

2005 Annual Report for Storm Water Discharges Associated with Industrial Activities

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

Prepared for:

Sierra Pacific Industries

June 20, 2005

Project No. 9329, Task 6

Geomatrix Consultants

2101 Webster Street 12th Floor Oakland, CA 94612 (510) 663-4100 • FAX (510) 663-4141

June 20, 2005 Project 9329 Task 6

Executive Officer California Regional Water Quality Control Board North Coast Region 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

Attention: Dean Prat

Subject: 2004-2005 Annual Report for Storm Water Discharges Associated With Industrial Activities Arcata Division Sawmill Arcata, California

Dear Mr. Prat:

As requested by Sierra Pacific Industries, we have enclosed a copy of the subject report.

Sincerely yours, GEOMATRIX CONSULTANTS, INC.

Rich Hiett, P.E. Senior Engineer

Edward P. Conti, C.E.G., C.HG. Principal Geologist

RAS/EPC/abr I:\Doc_Safe\9000s\9329\06-Task\2005 Annual Report\transmittal letterJune 30.doc

Enclosure

cc: Bob Ellery, Sierra Pacific Industries (with enclosure) Gordie Amos, Sierra Pacific Industries (with enclosure)

2005 Annual Report for Storm Water Discharges Associated with Industrial Activities

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

Prepared for:

Sierra Pacific Industries

Prepared by:

Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4100

June 20, 2005

Project No. 9329, Task 6

Geomatrix Consultants

APPENDIX A

2004–2005 Annual Report for Storm Water Discharges Associated with Industrial Activities

State of California STATE WATER RESOURCES CONTROL BOARD

2004-2005 ANNUAL REPORT FOR

STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

Reporting Period July 1, 2004 through June 30, 2005

An annual report is required to be submitted to your local Regional Water Quality Control Board (Regional Board) by July 1 of each year. This document must be certified and signed, under penalty of perjury, by the appropriate official of your company. Many of the Annual Report questions require an explanation. Please provide explanations on a separate sheet as an attachment. Retain a copy of the completed Annual Report for your records.

Please circle or highlight any information contained in Items A, B, and C below that is new or revised so we can update our records. Please remember that a Notice of Termination and new Notice of Intent are required whenever a facility operation is relocated or changes ownership.

If you have any questions, please contact your Regional Board Industrial Storm Water Permit Contact. The names, telephone numbers and e-mail addresses of the Regional Board contacts, as well as the Regional Board office addresses can be found at http://www.swrcb.ca.gov/stormwtr/contact.html. To find your Regional Board information, match the first digit of your WDID number with the corresponding number that appears in parenthesis on the first line of each Regional Board office.

GENERAL INFORMATION:

Α.	Facility Information:	Facility WDID No:
	Facility Business Name:	Contact Person:
	Physical Address:	e-mail:
	City:	Zip: Phone:
	Standard Industrial Classification (SIC) Code(s):	_
В.	Facility Operator Information:	
	Operator Name:	Contact Person:
	Mailing Address:	e-mail:
	City:	State: Zip: Phone:
C.	Facility Billing Information:	
	Operator Name:	Contact Person:
	Mailing Address:	e-mail:
	City:	State: Zip: Phone:

SPECIFIC INFORMATION

MONITORING AND REPORTING PROGRAM

D.	SA	MPLING A	ND ANALYSIS EXEMPTIONS AND REDUCTION	<u>NS</u>		
	1.	For the reaccordan	eporting period, was your facility exempt from conce with sections B.12 or 15 of the General Perr	ollecting and ana mit?	alyzing	samples from two storm events in
		YE	ES Go to Item D.2		NO	Go to Section E
	2.	Indicate t copy of the	the reason your facility is exempt from collecting the first page of the appropriate certification if you	g and analyzing u check boxes ii	sample , iii, iv, o	es from two storm events. Attach a or v.
		i. 🗌	Participating in an Approved Group Monitoring	Plan	Grou	p Name :
		ii. 🔲	Submitted No Exposure Certification (NEC))	Date	Submitted:
			Re-evaluation Date:			
			Does facility continue to satisfy NEC condition	is?	YES	NO
		iii. 🗌	Submitted Sampling Reduction Certificatio	n (SRC)	Date	Submitted:
			Re-evaluation Date:			
			Does facility continue to satisfy SRC condition	ns?	YES	NO
		iv. 🗌	Received Regional Board Certification	Certifica	ation Da	ate:
		v.	Received Local Agency Certification		Cetific	cation Date:
	3.	If you che	ecked boxes i or iii above, were you scheduled t	o sample one s	storm ev	vent during the reporting year?
			ES Go to Section E		NO	Go to Section F
	4.	If you che	ecked boxes ii, iv, or v, go to Section F.			
E.	<u>SAM</u>	IPLING AN	ID ANALYSIS RESULTS			
	1.	How mar	ny storm events did you sample?	If less th item D.2 answer	nan 2, a 2.i or iii. "0").	ttach explanation (if you checked above, only attach explanation if you
	2.	Did you o schedule	collect storm water samples from the first storm ed facility operating hours? (Section B.5 of the G	of the wet seas eneral Permit)	son that	t produced a discharge during
			YES		NO,	attach explanation (Please note that if you do not sample the first storm event, you are still required to sample 2 storm events)
	3.	How mar	ny storm water discharge locations are at your f	acility?		

4.	For each stor sample from	rm event sampled, did you collect and analyze a each of the facilitys' storm water discharge locations?	YES, go to	ltem E.6	NO NO
5.	Was sample with Section	collection or analysis reduced in accordance B.7.d of the General Permit?	YES	NO, att	ach explanation
	If "YES", atta that two or m	the documentation supporting your determination lore drainage areas are substantially identical.			
	Date facility's	s drainage areas were last evaluated			
6.	Were <u>all</u> sam	ples collected during the first hour of discharge?	YES	NO, att	ach explanation
7.	Was <u>all</u> storn working days	n water sampling preceded by three (3) without a storm water discharge?	YES	NO, att	ach explanation
8.	Were there a temporarily s	ny discharges of stormwater that had been tored or contained? (such as from a pond)	YES	NO, go	to Item E.10
9.	Did you collec contained stor (or one storm	t and analyze samples of temporarily stored or m water discharges from two storm events? event if you checked item D.2.i or iii. above)	YES	NO, att	ach explanation
10.	Section B.5. o Specific Cond in storm water	f the General Permit requires you to analyze storm wat uctance (SC), Total Organic Carbon (TOC) or Oil and (discharges in significant quantities, and analytical par	er samples for pH Grease (O&G), oth rameters listed in	l, Total Suspend her pollutants lik Table D of the 0	led Solids (TSS), ely to be present General Permit.
	a. Does Ta related to	ble D contain any additional parameters o your facility's SIC code(s)?	YES	NO, Go	to Item E.11
	b. Did you applicab	analyze all storm water samples for the le parameters listed in Table D?	YES	NO NO	
	c. If you die applicab following	d not analyze all storm water samples for the le Table D parameters, check one of the g reasons:			
		In prior sampling years, the parameter(s) have not be consecutive sampling events. Attach explanation	en detected in sig	gnificant quantiti	es from two
		The parameter(s) is not likely to be present in storm we discharges in significant quantities based upon the fat	vater discharges a cility operator's ev	and authorized r valuation. Attac	non-storm water :h explanation
		Other. Attach explanation			

- 11. For each storm event sampled, attach a copy of the laboratory analytical reports and report the sampling and analysis results using **Form 1** or its equivalent. The following must be provided for each sample collected:
 - Date and time of sample collection
 - Name and title of sampler.
 - Parameters tested.
 - Name of analytical testing laboratory.
 - Discharge location identification.

- Testing results.
- Test methods used.
- Test detection limits.
- Date of testing.
- Copies of the laboratory analytical results.

F. QUARTERLY VISUAL OBSERVATIONS

1. Authorized Non-Storm Water Discharges

Section B.3.b of the General Permit requires quarterly visual observations of all authorized non-storm water discharges and their sources.

a. Do authorized non-storm water discharges occur at your facility?

YES

- NO Go to Item F.2
- b. Indicate whether you visually observed all authorized non-storm water discharges and their sources during the quarters when they were discharged. Attach an explanation for any "NO" answers. Indicate "N/A" for quarters without any authorized non-storm water discharges.

July -September	□ N/A	October-December	YES	□ N/A
January-March	□ N/A	April-June	YES	🗌 N/A

- c. Use **Form 2** to report quarterly visual observations of authorized non-storm water discharges or provide the following information.
 - i. name of each authorized non-storm water discharge
 - ii. date and time of observation
 - iii. source and location of each authorized non-storm water discharge
 - iv. characteristics of the discharge at its source and impacted drainage area/discharge location
 - v. name, title, and signature of observer
 - vi. **any** new or revised BMPs necessary to reduce or prevent pollutants in authorized non-storm water discharges. Provide new or revised BMP implementation date.

2. Unauthorized Non-Storm Water Discharges

Section B.3.a of the General Permit requires quarterly visual observations of all drainage areas to detect the presence of unauthorized non-storm water discharges and their sources.

a. Indicate whether you visually observed all drainage areas to detect the presence of unauthorized nonstorm water discharges and their sources. Attach an explanation for any "NO" answers.

July -September	YES	NO	October-December	YES	NO
January-March	YES	NO NO	April-June	YES	NO

b. Based upon the quarterly visual observations, were any unauthorized non-storm water discharges detected?

	YES		NO	Go to item F.2.d
Have eac	h of the unauthorized non-storm w	ater discha	arges b	een eliminated or permitted?

d. Use **Form 3** to report quarterly unauthorized non-storm water discharge visual observations or provide the following information.

NO Attach explanation

- i. name of each unauthorized non-storm water discharge.
- ii. date and time of observation.

YES

c.

- iii. source and location of each unauthorized non-storm water discharge.
- iv. characteristics of the discharge at its source and impacted drainage area/discharge location.
- v. name, title, and signature of observer.
- vi. **any** corrective actions necessary to eliminate the source of each unauthorized non-storm water discharge and to clean impacted drainage areas. Provide date unauthorized non-storm water discharge(s) was eliminated or scheduled to be eliminated.

G. MONTHLY WET SEASON VISUAL OBSERVATIONS

Section B.4.a of the General Permit requires you to conduct monthly visual observations of storm water discharges at all storm water discharge locations during the wet season. These observations shall occur during the first hour of discharge or, in the case of temporarily stored or contained storm water, at the time of discharge.

1. Indicate below whether monthly visual observations of storm water discharges occurred at <u>all</u> discharge locations. **Attach an explanation for any "NO" answers**. Include in this explanation whether any eligible storm events occurred during scheduled facility operating hours that did not result in a storm water discharge, and provide the date, time, name and title of the person who observed that there was no storm water discharge.

- 2. Report monthly wet season visual observations using **Form 4** or provide the following information.
 - a. date, time, and location of observation
 - b. name and title of observer
 - c. characteristics of the discharge (i.e., odor, color, etc.) and source of any pollutants observed.
 - d. **any** new or revised BMPs necessary to reduce or prevent pollutants in storm water discharges. Provide new or revised BMP implementation date.

ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION (ACSCE)

H. ACSCE CHECKLIST

Section A.9 of the General Permit requires the facility operator to conduct one ACSCE in each reporting period (July 1-June 30). Evaluations must be conducted within 8-16 months of each other. The SWPPP and monitoring program shall be revised and implemented, as necessary, within 90 days of the evaluation. The checklist below includes the minimum steps necessary to complete a ACSCE. Indicate whether you have performed each step below. **Attach an explanation for any "NO" answers.**

- 1. Have you inspected all potential pollutant sources and industrial activities areas? YES NO The following areas should be inspected:
 - areas where spills and leaks have occured during the last year.
 - outdoor wash and rinse areas.
 - process/manufacturing areas.
 - loading, unloading, and transfer areas.
 - waste storage/disposal areas.
 - dust/particulate generating areas.
 - erosion areas.

- building repair, remodeling, and construction
- material storage areas
- vehicle/equipment storage areas
- truck parking and access areas
- rooftop equipment areas
- vehicle fueling/maintenance areas
- non-storm water discharge generating areas

2.	Have you reviewed your SWPPP to assure that its BMPs address existing potential pollutant sources and industrial activities areas?	YES	NO
3.	Have you inspected the entire facility to verify that the SWPPP's site map, is up-to-date? The following site map items should be verified:	YES	

- facility boundaries
- outline of all storm water drainage areas
- areas impacted by run-on

- storm water discharges locations
- storm water collection and conveyance system
 structural control measures such as catch basins,
- berms, containment areas, oil/water separators, etc.

4.	Have you reviewed all General Permit compliance re since the last annual evaluation?	cords generated	YES	NO
	The following records should be reviewed:			
	 quarterly authorized non-storm water discharge visual observations monthly storm water discharge visual observation records of spills/leaks and associated clean-up/response activities 	 quarterly unau water discharg Sampling and preventative m and maintenar 	thorized non-storm je visual observatio Analysis records naintenance inspect nce records	ns ion
5.	Have you reviewed the major elements of the SWPP compliance with the General Permit?	P to assure	TES YES	NO
	The following SWPPP items should be reviewed:			
	 pollution prevention team list of significant materials description of potential pollutant sources 	 assessment of identification a implemented f 	f potential pollutant nd description of th or each potential po	sources e BMPs to be ollutant source
6.	Have you reviewed your SWPPP to assure that a) th in reducing or preventing pollutants in storm water di non-storm water discharges, and b) the BMPs are be	e BMPs are adequate ischarges and authorized eing implemented?	YES	NO
	The following BMP categories should be reviewed:			
	 good housekeeping practices spill response employee training erosion control quality assurance 	 preventative r material hand waste handlin structural BM 	naintenance ling and storage pra g/storage Ps	actices
7.	Has all material handling equipment and equipment implement the SWPPP been inspected?	needed to	YES	NO
ACS	SCE EVALUATION REPORT			
The	facility operator is required to provide an evaluation re	eport that includes:		
• •	identification of personnel performing the evaluation the date(s) of the evaluation necessary SWPPP revisions	 schedule for ir any incidents of actions taken. 	nplementing SWPP of non-compliance a	P revisions and the corrective
Use	Form 5 to report the results of your evaluation or deve	elop an equivalent form.		
<u>ACS</u>	SCE CERTIFICATION			
The cert	facility operator is required to certify compliance with ify compliance, both the SWPPP and Monitoring Progr	the Industrial Activities S ram must be up to date a	torm Water Genera nd be fully impleme	l Permit. To ented.
Bas Acti	ed upon your ACSCE, do you certify compliance with t vities Storm Water General Permit?	the Industrial	YES	NO

If you answered "NO" **attach an explanation** to the ACSCE Evaluation Report why you are not in compliance with the Industrial Activities Storm Water General Permit.

I.

J.

ATTACHMENT SUMMARY

Answer the questions below to help you determine what should be attached to this annual report. Answer NA (Not Applicable) to questions 2-4 if you are not required to provide those attachments.

1.	Have you attached Forms 1,2,3,4, and 5 or their equivalent?	\times	YES (Mandatory)	
2.	If you conducted sampling and analysis, have you attached the laboratory analytical reports?	\boxtimes	YES	NO NO	NA
3.	If you checked box II, III, IV, or V in item D.2 of this Annual Report, have you attached the first page of the appropriate certifications?		YES	NO NO	NA
4.	Have you attached an explanation for each "NO" answer in items E.1, E.2, E.5-E.7, E.9, E.10.c, F.1.b, F.2.a, F.2.c, G.1, H.1-H.7, or J?	\square	YES	NO	NA

ANNUAL REPORT CERTIFICATION

I am duly authorized to sign reports required by the INDUSTRIAL ACTIVITIES STORM WATER GENERAL PERMIT (see Standard Provision C.9) and I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those person directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Printed Name:Gordie V. Amos	
Signature: Contin U Amos	Date: 6/15/05
Title: Plant Manager	

-7-

DESCRIPTION OF BASIC ANALYTICAL PARAMETERS

The Industrial Activities Storm Water General Permit (General Permit) requires you to analyze storm water samples for at least four parameters. These are pH, Total Suspended Solids (TSS), Specific Conductance (SC), and Total Organic Carbon (TOC). Oil and Grease (O&G) may be substituted for TOC. In addition, you must monitor for any other pollutants which you believe to be present in your storm water discharge as a result of industrial activity and analytical parameters listed in Table D of the General Permit. There are no numeric limitations for the parameters you test for.

The four parameters which the General Permit requires to be tested are considered *indicator* parameters. In other words, regardless of what type of facility you operate, these parameters are nonspecific and general enough to usually provide some indication whether pollutants are present in your storm water discharge. The following briefly explains what each of these parameters mean:

pH is a numeric measure of the hydrogen-ion concentration. The neutral, or acceptable, range is within 6.5 to 8.5. At values less than 6.5, the water is considered acidic; above 8.5 it is considered alkaline or basic. An example of an acidic substance is vinegar, and a alkaline or basic substance is liquid antacid. Pure rainfall tends to have a pH of a little less than 7. There may be sources of materials or industrial activities which could increase or decrease the pH of your storm water discharge. If the pH levels of your storm water discharge are high or low, you should conduct a thorough evaluation of all potential pollutant sources at your site.

Total Suspended Solids (TSS) is a measure of the undissolved solids that are present in your storm water discharge. Sources of TSS include sediment from erosion of exposed land, and dirt from impervious (i.e. paved) areas. Sediment by itself can be very toxic to aquatic life because it covers feeding and breeding grounds, and can smother organisms living on the bottom of a water body. Toxic chemicals and other pollutants also adhere to sediment particles. This provides a medium by which toxic or other pollutants end up in our water ways and ultimately in human and aquatic life. TSS levels vary in runoff from undisturbed land. It has been shown that TSS levels increase significantly due to land development.

