Proposed Amendment to the Water Quality Control Plan – Los Angeles Region	
to Incorporate the	
Total Maximum Daily Load for Boron, Chloride, Sulfate, and TDS (Salts) in the Calleguas Creek, its Tributaries and Mugu Lagoon	
Proposed for adoption by the California Regional Water Quality Control Board, Los Angeles Region on August 9, 2007	Τ
Amendments	E
Table of Contents Add:	Ν
Chapter 7. Total Maximum Daily Loads (TMDLs)	
7-22 Calleguas Creek Watershed Salts TMDL	I
List of Figures, Tables, and Inserts Add:	A
Chapter 7. Total Maximum Daily Loads (TMDLs)	Τ
Tables7-22Calleguas Creek Watershed Salts TMDL7-22.1. Calleguas Creek Watershed Salts TMDL: Elements7-22.2. Calleguas Creek Watershed Salts TMDL: Implementation Schedule	Ι
Chapter 7. Total Maximum Daily Loads (TMDLs) Calleguas Creek Watershed Salts TMDL	V
This TMDL was adopted by:	E
The Regional Water Quality Control Board on [Insert date].	
This TMDL was approved by:	
The State Water Resources Control Board on [Insert date]. The Office of Administrative Law on [Insert date].	

The elements of the TMDL are presented in Table 7-22.1 and the Implementation Plan in

The U.S. Environmental Protection Agency on [Insert date].

TMDL Element	Kev Find	ings and Regulatory Provisions					
Problem			X)				
Statement	are identified on the 200 quality limited segments chloride, sulfate, or TDS	es in the Calleguas Creek Watershed (CCV 2 Clean Water Act Section 303(d) list of w as impaired due to elevated levels of boro (salts). Salts primarily impact two benef and groundwater recharge.	vater- n,				
	The segment of Reach 4 below Laguna Road is tidally influenced and therefore not impaired for chloride, boron, sulfate, and TDS. Consequently, the waste load and load allocations developed for Reach 4 in this TMDL do not apply below Laguna Road.						
	The goal of this TMDL is to protect and restore the water quality in the Calleguas Creek watershed by controlling the loading and accumulation of salts.						
Numeric Targets	Numeric targets are based on the site-specific numeric water quality objectives (WQOs) provided in the Basin Plan.						
	1. Surface Water Quality Objectives						
	Site-specific surface water quality objectives for the Calleguas Creek watershed are applicable upstream of Potrero Road. Site specific objectives have not been determined for Calleguas Creek below Potrero Road because the reach is tidally influenced. Below are WQOs for Calleguas Creek upstream of Potrero Road.						
	Water Quality Objective						
	Constituent	Upstream Potrero Road					
	Doron	(mg/L)					
	Boron Chloride	1 150					
	Sulfate	250					
	TDS	850					

Table 7-22.1. Calleguas Creek Watershed Salts TMDL: Elements

TMDL Element	Key Findings and Regulatory Provisions						
	2. <u>Groundwater Quality O</u>	bjectives					
	Groundwater Basin	Boron (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)		
	Arroyo Simi/Simi Valley Arroyo Simi/South Las Posas	1.0 3.0	150 400	600 1200	1200 2500		
	Arroyo Las Posas/South Las Posas	1.0	250	700	1500		
	Arroyo Las Posas/North Las Posas	1.0	150	250	500		
	Arroyo Santa Rosa and Conejo/Arroyo Santa Rosa	1.0	150	300	900		
	Arroyo Santa Rosa/Tierra Rejada	0.5	100	250	700		
	Arroyo Conejo/Thousand Oaks	1.0	150	700	1400		
	Arroyo Conejo/Conejo Valley	1.0	150	250	800		
	Conejo and Calleguas/Pleasant Valley	1.0	150	300	700		
Source Analysis	Sources of salts in the watershe from the State Water Project or groundwater pumping), water s owned treatment works (POTW atmospheric deposition, pesticio (chemicals, cleansers, food, etc. through POTW discharges and groundwater, and/or stranded or transported in the surface water that are exported from the water in the introduced water is usual quantity of water brought into t introduced water as the greatest Salts are transported during dry quantified via the following me groundwater exfiltration, POTV runoff. Wet weather loadings f potential to be significant, but to not occur during the critical cor significant from the perspective watershed.	Freeman ofteners th /s), POTW des and fe .). These s runoff to s n the wates to the occor rshed. Wh ly below t he watersh source of weather t chanisms: Vs, dry we rom each end to be nditions for	Diversion a nat discharg / treatment rtilizers, an alts are the surface wat rshed in th ean are curr hile the cor he Basin P ned is suffi salts to the o the surfa groundwa eather urba of these so lower in co r salts. We	and deep a ge to publi c chemicals ad indoor v en transpor ter, shallow e soils. Sa rently the of centration lan Object cient to ran e watershe ce water as ter pumpin n and agrio urces have oncentratio et weather	quifer cly s, vater use ted v alts only salts of salts ives, the nk d. re ng, cultural e the n and do loads are		

