e	illovalia	ies, especiai	iy ioi ileav	vy metais.	
Parameter:	TSS	TP Dis	s. Cu E	is. Zn 🏻 🖸	is. Cd	Dis. Pb	ТРН	cPAHs	PCBs
# of sample:				-					
Median Influent (mg/L):									
Median Effluent (mg/L):									
% Removal:	99		99	99	99	99			
	N	otes, Comm	ents, Ad	lditional R	Referenc	ces			
The RedBox purifies indust	trial wastewater	for many indus	tries such	as plating, pa	aper, prin	ting, paint m	ıanufactuı	ring.	

Manufacturer:	Sie	mens		Contact N		Adam Sz	czesniak		
Name of Technology:	W	/WIX	-	Contact E		adam.szczesnia		<u>m</u>	
Technology Category: Technology Process:	Regulated N	1etals Removal	-	Contact V		860-593			
# of Installations in Was		>50	00			<u>5.6</u>	ater		
	Tred	itment Typ	oe/Applic	ation (ch	neck all th	at apply)			
✓ Downspout	_	Separartion	_	n (media)		_	ange column	✓ Storm	nwater
✓ Drain Inlet Insert	Settling		Filtration	n (fabric)		✓ Reverse	osmosis	✓ Grou	ndwater
✓ Below Ground Vault	Hydrodyna	ımic Separation	_	n (biofiltration)		☐ Electroco	agulation	✓ Waste	ewater
✓ Above Ground Vault	Floatables	Baffle	✓ Filtration	n (chemically e	nhanced)	✓ Chemical	Treatment	✓ Proce	ss water
			Estima	ted Costs					
Estimated Installation C	ost:	low:	3,000	high:	250,000				
Estimated Annual O&M		low:	3,000	•	500,000	- -			
			System I	Hydraulic	:s				
Design Flow Rate (gpm)	:	low:	1gpm	high:	5000gpm	_			
Required head loss (ft):		20p	si						
Internal or External Byp	ass:	Nor	ne						
		5	System Pe	erforman	се				
Breifly describe how da	ta wara sala	stad (field	lah thirdr	arty grab	sample	uto compo	sita ata l		
Siemens manufactures an									ine
technologies and ion excal			-	-		-	-		
low discharge levels as low			-	-		ally sampled	by custom	er and che	cked with
on site test kits or samples	snipped to id	ocai certified	laboratories	s for evalua	tion.				
Parameter:	TSS	TP	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pb	TPH	cPAHs	PCBs
# of sample:									
Median Influent (mg/L):									
Median Effluent (mg/L): % Removal:									
70 Kemovai.	1	Notes, Con	nments, A	Additiona	ıl Refere	nces			

Manufacturer: WaterTectonics		onics	C	Contact Name:	Jim Mothersbaugh	
Name of Technology:	Wavelor	ics	Contact Email:		jim@watertectonics.com	
# of Installations in			Contact Phone: 8		866-402-2298	
Washington:	35+		C	Contact Website:	www.watertectonics.com	
	Treat	ment Tyni	e/Annlicatio	n (check all that	annly)	
Downspout	Oil/Water Separar			•	Ion exchange column	✓ Stormwater
Drain Inlet Insert	✓ Settling		Filtration (fabric)		Reverse osmosis	✓ Groundwater
Below Ground Vault	Hydrodynamic Se	paration	Filtration (biofiltr	ation)	✓ Electrocoagulation	✓ Wastewater
Above Ground Vault	✓ Floatables Baffle		Filtration (chemic	cally enhanced)	Chemical Treatment	✓ Process water
			Estimated (Costs		
Estimated Installation (Cost:	low:	60000	high: 850000	_	
Estimated Annual O&N	l Cost:	low:	0.0008	high: 0.008	_ _	
		Syste	em Hydrauli	cs/Design		
Design Flow Rate (gpm)):	low:	50	high: >1000		
System footprint (sq ft)	:	low:	200	high: >4000	_	
Required head loss (ft):		low:	NA	high: NA		
Internal or External Byp	pass:	NONE-auto r	recirculation for r	etreat		

System Performance

Breifly describe how data were colected (field, lab, third party, grab sample, auto-composite, etc.)

Field via hand-held instruments, Technology's in-line and real-time water quality monitoring system, Oversight Engineers/Project Owners, 3rd party analytical testing laboratories using both instantaneous grab and composting methods (manual and automated). System performance "Median" data presented below does not accommodate analytical data results for parameters report as ND (<MDL's, or <MCL's). All ND data was utilized in the calculations as the value of the MDL or MCL. Influent data is limited in that our Clients typically do not incur cost expenditure to evaluate raw water characteristics once the system has been designed, installed, and made operational. They focus on monitoring effluent quality. Further, effluent data generated by our Clients/System Owners do not typically provide us with DMR's they submit to Ecology or other regulatory agencies. Effluent data points do not reflect technology ability to achieve lower than reported results. Permit discharge limitations have historically varied from site to site, permit to permit, and therefore data reflect treatment efforts and not technology limitations.

	NTU's	TSS	TPH0	O&G	SVOCs	PCBs	Dioxins
Median Influent (mg/L):	830	200	45.6	197	2.34	0.0024	
Median Effluent (mg/L):	0.4	5	0.25	4.76	0.00002	0.00011	
Median Removal (%):	100	98	99	98	100	9505	

		Total Met	Diss				
_	Cu	Pb	Zn	Cu	Pb	Zn	CPAHs
Median Influent (mg/L):	4.8	0.253	0.516	0.0235	0.0157	0.12	0.081
Median Effluent (mg/L):	0.0074	0.003	0.0315	0.005	0.0031	0.02	0.00002
Median Removal (%):	100	99	94	79	80	83	99.98

Notes, Comments, Additional References

Wavelonics electrocoagulation (EC) technology can be stand-alone, or part of a treatment train with supplemental components (see Treatment Type/Application, above) utilized for pre-treatment and/or polishing. EC facilitates the coagulation of suspended solids fines and/or dissolved species that are suitable for removal by conventional precipitation settling and/or filtration process steps. EC reactions will depend on the nature of constituents present, their reaction chemistry, pH sensitivity, and water conductivity. Bacteria disinfection has been demonstrated at laboratory and full-scale applications. Technology viability and optimization is recommended for non-conventional constituents of concern, or for complex matrices where interferences and competing conditions are problematic to conventional advanced treatment processes. Although a technology for application to a broad-spectrum of constituents, EC does not rely on treatment chemicals (e.g. polymers), it generates low solids volumes, is full-automated to reduce O&M labor, and cost-effectively converts AC power to DC. Power consumption is driven primarily by demand and loads of pumps, common to any mechanical water conveyance system plus optional control area HVAC. System Performance data fields (above) call for "Median" data points that do not allow for presentation of worst-case conditions, nor do they adequately reflect "mean" conditions, both of which are more elevated than the "Median" data presented for influent characteristics. Effluent "median" data do not reflect <MDL or <MCL data as reported by laboratories. However, ND results utilized in the calculation were the numeric value of the actual MDL or MCL. SVOC and cPAH data reflect a summation of all individual constituents in SVOC or cPAH parameter suites as totals. PCB's are totals of all Arochlor congeners. Oil and Grease data reflect both Freon and Hexane extraction analytical methods. Technology has not been used to specifically remove Dioxins and when technology was utilized, Dioxins were not

	Waste & Env	vironmental							
Manufacturer:	Technolo	gies Ltd.	_	Contact N	ame:	Dr. A	lvin Ip		
Name of Technology:	Wet	:Sep	-	Contact E	mail:	alvin@was	tech.com.hk		
Technology Category:	Above Gro	WetSep Conta Ground Vault Conta			hone:	(852) 26	02-0308	_	
Technology Process:	Water Tr	eatment	-	Contact V	/ebsite:	www.wast	ech.com.hk	_	
# of Installations in Wash	nington:	1	=		•			_	
	Treat	ment Typ	ne/Annlic	ation (ch	eck all tha	ıt annly)			
Downspout [✓ Oil/Water Separa		Filtration	-	cek an tha	_	nge column	✓ Storm	nwater
Drain Inlet Insert	✓ Settling		Filtration			Reverse of	_	☐ Groun	ndwater
	✓ Hydrodynamic S	Separation	_	(biofiltration)		Electrocoa			
	Floatables Baffle	•	_			Chemical -	_		ewater
✓ Above Ground Vault	Floatables ballie			(chemically e	nhanced)	Chemical	reatment	Proce	ss water
			Estimat	ed Costs					
Estimated Installation Co	st:	low:	\$1000	high:	\$2500				
Estimated Annual O&M (Cost:	low:	\$100/day	high:	\$250/day				
			System H	lydraulic	S				
Design Flow Rate (gpm):		low:	-	high:	260				
Required head loss (ft):		40 fe	eet						
Internal or External Bypa	ss:	External	Bypass						
		S	ystem Pe	rforman	re				
		3	ystemre	ijoiiiiaii	CC				
Breifly describe how data	a were colected	d (field, lab	. third part	v. grab sa	mple. auto	-composite	e. etc.)		
The data can be stored and								taken at var	ious
points in the system to be v				, p					
Please also find the Field Stu									
Parameter:	SS	TP	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pb	TPH	cPAHs	PCBs
# of sample:									
Median Influent (mg/L):	112	13.4	7 μg/L		0.3 μg/L	18 μ g/L			
Median Effluent (mg/L):	<2	1.9	1 μg/L		$<$ 0.2 μ g/L	<1 μg/L			
% Removal:	98%	86%	86%		50%	94%			
	N	otes, Com	iments, A	dditiona	l Referen	ices			
The WetSep system was use	ed in the State of	Washington	at the Cana	ada/US bor	der crossing	g. The main (Contractor 1	for this job w	as JE
Dunn Construction. The ma	in use of the uni	t was for tre	atment of c	onstruction	waste runc	off.			

Passive

Median Removal (%):

Manufacturer Technology Report

Manufacturer:	Eco-Tec, Inc	Contact Name:	Herb Pearse								
Name of Technology:	ADsorb-it	 Contact Email:	herb@eco-tec-inc.com								
# of Installations in		Contact Phone:	253-884-6804								
Washington:	61	Contact Website:	www.eco-tec-inc.com								
	Treatment 1	Type/Application (check all that	apply)								
✓ Downspout	✓ Oil/Water Separation	Filtration (media)	☐ Ion exchange column ✓ Stormwater								
✓ Drain Inlet Insert	Settling	Filtration (fabric)	Reverse osmosis Groundwater								
✓ Below Ground Vault	Hydrodynamic Separation	Filtration (biofiltration)	☐ Electrocoagulation ✓ Wastewater								
✓ Above Ground Vault	Floatables Baffle	Filtration (chemically enhanced)	Chemical Treatment Process water								
		Estimated Costs									
	Estimated Installation Cost (unit cost and construction cost): low: \$0.91/SF high: \$0.91/SF bigh: \$0.91/SF high: \$0.91/SF cost (\$/gallon treated): \$0.91/SF high: \$0.91/SF cost (\$/gallon treated): \$0.91/SF high: \$0.91/SF cost (\$/gal										
	S	ystem Hydraulics/Design									
Design Flow Rate (gpm	•	low: 80/SF hig									
System aboveground for		low: Varies hig	·								
Required head loss (ft)		low: NA hig	gh: NA NA								
Internal or External By	pass: Per indivi	idual application									
		System Performance									
Briefly describe how da	ata were collected (field, l	ab, third party, grab sample, auto-	composite, etc.)								
, , ,	•	•	s of the ADsorb-it Filtration Fabric and associated								
	•		signed to be versatile in its installation for diverse								
1 ''	•	· · · ·	It, Above Ground Vault, Shoreline, Oil Water								
· ·	mwater applications. Absorb- ponse and general oil/water re	., , , ,	gy (Ecology) for use as a Catch Basin Insert and is								

	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	Varies	Varies	Varies				
Median Effluent (mg/L):	Varies	Varies	Varies				

99-100

		Total Met	Dissolved Metals			
	Cu	Pb	Zn	Cu	Pb	Zn
Median Influent (mg/L):						
Median Effluent (mg/L):						
Median Removal (%):	Varies	Varies	Varies	Varies	Varies	Varies

99-100

80-99

Notes, Comments, Additional References

Please see the attached report from the City of Tacoma as well as the VMS Full Scale and Field Tests for TSS removal. The 'filter blanket" referred to in the City of Tacoma Report is the ADsorb-it Fabric Product #EDB24-5, Contour Ditch Boom. Attached to this email is additional testing / application data and photographs to present a general spectrum of possible applications. As can be seen on our web site at www.eco-tec-inc.com, miles of ADsorb-it Fabric were deployed along the Gulf Coast Shoreline as an Oil Fence to provide effective removal of advancing oils from the BP Deepwater Horizon Release. Additional testing data can be accessed on our web site simply by clicking on "Test Data" in the left hand column. As a note, ADsorb-it is highly effective at removing hydrocarbons, including fats, oils and greases (FOG) from water, thus any other contaminants that would be attached to the hydrocarbon such as PCBs would be removed in conjuncton with hydrocarbon / FOG removal. ADsorb-it is an environmentally compatible product in that it is: Made from waste fibers from the textile manufacturing industry, it effectively removes hydrocarbons and associated / attached contaminants from the environment, it can be cleaned and reused indefinitely, it can be disposed of as a fuel source with a higher BTU per pound value than coal and less than 1% residual ash.

HERRERA Manufacturer Technology Report

Manufacturer:	AguaShie	ld. Inc.		Contact Na	me:	Mark Miller			
Name of Technology:	Aqua-F		-	Contact En			uashieldinc.com		
Technology Category:	Below Grou		Contact Phone:			888-344-904			
Technology Process:	Vortex + F		Contact Website:			-	hieldinc.com		
# of Installations in Was			13						
			tment Type/		1 (check all	_			
Downspout	✓ Oil/Water Se	eparartion	✓ Filtration (me	dia)		Ion exchange	column	✓ Storn	nwater
Drain Inlet Insert	Settling		Filtration (fab	ric)		Reverse osm	osis	Grour	ndwater
Below Ground Vault	✓ Hydrodynan	nic Separation	Filtration (bio	filtration)		Electrocoagu	lation	☐ Waste	ewater
Above Ground Vault	✓ Floatables B	affle	Filtration (che	mically enhanced)	☐ Chemical Tre	atment	✓ Proce	ess water
			Ε	stimated C	osts				
Estimated Installation C	oct:	low:	Site-specific	high:	Site-specific				
Estimated Annual O&M		low:		_ '''g'' high:	Site-specific				
	cost.	iow.	Site-specific	_ '''6''' _	Site-specific				
			Sy	stem Hydr	aulics				
Design Flow Rate (gpm)	:	low:	25	high:	960+	<u></u>			
Required head loss (ft):			0.8	_					
Internal or External Byp	ass:	E	Both	_					
			Sve	tem Perfor	mance				
Breifly describe how da	ta were colect	ed (field.	lab. third party	v. grab samp	le. auto-cor	mposite. etc.)			
Independent lab by grab sa	amples. Field by	auto-com	posite sampling.	6 sample pair	s per TARP a	ualifying storm			
	,		, 6,			, 0			
Parameter:	TSS	TP	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pb	ТРН	cPAHs	PCBs
		IP	Dis. Cu	DIS. ZII	Dis. Cu	DIS. PD	IPH	CPARS	PCDS
# of sample: Median Influent (mg/L):	160 43								
Median Effluent (mg/L):	5								
% Removal:	80								
76 Kelliovai.	80	-							
			otes, Comm						
Aqua-Filter filtration car									_
Maryland averaging 96%				n 2012. AF-4.	2 model fie	ld tested at U	niveristy of New H	ampshire Stor	mwater
Center, 80% TSS remova	l efficiency (se	e above p	arameters).						
I									

HERRERA Manufacturer Technology Report

Manufacturer:	AquaShield,	Inc.	C	ontact Na	ame:	Ma	ark Mille	r	
Name of Technology:	Aqua-Guard		C	ontact En	nail:	mmiller@a	aguashield	linc.com	•
Technology Category:	Drain Inlet In	sert	C	ontact Ph	none:	888	-344-904	44	
Technology Process:	Filtration	1	C	ontact W	ebsite:	www.ag	uashieldin	ic.com	•
# of Installations in Was	hington:	15							<u>-</u> "
	Treatm	ent Tyne	Application) (check o	all that apply)			
Downspout	Oil/Water Separ		Filtration (media)	-	in that apply,	Ion exchar	nae columr	n 🗸 Sto	rmwater
✓ Drain Inlet Insert	Settling				L		_	_	
	_		Filtration (fabric)			Reverse o		☐ Gro	undwater
Below Ground Vault	Hydrodynamic S	Separation	Filtration (biofiltr	ation)		Electrocoa	gulation	☐ Was	stewater
Above Ground Vault	Floatables Baffl	е 🗌	Filtration (chemic	ally enhance	d)	Chemical	Freatment	Pro	cess wate
		Ε	stimated C	osts					
Estimated Installation C	ost:	low: S	ite-specific	high:	Site-specific				
Estimated Annual O&M			ite-specific	high:	Site-specific	_			
						_			
		-	stem Hydro						
Design Flow Rate (gpm)	:	low:	5/400*	high:	100/940*	$_*$ x/x = flo			
Required head loss (ft):		0				perlite/flo		erlite +	
Internal or External Byp	ass:	Both	1			filter cloth	1		
		Sys	tem Perfori	nance					
Breifly describe how da	ta were colected	(field, lab,	third party,	grab samp	ole, auto-com	posite, etc	.)		
pairs per TARP qualifying s	torm.								
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal:	TSS 160 43 5 80	ТР	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pb	ТРН	cPAHs	PCBs
	Note	es. Comm	ents, Additi	ional Re	ferences				
See Aqua-Filter since thi 5.3 model is currently ur Anticipate completion in removal efficiency (see a	s device uses san ndergoing indepe 1 2012. AF-4.2 mo	ne filter me endent TAR odel field t	edia. Aqua-Fili P Tier II field t	er filtration	on cartridge h Maryland ave	raging 96%	6 TSS re	moval.	

Manufacturer: Name of Technology:	AguaShi	eld, Inc.		Contact Na	me:	Ma	ark Miller		
Marine of Technology:	Aqua-			Contact Em			guashieldinc.com	_	
Technology Category:	Below Gro			Contact Ph			-344-9044	_	
Technology Process:	Hydrodyna			Contact We			uashieldinc.com	_	
		•		Contact W	cosite.	www.aqt	<u>addinciame.com</u>	_	
# of Installations in Was	nington: _		82						
	_	Treat	ment Type/A	Application	n (check all	that apply)			
Downspout	✓ Oil/Water S	Separartion	Filtration (media	a)		Ion exchange co	olumn	✓ Storr	nwater
☐ Drain Inlet Insert	Settling		Filtration (fabric	c)		Reverse osmosi	S	Groui	ndwater
Below Ground Vault	✓ Hydrodyna	mic Separation	Filtration (biofilt	tration)		☐ Electrocoagulati	ion	☐ Waste	ewater
Above Ground Vault	✓ Floatables	Baffle	Filtration (chem)	☐ Chemical Treatr		_	ess water
				timated C					
			ES	umatea C	OSIS				
Estimated Installation C		low:	Site-specific	high:	Site-specific	_			
Estimated Annual O&M	Cost:	low:	Site-specific	high:_	Site-specific	<u> </u>			
			Sys	tem Hydro	aulics				
Design Flow Rate (gpm)	:	low:	100	high:	2600				
Required head loss (ft):		Ċ).25	_		<u> </u>			
Internal or External Byp	ass:	В	oth						
			Syste	em Perfor	mance				
			5,510						
5 10 1 11 1	ta wara calac	tad (field l	ah third narty	~~ab ~~~~		anacita ata l			
Breifly describe how da	ta were corec	teu (ileiu, i	ab, tilifu party,	, grab samp	ie, auto-con	iposite, etc.)			
Breifly describe how da Lab tested by Tennessee T							er TARP.		
Lab tested by Tennessee T							er TARP.		
							er TARP.		
							er TARP.		
							er TARP.		
							er TARP.		
							er TARP.		
Lab tested by Tennessee T	ech University	using autosa	mplers. Field by	auto-compo:	site sampling,	6 sample pairs p		сРАНѕ	PCBs
Lab tested by Tennessee T Parameter:	ech University TSS						er TARP.	сРАНѕ	PCBs
Lab tested by Tennessee T Parameter: # of sample:	TSS 192	using autosa	mplers. Field by	auto-compo:	site sampling,	6 sample pairs p		сРАНѕ	PCBs
Parameter: # of sample: Median Influent (mg/L):	TSS 192 137	using autosa	mplers. Field by	auto-compo:	site sampling,	6 sample pairs p		cPAHs	PCBs
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	TSS 192 137 12	using autosa	mplers. Field by	auto-compo:	site sampling,	6 sample pairs p		сРАНѕ	PCBs
Parameter: # of sample: Median Influent (mg/L):	TSS 192 137	using autosa	mplers. Field by	auto-compo: Dis. Zn	site sampling, Dis. Cd	6 sample pairs p		сРАНѕ	PCBs
Parameter: # of sample: Median Influent (mg/L): % Removal:	TSS 192 137 12 86	TP	Dis. Cu	Dis. Zn	Dis. Cd	6 sample pairs p Dis. Pb	ТРН		
Parameter: # of sample: Median Influent (mg/L): % Removal: Independent field testin	TSS 192 137 12 86	TP No.	Dis. Cu Otes, Comme	Dis. Zn nts, Addit	Dis. Cd ional Reference completion	6 sample pairs p Dis. Pb	ТРН		
Parameter: # of sample: Median Influent (mg/L): % Removal:	TSS 192 137 12 86	TP No.	Dis. Cu Otes, Comme	Dis. Zn nts, Addit	Dis. Cd ional Reference completion	6 sample pairs p Dis. Pb	ТРН		
Parameter: # of sample: Median Influent (mg/L): % Removal: Independent field testin	TSS 192 137 12 86	TP No.	Dis. Cu Otes, Comme	Dis. Zn nts, Addit	Dis. Cd ional Reference completion	6 sample pairs p Dis. Pb	ТРН		
Parameter: # of sample: Median Influent (mg/L): % Removal: Independent field testin	TSS 192 137 12 86	TP No.	Dis. Cu Otes, Comme	Dis. Zn nts, Addit	Dis. Cd ional Reference completion	6 sample pairs p Dis. Pb	ТРН		
Parameter: # of sample: Median Influent (mg/L): % Removal: Independent field testin	TSS 192 137 12 86	TP No.	Dis. Cu Otes, Comme	Dis. Zn nts, Addit	Dis. Cd ional Reference completion	6 sample pairs p Dis. Pb	ТРН		
Parameter: # of sample: Median Influent (mg/L): % Removal: Independent field testin	TSS 192 137 12 86	TP No.	Dis. Cu Otes, Comme	Dis. Zn nts, Addit	Dis. Cd ional Reference completion	6 sample pairs p Dis. Pb	ТРН		
Parameter: # of sample: Median Influent (mg/L): % Removal: Independent field testin	TSS 192 137 12 86	TP No.	Dis. Cu Otes, Comme	Dis. Zn nts, Addit	Dis. Cd ional Reference completion	6 sample pairs p Dis. Pb	ТРН		
Parameter: # of sample: Median Influent (mg/L): % Removal: Independent field testin	TSS 192 137 12 86	TP No.	Dis. Cu Otes, Comme	Dis. Zn nts, Addit	Dis. Cd ional Reference completion	6 sample pairs p Dis. Pb	ТРН		
Parameter: # of sample: Median Influent (mg/L): % Removal: Independent field testin	TSS 192 137 12 86	TP No.	Dis. Cu Otes, Comme	Dis. Zn nts, Addit	Dis. Cd ional Reference completion	6 sample pairs p Dis. Pb	ТРН		

Manufacturer:		Stormw	ateRx LLC		Contact N	ame:	Ayn G	eneres	
Name of Technology:		Aquip Enhance	ed Filtration Sys.	-	Contact E	mail:	ayng@storr	nwaterx.com	
# of Installations in					Contact P		800.68	80.3543	
Washington:			30	_	Contact W	/ebsite:	www.storn	nwaterx.com	
				ype/Applicati	on (check	all that a	pply)		
Downspout		Oil/Water Sep	aration	Filtration (med	ia)		☐ Ion exch	ange column	✓ Stormwater
☐ Drain Inlet Insert		Settling		Filtration (fabri	c)		Reverse	osmosis	Groundwater
✓ Below Ground Vault		Hydrodynamic	Separation	Filtration (biofil	tration)		Electroc	oagulation	Wastewater
Above Ground Vault	√	Floatables Bat	fle	Filtration (chen	nically enhance	ed)	Chemica	Il Treatment	Process water
				Estimated	Costs				
Estimated Installation C Estimated Annual O&M		•		iction cost):		low		high: high:	150000 0.003
			S	ystem Hydrau	lics/Desig	gn			
Design Flow Rate (gpm)				low:	10	high	350		
System aboveground fo	otp	rint (sq ft):		low:	14	high			
Required head loss (ft):	2000		-	low:	4	high	7		
Internal or External Byp	ass.	-		xternal					
				System Perfo	rmance				
Duiafly dansatha hayy day			<i>(f</i> :- - -						
These samples were collected									ll analytical data is
from a third party certified a									ii anaiy iicai aata is
		TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L)	:	30		9.9					
Median Effluent (mg/L)	;	3.39		3					
Median Removal (%):		83	YES	70	YES	YES		YES	
			Total Me	tals	Diss	solved Me	tals		
		Cu	Pb	Zn	Cu	Pb	Zn	•	
Median Influent (mg/L)	_	0.152	0.03	0.425	0.084	0.008	0.196		
Median Effluent (mg/L)	:	0.008	0.006	0.061	0.006	0.007	0.06		
Median Removal (%):		94	79	85	93	51	73		
			Notos Co	ammonts Add	litional D	oforonco			
Non-detects were assumed t	o ha			omments, Add e detection limit.	itional K	ejerence	3		
The state of the s	0	ve the value (
Aquip removes PCBs, PAHs a		_	_	n particle filtration a	nd absorption	on to one of	the filtration	media in the	e bed. VOC and SVOC
removal is through absorption	n an	d biological d	egradation.						
The Aguip is a secondary def	ense	against oil ar	nd grease and	d removes TPH and s	soluble oils t	hrough biod	legredataion	absorption a	and bio-mechanical
means.		.0.	. 0						

Manufacturer: Name of Technology: # of Installations in Washington:	Bio Clean Environmental Bio Clean Curb Inlet Basket 0 WA	Contact Name: Contact Email: Contact Phone: Contact Website:	Greg Kent gkent@biocleanenvironmental.net 760-433-7640 www.biocleanenvironmental.net	- - - -
	Treatm	ent Type/Application (check all th	at apply)	
Downspout	Oil/Water Separation	Filtration (media)	☐ Ion exchange column	✓ Stormwater
✓ Drain Inlet Insert	Settling	Filtration (fabric)	Reverse osmosis	Groundwater
Below Ground Vault	Hydrodynamic Separation	Filtration (biofiltration)	Electrocoagulation	■ Wastewater
Above Ground Vault	Floatables Baffle	Filtration (chemically enhanced)	Chemical Treatment	Process water
		Estimated Costs		
	ost (unit cost and construction cost): Cost (\$/gallon treated - based on pea	k treatment flow rate):	low: 445 high high	
Design Flow Rate (gpm): System aboveground foo Required head loss (ft): Internal or External Bypa		System Hydraulics/Design low: 381 low: 0 low: 0.5	high: 898 high: 0 high: 2 Does Not Affect Basin Hydraulics	
		System Performance		
Briefly describe how data	a were collected (field, lab, third part	y, grab sample, auto-composite, etc.)		
below. Univerisity of Southern Ca	een in use since the mid 90's. Several field lifornia Independent Field Testing (Turbio on Testing Full Scale Lab Testing		med on the system. For this reason several r	reports are being listed

University of Southern Californ	nia						
oniversity of Southern Camori	Turbidity	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	42	not tested	not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	12.75	not tested	not tested	not tested	not tested	not tested	not tested
Median Removal (%):	70	not tested	not tested	not tested	not tested	not tested	not tested
1							
		Total Metals			issolved Met	als	Nutrients
	Cu	Pb	Zn	Cu	Pb	Zn	TP
Median Influent (mg/L):	not tested	not tested	24.3	not tested	not tested	not tested	85.8
Median Effluent (mg/L):	not tested	not tested	10.4	not tested	not tested	not tested	73.4
Median Removal (%):	not tested	not tested	79	not tested	not tested	not tested	14
Suspended Solids Retention Te	est						
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	n/a	not tested	not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	n/a	not tested	not tested	not tested	not tested	not tested	not tested
Median Removal (%):	93*	not tested	not tested	not tested	not tested	not tested	not tested
		Total Metals			issolved Met	als	Nutrients
	Cu	Pb	Zn	Cu	Pb	Zn	TP
Median Influent (mg/L):	not tested	not tested	not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	not tested	not tested	not tested	not tested	not tested	not tested	not tested
Median Removal (%):	not tested	not tested	not tested	not tested	not tested	not tested	not tested

Notes, Comments, Additional References

*Mass Balance was used for the Suspended Solids Retention Test and therefore mg/L and number of samples does not apply. An OK-90 Sand gradation was used for the testing. The Bio Clean Curb Inlet Basket is available with the patented Easy Maintenance Shelf System which reduces maintenance time and slows down water velocity for added settling and pollutant removal. To see this system in action visit: http://www.biocleanenvironmental.com/product/video/?path=content/product/curb_inlet_baskets/Curb_Inlet_Basket-Product_Video.flv&w=768&h=576

Manufacturer:		ean Environmental	_	Contact Name		Greg		
Name of Technology: # of Installations in	Bio Cle	an Downspout Filter	_	Contact Phone		gkent@biocleane 760-43		
Washington:	17 Port of O	lympia (Upcoming 2011)	_	Contact Webs		www.biocleanen		
		Treatment	Type/Application	on (check all t	hat apply)			
✓ Downspout	Oil/Water Separation		Filtration (media)			Ion exchange column		✓ Stormwater
☐ Drain Inlet Insert	Settling		Filtration (fabric)			Reverse osmosis		Groundwater
☐ Below Ground Vault	Hydrodynamic Separat	tion	Filtration (biofiltra	ation)		Electrocoagulation		Wastewater
Above Ground Vault	Floatables Baffle		Filtration (chemic	ally enhanced)		Chemical Treatment		Process water
			Estimated	Costs				
Estimated Installation C Estimated Annual O&M	•	onstruction cost): ted - based on peak treatm	ent flow rate):		low:	1,035 \$ 0.16	high: high:	1,200 \$ 0.22
		9	System Hydrau	lics/Design				
Design Flow Rate (gpm)			low:	249	high:	1,145		
System aboveground fo	otprint (sq ft):		low:	.31 (cu ft)	high:	1.57 (cu ft)		
Required head loss (ft):			low:	1	high:	2		
Internal or External Byp	ass:				peded - UPC Ap	proved and Tested	d	
			System Perfo	rmance				
Briefly describe how da	ta were collected (fi	eld, lab, third party, grab sa	ample, auto-comp	oosite, etc.)				
The Die Clear Day	Cilhan haa haaraa	2002 It has been took	ad amount of builts	ADO The down	a a control de l	IDC nowbift	ha filtan lees lee	tootod undouble 14450
		nce 2003. It has been tested ar ter also meets the protocol's n	,		•			
		The filter has also been tested			ation of at leas	t 60% 133 at a cond	centration of 150 r	ng/L over a several nour
Full Scale Laboratory Test		The file has also been tested	ini idii sedie idbi de	ory testing.			X-Tex-Z-2	00 Testing for Metals -
From Xextex Corporation,								Ü
Full Cools Laboratory Tostic								1
Full Scale Laboratory Testin	TSS	Turbidity (Sil-Co-Sil 106)	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L):		429	223.5	not tested	not tested	not tested	not tested	
Median Effluent (mg/L)		251	29.5	not tested	not tested	not tested	not tested	
Median Removal (%):	93*	41	87	not tested	not tested	not tested	not tested	
				_				
	- C	Total Metals	7		Dissolved Met		Nutrients	
Median Influent (mg/L):	Cu not tested	Pb not tested	Zn	Cu	Pb not tested	Zn not tested	not tested	
Median Effluent (mg/L)		not tested	not tested not tested	not tested not tested	not tested	not tested	not tested	
Median Removal (%):	not tested	not tested	not tested	not tested	not tested	not tested	not tested	
X-TEX FABRIC TESTING - Fo	r Metals Removal							
	TSS	Turbidity (sil-co-sil 106)	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L)		not tested	not tested	not tested	not tested	not tested	not tested	
Median Effluent (mg/L)		not tested	not tested	not tested	not tested	not tested	not tested	
Median Removal (%):	not tested	not tested	not tested	not tested	not tested	not tested	not tested	
		Total Metals			Dissolved Met	als	Nutrients	
	Cu	Pb	Zn	Cu	Pb	Zn	TP	
Median Influent (mg/L)	_	not kwonw	not kwonw	not tested	not tested	not tested	not tested	1
Median Effluent (mg/L)	not kwonw	not kwonw	not kwonw	not tested	not tested	not tested	not tested	
Median Removal (%):	76	96	69	not tested	not tested	not tested	not tested	
		Notes (Comments, Add	litional Refer	oncos			
		140123, 0	omments, Auu	onar nejer				
		herefore mg/L and number of						
or existing downspouts. The downspout sizes 4" to 12".		ut Filter is also available with a	aaea tor ion exchar	ige embedded fi	iiter tabric for 6	ennanced removal	οτ metals. The filte	er is adaptable to
uowiispout sizes 4 to 12								
l								

Manufacturer:	Bio Clean Environmental	Contact Name:	Greg Kent	
Name of Technology:	Bio Clean Flume Filter	Contact Email:	gkent@biocleanenvironmental.net	
# of Installations in		Contact Phone:	760-433-7640	
Washington:	0 WA	Contact Website:	www.biocleanenvironmental.net	
	Treatment Ty	/pe/Application (check all that ap	ply)	
Downspout	Oil/Water Separation	Filtration (media)	☐ Ion exchange column ☐ Storr	nwater
Drain Inlet Insert	Settling	Filtration (fabric)	Reverse osmosis Grou	ndwater
Below Ground Vault	Hydrodynamic Separation	Filtration (biofiltration)	☐ Electrocoagulation ☐ Wast	ewater
Above Ground Vault	Floatables Baffle	Filtration (chemically enhanced)	Chemical Treatment Proce	ess water
		Estimated Costs		
		on peak treatment flow rate lov	w: 660 high: 1,302 w: \$ 0.23 high: \$ 0.74	
	Sy.	stem Hydraulics/Design		
Design Flow Rate (gpm):		low: 116 high		
System aboveground foot	print (sq ft):	low: 1 high		
Required head loss (ft):		low: 0.083 high	h: 0.5	
Internal or External Bypass	s: Internal By	rpass Up to Specific Flow - Configured to A	Allow for High Flow External Bypass	
		System Performance		
Briefly describe how data	were collected (field, lab, thi	rd party, grab sample, auto-composit	te, etc.)	
	days. The Flume Filter Tested u	full scale laboratory setting A series of stilized a series of three BioSorb Hydrocar	·	oles were

Full Scale Laboratory Testing							
	TSS						
	(Sil-Co-Sil 106)	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	73	223	360	NA	NA	NA	NA
Median Effluent (mg/L):	51.6	29.5	62	NA	NA	NA	NA
Median Removal (%):	29	87	83	NA	NA	NA	NA
					•	•	•
	To	tal Metals		Diss	olved Met	als	Nutrients
	Cu	Pb	Zn	Cu	Pb	Zn	TP
Median Influent (mg/L):	NA	NA	NA	NA	NA	NA	NA
Median Effluent (mg/L):	NA	NA	NA	NA	NA	NA	NA
Median Removal (%):	NA	17	NA	NA	NA	NA	NA

Notes, Comments, Additional References

The Bio Clean Flume Filter comes standard with BioSorb Hydrocarbon booms. The filter is designed to utilize varoius media based upon pollutants of concern. The Flume Filter is designed to be used in unique conditions in which sheet flow needs to be treated and no fall is available for other types of technologies.