Specific Conductance (SC) is a numerical expression of the ability of the water to carry an electric current. SC can be used to assess the degree of mineralization, salinity, or estimate the total dissolved solids concentration of a water sample. Because of air pollution, most rain water has a SC a little above zero. A high SC could affect the usability of waters for drinking, irrigation, and other commercial or industrial use.

Total Organic Carbon (TOC) is a measure of the total organic matter present in water. (All organic matter contains carbon) This test is sensitive and able to detect small concentrations of organic matter. Organic matter is naturally occurring in animals, plants, and man. Organic matter may also be man made (so called synthetic organics). Synthetic organics include pesticides, fuels, solvents, and paints. Natural organic matter utilizes the oxygen in a receiving water to biodegrade. Too much organic matter could place a significant oxygen demand on the water, and possibly impact its quality. Synthetic organics either do not biodegrade or biodegrade very slowly. Synthetic organics are a source of toxic chemicals that can have adverse affects at very low concentrations. Some of these chemicals bioaccumulate in aquatic life. If your levels of TOC are high, you should evaluate all sources of natural or synthetic organics you may use at your site.

Oil and Grease (O&G) is a measure of the amount of oil and grease present in your storm water discharge. At very low concentrations, O&G can cause a sheen (that floating "rainbow") on the surface of water (1 qt. of oil can pollute 250,000 gallons of water). O&G can adversely affect aquatic life and create unsightly floating material and film on water, thus making it undrinkable. Sources of O&G include maintenance shops, vehicles, machines and roadways.

If you have any questions regarding whether or not your constituent concentrations are too high, please contact your local Regional Board office. The United States Environmental Protection Agency (USEPA) has published stormwater discharge benchmarks for a number of parameters. These benchmarks may be helpful when evaluating whether additional BMPs are appropriate. These benchmarks can be accessed at our website at http://www.swrcb.ca.gov. It is contained in the Sampling and Analysis Reduction Certification.

See Storm Water Contacts at

http://www.swrcb.ca.gov/stormwtr/contact.html

APPENDIX B

Explanations for 2004–2005 Annual Report for Storm Water Discharges Associated with Industrial Activities

EXPLANATIONS FOR 2004-2005 ANNUAL REPORT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

Monitoring and Reporting Program, Section E: Sampling and Analysis Results, E.2.

The first storm event that produced a discharge during daylight scheduled facility operating hours was not sampled because it was not preceded by three working days without a storm water discharge.

Monitoring and Reporting Program, Section E: Sampling and Analysis Results, E.5.

There were no qualifying storm events that produced the first hour of discharge during daylight scheduled facility operating hours and preceded by three working days (which may be separated by weekends and holidays provided that the weekends and holidays did not produce a discharge) during the 2004-2005 season. It was decided in May to take samples from the discharge locations if and when they were flowing, regardless of a qualifying event. SL-1, SL-2, SL-3, and SL-4 were sampled on May 5, 2005 (SL-5 and SL-6 were not discharge during the 2004-2005 season. Samples were collected as two-point composite samples with an interval of 30 to 180 minutes.

Monitoring and Reporting Program, Section E: Sampling and Analysis Results, E.6.

There were no qualifying storm events to sample. The storm events occurred after scheduled facility operating hours.

Monitoring and Reporting Program, Section E: Sampling and Analysis Results, E.7.

There were no qualifying storm events to sample, the sampled storms were not preceded by three working days without a storm water discharge. (Laboratory Analytical results are included as Appendix D.)

Monitoring and Reporting Program, Section F: Quarterly Visual Observations, F.2.c.

Unauthorized discharges in 2004-2005 consisted of dust control water. Dust control water from an onsite potable water source (well) is applied to prevent wind dispersal of bark dust and woody particulate matter and comply with local air district regulations. Only the minimum amount of dust control water needed is applied. Dust control runoff water flows through structural BMPs such as straw bales, straw

wattles, straw mats, and oil/water separators that serve as settling basins, before it discharges to the Mad River Slough.

Monitoring and Reporting Program, Section G: Monthly Wet Season Visual Observations, G.1.

October – No qualifying storm events. October 8 daytime rainfall occurred as a light drizzle that did not produce runoff until steady rain occurred in the evening. Observed by Jay Chancey, Safety Coordinator 8:30 am to 5:00 pm.

November – No qualifying storm events.

December – No qualifying storm events.

January – No qualifying storm events.

February – No qualifying storm events. February 18 rainfall occurred as a light drizzle that did not produce runoff. Observed by Jay Chancey, Safety Coordinator 8:30 am to 5:00 pm.

March – No qualifying storm events. March 18 rainfall occurred as a light drizzle that did not produce runoff. Observed by Jay Chancey, Safety Coordinator 8:30 am to 5:00 pm.

April – No qualifying storm events.

APPENDIX C

2004–2005 Annual Report Forms 1–5 Sampling & Analysis Results

- 1. First Storm Event
- 2. Quarterly Visual Observations of Authorized Non-Storm Water Discharges
- 3. Quarterly Visual Observations of Unauthorized Non-Storm Water Discharges
- 4. Monthly Visual Observations of Storm Water Discharges
- 5. Form 5 Annual Comprehensive Site Compliance Evaluation Potential Pollutant Source/Industrial Source BMP Status

SIDE A

FORM 1-SAMPLING & ANALYSIS RESULTS

FIRST STORM EVENT

- If analytical results are less than the detection limit (or non detectable), show the value as less than ٠ the numerical value of the detection limit (example: <.05)
 - If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank •

.

- When analysis is done using portable analysis (such as portable pH meters, SC • meters, etc.), indicate "PA" in the appropriate test method used box.
- Make additional copies of this form as necessary.

NAME OF PERSON CC	DLLECTING SAMPLE	(S): Matt Hillyard		TITLE: <u>Staff</u>	Engineer			SIGN		tt The)		
			ANALYTICAL RESULTS For First Storm Event										
DESCRIBE	DATE/TIME			OTHER PARAMETERS									
LOCATION Example: NW Out Fall	OF SAMPLE COLLECTION	STARTED	BASIC PARAMETERS						OTHE	R PARAMETE	ERS		
			PH	TSS	SC	O&G	COD	Tannins Lignins	Chlorinated Phenols	Zinc	TPHg	TPHd	
SL-1	<u>5/5/05</u> 13:15 & 15:35	□AM ? □PM	7.0	56	890	<5.0	110	Not Applicable	<1	0.17	Not Applicable	4,700	
SL-2	<u>5/5/05</u> 11:45 & 14:30	AM ? □PM	6.3	84	2,400	<5.0	480	84	<1	0.39	Not Applicable	10,000 J	
SL-3	<u>5/5/05</u> 12:30 & 15:00	AM ? □PM	5.4	900	340	<5.0	1,500	52	<1	0.17	Not Applicable	9,000	
SL- 4	<u>5/5/05</u> 10:55 & 13:55	AM ? □PM	6.6	95	310	<5.0	190	3.3	<1	0.40	<100	2,000	
TEST REPORTING	UNITS:		pH Units	mg/l	umho/cm	mg/l	mg/l	mg/l	µg/L	mg/l	µg/L	µg/L	
TEST METHOD DE	TECTION LIMIT:		1.0	1.0	20	5.0	10	1.0	1.0	0.02	100	50	
TEST METHOD US	ED:		EPA 150.1	EPA 160.2	EPA 120.1	EPA 1664	SM 5220D	SM 5550B	Canadian Pulp	EPA 200.7	EPA 8015M	EPA 8015M	
ANALYZED BY (SE	LF/LAB):		Alpha Analytical	Alpha Analytical	Alpha Analytical	Alpha Analytical	Alpha Analytic al	Alpha Analytical	Alpha Analytical	Alpha Analytical	Friedman & Bruya	Friedman & Bruya	
TSS - Total Suspended	Solids	SC - Spec	cific Conducta	nce	O&G -	Oil & Grease		COD -	- Chemical Oxy	gen Demand			

Page 2 of Form 1

SIDE A

FORM 1-SAMPLING & ANALYSIS RESULTS

FIRST STORM EVENT

- If analytical results are less than the detection limit (or non detectable), show the value as less than ٠ the numerical value of the detection limit (example: <.05)
- When analysis is done using portable analysis (such as portable pH meters, SC • meters, etc.), indicate "PA" in the appropriate test method used box. Make additional copies of this form as necessary. •
- If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank ٠

NAME OF PERSON COLLECTING SAMPLE(S): Matt Hillyard

TITLE: Staff Engineer

SIGNATURE: _ Matt Th

			TIME DISCHARGE STARTED		ANALYTICAL RESULTS For First Storm Event								
ESCRIBE DISCHARGE LOCATION	DATE/TIME OF SAMPLE COLLECTION	TIME DIS STAF			Other Parameters								
Example: NW Out Fall				TPHd w/ 1 Silica Gel Cleanup	TPHd w/ 2 Silica Gel Cleanups	TPHmo	TPHmo w/ 1 Silica Gel Cleanup	TPHmo w/ 2 Silica Gel Cleanups	Dioxins & Furans				
SL-1	<u>5/5/05</u> <u>13:15 & 15:35</u>	<u></u>	□AM □	<50	<50	1,200	340	420	Not applicable				
SL-2	<u>5/5/05</u> <u>11:45 & 14:30</u>	<u>?_</u> PM	⊟AM □	450	780	4,600	2,300	3,000	0.0789				
SL-3	<u>5/5/05</u> 12:30 & 15:00	<u>?</u> PM	⊟AM □	860	1,300	7,800 J	4,500	6,000	Not applicable				
SL-4	<u>5/5/05</u> 10:55 & 13:55	<u></u>	⊟AM □	120	170	2,000	990	1,100	0.0756				
TEST REPORTING	UNITS:			μg/L	µg/L	µg/L	μg/L	μg/L	pg/L				
TEST METHOD DE	TECTION LIMIT:			50	50	250	250	250	Varies				
TEST METHOD US	ED:			EPA 8015M	EPA 8015M	EPA 8015M	EPA 8015M	EPA 8015M	EPA 1613				
ANALYZED BY (SE	LF/LAB):		00.0	Friedman & Bruya	Friedman & Bruya	Friedman & Bruya	Friedman & Bruya	Friedman & Bruya	Frontier Analytical				
ISS - Total Suspende	ed Solids		SC - Spe	cific Conducta	ance	0&G -	OII & Grease		IOC - Tota	I Organic Carbo	on		

SIDE A

FORM 1-SAMPLING & ANALYSIS RESULTS

FIRST STORM EVENT

TITLE: Staff Engineer

- If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)
- If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank
- NAME OF PERSON COLLECTING SAMPLE(S): Matt Hillyard

- When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.
- Make additional copies of this form as necessary.

SIGNATURE:

DESCRIBE	DATE/TIME	DATE/TIME DISCHARGE		ANALYTICAL RESULTS For First Storm Event								
DISCHARGE	OF SAMPLE	DISCHARGE		BAS	IC PARAMET	ERS		OTHER PARAMETERS				
Example: NW Out Fall	COLLECTION	UTARTED	PH	TSS	SC	O&G	COD	Tannins Lignins	Chlorinated Phenols	Zinc	TPHg	TPHd
SL-5 and SL-6 No Discharge	<u>5/5/05</u> AM : _ □PM	AM PM										
SL-6	<u>5/18/05</u> <u>16:00 & 16:30</u>	AM PM	6.9	580	120	Not Applicable	370	Not Applicable	Not Applicable	0.74	Not Applicable	4,100
SL-5 Io Discharge	_ <u>5/18/05</u> □ AM □ PM	AM □PM										
	/_/ AM PM	AM PM										
EST REPORTING	UNITS:		pH Units	mg/l	umho/cm	mg/l	mg/l	mg/l	μg/L	mg/l	μg/L	μg/L
EST METHOD DE	TECTION LIMIT:		1.0	1.0	20	5.0	10	1.0	1.0	0.02	100	50
EST METHOD US	ED:		EPA 150.1	EPA 160.2	EPA 120.1	EPA 1664	SM 5220D	SM 5550B	Canadian Pulp	EPA 200.7	EPA 8015M	EPA 8015M
NALYZED BY (SE	LF/LAB):		Alpha Analytical	Alpha Analytical	Alpha Analytical	Alpha Analytical	Alpha Analytical	Alpha Analytical	Alpha Analytical	Alpha Analytical	Friedman & Bruya	Friedman & Bruya
TSS - Total Suspended	Solids	SC - Spec	cific Conducta	nce	O&G -	Oil & Grease		COD –	Chemical Oxyo	en Demand		

appropriate test method us n as necessary.

Page 4 of Form 1

FORM 1-SAMPLING & ANALYSIS RESULTS

FIRST STORM EVENT

- If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)
- When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.
 Make additional copies of this form as necessary.
- If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

NAME OF PERSON COLLECTING SAMPLE(S): Matt Hillyard

TITLE: Staff Engineer

SIGNATURE:

DESCRIBE DISCHARGE LOCATION Example: NW Out Fall	DATE/TIME OF SAMPLE	DATE/TIME TIME DISCHARGE OF SAMPLE STARTED COLLECTION	CHARGE TED	ANALYTICAL RESULTS For First Storm Event								
Example: NW Out Fall	GOLLEGHON							Other Pa	rameters			
				TPHd w/ 1 Silica Gel Cleanup	TPHd w/ 2 Silica Gel Cleanups	TPHmo	TPHmo w/ 1 Silica Gel Cleanup	TPHmo w/ 2 Silica Gel Cleanups	Dioxins & Furans			
SL-5 and SL-6 No Discharge	<u>5/5/05</u> □ AM □ PM	_:_	□ AM □ PM									
SL-6	<u>5/18/05_</u> 16:00 & 16:30	_?:	AM BM	1,100	1,500	7,800	8,300	8,000	Not applicable			
SL-5 No Discharge	<u>5/18/05</u> AM PM	_:	AM BM									
	/_/ AM PM	_:	AM PM									
TEST REPORTING	UNITS:			μg/L	μg/L	µg/L	μg/L	μg/L	pg/L			
TEST METHOD DE	TECTION LIMIT:			50	50	250	250	250	Varies			
TEST METHOD US	ED:			EPA 8015M	EPA 8015M	EPA 8015M	EPA 8015M	EPA 8015M	EPA 1613			
ANALYZED BY (SE	LF/LAB):			Friedman & Bruya	Friedman & Bruya	Friedman & Bruya	Friedman & Bruya	Friedman & Bruya	Frontier Analytical			
TSS - Total Suspende	d Solids		SC - Spe	cific Conducta	ince	O&G -	Oil & Grease		TOC - Tot	al Organic Ca	rbon	

FORM 2-QUARTERLY VISUAL OBSERVATIONS OF <u>AUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

- * Quarterly dry weather visual observations are required of each authorized NSWD.
- Observe each authorized NSWD source, impacted drainage area, and discharge location.

- Authorized NSWDs must meet the conditions provided in Section D (pages 5-6), of the General Permit.
- Make additional copies of this form as necessary.

