

# **Groundwater Monitoring and Progress Report** Third Quarter 2004

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

**Sierra Pacific Industries** 

October 15, 2004

Project No. 9329, Task 22

# Geomatrix Consultants

2101 Webster Street 12th Floor Oakland, CA 94612 (510) 663-4100 • FAX (510) 663-4141



October 15, 2004 Project 9329, Task 22

Executive Officer California Regional Water Quality Control Board North Coast Region 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

Attention: Dean Prat

Subject: Groundwater Monitoring and Progress Report Third Quarter 2004 Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Dear Mr. Prat:

As requested by Sierra Pacific Industries, we have enclosed a copy of the subject report.

Sincerely yours, GEOMATRIX CONSULTANTS, INC.

Ross Steenson, C.HG. Senior Hydrogeologist

Eduan levito

Edward P. Conti, C.E.G., C.HG. Principal Geologist

RAS/EPC/abr I:\Doc\_Safe\9000s\9329\22-Task\3Q2004\TransmittalLtr.doc

#### Enclosure

cc: Bob Ellery, Sierra Pacific Industries (with enclosure) Gordie Amos, Sierra Pacific Industries (with enclosure) Fred Evenson, Law Offices of Frederic Evenson (with enclosure) Jim Lamport, Ecological Rights Foundation (with enclosure)



# **Groundwater Monitoring and Progress Report** Third Quarter 2004

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

**Sierra Pacific Industries** 

Prepared by:

**Geomatrix Consultants, Inc.** 2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4100

October 15, 2004

Project No. 9329, Task 22

# **Geomatrix Consultants**



#### **PROFESSIONAL CERTIFICATION**

#### GROUNDWATER MONITORING AND PROGRESS REPORT THIRD QUARTER 2004 Sierra Pacific Industries

Arcata Division Sawmill Arcata, California

October 15, 2004 Project No. 9329.000, Task 22



This report was prepared by Geomatrix Consultants, Inc., under the professional supervision of Ross A. Steenson. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional hydrogeologic practice, and within the scope of the project. There is no other warranty, either express or implied.

Ross A. Steenson, C.HG. Senior Hydrogeologist



# TABLE OF CONTENTS

#### Page

| 1.0 | INTR | ODUCTION                                     | .1 |
|-----|------|----------------------------------------------|----|
| 2.0 | SITE | BACKGROUND                                   | .2 |
|     | 2.1  | HISTORY                                      | .2 |
|     | 2.2  | LITHOLOGY                                    | .3 |
|     | 2.3  | Hydrogeology                                 | .4 |
| 3.0 | GROU | JNDWATER MONITORING REPORT                   | .4 |
|     | 3.1  | Methods                                      | .4 |
|     |      | 3.1.1 Field Methods                          | .4 |
|     |      | 3.1.2 Laboratory Methods                     | .5 |
|     | 3.2  | LABORATORY DATA QUALITY REVIEW               | .6 |
|     | 3.3  | RESULTS OF GROUNDWATER MONITORING            | .6 |
|     |      | 3.3.1 Occurrence and Movement of Groundwater | .6 |
|     |      | 3.3.2 Groundwater Analytical Results         | .7 |
|     | 3.4  | WASTEWATER DISPOSAL                          | .7 |
| 4.0 | PROC | RESS REPORT ON PILOT STUDY ACTIVITIES        | .8 |
| 5.0 | SCHE | DULE                                         | .8 |
| 6.0 | REFE | RENCES                                       | .9 |

#### TABLES

| Table 1  | Monitoring Well Construction Details |
|----------|--------------------------------------|
| T-1-1- 0 | $\mathbf{C}_{\mathbf{r}}$            |

- Table 2
   Summary of Water Level Measurements

   Table 2
   Summary of Water Quality Parameters
- Table 3
   Summary of Water Quality Parameters
- Table 4
   Laboratory Analytical Results for Chlorinated Phenols

#### FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Former Green Chain Area Plan
- Figure 4 Potentiometric Surface Map of Shallow Groundwater, August 30, 2004
- Figure 5 Potentiometric Surface Map of Deep Groundwater, August 30, 2004
- Figure 6 PCP Analytical Results for Shallow Groundwater, August 30, 2004

#### **APPENDICES**

- Appendix A Field Records —Groundwater Monitoring Program
- Appendix B Laboratory Analytical Reports for Groundwater Samples—Groundwater Monitoring Program
- Appendix C Laboratory Data Quality Review—Groundwater Monitoring Program
- Appendix D Copies of Manifest for Wastewater Disposal
- Appendix E Tracer Dilution Tests—Pilot Study Program



# GROUNDWATER MONITORING AND PROGRESS REPORT THIRD QUARTER 2004 Sierra Pacific Industries Arcata Division Sawmill Arcata, California

#### **1.0 INTRODUCTION**

This report presents the methods and results of groundwater monitoring and pilot study activities performed at the Sierra Pacific Industries (SPI) Arcata Division Sawmill, located in Arcata, California (the site, Figure 1) during the third calendar quarter 2004. The quarterly groundwater monitoring activities were performed in accordance with Monitoring and Reporting Program (MRP) No. R1-2003-0127, issued by the California Regional Water Quality Control Board, North Coast Region (RWQCB) on November 13, 2003. The pilot study activities were performed in accordance with the *Pilot Study Work Plan for Implementation of Proposed Remedial Action* (Geomatrix, 2004b). The pilot study work plan was approved by RWQCB staff in a letter dated June 1, 2004.

Geomatrix Consultants, Inc. (Geomatrix) has prepared this report on behalf of SPI. This report is organized as follows:

- Background, including a discussion of site history, subsurface lithology, and hydrogeology, is presented in Section 2.0.
- Third Quarter 2004 Groundwater Monitoring Report methods and results are presented in Section 3.0.
- Progress Report on Pilot Study Activities is presented in Section 4.0.
- Schedule of the planned monitoring and pilot study activities is presented in Section 5.0.
- References used in preparation of this report are listed in Section 6.0.



#### 2.0 SITE BACKGROUND

This section provides background information regarding the site setting and history and discusses subsurface conditions at the site, including lithology and hydrogeology. Subsurface lithologic and hydrogeologic conditions at the site were previously investigated and described by EnviroNet (EnviroNet, 2002a).

#### 2.1 HISTORY

The approximately 68-acre site is located on the Samoa Peninsula, inland from the northern shoreline of Humboldt Bay and approximately 4 miles west of the town of Arcata, California. The site is bounded to the north and east by the Mad River Slough, to the northwest by an old railroad grade, and to the south by New Navy Base Road and mud flats of Humboldt Bay (Figure 1).

The site is currently an active sawmill; features are shown on Figure 2. The sawmill has operated at the site since approximately 1950. Prior to construction of the mill facilities, the site consisted of undeveloped sand dunes and mud flats. During construction of mill facilities in the 1950s and 1960s, portions of the Mad River Slough on the eastern, northern, and southern sides of the site were filled. The current mill facility consists of an administrative building, a main sawmill building, numerous wood-processing buildings, log storage areas, milled lumber storage areas, and loading/unloading areas. A 140-foot-deep water supply well (Feature 48 on Figure 2) provides water for log sprinkling. An older, shallow water supply well is located adjacent to the 140-foot well, but has not been used since it began to produce sand.

Wood surface protection activities historically conducted at the site included the use of an antistain solution containing chlorinated phenols, including pentachlorophenol (PCP) and tetrachlorophenol, to control sap stain and mold on a small amount of milled lumber. The antistain solution was applied in an aboveground dip tank located in the middle of the former green chain, which was located immediately south of the eastern end of the current sorter building (Feature 49 on Figure 2). Use of the solution containing chlorinated phenols in the former green chain area of the site reportedly commenced in the early to mid-1960s and was discontinued in 1985 (EnviroNet, 2002b). At the direction of the RWQCB, SPI stopped purchasing anti-stain solution containing chlorinated phenols in 1985 and commenced a process of relocating the remaining solution containing chlorinated phenols to a new dip tank



facility for recycling (MFG, 2003). Due to the difficulty of disposing of the old solution containing chlorinated phenols, the remaining solution from the old dip tank was mixed with a new anti-stain solution that did not contain chlorinated phenols at the new dip tank facility (Feature 21 on Figure 2). Recycling of the solution containing chlorinated phenols in the new dip tank continued until 1987, at which time the drip basin adjacent to the old dip tank was cleaned out, filled with sand, and capped with 3 to 4 inches of concrete (MFG, 2003). The new dip tank has been cleaned three times since 1987.

The potential effects of wood surface protection activities on soil and groundwater have been investigated to depths of approximately 20 feet below ground surface (bgs). In 2002, investigation activities included the installation of 19 monitoring wells at the site: 15 monitoring wells (MW-1 through MW-12, MW-14, MW-17, and MW-18) were constructed to monitor shallow groundwater between depths of approximately 2 and 8 feet bgs, and four monitoring wells (MW-13D, MW-15D, MW-16D, and MW-19D) were constructed to monitor deeper groundwater between depths of approximately 15 and 20 feet bgs (EnviroNet, 2003b). Two additional monitoring wells (MW-20 and MW-21) were installed in January and February 2004 to monitor shallow groundwater (Geomatrix, 2004a). Monitoring well locations are illustrated on Figure 3. Monitoring well construction details are included in Table 1.

## 2.2 LITHOLOGY

The site is located adjacent to the Mad River Slough near the northern shoreline of Humboldt Bay. The eastern, northern, and southern portions of the site were filled in the 1950s and 1960s.

Based on observations made during investigation activities at the site, subsurface lithology within the shallow zone (less than 8 feet bgs) is predominantly fine- to medium-grained sand of apparent sand dune origin. Wood and fill material was locally observed in this shallow zone during activities such as the installation of monitoring wells MW-13D and MW-15D. Soil beneath the fine- to medium-grained sand consisted of more sand and locally of fine-grained material, classified as "bay mud." The fine-grained material was encountered during the installation of monitoring wells MW-3, MW-10, MW-15D, MW-16D, and MW-17 at depths of approximately 6 to 8 feet bgs and during the installation of monitoring well MW-15 at a depth of approximately 15 feet bgs. Soil described during the installation of a water supply well at the site (Feature 48 on Figure 2) suggests that subsurface soil between the ground surface and 140 feet bgs is predominately composed of sand (EnviroNet, 2001).



# 2.3 HYDROGEOLOGY

The groundwater surface measured in 21 site monitoring wells has ranged between approximately 0.5 and 5.5 feet bgs in the 17 shallow wells (i.e., screened from 2 to 8 feet bgs) and between approximately 4 and 6 feet bgs in the four deep wells (i.e., screened from 15 to 20 feet bgs). In the eastern portion of the site, groundwater flow generally is to the east, toward the Mad River Slough (MFG and Geomatrix, 2003). In the southwestern portion of the site, groundwater likely flows to the south-southeast, toward Humboldt Bay (MFG and Geomatrix, 2003).

Tidal fluctuations in the Mad River Slough and nearby Humboldt Bay influence groundwater levels at the site in the vicinity of the slough. A 2002 tidal influence study conducted at the site by EnviroNet suggested that tidal effects become negligible at distances greater than 100 feet from the slough shore (EnviroNet, 2003b).

## 3.0 GROUNDWATER MONITORING REPORT

This section presents field and laboratory methods and results of groundwater monitoring activities conducted during this calendar quarter.

# 3.1 METHODS

## 3.1.1 Field Methods

Depth to water was measured on August 30, 2004, in all site monitoring wells (MW-1 through MW-21; Figure 3) and at a monitoring point in the Mad River Slough using an Envirotech Ltd. Waterline Model 150 meter (Table 2). Water levels were measured in these wells on the same day as sampling, before conducting groundwater sampling activities. Monitoring wells were gauged in sequence, generally from lowest expected concentrations of constituents of concern (first) to highest expected concentrations (last), based on laboratory analytical results from the previous sampling event. Field personnel cleaned the meter used to measure the groundwater surface before using it at each location. The equipment was washed in a Liquinox<sup>®</sup> detergent solution and then rinsed three consecutive times with distilled water.

Seven monitoring wells (MW-2, MW-6 through MW-9, MW-20, and MW-21) were purged and sampled on August 30, 2004, in accordance with the site MRP. Field personnel used dedicated, disposable Teflon<sup>®</sup> bailers to purge groundwater and remove standing water in the well casing, except for monitoring well MW-21, where a peristaltic pump and disposable tubing were used due to the small diameter of this well casing. Field personnel measured and



recorded readings of temperature and specific conductance on field sampling records during groundwater purging activities. Purging activities stopped when a minimum of three well casing volumes of water had been removed, or three pore-tube volumes at monitoring well MW-21, and water quality parameters stabilized to within approximately 10 percent of specific conductance and 1 degree Celsius for temperature. Groundwater quality was not monitored for pH this quarter because the pH meter was inoperable. Copies of the field records for groundwater monitoring and sampling activities are included in Appendix A.

After purging, groundwater within each well was allowed to recover to more than 80 percent of the height of the initial water column measured prior to purging. Groundwater was sampled after it recovered. Groundwater samples were collected upon recharge, if applicable, using the dedicated Teflon<sup>®</sup> bailers and, for monitoring well MW-21, the peristaltic pump and new tubing. A field sample of groundwater was monitored for temperature, specific conductance, and total dissolved solids (TDS) just prior to collecting the groundwater sample to record water quality parameters of the groundwater being sampled. These field parameter measurements are summarized in Table 3; laboratory analytical results for TDS also are shown in this table.

Groundwater collected from each of the seven monitoring wells was placed in two 125milliliter glass vials that were sealed with Teflon<sup>®</sup>-lined screw caps and a 1-quart plastic bottle that was sealed with a plastic screw cap. After filling, the vials and bottles were labeled and placed in an ice-cooled, insulated chest for transport to the laboratory for analysis. Chain-ofcustody records were completed for the samples and accompanied the samples until received by the laboratory. Copies of the chain-of-custody records for the groundwater samples are included in Appendix B.

An additional groundwater sample was collected from monitoring well MW-21 and submitted to the laboratory as a blind duplicate sample, labeled MW-A. This sample was placed in two additional 125-milliliter glass vials sealed with Teflon<sup>®</sup>-lined screw caps and sent to the laboratory as described above.

#### 3.1.2 Laboratory Methods

Groundwater samples collected from monitoring wells MW-2 through MW-21 were analyzed at Alpha Analytical Laboratories, Inc. (Alpha), of Ukiah, California, an analytical laboratory certified by the California Department of Health Services. Analyses included the following:



- Total dissolved solids (TDS) [Environmental Protection Agency (EPA) Method 160.1]
- Chlorinated phenols (consisting of PCP, three tetrachlorophenols, and one trichlorophenol) [Canadian Pulp Method]

Results of laboratory analyses for these constituents are included in Appendix B and discussed in the following section.

# 3.2 LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed the quality of laboratory data generated for the quarterly groundwater sampling as discussed in Appendix C. Based on the procedures and data quality review, the analytical data quality is satisfactory and the sample results appear to be representative.

# 3.3 **RESULTS OF GROUNDWATER MONITORING**

Monitoring and sampling results from site wells include data obtained from groundwater elevation measurements, field measurements of water quality parameters, and laboratory analysis of groundwater samples. Groundwater elevation data provide information on subsurface hydraulic conditions, discussed below as occurrence and movement of groundwater. Groundwater quality is evaluated based on laboratory analysis and field measurements of TDS and on laboratory analysis of chlorinated phenols. The results are presented below.

# 3.3.1 Occurrence and Movement of Groundwater

The groundwater surface measured in shallow monitoring wells at the site (i.e., screened from approximately 2 to 8 feet bgs) ranged from 0.71 to 5.07 feet below the measuring point, with associated groundwater elevations ranging from 4.54 to 10.03 feet above mean sea level (msl), relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the direction of shallow groundwater flow is generally to the east (Figure 4). The magnitude of the lateral hydraulic gradient ranges from approximately 0.007 foot/foot in the former green chain vicinity as much as approximately 0.04 foot/foot beneath the sawmill and maintenance buildings. Groundwater elevations within 100 feet of the Mad River Slough shoreline are subject to tidal fluctuations (EnviroNet, 2003b) and as such, were not used to evaluate the flow direction or gradient of shallow groundwater.

The groundwater surface measured in deep monitoring wells at the site (i.e., screened from approximately 15 to 20 feet bgs) ranged from 4.13 to 5.83 feet below the measuring point with



associated groundwater elevations ranging from 5.36 to 6.46 feet above msl, relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the direction of deep groundwater flow is generally to the east (Figure 5) at a lateral hydraulic gradient from approximately 0.008 to 0.009 foot/foot.

## 3.3.2 Groundwater Analytical Results

Seven groundwater monitoring wells were sampled during this period (MW-2, MW-6 through MW-9, MW-20, and MW-21). Laboratory analytical reports and chain-of-custody records are included in Appendix B. Both field-measured and laboratory-analysis TDS results are presented in Table 3. The results for the chlorinated phenol analyses (consisting of PCP, three tetrachlorophenols [2,3,5,6-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,4,5-tetrachlorophenol] and one trichlorophenol [2,4,6-trichlorophenol]) are presented in Table 4. PCP results also are illustrated on Figure 6 (shallow groundwater).

The TDS results for the laboratory analyses ranged from 300 to 680 milligrams per liter (mg/L). The TDS results for the field measurements ranged from 334 to 850 mg/L. The field-measured TDS results are higher than laboratory measurements by 34 to 210 mg/L per sample.

Trichlorophenol was not detected in any groundwater samples. PCP and tetrachlorophenols were detected in groundwater samples from two of the seven monitoring wells (MW-7 and MW-21; Table 4; PCP is also shown on Figure 6). The detected concentrations of PCP were 13,000 micrograms per liter ( $\mu$ g/L) at MW-7 and 2,700 and 2,800  $\mu$ g/L at MW-21 (for primary and blind duplicate samples, respectively).

## 3.4 WASTEWATER DISPOSAL

Wastewater was generated from purging groundwater during sampling activities and from cleaning water-level measurement equipment while monitoring groundwater elevations. The purge water and equipment wash water were placed in three steel, 55-gallon drums and labeled. As the drums are filled, SPI arranges for the drums to be disposed by Asbury Environmental Services (Asbury) in accordance with applicable regulations.

During this calendar quarter, Asbury Environmental Services disposed of two drums of purge water. These drums were disposed at the Demenno/Kerdoon facility in Compton, California. A copy of the manifest for these two drums is included in Appendix D.



#### 4.0 PROGRESS REPORT ON PILOT STUDY ACTIVITIES

This section presents a summary of activities performed during the calendar quarter in accordance with the *Pilot Study Work Plan for Implementation of Proposed Remedial Action* (Geomatrix, 2004b). The objectives of the Pilot Study are to: (1) demonstrate that in situ destruction of contaminants is occurring in the subsurface through natural attenuation processes; (2) demonstrate that discharges of wood surface protection chemicals to surface water have been abated; and (3) implement risk management measures to protect current and future personnel working on site from participating in activities that would result in exposure to unacceptable risk.

On August 19, 2004, tracer dilution testing was performed at three wells (MW-2, MW-7, and MW-8) to assess groundwater flow velocity. The estimated rates of groundwater flow velocity for this date are 0.4 to 0.7 foot/day (MW-2), 0.1 to 0.2 foot/day (MW-7), and 2 to 3 feet/day (MW-8). The approach, data collection, and evaluation for the tracer dilution testing are presented in Appendix E.

#### 5.0 SCHEDULE

The next groundwater monitoring and sampling event for the MRP is scheduled to be performed in November 2004. The next planned activities for the pilot study include preparation of the site management plan and groundwater sampling during the first calendar quarter of 2005.



#### 6.0 **REFERENCES**

- Cal-EPA, 2003, Adoption of the Revised Toxic Equivalency Factors (TEFWHO-97) for PCDDs, PCDFs, and Dioxin-like PCBs (memorandum), Office of Environmental Health Hazard Assessment, August 29.
- EnviroNet Consulting (EnviroNet), 2001, Report on Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill, Arcata, California, October 23.
- EnviroNet, 2002a, *Report on Recent Hydrogeologic Investigation at Sierra-Pacific Industries*, Arcata Division Sawmill, Arcata, California, April 19.
- EnviroNet, 2002b, Interim Feasibility Study to Remediate Chlorophenols in Soil and Groundwater, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, May 1.
- EnviroNet, 2003a, *Storm Water Pollution Prevention Plan For Sierra Pacific Industries*, Arcata Division Sawmill, Arcata, California, January 30.
- EnviroNet, 2003b, *Results of the Remedial Investigation for Sierra Pacific Industries*, Arcata Division Sawmills, Arcata, California, May 1.
- Geomatrix, 2004a, *Monitoring Wells MW-20 and MW-21 Installation and Soil Sampling Report*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, April 7.
- Geomatrix, 2004b, *Pilot Study Work Plan for Implementation of Proposed Remedial Action*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, April 29.
- Geomatrix, 2004c, 2003-2004 Annual Report for Storm Water Discharges Associated with Industrial Activities, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, June 30.
- MFG, Inc. (MFG), 2003, *Interim Remedial Measures Report*, Sierra Pacific Industries Arcata Division Sawmill, June 10.
- MFG and Geomatrix, 2003, *Third Quarter 2003 Groundwater Monitoring Report*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, November 3.
- U.S. Environmental Protection Agency, 1999, *Contract Laboratory Program National Functional Guidelines for Organic Data Review*, Office of Emergency and Remedial Response, October.
- U.S. Environmental Protection Agency, 2002a, *Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, Office of Emergency and Remedial Response, July.



# MONITORING WELL CONSTRUCTION DETAILS<sup>1</sup>

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

|                    |           | Total Baring | Total<br>Woll | Woll     |                       |                        | Ground Level           | Top of Casing          | Scroonad    | Sereen Slot | Filter      | Bentonite   | Surface<br>Seal       |
|--------------------|-----------|--------------|---------------|----------|-----------------------|------------------------|------------------------|------------------------|-------------|-------------|-------------|-------------|-----------------------|
| Well               | Date      | Depth        | Depth         | Diameter |                       |                        | Elevation <sup>2</sup> | Elevation <sup>2</sup> | Interval    | Size        | Interval    | Interval    | Interval <sup>3</sup> |
| No.                | Installed | (ft bgs)     | (ft bgs)      | (inches) | Latitude <sup>2</sup> | Longitude <sup>2</sup> | (ft msl)               | (ft msl)               | (ft bgs)    | (inches)    | (ft bgs)    | (ft bgs)    | (ft bgs)              |
| Shallow Wel        | ls        |              |               | , , ,    |                       | 8                      |                        |                        |             |             |             |             | × 07                  |
| MW-1               | 5-Mar-02  | 8            | 8             | 2        | 40.8661595            | 124.1521395            | 10.12                  | 9.69                   | 2.0 - 8.0   | 0.01        | 1.5 - 8.0   | 1.0 - 1.5   | 0 - 1.0               |
| MW-2               | 5-Mar-02  | 9            | 8             | 2        | 40.8661024            | 124.1525276            | 10.41                  | 9.61                   | 2.0 - 8.0   | 0.01        | 1.5 - 9.0   | 1.0 - 1.5   | 0 - 1.0               |
| MW-3               | 5-Mar-02  | 8.5          | 8             | 2        | 40.8662689            | 124.1530739            | 11.67                  | 11.22                  | 2.0 - 8.0   | 0.01        | 1.5 - 8.5   | 1.0 - 1.5   | 0 - 1.0               |
| MW-4               | 5-Mar-02  | 8            | 8             | 2        | 40.8662303            | 124.1533599            | 11.17                  | 10.74                  | 2.0 - 8.0   | 0.01        | 1.5 - 8.0   | 1.0 - 1.5   | 0 - 1.0               |
| MW-5               | 7-Mar-02  | 8            | 8             | 2        | 40.8660945            | 124.1536734            | 11.26                  | 10.74                  | 2.0 - 8.0   | 0.01        | 1.5 - 8.0   | 1.0 - 1.5   | 0 - 1.0               |
| MW-6               | 7-Mar-02  | 8            | 8             | 2        | 40.8660710            | 124.1531061            | 10.13                  | 9.83                   | 2.0 - 8.0   | 0.01        | 1.5 - 8.0   | 1.0 - 1.5   | 0 - 1.0               |
| MW-7               | 7-Mar-02  | 8            | 8             | 2        | 40.8659980            | 124.1531187            | 10.09                  | 9.74                   | 2.0 - 8.0   | 0.01        | 1.5 - 8.0   | 1.0 - 1.5   | 0 - 1.0               |
| MW-8               | 8-Mar-02  | 8            | 8             | 2        | 40.8657492            | 124.1535343            | 10.55                  | 10.33                  | 2.0 - 8.0   | 0.01        | 1.5 - 8.0   | 1.0 - 1.5   | 0 - 1.0               |
| MW-9               | 8-Mar-02  | 8            | 8             | 2        | 40.8657520            | 124.1532218            | 10.36                  | 9.91                   | 2.0 - 8.0   | 0.01        | 1.5 - 8.0   | 1.0 - 1.5   | 0 - 1.0               |
| MW-10              | 11-Nov-02 | 9.5          | 8             | 2        | 40.8656910            | 124.1530670            | 10.08                  | 9.85                   | 2.0 - 8.0   | 0.01        | 1.5 - 9.5   | 1.0 - 1.5   | 0 - 1.0               |
| MW-11              | 12-Nov-02 | 8.5          | 8             | 2        | 40.8655740            | 124.1533817            | 10.51                  | 10.28                  | 2.0 - 8.0   | 0.01        | 1.5 - 8.5   | 1.0 - 1.5   | 0 - 1.0               |
| MW-12              | 12-Nov-02 | 9.5          | 8             | 2        | 40.8656625            | 124.1537231            | 11.01                  | 10.76                  | 2.0 - 8.0   | 0.01        | 1.5 - 9.5   | 1.0 - 1.5   | 0 - 1.0               |
| MW-14              | 13-Nov-02 | 8            | 8             | 2        | 40.8657622            | 124.1523580            | 9.60                   | 9.15                   | 2.0 - 8.0   | 0.01        | 1.5 - 8.0   | 1.0 - 1.5   | 0 - 1.0               |
| MW-17              | 14-Nov-02 | 9            | 8             | 2        | 40.8656690            | 124.1526420            | 9.46                   | 9.16                   | 2.0 - 8.0   | 0.01        | 1.5 - 9.0   | 1.0 - 1.5   | 0 - 1.0               |
| MW-18              | 13-Nov-02 | 9.5          | 8             | 4        | 40.8657448            | 124.1531649            | 10.12                  | 9.92                   | 2.0 - 8.0   | 0.01        | 1.5 - 9.5   | 1.0 - 1.5   | 0 - 1.0               |
| MW-20 <sup>4</sup> | 23-Jan-03 | 8            | 7             | 4        | 40.8658416            | 124.1532563            | 10.92                  | 11.87                  | 3.2 - 6.8   | 0.01        | 2.0 - 7.0   | 1.0 - 2.0   | 0 - 1.0               |
| MW-21              | 12-Feb-03 | 8.3          | 8.3           | 0.75     | 40.8660161            | 124.1530089            | 10.11                  | 12.89                  | 2.1 - 8.1   | 0.01        | 1.5 - 8.3   | 1.0 - 1.5   | 0 - 1.0               |
| Deep Wells         |           |              |               |          |                       |                        |                        |                        |             |             |             |             |                       |
| MW-13D             | 12-Nov-02 | 21           | 20            | 2        | 40.8660809            | 124.1525231            | 10.26                  | 9.96                   | 15.0 - 20.0 | 0.01        | 13.5 - 21.0 | 12.0 - 13.5 | 0 - 12.0              |
| MW-15D             | 13-Nov-02 | 21           | 20            | 2        | 40.8662658            | 124.1528255            | 11.59                  | 11.19                  | 15.0 - 20.0 | 0.01        | 14.0 - 21.0 | 12.0 - 14.0 | 0 - 12.0              |
| MW-16D             | 14-Nov-02 | 21.5         | 20            | 2        | 40.8655571            | 124.1530363            | 10.13                  | 9.83                   | 15.0 - 20.0 | 0.01        | 14.0 - 21.5 | 12.0 - 14.0 | 0-12.0                |
| MW-19D             | 14-Nov-02 | 21.5         | 20            | 2        | 40.8662419            | 124.1532744            | 11.21                  | 11.06                  | 15.0 - 20.0 | 0.01        | 14.0 - 21.0 | 12.0 - 14.0 | 0-12.0                |

Notes:

1. Construction details for wells MW-1 through MW-9 were obtained from Report on Recent Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill, dated April 19, 2002 prepared by Environet Consulting. Construction details for wells MW-10 through MW-19D were obtained from Results of the Remedial Investigation for Sierra Pacific Industries - Arcata Division Sawmills, Arcata, California, dated January 30, 2003, prepared by EnviroNet Consulting. Installation of wells MW-20 and MW-21 documented in this report.

2. Monitoring wells were resurveyed by Omsberg Suveyors and Company of Eureka California on February 13, 2003; latitude and longitude were surveyed relative to North American Datum (NAD) of 1983 and elevations were surveyed relative to National Geodetic Vertical Datum (NGVD) of 1929. Elevations shown have been adjusted by 3.35 feet and presented as North American Vertical Datum (NAVD) of 1988 elevations.

3. Surface seal interval consists of the concrete surface completion and a neat cement sanitary seal, if applicable.

4. Well installed on a raised concrete pad of the former green chain. Depth measurements (ft bgs) are relative to the local ground surface of the concrete pad, which is approximately 1 foot above the grade of the surrounding ground surface.

