Cap and Trade Dollars at Work

Proposed Changes to the Cost Assessment Model: Physical Consolidation

Needs Analysis Unit Division of Drinking Water

July 14, 2023 *Remote participation only*

Meeting Logistics

Water Board's Mission Statement

Preserve, enhance, and restore the quality of California's water resources and drinking water for the protection of the environment, public health, and all beneficial uses, and to ensure proper water resource allocation and efficient use, for the benefit of present and future generations.

CALIFORNIA WATER BOARDS

Ways to Participate-

1. Watch ONLY: Visit video.calepa.ca.gov

2. Email: Submit a comment or ask a question that will be read aloud, send an email to: <u>safer@waterboards.ca.gov</u>

3. Q&A: Submit a question using the Q&A feature at the bottom of your Zoom Screen. You can UPVOTE any question you would like answered.

4. Raise Hand: Attendees will be given the opportunity to provide verbal comment or ask questions, if you're interested in this option, please raise your virtual hand when the time is right.

- Please wait for your name to be called.
- Public comments are 3 minutes each.

Agenda

COST ASSESSMENT & SUMMARY OF PROPOSED CHANGES

OVERVIEW OF MODELED PHYSICAL CONSOLIDATION

PROPOSED UPDATES TO MODEL CRITERIA

PROPOSED UPDATES TO MODEL UNIT COST ASSUMPTIONS

NEXT STEPS

CALIFORNIA WATER BOARDS

COST ASSESSMENT BACKGROUND

Kristyn Abhold Needs Analysis Unit Division of Drinking Water

Audience Poll Question 1

Did you participate in any past webinars about Cost Assessment Model or Needs Assessment?

• Yes

7

• No

View recordings and materials here: https://bit.ly/3SnTmD2

Audience Poll Question 2

Have you read the White Paper: "Proposed Drinking Water Cost Assessment Model Assumptions on Physical Consolidation"?

- Yes, I read the whole thing
- Yes, I skimmed it
- No, but I plan to
- No, I don't intend to read it

Access the white paper online:

https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/docs/20 23/20230714-final-cost-assessment-consolidation-white-paper.pdf

Safe and Affordable Drinking Water Fund

Up to \$130 million per year through 2030.

The annual **Fund Expenditure Plan** prioritizes projects for funding, documents past and planned expenditures, and is "based on data and analysis drawn from the drinking water **Needs Assessment**" (Health and Safety Code §116769).

Needs Assessment Components

https://bit.ly/SAFER-NA

CALIFORNIA WATER BOARDS

Purpose of the Cost Assessment

Failing & At-Risk Water Systems & Domestic Wells SB 200 directs the State Water Board to estimate "anticipated funding needs" related to the implementation of interim and/or emergency measures and longer-term solutions for Failing and At-Risk systems.

Results of the Cost Assessment are used to inform the prioritization of existing SAFER funding.

The Cost Assessment is NOT intended to inform local decisions

Systems Included in the Cost Assessment

Accessibility Risk

Affordability Risk

Financial (TMF)

• Technical,

Risk

Managerial,

- Primary MCL Violation
- Secondary MCL Violation
- E. coli Violation
- Treatment **Technique Violations**
- Monitoring & **Reporting Violations**

- Water Quality Risk
 - Drought Risk

- Water Quality Risk
- Drought Risk

SAFER PROGRAM

CALIFORNIA WATER BOARDS

12

OVERVIEW OF PROPOSED CHANGES

Past Workshops on the Cost Assessment

The State Water Board has hosted workshops on the development and refinement of the Cost Assessment Model.

NEEDS ASSESSMENT COMPONENTS	2019	Q2 2020	Q3 2020	Q4 2020	Q1 2021	Q3 2021	2022
Risk Assessment: Public Water Systems							
Risk Assessment: State Small Water Systems & Domestic Wells							
Cost Assessment							
Affordability Assessment							

Access the **2021** report here: <u>https://bit.ly/3mAz2yK</u>

Access the **2022** report here: <u>https://bit.ly/3uJSUFH</u>

Learn more about the Needs Assessment here: https://bit.ly/3vfSvtA

2021 Cost Assessment Modeled Long-Term Solution Selection Process

STEP 1: All possible modeled solutions identified, and cost estimates developed. STEP 2: Conduct Sustainability & Resiliency Assessment of all modeled solutions and compare top 2 solutions. STEP 3: Select best model solution using cost and Step 2 score.

Proposed Cost Assessment Modeled Long-Term Solution Selection Process

The proposed new Cost Assessment Model would assess modeled solutions in priority order, using clear selection and viability criteria.

Audience Poll Question 3

Do you support the proposed modifications to the Cost Assessment Model?