TMDL Element	Key Findings and Regulatory Provisions
Linkage Analysis	The linkage analysis for salts focuses on the surface water concentrations of salts. However, surface water concentrations are only one component of the watershed salts issue. Because it is difficult to model other aspects of the salt problem (i.e. surface water and groundwater interactions, stranded salts), two simplified approaches have been used to demonstrate that salts will be removed from the watershed, which should have a correspondingly positive impact on surface water and groundwater salts concentrations. First, a surface water model was developed to provide a linkage between sources and surface water quality and to demonstrate the impact of projects on receiving water quality in the watershed. Second, a salt balance was developed to quantify the removal of salts from the watershed with the goal of achieving a mass balance in which the mass of boron, sulfate, TDS and chloride imported into Calleguas Creek subwatersheds is no more than the mass of boron, sulfate, TDS and chloride exported from the Calleguas Creek subwatershed. Achieving a salt balance in the watershed will prevent additional build-up of salts in any medium in the watershed and protect ground water supplies from increasing in salt concentrations. The Calleguas Creek Modeling System is a mass balance based model that was developed for the surface water to provide a linkage between sources and surface water quality. To estimate the salts balance in the watershed, a simple chloride mass balance was developed by the Camrosa Water District (Hajas, 2003a) and modified to address the other salts.
Waste Load Allocations	A. POTWs The TMDL includes waste load allocations for five POTWs in the Calleguas Creek watershed: Simi Valley Wastewater Treatment Plant (SVWWTP), Hill Canyon WWTP, Moorpark WWTP, Camarillo Water Reclamation Plant (WRP) and Camrosa Water Reclamation Facility (WRF). At the end of the implementation period, only SVWWTP and the Hill Canyon WWTP are expected to discharge to surface waters. Moorpark WWTP and Camrosa WRF currently discharge directly to ponds under dry weather conditions. As part of the TMDL implementation, (the Renewable Water Resources Management Program (RWRMP)) will introduce treated wastewater from the Camarillo WRP into the Camrosa recycled water storage and distribution system. Surplus treated wastewater from Camarillo WRP and Camrosa WRF will be discharged at a point downstream of Potrero Road Bridge to Calleguas Creek. Dry weather wasteload allocations are included for the case when Camarillo WRP, Camrosa WRP, and Moorpark need to discharge to the stream (for example, if there is

TMDL Element	Key Findings and Regulatory Provisions
	insufficient recycled water demand during the wet season). Including wasteload allocations for these POTWs ensures that water quality objectives are not exceeded as a result of their discharge.
	POTW mass-based wasteload allocations are calculated as the POTW effluent flow rate multiplied by the water quality objective and include a mass-based adjustment factor (AF) that is subtracted from the product of the flow-rate and the water quality objective. The adjustment factor is used to link POTW allocations to the required reductions in background loads. The adjustment factors are implemented through mechanisms that export salts out of the subwatershed, such as groundwater pumping, to meet the salt balance requirements. To ensure that the loading capacity is achieved in surface water and the reductions in background loads are achieved, minimum salt exports shown below are required for POTWs and are included in WLAs as a component of the adjustment factors. If the background load reductions are not achieved, POTWs shall be responsible for providing additional load reductions to achieve water quality standards. The AF is set equal to the difference between the minimum salts export requirement to attain a salt balance in the subject reaches and the actual salts export. If the calculated annual dry weather salt exports from the subwatershed to which the POTW discharges are less than the minimum required exports for the previous year and the annual average receiving water concentration at the base of the subwatershed to which the POTW discharges exceeds water quality objectives for the previous year, the POTW allocations will be reduced using the adjustment factor.
	The adjustment factors are also used to address unusual conditions in which the inputs to the POTWs from the water supply may challenge the POTWs ability to meet the assigned WLAs. The adjustment factor allows for the additional POTW loading only when the water quality objectives are met in the receiving waters. POTW allocations can be adjusted upwards when imported water supply chloride concentrations exceed 80 mg/L and discharges from the POTW exceed the WLA. In order to apply the AF to the assigned WLAs, the POTW is required to submit documentation of the water supply chloride concentrations, receiving water chloride concentration, the effluent mass, and evidence of increased salt exports to offset the increased discharges from the POTW to the RWQCB for approval.
	WLAs shown in table below apply to POTWS during dry weather when the flows in the receiving water are below the 86 th percentile flow. During wet weather, the loading capacity of the stream is significantly increased by stormwater flows with very low salt concentrations. Any discharges from the POTWs during wet weather would be assimilated

Key Findings and Regulatory Provisions						
•		ows and y	would not ca	use exceedance	es of water	
subwatersheds a of the watershed	ind exc l. Thei	eedances	of boron do	not occur in o	ther portions	
implementation allocations. The percentile of ava	Interim limits are included to allow time for dischargers to put in pla implementation measures necessary to achieve final waste load allocations. The monthly average interim limits are set equal to the percentile of available discharge data.					
POTW	Mir Chlori	nimum de Export	Minimum TDS Export (Ib/day)	Minimum Sulfate Export (lb/day)	Minimum Boron Export (Ib/day)	
SVWWTP		460	3220	9120	3.3	
Moorpark WWTP		460	3220	9120	3.3	
Hill Canyon WWTP	1(060	7920	4610	0	
Camrosa WRF	1060		7920	4610	0	
Camarillo WRP	10	060	7920	4610	0	
2. Interim M	/Ionthl			Sulfate	Boron (mg/L)	
SVWWTP		183	955	298	N/A	
Hill Canyon WWTP		189	N/A	N/A	N/A	
Moorpark WWTP		171	N/A	267	N/A	
Camarillo WRP		216	1012	283	N/A	
Camrosa WRF*		N/A	N/A	N/A	N/A	
limits were calcula interim WLAs for	ated. Wh Camrosa	nen effluent o a WRF.	data are available	e, the Regional Boar	rd may adopt	
	quality objective Boron is only lis subwatersheds a of the watersheds Simi Valley WW Interim limits ar implementation allocations. The percentile of ava 1. Minimum POTW SVWWTP Moorpark WWTP Hill Canyon WWTP Camrosa WRF Camarillo WRP ^a Minimum export red 2. Interim N POTW SVWWTP Hill Canyon WWTP Camarillo WRP Camrosa WRF Camarillo WRP Camrosa WRF* * Camrosa WRF* * Camrosa WRF thim the series of t	quality objectives. Boron is only listed in subwatersheds and excoof the watersheds and excoof the watershed. There Simi Valley WWTP. Interim limits are incluing implementation measure allocations. The month percentile of available 1. Minimum Salt I POTW Minimum Salt I SVWWTP Moorpark WWTP Hill Canyon WWTP Camarillo WRP 10 Camarillo WRP Aminimum export requirement 2. Interim Monthl POTW SVWWTP Camarillo WRP Camarillo WRP Camorsa WRF Moorpark WWTP Camarillo WRP Camorsa WRF* * Camrosa WRF* * Camrosa WRF has not di limits were calculated. Wrinterim WLAs for Camrosa N/A: The 95 th percentile of the percentile of	quality objectives. Boron is only listed in the Simi subwatersheds and exceedances of the watershed. Therefore, bo Simi Valley WWTP. Interim limits are included to all implementation measures neces allocations. The monthly average percentile of available discharge 1. Minimum Salt Export R POTW Minimum Chloride Export (lb/day) SVWWTP 460 Hill Canyon 1060 Camrosa WRF 1060 Camarillo WRP 1060 * Minimum export requirements include a 2. Interim Monthly Average Moorpark WWTP 183 Hill Canyon WWTP 183 Hill Canyon WWTP 184 Aminimum export requirements include a 2. Interim Monthly Average Chloride (mg/L) SVWWTP SVWWTP 183 Hill Canyon WWTP 189 Moorpark WWTP 171 Camrosa WRF* N/A * Camrosa WRF has not discharged to limits were calculated. When effluent of interim WLAs for Camrosa WRF. N/A: The 95 th percentile concentration	quality objectives. Boron is only listed in the Simi and Pleasant subwatersheds and exceedances of boron do of the watershed. Therefore, boron allocation Simi Valley WWTP. Interim limits are included to allow time for implementation measures necessary to achie allocations. The monthly average interim limpercentile of available discharge data. 1. Minimum Salt Export Requirement POTW Minimum (Ib/day) SVWWTP 460 3220 Moorpark WWTP 460 3220 Moorpark WWTP 460 3220 Moorpark WWTP 460 3220 Mill Canyon WWTP 1060 7920 Camrosa WRF 1060 7920 Camarillo WRP 1060 7920 * Minimum export requirements include a 10% Margin of S 2. Interim Monthly Average WLAs for SVWWTP 183 955 Hill Canyon WWTP 189 N/A N/A Moorpark WWTP 171 189 N/A Moorpark WWTP 189 181 955 Hill Canyon WW	Boron is only listed in the Simi and Pleasant Valley (Revol subwatersheds and exceedances of boron do not occur in or of the watershed. Therefore, boron allocations are only inc Simi Valley WWTP. Interim limits are included to allow time for dischargers to implementation measures necessary to achieve final waste allocations. The monthly average interim limits are set equ percentile of available discharge data. 1. Minimum Salt Export Requirements for Adjustm POTW Minimum TDS Export (lb/day) SUWWTP 460 3220 9120 Moorpark WWTP 1060 7920 4610 Carnosa WRF 1060 7920 4610	

