Groundwater Monitoring and Progress Report September 2005 Sampling Event

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

Sierra Pacific Industries

October 28, 2005

Project No. 9329.000, Task 28

October 28, 2005 Project 9329.000, Task 28

Executive Officer California Regional Water Quality Control Board North Coast Region 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

Attention: Kasey Ashley

Subject: Groundwater Monitoring and Progress Report

September 2005 Sampling Event

Sierra Pacific Industries Arcata Division Sawmill

Arcata, California

Dear Ms. Ashley:

As requested by Sierra Pacific Industries, we have enclosed a copy of the subject report.

Sincerely yours,

GEOMATRIX CONSULTANTS, INC.

Mike Keim

Senior Environmental Scientist

Mike Klim

Edward P. Conti, CEG, CHG

Principal Geologist

RAS/EPC/abr

I:\Doc_Safe\9000s\9329\28-Task\200509_Sept Sampling Event\200509_TransmittalLtr.doc

Enclosure

cc: Bob Ellery, Sierra Pacific Industries (with enclosure)

Gordie Amos, Sierra Pacific Industries (with enclosure)

Fred Evenson, Law Offices of Frederic Evenson (with enclosure)

Jim Lamport, Ecological Rights Foundation (with enclosure)

Groundwater Monitoring and Progress Report September 2005 Sampling Event

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

Sierra Pacific Industries

Prepared by:

Geomatrix Consultants, Inc.

2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4100

October 28, 2005

Project No. 9329.000, Task 28

PROFESSIONAL CERTIFICATION

GROUNDWATER MONITORING AND PROGRESS REPORT SEPTEMBER 2005 SAMPLING EVENT

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

October 28, 2005 Project No. 9329.000, Task 28

This report was prepared by Geomatrix Consultants, Inc., under the professional supervision of Edward P. Conti. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional hydrogeologic practice, and within the scope of the project. There is no other warranty, either express or implied.

Edward P. Conti, CEG, CHG

Principal Geologist

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	SITE BACKGROUND	2
	2.1 History	
	2.2 LITHOLOGY	
	2.3 Hydrogeology	3
3.0	SEPTEMBER 2005 MONITORING REPORT	4
	3.1 FIELD METHODS	4
	3.2 Laboratory Methods	5
	3.3 LABORATORY DATA QUALITY REVIEW	
	3.4 RESULTS OF GROUNDWATER MONITORING	6
	3.4.1 Occurrence and Movement of Groundwater	
	3.4.2 Groundwater Analytical Results	6
4.0	PILOT STUDY PROGRESS REPORT	7
	4.1 CONFIRMATION GROUNDWATER SAMPLING	7
	4.2 GROUNDWATER ANALYTICAL RESULTS	8
	4.3 Laboratory Data Quality Review	8
5.0	WASTEWATER DISPOSAL	9
6.0	FUTURE MONITORING AND SAMPLING SCHEDULE	9
7.0	REFERENCES	10

TABLE OF CONTENTS

(Continued)

TABLES

Table 1	Monitoring Well Construction Details
Table 2	Summary of Water Level Measurements
Table 3	Summary of Water Quality Parameters
Table 4	Laboratory Analytical Results for Chlorinated Phenols (Canadian Pulp Method)
Table 5	Laboratory Analytical Results for Chlorinated Phenols and Phenol (8270 SIM
	Method)

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Former Green Chain Area Plan
Figure 4	Potentiometric Surface Map of Shallow Groundwater, September 7, 2005
Figure 5	Potentiometric Surface Map of Deep Groundwater, September 7, 2005
Figure 6	PCP Analytical Results for Shallow Groundwater, September 7, 2005

APPENDICES

Appendix A	Field Documentation
Appendix B	Laboratory Reports and Chain-of-Custody Records for Groundwater Samples
Appendix C	Laboratory Data Quality Review

GROUNDWATER MONITORING AND PROGRESS REPORT SEPTEMBER 2005 SAMPLING EVENT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

1.0 INTRODUCTION

This report presents the methods and results of the September 2005 groundwater monitoring event and a progress report for remediation pilot study activities also performed during September 2005 at the Sierra Pacific Industries (SPI) Arcata Division Sawmill located in Arcata, California (the site, Figure 1). The groundwater monitoring event was performed in accordance with Monitoring and Reporting Program (MRP) No. R1-2003-0127, which was revised and reissued by the California Regional Water Quality Control Board, North Coast Region (RWQCB) on March 4, 2005. This revised MRP requires semi-annual or annual sampling of selected groundwater monitoring wells and semi-annual reporting. The progress report for remediation pilot study activities was prepared in accordance with the *Pilot Study Work Plan for Implementation of Proposed Remedial Action* (Geomatrix, 2004b). Geomatrix Consultants, Inc. (Geomatrix) has prepared this report on behalf of SPI.