- Yes, they sound good
- Maybe, I need to learn more
- No, I think this is headed in the wrong direction
- Neutral

PROPOSED PHYSICAL CONSOLIDATION ANALYSIS

Mawj Khammas Needs Analysis Unit Division of Drinking <u>Water</u>

Summary of Modeled Physical Consolidation Process

The following process will be applied to each modeled solution per system.

STEP 1: Identify Potential Receiving & Joining Systems

Receiving Systems: Commonly larger public water systems that expand to subsume Joining systems and provide water supply to both of their customers.

Joining Systems: Commonly smaller public water systems, state small water systems, and domestic wells that are dissolved into existing receiving public water systems and are no longer responsible for providing water to their own customers.

STEP 1: Identify Potential *Receiving* Systems

	Old Criteria	# Systems	Recommended Updated Criteria	# Systems
Failing PWS	Excluded	N/A	<i>Largest System ></i> 1,000 service connections	36
At-Risk PWS	Excluded	N/A	<i>Largest System ></i> 500 service connections	68
Non-Failing or At-Risk PWS	Population > 3,300	578	<i>Largest System ></i> 500 service connections	697
State Smalls	Excluded	N/A	Excluded	N/A
Domestic Wells	Excluded	N/A	Excluded	N/A
TOTAL:		578		801

CALIFORNIA WATER BOARDS

STEP 1: Identify Potential Joining Systems

	Old Criteria	# Systems	Recommended Updated Criteria	# Systems
Failing PWS	Population ≤ 3,300	346	≤ 1,000 service connections	345
At-Risk PWS	Population ≤ 3,300	463	≤ 500 service connections	444
Non-Failing or At-Risk PWS	Excluded	N/A	Excluded	N/A
State Smalls	At-Risk for water quality only	699	Combined At-Risk	245
Domestic Wells	At-Risk for water quality only	99,814	Combined At-Risk	81,596
TOTAL:		101,322		82,630

CALIFORNIA WATER BOARDS

STEP 2: GIS Analysis to Apply Distance Criteria

Intersect: Where the Joining system or domestic well is physically located within the service area boundary of a potential Receiving system.

Route:

• Public Water System or State Small Water System: Where the Joining system is physically located within a maximum distance from the service area boundary of a potential Receiving system.

 Domestic Well: Where the Joining domestic well is either along the modeled route of a potential public water system physical consolidation (route-intersect); or within a maximum distance from the boundary of a potential Receiving system.

STEP 2: GIS Analysis *Route* **Distance Criteria**

	Old Criteria	Recommended Updated Criteria
Public Water Systems (PWS)	Maximum route distance = 3 miles	Maximum route distance = 3 miles
State Smalls	Maximum route distance = 0.38 miles	Maximum route distance = 0.25 miles
Domestic Wells	<i>Route-Intersect</i> : along the modeled route of a potential public water system modeled physical consolidation	<i>Route-Intersect</i> : along the modeled route of a potential public water system modeled physical consolidation Maximum route distance = 0.25 miles

Appendix A for GIS Methodology & Datasets

STEP 2: Potential Receiving Systems Meeting Distance Criteria

	OLD Criteria # Systems	Recommended Updated Criteria # Systems
Failing PWS	N/A	26 (32%)
At-Risk PWS	N/A	32 (89%)
Non-Failing or At-Risk PWS	341 (59%)	320 (46%)
State Smalls	N/A	N/A
Domestic Wells	N/A	N/A
TOTAL:	341 (59%)	378 (47%)

STEP 2: Potential Joining Systems Meeting Distance Criteria

	OLD Criteria # Systems		Recommended Updated Criteria # Systems	
Failing PWS	138 (40%)		173 (45%)	
At-Risk PWS	193 (42%)		250 (49%)	
Non-Failing or At-Risk PWS	N/A		N/A	
State Smalls	231 (33%)		118 (48%)	
Domestic Wells	35,057 (35%)		25,634 (31%)	
TOTAL:	35,619 (35%)		26,175 (32%)	

STEP 3: Calculate Estimated Physical Consolidation *Project Costs*

State Water Board staff conducted rigorous research and outreach to update the Cost Model's physical consolidation cost component assumptions.

Efforts included:

- Review of State Water Board funded projects.
- Consultations with California venders and engineering consulting firms.

SAFER PROGRAM

• Outreach to small and medium sized water systems.

Appendix B for Recommendations on Cost Component Updates

STEP 3: Recommend Updates to Modeled Component Costs (1/3)

	Old Model	Cost \$	Recommended Update	Cost \$
Pipeline (\$/Lf)	Included	\$155	Included	\$220
Connection Fees (\$/Joining system service connection)	Averaging connection fees for systems with service connection ≥ 3,000	\$6,200	Averaging connection fees for receiving systems	PWS = \$5,250 SSWS = \$5,438 DW = \$4,230
Service Line Cost	Included for intersect Joining systems. Excluded for route Joining systems	\$5,000	Included for both intersect and route joining systems	\$6,200
Administrative Cost (\$/Project)	Excluded for SSWSs, DWs, and systems with service connection < 15	\$100,000	Included for all Failing and At-Risk systems, except At- Risk Domestic wells	15% of total construction cost.