Abbreviations:

ft bgs = feet below ground surface

ft msl = feet mean sea level





# SUMMARY OF WATER LEVEL MEASUREMENTS

| Well No.      | Measurement <sup>1</sup><br>Date | MP Elevation <sup>2</sup><br>(ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|---------------|----------------------------------|-------------------------------------------|----------------------------|---------------------------------------|
| Shallow Wells | 2000                             | (2011)2 (200)                             | (10 0002)                  | (101(12) 2 00)                        |
| MW-1          | 14-Mar-02                        | 9.56                                      | 5.31                       | 4.25                                  |
|               | 18-Jul-02                        | 9.56                                      | 4.52                       | 5.04                                  |
|               | 16-Sep-02                        | 9.56                                      | 4.37                       | 5.19                                  |
|               | 02-Dec-02                        | 9.56                                      | 4.18                       | 5.38                                  |
|               | 18-Mar-03                        | 9.56                                      | 4.09                       | 5.47                                  |
|               | 31-Mar-03                        | 9.56                                      | 4.48                       | 5.08                                  |
|               | 21-May-03                        | 9.56                                      | 4.66                       | 4.90                                  |
|               | 27-Aug-03                        | 9.56                                      | 4.55                       | 5.01                                  |
|               | 03-Nov-03                        | 9.56                                      | 4.20                       | 5.36                                  |
|               | 23-Mar-04                        | 9.69                                      | 4.47                       | 5.22                                  |
|               | 17-May-04                        | 9.69                                      | 4.57                       | 5.12                                  |
|               | 30-Aug-04                        | 9.69                                      | 4.55                       | 5.14                                  |
| MW-2          | 14-Mar-02                        | 9.49                                      | 4.52                       | 4.97                                  |
|               | 18-Jul-02                        | 9.49                                      | 5.43                       | 4.06                                  |
|               | 16-Sep-02                        | 9.49                                      | 5.28                       | 4.21                                  |
|               | 02-Dec-02                        | 9.49                                      | 5.17                       | 4.32                                  |
|               | 18-Mar-03                        | 9.49                                      | 5.16                       | 4.33                                  |
|               | 31-Mar-03                        | 9.49                                      | 5.43                       | 4.06                                  |
|               | 21-May-03                        | 9.49                                      | 5.45                       | 4.04                                  |
|               | 27-Aug-03                        | 9.49                                      | 5.09                       | 4.40                                  |
|               | 03-Nov-03                        | 9.49                                      | 5.17                       | 4.32                                  |
|               | 23-Mar-04                        | 9.61                                      | 5.31                       | 4.30                                  |
|               | 17-May-04                        | 9.61                                      | 5.43                       | 4.18                                  |
|               | 30-Aug-04                        | 9.61                                      | 5.07                       | 4.54                                  |
| MW-3          | 14-Mar-02                        | 11.14                                     | 2.19                       | 8.95                                  |
|               | 18-Jul-02                        | 11.14                                     | 2.79                       | 8.35                                  |
|               | 16-Sep-02                        | 11.14                                     | 2.96                       | 8.18                                  |
|               | 02-Dec-02                        | 11.14                                     | 2.75                       | 8.39                                  |
|               | 18-Mar-03                        | 11.14                                     | 2.30                       | 8.84                                  |
|               | 31-Mar-03                        | 11.14                                     | 1.96                       | 9.18                                  |
|               | 21-May-03                        | 11.14                                     | 2.19                       | 8.95                                  |
|               | 27-Aug-03                        | 11.14                                     | 2.08                       | 9.06                                  |
|               | 03-Nov-03                        | 11.14                                     | 2.35                       | 8.79                                  |
|               | 23-Mar-04                        | 11.22                                     | 2.24                       | 8.98                                  |
|               | 17-May-04                        | 11.22                                     | 2.25                       | 8.97                                  |
|               | 30-Aug-04                        | 11.22                                     | 2.42                       | 8.80                                  |





| Well No. | Measurement <sup>1</sup><br>Date | MP Elevation <sup>2</sup><br>(ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|----------|----------------------------------|-------------------------------------------|----------------------------|---------------------------------------|
| MW-4     | 14-Mar-02                        | 10.71                                     | 1.52                       | 9.19                                  |
|          | 18-Jul-02                        | 10.71                                     | 1.84                       | 8.87                                  |
|          | 16-Sep-02                        | 10.71                                     | 2.04                       | 8.67                                  |
|          | 02-Dec-02                        | 10.71                                     | 1.80                       | 8.91                                  |
|          | 18-Mar-03                        | 10.71                                     | 1.52                       | 9.19                                  |
|          | 31-Mar-03                        | 10.71                                     | 0.93                       | 9.78                                  |
|          | 21-May-03                        | 10.71                                     | 1.18                       | 9.53                                  |
|          | 27-Aug-03                        | 10.71                                     | 1.36                       | 9.35                                  |
|          | 03-Nov-03                        | 10.71                                     | 1.64                       | 9.07                                  |
|          | 23-Mar-04                        | 10.74                                     | 1.17                       | 9.57                                  |
|          | 17-May-04                        | 10.74                                     | 1.17                       | 9.57                                  |
|          | 30-Aug-04                        | 10.74                                     | 1.37                       | 9.37                                  |
| MW-5     | 14-Mar-02                        | 10.69                                     | 0.95                       | 9.74                                  |
|          | 18-Jul-02                        | 10.69                                     | 1.26                       | 9.43                                  |
|          | 16-Sep-02                        | 10.69                                     | 1.35                       | 9.34                                  |
|          | 02-Dec-02                        | 10.69                                     | 1.23                       | 9.46                                  |
|          | 18-Mar-03                        | 10.69                                     | 0.87                       | 9.82                                  |
|          | 31-Mar-03                        | 10.69                                     | 0.63                       | 10.06                                 |
|          | 21-May-03                        | 10.69                                     | 0.69                       | 10.00                                 |
|          | 27-Aug-03                        | 10.69                                     | 0.84                       | 9.85                                  |
|          | 03-Nov-03                        | 10.69                                     | 0.92                       | 9.77                                  |
|          | 23-Mar-04                        | 10.74                                     | 0.62                       | 10.12                                 |
|          | 17-May-04                        | 10.74                                     | 0.78                       | 9.96                                  |
|          | 30-Aug-04                        | 10.74                                     | 0.71                       | 10.03                                 |
| MW-6     | 14-Mar-02                        | 9.77                                      | 0.85                       | 8.92                                  |
|          | 18-Jul-02                        | 9.77                                      | 1.27                       | 8.50                                  |
|          | 16-Sep-02                        | 9.77                                      | 1.51                       | 8.26                                  |
|          | 02-Dec-02                        | 9.77                                      | 1.30                       | 8.47                                  |
|          | 18-Mar-03                        | 9.77                                      | 0.89                       | 8.88                                  |
|          | 31-Mar-03                        | 9.77                                      | 0.37                       | 9.40                                  |
|          | 21-May-03                        | 9.77                                      | 0.60                       | 9.17                                  |
|          | 27-Aug-03                        | 9.77                                      | 0.70                       | 9.07                                  |
|          | 03-Nov-03                        | 9.77                                      | 1.21                       | 8.56                                  |
|          | 23-Mar-04                        | 9.83                                      | 0.69                       | 9.14                                  |
|          | 17-May-04                        | 9.83                                      | 0.78                       | 9.05                                  |
|          | 30-Aug-04                        | 9.83                                      | 0.99                       | 8.84                                  |





| Well No. | Measurement <sup>1</sup><br>Date | MP Elevation <sup>2</sup><br>(ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|----------|----------------------------------|-------------------------------------------|----------------------------|---------------------------------------|
| MW-7     | 14-Mar-02                        | 9.68                                      | 0.73                       | 8.95                                  |
|          | 18-Jul-02                        | 9.68                                      | 1.15                       | 8.53                                  |
|          | 16-Sep-02                        | 9.68                                      | 1.37                       | 8.31                                  |
|          | 02-Dec-02                        | 9.68                                      | 1.19                       | 8.49                                  |
|          | 18-Mar-03                        | 9.68                                      | 0.75                       | 8.93                                  |
|          | 31-Mar-03                        | 9.68                                      | 0.26                       | 9.42                                  |
|          | 21-May-03                        | 9.68                                      | 0.45                       | 9.23                                  |
|          | 27-Aug-03                        | 9.68                                      | 0.61                       | 9.07                                  |
|          | 03-Nov-03                        | 9.68                                      | 1.13                       | 8.55                                  |
|          | 23-Mar-04                        | 9.74                                      | 0.44                       | 9.30                                  |
|          | 17-May-04                        | 9.74                                      | 0.50                       | 9.24                                  |
|          | 30-Aug-04                        | 9.74                                      | 0.84                       | 8.90                                  |
| MW-8     | 14-Mar-02                        | 10.30                                     | 0.92                       | 9.38                                  |
|          | 18-Jul-02                        | 10.30                                     | 1.24                       | 9.06                                  |
|          | 16-Sep-02                        | 10.30                                     | 1.52                       | 8.78                                  |
|          | 02-Dec-02                        | 10.30                                     | 1.34                       | 8.96                                  |
|          | 18-Mar-03                        | 10.30                                     | 0.95                       | 9.35                                  |
|          | 31-Mar-03                        | 10.30                                     | 0.29                       | 10.01                                 |
|          | 21-May-03                        | 10.30                                     | 0.49                       | 9.81                                  |
|          | 27-Aug-03                        | 10.30                                     | 0.91                       | 9.39                                  |
|          | 03-Nov-03                        | 10.30                                     | 1.36                       | 8.94                                  |
|          | 23-Mar-04                        | 10.33                                     | 0.57                       | 9.76                                  |
|          | 17-May-04                        | 10.33                                     | 0.54                       | 9.79                                  |
|          | 30-Aug-04                        | 10.33                                     | 0.94                       | 9.39                                  |
| MW-9     | 14-Mar-02                        | 9.86                                      | 0.71                       | 9.15                                  |
|          | 18-Jul-02                        | 9.86                                      | 1.13                       | 8.73                                  |
|          | 16-Sep-02                        | 9.86                                      | 1.40                       | 8.46                                  |
|          | 02-Dec-02                        | 9.86                                      | 1.18                       | 8.68                                  |
|          | 18-Mar-03                        | 9.86                                      | 0.79                       | 9.07                                  |
|          | 31-Mar-03                        | 9.86                                      | 0.11                       | 9.75                                  |
|          | 21-May-03                        | 9.86                                      | 0.30                       | 9.56                                  |
|          | 27-Aug-03                        | 9.86                                      | 0.81                       | 9.05                                  |
|          | 03-Nov-03                        | 9.86                                      | 1.19                       | 8.67                                  |
|          | 23-Mar-04                        | 9.91                                      | 0.40                       | 9.51                                  |
|          | 17-May-04                        | 9.91                                      | 0.38                       | 9.53                                  |
|          | 30-Aug-04                        | 9.91                                      | 0.89                       | 9.02                                  |
| MW-10    | 02-Dec-02                        | 9.80                                      | 1.35                       | 8.45                                  |
|          | 18-Mar-03                        | 9.80                                      | 0.95                       | 8.85                                  |
|          | 31-Mar-03                        | 9.80                                      | 0.30                       | 9.50                                  |
|          | 21-May-03                        | 9.80                                      | 0.52                       | 9.28                                  |
|          | 27-Aug-03                        | 9.80                                      | 1.02                       | 8.78                                  |
|          | 03-Nov-03                        | 9.80                                      | 1.43                       | 8.37                                  |
|          | 23-Mar-04                        | 9.85                                      | 0.70                       | 9.15                                  |
|          | 17-May-04                        | 9.85                                      | 0.61                       | 9.24                                  |
|          | 30-Aug-04                        | 9.85                                      | 1.13                       | 8.72                                  |





| Well No. | Measurement <sup>1</sup><br>Date | MP Elevation <sup>2</sup><br>(ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|----------|----------------------------------|-------------------------------------------|----------------------------|---------------------------------------|
| MW-11    | 02-Dec-02                        | 10.26                                     | 1.55                       | 8.71                                  |
|          | 18-Mar-03                        | 10.26                                     | 1.12                       | 9.14                                  |
|          | 31-Mar-03                        | 10.26                                     | 0.40                       | 9.86                                  |
|          | 21-May-03                        | 10.26                                     | 0.64                       | 9.62                                  |
|          | 27-Aug-03                        | 10.26                                     | 1.19                       | 9.07                                  |
|          | 03-Nov-03                        | 10.26                                     | 1.56                       | 8.70                                  |
|          | 23-Mar-04                        | 10.28                                     | 0.75                       | 9.53                                  |
|          | 17-May-04                        | 10.28                                     | 0.69                       | 9.59                                  |
|          | 30-Aug-04                        | 10.28                                     | 1.20                       | 9.08                                  |
| MW-12    | 02-Dec-02                        | 10.73                                     | 1.56                       | 9.17                                  |
|          | 18-Mar-03                        | 10.73                                     | 1.15                       | 9.58                                  |
|          | 31-Mar-03                        | 10.73                                     | 0.55                       | 10.18                                 |
|          | 21-May-03                        | 10.73                                     | 0.70                       | 10.03                                 |
|          | 27-Aug-03                        | 10.73                                     | 1.12                       | 9.61                                  |
|          | 03-Nov-03                        | 10.73                                     | 1.68                       | 9.05                                  |
|          | 23-Mar-04                        | 10.76                                     | 0.87                       | 9.89                                  |
|          | 17-May-04                        | 10.76                                     | 0.76                       | 10.00                                 |
|          | 30-Aug-04                        | 10.76                                     | 1.13                       | 9.63                                  |
| MW-14    | 02-Dec-02                        | 9.02                                      | 2.40                       | 6.62                                  |
|          | 18-Mar-03                        | 9.02                                      | 2.21                       | 6.81                                  |
|          | 31-Mar-03                        | 9.02                                      | 1.77                       | 7.25                                  |
|          | 21-May-03                        | 9.02                                      | 1.69                       | 7.33                                  |
|          | 27-Aug-03                        | 9.02                                      | 2.27                       | 6.75                                  |
|          | 03-Nov-03                        | 9.02                                      | 2.52                       | 6.50                                  |
|          | 23-Mar-04                        | 9.15                                      | 2.08                       | 7.07                                  |
|          | 17-May-04                        | 9.15                                      | 2.15                       | 7.00                                  |
|          | 30-Aug-04                        | 9.15                                      | 2.48                       | 6.67                                  |
| MW-17    | 02-Dec-02                        | 8.98                                      | 1.27                       | 7.71                                  |
|          | 18-Mar-03                        | 8.98                                      | 0.94                       | 8.04                                  |
|          | 31-Mar-03                        | 8.98                                      | 0.32                       | 8.66                                  |
|          | 21-May-03                        | 8.98                                      | 0.58                       | 8.40                                  |
|          | 27-Aug-03                        | 8.98                                      | 1.06                       | 7.92                                  |
|          | 03-Nov-03                        | 8.98                                      | 1.30                       | 7.68                                  |
|          | 23-Mar-04                        | 9.16                                      | 0.83                       | 8.33                                  |
|          | 17-May-04                        | 9.16                                      | 0.74                       | 8.42                                  |
|          | 30-Aug-04                        | 9.16                                      | 1.21                       | 7.95                                  |
| MW-18    | 02-Dec-02                        | 9.53                                      | 0.94                       | 8.59                                  |
|          | 18-Mar-03                        | 9.53                                      | 0.52                       | 9.01                                  |
|          | 31-Mar-03                        | 9.53                                      | 3                          | NC                                    |
|          | 21-May-03                        | 9.53                                      | 0.05                       | 9.48                                  |
|          | 27-Aug-03                        | 9.53                                      | 0.55                       | 8.98                                  |
|          | 03-Nov-03                        | 9.53                                      | 0.95                       | 8.58                                  |
|          | 23-Mar-04                        | 9.92                                      | 0.52                       | 9.40                                  |
|          | 17-May-04                        | 9.92                                      | 0.47                       | 9.45                                  |
|          | 30-Aug-04                        | 9.92                                      | 0.98                       | 8.94                                  |





| Well No.   | Measurement <sup>1</sup><br>Date | MP Elevation <sup>2</sup><br>(ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|------------|----------------------------------|-------------------------------------------|----------------------------|---------------------------------------|
| MW-20      | 23-Mar-04                        | 11.87                                     | 2.36                       | 9.51                                  |
|            | 17-May-04                        | 11.87                                     | 2.35                       | 9.52                                  |
|            | 30-Aug-04                        | 11.87                                     | 2.70                       | 9.17                                  |
| MW-21      | 23-Mar-04                        | 12.89                                     | 3.97                       | 8.92                                  |
|            | 17-May-04                        | 12.89                                     | 3.99                       | 8.90                                  |
|            | 30-Aug-04                        | 12.89                                     | 4.23                       | 8.66                                  |
| Deep Wells | -                                |                                           |                            |                                       |
| MW-13D     | 02-Dec-02                        | 9.84                                      | 4.18                       | 5.66                                  |
|            | 18-Mar-03                        | 9.84                                      | 4.21                       | 5.63                                  |
|            | 31-Mar-03                        | 9.84                                      | 4.26                       | 5.58                                  |
|            | 21-May-03                        | 9.84                                      | 4.52                       | 5.32                                  |
|            | 27-Aug-03                        | 9.84                                      | 4.45                       | 5.39                                  |
|            | 03-Nov-03                        | 9.84                                      | 4.30                       | 5.54                                  |
|            | 23-Mar-04                        | 9.96                                      | 4.42                       | 5.54                                  |
|            | 17-May-04                        | 9.96                                      | 4.54                       | 5.42                                  |
|            | 30-Aug-04                        | 9.96                                      | 4.57                       | 5.39                                  |
| MW-15D     | 02-Dec-02                        | 11.08                                     | 5.31                       | 5.77                                  |
|            | 18-Mar-03                        | 11.08                                     | 5.44                       | 5.64                                  |
|            | 31-Mar-03                        | 11.08                                     | 5.46                       | 5.62                                  |
|            | 21-May-03                        | 11.08                                     | 5.74                       | 5.34                                  |
|            | 27-Aug-03                        | 11.08                                     | 5.71                       | 5.37                                  |
|            | 03-Nov-03                        | 11.08                                     | 5.51                       | 5.57                                  |
|            | 23-Mar-04                        | 11.19                                     | 5.66                       | 5.53                                  |
|            | 17-May-04                        | 11.19                                     | 5.77                       | 5.42                                  |
|            | 30-Aug-04                        | 11.19                                     | 5.83                       | 5.36                                  |
| MW-16D     | 02-Dec-02                        | 9.80                                      | 3.99                       | 5.81                                  |
|            | 18-Mar-03                        | 9.80                                      | 4.17                       | 5.63                                  |
|            | 31-Mar-03                        | 9.80                                      | 3.91                       | 5.89                                  |
|            | 21-May-03                        | 9.80                                      | 4.11                       | 5.69                                  |
|            | 27-Aug-03                        | 9.80                                      | 3.95                       | 5.85                                  |
|            | 03-Nov-03                        | 9.80                                      | 4.26                       | 5.54                                  |
|            | 23-Mar-04                        | 9.83                                      | 4.01                       | 5.82                                  |
|            | 17-May-04                        | 9.83                                      | 4.13                       | 5.70                                  |
|            | 30-Aug-04                        | 9.83                                      | 4.13                       | 5.70                                  |
| MW-19D     | 02-Dec-02                        | 11.00                                     | 4.31                       | 6.69                                  |
|            | 18-Mar-03                        | 11.00                                     | 4.23                       | 6.77                                  |
|            | 31-Mar-03                        | 11.00                                     | 4.02                       | 6.98                                  |
|            | 21-May-03                        | 11.00                                     | 4.22                       | 6.78                                  |
|            | 27-Aug-03                        | 11.00                                     | 4.26                       | 6.74                                  |
|            | 03-Nov-03                        | 11.00                                     | 4.61                       | 6.39                                  |
|            | 23-Mar-04                        | 11.06                                     | 4.13                       | 6.93                                  |
|            | 17-May-04                        | 11.06                                     | 4.63                       | 6.43                                  |
|            | 30-Aug-04                        | 11.06                                     | 4.60                       | 6.46                                  |



#### SUMMARY OF WATER LEVEL MEASUREMENTS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

| Well No.                      | Measurement <sup>1</sup><br>Date | MP Elevation <sup>2</sup><br>(ft NAVD 88) | Depth to Water<br>(ft bMP) | Water Level Elevation<br>(ft NAVD 88) |
|-------------------------------|----------------------------------|-------------------------------------------|----------------------------|---------------------------------------|
| Mad River Slough <sup>4</sup> | 31-Mar-03                        | 15.70                                     | 15.15                      | 0.55                                  |
| C C                           | 31-Mar-03                        | 15.70                                     | 15.84                      | -0.14                                 |
|                               | 21-May-03                        | 15.70                                     | 17.23                      | -1.53                                 |
|                               | 21-May-03                        | 15.70                                     | 16.75                      | -1.05                                 |
|                               | 27-Aug-03                        | 15.70                                     | 16.20                      | -0.50                                 |
|                               | 27-Aug-03                        | 15.70                                     | 12.60                      | 3.10                                  |
|                               | 03-Nov-03                        | 15.70                                     | 9.63                       | 6.07                                  |
|                               | 03-Nov-03                        | 15.70                                     | 10.53                      | 5.17                                  |
|                               | 23-Mar-04                        | 15.70                                     | 15.00                      | 0.70                                  |
|                               | 23-Mar-04                        | 15.70                                     | 12.16                      | 3.54                                  |
|                               | 17-May-04                        | 15.70                                     | 14.48                      | 1.22                                  |
|                               | 17-May-04                        | 15.70                                     | 12.50                      | 3.20                                  |
|                               | 30-Aug-04                        | 15.70                                     | 15.17                      | 0.53                                  |
|                               | 30-Aug-04                        | 15.70                                     | 12.20                      | 3.50                                  |

Notes:

- Data prior to March 18, 2003 were obtained from Results of the Remedial Investigation for Sierra Pacific Industries - Arcata Division Sawmill, Arcata, California, dated January 30, 2003, prepared by Environet Consulting.
- 2. Monitoring wells surveyed by Omsberg & Company of Eureka, California. Wells were resurveyed on February 13, 2004; elevations shown are relative to the Northern American Vertical Datum of 1988.
- 3. Water level was above the top of casing measuring point.
- 4. Mad River Slough measuring point on railroad bridge. Water level measurements are obtained before and after the water level measurements in the monitoring wells.

Abbreviations:

ft NAVD 88 = feet above North American Vertical Datum of 1988 ft bMP = feet below measuring point -- = not measured or sample not collected for analysis NC = not calcuated



|               |              |                     | Laboratory<br>Measurement <sup>2</sup> |                  |               |               |
|---------------|--------------|---------------------|----------------------------------------|------------------|---------------|---------------|
| Well No.      | Date Sampled | Temperature<br>(°C) | Specific<br>Conductance<br>(µmohs/cm)  | pH<br>(pH Units) | TDS<br>(mg/L) | TDS<br>(mg/L) |
| Shallow Wells |              |                     |                                        |                  |               |               |
|               | 20-Mar-03    | 14                  | 2,600                                  | 6.5              |               |               |
| MW-1          | 22-May-03    | 14                  | 2,700                                  | 6.7              |               | 1,400         |
|               | 27-Aug-03    | 18                  | 2,500                                  | 6.7              | 1,800         | 1,400         |
| 101 00 - 1    | 04-Nov-03    | 16.9                | 2,440                                  | 6.6              | 1,800         | 1,300         |
|               | 24-Mar-04    |                     |                                        |                  |               |               |
|               | 17-May-04    | 15                  | 2635                                   | 6.3              | 1899          | 1,400         |
|               | 20-Mar-03    | 13                  | 2,100                                  | 6.2              |               |               |
|               | 22-May-03    | 14                  | 1,700                                  | 6.4              | 1100          | 860           |
|               | 27-Aug-03    | 18                  | 1,500                                  | 6.6              | 1,100         | 760           |
| MW-2          | 03-Nov-03    | 16.3                | 1,590                                  | 6.3              | 1,125         | 760           |
|               | 24-Mar-04    | 13.4                | 1,390                                  | 6.3              | 973           | 740           |
|               | 17-May-04    | 14.8                | 1,437                                  | 6.2              | 982           | 730           |
|               | 30-Aug-04    | 19.1                | 1,215                                  | 3                | 850           | 680           |
|               | 20-Mar-03    | 13                  | 1,100                                  | 6.4              |               |               |
|               | 22-May-03    | 15                  | 1,000                                  | 6.4              | 630           | 510           |
| MW 3          | 27-Aug-03    | 20                  | 1,000                                  | 6.5              | 720           | 470           |
| 101 00 -5     | 03-Nov-03    | 16.3                | 986                                    | 6.6              |               | 410           |
|               | 24-Mar-04    |                     |                                        |                  |               |               |
|               | 17-May-04    | 15.7                | 1108                                   | 6.2              | 750           | 510           |
|               | 20-Mar-03    | 14                  | 830                                    | 6.5              |               |               |
|               | 22-May-03    | 16                  | 730                                    | 6.4              | 440           | 420           |
| MW-4          | 27-Aug-03    | 21                  | 730                                    | 6.5              | 500           | 340           |
| 101 00 -4     | 03-Nov-03    | 17.8                | 758                                    | 6.6              | 516           | 310           |
|               | 24-Mar-04    |                     |                                        |                  |               |               |
|               | 17-May-04    | 17.7                | 884                                    | 6.2              | 590           | 360           |
|               | 20-Mar-03    | 14                  | 670                                    | 6.6              |               |               |
|               | 22-May-03    | 14                  | 690                                    | 6.6              | 410           | 360           |
| MW_5          | 27-Aug-03    | 18                  | 670                                    | 6.7              | 450           | 360           |
| 101 00 -5     | 03-Nov-03    | 17.2                | 661                                    | 6.6              | 450           | 380           |
|               | 24-Mar-04    |                     |                                        |                  |               |               |
|               | 17-May-04    | 15.2                | 662                                    | 6.3              | 438           | 360           |
|               | 20-Mar-03    | 11                  | 950                                    | 6.6              |               |               |
|               | 22-May-03    | 14                  | 1,000                                  | 6.3              | 620           | 430           |
|               | 27-Aug-03    | 17                  | 890                                    | 6.4              | 620           | 410           |
| MW-6          | 04-Nov-03    | 12.8                | 918                                    | 6.6              | 634           | 430           |
|               | 24-Mar-04    | 11                  | 925                                    | 6.5              | 640           | 410           |
|               | 17-May-04    | 13.6                | 933                                    | 6.3              | 645           | 420           |
| J             | 30-Aug-04    | 17.2                | 883                                    | 3                | 610           | 430           |



|            |              |             | Laboratory<br>Measurement <sup>2</sup> |                  |               |               |
|------------|--------------|-------------|----------------------------------------|------------------|---------------|---------------|
| Well No.   | Date Sampled | Temperature | Specific<br>Conductance<br>(umohs/cm)  | pH<br>(nH Units) | TDS<br>(mg/L) | TDS<br>(mg/L) |
| VV CH 110. | 20-Mar-03    | 11          | 910                                    | 66               | (ing, 2)      |               |
| MW-7       | 20-Mar 03    | 11          | 960                                    | 6.5              | -             | 460           |
|            | 27-Aug-03    | 14          | 840                                    | 6.6              | 580           | 400           |
|            | 03-Nov-03    | 12.4        | 869                                    | 6.6              | 597           | 460           |
| 111 1      | 24-Mar-04    | 10.7        | 955                                    | 6.4              |               | 440           |
|            | 18-May-04    | 11.9        | 733                                    | 6.6              | 486           | 370           |
|            | 30-Aug-04    | 14.3        | 842                                    | 3                | 580           | 410           |
|            | 18-Mar-03    | 14.5        | 730                                    |                  | 560           | 410           |
|            | 21_May_03    | 14          | 730                                    | 63               | 460           | 390           |
|            | 21-Way-03    | 21          | 730                                    | 6.2              | 500           | 370           |
| MW-8       | 04-Nov-03    | 17.2        | 730                                    | 6.4              | 507           | 380           |
| 101 00 -0  | 24 Mar-04    | 1/.2        |                                        | 6.2              | 530           | 400           |
|            | 17 May-04    | 14.2        | 705                                    | 6.1              | 578           | 200           |
|            | 20 Aug 04    | 21          | 756                                    | 3                | 517           | 200           |
|            | 18 Mar 02    | 21          | /JU<br>820                             |                  | 317           | 046           |
|            | 18-War-05    | 14          | 820                                    | 0.4              |               |               |
|            | 23-May-03    | 10          | 820                                    | 0.0              | 530           | 400           |
| MAN        | 27-Aug-03    | 20          | 830                                    | 0.2              | 570           | 350           |
| MW-9       | 04-Nov-03    | 16./        | 821                                    | 6.0              | 563           | 350           |
|            | 24-Mar-04    | 13.9        | 8/8                                    | 6.4              | 604           | 380           |
|            | 17-May-04    | 16.1        | 927                                    | 6.1              | 621           | 380           |
|            | 30-Aug-04    | 19.8        | 857                                    | 3                | 550           | 440           |
|            | 18-Mar-03    | 14          | 920                                    | 6.4              |               |               |
|            | 23-May-03    | 17          | 970                                    | 6.7              |               | 460           |
| MW-10      | 27-Aug-03    | 22          | 860                                    | 6.3              | 600           | 400           |
|            | 04-Nov-03    | 17.9        | 878                                    | 6.6              | 604           | 430           |
|            | 24-Mar-04    |             |                                        |                  |               |               |
|            | 17-May-04    | 18.7        | 920                                    | 6.2              | 613           | 420           |
|            | 20-Mar-03    | 14          | 870                                    | 6.4              |               |               |
|            | 21-May-03    | 17          | 890                                    | 6.4              | 560           | 460           |
| MW-11      | 27-Aug-03    | 23          | 870                                    | 6.2              | 600           | 440           |
|            | 04-Nov-03    | 18.6        | 877                                    | 6.6              | 600           | 450           |
|            | 24-Mar-04    |             |                                        |                  |               |               |
|            | 17-May-04    | 18.1        | 878                                    | 6.2              | 586           | 430           |
|            | 18-Mar-03    | 15          | 830                                    | 6.3              |               |               |
|            | 21-May-03    | 18          | 840                                    | 6.1              |               | 460           |
| MW-12      | 27-Aug-03    | 23          | 870                                    | 6.2              | 600           | 480           |
| 101 00 -12 | 04-Nov-03    | 18.1        | 916                                    | 6.5              | 631           | 480           |
|            | 24-Mar-04    |             |                                        |                  |               |               |
|            | 17-May-04    | 19.7        | 905                                    | 6.0              | 605           | 490           |



|              |              |                     | Field Measurements <sup>1</sup>       |                  |               |               |  |
|--------------|--------------|---------------------|---------------------------------------|------------------|---------------|---------------|--|
| Well No.     | Date Sampled | Temperature<br>(°C) | Specific<br>Conductance<br>(µmohs/cm) | pH<br>(pH Units) | TDS<br>(mg/L) | TDS<br>(mg/L) |  |
|              | 20-Mar-03    | 14                  | 3,200                                 | 6.7              |               |               |  |
|              | 22-May-03    | 15                  | 3,400                                 | 6.6              |               | 2,100         |  |
| MW-14        | 27-Aug-03    | 20                  | 3,600                                 | 6.6              | 2,300         | 1,900         |  |
|              | 04-Nov-03    | 15.9                | 3,330                                 | 6.6              | 2,520         | 2,100         |  |
|              | 24-Mar-04    |                     |                                       |                  |               |               |  |
|              | 17-May-04    | 16.9                | 2824                                  | 6.4              | 2046          | 1,800         |  |
|              | 20-Mar-03    | 13                  | 980                                   | 6.4              |               |               |  |
|              | 22-May-03    | 15                  | 1,000                                 | 6.5              |               | 450           |  |
| MW 17        | 27-Aug-03    | 19                  | 860                                   | 7.0              | 600           | 420           |  |
| IVI VV - 1 / | 04-Nov-03    | 14.9                | 920                                   | 6.6              | 635           | 450           |  |
|              | 24-Mar-04    |                     |                                       |                  |               |               |  |
|              | 17-May-04    | 15.3                | 944                                   | 6.5              | 620           | 440           |  |
|              | 18-Mar-03    | 14                  | 1,000                                 | 6.5              |               |               |  |
|              | 23-May-03    | 17                  | 980                                   | 6.6              | 610           | 640           |  |
| M337 10      | 27-Aug-03    | 23                  | 1,100                                 | 6.3              | 780           | 520           |  |
| IVI W - 18   | 04-Nov-03    | 16.7                | 1,092                                 | 6.6              | 760           | 490           |  |
|              | 24-Mar-04    |                     |                                       |                  |               |               |  |
|              | 17-May-04    | 19.4                | 995                                   | 6.3              | 670           | 430           |  |
|              | 24-Mar-04    | 13.6                | 425                                   | 6.9              | 284           | 250           |  |
| MW-20        | 18-May-04    | 18.3                | 469                                   | 6.7              | 306           | 280           |  |
|              | 30-Aug-04    | 20.8                | 496                                   | 3                | 334           | 300           |  |
|              | 24-Mar-04    | 11.7                | 987                                   | 6.3              | 683           | 460           |  |
| MW-21        | 18-May-04    | 13.5                | 1003                                  | 6.3              | 663           | 420           |  |
|              | 30-Aug-04    | 16.1                | 957                                   | 3                | 660           | 450           |  |
| Deep Wells   |              |                     |                                       |                  |               |               |  |
|              | 20-Mar-03    | 14                  | 1,200                                 | 6.2              |               |               |  |
|              | 22-May-03    | 14                  | 1,100                                 | 6.2              |               |               |  |
| MW 12D       | 27-Aug-03    | 15                  | 1,100                                 | 6.1              | 750           | 690           |  |
| WI W-15D     | 04-Nov-03    | 14.8                | 1,020                                 | 6.1              |               | 580           |  |
|              | 24-Mar-04    |                     |                                       |                  |               |               |  |
|              | 17-May-04    | 13.8                | 1035                                  | 5.8              | 698           | 610           |  |
|              | 20-Mar-03    | 13                  | 1,300                                 | 6.8              |               |               |  |
|              | 22-May-03    | 13                  | 1,300                                 | 6.8              |               | 800           |  |
| MW 15D       | 27-Aug-03    | 14                  | 1,300                                 | 6.3              | 900           | 810           |  |
| IVI VV-15D   | 04-Nov-03    | 14                  | 1,290                                 | 6.8              |               | 790           |  |
|              | 24-Mar-04    |                     |                                       |                  |               |               |  |
|              | 17-May-04    | 13.4                | 1,360                                 | 6.3              | 928           | 800           |  |



#### Sierra Pacific Industries Arcata Division Sawmill Arcata, California

|          |              |                     | Laboratory<br>Measurement <sup>2</sup> |                  |               |               |
|----------|--------------|---------------------|----------------------------------------|------------------|---------------|---------------|
| Well No. | Date Sampled | Temperature<br>(°C) | Specific<br>Conductance<br>(µmohs/cm)  | pH<br>(pH Units) | TDS<br>(mg/L) | TDS<br>(mg/L) |
|          | 18-Mar-03    | 14                  | 5,200                                  | 7.7              |               |               |
|          | 23-May-03    | 14                  | 5,200                                  | 7.6              |               | 3,200         |
|          | 27-Aug-03    | 16                  | 5,000                                  | 7.4              | 3,400         | 3,000         |
| WIW-10D  | 04-Nov-03    | 15.5                | 4,770                                  | 7.6              | 3,700         | 2,800         |
|          | 24-Mar-04    |                     |                                        |                  |               |               |
|          | 17-May-04    | 14.9                | 4,562                                  | 7.3              | 3,457         | 2,800         |
|          | 20-Mar-03    | 16                  | 810                                    | 6.7              |               |               |
|          | 22-May-03    | 16                  | 860                                    | 6.6              | 520           | 480           |
| MW 10D   | 27-Aug-03    | 17                  | 810                                    | 6.5              | 560           | 410           |
| MW-19D   | 03-Nov-03    | 16.9                | 759                                    | 6.7              | 517           | 370           |
|          | 24-Mar-04    |                     |                                        |                  |               |               |
|          | 17-May-04    | 15.9                | 843                                    | 6.5              | 562           | 430           |

Notes:

- 1. Water quality parameters measured in the field using an Ultrameter instrument or a flow through cell and a YSI Model 556 instrument; reported measurements recorded towards end of purge after parameters stabilized or from the last purge volume if a well was repeatedly purged dry.
- 2. Water quality parameter analyzed in the laboratory; EPA Method 160.1.

3. pH meter inoperable.