During the March 2005 pilot study monitoring event, pentachlorophenol (PCP) was unexpectedly detected at a concentration of 2 μ g/l in groundwater samples collected from monitoring wells MW-1, MW-2, MW-3, MW-5, and MW-14 (Geomatrix, 2005). Therefore, confirmation sampling of these five wells was performed during the September 2005 groundwater sampling event. The progress report for remediation pilot study activities presents a summary of the confirmation sampling activities performed.

This report is organized as follows: site background, including a discussion of site history, subsurface lithology, and hydrogeology (Section 2.0); September 2005 groundwater monitoring methods and results (Section 3.0); progress report for remediation pilot study activities and results (Section 4.0); wastewater disposal (Section 5.0); schedule for future monitoring and sampling activities (Section 6.0); and references (Section 7.0).

2.0 SITE BACKGROUND

This section provides background information regarding the site setting and history and discusses subsurface conditions at the site, including lithology and hydrogeology. Subsurface lithologic and hydrogeologic conditions at the site were previously investigated and described by EnviroNet (EnviroNet, 2002a).

2.1 HISTORY

The approximately 68-acre site is located on the Samoa Peninsula, along the northern shoreline of Humboldt Bay and approximately 4 miles west of the town of Arcata, California. The site is bounded to the east by the Mad River Slough, to the northwest by an old railroad grade, and to the south by New Navy Base Road and mud flats of Humboldt Bay (Figure 1).

The site is currently an active sawmill; features are shown on Figure 2. The sawmill has operated at the site since approximately 1950. Prior to construction of the mill facilities, the site consisted of undeveloped sand dunes and mud flats. During construction of mill facilities in the 1950s and 1960s, portions of the Mad River Slough on the eastern, northern, and southern sides of the site were filled. The current mill facility consists of an administrative building, a main sawmill building, numerous wood-processing buildings, log storage areas, milled lumber storage areas, and loading/unloading areas. A 140-foot-deep water supply well (Feature 48 on Figure 2) provides water for log sprinkling. An older, shallow water supply well is located adjacent to the 140-foot well, but has not been used since it began to produce sand.

Wood surface protection activities historically conducted at the site included the use of an antistain solution containing chlorinated phenols, including pentachlorophenol (PCP) and tetrachlorophenol, to control sap stain and mold on a small amount of milled lumber. The antistain solution was applied in an aboveground dip tank located in the middle of the former green chain, which was located immediately south of the eastern end of the current sorter building (Feature 49 on Figure 2). Use of the solution containing chlorinated phenols in the former green chain area of the site reportedly commenced in the early to mid-1960s and was discontinued in 1985 (EnviroNet, 2002b). At the direction of the RWQCB, SPI stopped purchasing anti-stain solution containing chlorinated phenols in 1985 and commenced a process of relocating the remaining solution containing chlorinated phenols to a new dip tank facility for recycling (MFG, 2003a). Due to the difficulty of disposing of the old solution containing chlorinated phenols, the remaining solution from the old dip tank was mixed with a new anti-stain solution that did not contain chlorinated phenols at the new dip tank facility

(Feature 21 on Figure 2). Recycling of the solution containing chlorinated phenols in the new dip tank continued until 1987, at which time the drip basin adjacent to the old dip tank was cleaned out, filled with sand, and capped with 3 to 4 inches of concrete (MFG, 2003b). The new dip tank has been cleaned three times since 1987.

The potential effects of wood surface protection activities on soil and groundwater have been investigated to depths of approximately 20 feet below ground surface (bgs). In 2002, investigation activities included the installation of 19 monitoring wells at the site: 15 monitoring wells (MW-1 through MW-12, MW-14, MW-17, and MW-18) were constructed to monitor shallow groundwater between depths of approximately 2 and 8 feet bgs, and four monitoring wells (MW-13D, MW-15D, MW-16D, and MW-19D) were constructed to monitor deeper groundwater between depths of approximately 15 and 20 feet bgs (EnviroNet, 2003). Two additional monitoring wells (MW-20 and MW-21) were installed in January and February 2004 to monitor shallow groundwater (Geomatrix, 2004a). Monitoring well locations are illustrated on Figure 3. Monitoring well construction details are included in Table 1.

2.2 LITHOLOGY

The site is located adjacent to the Mad River Slough near the northern shoreline of Humboldt Bay. The eastern, northern, and southern portions of the site were filled in the 1950s and 1960s.

Based on observations made during investigation activities at the site, subsurface lithology within the shallow zone (less than 8 feet bgs) is predominantly fine- to medium-grained sand of apparent sand dune origin. Wood and fill material was locally observed in this shallow zone during activities such as the installation of monitoring wells MW-13D and MW-15D. Soil beneath the fine- to medium-grained sand consisted of more sand and locally of fine-grained material, classified as "bay mud." The fine-grained material was encountered during the installation of monitoring wells MW-3, MW-10, MW-15D, MW-16D, and MW-17 at depths of approximately 6 to 8 feet bgs and during the installation of monitoring well MW-15 at a depth of approximately 15 feet bgs. Soil described during the installation of a water supply well at the site (Feature 48 on Figure 2) suggests that subsurface soil between the ground surface and 140 feet bgs is predominately composed of sand (EnviroNet, 2001).