QUARTER:	Observers Name:			
JULY-SEPT.			X YES	If VES complete
DATE:	Title:	WERE ANY AUTHORIZED NSWDs DISCHARGED DURING THIS QUARTER?		reverse side of
9/23/04	Signature:			
QUARTER:	Observers Name:			
OCTDEC.			X YES	If YES, complete
DATE:	Title: Staff Engineer	WERE ANY AUTHORIZED NSWDs DISCHARGED DURING THIS QUARTER?		reverse side of this form.
12/16/04	Signature:		NO	
QUARTER:				
	Observers Name: <u>Matt Hillyard</u>			If VES complete
JANWARCH	Titles Staff Engineer	WERE ANY AUTHORIZED NSWDs	A TES	reverse side of
DATE:		DISCHARGED DURING THIS QUARTER?		this form.
2/17/05	Signature:			
QUARTER.	Observers Name: Matt Hillyard			
APRIL-JUNE			X YES	If YES, complete
DATE	Title: Staff Engineer	WERE ANY AUTHORIZED NSWDS		reverse side of
6/2/05	Signature: Matt 76			this form.
		1		

FORM 2-QUARTERLY VISUAL OBSERVATIONS OF <u>AUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

DATE /TIME OF OBSERVATION	SOURCE AND LOCATION OF AUTHORIZED NSWD	NAME OF AUTHORIZED NSWD	DESCRIBE AUTHORIZED NSWD CHARACTERISTICS Indicate whether authorized NSWD is clear, cloudy, or discolored, causing staining, contains floating objects		DESCRIBE ANY REVISED OR NEW BMPs AND PROVIDE THEIR IMPLEMENTATION DATE
	EXAMPLE: Air conditioner Units	EXAMPLE: Air conditioner	or an oil shee At the NSWD Source	en, has odors, etc. At the NSWD Drainage Area and Discharge	-
9/23/04	Humboldt Bay Ditch #2	Sea Water	Greenish-brown tint in the Bay	Location Mostly clear discharge, slight gray tint w/ very small woody particles	Clean separator before first major storm event.
_ <u>1:05</u>					
	Well Water Spilled/Leaked from Water Truck	Potable Water	Clear water leaking from truck and pump	Very cloudy reddish- brown w/ small woody particles	Clean area around water truck, properly maintain straw wattles along north side of Ditch #4. Clean separator before first
_ <u>1:15</u>	Adjacent to Ditch #4				major storm event.
	Ditch #4	Spring water	Clear	Mixed w/ dirty water from water truck – see above	Clean separator before first major storm event.
<u>1:30</u> AM X PM					
	Ditch #5	Spring water	Clear	Clear	None Required
<u>1:35</u> AM PM					
12/16/04	Dry Kiln Condensate in Ditch #1	Kiln Condensate	Clear to cloudy w/ biological orange film	Clear w/ some accumulated opaque sheen areas	None Required
<u>2:15</u>					

FORM 2-QUARTERLY VISUAL OBSERVATIONS OF <u>AUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

DATE /TIME OF OBSERVATION	SOURCE AND LOCATION OF AUTHORIZED NSWD	NAME OF AUTHORIZED NSWD	DESCRIBE AUTHORIZED NSWD CHARACTERISTICS Indicate whether authorized NSWD is clear, cloudy, or discolored, causing staining, contains floating objects or an oil sheen, has odors, etc.		DESCRIBE ANY REVISED OR NEW BMPs AND PROVIDE THEIR IMPLEMENTATION DATE
	EXAMPLE: Air conditioner Units on Building C	EXAMPLE: Air conditioner condensate	At the NSWD Source	At the NSWD Drainage Area and Discharge Location	
<u>12/16/04</u> 2:15 □ ΔΜ	Dry Shed Fire System Drain Leak	Potable Water	Clear	Clear w/ some accumulated opaque sheen areas	Repair leak in drain.
12/16/04	Spring Water in Ditch #4	Spring Water	Clear w/ orange bacteria	Lt. gray, slightly cloudy discharge observed under Mad River Slough Water, quickly diluted	None Required
<u>2:35</u> AM					
12/16/04	Spring Water in Ditch #5	Spring Water	Clear w/ orange bacteria and opaque sheen	Discharge not observed due to high tide	None Required
<u>3:05</u> AM					
_2/17/05	Dry Kiln Condensate in Ditch #1	Kiln Condensate	Clear to slightly cloudy	Clear	None Required
_ <u>1:30</u> AM [X] PM					
	Spring Water in Ditch #4	Spring Water	Very clear w/ orange bacterial buildup in ditch	Very clear	None Required
_ <u>1:45</u> AM _X PM					

FORM 2-QUARTERLY VISUAL OBSERVATIONS OF <u>AUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

DATE /TIME OF OBSERVATION	SOURCE AND LOCATION OF AUTHORIZED NSWD	NAME OF AUTHORIZED NSWD	DESCRIBE AUTHORIZED NSWD CHARACTERISTICS Indicate whether authorized NSWD is clear, cloudy, or discolored, causing staining, contains floating objects or an oil sheen, has odors, etc.		DESCRIBE ANY REVISED OR NEW BMPs AND PROVIDE THEIR IMPLEMENTATION DATE
	EXAMPLE: Air conditioner Units on Building C	EXAMPLE: Air conditioner condensate	At the NSWD Source	At the NSWD Drainage Area and Discharge Location	
_ <u>2/17/05</u> _ <u>1:45</u> AM X PM	Well Water Spilled/Leaked from Water Truck Adjacent to Ditch #4	Potable Water	Clear water leaking from truck and pump becomes cloudy when contact w/ woody particles	Cloudy when entering ditch, then diluted w/ spring water, discharge at outfall is very clear	Clean area around water truck
 2/17/05 AM XPM	Spring Water in Ditch #5	Spring Water	Clear w/ orange/brown bacteria buildup in ditch	Very clear	None Required
<u>6/2/05</u> <u>9:40</u> X AM	Tank Valve for Well leaking over/into Ditch #4	Potable Water	Very Clear	Very clear w/ orange bacteria	None Required
<u>6/2/05</u> <u>9:50</u> X AM	Spring Water in Ditch #5	Spring Water	Clear w/ orange/brown bacteria buildup in ditch	Discharge not observed due to high tide	None Required

2004 - 2005 ANNUAL REPORT FORM 3-QUARTERLY VISUAL OBSERVATIONS OF <u>UNAUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

- Unauthorized NSWDs are discharges (such as wash or rinse waters) that do not meet the conditions provided in Section D (pages 5-6) of the General Permit.
- Quarterly visual observations are required to observe current and detect prior unauthorized NSWDs.
- Quarterly visual observations are required during dry weather and at all facility drainage areas.
- Each unauthorized NSWD source, impacted drainage area, and discharge location must be identified and observed.
- Unauthorized NSWDs that can not be eliminated within 90 days of observation must be reported to the Regional Board in accordance with Section A.10.e of the General Permit.
- Make additional copies of this form as necessary.

QUARTER: JULY-SEPT. DATE/TIME OF OBSERVATIONS AM <u>9/23/04</u> 1:10 X PM	Observers Name: Matt Hillyard Title:	WERE UNAUTHORIZED NSWDs OBSERVED? WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?	K YES ⊡NO	If YES to either question, complete reverse side.
QUARTER: OCTDEC. DATE/TIME OF OBSERVATIONS 12/16/04 2:45 X PM	Observers Name: Matt Hillyard Title:	WERE UNAUTHORIZED NSWDs OBSERVED? WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?	K YES ⊡NO	If YES to either question, complete reverse side.
QUARTER: JANMARCH DATE/TIME OF OBSERVATIONS 	Observers Name: <u>Matt Hillyard</u> Title: <u>Staff Engineer</u> Signature: <u>Matt Add Matt Ad</u>	WERE UNAUTHORIZED NSWDS OBSERVED? WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDS?	K YES ⊡NO	If YES to either question, complete reverse side.
QUARTER: APRIL-JUNE DATE/TIME OF OBSERVATIONS AM 6/2/059:30PM	Observers Name: <u>Matt Hillyard</u> Title: <u>Staff Engineer</u> Signature: <u>Matt Add Matt Ad</u>	WERE UNAUTHORIZED NSWDs OBSERVED? WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?	K YES ⊡NO	If YES to either question, complete reverse side.

FORM 3 QUARTERLY VISUAL OBSERVATIONS OF <u>UNAUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

OBSERVATION	NAME OF	SOURCE AND	DESCRIBE UNAU	DESCRIBE CORRECTIVE	
DATE	UNAUTHORIZED	LOCATION	CHARACTERISTICS		ACTIONS TO ELIMINATE
(FROM	NSWD	OF	Indicate whether unauthori	zed NSWD is clear, cloudy,	UNAUTHORIZED NSWD AND
REVERSE SIDE)		UNAUTHORIZED	discolored, causing stains; contains floating objects or an oil		TO CLEAN IMPACTED
		NSWD	sheen, has	odors, etc.	DRAINAGE AREAS.
					PROVIDE UNAUTHORIZED
	EXAMPLE:	EXAMPLE:			NSWD ELIMINATION DATE.
	Vehicle Wash	NW Corner of	AT THE UNAUTHORIZED	AT THE UNAUTHORIZED	
	Water	Parking Lot	NSWD SOURCE		
	Deart Constant Weter	Design and the large term	Dedited have and also decided and	Standard data Constitution	
0/22/04	Dust Control water	Dust control water	Keddish-brown cloudy water	Steady drip @ outrail of	Sweep woody material from dust
9/23/04		entering alten #5	on pavement w/ small woody	reddisn-brown cloudy water	control area, clean separator
		пот юд аеск	particles	w/ very small woody particles	belore first major storm event.
1·10 🗖 AM		pavement			Property maintain straw bales.
	Dust Control Water	Dust control water	Reddish-brown cloudy water	Reddish-brown cloudy water	Sween woody material from dust
9/23/04	Dust Control Water	entering ditch $#4$	on navement w/ small woody	w/ very small woody narticles	control area clean separator
		from log deck	narticles	w/ very sinan woody particles	before first major storm event.
		navement	particles		Pronerly maintain straw wattles
1:10 🗆 AM		pavement			Toperty maintain straw wattles.
X PM					
	Dust Control Water	Dust control water	Brown cloudy water w/ very	No discharge observed @	Thoroughly clean drainage area,
12/16/04		entering ditch #3	fine woody particles.	outfall due to high tide	maintain straw bales weekly.
		from log deck	U I	8	2
		pavement			
<u>2:45</u> AM		•			
X PM					
	Dust Control Water	Dust control water	Brown cloudy water w/ very	Brown cloudy water w/ very	Thoroughly clean drainage area,
2/17/05		entering ditch #3	fine woody particles.	small woody particles	maintain straw bales weekly.
		from log deck			
		pavement			
<u>1:40</u> <u>AM</u>					
X PM					

FORM 3 QUARTERLY VISUAL OBSERVATIONS OF <u>UNAUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

OBSERVATION	NAME OF	SOURCE AND	DESCRIBE UNAU	DESCRIBE CORRECTIVE	
DATE	UNAUTHORIZED	LOCATION	CHARACT	ACTIONS TO ELIMINATE	
(FROM	NSWD	OF	Indicate whether unauthori	UNAUTHORIZED NSWD AND	
REVERSE SIDE)		UNAUTHORIZED	discolored, causing stains; co	TO CLEAN IMPACTED	
		NSWD	sheen, has	odors, etc.	DRAINAGE AREAS.
					PROVIDE UNAUTHORIZED
	EXAMPLE:	EXAMPLE:			NSWD ELIMINATION DATE.
	Vehicle Wash	NW Corner of	NSWD SOURCE		
	vvater	Parking Lot		DISCHARGE LOCATION	
	Dust Control Water	Dust control water	Brown cloudy water on	Cloudy entering ditch.	Clean drainage area and maintain
2/17/05		entering ditch #4	pavement w/ small woody	diluted w/ spring water.	straw wattles.
		from log deck	particles	Very clear discharge @	
		pavement	•	outfall.	
<u>1:45</u> AM		•			
X PM					
_ /_ /	Dust Control Water	Dust control water	Brown cloudy water w/ very	Brown cloudy water w/ very	Thoroughly clean drainage area,
6/2/05		entering ditch #3	fine woody particles.	fine woody particles	maintain straw bales weekly.
		from log deck			
		pavement			
<u>9:30</u> X AM					
/ /					
: 🗌 AM					
<u> </u>					
РМ					

2004 - 2005 ANNUAL REPORT FORM 4-MONTHLY VISUAL OBSERVATIONS OF

STORM WATER DISCHARGES

٠

- Storm water discharge visual observations are required for at least one storm event per month between October 1 and May 31.
- Indicate "None" in the first column of this form if you did not conduct a monthly visual observation.
- Make additional copies of this form as necessary.

- Visual observations must be conducted during the first hour of discharge at all discharge locations.
- Discharges of temporarily stored or contained storm water must be observed at the time of discharge.
- Until a monthly visual observation is made, record any eligible storm events that do not result in a storm water discharge and note the date, time, name, and title of who observed there was no storm water discharge.

Observation Date: October 2004	Drainage Location Description	#1	#2	#3	#4
NONE Observers Name:		₽.M.	P.M.	□ P.M.	
Title:	Observation Time				
Signature:	Time Discharge Began Were Pollutants Observed (If yes, complete reverse side)				:A.M. YES NO
Observation Date: November 2004 NONE	Drainage Location Description	#1	#2	#3	#4
Observers Name:	Observation Time	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□P.M. : □ ^{A.M.}
Title:	Time Discharge Began	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□P.M. : □A.M.
Signature:	Were Pollutants Observed (If yes, complete reverse side)				
	· · · · · · · · · · · · · · · · · · ·				
Observation Date: December 2004 NONE	Drainage Location Description	#1	#2	#3	#4
Observation Date: December 2004 NONE Observers Name:	Drainage Location Description	#1 : □ P.M. : □ A.M.	#2 : □ P.M. : □ A.M.	#3 □ P.M. : □ A.M.	#4 : □P.M. : □A.M.
Observation Date: December 2004 NONE Observers Name: Title:	Drainage Location Description Observation Time Time Discharge Began	#1 : P.M. : A.M. P.M. : A.M.	#2 : P.M. : A.M. P.M. : A.M.	#3 :P.M. :P.M. :A.M.	#4 :P.M. :A.M. :P.M. :A.M.
Observation Date: December2004 NONE Observers Name: Title: Signature:	Drainage Location Description Observation Time Time Discharge Began Were Pollutants Observed (If yes, complete reverse side)	#1 : P.M. : A.M. P.M. : A.M. YES NO	#2 : P.M. : A.M. : P.M. : A.M. YES NO	#3 : P.M. : A.M. : P.M. : A.M. YES NO	#4 : P.M. : A.M. : P.M. : A.M. YES NO
Observation Date: December 2004 NONE Observers Name: Title: Signature: Observation Date: January 2005 NONE	Drainage Location Description Observation Time Time Discharge Began Were Pollutants Observed (If yes, complete reverse side) Drainage Location Description	#1 : P.M. : A.M. P.M. : A.M. YES NO [#1	#2 : P.M. : A.M. : P.M. : A.M. YES NO #2	#3 : P.M. : A.M. P.M. : A.M. YES NO #3	#4 : □P.M. : □A.M. : □P.M. : □A.M. YES □ NO □ #4
Observation Date: December 2004 NONE Observers Name: Title: Signature: Observation Date: January 2005 NONE Observers Name:	Drainage Location Description Observation Time Time Discharge Began Were Pollutants Observed (If yes, complete reverse side) Drainage Location Description Observation Time	#1	#2 : □ P.M. : □ A.M. : □ P.M. : □ A.M. YES □ NO □ #2 : □ P.M. : □ A.M.	#3 : P.M. : A.M. : P.M. : A.M. YES NO #3 : P.M. : A.M.	#4 : □P.M. : □A.M. : □A.M. YES □ NO □ #4 : □P.M. : □P.M. A.M.
Observation Date: December 2004 NONE Observers Name: Title: Signature: Observation Date: January 2005 NONE Observers Name: Title: Title:	Drainage Location Description Observation Time Time Discharge Began Were Pollutants Observed (If yes, complete reverse side) Drainage Location Description Observation Time Time Discharge Began	#1 #1 P.M. A.M. P.M. P.M. A.M. YES NO #1 #1 P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M.	#2 #2 P.M. A.M. P.M. P.M. A.M. YES NO #2 P.M. A.M. P.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. P.M. P.M	#3 #3 P.M. A.M. P.M. P.M. A.M. YES NO #3 P.M. P.M. P.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. P.M.	#4 : □P.M. : □A.M. P.M. : □A.M. YES □ NO □ #4 : □P.M. : □A.M. : □P.M. A.M. : □P.M. A.M.

Α

2004 - 2005 ANNUAL REPORT FORM 4 (Continued)-MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

- Storm water discharge visual observations are required for at least one storm event per month between October 1 and May 31.
- Visual observations must be conducted during the first hour of discharge at all discharge locations.
- Discharges of temporarily stored or contained storm water must be observed at the time of discharge.

- Indicate "None" in the first column of this form if you did not conduct a monthly visual observation.
- Make additional copies of this form as necessary.
- Until a monthly visual observation is made, record any eligible storm events that do not result in a storm water discharge and note the date, time, name, and title of who observed there was no storm water discharge.

Observation Date: February 2005 NONE	Drainage Location Description	#1	#2	#3	#4
Observers Name:		□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.
Title:				P.M.	
Signature:	I ime Discharge Began Were Pollutants Observed (If yes, complete reverse side)				
Observation Date: March 2005 NONE	Drainage Location Description	#1	#2	#3	#4
Observers Name:	Observation Time	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.
Title:	Time Discharge Began	□ P.M. : □ A.M.	□ P.M. : □ A.M.	P.M. : A.M.	□ P.M. : □ A.M.
Signature:	Were Pollutants Observed (If yes, complete reverse side)				
Observation Date: April 2005 NONE	Drainage Location Description	#1	#2	#3	#4
Observers Name:	Observation Time	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.
Title:	Time Discharge Began	Р.М. : ПА.М.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	P.M.
Signature:	Were Pollutants Observed (If yes, complete reverse side)				
Observation Date: May <u>5</u> 2005	Drainage Location Description	#1 SL-1	#2 SL-2	#3 SL-3	#4 SL-4
Observers Name: Matt Hillyard	Observation Time	■ P.M. 1:15 □ A.M.	□ P.M. 11:45 ⊠ A.M.	IZ:30 ☐ A.M.	□ P.M. 10:55 ⊠ A.M.
Title:Staff Engineer	Time Discharge Began	Overnight D.M.	Overnight P.M.	Overnight P.M.	Overnight D.M.
Signature:	Were Pollutants Observed (If yes, complete reverse side)	YES 🗌 NO 🖾	YES 🛛 NO 🗖	YES 🖾 NO 🗖	YES X NO

2004 - 2005 ANNUAL REPORT FORM 4 (Continued)-MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

- Storm water discharge visual observations are required for at least one storm event per month between October 1 and May 31.
- Visual observations must be conducted during the first hour of discharge at all discharge locations.
- Discharges of temporarily stored or contained storm water must be observed at the time of discharge.

- Indicate "None" in the first column of this form if you did not conduct a monthly visual observation.
- Make additional copies of this form as necessary.
- Until a monthly visual observation is made, record any eligible storm events that do not result in a storm water discharge and note the date, time, name, and title of who observed there was no storm water discharge.