Abbreviations:

°C = degrees Celsius

 $\mu$ mhos/cm = micromhos per centimeter at 25 °C

mg/L = milligrams per liter

-- = not measured or sample not collected for analysis

TDS = total dissolved solids

EPA = U.S. Environmental Protection Agency



LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS

Sierra Pacific Industries

Arcata Division Sawmill

Arcata, California

|               |                        |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6-     | 2,3,4,5-     |          |
|---------------|------------------------|--------------|------------|--------------|--------------|--------------|----------|
| Monitoring    | Date                   | Penta-       | trichloro- | tetrachloro- | tetrachloro- | tetrachloro- | Comments |
| Well Number   | Sampled <sup>1</sup>   | chlorophenol | phenol     | phenol       | phenol       | phenol       |          |
| Shallow Wells |                        |              |            |              |              |              |          |
|               | 14-Mar-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 18-Jul-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 16-Sep-02              | 1.8          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 03-Oct-02 <sup>2</sup> | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 02-Dec-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-1          | 20-Mar-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 22-May-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 27-Aug-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 04-Nov-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 24-Mar-04              |              |            |              |              |              |          |
|               | 17-May-04              | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|               | 14-Mar-02              | 7.4          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 18-Jul-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 16-Sep-02              | 2.5          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 03-Dec-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 20-Mar-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-2          | 22-May-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 27-Aug-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 4-Nov-03               | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|               | 24-Mar-04              | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|               | 17-May-04              | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|               | 30-Aug-04              | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|               | 14-Mar-02              | 1.2          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 18-Jul-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 16-Sep-02              | 5.0          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 03-Dec-02              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW 3          | 20-Mar-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| 101 00 -5     | 22-May-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 27-Aug-03              | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|               | 4-Nov-03               | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|               | 24-Mar-04              |              |            |              |              |              |          |
|               | 17-May-04              | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |



## LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS

Sierra Pacific Industries

Arcata Division Sawmill

Arcata, California

|             |                      |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6-     | 2,3,4,5-     |                  |
|-------------|----------------------|--------------|------------|--------------|--------------|--------------|------------------|
| Monitoring  | Date                 | Penta-       | trichloro- | tetrachloro- | tetrachloro- | tetrachloro- | Comments         |
| Well Number | Sampled <sup>1</sup> | chlorophenol | phenol     | phenol       | phenol       | phenol       |                  |
|             | 14-Mar-02            | 8.6          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 18-Jul-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 16-Sep-02            | 5.7          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW 4        | 20-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| 101 00 -4   | 22-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03             | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 24-Mar-04            |              |            |              |              |              |                  |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 14-Mar-02            | 4.3          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 18-Jul-02            | 9.1          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 16-Sep-02            | 25           | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 20-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-5        | 20-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        | duplicate sample |
|             | 22-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03             | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 24-Mar-04            |              |            |              |              |              |                  |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 14-Mar-02            | 4.5          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 18-Jul-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 16-Sep-02            | 6.3          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW 6        | 20-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| IVI VV -0   | 22-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 24-Mar-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 30-Aug-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |



LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS

Sierra Pacific Industries

Arcata Division Sawmill

Arcata, California

|             |                      |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6-     | 2,3,4,5-     |                                 |
|-------------|----------------------|--------------|------------|--------------|--------------|--------------|---------------------------------|
| Monitoring  | Date                 | Penta-       | trichloro- | tetrachloro- | tetrachloro- | tetrachloro- | Comments                        |
| Well Number | Sampled <sup>1</sup> | chlorophenol | phenol     | phenol       | phenol       | phenol       |                                 |
|             | 14-Mar-02            | 31,000       | < 1.0      | 41           | 650          | 24           |                                 |
|             | 18-Jul-02            | 33,000       | < 1.0      | < 1.0        | 990          | 56           |                                 |
|             | 16-Sep-02            | 44,000       | < 1.0      | < 1.0        | 920          | 64           |                                 |
|             | 03-Dec-02            | 46,000       | < 1.3      | 76           | 1,300        | 52           |                                 |
|             | 14-Jan-03 3          | 51,000       | 2.4        | < 1.0        | 970          | 52           |                                 |
|             | 20-Mar-03            | 19,000       | < 1.0      | 36           | 460          | 22           |                                 |
|             | 22-May-03            | 19,000       | < 1.0      | < 1.0        | 470          | < 100        |                                 |
|             | 22-May-03            | 16,000       | < 1.0      | < 1.0        | 400          | < 100        | duplicate sample                |
|             | 22-May-03            | 14,000       | < 1.0      | < 1.0        | 400          | < 100        | filtered                        |
|             | 27-Aug-03            | 31,000       | < 1.5      | 41           | 710          | 39           |                                 |
| MW-7        | 27-Aug-03            | 18,000       | < 1.0      | 28           | 450          | 26           | duplicate sample                |
|             | 3-Nov-03             | 28,000       | <5.0       | 36           | 580          | 35           | bailer sample /<br>unfiltered   |
|             | 3-Nov-03             | 31,000       | <5.0       | 47           | 740          | 43           | bailer sample /<br>filtered     |
|             | 3-Nov-03             | 20,000       | <5.0       | 28           | 450          | 24           | low flow sample /<br>unfiltered |
|             | 3-Nov-03             | 14,000       | <5.0       | 19           | 300          | 17           | low flow sample /<br>filtered   |
|             | 24-Mar-04            | 19,000       | <1.5       | 19           | 450          | 19           |                                 |
|             | 24-Mar-04            | 7,400        | <1.0       | 8.7          | 150          | 9.9          | duplicate sample                |
|             | 18-May-04            | 25,000       | <2.5       | 86           | 480          | 41           |                                 |
|             | 30-Aug-04            | 13,000       | <1.0       | 54           | 200          | 17           |                                 |
|             | 14-Mar-02            | 22           | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 18-Jul-02            | 31           | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 16-Sep-02            | 4.8          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 18-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
| MW-8        | 21-May-03            | 1.0          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                                 |
|             | 4-Nov-03             | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                                 |
|             | 24-Mar-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                                 |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                                 |
|             | 30-Aug-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                                 |



## LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS

Sierra Pacific Industries

Arcata Division Sawmill

Arcata, California

|             |                      |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6-     | 2,3,4,5-     |          |
|-------------|----------------------|--------------|------------|--------------|--------------|--------------|----------|
| Monitoring  | Date                 | Penta-       | trichloro- | tetrachloro- | tetrachloro- | tetrachloro- | Comments |
| Well Number | Sampled <sup>1</sup> | chlorophenol | phenol     | phenol       | phenol       | phenol       |          |
|             | 14-Mar-02            | 94           | 3.1        | 21           | 130          | 5.5          |          |
|             | 18-Jul-02            | 2.1          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 16-Sep-02            | 3.1          | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 18-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-9        | 23-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 04-Nov-03            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|             | 24-Mar-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|             | 30-Aug-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 18-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 23-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-10       | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 4-Nov-03             | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|             | 24-Mar-04            |              |            |              |              |              |          |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 20-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 21-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-11       | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 4-Nov-03             | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|             | 24-Mar-04            |              |            |              |              |              |          |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 18-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 21-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
| MW-12       | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |          |
|             | 4-Nov-03             | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |
|             | 24-Mar-04            |              |            |              |              |              |          |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |          |



# LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS

Sierra Pacific Industries

Arcata Division Sawmill

Arcata, California

|             |                      |              | 2,4,6-     | 2,3,5,6-     | 2,3,4,6-     | 2,3,4,5-     |                  |
|-------------|----------------------|--------------|------------|--------------|--------------|--------------|------------------|
| Monitoring  | Date                 | Penta-       | trichloro- | tetrachloro- | tetrachloro- | tetrachloro- | Comments         |
| Well Number | Sampled <sup>1</sup> | chlorophenol | phenol     | phenol       | phenol       | phenol       |                  |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 20-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 22-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-14       | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03             | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 24-Mar-04            |              |            |              |              |              |                  |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 20-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 22-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-17       | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03             | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 24-Mar-04            |              |            |              |              |              |                  |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 18-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 23-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-18       | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03             | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 4-Nov-03             |              |            |              |              |              |                  |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 24-Mar-04            | 35           | <1.0       | <1.0         | 5.1          | 3.8          |                  |
| MW-20       | 18-May-04            | 3.6          | <1.0       | <1.0         | 1.1          | <1.0         |                  |
|             | 30-Aug-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 24-Mar-04            | 800          | <1.0       | 6.3          | 17           | 12           |                  |
|             | 18-May-04            | 1,900        | <1.0       | 11           | 36           | 11           |                  |
| MW-21       | 18-May-04            | 670          | <1.0       | 3.5          | 16           | 4.4          | duplicate sample |
|             | 30-Aug-04            | 2,700        | <1.0       | 6.4          | 66           | 5.4          |                  |
|             | 30-Aug-04            | 2,800        | <1.0       | 6.9          | 68           | 5.5          | duplicate sample |
| Deep Wells  |                      |              |            |              |              |              |                  |
|             | 03-Dec-02            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 20-Mar-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 22-May-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
| MW-13D      | 27-Aug-03            | < 1.0        | < 1.0      | < 1.0        | < 1.0        | < 1.0        |                  |
|             | 4-Nov-03             | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |
|             | 24-Mar-04            |              |            |              |              |              |                  |
|             | 17-May-04            | <1.0         | <1.0       | <1.0         | <1.0         | <1.0         |                  |



#### LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS

#### Sierra Pacific Industries

Arcata Division Sawmill

#### Arcata, California

| Concentrations in micrograms per liter (µg/L) |                              |                        |                                |                                    |                                    |                                    |          |  |  |
|-----------------------------------------------|------------------------------|------------------------|--------------------------------|------------------------------------|------------------------------------|------------------------------------|----------|--|--|
| Monitoring<br>Well Number                     | Date<br>Sampled <sup>1</sup> | Penta-<br>chlorophenol | 2,4,6-<br>trichloro-<br>phenol | 2,3,5,6-<br>tetrachloro-<br>phenol | 2,3,4,6-<br>tetrachloro-<br>phenol | 2,3,4,5-<br>tetrachloro-<br>phenol | Comments |  |  |
|                                               | 03-Dec-02                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
|                                               | 20-Mar-03                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
|                                               | 22-May-03                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
| MW-15D                                        | 27-Aug-03                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
|                                               | 4-Nov-03                     | <1.0                   | <1.0                           | <1.0                               | <1.0                               | <1.0                               |          |  |  |
|                                               | 24-Mar-04                    |                        |                                |                                    |                                    |                                    |          |  |  |
|                                               | 17-May-04                    | <1.0                   | <1.0                           | <1.0                               | <1.0                               | <1.0                               |          |  |  |
|                                               | 03-Dec-02                    | 1.3                    | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
|                                               | 18-Mar-03                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
|                                               | 23-May-03                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
| MW-16D                                        | 27-Aug-03                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
|                                               | 4-Nov-03                     | <1.0                   | <1.0                           | <1.0                               | <1.0                               | <1.0                               |          |  |  |
|                                               | 24-Mar-04                    |                        |                                |                                    |                                    |                                    |          |  |  |
|                                               | 17-May-04                    | <1.0                   | <1.0                           | <1.0                               | <1.0                               | <1.0                               |          |  |  |
|                                               | 03-Dec-02                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
|                                               | 20-Mar-03                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
|                                               | 22-May-03                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
| MW-19D                                        | 27-Aug-03                    | < 1.0                  | < 1.0                          | < 1.0                              | < 1.0                              | < 1.0                              |          |  |  |
|                                               | 4-Nov-03                     | <1.0                   | <1.0                           | <1.0                               | <1.0                               | <1.0                               |          |  |  |
|                                               | 24-Mar-04                    |                        |                                |                                    |                                    |                                    |          |  |  |
|                                               | 17-May-04                    | <1.0                   | <1.0                           | <1.0                               | <1.0                               | <1.0                               |          |  |  |

Notes:

1. Data prior to March 18, 2003 were obtained from Results of the Remedial Investigation for Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California, dated January 30, 2003, prepared by EnviroNet Consulting.

- 2. Confirmation sample collected due to detection of pentachlorophenol on September 16, 2002.
- 3. Sample also contained 280 mg/L of 2,3,4-trichlorophenol and 190 mg/L of 2,4,5-trichlorophenol.

#### Abbreviation:

< = target analyte was not detected at or above the laboratory reporting limit shown.

-- = not measured or sample not collected for analysis.



# **FIGURES**



S:\9300\9329\task\_22\04\_0920\_3q04\\_fig\_01.mxd








| Project No. |  |
|-------------|--|
| 9329        |  |







# APPENDIX A Field Records —Groundwater Monitoring Program

| DAILY FIEL                                                                | D REC                           | CORD      | DATE: Augu                | ist 30, 2   | 004     | PAGE 1            | of          |
|---------------------------------------------------------------------------|---------------------------------|-----------|---------------------------|-------------|---------|-------------------|-------------|
| Project No: 030275                                                        | 5.22                            |           | Project Name:S            | PI Arcata   | Sawmi   | 1                 |             |
| Location: <u>2593 New</u><br>Weather Conditions:<br>Activity: Groundwater | Navy Bas<br>OUCCO<br>Monitoring | Se Road A | arcata, Ca 95521          | Time        | on Job: | 8:20 AM<br>PM to  | : 4:36 PM   |
| PERSONNEL                                                                 | ON SITE                         |           | -                         |             |         |                   |             |
| Name                                                                      | 1                               |           | Compa                     | NA          |         | Time In           | Time Out    |
| Matt Hillyard                                                             |                                 |           | MFG                       |             |         | \$ 70             |             |
|                                                                           |                                 |           |                           |             |         | 12:00             | 4 30        |
|                                                                           |                                 |           | -                         |             |         |                   |             |
|                                                                           | •                               |           |                           |             |         |                   |             |
| VISITORS ON                                                               | SITE                            |           |                           | 34          |         |                   | 1           |
| Name                                                                      | i i                             |           | Company                   | Agency      |         | Time In           | Time Out    |
|                                                                           |                                 |           | 1. d                      |             |         |                   |             |
|                                                                           |                                 |           |                           |             |         |                   |             |
| DEBAGNAL                                                                  |                                 |           |                           |             |         |                   |             |
| PERSONAL S                                                                | AFETY                           |           |                           |             |         |                   |             |
| XX Protective Gloves                                                      |                                 | XX        | Hard Hat                  |             | т       | yvek Coveralls (W | //Y)        |
| Other Safety Fourinment (de                                               |                                 |           | Safety Goggles/Glasses    |             | 1       | /2 - Mask Respira | tor         |
| Monitoring Equipment:                                                     | Ultrameter                      | r         |                           |             | 3       |                   |             |
| Field Calibration:                                                        | , EC, T                         | DS        |                           | -           |         |                   |             |
| WASTE STOR                                                                | AGE IN                          | VENTO     | RY                        |             |         |                   |             |
| Container Type Number                                                     | Label                           |           | Description               | of Contents | and Oue | netite .          |             |
| 5-Gal 2                                                                   | Faded                           | 2dr       | uns @ Mu                  | -8          | ALLOR   | I da con a la     | und c.o.    |
| 57-Gall                                                                   | Faded                           | 1 dru     | in QMU-                   | -7          | Purio C | e laca            | Jan         |
| 55-6011                                                                   | Foded                           | diam      | @ MW-7                    | L. Mile man | 1 -     | alleauss          | 11          |
| 55-601 1.                                                                 | Facled                          | 1/3 dr    | non a Mh                  | 1-1         | Dura    | eldoron           | water       |
|                                                                           |                                 |           |                           |             | 1       | - / YE            |             |
|                                                                           |                                 |           |                           |             |         |                   |             |
| Number of empty dames                                                     | on Site:                        |           |                           |             |         |                   |             |
| Signature of Field Repres                                                 | sentative:                      |           | on or arums stored on Sit | e:          |         | 01                |             |
|                                                                           |                                 | Me        | at Hillyd                 |             |         | Date: 8           | 30/04       |
|                                                                           |                                 |           | U                         |             | 2<br>   |                   |             |
|                                                                           |                                 |           |                           | McC         | ulley,  | Frick & Gil       | man, Inc. I |

| TIME           | DESCRIPTION OF DAILY      | ACTIVITIES &                          | EVENTS                                |
|----------------|---------------------------|---------------------------------------|---------------------------------------|
| 8.20           | Aire @ site cl            | ect in                                |                                       |
| 0              |                           |                                       |                                       |
| 8:40           | NPAS-16 WL'S              | begin a S                             | 10-15 5                               |
| 13             |                           |                                       |                                       |
| 11:00          | Finish WL @ Sta           | 2494                                  |                                       |
|                | Calculate proge           | volumes                               |                                       |
| 11:15          | Lunch                     |                                       |                                       |
| 12:00          | Return to site            |                                       |                                       |
| 2:05           | Calibrate in Francet      | cr                                    | · · · · · · · · · · · · · · · · · · · |
|                | will only calibr          | ate conductivi                        | +1, TDS and                           |
|                | troubleshoot pH           | meter - will not                      | work                                  |
| 1.10           | begin Saupling Mu         | 1-8                                   |                                       |
| 4:20           | Finish MW-7, C            | lean np                               | <u>6</u>                              |
| 4:30           | Leave Site                |                                       |                                       |
|                |                           |                                       |                                       |
|                |                           |                                       |                                       |
| -              |                           |                                       | (a)                                   |
|                |                           |                                       |                                       |
|                |                           |                                       |                                       |
|                |                           | · · · · · · · · · · · · · · · · · · · |                                       |
|                |                           | 0                                     |                                       |
|                |                           | ł.                                    |                                       |
| COMMEN         | TS & CHANGES FROM         | WORK PLAN                             |                                       |
|                | a use of alt mot          | er                                    |                                       |
|                |                           |                                       |                                       |
|                |                           | •                                     |                                       |
| TIME           | TELEPHONE CONVERSA        | TION RECORD                           | Ω.                                    |
| 12:30          | Call Julie Mills about    | t altramptor problems                 | 0                                     |
| 1:05           | Crell Ross Steenson - pro | octed w/out us                        | t of pH sense                         |
|                |                           |                                       |                                       |
| Signature of I | Teld Representative: , /  |                                       | 140                                   |
| 8              | . Mato Hllyd              | McCulley, F                           | rick & Gilman, In                     |
|                |                           | -                                     |                                       |

v

.\*

| Project No         | . 03027     | 5.22 Projec                     | n Name: SPI Arca                       | ata Sawmill                                        |                                          | PAGE:          | 1ot1           |
|--------------------|-------------|---------------------------------|----------------------------------------|----------------------------------------------------|------------------------------------------|----------------|----------------|
| Weather C          | Conditions: | C                               | >001(95-                               |                                                    |                                          | 3              |                |
| Measuring          | Point of W  | ell (MP): Notch                 | or North                               | 1.5                                                |                                          |                |                |
| Moasurin           | Device:     | Envirotech L                    | TD, Waterline N                        | fodel 150                                          | 3                                        | 4              |                |
| Measuring          |             |                                 |                                        |                                                    |                                          |                |                |
| Observati          | ons / Comm  | ients:                          |                                        |                                                    |                                          |                |                |
| OATE<br>or<br>WELL | TIME '      | MP<br>ELEVATION<br>(1691, NGVD) | DEPTH TO<br>WATER<br>( feet below MP ) | CONVERSIONS or<br>CORRECTIONS TO<br>DEPTH TO WATER | WATER LEVEL<br>ELEVATION<br>(feet, NGVD) | REMARKS        | MEASURED<br>BY |
| MW-1               | 9:57        | 9.56                            | 4.55                                   |                                                    |                                          | 1              | M. Hillyard    |
| MW-2               | 9:54        | 9.49                            | 5.07                                   |                                                    |                                          |                |                |
| MW-3               | 10:07       | 11.14                           | 2.42                                   | -                                                  |                                          |                | 1.1.2          |
| MW-4               | 10:23       | 10.71                           | .37                                    |                                                    |                                          |                | 1.1            |
| MW-5               | 10:26       | 10.69                           | 0.71                                   |                                                    |                                          |                | 45.5           |
| MW-6               | 10:49       | 9.77                            | •0.99                                  |                                                    |                                          |                | I v .          |
| MW-7               | 1055        | 9.68                            | 0.84                                   |                                                    |                                          | 31             |                |
| MW-8               | 9:00        | 10.30                           | 0.94                                   |                                                    |                                          | 1 <sup>6</sup> |                |
| ,MW-9              | 9:12        | 9.86                            | 0.89                                   |                                                    |                                          | 7              |                |
| MW-10              | 9:24        | 9.80                            | (                                      |                                                    |                                          |                |                |
| MW-11              | 9:03.       | 10.26                           | 1.20                                   |                                                    |                                          | · ·            |                |
| MW-12              | 8.57        | 10.73 *                         | 1.13                                   |                                                    | (***                                     |                |                |
| MW-13D             | 9.90        | 9.84                            | 4.57                                   | -                                                  |                                          |                |                |
| MW-14              | 9:39        | 9.02                            | 2.48                                   | A                                                  | c •                                      |                |                |
| MW-15D             | 10:04       | 11.08                           | 5,83                                   | -                                                  |                                          |                | 54             |
| MW-16D             | 9:28        | 9.80                            | 4.13,                                  | -                                                  |                                          |                |                |
| MW-17              | 9:34        | 8.98                            | 1.21                                   |                                                    |                                          |                |                |
| MW-18              | 9:15        |                                 | 0,98                                   |                                                    |                                          | /              |                |
| MW-19D             | 0:20        | 11.00                           | 4.60                                   | -                                                  | <u>.</u>                                 |                |                |
| MW-20              | 10:52       |                                 | 2.70                                   |                                                    | 4                                        |                | 1              |
| MW-21              | 10:54       | 1                               | -4.23                                  |                                                    |                                          |                |                |
|                    |             | 2 A. S.                         |                                        |                                                    |                                          | (              | 14             |
| RR                 | 8:43        | 15.70                           | 15.17                                  | 2                                                  |                                          |                |                |
| RR                 | 11:00       | 15.70                           | 12.20                                  |                                                    |                                          |                |                |
| -                  |             |                                 |                                        |                                                    | 1 84. 1 C                                |                |                |
|                    |             |                                 |                                        |                                                    | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                |                |
| Measure            | d by:       | Matt Hillyard                   |                                        |                                                    | -                                        |                |                |

| Project N | o: 03027       | 5.22 Pro        | ject Nan     | ne: SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I Arcata S                   | awmill         |              | <u>a</u>                                                                                                        |          |           | Date 08/30/04                         |
|-----------|----------------|-----------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|--------------|-----------------------------------------------------------------------------------------------------------------|----------|-----------|---------------------------------------|
| Sampling  | Location (     | well ID, etc.): | MW           | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | Starting       | Water Le     | vel (ft. Bl                                                                                                     | MP):     | 5         | 5.07                                  |
| Sampled   | by. Mat        | t Hillyard      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | Total D        | epth (ft. Bl | MP):7                                                                                                           | .90      | _ Water   | r Column Height (ft.): 7.83           |
| Measurin  | g Point (MR    | ) of Well:      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | Casing         | Diameter     | (in. ID): 2                                                                                                     | -Inch    | _ Multip  | lication Factor: 0.163                |
| Screene   | d Interval (fi | BGL):           | 2.0          | 0-8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | Casing         | Volume (g    | jal.): <u>~4</u>                                                                                                | 6 2      | x:        | 3X4X                                  |
| Filter Pa | ck Interval (  | fLBGL):         | 1.5          | -9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                            | Water          | _evel (fLB   | MP) at En                                                                                                       | nd of Pu | irge:     | 5.13.                                 |
| Casing S  | tick-Up/Do     | wn (ft.):       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | Total D        | epth (ft. B  | MP) at Er                                                                                                       | nd of Pr | urge:     |                                       |
| QUA       | ITY AS         | SURAN           | CE           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                |              |                                                                                                                 |          |           | s <sup>2</sup> / <sup>2</sup>         |
| METHO     | OS (describ    | e):             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                |              | 96290 N                                                                                                         | 180      |           | · · · · · · · · · · · · · · · · · · · |
| Cleani    | ng Equipm      | nt Liquino      | ox dete      | rgent 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k distilled y                | water so       | lution fo    | ollowed                                                                                                         | l by tr  | iple ri   | nse w/ distilled water.               |
| Purgin    | ig:            | Disposabl       | e Teflo      | on Bail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | er                           |                | Samp         | oling:                                                                                                          | Dispo    | osable    | Tetion Bailer                         |
| Dispos    | sal of Disch   | arged Water     | : <u>· )</u> | 5-Gallo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on Drum                      |                |              |                                                                                                                 |          |           |                                       |
| Water     | Level En       | virotech L      | TD. W        | aterlin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Model 15                   | 50             | Ther         | nometer:                                                                                                        | Ultr     | amete     | r .                                   |
| pH Me     | eter:          | Ultram          | eter-        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                | Field        | Calibrati                                                                                                       | on:_P    | H4,7      | , 10                                  |
| Condu     | ctivity Mete   | er. Ultra       | meter        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                | Field        | Calibrati                                                                                                       | on:4     | 47, 20    | 70 µmhos                              |
| Other     | TDS            | Ultrameter      | r            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                | Field        | Calibrati                                                                                                       | ion:     | 300,1     | 1500 ppm                              |
| SAM       | PLING          | MEASU           | REME         | ENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                |              |                                                                                                                 |          |           |                                       |
| Date/     | Cumul.Vol.     | Purge           | Temp.        | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quality Date<br>Specific Con | a<br>nductance | App          | Turbid                                                                                                          |          | Intake    | Remarks '                             |
| Time      | (gal)          | Rate (gpm)      | (°C)         | рн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G Field Temp.                | @ 25 ° C.      | Color        | & Sedir                                                                                                         | nent     | (11. BMP) | ×                                     |
| 212       | Ø              |                 | 20,0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | 1203           | Clear        | Clear                                                                                                           | -        |           |                                       |
| 214       | 0.5.           | -               | 19.2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | 1220           | N'y doc      | ('eu                                                                                                            |          |           |                                       |
| 215       | 1.0            |                 | 'a' ·        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | 12:5           | li graf      | 5/12/10                                                                                                         | 3.       |           |                                       |
| 716       | 15             |                 | 191          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | 17:5           | 11           | N                                                                                                               |          |           | colo                                  |
|           |                |                 | *1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                |              | TIS=8                                                                                                           | 59%-     |           | Sarah C                               |
|           | -              |                 | 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                |              |                                                                                                                 | 5 XK 8   |           |                                       |
|           |                |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                |              |                                                                                                                 |          |           | ,                                     |
|           |                |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                | ٠.           |                                                                                                                 |          |           |                                       |
|           |                |                 | 14 :         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                            | 1              |              |                                                                                                                 |          |           | 21.<br>Vi                             |
|           |                |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | 1              |              | +                                                                                                               |          |           |                                       |
| CAR       |                |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                            | 1              |              |                                                                                                                 |          |           |                                       |
| SAN       | APLE IN        | VENTO           | nī           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                           |                | ac           | 2                                                                                                               | 8 6 1    |           |                                       |
| Water     | Level (ft. B   | MP) Before S    | Sampling     | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.2Re                       | covery %       | :8           | S                                                                                                               | Sample   | Intake [  | Depth (ft. BMP):                      |
| Time      | Volum          | e Compo         | sition (al   | ass, plas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tic) Quantit                 | y Filtratic    | n Prese      | prvation<br>ype)                                                                                                | Ana      | alysis    | (quality control sample, other        |
| 1218      | 125 m          | l Glass         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                            | N              | -            |                                                                                                                 | PCP      | /TCP      |                                       |
| 218       | 1 Qt           | Plastic         |              | 1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                            | N              | -            |                                                                                                                 | T        | DS        |                                       |
|           |                |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                |              |                                                                                                                 |          |           |                                       |
| 1         |                |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                |              |                                                                                                                 |          |           |                                       |
|           |                |                 |              | and the second se |                              |                |              | the second se |          |           |                                       |

| Project N     | o: 03027            | 5.22 Pm             | ect Nan       | e: SP           | I Arcata S             | Sawmill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                   |              |                             | Date 08/30/04                          |
|---------------|---------------------|---------------------|---------------|-----------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------------|-----------------------------|----------------------------------------|
| Samolin       | Location            | well ID. etc.):     | MW            | 7-6             |                        | Startin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g Water Le   | evel (ft. Bl      | MP):         | Ć                           | ).99                                   |
| Sampleo       | by. Mat             | t Hillyard          |               |                 |                        | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth (ft. B | MP): 7.           | 80           | Wate                        | r Column Height (ft.): 6.82            |
| Measuri       | na Point (M         | P) of Well:         |               | 9.77            |                        | Casin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g Diameter   | (in. ID): 2       | 2-Inch       | Multip                      | plication Factor: 0.163                |
| Screene       | d Interval (f       | LBGL):              | 2             | .0-8.0          |                        | Casin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g Volume (   | gal.): \.         | 2            | x: 7. 7                     | 2 3X 3 3 34X                           |
| Filter Pa     | ck Interval         | (ft.BGL):           | 1.            | 5-8.0           | •                      | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level (fLB   | MP) at Er         | nd of Pu     | urge:                       | 2.5                                    |
| Casing §      | Stick-Up/Do         | wn (ft.):           |               |                 |                        | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth (ft. E | BMP) at Er        | nd of P      | urge:                       |                                        |
| QUA           | LITY AS             | SURAN               | CE            |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2            |                   |              |                             | 5 205                                  |
| METHO         | DS (describ         | e):                 |               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                   |              |                             | •                                      |
| Clean         | ing Equipm          | ent_Liqui           | nox dete      | ergent &        | k distilled            | water sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ution foll   | owed by           | triple       | rinse                       | w/ distilled water                     |
| Purgir        | ngr. <u>D</u>       | isposable           | l eflon       | Bailer          | - Deum                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sam          | pling:1           | isposa       | able 1                      | effon Bailer                           |
| Dispo         | sal of Disch        | arged Water         | model         | d)              | n Drum                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                   |              |                             |                                        |
| Water         | Level En            | virotech L          | TD. W         | aterline        | e Model 1              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The          | mometer           | Ultr         | amete                       | T                                      |
| pH M          | eter:               | Ultram              | ster          |                 |                        | and the second se | Field        | Calibratio        | on:P         | H4,7                        | , 10                                   |
| Cond          | uctivity Met        | er:Ultra            | meter         |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Field        | d Calibratio      | on:4         | 47, 20                      | 70 μmhos                               |
| Other         | TDS                 | Ultrameter          |               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Field        | d Calibrati       | on:          | 300,                        | 1500 ppm                               |
| SAM           | PLING               | MEASU               | REME          | NTS             | 0                      | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · ·        |                   |              |                             |                                        |
| Date/<br>Time | Cumul.Vol.<br>(gal) | Purge<br>Rate (gpm) | Temp.<br>(°C) | pH              | Specific Co<br>(ganho) | nductane<br>s/cm}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Color        | Turbid<br>& Sedin | fity<br>nent | Intake<br>Depth<br>(IL BMP) | Remarks                                |
| 2.35          | 3                   |                     | 7.8           |                 |                        | 874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clear        | cipa              | 1            |                             |                                        |
| 237           | 1.0                 | 1                   | 17.6          |                 |                        | 388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Haray        | Slight            | Li +         |                             |                                        |
| 2.8           | 20                  |                     | 17.3.         |                 |                        | 886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | u            | (1                |              |                             | · · · · · · · · · · · · · · · · · · ·  |
| 240           | 3.0                 |                     | 17,2          |                 |                        | 873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NC.          | 3 t               |              |                             |                                        |
| 241           | 35                  |                     | 172           |                 |                        | 883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11           | 1/*               |              |                             | Sample                                 |
|               |                     |                     | 1/            |                 |                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 705=6             | 10ppm        |                             |                                        |
|               |                     |                     |               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                   |              |                             |                                        |
|               |                     |                     |               |                 |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   |              |                             |                                        |
|               |                     |                     |               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                   |              |                             |                                        |
| SAN           | APLE IN             | IVENTO              | RY            |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |                   |              |                             |                                        |
| Water         | Level (ft. B        | MP) Before S        | Sampling      | 1.              | 85 _R                  | ecovery %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : 87         | s                 | ample        | Intake [                    | Depth (ft. BMP):                       |
| Time          | Volum               | e Compo             | ellected      | i<br>Iss. plast | ic) Quanti             | Filtrati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on Pres      | ervation<br>voe)  | Ana          | alysis                      | Remarks<br>(quality control sample, ot |
| 244           | 125 m               | d Glass             | 10            |                 | 2                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | -                 | PCP          | P/TCP                       |                                        |
| 244           | 1 Qt                | Plast               | ic            |                 | 1                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | -                 | Γ            | DS                          |                                        |
|               |                     |                     |               |                 | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                   |              |                             |                                        |
|               |                     | 1                   |               |                 |                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   | -            |                             | 1.                                     |
| Chain         | of-Custody          | Record No 4         | 46287/4       | 16288           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |                   |              |                             |                                        |