2.3 HYDROGEOLOGY

The groundwater surface measured in 21 site monitoring wells has ranged between approximately 0.5 and 5 feet bgs in the 17 shallow wells (i.e., screened from 2 to 8 feet bgs)

and between approximately 4 and 6 feet bgs in the four deeper wells (i.e., screened from 15 to 20 feet bgs). In the eastern portion of the site, groundwater flow generally is to the east, toward the Mad River Slough (MFG and Geomatrix, 2003). In the southwestern portion of the site, groundwater likely flows to the south-southeast, toward Humboldt Bay (MFG and Geomatrix, 2003).

Tidal fluctuations in the Mad River Slough and nearby Humboldt Bay influence groundwater levels at the site in the vicinity of the slough. A 2002 tidal influence study conducted at the site by EnviroNet suggested that tidal effects become negligible at distances greater than 100 feet from the slough shore (EnviroNet, 2003).

3.0 SEPTEMBER 2005 MONITORING REPORT

This section presents field and laboratory methods and results of groundwater monitoring activities conducted during this period, as required by the MRP.

3.1 FIELD METHODS

Prior to groundwater sampling activities, depth to water was measured in site monitoring wells MW-1 through MW-21 (Figure 3) and at a monitoring point in the Mad River Slough on September 7, 2005 using an electronic sounder (Table 2). Depth to water in the monitoring wells was measured from a surveyed point along the top of the well casing, in a sequence from lowest expected concentrations of constituents of concern (first) to highest expected concentrations (last), based on laboratory analytical results from the previous sampling event. Field personnel cleaned the electronic sounder using an Alconox® detergent solution followed by a distilled water rinse prior to use at each monitoring well location.

Seven monitoring wells (MW-2, MW-6 through MW-9, MW-20, and MW-21) were purged and sampled on September 7, 2005, in accordance with the site MRP. In monitoring wells MW-6 through MW-9 and MW-20, Geomatrix field personnel used dedicated, disposable Teflon[®] bailers to remove water from the well casings. For monitoring wells MW-2 and MW-21, Geomatrix field personnel removed water from the well casings using low-flow purging/sampling techniques incorporating a peristaltic pump and disposable tubing. Field personnel measured and recorded readings of temperature, pH, specific conductance, and total dissolved solids (TDS) on field sampling records during groundwater bailer purging activities. For bailer-purged wells, the purging activities were ceased when a minimum of three well casing volumes of water had been removed and water quality parameters stabilized to within 10 percent of specific conductance, 0.05 pH units for pH, and 1 degree Celsius for temperature.

For low-flow peristaltic-pump-purged wells, purging activities were ceased when water quality parameters stabilized according to the same criteria for bailer-purged wells. Copies of the field records for groundwater monitoring and sampling activities are included in Appendix A.

After purging, groundwater samples were collected using the dedicated Teflon® bailers or a peristaltic pump and dedicated tubing. A field sample of groundwater was monitored for temperature, pH, specific conductance, and TDS just prior to collecting the groundwater sample to record the water quality parameters of the groundwater being sampled. These field parameters are summarized in Table 3. Historical laboratory analytical results for TDS also are included in this table.

Groundwater collected from each of the seven monitoring wells was placed in two 125-milliliter (ml) glass vials that were sealed with Teflon®-lined screw caps. After filling, the vials were labeled and placed in an ice-cooled, insulated chest for transport to the laboratory for analysis. Chain-of-custody records were completed for the samples and accompanied the samples until received by the laboratory. Copies of the chain-of-custody records for the groundwater samples are included in Appendix B.

An additional groundwater sample was collected from monitoring well MW-7 and submitted to the laboratory as a blind duplicate sample, labeled BD-02-200509. This sample was placed in two additional 125-ml glass vials sealed with Teflon®-lined screw caps and sent to the laboratory as described above.

3.2 LABORATORY METHODS

Groundwater samples collected from monitoring wells MW-2, MW-6 through MW-9, MW-20, and MW-21 were analyzed at Alpha Analytical Laboratories, Inc. (Alpha), of Ukiah, California, a California Department of Health Services-certified analytical laboratory. The samples were analyzed for chlorinated phenols (including PCP; 2,3,5,6-tetrachlorophenol; 2,3,4,6-tetrachlorophenol; and 2,4,6-trichlorophenol) in accordance with the Canadian Pulp method.

3.3 LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed the quality of laboratory data generated for the groundwater sampling as discussed in Appendix C. Based on the procedures and data quality review, the analytical data quality is satisfactory and the sample results appear to be representative.

