

Lahontan Regional Water Quality Control Board

MEMORANDUM

TO: MIKE PLAZIAK FILE: General – Hinkley Residential

Supervising Engineering Geologist Wells 2014-2015

FROM: GHASEM POUR-GHASEMI

Water Resources Control Engineer

DATE: August 6, 2015

SUBJECT: RESIDENTIAL DRINKING WATER WELL SAMPLING IN HINKLEY AREA

This report outlines the results of residential water well sampling events conducted between June 26, 2014 and April 15, 2015 in the Hinkley area of San Bernardino County. A total of 42 residential wells were sampled at 41 different locations within this time frame. This study was conducted to gather information on the quality of groundwater in the areas of Hinkley most affected by agricultural and confined animal facility operations. The main goal was to determine, as best as possible, which residences could be affected by drinking water that is above the primary and secondary Maximum Contaminant Levels (MCLs) for nitrate and total dissolved solids (TDS) which are primarily caused by this type of operation. This memorandum provides results of data collected from individual residences.

Background

The sampling was initiated to collect data to assess whether residential well water quality exceeded the drinking water MCLs. For groundwater having a designated municipal beneficial use, the drinking water standards (MCLs) are also the water quality objectives described in the Basin Plan, Chapter 3.

For many years the Pacific Gas and Electric Company (PG&E) supplied replacement water to many Hinkley area residents. In the summer 2014, the state adopted a new drinking water standard for chromium VI. As a result, PG&E stopped supplying water to residents whose wells met the new chromium VI drinking water standard. The Water Board began assessing residential wells to establish whether constituents other than chromium VI, including nitrate, met drinking water standards.

Study Areas

The sampling locations were chosen due to their proximity to several agricultural operations and dairies, current and former, located in the Hinkley area. The main areas of concentration were southeast, northwest and northeast of Hinkley as shown on Figure 1 (areas 1, 2, and 3). The groundwater quality in Southwest Hinkley was not affected by the above mentioned operations. Staff canvased residents starting with Area 1 and continuing to Area 2 and Area 3. A Field Sampling and Analysis Plan was prepared and followed (Attachment A) during the collection of samples.

KIMBERLY COX, CHAIR | PATTY Z. KOUYOUMDJIAN, EXECUTIVE OFFICER

Samples were gathered from each resident who signed an authorization letter allowing Water Board staff to collect samples from their residential well, see Figures (2, 3, 4). The samples were analyzed for nitrate, general minerals, and metals by Babcock Labs in Riverside, California. The results of the samples were reviewed by Water Board staff. The results of these analyses were then mailed to each residence with a letter informing them of the status of their water, whether it was good to drink or if some elements exceeded the primary or the secondary drinking water MCLs.

The results were then uploaded via Babcock Labs to the State Board's GAMA/GeoTracker database. The GAMA global ID number for each site is recorded on the first two pages of the Attachment B.

Dairies

Within the study area there are two existing dairies (Harmsen and Hinkley), and three operating heifer ranches (DVD Heifer Ranch, Alamo Mucho Ranch, and Green Valley Farms). There are also several historical dairy and heifer ranches within the study area.

Water Quality Objective

For the purpose of this study we only compiled data for the primary drinking water MCLs, secondary drinking water MCLs, and agricultural water quality objectives (WQO). The compendium of numerical water quality thresholds can be found at: http://www.waterboards.ca.gov/water_issues/programs/water_quality_goals/

Sample Results

The results are shown in Attachment B. As shown in yellow, the <u>primary drinking water MCLs</u> were exceeded in10 wells for nitrate, eight wells for arsenic, one well for total chromium, one well for lead, and one well for mercury. As also shown in yellow, the <u>secondary drinking water MCLs</u> (SMCL) were exceeded in 25 wells for TDS, four wells for chloride, 21 wells for electrical conductivity, nine wells for iron, four wells for manganese, and three wells for sulfate. As shown in orange, the agricultural WQO were exceeded in four wells for molybdenum, 30 wells for sodium, 23 wells for chloride, and 26 wells for TDS. All other constituents analyzed were below water quality objectives.

As Attachment B indicates, one well (Hin-31) was sampled twice to establish whether the initial data were correct. The initial samples taken on February 11, 2015 were murky water from the bottom of the storage tank, because the well went dry during the purging. Staff believes this well site has an old rusty pressure tank causing elevated concentrations for some constituents and may need to be replaced. Second round of samples which were taken on April 15, 2015 are more reliable since we did not purge well long and samples were obtained before the well went dry. Therefore, data results from April 15, 2015 are used for comparison.

The results of the analyses for sampled wells exceeding MCL, SMCL, and WQO are as follows:

Nitrate (as N)

All wells that exceeded the nitrate (as N) MCL from the sampling events are shown in Table B, below. The MCL for nitrate (as N) is 10 mg/L. Ten of the 41 sampling events exceeded the MCL in a range from 11 mg/L to 32 mg/L. See Figures 2, 3, and 4 for the location of these wells.

	Tab	le B – Nitrate (as N)	Exceedance	es	
Hin-2	12 mg/L	Hin-6	12 mg/L	Hin-32	32 mg/L
Hin-3	16 mg/L	Hin-11	23 mg/L	Hin-37	14 mg/L
Hin-4	14 mg/L	Hin-21	12 mg/L		J
Hin-5	12 mg/L	Hin-31	11 mg/L		

TDS

All wells that exceeded the TDS SMCL from the sampling events are shown in Table H, below. The SMCL for TDS had three parts; a recommended limit of 500 mg/L, an upper limit of 1,000 mg/L, and a short term limit of 1,500 mg/L. Twenty five of the 41 sampling events exceeded the SMCL in a range from 510 mg/L to 4300 mg/L. The WQO for TDS is 450 mg/L. Twenty six of the 41 sampling events exceeded the WQO. See Figure 5 for the location of these wells

		Table F	I – TDS Exceed	ances	
Hin-1	840 mg/L	Hin-15	560 mg/L	Hin-30	530 mg/L
	740 mg/L		2300 mg/L		2700 mg/L
Hin-3	800 mg/L	Hin-18	670 mg/L		4300 mg/L
Hin-4	870 mg/L	Hin-21	690 mg/L	Hin-34	690 mg/L
Hin-5	830 mg/L	Hin-22	1700 mg/L	Hin-37	1000 mg/L
Hin-6	1000 mg/L	Hin-23	590 mg/L	Hin-38	640 mg/L
Hin-11	710 mg/L	Hin-26	690 mg/L	Hin-41	620 mg/L
Hin-13	520 mg/L	Hin-27	510 mg/L		-
Hin-14	760 mg/L	Hin-28	620 mg/L		

Other Elements that Exceeded Primary MCLs for Drinking Water

Arsenic

All wells that exceeded the arsenic MCL from the sampling events are shown in Table A, below. The MCL for arsenic is 10 μ g/L. Eight of the 41 sampling events exceeded the MCL in a range from 11 μ g/L to 110 μ g/L (see Attachment B). See Figure 6 for the location of these wells.

Tab	le A – Arsenic Exceedances	
Hin-16 14 μg/L Hin-18 11 μg/L	Hin-23 11 μg/L Hin-27 26 μg/L	Hin-39 110 μg/L Hin-40 110 μg/L
Hin-22 15 µg/L	Hin-33 19 μg/L	7 m 7 σ 7 το μg/L

Lead

There was only one well that exceeded the lead MCL limit during the sampling events. The MCL for lead is 15 μ g/L and Hin-4 had a value of 30 μ g/L.

Mercury

One well (Hin-17) exceeded the mercury MCL limit during the sampling events. The MCL for mercury is 2 μ g/L and Hin-17 had a value of 20 μ g/L. It is unknown why mercury level is so high in this well. This well is one of the two wells in a mobile home park located on the west side of Hinkley along Highway 58 that we sample. The other well, Hin-18 is located near Highway 58 and approximately 1,000 feet south of Hin-17, with a mercury value of 0.4 μ g/L. Other values such as TDS, chloride, and sodium are much higher in Hin-17 than Hin-18. However, iron value for Hin-18 is much higher than Hin-17 (see values on Attachment B).

