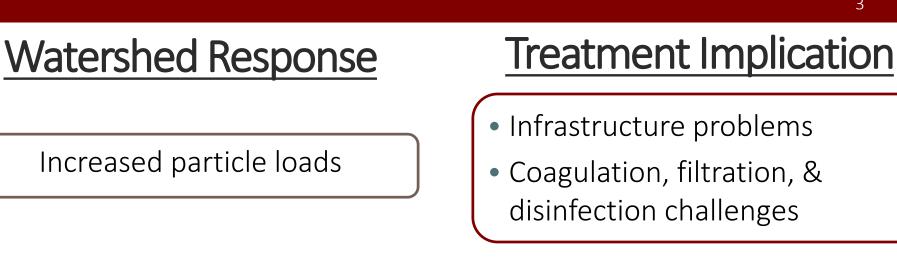
Post-fire Impacts to Drinking Water Treatment

Amanda Hohner Assistant Professor Washington State University ahohner@wsu.edu


Agenda

- Case Study: High Park Fire in northern Colorado
- Utility Response
- Overview of three AWWA-WRF Wildfire projects
 - Post-fire Monitoring of a Water Intake
 - Leaching of Wildfire-Affected Sediments
 - Laboratory Heating of Soil and Litter
- Summary and Recommendations

Elevated nutrient levels

• Algal blooms

Algal organic matter

Altered dissolved organic matter

DBP formation & speciation

Coagulation challenges

Goal: connect post-fire water quality changes <u>directly</u> to impacts on treatment process performance and finished water quality

Case Study- High Park Wildfire

- The High Park wildfire burned the Cache la Poudre (CLP) watershed in northern Colorado
- Burned from June 9th- July 1st, 2012
 - 87,000 acres at mixed severities
 - Burned ~10% of total watershed
- The CLP River provides water to several northern Colorado communities

Watershed Response

- Extensive loss of vegetation
- Moderate to high soil burn severity
- Hydrology shifted from subsurface to surface flow
- Even small, previously dry tributaries experienced very high, "flashy" flows

Fort Collins Utility Response

- Shut down CLP River water supply
- Used alternate water source (Horsetooth Reservoir) for over 100 days
- CLP River water was slowly blended back into drinking water source
- When turbidity exceeded 100 NTU the river intake was shut off again
- Rapidly designed and constructed a pre-sedimentation basin

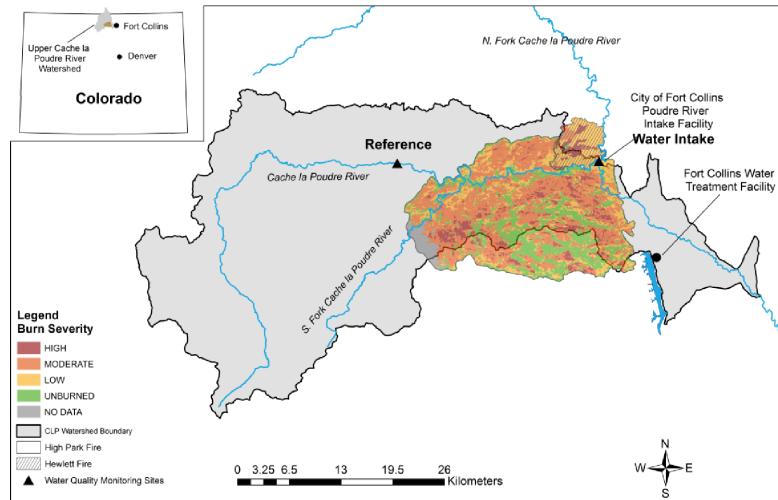
Fort Collins Utility Response

- Installed early warning system
- Provides ~ 1 hour warning of highly turbid water
- Allows operators to shut down pipeline and avoid large sediment loads

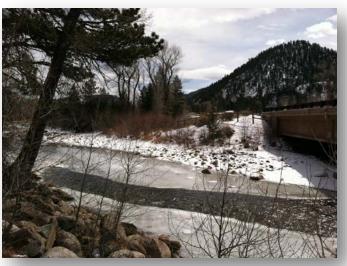
Research Approach

Bench-scale Treatability Evaluation 1. Post-fire monitoring of a drinking water intake

