Economic Model for Performance Standards: Data, Methods, and Assumptions

Ellen Bruno, Katrina Jessoe, Frank Loge, Amanda Rupiper, Joakim Weill

Preliminary draft of economic model: subject to change

June 7, 2019

What amount of water loss reduction is efficient for each individual urban retailer?

- Answer involves estimation of both benefits and costs and how they accrue over time.
- Goal: Reach water loss recovery targets where net benefits are greatest.

Outline

Economic Model

- Benefits Overview
- Costs Overview
- Assumptions
- Determining performance standards

Benefits Estimation

- Illustration
- Components and assumptions
- Calculation for hypothetical utility

Costs Estimation

- Illustration
- Components and assumptions
- Calculation for specific utility

Data Needs and Gaps

- Benefits
- Costs

Benefits Estimation: Big Picture

Steps to estimating benefits:

- 1. Catalogue all potential benefits associated with reduction in losses
- 2. Quantify each benefit in monetary terms
 - Will vary by utility (population density, property values, etc.)
 - Will likely change over time
- 3. Estimate how benefits change with level of water loss reduction

Benefits Estimation: Time Horizon

Benefits will be estimated over both short-run and medium-run horizons.

Short run: 5 years

Present Discounted Value =
$$\sum_{t=0}^{5} \frac{Benefits_t}{(1+r)^t}$$
 (1)

Medium run: 20 years

Present Discounted Value =
$$\sum_{t=0}^{20} \frac{Benefits_t}{(1+r)^t}$$
 (2)

Assume a reasonable discount rate or range, i.e., 1-5%.

Benefits Estimation: Illustration

Water Loss Recovery (acre feet)

Benefits Estimation: Assumptions

- 1. Time Horizon
 - Short run: 5 years
 - Medium run: 20 years
- 2. Assume a discount rate or range, i.e., 1-5%.
- 3. Incremental benefit from an additional unit of loss recovery is constant across all recovery levels.
- 4. Impute benefits for utilities with missing data using data from 'similar' utilities

Costs Estimation: Big Picture

Steps to estimating costs:

- 1. Catalogue actions available to reduce losses
- 2. Monetize costs of each action
 - Depends on features of utility, current actions and current losses
- 3. Estimate how costs change with level of water loss reduction

Our approach:

- 1. Fix quantity of reduction
- 2. Calculate cost of each utility action
- 3. Choose cheapest action to trace out marginal cost curves

Water Loss Recovery (acre feet)

Cost Estimation: Assumptions

- 1. Time Horizon
 - Short run: 5 years
 - Medium run: 20 years
- 2. Assume a reasonable discount rate or range, i.e., 1-5%.
- 3. Utilities will pursue the cheapest technology first
- 4. Actions taken to reduce losses can be computed independently

Economic model solves for cost-effective standards

- 1. Quantify benefits and costs (in dollar terms)
- 2. Estimate shape of curves
- 3. Determine optimal amount of water loss recovery
 - Occurs where total benefits exceed total costs by the largest amount, i.e., marginal benefits = marginal costs

Costs and Benefits Vary by Utility

Urban Water Retailers Subject to SB 555

- Must account for how curves change by utility.
- Benefits and costs vary with population size, depth to mains, pressure of system, etc.
- Rationale for individualized performance standards.

Pilot: Apply framework to a couple utilities

Apply model framework to subset of utilities for which we have all the necessary data.

- Use specific utilities to demonstrate how framework can be applied.
- Use utility data to identify all the necessary model inputs as well as their form.
 - What utility data is necessary for full benefit/cost calculations?
- Sensitivity analysis: How do our assumptions impact the output?

Arrive at tailored performance standards

Economic model determines where total benefits exceed total costs by largest amount.

Can apply other thresholds:

Calculate a benefit-cost ratio (BCR) that is utility specific:

$$BCR = rac{\mathsf{Total benefits}}{\mathsf{Total costs}}$$

How much recovery can be done such that BCR > 1, BCR > 1.5, BCR > 2, etc.?