| - I ant Max | 030275           | 22 Pro          | lect Nam   | e SPI A        | arcata Sa                | wmill            |              |                 |               |                       | Date 08/30/04                   |
|-------------|------------------|-----------------|------------|----------------|--------------------------|------------------|--------------|-----------------|---------------|-----------------------|---------------------------------|
| roject No.  | contion /w       | voll ID, etc.): | MW         | -7             | [                        | Starting         | Water Lev    | rei (ft. BMI    | P):           | O. 8                  | -4                              |
| ampling L   | Matt             | Hillyard        |            |                |                          | Total D          | eoth (ft. BM | (P): 7.88       | 8             | Water                 | Column Height (ft.): 7.04       |
| ampied by   | Din AID          | - A Malle       | 9.68       | 2              |                          | Casing           | Diameter (   | in. ID): 2-     | Inch          | Multipli              | cation Factor: 0.163            |
| leasunng    | Point (MP        | 01 44 64.       | 2 0-1      | 8.0            |                          | Casing           | Volume (n    | al): } ] 5      | 2 2)          | . 23                  | 03X 3454X                       |
| creened l   | nterval (ft.     | BGL):           | 1.5-       | 8.0 .          |                          | Water            | evel (ft Bl  | (P) at End      | of Pu         | rae:                  | -60                             |
| itter Pack  | Interval (n      | BGL):           | 1.5        | 0.0            |                          | Total D          | enth (ft Bk  | MP) at End      | d of Pu       | rae:                  |                                 |
| Casing Stic | ж-Up/Dow         | m (IC):         |            |                |                          | 1000 0           | op 11 (12 01 |                 |               |                       |                                 |
| QUALI       | TY AS            | SURAN           | CE         |                |                          |                  |              |                 |               |                       |                                 |
| AETHODS     | (describe        | ):<br>. Liquin  | ov deter   | gent & die     | stilled wat              | ter solut        | ion follow   | wed by tr       | iple r        | inse w/               | distilled water                 |
| Cleaning    | Dispos           | able Teflo      | n Bailer   | gent be un     | uncu wa                  | or solut         | Samo         | lina:           | Dispo         | sable T               | eflon Bailer                    |
| Purging:    | Dispos           | mod Water       | . 55       | -Gallon        | Drum                     |                  | Gamp         |                 |               |                       |                                 |
| Uisposal    | ENTS And         | icate make      | model 1    | d.):           |                          |                  |              |                 |               |                       |                                 |
| Water L     | evel: Env        | virotech L      | TD, W      | aterline N     | Aodel 15                 | 00               | Them         | nometer:        | Ultr          | ameter                |                                 |
| pH Mete     | эг               | Ultrame         | ter        |                |                          |                  | Fleld        | Calibratio      | n:pł          | 11,7,                 | 10-                             |
| Conduct     | tivity Mete      | rUltra          | meter      |                |                          |                  | Field        | Calibratio      | n: <u>1</u> 4 | $\frac{147, 20}{150}$ | 070 μmhos                       |
| Other:      | TDS              | Ultramete       | er         |                |                          |                  | Field        | Calibratio      | n: 30         | 00,150                | 0 ppm                           |
| SAMP        | LING             | MEASU           | REME       | NTS            |                          | е с.<br>         |              |                 |               |                       |                                 |
| Date P      | rgs Char         | Dumo            | Temp       | Water Qu<br>Sp | ality Data<br>acific Con | ductance         | App          | Turbidity Death |               | ntake                 | Remarks                         |
| Time        | (gal)            | Rate (gpm)      | (°C)       | pH 0           | (µmhos/<br>Field Temp.   | cm)<br>@ 25 ° C. | Color        | & Sedim         | ent           | Lepth<br>#LBMP)       |                                 |
| 401         | 0                |                 | 15.2       |                |                          | 729              | Yellon.      | doar            | -             |                       |                                 |
| 41.7        | 1                |                 | 146        |                | -                        | 816              | 1 Trend      | c brod          | 1             |                       |                                 |
| 105         | 2                |                 | 111-       |                |                          | 840              | -Jidy        | 15              |               |                       |                                 |
| 104         | ~                |                 | 175        |                |                          | 010<br>011       | 1            | 1 11            |               | -                     |                                 |
| 100         | 5                |                 | 14.4       |                |                          | 845              |              | 1               |               |                       |                                 |
| 407         | 35               |                 | 4.3        |                |                          | 842              | 11           | 1)              |               |                       | Samp 4                          |
|             |                  |                 |            |                |                          |                  |              | TIDE            | 580           |                       |                                 |
|             |                  |                 |            |                |                          |                  |              |                 | (1 41         |                       |                                 |
|             |                  |                 |            |                |                          |                  |              |                 |               |                       |                                 |
|             |                  |                 |            |                | _                        |                  |              |                 |               |                       |                                 |
|             |                  |                 |            |                |                          |                  |              |                 |               |                       |                                 |
| SAM         |                  | VENTO           | BY         |                |                          |                  |              |                 |               |                       |                                 |
| 0/ 111      | 1 testes 11 1    |                 | 0          | . 1.           | 48 00                    |                  | . 91         | S               | ample         | Intake D              | epth (ft. BMP):                 |
| water L     | .evel (n. B      | MP) Belore      | Collecte   | d              |                          | Filtret          | on Pres      | arvation        | an april      |                       | Remarks                         |
| Time        | Volum            | e Compo         | sition (gl | ass, plastic)  | Quantit                  | y (Y/N           | ) (†         | ype)            | Ana           | alysis                | (quality control sample, other) |
| 408         | 40% 125 ml Glass |                 |            |                |                          |                  | -            | -               | PCI           | P/TCP                 |                                 |
| 408         | 1 Qt             | Plast           | tic        | et.            | 1                        | N                |              | -               | T             | DS                    |                                 |
|             |                  |                 |            |                |                          |                  |              |                 |               | -                     |                                 |
| -           |                  |                 |            |                |                          | 1                |              |                 |               |                       | 1                               |

| miect No:   | 030275.2       | 2 Project Na     | ne: SPIA       | Arcata Sa   | wmill     |              |                  |               | Date_08/30/04                                                                                                   |
|-------------|----------------|------------------|----------------|-------------|-----------|--------------|------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
| molina Lo   | cation (well   | ID. etc.): MV    | V-8            |             | Starting  | Water Lev    | el (ft. BMP)     | : 0.90        | /                                                                                                               |
| ampled by   | Matt H         | illvard          |                |             | Total De  | opth (ft. BM | IP):7.90         | Water (       | Column Height (ft.): 6 96                                                                                       |
| anipiod by  | Point (MP) o   | f Well: 10.3     |                | 1.1         | Casing    | Diameter (i  | in. ID): 2-Ir    | ch Multipli   | cation Factor. 0.163                                                                                            |
| leasuning r | -Ontic (Mr ) O | 2.0-8.0          |                |             | Casing    | Volume (ga   | al.): 1.13       | 2X: 2.7       | 6 3x 339 4x                                                                                                     |
| creened in  |                | GU: 15-80        |                |             | WaterL    | evel (fLBM   | (P) at End o     | A Purge:      | 30                                                                                                              |
| Itter Pack  | Interval (ILD  | (#)-             |                |             | Total D   | epth (ft. BM | (P) at End       | of Purge:     |                                                                                                                 |
| asing Suc   | K-Oproown      |                  |                |             |           |              |                  |               | 1 C                                                                                                             |
| QUALI       | IY ASS         | URANCE           |                |             |           | -5           |                  |               |                                                                                                                 |
| ETHODS      | (describe):    | Liquinox de      | tergent & d    | listilled w | ater solu | tion follo   | wed by tr        | iple rinse w  | / distilled water                                                                                               |
| Creaning    | Disposal       | ole Teflon Bail  | er             |             |           | Sampl        | ling: D          | isposable T   | eflon Bailer                                                                                                    |
| Disposal    | of Discharr    | ed Water:        | 5-Gallon       | Drum        |           |              |                  | 1             |                                                                                                                 |
| NSTRUME     | ENTS (indica   | ate make, model, | Ld.):          |             |           | 1            | 1.12             |               |                                                                                                                 |
| Water Le    | wel: Envir     | otech LTD, V     | Vaterline N    | Model 15    | 0         | Them         | nometer:         | Ultrameter    | 10 111 111                                                                                                      |
| pH Mete     | r              | Ultrameter       |                |             |           | Field        | Calibration      | A47 207       | 10 - Nor Working "                                                                                              |
| Conduct     | ivity Meter.   | Ultrameter       |                |             |           | Field        | Calibration:     | 300 150       | 0 ppm                                                                                                           |
| Other:      | TDS UI         | trameter         | THE            |             |           | Field        | Calibration      | 500,150       | o ppm                                                                                                           |
| SAMP        | LING M         | EASUHEM          | ENIS           | allty Data  |           | A            |                  | 1. 1          |                                                                                                                 |
| Date/ Ca    | umud.Vol.      | Purge Temp       | i st           | ecific Con  | ductance  | Color        | Turbidity        | Depth         | Remarks                                                                                                         |
| Time        | (gal) R        | ate (gpm) (°C)   | pH 0           | Field Temp. | @ 25 ° C. | 000          | & Sedime         | nt (IL BMP)   |                                                                                                                 |
| 117         | 6              | 23.6             |                |             | 776       | CAPA-        | CPG              |               | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
| 124 0       | 7.5            | . 21.6           |                |             | 761       | 11-yella     | N t              |               |                                                                                                                 |
| 126         | 1. ()          | 213              |                |             | 756       | 11           | 3.3              |               |                                                                                                                 |
| 127         | 15             | 211              |                | t.          | 74-7      | 1.5          | 56.25            |               |                                                                                                                 |
| 1982        | 2.6            | 2.               |                |             | 757-      | U            | 11               |               |                                                                                                                 |
| 129         | 7.5            | 21.0             |                |             | 757       | fi           | 1                |               |                                                                                                                 |
| 130 -       | 3.0            | - 210            | >              |             | 757       | 1+gray       | 1 tow            |               |                                                                                                                 |
| 131         | 35             | 26               | 2 · ·          |             | 756       | 1.1          | XI               |               | Sample                                                                                                          |
| 1 23        | 201            |                  |                |             |           |              | TRETT            | en            | ρ                                                                                                               |
|             | 1              |                  |                |             | 1         | 1            |                  |               |                                                                                                                 |
| SAM         | PLE IN         | /ENTORY          |                | 0           |           | 9,-          |                  |               |                                                                                                                 |
| Water L     | evel (ft. BM   | P) Before Sampli | ng: <u>1.3</u> |             | ecovery % | 12           | Sa               | mple Intake D | Pepin (IT. BMP):                                                                                                |
| Time        | Volume         | Composition      | glass, plastic | ;) Quantit  | Filtrati  | on Prese     | ervation<br>ype) | Analysis      | (quality control sample, other                                                                                  |
| 35          | 125 ml         | Glass            |                | 2           | N         |              | - 1              | PCP/TCP       | 4                                                                                                               |
| 135         | 1 Qt           | * Plastic        | - 22           | 1           | N         |              | -                | TDS           |                                                                                                                 |
| 111         |                | 2 K              |                |             |           |              |                  |               |                                                                                                                 |
|             |                |                  |                |             |           | 1            |                  |               | N 19                                                                                                            |

i te

|              |                |                |             |                  | . V                    |                 |              |              |                |                                 |
|--------------|----------------|----------------|-------------|------------------|------------------------|-----------------|--------------|--------------|----------------|---------------------------------|
| GRO          | UND            | VATE           | R SA        | MPL              | ING R                  | ECC             | RD           | CALID        |                | PAGE: <u>1</u> of: <u>1</u>     |
|              |                |                |             |                  |                        |                 |              | SAMP         | LE NUMBER      | · IVI VV - 9                    |
| Project N    | lo: 03027      | 5.22 Pr        | oject Nam   | e: SPI           | Arcata Sa              | wmill           |              |              |                | Date 08/30/04                   |
| Samplin      | g Location (   | well ID, etc.) | MW          | -9               |                        | Startin         | g Water Le   | evel (ft. Bl | MP):           | 8-91                            |
| Samplex      | by. Mat        | t Hillyard     |             |                  |                        | Total D         | epth (ft. B  | MP): 7.      | 80 Wate        | r Column Height (ft.): 6 9/     |
| Aeasuri      | ng Point (Mf   | ) of Well:     | 9.86        | -                |                        | Casing          | Diameter     | (in. ID): 2  | 2-Inch Multi   | plication Factor: 0.163         |
| Screene      | d Interval (ft | .BGL):         | 2.0-8.0     | 00               |                        | Casing          | Volume (     | gal.):       | 3 2X: ? . (    | <u>4 3X 3.39 4X</u>             |
| Fliter Pa    | ick Interval ( | ft.BGL):       | 1.5-8.0     | 0 .              |                        | Water           | Level (fLB   | MP) at Er    | nd of Purge:   | .22                             |
| Casing       | Stick-Up/Dow   | wn (ft.):      |             |                  |                        | Total [         | Depth (ft. E | BMP) at E    | nd of Purge:   |                                 |
| QUA          | LITY AS        | SURAN          | ICE         |                  |                        |                 |              |              |                |                                 |
| <b>IETHO</b> | DS (describe   | e):            |             |                  |                        |                 |              | 202          | 2.2.2          | · · ·                           |
| Clean        | ing Equipme    | nt_Liquir      | 10x dete    | rgent & d        | listilled wa           | ter solu        | tion follo   | owed by      | triple rinse   | w/ distilled water              |
| Purgin       | ng: Dis        | posable Te     | tion Ba     | Collor           | Darum                  |                 | Sam          | pling:       | Disposabl      | e l'effon Bailer                |
| Dispo        | sal of Disch   | arged Water    | madal I     | -Gallon          | Drum                   |                 |              |              |                |                                 |
| Wate         | I evel En      | virotech L     | TD. W       | aterline l       | Model 15               | 0               | Ther         | mometer      | Ultramete      | er                              |
| DHM          | eter:          | Ultram         | eter        |                  |                        |                 | Field        | d Calibrati  | on: -pH 4, 7   | , 10                            |
| Cond         | uctivity Mete  | r. Ultra       | meter       |                  |                        |                 | Field        | 1 Calibrati  | on: 447, 20    | )70 µmhos                       |
| Other        | TDS U          | Лtrameter      | r .         |                  |                        |                 | Fiek         | d Calibrati  | ion: 300,1     | 500 ppm                         |
| SAM          | PLING I        | MEASU          | REME        | NTS              |                        |                 |              |              |                |                                 |
| Date/        | Purgs Cha      | Pume           | Temp        | Water Qu         | sality Data            | ductance        | API          | Turbi        | Intake         | Demade                          |
| Time         | (gal)          | Rate (gpm)     | (°C)        | pH 0             | (µmhos/<br>Field Temp. | cm)<br>@ 25 °C. | Color        | & Sedia      | ment (1L BMP)  | Hemanks                         |
| 48           | 6              |                | 21.7        |                  |                        | Bas             | Clear        | clea         |                |                                 |
| 50           | 1              |                | 206         |                  |                        | 876             | Harry        | 5/95         | 14             |                                 |
| (5/          | 2              |                | 20.0        |                  | (                      | 868             | 11           | (/           | /              |                                 |
| 153          | 3              |                | 20.0        |                  |                        | 867             | 11           | 17           |                |                                 |
| 54           | 34             |                | 19.8        |                  |                        | 857             | 1.0          |              |                | Sample                          |
|              |                |                |             |                  |                        |                 |              | TOSES        | 50 11-         | 1                               |
| -            |                |                |             |                  |                        |                 |              | 1            |                |                                 |
|              |                |                |             |                  |                        |                 |              |              |                |                                 |
|              |                |                |             |                  |                        |                 |              |              |                |                                 |
| SAN          | APLE IN        | VENTO          | RY          |                  |                        |                 |              |              |                |                                 |
| Water        | Level (ft. Bl  | MP) Before \$  | Sampling    | 1.22             | Rec                    | covery %        | . 95         | s            | ample Intake I | Depth (ft. BMP):                |
| Time         | Volume         | Bettles (      | sition (dia | l<br>les plastic | Quantity               | Filtratik       | on Pres      | ervation     | Analysis       | Remarks                         |
| 157          | 125 m          | 1 Glass        |             | oo, passed       | 2                      | N               |              | -            | PCP/TCP        | (quality control statistic, our |
| 157          | 1 Qt           | Plast          | ic          |                  | 1                      | N               |              | -            | TDS            |                                 |
|              | _              | -              |             |                  |                        | -               |              | .,           |                |                                 |
| a .          |                |                | 462871      | 16288            |                        | 1               |              |              | l'             |                                 |
| Chain-       | or-Custody     | Record No      | 1020712     | 10200            |                        |                 |              |              |                |                                 |
|              |                |                |             |                  |                        |                 |              | McCu         | lley, Fric     | k & Gilman, Inc.                |
|              |                | QW Sample Form | MACICAD     | Revised 9.8.0    | 5                      |                 |              |              |                |                                 |
| _            |                |                |             |                  |                        |                 |              | -            |                |                                 |

1

|            | 020275                | 22                  |               | CDI A                   | rooto C-   | 11/10/11        |              |                |              |                   | Det: 08/30/04               |
|------------|-----------------------|---------------------|---------------|-------------------------|------------|-----------------|--------------|----------------|--------------|-------------------|-----------------------------|
| Project No | 030275                | .22 Pro             | ject Nam      | •: <u>3FIA</u><br>MW-20 |            | Stortin         | WeterLe      |                | P).          |                   | 2.70                        |
| Sampling   | Location (we          | Hillword            |               | 111 20                  |            | Total D         | anth /ft Bl  | AP). 6.        | 50           | Water             | Column Height (#)-3.80      |
| Sampled    | by: Iviall            | -f Mall             |               |                         |            | Casing          | Diameter     | in IDI- 4-     | inch         | Multipli          | cation Factor .653          |
| Measuring  | g Point (MP)          | OT WOIL             |               |                         |            | Casing          | Volume (o    | al). 2         | 5 2)         | · 5               | 3X 7 5 4X                   |
| Screened   | Interval (ILE         |                     |               |                         |            | Water           | evel (ft Bl  | AP) at Enc     | d of Pu      | irde: 3           | 13                          |
| Cadag St   | k interval (it.       | ) (ft ):            |               |                         |            | Total D         | epth (ft. Bl | MP) at End     | d of Pu      | urge:             |                             |
| Casing of  |                       |                     | 05            |                         |            |                 |              |                |              |                   |                             |
| QUAL       | ITY ASS               | SURAN               | CE            |                         |            |                 | 1.1          |                |              |                   |                             |
| Cleanin    | S (describe)          | :<br>r Liquir       | nox dete      | rgent & dis             | tilled wa  | ter solu        | tion follo   | wed by t       | triple       | rinse w           | / distilled water.          |
| Purgina    | E Disp                | osable T            | eflon B       | arter                   |            |                 | Samp         | ling:          | Dispo        | sable T           | eflon Bailer                |
| Dispos     | al of Dischar         | ged Water           | · 5           | 5-Gallon I              | Drum       |                 |              |                |              |                   |                             |
| INSTRUM    | IENTS (india          | ate make,           | model, L      | 1):                     |            | 1.50            | 20           |                | 111          |                   |                             |
| Water      | Level: E              | nvirotech           | n LTD,        | Waterline               | Model      | 150             | Them         | nometer:_      | Ult          | rameter           | -10-                        |
| pH Me      | ter:                  | Ultram<br>Ultra     | ameter        |                         |            |                 | Field        | Calibratio     | n:           | 447 20            | 70 umhos                    |
| Condu      | ctivity Meter<br>TDS  | Ultramet            | er            |                         |            |                 | Field        | Calibratio     | n: 3         | 300,150           | 0 ppm                       |
| SAM        | PLING                 | IEASU               | REME          | NTS                     |            |                 | , ieid       | - Carlon Carlo |              |                   |                             |
| Post P     | urge Chare            | cteristics          | -             | Water Qua               | lity Data  | Inclased        | App          | earance        |              | Intake            |                             |
| Time       | Cumul.Vol.<br>(gal) f | Purge<br>Rate (gpm) | iemp.<br>(°C) | pH or                   | (µmhos/    | (m)<br>@ 25 ° C | Color        | & Sedim        | ty<br>ient   | Depth<br>(R. BMP) | Hemarks                     |
| 307        | 6)                    |                     | 214           |                         | Con Contes | 432             | Clear        | (lea)          | -            |                   |                             |
| 310        | 20                    |                     | 209           |                         |            | 188             | ligna        | Nou            | 14           |                   |                             |
| 312        | 41                    |                     | 200           |                         |            | 400             | 15 bra       | cloud          | 7            |                   |                             |
| 114        | 10                    |                     | 200           |                         |            | 400             | 11           | 11             | 7.           |                   |                             |
| 514        | 0.0                   |                     | 20.8          |                         |            | 105             |              |                | _            |                   |                             |
| 316        | 7.5                   |                     | 20.8          |                         |            | 496             | 17           | 1.11           |              |                   |                             |
|            |                       |                     |               |                         |            |                 |              | TDS=.          | 3.34<br>Pf 4 |                   |                             |
|            |                       |                     | 1             |                         |            |                 |              |                |              |                   |                             |
|            |                       |                     |               |                         |            |                 |              | 1              |              |                   |                             |
|            |                       |                     |               | -                       |            |                 |              | -              |              |                   | 8                           |
| 0.44       |                       |                     | DV            |                         |            |                 | 1            | 1              | ç            |                   |                             |
| SAN        | IFLE IN               | VENTO               |               | 315                     | 2 -        | -               | Ra           |                |              | Intelle D         |                             |
| Water      | Level (ft. Bh         | P) Before           | Sampling      | : <u> </u>              | /Re        | covery %        |              | St             | ample        | Intake D          | epun (IL DMP):              |
| Time       | Volume                | Compo               | sition (gl    | ass, plastic)           | Quantity   | (Y/N            | ) (t         | ype)           | An           | alysis            | (quality control sample, ot |
| 3(-        | 125 m                 | l Glas              | S             |                         | 4          | N               |              | -              | PC           | P/TCP             | MS/MSD                      |
| 21-        | 7 1 Qt                | Plas                | tic           | 21                      | 1          | N               |              | -              | 1            | ГDS               |                             |
|            |                       |                     |               |                         |            |                 |              |                |              |                   |                             |
|            |                       | 1                   | 1/007         | 46000445                | 200        | 1               |              |                |              |                   | 1                           |
|            | 1 Custoder F          | lacord No.          | 40287         | 40288/46                | 289        |                 | 1            |                |              |                   |                             |
| Chain-     | DI-Custody P          | 100010110           |               |                         |            |                 | 1            |                |              |                   |                             |

| Project N     | lo: 0302             | 75.22 Pr            | oject Nan     | ne: SPI          | Arcata                             | Sawmill           |             |                   |              |                             | Date_08/30/04          |
|---------------|----------------------|---------------------|---------------|------------------|------------------------------------|-------------------|-------------|-------------------|--------------|-----------------------------|------------------------|
| Sampling      | g Location (         | well ID, etc.):     | <u>MV</u>     | V-21             |                                    | Starting          | Water Le    | evel (ft. B       | MP):         | 9                           | .23                    |
| Sampleo       | by: Ma               | tt Hillyard         |               |                  |                                    | Total D           | epth (ft. B | MP): 10           | .08          | _ Wate                      | r Column Height (ft.): |
| Measurin      | ng Point (M          | P) of Well:         |               |                  |                                    | Casing            | Diameter    | (In. ID): 1       | /2-inc       | h Multip                    | blication Factor0102   |
| Screene       | d Interval (f        | LBGL):              |               |                  |                                    | Casing            | Volume (    | gal.):(           | 26 2         | X: \                        | <u>Z 3X 18 4X</u>      |
| Filter Pa     | ck Interval          | (ft_BGL):           |               |                  |                                    | Water I           | Level (ft.B | MP) at E          | nd of Pu     | ntāe:                       | 4.49                   |
| Casing S      | Stick-Up/Do          | wn (ft.):           |               |                  |                                    | Total D           | epth (ft. B | MP) at E          | nd of P      | urge:                       |                        |
| QUA           | LITY AS              | SURAN               | CE            |                  |                                    | 2                 | a/          |                   |              |                             | 200                    |
| METHO         | DS (describ          | е);                 |               |                  |                                    |                   |             |                   |              |                             |                        |
| Clean         | ing Equipm           | ent Liqu            | inox de       | tergent &        | distilled                          | water sol         | ution fol   | lowed b           | oy tripl     | e rinse                     | w/ distilled water.    |
| Purgir        | ng:_Peris            | taltic pum          | p w/ tef      | lon tubi         | ng                                 |                   | Sam         | pling:P           | erista       | ltic pu                     | mp w/ teflon tubing    |
| Dispo         | sal of Disch         | arged Water         | :5            | 5-Gallor         | 1 Drum                             |                   |             |                   |              |                             |                        |
| INSTRU        | MENTS (in            | dicate make,        | model, L      | d.):<br>Motorlin | Madal                              | 150               |             |                   | 111.         |                             |                        |
| Water         | Level: E             | Littech             | LID,          | w aterlin        | e wodel                            | 150               | Then        | mometer:          | UIL          | ramete                      |                        |
| pH M          | eter:                | Ultram              | ameter        |                  |                                    |                   | Fleid       | Calibrati         | ion:         | 47 20                       | 70 umbos               |
| Cond          | TDS III              | trameter            | anotor        |                  |                                    |                   | Field       | Calibrati         | ion:         | 00 15                       | 00 ppm                 |
| SAM           | PI ING               | MEAGIN              | REME          | NTO              |                                    |                   | Flek        | Calibrat          | ion:         | ,00,15                      | oo ppin                |
| GAIN          | Purgs Cha            | recteristics        |               | Water Q          | sality Det                         | . 1               | App         |                   |              |                             |                        |
| Date/<br>Time | Curnul.Vol.<br>(gal) | Purge<br>Rate (gpm) | Temp.<br>(°C) | pH 6             | pecific Ce<br>(µmhon<br>Field Temp | nductance<br>/cm) | Color       | Turbik<br>& Sedia | dity<br>ment | Intake<br>Depth<br>(IL BMP) | Remarks                |
| 337           | D                    |                     | 17.0          |                  |                                    | 1085              | dear        | de                | ~            |                             |                        |
| 374           | 0.05                 |                     | 16.5          |                  |                                    | 956               | 11          | 1                 |              |                             |                        |
| 340           | 0.10                 |                     | 16.2          |                  |                                    | 928               |             | 0.00              |              |                             | =                      |
| 341           | 0.20                 |                     | 161           |                  |                                    | 942               |             |                   |              |                             |                        |
| 342           | 0.7                  |                     | 16.1.         |                  |                                    | 9-6               | 206         | , 11              | r            |                             |                        |
| 394           | 0.4                  |                     | 11.1          |                  |                                    | 956               | lı          | 11                |              |                             |                        |
| 346           | 0.47                 |                     | 16-1          |                  |                                    | 957               | 11          | T05=6             | 60 alla      |                             | Squille                |
|               |                      |                     |               |                  |                                    |                   |             |                   | 0 11 4       |                             |                        |
|               |                      |                     |               |                  |                                    |                   |             |                   |              |                             | ( V )                  |
| SAN           | IPLE IN              | IVENTO              | RY            | 1                |                                    |                   |             |                   | _            |                             | 2                      |
| Water         | Level (ft. B         | MP) Before S        | Sampling      | . 1,0            | <u> </u> 5R                        | ecovery %:        | 96          | S                 | Sample       | Intake D                    | epth (ft. BMP):        |
| Time          | Volum                |                     | sition (de    | ass plactio      | Quanti                             | Filtratio         | n Prese     | ervation          | Ana          | lysis                       | Remarks                |
| 347           | 125 m                | I Glass             | CHANNI (Ble   | and, pressie     | 4                                  | N                 | (0)         | -<br>(he)         | PCP          | TCP                         | Duplicate MW-          |
| 34            | 7 1 Ot               | Plasti              | С             | -                | 1                                  | N                 |             | -                 | T            | DS                          | Duplicate Intr-        |
|               |                      | TRIST               |               |                  | 1                                  | IN                |             | -                 |              | 20                          |                        |
|               |                      |                     |               |                  | 1                                  |                   |             |                   |              |                             | ł                      |
| Chain-        | of-Custody           | Record No           | 46287/        | 46288/4          | 6289                               |                   |             |                   |              |                             |                        |
|               |                      |                     |               |                  |                                    |                   |             | McCu              | llev.        | Frick                       | & Gilman, Inc.         |
|               |                      |                     |               |                  |                                    |                   |             |                   |              |                             |                        |

| MFG, INC.                                                                                                                                                                                                                                                                          |                                                                                                            | CHA                                | AIN                                                                  | -01                                                             | C                                              | UST                                                                   | OD                                                              | YR                                                 | EC                                                  | :01                                         | RD /                                                          | AND R                                                                                                 | EQI                                                                         | JES                                                | ST                   | FOR            | No. 46                     | YSIS<br>287       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|----------------------|----------------|----------------------------|-------------------|
| CA - Irvine         CA - Irvine           Int Way         17770 Cartwinght Rd.         180           \$95521-6741         Ste. 500         San           \$126.5430-FAX (707) 826-8437         Tel (949) 253-2951         Fax           Fax (949) 253-2954         Fax         Fax | San Francisco<br>Howard St., Ste. 2<br>Francisco, CA 94<br>415) 495-7110<br>415) 495-7107                  | 200 49<br>105 Sh<br>Bo<br>Te<br>Fa | ) - Boul<br>00 Pear<br>e: 300W<br>pulder, C<br>I (303) 4<br>ix (303) | der<br>1 East C<br>20 8030<br>147-1823<br>447-183               | r.   <br>  <br>  <br>  <br>  <br>  <br>        | D - Osburn<br>PO Box 30<br>Wallace, ID<br>Tel (208) 55<br>Fax (208) 5 | 83873<br>66-6811<br>56-7271                                     | D M<br>P<br>M<br>Ti<br>F                           | T - Mis<br>O Box<br>lissoula<br>el (406)<br>ax (406 | soula<br>7158<br>, MT 5<br>728-4<br>) 728-4 | (<br>9807<br>500<br>698                                       | NJ - Edison<br>1090 King Georg<br>Ste. 703<br>Edison, NJ 0883<br>Tel (732) 738-57<br>Fax (732) 738-57 | es Post Ri<br>7<br>)7<br>11                                                 | d. 🗙                                               | - <u>C</u>           |                | 11 x<br>11 - 5+<br>1, CA 9 | 2"44              |
| □ OR - Portland □PA - Pittsburgh □TX<br>1020 SW Taylor St 800 Vinial St, Bidg, A 48<br>Ste, 530 Prtsburgh, PA 15212 Bil<br>Portland, OR 97205 Tel (412) 321-2278 Au<br>Tel (503) 228-8616 Fax (412) 321-2283 Te<br>Fax (503) 228-8631 Fa                                           | - Austri<br>07 Spicewood Spi<br>1g. IV, 1* Floor<br>stin, TX 78759<br>1 (512) 338-1667<br>x (512) 338-1331 | nings Ad                           | 12<br>12<br>Str<br>Ho<br>Te<br>Fa                                    | - Houst<br>337 Jon<br>2 230<br>uston, T<br>(281) 8<br>x (281) 1 | on<br>25 Rd.<br>X 77070<br>90-5068<br>890-5044 | □ TD<br>32<br>Pro<br>Te<br>Fa                                         | ( - Port L<br>20 East N<br>ort Lavac<br>I (361) 5<br>ax (361) 5 | avaca<br>Iain<br>a, TX 7797<br>52-8839<br>553-6115 | 9                                                   | UTX<br>453<br>Tex<br>Tel<br>Fax             | - Texarkan<br>2 Summe<br>arkana, T)<br>(903) 794<br>(903) 794 | a DW<br>hill Rd. 19<br>(75503 St<br>0625 Ly<br>-0626 Te<br>Fa                                         | A - Seattle<br>203 36th<br>e. 100<br>mnwood, V<br>e (425) 92<br>ax (425) 92 | Ave. W.<br>Ave. W.<br>NA 9803<br>1-4000<br>21-4040 | <i>(</i> :<br>36     | s ()(,         | 3-4107                     | 7                 |
| PROJECT NO: 030275.72<br>SAMPLER (Signature): Mathemathemathemathemathemathemathemathem                                                                                                                                                                                            | F<br>F<br>2 r                                                                                              | PROJEC                             | CA                                                                   | AME:<br>PF                                                      | <u>S</u><br>OJEC                               | CT MAI                                                                | <u>A</u><br>NAGE<br>NO:                                         | r c= <sup>1</sup> c<br>ER:                         | R (                                                 | 2 L<br>5 S                                  | V<br>Her                                                      | 1300 +<br>DESTIN                                                                                      |                                                                             | )<br>N: _                                          | - F<br>- C<br>- A '/ | PAGE:<br>DATE: | 1 OF<br>8/5/               | - <u>z</u><br>/04 |
|                                                                                                                                                                                                                                                                                    | CAM                                                                                                        |                                    |                                                                      |                                                                 |                                                |                                                                       |                                                                 |                                                    |                                                     |                                             |                                                               |                                                                                                       | AN                                                                          | ALYS                                               | SIS RE               | EQUES          | т                          |                   |
|                                                                                                                                                                                                                                                                                    | SAMI                                                                                                       |                                    |                                                                      | P                                                               | reserv                                         | ation                                                                 |                                                                 | Cor                                                | ntaine                                              | ers                                         | Cons                                                          | tituents/Metho                                                                                        | d H                                                                         | landli                                             | ing                  |                | Remarks                    | 3                 |
| Field<br>Sample<br>Identification                                                                                                                                                                                                                                                  | DATE                                                                                                       | TIME                               | Matrix*                                                              | HCI                                                             | H <sub>2</sub> SO <sub>4</sub>                 | COLD                                                                  | FILTRATION"                                                     | VOLUME<br>(ml/oz)                                  | TYPE*                                               | NO.                                         | PCP/TCP                                                       |                                                                                                       | НОГД                                                                        | RUSH                                               | K STANDARD           | 26.0           | 1510                       | ,                 |
| MU-02-200415                                                                                                                                                                                                                                                                       | 5/30                                                                                                       | 1418                               | 14                                                                   |                                                                 |                                                | X                                                                     | u                                                               | 125m                                               | 6                                                   | 2                                           | X                                                             |                                                                                                       | _                                                                           | +-                                                 | 1                    | rc1            | / ICF                      | $\gamma$          |
| MW-06-200408                                                                                                                                                                                                                                                                       |                                                                                                            | 1444                               | 1                                                                    |                                                                 |                                                | 111                                                                   |                                                                 | -                                                  | 11                                                  | 11                                          |                                                               |                                                                                                       |                                                                             | -                                                  | $\left  \right $     | lanui          | Jian pul                   | mithi             |
| MW-07-200408                                                                                                                                                                                                                                                                       |                                                                                                            | 1608                               |                                                                      | _                                                               | -                                              | 111                                                                   |                                                                 | -                                                  | ++                                                  | 11                                          | + +                                                           |                                                                                                       |                                                                             | +                                                  | H                    |                |                            |                   |
| MW-08-200408                                                                                                                                                                                                                                                                       |                                                                                                            | 1335                               | Ш                                                                    | _                                                               | _                                              |                                                                       |                                                                 | -                                                  | ++                                                  | 11                                          |                                                               |                                                                                                       | +                                                                           | +                                                  |                      |                |                            |                   |
| MW-09-200415'                                                                                                                                                                                                                                                                      | 1                                                                                                          | 1357                               |                                                                      | _                                                               | -                                              |                                                                       |                                                                 | -                                                  | ++-                                                 | #                                           | +                                                             |                                                                                                       |                                                                             | +                                                  |                      |                |                            |                   |
| NW-20-200408                                                                                                                                                                                                                                                                       |                                                                                                            | 1517                               |                                                                      | -                                                               | +-                                             | 1.                                                                    | 1/                                                              |                                                    | 11                                                  | 11                                          | K/I                                                           |                                                                                                       |                                                                             | +                                                  | V                    |                |                            |                   |
| MW-21-700408                                                                                                                                                                                                                                                                       | V                                                                                                          | 1547                               | V AF THE T                                                           | 10000                                                           | TOTAL                                          |                                                                       | OF CONT                                                         | AINERS                                             | 1                                                   | 14                                          | LABOR                                                         | ATORY COMMEN                                                                                          | TS/COND                                                                     |                                                    | F SAMP               | PLES           | Cooler Ten                 | np:               |
| A STATE OF A                                                                                                                                                                    |                                                                                                            |                                    |                                                                      |                                                                 |                                                |                                                                       |                                                                 |                                                    |                                                     | 11                                          |                                                               |                                                                                                       | F                                                                           | RECE                                               | VEDE                 | 3Y:            |                            | <i></i>           |
| RELINQUISHED                                                                                                                                                                                                                                                                       | BY:                                                                                                        |                                    |                                                                      |                                                                 | 4                                              | -                                                                     |                                                                 | TIME                                               |                                                     | -                                           | SIGN                                                          |                                                                                                       | I P                                                                         | RINT                                               | ED NA                | ME             | COM                        | PANY              |
| SIGNATURE PRINTED NAM                                                                                                                                                                                                                                                              | yan!                                                                                                       | m F (                              | 2                                                                    |                                                                 | 4                                              | /zi/                                                                  | 4                                                               | 22                                                 | -<br>                                               | E                                           | En.                                                           | whysi                                                                                                 | Si                                                                          | کم                                                 | The,                 | rlas           | Alph                       | A                 |
|                                                                                                                                                                                                                                                                                    |                                                                                                            |                                    |                                                                      |                                                                 | +                                              |                                                                       |                                                                 |                                                    | -(-                                                 | Y                                           |                                                               | 10                                                                                                    | -                                                                           |                                                    |                      |                | LABOF                      | IATORY            |
| • <u>KEY</u> Matrix AG                                                                                                                                                                                                                                                             | - aqueous - NA + nonaq                                                                                     | peous SD soi                       | St - sla<br>DISTRIE                                                  | ige Р-ре<br>ВИПОN:                                              | troleum A-<br>PINK Fiek                        | - air OT - coth<br>1 Copy - YELI                                      | er Conta<br>LOW Labora                                          | ainers P - pl<br>Hory Copy                         | ester G -<br>WHITE R                                | glass 7<br>eturn to C                       | - tellon - 8 - 1<br>Inginator                                 | trass 07-other Fil                                                                                    | vanor F-fi                                                                  | itered U                                           | unfilterad           |                | 1                          |                   |