Manufacturer:	Bio Clean Environmental	Contact Name:	Greg Kent	
Name of Technology: # of Installations in	Bio Clean Grate Inlet Skimmer Box	Contact Email: Contact Phone:	gkent@biocleanenvironme	ental.net
# of installations in Washington:	0 WA, 123 OR	Contact Phone: Contact Website:	760-433-7640 www.biocleanenvironmer	ntal not
washington.				italilet
		n ent Type/Application (check all th —		
Downspout	Oil/Water Separation	Filtration (media)	☐ Ion exchange column	✓ Stormwater
✓ Drain Inlet Insert	Settling	Filtration (fabric)	Reverse osmosis	☐ Groundwater
Below Ground Vault	Hydrodynamic Separation	Filtration (biofiltration)	Electrocoagulation	■ Wastewater
Above Ground Vault	Floatables Baffle	Filtration (chemically enhanced)	Chemical Treatment	Process water
-		Estimated Costs		
Estimated Installation	Cost (unit cost and construction cost):		low: 635	high: 1,800
Estimated Annual O&N	/I Cost (\$/gallon treated - based on pea	k treatment flow rate):	low: \$ 0.15	high: \$ 0.40
		System Hydraulics/Design		
Design Flow Rate (gpm):	low: 224	high: 8,980	
System aboveground for	•	low: 0	high: 0	
Required head loss (ft)	:	low: 0.5	high: 2	
Internal or External By	pass:	Internal - High	Flow Rate	
		System Performance		
		System Perjormance		
Briefly describe how da	ata were collected (field, lab, third party	y, grab sample, auto-composite, etc.)		
	Basket has been in use since the mid 90's. So	everal field and laboratory studies have be		
listed below.			Longo Toyota - Ind	ependent Field Testing
	tion Testing Full Scale Lab Testing			Reedy Creek
Improvement District IndUC Irvine Independent 1				
Whitman's Pond	comig			
Creech Engineering				
2. 200. 2.18001.118				
L				

	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	not tested	not tested	189	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	not tested	not tested	10.43	not tested	not tested	not tested	not tested
Median Removal (%):	not tested	not tested	95	not tested	not tested	not tested	not tested
		Total Metals	I		issolved Met	als	Nutrients
	Cu	Pb	Zn	Cu	Pb	Zn	TP
Median Influent (mg/L):	1.9	1.5	13.7	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	0.1	0.2	0.73	not tested	not tested	not tested	not tested
Median Removal (%):	95	87	95	not tested	not tested	not tested	not tested
Suspended Solids Retention T	est						
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	n/a	not tested	not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	n/a	not tested	not tested	not tested	not tested	not tested	not tested
Median Removal (%):	86*	not tested	not tested	not tested	not tested	not tested	not tested
		Total Metals			issolved Met		Nutrients
	—						
	Cu	Pb	Zn	Cu	Pb	Zn	TP
	Cu not tested	Pb not tested	Zn not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L):			+				
Median Effluent (mg/L):	not tested	not tested	not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L): Median Removal (%):	not tested not tested not tested	not tested	not tested not tested	not tested not tested	not tested not tested	not tested	not tested
Median Effluent (mg/L): Median Removal (%):	not tested not tested not tested	not tested	not tested not tested	not tested not tested	not tested not tested	not tested	not tested
Median Effluent (mg/L): Median Removal (%): Reedy Creek Improvement Dis	not tested not tested not tested strict	not tested not tested not tested	not tested not tested not tested	not tested not tested not tested	not tested not tested not tested	not tested not tested not tested	not tested not tested not tested
Median Effluent (mg/L): Median Removal (%): Reedy Creek Improvement Dis Median Influent (mg/L):	not tested not tested not tested strict TSS	not tested not tested not tested TPH	not tested not tested not tested Oil & grease	not tested not tested not tested	not tested not tested not tested PCBs	not tested not tested not tested Dioxins	not tested not tested not tested CPAHs not tested
Median Effluent (mg/L): Median Removal (%): Reedy Creek Improvement Dis Median Influent (mg/L): Median Effluent (mg/L):	not tested not tested not tested not tested strict TSS not known	not tested not tested not tested TPH not tested	not tested not tested not tested not tested Oil & grease not known	not tested not tested not tested svocs not tested	not tested not tested not tested PCBs not tested	not tested not tested not tested Dioxins not tested	not tested not tested not tested
Median Effluent (mg/L): Median Removal (%): Reedy Creek Improvement Dis Median Influent (mg/L): Median Effluent (mg/L):	not tested not tested not tested strict TSS not known not known	not tested not tested not tested TPH not tested not tested not tested not tested	not tested not tested not tested Oil & grease not known not known	not tested not tested not tested svocs not tested not tested not tested not tested	not tested not tested not tested not tested PCBs not tested not tested not tested	not tested not tested not tested Dioxins not tested not tested not tested	not tested not tested not tested CPAHs not tested not tested not tested
Median Effluent (mg/L): Median Removal (%): Reedy Creek Improvement Dis Median Influent (mg/L): Median Effluent (mg/L):	not tested not tested not tested not tested strict TSS not known not known 74	not tested not tested not tested TPH not tested not tested not tested not tested Total Metals	not tested not tested not tested Oil & grease not known not known 54	not tested not tested not tested svocs not tested not tested not tested not tested	not tested not tested not tested not tested PCBs not tested not tested not tested not tested not tested	not tested not tested not tested Dioxins not tested not tested not tested not tested	not tested not tested not tested CPAHs not tested not tested not tested Nutrients
Median Effluent (mg/L): Median Removal (%): Reedy Creek Improvement Dis Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%):	not tested not tested not tested strict TSS not known not known 74 Cu	not tested not tested not tested TPH not tested not tested rot tested not tested Total Metals Pb	not tested not tested not tested Oil & grease not known not known 54	not tested not tested not tested SVOCs not tested not tested not tested cu	not tested not tested not tested not tested PCBs not tested not tested not tested sissolved Met Pb	not tested not tested not tested Dioxins not tested not tested not tested steed not tested steed	not tested not tested not tested CPAHs not tested not tested not tested not tested not tested TP
Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Reedy Creek Improvement Dis Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Influent (mg/L): Median Effluent (mg/L):	not tested not tested not tested not tested strict TSS not known not known 74	not tested not tested not tested TPH not tested not tested not tested not tested Total Metals	not tested not tested not tested Oil & grease not known not known 54	not tested not tested not tested svocs not tested not tested not tested not tested	not tested not tested not tested not tested PCBs not tested not tested not tested not tested not tested	not tested not tested not tested Dioxins not tested not tested not tested not tested	not tested not tested not tested CPAHs not tested not tested not tested Nutrients

UC Irvine							
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	not known	not tested	not known	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	not known	not tested	not known	not tested	not tested	not tested	not tested
Median Removal (%):	53	not tested	90	not tested	not tested	not tested	not tested
		Total Metals		D	issolved Met	tals	Nutrients
	Cu	Pb	Zn	Cu	Pb	Zn	TP
Median Influent (mg/L):	not known	not known	not known	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	not known	not known	not known	not tested	not tested	not tested	not tested
Median Removal (%):	7	98	11	not tested	not tested	not tested	not tested
Whitman's Pond							
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	978	not tested	not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	329	not tested	not tested	not tested	not tested	not tested	not tested
Median Removal (%):	66	not tested	not tested	not tested	not tested	not tested	not tested
							1
		Total Metals	1	_	issolved Met		Nutrients
	Cu	Pb	Zn	Cu	Pb	Zn	TP
Median Influent (mg/L):	not tested	not tested	not tested	not tested	not tested	not tested	18.6
Median Effluent (mg/L):	not tested	not tested	not tested	not tested	not tested	not tested	0.452
Median Removal (%):	not tested	not tested	not tested	not tested	not tested	not tested	98
							Į.
Creech Engineering							
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	not known	not tested	not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	not known	not tested	not tested	not tested	not tested	not tested	not tested
Median Removal (%):	73	not tested	not tested	not tested	not tested	not tested	not tested
							1
		Total Metals	T		issolved Met		Nutrients
	Cu	Pb	Zn	Cu	Pb	Zn	TP
Median Influent (mg/L):	not tested	not tested	not tested	not tested	not tested	not tested	not known
Median Effluent (mg/L):	not tested	not tested	not tested	not tested	not tested	not tested	not known
Median Removal (%):					ł — — — — — — — — — — — — — — — — — — —		

Notes, Comments, Additional References

*Mass Balance was used for the Suspended Solids Retention Test and therefore mg/L and number of samples does not apply. An OK-90 Sand gradation was used for the testing. The Bio Clean Grate Inlet Skimmer Basket is backed by a 5 year unlimited warranty. It's the only catch basin filter to utilize multiple levels of screens to maxmize performance and treatment flow rate. The product is manufactured from marine grade fiberglass and stainless steel. It contains no cheap net, plastics or fabrics which can rip, tare and break under field conditions. For more information visit: http://www.biocleanenvironmental.com/product/grate_inlet_skimmer_box

Name of Technology:	Bio Clean Envii	ronmental		Contact Name	e:	Greg	g Kent	
	Bio Clean Trench	Drain Filter	_	Contact Email	:	gkent@bioclean	environmental.net	_
# of Installations in				Contact Phon	e: _	760-43	33-7640	_
Washington:	0 WA	1	_	Contact Webs	ite:	www.biocleane	nvironmental.net	_
		Treatmen	t Type/Applicat	tion (check al	l that apply)			
☐ Downspout ☐	Oil/Water Separation		Filtration (media)			Ion exchange colum	ın	Stormwater
☑ Drain Inlet Insert ☐	Settling		Filtration (fabric)			Reverse osmosis		Groundwater
Below Ground Vault	Hydrodynamic Separation		Filtration (biofiltra	ation)		Electrocoagulation		☐ Wastewater
Above Ground Vault	Floatables Baffle		Filtration (chemic	ally enhanced)		Chemical Treatmen	t	Process water
			Estimated	d Costs				
Estimated Installation Cost	t (unit cost and constru	ction cost):			low:	660	high	: 1,302
Estimated Annual O&M Co	•		eatment flow rate):	low:		high	
			System Hydrau	ulics/Design	-		-	
Design Flow Rate (gpm) Pe	er Linear Foot		low:	28	high:	86		
System aboveground foot			low:	0	high:	0	-	
Required head loss (ft):	(54).		low:	4	high:	12	-	
Internal or External Bypass	s:	Inte	rnal Bypass Up to S	necific Flow - Co			· / External Bynass	
	<u>-</u>		a. Bypass op to of	pecinic riow ec	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ion for riight for	External Bypass	
			System Perf	formance				
Briefly describe how data	were collected (field, la	ib, third party, gi	rab sampie, auto-d	composite, etc)			
				pos.te, etc				
			•	, , , , , , , , , , , , , , , , , , ,				
					,			
No testing has been done on	the trench drain filter.				.,			
No testing has been done on	the trench drain filter.			omposito) co	-1			
No testing has been done on	the trench drain filter.			,				
	the trench drain filter.							1
	the trench drain filter. TSS (Sil-Co-Sil 106)	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	7
Full Scale Laboratory Testing		TPH not tested	Oil & grease			Dioxins not tested	CPAHs not tested]
Full Scale Laboratory Testing Median Influent (mg/L):	TSS (Sil-Co-Sil 106)			SVOCs	PCBs			
iull Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L):	TSS (Sil-Co-Sil 106) not tested	not tested	not tested	SVOCs not tested	PCBs not tested	not tested	not tested	
Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L):	TSS (Sil-Co-Sil 106) not tested not tested not tested	not tested not tested not tested	not tested not tested	SVOCs not tested not tested not tested	PCBs not tested not tested not tested	not tested not tested not tested	not tested not tested not tested	
iull Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L):	TSS (Sil-Co-Sil 106) not tested not tested not tested	not tested not tested not tested Total Metals	not tested not tested not tested	SVOCs not tested not tested not tested	PCBs not tested not tested not tested	not tested not tested not tested	not tested not tested not tested Nutrients	
Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%):	TSS (Sil-Co-Sil 106) not tested not tested not tested Cu	not tested not tested not tested Total Metals Pb	not tested not tested not tested zn	SVOCs not tested not tested not tested	PCBs not tested not tested not tested sissolved Met Pb	not tested not tested not tested als Zn	not tested not tested not tested Nutrients TP	
Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L):	TSS (Sil-Co-Sil 106) not tested not tested not tested Cu not tested	not tested not tested not tested Total Metals Pb not tested	not tested not tested not tested not tested Zn not tested	SVOCs not tested not tested not tested Cu not tested	PCBs not tested not tested not tested sissolved Met Pb not tested	not tested not tested not tested als Zn not tested	not tested not tested not tested Nutrients TP not tested	
Wedian Influent (mg/L): Wedian Effluent (mg/L): Wedian Removal (%): Wedian Influent (mg/L): Wedian Influent (mg/L):	TSS (Sil-Co-Sil 106) not tested not tested not tested Cu not tested not tested	not tested not tested not tested Total Metals Pb not tested not tested	not tested not tested not tested Zn not tested not tested not tested	SVOCs not tested not tested not tested Cu not tested not tested	PCBs not tested not tested not tested vissolved Met Pb not tested not tested	not tested not tested not tested als Zn not tested not tested	not tested not tested not tested Nutrients TP not tested not tested	
Wedian Influent (mg/L): Wedian Effluent (mg/L): Wedian Removal (%): Wedian Influent (mg/L): Wedian Influent (mg/L):	TSS (Sil-Co-Sil 106) not tested not tested not tested Cu not tested	not tested not tested not tested Total Metals Pb not tested	not tested not tested not tested not tested Zn not tested	SVOCs not tested not tested not tested Cu not tested	PCBs not tested not tested not tested sissolved Met Pb not tested	not tested not tested not tested als Zn not tested	not tested not tested not tested Nutrients TP not tested	
Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Effluent (mg/L):	TSS (Sil-Co-Sil 106) not tested not tested not tested Cu not tested not tested	not tested not tested not tested Total Metals Pb not tested not tested not tested not tested	not tested not tested not tested Zn not tested not tested not tested not tested not tested	SVOCs not tested not tested not tested Cu not tested not tested not tested	PCBs not tested not tested not tested rot tested not tested not tested not tested not tested not tested	not tested not tested not tested als Zn not tested not tested	not tested not tested not tested Nutrients TP not tested not tested	
Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Effluent (mg/L):	TSS (Sil-Co-Sil 106) not tested not tested not tested Cu not tested not tested	not tested not tested not tested Total Metals Pb not tested not tested not tested not tested	not tested not tested not tested Zn not tested not tested not tested	SVOCs not tested not tested not tested Cu not tested not tested not tested	PCBs not tested not tested not tested rot tested not tested not tested not tested not tested not tested	not tested not tested not tested als Zn not tested not tested	not tested not tested not tested Nutrients TP not tested not tested	
Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Effluent (mg/L):	TSS (Sil-Co-Sil 106) not tested not tested not tested Cu not tested not tested	not tested not tested not tested Total Metals Pb not tested not tested not tested not tested	not tested not tested not tested Zn not tested not tested not tested not tested not tested	SVOCs not tested not tested not tested Cu not tested not tested not tested	PCBs not tested not tested not tested rot tested not tested not tested not tested not tested not tested	not tested not tested not tested als Zn not tested not tested	not tested not tested not tested Nutrients TP not tested not tested	
Full Scale Laboratory Testing Median Influent (mg/L): Median Removal (%): Median Influent (mg/L): Median Effluent (mg/L): Median Effluent (mg/L): Median Effluent (mg/L):	TSS (Sil-Co-Sil 106) not tested not tested not tested Cu not tested not tested	not tested not tested not tested Total Metals Pb not tested not tested not tested not tested	not tested not tested not tested Zn not tested not tested not tested not tested not tested	SVOCs not tested not tested not tested Cu not tested not tested not tested	PCBs not tested not tested not tested rot tested not tested not tested not tested not tested not tested	not tested not tested not tested als Zn not tested not tested	not tested not tested not tested Nutrients TP not tested not tested	

Manufacturer: Name of Technology: t of Installations in		vironmental		Contact Name	2:	Greg		
of Installations in	Bio Clean Water Polis		_	Contact Email	-	gkent@bioclean	=	
		·	-	Contact Phon	e:		33-7640	_
Washington:	0		_	Contact Webs	ite:	www.biocleane	nvironmental.net	- -
		Treatment	Type/Application	on (check all	that apply)			
☐ Downspout ☑	Oil/Water Separation		Filtration (media)			Ion exchange column	n	Stormwater
☐ Drain Inlet Insert ☐	Settling		Filtration (fabric)			Reverse osmosis		Groundwater
✓ Below Ground Vault ✓	Hydrodynamic Separation		Filtration (biofiltra	tion)		Electrocoagulation		Wastewater
Above Ground Vault	Floatables Baffle		Filtration (chemica	ally enhanced)		Chemical Treatment		Process water
			Estimated	Costs				
Estimated Installation Cos	t (unit cost and constru	ction cost):			low:	25,000	high	
Estimated Annual O&M Co	ost (\$/gallon treated - b	ased on peak treatm	ent flow rate):		low:	\$ 5.24	high	\$ 7.85
			System Hydraul	lics/Design				
Design Flow Rate (gpm):			low:	191	high:	528	-	
System aboveground foot	print (sq ft):		low:	0	high:	0	-	
Required head loss (ft):			low:	1	high:	2	-	
Internal or External Bypas	s:		Ir	nternal Bypass -	High Flow Unin	npeded		
			System Perfo	rmance				
loading rate during the testin	lisher utilizes the revolution g averaged 2-5 gpm with n		dediaGREEN. The Bi	oMediaGREEN	has been indep	endently tested in	n full scale labarat	
	g averaged 2-5 gpm with n	ninimal head. A series o	MediaGREEN. The Bio	oMediaGREEN ent and effluen	has been indep	endently tested in	n full scale labarat	ory testing. Media su
loading rate during the testin	g averaged 2-5 gpm with n ice Testing by Waves Enviro	ninimal head. A series (onmental - Independer	MediaGREEN. The Bi of 8 composite influ- nt Full Scale Lab Test	oMediaGREEN ent and effluen ting	has been indep t grab samples	endently tested ir we collected over	n full scale labarat a perioud of two	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing	g averaged 2-5 gpm with n ice Testing by Waves Environ TSS (Sil-Co-Sil 106)	ninimal head. A series on commental - Independer	MediaGREEN. The Bi of 8 composite influ- nt Full Scale Lab Test	oMediaGREEN ent and effluen ting SVOCs	has been indep t grab samples of PCBs	endently tested in we collected over	n full scale labarat a perioud of two CPAHs	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L):	g averaged 2-5 gpm with n ice Testing by Waves Environ TSS (Sil-Co-Sil 106)	ninimal head. A series on mental - Independer TPH 1.4	MediaGREEN. The Bi of 8 composite influ- nt Full Scale Lab Test Oil & grease	oMediaGREEN ent and effluen ting SVOCs not tested	PCBs not tested	endently tested in we collected over over over over over over over over	n full scale labarat a perioud of two CPAHs not tested	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L):	g averaged 2-5 gpm with n ice Testing by Waves Environ TSS (Sil-Co-Sil 106)	ninimal head. A series on commental - Independer	MediaGREEN. The Bi of 8 composite influ- nt Full Scale Lab Test	oMediaGREEN ent and effluen ting SVOCs	has been indep t grab samples of PCBs	endently tested in we collected over	n full scale labarat a perioud of two CPAHs	ory testing. Media su
oading rate during the testin, -BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L):	g averaged 2-5 gpm with n ice Testing by Waves Environ TSS (Sil-Co-Sil 106) 84.6 12.4	ninimal head. A series on mental - Independer TPH 1.4 0	MediaGREEN. The Biof 8 composite influint Full Scale Lab Test Oil & grease 69.8 6.5	oMediaGREEN ent and effluen ting SVOCs not tested not tested	PCBs not tested not tested	endently tested in we collected over because of the collected over because of the collected over because of the collected over	n full scale labarat a perioud of two CPAHs not tested not tested	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L):	g averaged 2-5 gpm with note Testing by Waves Environment TSS (Sil-Co-Sil 106) 84.6 12.4 85	TPH 1.4 0 >99 Total Metals	MediaGREEN. The Biof 8 composite influent Full Scale Lab Test Oil & grease 69.8 6.5 91	oMediaGREEN ent and effluen ting SVOCs not tested not tested not tested	PCBs not tested not tested not tested sissolved Met	Dioxins not tested not tested not tested als	CPAHs not tested not tested Nutrients	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%):	g averaged 2-5 gpm with n ce Testing by Waves Environment of the Control of the C	TPH 1.4 0 >99 Total Metals Pb	MediaGREEN. The Biof 8 composite influent Full Scale Lab Test Oil & grease 69.8 6.5 91 Zn	oMediaGREEN ent and effluen ting SVOCs not tested not tested not tested Cu	PCBs not tested not tested not tested Possolved Met Pb	Dioxins not tested not tested not tested sls Zn	CPAHs not tested not tested not tested TP Nutrients TP	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L):	g averaged 2-5 gpm with n tce Testing by Waves Environ TSS (Sil-Co-Sil 106) 84.6 12.4 85 Cu not tested	TPH 1.4 0 >99 Total Metals Pb not tested	MediaGREEN. The Biof 8 composite influent Full Scale Lab Test Oil & grease 69.8 6.5 91 Zn not tested	SVOCs not tested not tested not tested Cu 0.57	PCBs not tested not tested not tested visible	Dioxins not tested not tested not tested sals Zn 0.75	CPAHs not tested not tested not tested TP Nutrients TP 2.07	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Influent (mg/L):	TSS (Sil-Co-Sil 106) 84.6 12.4 85 Cu not tested not tested	TPH 1.4 0 >99 Total Metals Pb not tested not tested	Oil & grease 69.8 6.5 91 Zn not tested not tested not tested	SVOCs not tested not tested not tested cu 0.57 0.12	PCBs not tested not tested not tested not tested solved Met Pb 0.38 0.01	Dioxins not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested	CPAHs not tested not tested not tested TP 2.07 0.63	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L):	g averaged 2-5 gpm with n tce Testing by Waves Environ TSS (Sil-Co-Sil 106) 84.6 12.4 85 Cu not tested	TPH 1.4 0 >99 Total Metals Pb not tested	MediaGREEN. The Biof 8 composite influent Full Scale Lab Test Oil & grease 69.8 6.5 91 Zn not tested	SVOCs not tested not tested not tested Cu 0.57	PCBs not tested not tested not tested visible	Dioxins not tested not tested not tested sals Zn 0.75	CPAHs not tested not tested not tested TP Nutrients TP 2.07	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Influent (mg/L):	TSS (Sil-Co-Sil 106) 84.6 12.4 85 Cu not tested not tested	TPH 1.4 0 >99 Total Metals Pb not tested not tested	Oil & grease 69.8 6.5 91 Zn not tested not tested not tested	SVOCs not tested not tested not tested 2 2 4 5 5 6 7 7 7 7 6 6 7 7 7 7 7 8 6 7 7 7 8 7 8	PCBs not tested not tested not tested not tested solved Met Pb 0.38 0.01 98	Dioxins not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested	CPAHs not tested not tested not tested TP 2.07 0.63	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Influent (mg/L):	TSS (Sil-Co-Sil 106) 84.6 12.4 85 Cu not tested not tested	TPH 1.4 0 >99 Total Metals Pb not tested not tested not tested	Oil & grease 69.8 6.5 91 Zn not tested not tested not tested	SVOCs not tested not tested not tested 2 2 4 5 5 6 7 7 7 7 6 6 7 7 7 7 7 8 6 7 7 7 8 7 8	PCBs not tested not tested not tested not tested solved Met Pb 0.38 0.01 98	Dioxins not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested	CPAHs not tested not tested not tested TP 2.07 0.63	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Influent (mg/L):	TSS (Sil-Co-Sil 106) 84.6 12.4 85 Cu not tested not tested	TPH 1.4 0 >99 Total Metals Pb not tested not tested not tested	Oil & grease 69.8 6.5 91 Zn not tested not tested not tested	SVOCs not tested not tested not tested 2 2 4 4 5 5 7 7 9	PCBs not tested not tested not tested not tested solved Met Pb 0.38 0.01 98	Dioxins not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested	CPAHs not tested not tested not tested TP 2.07 0.63	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Influent (mg/L):	TSS (Sil-Co-Sil 106) 84.6 12.4 85 Cu not tested not tested	TPH 1.4 0 >99 Total Metals Pb not tested not tested not tested	Oil & grease 69.8 6.5 91 Zn not tested not tested not tested	SVOCs not tested not tested not tested 2 2 4 4 5 5 7 7 9	PCBs not tested not tested not tested not tested solved Met Pb 0.38 0.01 98	Dioxins not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested	CPAHs not tested not tested not tested TP 2.07 0.63	ory testing. Media su
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Influent (mg/L): Median Effluent (mg/L): Median Effluent (mg/L):	TSS (Sil-Co-Sil 106) 84.6 12.4 85 Cu not tested not tested not tested	TPH 1.4 0 >99 Total Metals Pb not tested not tested Notes, C	Oil & grease Oi	SVOCs not tested not tested not tested vested system syste	PCBs not tested not tested not tested not tested solved Met Pb 0.38 0.01 98	Dioxins not tested not tested not tested not tested not 75 0.16 78	CPAHs not tested not tested not tested Nutrients TP 2.07 0.63 70	ory testing. Media sudays.
loading rate during the testin,BioMediaGREEN Performan Full Scale Laboratory Testing Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Influent (mg/L):	g averaged 2-5 gpm with note Testing by Waves Environment TSS (Sil-Co-Sil 106) 84.6 12.4 85 Cu not tested not tested not tested not tested utilizes the revolutionary for the standard f	TPH 1.4 0 >99 Total Metals Pb not tested not tested not tested	Oil & grease Oil & grease 69.8 6.5 91 Zn not tested not tested not tested rot tested not tested Tot tes	oMediaGREEN ent and effluen ting SVOCs not tested not tested not tested 10.57 10.12 79 itional Referent Itis made of bill	PCBs not tested not tested not tested not tested solved Met Pb 0.38 0.01 98 rences	Dioxins not tested not tested not tested not tested not 78 Dioxins not ested not tested not tested not rested not rested not sested not tested	CPAHS not tested not tested not tested not tested Nutrients TP 2.07 0.63 70	ory testing. Media sudays.

HERRERA Manufacturer Technology Report

Manufacturer:	Manufacturer:		robics, Inc.		Contact Name:			Lucas Staus			
Name of Technology:			STORM	Contact Email:				sales@biomicrobics.com			
# of Installations in				_		Contact P	hone:	800-75	53-3278		
Washington:			0	_		Contact W	/ebsi <u>te//w</u>	.biomicrobio	cs.com		
		Tre	eatment T	уре	/Applicati	on (check	all that a	ррју)			
Downspout	1	Oil/Water Sep	parartion	1	Filtration (med	ia)		☐ Ion exch	ange column	1	Stormwater
Drain Inlet Insert	1	Settling		П	Filtration (fabri	ic)		Reverse	osmosis	7	Groundwater
✓ Below Ground Vault		Hydrodynami	ic Separation	\Box	Filtration (biofi	•		Electroc	oagulation		Wastewater
Above Ground Vault		Floatables Ba	nffle		Filtration (chen	,	ed)		l Treatment		Process water
					Estimated	Costs					
Estimated Installation Co	st.		low		500	high:	2000				
Estimated Annual O&M			low		400	high:	4000	_			
						•		_			
			-		m Hydrau	-					
Design Flow Rate (gpm):			low	_	225	high:	4800	_			
System footprint (sq ft):			low		45	high:	162	_			
Required head loss (ft):			low		0.5	high:	0.17	_			
Internal or External Bypa	iss:		ex	xtern	al	-					
				Sy	stem Perfo	ormance					
TSS results are from grab sam											
design flow.											
		TSS	TPH	0	il & grease	SVOCs	PCBs	Dioxins	CPAHs		
Median Influent (mg/L):		227									
Median Effluent (mg/L):		7.9									
Median Removal (%):		95.3									
			Total Mad	h = 1 =		Dia			1		
		C··	Total Met	tais	70		solved Me	1			
Median Influent (mg/L):		Cu	Pb	+	Zn	Cu	Pb	Zn			
Median Effluent (mg/L):				+							
Median Removal (%):				+							
ivieulali Kelliovai (70).									ļ.		
			Notes, Co	mn	nents, Ada	litional R	eference	'S			
Installation costs and O&M co	sts	are estimate	es for the Wash	hingt	on area and d	o not include	equipment	or tank cost	s. Drawings a	and fur	ther
information on the product ca	n b	e obtained o	on our website	at th	ne following ur	l: http://bio	microbics.co	om/?p=77			

Manufacturer: Name of Technology: # of Installations in Washington:		CONTECH Construction Products, CDS > 250				Contact N Contact E Contact P Contact W	mail: hone:	Sean darcys@cod 503-25 contech	8-3105	- <u>-</u> -	
			reatment	Tune	o/Annlica	tion (cho	ck all +ha	t annly)			
Downspout	abla	Oil/Water Sep			Filtration (medi		ck all tha	_	ange column	✓ Stormwater	
☐ Drain Inlet Insert ✓ Below Ground Vault	V	Settling Hydrodynami	c Separation		Filtration (fabrical Filtration (biofile)	•		Reverse of Electroco		Groundwater	
Above Ground Vault		Floatables Ba			Filtration (chem	•	ed)		Treatment		
				_	Estimate	d Costs					
Estimated Installation (Estimated Annual O&N				ıctio		<i>u</i> costs	low	\$10K \$0.00001	high:		
				Syste	em Hydra	ulics/Des	sign				
Design Flow Rate (gpm System aboveground for Required head loss (ft): Internal or External By	ootp :			Availa	low: low: low:	20 NA 0.1	high high high	NA NA			
				Sı	stem Per	formance	e				
Briefly describe how da The Manasquan Savings Ban			•			-	_		-	2.	
-		TSS	TPH	Oil	& grease	SVOCs	PCBs	Dioxins	CPAHs	SSC<50 um	
Median Influent (mg/L)		154			22					35	
Median Effluent (mg/L)):	26			5					9	
Median Removal (%):		95			64					65	
			Total Met	als		Dis	solved M	etals			
		Cu	Pb		Zn	Cu	Pb	Zn			
Median Influent (mg/L)											
Median Effluent (mg/L)):										
Median Removal (%):											
			Notes C	`0.00	monts As	lditions!	Doforos				
Oil & Grease laboratory data	a usir	ng sorhents a			ments, Ad		kejeren	res			
·						J					

Manufacturer: Name of Technology: # of Installations in Washington:	Technology: Clara Gravity Stormwater Separator Contact Email: Illations in Contact Phone: Contact Websites				nail: none:	ayng@stor 800.6	mwaterx.com 80.3543 mwaterx.com			
		Tre	atment T	уре	/Applicati	on (check	all that a	ıpply)		
Downspout	✓	Oil/Water Sep	aration		Filtration (med	ia)		☐ Ion excl	nange column	Stormwater
Drain Inlet Insert	✓	Settling			Filtration (fabri	c)		Reverse	e osmosis	Groundwater
✓ Below Ground Vault	✓	Hydrodynamic	Separation		Filtration (biofi	Itration)		Electrod	coagulation	Wastewater
✓ Above Ground Vault	V	Floatables Bat	ffle		Filtration (chen	nically enhance	d)	Chemic	al Treatment	Process water
					Estimated	Costs				
Estimated Installation C Estimated Annual O&M				ıctioı	n cost):		low low		high: high:	52000 0.001
Design Flow Rate (gpm) System aboveground for Required head loss (ft): Internal or External Byp	otpı			yste nterna	m Hydrau low: low: low:	5 0 0.5	n high high high	150	-	
Briefly describe how da These samples were collecte from a third party certified a	d as	grab samples	by Stormwat	teRx,	consulting eng	ineers, and fa	acility treat	ment system	operators. A	ll analytical data is
		TSS	TPH	Oi	il & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L)	:	284.5								
Median Effluent (mg/L)	:	173.5								
Median Removal (%):		47.0	YES		YES					
	ı								7	
		_	Total Me	tals			olved Me	1	<u> </u>	
Madian Influent Inc. 11	_	Cu	Pb	+	Zn	Cu	Pb	Zn	1	
Median Influent (mg/L) Median Effluent (mg/L)		0.516	0.088	+	2.82			1	+	
Median Removal (%):	•	0.078 29.5	0.072 25.8	+	32.0			+	†	
Wiedian Kemovai (70).		23.3	23.0	<u> </u>	32.0				1.	
			Notes, Co	omn	nents, Add	litional Re	eference	? S		
The Clara uses four pre-engi	neere	ed chambers	with an inter	nal hig	gh-flow bypass	s to trap pollu	itants such	as heavy sol	ids and oil an	d grease.