Total Chromium

One well (Hin-31) exceeded the Total chromium MCL limit during one sampling events. The MCL for Total Chromium is $50~\mu g/L$ and samples taken on February 11, 2015 from Hin-31 had a value of $80~\mu g/L$. Total chromium from samples taken on April 15, 2015 was less than $20~\mu g/L$ which is below the MCL. As stated previously, data from the sampling on February 11, 2015 are suspect, the well dried up during the purging and murky water was collected from the water in the storage tank. Therefore, there may not be a MCL total chromium problem as results from April 15, 2015 indicates.

Other Elements that Exceeded Secondary MCLs (SMCL) for Drinking Water

Chloride

All wells that exceeded the chloride SMCL from the sampling events are shown in Table C, below. The SMCL for chloride has three parts; a recommended limit of 250 mg/L, an upper limit of 500 mg/L, and a short term limit of 600 mg/L. Four of the 41 sampling events exceeded the SMCL in a range from 410 mg/L to 1100 mg/L. The agricultural WQO for chloride is 106 mg/L. Another eighteen of the 41 sampling events exceeded the agricultural WQO in a range from 110 mg/L to 200 mg/L.

	Table C – Chlo	ride Exceedances		
Hin-17 1100 n	ng/L Hin-22	410 mg/L	Hin-31	660 mg/L
Hin-32 950 m	g/L			

Electrical Conductivity

All wells that exceeded the electrical conductivity SMCL from the sampling events are shown in Table D below. The SMCL for electrical conductivity has three parts; a recommended limit of 900 μ S/cm, an upper limit of 1,600 μ S/cm, and a short term limit of 2,200 μ S/cm. Twenty one of the 41 sampling events exceeded the SMCL in a range from 910 μ S/cm to 5300 μ S/cm.

	Table	D – Elect	rical Conducti	vity Exceedances
	1300 μS/cm		910 μS/cm	Hin-32 5300 μS/cm
Hin-2	1100 μS/cm	Hin-17	4000 μS/cm	Hin-34 1100 μS/cm
Hin-3	1200 μS/cm	Hin-18	1200 μS/cm	Hin-37 1500 μS/cm
Hin-4	1300 µS/cm	Hin-21	1100 μS/cm	Hin-38 990 μS/cm
Hin-5	1200 µS/cm	Hin-22	2800 µS/cm	Hin-41 960 µS/cm
Hin-6	1500 µS/cm	Hin-26	990 μS/cm	
Hin-11	1100 µS/cm	Hin-28	1000 μS/cm	
Hin-14	1200 µS/cm	Hin-31	3300 µS/cm	

Iron

All wells that exceeded the iron SMCL from the sampling events are shown in Table E, below. The SMCL for iron is 300 μ g/L. Nine of the 41 sampling events exceeded the SMCL in a range from 370 μ g/L to 5300 μ g/L.

	Tab	le E – Iron E	xceedances	3	
	1300 µg/L		2300 µg/L	Hin-41 5300 μg/L	
	1200 μg/L	Hin-34	1400 μg/L		
Hin-21	370 µg/L	Hin-35	1300 µg/L		
Hin-23	900 µg/L	Hin-36	550 µg/L		

Manganese

All wells that exceeded the manganese SMCL from the sampling events are shown in Table F, below. The SMCL for manganese is 50 μ g/L. Four of the 41 sampling events exceeded the SMCL in a range from 54 μ g/L to 260 μ g/L.

	Tabl	e F – Mang	anese Exce	eedances	
Hin-31 Hin-35	54 μg/L 80 μg/L	Hin-36	140 μg/L	Hin-41 260 μg/L	

Sulfate

All wells that exceeded the sulfate SMCL from the sampling events are shown in Table G, below. The SMCL for sulfate had three parts; a recommended limit of 250 mg/L, an upper limit of 500 mg/L, and a short term limit of 600 mg/L. Three of the 41 sampling events exceeded the SMCL in a range from 550 mg/L to 1400 mg/L.

Table	G – Sulfa	te Exceedanc	es	
Hin-22 600 mg/L	Hin-32	1400 mg/L	Hin-31	550 mg/L

Other Elements that Exceeded Agricultural WQO Limits for Drinking Water

Molybdenum

All wells that exceeded the molybdenum WQO from the sampling events are shown in Table I, below. The agricultural WQO for molybdenum is 10 μ g/L. Four of the 41 sampling events exceeded the WQO in a range from 10 μ g/L to 40 μ g/L.

Tab	le I – Molybo	denum Exceedances		
Hin-17 33 μg/L Hin-18 40 μg/L	Hin-22	20 μg/L	Hin-27	10 μg/L

Sodium

All wells that exceeded the sodium WQO from the sampling events are shown in Table J, below. The agricultural WQO for sodium is 69 mg/L. Thirty of the 41 sampling events exceeded the WQO in a range from 74 mg/L to 610 mg/L.

		Table J	– Sodiu	m Exceedances		
Hin- Hin- Hin- Hin- Hin- Hin-	2 3 4 5 6 11 13	140 mg/L 97 mg/L 130 mg/L 130 mg/L 94 mg/L 150 mg/L 93 mg/L 74 mg/L	Hin-17 Hin-18 Hin-21 Hin-22 Hin-23 Hin-26 Hin-27 Hin-28	610 mg/L 180 mg/L 150 mg/L 510 mg/L 110 mg/L 100 mg/L 150 mg/L 110 mg/L 140 mg/L	Hin-31 Hin-32 Hin-33 Hin-34 Hin-37 Hin-38 Hin-39 Hin-40	200 mg/L 480 mg/L 120 mg/L 120 mg/L 140 mg/L 81 mg/L 97 mg/L 100 mg/L 130 mg/L
Hin-	15	88 mg/L 120 mg/L		96 mg/L		100 mg/L

Conclusions

Overall, 19 of the 41 sampled wells did not meet primary drinking water requirements for one or more elements. Of the 19 residential wells exceeding primary MCLs, 10 exceeded the MCL for nitrate. Cleanup and Abatement Orders issued to four dairies required these dairies to provide bottled water to eight of the 10 residences whose wells did not meet drinking water standards for nitrate. As of the date of this memo, only five of the eight residents receive bottled water. Of the other three residential properties not being provided bottled water by the dairies, two are unoccupied and one is used by PG&E. Hin-3 is owned by the California Department of Transportation. Hin-4, and Hin-32 are owned by PG&E. Hin-3 and Hin-4 structures are scheduled for removal and may have already been removed. Hin-32 is owned and operated by PG&E, and PG&E provides bottled water to their employees.

Of the two remaining occupied residential sites with nitrate above the MCL and not receiving replacement water (Hin-21, Hin-37); Hin-37 is next to a historical dairy site and Hin-21 is located next to several other residential wells that we have sampled and did not show nitrate above the MCL. It is possible that Hin-21 has not been influenced by the dairy or agricultural operations

because the water quality observed in residential wells surrounding and upgradient of Hin-21 is below the nitrate MCL.

See the table below for a list of residents provided bottled water by the four dairies and other residents whose well water was above the primary MCLs <u>and</u> are not being provided bottled water:

Dairy providing bottled water for residents with nitrate above MCL	Site Name
Harmsen Dairy	Hin-2, Hin-5, Hin-6
Hinkley Dairy	Hin-11
Former DVD Dairy (new DVD Heifer Ranch)	Hin-31
Structure owned by PG&E with nitrate above MCL	Hin-32
Structures scheduled for removal with nitrate above MCL	Hin-3, Hin-4
Dairy providing bottled water for residents with TDS above SMCL	
Former DVD Heifer Ranch	Hin-26
Site name of residents with nitrate above MCL <u>not</u> receiving bottled	water
Hin-21, Hin- 37	
Site name of residential wells exceeding primary MCLs excluding nit receiving bottled water	trate, that are <u>not</u>
Hin-16, Hin-17, Hin-18, Hin-22, Hin-23, Hin-27, Hin-33, Hin-39, Hin-40	

Of the 41 sampled wells, 25 did not meet secondary drinking water requirements for TDS. Eight of the residential wells with high TDS value also exhibit high nitrates and therefore, well owners are provided bottled water by the dairies and PG&E. Former DVD Heifer Ranch provides bottled water to an additional resident (Hin-26) that does not have nitrate over the MCL, but has TDS over the SMCL. The CAO issued to this heifer ranch and two other dairies in Hinkley requires them to provide bottled water if TDS is over the SMCL and background limit.