3.4 RESULTS OF GROUNDWATER MONITORING

Monitoring and sampling results from site wells include groundwater elevation measurements, field measurements of water quality parameters, and laboratory analysis of groundwater samples. Groundwater elevation data provide information on subsurface hydraulic conditions, discussed below as occurrence and movement of groundwater. Groundwater quality is evaluated based on the laboratory analysis of chlorinated phenols. The results are presented below.

3.4.1 Occurrence and Movement of Groundwater

The groundwater surface measured in shallow monitoring wells at the site (i.e., screened from approximately 2 to 8 feet bgs) ranged from 1.27 to 5.36 feet below the measuring point, with associated groundwater elevations ranging from 4.25 to 9.31 feet relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the lateral direction of shallow groundwater flow is generally to the east northeast (Figure 4). The magnitude of the lateral hydraulic gradient ranges from approximately 0.006 foot/foot in the former green chain vicinity to as much as approximately 0.03 foot/foot beneath the sawmill and maintenance buildings. Groundwater elevations within 100 feet of the Mad River Slough shoreline are subject to tidal fluctuations (EnviroNet, 2003) and as such, were not used to evaluate the direction or magnitude of the shallow groundwater gradient.

The groundwater surface measured in deep monitoring wells at the site (i.e., screened from approximately 15 to 20 feet bgs) ranged from 4.23 to 5.83 feet below the measuring point, with associated groundwater elevations ranging from 5.36 to 6.47 feet relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the lateral direction of deep groundwater flow is generally to the east (Figure 5) at a lateral hydraulic gradient of approximately 0.006 foot/foot.

3.4.2 Groundwater Analytical Results

Seven groundwater monitoring wells were sampled during this period (MW-2, MW-6 through MW-9, MW-20, and MW-21). Laboratory analytical reports and sample chain-of-custody records are included in Appendix B. The results for the chlorinated phenol analyses are presented in Table 4. PCP results also are illustrated on Figure 6 (shallow groundwater).

PCP and tetrachlorophenols (TCPs) were detected in groundwater samples from two of the seven monitoring wells (MW-7 and MW-21; Table 4; PCP results are also shown on Figure 6). PCP was detected at concentrations of 16,000 micrograms per liter (µg/L) and 13,000 µg/L in

the primary and blind duplicate samples, respectively, collected from MW-7 and at 4,900 μ g/L in the sample collected from well MW-21. 2,3,5,6-TCP was detected at concentrations of 19 μ g/L and 17 μ g/L in the primary and blind duplicate samples, respectively, collected from well MW-7 and at 11 μ g/L in the sample collected from well MW-21. 2,3,4,6-TCP was detected at concentrations of 280 μ g/L and 230 μ g/L in the primary and blind duplicate samples, respectively, collected from well MW-7 and at 170 μ g/L in the sample collected from well MW-21. 2,3,4,5-TCP was detected at concentrations of 16 μ g/L and 14 μ g/L in the primary and blind duplicate samples, respectively, collected from well MW-7 and at 4.8 μ g/L in the sample collected from well MW-21.

4.0 PILOT STUDY PROGRESS REPORT

The pilot study includes three groundwater sampling and analyses events from selected site monitoring wells. The objectives of the pilot study are to:

- Demonstrate that in situ destruction of contaminants is occurring in the subsurface through natural attenuation processes.
- Demonstrate that discharges of wood surface protection chemicals to surface water have been abated.
- Implement risk management measures to protect current and future personnel working at the site from participating in activities that would result in exposure to unacceptable risk.

During the March 2005 monitoring event, which was the second sampling event of the pilot study, PCP, analyzed using EPA Method 8270C SIM, was unexpectedly detected at a concentration of 2 μ g/l in groundwater samples collected from monitoring wells MW-1, MW-2, MW-3, MW-5, and MW-14 (Geomatrix, 2005). No PCP had been detected in these wells since 2002. Although the analytical laboratory reported no errors in their analyses, additional confirmation sampling of these five wells was warranted due to their long history of no detections. This section presents a summary of confirmation sampling activities performed in response to the March 2005 detections of PCP.

4.1 CONFIRMATION GROUNDWATER SAMPLING

Geomatrix collected confirmation groundwater samples from the five monitoring wells with anomalous detections. Monitoring wells MW-1, MW-2, MW-3, MW-5, and MW-14 were purged and sampled on September 7, 2005, in conjunction with the semi-annual groundwater monitoring event (Section 3.0). Geomatrix field personnel used a peristaltic pump and dedicated tubing to purge groundwater using low-flow techniques, at a rate of approximately

0.2 gallon per minute. Measurements of temperature, pH, specific conductance, TDS, and reduction-oxidation potential were collected during purging and recorded on field sampling records, included in Appendix A; field measurements for temperature, pH, specific conductance, and TDS are summarized in Table 3.