TMDL Element		Key Finding	s and Regulate	ory Provision	IS
	3. Final W	LAs for PO	ГWs ^{a,d}		
	РОТЖ	Chloride (lb/day) °	TDS (Ib/day) ^c	Sulfate (Ib/day) °	Boron (Ib/day) ^c
	SVWWTP	150*Q-AF	850*Q-AF	250*Q-AF	1.0*Q-AF
	Hill Canyon WWTP	150*Q-AF	850*Q-AF	250*Q-AF	N/A
	Moorpark WRP ^b	150*Q-AF	850*Q-AF	250*Q-AF	N/A
	Camarillo WRP ^b	150*Q-AF	850*Q-AF	250*Q-AF	N/A
	Camrosa WRF ^b	150*Q-AF	850*Q-AF	250*Q-AF	N/A
	export re d. Q represe and a cor N/A Boron is n required. B. Urban Run	quirement and the ents the POTW flo oversion factor to l not listed in the rea	and equals the diffe actual salts export. we at the time the wa b/day based on the u aches to which the P	tter quality measur inits of measurem OTW discharges.	rement is collected ent for the flow. No WLA is
	allocation equa multiplied by t allocations app subwatershed. salts at low co objectives durf instream flow	al to the avera the numeric ta oly in the rece Because wet ncentrations, ing wet weath rates are belo	age dry weather arget for each c viving water at t weather flows these discharge ar. Dry weather	critical condi onstituent. W the base of eac transport a la trs meet water er allocations entile flow an	Vaste load ch rge mass of quality
	covered by NF appropriate ac based receivin data as a mont for chloride wa criteria set fort uses including Permitted Stor	PDES stormwittions. The intigendation of the store of the	which is higher n Plan for prote Therefore, the nargers is set eq	allow time to assigned as c percentile of t chloride. The than the recon- ction of sensi- interim limit f pual to 230 mg	implement oncentration the discharger 95 th percentile mmended tive beneficial for chloride for

ement	Key Findings and Regulatory Provisions						
	1. Interim Di Discharger	·	WLAs for	Permitted	l Stormwa	ter	
	Constituent	Interim Li	mit (mg/L)				
	Boron Total	1.3	,				
	Chloride Total	230					
	Sulfate Total	1289					
	TDS Total	1720					
	2. Final Dry Discharger		Chloride Allocation (lb/day)	TDS Allocation (lb/day)	tormwater Sulfate Allocation (lb/day)	Boron Allocation (Ib/day)	
	Simi	1.39	1,738	9,849	2,897	12	
	Las Posas	0.13	157	887	261	N/A	
	Conejo	1.26	1,576	8,931	2,627	N/A	
	Camarillo	0.06	72	406	119	N/A	
	Pleasant Valley (Calleguas)	0.12	150	850	250	N/A	
	Pleasant Valley (Revolon)	0.25	314	1,778	523	2	
	C. Final WLA	based wasteld	bad allocat	ions are as		ne Basin	
	Concentration-t Plan objectives Constituent Chloride TDS	for other NP	tion (mg/L) 150 850				
	Plan objectives Constituent Chloride	for other NP	tion (mg/L) 150				