Manufacturer:		Coanda	, Inc.			Contact Na	ame:	Steve	Esmond			
Name of Technology:		Coanda I	Effect			Contact Er	nail:	sesmo	nd@coan	da.com		
# of Installations in		A 1 16 1 - 6 - 1 - 1				Contact Pl	none:	(714)	272-1997			
Washington:		A handful of private and area drains.	e downspouts			Contact W	ebsite:	http://	/www.coa	nda.com/		
		Tre	atment	Тур	e/Applico	ation (che	k all tha	t appl	y)			
✓ Downspout		Oil/Water Separa	rtion	✓	Filtration (med	dia)		I	on excha	nge column	✓	Stormwater
✓ Drain Inlet Insert		Settling			Filtration (fabr	ic)		П	Reverse o	smosis		Groundwater
✓ Below Ground Vault		Hydrodynamic Se	eparation		Filtration (biof				Electrocoa	ngulation		Wastewater
✓ Above Ground Vault		Floatables Baffle				mically enhanced	4)	_		Treatment		Process water
					Estimate							
Estimated Installation C	ost.		low:		\$2,000	high:	\$3,500					
Estimated Annual O&M			low:		\$-0-	_ nign:	\$-0-	– No ii	nstallat	ion has requ	ired mai	intenance to da
						_	·					
Dosign Flow Pata (gnm)				ysi	-	aulics/Des	_					
Design Flow Rate (gpm) System footprint (sq ft):			low: low:		50 2	_ high: high:	360,000 2,000	_				
Required head loss (ft):	•		low:		1.5	_ nign. high:	3	_				
Internal or External Byp	ass:	On		al h	ypass is provi			-				
meerial of Executar Dyp	.	<u></u>	rtional interi	101 0	ypuss 15 provi	<u>a</u> cu.						
				J	ystem re	rformance	•					
Breifly describe how da	ta w	ere colected	(field, lab	. thi	ird party, g	rab sample.	auto-cor	nposi	te. etc.	.)		
USC (University of Southern (P was fille	ed with trash to
evaluate the hydraulic perfor												
approximately 635 gallons pe	r mir	nute (gpm). The	BMP was ev	alua	ted for pollut	ant removal p	otential by	collect	ing wate	er quality sam	ples befo	re it reached the
BMP and then from under th							-		_		-	
											_	
		TS	COD		TOC	SVOCs	PCBs	Dio	xins	CPAHs		
Median Influent (mg/L)		1500	1262		1137							
Median Effluent (mg/L)		1376	1081		996							
Median Removal (%):		8%	14%		12%			ļ				
			Total Met	als		Diss	olved M	etals				
		Cu	Pb		Zn	Cu	Pb	7	<u>n</u>			
Median Influent (mg/L)					48							
Median Effluent (mg/L)	:				15							
Median Removal (%):					69%							
			Notes C	•		-1-1:4:1	D - f					
						dditional	_			16		
A summary of the USC report	can	be found at: ht	tp://www.co	and	a.com/produc	cts/documents	s/usc_resea	irch_pr	oject.pc	IT.		
Other case studies have beer	no rf		trating ram	امرر	of track putri	ionto motolo i						
						ients, metais, į	Jesticiaes,	anu ba	leria:			
http://www.coanda.com/pro	auct	s/documents/RC	owiett_Case_	_Stu	ay_i.par							

Manufacturer:	Hydro Interr	national		Contact Name:	Fred Kraekel			
Name of Technology:	Downstream	n Defender®		Contact Email:	fkraekel@hil-tec	h.com		
Technology Category:	Below Grou	nd Vault		Contact Phone:	207-321-3733	3		
Technology Process:	Filter			Contact Website:	www.hydro-inte	rnational.biz		
# of Installations in Was	shington:			_			_	
	Tr	eatment T	Tune / Ann	olication (check	all that annly)			
Downspout	✓ Oil/Water Se			n (media)	Ion exchang	io column	✓ Storn	nwater
Drain Inlet Insert		cparartion	_	•	_			
	✓ Settling			n (fabric)	Reverse osr		Groun	ndwater
✓ Below Ground Vault	Hydrodynan	nic Separation	Filtration	n (biofiltration)	Electrocoag	ulation	Waste	ewater
Above Ground Vault	✓ Floatables B	Baffle	Filtration	(chemically enhanced)	Chemical Tr	eatment	Proce	ess water
			Estin	nated Costs				
Estimated Installation C	ost:	low:		high:				
Estimated Annual O&M	Cost:	low:		high:	_			
			Syster	n Hydraulics				
Design Flow Rate (gpm)	:	low:	,	-				
Required head loss (ft):								
Internal or External Byp	ass:			· •				
			System	Performance				
			, , , , ,					
						44- \		
Breifly describe how da	ta were coled	cted (field, l	lab, third p	party, grab sample	, auto-composi	te, etc.)		
Breifly describe how da	ta were coled			party, grab sample International for det		te, etc.)		
Breifly describe how da	ta were coled					te, etc.)		
Breifly describe how da	ta were coled					te, etc.)		
Breifly describe how da	ta were coled					te, etc.)		
Breifly describe how da	ta were coled					те, етс.)		
Breifly describe how da	ta were colec					te, etc.)		
Breifly describe how da	ta were coled					te, etc.)		
Breifly describe how da	ta were coled				ails.	TPH	сРАНѕ	PCBs
		Con	tact Hydro	International for det	ails.		cPAHs	PCBs
Parameter: # of sample: Median Influent (mg/L):		Con	tact Hydro	International for det	ails.		cPAHs	PCBs
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):		Con	tact Hydro	International for det	ails.		cPAHs	PCBs
Parameter: # of sample: Median Influent (mg/L):		TP	Dis. Cu	International for det	ails.		сРАНѕ	PCBs
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):		TP	Dis. Cu	International for det	ails.		cPAHs	PCBs
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal: The Downstream Defend	TSS der [®] is an adv	TP Notes, Convanced Hyd	Dis. Cu omments rodynamic	Dis. Zn Dis. Co	d Dis. Pb ferences that is specifica	TPH	to provide	
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal:	TSS der [®] is an adv	TP Notes, Convanced Hyd	Dis. Cu omments rodynamic	Dis. Zn Dis. Co	d Dis. Pb ferences that is specifica	TPH	to provide	
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal: The Downstream Defend	TSS der® is an adv urban runoff p	TP Notes, Convanced Hydrocollutants of	Dis. Cu omments rodynamic ver a wide	Dis. Zn Dis. Co	ails. Dis. Pb ferences that is specificates. It is commo	TPH ally designed and used in st	to provide ormwater	high
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal: The Downstream Defenderemoval efficiencies of the sample o	TSS der® is an adv urban runoff petreatment o	TP Notes, Covanced Hydrocollutants or as a standor	Dis. Cu Omments rodynamic ver a wide l-alone tre	Dis. Zn Dis. Co	d Dis. Pb ferences that is specificates. It is commone unique flow-	TPH ally designed in street in stree	to provide ormwater ternal com	high ponents
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal: The Downstream Defenderemoval efficiencies of capplications as either predictinguish the Downstream	TSS der® is an adv urban runoff petreatment of	TP Notes, Covanced Hydrocollutants or as a stancer from simp	Dis. Cu Dis. Cu Omments rodynamic ver a wide I-alone tre- ole swirl-ty	Dis. Zn Dis. Co S, Additional Re E Vortex Separator e range of flow rate atment system. The	ferences that is specificates. It is commone unique flow-nventional oil/g	TPH ally designed in stemodifying interpretations in the control of the control	to provide ormwater ternal comp s by minim	high ponents izing
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal: The Downstream Defenemoval efficiencies of unapplications as either prodistinguish the Downstream turbulence and head loss	TSS der® is an adv urban runoff petreatment of eam Defende uses, enhancir	TP Notes, Converged Hydrogram as a standar from simple generation	Dis. Cu Omments rodynamic ver a wide l-alone tre ble swirl-ty on, and pre	Dis. Zn Dis. Co s, Additional Re vortex Separator erange of flow rate atment system. The epe devices and con eventing washout of	ferences that is specificates. It is commone unique flow- enventional oil/gof previously sto	TPH ally designed in stemodifying interiors in the control of the	to provide ormwater ternal comp s by minim ts. The hig	high ponents izing h
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal: The Downstream Defenderemoval efficiencies of applications as either predistinguish the Downstream University turbulence and head los removal efficiencies and removal efficiencies and	TSS der® is an adv urban runoff p etreatment o eam Defende sses, enhancir l inherent low	TP Notes, Covanced Hydrocollutants or as a stancer from simple grantic whead losses	Dis. Cu Dis. Cu Omments rodynamic ver a wide I-alone tre- ble swirl-ty on, and pre- es of the Do	Dis. Zn Dis. Co S. Additional Re E Vortex Separator e range of flow rate atment system. The type devices and core eventing washout co	ferences that is specificates. It is commone unique flower and the state of the sta	TPH ally designed in stemodifying interest separators or controlled the controll	to provide ormwater ternal com s by minim ts. The hig nt, making i	high ponents izing h t a
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal: The Downstream Defender removal efficiencies of applications as either prodistinguish the Downstreturbulence and head loss removal efficiencies and compact and economical	TSS der® is an adv urban runoff p etreatment o eam Defende ises, enhancir I inherent low al solution for	TP Notes, Convenced Hydrocollutants or as a standar from simple and lossed thead lossed in non-point	Dis. Cu Dis. Cu Dis. Cu Dis. Cu Dis. Cu Dis. Cu Dis. Cu	Dis. Zn Dis. Co S, Additional Re Vortex Separator range of flow rate atment system. The pe devices and con eventing washout co ownstream Defence lution. Contact Hy	ferences that is specificates. It is commone unique flower and the state of the sta	TPH ally designed in stemodifying interest separators or controlled the controll	to provide ormwater ternal com s by minim ts. The hig nt, making i	high ponents izing h t a
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal: The Downstream Defenderemoval efficiencies of applications as either predistinguish the Downstream University turbulence and head los removal efficiencies and removal efficiencies and	TSS der® is an adv urban runoff p etreatment o eam Defende ises, enhancir I inherent low al solution for	TP Notes, Convenced Hydrocollutants or as a standar from simple and lossed thead lossed in non-point	Dis. Cu Dis. Cu Dis. Cu Dis. Cu Dis. Cu Dis. Cu Dis. Cu	Dis. Zn Dis. Co S, Additional Re Vortex Separator range of flow rate atment system. The pe devices and con eventing washout co ownstream Defence lution. Contact Hy	ferences that is specificates. It is commone unique flower and the state of the sta	TPH ally designed in stemodifying interest separators or controlled the controll	to provide ormwater ternal com s by minim ts. The hig nt, making i	high ponents izing h t a

	Royal Environmenta	al Systems	Contact I	Name:	Jim Mo	thersbaugh		
Name of Technology:	ecoLine /	A	Contact I			rtectonics.cor	<u>n</u>	
# of Installations in	_		Contact I		-	402-2298		
Washington:	6		Contact	Nebsite:	www.wate	rtectonics.cor	<u>n</u>	
		reatment Type,	/Application (cl	eck all that	apply)			
Downspout	✓ Oil/Water Separation	✓ Filt	tration (media)		☐ Ion exchange	column	✓	Stormwater
Drain Inlet Insert	Settling	☐ Fil	tration (fabric)		Reverse osmo	osis	√ (Groundwater
Below Ground Vault	Hydrodynamic Separa	ation Fil	tration (biofiltration)		☐ Electrocoagul	ation	✓ \	Vastewater
Above Ground Vault	Floatables Baffle	☐ Fil	tration (chemically enhan	ced)	Chemical Tre	atment	_	Process water
		I	Estimated Costs					
stimated Installation Cost (u	nit cost and constructio	n cost):		low	: \$ 6,700	hi	gh: \$	44,250
Estimated Annual O&M Cost (,		low			gh:	(a)
		Syste	m Hydraulics/D	ocian				
esign Flow Rate (gpm):		3,360.	low: 25	es <i>igii</i> high	: 626			
System aboveground footprin	t (sa ft):		low: 12	_ high				
Required head loss (ft):	* (- 1)			with clean co				
nternal or External Bypass:	Sit	e specific design re						
			stem Performan					
EN EN 858-1 Test Method for Class ight liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface wa Water turn over: Minimum four volu	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units				nifiable)			
EN EN 858-1 Test Method for Class ight liquid: Fuel oil, per ISO 8217, de Vater: Potable or purified surface wa Vater turn over: Minimum four volu iquid flux: 25-40 m³/m²-h (10-15 gpi	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²)	ensity of 0.85 g/cm3*	f (Solubility of light liqu	id nil, unsapoi	nifiable)			
EN EN 858-1 Test Method for Class ight liquid: Fuel oil, per ISO 8217, de Vater: Potable or purified surface wa Vater turn over: Minimum four volu iquid flux: 25-40 m³/m²-h (10-15 gpi	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b	ensity of 0.85 g/cm3*	* (Solubility of light liqu	re)		COALL		
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface wa Water turn over: Minimum four volu Liquid flux: 25-40 m³/m²-h (10-15 gpr Max. residual light liquid: 5 mg/L (Hyd	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b	ensity of 0.85 g/cm3* by prescribed infrared TPH Oil 8	spectroscopy procedu	re)	Dioxins	CPAHs (b)		
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface wa Water turn over: Minimum four volu Liquid flux: 25-40 m³/m²-h (10-15 gp; Max. residual light liquid: 5 mg/L (Hyu	esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b	ensity of 0.85 g/cm3* by prescribed infrared TPH Oil 8 (b)	spectroscopy procedu k grease SVOCs (b) (b)	re) PCBs (b)	Dioxins (b)	(b)		
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface we Water turn over: Minimum four volu Liquid flux: 25-40 m³/m²-h (10-15 gp; Wax. residual light liquid: 5 mg/L (Hyu Median Influent (mg/L): Median Effluent (mg/L):	esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b	ensity of 0.85 g/cm3* by prescribed infrared TPH Oil 8 (b) (b)	spectroscopy procedu k grease SVOCs (b) (b) (b) (b)	PCBs (b) (b)	Dioxins (b) (b)	(b)		
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface we Water turn over: Minimum four volu Liquid flux: 25-40 m³/m²-h (10-15 gp; Wax. residual light liquid: 5 mg/L (Hyu Median Influent (mg/L): Median Effluent (mg/L):	esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b	ensity of 0.85 g/cm3* by prescribed infrared TPH Oil 8 (b)	spectroscopy procedu k grease SVOCs (b) (b)	re) PCBs (b)	Dioxins (b)	(b)		
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface we Water turn over: Minimum four volu Liquid flux: 25-40 m³/m²-h (10-15 gn) Max. residual light liquid: 5 mg/L (Hyu	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b TSS (b) (b) (b) (b)	ensity of 0.85 g/cm3* by prescribed infrared TPH Oil 8 (b) (b)	spectroscopy procedu k grease SVOCs (b) (b) (b) (b) (b) (b)	PCBs (b) (b)	Dioxins (b) (b) (b)	(b)		
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface we Water turn over: Minimum four volu Liquid flux: 25-40 m³/m²-h (10-15 gp Max. residual light liquid: 5 mg/L (Hydedian Influent (mg/L): Median Influent (mg/L): Median Removal (%):	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b TSS (b) (b) (b) (b)	TPH Oil 8 (b) (b) (c) Otal Metals	spectroscopy procedu k grease SVOCs (b) (b) (b) (b) (b) (b)	PCBs (b) (b) (b)	Dioxins (b) (b) (b)	(b)		
Briefly describe how data wer CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface wa Water turn over: Minimum four volu Liquid flux: 25-40 m³/m²-h (10-15 gp) Max. residual light liquid: 5 mg/L (Hyd Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%):	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b TSS (b) (b) (b) (b) To Cu (b)	TPH Oil 8 (b) (b) (c) otal Metals Pb (b)	spectroscopy procedu spectroscopy procedu	PCBs (b) (b) (b) ssolved Me Pb (b)	Dioxins (b) (b) (b) (c) (b) (c)	(b)		
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface w Water turn over: Minimum four volu liquid flux: 25-40 m³/m²-h (10-15 gpi Max. residual light liquid: 5 mg/L (Hyd Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Influent (mg/L): Median Effluent (mg/L):	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b TSS (b) (b) (b) (b) To Cu (b) (b) (b)	TPH Oil 8 (b) (b) (b) otal Metals Pb (b) (b)	spectroscopy procedu k grease SVOCs (b) (b) (b) (b) Di Zn Cu (b) (b) (b) (b)	PCBs (b) (b) (b) ssolved Me Pb (b) (b)	Dioxins (b) (b) (b) (b)	(b)		
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface w Water: Potable or purified surface w Water turn over: Minimum four volu Liquid flux: 25-40 m³/m²-h (10-15 gp; Max. residual light liquid: 5 mg/L (Hyr Median Influent (mg/L): Median Effluent (mg/L): Median Influent (mg/L): Median Influent (mg/L): Median Influent (mg/L): Median Influent (mg/L):	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b TSS (b) (b) (b) (b) To Cu (b)	TPH Oil 8 (b) (b) (c) otal Metals Pb (b)	spectroscopy procedu spectroscopy procedu	PCBs (b) (b) (b) ssolved Me Pb (b)	Dioxins (b) (b) (b) (c) (b) (c)	(b)		
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface we Water turn over: Minimum four volu Liquid flux: 25-40 m³/m²-h (10-15 gp Max. residual light liquid: 5 mg/L (Hydedian Influent (mg/L): Median Influent (mg/L): Median Removal (%):	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b TSS (b) (b) (b) (b) To Cu (b) (b) (b)	TPH Oil 8 (b) (b) (b) (c) Otal Metals Pb (b) (b) (b) (b) (c) (d)	spectroscopy procedu spectroscopy procedu	PCBs (b) (b) (b) ssolved Me Pb (b) (b) (b)	Dioxins (b) (b) (b)	(b)		
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface w Water turn over: Minimum four volu Uquid flux: 25-40 m³/m²-h (10-15 gpi Max. residual light liquid: 5 mg/L (Hyd Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%):	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b TSS (b) (b) (b) (b) To Cu (b) (b) (b) (b) (b) (b) (b) (b) (b) (b)	TPH Oil 8 (b) (b) (b) (c) Otal Metals Pb (b) (b) (b) (b) (b) (b) (b) (c) (d) (d) (d) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	spectroscopy procedu spectroscopy procedu	PCBs (b) (b) (b) ssolved Me Pb (b) (b) (b)	Dioxins (b) (b) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (e) (b) (b) (b)			
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface w Water turn over: Minimum four volu liquid flux: 25-40 m³/m²-h (10-15 gpi Max. residual light liquid: 5 mg/L (Hyd Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Removal (%): Median Removal (%):	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b TSS (b) (b) (b) (b) Cu (b) (b) (b) (b) (b) (c) (d) (d) (e) (e) (e) (f) (f) (f) (f) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g	TPH Oil 8 (b) (b) (b) (c) Otal Metals Pb (b) (b) (b) (b) (b) (b) (b) (c) (d) (d) (d) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	spectroscopy procedu spectroscopy procedu	PCBs (b) (b) (b) ssolved Me Pb (b) (b) (b)	Dioxins (b) (b) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (e) (b) (b) (b)	e to the coa	lescing media, new	
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface w Water turn over: Minimum four volu Uquid flux: 25-40 m³/m²-h (10-15 gpi Max. residual light liquid: 5 mg/L (Hyd Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%):	I Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b TSS (b) (b) (b) (b) Cu (b) (b) (b) (b) (b) (c) (d) (d) (e) (e) (e) (f) (f) (f) (f) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g	TPH Oil 8 (b) (b) (b) (c) Otal Metals Pb (b) (b) (b) (b) (b) (b) (b) (c) (d) (d) (d) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	spectroscopy procedu spectroscopy procedu	PCBs (b) (b) (b) ssolved Me Pb (b) (b) (b)	Dioxins (b) (b) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (e) (b) (b) (b)	e to the coa	lescing media, new	
CEN EN 858-1 Test Method for Class Light liquid: Fuel oil, per ISO 8217, de Water: Potable or purified surface w Water turn over: Minimum four volu liquid flux: 25-40 m³/m²-h (10-15 gpi Max. residual light liquid: 5 mg/L (Hyd Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Median Influent (mg/L): Median Removal (%): Median Removal (%):	ri Coalescing Separator esignation ISO-F-DMA with de ater mes of test units m/ft²) drocarbon content analysis b TSS (b) (b) (b) (b) (b) (b) (b) (c) (b) (b) (d) (d) (e) (e) (f) (f) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h	TPH Oil 8 (b) (b) (b) (b) (b) (b) (b) (b) (c) Otal Metals Pb (b) (b) (b) (c) (b) (c) Notes, Commut. Oil coalescing media	spectroscopy procedu spectroscopy procedu	PCBs (b) (b) (b) ssolved Me (b) (b) (b) (d) (d) (d) (d) (d) (d) (d) (d)	Dioxins (b) (b) (b) tals Zn (b) (b) (b) (b) Ces replaced. In the	(b) (b) (b)		

	A								
(K(I)	4	н	F	D	D	F	RA	Ĺ
١,	w			_	~	1	-	NA	•

Manufacturer:		Roval Environ	mental Systems	Cc	ontact Name:		Jim Mothe	ersbaugh	
Name of Technology:			coLine B		ontact Email:		jim@waterte		_
# of Installations in				Cc	ontact Phone:		866-402	2-2298	- -
Washington:			7	Co	ontact Website:		www.waterte	ctonics.com	-
			Trea		lication (check all tha				
Downspout	Oil/Water	Separation		Filtration (media)			Ion exchange column		✓ Stormwater
Drain Inlet Insert	Settling			Filtration (fabric)		_	Reverse osmosis		✓ Groundwater
✓ Below Ground Vault		namic Separation		Filtration (biofiltrat	tion)	_	Electrocoagulation		✓ Wastewater
Above Ground Vault	☐ Floatable:	s Baffle		Filtration (chemica	illy enhanced)		Chemical Treatment		✓ Process water
				Estim	ated Costs				
Estimated Installation						low:	\$ 8,200	high:	\$ 81,900
Estimated Annual O8	M Cost (\$/ga	allon treated)	ii.			low:	(a)	high:	(a)
				System Hy	draulics/Design				
Design Flow Rate (gp	•			low:	50	high:	1110		
System aboveground		դ ft)։		low:	N/A	high:	N/A		
Required head loss (f Internal or External B	-		Site specific des	low:	6.00" with clean coalesce	er high:	N/A		
Internal of External B	ypass.	_	Site specific des						
				System	Performance				
Briefly describe how	data woro co	llocted (field	lah third party	arah sample auto-	composito etc l				
Light liquid: Fuel oil, per IS Water: Potable or purified Water turn over: Minimur Liquid flux: 25-40 m³/m²-h Max. residual light liquid:	I surface water in four volumes i (10-15 gpm/ft	of test units ²)			light liquid nil, unsaponifiab	le)			
Wax. residual light liquid.	J IIIg/ E (IIyuloc					1			 1
Median Influent (mg/	/1) .	TSS (b)	TPH (b)	Oil & grease	SVOCs (b)	PCBs (b)	Dioxins (b)	CPAHs (b)	
Median Effluent (mg/	•	(b)	(b)	(b)	(b)	(b)	(b)	(b)	•
Median Removal (%):	•	(b)	(b)	(b)	(b)	(b)	(b)	(b)	1
					, ,				•
			Total Metals			lved Metals			
Median Influent (mg/	/1 \.	Cu (b)	(b)	Zn (b)	(b)	Pb (b)	Zn (b)		
Median Effluent (mg/	•	(b)	(b)	(b)	(b)	(b)	(b)		
Median Removal (%):		(b)	(b)	(b)	(b)	(b)	(b)		
						•			
			N	otes, Comments	, Additional Referen	ices			
(a) Gravity flow system ha be purchased for a low co		rts or power req	uirement. Oil coales	cing media pack can be	removed, rinsed, and repla	ced. In the event of	lamage to the coales	scing media, new co	oalescing panels can
(b) Report Form's System	performance d	lata fields are no	t applicable. Produc	t removes free-phase fl	luids such as floating oil and	other petroleum hy	drocarbon products	(LNAPL - Light Non	-Aqueous Phase
Liquids).									

Manufacturer:	EcoSense Interna	itional Inc.	Contact Name:	Randy Burd	len	
Name of Technology:	EcoSense Stormwate	r Filtration systems, Ca	- tc Contact Email:		ecosenseint.com	
Technology Category:			Contact Phone:	321-449-03	324 / 321-5	
Technology Process:	Oil/ Grease / sediment	/ debris removal	_Contact Website	e: www.ecose	enseint.com	
# of Installations in Was	hington:	0	_			
	Treatme	ent Type/Applic	cation (check al	l that apply)		
✓ Downspout	✓ Oil/Water Separar		n (media)		ange column	/ Stormwater
✓ Drain Inlet Insert	Settling	→ Filtration	(fabric)	Reverse	osmosis	7 Groundwater
Below Ground Vault	Hydrodynamic Se		(biofiltration)		agulation	_
✓ Above Ground Vault	✓ Floatables Baffle		(chemically enhanced)		Treatment	-
			ted Costs			
		ESUITIO				
Estimated Installation C		low: \$400.00	high: \$2,0			
Estimated Annual O&M	Cost:	low: \$100.00	high:\$500	.00		
		System I	Hydraulics			
Design Flow Rate (gpm)	:	low: 25	high: 166	2*		
Required head loss (ft):		Varies*	_			
Internal or External Byp	ass: Ir	nternal, Hooded	_			
		System Po	erformance			
Breifly describe how date						::1 A4 !: D!
Third party Lab and simula Polypropylene only. One s			•			
polyester pads. Results wi		•	sters loaded with s	urractant mouni	eu zeonte anu	impregnateu
poryester pads. Results Wi	ii be iiicidaed With	ems submitted.				
Parameter:	TSS	ΓΡ Dis. Cu	Dis. Zn Dis.	Cd Dis. Pb	ТРН сР	AHs PCBs
# of sample:			2.01 2.11 2.01	2.0		
Median Influent (mg/L):						
Median Effluent (mg/L):						
% Removal:						
		s, Comments, A				
EcoSense offers two media	* *					
canisters for low flows and	•		•		-	
space available. Hooded o						
(and contaminant associat designed to remove organi						
or filters or both may be in		These systems are	inodulai so tilat u	epending on catt		iuitipie baskets

Manufacturer: Name of Technology: # of Installations in Washington:	Royal Environmental S ecoStorm & ecoStorm	<u></u>	Jim Mothersbaugh jim@watertectonics.com 866-402-2298	<u> </u>
washington.		_	www.watertectonics.com	<u> </u>
_		atment Type/Application (che		_
Downspout	✓ Oil/Water Separation	Filtration (media)	Ion exchange column	Stormwater
Drain Inlet Insert	✓ Settling	Filtration (fabric)	Reverse osmosis	✓ Groundwater
✓ Below Ground Vault	✓ Hydrodynamic Separation	Filtration (biofiltration)	☐ Electrocoagulation ☐	✓ Wastewater
✓ Above Ground Vault	✓ Floatables Baffle	Filtration (chemically enhanced)	Chemical Treatment	✓ Process water
		Estimated Costs		
	Cost (unit cost and const // Cost (\$/gallon treated)	•	v: 8900 (a) high: 37 v: (b) high:	500 (a) (b)
		System Hydraulics/Des	sign	
Design Flow Rate (gpm	•	low: No Min hig		
System aboveground f		low: N/A hig		
Required head loss (ft)		low: <u>0.41'(c)</u> hig	n:	
Internal or External By	pass: Internal	&/or External		
Briefly describe how da	ata were collected (field,	System Performance		
_		edmond, WA. Auto sampler for flow-porti	onal composite and time-base	d discrete collections. Independent
analytical laboratory, and 3r	d party data validation/statisti	cal analysis of data points and sets.		

	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	200						
Median Effluent (mg/L):	26						
Median Removal (%):	87%						

		Total Met	als	Dissolved Metals				
	Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L):	0.019	0.005	0.17			0.066		
Median Effluent (mg/L):	0.009	0.002	0.073			0.042		
Median Removal (%):	53%	60%	57%			36%		

Notes, Comments, Additional References

ecoStorm and ecoStorm plus can be utilized as separate stand-alone technologies or combined in serial component installation. Combined technologies are currently under TAPE evaluation through WADOE for stormwater. Performance data reflects both stormwater and non-stormwater installations.

- (a) Cost varies based on combination of units, number of units, and final design requirements.
- (b) \$500 \$1000 per cleaning/backflush event; Minimum of 1x per yr. to monthly for stormwater.
- (c) Headloss based on:
- Current monitoring configuration: 1 ecoStorm upstream of 2 ecoStorm plus units.
- 360 gpm through the system, 180 gpm per filter.
- Site specific model calibrated onsite at known flow rates.
- Headloss negating effects of drop structure were neglected (located between the ecoStorm and ecoStorm plus units).
- Filters assumed to be at the point of required maintenance (twice the headloss measured for new filters).

System Performance Data results shown are for qualifying events only, per Washington State TAPE requirements:

- Per TAPE requirements, removal requirements for influent concentration less than 100 mg/l are that effluent must be less than or equal to 20 mg/l.
- For parameters with no results presented above, they are not being monitored or were present at concentrations are below measurable thresholds.