There are nine residential wells, with primary MCLs above the drinking water standards not related to nitrate. Eight of these residential wells exceed MCLs for arsenic and one exceeded the mercury MCL. Seven of the eight wells with an arsenic limit above the MCL are located on the north and northeast of Hinkley and one is located on the west side of Hinkley. It is unclear if the arsenic problem in the groundwater in these areas is naturally occurring or from a source other than agricultural or confined animal activity.

Well (Hin-17) with a high mercury problem (20 μ g/L) is on the west side of Hinkley about 1000 feet north of well (Hin-18) on the same property with a mercury level of 0.4 μ g/L. It is unknown why mercury is so high in one well but not in the other. The samples were taken from well heads at both sites and there was no comingling of well water with stored water in the tanks.

In summary, there are 11 residences with primary MCLs above the drinking water standards for nitrate, mercury, and arsenic that are not receiving bottled water. They were informed by the Water Board via written correspondence that their wells do not meet drinking water standards. At this time, there is no further Water Board action planned to address the arsenic pollution as the arsenic is likely to be naturally occurring.

Of the 41 sampled wells, 26 wells did not meet primary and/ or secondary MCLs. Only 15 of the 41 sampled wells met all the MCLs and the SMCLs.

From the information gathered and the attached figures, it appears that residential wells next to dairies, confined animal facilities, and agricultural sites have elevated nitrate and TDS problems. However, there are other sites such as Hin-17 and Hin-18 that are far away from any agricultural and dairy activities with TDS concentrations of 2300 mg/L and 670 mg/L respectively. The residential wells on the northern portion of the study areas, on the northwest and northeast of Hinkley, have high levels of arsenic but the source is unknown. A more detailed study is required in order to find out who or what is the cause of the high concentrations of some elements in Hinkley groundwater. It would be prudent to coordinate Water Board findings in this study with the imminent USGS groundwater study in Hinkley, which hopefully will define the groundwater movement due to different activities taking place within the Hinkley area and sources of high concentration of certain elements in the groundwater.

Enclosures

Figure 1 – Study Map

Figure 2 – nitrate

Figure 3 – nitrate

Figure 4 – nitrate

Figure 5 – TDS

Figure 6 – Arsenic

Attachment A - Field Sampling Plan

Attachment B – Results

r:\rb6\rb6\rctorviIIe\shared\units\jay's unit\ghasem\hinkley area water sampling\final memo\final report for residential well sampling

Figure 1 – Study Map

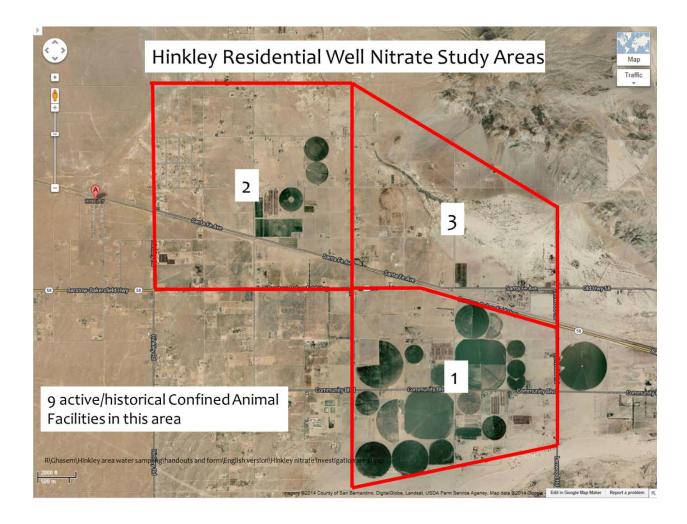


Figure 2. Water Board Sampling 2014/2015 - Nitrate as Nitrogen (MCL = 10 mg/L)

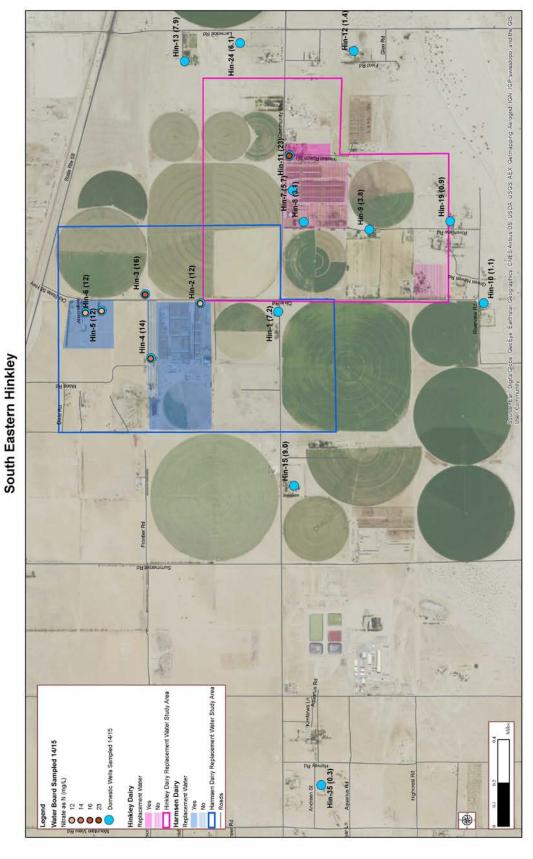


Figure 3. Water Board Sampling 2014/2015 - Nitrate as Nitrogen (MCL = 10 mg/L)

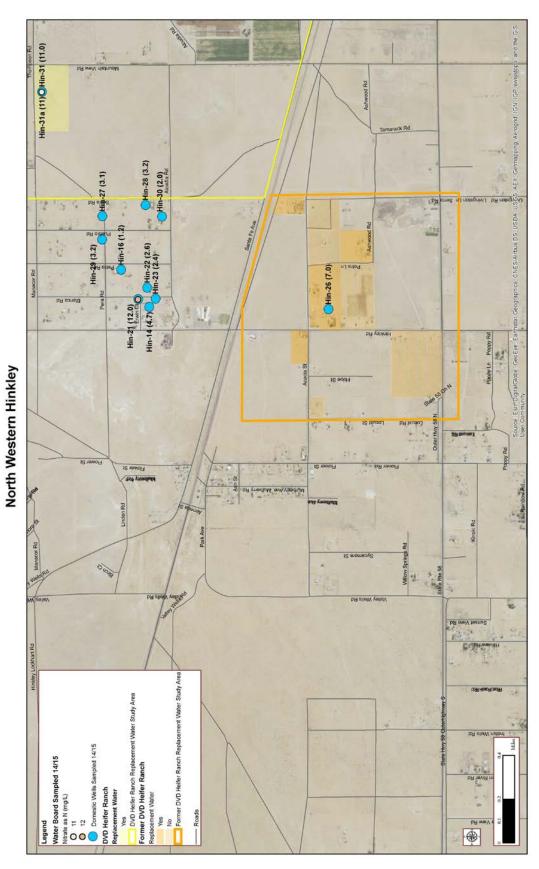


Figure 4. Water Board Sampling 2014/2015 - Nitrate as Nitrogen (MCL = 10 mg/L)

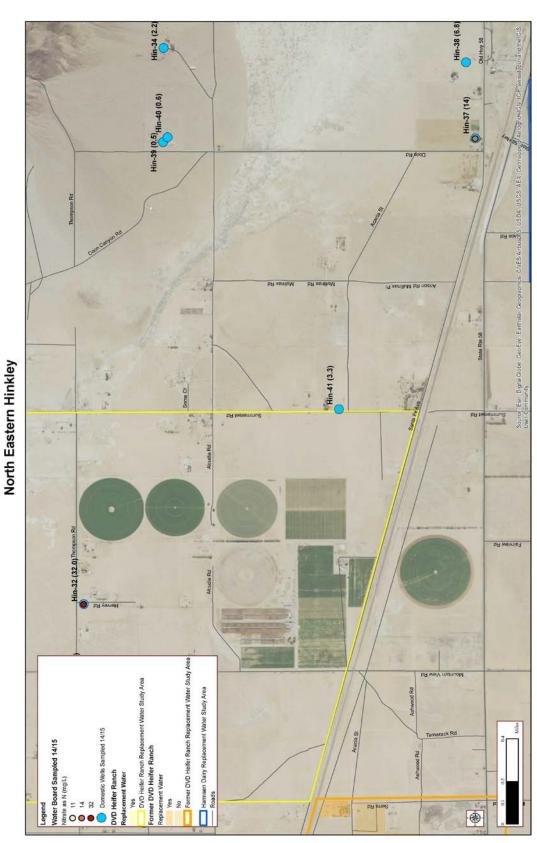


Figure 5. Water Board Sampling 2014/2015 - TDS (SMCL = 500 mg/L)