Outline

Economic Model

- Benefits Overview
- Costs Overview
- Assumptions
- Determining performance standards

Benefits Estimation

- Illustration
- Components and assumptions
- Calculation for hypothetical utility

Costs Estimation

- Illustration
- Components and assumptions
- Calculation for specific utility

Data Needs and Gaps

- Benefits
- Costs

What comprises benefits?

- Water and energy saved
- Reduction in main breaks
 - Avoided property and infrastructure damage
 - Avoided outages (including reduction in ratepayer trust)
 - Avoided traffic increase
 - Avoided public health impacts
 - Avoided reduction in firefighting capability
 - Avoided SWRCB fines
- Carbon not emitted from energy saved
- Avoided cost of developing new water supply
- Improved system hydraulics or extended infrastructure life

Benefits Estimation: Illustration

Benefits Estimation: Illustration

Benefits Estimation: Assumptions

- Acknowledge but not monetize some benefits.
 - avoided traffic
 - public health impacts
 - changes in firefighter capability
 - changes in ratepayer trust
- Value of avoided outage is constant across utilities.
 - Buck et al. (2016) estimate welfare losses from supply disruptions to be \$1,458/AF.
- Social cost of carbon
 - Auffhammer (2018) estimate value of damages per ton of C02 emitted = \$42.
- Assume benefits change over time.

Proof of concept: Estimation for hypothetical utility

Let's do a back-of-the-envelope example for illustration.

Average utility has real losses of 806.4 AF and 470.2 AF are unavoidable.

Maximum utility can cut back = 336 AF annually

- What are the total benefits of reducing 336 AF in losses?
- What are the marginal benefits of each additional AF?

Benefits from water and energy saved

1. Start with estimate of value in one year:

Avoided cost = (water saved AF) * (variable water supply cost AF)

- Variable production cost = 1,035/AF
- Total benefit = 336 AF * \$1,035/AF = \$347,760
- 2. Benefits include value in each future years as well, discounted to the present.
 - Need assumption on how supply costs change over time.

Benefits from water and energy saved

Assume costs increase by 3% each year and discount rate = 2%:

Present discounted value
$$=\sum_{t=0}^{\mathcal{T}}rac{\$1,035(1.03)^t}{(1.02)^t}$$

Short-run (5yrs) marginal benefits (\$/AF) from water saved

= \$5,655

Medium-run (20yrs) marginal benefits (\$/AF) from water saved

= \$30, 566

Benefits from reduction in main breaks

- 1. Start with estimate of value in one year:
 - Value of avoided damage = (cost to repair damage per area)*(average area affected in a year) = \$200/sqft*10,000 sqft = \$2,000,000

Divide by 336 AF to get marginal value: \$5,952/AF.

Assume cost to repair damage scales with density, etc.

- Value of avoided outages = 336 AF * \$1,458/AF = \$489,888
- 2. Benefits include value in each future years as well, discounted to the present.
 - Need assumption on how benefits change over time

Benefits from reduction in main breaks

Assume value of avoided outages increases by 1% each year and discount rate = 2%:

Present discounted value
$$=\sum_{t=0}^{T}rac{\$7,410(1.01)^t}{(1.02)^t}$$

Short-run (5yrs) marginal benefits from reduction in breaks

= \$36,710

Medium-run (20yrs) marginal benefits from reduction in breaks

= \$147,851

Benefits from avoided carbon emissions

1. Start with estimate of value in one year:

Value of avoided carbon per AF = (marginal energy intensity kWh/AF) * (C02/kWh emitted) * (social cost of carbon) = 2,500 kWh/AF * .000427 tons/kWh * 42/ton = 44.8/AF

Total benefit = 336 AF * \$44.8/AF = \$15,053

2. Total benefits include value in each future years as well, discounted to the present.

Benefits from avoided carbon emissions Assuming no change over time and discount rate = 2%:

Present discounted value =
$$\sum_{t=0}^{T} \frac{\$44.80}{(1.02)^t}$$

Short-run (5yrs) marginal social benefits from avoided carbon

= \$211

Medium-run (20yrs) marginal social benefits from avoided carbon

Short-run marginal benefits = \$5,655+\$36,710+\$211 = \$42,576/AF

Outline

Economic Model

- Benefits Overview
- Costs Overview
- Assumptions
- Determining performance standards