Load Allocations	r	Key Findings	and Regulat	ory Provision	ns			
	Dry weather loa irrigated agricul average dry wea numeric target f receiving water flows transport these discharger weather. Dry w below the 86 th p precipitation in	tural discharg ather critical c for each consti- at the base of a large mass o rs should meet reather allocat percentile flow	es. The load ondition flow tuent. Load each subwate f salts at a ty water qualit ions apply when	allocation is e v rate multipli allocations ap ershed. Beca pically low co y objectives o hen instream	equal to the ed by the oply in the use wet weather oncentration, luring wet flow rates are			
	 Interim limits are assigned for dry weather discharges from irrigated agricultural areas to allow time to implement appropriate actions. The interim limits are assigned as concentration based receiving water limits set to the 95th percentile of the discharger data as a monthly average limit except for chloride. The 95th percentile for chloride was 499 mg/L which is higher than the recommended criteria set forth in the Basin Plan for protection of sensitive beneficial uses including aquatic life. Therefore, the interim limit for chloride for Irrigated Agricultural Dischargers is set equal to 230 mg/L to ensure protection of sensitive beneficial uses in the Calleguas Creek watershed. Interims Load Allocations for Irrigated Agricultural Dischargers 							
	Constituent	Interim Lim	it (mg/L)					
	Boron Total	1.8						
	Chloride Total	230						
	Sulfate Total	196	2					
	TDS Total	399	5					

Las Posas	2,109	11,952	3,515	N/A
Conejo	743	4,212	1,239	N/A
Camarillo	59	336	99	N/A
Pleasant Valley	305	1,730	509	N/A
Revolon	7,238	41,015	12,063	48

TMDL Element	Key Findings and Regulatory Provisions
Margin of Safety	A margin of safety for the TMDL is designed to address uncertainties in the analysis that could result in targets not being achieved in the waterbodies. The primary uncertainties associated with this TMDL include the impact of implementing a salt balance on receiving water quality. The effect of the salt balance is estimated by the mass-balance and subject to the following uncertainties: 1) the flow rates used to determine the loading capacity may change due to TMDL implementation, 2) the use of a daily load for determining allocations and an annual mass balance to attain water quality objectives, and 3) the sources of salts may not be completely known. Both implicit and explicit MOS are included for this TMDL. The implicit MOS stems from the use of conservative assumptions made during development of the TMDL. The mass of salts transported out of the watershed during wet weather is on average over 15% of the annual mass of salts introduced to the watershed for all constituents. The salt export during wet weather ranges from 7% to 41% for TDS, 9% to 48% for chloride, and 13% to 89% for sulfate of the export required to meet a salt balance in the watershed. This mass is not used to determine compliance with the salt balance and represents a significant implicit margin of safety. The model also contains a component that serves to model the impact of "stranded" salts in the watershed. The component assumes low irrigation efficiencies and the ability of all salts applied as irrigation water anywhere in the watershed to be discharged to receiving water in critical years. This likely overestimates the impact of "stranded" salts and results in a higher concentration of salts due to irrigation in the receiving water.
	An explicit MOS of 10% is applied to the adjustment factors for the POTWs to account for the uncertainties in the TMDL analysis. By applying the margin of safety to the adjustment factor, more salts are required to be exported than are necessary to offset the background loads in the watershed. This additional salt export provides a margin of safety on the salt balance to address uncertainties that the salt balance will result in compliance with water quality objectives. The 10% explicit MOS is determined sufficient to address the uncertainties associated with the estimated impact of the salt balance on receiving water loadings.
Future Growth	Ventura County accounts for slightly more than 2% of the state's residents with a population of 753,197 (US Census Bureau, 2000). GIS analysis of the 2000 census data yields a population estimate of 334,000 for the CCW, which equals about 44% of the county population. According to the Southern California Association of Governments (SCAG), growth in Ventura County averaged about 51% per decade from 1900-2000; with growth exceeding 70% in the 1920s, 1950s, and

TMDL Element	Key Findings and Regulatory Provisions
Success 1	1960s. Significant population growth is expected to occur within and near present city limits until at least 2020. Increased growth requires additional water. Therefore, future growth could result in increased loads of salts being imported into the watershed. However, the TMDL implementation plan is designed to maintain a salts balance in the watershed. If additional salts are imported into the watershed, a larger volume of salts will also be exported out of the watershed to maintain the balance. Consequently, increased imports from future growth are not expected to result in higher concentrations in receiving waters.
Seasonal Variations and	The critical condition for salts is during dry weather periods. During wet weather, stormwater flows dilute the salt discharges and receiving
Critical	water concentrations are significantly lower than water quality
Conditions	objectives. Dry weather, defined as days with flows lower than the 86 th percentile flow and no measurable precipitation, is a critical condition regardless of the dry weather flows in the stream. The driving conditions for exceedances of water quality objectives are the concentrations in the water supply (which is driven by surface water concentration and corresponding flows. Elevated salts concentrations during dry weather occur when stranded salts are discharged into the surface water after higher than average rainfall years. The elevated concentrations occur during years when the previous annual flow is greater than the 75 th percentile of the annual flows for the watershed (critical year). The higher concentrations occur during the dry periods of critical years regardless of whether the annual flow for the critical year is an average flow year, higher than average year, or lower than average year. The key parameter determining a critical year is the total annual flow volume for the previous year. Based on model results, four critical years were defined based on modeled results that resulted in receiving water concentrations greater than the 99 th percentile concentration during at least 10% of the dry period. The critical years identified from the model occur with conditions similar to what occurred in 1978, 1979, 1983 and 1998.
Special Studies and Monitoring	Special Studies
Plan	 Several special studies are planned to improve understanding of key aspects related to achievement of WLAs and LAs for the Salts TMDL. <i>1. Special Study #1 (Optional) – Develop Averaging Periods and Compliance Points</i>
	The TMDL technical report has provided information that shows instantaneous salts objectives may not be required to protect groundwater recharge and agricultural beneficial uses. It is possible that