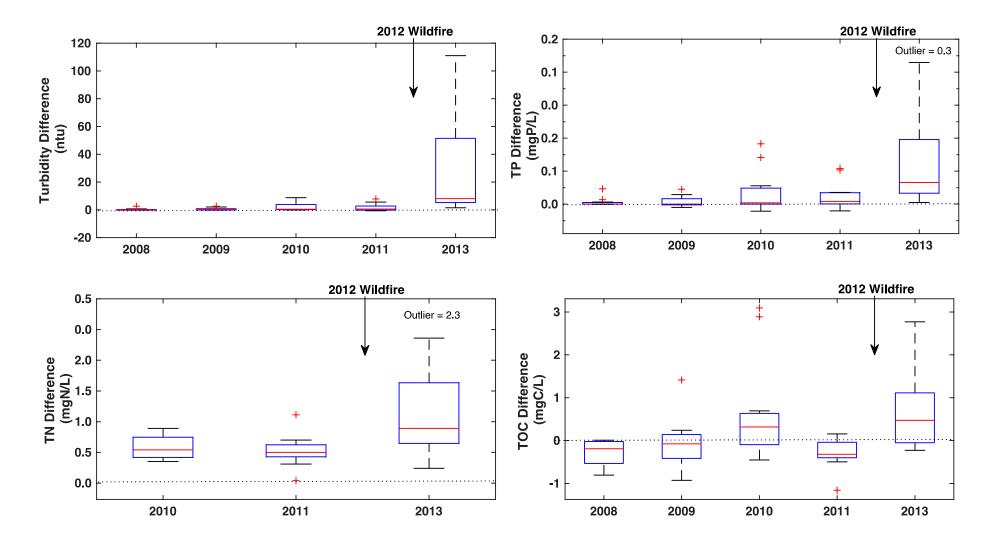
2. Leaching of wildfire-affected sediments


3. Controlled laboratory heating and leaching of soil and litter

Study 1. Post-fire Monitoring

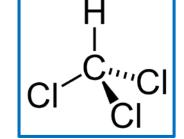


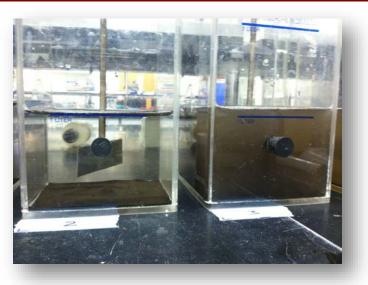
- Monitored bi-weekly during baseflow and snowmelt
- Post-rainstorm samples collected from intake


Water Intake

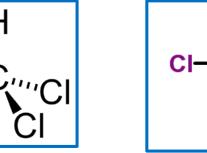
Reference Site

Pre- and Post-fire Water Quality

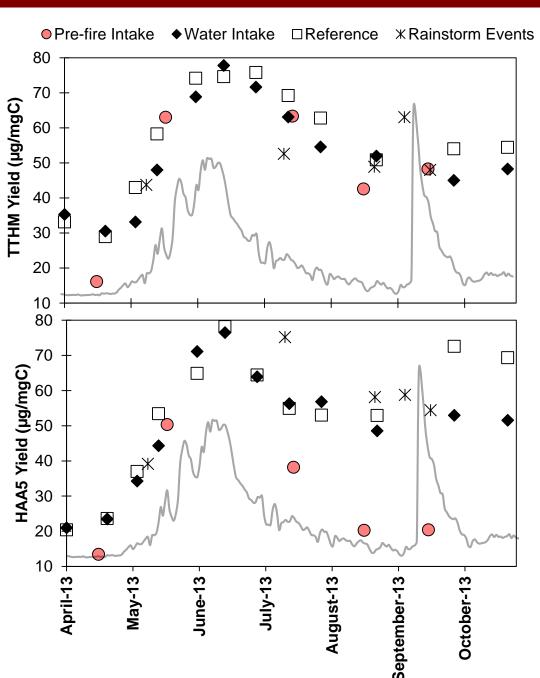



Paired differences in water quality (intake – reference site)