Observation Date: February 2005 NONE	Drainage Location Description	#1	#2	#3	#4
Observers Name:	Observation Time	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.
Title:	Time Discharge Began	Р.М. ;А.М.	□ P.M. : □ A.M.	P.M.	□ P.M. : □ A.M.
Signature:	Were Pollutants Observed (If yes, complete reverse side)				
Observation Date: March 2005 NONE	Drainage Location Description	#1	#2	#3	#4
Observers Name:	Observation Time	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.
Title:	Time Discharge Began	□ P.M. : □ A.M.	: □ P.M. : □ A.M.	: D.M. . A.M.	: □ P.M. . □ A.M.
Signature:	Were Pollutants Observed (If yes, complete reverse side)				
Observation Date: April 2005 NONE	Drainage Location Description	#1	#2	#3	#4
Observers Name:	Observation Time	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.
Title:	Time Discharge Began	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.
Signature:	Were Pollutants Observed (If yes, complete reverse side)			YES 🔲 NO 🗖	YES NO
Observation Date: May <u>18</u> 2005	Drainage Location Description	#1 SL-6	#2	#3	#4
Observers Name: <u>Matt Hillyard</u>	Observation Time	□ P.M. 9:30 ⊠ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.	□ P.M. : □ A.M.
Title: Staff Engineer	Time Discharge Began	Overnight Dvernight	: P.M. : A.M.	: DP.M. A.M.	: P.M. A.M.
Signature:	Were Pollutants Observed (If yes, complete reverse side)	YES 🖄 NO 🗖			YES NO

FORM 4 (Continued)-MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

DATE/TIME OF OBSERVATION (From Reverse Side)	DRAINAGE AREA DESCRIPTION	DESCRIBE STORM WATER DISCHARGE CHARACTERISTICS	IDENTIFY AND DESCRIBE SOURCE(S) OF POLLUTANTS	DESCRIBE ANY REVISED OR NEW BMPs AND THEIR DATE OF IMPLEMENTATION
()	EXAMPLE: Discharge from material storage Area #2	Indicate whether storm water discharge is clear, cloudy, or discolored; causing staining; containing floating objects or an oil sheen, has odors, etc.	EXAMPLE: Oil sheen caused by oil dripped by trucks in vehicle maintenance area.	
<u> </u>	SL-2 Discharge from sawmill & equipment shop areas.	Grayish-brown w/ suspended very fine woody particles.	Woody particulate matter from sawmill.	Clean up woody debris on ground before next storm, clean out separator ASAP.
<u>11:45: ⊠</u> AM □ PM				
<u> </u>	SL-3 Discharge from sawmill, debarker, and	Reddish-brown w/ suspended very fine woody particles.	Woody particulate matter from sawmill and bark particles from debarker and log deck.	Clean up woody/bark debris on ground before next storm, clean out separator ASAP.
<u>12:30:</u> AM ∑ PM	eastern log deck areas.			
5/5/05	SL-4 Discharge from sorter and log deck areas.	Reddish-brown w/ suspended very fine woody particles.	Woody particulate matter from sorter and bark particles from debarker and log deck.	Clean up woody/bark debris on ground before next storm, clean out separator ASAP.
<u>10:55: ⊠</u> AM □ PM				
<u> </u>	SL-6 Discharge from lumber storage, fueling and	Cloudy brownish-gray discharge at sample point SL-6, becomes increasingly clear to very clear as flow moves downstream	Some soil and woody particles from pavement, mostly from recently graded area near	Allow graded area to vegetate and/or line w/ gravel or straw blanket before next rainy season.
9:30 🔀 AM 🗌 PM	truck scale areas.	through vegetation.	entrance gate where runoff leaves the pavement.	
: AM PM				

APPENDIX D

Chain-of-Custody Records and Laboratory Analytical Reports

Alpha Analytical Laboratories, Inc. A505241

Alpha Analytical Laboratories, Inc. A505560

Friedman & Bruya, Inc. 505077

Friedman & Bruya, Inc. 505221

Frontier Analytical Laboratory, 3269

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

15 June 2005

Geomatrix Consultants Attn: Ross Steenson 2101 Webster Street, 12th Floor Oakland, CA 94612 RE: Task 6 Work Order: A505241

Enclosed are the results of analyses for samples received by the laboratory on 05/06/05 15:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nena M. Burgess For Sheri L. Speaks Project Manager

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Receipt Date/Time

05/06/2005 15:40

06/15/05 15:12 Report Date: 9329 Project No:

Task 6

Project ID:

Order Number A505241

Client Code GEOMAT

Client PO/Reference

Page 1 of 10

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SL-1	A505241-01	Water	05/05/05 15:35	05/06/05 15:40
SL-2	A505241-02	Water	05/05/05 14:30	05/06/05 15:40
SL-3	A505241-03	Water	05/05/05 15:00	05/06/05 15:40
SL-4	A505241-04	Water	05/05/05 13:55	05/06/05 15:40

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

6/15/2005

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Report Date: 06/15/05 15:12 9329 Project No: Project ID: Task 6

<u>Order Number</u> A505241	Receipt Date/Time 05/06/2005 15:40		<u>Cli</u> Gl	<u>ent Code</u> EOMAT	5	Client PO/Refe	rence	
		Alpha	Analytical	Laboratori	es, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
SL-1 (A505241-01)			Sample Type	: Water	S	ampled: 05/05/05 15:35		
Metals by EPA 200 Series Methods								
Zinc	EPA 200.7	AE51204	05/12/05	05/17/05	1	0.17 mg/l	0.020	
Conventional Chemistry Parameters h	by APHA/EPA Methods							
Oil & Grease (HEM-SG)	EPA 1664	AE51716	05/17/05	05/19/05	1	ND mg/l	5.0	
Chemical Oxygen Demand	SM5220D	AE50910	05/09/05	05/13/05		110 "	10	
рН	EPA 150.1	AE51016	05/10/05	05/10/05	"	7.0 pH Units	1.0	
Specific Conductance (EC)	EPA 120.1	"	"	"		890 umhos/cm	20	
Total Suspended Solids	EPA 160.2	AE51219	05/12/05	05/16/05	"	56 mg/l	1.0	
Chlorinated Phenols by Canadian Pul	p Method							
2,4,6-Trichlorophenol	EnvCan	AE51311	05/11/05	05/13/05	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	"	"	"		ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	"	"	"	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	"	"	"	"	ND "	1.0	
Pentachlorophenol	"	"	"	"	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		112 % 70	-124	
SL-2 (A505241-02)			Sample Type	: Water	S	ampled: 05/05/05 14:30		
Metals by EPA 200 Series Methods								
Zinc	EPA 200.7	AE51204	05/12/05	05/17/05	1	0.39 mg/l	0.020	

Zilic	EPA 200.7	AE51204	05/12/05	05/17/05	1	0.39 mg/i	0.020
Conventional Chemistry Parameters by	APHA/EPA Methods						
Oil & Grease (HEM-SG)	EPA 1664	AE51716	05/17/05	05/19/05	1	ND mg/l	5.0
Tannins & Lignins	SM5550B	AE51917	05/19/05	05/19/05	20	84 ''	10
Chemical Oxygen Demand	SM5220D	AE50910	05/09/05	05/13/05	1	480 "	10
рН	EPA 150.1	AE51016	05/10/05	05/10/05	"	6.3 pH Units	1.0
Specific Conductance (EC)	EPA 120.1	"	"	"	"	2400 umhos/cm	20
Total Suspended Solids	EPA 160.2	AE51219	05/12/05	05/16/05	"	84 mg/l	1.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

Page 2 of 10

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

06/15/05 15:12 Report Date: 9329 Project No: Project ID: Task 6

Order Number	<u>Receipt Date/Time</u>	<u>Client Code</u>	Client PO/Reference
A505241	05/06/2005 15:40	GEOMAT	
	ical Laboratories, Inc.		

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
SL-2 (A505241-02)			Sample Type	: Water	Sa	mpled: 05/05/05 14:3	0	
Chlorinated Phenols by Canadian Pulp M	lethod							
2,4,6-Trichlorophenol	EnvCan	AE51311	05/11/05	05/13/05	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	"	"	"	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	"	"	"		ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	"	"	"		ND "	1.0	
Pentachlorophenol	"	"	"	"	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		106 %	70-124	
SL-3 (A505241-03)			Sample Type	: Water	Sa	mpled: 05/05/05 15:0	0	
Metals by EPA 200 Series Methods								
Zinc	EPA 200.7	AE51204	05/12/05	05/17/05	1	0.17 mg/l	0.020	
Conventional Chemistry Parameters by A	APHA/EPA Methods							
Oil & Grease (HEM-SG)	EPA 1664	AE51716	05/17/05	05/19/05	1	ND mg/l	5.0	
Tannins & Lignins	SM5550B	AE51917	05/19/05	05/19/05	10	52 "	5.0	
Chemical Oxygen Demand	SM5220D	AE50910	05/09/05	05/13/05	1	1500 "	10	
рН	EPA 150.1	AE51016	05/10/05	05/10/05		5.4 pH Unit	s 1.0	
Specific Conductance (EC)	EPA 120.1	"	"			340 umhos/c	em 20	
Total Suspended Solids	EPA 160.2	AE51219	05/12/05	05/16/05	"	900 mg/l	1.0	
Chlorinated Phenols by Canadian Pulp M	lethod							
2,4,6-Trichlorophenol	EnvCan	AE51311	05/11/05	05/13/05	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	"	"	"		ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	"	"	"		ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	"	"	"		ND "	1.0	
Pentachlorophenol	"	"	"	"	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		104 %	70-124	
SL-4 (A505241-04)			Sample Type	: Water	Sa	mpled: 05/05/05 13:5	5	
Metals by EPA 200 Series Methods								
Zinc	EPA 200.7	AE51204	05/12/05	05/18/05	1	0.40 mg/l	0.020	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

Page 3 of 10

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

06/15/05 15:12 Report Date: 9329 Project No: Project ID: Task 6

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A505241	05/06/2005 15:40	GEOMAT	

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
SL-4 (A505241-04)			Sample Typ	e: Water	Sampled: 05/05/05 13:55			
Conventional Chemistry Parameters b	y APHA/EPA Methods							
Oil & Grease (HEM-SG)	EPA 1664	AE51716	05/17/05	05/19/05	1	ND mg/l	5.0	
Tannins & Lignins	SM5550B	AE51917	05/19/05	05/19/05	"	3.3 "	0.50	
Chemical Oxygen Demand	SM5220D	AE50910	05/09/05	05/13/05	"	190 "	10	
рН	EPA 150.1	AE51016	05/10/05	05/10/05	"	6.6 pH Units	1.0	
Specific Conductance (EC)	EPA 120.1	"	"		"	310 umhos/cm	20	
Total Suspended Solids	EPA 160.2	AE51219	05/12/05	05/16/05	"	95 mg/l	1.0	
Chlorinated Phenols by Canadian Pulj	p Method							
2,4,6-Trichlorophenol	EnvCan	AE51311	05/11/05	05/14/05	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	"	"		"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	"	"		"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	"	"	"	"	ND "	1.0	
Pentachlorophenol	"	"	"	"	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		106 % 70-12	4	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

Page 4 of 10

Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason Street, Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

06/15/05 15:12 Report Date: 9329 Project No: Task 6 Project ID:

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A505241	05/06/2005 15:40	GEOMAT	

SourceResult

Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE51204 - EPA 3005A										
Blank (AE51204-BLK1)				Prepared: (05/12/05 A	nalyzed: 05	/17/05			
Zinc	ND	0.020	mg/l							
LCS (AE51204-BS1)				Prepared: ()5/12/05 A	nalyzed: 05	/17/05			
Zinc	0.206	0.020	mg/l	0.200		103	85-115			
LCS Dup (AE51204-BSD1)				Prepared: ()5/12/05 A	nalyzed: 05	/17/05			
Zinc	0.204	0.020	mg/l	0.200		102	85-115	0.976	20	
Duplicate (AE51204-DUP1)	Sour	ce: A50533	5-03	Prepared: ()5/12/05 A	nalyzed: 05	/17/05			
Zinc	0.00420	0.020	mg/l		ND				20	
Matrix Spike (AE51204-MS1)	Sour	ce: A50533	5-03	Prepared: ()5/12/05 A	nalyzed: 05	/17/05			
Zinc	0.215	0.020	mg/l	0.200	ND	106	70-130			
Matrix Spike Dup (AE51204-MSD1)	Sour	ce: A50533	5-03	Prepared: (05/12/05 A	nalyzed: 05	/17/05			
Zinc	0.211	0.020	mg/l	0.200	ND	104	70-130	1.88	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

Page 5 of 10

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

06/15/05 15:12 Report Date: 9329 Project No: Task 6 Project ID:

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A505241	05/06/2005 15:40	GEOMAT	

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	POL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE50910 - General Preparation		,								0
- Blank (AE50910-BLK1)				Prepared:	05/09/05 A	Analyzed: 05	/13/05			
Chemical Oxygen Demand	ND	10	mg/l			-				
LCS (AE50910-BS1)				Prepared:	05/09/05 A	Analyzed: 05	/13/05			
Chemical Oxygen Demand	106	10	mg/l	100		106	85-115			
LCS Dup (AE50910-BSD1)				Prepared:	05/09/05 A	Analyzed: 05	/13/05			
Chemical Oxygen Demand	94.7	10	mg/l	100		94.7	85-115	11.3	20	
Duplicate (AE50910-DUP1)	Sourc	ce: A50523	5-01	Prepared:	05/09/05 A	Analyzed: 05	/13/05			
Chemical Oxygen Demand	25.5	10	mg/l		26			1.94	20	
Matrix Spike (AE50910-MS1)	Sourc	ce: A50523	5-01	Prepared:	05/09/05 A	Analyzed: 05	/13/05			
Chemical Oxygen Demand	418	10	mg/l	400	26	98.0	85-115			
Matrix Spike Dup (AE50910-MSD1)	Sourc	ce: A50523	5-01	Prepared:	05/09/05 A	Analyzed: 05	/13/05			
Chemical Oxygen Demand	402	10	mg/l	400	26	94.0	85-115	3.90	20	
Batch AE51219 - General Preparation										
Blank (AE51219-BLK1)				Prepared:	05/12/05 A	Analyzed: 05	/16/05			
Total Suspended Solids	ND	1.0	mg/l							
Duplicate (AE51219-DUP1)	Sourc	ce: A50524	1-03	Prepared:	05/12/05 A	Analyzed: 05	/16/05			
Total Suspended Solids	886	1.0	mg/l		900			1.57	30	
Batch AE51716 - General Preparation										
Blank (AE51716-BLK1)				Prepared:	05/17/05 A	Analyzed: 05	/19/05			
Oil & Grease (HEM-SG)	ND	5.0	mg/l							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

6/15/2005

Page 6 of 10

Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason Street, Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

06/15/05 15:12 Report Date: 9329 Project No: Task 6 Project ID:

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A505241	05/06/2005 15:40	GEOMAT	

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE51716 - General Preparation										
LCS (AE51716-BS1)				Prepared: (05/17/05 A	nalyzed: 05	/19/05			
Oil & Grease (HEM-SG)	9.00	5.0	mg/l	10.0		90.0	66-114			
LCS Dup (AE51716-BSD1)				Prepared: (05/17/05 A	nalyzed: 05	/19/05			
Oil & Grease (HEM-SG)	8.60	5.0	mg/l	10.0		86.0	66-114	4.55	24	
Matrix Spike (AE51716-MS1)	Sour	ce: A50524	1-02	Prepared: (05/17/05 A	nalyzed: 05	/19/05			
Oil & Grease (HEM-SG)	9.00	5.0	mg/l	6.00	ND	80.0	66-114			
Batch AE51917 - General Preparation										
Blank (AE51917-BLK1)				Prepared &	à Analyzed:	05/19/05				
Tannins & Lignins	ND	0.50	mg/l							
LCS (AE51917-BS1)				Prepared &	k Analyzed:	05/19/05				
Tannins & Lignins	3.72	0.50	mg/l	4.00		93.0	80-120			
LCS Dup (AE51917-BSD1)				Prepared &	k Analyzed:	05/19/05				
Tannins & Lignins	4.06	0.50	mg/l	4.00		102	80-120	8.74	20	
Duplicate (AE51917-DUP1)	Sourc	ce: A50524	1-04	Prepared &	k Analyzed:	05/19/05				
Tannins & Lignins	3.17	0.50	mg/l		3.3			4.02	200	
Matrix Spike (AE51917-MS1)	Source	ce: A50524	1-04	Prepared &	k Analyzed:	05/19/05				
Tannins & Lignins	5.36	0.50	mg/l	2.00	3.3	103	80-120			
Matrix Spike Dup (AE51917-MSD1)	Sour	ce: A50524	1-04	Prepared &	k Analyzed:	05/19/05				
Tannins & Lignins	5.36	0.50	mg/l	2.00	3.3	103	80-120	0.00	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 7 of 10

Nena M. Burgess For Sheri L. Speaks Project Manager

Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason Street, Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Report Date:	06/15/05 15:12
Project No:	9329
Project ID:	Task 6

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A505241	05/06/2005 15:40	GEOMAT	

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE51311 - Solvent Extraction										
Blank (AE51311-BLK1)				Prepared: (05/11/05	Analyzed: 05	/13/05			
2,4,6-Trichlorophenol	ND	1.0	ug/l							
2,3,5,6-Tetrachlorophenol	ND	1.0								
2,3,4,6-Tetrachlorophenol	ND	1.0								
2,3,4,5-Tetrachlorophenol	ND	1.0								
Pentachlorophenol	ND	1.0	"							
Surrogate: Tribromophenol	25.1		"	25.0		100	70-124			
LCS (AE51311-BS1)				Prepared: (05/11/05	Analyzed: 05	/13/05			
2,4,6-Trichlorophenol	5.61	1.0	ug/l	5.00		112	81-120			
2,3,5,6-Tetrachlorophenol	5.46	1.0		5.00		109	78-108			QL-03
2,3,4,6-Tetrachlorophenol	4.80	1.0		5.00		96.0	76-108			
2,3,4,5-Tetrachlorophenol	5.54	1.0		5.00		111	80-116			
Pentachlorophenol	4.42	1.0	"	5.00		88.4	86-109			
Surrogate: Tribromophenol	29.0		"	25.0		116	70-124			
Matrix Spike (AE51311-MS1)	Sourc	ce: A50524	1-01	Prepared: (05/11/05	Analyzed: 05	/13/05			
2,4,6-Trichlorophenol	5.12	1.0	ug/l	5.00	ND	102	75-125			
2,3,5,6-Tetrachlorophenol	5.42	1.0		5.00	ND	108	69-115			
2,3,4,6-Tetrachlorophenol	4.38	1.0		5.00	ND	87.6	66-117			
2,3,4,5-Tetrachlorophenol	5.42	1.0	"	5.00	ND	106	70-115			
Pentachlorophenol	4.57	1.0	"	5.00	ND	86.4	55-124			
Surrogate: Tribromophenol	27.1		"	25.0		108	70-124			
Matrix Spike Dup (AE51311-MSD1)	Source	ce: A50524	1-01	Prepared: (05/11/05	Analyzed: 05	/13/05			
2,4,6-Trichlorophenol	5.07	1.0	ug/l	5.00	ND	101	75-125	0.981	20	
2,3,5,6-Tetrachlorophenol	5.21	1.0		5.00	ND	104	69-115	3.95	20	
2,3,4,6-Tetrachlorophenol	4.09	1.0	"	5.00	ND	81.8	66-117	6.85	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