Manufacturer:	EcoSense Internatio	nal Iı	Contact Na	me:	Randy B	urden		
Name of Technology:	EcoVault Baffle Bo	ox	Contact En	nail:	/.burden@e			
Technology Category:	Below Ground Va	ult	Contact Ph	one:	-449-0324 /	321-544-9		
Technology Process:	Type II Baffle Bo	<	Contact W	ebsite:	www.ecoser	nseint.com		
# of Installations in Was	shington:	0	_					
	Treatment	Type/Appli	cation (che	ck all the	at apply)			
Downspout	✓ Oil/Water Separartion	✓ Filtratio	n (media)		✓ Ion excha	nge column	✓ Storm	nwater
Drain Inlet Insert	✓ Settling	✓ Filtratio	n (fabric)		Reverse o	smosis	Grour	ndwater
✓ Below Ground Vault	Hydrodynamic Separa		n (biofiltration)		Electrocoa	agulation	─ Waste	ewater
Above Ground Vault	✓ Floatables Baffle	Filtratio	n (chemically enh	anced)	Chemical	Treatment	Proce	ss water
		Estima	ted Costs					
Estimated Installation C	Cost: I	ow: \$25,000.00	high:	\$125,000				
Estimated Annual O&M	Cost:	ow: \$200.00		\$1,800.00	- -			
		System	Hydraulics					
Design Flow Rate (gpm)): I	ow: 1346	high:	48,000	_			
Required head loss (ft):		Varies*	_		_			
Internal or External Byp	pass: Eith	ner or Both	_					
A study has not been com II Baffle Box. Minimum Pe and Gopatakrishnan, 1996 media filtration and horizo	pleted on this specific erformance claims are f. The study mentioned	system. Studies based on mode d was performe	have been pe studies perfo d with a scale	erformed ormed at t model Ty	on other mar he Florida Ins	nufactures stitute of T	echnology	: Pandit
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal:	TSS TP	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pb	ТРН	сРАНѕ	PCBs
		Comments,						
The EcoVault is unique am internal weir which treats dissolved heavy metals an are captured and stored at three filter components in impregnated with Granula depending on the media fi	low flows and remove d orgainics. TSS remove bove the static WL gre cluding surfactant move ted Ferric Hydroxide, I	a wide variety wal is expect to leatly increasing of diffied zeolite, he watural Zeolite a	of contaminar oe 80% at the overall nutrien ydrophobic m and select grad	nts includi flows me nt remova eltblown p de acid wa	ng bacteria, r ntioned abov I. The casset polypropylen ashed Activat	mobile pho e. Course te style me e and poly ed Carbon	osphate, ar organic ma edia filter c ester fiber . * Head Lo	nmonia, aterials ontains pads

Manufacturer:	Environg	nent 21, LLC		Contact N	ame.	Dina Pazziman	+ :		
Name of Technology:		roTrap		Contact N		dino@env			
# of Installations in	Live	ПОТГАР		Contact Pl		585-815-4714	21.00111		
Washington:		0		Contact W		www.env2	1.com		
	-		•						
			pe/Applicati		all that a				
☐ Downspout ☐	Oil/Water Sep	arartion	✓ Filtration (medi	ia)		☐ Ion exch	ange column	✓ S	Stormwater
☐ Drain Inlet Insert ☐	Settling		Filtration (fabri	c)		Reverse	osmosis	☐ G	Groundwater
Below Ground Vault	Hydrodynamic	c Separation	Filtration (biofil	tration)		Electroco	oagulation	W	Vastewater
Above Ground Vault	Floatables Baf	ffle	Filtration (chen	nically enhance	ed)	Chemica	l Treatment	P	rocess water
			Estimated	Costs					
Estimated Installation Cost		low:	\$200	high:	\$1,000				
Estimated Annual O&M Co	st:	low:	0	high:	\$1,000	- -			
		Sys	stem Hydrau	lics/Desig	<u></u> gn				
Design Flow Rate (gpm):		low:	0	high:	2,700	_			
System footprint (sq ft):		low:	NA	high:	NA	=			
Required head loss (ft):		low:	0	high:	0.5	_			
Internal or External Bypass	: -		NA						
Breifly describe how data w			System Perfo						
Field studies are incomplete at th	is time and a	re still under ev	valuation.						
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs		
Median Influent (mg/L):	*250	**400	**400	**400	**400	**400	**400		
Median Effluent (mg/L):	*175	**150	**150	**150	**150	**150	**150		
Median Removal (%):	*30	**62.5	**62.5	**62.5	**62.5	**62.5	**62.5		
		Total Meta	als	Diss	solved Me	tals			
	Cu	Pb	Zn	Cu	Pb	Zn			
Median Influent (mg/L):	***0.08	***0.79	***0.3	NA	NA	NA			
Median Effluent (mg/L):	***0.07	***0.68	***0.24	NA	NA	NA			
Median Removal (%):	***9	***13.6	***20	NA	NA	NA			
		Notes, Cou	mments, Add	litional R	eference	· ·			
*The TSS removal efficiency is als							ntion of a PSI	D with a	d ₅₀ of 180
microns was used.	о асрания.	ирол. и	010 0120 0121 121	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	tino p. 220	.,	ption 2. 2		450 0. 222
**Any oil based removal depend	s on the drop	let size and spe	ecific gravity of the	oil. For this	product, ac	curate, analy	zed data is u	navailat	ole; therefore a
mean oil droplet size of 100 micr ***Testing is not complete for m	on and a spgr	of 0.89 are use	ed. The removal e						

Manufacturer: Name of Technology: Technology Category: Technology Process: # of Installations in Was	Filterra Belov b	DBA Americast, Inc. Curb Inlet System v Ground Vault iofiltration	Contact Name: Contact Email: Contact Phone: Contact Website:			<u>wharris@</u> 909-79	Harris filterra.com 90-5239 terra.com	- - -	
	7	reatment Type/	Applicatio	n (check a	II that ap	oly)			
Downspout	Oil/Water Se	parartion	Filtration	n (media)		☐ Ion exch	nange column	✓ Storr	mwater
☐ Drain Inlet Insert	Settling		Filtration	n (fabric)		Reverse	osmosis	Grou	ndwater
✓ Below Ground Vault	Hydrodynam	ic Separation	✓ Filtratior	n (biofiltration)		Electroc	oagulation	Wast	ewater
Above Ground Vault	Floatables Ba	affle	Filtration	n (chemically e	nhanced)	Chemica	al Treatment	Proce	ess water
		E:	stimated C	osts					
Estimated Installation C Estimated Annual O&M		low	· · ·	high:	\$7,500 \$3,000	-			
Design Flow Rate (gpm) Required head loss (ft): Internal or External Byp	_	low 2.5 Can be eith	-	high:	50+	-			
Breifly describe how da	ta were colect	•	party, grab		ito-compo	site, etc.)			
For third party field monits samplers. Trapezoidal flun respectively, for flow measus association with the units and bubbler equipment.	nes and V-notch surements. Wat	weirs with associated er levels within flume	d bubbler systes were record	ems were in ded using 5-	nstalled to minute int	intercept ir ervals. A ra	nfluent and in guage wa	effluent sto as installed	ormwater, in
Parameter:	TSS	TP	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pb	TPH	cPAHs	PCBs
# of sample:	10	12	29	29			12		
Median Influent (mg/L):	27.5	0.15	0.0056	0.194			43.4		
Median Effluent (mg/L):	4.2	0.14	0.0033	0.082			1.2		
% Removal:	84.7	6.7	44	54			97		

Notes, Comments, Additional References

Please refer to the attached Filterra Curb Inlet Model Overview Sheet for further information. Please note that the Filterra Curb Inlet Model can be designed and built with or without an internal high flow bypass compartment. Data from Technical Evaluation Report (2009) produced by Herrera Environmental Consultants for Washington Department of Ecology. TSS data in the influent range accepted by Ecology(20 mg/L and greater). TP data in the influent range accepted by Ecology (0.1 to 0.5 mg/L). Low TP removal due to anomalous phosphorus data collected at the Port of Tacoma included very low TP influent concentrations and a high fraction of soluble reactive phosphorus. Dissolved copper data in the influent range accepted by Ecology (0.0029 to 0.02 mg/L). Dissolved zinc data in the influent range accepted by Ecology (0.02 to 0.6 mg/L). TPH data in the influent range accepted by Ecology (10 mg/L or greater).

Manufacturer: Name of Technology: Technology Category: Technology Process:	Filterra	DBA Americast, Inc. Roof Drain System Downspout Biofiltration	_ _ _	Contact N Contact E Contact P Contact W	mail: hone:	wharris	ill Harris @filterra.com 790-5239	- - -	
# of Installations in Was	shington:	1							
		Treatment Type//	Application	n (check a	II that ap	oly)			
✓ Downspout	Oil/Water S	eparartion	Filtration	n (media)		☐ Ion e	xchange column	✓ Stori	mwater
☐ Drain Inlet Insert	Settling		Filtration	n (fabric)		Rever	rse osmosis	Grou	ndwater
✓ Below Ground Vault	Hydrodynar	nic Separation	✓ Filtration	n (biofiltration)		☐ Electr	ocoagulation	☐ Wast	tewater
✓ Above Ground Vault	Floatables E	Baffle	Filtration	n (chemically e	nhanced)	Chem	nical Treatment	Proc	ess water
		Es	stimated C	osts					
Estimated Installation C Estimated Annual O&M	low low			\$7,500 \$3,000	-				
		Sys	tem Hydro	aulics					
Design Flow Rate (gpm) Required head loss (ft): Internal or External Byp	_	low 2.5 Internal	7: 8.5	high:	50+	_			
			em Perfor	manca					
		Syst	em renjon	mance					
Breifly describe how da									
For third party field monits samplers. Trapezoidal flun respectively, for flow measus association with the units and bubbler equipment.	nes and V-noto surements. Wa	n weirs with associated ter levels within flume	bubbler syst s were record	ems were ir led using 5-	nstalled to minute into	intercept ervals. A r	influent and e ain guage was	effluent sto s installed i	rmwater, in
Parameter:	TSS	TP	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pk	трн	cPAHs	PCBs
# of sample:	10	12	29	29			12		
Median Influent (mg/L):	27.5	0.15	0.0056	0.194			43.4		
Median Effluent (mg/L):	4.2	0.14	0.0033	0.082			1.2		
% Removal:	84.7	6.7	44	54	<u> </u>		97.2		

Notes, Comments, Additional References

Please refer to the attached Filterra Roof Drain System Model Overview Sheet for further information. Please note that the Filterra Roof Drain System can be designed and built with or without an internal high flow bypass compartment. System can be also designed and built for either above ground or below ground applications. Data from Technical Evaluation Report (2009) produced by Herrera Environmental Consultants for Washington Department of Ecology. TSS data in the influent range accepted by Ecology(20 mg/L and greater). TP data in the influent range accepted by Ecology (0.1 to 0.5 mg/L). Low TP removal due to anomalous phosphorus data collected at the Port of Tacoma included very low TP influent concentrations and a high fraction of soluble reactive phosphorus. Dissolved copper data in the influent range accepted by Ecology (0.0029 to 0.02 mg/L). Dissolved zinc data in the influent range accepted by Ecology (0.002 to 0.6 mg/L). TPH data in the influent range accepted by Ecology (10 mg/L or greater).

	ABT,	Inc.		Contact Na	ame:	Brad 9	Short		
Name of Technology:	First Flush	1640FF		Contact Er	nail:	bshort@abtdra	ins.com		
Technology Category:	Below Gro	und Vault		Contact Pl	none:	949-633	3-6111		
Technology Process:	Gravity-Flo	w through		Contact W	ebsite:	www.abtdi	rains.com		
# of Installations in Wash	nington:	0							
	Treat	ment Typ	e/Applic	ation (ch	eck all the	at apply)			
Downspout [Oil/Water Se			(media)		_	ange column	✓ Storm	nwater
✓ Drain Inlet Insert	Settling		☐ Filtration	(fabric)		Reverse of	nemosis	Groun	ndwater
── Below Ground Vault	_	nic Separation	_				agulation		
			_	(biofiltration)			J		ewater
Above Ground Vault	Floatables Ba	ame		(chemically er	nhanced)	Chemical	Treatment	Proce	ss water
			Estimat	ed Costs					
Estimated Installation Co	st:	low:	\$5,000	high:	10,000				
Estimated Annual O&M (Cost:	low:	\$500	high:	\$3,000	-			
			System F	lydraulic	<u> </u>				
Design Flow Rate (gpm):		low:	449	high:	538				
Required head loss (ft):		_				•			
Internal or External Bypa	ss: Se	ee detail for l	bypass.						
		Sı	ustem Pa	erforman	re				
		<i>J</i>	, stem r e	joiman					
Breifly describe how data	a were colec	ted (field, la	ab, third p	arty, grab	sample, a	uto-compo	site, etc.)		
Il ab test results are provide	on the filter n	nedia nerfori	mance and	system hyd	raulic nerfo	ormace base	d on desig	n canahilite	s The
Lab test results are provide installation cost if factoring available from ABT. Installa	material and	cost of instal	lation toge	-	-		_	-	
installation cost if factoring available from ABT. Installa Parameter:	material and	cost of instal	lation toge	-	-		_	-	
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	material and ition in severa	cost of instal	lation toge ding CA.	theror an	installed co	ost. See atta	ached deta	il of the lar	ger unit
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L):	material and ition in severa TSS	cost of instal	lation toge ding CA. Dis. Cu	Dis. Zn	Dis. Cd	ost. See atta	ached deta	il of the lar	ger unit
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	material and ition in severa TSS	cost of instal	lation toge ding CA. Dis. Cu	Dis. Zn	Dis. Cd	ost. See atta	ached deta	il of the lar	ger unit
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	material and ition in severa TSS	cost of instal	lation toge ding CA. Dis. Cu	Dis. Zn	Dis. Cd	ost. See atta	ached deta	il of the lar	ger unit
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	material and ition in severa TSS	cost of instal	lation toge ding CA. Dis. Cu	Dis. Zn	Dis. Cd	ost. See atta	ached deta	il of the lar	ger unit
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	material and ition in severa TSS	cost of instal	lation toge ding CA. Dis. Cu	Dis. Zn	Dis. Cd	ost. See atta	ached deta	il of the lar	ger unit
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	material and ition in severa TSS	cost of instal	lation toge ding CA. Dis. Cu	Dis. Zn	Dis. Cd	ost. See atta	ached deta	il of the lar	ger unit
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	material and ition in severa TSS	cost of instal	lation toge ding CA. Dis. Cu	Dis. Zn	Dis. Cd	ost. See atta	ached deta	il of the lar	ger unit
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	material and ition in severa TSS	cost of instal	lation toge ding CA. Dis. Cu	Dis. Zn	Dis. Cd	ost. See atta	ached deta	il of the lar	ger unit
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	material and ition in severa TSS	cost of instal	lation toge ding CA. Dis. Cu	Dis. Zn	Dis. Cd	ost. See atta	ached deta	il of the lar	ger unit
installation cost if factoring available from ABT. Installa Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L):	material and ition in severa TSS	cost of instal	lation toge ding CA. Dis. Cu	Dis. Zn	Dis. Cd	ost. See atta	ached deta	il of the lar	ger unit

Manufacturer:	Kristar Enterpr	ises, Inc.	_		Contact Na	ame:	N	1ichael Kimbe	erlain	_		
Name of Technology:		FloGard Down	spout Filter	_		Contact Er	nail:	<u>n</u>	<u>nkimberla</u>	in@kristar.com	_	
# of Installations in						Contact Ph		(8	300) 579-881	9	_	
Washington:		0		_		Contact W	ebsite:	<u>v</u>	vww.krista	ar.com	_	
			Treatm	nent	t Type/Ap	plication	(check a	II tho	it apply)			
✓ Downspout	\checkmark	Oil/Water Se	parartion		Filtration (med	ia)			Ion exchanç	ge column	✓	Stormwater
Drain Inlet Insert		Settling		V	Filtration (fabri	ic)			Reverse osr	nosis		Groundwater
Below Ground Vault		Hydrodynam	ic Separation		Filtration (biofil	Itration)			Electrocoag	ulation		Wastewater
Above Ground Vault		Floatables Ba	affle		Filtration (chen	nically enhance	d)		Chemical Tr	reatment		Process water
					Estir	mated Co	sts					
Estimated Installation C	ost		low:	:	\$1,500	high:	\$3,500					
Estimated Annual O&M	Cos	st:	low:	_	\$75	high:	\$250					
					System H	ydraulics	/Design)				
Design Flow Rate (gpm)	:		low:	<u></u>	30	high:	325					
System footprint (sq ft):			low:		0.5	high:	1					
Required head loss (ft):			low:	:	0	high:	0.5					
Internal or External Byp	ass	:	In	iterna	al	-						
					Systen	n Perform	ance					
- 10 1 1 1 1												
Breifly describe how date Lab - UCLA, University of Haw												
Lab - OCLA, University of Haw	/dII,	City of Auck	ialiu, NZ, C3U3	- O VV	rr. rieid Study	y - University	UI Hawaii a	and Ci	ty of Aucki	allu		
		TSS	TPH	Oi	I & grease	SVOCs	PCBs		Dioxins	CPAHs		
Median Influent (mg/L):		100	35		35					35	_	
Median Effluent (mg/L):	:	20	7	-	7						4	
Median Removal (%):		80	80		80					7	_	
			Total Met	tals		Dis	solved N	1etal	S			
		Cu	Pb		Zn	Cu	Pb		Zn			
Median Influent (mg/L):					10							
Median Effluent (mg/L):	:				6							
Median Removal (%):					60							
			Not	es,	Comment	s, Additio	nal Ref	erer	nces			

Manufacturer:	Kristar E	nterprises, Inc.	_	Contact Na	me:	M	ichael Kimberlain	
Name of Technology:	Flo Gard Dual	Vortex Separator	_	Contact En	ail:	mkimbe	erlain@kristar.com	<u>_</u>
# of Installations in				Contact Ph	one:		(800) 579-8819	_
Washington:		10	_	Contact W	ebsite:	ww	w.kristar.com	_
		Treat	ment Type/A	pplication	(check all	that apply)		
Downspout	✓ Oil/Water Se		Filtration (med	-	` 🗆	Ion exchange co	lumn	✓ Stormwater
Drain Inlet Insert	✓ Settling		Filtration (fabri	ic)		Reverse osmosis		Groundwater
✓ Below Ground Vault	✓ Hydrodynar	nic Separation	Filtration (biofi			Electrocoagulation		☐ Wastewater
Above Ground Vault	✓ Floatables E	Baffle		mically enhanced)	Chemical Treatm	ent	Process water
			EST	imated Co	STS			
Estimated Installation Co	ost:	low	\$10,000	high:	\$100,000			
Estimated Annual O&M	Cost:	low	\$300	high:	\$3,500	_		
			System	Hydraulics	/Design			
Design Flow Rate (gpm):		low	-	high:	6,500			
System footprint (sq ft):		low	7	high:	113			
Required head loss (ft):		low	0	high:	3			
Internal or External Bypa	ass:	lr	nternal	_				
			Susta	m Perforn	nance			
			Syste	ılı Feljülli	iunce			
Breifly describe how dat	a were cole	cted (field, l	ab, third party,	grab sampl	e, auto-com	posite, etc.)		
Internal lab testing performed							Holden Massachussets	. No field studies have
been completed at this date.								
			0.1.0			Ta T		7
84 - dia India + / /1 \-	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	4
Median Influent (mg/L):	202							+
Median Effluent (mg/L):	80		+					+
Median Removal (%):	60							_
		Total Me	tals	Dis	solved Met	tals		
	Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L):								
Median Effluent (mg/L):								
Median Removal (%):								
			otes, Commen					
No field studies have been co	mpleted at thi	s time. Correla	ition of TSS remova	al with other P	OCs would in	dicate similar re	moval of Total metals.	

Manufacturer:		Kristar Enterpri	ses, Inc.	_	Contact Na	ame:	Michael Kimbe		
Name of Technology:		FloGard LoPro	Matrix Filter	_	Contact Er	nail:	<u>mkimberla</u>	in@kristar.com	
# of Installations in					Contact Ph	none:	(800) 579-8819)	
Washington:		10		_	Contact W	ebsite:	www.krista	ar.com	
			Treatm	nent Type/	Application	(check al	l that apply)		
Downspout	\checkmark	Oil/Water Sep	parartion	Filtration (media)		☐ Ion exchang	je column	✓ Stormwater
✓ Drain Inlet Insert		Settling		✓ Filtration (f	fabric)		Reverse osn	nosis	Groundwater
Below Ground Vault		Hydrodynami	c Separation	_	biofiltration)		☐ Electrocoag	ulation	☐ Wastewater
Above Ground Vault	~	Floatables Ba	ffle	Filtration (chemically enhance	d)	Chemical Tr	eatment	Process water
					stimated Co	sts			
Estimated Installation (`nst		low:		high:	\$1,000			
Estimated Annual O&N			low:		high:	\$300	<u> </u>		
				Sustan	Hydraulics,	/Decian	_		
Design Flow Rate (gpm	١٠		low:	-	high:	800			
System footprint (sq ft)			low:		high:	16	_		
Required head loss (ft):			low:		high:	0.5			
Internal or External By		:		ternal	_		<u> </u>		
				Cuct	em Perform	anco			
				Syst	em renjomi	arrec			
Breifly describe how da	ıta v	vere colect	ted (field. la	b. third party	v. grab sample	. auto-co	mposite, etc	.)	
Lab - UCLA, Univeristy of Ha									
		TSS	TPH	Oil & greas	se SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L)		100	35	35				35	
Median Effluent (mg/L)):	20	7	7					
Median Removal (%):		80	80	80				7	
			Total Met	tals	Dis	solved M	etals		
		Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L)):			10					
Median Effluent (mg/L)				6					
Median Removal (%):				60					
			Not	has Camara	A dditi	nal Dafe			
			NO	es, comme	ents, Additio	паі кеј	erences		

Manufacturer:		Kristar Enterpri	ises, Inc.	_	Contact Na	ime:	Michael Kimb	erlain	
Name of Technology:	_	loGard LoPro T	rench Drain Filter Contact Email:				mkimberla	ain@kristar.com	
# of Installations in					Contact Ph	one:	(800) 579-881	9	
Washington:	()		-	Contact W	ebsite:	www.krist	ar.com	_
			Treatm	ent Type/Ap	plication	(check a	ll that apply)		
Downspout	\checkmark	Oil/Water Sep	parartion	Filtration (med	lia)		☐ Ion exchan	ge column	✓ Stormwater
✓ Drain Inlet Insert		Settling		✓ Filtration (fabr	ic)		Reverse os	mosis	Groundwater
Below Ground Vault		Hydrodynami	c Separation	Filtration (biofi	iltration)		☐ Electrocoag	julation	Wastewater
Above Ground Vault	✓	Floatables Ba	iffle	Filtration (cher	mically enhanced	i)	Chemical T	reatment	Process water
				Esti	mated Cos	sts			
Estimated Installation C	ost:		low:	\$600	high:	\$3,000			
Estimated Annual O&M		t:	low:		high:	\$350			
				System H	lydraulics,	/Design			
Design Flow Rate (gpm)	:		low:	=	high:	500			
System footprint (sq ft):			low:	1	high:	20			
Required head loss (ft):			low:	0	high:	0.25			
Internal or External Byp	ass:		In	ternal	- -				
				Systen	n Perform	ance			
				•	•				
Breifly describe how dat									
Lab - UCLA, Univeristy of Haw	aii, C	ity of Auckl	and, NZ, CSUS	- OWP. Field Stud	y - University	of Hawaii a	ind City of Auck	land	
		TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L):		100	35	35				35	_
Median Effluent (mg/L):		20	7	7					
Median Removal (%):		80	80	80				7	
	Г							1	
	F	-	Total Met	1	i ı	solved M			
8.6 a dia a Justina a & / a / 1) .		Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L): Median Effluent (mg/L):	_			10					
Median Removal (%):	+			60					
iviedian Kemovai (70).	!			00	<u> </u>				
			Not	es, Comment	ts, Additio	nal Ref	erences		

Manufacturer:		Kristar En	terprises, Inc.	Contact Name: Mic				Michael Kimberlain				
Name of Technology:		FloG	ard+Plus	_		Contact En	nail:	<u>m</u>	nkimberlain@	kristar.com		
# of Installations in						Contact Ph	one:	(8)	00) 579-8819			
Washington:			100	_		Contact W	ebsite:	W	ww.kristar.c	<u>om</u>	_	
			Treatn	nent	Type/Ap	plication	(check a	ll tha	t apply)			
Downspout		Oil/Water Sep	parartion		Filtration (medi	ia)			Ion exchange co	olumn	✓ S	Stormwater
✓ Drain Inlet Insert		Settling		\checkmark	Filtration (fabri	c)			Reverse osmosi:	s	□ G	Groundwater
Below Ground Vault		Hydrodynami	c Separation		Filtration (biofil	Itration)			Electrocoagulati	on	□ v	Vastewater
Above Ground Vault	✓	Floatables Ba	ffle		Filtration (chen	nically enhance	i)		Chemical Treatr	nent	P	Process water
					Estir	mated Co	sts					
Estimated Installation C	Cost		low:		\$250	high:	\$1,800					
Estimated Annual O&M	l Co	st:	low	=	\$75	high:	\$350					
					System H	ydraulics,	/Design	,				
Design Flow Rate (gpm)):		low	:	100	high:	2,000					
System footprint (sq ft)	:		low:		1	high:	10					
Required head loss (ft):			low	:	0	high:	0.25					
Internal or External Byp	ass	:	Ir	terna	ıl							
					System	n Perform	ance					
Breifly describe how da												
Lab - UCLA, Univeristy of Hav	NaII,	City of Aucki	anu, NZ, C303	- Ovv	r. rieid Study	y - University	DI Hawaii a	and Cit	ty of Auckland	l		ļ
		TSS	TPH	Oil	l & grease	SVOCs	PCBs		Dioxins	CPAHs		
Median Influent (mg/L)		100	35		35					35		
Median Effluent (mg/L)	:	20	7		7							
Median Removal (%):		80	80		80					7		
			Total Met	tals		Dis	solved M	letals	s			
		Cu	Pb		Zn	Cu	Pb		Zn			
Median Influent (mg/L)	:				10							
Median Effluent (mg/L)	:				6							
Median Removal (%):					60							
			Not	-oc 1	Comment	s Additio	nal Ref	oron	ICPS			
			7401	.63,	Comment	s, Auditio	nui keji	eren	163			
												ļ
												ļ
												ļ
												ļ
												ļ

Manufacturer:		Kristar En	terprises, Inc.	_	Contact Na		Michael Kimber	lain	
Name of Technology:		FloGard Trash	h & Debris Guard	_	Contact Er		mkimberlai	n@kristar.com	
# of Installations in					Contact Ph		(800) 579-8819		<u>—</u>
Washington:			0	_	Contact W	ebsite:	www.krista	<u>r.com</u>	
			Treatn	nent Type/Ap	plication	(check a	ll that apply)		
Downspout	\checkmark	Oil/Water Sep	oarartion	Filtration (med	lia)		☐ Ion exchange	column	✓ Stormwater
✓ Drain Inlet Insert		Settling		✓ Filtration (fabri	ic)		Reverse osm	osis	Groundwater
Below Ground Vault		Hydrodynami	c Separation	Filtration (biofi	Itration)		☐ Electrocoagu	lation	☐ Wastewater
Above Ground Vault	V	Floatables Ba	iffle	Filtration (cher	mically enhance	d)	Chemical Tre	atment	Process water
				Estii	mated Co	sts			
Estimated Installation C	ost:		low	: \$450	high:	\$1,500			
Estimated Annual O&M	Cos	st:	low	\$50	high:	\$200			
				System H	ydraulics,	/Design	1		
Design Flow Rate (gpm)	:		low	: 50	high:	500			
System footprint (sq ft):			low	0.5	high:	4			
Required head loss (ft):			low	:0	high:	0.25			
Internal or External Byp	ass	:	lr	nternal	_				
				Systen	n Perform	ance			
				,	•				
Breifly describe how date	ta v	vere colect	ted (field, la	ıb, third party, g	grab sample	, auto-co	omposite, etc.)	
No Data Available									
		TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	\neg
Median Influent (mg/L):	:			3					
Median Effluent (mg/L):									
Median Removal (%):									
				•					_
			Total Me		i i	solved N			
		Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L):	_								
Median Effluent (mg/L): Median Removal (%):	:		<u> </u>						
ivieulali Kelliovai (70).					<u> </u>				
			No	tes, Comment	ts, Additio	nal Ref	erences		
									-

Manufacturer:	AquaShield, Inc.	Co	ntact Nan	ne:	Mark Miller			
Name of Technology:	Go-Filter	_	ontact Ema		mmiller@aguas	hieldinc.com	_	
Technology Category:	Above Ground Vault	Co	ntact Pho	ne:	888-344-9044		_	
Technology Process:	Vortex + Filtration	Co	ntact Wel	osite:	www.aguashield	dinc.com	_	
# of Installations in Was		0					_	
		tment Type/App	nlication	/chack all	that apply)			
Downspout	✓ Oil/Water Separartion	Filtration (media)	piication	(check un	In exchange colu	ımn	✓ Storm	nwater
Drain Inlet Insert		_			_	11111		
	Settling	Filtration (fabric)			Reverse osmosis		Groun	ndwater
Below Ground Vault	✓ Hydrodynamic Separation	Filtration (biofiltrat	ion)		Electrocoagulation	1	☐ Waste	ewater
Above Ground Vault	✓ Floatables Baffle	Filtration (chemica	lly enhanced)		Chemical Treatme	ent	✓ Proce	ess water
		Estir	nated Co	sts				
Estimated Installation Co	ost: low	Site-specific	high:	Site-specific	:			
Estimated Annual O&M	Cost: low		_	Site-specific				
		Conta	11	.!:				
Destruction Balada and	1.	-	m Hydra					
Design Flow Rate (gpm)	: low		high:	675	_			
Required head loss (ft):		0.5						
Internal or External Byp		Both						
		System	n Perforn	nance				
Breifly describe how dat		lab, third party, gi	rab sample	e, auto-cor	nposite, etc.)			
See Aqua-Filter for lab and	field testing.							
Parameter:	TSS TP	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pb	TPH	cPAHs	PCBs
# of sample:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
% Removal:								
	۸	lotes, Comment	s, Additio	onal Refe	rences			
Mobile device works on	same principle as Aqua	Filter. Useful on co	onstruction	n sites for t	urbidity reductio	n in addition to s	sediment ren	noval.
Device components have	e been verified by NJCA	г.						
·								

Manufacturer:		Imbriu	m Systems			Contact N	ame:	Joel (Garbon	
Name of Technology:		Jellyf	ish Filter	_		Contact E	mail:	jgarbon@imb	riumsystms.com	
# of Installations in				_		Contact Pl	hone:	503-7	06-6193	
Washington:			1			Contact W	ebsite:	www.imbrium	nsystems.com	
		T		<u> </u>	l: ±:	an / d . d	. 11 11			
Downspout	V		eatment 1				all that d			Ctt
	_	Oil/Water Sep	Jaration	✓ Filtration	on (medi	a)		☐ Ion exc	nange column	✓ Stormwater
Drain Inlet Insert	\checkmark	Settling		Filtrati	on (fabri	c)		Reverse	osmosis	Groundwater
✓ Below Ground Vault	✓	Hydrodynami	ic Separation	Filtration	on (biofil	tration)		Electrod	oagulation	Wastewater
✓ Above Ground Vault	✓	Floatables Ba	iffle	Filtrati	on (chem	nically enhance	ed)	Chemica	al Treatment	Process water
				Estim	ated	Costs				
Estimated Installation C	ost	(unit cost	and constru	iction cost):		low	:	high:	
Estimated Annual O&M	Cos	t (\$/gallor	n treated):				low		high:	
			S	ystem Hy	draul	lics/Desig	ın			
Design Flow Rate (gpm)	:		<u> </u>	,,,,,	low:	60	, high	2300		
System aboveground fo		rint (sa ft):			low:	12	high		-	
Required head loss (ft):	o cp.	(54 16)			low:	1	high		-	
Internal or External Byp	ass:	:	Internal o	r External By			6	·	-	
					,,,,,					
				System	Perfo	rmance				
Briefly describe how da										
Performance data is from thi	rd-pa	arty field stu	dy at Universi	ty of Florida	conduc	ted accordin	g to the TAI	RP protocol.	Samples colle	cted were grab
samples of the entire crossed	tion	of flow. Twe	enty-one storr	n events hav	e been	monitored to	o date.			
								1		
		TSS	TPH	Oil & gr	ease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L)		74								
Median Effluent (mg/L)	:	8								
Median Removal (%):		89								
									T	
			Total Me	_			olved Me	1	 	
		Cu	Pb	Zn		Cu	Pb	Zn	<u> </u>	
Median Influent (mg/L)		78	35	1.45	5					
Median Effluent (mg/L)	:	0.3	5	0.6						
Median Removal (%):		99	86	59					l	
			Notes, Co	omments	, Add	itional R	eference	?S		
Copper concentrations are in	mic	rograms per					-		ns are in micro	ograms per liter. The
O&M cost ranges from \$0.00	1/ga	I to \$0.003/g	gal. Installatio	n costs range	from \$	8000 to \$12!	5,000.			