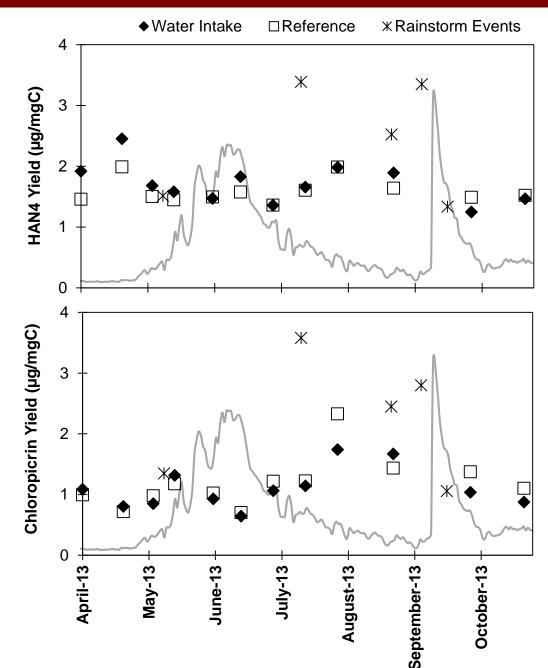
- Dashed line (difference = 0)
- *Post-rainstorm samples were not included


Treatability Evaluation

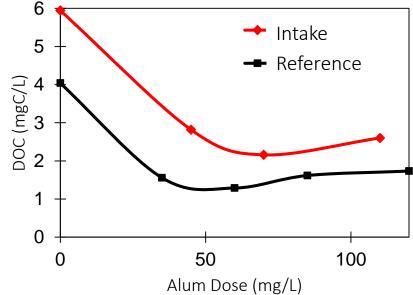
- Conventional treatment with aluminum sulfate
- Coagulant dose selected based on optimal DOC removal
- Raw and treated water samples were chlorinated and analyzed for disinfection byproduct formation (DBPs)
 - <u>Carbonaceous</u> DBPs
 - Total trihalomethanes (TTHMs)
 - Five haloacetic acids (HAA5s)
 - <u>Nitrogenous</u> DBPs
 - Haloacetonitriles (HANs)
 - Chloropicrin



11


Watershed Monitoring: Raw Water C-DBPs

- TTHM formation (µg/L) was significantly higher at the water intake
- C-DBP yields peaked with snowmelt
- C-DBP yields were not significantly different following the wildfire
- Post-rainstorm C-DBP yields were similar to baseflow & snowmelt samples



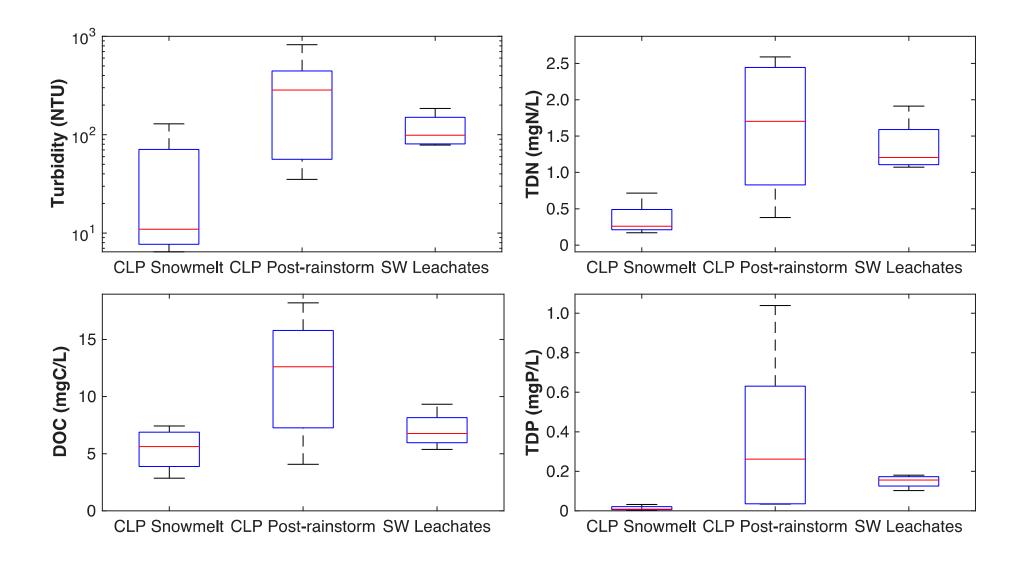
Watershed Monitoring: Raw Water N-DBPs

- HAN4 formation (µg/L) was significantly higher at the water intake
- N-DBP yields did not follow the same seasonal trend as C-DBPs
- N-DBP yields were similar for the water intake and reference site
- Post-rainstorm N-DBP formation and yields were elevated