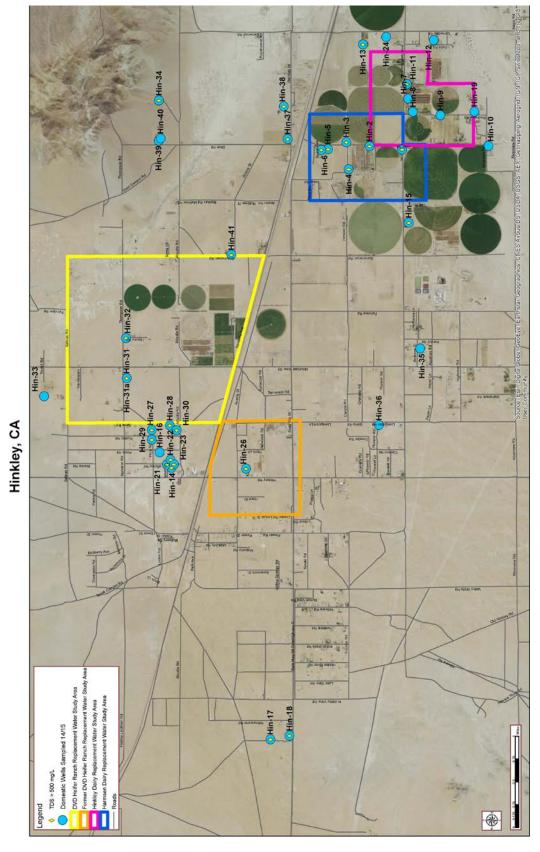
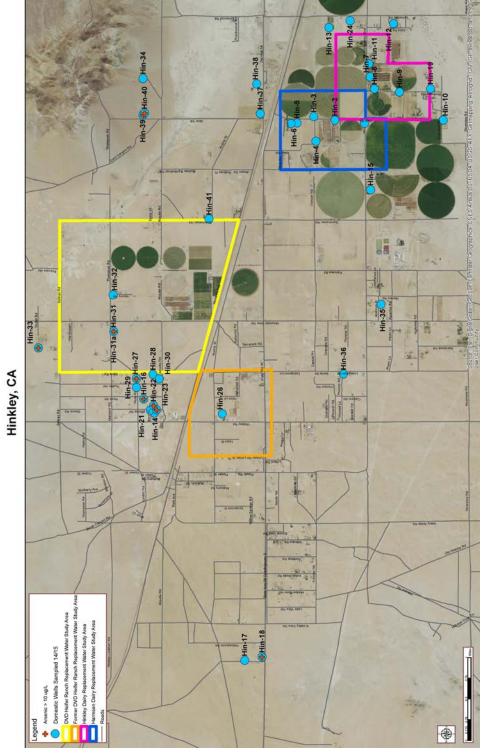



Figure 6. Water Board Sampling 2014/2015 - Arsenic (MCL = 10 ug/L) Hinkley, CA

Attachment A

Sampling and Analysis Plan (SAP) Field Method and Procedures for Residential Wells in Hinkley

The following steps will be taken by staff conducting groundwater sampling, prior and during the sampling and until the chain of custody relinquished to the E.S. Babcock laboratory representative:

A) Preparation

Items Required to take to the field:

- 1) Adequate size cooler,
- Adequate bags of ice for cooler to keep the samples in the range of 4 to 6 degree centigrade,
- 3) Unused and prepared sampling bottles (or procures from the analytical laboratory). Before leaving office, confirm number and type of sample bottles you need. Take a few extra sampling bottles,
- 4) Latex gloves and paper towels,
- 5) At least two bottles of drinking water or beverage,
- 6) Water-proof labels,
- 7) Camera to take photo of sample collection site and GPS to locate sampling site on the google map,
- 8) Few ziploc bags,
- 9) Chain of custody papers (Fill out chain of custody form for all samples with all required information except sample time and sample name),
- 10) Field notebook and pen,
- 11) Calibrated field instrument (Horiba) in office prior to leaving to go to field. The calibration records should be maintained. Horiba will be used to take field measurement data for PH, conductivity, temperature, DO, TDS, and turbidity,
- 12) Bucket for Horiba.
- 13) Sun screen and cell phone, and
- 14) Call E.S. Babcock and request required sampling container shipped to Victorville office few days prior to sampling. The day before sampling Call E.S. Babcock and give them heads-up about pickup time and the type of analyses required.

B) Sampling

- 1) Find sampling location that is as close as possible to wellhead and put latex gloves on,
- 2) Purge well for minimum of 10 minutes or until temperature and PH is stabilized. If water storage tank is between the wellhead and point of sampling, flush adequate amount of water to draw sampling water from the water storage tank,
- 3) Using Horiba, take temperature and PH reading during the purge until both temperature and PH are stabilized. Record all readings during the purge,
- 4) Take PH and temperature and other readings using Horiba and record time and date after equalization (consecutive data that are the same),
- 5) Use appropriate sampling bottles to collect required samples,

- 6) Place waterproof labels on each sample bottle, and fill them out with sample. Make sure time sample taken, sample ID, and well ID is recorded on each container.
- 7) Wipe sample bottles and place into cooler that contain bags of ice, and
- 8) Clean water bucket and Horiba of any sampled water. Wash bucket and Horiba with water from the next sampling location to clean out any contamination from previously sampled well.

C) Handling and Shipment to Lab

- 9) Once sampling is completed, transport cooler to the office and place samples into refrigerator in the lab,
- 10) Complete chain of custody form,
- 11) Sign chain of custody form in the presence of E.S. Babcock representative, have them sign the form and retain a carbon copy for your file,
- 12) Relinquish samples to the custody of E.S. Babcock representative,
- 13) Make sure E.S. Babcock representative have adequate size container and enough ice to keep samples between 4 to 6 degrees centigrade during transport between the Victorville office and E.S. Babcock lab, and
- 14) Give copy of chain of custody to Rebecca in order for her to follow-up when results are due and for billing purposes.

D) Analyses

15) Samples should be analyzed for the constituents listed on the chain of custody using methods attached to this SAP.

