

Proposed Changes to the Cross-Connection Control Policy Handbook (CCCPH)

January 2026

This document will be updated to document any changes made to the CCCPH. The CCCPH ([link to CCCPH website](#)) will not include any change-tracking. The date of this document is the most recent version and includes all previous updates to the CCCPH. All sections referred to in this document are in the CCCPH – no other regulations or documents are changed in this document.

Proposed Changes to the CCCPH

Revision

Section 3.4.1(d): A certifying organization, accredited either by the American National Standards Institute (ANSI) National Accreditation Board (ANAB) or an equivalent organization recognized by ANAB, in accordance with ISO/IEC 17024, which complies with subsection (b), will be considered to be a State Water Board-recognized certifying organization. Beginning three years after the effective date of the CCCPH, only those testers with a valid certification from an ANSI-accredited certifying organization a certifying organization that is accredited by either ANAB or an ANAB-recognized equivalent shall satisfy subsection (a) and certifications obtained by organizations in accordance with subsection (c) will be invalid.

Section 3.4.2(d): A certifying organization, accredited either by the American National Standards Institute (ANSI) National Accreditation Board (ANAB) or an equivalent organization recognized by ANAB, in accordance with ISO/IEC 17024, which complies with subsection (b), will be considered to be a State Water Board-recognized certifying organization. Beginning three years after the effective date of the CCCPH, only those specialists with a valid certification from an ANSI-accredited certifying organization a certifying organization that is accredited by either ANAB or an ANAB-recognized equivalent shall satisfy subsection (a) and certifications obtained by organizations in accordance with subsection (c) will be invalid.

Purpose and Reason

The CCCPH requires all backflow tester (Tester) and cross-connection specialist (Specialist) certification organizations to be specifically accredited by the American National Standards Institute (ANSI) in accordance with ISO/IEC 17024 and does not allow for any other accrediting organizations to be considered. (CCCPH, § 3.4.1(d)) The

ANSI requirement was included to ensure that a consistent standard is established across the certifying organizations and to allow the State Water Board to avoid needing to establish an ongoing certification-organization recognition program. When the ANSI requirement was included in the CCCPH the State Water Board did not intend to exclude accrediting organizations recognized by ANSI as equivalent to ANSI. The proposed revision will allow accrediting organizations that are recognized by ANSI as ANSI-equivalent to accredit Tester and Specialist certification organizations to ISO/IEC 17024.

The proposed revision will also correct minor errors in identifying ANSI as the accreditation entity. The correct entity is ANAB, which is a subsidiary of ANSI.

Revision

Appendix D:

8. Sites with an auxiliary water supply (+-) ~~interconnected with PWS (+)~~
9. Deleted ~~Sites with an auxiliary water supply not interconnected with PWS~~

(+-) A user premises with an existing DC installed prior to July 1, 2024 may continue to use that existing DC for premises isolation provided that the following conditions are met: a) backflow does not occur at any time at the premises, b) the DC passes all field tests in the assembly testing and repair timeframe described in the PWS's Cross-Connection Control Plan, c) the PWS approves of the use of a DC in writing and identifies the location in the PWS's recordkeeping system, and d) no other high hazard activities are identified during a hazard assessment. An AG, RP, or both is required for all new or replacement assembly installations after July 1, 2024.

Purpose and Reason

An auxiliary water supply (AWS) is defined as a “source of water, other than an approved water supply, that is either used or equipped, or can be equipped, to be used as a water supply and is located on the premises of, or available to, a water user.” (CCCPH, § 3.1.1.) AWS is a broad category that may include, but is not limited to, private irrigation wells, private drinking water wells used to supplement household domestic water usage, rainwater collection systems and backyard ponds. Whether a user premises contains a water supply, whether that water supply could be considered an AWS, and whether that AWS is interconnected with the PWS is determined during a hazard assessment by the PWS's cross-connection control specialist.

The current language in Appendix D identifies both interconnected and not interconnected AWS as a high hazard cross-connection control premises. AWS, regardless of whether one is interconnected or not interconnected to a PWS, are considered a high hazard activity because the water quality of the AWS is usually unknown. For example, an AWS may be an improperly constructed shallow well that is contaminated with nitrate, coliforms, 1,2-dichloroethane, and Yersinia pestis, and the hazard presented by that AWS would therefore be lethal. While most AWS are likely not

contaminated such that they pose an acute health hazard, PWS typically do not include a mechanism to determine how much risk a particular AWS poses, and therefore a protective posture is warranted.

The former, now-repealed cross-connection control regulations in Title 17 of the California Code of Regulations (Title 17) generally required interconnected AWS to have an air gap (AG), and required not-interconnected AWS to have at least a “reduced pressure principle backflow prevention assembly” (RP); Title 17 also included an exception to these requirements that instead allowed the use of “double check valve backflow prevention assemblies” (DC) for premises isolation, thus providing flexibility on what protection is required for a particular user premises. For the exception to apply, the now-repealed regulations required that the DC be approved by “the health agency and the water supplier”, i.e. the PWS and the regulating agency such as the State Water Board or the Local Primacy Agency. The current requirements in section 3.2.2 and Appendix D of the CCCPH do not provide as much discretion for PWSs to allow a user premises to use a DC when a DC is sufficiently protective of public health.