Field personnel collected groundwater samples from the five monitoring wells after the stabilization of monitored water quality parameters including: measurements of specific conductance to within 10 percent; measurements of pH to within 0.05 pH units; and measurements of temperature to within 1 degree Celsius. An additional groundwater sample was collected from monitoring well MW-1 and submitted to the laboratory as a blind duplicate sample, labeled BD-01-200509. Groundwater was sampled from the peristaltic pump and tubing in laboratory-supplied containers, which were labeled and placed in an ice-cooled, insulated chest for transport to the laboratory for analysis. Chain-of-custody records were completed for the samples and accompanied the samples until received by the laboratory. Copies of the chain-of-custody records for the groundwater samples are included in Appendix B.

Groundwater samples collected from the monitoring wells were analyzed at Friedman & Bruya, Inc. (Friedman & Bruya), of Seattle, Washington, a California Department of Health Services-certified analytical laboratory. Groundwater samples were analyzed for pentachlorophenol by EPA Method 8270C SIM.

4.2 GROUNDWATER ANALYTICAL RESULTS

Laboratory analytical reports and chain-of-custody records for pilot study groundwater samples are included in Appendix B.

PCP was not detected at or above the laboratory reporting limit of 1 ug/l in any of the confirmation samples from the five monitoring wells (MW-1, MW-2, MW-3, MW-5, and MW-14). Pilot study analytical results are tabulated in Table 5. PCP results are also shown on Figure 6.

4.3 LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed the laboratory data generated for the pilot study groundwater sampling as discussed in Appendix C. Based on our review, the data generated during this period for the pilot study sampling event appear to be accurate and representative.

5.0 WASTEWATER DISPOSAL

The purge water and equipment wash water generated by the environmental activities conducted during September 2005 and discussed herein were placed in two steel, 55-gallon drums and labeled. The drums, which were not completely filled during these activities, are being temporarily stored at the site and, once completely filled with purge water from subsequent sampling events, will be disposed of by SPI in accordance with applicable regulations.

6.0 FUTURE MONITORING AND SAMPLING SCHEDULE

The next semi-annual groundwater monitoring event will be performed in February or March 2006. The next and last scheduled pilot study groundwater sampling event will also be performed in February or March 2006 in conjunction with the semi-annual groundwater monitoring event. The overall progress of the pilot study will be evaluated after the last scheduled pilot study sampling event has been conducted.

7.0 REFERENCES

- EnviroNet Consulting (EnviroNet), 2001, Report on Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill, Arcata, California, October 23.
- EnviroNet, 2002a, Report on Recent Hydrogeologic Investigation at Sierra-Pacific Industries, Arcata Division Sawmill, Arcata, California, April 19.
- EnviroNet, 2002b, *Interim Feasibility Study to Remediate Chlorophenols in Soil and Groundwater*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, May 1.
- EnviroNet, 2003, Results of the Remedial Investigation for Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California, May 1.
- Geomatrix, 2004a, *Monitoring Wells MW-20 and MW-21 Installation and Soil Sampling Report*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, April 7.
- Geomatrix, 2004b, *Pilot Study Work Plan for Implementation of Proposed Remedial Action*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, April 29.
- Geomatrix, 2005, *Groundwater Monitoring and Progress Report, March 2005 Sampling Event*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, April 29.
- MFG, Inc. (MFG), 2003a, *Plywood Covered Ditch Investigation Report*, Sierra Pacific Industries, Arcata Division Sawmill, June 9.
- MFG, 2003b, *Interim Remedial Measures Report*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, June 10.
- MFG and Geomatrix, 2003, *Third Quarter 2003 Groundwater Monitoring Report*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, November 3.
- U.S. Environmental Protection Agency, 1999, *Contract Laboratory Program National Functional Guidelines for Organic Data Review*, Office of Emergency and Remedial Response, October.