Manufacturer: Name of Technology: Technology Category: Technology Process:	Brown Minne Kleerw Below Grou	ater	- - -	Contact Name Contact Email Contact Phone Contact Webs	il: <u>a</u> ne: <u>(</u>	Allan McComas amccomas@bmt-tank.com (360) 482-1724 bmt-tank.com	
# of Installations in Was				-			
_	_	nt Type/App	olication (check all that o	apply)		
Downspout	Oil/Water Separartion		Filtratio	n (media)	[Ion exchange column	✓ Stormwater
Drain Inlet Insert	Settling		Filtration	n (fabric)	[Reverse osmosis	Groundwater
Below Ground Vault	Hydrodynamic Separation		Filtration	(biofiltration)	[Electrocoagulation	✓ Wastewater
Above Ground Vault	Floatables Baffle		Filtration	(chemically enhance	ced) [Chemical Treatment	Process water
		Estin	nated Cos	ts			
Estimated Installation C Estimated Annual O&N	_	Varies by size Nominal	high	Varies by install	llation siz	ze	
		Syster	n Hydrau	lics			
Design Flow Rate (gpm)	<u>-</u>		25 gpm	high: 10,0	000 gpm		
Required head loss (ft):		Grav	· .	-			
Internal or External Byp	oass:	Exter	nai	-			
		System	Perform	ince			
Parameter: # of sample: Median Influent (mg/L): Median Effluent (mg/L): % Removal:	TSS	TP	Dis. Cu	Dis. Zn Di	is. Cd	Dis. Pb TPH	cPAHs PCBs
a Undomunitore Laboratori	es tested and listed per UL		s, Additio	nal Reference	es		
Designed for no internal Kleerwater™ can handle Kleerwater™ separators Unique patented oil separation efficiencies d Electronic audible and vi Separator material of co Single or double wall ste	or confined space entry we larger influent flows, allow utilizes Stokes Law for defiaration process enhances of lown to 5 ppm & lower. issual alarms available for penstruction: carbon steel. wel configurations available termittent influent flow rate.	hen performing ving for smaller ining rates of ris oil from water se reset level alarm	separator ta e of oil sphe eparation eff	nks. With smalle res in a liquid me iciencies		tion tanks, less installa	ation costs.

or Separation namic Separation es Baffle ost and cor allon treate			tion) ted Costs rate):	e: iite: all that appl low: low:	760-43 www.biocleane // Ion exchange column Reverse osmosis Electrocoagulation Chemical Treatment 12,000 \$ 8.26	high:	Stormwater Groundwater Wastewater Process water 25,000 \$ 10.50		
r Separation rnamic Separation es Baffle ost and cor allon treate	Treatme	✓ Filtration (media) ☐ Filtration (fabric) ✓ Filtration (biofiltra ☐ Filtration (chemice Estima treatment flow is System Hydia low: low:	contact Webs cation (check tion) ally enhanced) ted Costs rate): raulics/Desig	ite: all that appl low: low: pgn high:	www.biocleane /) Ion exchange column Reverse osmosis Electrocoagulation Chemical Treatment 12,000 \$ 8.26	nvironmental.net	Groundwater Wastewater Process water		
r Separation rnamic Separation es Baffle ost and cor allon treate	Treatme	✓ Filtration (media) ☐ Filtration (fabric) ✓ Filtration (biofiltra ☐ Filtration (chemice Estima treatment flow is System Hydia low: low:	tion) ally enhanced) ted Costs rate): raulics/Designed	low:	Ion exchange column Reverse osmosis Electrocoagulation Chemical Treatment 12,000 \$ 8.26	high:	Groundwater Wastewater Process water		
namic Separations Baffle ost and contained treate () () () () () () () () () () () () () (nstruction cost):	✓ Filtration (media) ☐ Filtration (fabric) ✓ Filtration (biofiltra ☐ Filtration (chemice Estima treatment flow is System Hydia low: low:	tion) selly enhanced) ted Costs rate): raulics/Designed 22 16	low:	Ion exchange column Reverse osmosis Electrocoagulation Chemical Treatment 12,000 \$ 8.26	high:	Groundwater Wastewater Process water		
namic Separations Baffle ost and contained treate () () () () () () () () () () () () () (nstruction cost):	Filtration (fabric) Filtration (biofiltra Filtration (chemics Estima treatment flow i System Hydic low: low:	rate): 22 16	low: low:	Reverse osmosis Electrocoagulation Chemical Treatment 12,000 \$ 8.26	high:	Groundwater Wastewater Process water		
ost and cor allon treate	nstruction cost):	Filtration (biofiltra Filtration (chemica Estima treatment flow is System Hydica low: low:	rate): 22 16	low: low:	Electrocoagulation Chemical Treatment 12,000 \$ 8.26		Wastewater Process water		
ost and cor allon treate	nstruction cost):	Estima treatment flow to System Hydrolow:	rate): 22 16	low: low: gn high:	12,000 \$ 8.26		Process water		
ost and cor allon treate 1 ft):	•	Estima treatment flow i System Hydi low: low:	rate): raulics/Desig	low: low: gn high:	12,000 \$ 8.26		25,000		
allon treate	•	System Hydionics low:	rate): raulics/Desig 22 16	low:	\$ 8.26				
allon treate	•	System Hydi low: low:	raulics/Desig 22 16	low:	\$ 8.26				
ı ft):	ed - based on peak	System Hydi low: low:	raulics/Desig 22 16	gn high:	120	high:	\$ 10.50		
_		low:	22 16	high:					
_		low:	16	_					
_				_ IIIgII.		•			
llosted /fi-		1044.	~	high:	84 4	•			
llected /# -			Internal (External in Some Situations)						
llostod (& -									
llostod (f		System P	erformance						
Hookod /f' -									
пестеа (те	ld, lab, third party	, grab sample, au	to-composite,	etc.)					
TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs			
270	19	4	not tested	not tested	not tested	not tested			
3	0	n/d	not tested	not tested	not tested	not tested			
98	>99	>99%	not tested	not tested	not tested	not tested			
	Total Metals		Г	issolved Met	als				
Cu		Zn							
	not tested	not tested	0.757	0.543	0.95				
tested				0.0.0					
tested	not tested	not tested	0.0552	0.1	0.185				
	not tested not tested	not tested not tested	0.0552 93	0.1 81	0.185 80				
tested		t		_					
tested tested	not tested	not tested	93	81	80	CDAUL			
tested tested	not tested TPH - Motor Oil	not tested Oil & grease	93 SVOCs	PCBs	80 Dioxins	CPAHs			
tested tested	not tested TPH - Motor Oil 0.83	not tested Oil & grease not tested	93 SVOCs not tested	PCBs not tested	80 Dioxins not tested	not tested			
tested tested TSS 5.67 8.24	not tested TPH - Motor Oil 0.83 0	not tested Oil & grease not tested not tested	93 SVOCs not tested not tested	PCBs not tested not tested	Dioxins not tested not tested	not tested not tested			
tested tested	not tested TPH - Motor Oil 0.83	not tested Oil & grease not tested	93 SVOCs not tested	PCBs not tested	80 Dioxins not tested	not tested			
tested tested TSS 5.67 8.24	not tested TPH - Motor Oil 0.83 0	not tested Oil & grease not tested not tested	SVOCs not tested not tested not tested	PCBs not tested not tested	Dioxins not tested not tested not tested	not tested not tested			
tested tested TSS 5.67 8.24	not tested TPH - Motor Oil 0.83 0 >99	not tested Oil & grease not tested not tested	SVOCs not tested not tested not tested	PCBs not tested not tested not tested	Dioxins not tested not tested not tested	not tested not tested not tested			
tested tested	not tested TPH - Motor Oil 0.83 0 >99 Total Metals Pb n/d	Oil & grease not tested not tested not tested	SVOCs not tested not tested not tested	PCBs not tested not tested not tested vissolved Met Pb not tested	Dioxins not tested not tested not tested	not tested not tested not tested			
TSS 5.67 8.24 82	not tested TPH - Motor Oil 0.83 0 >99 Total Metals Pb	Oil & grease not tested not tested not tested not tested	SVOCs not tested not tested not tested Cu	PCBs not tested not tested not tested vested not tested not tested pb	Dioxins not tested not tested not tested state not tested	not tested not tested not tested			
TSS 5.67 8.24 82 Cu 0.04	not tested TPH - Motor Oil 0.83 0 >99 Total Metals Pb n/d	not tested Oil & grease not tested not tested not tested zn 0.24	SVOCs not tested not tested not tested Cu not tested	PCBs not tested not tested not tested vissolved Met Pb not tested	Dioxins not tested not tested not tested sals Zn not tested	not tested not tested not tested			
TSS	not tested TPH - Motor Oil 0.83 0 >99 Total Metals Pb n/d n/d	Oil & grease not tested not tested not tested not tested 2n 0.24 n/d	SVOCs not tested not tested not tested Cu not tested not tested not tested	PCBs not tested not tested not tested Pb not tested not tested not tested not tested not tested	Dioxins not tested not tested not tested sals Zn not tested not tested	not tested not tested not tested			
T 2	SS 70 3	SS TPH 70 19 3 0 98 >99 Total Metals	SS	SS TPH Oil & grease SVOCs 70 19 4 not tested 3 0 n/d not tested 98 >99 >99% not tested	SS TPH Oil & grease SVOCs PCBs 70 19 4 not tested not tested 3 0 n/d not tested not tested 98 >99 >99% not tested not tested Total Metals Dissolved Met	the field and laboratory provide performance analysis on the system. Quarter S SS TPH Oil & grease SVOCs PCBs Dioxins 70 19 4 not tested not tested not tested 3 0 n/d not tested not tested not tested 98 >99 >99% not tested not tested not tested Total Metals Dissolved Metals	SS TPH Oil & grease SVOCs PCBs Dioxins CPAHs 70 19 4 not tested not tested not tested 3 0 n/d not tested not tested not tested not tested 98 >99 >99% not tested not tested not tested Total Metals Dissolved Metals		

HERRERA	Mani	ufacturer Tec	hnology Re	port				
Manufacturer:	Bio Clean	Environmental		Contact Name	e:	Greg	Kent	
Name of Technology:	Nutrient Sep	parating Baffle Box	_	Contact Email	l:	gkent@biocleane		-
# of Installations in				Contact Phon		760-43	3-7640	_
Washington:	0 WA	, 4 UT, 3 OR	_	Contact Webs	site:	www.biocleanen	vironmental.net	-
			ent Type/Appli	cation (checl	k all that app	ly)		
	Oil/Water Separation	1	Filtration (media))		Ion exchange column	1	✓ Stormwater
Drain Inlet Insert	Settling		Filtration (fabric)			Reverse osmosis		☐ Groundwate
✓ Below Ground Vault	Hydrodynamic Sepa	ration	Filtration (biofiltr	ation)		Electrocoagulation		■ Wastewater
Above Ground Vault	Floatables Baffle		Filtration (chemic	cally enhanced)		Chemical Treatment		Process wat
			Estima	ted Costs				
Estimated Installation Co	st (unit cost and	construction cost):			low:	10,000	high:	200,000
Estimated Annual O&M C	ost (\$/gallon tre	ated - based on pe	ak treatment flov	v rate):	low:	\$ 0.33	high:	\$ 0.84
			System Hyd	raulics/Desi	gn			
Design Flow Rate (gpm):			low:	148	high:	8,858		
System aboveground foo	tprint (sq ft):		low:	0	high:	0		
Required head loss (ft):			low:	0	high:	0		
Internal or External Bypas	ss:			Internal (Exter	nal in Some Si	tuations)		
			System P	erformance				
Briefly describe how data	were collected (field lah third nar	tv grah samnle a	uto-composite	e etc.)			
		,,, p	-,, 8		-,,			
NJ CAT Full Scale Labrator								
Santa Monica Independent I	rield Data	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	-
Median Influent (mg/L):	366	not tested	4	not tested	not tested	not tested	not tested	1
Median Effluent (mg/L):	48	not tested	n/d	not tested	not tested	not tested	not tested	1
Median Removal (%):	86.8	not tested	>99%	not tested	not tested	not tested	not tested]
				1				
	C:	Total Metals	7		Dissolved Met		Nutrients	
Median Influent (mg/L):	Cu 0.07	Pb not tested	Zn 0.318	Cu not tested	Pb not tested	Zn not tested	not tested	ł
Median Effluent (mg/L):	0.042	not tested	0.222	not tested	not tested	not tested	not tested	1
Median Removal (%):	40	not tested	30.25	not tested	not tested	not tested	not tested	1
								ĺ
Brevard County Stormwater	1	1	1 0110	01/22			en : : :	
Madian Influent (/1)	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	1
Median Influent (mg/L): Median Effluent (mg/L):	16.55 8.63	not tested not tested	not tested not tested	not tested	not tested not tested	not tested not tested	not tested not tested	1
Median Removal (%):	47.9	not tested not tested	not tested	not tested not tested	not tested	not tested not tested	not tested	1
								1
		Total Metals		С	issolved Me	tals	Nutrients]
	Cu	Pb	Zn	Cu	Pb	Zn	TP	
Median Influent (mg/L):	not tested	0.055						
Median Effluent (mg/L): Median Removal (%):	not tested not tested	not tested not tested	not tested not tested	not tested not tested	not tested not tested	not tested not tested	0.0425	
median Kemovai (70):	not tested	not testeu	not testeu	not tested	not tested	not tested	43	l
Brevard County Storwater N	lonitoring - Indiatl	antic]
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs]
Median Influent (mg/L):	32.9	not tested	4					
Median Effluent (mg/L):	7.6	not tested	4					
Median Removal (%):	76.9	not tested	1					

	Total Metals		D	Nutrients		
Cu	Pb	Zn	Cu	Pb	Zn	TP
not tested	not tested	not tested	not tested	not tested	not tested	1.49
not tested	not tested	not tested	not tested	not tested	not tested	0.44
not tested	not tested	not tested	not tested	not tested	not tested	70
	not tested not tested	Cu Pb not tested not tested not tested not tested	Cu Pb Zn not tested not tested not tested not tested not tested not tested	Cu Pb Zn Cu not tested not tested not tested not tested not tested not tested not tested not tested	Cu Pb Zn Cu Pb not tested not tested not tested not tested not tested not tested not tested not tested	Cu Pb Zn Cu Pb Zn not tested not tested not tested not tested not tested not tested not tested not tested not tested not tested

NJ CAT Testing - Tier 1 - 63 Micron Mean Particle Size PSD

İ							
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	varies	not tested	not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	varies	not tested	not tested	not tested	not tested	not tested	not tested
Median Removal (%):	67.3	not tested	not tested	not tested	not tested	not tested	not tested
		Total Metals		D	issolved Met	tals	Nutrients
	Cu	Pb	Zn	Cu	Pb	Zn	TP
Median Influent (mg/L):	not tested	not tested	not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	not tested	not tested	not tested	not tested	not tested	not tested	not tested
Median Removal (%):	not tested	not tested	not tested	not tested	not tested	not tested	not tested
Atlantic Beach Baffle Box Tea:	sting - 5th St						
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs
Median Influent (mg/L):	85	not tested	not tested	not tested	not tested	not tested	not tested
Median Effluent (mg/L):	27	not tested	not tested	not tested	not tested	not tested	not tested
Median Removal (%):	68	not tested	not tested	not tested	not tested	not tested	not tested
		Total Metals		D	issolved Met	tals	Nutrients
	Cu	Pb	Zn	Cu	Pb	Zn	TP
Median Influent (mg/L):	0.017	0.014	0.088	not tested	not tested	not tested	0.31
Median Effluent (mg/L):	0.01	0.0065	0.038	not tested	not tested	not tested	0.21
Median Removal (%):	41	54	57	not tested	not tested	not tested	32

Notes, Comments, Additional References

The Nutrient Separating Baffle Box employees screening, three chambered hydrodynamic spearation and absoptive polymer media for the removal of gross solids, TSS, particulate pollutants and hydrocarbons. To see how the system operates visit:

http://www.biocleanenvironmental.com/video/?path=/content/product/ns_baffle_box/NS_Baffle_Box-Product_Video.flv&w=768&h=576

THE PATENTED SEPARATION AND DRY STATE STORAGE OF GROSS SOLIDS SUCH AS LEAVES AND GRASS CLIPPINGS MINIMIZES NUTRIENT LOADS SEE FOLLOWING ARTICLE http://www.biocleanenvironmental.com/content/product/ns_baffle_box/Brochure%20-%20Leaching%20Article%20-%20NSBB.pdf

Manufacturer:	Kristar En	terprises, Inc.		Contact Na	me:		Michael Kimberlain	
Name of Technology:		k Filter	-	Contact En	nail:		berlain@kristar.com	-
# of Installations in			-	Contact Ph	one:		(800) 579-8819	•
Washington:		15		Contact W	ebsite:	w	ww.kristar.com	•
		Tuest	- out Tune /A		/ · l · · · l · · !!	_		
□ Daymanaut □	1 Oil Mater Se		nent Type/A	-	(спеск ан			Ctormustor
□ Downspout ✓		parar tiori	Filtration (med	lia)		Ion exchange of	column	✓ Stormwater
☐ Drain Inlet Insert	Settling		Filtration (fabri	ic)		Reverse osmos	sis	Groundwater
✓ Below Ground Vault	Hydrodynam	ic Separation	Filtration (biofi	iltration)		Electrocoagula	tion	Wastewater
Above Ground Vault	Floatables Ba	affle	Filtration (cher	mically enhanced	i)	Chemical Treat	tment	Process water
			Est	imated Co	sts			
Estimated Installation Cos	it:	low:	\$10,000	high:	\$200,000			
Estimated Annual O&M C	ost:	low:	\$1,200	high:	\$10,000	_		
			System I	Hydraulics	/Design			
Design Flow Rate (gpm):		low:	12	high:	1,000			
System footprint (sq ft):		low:	10	high:	150			
Required head loss (ft):		low:	1.7	high:	3.5			
Internal or External Bypas	s:	In	ternal					
			Syste	m Perforn	nance			
Breifly describe how data Internal lab testing performed by						•		
							_	
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L):	70	20	20				20	
Median Effluent (mg/L):	11	5	5				5	
Median Removal (%):	82	75	75				75]
		Total Met	als	Di	solved Met	tals		
	Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L):	0.052	0.15	0.25					
Median Effluent (mg/L):	0.02	0.05	0.1					
Median Removal (%):	62	68	61					
		No	tes, Commen	its, Additi	onal Refer	ences		

Manufacturer:		Environment 21, LLC				Contact N	ame:	Dino Pezzimen	ıti		
Name of Technology:		Puri	Storm	-		Contact E	mail:	dino@env2	<u>21.com</u>		
# of Installations in				•		Contact Pl	hone:	585-815-4714			
Washington:	-		0	_		Contact W	/ebsite:	www.env2	<u>1.com</u>		
	_	Tre	atment Ty	pe,	/Application	on (check	all that c	ipply)			
Downspout	✓	Oil/Water Sepa	-		Filtration (medi	•			ange column	V	Stormwater
Drain Inlet Insert	\checkmark	Settling		$\overline{\mathbf{A}}$	Filtration (fabric	c)		Reverse	osmosis		Groundwater
✓ Below Ground Vault		Hydrodynamic	Separation		Filtration (biofil	•		☐ Electroco	oagulation		Wastewater
Above Ground Vault	\checkmark	Floatables Baf	fle		Filtration (chem	,	-d)	_	al Treatment		Process water
	_			_	Estimated	,					
Cationate d Installation C	~ ~ 4.		lavvi	-			ć25 000				
Estimated Installation Control Estimated Annual O&M		+.	low: low:		\$3,000		\$25,000	_			
EStimateu Amiuai Octivi	CUS	t: 	IUW.			ılığıı.	\$10,000				
			Sy	ste	m Hydraul	lics/Desig	gn				
Design Flow Rate (gpm):			low:		0	high:	2,000	_			
System footprint (sq ft):			low:		9	high:		_			
Required head loss (ft):			low:		0	high:	0.5	_			
nternal or External Bypass: Both											
Breifly describe how dat Field studies are not in progre			-			ab sample	, auto-cor	mposite, et	c.)		
			TO 11			61106-	200-	l prostant	CD 111-		
Madian Influent (mg/L)	\dashv	*350	**400	Ui	il & grease	SVOCs **400	PCBs	Dioxins	CPAHs **400		
Median Influent (mg/L): Median Effluent (mg/L):		*250 *175	**400 **80		**400 **80	**400 **80	**400 **80	**400 **80	**400 **80		
Median Removal (%):	\dashv	*80	**80		**80	**80	**80	**80	**80		
, , , , , , , , , , , , , , , , , , ,				<u> </u>				1 1			
			Total Meta	als		Diss	solved Me	etals			
		Cu	Pb		Zn	Cu	Pb	Zn			
Median Influent (mg/L):		***0.08	***0.79		***0.3	NA	NA	NA			
Median Effluent (mg/L):		***0.04	***0.28		***0.06	NA	NA	NA			
Median Removal (%):		***50	***65		***80	NA	NA	NA	ı		
						····	<u> </u>				
*T! - TCC			•		nents, Add		•		····· -f - DC	ماعات	f CO
*The TSS removal efficiency is microns was used.	s aisc) dependent	upon the Parti	.cie s	size Distributio	n (PSD). For	this produc	ct, the assum	ption of a PSI	D witn	а d ₅₀ от 60
**Any oil based removal depe	ends	on the drop	et size and spe	ecific	c gravity of the	oil. For this	product, ac	curate, analy	zed data is v	ınavail	able: therefore a
mean oil droplet size of 100 n ***Testing is not complete fo	nicro	n and a spgr	of 0.89 are use	ed. 1	The removal et						uule, a.e. 2.2.2

Manufacturer:		Environment	tal Filtration, Inc.			Contact N	ame:	Lyle Cle	emenson		
Name of Technology:	Ra	ynfiltr			Contact E	mail:	cei@pco	nline.com			
# of Installations in				_		Contact P	hone:	763-42	25-1167		
Washington:		1 (a	airport)			Contact W	/ebsite:	www.ra	ynfiltr.org		
		T.,,	o estudo est T	-	/Annlianti	010 /-11			-		
□ December				_	/Applicati		all that d	_			Ctamanatan
Downspout		Oil/Water Sep	Jai ai tiori	✓	Filtration (med	a)		☐ Ion exch	nange column	Ш	Stormwater
✓ Drain Inlet Insert	Ш	Settling		✓	Filtration (fabri	c)		Reverse	osmosis		Groundwater
✓ Below Ground Vault		Hydrodynami	ic Separation		Filtration (biofil	tration)		Electroc	oagulation		Wastewater
✓ Above Ground Vault	✓	Floatables Ba	iffle		Filtration (chen	nically enhance	ed)	Chemica	al Treatment		Process water
					Estimated	Costs					
Estimated Installation Co	ost:		low	:	531	high:	554				
Estimated Annual O&M			low		331	high:		_			
			Sı	iste	m Hydrau	lics/Desid	n				
Design Flow Rate (gpm):			low		rryaraar O	high:	900				
System footprint (sq ft):			low		0	_	300	-			
Required head loss (ft):			low			high:		_			
Internal or External Bypa	ass:		.011			6		_			
				C	tom Doufe						
				Sys	stem Perfo	rmance					
Breifly describe how dat	-2 W	ere colect	ad (field la	h th	ird party or	ah camplo	auto-coi	mnosita a	tc)		
breilly describe now dat	.a vv	ere colect	eu (neiu, ia	o, tii	ii u pai ty, gi	ab sample	, auto-coi	iiposite, e	,		
		TSS	TPH	Oi	il & grease	SVOCs	PCBs	Dioxins	CPAHs		
Median Influent (mg/L):											
Median Effluent (mg/L):											
Median Removal (%):											
,								*			
			Total Me	tals		Diss	olved Me	tals			
		Cu	Pb		Zn	Cu	Pb	Zn			
Median Influent (mg/L):											
Median Effluent (mg/L):											
Median Removal (%):											
			Notes Co		nents, Add	itional D	oforonce				
Costs per catch basin			Notes, Co	rrirr	ients, Add	itionai K	ejerence	25			
Costs per catch basin											
<u> </u>											

Manufacturer:	Deep Root Partners, L.P	. Contact Name:	Brenda Guglielmina	
Name of Technology:	Silva Cell	Contact Email:	orenda@deeproot.con	
Technology Category:	Below Ground Vault	Contact Phone:		
Technology Process:		Contact Website:		
# of Installations in Was	hington:	7		
	Treatment Tv	pe/Application (check all t	hat apply)	
✓ Downspout	Oil/Water Separartion	Filtration (media)	Ion exchange column	✓ Stormwater
Drain Inlet Insert	Settling		Reverse osmosis	Groundwater
Rolow Cround Vault	Hydrodynamic Separation	Filtration (fabric)		
Below Ground Vault		Filtration (biofiltration)	☐ Electrocoagulation	Wastewater
Above Ground Vault	Floatables Baffle	Filtration (chemically enhanced)	Chemical Treatment	Process water
		Estimated Costs		
Estimated Installation Co	ost: low	: 4,000-\$5,60 high: 0,000-\$1	4,000	
Estimated Annual O&M		: \$100-\$200 high: \$100-\$2		
		System Hydraulics		
Design Flow Rate (gpm):	: low	: 20"/hour high: 3"/hou	r	
Required head loss (ft):	n,		<u>. </u>	
Internal or External Bypa				
	•	System Performance		
Braifly describe how dat	ta ware colected (field	lab, third party, grab sample	auto composito etc.)	
		e based on research by Davis at U		Hunt at the Universi
lerature search. The water (quality intering values are	based off research by Davis at o	Thiversity of Ivial yland and	riunt at the oniversi
			_	
Parameter:	TSS TP	Dis. Cu Dis. Zn Dis. Co	Dis. Pb TPH	cPAHs PCBs
# of sample:				
Median Influent (mg/L):				
Median Effluent (mg/L):				
% Removal:	80% 68%	90%+ 90%+ 90%+		
	Notes, Cor	nments, Additional Refer	ences	
Prince Georges County 9	Stormwater Manual, Bri	itish Columbia Stormwater Ma	anual. State of Washingt	on Department of
The confidence of the country of	manaa, bi	Ecology		
		01		

Manufacturer: Name of Technology: # of Installations in		FABCO industries Stormbasin/Stormpod				Scott Gorneau Sgorneau@fabco-industries.com					
# of installations in Washington:			<20	_		Contact V		207.831.2795 www.fabco-ine	dustries.com	-	
		Tre	eatment Ty	vpe.	/Applicati	on (check	all that	apply)			
✓ Downspout		Oil/Water Sep	-	,co, √				_	nange column	✓ Sto	ormwater
✓ Drain Inlet Insert	V	Settling			Filtration (fabric			_	osmosis	□ Gro	oundwater
☐ Below Ground Vault			ic Separation		Filtration (biofil	•			oagulation		stewater
✓ Above Ground Vault		Floatables Ba	affle		Filtration (chem	•	~d)		al Treatment		cess water
Above Glouna vadit	<u> </u>						÷a)		II II Catillois		
					Estimated						
Estimated Installation C			low:		750	high:		_			
Estimated Annual O&M	Cos	t:	low:	_	200	high:	800				
			Sy	ste	m Hydraul	-					
Design Flow Rate (gpm)			low:	·	50	high:		_			
System footprint (sq ft)			low:		4	high:		_			
Required head loss (ft):			low:		1.25	high:	2.5	_			
Internal or External Byp	ass:			both							
				Sys	stem Perfo	rmance					
= 10 1	_							••			
FABCO stormbasin/stormpoo									_	Lad aroto	
consisted of barious method		uuiiig gras, (1010, 3em auc		- Single evene		- 501111/103				
		TSS	TPH	Oi	il & grease	SVOCs	PCBs	Dioxins	CPAHs	Total P	Total N
Median Influent (mg/L)	:	111.9			59.5					0.57	4
Median Effluent (mg/L)	:	2.7			<5					0.3	1.5
Median Removal (%):		97.8		<u> </u>	>90	<u> </u>	<u> </u>		<u> </u>	47	63
	ı		Total Mai	hala.		Dia	anhand NA	atala .		5	
		Cu	Total Met	lais	Zn	Cu	solved Me	Zn	ECOLI	Bacteria Fecal	Enter
Median Influent (mg/L)	:	Cu	0.018	\vdash	0.335	Cu	1.5		1550	1600	430
Median Effluent (mg/L)	_		0.0049	\vdash	0.175			+	270	430	230
Median Removal (%):			73	\vdash	48			1	83	73	47
			<u> </u>							·	
					nents, Add						
FABCO was awarded a comp											
long island, ny. Since 2009 FA 110 um. Hydrocarbons/oil&	4RCO	was installe	.d over 2000 str			-		-			
	aroac	0. >80% Dh		10/2 NI	itrogon \100/				· rotrofit dov		
Ifacilities and is considered a	-		nosphorus: >50		_			asın is a grea:	t retrofit dev	rice for ind	
facilities and is considered a	-		nosphorus: >50		_			iasin is a grea	t retrofit de\	rice for ind	
facilities and is considered a	-		nosphorus: >50		_			oasin is a grea	t retrofit dev	rice for ind	
facilities and is considered a	-		nosphorus: >50		_			iasin is a grea	t retrofit de\	rice for ind	
facilities and is considered a	-		nosphorus: >50		_			iasin is a grea	t retrofit dev	rice for ind	
facilities and is considered a	-		nosphorus: >50		_			iasin is a grea:	t retrofit dev	rice for ind	
facilities and is considered a	-		nosphorus: >50		_			iasin is a grea:	t retrofit dev	nce for ma	

Manufacturer:	Imbrium	n Systems	_	Contact N	ame:	Justin Arno	tt	_	
Name of Technology:	Storm	nceptor	_	Contact E	mail:	<u>Jarnott@ImbriumSystems.com</u>			
Technology Category:	Below Gr	ound Vault	_	Contact P	hone:	(403) 389-9	9593	_	
Technology Process:	Sedim	entation	_	Contact W	/ebsite:	www.imbriums	systems.com	_	
# of Installations in Was	hington:	51	0+						
	Trea	itment Ty	pe/Applic	ation (ch	eck all th	at apply)			
Downspout	✓ Oil/Water S	Separartion	Filtration	(media)		On excha	ange column	✓ Storm	nwater
✓ Drain Inlet Insert	✓ Settling		Filtration	(fabric)		Reverse	osmosis	Grou	ndwater
■ Below Ground Vault	✓ Hydrodyna	mic Separation		(biofiltration)		☐ Electroco	agulation		ewater
Above Ground Vault	Floatables	Baffle	_	(chemically e	nhanced)		Treatment		ess water
			 Estimat	ed Costs					
Fatimeted Installation 6		la							
Estimated Installation C		low			\$15,000	-			
Estimated Annual O&M	Cost:	low	: \$500	high:	\$5,000	-			
			System F	lydraulic	S				
Design Flow Rate (gpm)	:	low	:0	high:	11000	_			
Required head loss (ft):	w.	0.	22						
Internal or External Byp	ass:	Inte	rnal						
			System Pe	rforman	се				
Breifly describe how da The data detailed below is									
studies were conducted 3r	u party with t	John automa	itic and grap	sampiers. ii	ndividual (e	est reports a	re availabl	е ироптец	uest.
Parameter:	TSS	TP	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pb	ТРН	cPAHs	PCBs
# of sample:	57	38	Dis. Cu	DI3. ZII	Dis. Cu	טוז. דט	15	СРАПЗ	PCDS
Median Influent (mg/L):	159	0.275					29		
Median Effluent (mg/L):	59	0.175					4		
% Removal:	53	21.8	27.5	35.3		41.8	73		
		Notes, Cor	nments, A	dditiona	l Refere	nces			
Despite the above average	s, the Stormo	eptor syster	n, when sized	d with PCSV	VMM for S	tormceptor	has a 0.94	correlation	(r-
squared regression value)	-							-	
confidently and accurately									D are
taken into account. Furthe									
performance at flow rates	•								OE GULD
are merely a hydraulic mai	ker within th	e system tha	at indicates w	hen the un	it begins to	inhibit scou	ır from the	e unit.	
1									

Manufacturer:		struction Product	S	Contact N	amo.	Sean	Darcy	
Name of Technology:	-	ilter - ZPG	_	Contact E		darcys@conte		
# of Installations in			<u> </u>	Contact Pl		503-25		
Washington:	>	500		Contact W	ebsite:	contech	-cpi.com	
	Tre	eatment 1	Type/Applicati	ion (check	c all that c	(vlaar		
✓ Downspout [Oil/Water Sep		✓ Filtration (med			_	ange column	✓ Stormwater
Drain Inlet Insert	✓ Settling		Filtration (fabri	c)		Reverse	osmosis	Groundwater
✓ Below Ground Vault	Hydrodynami	c Separation	Filtration (biofil				agulation	☐ Wastewater
Ξ.	✓ Floatables Ba	ffle	Filtration (chen		ed)		I Treatment	Process water
		_	Estimated	Costs				
Estimated Installation Co Estimated Annual O&M (•		iction cost):		low:		high: _	\$2.5 M
Estimated Annual O&IVI C	.ost (\$/gailor	i treated):			low:	0.00008	high:_	0.00024
		S	ystem Hydrau	lics/Desi	gn			
Design Flow Rate (gpm):			low:	2	high:	44900		
System aboveground foo	tprint (sq ft):		low:	8	high:			
Required head loss (ft):			low:	1.8	high:	12		
Internal or External Bypa	ss:	Both	n available					
			System Perfe	ormance				
Briefly describe how data								
a) Stormwater Management St			•		•	, ,	_	• •
composite samples; b) Milwau weighted, peer reviewed, com					-	-		
StormFilter (2008): field, third	•		omon onla orban	Stormwater	recimology	LValuation 5	torriwater ivi	unugement
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L):	83						0.12	
Median Effluent (mg/L):	23						0.062	
Median Removal (%):	82						42	
		Total Me	tals	Disc	olved Me	tals		
	Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L):	0.0425	0.12	0.225	0.00464		0.0599		
	0.0225	0.0435	0.12767	0.00422		0.0532		
Median Effluent (mg/L):	0.0335	0.0433	0.12767	0.00423				
Median Effluent (mg/L): Median Removal (%):	47	24	62	11		15		
,						+ +		
, 0, ,		24		11	eference	15		
Median Removal (%): TSS reference a; Metals referen	47	Notes, Co	62 omments, Add d. cPAHs used Chry	11 ditional R //sene as the	parameter a	15 2S as it was the i		
Median Removal (%):	47	Notes, Co	62 omments, Add d. cPAHs used Chry	11 ditional R //sene as the	parameter a	15 2S as it was the i		
Median Removal (%): TSS reference a; Metals referen	47	Notes, Co	62 omments, Add d. cPAHs used Chry	11 ditional R //sene as the	parameter a	15 2S as it was the i		
Median Removal (%): TSS reference a; Metals referen	47	Notes, Co	62 omments, Add d. cPAHs used Chry	11 ditional R //sene as the	parameter a	15 2S as it was the i		
Median Removal (%): TSS reference a; Metals referen	47	Notes, Co	62 omments, Add d. cPAHs used Chry	11 ditional R //sene as the	parameter a	15 2S as it was the i		
Median Removal (%): TSS reference a; Metals referen	47	Notes, Co	62 omments, Add d. cPAHs used Chry	11 ditional R //sene as the	parameter a	15		
Median Removal (%): TSS reference a; Metals referen	47	Notes, Co	62 omments, Add d. cPAHs used Chry	11 ditional R //sene as the	parameter a	15		