.

| MEG. INC.                                                                                                                                                                                                                       |                                                                      |                                                                               | CHA                                | IN                                                               | -0                                                              | F-(                                        | CL                           | IST                                                        | 101                                        | DY                                  | RE                               | C                                               | OF                                       | RD                                      | AN                                            | ١D                                                         | RE                           | QU                                      | IE:                       | 51       |                  | COC    | No.       | 462                | 313             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|------------------------------|------------------------------------------------------------|--------------------------------------------|-------------------------------------|----------------------------------|-------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------------|------------------------------------------------------------|------------------------------|-----------------------------------------|---------------------------|----------|------------------|--------|-----------|--------------------|-----------------|
| Office         CA - Irvine           Nay         17770 Cartwrigh           S21-6741         Irvine: CA 92614           26-8430- FAX (707) 826-8437         Tel (949) 253-29           Fax (949) 253-29         Fax (949) 253-29 | CA - San<br>180 Howa<br>San Franc<br>Tel (415)<br>51 Fax (415)<br>54 | Francisco<br>ind St., Ste. 20<br>(isco, CA 9410<br>495-7110<br>495-7107       | 00 49<br>05 Ste<br>Bo<br>Tel<br>Fa | ) - Boul<br>60 Pear<br>a. 300W<br>ulder, (<br>1 (303)<br>x (303) | der<br>I East (<br>/<br>CO 803<br>447-18<br>447-18              | Cir.<br>01<br>23<br>136                    | □ID<br>PO<br>Wa<br>Tel<br>Fa | - Osburn<br>) Box 30<br>allace, IC<br>(208) 5<br>x (208) 5 | n<br>)<br>0 83873<br>556-681<br>556-727    | 3<br>1<br>71                        | PO<br>PO<br>Miss<br>Tel (<br>Fax | - Missi<br>Box 71<br>soula,<br>(406) 7<br>(406) | ouia<br>158<br>MT 59<br>728-46<br>728-46 | 807<br>X0<br>i96<br>Texarka             | □ NJ -<br>1090<br>Ste<br>Edis<br>Tel (<br>Fax | Edisor<br>0 King 1<br>703<br>son, NJ<br>(732) 7<br>(732) 1 | 08837<br>38-5707<br>38-5711  | Post Rd                                 | 2                         | * (<br>  | 21)<br>21)<br>Da | le lau | lix<br>dd | 1.5+<br>1+9<br>410 | 12°4/10<br>4612 |
| □ OR - Portland<br>1020 SW Taylor St<br>Ste 530<br>Portland, OR 97205<br>Tel (503) 228-8616<br>Fax (503) 228-8631<br>□ PA - Pittsburgh<br>800 Vinial St, 8k<br>Pittsburgh<br>Fat (412) 321-22<br>Fax (412) 321-22               | tg A 4807 Sr<br>212 Bidg IV<br>78 Austin,<br>183 Tel (512<br>Fax (51 | stin<br>picewood Sprir<br>7 1º Floor<br>7 78759<br>2) 338-1667<br>2) 338-1331 | ngs Rd.                            | 11<br>12<br>St<br>Hi<br>Te<br>Fe                                 | ( - Hous<br>337 Jo<br>e. 230<br>ouston,<br>el (281)<br>ax (281) | ston<br>nes Ro<br>TX 77<br>890-5(<br>890-5 | 1.<br>070<br>068<br>6044     | 3<br>P<br>T<br>F                                           | 20 Eas<br>Port Law<br>Tel (361<br>Fax (361 | Mair<br>raca, T<br>) 552-<br>1) 553 | 1<br>TX 77979<br>8839<br>I-6115  |                                                 | 4532<br>Texa<br>Tel (<br>Fax             | Summ<br>rkana, 1<br>903) 79<br>(903) 79 | emiii H<br>TX 755<br>4-0625<br>94-0629        | 6<br>6                                                     | Ste.<br>Lyni<br>Tel I<br>Fax | 100<br>1wood, V<br>425) 921<br>(425) 92 | /A 980<br>-4000<br>1-4040 | 136<br>D |                  | - v (; | 1         | 1                  | 1               |
| 07.77                                                                                                                                                                                                                           | = 77                                                                 | D                                                                             |                                    | TN                                                               | AME                                                             |                                            | 547                          | E A                                                        | tra                                        | chi                                 | · 6                              | U                                               | 1                                        | 120                                     | +0                                            | r, 1                                                       | 4                            |                                         |                           |          | P                | AGE:   | 21-       | _ OF:              | 4               |
| PROJECT NO: 05027                                                                                                                                                                                                               | HOIL                                                                 | <u>79</u>                                                                     | HUJEC                              | 21.14                                                            | P                                                               | RO                                         | JEC                          | Т МА                                                       | ANAC                                       | GEF                                 | 7: R                             | _05                                             | 5                                        | 51                                      | ft                                            | nsi                                                        | on                           |                                         |                           | _        | D<br>4 J         | ATE:   | 2/        | \$1/0              |                 |
| SAMPLER (Signature):                                                                                                                                                                                                            | ac IFIL                                                              |                                                                               |                                    | CA                                                               | ARRI                                                            | ER/                                        | WA                           | YBIL                                                       | LNC                                        | ): _                                | ~                                |                                                 |                                          |                                         |                                               | DE                                                         | STIN                         | ATIO                                    | 1:                        | /        | - 1              | 144    |           |                    |                 |
| METHOD OF SHIPMENT.                                                                                                                                                                                                             | ( ) ( )                                                              |                                                                               |                                    |                                                                  | _                                                               |                                            |                              |                                                            |                                            | _                                   |                                  | _                                               |                                          |                                         |                                               |                                                            |                              | ۵N                                      | ALY                       | SIS      | RE               | QUES   | т         |                    |                 |
|                                                                                                                                                                                                                                 |                                                                      | SAMP                                                                          | PLES                               |                                                                  |                                                                 |                                            |                              |                                                            |                                            |                                     |                                  |                                                 | _                                        |                                         |                                               |                                                            | d-ib or                      |                                         | land                      | ling     | , [              |        | Re        | emarks             |                 |
|                                                                                                                                                                                                                                 |                                                                      | Sa                                                                            | ample                              |                                                                  | i i                                                             | Pres                                       | erva                         | tion                                                       |                                            |                                     | Cont                             | taine                                           | ers                                      | Cor                                     | nstitue                                       | ents/M                                                     | Aethod                       |                                         |                           | T        | ,                |        |           |                    |                 |
| Field                                                                                                                                                                                                                           |                                                                      |                                                                               |                                    | atrix*                                                           | łCI                                                             | 03                                         | SO4                          | D                                                          |                                            | LTRATION-                           | )LUME                            | /PE*                                            | Ö                                        | 1)-CP                                   | 15/mSD                                        |                                                            |                              | HOLD                                    | RUSH                      |          | STANDARD         |        |           |                    |                 |
| Identification                                                                                                                                                                                                                  |                                                                      | DATE                                                                          | TIME                               | Σ                                                                | -                                                               | Ĭ                                          | I                            | ö                                                          |                                            | Ē                                   | S E                              | F                                               | Z                                        |                                         | 2                                             |                                                            | -                            | +                                       | +                         |          | 2                | Pin    | TO        | 4.                 |                 |
| MIN-Y - Scici                                                                                                                                                                                                                   | 4125                                                                 | 5/50                                                                          | -                                  | 14                                                               |                                                                 |                                            |                              | +                                                          |                                            | u                                   | 125.001                          | 6                                               | Z                                        | ×                                       | ~                                             |                                                            | +                            | +                                       | +                         | +        |                  |        | Î.        | 10110              | and las         |
| 111 - 20 - 2104                                                                                                                                                                                                                 | 08                                                                   | 8/30                                                                          | 1=17                               | 14.                                                              |                                                                 |                                            |                              | ×                                                          |                                            | u                                   | 175 2                            | 6                                               | 2                                        |                                         | 2                                             |                                                            | -                            | +                                       | +                         | +        | -                | ( and  | 2 21      | 101                | 114-1-5         |
| 70100                                                                                                                                                                                                                           |                                                                      | 1                                                                             |                                    |                                                                  |                                                                 |                                            |                              |                                                            |                                            |                                     |                                  | -                                               | -                                        |                                         | -                                             |                                                            | +                            | +                                       | +                         | +        | -                |        |           |                    | 4.1             |
|                                                                                                                                                                                                                                 |                                                                      |                                                                               |                                    |                                                                  |                                                                 |                                            |                              |                                                            |                                            |                                     |                                  |                                                 | -                                        | -                                       | -                                             | -                                                          | -+                           | +                                       | +                         | +        | -                |        |           |                    |                 |
|                                                                                                                                                                                                                                 |                                                                      |                                                                               |                                    |                                                                  |                                                                 |                                            |                              |                                                            |                                            |                                     |                                  | -                                               | -                                        | -                                       | -                                             | -                                                          | $\vdash$                     | +                                       | +                         | +        | -                |        |           |                    |                 |
|                                                                                                                                                                                                                                 |                                                                      |                                                                               |                                    |                                                                  |                                                                 |                                            |                              |                                                            |                                            |                                     | _                                | -                                               | -                                        | $\vdash$                                | -                                             | -                                                          | $\vdash$                     | +                                       | +                         | +        | -                |        |           |                    |                 |
|                                                                                                                                                                                                                                 |                                                                      |                                                                               |                                    |                                                                  |                                                                 |                                            |                              |                                                            |                                            |                                     |                                  |                                                 |                                          | 1.48                                    | OPATO                                         | DBY CO                                                     | MMEN                         | S/CONI                                  | DITION                    | I OF 1   | SAM              | PLES   | Coc       | ler Tem            | 10:             |
|                                                                                                                                                                                                                                 |                                                                      | HE LAND                                                                       | 4                                  |                                                                  |                                                                 | TO                                         | DTAL N                       | NUMBER                                                     | R OF C                                     | ONTA                                | INEHS                            |                                                 | 4                                        | -                                       | UTING                                         |                                                            |                              | _                                       | DEC                       | EIV      | ED I             | av.    |           |                    |                 |
| REL                                                                                                                                                                                                                             | INQUISHED BY                                                         | Y:                                                                            |                                    |                                                                  |                                                                 |                                            |                              |                                                            |                                            |                                     |                                  |                                                 |                                          |                                         |                                               |                                                            |                              | 1                                       | DDIN                      | ITE      | DNA              | ME     |           | COMF               | PANY            |
| SIGNATURE                                                                                                                                                                                                                       | RINTED NAME                                                          |                                                                               | CO                                 | MPAN                                                             | IY                                                              |                                            |                              | DATE                                                       | E                                          |                                     | TIME                             |                                                 | t                                        | SI                                      | GNA                                           | TOHE                                                       | DA                           | 1                                       | i cuis                    | _        |                  | 1      |           |                    | 0               |
|                                                                                                                                                                                                                                 |                                                                      |                                                                               | MI                                 | ¢,                                                               |                                                                 |                                            | 81                           | 13/                                                        | 04                                         | 1                                   | 220                              | 2                                               | K                                        | 012                                     | THE                                           | pp                                                         | a)                           | PE                                      | In                        | 51       | NAJ              | Naz    | 14        | tiph               | 14              |
| P Tess 7 3                                                                                                                                                                                                                      |                                                                      |                                                                               |                                    |                                                                  |                                                                 |                                            |                              | 1                                                          |                                            |                                     | 1                                | 1                                               | 1                                        |                                         |                                               |                                                            |                              | +                                       |                           |          |                  |        |           | LABOR              | RATORY          |
|                                                                                                                                                                                                                                 |                                                                      |                                                                               |                                    |                                                                  |                                                                 |                                            |                              |                                                            |                                            |                                     |                                  | 6                                               | 1                                        |                                         |                                               |                                                            |                              |                                         |                           |          |                  |        |           |                    |                 |
|                                                                                                                                                                                                                                 |                                                                      | 1                                                                             |                                    |                                                                  |                                                                 |                                            | 1.                           |                                                            |                                            |                                     |                                  | -                                               | _                                        | _                                       | _                                             |                                                            |                              |                                         |                           |          |                  | 8      |           |                    |                 |

....

| MFG, INC.                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | CH/                                     |                                                                  | 1-0                                                            | F-(                                                 | CL                           | JST                                                                 | DD.                                                 | YR                                             | EC                                                     | 0                                              | RD                                                     | AND RE                                                                                                                               | QU                                                               | IE:                       | 51        | COC     | ANAL      | 238     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|--------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|-----------|---------|-----------|---------|
| Office         CA - Irvine         CA           # Way         17770 Cartwright Rd.         180           \$5521-6741         Trvine. CA 92614         Sat           \$26-8430- FAX (707) \$26-8437         Tel (949) 253-2951         Fax           Fax (949) 253-2954         Fax         Fax                                                                       | - San Francisco<br>Howard St., Ste.<br>Francisco, CA 94<br>(415) 495-7107<br>(415) 495-7107                     | 200 49<br>200 5 SP<br>105 B<br>10<br>Fi | 0 - Bou<br>900 Pea<br>te. 300V<br>oulder,<br>al (333)<br>ax (303 | ider<br>ari East<br>W<br>CO 803<br>147 19<br>) 447-1           | Cir.<br>301<br>836                                  | □ID<br>PC<br>Wa<br>Tel<br>Fa | - Osburn<br>D Box 30<br>aliace, ID 8<br>I (208) 556<br>ox (208) 556 | 3873<br>-6811<br>3-7271                             |                                                | MT - Mis<br>PO Box<br>Missoula<br>fel (406<br>Fax (406 | soula<br>7158<br>1, MT 5<br>1728-4<br>1) 728-4 | 9807<br>600<br>1698                                    | <ul> <li>NJ - Edison<br/>1090 King Georges<br/>Ste. 703<br/>Edison, NJ 08837<br/>Tel (732) 738-5707<br/>Fax (732) 738-571</li> </ul> | Post Rd                                                          | 0                         | <u> </u>  | Ockl    | and and   |         |
| □OR - Portland         □PA - Pittsburgh         □ T           1020 SW Taylor St.         800 Vinial St. Bidg. A         4           Ste 530         Pittsburgh PA 15212         E           Portland OR 97205         Tel (42) 321-2278         A           Tel (503) 228-8616         Fax (412) 321-2283         T           Fax (503) 228-8631         F         F | X - Austin<br>807 Spicewood Sj<br>Idg. IV, 1º Floor<br>ustin, TX 78759<br>el (512) 338-1667<br>ax (512) 338-133 | prings Rd                               |                                                                  | X - Hou<br>2337 Jo<br>te 230<br>iouston<br>el (281)<br>ax (281 | uston<br>ones Rd<br>, TX 77(<br>) 890-50<br>) 890-5 | 1.<br>070<br>068<br>044      | ⊡ TX -<br>320<br>Port<br>Tel (<br>Fax                               | Port La<br>East Mi<br>Lavaca<br>(361) 55<br>(361) 5 | waca<br>ain<br>i, TX 779<br>i2-8839<br>53-6115 | 79                                                     | UTX<br>450<br>Teo<br>Tel<br>Fao                | - Texani<br>22 Sumr<br>arkana,<br>(903) 7<br>4 (903) 1 | kana UWA<br>merhill Rd. 192<br>TX 75503 Ste.<br>94-0625 Lym<br>794-0626 Tel<br>Fax                                                   | Seattle<br>03 36th A<br>100<br>nwood, W<br>(425) 921<br>(425) 92 | we. W.<br>-4000<br>1-4040 | 36        |         | 7         | 7       |
| 17.775.7                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                               |                                         | CT N                                                             |                                                                | =                                                   | Sf                           | Ϋ́, Τ                                                               | Ar                                                  | cell                                           | 57                                                     | GL                                             | ~                                                      | Manier                                                                                                                               | 1-17                                                             |                           | _         | PAGE: _ | OF        | F:      |
| PROJECT NO: CICZ C                                                                                                                                                                                                                                                                                                                                                   | -1                                                                                                              | TIOOL                                   |                                                                  | P                                                              | ROJ                                                 | EC                           | T MAN                                                               | AGE                                                 | R:                                             | Ro                                                     | 55                                             | 5                                                      | teensur                                                                                                                              | 7                                                                |                           | _         | DATE:   | 8/5/      | 109     |
| SAMPLER (Signature):                                                                                                                                                                                                                                                                                                                                                 | e i                                                                                                             |                                         | C                                                                | ARR                                                            | IER/                                                | WA                           | YBILL                                                               | NO:                                                 |                                                | Ļ                                                      | _                                              |                                                        | DESTIN                                                                                                                               | ATION                                                            | 1: _                      |           | AY      | 401       |         |
| METHOD OF SHIPMENT.                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |                                         |                                                                  |                                                                |                                                     |                              |                                                                     |                                                     |                                                | _                                                      |                                                |                                                        |                                                                                                                                      |                                                                  | ALV                       |           | PEQUEST |           |         |
|                                                                                                                                                                                                                                                                                                                                                                      | SAM                                                                                                             | IPLES                                   |                                                                  |                                                                |                                                     |                              |                                                                     |                                                     |                                                |                                                        |                                                |                                                        |                                                                                                                                      | AN                                                               | ALT                       | 313 1     | Laora   | Demork    | 0       |
|                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                               | Sample                                  |                                                                  |                                                                | Prese                                               | erva                         | tion                                                                |                                                     | Co                                             | ntain                                                  | ers                                            | Co                                                     | nstituents/Method                                                                                                                    | н                                                                | and                       | ing       |         | Heilidik  |         |
| Field                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         | trix*                                                            | CI                                                             | 03                                                  | 04                           | D                                                                   | TRATION*                                            | LUME                                           | PE*                                                    |                                                | DS                                                     |                                                                                                                                      | OLD                                                              | USH                       | TANDARD   |         |           |         |
| Sample                                                                                                                                                                                                                                                                                                                                                               | DATE                                                                                                            | TIME                                    | Ma                                                               | I                                                              | NI                                                  | H2S                          | 00                                                                  | EL                                                  | NON IN                                         | μ                                                      | ž                                              | 1-                                                     |                                                                                                                                      | I                                                                | Œ                         | S         | -       | 1 4       | OA      |
|                                                                                                                                                                                                                                                                                                                                                                      | 8/5                                                                                                             | 1418                                    | AG                                                               |                                                                |                                                     |                              | ×                                                                   | U                                                   | 320                                            | Z P                                                    | 1                                              | ×                                                      |                                                                                                                                      | _                                                                | -                         | X         | 105     | by EI     | A 160   |
| MUT-UZ LUCUTS                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                              | 1444                                    | 1                                                                |                                                                |                                                     |                              | 1                                                                   | 1                                                   | 1                                              | 1                                                      | 1                                              |                                                        |                                                                                                                                      |                                                                  | -                         | $\square$ |         |           | _       |
| MW-06-000415                                                                                                                                                                                                                                                                                                                                                         | 1.5%                                                                                                            | 160                                     | Ħ                                                                | 1                                                              |                                                     |                              |                                                                     | 11                                                  |                                                |                                                        |                                                |                                                        |                                                                                                                                      |                                                                  |                           | 11        |         |           |         |
| AW-07-200463                                                                                                                                                                                                                                                                                                                                                         | 1x                                                                                                              | 1235                                    | Ħ                                                                | 1                                                              |                                                     |                              |                                                                     | 11                                                  | 11                                             | 11                                                     | 11                                             | Π                                                      |                                                                                                                                      |                                                                  |                           |           |         |           |         |
| MU-08-2000(S                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | 12:5                                    |                                                                  | +                                                              | $\left  \right $                                    |                              |                                                                     | +                                                   | ++                                             | 11                                                     | 11                                             | Ħ                                                      |                                                                                                                                      |                                                                  |                           |           |         |           |         |
| Mu-09-200405                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | 1771                                    | ++                                                               | +                                                              | +                                                   | -                            | +++                                                                 | ++                                                  | ++                                             | ++                                                     | 11                                             | Ħ                                                      |                                                                                                                                      |                                                                  |                           | Π         |         |           |         |
| May - 70 - 2104's                                                                                                                                                                                                                                                                                                                                                    | -+                                                                                                              | 1517                                    | V                                                                | -                                                              |                                                     | -                            | 141                                                                 | V                                                   | 11                                             | Ŧŧ                                                     | V                                              | TV 1                                                   |                                                                                                                                      |                                                                  |                           | Y         |         |           |         |
| MJ-Z1-21008                                                                                                                                                                                                                                                                                                                                                          | IV                                                                                                              | 1647                                    | 115:39                                                           | GINGUN                                                         | TOT                                                 | TAL N                        | UMBER O                                                             | FCONT                                               | AINERS                                         | <u> </u>                                               |                                                | LAB                                                    | ORATORY COMMENT                                                                                                                      | S/COND                                                           | TION                      | OF SA     | MPLES   | Cooler Te | mp:     |
|                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                         |                                                                  |                                                                |                                                     |                              |                                                                     | -                                                   |                                                |                                                        | 1                                              | _                                                      |                                                                                                                                      | F                                                                | RECE                      | IVED      | BY:     |           |         |
| RELINQUISHE                                                                                                                                                                                                                                                                                                                                                          | DBY:                                                                                                            |                                         |                                                                  |                                                                |                                                     |                              |                                                                     |                                                     |                                                |                                                        | -                                              | 0                                                      | ONATURES                                                                                                                             |                                                                  | RIN                       |           | NAME    | CON       | MPANY   |
| SIGNATURE PRINTED N/                                                                                                                                                                                                                                                                                                                                                 | AME                                                                                                             | CO                                      | MPAN                                                             | Y                                                              |                                                     |                              | DATE                                                                | _                                                   | TIN                                            | IE<br>70                                               | 1                                              |                                                        | GINATURE /                                                                                                                           | 111                                                              |                           | -         | - 1     | DII       |         |
| The Moto Hill.                                                                                                                                                                                                                                                                                                                                                       | 101:1                                                                                                           | ME                                      | -                                                                |                                                                |                                                     | 81                           | 151/0                                                               | 4                                                   | 12                                             | ¥.                                                     | P                                              | 47)                                                    | monto                                                                                                                                | 151                                                              | N                         | 14        | Ay laz  | HIP       | 14      |
|                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                         |                                                                  |                                                                |                                                     |                              |                                                                     |                                                     |                                                | 1                                                      | 1                                              | /                                                      | 10                                                                                                                                   | -                                                                |                           |           |         | LABO      | ORATORY |
|                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                         |                                                                  |                                                                |                                                     |                              |                                                                     |                                                     |                                                |                                                        | 1                                              |                                                        |                                                                                                                                      |                                                                  |                           |           |         |           |         |
|                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                         |                                                                  |                                                                |                                                     |                              |                                                                     |                                                     |                                                |                                                        |                                                |                                                        |                                                                                                                                      |                                                                  | -                         |           |         |           |         |



## **APPENDIX B**

## Laboratory Reports and Chain-of-Custody Records for Groundwater Samples—Groundwater Monitoring Program



e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267



14 September 2004

Geomatrix Consultants Attn: Ross Steenson 2101 Webster Street, 12th Floor Oakland, CA 94612 RE: SPI Arcata GW Monitoring Work Order: A409001

TASK 22 GW 3rd Quarter 2004 Sampling

Enclosed are the results of analyses for samples received by the laboratory on 08/31/04 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sheri Speaks



Alpha Analytical Laboratories Inc.

#### CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Report Date: 09/14/04 08:44 Project No: 9329.000/030275.22 Project ID: SPI Arcata GW Monitoring

Client PO/Reference

Order Number Receipt Date/Time A409001 08/31/2004 16:30

Client Code GEOMAT

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID    | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|--------------|---------------|--------|----------------|----------------|
| MW-02-200408 | A409001-01    | Water  | 08/30/04 14:18 | 08/31/04 16:30 |
| MW-06-200408 | A409001-02    | Water  | 08/30/04 14:44 | 08/31/04 16:30 |
| MW-07-200408 | A409001-03    | Water  | 08/30/04 16:08 | 08/31/04 16:30 |
| MW-08-200408 | A409001-04    | Water  | 08/30/04 13:35 | 08/31/04 16:30 |
| MW-09-200408 | A409001-05    | Water  | 08/30/04 13:57 | 08/31/04 16:30 |
| MW-20-200408 | A409001-06    | Water  | 08/30/04 15:17 | 08/31/04 16:30 |
| MW-21-200408 | A409001-07    | Water  | 08/30/04 15:47 | 08/31/04 16:30 |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

Sheri L. Speaks Project Manager

9/14/04

Page 1 of 9



Page 2 of 9

| Geomatrix Cor<br>2101 Webster<br>Oakland, CA 9<br>Attn: Ross Ste | nsultants<br>Street, 12th Floor<br>4612<br>enson |         |            |                 | Report Date:<br>Project No:<br>Project ID: | 09/14/04 08:<br>9329.000/03<br>SPI Arcata C | 44<br>0275.22<br>GW Monitoring |         |
|------------------------------------------------------------------|--------------------------------------------------|---------|------------|-----------------|--------------------------------------------|---------------------------------------------|--------------------------------|---------|
| Drder Number<br>A409001                                          | Receipt Date/Time<br>08/31/2004 16:30            |         | Clie<br>GE | nt Code<br>OMAT |                                            | Client PO/                                  | Reference                      |         |
|                                                                  |                                                  | Alpha A | Analytical | Laborato        | ries, Inc.                                 |                                             |                                |         |
|                                                                  | METHOD                                           | BATCH   | PREPARED   | ANALYZED        | DILUTION                                   | RESULT                                      | POL                            | NOTE    |
| (W-02-200408 (A409001-01)                                        |                                                  |         | Sample Typ | e: Water        | Samj                                       | pled: 08/30/04 14                           | 1:18                           |         |
| Chlorinated Phenols by Canadia                                   | n Pulp Method                                    |         |            |                 |                                            |                                             |                                |         |
| 2.4.6-Trichlorophenol                                            | EnvCan                                           | AI40401 | 09/03/04   | 09/04/04        | 1                                          | ND ug/l                                     | 1.0                            |         |
| 2.3.5.6-Tetrachlorophenol                                        | **                                               | н       | **         |                 |                                            | ND "                                        | 1.0                            |         |
| 2.3.4.6-Tetrachlorophenol                                        |                                                  | н       |            |                 |                                            | ND "                                        | 1.0                            |         |
| 2.3.4.5-Tetrachlorophenol                                        | *                                                |         |            |                 |                                            | ND "                                        | 1.0                            |         |
| Pentachlorophenol                                                |                                                  |         |            |                 |                                            | ND "                                        | 1.0                            |         |
| Surrogate: Tribromophenol                                        | **                                               | "       | "          | "               |                                            | 104 %                                       | 79-119                         |         |
| Conventional Chemistry Parame                                    | ters by APHA/EPA M                               | ethods  |            |                 |                                            |                                             |                                |         |
| Total Dissolved Solids                                           | EPA 160.1                                        | A140208 | 09/02/04   | 09/09/04        | 1                                          | 680 mg/l                                    | 10                             |         |
| Total Dissorted Solids                                           |                                                  |         |            |                 |                                            |                                             |                                |         |
| W-06-200408 (A409001-02)                                         |                                                  |         | Sample Typ | pe: Water       | Sam                                        | pled: 08/30/04 1                            | 4:44                           |         |
| Chlorinated Phenols by Canadia                                   | n Pulp Method                                    |         |            |                 |                                            |                                             |                                |         |
| 2.4.6-Trichlorophenol                                            | EnvCan                                           | AI40401 | 09/03/04   | 09/04/04        | 1                                          | ND ug/l                                     | 1.0                            |         |
| 2,3,5,6-Tetrachlorophenol                                        |                                                  |         |            |                 | *                                          | ND "                                        | 1.0                            |         |
| 2,3,4,6-Tetrachlorophenol                                        |                                                  |         |            |                 |                                            | ND "                                        | 1.0                            |         |
| 2,3,4,5-Tetrachlorophenol                                        |                                                  | 2.00    |            |                 |                                            | ND "                                        | 1.0                            |         |
| Pentachlorophenol                                                |                                                  | 1.44    | "          |                 |                                            | ND "                                        | 1.0                            |         |
| Surrogate: Tribromophenol                                        | "                                                |         | "          | "               |                                            | 93.2 %                                      | 79-119                         |         |
| Conventional Chemistry Param                                     | eters by APHA/EPA M                              | ethods  |            |                 |                                            |                                             |                                |         |
| Total Dissolved Solids                                           | EPA 160.1                                        | A140208 | 09/02/04   | 09/09/04        | 1                                          | 430 mg/l                                    | 10                             |         |
| MW-07-200408 (A409001-03)                                        |                                                  |         | Sample Ty  | pe: Water       | Sam                                        | apled: 08/30/04 1                           | 6:08                           |         |
| Chlorinated Phenols by Canadi                                    | an Pulp Method                                   |         |            |                 |                                            |                                             |                                |         |
| 2,4,6-Trichlorophenol                                            | EnvCan                                           | AI40401 | 09/03/04   | 09/04/04        | 1                                          | ND ug/l                                     | 1.0                            |         |
| 2,3,5,6-Tetrachlorophenol                                        |                                                  |         | *          | 09/06/04        | 10                                         | 54 "                                        | 10                             |         |
| 2.3.4.6-Tetrachlorophenol                                        |                                                  |         | 16         | M.              |                                            | 200 "                                       | 10                             | 12<br>2 |
| 2.3.4.5-Tetrachlorophenol                                        |                                                  |         |            |                 |                                            | 17 "                                        | 10                             | 6       |
| Pentachlorophenol                                                | 7                                                |         |            | 09/08/04        | 1000                                       | 13000 "                                     | 1000                           |         |
| · ·····                                                          |                                                  | "       | "          | 00/04/04        |                                            | 00 6 %                                      | 79-119                         |         |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri Speake

Sheri L. Speaks Project Manager

9/14/04



Page 3 of 9

| Geomatrix Cor<br>2101 Webster<br>Oakland, CA 9<br>Attn: Ross Stee | nsultants<br>Street, 12th Floor<br>4612<br>enson |         |                                         |                   | Report Date:<br>Project No:<br>Project ID: | 09/14/04 08:<br>9329.000/03<br>SPI Arcata ( | 44<br>0275.22<br>GW Monitoring |      |
|-------------------------------------------------------------------|--------------------------------------------------|---------|-----------------------------------------|-------------------|--------------------------------------------|---------------------------------------------|--------------------------------|------|
| Order Number<br>A409001                                           | Receipt Date/Time 08/31/2004 16:30               |         | <u>Clie</u><br>GE                       | ent Code<br>COMAT |                                            | Client PO/                                  | Reference                      |      |
|                                                                   |                                                  | Alpha A | Analytical                              | Laborato          | ries, Inc.                                 |                                             |                                |      |
|                                                                   | METHOD                                           | BATCH   | PREPARED                                | ANALYZED          | DILUTION                                   | RESULT                                      | POL                            | NOTE |
| MW-07-200408 (A409001-03)                                         |                                                  |         | Sample Typ                              | pe: Water         | Sam                                        | pled: 08/30/04 16                           | 5:08                           |      |
| Conventional Chemistry Parame                                     | ters by APHA/EPA Me                              | ethods  |                                         |                   |                                            |                                             |                                |      |
| Total Dissolved Solids                                            | EPA 160.1                                        | A140208 | 09/02/04                                | 09/09/04          | 1                                          | 410 mg/l                                    | 10                             |      |
| MW-08-200408 (A409001-04)                                         |                                                  |         | Sample Ty                               | pe: Water         | Sam                                        | pled: 08/30/04 13                           | 3:35                           |      |
| Chlorinated Phenols by Canadia                                    | n Pulp Method                                    |         | 0.000.000000000000000000000000000000000 |                   |                                            |                                             |                                |      |
| 2.4.6-Trichlorophenol                                             | EnvCan                                           | AI40401 | 09/03/04                                | 09/04/04          | 1                                          | ND ug/l                                     | 1.0                            |      |
| 2 3 5 6-Tetrachlorophenol                                         | 100                                              |         |                                         | **                |                                            | ND "                                        | 1.0                            |      |
| 2 3 4 6-Tetrachlorophenol                                         |                                                  | *       |                                         |                   |                                            | ND "                                        | 1.0                            |      |
| 2.3.4.5-Tetrachlorophenol                                         |                                                  |         |                                         | н                 |                                            | ND "                                        | 1.0                            |      |
| Pentachlorophenol                                                 |                                                  |         | "                                       |                   | "                                          | ND "                                        | 1.0                            |      |
| Surrogate: Tribromophenol                                         | "                                                | н       | "                                       | "                 |                                            | 100 %                                       | 79-119                         |      |
| Conventional Chemistry Parame                                     | eters by APHA/EPA M                              | ethods  |                                         |                   |                                            |                                             |                                |      |
| Total Dissolved Solids                                            | EPA 160.1                                        | AI40208 | 09/02/04                                | 09/09/04          | 1                                          | 390 mg/l                                    | 10                             |      |
| MW-09-200408 (A409001-05)                                         |                                                  |         | Sample Ty                               | pe: Water         | Sam                                        | pled: 08/30/04 1                            | 3:57                           |      |
| Chlorinated Phenols by Canadia                                    | an Pulp Method                                   |         |                                         |                   |                                            |                                             |                                |      |
| 2.4.6-Trichlorophenol                                             | EnvCan                                           | AI40401 | 09/03/04                                | 09/04/04          | 1                                          | ND ug/l                                     | 1.0                            |      |
| 2,3,5,6-Tetrachlorophenol                                         | "                                                | **      |                                         | **                |                                            | ND "                                        | 1.0                            |      |
| 2,3,4,6-Tetrachlorophenol                                         | 7                                                |         |                                         |                   | 1992                                       | ND "                                        | 1.0                            |      |
| 2,3,4,5-Tetrachlorophenol                                         |                                                  |         |                                         | "                 | **                                         | ND "                                        | 1.0                            |      |
| Pentachlorophenol                                                 |                                                  | *       |                                         | "                 |                                            | ND "                                        | 1.0                            |      |
| Surrogate: Tribromophenol                                         | "                                                | **      | **                                      |                   |                                            | 93.6 %                                      | 79-119                         |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri

Speake



Alpha Analytical Laboratories Inc.

### CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Report Date: 09/14/04 08:44 Project No: 9329.000/030275.22 Project ID: SPI Arcata GW Monitoring

| Order Number<br>A409001        | Receipt Date/Time 08/31/2004 16:30 |         | <u>Clie</u><br>GE | ent Code<br>COMAT |            | Client PO/          | Reference |
|--------------------------------|------------------------------------|---------|-------------------|-------------------|------------|---------------------|-----------|
|                                |                                    | Alpha A | nalytical         | Laborato          | ries, Inc. |                     |           |
|                                | METHOD                             | BATCH   | PREPARED          | ANALYZED          | DILUTION   | RESULT              | POL NOTE  |
| MW-09-200408 (A409001-05)      |                                    |         | Sample Typ        | pe: Water         | S          | ampled: 08/30/04 13 | 5:57      |
| Conventional Chemistry Parame  | ters by APHA/EPA Me                | ethods  |                   |                   |            |                     |           |
| <b>Total Dissolved Solids</b>  | EPA 160.1                          | AI40208 | 09/02/04          | 09/09/04          | 1          | 440 mg/l            | 10        |
| MW-20-200408 (A409001-06)      |                                    |         | Sample Ty         | pe: Water         | S          | ampled: 08/30/04 15 | 5:17      |
| Chlorinated Phenols by Canadia | n Pulp Method                      |         |                   |                   |            |                     |           |
| 2.4.6-Trichlorophenol          | EnvCan                             | AI40401 | 09/03/04          | 09/04/04          | 1          | ND ug/l             | 1.0       |
| 2 3 5 6-Tetrachlorophenol      |                                    | 3.89.0  |                   |                   | **         | ND "                | 1.0       |
| 2 3 4 6-Tetrachlorophenol      |                                    | **      |                   |                   |            | ND "                | 1.0       |
| 2.3.4.5-Tetrachlorophenol      | **                                 |         |                   | *                 |            | ND "                | 1.0       |
| Pentachlorophenol              |                                    | S.00    |                   |                   | "          | ND "                | 1.0       |
| Surrogate: Tribromophenol      | "                                  |         | .01               | "                 |            | 105 %               | 79-119    |
| Conventional Chemistry Parame  | eters by APHA/EPA M                | ethods  |                   |                   |            |                     |           |
| Total Dissolved Solids         | EPA 160.1                          | AI40208 | 09/02/04          | 09/09/04          | 1          | 300 mg/l            | 10        |
| MW-21-200408 (A409001-07)      |                                    |         | Sample Ty         | pe: Water         | S          | ampled: 08/30/04 1  | 5:47      |
| Chlorinated Phenols by Canadia | an Pulp Method                     |         |                   |                   |            |                     |           |
| 2,4,6-Trichlorophenol          | EnvCan                             | AI40401 | 09/03/04          | 09/04/04          | 1          | ND ug/l             | 1.0       |
| 2.3.5.6-Tetrachlorophenol      |                                    | **      |                   | **                |            | 6.4 "               | 1.0       |
| 2.3.4.6-Tetrachlorophenol      | "L                                 |         |                   | 09/06/04          | 10         | 66 "                | 10        |
| 2.3.4.5-Tetrachlorophenol      |                                    | **      |                   | 09/04/04          | 1          | 5.4 "               | 1.0       |
| Pentachlorophenol              | ан 2<br>С                          |         |                   | 09/08/04          | 1000       | 2700 "              | 1000      |
| Surrogate: Tribromophenol      | "                                  | "       | ."                | 09/04/04          |            | 97.6 %              | 79-119    |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri

Speake

Sheri L. Speaks Project Manager

9/14/04

Page 4 of 9



208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 5 of 9

| MW-21-200408 (A40900)               | 1-07)                                              | a. 1.   | Sample Type: Water    | Samp                                       | oled: 08/30/04 15:47                                  |     |      |
|-------------------------------------|----------------------------------------------------|---------|-----------------------|--------------------------------------------|-------------------------------------------------------|-----|------|
|                                     | METHOD                                             | BATCH   | PREPARED ANALYZED     | DILUTION                                   | RESULT                                                | POL | NOTE |
|                                     |                                                    | Alpha A | Analytical Laborato   | ries, Inc.                                 |                                                       |     |      |
| Order Number<br>A409001             | Receipt Date/Time<br>08/31/2004 16:30              |         | Client Code<br>GEOMAT |                                            | Client PO/Referen                                     | nce |      |
| 2101 Web<br>Oakland, 0<br>Attn: Ros | oster Street, 12th Floor<br>CA 94612<br>s Steenson |         |                       | Report Date:<br>Project No:<br>Project ID: | 09/14/04 08:44<br>9329.000/030275.<br>SPI Arcata GW M |     |      |

10 450 mg/l AI40208 09/02/04 09/09/04 1 **Total Dissolved Solids** EPA 160.1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake



( Consultanta

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 6 of 9

| 2101 We                 | sbster Street, 12th Floor             |                              | Report Date: | 09/14/04 08:44           |
|-------------------------|---------------------------------------|------------------------------|--------------|--------------------------|
| Oakland                 | , CA 94612                            |                              | Project No:  | 9329.000/030275.22       |
| Attn: Ro                | ss Steenson                           |                              | Project ID:  | SPI Arcata GW Monitoring |
| Order Number<br>A409001 | Receipt Date/Time<br>08/31/2004 16:30 | <u>Client Code</u><br>GEOMAT |              | Client PO/Reference      |

### Chlorinated Phenols by Canadian Pulp Method - Quality Control

| Analyte(s)                        | Result | PQL        | Units  | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD  | RPD<br>Limit | Flag |
|-----------------------------------|--------|------------|--------|----------------|------------------|-----------|----------------|------|--------------|------|
| atch AI40401 - Solvent Extraction |        |            |        |                |                  |           |                |      |              |      |
| Blank (AI40401-BLK1)              |        |            |        | Prepared:      | 09/03/04         | Analyzed: | 09/04/04       |      |              |      |
| Surrogate: Tribromophenol         | 25.3   |            | ug/l   | 25.0           |                  | 101       | 79-119         |      |              |      |
| 2.4.6-Trichlorophenol             | ND     | 1.0        |        |                |                  |           |                |      |              |      |
| 2.3.5.6-Tetrachlorophenol         | ND     | 1.0        |        |                |                  |           |                |      |              |      |
| 2.3.4.6-Tetrachlorophenol         | ND     | 1.0        | *      |                |                  |           |                |      |              |      |
| 2.3.4.5-Tetrachlorophenol         | ND     | 1.0        | "      |                |                  |           |                |      |              |      |
| Pentachlorophenol                 | ND     | 1.0        | **     |                |                  |           |                |      |              |      |
| LCS (A140401-BS1)                 |        |            |        | Prepared       | : 09/03/04       | Analyzed: | 09/04/04       |      |              |      |
| Surrogate: Tribromophenal         | 24.4   |            | ug/l   | 25.0           |                  | 97.6      | 79-119         |      |              |      |
| 2.4.6 Tricklorophenol             | 5.53   | 1.0        | *      | 5.00           |                  | 111       | 81-120         |      |              |      |
| 2,4,6- Tremotophenol              | 5.26   | 1.0        |        | 5.00           |                  | 105       | 78-108         |      |              |      |
| 2,3,5,5,6 Tetrachloronhenol       | 5.22   | 1.0        | 34     | 5.00           |                  | 104       | 76-108         |      |              |      |
| 2.3.4.5-Tetrachlorophenol         | 5.02   | 1.0        |        | 5.00           |                  | 100       | 80-116         |      |              |      |
| Pentachlorophenol                 | 4.48   | 1.0        | **     | 5.00           |                  | 89.6      | 86-109         |      |              |      |
| Matrix Snike (A140401-MS1)        | Sou    | rce: A409  | 001-06 | Prepared       | : 09/03/04       | Analyzed  | 09/04/04       |      |              |      |
| Surrogate: Tribromophenol         | 24.6   |            | ug/l   | 25.0           |                  | 98.4      | 79-119         |      |              |      |
| 2.4.6. Trichloronhenol            | 5.71   | 1.0        |        | 5.00           | ND               | 111       | 75-125         |      |              |      |
| 2.3.5.6.Tetrachlorophenol         | 5.45   | 1.0        |        | 5.00           | ND               | 104       | 69-115         |      |              |      |
| 2,3,4,6-Tetrachlorophenol         | 5.29   | 1.0        |        | 5.00           | ND               | 103       | 66-117         |      |              |      |
| 2.3.4.5-Tetrachlorophenol         | 5.08   | 1.0        | **     | 5.00           | ND               | 102       | 70-115         |      |              |      |
| Pentachlorophenol                 | 4.65   | 1.0        | *      | 5.00           | ND               | 89.8      | 55-124         |      |              |      |
| Matrix Spike Dup (AI40401-MSD1)   | Sou    | Irce: A409 | 001-06 | Prepared       | I: 09/03/04      | Analyzed  | : 09/04/04     |      |              |      |
| Surrogate: Tribromophenol         | 25.6   |            | ug/1   | 25.0           |                  | 102       | 79-119         |      |              |      |
| 2,4,6-Trichlorophenol             | 5.71   | 1.0        | 19     | 5.00           | ND               | 111       | 75-125         | 0.00 | 20           |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speake eri



Page 7 of 9

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Order Number A409001

Receipt Date/Time

08/31/2004 16:30

Report Date: 09/14/04 08:44 Project No: 9329.000/030275.22 Project ID: SPI Arcata GW Monitoring

Client PO/Reference

| Client Code |  |
|-------------|--|
| GEOMAT      |  |

### Chlorinated Phenols by Canadian Pulp Method - Quality Control

| Analyte(s)                         | Result | PQL     | Units  | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD   | RPD<br>Limit | Flag |
|------------------------------------|--------|---------|--------|----------------|------------------|-----------|----------------|-------|--------------|------|
| Batch AI40401 - Solvent Extraction |        |         |        | n 1            | 00/02/04         | Amelierod | 00/04/04       |       |              |      |
| Matrix Spike Dup (AI40401-MSD1)    | Sourc  | e: A409 | 001-06 | Prepared:      | 09/03/04         | Anaryzed  | (0.115         | 0.022 | 20           |      |
| 2.3.5.6-Tetrachlorophenol          | 5.40   | 1.0     |        | 5.00           | ND               | 103       | 69-115         | 0.922 | 20           |      |
| 2.2.4.6 Totrachloronhanol          | 5.23   | 1.0     |        | 5.00           | ND               | 102       | 66-117         | 1.14  | 20           |      |
| 2,5,4,0-Tetrachiorophenoi          | 5.04   | 1.0     |        | 5.00           | ND               | 101       | 70-115         | 0.791 | 20           |      |
| 2,3,4,5-Tetrachlorophenol          | 5.04   | 1.0     |        | 5.00           | 110              | 00.4      | 55 124         | 0.643 | 20           |      |
| Pentachlorophenol                  | 4.68   | 1.0     | н      | 5.00           | ND               | 90.4      | 33-124         | 0.045 | 20           |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

sheri Speake



Alpha Analytical Laboratories Inc.

### CHEMICAL EXAMINATION REPORT

Page 8 of 9

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Report Date: 09/14/04 08:44 Project No: 9329.000/030275.22 Project ID: SPI Arcata GW Monitoring

Client PO/Reference

Receipt Date/Time Order Number A409001 08/31/2004 16:30 Client Code GEOMAT

## Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

|                                                |        |           |        |                |                  |          |                |      | And and a second se |      |
|------------------------------------------------|--------|-----------|--------|----------------|------------------|----------|----------------|------|----------------------------------------------------------------------------------------------------------------|------|
| Analyte(s)                                     | Result | PQL       | Units  | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD  | RPD<br>Limit                                                                                                   | Flag |
| atch AI40208 - General Preparation             |        |           |        | Durand         | 00/02/04         | Analyzed | 09/09/04       |      |                                                                                                                |      |
| Blank (AI40208-BLK1)<br>Total Dissolved Solids | ND     | 10        | mg/l   | Prepared       | 09/02/04         | Anaryzeu | 1. 07/05/04    |      |                                                                                                                |      |
| Duplicate (A140208-DUP1)                       | Sour   | rce: A409 | 001-01 | Prepared       | : 09/02/04       | Analyzed | 1: 09/09/04    | 0.00 | 30                                                                                                             |      |
| Total Dissolved Solids                         | 680    | 10        | mg/l   |                | 680              |          |                | 0.00 | 5.5                                                                                                            |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake



Page 9 of 9

| Geor<br>2101<br>Oakl    | natrix Consultants<br>Webster Street, 12th Floor<br>and, CA 94612<br>Ross Steenson |                              | Report Date:<br>Project No:<br>Project ID: | 09/14/04 08:44<br>9329.000/030275.22<br>SPI Arcata GW Monitoring |
|-------------------------|------------------------------------------------------------------------------------|------------------------------|--------------------------------------------|------------------------------------------------------------------|
| Order Number<br>A409001 | <u>Receipt Date/Time</u><br>08/31/2004 16:30                                       | <u>Client Code</u><br>GEOMAT |                                            | Client PO/Reference                                              |

### Notes and Definitions

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- PQL Practical Quantitation Limit

| MFG, INC.                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                            | CH/                            | AIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-0                                                            | )F                                                | -CI                            | US                                                  | то                                               | D                                               | YR                                            | EC                                                 | 0                                          | RD                                             | AND RE                                                                                                                                                 | EC                                              | <b>D</b>                                      | E                                 | ST            | <b>FO</b>           |               |               | 6287                 | IS     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|--------------------------------|-----------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------|---------------|---------------------|---------------|---------------|----------------------|--------|
| ta Office         CA - Invine         CA - Invine           ett Way         17770 Cartwright Rd.         180 - J           A 95521-6741         Ste. 500         San i           Ty 826-8430- FAX (707) 826-8437         Trel (949) 253-2951         Fax (           Fax (949) 253-2954         Fax (         Fax (                                                              | San Franci<br>Ioward St.,<br>Francisco, (<br>15) 495-71<br>415) 495-7                          | Ste 200<br>CA 9410<br>110<br>7107          | 0 49<br>5 St<br>Bo<br>Te<br>Fa | 0 - Boi<br>900 Pei<br>901 Pei<br>901 Pei<br>901 Pei<br>903 Pei<br>900 Pe | ulder<br>arl Eas<br>W<br>CO 80<br>447-1<br>3) 447-             | st Cir.<br>1301<br>823<br>1836                    | ⊡IL<br>P<br>V<br>Ti<br>F       | D - Ost<br>'O Box<br>Vallace,<br>el (208<br>ax (208 | ourn<br>30<br>, ID 838<br>) 556-68<br>8) 556-7   | 373<br>811<br>7271                              | D M<br>Pi<br>M<br>Te<br>Fi                    | T - Mis<br>O Box<br>issoula<br>el (406)<br>ax (406 | soula<br>7158<br>. MT 5<br>728-4<br>) 728- | 59807<br>4600<br>4698                          | <ul> <li>NJ - Edison</li> <li>1090 King George<br/>Ste 703</li> <li>Edison, NJ 08837</li> <li>Tel (732) 738-5707</li> <li>Fax (732) 738-571</li> </ul> | rs Pos<br>7                                     | st Rd.                                        | ×                                 | < (<br>2<br>0 | 200                 | wel           | rix<br>laster | St 12                | 4      |
| OR - Portland         PA - Pittsburgh         TX           1020 SW Taylor St.         800 Vinail St. Bidg. A         480           Ste 530         Pittsburgh. PA 15212         Bid           Portland, OR 97205         Tel (412) 321-2278         Aus           Tel (503) 228-8616         Fax (412) 321-2283         Tel           Fax (503) 228-8631         Fax         Fax | - Austin<br>17 Spicewo<br>g IV, 1 <sup>st</sup> Fic<br>tin, TX 787<br>(512) 338-<br>(512) 338- | ood Sprin<br>oor<br>759<br>-1667<br>3-1331 | igs Rd.                        | UT<br>SH<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X - Ho<br>2337 J<br>Ite. 230<br>Ioustor<br>fel (281<br>Fax (28 | ouston<br>lones f<br>n, TX 7<br>I) 890-<br>1) 890 | Rd.<br>7070<br>5068<br>-5044   |                                                     | TX - P<br>320 Ea<br>Port La<br>Tel (36<br>Fax (3 | Port La<br>ast Ma<br>avaca<br>61) 55<br>961) 55 | vaca<br>sin<br>, TX 7797<br>2-8839<br>53-6115 | 9                                                  | □ TX<br>45<br>Te:<br>Tel<br>Fa             | Texal<br>32 Sum<br>karkana<br>(903)<br>x (903) | kana WA<br>merhill Rd. 192<br>, TX 75503 Ste<br>794-0625 Lyn<br>794-0626 Tel<br>Fax                                                                    | - Se<br>203 3<br>100<br>inwoo<br>(425)<br>(425) | attle<br>6th Av<br>od, W/<br>) 921-<br>5) 921 | ve. W.<br>4 980:<br>4000<br>-4040 | 36            | 510)(               | 663           | -41           | 27                   |        |
| PROJECT NO: 030275-72<br>SAMPLER (Signature): Mut 744<br>METHOD OF SHIPMENT: (647)                                                                                                                                                                                                                                                                                               | al<br>r                                                                                        | PF                                         | ROJEC                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IAM<br>F<br>ARR                                                | E:<br>PRO                                         | S<br>JEC<br>/WA                | PJ<br>TM<br>YBII                                    | ANA                                              | 412<br>IGE<br>0:_                               | : а+о<br>R: _1                                | 205                                                | 21                                         | √<br>Ste                                       | Mon. to<br>eason<br>DESTIN                                                                                                                             | ATI                                             | ON                                            | 2                                 | A             | PAGE<br>DATE<br>Pha | E:<br>E:<br>v | 1<br>8/7      | OF: 7                | -<br>† |
|                                                                                                                                                                                                                                                                                                                                                                                  | S                                                                                              | AMPL                                       | .ES                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                   |                                |                                                     |                                                  |                                                 |                                               |                                                    |                                            |                                                |                                                                                                                                                        | 1                                               | ANA                                           | LYS                               | SIS F         | REQUE               | EST           |               |                      |        |
|                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                | Sam                                        | nple                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                | Pres                                              | serva                          | ation                                               |                                                  |                                                 | Con                                           | taine                                              | ers                                        | Co                                             | nstituents/Method                                                                                                                                      | i                                               | На                                            | andli                             | ng            |                     |               | Rema          | irks                 |        |
| Field<br>Sample<br>Identification                                                                                                                                                                                                                                                                                                                                                | DAT                                                                                            | TE                                         | TIME                           | Matrix*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HCI                                                            | HNO <sub>3</sub>                                  | H <sub>2</sub> SO <sub>4</sub> | COLD                                                |                                                  | FILTRATION                                      | VOLUME<br>(ml/oz)                             | TYPE*                                              | NO.                                        | PCP/TCI                                        |                                                                                                                                                        |                                                 | НОГД                                          | RUSH                              | STANDARD      | A                   | 40            | 90            | 01                   |        |
| MW-02-200408                                                                                                                                                                                                                                                                                                                                                                     | 8/3                                                                                            | 30 1                                       | 418                            | AQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |                                                   |                                | X                                                   |                                                  | u                                               | 125ml                                         | 6                                                  | 2                                          | X                                              |                                                                                                                                                        |                                                 |                                               |                                   | ×             | PC                  | P/            | TCF           | by                   |        |
| MW-06-200408                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                | 1                                          | 1444                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                   |                                | 1                                                   |                                                  | 1                                               |                                               | 1                                                  | 1                                          |                                                |                                                                                                                                                        |                                                 |                                               |                                   | 1             | Can                 | adi           | anp           | 410 me               | 4      |
| MW-07-200408                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                | 1                                          | 608                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                   |                                |                                                     |                                                  |                                                 |                                               |                                                    |                                            |                                                |                                                                                                                                                        |                                                 |                                               |                                   | L             |                     |               |               | 1                    |        |
| MW-08-200408                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                | U                                          | 335                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                   |                                |                                                     |                                                  |                                                 |                                               |                                                    |                                            | $\square$                                      |                                                                                                                                                        |                                                 |                                               |                                   | 11            |                     |               |               |                      |        |
| MW-09-200408                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                | 13                                         | 357                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                   |                                |                                                     |                                                  |                                                 |                                               | 11                                                 | 1                                          | $\square$                                      |                                                                                                                                                        |                                                 |                                               |                                   | 11            |                     |               |               |                      |        |
| MW-ZU-200408                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                | 11                                         | 517                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                   |                                | 11,                                                 |                                                  | 4                                               |                                               | 14                                                 | 4                                          |                                                |                                                                                                                                                        |                                                 |                                               |                                   | 11            |                     |               |               |                      |        |
| MM-21-200408                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                              | 1                                          | 1547                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                   |                                | V                                                   |                                                  | v                                               |                                               | v                                                  | N                                          | V                                              |                                                                                                                                                        |                                                 |                                               |                                   | ¥             |                     |               |               |                      |        |
| And the second second second second                                                                                                                                                                                                                                                                                                                                              |                                                                                                |                                            | and the second                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in the second                                                  | TO                                                | TAL NU                         | UMBEF                                               | R OF CO                                          | ONTA                                            | INERS                                         |                                                    | 14                                         | LAB                                            | ORATORY COMMENTS                                                                                                                                       | s/co                                            | NDITI                                         | ONO                               | FSAM          | PLES                | C             | cooler 7      | Temp: 2              | .4     |
| RELINQUISHED B                                                                                                                                                                                                                                                                                                                                                                   | Y:                                                                                             |                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                   |                                |                                                     |                                                  |                                                 |                                               |                                                    |                                            |                                                |                                                                                                                                                        |                                                 | RE                                            | CEI                               | VED           | BY:                 |               |               |                      |        |
| SIGNATURE PRINTED NAME                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                                            | COMP                           | PANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                   | 1                              | DATE                                                |                                                  |                                                 | TIME                                          |                                                    |                                            | SIC                                            | GNATURE                                                                                                                                                |                                                 | PR                                            | INTE                              | ED N          | AME                 | -             | C             | JMPANY               |        |
| Annula Do Matt Hills                                                                                                                                                                                                                                                                                                                                                             | and<br>a2                                                                                      | A                                          | P(<br>ph                       | 2<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                | _                                                 | 8                              | 31                                                  | or<br>or                                         | 1.                                              | 23                                            | 4                                                  | X                                          | P.                                             |                                                                                                                                                        | 5                                               | p                                             | 26                                | K             | s<br>S              | 2  <br> K     | H P I         | ha<br>1A<br>BORATORY |        |
| - <u>KE</u> Y Matrix AO-1                                                                                                                                                                                                                                                                                                                                                        | queous: NA -                                                                                   | попадиеои                                  | is SØ-soil                     | St siu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dge P -                                                        | petrolea                                          | m A-a                          | ir 07-o                                             | atter a                                          | Containe                                        | vs: P - plas                                  | tc G-g                                             | lass 7                                     | reflor                                         | 8 - brass 01 - other Filtral                                                                                                                           | tan 1                                           | F - Ditera                                    | ed U-                             | untiltered    | ł                   |               |               |                      | -      |

| MFG, INC.                                                                                                                                                                                                                                                                                                                      | CHAI                                                                                                                                                                                                                            | N-OF-CUSTOD                                                                                                                                                                                                           | RECORD AND F                                                                                                                                                                          | REQUEST FOR ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arcata Office CA - Irvine<br>17770 Cartwright Rd.<br>55 Crescent Way<br>reats, CA 9521-6741<br>kone (707) 826-8430 - FAX (707) 826-8437<br>Fax (949) 253-2951<br>Fax (949) 253-2954                                                                                                                                            | ICA - San Francisco         CO - E           180 Howard St., Ste. 200         4900 I           San Francisco, CA 94105         Ste. 30           Tei (415) 495-7110         Bouldt           Fax (415) 495-7107         Tei (37 | Soulder         ID - Osburn           Po Box 30         Wallace, ID 83873           otw         Wallace, ID 83873           er, CO 80301         Tel (208) 556-6811           30) 447-1823         Fax (208) 556-7271 | MT - Missoula. NJ - Edison<br>PO Box 7158 1090 King Geoi<br>Missoula. MT 59807 Ste. 703<br>Tel (406) 728-4600 Edison. NJ 088<br>Fax (406) 728-4698 Tel (732) 738-5<br>Fax (732) 738-5 | $\begin{array}{c} \text{COC No. } \underline{46288} \\ \underline{46288} \\ \underline{4620} \\ 462$ |
| □ OR - Portland         □ PA - Pirtsburgh           1020 SW Taylor St.         800 Vinial St. Bidg, A           Stie. 530         Pirtsburgh, PA 15212           Portland, OR 97205         Tel (412) 321-2278           Tel (603) 228-8616         Fax (412) 321-2283           Fax (503) 228-8631         Fax (412) 321-2283 | TX - Austin<br>4807 Spicewood Springs Rd.<br>Bildg IV, 14 Floor<br>Austin, TX 78759<br>Tel (512) 338-1667<br>Fax (512) 338-1331                                                                                                 | TX - Houston         TX - Port L           12337 Jones Rd.         320 East M           Ste: 230         Port Lavas           Houston, TX 77070         Tel (361)           Tel (281) 890-5068         Fax (361) /    | ca TX - Texarkana 4532 Summerhill Rd 1<br>4532 Summerhill Rd 1<br>X 77979 Texarkana, TX 75503<br>8839 Tel (903) 794-0625 L<br>6115 Fax (903) 794-0626 T                               | WA - Seattle<br>19203 36th Ave. W.<br>Ste. 100<br>yrnnwood. WA 98036<br>fel (425) 921-4000<br>Fax (425) 921-4040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PROJECT NO: 030275.<br>SAMPLER (Signature): Mat<br>METHOD OF SHIPMENT: 000                                                                                                                                                                                                                                                     | ZZ PROJECT                                                                                                                                                                                                                      | NAME: SPT An<br>PROJECT MANAGE<br>CARRIER/WAYBILL NO:                                                                                                                                                                 | ata GW Monito<br>Ross Steenson<br>DESTIN                                                                                                                                              | PAGE: 2 OF: 2<br>DATE: 8/31/04<br>NATION: <u>Alpha</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                | SAMPLES                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                       | ANALYSIS REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                | Sample                                                                                                                                                                                                                          | Preservation                                                                                                                                                                                                          | Containers Constituents/Metho                                                                                                                                                         | od Handling Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Field<br>Sample<br>Identification                                                                                                                                                                                                                                                                                              | DATE TIME                                                                                                                                                                                                                       | HCI<br>HNO <sub>3</sub><br>H <sub>2</sub> SO <sub>4</sub><br>COLD<br>FILTRATION*                                                                                                                                      | (ml/oz)<br>TYPE*<br>TDS                                                                                                                                                               | 100000HA BUSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MW-02-200408                                                                                                                                                                                                                                                                                                                   | 8/30 1418 AG                                                                                                                                                                                                                    | 2 7 1                                                                                                                                                                                                                 | SLOZ PIX                                                                                                                                                                              | × TDS by EPA1401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MW-06-200408                                                                                                                                                                                                                                                                                                                   | 5/30 1444 1                                                                                                                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MW-07-200403                                                                                                                                                                                                                                                                                                                   | \$ 5/30 1608                                                                                                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MV-05-200408                                                                                                                                                                                                                                                                                                                   | 1335                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MW-09-200408                                                                                                                                                                                                                                                                                                                   | 1357                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MW-20-200408                                                                                                                                                                                                                                                                                                                   | 1517                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MW-ZI-200408                                                                                                                                                                                                                                                                                                                   | 547                                                                                                                                                                                                                             | A A                                                                                                                                                                                                                   |                                                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                          | A CARLEN AND                                                                                                                                                                                                                    | TOTAL NUMBER OF CONTA                                                                                                                                                                                                 | RS 7 LABORATORY COMMENT                                                                                                                                                               | TS/CONDITION OF SAMPLES Cooler Temp: 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RELINQUISHE                                                                                                                                                                                                                                                                                                                    | D BY:                                                                                                                                                                                                                           |                                                                                                                                                                                                                       |                                                                                                                                                                                       | RECEIVED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SIGNATURE PRINTED N                                                                                                                                                                                                                                                                                                            | AME COMPAN                                                                                                                                                                                                                      | Y DATE                                                                                                                                                                                                                | IME SIGNATURE                                                                                                                                                                         | PRINTED NAME COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amay Matt Hill                                                                                                                                                                                                                                                                                                                 | Yard MFG<br>TYLE Alpha                                                                                                                                                                                                          | 8/31/04                                                                                                                                                                                                               | 25 Annihara                                                                                                                                                                           | Shen Speaks Alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 'KEY Mattur                                                                                                                                                                                                                                                                                                                  | AD - aqueous NA - nonaqueous SD - soir SL - sl<br>DISTRI                                                                                                                                                                        | odge P - petroleum A - av 01 - other Contain<br>I <b>BUTION:</b> PINK Field Copy VELLOW Laborato                                                                                                                      | P - plastic G - plass T - tetion B - brass 0T - other Film<br>by WHITE Return to Originator                                                                                           | rahor: F - Intered U - unfiltered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

PROJECT 9329



Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267



Task 22 GW Monitaring

BLIND DUPLICATE

08 September 2004

Geomatrix Consultants Attn: Ross Steenson 2101 Webster Street, 12th Floor Oakland, CA 94612 RE: SPI Arcata GW Monitoring Work Order: A409002

Enclosed are the results of analyses for samples received by the laboratory on 08/31/04 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Melanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager



Alpha Analytical Laboratories Inc.