TABLES

TABLE 1

MONITORING WELL CONSTRUCTION DETAILS 1

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Well No.	Date Installed	Total Boring Depth (ft bgs)	Total Well Depth (ft bgs)	Well Diameter (inches)	Latitude ²	Longitude ²	Ground Level Elevation ² (ft msl)	Top of Casing Elevation ² (ft msl)	Screened Interval (ft bgs)	Screen Slot Size (inches)	Filter Pack Interval (ft bgs)	Bentonite Seal Interval (ft bgs)	Surface Seal Interval ³ (ft bgs)
Shallow Well	s						_	_		,			
MW-1	5-Mar-02	8	8	2	40.8661595	124.1521395	10.12	9.69	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-2	5-Mar-02	9	8	2	40.8661024	124.1525276	10.41	9.61	2.0 - 8.0	0.01	1.5 - 9.0	1.0 - 1.5	0 - 1.0
MW-3	5-Mar-02	8.5	8	2	40.8662689	124.1530739	11.67	11.22	2.0 - 8.0	0.01	1.5 - 8.5	1.0 - 1.5	0 - 1.0
MW-4	5-Mar-02	8	8	2	40.8662303	124.1533599	11.17	10.74	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-5	7-Mar-02	8	8	2	40.8660945	124.1536734	11.26	10.74	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-6	7-Mar-02	8	8	2	40.8660710	124.1531061	10.13	9.83	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-7	7-Mar-02	8	8	2	40.8659980	124.1531187	10.09	9.74	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-8	8-Mar-02	8	8	2	40.8657492	124.1535343	10.55	10.33	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-9	8-Mar-02	8	8	2	40.8657520	124.1532218	10.36	9.91	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-10	11-Nov-02	9.5	8	2	40.8656910	124.1530670	10.08	9.85	2.0 - 8.0	0.01	1.5 - 9.5	1.0 - 1.5	0 - 1.0
MW-11	12-Nov-02	8.5	8	2	40.8655740	124.1533817	10.51	10.28	2.0 - 8.0	0.01	1.5 - 8.5	1.0 - 1.5	0 - 1.0
MW-12	12-Nov-02	9.5	8	2	40.8656625	124.1537231	11.01	10.76	2.0 - 8.0	0.01	1.5 - 9.5	1.0 - 1.5	0 - 1.0
MW-14	13-Nov-02	8	8	2	40.8657622	124.1523580	9.60	9.15	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-17	14-Nov-02	9	8	2	40.8656690	124.1526420	9.46	9.16	2.0 - 8.0	0.01	1.5 - 9.0	1.0 - 1.5	0 - 1.0
MW-18	13-Nov-02	9.5	8	4	40.8657448	124.1531649	10.12	9.92	2.0 - 8.0	0.01	1.5 - 9.5	1.0 - 1.5	0 – 1.0
$MW-20^4$	23-Jan-04	8	7	4	40.8658416	124.1532563	10.92	11.87	3.2 - 6.8	0.01	2.0 - 7.0	1.0 - 2.0	0 - 1.0
MW-21	12-Feb-04	8.3	8.3	0.75	40.8660161	124.1530089	10.11	12.89	2.1 - 8.1	0.01	1.5 - 8.3	1.0 - 1.5	0 – 1.0
Deep Wells													
MW-13D	12-Nov-02	21	20	2	40.8660809	124.1525231	10.26	9.96	15.0 - 20.0	0.01	13.5 - 21.0	12.0 - 13.5	0 - 12.0
MW-15D	13-Nov-02	21	20	2	40.8662658	124.1528255	11.59	11.19	15.0 - 20.0	0.01	14.0 – 21.0	12.0 – 14.0	0 – 12.0
MW-16D	14-Nov-02	21.5	20	2	40.8655571	124.1530363	10.13	9.83	15.0 - 20.0	0.01	14.0 – 21.5	12.0 – 14.0	0 – 12.0
MW-19D	14-Nov-02	21.5	20	2	40.8662419	124.1532744	11.21	11.06	15.0 - 20.0	0.01	14.0 – 21.0	12.0 – 14.0	0 - 12.0

Notes:

- 1. Construction details for wells MW-1 through MW-9 were obtained from Report on Recent Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill, dated April 19, 2002 prepared by Environet Consulting. Construction details for wells MW-10 through MW-19D were obtained from Results of the Remedial Investigation for Sierra Pacific Industries Arcata Division Sawmills, Arcata, California, dated January 30, 2003, prepared by EnviroNet Consulting. Installation of wells MW-20 and MW-21 documented in this report.
- 2. Monitoring wells were resurveyed by Omsberg Suveyors and Company of Eureka California on February 13, 2004; latitude and longitude were surveyed relative to North American Datum (NAD) of 1983 and elevations were surveyed relative to National Geodetic Vertical Datum (NGVD) of 1929. Elevations shown have been adjusted by 3.35 feet and presented as North American Vertical Datum (NAVD) of 1988 elevations.
- 3. Surface seal interval consists of the concrete surface completion and a neat cement sanitary seal, if applicable.
- 4. Well installed on a raised concrete pad of the former green chain. Depth measurements (ft bgs) are relative to the local ground surface of the concrete pad, which is approximately 1 foot above the grade of the surrounding ground surface.

Abbreviations:

ft bgs = feet below ground surface

ft msl = feet mean sea level

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
Shallow Wells				
MW-1	14-Mar-02	9.56	5.31	4.25
	18-Jul-02	9.56	4.52	5.04
	16-Sep-02	9.56	4.37	5.19
	02-Dec-02	9.56	4.18	5.38
	18-Mar-03	9.56	4.09	5.47
	31-Mar-03	9.56	4.48	5.08
	21-May-03	9.56	4.66	4.90
	27-Aug-03	9.56	4.55	5.01
	03-Nov-03	9.56	4.20	5.36
	23-Mar-04	9.69	4.47	5.22
	17-May-04	9.69	4.57	5.12
	30-Aug-04	9.69	4.55	5.14
	14-Dec-04	9.69	4.30	5.39
	09-Mar-05	9.69	4.13	5.56
	07-Sep-05	9.69	4.58	5.11
MW-2	14-Mar-02	9.49	4.52	4.97
	18-Jul-02	9.49	5.43	4.06
	16-Sep-02	9.49	5.28	4.21
	02-Dec-02	9.49	5.17	4.32
	18-Mar-03	9.49	5.16	4.33
	31-Mar-03	9.49	5.43	4.06
	21-May-03	9.49	5.45	4.04
	27-Aug-03	9.49	5.09	4.40
	03-Nov-03	9.49	5.17	4.32
	23-Mar-04	9.61	5.31	4.30
	17-May-04	9.61	5.43	4.18
	30-Aug-04	9.61	5.07	4.54
	14-Dec-04	9.61	5.10	4.51
	09-Mar-05	9.61	5.22	4.39
	07-Sep-05	9.61	5.36	4.25
MW-3	14-Mar-02	11.14	2.19	8.95
	18-Jul-02	11.14	2.79	8.35
	16-Sep-02	11.14	2.96	8.18
	02-Dec-02	11.14	2.75	8.39
	18-Mar-03	11.14	2.30	8.84
	31-Mar-03	11.14	1.96	9.18
	21-May-03	11.14	2.19	8.95
	27-Aug-03	11.14	2.08	9.06
	03-Nov-03	11.14	2.35	8.79
	23-Mar-04	11.22	2.24	8.98
	17-May-04	11.22	2.25	8.97
	30-Aug-04	11.22	2.42	8.80
	14-Dec-04	11.22	2.79	8.43
	09-Mar-05	11.22	2.77	8.45
	07-Sep-05	11.22	2.98	8.24

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-4	14-Mar-02	10.71	1.52	9.19
	18-Jul-02	10.71	1.84	8.87
	16-Sep-02	10.71	2.04	8.67
	02-Dec-02	10.71	1.80	8.91
	18-Mar-03	10.71	1.52	9.19
	31-Mar-03	10.71	0.93	9.78
	21-May-03	10.71	1.18	9.53
	27-Aug-03	10.71	1.36	9.35
	03-Nov-03	10.71	1.64	9.07
	23-Mar-04	10.74	1.17	9.57
	17-May-04	10.74	1.17	9.57
	30-Aug-04	10.74	1.37	9.37
	14-Dec-04	10.74	2.21	8.53
	09-Mar-05	10.74	1.95	8.79
	07-Sep-05	10.74	2.08	8.66
MW-5	14-Mar-02	10.69	0.95	9.74
	18-Jul-02	10.69	1.26	9.43
	16-Sep-02	10.69	1.35	9.34
	02-Dec-02	10.69	1.23	9.46
	18-Mar-03	10.69	0.87	9.82
	31-Mar-03	10.69	0.63	10.06
	21-May-03	10.69	0.69	10.00
	27-Aug-03	10.69	0.84	9.85
	03-Nov-03	10.69	0.92	9.77
	23-Mar-04	10.74	0.62	10.12
	17-May-04	10.74	0.78	9.96
	30-Aug-04	10.74	0.71	10.03
	14-Dec-04	10.74	1.50	9.24
	09-Mar-05	10.74	1.40	9.34
	07-Sep-05	10.74	1.43	9.31
MW-6	14-Mar-02	9.77	0.85	8.92
	18-Jul-02	9.77	1.27	8.50
	16-Sep-02	9.77	1.51	8.26
	02-Dec-02	9.77	1.30	8.47
	18-Mar-03	9.77	0.89	8.88
	31-Mar-03	9.77	0.37	9.40
	21-May-03	9.77	0.60	9.17
	27-Aug-03	9.77	0.70	9.07
	03-Nov-03	9.77	1.21	8.56
	23-Mar-04	9.83	0.69	9.14
	17-May-04	9.83	0.78	9.05
	30-Aug-04	9.83	0.99	8.84
	14-Dec-04	9.83	1.25	8.58
	09-Mar-05	9.83	1.17	8.66
	07-Sep-05	9.83	1.47	8.36