Manufacturer: Fabco Industries Name of Technology: Stormsafe-Helix # of Installations in Washington: none			-		Contact Na Contact Er Contact Pl Contact W	nail: none:	Scott Gornean Sgorneau@fabco-industries.com 207-831-2795 www.fabco-industries.com			
	Tr	eatment Ty	ne/	'Applicati	on (check	all that a	(עוממו			
Downspout	_	-	_	Filtration (medi			_	nange column	Sto	rmwater
Drain Inlet Insert	Settling		▽	Filtration (fabri	c)		☐ Reverse	osmosis	☐ Gro	undwater
✓ Below Ground Vault	Hydrodynam	nic Separation		Filtration (biofil	-		☐ Electroc	oagulation	□ Wa	stewater
Above Ground Vault	Floatables Ba	affle	_	Filtration (chen	-	d)	_	al Treatment		cess water
			E	stimated	Costs					
Estimated Installation Cos Estimated Annual O&M C		low: low:		20000	high: high:	60000	-			
		Sy	sten	n Hydraul	_	ın				
Design Flow Rate (gpm):		low:		3	high:	9	_			
System footprint (sq ft):		low:		160	high:	250	_			
Required head loss (ft): Internal or External Bypas	s:	low:	 both	0	high:	3	=			
Breifly describe how data We have conducted lab and fiel			, thi		ab sample		_	_		
treatment plant, treating 10 ac							. ,			
	TSS	TPH	Oil	& grease	SVOCs	PCBs	Dioxins	CPAHs		
Median Influent (mg/L):										
Median Effluent (mg/L):										
Median Removal (%):										
		Total Mat	olo		Dice	olved Me	tala	Pote	rio	_
	Cu	Total Met	ais T	Zn	Cu	Pb	Zn	Bate Total coli	Fecal	7
Median Influent (mg/L):	Cu	FU		211	Cu	FU	211		recai	-
64141146114 (6/ =/.		<u> </u>	1				1	4388	3948	
Median Effluent (mg/L):								4388 1360	3948 934	-
Median Effluent (mg/L): Median Removal (%):								1360	934	-
Median Effluent (mg/L): Median Removal (%):										
		Notes, Co	mm	ents. Add	itional Re	eference	25	1360	934	<u></u>

Manufacturer:		Kristar En	terprises, Inc.	_		Contact Na	ıme:		M	ichael Kimberlain	_	
Name of Technology:	SwaleGa	ard Pre-filter	_		Contact En	nail:	_	mkimbe	erlain@kristar.com	_		
# of Installations in						Contact Ph	one:	_	((800) 579-8819	_	
Washington:			2	_		Contact W	ebsite:	_	ww	w.kristar.com	_	
			Treatn	nent Ty	pe/App	olication	(check a	ll the	at apply)			
Downspout	\checkmark	Oil/Water Sep	parartion	Filtra	ition (media	a)			Ion exchange	column	✓	Stormwater
✓ Drain Inlet Insert		Settling		✓ Filtra	ition (fabric	:)			Reverse osmo	osis		Groundwater
Below Ground Vault		Hydrodynami	c Separation	Filtra	ition (biofilt	ration)			Electrocoagul	ation		Wastewater
Above Ground Vault	✓	Floatables Ba	iffle	Filtra	ition (chem	ically enhanced	i)		Chemical Trea	atment		Process water
					Estin	nated Cos	its					
Estimated Installation C	Cost	:	low:	\$4,5	500	high:	\$4,500					
Estimated Annual O&M	l Co	st:	low			high:	\$300					
				Sys	tem Hy	ydraulics,	/Design)				
Design Flow Rate (gpm)):		low	-	00	high:	800					
System footprint (sq ft)	:		low:		1	high:	16					
Required head loss (ft):			low	:()	high:	0.5					
Internal or External Byp	ass	:	Ir	iternal								
					System	Perform	ance					
Breifly describe how da												
Lab - UCLA, Univeristy of Hav	vaii,	City of Auckl	and, NZ, CSUS	- OWP. Fi	ield Study	- University	of Hawaii a	and C	ity of Auckla	nd		
		TSS	TPH	Oil & g	grease	SVOCs	PCBs		Dioxins	CPAHs	7	
Median Influent (mg/L)	:	100	35	3	5					35	1	
Median Effluent (mg/L)	:	20	7	7	7							
Median Removal (%):		80	80	8	0					7]	
			Total Met	tals		Dis	solved M	leta	ls			
		Cu	Pb	Z	n	Cu	Pb	1	Zn			
Median Influent (mg/L)	:			1								
Median Effluent (mg/L)				(ĵ							
Median Removal (%):				6	0							
			Not	es, Cor	nments	s, Additio	nai Ref	erei	nces			

Manufacturer:		Kristar Ente	erprises, Inc.		Contact Na	me:	Mich	ael Kimberlain		
Name of Technology:		TreePoo	l Biofilter	_	Contact Em	ail:	mkimberl	ain@kristar.com		
# of Installations in	_			_	Contact Ph	one:	(80	0) 579-8819		
Washington:	_		0	_	Contact We	ebsite:	www	.kristar.com	_	
			Treati	ment Type/A	pplication	(check all t	hat apply)			
Downspout	√ (Oil/Water Sepa	arartion	Filtration (med	lia)		Ion exchange colum	nn	✓	Stormwater
Drain Inlet Insert	✓	Settling		Filtration (fabr	ic)		Reverse osmosis			Groundwater
✓ Below Ground Vault		Hydrodynamic	Separation	✓ Filtration (biofi	iltration)		Electrocoagulation			Wastewater
✓ Above Ground Vault	✓ I	Floatables Baf	fle	Filtration (cher	mically enhanced) 🗆	Chemical Treatmen	t		Process water
				Est	imated Co	sts				
Estimated Installation C	ost:		low:	\$10,000	high:	\$50,000				
Estimated Annual O&M	Cos	t:	low:	\$400	high:	\$750	_			
				System	Hydraulics	/Design				
Design Flow Rate (gpm):	:		low:	16	high:	72	<u></u>			
System footprint (sq ft):			low:	24	high:	84				
Required head loss (ft):			low:	. 0	high:	0.5				
Internal or External Byp	ass:	_	In	nternal	-					
				Syste	m Perforn	nance				
Breifly describe how dat Internal Hydraulic testing only				· · ·	<u> </u>	•	<u> </u>			
				Lawa			1 1			
Madian Influent (m = /L)	+	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	+	
Median Influent (mg/L): Median Effluent (mg/L):		TBD TBD	TBD TBD	TBD TBD			+ +	TBD TBD	+	
Median Removal (%):		TBD	TBD	TBD				TBD	+	
incular removal (70).		100	100	100				100		
			Total Met	tals	Dis	solved Met	als			
-		Cu	Pb	Zn	Cu	Pb	Zn			
Median Influent (mg/L):		TBD	TBD	TBD	TBD	TBD	TBD			
Median Effluent (mg/L):	-	TBD	TBD	TBD	TBD	TBD	TBD			
Median Removal (%):		TBD	TBD	TBD	TBD	TBD	TBD			
			No	tes, Commer	nts, Additio	onal Refer	ences			
					-					

Manufacturer:		i Environmentai icturing)		Contact N	ame:	Marcel Sloar	ne		
Name of Technology:		p Inlet Insert	_	Contact E		marcel@remfil	ters.com	-	
Technology Category:			_	Contact P	hone:	(925) 858-80		=	
Technology Process:			_	Contact W	/ebsite:	remfilters.co		-	
# of Installations in Wa	shington:	Estimat	- ed: 100					_	
	Tred	itment Ty	pe/Appli	cation (c	heck all ti	nat apply)			
Downspout	Oil/Water S	eparartion	✓ Filtration	(media)		☐ Ion exchar	nge column	✓ Storm	water
✓ Drain Inlet Insert	Settling		✓ Filtration	(fabric)		Reverse os	smosis	Groun	dwater
☐ Below Ground Vault	Hydrodyna	mic Separation	Filtration	(biofiltration)		Electrocoa	gulation	☐ Waste	water
Above Ground Vault	Floatables I	Baffle		(chemically e	nhanced)	Chemical 1	reatment		ss water
			Estima	ted Costs	5				
Fatimated Installation (Cont.	la	ć100	hiah.	ć700				
Estimated Installation (Estimated Annual O&M		low		high:	\$700	_			
Estimated Annual O&IV	i Cost:	low	\$40	high:	\$120	_			
			System	Hydrauli	CS				
Design Flow Rate (gpm):	low	-	high:					
Required head loss (ft):		.5	"			_			
Internal or External Byp	oass:	nternal 721	gpm to 23,0	00 gpm					
			<u> </u>			-			
			System P	erjormai	ice				
Proifly describe how de	ta wara sala	stad /fiald	lab third m	ortu arab	comple	uito compo	ito oto l		
Breifly describe how da Treatment flow rates will								n tha siza ar	nd chang
of the specific catch basin			_		_				
of the specific catch basin	. See attached	treatment	now rate ma	tilx for the	illost colli	non mer can	iluge allu i	neula comi	gurations.
Parameter:	TSS	TP	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pb	TPH	cPAHs	PCBs
# of sample:									
Median Influent (mg/L):									
Median Effluent (mg/L):									
% Removal:									
		Votes, Co	mments, A	Addition	al Refere	ences			
	,								
See attached University of		ine Testing	Protocols an	d Results					
See attached University of		ine Testing	Protocols an	d Results					
See attached University of		ine Testing	Protocols an	d Results					
See attached University of		ine Testing	Protocols an	d Results					
See attached University of		ine Testing	Protocols an	d Results					
See attached University of		ine Testing	Protocols an	d Results					
See attached University of		ine Testing	Protocols an	d Results					
See attached University of		ine Testing	Protocols an	d Results					
See attached University of		ine Testing	Protocols an	d Results					
See attached University of		ine Testing	Protocols an	d Results					

Manufacturer: Name of Technology:	-		Industries	_		Contact N		Jonathan Tha	cher btechindustrie	es com	
# of Installations in	-	Oltra O	iban riitei	_		Contact P		(480) 874-400		5.00111	
Washington:						Contact V		abtechindustr			
		T			/A!:t	· / 1 /		-			
Downspout		Oil/Water Sep		_	/Applicati		all that a	_	ango column	V	Stormwater
✓ Drain Inlet Insert		Settling	aration		Filtration (med			_	nange column		
		Hydrodynami	c Sonaration		Filtration (fabr	•			osmosis		Groundwater
Below Ground Vault				Ш	Filtration (biofi	iltration)			coagulation		Wastewater
Above Ground Vault	Ш	Floatables Ba	ffle		Filtration (cher	mically enhance	ed)	Chemic	al Treatment	✓	Process water
					Estimated	Costs				-	
Estimated Installation C Estimated Annual O&N				uctio	n cost):		low low		high:	\$1,70	00
			S	yste	m Hydrau	lics/Desig	gn				
Design Flow Rate (gpm)					low:	190	high	500	_		
System aboveground for		rint (sq ft):			low:	0	high		-		
Required head loss (ft):					low:	0.5	high	1.5	-		
Internal or External Byp	ass:		Inte	rnal B	ypass	_					
				Sys	stem Perf	ormance					
Briefly describe how da											
Primary analysis of AbTech II						-		-	-		-
established test protocols de evaluate the effectiviness of				_	•			•		•	•
the state regulatory body, in		-	-			cu. The testi	ing inicitious	asca by the	mamerpantic	.5 WCIC	governed by
		TSS	TPH	0	il & grease	SVOCs	PCBs	Dioxins	CPAHs		
Median Influent (mg/L)			>100		>100	180			>100		
Median Effluent (mg/L)	:		<10		<10	>4.4			>10		
Median Removal (%):		*80%	90%		85%	**40%			**60%		
	1		Total Me	talc		Disc	solved Me	stale.	Ī		
	}	Cu	Pb	lais	Zn	Cu	Pb	Zn	<u> </u> 		
Median Influent (mg/L)	:	Cu	1.0	+		Cu		211	<u> </u> 		
Median Effluent (mg/L)	-			1					l		
Median Removal (%):	-										
		•		-			•	-			
			Notes, Co	omn	nents, Add	litional R	eference	?5			
* Data based on Particle Size	Distr	ribution (PSD) and not on	mg/L.	Samples test	ed were eval	uated using	g a medium s	and in the 0.3	355-0.3	300 mm range.
**Reduction of soluble disso		•									
Filtration of dissolved phase			_				-				•
hydrocarbons. Bench scale t standard.	estin	g can be con	ducted on fie	eid San	npies to estab	iish viability	in a specific	environmen	t or to meet a	ı specii	nc discharge
Stariaara.											
Total Metals Removal: Based	d on T	SS testing th	e UUF has th	e abili	ty to physicall	y separate To	otal Metals	from the wat	er column, b	ut AbT	ech products
have no Chemical or Biologic	al ex	change durir	ng the filtration	on of T	otal Metals.						

Manufacturer:	Environg	nent 21, LLC		Contact Na	ame.	Dino Pezzimen	+ :	
Name of Technology:		Screen		Contact IV		dino@env2		
# of Installations in	01113	creen		Contact Ph		585-815-4714	21.00111	
Washington:		0		Contact W		www.env2	1.com	
			/- U -					
			e/Applicati		all that a	_	_	- .
☐ Downspout ✓		arartion L	Filtration (medi	ia)		☐ Ion excn	ange column	✓ Stormwater
☐ Drain Inlet Insert ✓	Settling	[Filtration (fabri	ic)		Reverse	osmosis	Groundwater
✓ Below Ground Vault] Hydrodynamic	: Separation	Filtration (biofil	Itration)		Electroco	oagulation	Wastewater
Above Ground Vault	Floatables Baf	fle [Filtration (chen	nically enhance	ed)	Chemica	l Treatment	Process water
			Estimated	Costs				
Estimated Installation Cost	:	low:	\$2,000	high:	\$15,000			
Estimated Annual O&M Co		low:	0	high:		- -		
		Syst	tem Hydrau	lics/Desig				
Design Flow Rate (gpm):		low:	0	high:				
System footprint (sq ft):		low:	20	high:	135	_		
Required head loss (ft):		low:	0	high:	0.5	- =		
Internal or External Bypass	-	Во	oth	-		=		
		5	System Perfo	rmance				
Field studies are not in progress								
	TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Influent (mg/L):		**400	**400	**400	**400	**400	**400	İ
Median Effluent (mg/L):	*250 *175	**150	**150	**150	**150	**150	**150	İ
Median Removal (%):	*80	**62.5	**62.5	**62.5	**62.5	**62.5	**62.5	İ
		Total Metal	is	Diss	solved Me	tals		
	Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L):	***0.08	***0.79	***0.3	NA	NA	NA		
Median Effluent (mg/L):	***0.06	***0.56	***0.18	NA	NA	NA		
Madian Damard (0/).	***20	***27	***40	NA	NA	NA		
Median Removal (%):								
wiedian Removai (%):					•			
*The TSS removal efficiency is al:			nments, Add					

Manufacturer:	Environn	nent 21, LLC	_	Contact N	ame:	Dino Pezzimen	ti	
Name of Technology:	Uni	Storm	_	Contact E		dino@env	<u>21.com</u>	
# of Installations in				Contact P		585-815-4714		
Washington:		0	_	Contact V	/ebsite:	www.env2	<u>1.com</u>	
	Tre	atment T	ype/Applicati	on (check	all that a	pply)		
Downspout	✓ Oil/Water Sep	arartion	Filtration (med	ia)		☐ Ion exch	ange column	✓ Stormwater
Drain Inlet Insert	✓ Settling		Filtration (fabri	c)		Reverse	osmosis	Groundwater
✓ Below Ground Vault	Hydrodynami	c Separation	Filtration (biofi	tration)		Electroco	oagulation	Wastewater
Above Ground Vault	✓ Floatables Ba	ffle	Filtration (cher	nically enhance	ed)	Chemica	l Treatment	Process water
			Estimated	Costs				
Estimated Installation Co	st:	low	\$2,000	high:	\$15,000	_		
Estimated Annual O&M (Cost:	low	:0	high:	\$2,000	=		
		Sy	stem Hydrau	lics/Desi	gn			
Design Flow Rate (gpm):		low	:0	high:	15,700	=		
System footprint (sq ft):		low		high:	135	=		
Required head loss (ft):		low		high:	0.5	_		
Internal or External Bypa	ss:		NA					
Breifly describe how data Field studies are not in progre				ab sample	, auto-cor	nposite, et	c.)	
			T 011 0	0.100		I		
Median Influent (mg/L):	*350	**400	Oil & grease **400	SVOCs **400	PCBs **400	Dioxins **400	**400	
Median Effluent (mg/L):	*250 *175	**400 **150	**150	**400 **150	**150	**150	**150	
Median Removal (%):	*80	**62.5	**62.5	**62.5	**62.5	**62.5	**62.5	
(*-)								
		Total Me	tals	Dis	solved Me	tals		
	Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L):	***0.08	***0.79	***0.3	NA	NA	NA		
Median Effluent (mg/L):	***0.06	***0.56	***0.18	NA	NA	NA		
Median Removal (%):	***20	***27	***40	NA	NA	NA		
		Notes, Co	omments, Add	litional R	eference	s		
*The TSS removal efficiency is	also dependent	upon the Par	ticle Size Distributio	n (PSD). Foi	this produc	t, the assum	ption of a PSI	D with a d ₅₀ of 150
microns was used.								
**Any oil based removal depe	-	-			-	-	zed data is u	navailable; therefore a
mean oil droplet size of 100 m ***Testing is not complete for				tticiencies ai	e estimated	•		
resume is not complete for	metais, therefo	ine, mese valu	ics are estimated.					

Manufacturer:	Hydro Internation	nal	Contact Na	me:	Fred Kraeke			
Name of Technology:	Up-Flo Filter®		Contact Em	ail:	fkraekel@hil-te	ch.com		
Technology Category:	Below Ground Va	ult	Contact Pho	one:	207-321-373	33	_	
Technology Process:	Filter		Contact We	bsite:	www.hydro-int	ernational.biz		
# of Installations in Wash	ington:		-				_	
		nt Type/App	olication (check all	that apply)			
Downspout	Oil/Water Separartion	Filtration	n (media)		☐ Ion exchar	nge column	√ Storm	water
Drain Inlet Insert	✓ Settling	Filtration	n (fabric)		Reverse os	smosis	Groun	dwater
✓ Below Ground Vault	Hydrodynamic Separa	ation	n (biofiltration)		Electrocoa	gulation	☐ Waste	water
Above Ground Vault	✓ Floatables Baffle	Filtration	n (chemically enh	anced)	Chemical	Treatment	_	ss water
		Estin	nated Cost	'S				
Estimated Installation Co	st: I	ow:	high:					
Estimated Annual O&M C		ow:	high:		-			
		Syster	m Hydraul	ics				
Design Flow Rate (gpm):	ı	ow:	high:					
Required head loss (ft):					=			
Internal or External Bypa	ss:		_					
		System	Performa	nco				
Briefly describe how data	were collected (fi	-	_		auto-compo	site, etc.)		
	•	Contact Hydro				•		
Parameter:	TSS TP	Dis. Cu	Dis. Zn	Dis. Cd	Dis. Pb	ТРН	cPAHs	PCBs
# of sample:								
Median Influent (mg/L):								
Median Effluent (mg/L):								
% Removal:								
		s, Comments						
The Up-Flo Filter® is a a h	-		_		-			
pollutants like nutrients a	•	. •				-		•
is housed in a 4-ft diameter						_		
as a complete system. Th		-	-		_	-	_	
filtration of stormwater fl								
installations. Pollutant re								
metals (iron, chromium, c					-	-	-)
International at 1-800-848	8-2706 or visit the	website www	. hydro-inter	national	l.biz for mor	e information		

· · . · . · . · . · . · . · . · . ·	
Pacific Northwest: >25	
Treatment Type/Application (check all that apply)	
Downspout	
Downspout	
Drain Inlet Insert	Stormwater
Below Ground Vault	-
Above Ground Vault Floatables Baffle Filtration (chemically enhanced) Chemical Treatment	Groundwater
Estimated Costs Estimated Installation Cost (unit cost and construction cost): low: \$10k high: \$2 Estimated Annual O&M Cost (\$/gallon treated): low: 0.0001 high: 0.00 System Hydraulics/Design Design Flow Rate (gpm): low: 4 high: 600 System aboveground footprint (sq ft): low: 3 high: 6 Internal or External Bypass: Both available System Performance Briefly describe how data were collected (field, lab, third party, grab sample, auto-composite, etc.) TSS TPH Oil & grease SVOCS PCBs Dioxins CPAHs Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Total Metals Dissolved Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	Wastewater
Estimated Installation Cost (unit cost and construction cost): Iow: \$10k high: \$22 \$25 \$2	Process water
System Hydraulics/Design Design Flow Rate (gpm): System aboveground footprint (sq ft): Required head loss (ft): Internal or External Bypass: System Performance Briefly describe how data were collected (field, lab, third party, grab sample, auto-composite, etc.) TSS TPH Oil & grease SVOCs PCBs Dioxins CPAHs Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Total Metals Dissolved Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L): Median Influent (mg/L): Total Metals Dissolved Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	
System Hydraulics/Design Design Flow Rate (gpm): Iow: 4 high: 600	250K
Design Flow Rate (gpm):	0003
Design Flow Rate (gpm):	
System aboveground footprint (sq ft):	
Required head loss (ft): low: 3 high: 6 Internal or External Bypass: Both available System Performance Briefly describe how data were collected (field, lab, third party, grab sample, auto-composite, etc.) TSS TPH Oil & grease SVOCs PCBs Dioxins CPAHs Median Influent (mg/L): Dissolved Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L): Dissolved Metals Cu Pb Zn Median Influent (mg/L): Dissolved	
Briefly describe how data were collected (field, lab, third party, grab sample, auto-composite, etc.) TSS TPH Oil & grease SVOCs PCBs Dioxins CPAHs Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Total Metals Dissolved Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	
System Performance Briefly describe how data were collected (field, lab, third party, grab sample, auto-composite, etc.) TSS TPH Oil & grease SVOCs PCBs Dioxins CPAHs Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Total Metals Dissolved Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	
Briefly describe how data were collected (field, lab, third party, grab sample, auto-composite, etc.) TSS TPH Oil & grease SVOCs PCBs Dioxins CPAHs Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Total Metals Dissolved Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	
TSS TPH Oil & grease SVOCs PCBs Dioxins CPAHs Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Total Metals Dissolved Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	
Median Influent (mg/L): Median Effluent (mg/L): Median Removal (%): Total Metals Dissolved Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	
Median Effluent (mg/L):	
Median Removal (%): Total Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	
Total Metals Dissolved Metals Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	
Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	
Cu Pb Zn Cu Pb Zn Median Influent (mg/L):	
Median Influent (mg/L):	
Median Removal (%):	
Median Nemovai (70).	
Notes, Comments, Additional References	
1	

NA				Contact N					
Manufacturer:	-	ent 21, LLC		Contact N		Dino Pezzimen			
Name of Technology: # of Installations in	V	2B1		Contact Er		dino@env	21.com		
Washington:		0		Contact W		585-815-4714 www.env2	1 com		
wasiiiigtoii.	-	0				,-	1.0011		
_			pe/Applicati	on (check	all that a	pply)			
☐ Downspout ☐	Oil/Water Sepa	arartion	Filtration (med	ia)		☐ Ion exch	ange column	✓	Stormwater
☐ Drain Inlet Insert	Settling		Filtration (fabri	c)		Reverse	osmosis		Groundwater
✓ Below Ground Vault] Hydrodynamic	Separation	Filtration (biofil	tration)		Electroco	oagulation		Wastewater
Above Ground Vault	Floatables Baf	fle	Filtration (chen	nically enhance	ed)	Chemica	l Treatment		Process water
			Estimated	Costs					
Estimated Installation Cost	:	low:	\$2,000	high:	\$15,000				
Estimated Annual O&M Co		low:	0	high:		-			
		•				=			
			stem Hydrau	_					
Design Flow Rate (gpm):		low:	0	high:	63,000	_			
System footprint (sq ft): Required head loss (ft):		low:	20 0	high:	800	-			
Internal or External Bypass			Soth	high:	0.5	_			
	-			•					
	TSS	ТРН	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs		
Median Influent (mg/L):	*250	**400	**400	**400	**400	**400	**400		
Median Effluent (mg/L):	*175	**150	**150	**150	**150	**150	**150		
Median Removal (%):	*80	**62.5	**62.5	**62.5	**62.5	**62.5	**62.5		
		T-+- D4-+-	-1-	D:	l B.4 -	4-1-			
	Cu	Total Meta Pb	Zn	Cu	olved Me Pb	Zn			
Median Influent (mg/L):	***0.08	***0.79	***0.3	NA	NA NA	NA NA			
Median Effluent (mg/L):	***0.05	***0.35	***0.09	NA	NA	NA			
Median Removal (%):	***40	***55	***70	NA	NA	NA			
						1			
		Notes, Cor	nments, Add	itional R	eference	s			
*The TSS removal efficiency is al microns was used. **Any oil based removal dependence mean oil droplet size of 100 mici ***Testing is not complete for n	so dependent Is on the dropl on and a spgr	et size and spe of 0.89 are use	cle Size Distribution cle Size Distribution	on (PSD). For	this product, ac	t, the assum curate, analy			

Manufacturer:			Inc.	-	Contact N			n Darcy	
Name of Technology: # of Installations in	-	Vor	rtClarex	_	Contact El		darcys@contec	<u>ch-cpi.com</u> 258-3105	
Pacific Northwest:			>25		Contact W			ch-cpi.com	
	•	7	roatmont	 Type/Applica	tion (sho	al all that	annlu)		
Downspout	V	Oil/Water Sep		Filtration (med		ık an ınaı	_	ange column	✓ Stormwater
☐ Drain Inlet Insert		Settling		Filtration (fabri			Reverse	_	Groundwater
✓ Below Ground Vault		Hydrodynam	ic Separation	Filtration (biofi				oagulation	Wastewater
☐ Above Ground Vault		Floatables Ba		Filtration (chen		od)		ıl Treatment	Process water
Above dibdild vault						:u)			110cc33 water
				Estimate	d Costs				
Estimated Installation (Cost	(unit cost	and constru	ction cost):		low:	\$10K	high:	\$300K
Estimated Annual O&N	l Cos	t (\$/galloı	n treated):			low:	0.00008	high:	0.001
				System Hydra	ulics/Des	ian			
Design Flow Rate (gpm)):		•	low:	100	high:	2000		
System aboveground for		rint (sq ft):	;	low:	100	high:			
Required head loss (ft):	-	(-4)		low:	0.1	high:			
Internal or External Byp			Both	available			·		
				6	<u> </u>				
				System Per	formance	?			
Briefly describe how da	ta w	ere collec	ted (field. la	b. third party. g	rah sample	e. auto-co	mnosite. e	tc.)	
			(11010)	, p , , 8		,	, -	,	
					01100				
Median Influent (mg/L)		TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	
Median Effluent (mg/L)									
Median Removal (%):	•								
modium nomo sum (xx).							1		
			Total Me	tals	Diss	olved Me	tals		
		Cu	Pb	Zn	Cu	Pb	Zn		
Median Influent (mg/L)	_								
Median Effluent (mg/L)	:								
Median Removal (%):									
			Notes (Commonts As	lditional	Doforos			
			Notes, C	Comments, Ad	uitionai	кејеген	.62		1

Manufacturer: Name of Technology:		- 1	nc.	-	Contact Na		Sean D		-
# of Installations in		vorteci	hs System	_	Contact Ph		darcys@contech-		_
Washington:		>	100		Contact W		contech-		_
		7		- Tuno/Annlice	ution (sha	ala adl Mari			_
Downspout	V	Oil/Water Sep		Type/Applica		ck all that	Tappiy) Ion exchan	ae column	Stormwater
Drain Inlet Insert		Settling						_	
✓ Below Ground Vault	✓	Hydrodynami	c Separation	Filtration (fabri			Reverse os		Groundwater
_	✓	Floatables Bat	·	Filtration (biofi			☐ Electrocoag	-	☐ Wastewater
Above Ground Vault	Ŭ	rioatables bai	ine		nically enhance	d)	Chemical i	reatment	Process water
				Estimate	ed Costs				
Estimated Installation C	ost	(unit cost a	and constru	iction cost):		low:	\$20K	high:	\$500K
Estimated Annual O&M	Cos	t (\$/gallon	treated):			low:	\$0.00001	high:	\$0.00004
				System Hydro	udics/Doc	ian			
Design Flow Rate (gpm)				low:		high:	22450		
System aboveground for		rint (sa ft):		low:	NA	high:		-	
Required head loss (ft):	-	(3 q 10).		low:	0.1	high:		-	
Internal or External Byp			Both	n Available	0.1			-	
		-							
				System Per	rformance	2			
Briefly describe how da	ta w	ere collect	ed (field la	ah third narty σ	rah samnla	auto-co	mnosita atc	١	
The WAWA Route 37 Stormy						-		•	ite.
		TSS	TPH	Oil & grease	SVOCs	PCBs	Dioxins	CPAHs	SSC<50 um
Median Influent (mg/L)	:	108							24
Median Effluent (mg/L)	:	28							8
Median Removal (%):		93							70
			Total Me	tala	Die	salvad M	otolo	1	
		Cu	Pb	Zn	Cu	solved M Pb	Zn	-	
Median Influent (mg/L)	:	Cu	1 10	411	Cu	1.0		†	
Median Effluent (mg/L)								†	
Median Removal (%):	_							†	
				·					
			Notes,	Comments, Ad	dditional	Referen	ces		

APPENDIX C

Technology Product Information

Appendix C Index (by Treatment System Name)

		Graphic/	O&M				
Treatment System Name	Manufacturer/Vendor Name	Brochure	Drawings Specs			Testing	Other
Active Treatment Systems							
ACISTBox®	Water Tectonics, Inc.	X					
Arkal Filter (Spin Klin System)	Arkal Filtration Systems/PEP (U.S. Distributor)				X		
Arkal Media Filter	Arkal Filtration Systems/PEP (U.S. Distributor)	X					
Baker Tank with Sand Filter	BakerCorp	X	X				
Chitosan-Enhanced Sand Filtration Using FlocClear™	Clear Creek Systems				X	X	
Fuzzy Filter	Schreiber	X	X	X		X	
High-Flo Electrocoagulation	Kaselco		X			X	
OilTrap ElectroPulse Water Treatment System	OilTrap Environmental	X	X			X	
pHATBox®	Water Tectonics, Inc.	X					
Purus® Stormwater Polishing System	StormwateRx	X					
Redbox	Morselt Borne BV	X					
Wastewater Ion Exchange System (WWIX)	Siemens Water Technologies Inc.	X					
WaterTrak Ion Exchange	Aquatech	X			X		
WaterTrak Pressurized Media Filter	Aquatech	X			X		
WaterTrak Reverse Osmosis	Aquatech	X			X		
WaterTrak Ultrafiltration	Aquatech	X			X		
WaveIonics TM	Water Tectonics, Inc.	X				X	
Wetsep	Waste & Environmental Technologies Ltd.	X	X	X			
Passive Treatment Systems							
ADS® Water Quality Unit	Advanced Drainage Systems, Inc	X	X		X	X	X
Adsorb-It	Eco-Tec, Inc.	X	X			X	X
Aqua Shield Aqua-Filter System	AquaShieldTM, Inc.	X	X		X		X
Aqua Shield Aqua-Swirl Concentrator	AquaShieldTM, Inc.	X		X	X		X
Aqua-Guardian™ Catch Basin Insert	AquaShieldTM, Inc.	X			X		X
Aquip® Enhanced Stormwater Filtration System	StormwateRx	X		X			
BayFilter®	BaySaver Technologies, Inc.		X X			X	X
BaySeparator®	BaySaver Technologies, Inc.		X X			X	X
Bio Clean Curb Inlet Basket	BioClean Environmental Services, Inc.	X	X X			X	
Bio Clean Downspout Filter	BioClean Environmental Services, Inc.	X	X			X	
Bio Clean Flume Filter	BioClean Environmental Services, Inc.	X					X
Bio Clean Grate Inlet Skimmer Box	BioClean Environmental Services, Inc.	X					X
Bio Clean Trench Drain Filter	BioClean Environmental Services, Inc.	X					X
Bio Clean Water Polisher	BioClean Environmental Services, Inc.	X	X				
BioSTORM	Bio-Microbics, Inc.	X	X		X		X
CDS TM Stormwater Treatment System	CONTECH Stormwater Solutions Inc.	X	X X		X		
Clara® Gravity Stormwater Separator Vault	StormwateRx	X		X			
Clean Way Downspout Filtration Unit	Clean Way	X					X
ClearWater BMP	ClearWater Solutions, Inc.	X	X		X		
Coanda Curb Inlet Filter	Coanda, Inc.	X	X X			X	
Coanda Downspout Filter	Coanda, Inc.	X					