Benefits Estimation

- Illustration
- Components and assumptions
- Calculation for hypothetical utility

Costs Estimation

- Illustration
- Components and assumptions
- Calculation for specific utility

Data Needs and Gaps

- Benefits
- Costs

Components for Managing Real Losses

Components for Managing Real Losses

Leak Detection

Utility actions: Leak Detection Survey, Leak Component Analysis

Utility Inputs

- Total system mileage
- Leak detection technology
- Past leak survey information (if available)

Assumptions

- Leak follow a certain distribution throughout the water system
- Leak detection depends on system characteristics and technology
- Survey done every year

Leak Distribution

Cost Curve for Leak Detection Surveys

Example Utility Inputs

Total Leaks (AF/yr)2268.6Total Detectable Leaks (AF/yr)1588.02Total System Mileage683% of Leaks that are detectable70Leak Detection Technology CostLeak Detection Labor/miAverage Contractor cost/mi (\$)320Survey Frequency (per/yr)1

Pressure Management

Utility actions: Pressure Management Plan (monitoring & reduction)

Utility Inputs

- Total system mileage
- Individual pressure zone average pressures
- System target pressure
- Volume of leaks

Assumptions

- Can reduce individual pressure zone averages down to target pressures
- Assume leak volume proportional to pressure zone size
- Assume capital costs of pressure reducing valves and variable speed drives spread over 5 or 20 years

Leak reduction follows the power law:

$$L_1 = L_0 (rac{P_1}{P_0})^{N_1}$$

N1 depends on pressure zone size and pipe materials. International research has shown that N1 = 1.15 is a good estimate for large pressure zones with varied materials.

Cost Curve for Pressure Management

Example Utility Inputs								
Total Leal	ks (AF/yr		2268.6					
Total Syst	em Mile		683					
System-V	Vide Targ	e (psi)	60					
Total Syst	em Sens	Costs	290695					
Individua		6000						
Variable S	Speed P	\$)	3000					
Total Pressure Management								
Operations Costs								
N1 1.1								
	Pipe	Volume of	e of Potential					
Pressure Length		Pressure	Leaks	Reduction				
Zone	(mi)	(psi)	(AF/yr)	(psi)				
1	31.9	150	106.0	90.0				
2	23.3	140	77.4	80.0				
3	42.5	130	141.2	70.0				
4	57.8	120	192.0	60.0				
5	73.1	110	242.8	50.0				
6	75.1	100	249.4	40.0				

Asset Management

Utility actions: Preventive Pipe Replacement

Utility Inputs

- Percentage of system by pipe material
- Pipe age
- Length of system
- Average time to fix a main break
- Average flows through mains

Assumptions

- Utilities will replace the pipes with the highest predicted break-rate first
- Only preventatively replace mains greater than 12"
- Average Cost to replace mains \$500/ft
- Predicted pipe break-rates are a function of pipe material, age, and soil conditions

Predicting Break-Rates

In the absence of data:

USA Empirical Values for break-rates per 100 miles of pipe (Folkman 2018):

- ► Asbestos-Cement = 10.8
- Cast Iron = 33.2
- Concrete Steel Cylinder = 3.1
- Ductile Iron = 5.0
- ▶ PVC = 2.6
- ► Steel = 8.3

Given some data: Use pipe age, material, diameter, pressure, and soil corrosivity to estimate break-rates

Cost Curve for Asset Management

Example Utility Inputs

Plastic Pipe %	37.7
Plastic Pipe Age	26
Steel Pipe %	9.3
Steel Pipe Age	33
Cast Iron Pipe %	0.1
Cast Iron Pipe Age	45
Ductile Iron Pipe %	7.3
Ductile Iron Pipe Age	27
Concrete Cement Pipe %	1.3
Concrete Cement Pipe Age	50
Asbestos Pipe %	48.6
Asbestos Pipe Age	42
Length of Mains - miles	683
Average Flows in >12" Pipes (GPM)	200
Average Cost to Replace a Main (\$/mi)	2640000
Average Time to Replace a Main Break	
(days)	7

Still Need: An adequate way to estimate break-rate given our limited data.