Attachment B - Results

Hinkley, CA Well Sampling Location Index

Site	Address	GAMA Global ID#:	Babcock	Latitude	Longitude	State Well #:	Written	Results
Jame			Lab Reference	Coordinates in	Coordinates in		Permission	Provided
			Number:	Google Maps (WGS84)	Google Maps (WGS84)		Received	
4in-1	24056 Community Blvd.	GSP6V1000000	B4F2645-01	34.907571	-117.13699	10N03W36R02	yes	yes
Hin-2	Harmsen Dairy Supply Well	GSP6V1000001	B4F2645-02	34.91182	-117.136441	10N03W36J03	yes	yes
Hin-3	36507 Dixie Road	GSP6V1000002	B4F2645-03	34.91486	-117.13584	10N02W31E05	sək	yes
Hin-4	36488 Dixie Road	GSP6V1000003	B4F2645-04	34.914541	-117.14008	10N03W36K03	sək	yes
Hin-5	36610 Dixie Road	GSP6V1000004	B4F2645-05	34.91722	-117.136953	10N03W36H04	yes	yes
Hin-6	36686 Dixie Road	GSP6V1000005	B4F2645-06	34.918109	-117.13706	10M03W36H05	sək	yes
Hin-7	24333 Community Blvd Dairy Supply Well	GSP6V1000006	B4G2373-04	34.9068	-117.12892	09N02W06C06	yes	yes
Hin-8	24333 Community Blvd Residential NW	GSP6V1000007	B4G2373-02	34.90619	-117.13105	09N02W06C05	yes	yes
Hin-9	24299 Community Blvd Residential SW	GSP6V1000008	B4G2373-01	34.90262	-117.13157	09N02W06F01	yes	yes
lin-10	35494 Dixie Road	GSP6V1000009	B4G2373-03	34.89634	-117.13647	09N03W01R04	yes	yes
lin-11	24543 Community Blvd.	GSP6V1000010	B4G2373-06	34.90696	-117.12664	09N02W06B09	yes	yes
lin-12	36154 Lenwood Road	GSP6V1000011	B4G2373-07	34.90346	-117.11963	09N02W06A03	yes	yes
lin-13	36388 Lenwood Road	GSP6V1000012	B4G2374-05	34.91265	-117.12033	10N02W31J07	yes	yes
lin-14	37797 Hinkley Road	GSP6V1000040	B4J1487-01	34.9380556	-117.1880556	10N03W22N20	yes	yes
lin-15	23535 Community Blvd	GSP6V1000041	B4J1487-02	34.9066667	-117.1486111	09N03W01C02	yes	yes
lin-16	37862 Petra Road	GSP6V1000060	B4J1487-03	34.9391667	-117.185	10N03W22N27	yes	yes
lin-17	19816 Highway 58 #4	GSP6V1000061	B4J1487-04	34.9247222	-117.2305556	10N03W30K02	yes	yes
lin-18	19816 Highway 58 #1	GSP6V1000062	B4J1487-05	34.9222222	-117.23	10N03W30Q08	yes	yes
lin-19	35490 Riverview	GSP6V1000066	B4K2437-01	34.89806	-117.13083	09N02W06L10	yes	yes
lin-20	38790 North Mountainview	GSP6V1000067	B4K2444-01	34.95944	-117.17278	10N03W15H05	yes	yes
lin-21	37814 Blanca Road	GSP6V1000068	B4K2441-02	34.93833	-117.18694	10N03W22N33	yes	yes
lin-22	37769 Blanca Road	GSP6V1000069	B4K2441-03	34.93777	-117.18638	10N03W22N28	yes	yes
lin-23	21785 Erwin Court	GSP6V1000070	B4K2437-02	34.93722	-117.18694	10N03W22N14	yes	yes
lin-24	36246 Lenwood Road	GSP6V1000071	B4K2441-01	34.90972	-117.11916	10N02W31R03	yes	yes
lin-25	21574 Shaves Avenue	GSP6V1000072	B4K2444-03	34.87861	-117.1925	09N03W09R02	yes	yes
lin-26	37223 Hinkley Road	GSP6V1000073	B5A2013-01	34.92781	-117.18778	10N03W27M06	yes	yes
lin-27	21924 Pera Road	GSP6V1000074	B5A2013-02	34.94012	-117.1815	10N03W22L11	yes	yes
lin-28	37776 Serra Road	GSP6V1000075	B5A2013-03	34.93778	-117.18074	10N03W22P28	yes	yes
lin-29	37118 Pueblo Road	GSP6V1000076	B5A2013-04	34.94017	-117.18304	10N03W22L09	yes	yes

Hin-30	37731 Pueblo Road	GSP6V1000077	B5A2013-05	34.93689	-117.18149	10N03W22P20	yes	yes
Hin-31	38080 Mountainview Road	GSP6V1000078	B5B1167-01	34.943333	-117.176944	10N03W22J05	yes	yes
Hin-32	22726 Thompson Road	GSP6V1000079	B5B1167-02	34.94333	-117.166944	10N03W23L04	yes	yes
Hin-33	24410 Alcudia Road	GSP6V1000080	B5B1167-04	34.954167	-117.176111	10N03W15Q03	yes	yes
Hin-34	22240-B Salinas Road	GSP6V1000081	B5B1167-03	34.939167	-117.129167	10N02W19P02	yes	yes
Hin-35	22615 Andreen Street	GSP6V1000082	B5D1572-01	34.904722	-117.169167	09N03W02D04	yes	yes
Hin-36	36280 Serra Road	GSP6V1000083	B5D1572-02	34.910556	-117.180833	10N03W34P08	yes	yes
Hin-31	38080 Mountainview Road	GSP6V1000078	B5D1572-03	34.943333	-117.176944	10N03W22J05	yes	yes
Hin-37	24116 Santa Fe Avenue	GSP6V1000084	B5D1556-01	34.9225	-117.135278	10N02W30N06	yes	yes
Hin-38	24332 Highway 58	GSP6V1000085	B5D1556-02	34.923056	-117.130278	10N02W30P02	yes	yes
Hin-39	37885 Dixie Road	GSP6V1000086	B5D1572-04	34.939167	-117.135556	10N02W19N01	yes	yes
Hin-40	37825 Dixie Road	GSP6V1000087	B5D1572-05	34.938889	-117.135278	10N02W19N02	yes	yes
Hin-41	37373 Summerset Road	GSP6V1000088	B5D1556-03	34.930278	-117.153611	10N03W25E03	yes	yes

>		_			ш			ш																	ш		Ш						Ш		L	_	_	_			L
Thallium	1/20	200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200		<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	4200
Silver	ng/L	ΩĪ	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	0.46	<10	<10	<10	<10	<10	<10	<10	410
Ę	_	٦	П		Г	Г	Г	П				Г	П	П	Г	П	П		П	П			П	П	П		П		П	П	П		П		Г	Г	Г	Г	Г	Г	Г