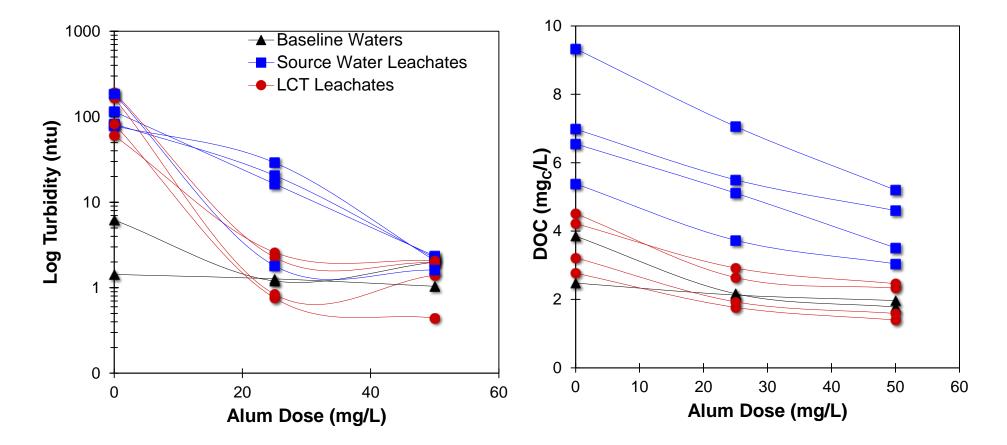
Watershed Monitoring: Treatment Response

- During baseflow and snowmelt significantly higher alum dose (10 mg/L) required for water intake
- Post-rainstorm samples presented treatment challenges, and even at high alum doses (>65 mg/L) showed minimal DOC removal (< 10%)
- Post-fire samples had high initial turbidity (>200 ntu) and high DOC
- Five post-rainstorm samples exceeded DBP MCLs

Study 2. Wildfire-affected Sediment Leaching


• Source Water Leachates:

- Sediments added to source waters for two utilities
 - Fort Collins (baseline)
 - Denver Water (baseline)
- LCT Leachates:
 - Sediments added to low-carbon tap-water (LCT)


• Treatment processes evaluation:

- Coagulation
- Pre-oxidation/Coagulation
- Powdered activated carbon (PAC) + Coagulation
- Biofiltration/Coagulation
- Ozonation/Coagulation/Biofiltration

CLP River Water and Sediment Leachate Comparison


Sediment Leachates: Coagulation Response

Hohner et al., 2017, Environmental Science: Water Research & Technology

17

Sediment Leachates: C-DBP Formation

- Solid symbols represent raw samples and open symbols show treated samples
- Trends were significant for all sample groups (p < 0.001)</p>
- Slopes for different sample groups were <u>not</u> significantly different (p > 0.05)

Sediment Leachates: N-DBP Formation

- HAN4 trend was significant (p < 0.001) for the LCT leachates</p>
- Slopes for the different sample groups were significantly different (p > 0.05)
- Sediment leachates appear enriched in N-DBP precursors

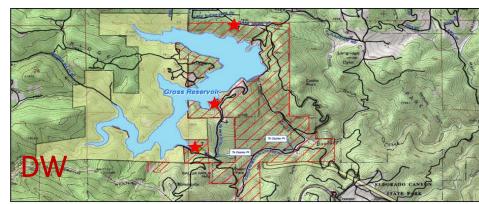
TTHM MCL =
$$80 \frac{\mu g}{L}$$
 HAA5 MCL = $60 \frac{\mu g}{L}$

1. <u>DBP MCLs</u> were used to assess treatability of the sediment leachates

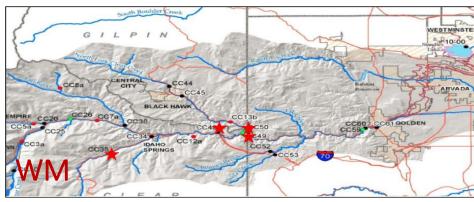
2. <u>DBP Yields</u> were used for comparison of samples with varying DOC $DBP \, Yield = \frac{DBP \, concentration \, \frac{\mu g}{L}}{DOC \, concentration \, \frac{mgC}{L}}$