Appendix C Index (by Treatment System Name)

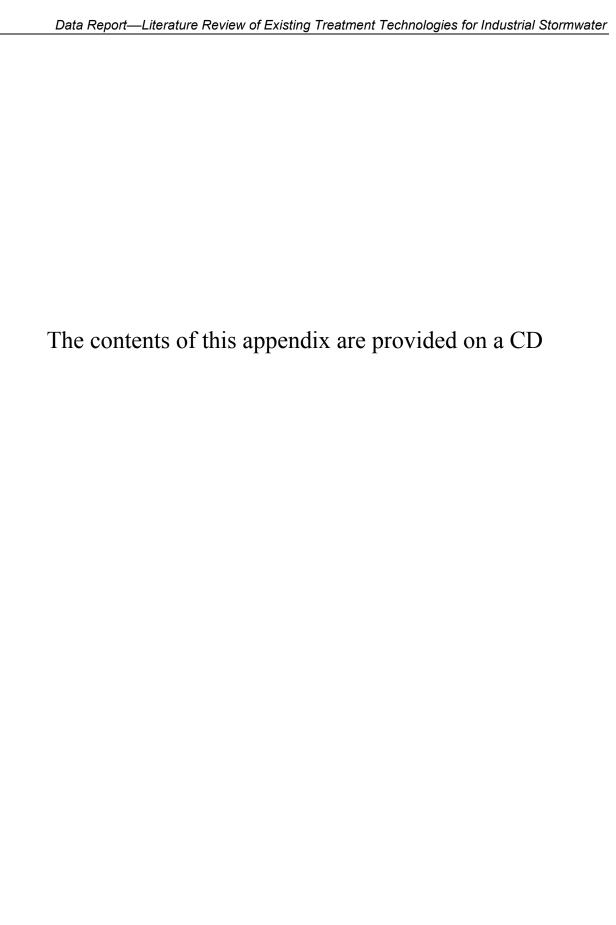
					Graphic/	O&M		
Treatment System Name	Manufacturer/Vendor Name	Brochure	Drawings	Specs	Schematic		Testing	Other
Passive Treatment Systems (cont.)							Ü	
CrystalClean Separator	CrystalStream Technologies	X	X				X	X
CrystalCombo Hybrid Polisher	CrystalStream Technologies	X			X		X	X
Downstream Defender	Hydro International, Inc.	X	X	X		X		X
DrainPac TM	United Storm Water, Inc.		X	X		X	X	X
ecoLine A®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	X	X					
ecoLine B®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	X	X		X	X		X
EcoSense TM Stormwater Filtration Systems	EcoSense International	X			X		X	
ecoSep®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	X	X	X		X		X
ecoStorm ®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	X	X	X	X	X		X
ecoStorm Plus®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	X	X	X	X	X		X
ecoTop®	Royal Environmental Systems, Inc./Water Tectonics, Inc.	X	X	X				
EcoVault TM Baffle Box	EcoSense International	X					X	
Enviro-Drain®	Enviro-Drain, Inc.	X	X					
EnviroSafe TM	Transpo Industries, Inc.	X						
EnviroSafe TM Storm Safe HF10	Transpo Industries, Inc.	X				X		
EnviroTrap Catch Basin Insert	Environment 21	X	X	X			X	
Filterra® Roofdrain System	Filterra, DBAAmericast, Inc.		X		X	X		X
Filterra® System	Filterra, DBAAmericast, Inc.		X		X	X		X
First Flush 1640FF	ABT, Inc.	X	X					
FloGard+PLUS®	Kristar Enterprises, Inc.	X	X			X		X
FloGard® Downspout Filter	Kristar Enterprises, Inc.	X	X			X		
FloGard® Dual-Vortex Hydrodynamic Separator	Kristar Enterprises, Inc.	X	X			X		
FloGard® LoPro Matrix Filter	Kristar Enterprises, Inc.	X	X			X		
FloGard® LoPro Trench Drain Filter	Kristar Enterprises, Inc.	X	X			X		
Flo-Gard® Trash & Debris Guard	Kristar Enterprises, Inc.	X	X			X		
Go-Filter	AquaShieldTM, Inc.	X						X
Hancor Storm Water Quality Unit	Hancor, Inc.	X		X		X	X	X
HUBER Hydro Filt	Huber Technology, Inc.	X			X			
HydroFilter	Hydroworks				X			
HydroGuard	Hydroworks	X	X			X	X	X
Hydro-Kleen TM	ACF Environmental, Inc.	X			X			X
Inceptor®	Stormdrain Solutions	X					X	X
Jellyfish TM Filter	Imbrium Systems Corp	X	X	X		X		X
·	Brown-Minneapolis Tank Co./							
Kleerwater TM	Kleerwater Technologies, LLC	X		X	X			X
	Modular Wetland Systems, Inc./							
Modular Wetland System – Linear	BioClean Environmental Services, Inc.	X	X	X		X	X	X
Nutrient Separating Baffle Box	BioClean Environmental Services, Inc.	X	X	X			X	
Perimeter Sandfilter (Delaware Sandfilter)	Rotondo Environmental Solutions, LLC		X	-			-	
Perk Filter TM	Kristar Enterprises, Inc.	X	X			X		
PSI Separator	PSI International, Inc.				X	X		X

Appendix C Index (by Treatment System Name)

					Graphic/	O&M		
Treatment System Name	Manufacturer/Vendor Name	Brochure	Drawings	Specs	Schematic	Manual	Testing	Other
Passive Treatment Systems (cont.)								
PuriStorm	Environment 21	X	X					
Raynfiltr TM	Environmental Filtration, Inc.	X	X					
RSF (Rapid Stormwater Filtration) 100	EcoSol Wastewater Filtration Systems	X	X	X			X	X
RSF (Rapid Stormwater Filtration) 1000	EcoSol Wastewater Filtration Systems	X	X	X			X	X
RSF (Rapid Stormwater Filtration) 4000	EcoSol Wastewater Filtration Systems	X	X	X			X	X
Silva Cell	DeepRoot Partners	X		X	X	X		X
SNOUT®	Nyloplast/Hancor, Inc.	X						
Sorbtive™ FILTER	Imbrium Systems Corp	X	X			X	X	X
Storm PURE TM	Nyloplast/Hancor, Inc.	X						
StormBasin TM	Fabco Industries, Inc.	X	X			X	X	X
Stormceptor®	Imbrium Systems Corp	X	X	X		X		X
StormClean Catch Basin Insert	Clean Way	X	X					X
StormClean Curb Inlet Insert	Clean Way	X						X
StormClean Wall Mount Filtration Unit	Clean Way	X						X
Stormfilter using ZPG Media	CONTECH Stormwater Solutions Inc.	X	X	X		X	X	
StormPod TM	Fabco Industries, Inc.	X	X			X	X	X
StormSafe TM Helix	Fabco Industries, Inc.	X			X	X		
StormTrooper®	Park USA	X	X					X
StormTrooper® EX Extra-Duty	Park USA	X	X					X
SwaleGard® Pre-filter	Kristar Enterprises, Inc.	X	X			X		
Terre Kleen TM	Terre Hill Concrete Products		X	X				X
TREEPOD® Biofilter	Kristar Enterprises, Inc.	X	X			X		
Tolden Donn Lelet Learnet	Revel Environmental Manufacturing, Inc./							
Triton Drop Inlet Insert	CONTECH Stormwater Solutions Inc.	X	X	X		X	X	
Ultra-Urban Filter TM	Abtech Industries	X						
Underground Sandfilter (DC Sandfilter)	Rotondo Environmental Solutions, LLC		X					
UniScreen	Environment 21	X	X	X			X	
UniStorm	Environment 21	X	X	X		X	X	
Up-Flo™ Filter	Hydro International, Inc.	X	X	X		X	X	
UrbanGreen BioFilter	CONTECH Stormwater Solutions Inc.	X	X	X		X		X
V2B1 Treatment System	Environment 21	X	X	X			X	
VortClarex	CONTECH Stormwater Solutions Inc.	X	X	X		X		
Vortechs System	CONTECH Stormwater Solutions Inc.	X	X	X		X	X	X

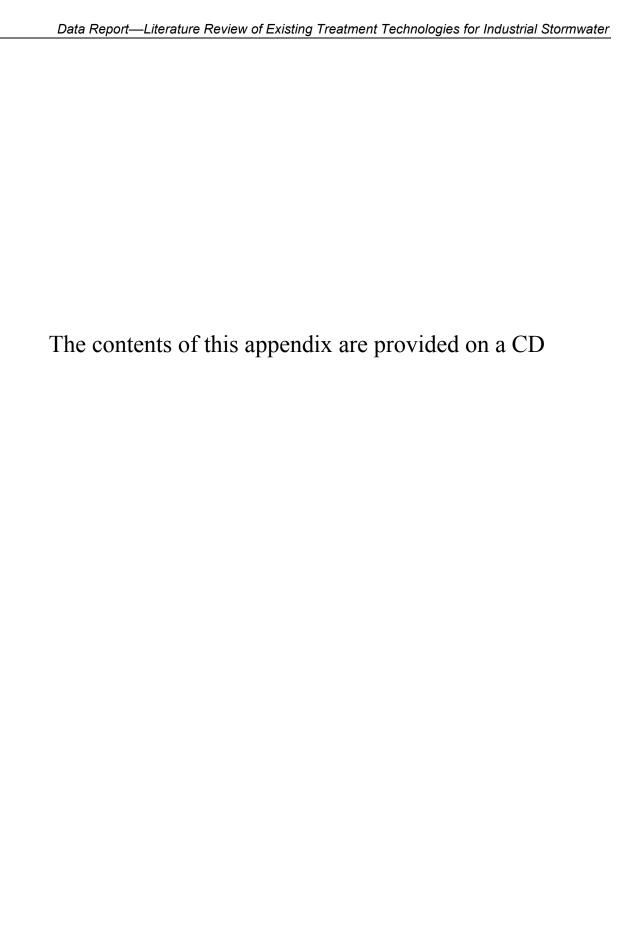
Appendix C Index (by Manufacturer/Vendor Name)

				Graphic/	O&M		
Treatment System Name	Manufacturer/Vendor Name	Brochure	Drawings Spe	s Schematic	Manual	Testing	Other
Active Treatment Systems							
Aquatech	WaterTrak Ion Exchange	X			X		
Aquatech	WaterTrak Pressurized Media Filter	X			X		
Aquatech	WaterTrak Reverse Osmosis	X			X		
Aquatech	WaterTrak Ultrafiltration	X			X		
Arkal Filtration Systems/PEP (U.S. Distributor)	Arkal Filter (Spin Klin System)				X		
Arkal Filtration Systems/PEP (U.S. Distributor)	Arkal Media Filter	X					
BakerCorp	Baker Tank with Sand Filter	X	X				
Clear Creek Systems	Chitosan-Enhanced Sand Filtration Using FlocClear™				X	X	
Kaselco	High-Flo Electrocoagulation		X			X	
Morselt Borne BV	Redbox	X					
OilTrap Environmental	OilTrap ElectroPulse Water Treatment System	X	X			X	
Schreiber	Fuzzy Filter	X	X	X		X	
Siemens Water Technologies Inc.	Wastewater Ion Exchange System (WWIX)	X					
StormwateRx	Purus® Stormwater Polishing System	X					
Waste & Environmental Technologies Ltd.	Wetsep	X	X	X			
Water Tectonics, Inc.	ACISTBox®	X					
Water Tectonics, Inc.	pHATBox®	X					
Water Tectonics, Inc.	WaveIonics TM	X				X	
Passive Treatment Systems							
ABT, Inc.	First Flush 1640FF	X	X				
Abtech Industries	Ultra-Urban Filter™	X					
ACF Environmental, Inc.	Hydro-Kleen™	X		X			X
Advanced Drainage Systems, Inc	ADS® Water Quality Unit	X	X		X	X	X
AquaShieldTM, Inc.	Aqua Shield Aqua-Filter System	X	X		X		X
AquaShieldTM, Inc.	Aqua Shield Aqua-Swirl Concentrator	X		X	X		X
AquaShieldTM, Inc.	Aqua-Guardian TM Catch Basin Insert	X			X		X
AquaShieldTM, Inc.	Go-Filter	X					X
BaySaver Technologies, Inc.	BayFilter®		X X			X	X
BaySaver Technologies, Inc.	BaySeparator®		X X			X	X
BioClean Environmental Services, Inc.	Bio Clean Curb Inlet Basket	X	X X			X	
BioClean Environmental Services, Inc.	Bio Clean Downspout Filter	X	X			X	
BioClean Environmental Services, Inc.	Bio Clean Flume Filter	X					X
BioClean Environmental Services, Inc.	Bio Clean Grate Inlet Skimmer Box	X					X
BioClean Environmental Services, Inc.	Bio Clean Trench Drain Filter	X					X
BioClean Environmental Services, Inc.	Bio Clean Water Polisher	X	X				
BioClean Environmental Services, Inc.	Nutrient Separating Baffle Box	X	X X			X	
Bio-Microbics, Inc.	BioSTORM	X	X		X		X
Brown-Minneapolis Tank Co./	VI a amy set an TM						
Kleerwater Technologies, LLC	Kleerwater TM	X	X	X			X


Appendix C Index (by Manufacturer/Vendor Name)

					Graphic/	O&M		
Treatment System Name	Manufacturer/Vendor Name	Brochure	Drawings	Specs	Schematic	Manual	Testing	Other
Passive Treatment Systems (cont.)								
Clean Way	Clean Way Downspout Filtration Unit	X						X
Clean Way	StormClean Catch Basin Insert	X	X					X
Clean Way	StormClean Curb Inlet Insert	X						X
Clean Way	StormClean Wall Mount Filtration Unit	X						X
ClearWater Solutions, Inc.	ClearWater BMP	X	X			X		
Coanda, Inc.	Coanda Curb Inlet Filter	X	X	X			X	
Coanda, Inc.	Coanda Downspout Filter	X						
CONTECH Stormwater Solutions Inc.	CDS TM Stormwater Treatment System	X	X	X		X		
CONTECH Stormwater Solutions Inc.	Stormfilter using ZPG Media	X	X	X		X	X	
CONTECH Stormwater Solutions Inc.	UrbanGreen BioFilter	X	X	X		X		X
CONTECH Stormwater Solutions Inc.	VortClarex	X	X	X		X		
CONTECH Stormwater Solutions Inc.	Vortechs System	X	X	X		X	X	X
CrystalStream Technologies	CrystalClean Separator	X	X				X	X
CrystalStream Technologies	CrystalCombo Hybrid Polisher	X			X		X	X
DeepRoot Partners	Silva Cell	X		X	X	X		X
EcoSense International	EcoSense TM Stormwater Filtration Systems	X			X		X	
EcoSense International	EcoVault TM Baffle Box	X					X	
EcoSol Wastewater Filtration Systems	RSF (Rapid Stormwater Filtration) 100	X	X	X			X	X
EcoSol Wastewater Filtration Systems	RSF (Rapid Stormwater Filtration) 1000	X	X	X			X	X
EcoSol Wastewater Filtration Systems	RSF (Rapid Stormwater Filtration) 4000	X	X	X			X	X
Eco-Tec, Inc.	Adsorb-It	X	X				X	X
Enviro-Drain, Inc.	Enviro-Drain®	X	X					
Environment 21	EnviroTrap Catch Basin Insert	X	X	X			X	
Environment 21	PuriStorm	X	X					
Environment 21	UniScreen	X	X	X			X	
Environment 21	UniStorm	X	X	X		X	X	
Environment 21	V2B1 Treatment System	X	X	X			X	
Environmental Filtration, Inc.	Raynfiltr TM	X	X					
Fabco Industries, Inc.	StormBasin TM	X	X			X	X	X
Fabco Industries, Inc.	StormPod TM	X	X			X	X	X
Fabco Industries, Inc.	StormSafe TM Helix	X			X	X		
Filterra, DBAAmericast, Inc.	Filterra® Roofdrain System		X		X	X		X
Filterra, DBAAmericast, Inc.	Filterra® System		X		X	X		X
Hancor, Inc.	Hancor Storm Water Quality Unit	X		X		X	X	X
Huber Technology, Inc.	HUBER Hydro Filt	X			X			
Hydro International, Inc.	Downstream Defender	X	X	X		X		X
Hydro International, Inc.	Up-Flo TM Filter	X	X	X		X	X	
Hydroworks	HydroFilter				X			
Hydroworks	HydroGuard	X	X			X	X	X
Imbrium Systems Corp	Jellyfish™ Filter	X	X	X		X		X

Appendix C Index (by Manufacturer/Vendor Name)


					Graphic/	O&M		
Treatment System Name	Manufacturer/Vendor Name	Brochure	Drawings	Specs	Schematic	Manual	Testing	Other
Passive Treatment Systems (cont.)								
Imbrium Systems Corp	Sorbtive™ FILTER	X	X			X	X	X
Imbrium Systems Corp	Stormceptor®	X	X	X		X		X
Kristar Enterprises, Inc.	FloGard+PLUS®	X	X			X		X
Kristar Enterprises, Inc.	FloGard® Downspout Filter	X	X			X		
Kristar Enterprises, Inc.	FloGard® Dual-Vortex Hydrodynamic Separator	X	X			X		
Kristar Enterprises, Inc.	FloGard® LoPro Matrix Filter	X	X			X		
Kristar Enterprises, Inc.	FloGard® LoPro Trench Drain Filter	X	X			X		
Kristar Enterprises, Inc.	Flo-Gard® Trash & Debris Guard	X	X			X		
Kristar Enterprises, Inc.	Perk Filter TM	X	X			X		
Kristar Enterprises, Inc.	SwaleGard® Pre-filter	X	X			X		
Kristar Enterprises, Inc.	TREEPOD® Biofilter	X	X			X		
Modular Wetland Systems, Inc./	Madalan Waland Cartana Linnan							
BioClean Environmental Services, Inc.	Modular Wetland System – Linear	X	X	X		X	X	X
Nyloplast/Hancor, Inc.	SNOUT®	X						
Nyloplast/Hancor, Inc.	Storm PURETM	X						
Park USA	StormTrooper®	X	X					X
Park USA	StormTrooper® EX Extra-Duty	X	X					X
PSI International, Inc.	PSI Separator				X	X		X
Revel Environmental Manufacturing, Inc./	Triton Door Inlet Insert							
CONTECH Stormwater Solutions Inc.	Triton Drop Inlet Insert	X	X	X		X	X	
Rotondo Environmental Solutions, LLC	Perimeter Sandfilter (Delaware Sandfilter)		X					
Rotondo Environmental Solutions, LLC	Underground Sandfilter (DC Sandfilter)		X					
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoLine A®	X	X					
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoLine B®	X	X		X	X		X
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoSep®	X	X	X		X		X
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoStorm ®	X	X	X	X	X		X
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoStorm Plus®	X	X	X	X	X		X
Royal Environmental Systems, Inc./Water Tectonics, Inc.	ecoTop®	X	X	X				
Stormdrain Solutions	Inceptor®	X					X	X
StormwateRx	Aquip® Enhanced Stormwater Filtration System	X			X			
StormwateRx	Clara® Gravity Stormwater Separator Vault	X			X			
Terre Hill Concrete Products	Terre Kleen TM		X	X				X
Transpo Industries, Inc.	EnviroSafe TM	X						
Transpo Industries, Inc.	EnviroSafe TM Storm Safe HF10	X				X		
United Storm Water, Inc.	DrainPac TM		X	X		X	X	X

C-7

APPENDIX D

Excel Versions of Tables 3 through 12

TMDLs Applicable to Permittees	WLAs Applicable to Permittees
Napa River Sediment, R2- 2009-0064 (adopted September 9, 2009)	WLAs apply to "Industrial Stormwater NPDES Permit No. CAS000001." Napa River Sediment TMDL, R2-2009-0064, Table 3b. WLAs for CAS000001 permittees: 500 metric tons/year; 0.3 percent of natural background.
Sonoma Creek Sediment,	WLAs for CAS000001 permittees. 300 metric tons/year, 0.3 percent of natural background. WLAs apply to "Industrial Stormwater – NPDES Permit No. CAS000001." Sonoma Creek Sediment TMDL, R2-
R2-2008-0103 (adopted October 10, 2008)	2008-0103.
	WLAs for CAS000001 permittees: 100 metric tons/year; 0.2 percent natural background.
Santa Clara River Reach 3 Chloride, US EPA (established June 18, 2003)	"Wasteload allocations are established for the following chloride sources: discharges of construction or industrial site runoff or CalTrans facility discharges to Santa Clara River Reach 3 or to any tributaries that discharge to Reach 3 that are regulated through the Industrial Activities Stormwater General Permit Order No. 97-03-DWQ." Santa Clara River Reach 3 Chloride TMDL at 18.
	The WLAs for industrial permittees are 80 mg/L. <i>Id.</i> at 17.
Walker Creek Mercury, R2- 2007-0010 (adopted January 23, 2007)	WLAs apply to "Gambonini Mine site NPDES Permit no. CAS000001." Walker Creek Mercury TMDL, R2-2007-0010, Table 7-x.
	WLAs for CAS000001 permittees: 5 mg mercury per kg suspended sediment.
Oxnard Drain No. 3 Pesticides, PCBs and Sediment Toxicity, US EPA (established October 6, 2011)	"All other permitted facilities also receive WLAs. Relevant permit numbers are General Industrial Stormwater: Order No. 97-03-DWQ, CAS000001, or subsequent permits." Oxnard Drain No. 3 Pesticides, PCBs and Sediment Toxicity TMDL at 33.

TMDLs Applicable to Permittees		v	VLAs Applicable to Permi	ittees	
	Pollutant / Medium	water Allocations, chronic (ug/L)	load and load allocations Sediment ^{1,2} Allocations (ug/dry kg)	Alternate Sediment ^{1,3} Allocations (ug/dry kg)	
	Bifenthrin ⁴	0.0006	-	-	
	Chlordane, total	0.00059	0.5	3.3	
	Chlorpyrifos ⁴	0.0056	-	-]
	4,4'-DDT	0.00059	1.0	0.3	
	4,4'-DDE	0.00059	2.2	2.2	
	4,4'-DDD	0.00084	2.0	2.0]
	Dieldrin	0.00014	0.02	4.3	
	PCBs, total	0.00017	22.7	180	
	Sediment Toxicity	-	No significant chronic sediment toxicity (See below and Section 3 for more details)	-	
	Toxaphene	0.0002	0.1	360	
Long Beach City Beaches and Los Angeles River Estuary Indicator Bacteria, US EPA (established March 26, 2012)	exceedances for all time	e periods for the sing	General Permit [is] assign gle sample targets and no ex a significant source of indic	sceedances of the 30-	
Los Angeles Area Lakes Nitrogen, Phosphorus, Mercury, Trash, Organochlorine Pesticides and PCBs, US EPA (established March 26, 2012)	"The NPDES permits in and a general NPDES p		ining to impaired lakes incl	ude general indust	rial stormwater permits,

TMDLs Applicable to Permittees			WLA	s Applical	ole to Permit	tees
	Table 4-8.	Wasteload Allocations of Ph	nosphorus and Nitroge	Wasteload Allocation Total Phosphorus (lb-P/yr) ⁴	Wasteload Allocation Total Nitrogen (lb-N/yr) ⁴	
	Eastern	General Industrial Stormwater Permittees ² (in the city of Duarte)	General Industrial Stormwater ¹	55.1 (0.37 mg/L P) ²	432 (3.61 mg/L N) ²	
	Eastern	General Industrial Stormwater Permittees (in the city of Irwindale) ³	General Industrial Stormwater ¹	32.5 (0.37 mg/L P) ²	255 (3.61 mg/L N) ²	
	Eastern	General Industrial Stormwater Permittees (in the city of Monrovia) ³	General Industrial Stormwater ¹	223	1,748	
	Near Lake	General Industrial Stormwater Permittees (in the city of Arcadia) ³	General Industrial Stormwater ¹	23.4 (0.37 mg/L P) ²	183 (3.61 mg/L N) ²	
	Western	General Industrial Stormwater Permittees (in the city of Arcadia) ³	General Industrial Stormwater ¹	517 (0.37 mg/L P) ²	4,058 (3.61 mg/L N) ²	
Santa Monica Bay DDTs and PCBs, US EPA (established March 26, 2012)	an industria	al stormwater permit	"	discharger	s covered und	er general permits, 87 dischargers covere
2012)	Santa Monica	-				
012)	Santa Monica l Permit Type	Bay. Area (m2)	% of Total Area	DDT (g/yr)	PCBs (g/yr)	
012)	Santa Monica	Area (m2) unty MS4 926,705,620	% of Total Area 0 96.723	DDT (g/yr) 27.08	PCBs (g/yr)	
.012)	Permit Type Los Angeles Co	Bay. Area (m2)	% of Total Area 0 96.723 0 2.687	DDT (g/yr)	PCBs (g/yr)	
2012)	Permit Type Los Angeles Co CalTrans Construction Industrial	Bay. Area (m2) unty MS4 926,705,62/ 25,746,490 5,406,683 241,245	% of Total Area 0 96.723 0 2.687	DDT (g/yr) 27.08 0.75	PCBs (g/yr) 140.25 3.90	
2012)	Permit Type Los Angeles Co CalTrans Construction	Bay. Area (m2) unty MS4 926,705,62/ 25,746,490 5,406,683 241,245	% of Total Area 0 96.723 0 2.687 0.564 0.025	DDT (g/yr) 27.08 0.75 0.16	PCBs (g/yr) 140.25 3.90 0.82	

TMDLs Applicable to Permittees		WLAs Applicable to Permittees					
Santa Monica Bay Nearshore Debris, R4-10- 010 (adopted November 4, 2010)	premises of indust pellets. The WLA	rial facilities th is consistent w mittees of the l	at import, manufa ith Cal. Water Coc Industrial Storm W	ellets is defined as no discharge of plastic pellets from the cture, process, transport, store, recycle or otherwise handle plastic le § 13367 and 40 CFR 122.26(b)(12). WLAs for plastic pellets vater General Permit (Order No. 97-03-DWQ, and NPDES Permit MA."			
Machado Lake Toxics TMDL, R4-10-008, (adopted September 2, 20100	stormwater permit	in the Machad spended sedime	o Lake subwatershent are assigned to	nately 47 dischargers enrolled under the general industrial ned Waste load allocations (WLAs) for contaminants stormwater dischargers (MS4, Caltrans, general construction and weather."			
			WLA for Suspended Sediment-				
	Responsible Party	Pollutant	Associated				
			Contaminants (µg/kg dry weight)				
	MS4 Permittees ¹ ,	Total PCBs	59.8				
	Caltrans, General	DDT (all congeners)	4.16				
	Construction and	DDE (all congeners)	3.16				
	Industrial Stormwater	DDD (all congeners)	4.88				
	Permittees, Other	Total DDT	5.28				
	Non-stormwater	Chlordane ·	3.24				
	NPDES Permittees	Dieldrin	1.9				
	WLAs are applied with a	3-year averaging perio	d.				
Santa Clara River Bacteria, R4-10-006, (adopted July 8, 2010)	exceedances for al	l time periods f	for the single samp	ermit[is] assigned WLAs of zero (0) days of allowable ble targets and no exceedances of the 30-day geometric mean ant source of indicator bacteria. Compliance with an effluent limit			
2010)		•	_	be used to demonstrate compliance with the WLA."			