Page 8 of 10

Alpha Analytical Laboratories Inc. 208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

06/15/05 15:12 Report Date: 9329 Project No: Task 6 Project ID:

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A505241	05/06/2005 15:40	GEOMAT	

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s) Batch AE51311 - Solvent Extraction	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Matrix Spike Dup (AE51311-MSD1)	Sourc	e: A50524	1-01	Prepared: (05/11/05 A	nalyzed: 05	5/13/05			
2,3,4,5-Tetrachlorophenol	4.93	1.0	"	5.00	ND	96.4	70-115	9.47	20	
Pentachlorophenol	4.52	1.0	"	5.00	ND	85.4	55-124	1.10	20	
Surrogate: Tribromophenol	27.1		"	25.0		108	70-124			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

Page 9 of 10

Alpha Analytical Laboratories Inc. 208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 10 of 10

	Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson	Report Date: Project No: Project ID:	06/15/05 15:12 9329 Task 6
Order Number	<u>Receipt Date/Time</u>	<u>Client Code</u>	Client PO/Reference
A505241	05/06/2005 15:40	GEOMAT	

Notes and Definitions

- QL-03 Although the LCS/LCSD recovery for this analyte is outside of in-house developed control limits, it is within the EPA recommended range of 70-130%.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- PQL Practical Quantitation Limit

	Chain-	of Cust	tody	Re	COI	rd												1993 - 1994 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 -	1.1	Da	te: 5	1	10	5	Fage L or I
Project No.	932	1 Task	6							A	NAI	YSE	ES							REMARKS					
Samplers (Signature:)	7 the		thed 8021	thod 8021 Cs only)	thod 8021 mly)	thed 8260	thod 8270 an) SVOC	thod 8270 HS only)	8015m (Gasoline)	8015m (Diesel)	8015m (Motor Oll)	el Cleanup	5.031 2	1 Solant	Q 0125 WS C	Granse 1164	rep condim	2:002	Water (W) V), or Other (o)		" COD OFC		Containers	Additional Comments
Date	Time	Sample	Number	EPA Me	EPA Me Hal. VO	BETX o	EPA Me	EPA Me Full Scu	EPA Me SIM (PA	Method	Method	Method	Silica G	1.	525	ē	0:14	PCP/	in	Soll (S) Vapor (Fatered	Preserv	Cooled	No. of	
5/5/05	1315	SLI-A	ASOS	ZUN	-	2		N/						V		$\overline{\mathbf{N}}$	N	W	\mathbf{V}	W		X	X	8	composite + report
(1535	SLI-B		T				X						Λ		Λ	N	Ν	Ν	1			1	9	as SL-1
	1145	SL2.A	4			2		K/						Ń	V		N	N	V	1		Π	Π	8	composite + report
	1430	SLZ-B		T				X						人	Л	Х	\mathbf{N}	N	Λ				Π	8	as 51-2
	1230	SL3-A				3		$\overline{\mathbf{M}}$						N	V	V	V	V	M	1				8	composite treport
	1500	SL3-8	>					X						Ň	Λ	Λ	Λ	M	Λ					8	as SL-3
•	1055	SLY-A				4		V			100			N	V	V	Y	IV	'V				Π	8	Composite treport
V	1355	564-1	3	T				\mathbf{V}					. 1	V	Λ	Ν	\mathbf{V}	$\langle N \rangle$	Λ	V		Y	V	8	49 5L-4
						1. A.																			
				T																					HOD PH
				Τ																					E cond to
																									All Sample
				Τ			Γ																		HER MAH 59
				Τ																					
				Τ																					
Laborato	iv: Alpl	رم		Tu	rnar	ound	d Tin	ne: (St.	D	Re	sult:	s 10 51	een.	500	То	tal I	No. 0	of Co	ontai	ners	5		69	t
Relinquis	hed by (S	gnature):	Date:	Relin	quist	ned I	y (!	Signa	ature	ə):	1	Date	T	Reli	nqui	shea	d by	(Sig	nati	ure):		Date	ə:	Met	thod of Shipment:
Printed	ame:	rard	Time:	Finte	d N	ame th	ew	s				ime		Prin	ted	Nam	e:					Tim	e:	Lab	poratory Comments and Log No
Company	Geoma	tr;x	1230	Comp	#	ph	1				ł	5:4	10	Com	pan	y:									
Received	by:		Date:	Rec	ived	bk:	-	ÿ	~		1	ate de	10	Rec	eive	d by	i					Date	9:		

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

10 June 2005

Geomatrix Consultants Attn: Ross Steenson 2101 Webster Street, 12th Floor Oakland, CA 94612 RE: Task 6 Work Order: A505560

Enclosed are the results of analyses for samples received by the laboratory on 05/19/05 14:25. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nena M. Burgess For Sheri L. Speaks Project Manager

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

06/10/05 08:49 Report Date: 9329 Project No: Project ID: Task 6

Order Number A505560

Receipt Date/Time 05/19/2005 14:25

Client Code GEOMAT

Client PO/Reference

Page 1 of 6

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SL-6	A505560-01	Water	05/18/05 16:30	05/19/05 14:25

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

6/10/2005

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

06/10/05 08:49 Report Date: 9329 Project No: Project ID: Task 6

Order Number A505560	Receipt Date/Time 05/19/2005 14:25		<u>Cli</u> GI	<u>ent Code</u> EOMAT		Client PO/Referer	nce							
	Alpha Analytical Laboratories, Inc.													
METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL NOTE														
SL-6 (A505560-01)			Sample Type	• Water	Sa	mnled: 05/18/05 16:30								

5L-0 (A505500-01)		sample Typ	e: water	58	impleu: 05/18/05 10:50			
Metals by EPA 200 Series Methods								
Zinc	EPA 200.7	AE52413	05/25/05	06/03/05	1	0.74 mg/l	0.020	
Conventional Chemistry Parameters by	y APHA/EPA Methods							
Chemical Oxygen Demand	SM5220D	AE52307	05/23/05	05/26/05	1	370 mg/l	10	
рН	EPA 150.1	AE52022	05/20/05	05/20/05	"	6.9 pH Units	1.0	
Specific Conductance (EC)	EPA 120.1	"	"	"	"	120 umhos/cm	20	
Total Suspended Solids	EPA 160.2	AE52312	05/23/05	05/25/05	"	580 mg/l	1.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

6/10/2005

Page 2 of 6

Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason Street, Ukiah, California 95482

Client PO/Reference

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

06/10/05 08:49 Report Date: 9329 Project No: Project ID: Task 6

Order Number Receipt Date/Time Client Code A505560 05/19/2005 14:25 GEOMAT

SourceResult

Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE52413 - EPA 3005A										
Blank (AE52413-BLK1)				Prepared: ()5/25/05 A	Analyzed: 05	5/30/05			
Zinc	ND	0.020	mg/l							
LCS (AE52413-BS1)				Prepared: ()5/25/05 A	Analyzed: 05	5/30/05			
Zinc	0.205	0.020	mg/l	0.200		102	85-115			
LCS Dup (AE52413-BSD1)				Prepared: (05/25/05 A	Analyzed: 05	5/30/05			
Zinc	0.203	0.020	mg/l	0.200		102	85-115	0.980	20	
Duplicate (AE52413-DUP1)	Sour	ce: A50547	8-01	Prepared: ()5/25/05 A	Analyzed: 05	5/30/05			
Zinc	0.00500	0.020	mg/l		ND				20	
Matrix Spike (AE52413-MS1)	Sour	ce: A50547	8-01	Prepared: ()5/25/05 A	Analyzed: 05	5/30/05			
Zinc	0.211	0.020	mg/l	0.200	ND	103	70-130			
Matrix Spike Dup (AE52413-MSD1)	Sour	ce: A50547	8-01	Prepared: (05/25/05 A	Analyzed: 05	5/30/05			
Zinc	0.205	0.020	mg/l	0.200	ND	99.8	70-130	2.88	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

Page 3 of 6

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

06/10/05 08:49 Report Date: 9329 Project No: Task 6 Project ID:

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A505560	05/19/2005 14:25	GEOMAT	

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE52022 - General Preparation										
Duplicate (AE52022-DUP1)	Sour	ce: A50557	3-01	Prepared &	Analyzed:	: 05/20/05				
Specific Conductance (EC)	258	20 u	umhos/cm		260			0.772	10	
Duplicate (AE52022-DUP2)	Sour	ce: A50561	2-01	Prepared: ()5/20/05 A	nalyzed: 05	5/23/05			
Specific Conductance (EC)	423	20 u	umhos/cm		420			0.712	10	
pH	7.59	1.0	pH Units		7.6			0.132	20	
Batch AE52307 - General Preparation										
Blank (AE52307-BLK1)				Prepared: (05/23/05 A	nalyzed: 05	5/26/05			
Chemical Oxygen Demand	ND	10	mg/l							
LCS (AE52307-BS1)				Prepared: ()5/23/05 A	nalyzed: 05	5/26/05			
Chemical Oxygen Demand	94.9	10	mg/l	100		94.9	85-115			
LCS Dup (AE52307-BSD1)				Prepared: (05/23/05 A	nalyzed: 05	5/26/05			
Chemical Oxygen Demand	91.8	10	mg/l	100		91.8	85-115	3.32	20	
Duplicate (AE52307-DUP1)	Sour	ce: A50553	1-07	Prepared: ()5/23/05 A	nalyzed: 05	5/26/05			
Chemical Oxygen Demand	17.9	10	mg/l	1	18			0.557	20	
Matrix Spike (AE52307-MS1)	Sour	ce: A50553 [.]	1-07	Prepared: ()5/23/05 A	nalyzed: 05	5/26/05			
Chemical Oxygen Demand	399	10	mg/l	400	18	95.2	85-115			
Matrix Spike Dup (AE52307-MSD1)	Sour	ce: A50553	1-07	Prepared: ()5/23/05 A	nalyzed: 05	5/26/05			
Chemical Oxygen Demand	399	10	mg/l	400	18	95.2	85-115	0.00	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1 -	228-
1	

Nena M. Burgess For Sheri L. Speaks Project Manager

6/10/2005

Page 4 of 6

Alpha Analytical Laboratories Inc. 208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Receipt Date/Time

05/19/2005 14:25

Report Date:06/10/05 08:49Project No:9329Project ID:Task 6

Order Number	
A505560	

<u>Client Code</u> GEOMAT Client PO/Reference

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AE52312 - General Preparation										
Blank (AE52312-BLK1)				Prepared: (05/23/05 A	nalyzed: 05	/25/05			
Total Suspended Solids	ND	1.0	mg/l							
Duplicate (AE52312-DUP1)	Source: A505477-01		Prepared: (Prepared: 05/23/05 Analyzed: 05/25/05						
Total Suspended Solids	5740	1.0	mg/l		5900			2.75	30	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager Page 5 of 6

Alpha Analytical Laboratories Inc. 208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 6 of 6

	Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson	Report Date: Project No: Project ID:	06/10/05 08:49 9329 Task 6
Order Number	Receipt Date/Time	<u>Client Code</u>	Client PO/Reference
A505560	05/19/2005 14:25	GEOMAT	

Notes and Definitions

- DETAnalyte DETECTEDNDAnalyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- PQL Practical Quantitation Limit

18842

	Chain-	of Cust	tody	Re	CO	rd			Т)ate:	5/1	41	04	Page of
Project No.	932	9 Task	6		ANALYSES							T	REMARKS											
Samplers (Mech	Signature:	Kal		od 8021	od 8021 te only)	od 8021 hy)	od 8260	od 8270	od 8270 S only)	015m (Gasoline)	015m (Diesel)	015m (Motor Oit)	Cleanup	t d	Jucture	0	7		Mather (W)	or Other (o)	COLEN		Itainers	Additional Comments
Date	Time	Sample I	Numbe	EPA Meth	EPA Meth	EPA Meth BETX on	EPA Meth	EPA Meth Full Scan	EPA Meth BIM (PAH	Method BC	Method 80	Aethod 80	Silica Gel	155	Sree S	20	M S		iol (S). W	/apor (V).	reserved	Cooled	do. of Cor	A505560
5/18/05	1600	5L-6A						, C		-	F			Ċ,	Ċ/	杕/	∇		Ĩ	个	17	Ť,	3	composite + 1
	1630	5L-6B												X	X	Й	Х		L	1	Х	Й	3	report as 51-6
																						Ľ		
																			╀	+			┢	
				+	$\left \cdot \right $								-						+	╉	+	┢	┝	
				+												\square		+	$^{+}$	+	+	\vdash	\vdash	
																			T	T				
				_															+	+	-	\vdash		
			-															_	+	+-	+-	_	_	
						-	\neg								_				╋	+	+		\vdash	
																			+	+	+	-	\vdash	
													_					-	\dagger	\uparrow	+	\vdash	\uparrow	
Laborator	y: A(1	oha		Tur	naro 5	und f	Tim	e:			Rei	sults	to: Ste	ens	on	Tota	al No	o. of C	onta	iner	5		6	3.2
Relingaist	All (Sit	nature):	Date: 5/14	Reling	uishe	3	(S	2	ture):		ale:	4	le lin	quis	hed	by (Signat	ure)	:	Date	:	Meth	hod of Shipment: Courier
Printed N	Hillyar	d	Time:	Printer Dor	National Nationa	me:	4	Un	1	<i>b</i>	\overline{f}	ime:	P	rinte	d N	ame	:				Time		Labo	pratory Comments and Log No.:
Company:	ytrix		1040	Compa	ny:	24	-	2			Y	42	5	omp	any	:								
Haceived	alle	ust	Date:	Flecely Sh	2n	»:C	P	=4	K<		CID	ate:)5F	ecei	ved	by:					Date	:		
Printed No	mei	ret	Time:	Printer	Nar	me	pe	EA	KS		Т	ime:	Р	rinte	d N	ame	:				Time	:	1	Geometrix Consultants
Company				Compa	ph:	A	,				1	425		omp	any	:						2	101 W	Vebster Street, 12th Floor - Oakland, CA 94612 Pftone: 510-663-4100 Fax: 510-663-4141

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

May 23, 2005

Ross Steenson, Project Manager Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612 <u>TASK 6</u> STORM WATER SAMPLES

MAY 5, 2005

Dear Mr. Steenson:

Included are the results from the testing of material submitted on May 9, 2005 from the 9329/6, F&BI 505077 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Charlene Morrow

Charlene Morrow Chemist

Enclosures GMC0523R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 9, 2005 by Friedman & Bruya, Inc. from the Geomatrix Consultants, Inc. 9329/6, F&BI 505077 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Geomatrix Consultants, Inc.</u>
505077-01	SL1-A
505077-02	SL1-B
505077-03	SL2-A
505077-04	SL2-B
505077-05	SL3-A
505077-06	SL3-B
505077-07	SL4-A
505077-08	SL4-B

As requested, A and B samples were composited prior to analysis, and composite samples were analyzed with and without silica gel cleanup.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077 Date Extracted: 05/10/05 Date Analyzed: 05/10/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING EPA METHOD 8015M

Results Reported as µg/L (ppb)

<u>Sample ID</u> Laboratory ID	Gasoline Range (C6-C10)	Surrogate (<u>% Recovery</u>) (Limit 52-150)
SL-4 505077-07	<100	104
Method Blank	<100	103

 $\mathbf{2}$

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077 Date Extracted: 05/09/05 Date Analyzed: 05/11/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M

Results Reported as µg/L (ppb)

Sample ID Laboratory ID	Diesel Range (C10-C25)	Surrogate <u>(% Recovery)</u> (Limit 68-143)
SL-1 505077-01+02	4,700	84
SL-2 505077-03+04	10,000	ip
SL-3 505077-05+06	9,000	83
SL-4 505077-07+08	2,000	97
Method Blank	<50	92

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077 Date Extracted: 05/09/05 Date Analyzed: 05/11/05 and 05/12/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as µg/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Surrogate (<u>% Recovery</u>) (Limit 68-143)
SL-1 505077-01+02	<50	76
SL-2 505077-03+04	450	83
SL-3 505077-05+06	860	72
SL-4 505077-07+08	120	92
Method Blank	<50	88

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077 Date Extracted: 05/09/05 Date Analyzed: 05/20/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M Sample Extracts Passed Twice Through a Silica Gel Column Prior to Analysis Results Reported as µg/L (ppb)

<u>Sample ID</u> Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Surrogate (<u>% Recovery)</u> (Limit 68-143)
SL-1 505077-01+02	<50	106
SL-2 505077-03+04	730	125
SL-3 505077-05+06	1,300	104
SL-4 505077-07+08	170	104
Method Blank	<50	88

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077 Date Extracted: 05/09/05 Date Analyzed: 05/11/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M

Results Reported as µg/L (ppb)

<u>Sample ID</u> Laboratory ID	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (<u>% Recovery</u>) (Limit 50-150)
SL-1 505077-01+02	1,200	84
SL-2 505077-03+04	4,600	70
SL-3 505077-05+06	7,300	ip
SL-4 505077-07+08	2,000	66
Method Blank	<250	53

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

6

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077 Date Extracted: 05/09/05 Date Analyzed: 05/11/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as μg/L (ppb)

Sample ID Laboratory ID	Motor Oil Range (C25-C36)	Surrogate (<u>% Recovery</u>) (Limit 50-150)
SL-1 505077-01+02	340	54
SL-2 505077-03+04	2,300	83
SL-3 505077-05+06	4,500	70
SL-4 505077-07+08	990	93
Method Blank	<250	64

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077 Date Extracted: 05/09/05 Date Analyzed: 05/19/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M Sample Extracts Passed Twice Through a Silica Gel Column Prior to Analysis Results Reported as µg/L (ppb)

~

Sample ID Laboratory ID	Motor Oil Range (C25-C36)	Surrogate (<u>% Recovery</u>) (Limit 50-150)
SL-1 505077-01+02	420	71
SL-2 505077-03+04	3,000	94
SL-3 505077-05+06	6,000	86
SL-4 505077-07+08	1,100	100
Method Blank	<250	64

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING EPA METHOD 8015M

Laboratory Coo	le. 500001-10 (Dupi	cate)		Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	μg/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	μg/L (ppb)	1,000	87	66-124

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$	$\operatorname{Percent}$		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	μg/L (ppb)	2,500	102	108	68-144	6

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M

Laboratory Code: Laboratory Control Sample Silica Gel							
			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Diesel	μg/L (ppb)	2,500	97	115	68-144	18	

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Motor Oil	μg/L (ppb)	2,500	96	102	70-130	6

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/05 Date Received: 05/09/05 Project: 9329/6, F&BI 505077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M

Laboratory Code: Laboratory Control Sample Silica Gel							
			Percent	Percent			
	Reporting	\mathbf{Spike}	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Motor Oil	μg/L (ppb)	2,500	105	103	70-130	2	

Analysis Method : TPHD.MTH

Analysis Method : TPHD.MTH

.