#### CHEMICAL EXAMINATION REPORT

Page 1 of 5

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Report Date: 09/08/04 15:13 Project No: 9329.000/030275.22 Project ID: SPI Arcata GW Monitoring

Client PO/Reference

| Order Number | Receipt Date | e/Time |
|--------------|--------------|--------|
| A409002      | 08/31/2004   | 16:30  |

Client Code GEOMAT

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-------------|---------------|--------|----------------|----------------|
| MW-A-200408 | A409002-01    | Water  | 08/30/04 00:00 | 08/31/04 16:30 |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Medanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager



Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 2 of 5

| Geomatrix Consultan  | ts         |
|----------------------|------------|
| 2101 Webster Street, | 12th Floor |
| Oakland, CA 94612    |            |
| Attn: Ross Steenson  |            |

| 1000000000        |
|-------------------|
| 0/030275.22       |
| ata GW Monitoring |
|                   |

| Order Number | Receipt Date/Time | Client Code                | Client PO/Reference |
|--------------|-------------------|----------------------------|---------------------|
| A409002      | 08/31/2004 16:30  | GEOMAT                     |                     |
|              | Alaba             | Analytical Laboratories In | c                   |

|                                   |            | Alpha A | marytical      | Laborato  |          |                      |        |      |
|-----------------------------------|------------|---------|----------------|-----------|----------|----------------------|--------|------|
|                                   | METHOD     | BATCH   | PREPARED       | ANALYZED  | DILUTION | RESULT               | POL    | NOTE |
| (W-A-200408 (A409002-01)          |            |         | Sample Typ     | pe: Water | Sa       | mpled: 08/30/04 00:0 | 0      |      |
| Chlorinated Phenols by Canadian P | ulp Method |         |                |           |          |                      | 1100 I |      |
| 2.4.6 Trichlorophenol             | EnvCan     | AI40401 | 09/03/04       | 09/04/04  | 1        | ND ug/l              | 1.0    |      |
| 2,4,0-Tricinorophenor             | "          |         | "              | **        | **       | 6.9 "                | 1.0    |      |
| 2,3,5,6-1 etrachiorophenol        |            |         |                | 09/06/04  | 10       | 68 "                 | 10     |      |
| 2,3,4,6-Tetrachlorophenol         |            |         | 755 G<br>Carlo | 09/00/04  | 10       | E E "                | 1.0    |      |
| 2,3,4,5-Tetrachlorophenol         |            |         |                | 09/04/04  | 1        | 2.2                  | 1.0    |      |
| Pentachlorophenol                 |            |         |                | 09/08/04  | 1000     | 2800 "               | 1000   |      |
| Surrogate: Tribromophenol         |            | "       | "              | 09/04/04  |          | 102 %                | 79-119 |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager



Page 3 of 5

| Geomatr<br>2101 We<br>Oakland<br>Attn: Ro | ix Consultants<br>Ebster Street, 12th Floor<br>, CA 94612<br>ss Steenson |                       | Report Date:<br>Project No:<br>Project ID: | 09/08/04 15:13<br>9329.000/030275.22<br>SPI Arcata GW Monitoring |  |
|-------------------------------------------|--------------------------------------------------------------------------|-----------------------|--------------------------------------------|------------------------------------------------------------------|--|
| Order Number<br>A409002                   | Receipt Date/Time 08/31/2004 16:30                                       | Client Code<br>GEOMAT |                                            | Client PO/Reference                                              |  |

### Chlorinated Phenols by Canadian Pulp Method - Quality Control

| Batch AI40401 - Solvent Extraction         Prepared: 09/03/04         Blank (AI40401-BLK1)       Prepared: 09/03/04         Surrogate: Tribromophenol       25.3       ug/l       25.0         2,4,6-Trichlorophenol       ND       1.0       "         2,3,5,6-Tetrachlorophenol       ND       1.0       "         2,3,4,6-Tetrachlorophenol       ND       1.0       "         2,3,4,5-Tetrachlorophenol       ND       1.0       "         Pentachlorophenol       ND       1.0       "         LCS (AI40401-BS1)       Prepared: 09/03/04       Surrogate: Tribromophenol       24.4       ug/l       25.0         24.4       Triblorophenol       5.53       1.0       "       5.00 | Analyzed:<br>101<br>Analyzed:  | 09/04/04 79-119    |      |    |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|------|----|---|
| Blank (AI40401-BLK1)         Prepared: 09/03/04           Surrogate: Tribromophenol         25.3         ug/l         25.0           2,4,6-Trichlorophenol         ND         1.0         "           2,3,5,6-Tetrachlorophenol         ND         1.0         "           2,3,4,6-Tetrachlorophenol         ND         1.0         "           2,3,4,5-Tetrachlorophenol         ND         1.0         "           2,3,4,5-Tetrachlorophenol         ND         1.0         "           Pentachlorophenol         ND         1.0         "           LCS (AI40401-BSI)         Prepared: 09/03/04         Surrogate: Tribromophenol         25.0           2.4 6 Tricklesophonol         24.4         ug/l         25.0                                                                                                                                                                                                                     | Analyzed:<br>101<br>Analyzed:  | 09/04/04<br>79-119 |      |    |   |
| Surrogate: Tribromophenol         25.3         ug/l         25.0           2,4,6-Trichlorophenol         ND         1.0         "           2,3,5,6-Tetrachlorophenol         ND         1.0         "           2,3,5,6-Tetrachlorophenol         ND         1.0         "           2,3,4,6-Tetrachlorophenol         ND         1.0         "           2,3,4,5-Tetrachlorophenol         ND         1.0         "           2,3,4,5-Tetrachlorophenol         ND         1.0         "           Pentachlorophenol         ND         1.0         "           LCS (AI40401-BS1)         Prepared: 09/03/04         Surrogate: Tribromophenol         25.0           2.4 6 Trickbarophonol         5.3         1.0         "         5.00                                                                                                                                                                                                  | 101<br>Analyzed:               | 79-119             |      |    |   |
| ND     1.0     "       2,4,6-Trichlorophenol     ND     1.0     "       2,3,5,6-Tetrachlorophenol     ND     1.0     "       2,3,4,6-Tetrachlorophenol     ND     1.0     "       2,3,4,5-Tetrachlorophenol     ND     1.0     "       2,3,4,5-Tetrachlorophenol     ND     1.0     "       Pentachlorophenol     ND     1.0     "       LCS (AI40401-BS1)     Prepared: 09/03/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyzed:                      | 00/04/04           |      |    |   |
| ND     1.0     "       2,3,5,6-Tetrachlorophenol     ND     1.0     "       2,3,4,6-Tetrachlorophenol     ND     1.0     "       2,3,4,5-Tetrachlorophenol     ND     1.0     "       Pentachlorophenol     ND     1.0     "       LCS (AI40401-BS1)     Prepared: 09/03/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyzed:                      | 00/04/04           |      |    |   |
| ND     1.0     "       2,3,4,6-Tetrachlorophenol     ND     1.0     "       2,3,4,5-Tetrachlorophenol     ND     1.0     "       Pentachlorophenol     ND     1.0     "       LCS (AI40401-BS1)     Prepared: 09/03/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyzed:                      | 00/04/04           |      |    |   |
| ND         1.0         "           Pentachlorophenol         ND         1.0         "           LCS (AI40401-BS1)         Prepared: 09/03/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyzed:                      | 00/04/04           |      |    |   |
| ND         1.0         "           LCS (AI40401-BS1)         Prepared: 09/03/04           Surrogate: Tribromophenol         24.4         ug/l         25.0           2.4.6 Triphlemethanol         5.3         1.0         "         5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analyzed:                      | 00/04/04           |      |    |   |
| LCS (AI40401-BS1)         Prepared: 09/03/04           Surrogate: Tribromophenol         24.4         ug/l         25.0           24.6 Tribromophenol         5.53         1.0         "         5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyzed:                      | 00/04/04           |      |    |   |
| Surrogate: Tribromophenol         24.4         ug/l         25.0           24.6 Tribrherenhenel         5.53         1.0         "         5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second on a deriver of | 09/04/04           |      |    |   |
| 2.4.6 Tricklerophanol 5.53 1.0 " 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.6                           | 79-119             |      |    |   |
| A Del HICHOLOUCIUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111                            | 81-120             |      |    |   |
| 2 3 5 6-Tetrachlorophenol 5.26 1.0 " 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105                            | 78-108             |      |    |   |
| 2 3 4 6-Tetrachlorophenol 5.22 1.0 " 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104                            | 76-108             |      |    |   |
| 2 3 4 5-Tetrachlorophenol 5.02 1.0 " 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                            | 80-116             |      |    |   |
| Pentachlorophenol 4.48 1.0 " 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89.6                           | 86-109             |      |    |   |
| Matrix Spike (AI40401-MS1) Source: A409001-06 Prepared: 09/03/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyzed                       | : 09/04/04         |      |    |   |
| Surrogate: Tribromophenol 24.6 ug/ 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98.4                           | 79-119             |      |    |   |
| 2.4.6-Trichlorophenol 5.71 1.0 " 5.00 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111                            | 75-125             |      |    |   |
| 2 3 5 6-Tetrachlorophenol 5.45 1.0 " 5.00 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104                            | 69-115             |      |    |   |
| 2.3.4.6-Tetrachlorophenol 5.29 1.0 " 5.00 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103                            | 66-117             |      |    |   |
| 2.3.4.5-Tetrachlorophenol 5.08 1.0 " 5.00 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102                            | 70-115             |      |    |   |
| Pentachlorophenol 4.65 1.0 " 5.00 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.8                           | 55-124             |      |    |   |
| Matrix Spike Dup (AI40401-MSD1) Source: A409001-06 Prepared: 09/03/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyzed                       | : 09/04/04         |      |    | _ |
| Surrogate: Tribromophenol 25.6 ug/l 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102                            | 79-119             |      |    |   |
| 2.4.6-Trichlorophenol 5.71 1.0 " 5.00 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | 75.175             | 0.00 | 20 |   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager



208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

### CHEMICAL EXAMINATION REPORT

Page 4 of 5

| Geomatrix Consultan  | ts         |
|----------------------|------------|
| 2101 Webster Street, | 12th Floor |
| Oakland, CA 94612    |            |
| Attn: Ross Steenson  |            |

| Report Date: | 09/08/04 15:13           |  |  |  |  |  |  |
|--------------|--------------------------|--|--|--|--|--|--|
| Project No:  | 9329.000/030275.22       |  |  |  |  |  |  |
| Project ID:  | SPI Arcata GW Monitoring |  |  |  |  |  |  |
|              | Client PO/Reference      |  |  |  |  |  |  |

Client Code Receipt Date/Time Order Number GEOMAT A409002 08/31/2004 16:30

### Chlorinated Phenols by Canadian Pulp Method - Quality Control

| Analyte(s)                         | Result | PQL      | Units      | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Flag |
|------------------------------------|--------|----------|------------|----------------|------------------|----------|----------------|-------|--------------|------|
| Batch AI40401 - Solvent Extraction | Sour   | ce: A409 | 001-06     | Prepared:      | 09/03/04         | Analyzed | 1: 09/04/04    |       |              |      |
| Matrix Spike Dup (A140401-MSD1)    | 5 40   | 1.0      |            | 5.00           | ND               | 103      | 69-115         | 0.922 | 20           |      |
| 2,3,5,6-Tetrachlorophenol          | 5.40   | 1.0      | <b>a</b> ( | 5.00           | ND               | 102      | 66-117         | 1.14  | 20           |      |
| 2,3,4,6-Tetrachlorophenol          | 5.23   | 1.0      |            | 5.00           | ND               | 101      | 70-115         | 0.791 | 20           |      |
| 2,3,4,5-Tetrachlorophenol          | 5.04   | 1.0      |            | 5.00 ND        | ND               | 90.4     | 55-124         | 0.643 | 20           |      |
| Pentachlorophenol                  | 4.68   | 1.0 "    |            |                | ND               |          |                |       |              |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Medanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager



Page 5 of 5

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Report Date: 09/08/04 15:13 Project No: 9329.000/030275.22 Project ID: SPI Arcata GW Monitoring

Client PO/Reference Client Code Receipt Date/Time Order Number GEOMAT 08/31/2004 16:30 A409002

### Notes and Definitions

- Analyte DETECTED DET
- Analyte NOT DETECTED at or above the reporting limit ND Not Reported NR
- Sample results reported on a dry weight basis dry
- Relative Percent Difference RPD
- Practical Quantitation Limit PQL
| MFG, INC.                                                                                                                                                                                                                                                                                                                                            | CHAI                                                                                                                | N-OF-0                                                                                               | CUSTO                                                                            | DY RECO                                                                                            | RD AND REG                                                                                                                               | QUEST I                                                         | COC No. 46289                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|
| Ccata Office         CA - Invine         CA - San i           rescent Way         17770 Cartwright Rd.         180 Howa           x CA 95521-6741         180 E000         Invine, CA 92614           (707) 826-8430 - FAX (707) 826-8437         Tal (949) 253-2951         Tax (949) 253-2954                                                      | Francisco CO - F<br>rd St., Ste. 200 4900 1<br>isco, CA 94105 Ste. 3<br>905-7110 Bould<br>495-7107 Tel (3<br>Fax (3 | Boulder<br>Pearl East Cir.<br>00W<br>er. CO 80301<br>03) 447-1823<br>303) 447-1836                   | D - Osburn<br>PO Box 30<br>Wallace, ID 838<br>Tel (208) 556-6<br>Fax (208) 556-7 | □ MT - Missoula<br>PO Box 7158<br>Missoula. MT 5<br>811 Tel (406) 728-4<br>7271 Fax (406) 728-4    | □ NJ - Edison<br>1090 King Georges Pi<br>500 Stc 703<br>600 Edison. NJ 08837<br>Tel (732) 738-5707<br>Fax (732) 738-5711                 | ost Rd. <b>* <u>6</u> C</b><br>2(0<br>0a                        | omatrix<br>Di Webgler St 12"floo<br>Icland, (A94617 |
| OR - Portland         PA - Pittsburgh         TX - Aut           1020 SW Taylor St.         800 Vinial St.         Bidg. A           Ste 530         Pittsburgh, PA 15212         Bidg. IV           Portland, OF 97205         Tel (412) 321-2278         Austin, Tel (512           Tel (503) 228-8631         Fax (412) 321-2283         Tel (512 | stin<br>licewood Springs Rd.<br>1 <sup>st</sup> Floor<br>17 78759<br>1) 338-1667<br>2] 338-1331                     | TX - Houston<br>12337 Jones Rd<br>Ste. 230<br>Houston, TX 770<br>Tel (281) 890-50<br>Fax (281) 890-5 | ☐ TX - F<br>320 E<br>Port L<br>070 Tel (3)<br>068 Fax (3)<br>064                 | Port Lavacca □TX<br>(ast Main 453<br>Lavaca, TX 77979 Tex<br>61) 552-8839 Tel<br>361) 553-6115 Fax | - Texarkana [WA - 3<br>2 Summerhill Rd. 19203<br>karkana, TX 75503 Ste. 10<br>(903) 794-0625 Lynnw<br>k (903) 794-0625 Tel (42<br>Fax (4 | 962106<br>00<br>100d, WA 98036<br>25) 921-4000<br>125) 921-4040 | 07663-4107                                          |
| PROJECT NO: 030275.72<br>SAMPLER (Signature): Math 714<br>METHOD OF SHIPMENT: Course?                                                                                                                                                                                                                                                                | PROJECT                                                                                                             | NAME: 2<br>PROJ<br>CARRIER/                                                                          | ECT MAN                                                                          | AGER: <u>Ross</u><br>NO: <u>-</u>                                                                  | Monitoring<br>Steenson<br>DESTINA                                                                                                        | TION: _/                                                        | PAGE: 1 OF: 1<br>DATE: 8/31/04                      |
|                                                                                                                                                                                                                                                                                                                                                      | SAMPLES                                                                                                             |                                                                                                      |                                                                                  |                                                                                                    |                                                                                                                                          | ANALYSIS RI                                                     | EQUEST                                              |
|                                                                                                                                                                                                                                                                                                                                                      | Sample                                                                                                              | Pres                                                                                                 | ervation                                                                         | Containers                                                                                         | Constituents/Method                                                                                                                      | Handling                                                        | Remarks                                             |
| Field<br>Sample<br>Identification                                                                                                                                                                                                                                                                                                                    | DATE TIME                                                                                                           | HCI<br>HNO <sub>3</sub>                                                                              | H <sub>2</sub> SO <sub>4</sub>                                                   | FILTRATION*<br>VOLUME<br>(ml/oz)<br>TYPE*<br>NO.                                                   | As/msD<br>Ms/msD                                                                                                                         | HOLD<br>RUSH<br>STANDARD                                        | A409002                                             |
| MW-A - 200 408                                                                                                                                                                                                                                                                                                                                       | 8/30 - 4                                                                                                            | 402                                                                                                  | +                                                                                | 4 (25 m) G Z                                                                                       |                                                                                                                                          |                                                                 | and a plan athest                                   |
| MW-20-200408                                                                                                                                                                                                                                                                                                                                         | 8/30 1517                                                                                                           | 40                                                                                                   | ×                                                                                |                                                                                                    |                                                                                                                                          |                                                                 |                                                     |
|                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     | то                                                                                                   | TAL NUMBER OF                                                                    | CONTAINERS                                                                                         | LABORATORY COMMENTS                                                                                                                      | CONDITION OF SAM                                                | IPLES Cooler Temp: 2 6                              |
|                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     | (and the based                                                                                       |                                                                                  | TÍ                                                                                                 |                                                                                                                                          | RECEIVED                                                        | BY:                                                 |
| SIGNATURE PRINTED NAME                                                                                                                                                                                                                                                                                                                               | COMP                                                                                                                | ANY                                                                                                  | DATE                                                                             |                                                                                                    | SIGNATURE                                                                                                                                | PRINTED N                                                       | AME COMPANY                                         |
| Compton and TAX                                                                                                                                                                                                                                                                                                                                      | ac Alph                                                                                                             | A                                                                                                    | 83104                                                                            | 16:30                                                                                              | Non Sparks                                                                                                                               | Shon S                                                          | Dects AUPhA-<br>LABORATORY                          |
| *KEY Matrix A0-au                                                                                                                                                                                                                                                                                                                                    | ueous NA - nonaqueous SO - soil                                                                                     | SL - sludge P - petrole<br>DISTRIBUTION: PI                                                          | l<br>eum: A - air OT - other<br>INK: Field Copy: YELLO                           | Containers P - plastic G - plass<br>W Laboratory Copy WHITE Return :                               | i T - tetlon B - brass OT - other Filtra<br>to Originator                                                                                | ition: F - filtered: U - onfiltere                              | ज<br>                                               |



## APPENDIX C Laboratory Data Quality Review



#### **APPENDIX C**

#### LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed quality assurance and quality control (QA/QC) procedures to assess quality of the analytical results by evaluating the precision, accuracy, and completeness of the data. We performed the data quality review using U.S. Environmental Protection Agency National Functional Guidelines for Organic Data Review (U.S. EPA, 1999).

#### PRECISION

Data precision is evaluated by comparing analytical results for the following:

- concentrations in primary and (blind) duplicate field samples
- concentrations of matrix spike (MS) and matrix spike duplicate (MSD) concentrations
- laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) concentrations

Concentrations detected in the primary or spiked samples are compared with respective concentrations in duplicate or duplicate spiked samples. Relative percent differences (RPDs) are used to calculate results, using the following equation:

$$RPD = \frac{[S-D]}{(S+D)/2} \times 100$$

Where,

S = Sample concentration

D = Duplicate sample concentration

RPDs for primary and duplicate field samples are calculated in Table C-1. RPDs are only calculated when primary and duplicate sample concentrations are greater than or equal to two times the laboratory reporting limits. In cases where the detection in either the primary or duplicate sample, or both, are less than two times the reporting limit, the absolute difference between the primary and duplicate sample concentration is calculated. RPDs for MS/MSD and LCS/LCSD analysis are reported in laboratory analytical reports, included in Appendix B and D.



RPDs for the groundwater monitoring program and pilot study program data were acceptable.

#### ACCURACY

Data accuracy is assessed by evaluating holding times required by analytical methods, sample preservation, laboratory method blank results, recovery of laboratory surrogates, MS/MSD results, and LCS/LCSD results. We evaluated these criteria for samples collected for the quarterly groundwater monitoring and pilot study programs. Results of the review are summarized below.

- **Hold times.** Samples were analyzed within the holding time for each analytical method.
- **Preservation.** Samples were collected in laboratory-supplied containers with preservatives, if applicable. Samples were stored and transported to analytical laboratories in chilled coolers.
- **Method blanks.** No detections were observed in any of the method blanks analyzed by the laboratory.
- **Surrogate Recoveries.** Laboratory surrogates were recovered at concentrations within acceptable ranges.
- MS/MSD analysis. RPDs were acceptable.
- LCS/LCSD analysis. RPDs were acceptable.

#### COMPLETENESS

Based on our laboratory data quality review, data contained in this report is considered complete and representative.



# TABLE C-1RELATIVE PERCENT DIFFERENCESBETWEEN DUPLICATE SAMPLES1

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

| Concentrations reported in incrograms per inter ( $\mu g/L$ ). |                    |                                  |                                              |                                   |  |  |  |
|----------------------------------------------------------------|--------------------|----------------------------------|----------------------------------------------|-----------------------------------|--|--|--|
|                                                                |                    | Quar<br>Groundwat                |                                              |                                   |  |  |  |
| Constituent                                                    | Reporting<br>Limit | Sample<br>Concentration<br>MW-21 | Duplicate<br>Sample<br>Concentration<br>MW-A | Relative<br>Percent<br>Difference |  |  |  |
| РСР                                                            | 1                  | 2700                             | 2800                                         | 3.6%                              |  |  |  |
| 2,3,4,5-TeCP                                                   | 1                  | 5.4                              | 5.5                                          | 1.8%                              |  |  |  |
| 2,3,4,6-TeCP                                                   | 1                  | 66                               | 68                                           | 3.0%                              |  |  |  |
| 2,3,5,6-TeCP                                                   | 1                  | 6.4                              | 6.9                                          | 7.5%                              |  |  |  |

Concentrations reported in micrograms per liter (µg/L)

Notes:

- 1. Quarterly groundwater samples collected on August 30, 2004 and analyzed by Alpha Analytical Laboratory, of Ukiah, California, for chlorinated phenols using the Canadian Pulp Method. Only constituents with detections in either the primary and/or secondary sample are listed in this table.
- 2. RPD calculated as ([2(S-D)]/[S+D]) x 100 where S is the sample concentration and D is the blind duplicate sample concentration.
- 3. For sample concentrations less than two times the reporting limit, the absolute difference between the sample concentration and the blind duplicate sample is calculated.

Abbreviations: PCP = pentachlorophenol TeCP = tetrachlorophenol



## APPENDIX D Copies of Manifest for Wastewater Disposal

State of California—Environmental Protection Agency Form Approved OMB No. 2050–0039 (Expires 9-30-99) Please print or type. Form destanced Expires 9-30-99)

See Instructions on back of page 6.

Department of Taxic Substances Control

| UNIFORM HAZARDO                                                                                                                                       | US                | 1. Generator's                      | US EPA ID       | No.                      |           | Monirest                                                                                                                                                                                                                            | Document   | 140.                                                                                                            |                    | is not requir                 | ed by Federal law.                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|-----------------|--------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|
| WASTE MANIFEST                                                                                                                                        |                   | CALDIO                              | 41714           | 0315                     | 1910      | 5 2 4                                                                                                                                                                                                                               | 0          | 4 4.                                                                                                            | of                 |                               |                                                                                                                  |
| 3. Generator's Name and Mailing A                                                                                                                     | Adress            | SATA                                |                 |                          |           |                                                                                                                                                                                                                                     |            | A. State M                                                                                                      | anitest Document   | Number 21                     | 102404                                                                                                           |
| P.O. BOX 1189                                                                                                                                         | 3 // Im 12 / 16 1 |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            | R State G                                                                                                       | nerator's ID       |                               | a and a state of the                                                                                             |
| ARCATA                                                                                                                                                | 2 3414            | CA                                  | 96516           |                          |           |                                                                                                                                                                                                                                     |            |                                                                                                                 | 1111               | 1.1.1                         | 1.1414                                                                                                           |
| A. Generator's mone ( /UJ MA                                                                                                                          |                   |                                     | 6 115           | EPA ID Num               | ber       |                                                                                                                                                                                                                                     |            | C. State Tr                                                                                                     | ansporter's ID [Re | secred.]                      | Station .                                                                                                        |
|                                                                                                                                                       | al central        | CC.                                 |                 |                          |           |                                                                                                                                                                                                                                     | 1 '3 E     | D. Trans                                                                                                        | orter's Phone      | 1900007                       | 4495                                                                                                             |
| ASELORY ENVIRONMENT                                                                                                                                   | al servi          | -53                                 | CA              | D 0 2                    | 18 3      | 191                                                                                                                                                                                                                                 | 1310       | D. Hump                                                                                                         |                    | toonlor                       | 4 4 104                                                                                                          |
| 7. Transporter 2 Company Name                                                                                                                         |                   |                                     | 8. US           | EPA ID Num               | iber      |                                                                                                                                                                                                                                     |            | E, Stata Tr                                                                                                     | unsporter's ID [Re | served.]                      |                                                                                                                  |
|                                                                                                                                                       |                   |                                     | 11              | 111                      | II.       | 111                                                                                                                                                                                                                                 | 11         | F. Transpo                                                                                                      | orter's Phone      | 1. S.                         |                                                                                                                  |
| 9. Designated Facility Name and Si                                                                                                                    | ite Address       |                                     | 10. US          | EPA ID Nun               | nbor      |                                                                                                                                                                                                                                     |            | G. Stote F                                                                                                      | ocility's ID       | e re é à                      |                                                                                                                  |
| DEMENINO / REPUBLICA                                                                                                                                  | CTREST            |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            | H Facility                                                                                                      | Ca Phone           | 1111                          |                                                                                                                  |
| CONDICIONI                                                                                                                                            | CA                | 90222                               | IC IA           | BI OITI                  | 0 0       | 11313                                                                                                                                                                                                                               | 3 15 12    | (310)                                                                                                           | 37-7100            | 2 43                          |                                                                                                                  |
|                                                                                                                                                       |                   | A Name Hanne                        | d Class and     |                          | 1         | <u> </u>                                                                                                                                                                                                                            | 12. Co     | ntoiners                                                                                                        | 13. Total          | 14. Unit                      | and the second |
| TT, US DOT Description (including )                                                                                                                   |                   | g riona, riozar                     |                 |                          | <u>.</u>  |                                                                                                                                                                                                                                     | No.        | Туре                                                                                                            | Quantity           | WI/Vol                        | Stole Car                                                                                                        |
| NON RORA HAZARDOL                                                                                                                                     | IS WASTE          | LIQUID (W)                          | ATER WI         | TH TRAC                  | £         |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               | Che:                                                                                                             |
| PENTACHLOROPHENO                                                                                                                                      | н.)               |                                     |                 |                          |           | 0                                                                                                                                                                                                                                   | rich?      | MM                                                                                                              | 0011111            | DAG                           | NONE                                                                                                             |
| b                                                                                                                                                     |                   |                                     |                 |                          |           |                                                                                                                                                                                                                                     | 7          |                                                                                                                 | 77                 |                               | Stom                                                                                                             |
|                                                                                                                                                       |                   |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               | EPA/Othar                                                                                                        |
|                                                                                                                                                       |                   |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            | 11-                                                                                                             |                    |                               |                                                                                                                  |
| c.                                                                                                                                                    |                   |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               | Side                                                                                                             |
|                                                                                                                                                       |                   |                                     |                 |                          |           |                                                                                                                                                                                                                                     | ã ă        | 4                                                                                                               | 1 1 1 1 1          |                               | EPA/Other                                                                                                        |
| d                                                                                                                                                     |                   |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            | - <del>  -</del>                                                                                                | ┟╵╼┕━┷┙            | •••                           | State                                                                                                            |
|                                                                                                                                                       |                   |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               | FRA JOIL                                                                                                         |
|                                                                                                                                                       |                   |                                     |                 | 011.0                    |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               | CFA/ Onner                                                                                                       |
| J. Additional Descriptions for Mate                                                                                                                   | rials Listed Ab   | 979                                 |                 | l<br>kan lida            |           |                                                                                                                                                                                                                                     | 1.1        | K. Hand                                                                                                         | ling Codes for Wa  | istes Listed Ab               |                                                                                                                  |
|                                                                                                                                                       | × <u></u> ×       |                                     |                 |                          | S         |                                                                                                                                                                                                                                     | i the      |                                                                                                                 | ું હું છે.         | D.                            |                                                                                                                  |
|                                                                                                                                                       |                   |                                     | 1) a Cel<br>Sar | · · · · · · · · · ·      |           | 4 1 P +                                                                                                                                                                                                                             |            | G.                                                                                                              |                    | d.                            | 1. C. M. C.                                                                                                      |
| Fr :1= 431774                                                                                                                                         | 15                |                                     |                 |                          |           | der de la composition de la composition<br>La composition de la c | 1107-111   |                                                                                                                 | · · · · · ·        | 40.0                          |                                                                                                                  |
| 15. Special Handling Instructions of                                                                                                                  | and Additional    | Information                         |                 | F                        | FRG       | FMOY CO                                                                                                                                                                                                                             | NTAC       | CHENT                                                                                                           | REG LECOL          | 674.9000                      |                                                                                                                  |
| MAERO # 11A 171                                                                                                                                       |                   |                                     |                 | C                        |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    | and the first                 |                                                                                                                  |
| SITE: 2000 NEW MAY                                                                                                                                    | Y BASE RO         | DAD, ARCAT                          | A CAS           | 历旧                       |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               |                                                                                                                  |
|                                                                                                                                                       | N: thereby de     | close that the c                    | antents of the  |                          | al are fo | lly and accu                                                                                                                                                                                                                        | rataly day | celland alterna                                                                                                 | by proper chiegh   | a second and a                | en classified packed                                                                                             |
| marked, and labeled, and are                                                                                                                          | e in all respect  | in proper cond                      | dition for tra  | insport by hi            | ghway a   | according to                                                                                                                                                                                                                        | applicab   | e internation                                                                                                   | al and national g  | overnment reg                 | ulations.                                                                                                        |
| If I am a large quantity gener                                                                                                                        | rator. I certify  | that I have a p                     | roaram in p     | loca to radu             | ce the v  | olume and t                                                                                                                                                                                                                         | onicity of | waste anner                                                                                                     | ated to the dears  | n I have deter                | mined to be econom                                                                                               |
| procilcable and that I have so<br>and the environment; OR, if I                                                                                       | alocted the pro   | cticable method<br>vantity generate | of treatment    | ade a good               | foith of  | sal currently                                                                                                                                                                                                                       | available  | to me which                                                                                                     | ion and select the | esent and luture best waste m | re threat to human h<br>anagament method t                                                                       |
| available to me and that I car                                                                                                                        | n afford.         |                                     |                 | 0                        |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               |                                                                                                                  |
| Printed/Typed Name                                                                                                                                    | 75                |                                     |                 | Signaturn                |           | d.                                                                                                                                                                                                                                  |            | and a second                                                                                                    |                    | M                             | onth Day<br>사실 Cutch                                                                                             |
| 17. Transporter 1 Acknowledgem                                                                                                                        | ent of Receipt    | of Materials                        |                 | I                        | 1         | the start                                                                                                                                                                                                                           |            | Contraction of the second s |                    |                               | الملكا                                                                                                           |
| Printed/Typed Name                                                                                                                                    | - No              |                                     |                 | Signature                | 1 m       | 1-1-                                                                                                                                                                                                                                | Í A.       | 1.                                                                                                              |                    | M                             | onth Day                                                                                                         |
| JULE TO THE                                                                                                                                           | NUN               | 1                                   |                 | /¶                       | tit       | - A.L                                                                                                                                                                                                                               | A.I.I      | G. I                                                                                                            | 115 m              | 1.0                           | 11/13                                                                                                            |
| 18. Ironsporter 2 Acknowledgem                                                                                                                        | ient of Receipt   | of Materials                        |                 | Signature                |           |                                                                                                                                                                                                                                     | - N        |                                                                                                                 |                    | M                             | onth Day                                                                                                         |
| Printed/Typed Name                                                                                                                                    |                   |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               |                                                                                                                  |
| r Printed/Typed Name<br>E                                                                                                                             | 102               |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    | I                             |                                                                                                                  |
| F 19. Discrepancy Indication Space                                                                                                                    |                   |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               |                                                                                                                  |
| F Printed/Typed Name<br>R 19. Discrepancy Indication Space<br>F A                                                                                     |                   |                                     |                 |                          |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               |                                                                                                                  |
| F<br>Printed/Typed Name<br>R<br>19. Discrepancy Indication Space<br>F<br>A<br>C                                                                       | ,                 | 2                                   |                 |                          |           |                                                                                                                                                                                                                                     |            |                                                                                                                 |                    |                               |                                                                                                                  |
| Printed/Typed Name<br>F 19. Discrepancy Indication Space<br>A<br>C<br>I<br>I<br>20. Façility Q→ner or Operator C                                      | Certification of  | receipt of hazar                    | dous matari     | als covered              | by this m | nanifest exce                                                                                                                                                                                                                       | npt as not | nd in Item 19                                                                                                   |                    |                               |                                                                                                                  |
| Printed/Typed Name<br>Printed/Typed Name<br>19. Discrepancy Indication Space<br>F<br>C<br>I<br>20. Facility Qwner or Operator C<br>Printed/Typed Name | Certification of  | receipt of hazar                    | dovs matari     | als covered<br>Signature | by this n | nanifest exce                                                                                                                                                                                                                       | npt as not | nd in Item 19                                                                                                   |                    | N                             | ionth Day                                                                                                        |

DO NOT WRITE BELOW THIS LINE.