CCKA Comment Letter 4 Attachment 5

TMDLs Applicable to Permittees		WLAs Applicable to Permittees "The general industrial storm water permits shall achieve interim wet-weather waste load allocations, which shall be									
Los Angeles River Metals, R4-10-003 (adopted May 6, 2010)	expressed as N conditions, su	NPDES wa ch as the ir iterative B	ter quality-t nstallation, r	based effluent maintenance,	t limitations. and monitori	Effluer	nt limi Legiona	tations al Boar	may be	e expresse oved BMP	d as permit
	Interim WLA	As:									
	Interim we			eneral industri verable metal		er					
	Cd (μg/L)	Cu(µg/L)	Pb(µg/L)	Zn(µg/L)						
		5.9	63.6	81.6	117						
	Final WLAs: Dry weather: during dry we	: A zero wa	aste load allo	ocation is ass	igned to all in	ndustria	al and o	constru	action s	torm wate	r permittees
	Dry weather: during dry we Wet weather:	: A zero wa eather. :		ocation is ass		ndustria	al and o	constru	iction s	torm wate	r permittees
	Dry weather: during dry we Wet weather: General Indu Metal	: A zero wa eather. : ustrial wet-w	veather WLA	s (total recover	rable metals):	ndustria	al and o	constru	action s	torm wate	r permittees
	Dry weather: during dry we Wet weather: General Indu Metal Cadmium	: A zero wa eather. : ustrial wet-w	veather WLA vaste Load All ER1 x 1.6x10-1	s (total recover location (kg/da	rable metals): y) e(L) - 0.11	ndustria	al and o	constru	iction s	torm wate	r permittees
	Dry weather: during dry we Wet weather: General Indu Metal Cadmium Copper	A zero was ather.	veather WLA vaste Load All ER ¹ x 1.6x10 ⁻¹ ER ¹ x 8.8x10 ⁻¹	s (total recover location (kg/da of x daily volum of x daily volum	rable metals): y) e(L) - 0.11 e (L) - 0.5	ndustria	al and o	constru	action s	torm wate	r permittees
	Dry weather: during dry we Wet weather: General Indu Metal Cadmium	: A zero wa eather. : ustrial wet-w WI WI	veather WLA Vaste Load All ER ¹ x 1.6x10 ⁻¹ ER ¹ x 8.8x10 ⁻¹ ER ¹ x 3.3x10 ⁻⁹	s (total recover location (kg/da	rable metals): y) e(L) - 0.11 e (L) - 0.5 e(L) - 0.22	ndustria	al and o	constru	iction s	torm wate	r permittees
	Dry weather: during dry we Wet weather: General Indu Metal Cadmium Copper Lead Zinc	: A zero wa eather. : ustrial wet-w WI WI WI WE	veather WLA Vaste Load All ER ¹ x 1.6x10 ⁻¹ ER ¹ x 8.8x10 ⁻¹ ER ¹ x 3.3x10 ⁻⁹ ER ¹ x 8.3x10 ⁻⁹	location (kg/da o x daily volum x daily volum x daily volume x daily volume x daily volume	rable metals): y) e(L) - 0.11 e (L) - 0.5 e(L) - 0.22 (L) - 4.8						
	Dry weather: during dry we Wet weather: General Indu Metal Cadmium Copper Lead Zinc	A zero was ather.	veather WLA vaste Load All ER ¹ x 1.6x10 ⁻¹ ER ¹ x 8.8x10 ⁻¹ ER ¹ x 3.3x10 ⁻⁹ ER ¹ x 8.3x10 ⁻⁹ tee under th	location (kg/da o x daily volumo x daily volumo x daily volumo x daily volumo x daily volumo x daily ind	rable metals): y) e(L) = 0.11 e (L) = 0.5 e (L) = 0.22 (L) = 4.8 ustrial and co	onstruct	ion sto				r permittees
	Dry weather: during dry we Wet weather: General Indu Metal Cadmium Copper Lead Zinc Each storm wa	A zero was ather.	veather WLA vaste Load All ER ¹ x 1.6x10 ⁻¹ ER ¹ x 8.8x10 ⁻¹ ER ¹ x 3.3x10 ⁻⁹ ER ¹ x 8.3x10 ⁻⁹ tee under th	location (kg/da o x daily volumo x daily volumo x daily volumo x daily volumo x daily volumo x daily ind	rable metals): y) e(L) = 0.11 e (L) = 0.5 e (L) = 0.22 (L) = 4.8 ustrial and co	onstruct	ion sto				
	Dry weather: during dry we Wet weather: General Indu Metal Cadmium Copper Lead Zinc Each storm wa	A zero was ather.	veather WLA vaste Load All ER ¹ x 1.6x10 ⁻¹ ER ¹ x 8.8x10 ⁻¹ ER ¹ x 3.3x10 ⁻⁹ ER ¹ x 8.3x10 ⁻⁹ tee under th	location (kg/da o x daily volumo x daily volumo x daily volumo x daily volumo x daily volumo x daily ind	rable metals): y) e(L) = 0.11 e (L) = 0.5 e (L) = 0.22 (L) = 4.8 ustrial and co	onstruct	ion sto				
	Dry weather: during dry we Wet weather: General Indu Metal Cadmium Copper Lead Zinc Each storm wa	A zero was ather.	veather WLA vaste Load All ER ¹ x 1.6x10 ⁻¹ ER ¹ x 8.8x10 ⁻¹ ER ¹ x 3.3x10 ⁻⁹ ER ¹ x 8.3x10 ⁻⁹ tee under th	location (kg/da o x daily volumo x daily volumo x daily volumo x daily volumo x daily volumo x daily ind	rable metals): y) e(L) = 0.11 e (L) = 0.5 e (L) = 0.22 (L) = 4.8 ustrial and co	onstruct	ion sto				

TMDLs Applicable to Permittees		WLAs Applicable to Permittees							
Colorado Lagoon Pesticides, PAHs, PCB, Metals, R4-09- 005 (adopted October 1, 2009)	stormwater permittees. permit, general industria	"Concentration-based waste load allocations are assigned to minor NPDES permits, other stormwater, and non-stormwater permittees. Any future minor NPDES permits or enrollees under a general non-stormwater NPDES permit, general industrial stormwater permit or general construction permit will also be subject to concentration-based waste load allocations."							
	Constituents	Waste Load Allocation (ug/dry kg)							
	Chlordane	0.50							
	Dieldrin	0.02							
	Lead	46,700.00							
	Zinc	150,000.00							
	PAHs	4,022.00							
	PCBs	22.70							
	DDT	1.58							

TMDLs Applicable to Permittees	WLAs Applicable to Permittees								
Machado Lake Nutrient, R4-2008-006 (adopted May 1, 2008)	Interim WLAs are based on current in-lake concentrations. The effective date interim total nitrogen and total phosphorus waste load allocations are set as the 95 th percentile of current concentrations in the lake. The 5 year interim total nitrogen WLAs are established as a 30 percent reduction from current in-lake concentrations. Concentration-based interim and final WLAs will be included in stormwater permits in accordance with NPDES guidance and requirements. The tables below present the interim and final waste load allocations for the stormwater discharges.								
	Waste Load A	llocations	Total	Total Nitrogen					
	, Maste Load	illocations and a	Phosphorus	(TKN + NO ₃ -N + NO ₂ -N)					
			Final WLA (mg/L)	Final WLA (mg/L)					
	MS4 Permittees¹ Ca Construction and Inc stormwater permits	,	0.1	1.0	*.				
	to Machado Lake include: Los Angeles Count Citles of Carson, Lomita, Los Angeles, Palo Beach, Rolling Hills, Rolling Hills Estates, and Waste Load Allocations Years After Effective Date		Interim Tota Phosphorus WLAs (mg/L	Rancho Palos Verdes, Redo	ndo				
	MS4 Permittees,	At Effective Date ¹	1.25	3.50	_				
	Caltrans, General Construction and Industrial Stormwater	5 ²	1.25	2.45					
	permits (Final WLAs³) 0.10 1.00								
Harbor Beaches of Ventura County Bacteria, R4-2007- 017 (adopted November 1, 2007)	Statewide Construsive Subwatershed are	uction Activ assigned W	ity Storm Wa LAs of zero	ater General Permit	atewide Industrial Storm Water General Permit, the and WDR permittees in the Channel Islands Harbor le exceedances for all three time periods and for the				

TMDLs Applicable to
Permittees

WLAs Applicable to Permittees

Calleguas Creek Watershed Salts, R4-2007-016 (adopted October 4, 2007) "A group mass-based dry weather WLA has been developed for all permitted stormwater discharges, including municipal separate storm sewer systems (MS4s), and general industrial and construction stormwater permits. . ."
"Permitted stormwater dischargers that are responsible parties to this TMDL include the Municipal Stormwater Dischargers (MS4s) of the Cities of Camarillo, Moorpark, Thousand Oaks, County of Ventura, Ventura County Watershed Protection District, and general industrial and construction permittees. Permitted stormwater dischargers are assigned a dry weather wasteload allocation equal to the average dry weather critical condition flow rate multiplied by the numeric target for each constituent (Table 4). Waste load allocations apply in the receiving water at the base of each subwatershed. Because wet weather flows transport a large mass of salts at a typically low concentration, these dischargers should meet water quality objectives during wet weather. Dry weather allocations apply when instream flow rates are below the 86th percentile flow and there has been no measurable precipitation in the previous 24 hours."

Interim WLAs:

Table 7. Interim Dry Weather WLAs for Permitted Stormwater Dischargers

Constituent	Interim Limit (mg/L)
Boron Total	1.3
Chloride Total	230
Sulfate Total	1289
TDS Total	1720

Final WLAs:

Table 6. Final Dry Weather WLAs for Permitted Stormwater Dischargers

Subwatershed	Critical Condition Flow Rate (mgd)	Chloride (lb/day)	TDS (lb/day)	Sulfate (lb/day)	Boron (Ib/day)
Simi	1.39	1,738	9,849	2,897	12
Las Posas	0.13	157	887	261	N/A
Conejo	1.26	1,576	8,931	2,627	N/A
Camarillo	0.06	72	406	119	N/A
Pleasant Valley (Calleguas)	0.12	150	850	250	N/A
Pleasant Valley (Revolon)	0.25	314	1,778	523	2

TMDLs Applicable to Permittees	WLAs Applicable to Permittees						
Ballona Creek Metals, R4- 2007-015 (adopted September 6, 20070	<u> </u>	ed waste load allocation is developed for the storm water permittees (Los Angeles County MS4, instruction and General Industrial) by subtracting the load allocation from the total loading					
	Dry Weather: "A waste load allocation of zero is assigned to all general construction and industrial storm water permits during dry weather. Therefore, the storm water waste load allocations are apportioned between the MS4 permittees and Caltrans, based on an areal weighting approach." Wet Weather:						
		torm Water WLAs Apportioned er Permits (total recoverable metals)					
	Comme	Waste Load Allocation (grams/day)					
	Copper MS4 Permittees	1.70E-05 x Daily storm volume (L)					
	Caltrans	2.37E-07 x Daily storm volume (L)					
	General Construction	4.94E-07 x Daily storm volume (L)					
	General Industrial	1.24E-07 x Daily storm volume (L)					
	Lead						
	MS4 Permittees	5.58E-05 x Daily storm volume (L)					
ı	Caltrans	7.78E-07 x Daily storm volume (L)					
	General Construction	1.62E-06 x Daily storm volume (L)					
	General Industrial	4.06E-07 x Daily storm volume (L)					
	<u>Selenium</u>						
ı	MS4 Permittees	4.73E-06 x Daily storm volume (L)					
ı	Caltrans	6.59E-08 x Daily storm volume (L)					
	General Construction	1.37E-07 x Daily storm volume (L)					
	General Industrial Zinc	3.44E-08 x Daily storm volume (L)					
	MS4 Permittees	1.13E-04 x Daily storm volume (L)					
	Caltrans	1.57E-06 x Daily storm volume (L)					
	General Construction	3.27E-06 x Daily storm volume (L)					
	General Industrial	8.19E-07 x Daily storm volume (L)					

TMDLs Applicable to Permittees	WLAs Applicable to Permittees								
	Each storm water permittee enrolled under the general construction or industrial storm water permits will receive an individual waste load allocation on a per acre basis, based on the acreage of their facility.								
	Dry-weather waste load allocation for storm water is equal to the dry-weather critical flow multiplied by the dry-weather numeric target minus the load allocation for direct atmospheric deposition. Dry-weather Storm Water WLAS (grams total recoverable metals/dav)								
Calleguas Creek Watershed Metals and Selenium, 2006- 012, Adopted June 8, 2006	"In accordance with current practice, a group concentration-based WLA has been developed for all permitted stormwater discharges, including municipal separate storm sewer systems (MS4s), Caltrans, general industrial and construction stormwater permits, and Naval Air Weapons Station Point Mugu."								

TMDLs Applicable to Permittees

WLAs Applicable to Permittees

Interim WLAs:

A. Interim Limits

	Callegu	as and Cone	jo Creek	Revolon Slough					
Constituents	Dry CMC (ug/L)	.,		Dry CMC (ug/L)	Dry CCC (ug/L)	Wet CMC (ug/L)			
Copper*	23	19	204	23	19	204			
Nickel	15	13	(a)	15	13	(a)			
Selenium	(b)	(b)	(b)	14	13	(a)			

- (a) The current loads do not exceed the TMDL under wet conditions; interim limits are not required.
- (b) Selenium allocations have not been developed for this reach as it is not on the 303(d) list.
- (c) Attainment of interim limits will be evaluated in consideration of background loading data, if available.

Final WLAs (dry weather):

Flow	Callegua	as and Cone	ejo Creek	Revolon Slough			
Range	Low Flow	Average Flow	Elevated Flow	Low Flow	Average Flow	Elevated Flow	
Copper1	0.04*WER	0.12*WER	0.18*WER	0.03*WER	0.06*WER	0.13*WER	
(lbs/day)	0.02	0.02	0.03	- 0.01	- 0.03	0.02	
Nickel (lbs/day)	0.100	0.120	0.440	0.050	0.069	0.116	
Selenium (lbs/day)	(a)	(a)	(a)	0.004	0.003	0.004	

If site-specific WERs are approved by the Regional Board, TMDL waste load allocations shall be implemented in accordance with the approved WERs using the equations set forth above. Pages the first WERs, testing the proper loading the bull of the proper loading and the secret load research and expense loading.

WLAs (wet weather) in Water Column:

Constituent	Calleguas Creek	Revolon Slough
Copper ¹ (lbs/day)	(0.00054*Q^2*0.032*Q - 0.17)*WER - 0.06	(0.0002*Q2+0.0005*Q)*WER
Nickel ² (lbs/day)	0.014*Q^2+0.82*Q	0.027*Q^2+0.47*Q
Selenium ² (lbs/day)	(a)	0.027*Q^2+0.47*Q

If site-specific WERs are approved by the Regional Board, TMDL waste load allocations shall be implemented in accordance with the approved WERs using the equations set forth above. Regardless of the final WERs, total copper loading shall not exceed current loading.

- (a) Selenium allocations have not been developed for this reach as it is not on the 303(d) list.
- Q: Daily storm volume.

Regardless of the final WERs, total copper loading shall not exceed current loading.

(a) Selenium allocations have not been developed for this reach as it is not on the 303(d) list.

² Current loads do not exceed loading capacity during wet weather. Sum of all loads cannot exceed loads presented in the table

TMDLs Applicable to Permittees	WLAs Applicable to Permittees									
	Final WLAs are	set at 80°	% reduct	tion of H	ISPF loa	Suspended Sediment: d estimates. Interim limits for mercury in suspended sediment are by category, based on HSPF output for the years 1993-2003.				
		Callegu	as Creek	Revolor	n Slough					
	Flow Range	Interim (Ibs/yr)	Final (lbs/yr)	Interim (lbs/yr)	Final (lbs/yr)					
	0-15,000 MGY	3.3	0.4	1.7	0.1					
	15,000-25,000 MGY	10.5	1.6	4	0.7					
	Above 25,000 MGY	64.6	9.3	10.2	1.8					

CCKA Comment Letter 12 Attachment 5

TMDLs Applicable to Permittees	WLAs Applicable to Permittees									
Ballona Creek, Ballona Estuary, and Sepulveda Channel Bacteria, R4-2006- 011 (adopted June 8, 2006)	"Run-off to Ballona Creek is regulated as a point source under the Los Angeles County MS4 Permit, the Caltrans Storm Water Permit, and the General Construction and Industrial Storm Water Permits." Table 7.21.2b: Ballona Creek, Ballona Estuary and Sepulveda Channel Bacteria TMDL: WLAs and LAs for									
(tributaries to the Impa	Point of Application	Water Quality Objectives	Waste Load Allocation (No. exceedance days)						
	Ballona Creek Reach 1	At confluence with Reach 2	LREC-1 Freshwater	For single sample objectives: (0) summer dry weather, (3) winter dry weather (17*) winter wet weather For geometric mean objectives:						
	Benedict Canyon Channel	At confluence with Reach 2	LREC-1 Freshwater	(0) for all periods For single sample objectives: (0) summer dry weather, (3) winter dry weather (17*) winter wet weather						
	Ballona Creek Reach 2	At confluence with Ballona Estuary	REC-1 Marine water	For geometric mean objectives: (0) for all periods For single sample objectives: (0) summer dry weather, (3) winter dry weather (17) winter wet weather						
	Centinela Creek	At confluence with Ballona Estuary	REC-1 Marine water	For geometric mean objectives: (0) for all periods For single sample objectives: (0) summer dry weather, (3) winter dry weather (17) winter wet weather						
	Del Rey Lagoon	At confluence with Ballona Estuary	REC-1 Marine water	For geometric mean objectives: (0) for all periods For single sample objectives: (0) summer dry weather, (3) winter dry weather (17) winter wet weather						
	*At the confluence with Reac	th 2, the greater of the allowable exceedan	ce days under the reference	For geometric mean objectives: (0) for all periods system approach or high flow suspension shall						
Marina del Rey Harbor Toxics, R4-2005-012 (adopted October 6, 2005)	"Waste load allocations (WLA) are assigned to point sources for the Marina del Rey watershed. A grouped mass- based waste load allocation is developed for the storm water permittees (Los Angeles County MS4, Caltrans, General Construction and General Industrial) by subtracting the load allocations from the total loading capacity. Concentration-based waste load allocations are developed for other point sources in the watershed."									
				* *	on the MS4 permittees, Caltrans, the general ed on an estimate of the percentage of land area					

CCKA Comment Letter 13 Attachment 5

TMDLs Applicable to Permittees	WLAs Applicable to Permittees
	covered under each permit.
	Metals Storm Water WLAs Apportioned between Permits (kg/vr)
	Copper Lead Zinc MS4 Permittees 2.01 2.75 8.85
	MS4 Permittees 2.01 2.75 8.85 Caltrans 0.022 0.03 0.096
	General Construction 0.033 0.045 0.144
	General Industrial 0.004 0.006 0.018
	Organics Storm Water WLAs Apportioned between Permits (g/yr)
	Chlordane Total PCBs
	MS4 Permittees 0.0295 1.34
	Caltrans 0.0003 0.015
	General Construction 0.0005 0.022
	General Industrial 0.0001 0.003
	Each storm water permittee enrolled under the general construction or industrial storm water permits will receive an individual waste load allocation on a per acre basis, based on the acreage of their facility. Metals Waste Load Allocations for Storm Water (kg/yr) Copper Lead Zinc Zinc
	Metals per Acre WLAs for Individual General <u>Construction or Industrial Storm Water Permittees (g/yr/ac)</u>
	<u>Copper Lead Zinc</u> 2.3 3.1 10
	Organics per acre WLAs for Individual General Construction or Industrial Storm Water Permittees (mg/yr/ac) Chlordane Total PCBs 0.03 1.5

TMDLs Applicable to Permittees	WLAs Applicable to Permittees						
Ballona Creek Estuary Toxic Pollutants, 2005-008, Adopted July 7, 2005	"Waste load allocations (WLA) are assigned to point sources for the Ballona Creek watershed. A grouped mass-based wate load allocation is developed for the storm water permittees (Los Angeles County MS4, Caltrans, General Construction and General Industrial)" Metals per Acre WLAs for Individual General Construction or Industrial Storm Water Permittees (glvr/ac) Cadmium Coper Lead Silver Zinc 0.1 3 4 0.1 13 Organics per Acre WLAs for Individual General Construction or Industrial Storm Water Permittees (mg/vr/ac) Chlordane DDTs Total PCBs Total PAHs 0.04 0.14 2 350 Concentration-based waste load allocations are assigned to the minor NPDES permits and general non-storm water NPDES permits that discharge to Ballona Creek or its tributaries. Any future minor NPDES permits or enrollees under a general non-storm water NPDES permit will also be subject to the concentration-based waste load allocations. Metals Concentration-based Waste Load Allocations (mg/kg) Cadmium Coper Lead Silver Zinc 1.2 34 46.7 1.0 150 Organic Concentration-based Waste Load Allocations (ug/kg) Chlordane DDTs Total PCBs Total PAHs 0.5 1.58 22.7 4,022						
Los Angeles Harbor Bacteria, R4-2004-011, Adopted July 1, 2004	"Discharges from general NPDES permits, general industrial storm water permits and general construction storm water permits are not expected to be a significant source of bacteria. Therefore, the WLAs for these discharges are zero (0) days of allowable exceedances for all three time periods and for the single sample limits and the rolling 30-day geometric mean."						
Marina del Rey Back Basins Bacteria, R4-2003-012 (adopted August 7, 2003)	"As discussed in "Source Analysis", discharges from general NPDES permits, general industrial storm water permits and general construction storm water permits are not expected to be a significant source of bacteria. Therefore, the WLAs for these discharges are zero (0) days of allowable exceedances for all three time periods and for the single sample limits and the rolling 30-day geometric mean. Any future enrollees under a general NPDES permit, general industrial storm water permit or general construction storm water permit within the MdR Watershed will also be subject to a WLA of zero days of allowable exceedances."						

CCKA Comment Letter 15 Attachment 5

TMDLs Applicable to Permittees	WLAs Applicable to Permittees
Santa Clara River Nutrients, R4- 2003-011 (adopted August 7, 2003)	"Concentration-based wasteloads are allocated to municipal, industrial and construction stormwater sources regulated under NPDES permits."
	"For stormwater permittees discharging into Reach 7, the thirty-day WLA for ammonia as nitrogen is 1.75 mg/L and the one-hour WLA for ammonia as nitrogen is 5.2 mg/L; the thirty-day average WLA for nitrate plus nitrite as nitrogen is 6.8 mg/L. For stormwater permittees discharging into Reach 3, the thirty-day WLA for ammonia as nitrogen is 2.0 mg/L and the one-hour WLA for ammonia as nitrogen is 4.2 mg/L; the thirty-day average WLA for nitrate plus nitrite nitrogen is 8.1 mg/L"

CCKA Comment Letter 16 Attachment 5

TMDLs Applicable to Permittees	WLAs Applicable to Permittees
Los Angeles River Nutrients, R4- 2003-009 (adopted July 10, 2003)	"Waste loads are allocated to minor point sources enrolled under NPDES or WDR permits including but not limited to Tapia WRP, Whittier Narrows WRP, Los Angeles Zoo WRP, industrial and construction stormwater"
	a) Ammonia wasteload allocations (WLAs) for minor point sources are listed below by receiving waters:
	Water Body One-hour average WLA Thirty-day average WLA
	Los Angeles River above Los Angeles-Glendale WRP (LAG) 4.7 mg/L 1.6 mg/L
	Los Angeles River below LAG 8.7 mg/L 2.4 mg/L
	Los AngelesTributaries 10.1 mg/L 2.3 mg/L
	b) WLAs for nitrate-nitrogen, nitrite-nitrogen, and nitrate-nitrogen plus nitrite-nitrogen for minor discharges are listed below:
	Constituent Thirty-day average WLA NO ₃ -N 8.0 mg/L
	NO ₂ -N 1.0 mg/L
	NO_3 -N + NO_2 -N 8.0 mg/L
Ballona Creek Trash, R4- 2004-023 (adopted March 4, 2004)	"As required by the Clean Water Act, discharges of pollutants to surface waters from storm water are prohibited, unless the discharges are in compliance with a National Pollutant Discharge Elimination System (NPDES) PermitIn addition, USEPA Phase II stormwater permits, general permits, and industrial permits may also be used to regulate discharges of trash to the river"
Chollas Creek Diazinon, R9-2002-0123 (adopted	"The State Water Resources Control Board (State Board) has issued three additional NPDES storm water permits that regulate the discharge of pollutants including diazinon in the Chollas Creek watershed. These permits are the

CCKA Comment Letter 17 Attachment 5

TMDLs Applicable to Permittees			V	VLAs Applicable	to Permittees			
August 14, 2002)	statewide Caltrans Municipal Storm Water Permit (State Board Order No. 99-06-DWQ NPDES No. CAS 000003), the statewide General Industrial Storm Water Permit (State Board Order No. 97-03-DWQ NPDES No. CAS 000001), and the statewide General Construction Storm Water Permit (State Board Order No. 99-08-DWQ NPDES No. CAS 000002) which directly regulate discharges from Caltrans owned and operated facilities, and from industrial and construction sites respectively, located within the Chollas Creek watershed." "The concentration-based Waste Load and Load allocations of this TMDL are applied equally to all diazinon discharge sources in the Chollas Creek watershed. All allocations are set at 90% of the Numeric Targets resulting in a diazinon allocation equal to 0.072 µg/L under acute exposure conditions and a diazinon allocation of 0.045 µg/L under chronic exposure conditions. These allocations include an explicit 10 % margin of safety to account for uncertainties in the TMDL analysis. This concentration-based TMDL and its allocations apply year-round and will be protective during all flow conditions and seasons.							
			ad and Load Allocati inon in Chollas Cree					
	Exposure Duration Acute Chronic	Numeric Targets 0.08 μg/L 0.05 μg/L	Margin of Safety 0.008 μg/L 0.005 μg/L	Waste Load and Load Allocations 0.072 μg/L 0.045 μg/L	· ·			
	Diego, City of California Dep	Lemon Gro partment of	ove, City of La M Transportation (C	esa, San Diego Un CalTrans) are respon	storm water flows to Chollas Creek, the City of San ified Port District, County of San Diego, and the nsible for implementation of this TMDL. These entities MS4 Permit or the statewide CalTrans MS4 Permit."			

TMDLs Applicable to Permittees	WLAs Applicable to Permittees							
Chollas Creek Copper, Lead, and Zinc, R9-2007- 0043 (adopted June 13, 2007)	"the Industrial Storm Water General NPDES WDRs Order 97-0003-DWQ (General Industrial NPDES Requirements) is an order that regulates discharges in Chollas Creek that are associated with ten broad categories of industrial activitiesAll point source discharges to Chollas Creek are expected to achieve this WLA." TABLE 11.1 The Wasteload Allocations for dissolved copper, lead, and zinc for							
	acute and chronic conditions							
	Metal							
	Copper (0.96) * {e^ [0.9422 * ln (hardness) - (0.96) * {e^ [0.8545 * ln (hardness) - 1.702]} *0.9 (0.96) * {e^ [0.8545 * ln (hardness) - 1.702]} *0.9							
	Lead [1.46203 - 0.145712 * ln (hardness)] * {e^[1.273 * ln (hardness) - 1.460]} * {e^[1.273 * ln (hardness) - 1.460]} * {e^[4.273 * ln (hardness)] - 4.705]} * 0.9							
	Zinc (0.978) * {e^ [0.8473 * ln (hardness) + (0.986) * {e^ [0.8473 * ln (hardness) + (0.884]} * 0.9							
Revised Project I - Twenty Beaches and Creeks in San Diego Region (including Tecolote Creek), R9-2010- 0001 (adopted February 10, 2010)	"All 47 MSW landfills are regulated by WDRs (general or site specific) issued by the San Diego Water Board and via the statewide Industrial Stormwater NPDES requirements for landfills. Both are interrelated in that a change to the statewide WDRs are always reflected in the Regional WDRs, which are renewed in 5 or 10 year cycles depending on the perceived threat to water quality and complexity ranking of the facility (pursuant to CCR Title 23, section 2200)."							

ediment, R9-2012-0033, ane 13, 2012 T	"Responsible 81 industrial f Table 4 identi Table 6. TMDL se Source Watershed conte Ocean boundary Margin of Safety TMDL Table 7. Year 200 Source Watershed contribution (WLA)	ribution (WLA) y (MOS)	rolled under	ies withi	Daily Lo	strial storm weñasquitos wa
	Source Watershed control Ocean boundary Margin of Safety TMDL Table 7. Year 200 Source Watershed contribution	ribution (WLA) y (LA) y (MOS) 00 vs. historical Year 2000 Load (tons)	(tons) 2,580 9,780 implicit 12,360 loads and percent Historical (mid-1970s) Load (tons)	t reduction	12.2 46.4 implicit 58.6	Percent Reduction
	Watershed control Ocean boundary Margin of Safety TMDL Table 7. Year 200 Source Watershed contribution	y (LA) y (MOS) 00 vs. historical Year 2000 Load (tons)	(tons) 2,580 9,780 implicit 12,360 loads and percent Historical (mid-1970s) Load (tons)	t reduction	12.2 46.4 implicit 58.6	Percent Reduction
	Ocean boundary Margin of Safety TMDL Table 7. Year 200 Source Watershed contribution	y (LA) y (MOS) 00 vs. historical Year 2000 Load (tons)	9,780 implicit 12,360 loads and percen Historical (mid-1970s) Load (tons)	Load Re	46.4 implicit 58.6	Reduction
	Margin of Safety TMDL Table 7. Year 200 Source Watershed contribution	y (MOS) 00 vs. historical Year 2000 Load (tons)	implicit 12,360 loads and percen Historical (mid-1970s) Load (tons)	Load Re	implicit 58.6	Reduction
	TMDL Table 7. Year 200 Source Watershed contribution	00 vs. historical Year 2000 Load (tons)	loads and percen Historical (mid-1970s) Load (tons)	Load Re	58.6	Reduction
	Source Watershed contribution	Year 2000 Load (tons)	loads and percen Historical (mid-1970s) Load (tons)	Load Re		Reduction
	Source Watershed contribution	Year 2000 Load (tons)	Historical (mid-1970s) Load (tons)	Load Re	duction	Reduction
	Watershed contribution	Load (tons)	(mid-1970s) Load (tons)		duction	Reduction
	contribution	7,719	2 580			Required
			2,000	5,139		67%
	Ocean boundary (LA)	5,944	9,780 +3,836 (increase)			
	Total	13,663	12,360	1,303		10%

TMDLs Applicable to Permittees	WLAs Applicable to Permittees
Los Angeles and Long Beach Harbors Toxic and Metals, R11-008, Adopted March 23, 2012	"The regulatory mechanisms to implement the TMDL include, but are not limited to the Statewide Industrial Storm Water General Permit." Interim WLAs: (1) Dominguez Channel Freshwater Interim Allocations A. Freshwater Toxicity Interim Allocation wet weather: An interim allocation of 2 TUc applies to each source, including all point sources assigned a WLA and all nonpoint sources assigned a LA. B. Freshwater Metals Interim Allocations - wet weather only: Interim water allocations are assigned to stormwater dischargers (MS4, Caltrans, general construction and general industrial stormwater dischargers) and other NPDES dischargers. Interim water allocations are based on the 95th percentile of total metals data collected from January 2006 to January 2010 using a log-normal distribution. Concentration-based Dominguez Channel and Torrance Lateral freshwater interim metal allocations: Concentration-based Dominguez Channel and Torrance Lateral freshwater interim metal allocations **Concentration-based Dominguez Channel and Torrance Lateral freshwater interim metal allocations** **Interim WLAs: **Interim WLAs: Concentration-based Dominguez Channel and Torrance Lateral freshwater interim metal allocations** **Concentration-based Dominguez Channel and Torrance Lateral freshwater interim metal allocations** **Interim WLA: **Interim WLA: **Concentration-based Dominguez Channel and Torrance Lateral freshwater interim metal allocations** **Interim WLA: **Inter

TMDLs Applicable to Permittees				•	WLAs	Applica	able to l	Permittees	
	(2) Dominguez Channel Estuary and Greater Los Angeles and Long Beach Harbor Waters:								
	Interim sediment allocations are assigned to stormwater dischargers (MS4, Caltrans, general construction and								
	general industrial stormwater dischargers) and other NPDES dischargers. Interim sediment allocations are								
	based on the 95th percentile of sediment data collected from 1998-2006.								
	Sediment, interim concentration	Sediment, interim concentration-based allocations Pollutant (mg/kg sediment)							
	Waterbody	Copper	Lead	Zinc	DDT	PAHs	PCBs		
	Dominguez Channel Estuary	220.0	510.0	789.0	1.727	31.60	1.490	1	
	Long Beach Inner Harbor	142.3	50.4	240.6	0.070	4.58	0.060]	
	Los Angeles Inner Harbor	154.1	145.5	362.0	0.341	90.30	2.107		
	Long Beach Outer Harbor (inside breakwater)	67.3	46.7	150	0.075	4.022	0.248		
	Los Angeles Outer Harbor	07.3	40.7	150	0.073	4.022	0.246	-	
	(inside breakwater)	104.1	46.7	150	0.097	4.022	0.310		
	Los Angeles River Estuary	53.0	46.7	183.5	0.254	4.36	0.683]	
	San Pedro Bay Near/Off Shore								
	Zones Los Angeles Harbor - Cabrillo	76.9	66.6	263.1	0.057	4.022	0.193	_	
	Marina	367.6	72.6	281.8	0.186	36.12	0.199		
	Los Angeles Harbor -							1	
	Consolidated Slip	1470.0	1100.0	1705.0	1.724	386.00	1.920	_	
	Los Angeles Harbor - Inner Cabrillo Beach Area	129.7	46.7	163.1	0.145	4.022	0.033		
	Fish Harbor 558.6 116.5 430.5 40.5 2102.7 36.6								
	Numbers in bold are also the final allocation.								
	Final WLAs:								
	(1) Dominguez Channel Freshwater Allocations								
	A. Freshwater Toxicity Allocation in wet weather: A final allocation of 1 TUc, or its equivalent based on any								
	Statewide Toxicity Po	olicy, ap	plies t	o each	source	, includi	ng all p	oint sources assigned a WLA and all nonpoint	
	sources assigned a LA.								
	Sources assigned a LA.								
	R Freshwater Metals	Δllocat	ione ir	wet w	eather	Wet_w	eather a	llocations are assigned to Dominguez Channel and	
									
	1 -				_		•	ve Vermont Avenue) Concentration-based WLAs	
	are assigned for the of	ther poi	nt sour	ces inc	luding	but not	limited	to General Construction, General Industrial, Power	
	Generating stations, minor permits and irregular dischargers, and other NPDES dischargers."								
<u> </u>		P			J \		-,		

TMDLs Applicable to Permittees	WLAs Applicable to Permittees							
	Concentration-based Dominguez Channel Wet-weather Final Allocations (µg/L)							
	Other description of the Copper Total Lead Total Zinc 69.7							
	Other stormwater/NPDES 9.7 42.7 69.7 Based on hardness = 50 mg/L. Recalculated concentration-based allocations using ambient hardness at the time of sampling are considered consistent with the assumptions and requirements of these waste load allocations. In addition to the wasteload allocations above, samples collected during flow conditions less than the 90 th percentile of annual flow rates must demonstrate that the acute and chronic hardness dependent water quality criteria provided in the CTR are achieved.							
	(2) Torrance Lateral Freshwater and Sediment Allocations							
	Torrance Lateral Wet-weather Waste Load Allocations and Sediment Waste Load							
	Allocations, concentration-based Media Total Copper Total Lead Total Zinc							
	Water (unfiltered) (µg/L) 9.7 42.7 69.7							
	Sediment (mg/kg dry) 31.6 35.8 121							
	(3) Dominguez Channel Estuary and Greater Harbor Waters Allocations—Concentration-based WLAs for point sources in Dominguez Channel Estuary and Greater Harbor Waters (including refineries) for metals,							
	PAHs, and bioaccumulative compounds in water.							
	Non-MS4 point sources such as General Construction, General Industrial, individual industrial permittees, including							
	power generating stations, minor permits and irregular dischargers into Dominguez Channel Estuary and Greater							
	Harbor Waters are assigned concentration-based allocations							
	Receiving (salt) Water Column Concentration-Based Waste Load Allocations							
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
	Dominguez Channel 3.73 8.52 85.6 0.049** 0.00059 0.00059 0.00014 0.00017 Estuary 85.6 85.6 0.049** 0.00059 0.00014 0.00017							
	Greater							

TMDL	Expired Compliance Deadline						
Compliance with Final WLA Due							
Santa Clara River Reach 3 Chloride	June 18, 2003						
Marina del Rey Harbor Back Basins Bacteria	March 18, 2007 (compliance deadline for summer and winter dry WLAs)						
San Gabriel River Metals and Selenium	March 26, 2007						
Los Angeles Harbor Bacteria	March 10, 2010						
Oxnard Drain No. 3 Pesticides, PCBs and Sediment Toxicity, EPA Established	October 6, 2011						
Long Beach City Beaches and Los Angeles River Estuary Indicator Bacteria	March 26, 2012						
Los Angeles Area Lakes Nitrogen, Phosphorus, Mercury, Trash, Organochlorine Pesticides and PCBs	March 26, 2012						
Santa Monica Bay DDTs and PCBs	March 26, 2012						
Compliance with Interim WLA Due							
Calleguas Creek Watershed Metals and Selenium June 8, 2006							
Calleguas Creek Watershed Salts	December 2, 2008						
Los Angeles River Metals	January 11, 2011						
Ballona Creek Metals	January 11, 2011						