TMDL Element	Key Findings and Regulatory Provisions
	the beneficial uses will be protected and a salt balance achieved without achieving instantaneous water quality objectives in all reaches of the watershed. This optional special study is included to allow an investigation of averaging periods for the salts objectives in the CCW. Additionally, this study will investigate the locations of beneficial uses and the possibility of identifying compliance points for the salts objectives at the point of beneficial use impacts. The use of compliance points would alleviate the need to develop site-specific objectives for the reaches of the watershed upstream of the POTW discharges (described in Special Study #3) while still ensuring the protection of beneficial uses. Sensitive beneficial uses are not present in the upper reaches and POTW discharges dilute the salts from the upper reaches and may allow compliance with the objectives at the point of groundwater recharge downstream. This is an optional special study to be conducted if desired by the stakeholders or determined necessary or appropriate by the Executive Officer.
	2. Special Study #2 (Optional) – Develop Natural Background Exclusion
	Discharges of groundwater from upstream of the Simi Valley (Reaches 7 and 8) and Hill Canyon WWTPs (Reaches 12 and 13) and downstream of the Camrosa WRP (Reach 3) contain high salts concentrations. Natural marine sediments may contribute to the high concentrations in those discharges. This special study would evaluate whether or not the groundwater discharges in these areas would qualify for a natural sources exclusion. The special study could follow a 'reference system/anti-degradation approach' and/or a 'natural sources exclusion approach' for any allocations included in this TMDL that are proven unattainable due to the magnitude of natural sources. The purpose of a 'reference system/anti-degradation approach' is to ensure water quality is at least as good as an appropriate reference site and no degradation of existing water quality occurs where existing water quality is better than that of a reference site. The intention of a 'natural sources of salts are controlled such that they do not cause exceedances of water quality objectives. These approaches are consistent with state and federal anti-degradation policies (State Board Resolution No. 68-16 and 40 C.F.R. 131.12). This is an optional special study to be conducted if desired by the stakeholders or determined necessary for establishing a natural sources exclusion by the Executive Officer.
	3. Special Study #3 (Optional) – Develop Site-Specific Objectives
	The TMDL implementation plan provides for actions to protect the

TMDL Element	Key Findings and Regulatory Provisions		
	agricultural and groundwater recharge beneficial uses in the CCW. As shown in the linkage analysis, some downstream reaches may not achieve the water quality objectives through implementation of this TMDL because of the transport of salts out of the watershed through those reaches. Consequently, an optional special study is included to allow the CCW stakeholders to pursue development of site-specific objectives for salts for reaches upstream of the Hill Canyon and Simi Valley WWTPs (Reaches 7, 8, 12, and 13), Calleguas Creek Reach 3, Revolon Slough (Reach 4) and Beardsley Wash (Reach 5). These alternative numeric water quality objectives would be developed based on the beneficial uses to be protected in a reach and the attainability of the current water quality objectives. This is an optional special study to be conducted if desired by the stakeholders or determined necessary or appropriate by the Executive Officer.		
	4. Special Study #4 (Optional) – Develop Site-Specific Objectives for Drought Conditions		
	During drought conditions, the load of salts into the watershed increases as a result of increasing concentrations in imported water. Stakeholders in the CCW cannot control the increased mass entering the watershed from the water supply. However, the stakeholders do have the ability to manage the salts within the watershed to protect beneficial uses and export the additional mass of salts out of the watershed. If necessary, site-specific objectives may be developed to address situations that result in higher imported water salt concentrations to allow management of the salts and protection of beneficial uses. This special study may be combined with Special Study #3 if desired. This is an optional special study to be conducted if desired by the stakeholders or determined necessary or appropriate by the Executive Officer of the Regional Board.		
	5. Special Study #5 (Optional) – Develop Site-Specific Objectives for Sulfate		
	Sulfate is a necessary nutrient for plant growth and sulfate containing products are often applied to agriculture as fertilizers and pesticides. Therefore, site-specific objectives may be investigated and developed for sulfate that more accurately protects agricultural supply beneficial uses. Additionally, this study could evaluate whether or not a sulfate balance is necessary to maintain in the watershed. This special study may be combined with Special Study #3 and/or #4 if desired. This is an optional special study to be conducted if desired by the stakeholders or determined necessary or appropriate by the Executive Officer of the Regional Board.		

TMDL Element	Key Findings and Regulatory Provisions
	Monitoring Plan
	To ensure that the goal of a salts balance in the watershed is being achieved and water quality objectives are being met, a comprehensive method of tracking inputs and outputs to the watershed will be developed. A monitoring plan will be submitted to the RWQCB for Executive Officer approval within six months of the effective date of the CCW Salts TMDL. Monitoring will begin one year after Executive Officer approval of the monitoring plan to allow time for the installation of automated monitoring equipment.
	1. Input Tracking
	Inputs to the watershed are tracked through three mechanisms:1) Information on the import of State Water Project water is readily available and provides information on the mass of salts brought into the watershed; 2) Groundwater pumping records provide information on the mass of salts imported into the watershed from deep aquifer pumping; 3) Import records of water supply form the Santa Clara River can be obtained to determine the mass of salts imported through this source; 4) Monitoring data on imported water quality can be compared to monitoring of effluent quality to estimate the amount of salts added through human use of the water.
	2. Output Tracking and Determining Compliance with Water Quality Objectives
	Outputs from the watershed will be tracked through surface water monitoring at key locations in the watershed and monitoring of discharges to the brine line. Monitoring will include both flow and quality. Compliance with water quality objectives will be determined at key locations where beneficial uses occur in the watershed. The stations used for output tracking will also be used to determine compliance with water quality objectives. The monitoring program will determine if the TMDL compliance points are protective of the beneficial uses for the subwatershed. If the monitoring determines that the compliance points are not protective of beneficial uses, an alternative compliance point will be selected. The Executive Officer may revise the TMDL compliance point based on the result of the monitoring. Additionally, if other places in the watershed are identified where sensitive beneficial uses occur, water quality monitoring stations can be added to determine compliance with water quality objectives. For the RWRMP, three new or upgraded automated flow measuring and sample collection stations