50	5	17	7
		JT	-

-	505	0 ± 1														C	M	05	-04	Î- ()5	-		18840 V2/AOS
	Project bis	Chain-	of Custody	Re	co	rd													D	ate:	5/	61	0	F Page of 2
	Project No.	- 7	329/6							1	NA	NALYSES								7	REMARKS			
	Samplers (Signature:)	75 Mgal	hod 8021 01	hod 8021	hod 8021 Ny)	10d 8260	nod 8270	tod 8270 IS only)	015m (Gasoline)	015m (Diesel)	015m (Motor Oil)	Classes	Cleanup					later (W)				itainers	Additional Comments
	Date	Time	Sample Number	EPA Met (Full Sce	EPA Met	EPA Met	EPA Meth	EPA Meth	EPA Meth SIM (PAH	Method 8	Method 8	Method 8	Dellos Collo	Silica Gel					oll (S). V	litered	reserved	boled	lo. of Cor	
⁴	5/5/05	1315	SLI-A								$\overline{\Lambda}$	凢	1	Ĩ		\mathbf{T}	+	+	²	1		ľŽ	Ĩ	Composite and report
4		1535	SLI-B								\mathbb{N}	\mathbf{V}				Π	T		Π	Γ		Π	1	as 52-1
B		1315	SLI-A-SG								N	\mathbb{N}	Λ	Λ					Π			Π	1	composite and report
B		1535	561-13-56				1.				Ň	Γ	V	4					\prod			Ц	1	as 91-1-56
#		1430	5L2-A	+							Ŋ	Λ	4			\square	\square		$\downarrow\downarrow$			Щ	1	composite and report
		1145	512-15	-							K	\mathbb{N}		_	_	$\left \right $	+		\downarrow	-		\square	Ļ	45 SL-Z
R		1430	517-P-SC	+	-	\square	-				łX	1	4	\mathcal{A}	_	+	-		H	-		H	H	composite and report
A		1230	5138-A	+	-					-	\mathbf{K}	X	¥	4		+	+		╉┤			$\left \right $	-	95 7L-2-3 G
A		1500	SL3-B								łX	ŦΧ	+	+		+	-	-	\mathbf{H}	\vdash		╟	$\frac{1}{1}$	Lomposite and report
в		1230	513-A-56							191				1	+	+	+	+	\mathbf{H}	+		H	$\frac{1}{1}$	Compassive and eport
B	V	1500	SL3-B-36								h	X	\mathbf{V}	X			1		IJ			V	ti	as 52-3-56
+												L												
+													\downarrow	\downarrow										
	Laborator	y: Fried	men + Bruyor	Tur	marc	bund	Tim	ne: 5.	TŢ	L >	Re	sull	ts to	10: 5-1	e enson	Tota	I No.	of Co	ntai	ners			12	+racking #= 7910 6485 1258
Ľ	Helinquish	HALL	gnature): Date:	Relinq	uish	ed b	y (S	Signa	ture):	1	Date):]	R	elinqui	shed	by (S	ignatu	re):	1	Date	:	Meth	hod of Shipment: FedEK
Ľ	Mart	Hillya	nol Time:	Printe	nted Name: Time				a :	P	inted	Name					Time: Laboratory Co.		abo	pratory Comments and Log No.:				
H	Received	by:	Thix Data	Compa	npany: Company:					/:														
Ļ	M Printed No	and	an Sigion	necelv	rea t	by:						Jate	:	R	eceived	i by:					Date	Ľ		
Ļ	Nha	in Ph	Time:	Printer	d Na	me:						lime):	PI	inted I	Name				1	Time	:		Geometrix Consultants
Ľ	F1B1	~	08.01	yompa	iny:									C	mpany	<i>r</i> :						2	101 W F	Vebster Street, 12th Floor + Oakland, CA 94612 Phone: 510-663-4100 Fax: 510-663-4141

					5 - B		_																
	Snain-	of Cus	tody	Re	COI	rd										Date: 5/6/05 Page Z of Z							
Project No.	: 93	29/6							ANALYSES						Т		1	t		REMARKS			
Samplers (Mat Holya			od 8021	ood 8021 (a only)	od 8021 Ny)	od 8260	od 8270	od 8270 S only)	015m (Gasoline)	015m (Diesel)	015m (Motor Oil)	Cleanup					ater (W) or Other (o)				tainers	Additional Comments
Date	Time	Sample	Number	EPA Met	EPA Met	EPA Meth BETX or	EPA Meth	EPA Meth Full Scar	EPA Meth	Aethod 8	Aethod 8	lethod 8	ilica Gel					oll (S), W	litered	peviese	ooled	o. of Con	
\$15/05	1055	SL4-A		Ē				m c		1	Ę,	2	[∞]			+	+			ē	X	1	composite and cap
	1355	SLY-B	,	T				1			ΙX	X				+	+	Ħ	\vdash			i	25 CI-4
	1055	SL4-A	-56	+							K /	Kì	1		$\left \right $	+	+	╉┼			H		as she and le
5	1355	SL4-B.	-56	+							łX	X	XI		$\left \right $	+	+	╉┤	+		\mathbb{H}	H	Composite and to
	1055	SI 4-A					1.4	-		X	K-1	Υ ₂	2		\vdash	+	+		+	X		3	as of 1 - Jo
				+	\square						5				$\left \right $	+	+	ť	+	r.	¥.	1	
				+	\square		-	-		-	-				$\left \right $	+	+	╋	+				
				+							-				$\left \right $	+	+-	╋	–		-		
				+				-							$\left \right $	+		+-					
				+	\vdash		_			-				_	$\left \right $	+		┢	_				
				+						-						+		┢	 				
				+			-								\square	_							
				+		-+																	
	-																						
													T			T	T						
Laborator	y: Fried	long + F	surger	Tu	naro	und S	Tim	e:			Re	sults	to: 54e	enson	Tota	I No.	of Co	ntai	ners			7	
Relinguis	Hay isig	(nature):	Date:	Reling	uish	ed b	y (S	igna	ature):	P	ate:	R	elinquis	hed	by (S	ignatu	re):	1	Date	- 1	Meth	od of Shipment: 5.05.
Printed Na Mort+	4.11 yand		Time:	Printe	d Na	me:					-	ime:	P	inted M	lame					Time	. ,	abo	ratory Comments and Log
Company:	natrix		1500	Compa	any:								C	ompany	:				\neg				
Received	by:	Jan	Date: F	Receiv	ved b	y:					D	ate:	R	eceived	by:				-	Date			
Prostod N	mellin		1 1 1 1	rinta	d Ma						_										-		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

June 7, 2005

TASK 6 STORM WATER SAMPLES MAY 18, 2005

Ross Steenson, Project Manager Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612

Dear Mr. Steenson:

Included are the results from the testing of material submitted on May 20, 2005 from the 9329 Task 6, F&BI 505221 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Charlene Morrow

Charlene Morrow Chemist

Enclosures GMC0607R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

ŵ

This case narrative encompasses samples received on May 20, 2005 by Friedman & Bruya, Inc. from the Geomatrix Consultants, Inc. 9329 Task 6, F&BI 505221 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Geomatrix Consultants, Inc.</u>
505221-01	SL-6A
505221-01	SL-6B

As requested, A and B samples were composited prior to analysis, and the composite sample was analyzed with and without silica gel cleanup.

The RPD for LCS/LCSD diesel range analysis was outside established acceptance criteria. Review of the data indicates that sample results are not likely affected. All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/05 Date Received: 05/20/05 Project: 9329 Task 6, F&BI 505221 Date Extracted: 05/23/05 Date Analyzed: 05/25/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M

Results Reported as µg/L (ppb)

<u>Sample ID</u> Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Surrogate <u>(% Recovery)</u> (Limit 68-143)
SL-6 505221-01	4,100	97
Method Blank	<50	78

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/05 Date Received: 05/20/05 Project: 9329 Task 6, F&BI 505221 Date Extracted: 05/23/05 Date Analyzed: 05/25/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as µg/L (ppb)

<u>Sample ID</u> Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Surrogate (% Recovery) (Limit 68-143)
SL-6 505221-01	1,100	74
Method Blank	<50	84

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/05 Date Received: 05/20/05 Project: 9329 Task 6, F&BI 505221 Date Extracted: 05/23/05 Date Analyzed: 06/03/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M Sample Extracts Passed Twice Through a Silica Gel Column Prior to Analysis Results Reported as μg/L (ppb)

<u>Sample ID</u> Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Surrogate <u>(% Recovery)</u> (Limit 68-143)
SL-6 505221-01	1,500	101
Method Blank	<50	84

4

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/05 Date Received: 05/20/05 Project: 9329 Task 6, F&BI 505221 Date Extracted: 05/23/05 Date Analyzed: 05/25/05 and 06/01/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M

Results Reported as µg/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 68-143)
SL-6 d 505221-01	7,800	110
Method Blank	<250	79

d - The sample was diluted.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/05 Date Received: 05/20/05 Project: 9329 Task 6, F&BI 505221 Date Extracted: 05/23/05 Date Analyzed: 05/25/05 and 06/01/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as µg/L (ppb)

Sample ID Laboratory ID	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 68-143)
SL-6 d 505221-01	8,300	101
Method Blank	<250	78

d - The sample was diluted.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/05 Date Received: 05/20/05 Project: 9329 Task 6, F&BI 505221 Date Extracted: 05/23/05 Date Analyzed: 06/03/05

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M Sample Extracts Passed Twice Through a Silica Gel Column Prior to Analysis Results Reported as µg/L (ppb)

<u>Sample ID</u> Laboratory ID	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 68-143)
SL-6 505221-01	8,000	108
Method Blank	<250	78

7

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/05 Date Received: 05/20/05 Project: 9329 Task 6, F&BI 505221

-

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M

Laboratory Code: L	aboratory Cont	rol Sample	e			
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel	μg/L (ppb)	2,500	82	118	76-130	36 vo

vo - The value reported fell outside the control limits established for this analyte.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/05 Date Received: 05/20/05 Project: 9329 Task 6, F&BI 505221

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M

r

Laboratory Code:	Laboratory Cont	rol Sampl	e Silica Gel	l		
-			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel	μg/L (ppb)	2,500	75	135	68-144	57 vo

vo - The value reported fell outside the control limits established for this analyte.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/05 Date Received: 05/20/05 Project: 9329 Task 6, F&BI 505221

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M

Laboratory Code: Laboratory Control Sample

			Percent	$\operatorname{Percent}$		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Motor Oil	μg/L (ppb)	2,500	97	103	70-130	6

ENVIRONMENTAL CHEMISTS

Date of Report: 06/07/05 Date Received: 05/20/05 Project: 9329 Task 6, F&BI 505221

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M

Laboratory Code:	Laboratory Contr	ol Sampl	e Silica Gel			
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Motor Oil	μg/L (ppb)	2,500	87	88	70-130	1

	5052	221													CM	\wedge	05-2	20 -	.05					18843 Bo	4
1	C	hain-	of Custo	ody F	lec	or	d	-		Т									Dat	e: 5	119	10	4	Page or	-
	Project No.:	932	9 Track	6							A	NAI	YS	ES										REMARKS	-1
	Samplers (S	Signature:)	74Mad		thod 8021 an)	thod 8021 Cs only)	thod 8021 brity)	thod 8260	thod 8270 en)	thod 8270 HS only)	8015m (Gasoline)	8015m (Diesel)	8015m (Motor Oil)	iel Cleanup W/ Out), Water (W) (V), or Other (o)	P	pev	Q	Containers	Additional Comments	
Lab	Date	Time	Sample N	umber	EPA Me Full Sci	EPA Me (Hal. VO	EPA Me	EPA Me	EPA Me (Full Sci	EPA Me Sim (Pa	Method	Method	Method	Silica G					Soll (S Vapor	Filtere	Preser	Coole	No. of		_
OI A-B	5/18/05	1600	56-6A									\mathbb{N}	\mathbb{A}	\mathbb{N}			\downarrow		M	-		¥	-	composite and	;
000		1630	5L-6B									Д	Δ	\mathbf{V}		+	++	+	1			μ	1	report as se	-
					-					-	-	-	+	\vdash	++	+	++	+	+	┢		\vdash		TPH-D/MO	
					┢	\vdash	\vdash	1.1	\vdash	+	\vdash	\vdash	┢	+	++	+	++	+	+	\vdash				with and with	n F
					╀╴		\vdash	\vdash	\vdash	\vdash	+	+	+	\uparrow		T								Silica gel Cla	mp
					\top									Γ					+	\vdash	\vdash	\vdash	+		
													\perp	+	++	+	++	+	+	+	+	┝	+		_
					╞	-		-	+	╀	+	+	+	+	++	+	+	+	+	+	+	┢	+		
					+	+	+	╀	+	+	+	+	+	+	++	+	++	+	+	+	+	\uparrow	+		
					╀	+	+	╀	+	+	+	+	+	+	++	+			1			T			
					+	+	+	+	+	+	+	+	+	+	++										
					T	T			T		T	T		Ι					\perp	\perp	+	+	+		
																_							+	6 14	
	Laborate	ory:	arlB	<i>Curla</i>	Т	urna	rour		ime: S			F	Resu Logs	$\frac{1}{5}$	o: Cethso	m	Total N	o. of	Conta	ainer	s		17	7900 2723 18	366
	Relingui	shed by (Signature):	Date:	Relin	nquis	shed	by	(Sig	natu	ire):		Da	te:	Reling	quish	ned by	(Sign	ature):	Dat	te:	Me	thod of Shipment: Fed E	7
	Printed	Name:	ind loss	Time:	Print	ted I	Nam	e:					Tir	ne:	Printe	d Na	ame:				Tin	ne:	La	boratory Comments and Log	No.:
	Compan	in atsix		1330	Com	pan	y:				-		1		Comp	any:	.				Da	te:			
	Receive	Dy:	Nans	Date:	Rec	eive	d by	:					Da	te:	Recei	ved	DY:								
	Printed	Name: P	nan	Time:	Prin	ted	Nam	e:					Ti	me:	Printe	ed Na	ame:				Tir	ne:	210	1.Webster Street, 12th Floor - Oakland,	CA 9461
	Compar	iy:		09:30	Com	npan	y:								Comp	any:								Phone: 510-663-4100 Fax: 510-663-4	141

May 24, 2005

FAL Project ID: 3269

Mr. Ross Steenson Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612

Dear Mr. Steenson,

Enclosed are the results for Frontier Analytical Laboratory project **3269**. This corresponds to your project no. 9329 Task 6. Four one-liter aqueous sample bottles were received on 5/10/05 in good condition. These four bottles represented two aqueous samples. The two one-liter bottles labeled SL2-A and SL2-B were composited as one sample. The two one-liter bottles labeled SL4-A and SL4-B were composited as one sample. As per your instructions, both composited samples were pre-filtered through a 2.7um and a 0.7um filter to remove any particulate prior to spiking and extraction. Since performing this pre-filtering step represents a deviation from EPA Method 1613, the data sheets have been footnoted to indicate they were pre-filtered. After pre-filtering, a one liter sub-sample of each of the two liter samples was then extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. Geomatrix Consultants, Inc. requested a turnaround time of ten business days for project **3269**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains the project-sample tracking log, qualifier reference guide, ML/MDL form and the analytical results. The Sample Receipt section contains the chain of custody, sample login form and sample photo. Also included is the Electronic Data Deliverable (EDD) you requested.