Figure F	Γ	Vanadium	ug/t 10	6.5	<10	4.4	5.5	<10	9.9	<10	<10	<10	10	10	10	10	17	:10	24	14	24	5.8	9.6	14	16	16	5.4	15	13	46	3.1	18	16	09	<10	50	10	8.1	<10	<10	
Authors Charles Char	ŀ	_				L				-				L					L									_	_	\perp	4	4									
State Stat	L	_		Н		\vdash	L	Н	Н				H	H	Н		Н	L	L	L	L	ш	ш	ш	ш	ш	4	_	4	4	4	4	4			L	Н	┡	⊢	Ļ	_
Authors Sample Sample Sample Sample India	ŀ		19 of	<10	<10	<10	<10	<10	<10	<10	ot>	410	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	0.46	<10	<10	<10	<10	<10		<10
Authors Care	L		ug/L S	<5>	Ş	\$	\$	<5	<5	<>	ψ.	Ş	\$	\$	Ş	<5	<5	Ş	\$	S	\$	<5	Ş	<5	<5	<5	\$	\$	ç	Ş	\$	çç	S	2.2	3.2	<5	1.6	Ş	5		\$ × 5
Accordance Comparison Comparison Comparison Contain Co	L		ug/L	0.4	<20	<20	0.62	<20	0.42	<20	<20	<20	<20	<20	<20	<20	<20	<20	1.3	2.9	0.5	<20	<20	1.3	0.42	0.7	<20	<20	0.76	0.2	0.58	0.78	0.36	0.68	0.83	0.29	<20	0.93	0.24		<20
State Sample Sa		Molybdenum	ug/L 10	2.7	1.1	1.1	6.0	0.77	1.8	2.1	2.1	2.4	2.8	1.3	3.2	1.7	3.9	1.2	4.3	33	40	4.1	2.9	3.7	20	2.4	1.9	1	3.8	10	2.7	4.7	4.6	1.7	0.71	8.3	2.2	5.6	5.6		0.52
Schrighe Cample	Γ	Mercury	ug/L 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.20	<0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	20	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.44	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2
Schrighe Cample	ľ	Manganese	ug/L 10	<10	0.72	2	<10	2.1	0.84	<10	11	1.6	<10	0.98	0.87	<10	<10	0.62	33	2.4	16	1.5	NA	7.3	1.6	14	<10	AN	0.76	0.78	<10	<10	<10	2100	1.1	1.7	24	80	140		z
Activities Sample	Γ	Lead	ug/L	<10	0.2	<10	30	<10	0.35	0.22	11	0.24	0.25	<10	<10	0.51	69'0	<10	0.22	<10	89.0	0.19	98.0	<10	0.23	98.0	<10	<10	97.0	<10	<10	0.3	<10	10	0.22	<10	69'0	1.8	<10		<10
Community Block Sample S	Γ	lron	/S/ S/	<50	19	88	190	88	13	12	82	8.6	<50	<50	11	13	<50	15	1300	33	1200	270	NA	370	34	006	<50	NA	14	S	8.6	10	<50	210000	17	87	1400	1300	550		2300
Community Block Sample S	Γ	Copper	16 10	4.5	2.3	1.7	81	<10	3	4.1	18	4.8	4.8	0.94	96'0	1	<10	<10	<10	<10	3.4	89'0	1.3	<10	4.3	7	1.3	<10	1.6	1.9	<10	2.2	<10	4.3	2.1	<10	<10	18	6.5	ı	<10
Harmeen Charles Sample Sample Time Units May Arcanic Barium Baryllium Cardinium Sample Time Units May	ľ			П	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	0.33	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	0.56	0.34	<10	<10	99.0	<10	ı	<10
Handey Daily Stapply (Markey Daily Stapple (Arthropoly Stapple (r				<20	<20	2	2.2	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	2.2	<20	2.5	<20	4.6	<20	<20	<20	<20	<20	<20	<20	<20	2.2	2.5	80	4	2	2.8	2.1	<20		<20
Markey Daily Supply Well 6/26/2014 1100 1101 110	ŀ		ug/t 2	<2	42	5	5	42	<2	5	2	2	42	\$	\$	<2>	<2>	0	42	5	2	<2	5	42	<2	<2	7	7>	7	2	42	<2	5	0.26	<2	2	<2	5	<2		25
Sample Sample Sample Sample Time Units Matiroomy Avsenic Barium Cole Time Units	ŀ	m	ug/L 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10
Sample Sample Time Units Antimony ² Arsenic Units Line Units Line Units Line Units Line Units Unit U	ŀ			10	23	45	40	65	28	8	8	92	43	80	45	70	49	8	51	91	77	7.5	88	70	74	20	84	7.5	00	33	98	22	8	.50	37	20	92	87	96		44
Sample Sample Sample Time Units Un	ŀ			Н	-	H							H	H	Н	H	H	H	H				Н	H			\dashv	+	+	+	+	\dashv	+				H	H			_
Sample Sample Sample Sample Sample Innis Sample Time BDI	┝					H		Н	Н				H	H					H				Н	H	_		+	+		+	+	\dashv	1		-			H		ŀ	_
Address Sample Sample Sample Time Date Time Date Time Date Time Date Time Date Time Date Date Time Date Date Date Date Date Date Date Dat	L	Anti	5.	*		ľ	_	•	v		Ľ	•	ľ	•	•	·	v	•	_	•	•	v	•	_	٧	•	Ť	v	*	Ť	0		0	0	0	*	٧	ľ	•		_
Sample Date	L		Units																																						
Address Address Address Besty Tobie Road Besty Tobie Road Besty Tobie Road Besty Tobie Road Besty Besty Well Besty Besty Well Hinkey Dairy Supply Well Hinkey Dairy Residential Well Hinkey Dairy Residential Well Besty Besty Besty Besty British Besty Besty British British British British British British Besty Besty Besty British British British British British		Sample	Time	1030	1100	1130	1155	1230	1300	1045	1105	1122	1225	1303	1335	1502					_		_	ш	_		_	_	_	1045	1235	1300	1140	1015	1050	1217	1320	1000	1024		1055
Address Address Address Besty Tobie Road Besty Tobie Road Besty Tobie Road Besty Tobie Road Besty Besty Well Besty Besty Well Hinkey Dairy Supply Well Hinkey Dairy Residential Well Hinkey Dairy Residential Well Besty Besty Besty Besty British Besty Besty British British British British British British Besty Besty Besty British British British British British	ſ	Sample	Date	6/26/2014	6/26/2014	6/26/2014	6/26/2014	6/26/2014	6/26/2014	7/22/2014	7/22/2014	7/22/2014	7/22/2014	7/22/2014	7/22/2014	7/22/2014	10/14/2014	10/14/2014	10/14/2014	10/14/2014	10/14/2014	11/25/2014	11/25/2014	11/25/2014	11/25/2014	11/25/2014	11/25/2014	11/25/2014	1/21/2015	1/21/2015	1/21/2015	1/21/2015	1/21/2015	2/11/2015	2/11/2015	2/11/2015	2/11/2015	4/15/2015	4/15/2015		4/15/2015
Ste Mane Hin 2 Hin 3 Hin		Address		24056 Community Blvd.	Harmsen Dairy Supply Well	36507 Dixie Road	36488 Dixie Road	36610 Dixie Road	36686 Dixie Road	Hinkley Dairy Supply Well	Hinkley Dairy Residential Well NW	Hinkley Dairy Residential Well SW			36154 Lenwood Road	36388 Lenwood Road				19816 Highway 58 #4	19816 Highway 58 #1		38790 North Mountainview				36246 Lenwood Road	21574 Shaves Avenue	pe	21924 Pera Road	37776 Seria Road					24410 Alcudia Road	22240-8 Salinas Road	22615 Andreen Street			38080 Mountainview Road
		Site	Name	Hin-1	Hin-2	Hin-3	Hin-4	Hini-5	Hin-6	Hin-7	Hin-8	Hin-9	Hin-10	Hin-11	Hin-12	Hin-13	Hin-14	Hin-15	Hin-16		Hin-18	Hin-19	Hin-20	Hin-21	Hin-22				Hin-26	Hin-27	Hin-28			Hin-31	Hin-32	Hin-33	HIn-34		Hin-36		Hin-31

0

																	-	7
		Water	MCLs ¹	£ 8								250/50	250/500/600 250/500	10/600	900/1600/2200	500/1	0.5	
_		Objectives		WQO*			69					106	9			450		7
	Foo	Foothole S. 1 - Primary and Secondary Maximum Contaminant Limits (MCLs) are based on Title 22 TDS Total Dissolved Solids	1 Secondary M	Aaximum Contami	inant Limits(M	ICLs) are based on Tit	tle 22 TDS To	ital Dissolved So	lids									ĺ
		California Code	e of Regulation Rasin Plan Cha	California Code of Regulations as indicated in the Lahontan Region Wat Control Roard Bado Plan Chanter 3 Water Quality Objective snace 3.4	the Lahontan F	California Code of Regulations as indicated in the Lahontan Region Water Quality Control Roard Radin Plan Chanter 3 Water Quality Objective space 3.4.	V MBAS -	MBAS - Methylene Blue Active S RDI - Reporting Detection Limit	MBAS – Methylene Blue Active Substance RDI – Renorring Detection Limit									
		2 - Agricultural Water Quality Goal	Water Qualit	ty Goal			ļ	1										
		3 - Secondary M	MCLs are organ	mized by recomm	ended/upper/s	3 - Secondary MCLs are organized by recommended/upper/short term values.		Value sin Y	ellow exceed Water	Value sin Yellow exceed Water Quality Objectives (MCLs and SMCLs)	MCLs and SMCLs)							
		NA - Not Analyzed	hzed					Values in	Red exceed Water	Values in Red exceed Water Quality Objectives (Ag Obj)	s (Ag Obj)							
	NAME OF STREET	the state of the late of the ten to the ten																