TMDL Element	Key Findings and Regulatory Provisions
	will be installed at three points on the stream system to continuously record flow and various water quality parameters during dry weather. Preliminary monitoring locations include Arroyo Conejo in Hill Canyon, Conejo Creek at Baron Brothers Nursery and Calleguas Creek at University Drive. For the NRRWMP, one new or upgraded automated flow measuring and sample collection station will be added downstream of Simi Valley at the point at which groundwater recharge begins. A preliminary monitoring location is at Hitch Blvd. where an existing flow gauging station exists. However, the amount of groundwater recharge upstream of this site will need to be evaluated to determine the exact monitoring location. For Revolon Slough, the existing monitoring station at Wood Road. will be used to monitor quality and flow on Revolon Slough to determine the outputs from the Revolon portion of the Pleasant Valley subwatershed. Additional land use monitoring will be conducted concurrently at representative agricultural and urban runoff discharge sites as well as at POTWs in each of the subwatersheds and analyzed for chloride, TDS, sulfate, and boron. The location of the land use stations will be determined before initiation of the Calleguas Creek Watershed TMDL Monitoring Program (CCWTMP). All efforts will be made to include at least two wet weather sampling events during the wet season (October through April) during a targeted storm event.
	 3. Reporting and Modification of the Calleguas Creek Watershed TMDL Monitoring Program A monitoring report will be prepared annually within six months after completion of the final event of the sampling year. An adaptive management approach to the CCWTMP will be adopted as it may be necessary to modify aspects of the CCWTMP. Results of sampling carried out through the CCWTMP and other programs within the CCW may be used to modify this plan, as appropriate. These modifications will be summarized in the annual report. Possible modifications could include, but are not limited to the, following: The inclusion of additional land use stations to accurately characterize loadings; The removal of land use site in one subwatershed accurately characterize the land use in other subwatersheds); The inclusion of additional in-stream sampling stations; and The elimination of analysis for constituents no longer identified in land use and/or instream samples. If a coordinated and comprehensive monitoring plan is developed and meets the goals of this monitoring plan that plan should be considered as a replacement for the CCWTMP.

TMDL Element	Key Findings and Regulatory Provisions	
	4. Other Monitoring	
	 Other surface water and groundwater monitoring will be implemented as necessary to assess the impacts of the implementation actions and adjust the activities as necessary to protect beneficial uses and achieve the salts balance. Examples of additional monitoring that may be conducted include: Monitoring under Phase 2 and 3 of the RWRMP to evaluate the effects of replenishment water releases and groundwater treatment and releases. Monitoring to assess the impacts of management of the Simi Basin groundwater dewatering wells under Phase 1 of the NRRWMP. 	
Implementation Plan	The identified implementation actions provided in this TMDL will result in a salt balance in the stream and are expected to result in compliance with the allocations. The implementation plan is comprised of actions that directly impact discharges to the receiving water and actions that will indirectly impact discharges to receiving water. Responsible agencies and jurisdictions shall consider minimum flow requirements that may be imposed by federal or state regulatory agencies when implementing actions to comply with this TDML. Should the proposed implementation actions not result in compliance with objectives and site-specific objective are not adopted, additional implementation actions may be required to achieve the water quality objectives.	
	The implementation actions described in the TMDL represent a range of activities that could be conducted to achieve a salts balance in the watershed. Future considerations may result in other actions being implemented rather than the options presented. However, any proposed actions will be reviewed using the salt balance model to ensure the action does not adversely impact other implementation actions in the watershed or the salt balance of a downstream subwatershed. Currently, the implementation plan is presented in phases with a tentative schedule for each phase. The implementation of projects may	
	occur earlier than planned or begin during an earlier phase. Additionally, many of the implementation actions require the use of the Regional Salinity Management Conveyance (RSMC or brine line). As such, the implementation schedule for those actions will be linked the construction schedule for the RSMC. The implementation plan for the Salts TMDL includes regional and subwatershed specific implementation actions. There are four key structural elements to the regional implementation: Regional Salinity	

Key Findings and Regulatory Provisions				
Management Conveya	nce (RSMC), Water Conserva	tion, Water		
Softeners, and Best Ma	anagement Practices for Irrigat	ted Agriculture.		
Subwatershed impleme	entation includes Renewable V	Water Resource		
Management Program (RWRMP) for the Southern Reaches and				
Northern Reach Renewable Water Management Plan (NRRWMP).				
Detailed discussion for each implementation element including				
1	description of the action, status and schedule for implementing the			
	of the expected contribution t			
-	ovided in the Staff Report and			
	lementation actions in the wat	-		
-	nated completion date based or	n the effective da		
of the TMDL are summ	marized below.			
Summary of Pronose	d Implementation Actions			
Action	Summary of Proposed Implementation Actions Action Schedule for			
	Responsible Agency/ies	Completion		
Water Conservation	POTWs, Permitted Stormwater Dischargers, and Other NPDES	3 years		
	Permittees	5 years		
Water Softeners	POTWs and Permitted Stormwater Dischargers	10 years		
Water Softeners Best Management Practice for Agricultural Dischargers		10 years 2 years		
Best Management Practice	Dischargers			
Best Management Practice for Agricultural Dischargers	Dischargers Agricultural Dischargers	2 years		
Best Management Practice for Agricultural Dischargers RMSC Phase 1	Dischargers Agricultural Dischargers Calleguas MWD	2 years 2 year		
Best Management Practice for Agricultural Dischargers RMSC Phase 1 RMSC Phase 2	Dischargers Agricultural Dischargers Calleguas MWD Calleguas MWD	2 years 2 year 5 year		
Best Management Practice for Agricultural Dischargers RMSC Phase 1 RMSC Phase 2 RMSC Phase 3	Dischargers Agricultural Dischargers Calleguas MWD Calleguas MWD Calleguas MWD	2 years 2 year 5 year 10 years		
Best Management Practice for Agricultural Dischargers RMSC Phase 1 RMSC Phase 2 RMSC Phase 3 RWRMP Phase 1	Dischargers Agricultural Dischargers Calleguas MWD Calleguas MWD Calleguas MWD Calleguas MWD Camrosa WD, CamSan	2 years 2 year 5 year 10 years 3 years		
Best Management Practice for Agricultural Dischargers RMSC Phase 1 RMSC Phase 2 RMSC Phase 3 RWRMP Phase 1 RWRMP Phase 2	Dischargers Agricultural Dischargers Calleguas MWD Calleguas MWD Calleguas MWD Camrosa WD, CamSan Camrosa WD, TO	2 years 2 year 5 year 10 years 3 years 6 years		
Best Management Practice for Agricultural Dischargers RMSC Phase 1 RMSC Phase 2 RMSC Phase 3 RWRMP Phase 1 RWRMP Phase 2 RWRMP Phase 3	Dischargers Agricultural Dischargers Calleguas MWD Calleguas MWD Calleguas MWD Camrosa WD, CamSan Camrosa WD, TO Camrosa WD, TO	2 years 2 year 5 year 10 years 3 years 6 years 10 years		
Best Management Practice for Agricultural Dischargers RMSC Phase 1 RMSC Phase 2 RMSC Phase 3 RWRMP Phase 1 RWRMP Phase 2 RWRMP Phase 3 RWRMP Phase 4	Dischargers Agricultural Dischargers Calleguas MWD Calleguas MWD Calleguas MWD Camrosa WD, CamSan Camrosa WD, TO Camrosa WD, TO To Be Determined Calleguas MWD, Simi Valley,	2 years 2 year 5 year 10 years 3 years 6 years 10 years 15 years		
Best Management Practice for Agricultural Dischargers RMSC Phase 1 RMSC Phase 2 RMSC Phase 3 RWRMP Phase 1 RWRMP Phase 2 RWRMP Phase 3 RWRMP Phase 4 NRRWMP Phase 1	Dischargers Agricultural Dischargers Calleguas MWD Calleguas MWD Calleguas MWD Camrosa WD, CamSan Camrosa WD, TO Camrosa WD, TO To Be Determined Calleguas MWD, Simi Valley, Moorpark	2 years 2 year 5 year 10 years 3 years 6 years 10 years 15 years 3 years 3 years		
Best Management Practice for Agricultural Dischargers RMSC Phase 1 RMSC Phase 2 RMSC Phase 3 RWRMP Phase 1 RWRMP Phase 2 RWRMP Phase 3 RWRMP Phase 4 NRRWMP Phase 1 NRRWMP Phase 2	Dischargers Agricultural Dischargers Calleguas MWD Calleguas MWD Calleguas MWD Camrosa WD, CamSan Camrosa WD, TO Camrosa WD, TO To Be Determined Calleguas MWD, Simi Valley, Moorpark Calleguas MWD, VCWW, Camarillo	2 years 2 year 5 year 10 years 3 years 6 years 10 years 15 years 3 years 7 years		