3. Required <u>DOC threshold values</u> for the point of chlorination were determined **DOC Threshold** = $\frac{DBP MCL \frac{\mu g}{L}}{DBP Yield \frac{\mu g}{mgC}}$

4. The more restrictive DOC threshold was chosen (TTHM or HAA5)lower required treated water DOC concentration for meeting MCLs


Sample Name		DOC Threshold (mg _C /L)							Best Treatment
		Conventional Treatment	Enhanced Coagulation	PAC	Chlorine Dioxide	Pre- ozonation	Biofiltration	Pre- ozonation/ Biofiltration	Option
Baseline Waters	Fort Collins (FC)	2.6	2.8	2.3	2.6	2.7	2.6	3.0	Pre-ozonation/ Biofiltration
	Denver Water (DW)	3.1	3.3	2.8	4.8	3.0	2.7	3.3	Chlorine Dioxide
Average increase in DOC threshold			0.2	-0.3	0.8	0.0	-0.2	0.3	
Source Water Leachates	A- FC	2.0	2.0	1.8	1.8	2.4	1.4	2.2	Pre-ozonation
	B- DW	1.7	2.1	1.8	1.8	3.0	1.6	2.6	Pre-ozonation
	C- DW	2.1	2.8	2.1	2.1	2.8	2.4	2.1	Enhanced Coag & Pre-ozonation
	D- FC	1.8	2.4	1.3	2.0	2.4	1.8	2.3	Enhanced Coag & Pre-ozonation
LCT Leachates	A- LCT	2.0	2.3	1.8	2.1	2.6	1.6	2.4	Pre-ozonation
	B- LCT	1.6	2.1	2.0	2.0	1.7	1.7	2.1	Enhanced Coag & Pre-ozonation/Bio
	C-LCT	1.4	1.9	2.1	1.7	3.0	1.5	2.1	Pre-ozonation
	D- LCT	2.1	2.0	1.8	2.2	2.7	1.6	2.5	Pre-ozonation
Average Increase in DOC threshold			0.4	0.0	0.1	0.7	-0.1	0.5	Pre-ozonation

Study 3: Controlled Heating


- <u>Objective</u>: Understand the effects of a low-moderate severity wildfire on dissolved organic matter and treatability
- Surface litter and soil samples were collected from three source watersheds