	•										Minerals									
_	Address	Camela	Canana In		Total	and a later		e dina	Dod week	Total		ark and a	of contract of	Chinada	C. Mode	Nitrate as	1	Electric	3	34044
_	Address	Date	Time	Units		mg/L	magnesium mg/L	mg/L			mg/L		mg/L	mg/L	sundre mg/L	mg/L	Std Units	umhos/cm	mg/L	mg/L
				RDL	3	1	1	1	1	3	3	3	3	1	0.5	0.2	1	1	20	80.0
7	24056 Community Blvd.	6/26/2014	1030		380	120	20	140	3.5	400	<3.0	<3.0	490	110	130	7.2	7.5	1300	840	<0.08
-	Hin-2 Harmsen Dairy Supply Well	6/26/2014	1100		350	110	18	76	3.5	260	<3.0	<3.0	320	100	130	12	7.5	1100	740	<0.08
m	Hin-3 36507 Dixie Road	6/26/2014	1130		330	100	18	130	3.7	280	<3.0	<3.0	340	110	140	16	7.5	1200	800	<0.08
m	Hin-4 36488 Dixie Road	6/26/2014	1155		390	120	20	130	3.6	300	<3.0	<3.0	370	120	170	14	9.7	1300	870	<0.08
m	Hini-5 36610 Dixie Road	6/26/2014	1230		450	140	23	94	3.7	250	<3.0	<3.0	310	140	160	12	7.8	1200	830	<0.08
m	Hin-6 36686 Dixie Road	6/26/2014	1300		460	150	24	150	4.5	320	<3.0	<3.0	390	150	220	12	7.5	1500	1000	<0.08
	Hinkley Dairy Supply Well	7/22/2014	1045		180	22	6.6	88	5.6	140	<3.0	<3.0	170	80	09	5.7	7.3	620	370	<0.20
	Hinkley Dairy Residential Well	7/22/2014	1105		160	51	8.7	20	2.4	130	<3.0	<3.0	160	46	63	3.1	7.6	280	330	<0.20
T 0	Hinkley Dairy Residential Well SW	7/22/2014	1122		170	52	6	83	5.6	140	<3.0	<3.0	170	47	52	3.8	7.8	085	340	<0.20
m	Hin-10 35494 Dixie Road	7/22/2014	1225		120	37	9.9	35	2.4	97	<3.0	<3.0	120	32	3.5	1.1	7.5	400	220	<0.20
7	Hin-11 24543 Community Blvd	7/22/2014	1303		350	110	19	93	3.7	230	<3.0	<3.0	280	110	110	23	7.4	1100	710	<0.20
m	Hin-12 36154 Le nwood Road	7/22/2014	1335		110	35	6.2	44	2.3	100	<3.0	<3.0	120	36	45	1.4	7.7	440	230	<0.20
m	Hin-13 36388 Le nwood Road	7/22/2014	1502		280	87	14	74	3.1	210	<3.0	<3.0	260	70	06	7.9	7.5	860	520	<0.20
m		10/14/2014	-		280	81	19	140	3.8	100	<3.0	<3.0	120	190	170	4.7	8.0	1200	260	<0.20
2	/ Blvd.	10/14/2014	-		290	90	16	88	4.6	220	<3.0	<3.0	270	61	91	9.0	7.8	910	260	<0.20
m		10/14/2014	\rightarrow		120	38	6.9	120	2.3	130	<3.0	<3.0	160	110	86	1.2	8.1	840	440	<0.20
ř		10/14/2014	\rightarrow		700	180	09	610	9.3	210	<3.0	<3.0	260	1100	210	10.0	7.7	4000	2300	<0.20
ř	8 #1	10/14/2014	-		130	30	14	180	4.0	160	<3.0	<3.0	200	120	200	1.1	7.9	1200	670	<0.20
m	1	11/25/2014	-		140	43	00 }	27	5.6	120	<3.0	<3.0	150	47	/9	0.9	7.8	220	420	<0.20
8	tainview	11/25/2014	-		NA	NA S	AN .	NA	NA S	150	<3.0	<3.0	180	81	25	6.5	NA C	NA	430	NA C
9		11/25/2014			230	69	14	150	20, 0	130	43.0	63.0	160	1/0	120	0.21	8'/	1100	0690	40.20
9 5	Hin-22 57769 Blanca Road	11/25/2014	1346		230	/8	10	010	9.0	100	43.0	63.0	130	410	000	9.7	8.7	2800	1/00	40.20
7 %	be	11/25/2014	-		150	41	e 8	50	8.0	120	43.0	63.0	140	130 24	65	6.1	0.0	040	360	<0.20
2	L	11/25/2014	+-		NA	AN	NA	NA	NA	160	43.0	43.0	200	43	45	9.0	NA	NA	350	NA
m	Hin-26 37223 Hinkley Road	1/21/2015	1000		270	82	16	100	4.1	130	<3.0	<3.0	160	160	79	7.0	7.7	066	069	<0.20
2	Hin-27 21924 Pera Road	1/21/2015	1045		47	14	3	150	2.1	140	<3.0	<3.0	160	100	76	3.1	8.2	780	510	<0.20
m	Hin-28 37776 Serra Road	1/21/2015	1235		260	78	15	110	2.7	110	<3.0	<3.0	140	180	88	3.2	7.8	1000	620	<0.20
m	Hin-29 37118 Pueblo Road	1/21/2015	1300		91	28	S	140	2.5	130	<3.0	<3.0	160	110	62	3.2	7.9	730	480	<0.20
m	Hin-30 37731 Pueblo Road	1/21/2015	1140		180	54	11	96	2.2	130	<3.0	<3.0	160	120	83	2.0	8.0	860	530	<0.20
8	Hin-31 38080 Mountainview Road	2/11/2015	1015		1300	400	74	200	6.4	130	<3.0	<3.0	160	640	540	11.0	7.1	3200	2700	<0.20
2	Hin-32 22726 Thompson Road	2/11/2015	1050		2100	630	120	480	15.0	260	<3.0	<3.0	320	950	1400	32.0	7.2	5300	4300	<0.20
2	Hin-33 24410 Alcudia Road	2/11/2015	1217		21	8	1	120	1.4	130	<3.0	<3.0	160	67	32	2.7	8.5	260	360	<0.20
2.	Hin-34 22240-B Salinas Road	2/11/2015	1320		300	95	16	120	2.8	120	<3.0	<3.0	150	200	110	2.2	7.8	1100	069	<0.20
7	Hin-35 22615 Andreen Street	4/15/2015	1000		140	42	80	51	2.0	130	<3.0	<3.0	160	34	48	0.3	7.8	520	320	<0.20
m	Hin-36 36280 Serra Road	4/15/2015	1024		98	59	9	20	2.4	100	<3.0	<3.0	130	36	34	<0.2	7.8	440	320	<0.20
m	peo	4/15/2015	\rightarrow		1300	390	71	200	4.9	140	<3.0	<3.0	170	099	550	11.0	7.3	3300	2700	<0.20
7	Hin-37 24116 Santa Fe Avenue	4/15/2015	1135		490	150	56	140	4.4	280	<3.0	<3.0	340	140	220	14.0	7.3	1500	1000	<0.20

100	37825 Dixie Road	4/15/2015	1409		7	2	17	100	0.7	150	<3.0	<3.0	180	22	24	9.0	8.8	470	260	<0.20	
1	37373 Summerset Road	4/15/2015 1433	1433		240	77	12	130	5.0	190	<3.0	<3.0	230	87	130	3.3	9.2	096	620	<0.20	
1		Water		Primary	Γ		Ī	r	r	ľ		Ī				10	r			0.5	
		Quality	MCLS	Secondary										250/500/600	250/500/600		U)	900/1600/2200	00/1000/1500		
		Objectives		WQ02				69						106					450		
ı	Footnotes:	- Defenses and S	Amadani	Insign on Cont	mania not I louis	MAN d we have	od on Title 22	US - Total Dis	sowed solids												
		1 - FITTING YELD COUNTRY PROGRAMMENT OF CONTRIBUTION OF CONTRI	f Demiliation	saminim con	(in the labout	S (MLLS) are be.	Sed on 110e 22	MBAS Methy.	tene Blue Activ	10											
		California Code of Inguistration is a fundamental for the California inguistration	The Colon Charles	is as illumated	Ough Ohlas	Car region was		Substance													
		Control Board Ba	SU MAN CE	apter 3 water	canality colect	Tives page 3-4.		RDL Reporting Detection limit	g Detection lin	nit											
		2 - Agricultural Water Quality Goal	Water Quality	ty Goal																	
		3 - Secondary MCLs are organized by recommended/upper/short term values.	Cls are orga	nized by recor	mmended/upp	ser/short term v	raines	Ñ	slues in Yellow	rexceed Water	Values in Yellow exceed Water Quality Objectives (MCLs and SMCLs)	es (MCLs and S	SMCLs)								
		NA - Not Analyzed	per					Š	alues in Red e	exceed Water	Values in Red exceed Water Quality Objectives (Ag Obj.)	ives (Ag Obj)									

noville\Shared\Lints\talkYrc.LNIT\Chamm\Hriden area water camping\Realis table.