Τ

E

Ν

Τ

A

Τ

Ι

E

The final WLAs will be included for permitted stormwater discharges, POTWs, and other NPDES discharges in accordance with the compliance schedules provided in Table 7-22.2. The

TMDL Element	Key Findings and Regulatory Provisions		
	Regional Board may revise these WLAs based on additional information developed through special studies and/or monitoring conducted as part of this TMDL.		
	• POTWs		
	WLAs established for the POTWs in this TMDL will be implemented through NPDES permit limits. Compliance will be determined through monitoring of final effluent discharge as defined in the NPDES permit. The proposed permit limits will be applied as end-of-pipe mass-based monthly average effluent limits. Daily maximum effluent limit is not required because chloride is not expected to have an immediate or acute effect on the beneficial uses. Compliance with the minimum salt export requirements for POTWs will be based on the salt export from the subwatershed to which they discharge. The mechanisms for meeting the minimum salt export requirements and for monitoring progress towards meeting those requirements will be included in the monitoring program work plan and approved by the Executive Officer.		
	At the end of each year, the amount of salt exported will be compared to the minimum required salt export. POTW allocations will be reduced using the adjustment factor if both of the following conditions occur:		
	 The annual dry weather salt exports from the subwatershed to which the POTW discharges are below the minimum required exports for the previous year; and The water quality objectives were exceeded in the receiving water at the base of the subwatershed 		
	The POTW allocations will be reduced for the following year by the difference between the minimum required salt export and the actual amount exported. The discharger shall be notified by the Regional Board that the assigned WLAs are reduced and the reduced effluent limits shall be applied for the next year. If the POTW allocations are reduced, the POTW will need to increase the amount of salt export or reduce the mass of salts discharged from the POTW before the end of the following year when the adjustment will be evaluated again.		
	POTWs can only request to adjust the assigned WLAs upwards using the adjustment factor under limited conditions provided below:		

TMDL Element	Key Findings and Regulatory Provisions		
	 Water quality objectives are met in the receiving waters; 		
	 Imported water supply chloride concentrations exceed 80 mg/L; and 		
	 Discharges from the POTW exceed the allocation. 		
	When imported water supply chloride concentrations exceed 80 mg/L, the POTW will monitor the effluent to determine if the wasteload allocation is exceeded. If the wasteload allocation, the POTW will submit documentation of the water supply chloride concentrations, the receiving water chloride concentration, the effluent mass, and the evidence of increased salt exports to offset the increased discharges from the POTW to the Regional Board for approval. The adjustment factor will apply for three months and the POTW must submit the evidence outlined above every three months to keep the adjustment factor active. As long as the required information is submitted, the adjustment factor will be in effect upon notification in writing from the RWQCB.		
	 Urban Stormwater Discharger 		
permitted stormwater discharges, including munic storm sewer systems (MS4s), Caltrans, general in construction stormwater permits. USEPA regulati allocations for NPDES-regulated stormwater disc multiple point sources to be expressed as a single when the data and information are insufficient to a or outfall individual WLAs (40 CFR 130). The gr- will apply to all NPDES-regulated municipal storm in the CCW. MS4 WLAs will be incorporated into	A group mass-based dry weather WLA has been developed for all permitted stormwater discharges, including municipal separate storm sewer systems (MS4s), Caltrans, general industrial and construction stormwater permits. USEPA regulation allows allocations for NPDES-regulated stormwater discharges from multiple point sources to be expressed as a single categorical WLA when the data and information are insufficient to assign each source or outfall individual WLAs (40 CFR 130). The grouped allocation will apply to all NPDES-regulated municipal stormwater discharges in the CCW. MS4 WLAs will be incorporated into the NPDES permit as receiving water limits measured in-stream at the base of each subwatershed.		
	 Other NPDES Dischargers 		
	WLAs established for other NPDES permitted dischargers in this TMDL, including minor non-stormwater permittees (other than Camrosa WRP) and general non-stormwater permittees, will be implemented through NPDES permit limits. The proposed permit limits will be applied as end-of-pipe concentration-based effluent limits, and compliance determined through monitoring of final effluent discharge as defined in the NPDES permit.		