CCCPH section 3.2.2(c) and Appendix D requires an AWS interconnected with a PWS to have an AG unless the PWS receives approval from DDW to use an alternate method of premises containment. An AWS not interconnected with a PWS is required to have an AG or RP without exception; section 3.2.2(c) and Appendix D do not address alternatives to an RP.

The State Water Board recognizes that many user premises with AWS, both interconnected and not interconnected, were allowed to install DC as a form of premises containment under Title 17, and that those premises may experience significant difficulty maintaining an adequately pressurized use site water supply if required to comply with existing CCCPH requirements and immediately replace the DC with an RP or an AG.

The proposed amendments to Appendix D of the CCCPH would provide for similar flexibility that existed under Title 17, with added protection because four criteria would need to be met to exercise this discretion. The following four criteria are intended to ensure that the protection provided by the DC is adequately protective until such time that the DC is replaced with at least an RP: (1) Backflow must not be occurring at the user premises, (2) The DC must be repaired in accordance with the PWS’s Cross-Connection Control Plan and Article 3 of the CCCPH, (3) The PWS must approve and track the location of the DC, and (4) No other hazards that would require the use of an RP or AG may be present.

A user premises previously identified as having an AWS and currently protected with a DC could receive a hazard reassessment to determine if the user premises still contains an AWS as defined by CCCPH section 3.1.1. The hazard reassessment could be triggered by failure of one of the four proposed criteria noted above.

The proposed amendments would not allow the use of DCs for premises that are newly identified as having AWS, nor would the amendments allow an existing DC to be replaced with another DC.

In summary, the State Water Board proposes amending Appendix D of the CCCPH to eliminate the distinction between interconnected and not-interconnected AWS and establish criteria for the ongoing use of existing DCs. Eliminating the distinction will streamline hazard assessments while retaining adequate controls to ensure that particularly high hazard user premises can be required to install an AG. The State Water Board recognizes that previously under Title 17, the majority of interconnected AWS were likely given permission to install either an RP or DC, and that few interconnected AWS required AGs to protect against lethal hazards. A newly interconnected AWS will now be required to have, in accordance with CCCPH section 3.2.2(c), either at least an RP for premises containment or State Water Board-approved internal protection in lieu of containment, and if the PWS's cross-connection control specialist determines that the AWS poses an increased or unique risk that necessitates an AG, then the authority provided to a PWS in Appendix D to "require an AG, RP, or both to protect a PWS from other hazards not listed below..." will allow that PWS to require an AG.

C4 also proposes replacing the text of item 9 in Appendix D with the word "Deleted" as some PWS have referenced specific item numbers from Appendix D in their CCC Plans, rather than referencing the item wording from Appendix D. If item 9 is removed from the list, then either the list items following the deleted item 9 would have to be renumbered, resulting in some approved CCC Plans having incorrect references to the Appendix D, or the Appendix D list would be missing a number, i.e. "8., 10.", which is confusing.

Previous Changes to the CCCPH

June 2025

Revision

Section 3.2.1(f): Noncommunity water systems must conduct an initial or follow-up hazard assessment within two three years of the effective date of the CCCPH.

Section 3.4.1(g): This Article is effective July 1, 2025 2026.

Section 3.4.2(g): This Article is effective July 1, 2025 2026.

Purpose and Reason

The CCCPH requires, beginning July 1, 2025, all public water systems (PWS) to use backflow assembly testers (Testers) and cross-connection control specialists (Specialists) that have received their certification from a certifying organization recognized by the State Water Board, and for all noncommunity water systems to

conduct hazard assessments by July 1, 2026. Certification requirements were previously defined in California Code of Regulations, Title 17, but were repealed in 2024 following the effective date of the CCCPH.

The State Water Board has received feedback from water system operators that PWS are experiencing difficulty in finding certified Specialists to review their hazard assessments, particularly in rural areas. Additionally, multiple Tester certification programs that were run by counties or other local health agencies in Southern California have opted to not become recognized, and Testers will need to be recertified by other certifying organizations.

Unlike community PWS, noncommunity PWS have a defined timeline to complete their initial hazard assessments, and challenges in finding a Specialist to review the hazard assessments may result in PWS becoming non-compliant without adequate recourse. The change to section 3.2.1(f) will provide noncommunity PWS with an extra year to complete their hazard assessments and allow time for more certified Specialists to be available.

The changes to 3.4.1(g) and 3.4.2(g) will provide all PWS with an additional year before being required to only use Testers and Specialists who receive certification from State Water Board-recognized organizations. The change to these sections will allow PWS to continue using Testers and Specialists that may have met the regulatory requirements of Title 17, but who do not yet meet the requirements of the CCCPH.