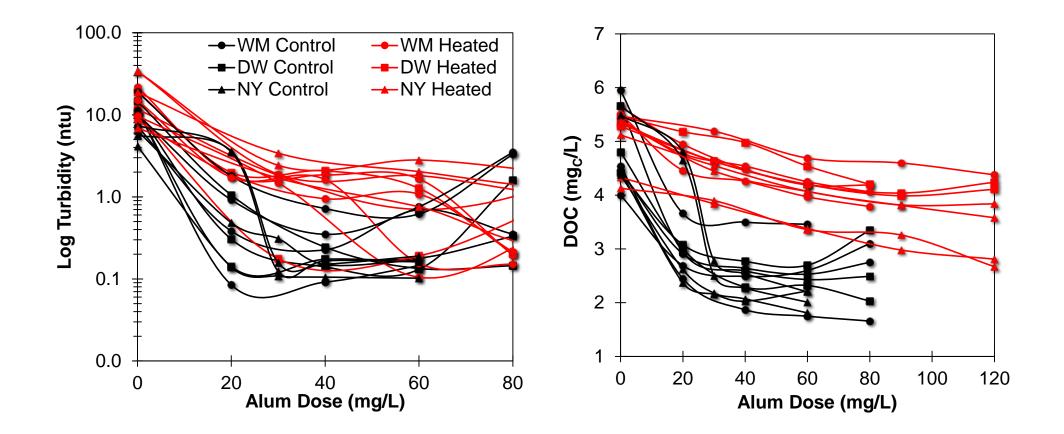
Denver, Colorado

Westminster, Colorado

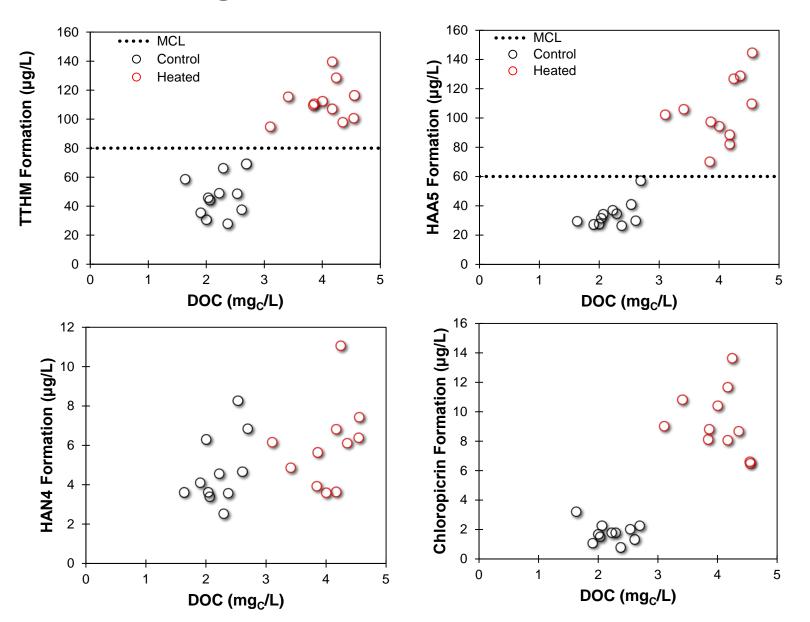
New York City, New York

Controlled Laboratory Heating

- Materials were heated in a furnace at 225°C for two hours
- Soil and litter were composited
- Unheated (control) and heated materials were leached for 24 hours in LCT water
- Leachates were diluted to a DOC concentration = $5.0 \pm 1.0 \text{ mg}_{\text{C}}/\text{L}$



Controlled Heating: Dissolved Organic Matter (DOM)


- Heating altered the DOM character:
 - Nitrogen enriched: DOC:DON \downarrow
 - More aromatic: ${\rm SUVA}_{\rm 254}$ \uparrow
 - Lower molecular weight compounds

Controlled Heating: Jar Test Response

Controlled Heating: Treated Water DBP Levels

Research Summary

- A small wildfire may impact water quality and treatment
- Post-rainstorm samples presented the greatest treatment challenges
- Additional treatment may be required to meet DBP MCLs
- Attention should be given to post-fire N-DBP precursors
- DOM character may be altered by wildfire heating

Recommendations

- Capital Investment Considerations
 - Expanding water storage capacity
 - Exploring additional supplies
 - Increasing monitoring
 - Constructing pre-sedimentation basins
- Treatment Operations
 - Increase coagulant dose to account for higher turbidity and DOM
 - Increased solids loading, greater costs, shorter filter runs
 - Difficulty meeting DBP regulations
- *Small, single source water treatment systems may be at greatest risk*

Acknowledgments

- Water Research Foundation
- Colorado Department of Public Health & Environment
- Hazen & Sawyer
- Water Utilities
 - Denver Water, NYC Department of Environmental Protection, City of Westminster, San Francisco Public Utilities Commission, Truckee Meadows Water Authority, Metropolitan Water District of Southern California, City of Fort Collins

University of Colorado

 Jeffrey Writer, Dorothy Noble, Kaelin Cawley, Jack Webster, Leigh Gilmore, Eli Townsend, Ariel Retuta, Garrett McKay, Andrew Moscovich, Wade Godman

Additional Resources

- Becket et al., 2018, Journal AWWA
- Hohner et al., 2016, Water Research
- Hohner et al., 2017, ESWRT
- WRF 4590 Report, 2018
- Writer et al., 2014, Journal AWWA
- Contact: Amanda Hohner, Washington State University, ahohner@wsu.edu

Environmental Science Water Research & Technology

PAPER

WILLIAM C. BECKER, AMANDA HOHNER, FERNANDO ROSARIO-ORTIZ, AND JAMES DEWOLFE

Preparing for Wildfires and Extreme Weather: Plant Design and Operation Recommendations