TMDL Element	Key Findings and Regulatory Provisions		
	II. Agriculture		
	Load allocations for salts will be implemented through Conditional Waiver of Discharges from Irrigated Lands (Conditional Waiver Program) adopted by the LARWQCB on November 3, 2005. Compliance with LAs will be measured in-stream at the base of the subwatersheds and will be achieved through the implementation of BMPs consistent with the Conditional Waiver Program. The Conditional Waiver Program requires the development of an agricultural water quality management plan (AWQMP) to address pollutants that are exceeding receiving water quality objectives as a result of agricultural discharges. Therefore, implementation of the load allocations will be through the development of an agricultural management plan for salts. Implementation of the load allocations will also include the coordination of BMPs being implemented under other required programs to ensure salts discharges are considered in the implementation. Additionally, agricultural dischargers will participate in educational seminars on the implementation of BMPs as required under the Conditional Program. Studies are currently being conducted to assess the extent of BMP implementation and provide information on the effectiveness of BMPs for agriculture. This information will be integrated into the AWQMP that will guide the implementation of agricultural BMPs in the Calleguas Creek watershed. After implementation of these actions, compliance with the allocations and TMDL will be evaluated and the allocations reconsidered if necessary based on the special studies and monitoring plan section of the implementation plan. As shown in Table 7-22.2, implementation of LAs will be conducted over a period of time to allow for implementation Plans (Nutrient, Historic Pesticides and PCBs, Sediment, Metals, Bacteria, etc.).		

	Table 7-22.2 Calleguas Creek Watershed Salts TMDL: Implementation Schedule				
Item	Implementation Action	Responsible Party	Completion Date		
1	Effective date of interim Salts TMDL waste load allocations (WLAs)	POTWs, Permitted Stormwater Dischargers ¹ (PSD), and Other NPDES Permittees	Effective date of the amendment		
2	Effective date of interim Salts TMDL load allocations (LAs)	Agricultural Dischargers	Effective date of the amendment		
3	Responsible jurisdictions and agencies shall submit compliance monitoring plan to the Los Angeles Regional Board for Executive Officer approval.	POTWs, PSD, Other NPDES Permittees, and Agricultural Dischargers	6 months after effective date of the TMDL		
4	Responsible jurisdictions and agencies shall begin monitoring as outlined in the approved monitoring plan.	POTWs, PSD, Other NPDES Permittees, and Agricultural Dischargers	1 year after monitoring plan approval by Executive Officer		
5	Responsible jurisdictions and agencies shall submit workplans for the optional special studies.	POTWs, PSD, Other NPDES Permittees, and Agricultural Dischargers	Within 10 years of effective date of the TMDL		
6	Responsible jurisdictions and agencies shall submit results of the special studies.	POTWs, PSD, Other NPDES Permittees, and Agricultural Dischargers	2 years after workplan approval by Executive Officer		
7	Re-evaluation of the interim WLAs and interim LAs for boron, chloride, sulfate, and TDS based on new data. Responsible jurisdictions and agencies shall demonstrate that implementation actions have reduced the boron, sulfate, TDS, and chloride imbalance by 20%.	POTWs, PSD, Other NPDES Permittees, and Agricultural Dischargers	3 years after effective date of the TMDL		
8	Re-evaluation of the interim WLAs and interim LAs for boron, chloride, sulfate, and TDS based on new data. Responsible jurisdictions and agencies shall demonstrate that implementation actions have reduced the boron, sulfate, TDS and chloride imbalance by 40%.	POTWs, PSD, Other NPDES Permittees, and Agricultural Dischargers	7 years after effective date of the TMDL		
9	Re-evaluation of the interim WLAs and interim LAs for boron, chloride, sulfate, and TDS based on new data. Responsible jurisdictions and agencies shall demonstrate that implementation actions have reduced the boron, sulfate, TDS, and chloride imbalance by 70%.	POTWs, Permitted Stormwater Dischargers (PSD), Other NPDES Permittees, and Agricultural Dischargers	10 years after effective date of the TMDL		
10	The Los Angeles Regional Board shall reconsider this TMDL to re-evaluate numeric targets, WLAs, LAs and the implementation schedule based on the results of the special studies and/or compliance monitoring.	The Regional Board	12 years after effective date of the TMDL		
11	Responsible jurisdictions and agencies shall demonstrate that the watershed has achieved an annual boron, sulfate, TDS, and chloride balance.	POTWs, PSD, Other NPDES Permittees, and Agricultural Dischargers	15 years after effective date of the TMDL		
12	The POTWs and non-storm water NPDES permits shall achieve WLAs, which shall be expressed as NPDES mass- based effluent limitation specified in accordance with federal regulations and state policy on water quality control.	POTWs and Other NPDES Permittees	15 years after effective date of the TMDL		
13	Irrigated agriculture shall achieve LAs, which will be implemented through the Conditional Waiver for Irrigated	Agricultural Dischargers	15 years after effective date of the TMDL		

T

E

Ν

Т

A

Т

I

E

 Table 7-22.2 Calleguas Creek Watershed Salts TMDL: Implementation Schedule

¹ Permitted Stormwater Dischargers (PSD) include MS4s, Caltrans, and general industrial and construction permittees.

Attachment A to Resolution No. R4-2007-XXX

Item	Implementation Action	Responsible Party	Completion Date
	Lands as mass-based receiving water limits.		
14	The permitted stormwater dischargers shall achieve WLAs, which shall be expressed as NPDES mass-based limits specified in accordance with federal regulations and state policy on water quality control.	Permitted Stormwater Dischargers	15 years after effective date of the TMDL
15	Water quality objectives will be achieved at the base of the subwatersheds designated in the TMDL.	POTWs, PSD, Other NPDES Permittees, and Agricultural Dischargers	15 years after effective date of the TMDL