CALIFORNIA WATER BOARDS

STEP 3: Recommend Updates to Modeled Component Costs (2/3)

	Old Model	Cost \$	Recommended Update	Cost \$
CEQA Cost (\$/Project)	Excluded for SSWSs, DWs, and systems with service connection < 15	\$85,000	Included for all Failing and At-Risk systems, except At- Risk DWs	<i>Intersect</i> systems = \$25,000 <i>Route</i> systems = \$100,000
Contingency	Included	20% Total Estimated Cost	Included for all Failing and At-Risk systems, except At- Risk DWs	20% Total cost
Inflation	Not Included	N/A	Included for all systems regardless of size and type	3% Total cost
Planning & Construction	Not Included	N/A	Included for all systems regardless of size and type	10% Total cost

CALIFORNIA WATER BOARDS

STEP 3: Recommend Updates to Modeled Component Costs (3/3)

	Old Model	Cost \$	Recommended Update	Cost \$
				Rural Counties (0%)
Regional Multiplier	Not Included	N/A	Included for all systems regardless of size and type	Urban Counties (+32%)
				Suburban Counties (+30%)

STEP 4: Evaluate Estimated Physical Consolidation Against *Funding Viability Thresholds*

	Old Model		Updated 2022-23 Intended Use Plan	Recommended Updated Thresholds
PWS > 75 service con.	 Total Capital Cost < \$500,000 Cost Per Connection < \$60,000 		Cost per Connection < \$80,000	Cost per Connection < \$96,000 (20% IUP adjustment)
PWS < 75 service con.			Total Capital Cost < \$6 M	Total Capital Cost < \$7.2 M (20% IUP adjustment)
State Smalls	N/A		N/A	< \$2 M
Domestic Wells	N/A		N/A	Cost per Domestic Well < \$150,000

For Cost Model ONLY – State Water Board funding decisions are based on project-level costs addressing clusters of households

CALIFORNIA WATER BOARDS

STEP 4: Estimated # of Systems Meeting *Funding Viability Thresholds*

	Old Model # Systems	Cost Estimate w/ Updated Costs	Recommended Updates # Systems	Cost Estimate w/ Updated Costs	
Failing PWS	134 (39%)	\$407 M	169 (49%)	\$550 M	
At-Risk PWS	190 (41%)	\$727 M	248 (56%)	\$900 M	
State Smalls	231 (33%)	\$103 M	118 (48%)	\$78 M	
Domestic Wells	35,040 (35%)	\$722 M	 25,480 (31%)	\$520 M	
TOTAL:	35,595 (35%)	\$1,959 M	26,015 (31%)	\$2,048 M	

2021 Cost Estimate w/ Old Cost Components = \$1,256 M for 26,044 systems (PWS, SSWS, & DWs) These are preliminary estimates – a full statewide Cost Assessment will be published in 2024.

STEP 5: Model Additional Infrastructure/Admin Needs

	Old Model	Cost Method	Recommended Update	Cost Method
Treatment Cost	Not Included	N/A	Included for Failing Receiving systems due to water quality issues	Apply BAT Capital and O&M per failing analyte.
Additional Source	Not Included	N/A	Included for Receiving systems with single source of water supply.	Additional cost for well or intertie if system relies on one source.
Other Essential Infrastructure	Included	Based on statewide percentage estimates	Included	Based on system and location-specific information
Admin, Technical Assistance, etc.	Included	Based on statewide percentage estimates	Included	Based on system and location-specific information

To be explored in more detail in future 2023 workshops.

CALIFORNIA WATER BOARDS

Discussion Topic 1: Proposed Changes to the Physical Consolidation Analysis in the Cost Model

Q1: Do you agree with the proposed methodology for physical consolidation in the Cost Model?

Q2: Do you have any suggestions or feedback on the updates to the physical consolidation component cost assumptions?

Discussion Topic 2: Additions to the Cost Model's Physical Consolidation Analysis

Q1: Should the Model include elevation different cost adjustments for modeled physical consolidation?

Feedback Requested

The State Water Board is seeking stakeholder feedback on the proposed Cost Assessment Model changes for physical consolidation.

Access the white paper online: <u>https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/docs/2023/20230714-final-cost-assessment-consolidation-white-paper.pdf</u>

Submit feedback to: <u>SAFER@waterboards.ca.gov</u>

Public Feedback due August 14, 2023

Next Workshop: Modeled Treatment

The proposed new Cost Assessment Model would assess modeled solutions in priority order, using clear selection and viability criteria.

SAFER PROGRAM

Thank You