.



### **APPENDIX E**

### Laboratory Reports and Chain-of-Custody Records for Surface Water and Debris Samples—Pilot Study Program



### APPENDIX E TRACER DILUTION TESTS

#### Sierra Pacific Industries Arcata Division Sawmill Arcata, California

#### TABLE OF CONTENTS

#### Page

| 1.0 | BACK  | GROUND                         | .1 |
|-----|-------|--------------------------------|----|
| 2.0 | FIELD | METHODS                        | .2 |
|     | 2.1   | INSTRUMENT CALIBRATION         | .2 |
|     | 2.2   | TRACER RELEASE AND MONITORING. | .2 |
| 3.0 | RESU  | LTS                            | .3 |

#### TABLES

| Table E-1 | Summary of Tracer Dilution Test Setup and Operation |
|-----------|-----------------------------------------------------|
| Table E-2 | Laboratory Analytical Results for Bromide           |

Table E-3Summary of Tracer Dilution Test Results

#### **FIGURES**

| Figure F-1 | Calibration | Curves |
|------------|-------------|--------|
| Figure E-1 | Calibration | Curves |

Figure E-2 Plots of Bromide Concentrations versus Time

#### APPENDIX

Appendix E-1 Alpha Analytical Work Order A408430



### APPENDIX E TRACER DILUTION TESTS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

#### 1.0 BACKGROUND

Tracer dilution methods involve adding a "tracer" to the screened interval of a well, followed by monitoring the concentration of the tracer over time in the same well. Periodic measurements of the tracer concentration are performed as the tracer is flushed from the well screen under natural groundwater flow conditions. The rate of groundwater flow through the well screen (Q) is directly determined from the rate of tracer dilution (i.e., the change in tracer concentration with time).

Estimating Q (Dilution Phase): Dilution of the tracer occurs as groundwater moves through the well screen, and the rate of dilution is directly related to Q and inversely related to the test interval volume (V) as follows:

$$dC/dt = -\left(\frac{Q}{V}\right) \bullet C(t)$$
 Equation (1)

where V = the volume of the test interval (volume of the well screen + casing where mixing and measurement of tracer concentration occurs). The tracer is added to the well screen and is well mixed, resulting in an initial tracer concentration (C<sub>o</sub>) for the start of the test (time [t] = 0). Flow rate (Q) is calculated directly by integrating Equation 1 from time t = 0 to some elapsed time (t), where C<sub>o</sub> decreases to a concentration C.

Q can be obtained graphically by plotting the natural logarithm of the tracer concentration versus time (i.e.,  $\ln[C]$  versus t). The graphical method results in an average value for all of the data collected over the test, rather than just 2-point measurements. The initial tracer concentration ( $C_o$ ) can be extrapolated from the data (the Y-intercept of the plot is  $\ln[C_o]$ ), as a check on the test conditions. Q can be obtained from the slope of Equation 2 below:

$$\ln(C) = -\left(\frac{Q}{V}\right)t + \ln(C_o) \qquad \text{Equation (2)}$$



The flow rate through the well screen (Q) is converted to the linear groundwater velocity (v) through the permeable treatment media by dividing by the cross-sectional area of the well screen (A; well diameter x length of screen), a flow distortion factor ( $\alpha$ ) ranging from 2 to 3 for 2-inch polyvinylchloride wells<sup>1</sup>, and the estimated effective porosity (*n*) of the aquifer system (assumed to be 0.25 for this work):

$$v = \frac{Q}{(nA\alpha)}$$
 Equation (3)

#### 2.0 FIELD METHODS

A total of three dilution tests were completed on August 19, 2004. The conditions of each test are summarized in Table E-1. This section describes the procedures for conducting the tracer dilution tests.

#### 2.1 INSTRUMENT CALIBRATION

The tracer concentration (bromide ion) was monitored with submersible bromide-specific probes (TempHion Water Quality Sensors, Instrumentation Northwest) connected to a handheld meter for manual measurements of tracer concentration over the course of the test. The probes were calibrated following the instructions provided by the manufacturer. A 10,000 milligram per liter solution of bromide ion (the standard solution) was diluted with groundwater from well MW-2 to prepare calibration standards that were of 200, 20, and 2 milligram per liter in bromide concentration. Each probe was calibrated before being inserted into the well. A review of the real-time bromide concentration data in the field indicated that the calibration curves for MW-7 and MW-8 were resulting in higher values than expected based on the amount of bromide added to each well at the start of the test. Therefore, at the end of the tests for MW-7 and MW-8, the probes were re-calibrated using water from the respective test well at the end of each test. The pre-test calibration curve for MW-2 and post-test calibration curves for MW-7 and MW-8 are attached as Figure E-1 to this Appendix.

#### 2.2 TRACER RELEASE AND MONITORING

To start each test, a pre-determined volume of 10,000 milligram per liter stock of bromide solution was measured with a 100-milliliter Pyrex® graduated cylinder and added to the screened interval of the well using ¼-inch LDPE tubing connected to a peristaltic pump. The

<sup>&</sup>lt;sup>1</sup> Drost, W., D. Klotz, A. Koch, H. Moser, F. Neumaier, and W. Rauert, 1968, Point Dilution Methods of Investigating Ground Water Flow by Means of Radioisotopes. *Water Resources Research*, Vol. 4, No. 1, p. 125-146.

 $I:\Doc\_Safe\9000s\9329\22-Task\3Q2004\Appendix\E\Appendix\E.doc$ 



discharge point of the injection line was located below the water level in each well (Table E-1) for each test. Another length of LDPE tubing was installed at the bottom of the well screen and attached to the pump. When the pump was operating, groundwater was extracted from the bottom of the well screen and injected near the top of the well screen at a flow rate of approximately 600 milliliters per minute; the pump was operated for the duration of the test to keep the test interval well mixed. Tracer concentration was monitored in each well for the duration of the tests. Two water samples were collected from MW-2 and MW-7 and one sample was collected from MW-8 at different times during each test and submitted to Alpha Analytical Laboratories, Inc., for analysis of bromide by EPA Method 300.1 (ion chromatography). These results are discussed below.

#### 3.0 RESULTS

Bromide concentration data (as the natural logarithm of bromide concentration) were plotted against time for each test (Figure E-2). The concentration of bromide initially increased as the tracer mixed within the test interval, and then decreased as tracer was flushed out of the interval due to groundwater flow through the well. A discussion of each test is provided below.

#### MW-2 Groundwater Velocity Range: 0.4 to 0.7 feet per day

The tracer dilution test at MW-2 was operated for approximately 8.75 hours after the tracer was released in the well; the field data are presented graphically in Figure E-2. The natural logarithm of tracer concentration plotted against time closely followed a linear trend, with an r-squared value of 0.998. This trend suggests that the tracer was well mixed, and the dilution rate (and therefore groundwater velocity) was relatively constant over the test duration. The flow rate through the well screen was 0.003 liter per minute, based on the slope of the linear best-fit line (-0.0017) and the test interval volume (1.61 liters). The flow rate was translated to a groundwater velocity using an assumed effective porosity of n=0.25 and the range of expected flow distortion ( $\alpha$ =3 to 2). Based on the measured flow rate and assumed porosity and flow distortion, the calculated groundwater velocity ranged from 0.4 to 0.7 foot/day in the vicinity of MW-2 on August 19, 2004 (Table E-3).

The intercept of the trend line was used to extrapolate an initial bromide concentration of 183 milligram per liter, which differs from the expected initial concentration of 190 milligram per liter by a relative percent difference (RPD) of 4 percent (Table E-3). This difference is small, and the good agreement between the extrapolated and expected initial bromide concentrations suggests that the conditions of the test were satisfied. As a check on the field measurements, groundwater samples were collected at two different times during the test for laboratory



analysis of bromide. These results are presented in Table E-2. The RPD between the reported bromide concentration for the sample collected at 13:49 hours and the in-well measurement using the bromide specific electrode was 27 percent; the RPD for the sample collected at 18:00 hours was 4 percent. Variation between these results is expected because the laboratory sample was extracted near the bottom of the well, and the bromide-specific probe measurement was obtained from close to the center of the test interval.

#### MW-7 Groundwater Velocity Range: 0.1 to 0.2 foot per day

The tracer dilution test at MW-7 was operated for approximately 7.9 hours after the tracer was released in the well; the field data are presented graphically in Figure E-2. The natural logarithm of tracer concentration plotted against time closely followed a linear trend, with an r-squared value of 0.990. The flow rate through the well screen was 0.002 liter per minute, based on the slope of the linear best-fit line (-0.0005) and the test interval volume (3.61 liters). The flow rate was translated to a groundwater velocity using an assumed effective porosity of n=0.25 and the range of expected flow distortion ( $\alpha$ =3 to 2). Based on the measured flow rate and assumed porosity and flow distortion, the calculated groundwater velocity ranged from 0.1 to 0.2 foot/day in the vicinity of MW-7 on August 19, 2004 (Table E-3).

The intercept of the trend line was used to extrapolate an initial bromide concentration of 156 milligram per liter, which differs from the expected initial concentration of 208 milligram per liter by a RPD of 29 percent (Table E-3). This difference is larger than that observed for MW-2, suggesting that either the calculated test interval volume was larger than that expected based on the test setup (Table E-1) or mixing may have been insufficient during the early stages of the test. As a check on the field measurements, groundwater samples were collected at two different times during the test for laboratory analysis of bromide. These results are presented in Table E-2. The RPD between the reported bromide concentration for the sample collected at 14:00 hours, and the in-well measurement using the bromide-specific electrode was 1 percent; the RPD for the sample collected at 18:00 hours was 10 percent. The relatively small RPD for these samples suggests that the probe calibration was not compromised.

#### MW-8 Groundwater Velocity Range: 2 to 4 feet per day

The tracer dilution test at MW-8 was operated for approximately 4.5 hours after the tracer was released in the well; the field data are presented graphically in Figure E-2. The natural logarithm of tracer concentration plotted against time closely followed a linear trend, with an r-squared value of 0.998. The flow rate through the well screen was 0.031 liter per minute, based on the slope of the linear best-fit line (-0.0087) and the test interval volume (3.61 liters). The



flow rate was translated to a groundwater velocity using an assumed effective porosity of n=0.25 and the range of expected flow distortion ( $\alpha=3$  to 2). Based on the measured flow rate and assumed porosity and flow distortion, the calculated groundwater velocity ranged from 2 to 3 feet/day in the vicinity of MW-8 on August 19, 2004 (Table E-3).

The intercept of the trend line was used to extrapolate an initial bromide concentration of 257 milligram per liter, which differs from the expected initial concentration of 208 milligram per liter by a RPD of 21 percent (Table E-3). This difference suggests that the probe calibration may have been compromised, the calculated test interval volume may have been smaller than that expected based on the test setup (Table E-1) or mixing may have been insufficient during the early stages of the test. As a check on the field measurements, a groundwater sample was collected at 14:10 hours for comparison with the field measurement (Table E-2). The RPD between the reported bromide concentration for the sample collected at 14:10 hours, and the in-well measurement using the bromide-specific electrode was 69 percent; suggesting that the probe calibration was not accurate.

Because the probe data were suspect, the rate of groundwater flow was calculated based on the laboratory results only, using Equation 2, and assuming an initial concentration ( $C_o$ ) of 208 milligram per liter. The bromide concentration for the sample collected from MW-8 at 14:10 hours, 229 minutes after the start of the test, was reported to be 17 milligram per liter. Using C=17 milligrams per liter, t=229 minutes, and the same values for V, A, and *n*, the calculated groundwater velocity using Equations 2 and 4 is 3.9 feet/day (for  $\alpha$ =2). Based on this analysis, the estimated range in groundwater velocity in the vicinity of MW-8 is expanded to 2 to 4 feet/day, based on the field data, laboratory data, and using a range in  $\alpha$  from 3 to 2.



#### TABLE E-1

#### SUMMARY OF TRACER DILUTION TEST SETUP AND OPERATION

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

| Well ID                                                     | <b>MW-2</b>   | MW-7          | MW-8          |
|-------------------------------------------------------------|---------------|---------------|---------------|
| Depth to Water (feet bTOC) <sup>1</sup>                     | 5.29          | 0.91          | 0.90          |
| Depth to Top of Well Screen (feet bTOC) <sup>2</sup>        | 2.00          | 2.00          | 2.00          |
| Depth to Bottom of Well Screen (feet bTOC) <sup>2</sup>     | 8.00          | 8.00          | 8.00          |
| Well Casing Internal Diameter (inches) <sup>2</sup>         | 2.05          | 2.05          | 2.05          |
| Well Casing Volume per Foot (L)                             | 0.65          | 0.65          | 0.65          |
| Injection Depth (feet bTOC) <sup>3</sup>                    | 5.30          | 2.10          | 2.10          |
| Extraction Depth (feet bTOC) <sup>4</sup>                   | 7.80          | 7.70          | 7.70          |
| Test Interval Volume $(V; L)^5$                             | 1.61          | 3.61          | 3.61          |
| Test Interval Area (ft <sup>2</sup> ) <sup>6</sup>          | 0.43          | 1.02          | 1.02          |
| Recirculation Rate (mL/min) <sup>7</sup>                    | 600           | 600           | 600           |
| Mass of Bromide (Br) injected (mg) <sup>8</sup>             | 305           | 750           | 750           |
| Date and Time of Tracer Release                             | 8/19/04 9:15  | 8/19/04 10:27 | 8/19/04 10:21 |
| Date and Time of Test Termination <sup>9</sup>              | 8/19/04 18:00 | 8/19/04 18:18 | 8/19/04 14:50 |
| Duration of Test (minutes)                                  | 525           | 471           | 269           |
|                                                             |               |               |               |
| Calculated Initial Bromide concentration: $C_0 (mg/L)^{10}$ | 190           | 208           | 208           |

Notes:

- 1. Depth to water measured on August 19, 2004. bTOC = below top of casing.
- 2. Based on well construction information.
- 3. Depth of tubing connected to the discharge end of the peristaltic pump head.
- 4. Depth of tubing connected to the suction end of the peristaltic pump head.
- 5. Casing volume between the injection depth and bottom of the well screen in liters (L).
- 6. Cross-sectional area of the well screen in square feet  $(ft^2)$ .
- 7. Rate at which groundwater was extracted and simultaneously re-injected into each well. mL/min = milliliters per minute.
- 10,000 mg/L of an aqueous Bromide Standard solution was measured with volumetric glassware and added to MW-2, MW-7, and MW-8 at the start of the test; 30 mL was added to MW-2, 75 mL was added to MW-7 and MW-8.
- 9. Water samples were collected at this time for laboratory analysis of bromide concentration by EPA Method 300.0.
- 10. Calculated initial bromide concentration (mg of bromide/test interval volume).



### TABLE E-2 LABORATORY ANALYTICAL RESULTS FOR BROMIDE

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

#### Concentrations in milligrams per liter (mg/L)

| Monitoring<br>Well Number | Time Sampled <sup>1</sup> | Bromide<br>Concentration<br>(Downhole Field<br>Measurement) | Bromide Concentration<br>(Laboratory Analysis) | Relative % Difference |
|---------------------------|---------------------------|-------------------------------------------------------------|------------------------------------------------|-----------------------|
| MW 2                      | 13:49                     | 114                                                         | 150                                            | 27                    |
| IVI VV -2.                | 18:00                     | 80                                                          | 77                                             | 4                     |
| MW 7                      | 14:00                     | 139                                                         | 140                                            | 1                     |
| 101 00 - /                | 18:18                     | 121                                                         | 110                                            | 10                    |
| MW-8                      | 14:10                     | 35                                                          | 17                                             | 69                    |

Notes:

- 1. Sample collected from peristaltic pump discharge during test operation.
- 2. Sample submitted to Alpha Analytical Laboratories, Inc., for analysis of bromide using EPA Method 300.1.
- 3. Relative Percent Difference (RPD) is calculated by:

RPD % = 
$$\left| \frac{2(S_1 - S_2)}{S_1 + S_2} \right| \times 100$$



## TABLE E-3SUMMARY OF TRACER DILUTION TEST RESULTS

#### Sierra Pacific Industries Arcata Division Sawmill Arcata, California

| Calculation Summary                                                                                                          | MW-2      | MW-7      | MW-8    |
|------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------|
| Groundwater Velocity based on Field Measurements:                                                                            |           |           |         |
| Slope of $\ln[C]$ vs. time $(-Q/V)^1$                                                                                        | -0.0017   | -0.0005   | -0.0087 |
| Intercept of $\ln[C]$ vs. time $(\ln[C_o])^1$                                                                                | 5.21      | 5.05      | 5.55    |
| Flow Rate (Q; L/min) <sup>2</sup>                                                                                            | 0.003     | 0.002     | 0.031   |
| Calculated Initial Bromide concentration: $C_o (mg/L)^3$                                                                     | 190       | 208       | 208     |
| Extrapolated Initial Bromide concentration: C <sub>o</sub> (mg/L) <sup>4</sup><br>Relative % Difference Between Expected and | 183       | 156       | 257     |
| Extrapolated $C_o (mg/L)^5$                                                                                                  | 4         | 29        | 21      |
| Groundwater Velocity Range (feet per day) <sup>6</sup>                                                                       | 0.4 - 0.7 | 0.1 - 0.2 | 2 - 4   |

Notes:

- 1. Based on the ln[C] vs. time curve (Figure A-2)
- 2. Slope (Q/V) mulitiplied by the test interval volume (V; Table A-1).
- 3. Calculated initial bromide concentration (from Table A1)
- 4. Based on the linear regression of field data (Figure A-2)
- 5. Relative Percent Difference (RPD) is calculated by:

RPD % = 
$$\left| \frac{2(S_1 - S_2)}{S_1 + S_2} \right| \times 100$$

 Calculated using Equation 4; effective porosity (n=0.25), flow distortion (α=2 to 3) and test interval area (A) reported in Table A-1.

Abbreviations:

- C = concentration
- Q = rate of groundwater flow through the well screen

V = volume

C<sub>o</sub> = initial concentration

L/min = liters per minute

mg/L = milligrams per liter



#### FIGURE E-1 CALIBRATION CURVES Sierra Pacific Industries Arcata Division Sawmill Arcata, California







#### FIGURE E-2 PLOTS OF BROMIDE CONCENTRATIONS VERSUS TIME Sierra Pacific Industries Arcata Division Sawmill

Arcata, California









#### Notes:

- 1. Grey diamonds represent field measurements of bromide (Br) concentration in milligrams per liter (mg/L).
- 2. Black squares represent the natural logarithm of bromide concentration (ln[Br]).
- 3. Linear best-fit line to the ln[Br] vs. time (as minutes since injection of

bromide) is shown as a straight black line. Equation of best-fit line and r-squared values are posted on each plot.



PROTECT 9329

BSK Submission Number: 2004081699

09/08/2004

Sheri L. Speaks Alpha Analytical Laboratories Inc 208 Mason Street Ukiah, CA 95482



Dear Sheri L. Speaks,

Thank you for selecting BSK Analytical Laboratories for your analytical testing needs. We have prepared this report in response to your request for analytical services. Please find enclosed the following sections for your complete laboratory report, each uniquely paginated:

CASE NARRATIVE: An overview of the work performed. CERTIFICATE OF ANALYSIS: Analytical results. REPORT OF SAMPLE INTEGRITY CHAIN OF CUSTODY FORM

**Certification:** I certify that this data package is in compliance with NELAC Standards for applicable analyses under NELAP Certificate #04227CA, and is in compliance with ELAP Standards for applicable certified analyses under ELAP Certificate #1180, except for the conditions listed.

If additional clarification of any information is required, please contact your Client Services Representative, Laura Quiring, at (800) 877-8310 or (559) 497-2888.

BSK ANALYTICAL LABORATORIES

Laura Quiring

Client Services Representative

## BSK ANALYTICAL

#### SAMPLE AND RECEIPT INFORMATION

The sample(s) was received, prepared, and analyzed within the method specified holding times unless otherwise noted on the Certificate of Analysis. Samples, when shipped, arrived within acceptable temperature requirements of 0° to 6° Celsius unless otherwise noted on the Report of Sample Integrity. Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.

#### QUALITY CONTROL

All analytical quality controls are within established method criteria except when noted in the Quality Control section or on the Certificate of Analysis. All positive results for EPA Methods 504.1, 502.2, and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed. OC samples may include analytes not requested in this submission.

| RUN   | ORDER  | TEST      | ANALYTE         | COMMENT                                             |
|-------|--------|-----------|-----------------|-----------------------------------------------------|
| 78947 | 492147 | EPA 300.1 | Bromide (Br)    | LCSD recovery was out of the acceptance range,      |
|       |        |           |                 | acceptance range, therefore the data were reported. |
| 78947 | 492147 | EPA 300.1 | Bromate (BrO3)  | LCSD recovery was out of the acceptance range,      |
|       |        |           |                 | acceptance range, therefore the data were reported. |
| 78947 | 492147 | EPA 300.1 | Chlorite (ClO2) | LCSD recovery was out of the acceptance range,      |
|       |        |           |                 | acceptance range, therefore the data were reported. |
| 78947 | 492147 | EPA 300.1 | Chlorate (ClO3) | LCSD recovery was out of the acceptance range,      |
|       |        |           |                 | however the LCS recovery was within the             |
|       |        |           |                 | acceptance range, therefore the data were reported. |

#### SAMPLE RESULT INFORMATION

Samples are analyzed as received (wet weight basis) unless noted here. The results relate only to the items tested. Any exceptions to be considered when evaluating these results are also listed here, if applicable. Results contained in this package shall not be reproduced, except in full, without written approval of BSK Analytical Laboratories.

ORDER TEST ANALYTE COMMENT

Sheri L. Speaks Alpha Analytical Laboratories Inc 208 Mason Street Ukiah, CA 95482

## BSK Submission #: 2004081699 BSK Sample ID #: 487407 Project ID: A408430 Project Desc:

Submission Comments:Sample Type:LiquidSample Description:MW-2-1349Sample Comments:A408430-01

#### Certificate of Analysis NELAP Certificate #04227CA ELAP Certificate #1180



Report Issue Date: 09/08/2004

| Date Sampled:  | 08/19/2004 |
|----------------|------------|
| Time Sampled:  | 1349       |
| Date Received: | 08/24/2004 |

| Inorganics   |           |        |       |          |       |       | Pren      | Analysis  |  |
|--------------|-----------|--------|-------|----------|-------|-------|-----------|-----------|--|
| Analyte      | Method    | Result | Units | PQL Dilu | ution | DLR   | Date/Time | Date/Time |  |
| Bromide (Br) | EPA 300.1 | 150    | mg/L  | 0.005    | 900   | 4.500 | 09/02/04  | 09/02/04  |  |

H: Analyzed outside of hold time

P: Preliminary result

S: Suspect result. See Case Narrative for comments.

Page 1 of 5

E: Analysis performed by External laboratory. See External Laboratory Report attachments.

Report Authentication Code:

1414 Stanislaus Street Fresno, CA 93706-1623 Phone 559-497-2888, In CA 800-877-8310 Fax 559-485-6935

Sheri L. Speaks Alpha Analytical Laboratories Inc 208 Mason Street Ukiah, CA 95482

#### BSK Submission #: 2004081699 BSK Sample ID #: 487408 Project ID: A408430

Submission Comments:Sample Type:LiquidSample Description:MW-7-1400Sample Comments:A408430-02

#### Certificate of Analysis NELAP Certificate #04227CA ELAP Certificate #1180



Report Issue Date: 09/08/2004

| Date Received: | 08/24/2004 |
|----------------|------------|
| Time Sampled:  | 1400       |
| Date Sampled:  | 08/19/2004 |

| Inorganics   |           |        |       |       |         |       | Pren      | Analysis  |  |
|--------------|-----------|--------|-------|-------|---------|-------|-----------|-----------|--|
| Analyte      | Method    | Result | Units | PQL D | ilution | DLR   | Date/Time | Date/Time |  |
| Bromide (Br) | EPA 300.1 | 140    | mg/L  | 0.005 | 800     | 4.000 | 09/02/04  | 09/02/04  |  |

Project Desc:

 mg/L:
 Milligrams/Liter (ppm)
 Perform

 mg/Kg:
 Milligrams/Kilogram (ppm)
 D

 μg/L:
 Micrograms/Liter (ppb)
 M

 μg/Kg:
 Micrograms/Kilogram (ppb)
 N

 %Rec:
 Percent Recovered (surrogates)

PQL: Practical Quantitation Limit DLR: Detection Limit for Reporting : PQL x Dilution ND: None Detected at DLR

- H: Analyzed outside of hold time
- P: Preliminary result
- S: Suspect result. See Case Narrative for comments.

Page 2 of 5

E: Analysis performed by External laboratory. See External Laboratory Report attachments.

Report Authentication Code:

1414 Stanislaus Street Fresno, CA 93706-1623 Phone 559-497-2888, In CA 800-877-8310 Fax 559-485-6935

17

mg/L

Sheri L. Speaks Alpha Analytical Laboratories Inc 208 Mason Street Ukiah CA 95482

#### **Certificate of Analysis** NELAP Certificate #04227CA **ELAP Certificate #1180**

EO IN ACCORDA

| SK Submission #: 2004081699<br>SK Sample ID #: 487409<br>Project ID: A408430<br>Submission Comments:<br>Sample Type: Liquid<br>Sample Description: MW-8-1410<br>Sample Comments: A408430-03 | #: 2004081699<br>: 487409         | Project Desc | 2     |      |          |       | Report               | Issue Date: 09/08/2004                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-------|------|----------|-------|----------------------|--------------------------------------------------------------|
| Submission Comments:<br>Sample Type:<br>Sample Description:<br>Sample Comments:                                                                                                             | Liquid<br>MW-8-1410<br>A408430-03 |              |       |      |          |       | Date<br>Time<br>Date | Sampled: 08/19/2004<br>Sampled: 1410<br>Received: 08/24/2004 |
| Inorganics<br>Analyte                                                                                                                                                                       | Method                            | Result       | Units | PQL  | Dilution | DLR   | Prep<br>Date/Time    | Analysis<br>Date/Time                                        |
| Bromide (Br)                                                                                                                                                                                | EPA 300.1                         | 17           | mg/L  | 0.00 | 5 100    | 0.500 | 09/02/04             | 09/02/04                                                     |

Bromide (Br)

: PQL x Dilution ND: None Detected at DLR %Rec: Percent Recovered (surrogates)

- H: Analyzed outside of hold time
- P: Preliminary result
- S: Suspect result. See Case Narrative for comments.
- E: Analysis performed by External laboratory. See External Laboratory Report attachments.

Report Authentication Code:

mg/L: Milligrams/Liter (ppm)

µg/L: Micrograms/Liter (ppb)

mg/Kg: Milligrams/Kilogram (ppm)

µg/Kg: Micrograms/Kilogram (ppb)

1414 Stanislaus Street Fresno, CA 93706-1623

POL: Practical Quantitation Limit

DLR: Detection Limit for Reporting

Page 3 of 5

Phone 559-497-2888, In CA 800-877-8310 Fax 559-485-6935

Sheri L. Speaks Alpha Analytical Laboratories Inc 208 Mason Street Ukiah, CA 95482

#### **BSK Submission #: 2004081699 BSK Sample ID #: 487410** Project ID: A408430

Submission Comments:Sample Type:LiquidSample Description:MW-2-1800Sample Comments:A408430-04

#### Certificate of Analysis NELAP Certificate #04227CA ELAP Certificate #1180



Report Issue Date: 09/08/2004

| Date Sampled:  | 08/19/2004 |
|----------------|------------|
| Time Sampled:  | 1800       |
| Date Received: | 08/24/2004 |

| Inorganics   |           |        |       |       |         |       | Prep      | Analysis  |
|--------------|-----------|--------|-------|-------|---------|-------|-----------|-----------|
| Analyte      | Method    | Result | Units | PQL D | ilution | DLR   | Date/Time | Date/Time |
| Bromide (Br) | EPA 300.1 | 77     | mg/L  | 0.005 | 500     | 2.500 | 09/02/04  | 09/02/04  |

Project Desc:

| mg/L · Milligrams/Liter (ppm)        | POL: Practical Quantitation Limit  | H:         |
|--------------------------------------|------------------------------------|------------|
| mg/Kg: Milligrams/Kilogram (ppm)     | DLR: Detection Limit for Reporting | <b>P</b> : |
| ug/L: Micrograms/Liter (ppb)         | : PQL x Dilution                   | S:         |
| μg/Kg: Micrograms/Kilogram (ppb)     | ND: None Detected at DLR           | E:         |
| %Rec: Percent Recovered (surrogates) |                                    |            |
|                                      |                                    |            |

: Analyzed outside of hold time Preliminary result

- S: Suspect result. See Case Narrative for comments.
- E: Analysis performed by External laboratory.

Page 4 of 5

See External Laboratory Report attachments.

Report Authentication Code:

1414 Stanislaus Street Fresno, CA 93706-1623 Phone 559-497-2888, In CA 800-877-8310 Fax 559-485-6935

Sheri L. Speaks Alpha Analytical Laboratories Inc 208 Mason Street Ukiah, CA 95482

#### BSK Submission #: 2004081699 BSK Sample ID #: 487411 Project Desc: Project ID: A408430

Submission Comments: Liquid Sample Type: Sample Description: MW-7-1818 A408430-05 Sample Comments:

#### **Certificate of Analysis** NELAP Certificate #04227CA ELAP Certificate #1180



Report Issue Date: 09/08/2004

Date Sampled: 08/19/2004 Time Sampled: 1818 Date Received: 08/24/2004

| Inorganics   |           | D      | I la la | BOI D | ilution | DI R  | Prep<br>Date/Time | Analysis<br>Date/Time |  |  |
|--------------|-----------|--------|---------|-------|---------|-------|-------------------|-----------------------|--|--|
| Analyte      | Method    | Result | Units   | rQL D | nution  | DLK   | DuterThilt        |                       |  |  |
| Bromide (Br) | EPA 300.1 | 110    | mg/L    | 0.005 | 600     | 3.000 | 09/02/04          | 09/02/04              |  |  |

mg/L: Milligrams/Liter (ppm) mg/Kg: Milligrams/Kilogram (ppm) µg/L: Micrograms/Liter (ppb) µg/Kg: Micrograms/Kilogram (ppb) %Rec: Percent Recovered (surrogates) POL: Practical Quantitation Limit DLR: Detection Limit for Reporting : PQL x Dilution ND: None Detected at DLR

- H: Analyzed outside of hold time
- P: Preliminary result
- S: Suspect result. See Case Narrative for comments.
- E: Analysis performed by External laboratory. See External Laboratory Report attachments.

Report Authentication Code:

Phone 559-497-2888, In CA 800-877-8310 Fax 559-485-6935 1414 Stanislaus Street Fresno, CA 93706-1623

Page 5 of 5

| LC, L |                | REMARKS           | Additional Comments                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ALARCER SPALICE OUN       | =                     | []<br>[                | и                                       |                       | OK to divit |  | - | Per Peter poped name |  |                              | et P                                              | ents and Log No.:      |            |                          | Geometrix Consultants  | ler Street, 12th Floor • Uakiand, UA 340 12 |
|-------|----------------|-------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|------------------------|-----------------------------------------|-----------------------|-------------|--|---|----------------------|--|------------------------------|---------------------------------------------------|------------------------|------------|--------------------------|------------------------|---------------------------------------------|
|       | Date: S//      | ,                 | ners<br>Other (O)                                    | Soil (S), Wate<br>Filtered<br>Preserved<br>Cooled<br>No. of Contai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 N N N M                 | - 2223                | - 2 2 2 3              | 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z |                       |             |  |   |                      |  | P ontainers                  | Date: Method of Shipmen                           | Time: Laboratory Comme |            | Date:                    | Time:                  | 2101 Webste                                 |
|       | 004389         |                   |                                                      | RL PBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | ~                     | ×                      |                                         |                       |             |  |   |                      |  | Total No. of C               | Relinquished by (Signature):                      | Printed Name:          | Company:   | Received by:             | Printed Name:          |                                             |
|       | dv Record      | ANALYSE           | 121<br>121<br>122<br>122<br>122<br>122<br>122<br>122 | Ciril Scan)<br>Ciril Scan)<br>(Ciril Scan)<br>(Ciril Scan)<br>(Ciril Scan)<br>(Ciril Ciril<br>(Ciril Ciril<br>(Ciril Ciril<br>(Ciril Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(Ciril<br>(C |                           | a                     | m                      | уe                                      | )                     |             |  |   |                      |  | Turnaround Time: Results to: | ate: Relinquished by (Signature): Date:           | Printed Name: Time:    | Company:   | ate: Received by: Date:  | Printed Name:<br>Time: |                                             |
|       | Chain-of-Custo | Project No.: 0729 | Samplers (Signature:)                                | Date Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 119/201 1349 NW-2-1349 | 20041-1-0MM 0041 1400 | 8/19/4/ 1410 AW-8-1410 | X1964 KOO 146-2-1800                    | 8141 - mu 2101 hollin |             |  |   |                      |  | Laboratory:                  | How Analy Fich  <br>Reinquisped by (Signature): D | Philed Name?           | Company: 1 | Received by 14 1/ a/ 1 C | Printed Name           |                                             |