If you have any questions regarding project **3269**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

out -

Bradley B. Silverbush Director of Operations

> FRONTIER ANALYTICAL LABORATORY 5172 Hillsdale Circle • El Dorado Hills, CA 95762 Tel (916) 934-0900 • Fax (916) 934-0999 dioxin@frontieranalytical.com

000001 of 000013

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 3269

	Received on:	<u>05/10/2005</u>		Project Due:	<u>05/25/2005</u>	Storage:	<u>R1</u>	
FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
3269-001-SA	1	9329 Task 6	SL-2	EPA 1613 D/F	Aqueous	05/05/2005	11:45 am	05/05/2006
3269-002-SA		9329 Task 6	SL-4	EPA 1613 D/F	Aqueous	05/05/2005	10:55 am	05/05/2006

000002 of 000013

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

Qualifier Reference Guide

- A Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers
- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J[‡] Analyte concentration is below calibration range
- M Maximum possible concentration
- NP Not Provided
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection
- Analyte Not Detected
- + Spike levels were inappropriate versus the levels in the sample

[‡] "J" values are equivalent to DNQ (detected but not quantified) for California Toxics Rule (CTR)/National Pollutant Discharge Elimination System (NPDES) samples

000003 of 000013

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

Analyte	ML	MDL
2,3,7,8-TCDD	5.00	0.543
1,2,3,7,8-PeCDD	25.0	0.771
1,2,3,4,7,8-HxCDD	25.0	0.845
1,2,3,6,7,8-HxCDD	25.0	1.05
1,2,3,7,8,9-HxCDD	25.0	0.910
1,2,3,4,6,7,8-HpCDD	25.0	1.18
OCDD	50.0	2.26
2,3,7,8-TCDF	5.00	0.449
1,2,3,7,8-PeCDF	25.0	1.05
2,3,4,7,8-PeCDF	25.0	1.08
1,2,3,4,7,8-HxCDF	25.0	0.545
1,2,3,6,7,8-HxCDF	25.0	0.355
1,2,3,7,8,9-HxCDF	25.0	0.370
2,3,4,6,7,8-HxCDF	25.0	0.476
1,2,3,4,6,7,8-HpCDF	25.0	0.516
1,2,3,4,7,8,9-HpCDF	25.0	0.654
OCDF	50.0	1.22

Project 3015, extracted 1/6/05; analyzed1/12/05. Based on a 1.0 Liter sample, pg/L.

000004 of 000013

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

EPA Method 1613 PCDD/F #Modified

Extraction Batch No.: X0570 MS/MSD Batch No.: X0560 Compound Conc DL Qual WHO Tox Compound Conc DL 2,3,7,8-TCDD - 0.995 - - - - DL Qual WHO Tox Compound Conc DL 1,2,3,7,8-TCDD - 0.995 - - - - - DL Qual WHO Tox Compound Conc DL 1,2,3,7,8-PeCDD - 1.11 - </th <th>.00</th>	.00
Compound Conc DL Qual WHO Tox Compound Conc DL 2,3,7,8-TCDD - 0.995 - 0.995 - - - - 0.995 - - - 0.995 - - 0.995 - - 1.11 - - 0.995 - 1.11 - 0.995 1.23,6,7,8 HxCDD - 1.14 - Total Penta-Dioxins - 1.164 - 1.14 - 1.14 - 1.14 - 1.14 - 1.14 - 1.14 - 1.14 - 1.14 - 1.14 - 1.14 - 1.14 - 1.14 - 1.14 - 1.14 </th <th></th>	
2,3,7,8-TCDD - 0.995 - 1,2,3,7,8-PeCDD - 1.11 - 1,2,3,4,7,8-HXCDD - 1.29 - 1,2,3,6,7,8-HXCDD - 1.64 - Total Tetra-Dioxins - 0.995 1,2,3,6,7,8-HXCDD - 1.64 - Total Penta-Dioxins - 1.11 1,2,3,4,6,7,8-HXCDD - 1.41 - Total Hexa-Dioxins - 1.64 0CDD - 3.52 - Total Hexa-Dioxins - 1.64 0CDD - 3.52 - Total Hepta-Dioxins - 1.64 0CDD - 3.52 - Total Hepta-Dioxins - 1.64 0CDD - 3.52 - Total Hepta-Dioxins - 1.64 1,2,3,7,8-PeCDF - 1.15 - - 1.14 1,2,3,4,7,8-PeCDF - 0.651 - - 1.14 1,2,3,4,6,7,8-HXCDF - 0.559 - - - 1.45 1,2,3,4,6,7,8-HXCDF - 0.778 <th>Qual #Hom</th>	Qual #Hom
1,2,3,7,8-PeCDD - 1.11 - 1,2,3,4,7,8-HxCDD - 1.29 - 1,2,3,6,7,8-HxCDD - 1.64 - Total Tetra-Dioxins - 0.995 1,2,3,7,8-HxCDD - 1.41 - Total Penta-Dioxins - 1.11 1,2,3,7,8,9-HxCDD - 1.41 - Total Hexa-Dioxins - 1.64 0CDD - 3.52 - Total Hexa-Dioxins - 1.64 2,3,7,8-TCDF - 0.499 - - 1.14 2,3,7,8-PeCDF - 1.15 - - 1.14 2,3,4,7,8-PeCDF - 1.10 - - 1.2,3,4,7,8-HxCDF - 0.651 - 1,2,3,4,7,8-HxCDF - 0.559 - - - - 0.499 1,2,3,4,6,7,8-HxCDF - 0.559 - - - - - 1,2,3,4,6,7,8-HxCDF - 0.761 - Total Tetra-Furans - 0.499 1,2,3,4,6,7,8-HxCDF - 0.761 -	
1,2,3,4,7,8-HxCDD - 1.29 - 1,2,3,6,7,8-HxCDD - 1.64 - Total Tetra-Dioxins - 0.995 1,2,3,7,8,9-HxCDD - 1.41 - Total Penta-Dioxins - 1.11 1,2,3,4,6,7,8-HxCDD - 1.14 - Total Hexa-Dioxins - 1.64 0CDD - 3.52 - Total Hexa-Dioxins - 1.64 2,3,7,8-TCDF - 0.499 - - 1.14 - Total Hexa-Dioxins - 1.64 2,3,7,8-TCDF - 0.499 - - 1.14 - 1.14 2,3,7,8-TCDF - 0.499 - - 1.14 2,3,7,8-TCDF - 1.15 - - 1.14 1,2,3,7,8-PeCDF - 1.10 - - 1.14 1,2,3,4,7,8-HxCDF - 0.559 - - 1.14 1,2,3,4,6,7,8-HxCDF - 0.595 - - 1.15 - 1.15 1,2,3,4,6,7,8-HxCDF - 0.761 <td></td>	
1,2,3,6,7,8-HxCDD - 1.64 - Total Tetra-Dioxins - 0.995 1,2,3,7,8,9-HxCDD - 1.41 - Total Penta-Dioxins - 1.11 1,2,3,4,6,7,8-HpCDD - 1.14 - Total Hexa-Dioxins - 1.64 0CDD - 3.52 - Total Hexa-Dioxins - 1.64 2,3,7,8-TCDF - 0.499 - - 1.14 - Total Hexa-Dioxins - 1.64 0CDD - 3.52 - Total Hepta-Dioxins - 1.64 2,3,7,8-TCDF - 0.499 - - 1.14 2,3,7,8-PeCDF - 1.15 - - 1.14 1,2,3,4,7,8-PeCDF - 1.10 - - 1.14 1,2,3,4,7,8-HxCDF - 0.651 - - - 1.14 1,2,3,4,6,7,8-HxCDF - 0.595 - - - - 1.49 1,2,3,4,6,7,8-HxCDF - 0.761 - Total Tetra-Furans - 0.499	
1,2,3,7,8,9-HxCDD - 1.64 - Total Tetra-Dioxins - 0.995 1,2,3,7,8,9-HxCDD - 1.41 - Total Penta-Dioxins - 1.11 1,2,3,4,6,7,8-HpCDD - 1.14 - Total Hexa-Dioxins - 1.64 0CDD - 3.52 - Total Hexa-Dioxins - 1.64 2,3,7,8-TCDF - 0.499 - - 1.14 - Total Hexa-Dioxins - 1.64 2,3,7,8-TCDF - 1.15 - - Total Hepta-Dioxins - 1.14 2,3,7,8-PeCDF - 1.15 - - - 1.14 1,2,3,4,7,8-PeCDF - 1.10 - - - 1.14 1,2,3,4,6,7,8-HxCDF 0.651 - - - - - 1.41 1,2,3,4,6,7,8-HxCDF 0.595 -	
1,2,3,4,6,7,8-HpCDD - 1.14 - Total Penta-Dioxins - 1.11 0CDD - 3.52 - Total Hexa-Dioxins - 1.64 2,3,7,8-TCDF - 0.499 - - 1.14 2,3,7,8-TCDF - 0.499 - - 1.14 2,3,7,8-TCDF - 0.499 - - 1.14 2,3,7,8-TCDF - 1.15 - - 1.14 1,2,3,7,8-PeCDF - 1.15 - - 1.14 1,2,3,4,7,8-PeCDF - 1.10 - - 1.14 1,2,3,4,7,8-HxCDF - 0.651 - - - 1.14 1,2,3,6,7,8-HxCDF - 0.559 - - - - 1.49 1,2,3,4,6,7,8-HxCDF - 0.761 - Total Tetra-Furans - 0.499 1,2,3,4,6,7,8-HpCDF - 0.761 - Total Penta-Furans - 1.15 1,2,3,4,7,8,9-HpCDF - 0.983 - Total Hexa-Furans -	. 0
OCDD - 3.52 - Total Hexa-Dioxins - 1.64 2,3,7,8-TCDF - 0.499 - - 1.14 2,3,7,8-TCDF - 0.499 - - 1.14 2,3,7,8-TCDF - 1.15 - - 1.14 2,3,7,8-PeCDF - 1.15 - - 1.14 1,2,3,4,7,8-PeCDF - 1.10 - - - 1.14 1,2,3,4,7,8-HxCDF - 0.651 -	0
2,3,7,8-TCDF 0.499 - Total Hepta-Dioxins - 1.14 1,2,3,7,8-TCDF 0.499 - - - 1.14 1,2,3,7,8-PeCDF 1.15 - - - - - 1,2,3,4,7,8-PeCDF 1.10 -	0
2,3,7,8-TCDF - 0.499 - 1,2,3,7,8-PeCDF - 1.15 - 2,3,4,7,8-PeCDF - 1.10 - 1,2,3,4,7,8-HxCDF - 0.651 - 1,2,3,6,7,8-HxCDF - 0.559 - 2,3,4,6,7,8-HxCDF - 0.761 - Total Tetra-Furans - 0.499 1,2,3,7,8,9-HxCDF - 0.778 - Total Penta-Furans - 1.15 1,2,3,4,6,7,8-HpCDF - 0.983 - Total Penta-Furans - 0.761 0CDF - 1.87 - Total Hepta-Furans - 0.983	0
1,2,3,7,8-PeCDF - 1.15 - 2,3,4,7,8-PeCDF - 1.10 - 1,2,3,4,7,8-HXCDF - 0.651 - 1,2,3,6,7,8-HXCDF - 0.559 - 2,3,4,6,7,8-HXCDF - 0.595 - 1,2,3,7,8,9-HXCDF - 0.761 - Total Tetra-Furans - 0.499 1,2,3,4,6,7,8-HpCDF - 0.778 - Total Penta-Furans - 1.15 1,2,3,4,6,7,8-HpCDF - 0.983 - Total Hexa-Furans - 0.761 0CDF - 1.87 - Total Hepta-Furans - 0.983	
2,3,4,7,8-PeCDF - 1.10 - 1,2,3,4,7,8-HxCDF - 0.651 - 1,2,3,6,7,8-HxCDF - 0.559 - 2,3,4,6,7,8-HxCDF - 0.595 - 1,2,3,7,8,9-HxCDF - 0.761 - Total Tetra-Furans - 0.499 1,2,3,4,6,7,8-HpCDF - 0.778 - Total Penta-Furans - 1.15 1,2,3,4,7,8,9-HpCDF - 0.983 - Total Penta-Furans - 0.761 0CDF - 1.87 - Total Hepta-Furans - 0.983	
1,2,3,4,7,8-HxCDF - 0.651 - 1,2,3,6,7,8-HxCDF - 0.559 - 2,3,4,6,7,8-HxCDF - 0.595 - 1,2,3,7,8,9-HxCDF - 0.761 - Total Tetra-Furans - 0.499 1,2,3,4,6,7,8-HpCDF - 0.778 - Total Penta-Furans - 1.15 1,2,3,4,7,8,9-HpCDF - 0.983 - Total Hexa-Furans - 0.761 0CDF - 1.87 - Total Hepta-Furans - 0.983	
1,2,3,6,7,8-HxCDF - 0.559 - 2,3,4,6,7,8-HxCDF - 0.595 - 1,2,3,7,8,9-HxCDF - 0.761 - Total Tetra-Furans - 0.499 1,2,3,4,6,7,8-HpCDF - 0.778 - Total Penta-Furans - 1.15 1,2,3,4,7,8,9-HpCDF - 0.983 - Total Hexa-Furans - 0.761 0CDF - 1.87 - Total Hepta-Furans - 0.983	
2,3,4,6,7,8-HxCDF - 0.595 - 1,2,3,7,8,9-HxCDF - 0.761 - Total Tetra-Furans - 0.499 1,2,3,4,6,7,8-HpCDF - 0.778 - Total Penta-Furans - 1.15 1,2,3,4,7,8,9-HpCDF - 0.983 - Total Hexa-Furans - 0.761 0CDF - 1.87 - Total Hepta-Furans - 0.983	
1,2,3,7,8,9-HxCDF - 0.761 - Total Tetra-Furans - 0.499 1,2,3,4,6,7,8-HpCDF - 0.778 - Total Penta-Furans - 1.15 1,2,3,4,7,8,9-HpCDF - 0.983 - Total Hexa-Furans - 0.761 0CDF - 1.87 - Total Hepta-Furans - 0.983	
1,2,3,4,6,7,8-HpCDF - 0.778 - Total Penta-Furans - 0.499 1,2,3,4,7,8,9-HpCDF - 0.983 - Total Hexa-Furans - 0.761 0CDF - 1.87 - Total Hepta-Furans - 0.983	
1,2,3,4,7,8,9-HpCDF - 0.983 - Total Hexa-Furans - 1.15 OCDF - 1.87 - Total Hepta-Furans - 0.983	0
OCDF - 1.87 - Total Hepta-Furans - 0.781	0
	0
Internal Standards % Rec QC Limits Qual	
13C-12-37 8-PETDD 94.0 25.0 - 164	
13C-1.2.3 4 7 8-HXCDD 01 1 2 0 0 14	
13C-1-2-3 6 7 8-HYCDD 97.7 29.0 472	
13C-1.2 3 4 6 7 8-HOCDD 91.2 3 0 1 0	
13C-0CDD 98.9 17.0 - 157	
13C-2,3,7,8-TCDF 91.9 24.0 - 169	
13C-1,2,3,7,8-PeCDF 90.3 24.0 - 185	
13C-2,3,4,7,8-PeCDF 88.7 21.0 - 178	
13C-1,2,3,4,7,8-HxCDF 90-8 26.0 - 152	
13C-1,2,3,6,7,8-HxCDF 92-9 26.0 - 123	
13C-2,3,4,6,7,8-HxCDF 94.4 29.0 - 147	
13C-1,2,3,7,8,9-HxCDF 93.6 28.0 - 136	
13C-1,2,3,4,6,7,8-HpCDF 94.9 28.0 - 1/3	
I3C-1,2,3,4,7,8,9-HpCDF 97 3 26 0 - 138	
13C-OCDE 97.8 17.0 - 157	
100 0001 9/1.0 1/1.U = 15/	

Cleanup Surrogate

37Cl-2,3,7,8-TCDD

102 35.0 - 197

Analyst: 20105

Reviewed by DS Date: SA

Sample was filtered prior to extraction to remove particulate. Aqueous only portion was extracted and analyzed.