2

Hinkley, CA Well Sampling Field Data Results

Site Name	Address	Coordinates In Google Maps	Coordinates NAD27 CON US	Date	Time	pH Std. Units	DO mg/L	EC	Temp °C	TDS 8/L	Notes
Hin-1	24056 Community Blvd	N34.907571 W117.136990	N34.90757 W117.13614	6/26/2014	1030	7.86	8.1	0.154	19.1	Ħ	Jim Griffin accompanied staff during well sampling. Well is located on the southeast corner of the property to the right of the driveway.
Hin-2	Harmsen Dairy Supply Well	N34.911820 W117.136441	N34.91182 W117.13557	6/26/2014	1100	7.48	8.18	0.125	19.9	0.8	Jim Griffin accompanied staff during well sampling. Well is connected to a tank west of Dixie Road.
Hin-3	36507 Dixie Road	N34.91486 W117.135840	N34.91484 W117.13499	6/26/2014	1130	7.63	8.61	0.136	20.4	6.0	Jim Griffin accompanied staff during well sampling. Well is located south of the house and east of Dixie Road.
Hin-4	36488 Dixie Road	N34.914541 W117.140080	N34.91457 W117.13921	6/26/2014	1155	7.8	8.83	0.148	20.6	6.0	Property is owned by Ann & Manuel Baca. Well is located east of the house and west of Dixie Road.
Hin-5	36610 Dixie Road	N34.917220 W117.136953	N34.91720 W117.13609	6/26/2014	1230	7.8	9.14	0.142	21.6	6.0	Well is located in the backyard of the property west of Dixie Road.
Hin-6	36686 Dixie Road	N34.918109 W117.137060	N34.91810 W117.13621	6/26/2014	1300	7.5	7.94	0.162	22	1.1	Owner indicated that the well is 300 feet deep. Well is located in the backyard of the property west of Dixie Road and north of Anson Avenue.
Hin-7	24333 Community Blvd	N34.9068 W117.12892	N34.9068 W117.12802	7/22/2014	1045	7.27	9.56	48	17.6	0.31	Hinkley Dairy Supply Well
Hin-8	24333 Community Blvd	N34.90619 W117.13105	N34.90569 W117.13040	7/22/2014	1105	7.58	10.76	45.4	18.1	0.3	Hinkley Dairy Residential Well NW
Hin-9	24299 Community Blvd	N34.90262 W117.13157	N34.90262 W117.13067	7/22/2014	1122	7.56	10.87	45.3	17.5	0.29	Hinkley Dairy Residential Well SW
Hin-10	35494 Dixie Road	N34.89634 W117.13647	N34.89634 W117.13557	7/22/2014	1225	7.58	11.1	30.8	16.4	0.2	Spigot is 12 feet from the well.
Hin-11	24543 Community Blvd	N34.90696 W117.12664	N34.90696 W117.12574	7/22/2014	1303	7.66	10.67	88.8	17.8	0.57	
Hin-12	36154 Lenwood Road	N34.90346 W117.11963	N34.90346 W117.11873	7/22/2014	1335	7.83	11.44	33.8	17.1	0.22	
Hin-13	36388 Lenwood Road	N34.91265 W117.12033	N34.91265 W117.11943	7/22/2014	1502	7.7.7	10.65	62.9	18.6	0.42	
Hin-14	37797 Hinkley Road	N34.9380556 W117.1880556		10/14/2014	1010	8.42	7.88	0.14	21.4	6.0	Well goes dry, did not run much.
Hin-15	23535 Community Blvd	N34.9066667 W117.1486111		10/14/2014	1158	7.78	7.69	0.104	19.5	0.7	

Hinkley, CA Well Sampling Field Data Results

							Ī	ļ		
	Coordinates	Coordinates	Date	Time	표 :	8	G (Temp	TDS	Notes
	In Google Maps	NAD27 CON US			Std. Units	mg/L	mS	ပ္	g/L	
37862 Petra Road	N34.9391667		10/14/2014	1400	8.21	5.2	0.095	21.5	9.0	
	W117.1850000		1 - 10-							
19816 Highway 58 #4	N34.9247222 W117.2305556		10/14/2014	1455	7.56	5.6	0.468	22.5	m	North. Wells go dry, did not run much.
19816 Highway 58 #1	N34.9222222		10/11/1014	1510	218	90 8	0 13	22	α	41.00
T# OC ÁBM	W117.2300000		10/14/2014	0101	0.10	0.00	CT.0	67	0	South
35490 Riverview	N34.89806		11/25/2014	939	6.9	9.15	45.8	16.9	0.3	
	W11/.13083		8							
38790 North Mountainview	N34.95944 W117.17278		11/25/2014	1010	7.3	7.5	59.3	21.6	0.38	
37814 Blanca Road	N34.93833		11/25/2014	1130	7.5	7.6	99.1	21.6	0.63	
	W11/.18694									
37769 Blanca Road	N34.93777 W117.18638		11/25/2014	1210	7.7	8.25	0.214	22.5	1.4	
21785 Erwin Court	N34.93722		11/25/2014	1245	7.9	6.2	69.4	17.7	0.44	
	W11/.18694									
36246 Lenwood Road	N34.90972 W117.11916		11/25/2014	1420	7.7	8.5	47.7	17.9	0.31	
21574 Shaves Avenue	N34.87861		11/25/2014	1445	7.8	8,2	46.1	23.5	2	
aniiak sak	W117.19250		+102/22/11	7440	0.	7.0	1.01	C.C.	9	
	N34.92781		31/00/16/1	1000						
37223 Hinkley Road	W117.18778		21/27/2013	1000						
	N34.94012		1/21/2015	10.45						
21924 Pera Road	W117.18150		1, 22/ 2020	201						
	N34.93778		3 /24 /204 5	1004						
37776 Serra Road	W117.18074		1/21/2013	1732						
	N34.94017		31/20/15/1	1300						
37118 Pueblo Road	W117.18304		1/21/2013	OOCT						
	N34.93689		1/21/2015	1140						
37731 Pueblo Road	W117.18149			1						
38080 Mountainview	N34.943333		3/11/2015	101	7.3	۰	246	7	9 1	* Towards end of sampling water was murky (less
	W117.176944		2/11/2013	CIOI	C: /	0	047	C.12	O.T	clear). Data obtained was questionable due to murky
Pro C account	N34.94333		2/11/2015	1050	7	7.8	401	22	2.6	
22/26 nompson koad	W117.166944									

Hinkley, CA Well Sampling Field Data Results

_	_	_	_		_			_	_												_	_		_
Notes											"Resampled due to questionable results from 2/11/15.													
TDS	g/L	0.3		0 20	0.39	30.0	0.35	100	0.51	,,	7.7	,	-	20	ò	700	0.0	0.32	20:0	10);			
Temp	ာ့	23.1		316	0.12	1	7.17	0,0	13.4		21.5	0	20.3	0 10	7.77	, ,	7.47	2.4	1.7	7	7.77			
EC	mS	46.6		000	35.5	2 2 2	0.00	47.0	0.74	****	334		15/	113	777		20.7	808	000	100	102			
8	mg/L	9	,	20.0	0.00	200	0.00	0	0.0	1	5.7		2.0	0 10	0	7.7	7.7	7 0 5	00	30	0.00			
H	Std. Units	8.1	-	7.0	0.7	2 7	0.0	00 0	0.03	000	9.88	1	7.38	20 2	20.	0.73	27.0	8 71	1.0	100	10./			
Time		1217		1330	1350	0001	1000	1004	1024	1100	1055		1135	1227	1761	1254	1224	1409	740	1433	1433			
Date		2/11/2015		2/11/2015	6102/11/2	31/15/2015	4/15/2013	4/15/2015	4/12/2013	2 /4 5 /204 5	4/15/2015	11/2042	4/15/2015	4/15/2015	CTO2 /CT /L	3/15/2015	4/15/2013	4/15/2015	CTO2 /CT /L	3/15/2015	4/12/2013			
Coordinates	NAD27 CON US																							
Coordinates	In Google Maps	N34.954167	W117.176111	N34.939167	W117.129167	N34.904722	W117.169167	N34.910556	W117.180833	N34.943333	W117.176944	N34.9225	W117.135278	N34.923056	W117.130278	N34.939167	W117.135556	N34.938889	W117.135278	N34.946944	W117.153611			
Address			24410 Alcudia Road		22240-B Salinas Road		22615 Andreen Street		36280 Serra Road		38080 Mountainview Road		24116 Santa Fe Avenue		24332 Highway 58		37885 Dixie Road		37825 Dixie Road		37373 Summerset Road			
Site	Name		Hin-33		Hin-34		Hin-35		Hin-36		Hin-31		Hin-37		Hin-38		Hin-39		Hin-40		Hin-41			

Footnote: Coordinates were determined in the field using a Garmin Etrex Venture H.C. Datum used - NAD27 CON US.

RBBVictorolla\Shared\Units\IAV\s UNIT\Gasen\Hinklev area water sempline\Beaufts table for all sempled wells\Hinklev 2014 \Smoline Data