The State Water Board recognizes that the proposed changes will result in an increased regulatory gap from the current CCCPH's gap where PWS may be able to use Testers and Specialists that have not been certified in accordance with CCCPH requirements and were not certified under Title 17. The State Water Board expected during development of the CCCPH that the potential for unacceptable Testers and Specialists to be used by PWS was very low, and does not expect that the proposed increase will increase the risk.

Revision

Section 3.2.1(e)(6): if the State Water Board requests a hazard assessment of a user's premises; and or

Purpose and reason

The State Water Board has identified that the list in Section 3.2.1(e) contains a set of criteria that should be governed by an "or" statement instead of an "and" statement. The list contains seven conditions that may result in a new hazard assessment. As written, the list requires all seven conditions to occur before a new hazard assessment is necessary. The State Water Board intended for any of the conditions, when met, to result in a new hazard assessment. Requiring all seven conditions to occur effectively renders the subsequent hazard assessment requirement useless.

Revision

Section 3.4.1(d): ~~An American National Standards Institute (ANSI) accredited certifying organization, accredited in accordance with subsection (b) and ISO/IEC 17024, A certifying organization, accredited by the American National Standards Institute (ANSI) in accordance with ISO/IEC 17024, which complies with subsection (b),~~ will be considered to be a State Water Board-recognized certifying organization.

Purpose and reason

The Backflow Prevention Assembly Tester Certification requirement in Section 3.4.1(d) is effectively identical to the Cross-Connection Control Specialist Certification requirement in Section 3.4.2(d), but the language between the two sections is dissimilar enough such that unnecessary confusion may arise when comparing the two sections, and the change eliminates that dissimilarity.

Revision

Section 3.1.1: “Air-gap separation” or “AG” means a physical vertical separation of at least two (2) times the effective ~~pipe diameter~~ opening, as defined in section 207.0 of the California Plumbing Code, between the free-flowing discharge end of a potable water supply pipeline and the flood level of an open or non-pressurized receiving vessel, and in no case less than one (1) inch.

Purpose and reason

The definition of an air-gap separation in section 3.1.1 is inconsistent with the air-gap criteria in Appendix B; specifically, when describing the necessary vertical distance in an air-gap, the definition in 3.1.1 refers to an “effective pipe diameter” and Appendix B refers to an “effective opening.” The “effective pipe diameter” definition could be misconstrued to mean the outer pipe diameter and also not inclusive of air-gaps using multiple pipes. This change should prevent any air-gap installations being designed with inadequate gaps.

Revision

3.3.2(b): RPs must be installed such that the lowest point of an assembly is a minimum of twelve inches above grade, and, ~~unless an alternative is approved by the PWS~~, a maximum of thirty-six inches above the finished grade, ~~unless an alternative is approved by the PWS~~.

Purpose and reason

Section 3.3.2(b) states that the minimum installation height for an RP is 12 inches. Section 3.3.2(b) also states that the maximum installation height for RP devices is 36 inches unless an alternative is approved by the PWS, in which case the installation height may be more than 36 inches. The existing language in the CCCPH is written in a

way that could be interpreted to allow for alternatives to *both* minimum and maximum height. This change clarifies that the alternative only applies to maximum height.

Revision

3.1.3(a)(2): Cross-Connection Control Program Coordinator – The PWS must designate at least one individual involved in the development of and be responsible for the reporting, tracking, and other administration duties of its cross-connection control program. For a PWS with ~~more than~~ 3,000 service connections or more the Cross-Connection Control Program Coordinator must be a cross-connection control specialist.

Purpose and reason

This change will make the service connection threshold consistent throughout the CCCPH. The State Water Board reviewed its drinking water inventory and found that no existing public water systems have exactly 3,000 service connections, so there should be no effect from this change to public water systems, other than a public water system that is approaching 3,000 service connections will cross the threshold one connection earlier than before.

March 2025

Revisions:

Section 3.2.1(f): Noncommunity water systems must conduct an initial or follow-up hazard assessment within two years of ~~the adoption~~ the effective date of the CCCPH.

Section 3.2.2(e): Except as noted below, a PWS must ensure its distribution system is protected with no less than DC protection for a user premises with a fire protection system within ten years of ~~adoption~~ the effective date of the CCCPH.

Section 3.2.2(e)(2): For existing fire protection systems that do not meet Section 3.2.2 (e)(3) or cannot install DC protection within ten years of ~~adoption~~ the effective date of the CCCPH...

Purpose and reason: The State Water Board is changing the use of “Adoption Date” in the CCCPH to “Effective Date”. When the CCCPH was adopted the State Water Board included a six-month gap between the adoption date and the effective date. The State Water Board intended for all instances of deadlines associated with “Adoption Date” to be replaced with “Effective Date”, but not all instances were changed prior to CCCPH adoption; this change to the CCCPH will correct those errors.