

Projected Climate Change Impacts to the Los Angeles and Ventura County Coastline

Patrick Barnard

USGS Coastal and Marine Geology Program

Pacific Coastal and Marine Science Center, Santa Cruz, CA

U.S. Department of the Interior U.S. Geological Survey

Santa Monica Pier, January 1983 (Paul Silhavy)

Temperature Change

NASA Goddard Institute for Space Studies
http://www.nasa.gov/multimedia/videogallery/index.html?media_id=129395671

Sea Level Rise 101

Other factors

- Ocean basin configuration (geologic time scales)
- Wind patterns (hours to decades)
- Tidal (hours to decades)
- Storms (hours to days)

*Global SLR is accelerating

- 20th century = 2 mm/yr
- 1993-present = 3 mm/yr

Sea Level Rise Beyond 2100

21st Century Projections for Southern California

SLR for Los Angeles (National Research Council)

- -28 cm of sea level rise by 2050 (range 13-61 cm)
- -93 cm of sea level rise by 2100 (range 44-167 cm)
- -includes global and regional effects

Waves

- -No significant changes in wave height
- -More southerly wave directions

El Niño

- -More frequent extreme events
- -Wave energy increase by 30%
- -Water level increase by 20-30 cm
- -Doubling of winter erosion

Net effect

- -Today's 100-year coastal flooding event is projected to occur every 1-5 years by 2050 for much of California
- -Greatest impacts on low-lying coastal areas (e.g., Oxnard Plain, Venice)

Coastal Impact of Projected Climate Trends

- Accelerated beach erosion rates
- Greater incidence of cliff failures
- Landward translation of coastal flooding and inundation
- More dangerous navigation conditions
- Beach/shore safety more often compromised
- Saltwater intrusion into coastal aquifers

Societal Impacts

- Coastal flooding from SLR alone could displace ~200 million people by 2100
- Nationally, \$1.4 trillion of coastal property could be at risk at high tide by the end of the century
- 500,000 people, one million jobs, and \$100 billion in property are threatened by climate change along the California coast over the next century
- In L.A. and Ventura Counties: 30,000 people and \$6 billion in property at risk (not inclu. river discharge, waves, coastal change, changes in storms, etc.)
- 1982-83 El Niño storms caused ~\$2.2 billion in storm damage to California, \$1.1 billion in 1997-98

Coastal Vulnerability Considerations

•Global factors:

Eustatic sea level

•Regional factors:

- Ocean circulation patterns
- Glacial fingerprinting
- Tectonics (large-scale)
- Isostasy

•Local factors:

- Subsidence
- Local tectonic deformation
- Fluvial discharge AND sediment supply changes
- Development and restoration

•Seasonal and storm impacts:

- Steric effects
- Waves and storm surge
- River discharge

Coastal Vulnerability Approaches

•STATIC: NOAA SLR Viewer

- -Tides only (MHHW)
- -Excellent elevation data, datum control
- -'1st order screening tool'

http://www.coast.noaa.gov/slr/

•DYNAMIC: CoSMoS

- -Tides + storms
- Includes wind, waves, river discharge, and vertical land movement rates
- -Range of SLR and storm scenarios

Overview of Processes Included in CoSMoS

flood level is the combination of rSLR + tides + seasonal effects + storm surge + wave setup + wave runup + fluvial discharge backflow

CoSMoS: A Tool for Coastal Resilience

- Physics-based numerical modeling system for assessing coastal hazards due to climate change
- Predicts coastal hazards for the full range of sea level rise (0-2, 5 m) and storm possibilities (up to 100 yr storm) using sophisticated global climate and ocean modeling tools
- Developing coastal vulnerability tools in collaboration with federal, state, and city governments to meet their planning and adaptation needs
- Emphasis on directly supporting federal and state-supported climate change guidance (e.g., Coastal Commission) and vulnerability assessments (e.g., LCP updates, OPC/Coastal Conservancy grants)

Identifying Future Risk with CoSMoS

1. Global forcing using the latest climate models

2. Drives global and regional wind/wave models

3. Scaled down to local hazards projections

Highlights of CoSMoS 3.0

- Long-term coastal evolution modeled, including sandy beaches and cliffs
- Downscaled winds from GCMs to get locally-generated seas and surge
- Discharge from rivers for event response
- 100 yr storm events in combination with SLR 0 m to 2.0 m in 0.5 m increments delivered Fall 2015
- Products: Google Earth and GIS files of flood extent and depth, beach change, cliff retreat, waves and currents

Flooding – Ventura River Mouth

Flooding – Channel Islands Harbor

Flooding – Mugu

Flooding – Venice

Flooding – Port of L.A.

Factors Driving Sea Cliff Erosion & Retreat

Cliff Retreat- Pt. Dume

Cliff Retreat- Palos Verdes

Cliff Retreat- San Pedro

Shoreline Projections- Broad Beach

Shoreline Projections- El Segundo

Web Tool

GIS-Based Exposure to Hazards

JURISDICTIONS

9 COUNTIES
56 INCORPORATED CITIES

ASSETS

RESIDENTS EMPLOYEES (w/ demographics) (by sector)

BUSINESS SECTORS
PARCEL VALUES
BUILDING REPLACEMENT VALUE

ROADS AND RAILWAYS

HAZARD

STORM FREQUENCY

None Annual 20-year 100-year

SEA LEVEL RISE SCENARIOS

0 cm 100 cm 25 cm 125 cm 50 cm 150 cm 75 cm 175 cm 200 cm

Groundwater Impacts

- Major issues
 - Inundation
 - Shallower coastal groundwater
 - Saltwater Intrusion
- Seeking more well data and pilot sites

What's Coming Summer 2016

- 40 scenarios of SLR + storms
- Long-term coastal evolution integrated into flood mapping
- Our Coast Our Future (OCOF) web tool
- Socioeconomic impacts and web tool
- Groundwater, hurricane impact pilots

*For more information, contact Patrick Barnard: pbarnard@usgs.gov

USGS CoSMoS data: http://walrus.wr.usgs.gov/coastal_processes/cosmos/socal3.0/index.html

Our Coast- Our Future tool: www.prbo.org/ocof

Ventura Pier, December 2015 (Ricky Staub)

CoSMoS-COAST: Coastal One-line Assimilated Simulation Tool

- A numerical model to simulate long-term shoreline evolution
 - Coastline is represented by shore-perpendicular transects:
- Two current assumptions: hold the line at urban interface and projection of historical rates

- Modeled processes include:
 - Longshore sediment transport
 - Cross-shore sediment transport
 - Effects of sea-level rise
 - Sediment supply by natural & anthropogenic sources

- Synthesized from models in scientific literature (with several improvements)
- Uses data assimilation to improve model skill

Hurricane Potential

- Hurricanes/tropical storms have the potential to significantly impact Southern California
 - San Diego Hurricane, October 2, 1858, produced hurricane/gale force winds from San Diego to LA
 - Un-named, September 25, 1939 (Long Beach), resulted in 90 deaths
 - Hurricane Nora, September 25–26, 1997, \$100s of millions in damage
- Peak potential during El Niño, but overall probability of landfall is very low
- Research planned for SoCal (May 2016)
 - Will hurricane potential increase with climate change in the 21st century?
 - What is the probability of a hurricane making landfall?
 - What are the coastal hazards (e.g., coastal flooding, erosion) associated with such an event?