Leaky Pipe Repair and/or Replacement

Utility actions: Repair or replace leaky pipes

Utility Inputs

- Total number of leaks
- Total volume of leaks
- Total system mileage
- Percent of water distribution system by pipe diameter
- Leak survey data (if available)

Assumptions

- Utility action depends of pipe failure type (37% circumferential cracks, 27% corrosion or holes, 22% longitudinal cracks) (Folkman, 2018).
- Leaks evenly spread among pipe diameter sizes.
- Leak sizes follow some distribution, utilities can update once complete a leak detection survey

Cost Curve for Pipe Repair/Replacement

6000.00

6000

14-24in Cost

Example Utility I	nputs			25000	000							
Total Leaks (AF/yr)			2268.6	23000	000							
Total System Mileage	2		683									
% of Pipe 3-8"		0.35	20000	000						/	<u></u>	
% of Pipe 10-12"			0.25									
% of Pipe 14-24"			0.15									
% of Pipe 27-36"			0.1	15000	000						-	
% of Pipe 42-48"			0.1	st (\$						1		
% of Pipe >48"			0.05	8	200				1			
5-yr total leaks #			1794	10000	000				/			
5-year total leaks Volume (AF)			10034									
Average Leak Size (AF/yr)			5.59	5000	000			_				
Average Leak Flow Rate (gpm)			3.47									
Average Pipe Replace	ement Lei	ngth (ft)	20			-						
					0							
Repair/Replacement	Pipe	Pipe	Pipe			0	500	1000	1	500	2000	2500
Options	Clamp	Patch	Replace	ment				Leak Red	duction	(AF/yr)		
3-8in Cost	2250.00	6000		7000								
10-12in Cost	2500.00	6000		10000								

11000

Outline

Economic Model

- Benefits Overview
- Costs Overview
- Assumptions
- Determining performance standards

Benefits Estimation

- Illustration
- Components and assumptions
- Calculation for hypothetical utility

Costs Estimation

- Illustration
- Components and assumptions
- Calculation for specific utility

Data Needs and Gaps

- Benefits
- Costs

Benefits Data - Literature and eAR/Audits

From academic literature or reports:

- Value of avoided outages (Buck et al. 2016)
- Social cost of carbon (Auffammer 2018)
- Marginal energy intensity and amount of carbon emitted per kWh

From Electronic Annual Reports (eAR) or audit data:

- Annual variable water supply costs and annual quantity supplied
- Real and unavoidable losses

Benefits Data - Utilites

Damage repair estimates associated with main breaks.

- Costs associated with outages, e.g., bottled water
- Average size of area affected, length of time of outage, cost to repair damage
- Pipe break records and GIS maps of asset locations
- Energy use
- Projections of water supply costs
- The cost of an additional acre foot from a new water source

Cost Data - Literature

- Leak distribution in a water system (Rezatek, 2019)
- Leak detection technology costs and limitations (Various)
- Relationship between pressure and leaks (Thornton et al., 2008)
- Pressure sensors, loggers, PRVs, VSD costs (Various)
- Pipe failure distributions (Folkman, 2018)
- Pipe repair and replacement costs (Various)

Cost Data - eAR and Audits

- Pipe characteristics (% of system material, pipe age by material type, to length of mains)
- Number of pressure zones
- Minimum operating pressure
- Average operating pressure
- 5-yr total number and volume of leaks
- Real losses
- Number of service connections
- Variable water production cost
- Unavoidable annual real losses

Cost Data - Utilities

- Pipe characteristics (% system diameters)
 - Improves cost calculations for leak repair and replacement
- Pressure Zone characteristics (size, pressures, pipe material)
 - Improves pressure management cost curve
- Historical pipe break records
 - Improves preventative pipe replacement cost curve
- Leak detection survey results
 - Improves assumptions about leak distribution and sizes
 - Impacts all four curves