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

000005 of 000013
EPA Method 1613 PCDD/F #Modified

ICal: PCDDFAL3-4-7-05

MS/MSD Batch No.: X0560

GC Column: db5 Units: ng/mL

FAL ID: 3269-001-0PR Client ID: OPR Matrix: Aqueous Extraction Batch No.: X(0570	Date Extracted: 5/18/05 Date Received: NA Amount: 1.000 L
Compound	Conc	QC Limits
2,3,7,8-TCDD	9.75	6.70 - 15.8
1,2,3,7,8-PeCDD	51.3	35.0 - 71.0
1,2,3,4,7,8-HxCDD	54.0	35.0 - 82.0
1,2,3,6,7,8-HxCDD	52.0	38.0 - 67.0
1,2,3,7,8,9-HxCDD	53.9	32.0 - 81.0
1,2,3,4,6,7,8-HpCDD	55.5	35.0 - 70.0
OCDD	107	78 0 - 144
		1010 144
2,3,7,8-TCDF	10.4	7.50 - 15.8
1,2,3,7,8-PeCDF	57.3	40.0 - 67.0
2,3,4,7,8-PeCDF	56.9	34.0 - 80.0
1,2,3,4,7,8-HxCDF	57.4	36.0 - 67.0
1,2,3,6,7,8-HxCDF	58.3	42.0 - 65.0
2,3,4,6,7,8-HxCDF	57.9	39.0 - 65.0
1,2,3,7,8,9-HxCDF	57.7	35.0 - 78.0
1,2,3,4,6,7,8-HpCDF	58.9	41.0 - 61.0
1,2,3,4,7,8,9-HpCDF	59.3	39.0 - 69.0
OCDF	116	63.0 - 170
1		
Internal Standards	% Rec	QC Limits
13C-2,3,7,8-TCDD	87.7	20.0 - 175
13C-1,2,3,7,8-PeCDD	77.0	21.0 - 227
13C-1,2,3,4,7,8-HxCDD	85.1	21.0 - 193
13C-1,2,3,6,7,8-HxCDD	91.5	25.0 - 163
13C-1,2,3,4,6,7,8-HpCDD	86.5	26.0 - 166
13C-OCDD	99.0	13.0 - 198
13C-2,3,7,8-TCDF	86.4	22.0 - 152
13C-1,2,3,7,8-PeCDF	82.3	21.0 - 192
13C-2,3,4,7,8-PeCDF	82.7	13.0 - 328
13C-1,2,3,4,7,8-HxCDF	86.4	19.0 - 202
13C-1,2,3,6,7,8-HxCDF	87.7	21.0 - 159
13C-2,3,4,6,7,8-HxCDF	89.8	17.0 - 205
13C-1,2,3,7,8,9-HxCDF	89.6	22.0 - 176
13C-1,2,3,4,6,7,8-HpCDF	93.0	21.0 - 158
13C-1,2,3,4,7,8,9-HpCDF	96.5	20.0 - 186
13C-OCDF	98.9	13.0 - 198

Cleanup Surrogate

37cl-2,3,7,8-TCDD

31.0 - 191

92.2

Sample was filtered prior to extraction to remove particulate. Aqueous only portion was extracted and analyzed.

Analyst Date:

Reviewed by:

000006 of 000013

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

Acquired: 19-MAY-05

WHO TEQ: NA

EPA Method 1613 PCDD/F #Modified

FAL ID: 3269-001-SA Client ID: SL-2 Matrix: Aqueous Extraction Batch No.: X057	0	Date Extrac Date Receiv Amount: 0.9	ted: 5/ ed: 5/10 51 L	18/05 0/05	ICal: PCDDFAL3-4-7 GC Column: db5 Units: pg/L MS/MSD Batch No.:	7-05 Ac WF X0560	cquired: 10 TEQ: (20-MAY-	05
Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual	#Hom
2,3,7.8-TCDD	_	1 45							
1,2,3,7,8-PeCDD	-	1 30		-					
1,2,3,4,7.8-HxCDD	-	2 14		-					
1,2,3,6,7,8-HxCDD	-	2 38		-					
1,2,3,7,8,9-HxCDD	-	2.30		-	lotal letra-Dioxins	-	1.45		0
1,2,3,4,6,7,8-HpCDD	7.40	2.10	()	-	Iotal Penta-Dioxins	-	1.30		0
OCDD	48 9	-	C	0.0740	lotal Hexa-Dioxins	-	2.38	()	0
	40.7			0.00489	Total Hepta-Dioxins	14.9	-	6)	2
2.3.7.8-TCDF	-	0.952		_				\smile	
1.2.3.7.8-PeCDF	-	1 76		-					
2.3.4.7.8-PeCDF	-	1.74		-					
1,2,3,4,7,8-HxCDF	-	1 12		-					
1,2,3,6,7,8-HxCDF	-	1 03		-					
2,3,4,6,7,8-HxCDF	-	0.00%		-					
1.2.3.7.8.9-HxCDF	_	1 32		-					
1.2.3.4.6 7 8-HDCDE		1.52		-	Total Tetra-Furans	-	0.952		0
1.2.3 4 7 8 9-HDCDE		1 97		-	Total Penta-Furans	-	1.74		0
	_	7.70		-	Total Hexa-Furans	-	1.32		0
0001	-	3.30		-	Total Hepta-Furans	-	1.82		0
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD	71.3	25.0 - 164							
13C-1,2,3,7,8-PeCDD	57.6	25.0 - 181							
13C-1,2,3,4,7,8-HxCDD	66.7	32.0 - 141							
13C-1,2,3,6,7,8-HxCDD	72.4	28 0 - 130							
13C-1,2,3,4,6,7,8-HpCDD	66.2	23.0 - 140							
13C-OCDD	74.6	17.0 - 157							
13C-2,3,7,8-TCDF	71.3	24.0 - 169							
13C-1,2,3,7,8-PeCDF	63.4	24.0 - 185							
13C-2,3,4,7,8-PeCDF	62.3	21.0 - 178							
13C-1,2,3,4,7,8-HxCDF	69.3	26.0 - 152							
13C-1,2,3,6,7,8-HxCDF	70.5	26.0 - 123							
13C-2,3,4,6,7,8-HxCDF	71.0	29.0 - 147							
13C-1,2,3,7,8,9-HxCDF	70.0	28.0 - 134							
13C-1,2,3,4,6,7.8-HDCDF	72.6	28.0 - 143							
13C-1,2,3,4,7,8,9-HpCDF	73.3	26 0 - 139							
13C-OCDF	74.2	17 0 - 157							
		, i i i i i i i i i i i i i i i i i i i							
Cleanup Surrogate				# S A	ample was filtered prior to extra queous only portion was extrac	action to rem ted and anal	nove partic vzed.	ulate.	

37cl-2,3,7,8-TCDD

103

35.0 - 197

Analyst: 5/20/0 Date:

Reviewed by: Spillos Date:___

000007 of 000013

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

EPA Method 1613 PCDD/F #Modified

FAL ID: 3269-002-SA Client ID: SL-4 Matrix: Aqueous Extraction Batch No.: X05	70	Date Extrac Date Receiv Amount: 0.9	ted: 5/ ed: 5/10 67 L	18/05 0/05	ICal: PCDDFAL3-4-7 GC Column: db5 Units: pg/L MS/MSD Batch No	7-05 Ac WH X0560	cquired: 10 TEQ: 0	20-MAY-0	05
Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DI	Qual	#Hom
							02	u uu t	#110111
2,3,7,8-1CDD		0.890		-					
1,2,3,7,8-PeCDD	-	1.86		-					
1,2,3,4,7,8-HXCDD	-	2.38		-					
1,2,3,6,7,8-HxCDD	-	3.07		-	Total Tetra-Dioxins	-	0.890		0
1,2,3,7,8,9-HxCDD	-	2.64	\sim	-	Total Penta-Dioxins	-	1.86		0
1,2,3,4,6,7,8-HpCDD	7.26	-	(J)	0.0726	Total Hexa-Dioxins	-	3.07		0
OCDD	30.3	-	J	0.00303	Total Hepta-Dioxins	12.3	-	(\mathbf{j})	2
								G	-
2,3,7,8-TCDF	-	0.613		-					
1,2,3,7,8-PeCDF	-	1.09		-					
2,3,4,7,8-PeCDF	-	1.09		-					
1,2,3,4,7,8-HxCDF	-	1.77		-					
1,2,3,6,7,8-HxCDF	-	1.50							
2,3,4,6,7,8-HxCDF	-	1.62		-					
1,2,3,7,8,9-HxCDF	-	1.98		-	Total Tetra-Furans	-	0.613		n
1,2,3,4,6,7,8-HpCDF	-	2.04		-	Total Penta-Furans	-	1.10		0
1,2,3,4,7,8,9-HpCDF	-	2.54		-	Total Hexa-Furans	-	1.98		0
OCD F	-	3.20		-	Total Hepta-Furans	-	2.54		0
					1		2104		0
Internal Standards	% Rec	QC Limits	Qua	L.					
13C-2,3,7,8-TCDD	81.4	25.0 - 164							
13C-1,2,3,7,8-PeCDD	68.2	25.0 - 181							
13C-1,2,3,4,7,8-HxCDD	75.7	32.0 - 141							
13C-1,2,3,6,7,8-HxCDD	81.3	28.0 - 130							
13С-1,2,3,4,6,7,8-НрСОД	73.2	23 0 - 140							
13C-OCDD	81.2	17 0 - 157							
13C-2,3,7,8-TCDF	80.4	24.0 - 169							
13C-1,2,3,7,8-PeCDF	74.8	24.0 - 185							
13C-2,3,4,7,8-PeCDF	74.7	21.0 - 178							
13C-1,2,3,4,7,8-HxCDF	79.5	26.0 - 152							
13C-1,2,3,6,7,8-HxCDF	80.1	26.0 - 123							
13C-2,3,4,6,7,8-HxCDF	84.1	29.0 - 147							
13C-1,2,3,7,8,9-HxCDF	80.5	28.0 - 136							
13C-1,2,3,4,6,7,8-HpCDF	81.0	28.0 - 143							
13C-1,2,3,4,7,8,9-HpCDF	79.7	26.0 - 138							
13C-OCDF	79.4	17.0 - 157							
Clashin Supports									
creanup surrogate				#	Sample was filtered prior to extra	action to ren	nove partic	ulate.	

37cl-2,3,7,8-TCDD

108 35.0 - 197

Sample was filtered prior to extraction to remove particulate. Aqueous only portion was extracted and analyzed.

Analyst: W Date

Reviewed by Date: SIJUS

000008 of 000013

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

EPA Method 1613 PCDD/F

FAL ID: 3228-002-MS/MSD Client ID: 05-3630-7 Matrix: Aqueous Extraction Batch No.: X05	1 5 560 M N	Date Extracted: 5-5- Date Received: 4-14- Sample Amount: 0.944 AS Amount: 0.962 L ASD Amount: 0.969 L	2005 05 L	ICal: pcddfal3-4-7-05 GC Column: db5 Units: pg MS/MSD Batch No.: X0560	MS Acquin MSD Acqui WHO TEQ:	ned: 7-MAY-05 ired: 7-MAY-05 NA
Compound	Amount Spiked	Sample Amount	MS Amount	MSD Amount	% RSD	Qual
2,3,7,8-TCDD	200	-	146	157	8.22	
1,2,3,7,8-PeCDD	1000	-	850	881	4 31	
1,2,3,4,7,8-HxCDD	1000	-	907	949	5.24	
1,2,3,6,7,8-HxCDD	1000	· -	849	1010	18.0	
1,2,3,7,8,9-HxCDD	1000	-	935	1040	11.6	
1,2,3,4,6,7,8-HpCDD	1000	-	906	968	7.29	
OCDD	2000	-	1780	1860	5.13	
2,3,7,8-TCDF	200	-	194	196	1.59	
1,2,3,7,8-PeCDF	1000	-	960	. 1110	15.6	
2,3,4,7,8-PeCDF	1000	-	977	1100	12.9	
1,2,3,4,7,8-HxCDF	1000	-	902	1040	15.1	
1,2,3,6,7,8-HxCDF	1000	-	955	1060	11.4	
2,3,4,6,7,8-HxCDF	1000	-	1000	1010	1.75	
1,2,3,7,8,9-HxCDF	1000	-	947	1030	9.11	
1,2,3,4,6,7,8-HpCDF	1000	-	953	1040	9.65	
1,2,3,4,7,8,9-HpCDF	1000	· -	952	1110	16.4	
OCD F	2000	-	1790	2070	15.5	
Internal Standards		% Rec	% Rec	% Rec	QC Limits	
13C-2,3,7,8-TCDD	2000	63.3	42.2	41.0	25.0 - 150	
13C-1,2,3,7,8-PeCDD	2000	60.2	40.4	40.1	25.0 - 150	
13C-1,2,3,4,7,8-HxCDD	2000	52.1	41.8	40.9	25.0 - 150	
13C-1,2,3,6,7,8-HxCDD	2000	62.6	50.0	45.3	25.0 - 150	
13C-1,2,3,4,6,7,8-HpCDD	2000	61.2	46.1	44.3	25.0 - 150	
13C-OCDD	4000	62.6	46.1	45.9	25.0 - 150	
13C-2,3,7,8-TCDF	2000	63.7	41.9	42.6	25.0 - 150	
13C-1,2,3,7,8-PeCDF	2000	73.1	48.1	43.7	25.0 - 150	
13C-2,3,4,7,8-PeCDF	2000	75.8	48.6	45.0	25.0 - 150	
13C-1,2,3,4,7,8-HxCDF	2000	48.3	40.1	37.6	25.0 - 150	
13C-1,2,3,6,7,8-HxCDF	2000	55.7	44.2	42.1	25.0 - 150	
13C-2,3,4,6,7,8-HxCDF	2000	60.6	44.6	45.6	25.0 - 150	
13C-1,2,3,7,8,9-HxCDF	2000	55.5	43.8	43.6	25.0 - 150	
13C-1,2,3,4,6,7,8-HpCDF	2000	59.7	47.7	45.5	25.0 - 150	
13C-1,2,3,4,7,8,9-HpCDF	2000	59.8	46.0	44.8	25.0 - 150	
13C-OCDF	4000	55.6	45.2	44.7	25.0 - 150	
Cleanup Surrogate						

37cl-2,3,7,8-TCDD

800

99.7

Analyst Date:

Reviewed by: SPULDS Date:

25.0 - 150

000009 of 000013

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

98.2

89.0

3269

18835

Project No.: 9329 Task	6					_	A	NA	LYSE	S							REMARKS								
Samplers (Signature:) Month Hilly	0	od 8021	od 8021 1 only) od 8021	d 8260	od 8270	d 8270 3 only)	15m (Gasoline)	15m (Diesel)	15m (Matar Oll)	Cleanup	(613 1613					ater (W) or Other (o)				tainers		Additio	nal Com	ments	
Date Time Sample	e Number	EPA Metho Full Scan)	EPA Metho Hai. VOCs FPA Metho	EPA Metho	EPA Metho Full Scan)	EPA Metho SIM (PAHS	Aethod BO	Aethod 80	Aethod BO	silica Gel (P. P. F.					Soll (S), W Apor (V).	-litered	reserved	Cooled	Vo. of Con					
5/5/05 1145 SL2-1	t			1			-	-			7					Ŵ		<u>a</u>	¥	1	k	omposito	e f r	epor	~+
1 1430 512-1	3			1	1						X					\sim			Π	1	1	is SL	-2		
1055 SI 4-	A			\uparrow							M				_	W			IT.	1	C	omposition	+	repo	<i>•6</i> †
V 1355 SL4-	B			T							\mathbf{M}					W	-	_	J	1	c	15 SL-	-4		
				1	1																Γ				
				\top	\square										_						Г				
				1	\mathbf{T}																Г				
				\top	\square																Γ				
				\top																	Γ				
				T																	Γ				
				Τ																	Ι				
				Τ	Ι																				
				Τ	1																				
				Τ	Γ																				
				T	Γ																				
Laboratory: Frontier	•	Tur	naroun	d Tii	ne: 🤇	βτj	\rangle	Re Re	sults	to:	euson	Tota	al N	o. of	Cor	ntain	ers	4			1	Tracking 7905 C	# 731	86	2
Relinquished by (Signature):	Date: F	leling	quished by (Signature): Date: Relinquished by (Signa					atur	ure): Date: Method (hod	of Shipme	nt: Fe	dE,	ŕ							
Printed Name: Matt H. // vard	Time:	rinted	Name	;			Printed Name:					Time: Laboratory					tory Comme	nts an	dLog	N					
Company: Specmatrik	3:000	ompa	ny:					-		T	Company	npany:													
Much M men	Date: F	leceiv	ed by:				Date: Received by:					Date:													
Printed Name:	Time:	rinted	Name	:				1	[ime:	e: Printed Name:							1	ime	: [1	2	Geom	atrix C	onsu	itai
Gompany:	1010	ompa	ny:							C	Company	:							2	101 0	Pho	ster Street, 12th ne: 510-663-4100	Floor • Oa Fax: 510	kland, ()-663-41	CA 9 141
Sh.																									

3269.

2004-2005 STORM WATER SEASON SAMPLING INFORMATION Arcata Sawmill (Geomatrix Project No. 9329) Arcata, CA

Laboratory Information:

Frontier Analytical 5172 Hillsdale Circle El Dorado Hills, CA 95762 916-934-0900 Contact: Brad Silverbush or Dan Vickers

Project Consultant Information:

Project Manager: Ross Steenson Geomatrix Consultants 2101 Webster Street 12th Floor Oakland, CA 94612 510-663-4100 rsteenson@geomatrix.com.

Field Manager: Matt Hillyard Geomatrix Consultants 525 2nd Street, Suite 203 Eureka, CA 95501 707-444-7800 mhillyard@geomatrix.com

Reporting Information:

Please send the laboratory analytical report and a copy of the invoice to Ross Steenson at Geomatrix.

Billing Information:

Please directly bill Sierra Pacific Industries.

Special Procedures:

Although EPA Method 1613 calls for analysis of solids if a sample contains greater than 1% solids, only the liquid should be analyzed for these storm water samples. Report should be appropriately footnoted. Contact Ross Steenson of Geomatrix if you have any questions.

000011 of 000013

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 3269

Client:	Geomatrix Consultants, Inc.
Client Project ID:	9329 Task 6
Date Received:	05/10/2005
Time Received:	10:10 am
Received By:	NM
Logged In By:	DS
# of Samples Received:	2
Duplicates:	2
Storage Location:	R1

Method of Delivery:	Fed-Ex						
Tracking Number:	790507318624						
Shipping Container Received Intact	Yes						
Custody seals(s) present?	No						
Custody seals(s) intact?	No						
Sample Arrival Temperature (C)	0						
Cooling Method	lce						
Chain Of Custody Present?	Yes						
Return Shipping Container To Client	Yes						
Test for residual Chlorine	Yes						
Thiosulfate Added	No						
Earliest Sample Hold Time Expiration	05/05/2006						
Adequate Sample Volume	Yes						
Anomalies or additional comments:							

000012 of 000013

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com