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-7	14-Mar-02	9.68	0.73	8.95
	18-Jul-02	9.68	1.15	8.53
	16-Sep-02	9.68	1.37	8.31
	02-Dec-02	9.68	1.19	8.49
	18-Mar-03	9.68	0.75	8.93
	31-Mar-03	9.68	0.26	9.42
	21-May-03	9.68	0.45	9.23
	27-Aug-03	9.68	0.61	9.07
	03-Nov-03	9.68	1.13	8.55
	23-Mar-04	9.74	0.44	9.30
	17-May-04	9.74	0.50	9.24
	30-Aug-04	9.74	0.84	8.90
	14-Dec-04	9.74	1.04	8.70
	09-Mar-05	9.74	0.96	8.78
	07-Sep-05	9.74	1.32	8.42
MW-8	14-Mar-02	10.30	0.92	9.38
	18-Jul-02	10.30	1.24	9.06
	16-Sep-02	10.30	1.52	8.78
	02-Dec-02	10.30	1.34	8.96
	18-Mar-03	10.30	0.95	9.35
	31-Mar-03	10.30	0.29	10.01
	21-May-03	10.30	0.49	9.81
	27-Aug-03	10.30	0.91	9.39
	03-Nov-03	10.30	1.36	8.94
	23-Mar-04	10.33	0.57	9.76
	17-May-04	10.33	0.54	9.79
	30-Aug-04	10.33	0.94	9.39
	14-Dec-04	10.33	1.29	9.04
	09-Mar-05	10.33	1.07	9.26
	07-Sep-05	10.33	1.41	8.92
MW-9	14-Mar-02	9.86	0.71	9.15
	18-Jul-02	9.86	1.13	8.73
	16-Sep-02	9.86	1.40	8.46
	02-Dec-02	9.86	1.18	8.68
	18-Mar-03	9.86	0.79	9.07
	31-Mar-03	9.86	0.11	9.75
	21-May-03	9.86	0.30	9.56
	27-Aug-03	9.86	0.81	9.05
	03-Nov-03	9.86	1.19	8.67
	23-Mar-04	9.91	0.40	9.51
	17-May-04	9.91	0.38	9.53
	30-Aug-04	9.91	0.89	9.02
	14-Dec-04	9.91	1.05	8.86
	09-Mar-05	9.91	0.85	9.06
	07-Sep-05	9.91	1.27	8.64

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-10	02-Dec-02	9.80	1.35	8.45
	18-Mar-03	9.80	0.95	8.85
	31-Mar-03	9.80	0.30	9.50
	21-May-03	9.80	0.52	9.28
	27-Aug-03	9.80	1.02	8.78
	03-Nov-03	9.80	1.43	8.37
	23-Mar-04	9.85	0.70	9.15
	17-May-04	9.85	0.61	9.24
	30-Aug-04	9.85	1.13	8.72
	14-Dec-04	9.85	1.24	8.61
	09-Mar-05	9.85	1.05	8.80
	07-Sep-05	9.85	1.43	8.42
MW-11	02-Dec-02	10.26	1.55	8.71
	18-Mar-03	10.26	1.12	9.14
	31-Mar-03	10.26	0.40	9.86
	21-May-03	10.26	0.64	9.62
	27-Aug-03	10.26	1.19	9.07
	03-Nov-03	10.26	1.56	8.70
	23-Mar-04	10.28	0.75	9.53
	17-May-04	10.28	0.69	9.59
	30-Aug-04	10.28	1.20	9.08
	14-Dec-04	10.28	1.44	8.84
	09-Mar-05	10.28	1.14	9.14
	07-Sep-05	10.28	1.57	8.71
MW-12	02-Dec-02	10.73	1.56	9.17
	18-Mar-03	10.73	1.15	9.58
	31-Mar-03	10.73	0.55	10.18
	21-May-03	10.73	0.70	10.03
	27-Aug-03	10.73	1.12	9.61
	03-Nov-03	10.73	1.68	9.05
	23-Mar-04	10.76	0.87	9.89
	17-May-04	10.76	0.76	10.00
	30-Aug-04	10.76	1.13	9.63
	14-Dec-04	10.76	1.55	9.21
	09-Mar-05	10.76	1.27	9.49
	07-Sep-05	10.76	1.57	9.19
MW-14	02-Dec-02	9.02	2.40	6.62
	18-Mar-03	9.02	2.21	6.81
	31-Mar-03	9.02	1.77	7.25
	21-May-03	9.02	1.69	7.33
	27-Aug-03	9.02	2.27	6.75
	03-Nov-03	9.02	2.52	6.50
	23-Mar-04	9.15	2.08	7.07
	17-May-04	9.15	2.15	7.00
	30-Aug-04	9.15	2.48	6.67
	14-Dec-04	9.15	2.30	6.85
	09-Mar-05	9.15	2.10	7.05
	07-Sep-05	9.15	2.37	6.78

		Arcata, Camorina		
Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-17	02-Dec-02	8.98	1.27	7.71
	18-Mar-03	8.98	0.94	8.04
	31-Mar-03	8.98	0.32	8.66
	21-May-03	8.98	0.58	8.40
	27-Aug-03	8.98	1.06	7.92
	03-Nov-03	8.98	1.30	7.68
	23-Mar-04	9.16	0.83	8.33
	17-May-04	9.16	0.74	8.42
	30-Aug-04	9.16	1.21	7.95
	14-Dec-04	9.16	1.17	7.99
	09-Mar-05	9.16	1.00	8.16
	07-Sep-05	9.16	1.35	7.81
MW-18	02-Dec-02	9.53	0.94	8.59
	18-Mar-03	9.53	0.52	9.01
	31-Mar-03	9.53	3	NC
	21-May-03	9.53	0.05	9.48
	27-Aug-03	9.53	0.55	8.98
	03-Nov-03	9.53	0.95	8.58
	23-Mar-04	9.92	0.52	9.40
	17-May-04	9.92	0.47	9.45
	30-Aug-04	9.92	0.98	8.94
	14-Dec-04	9.92	1.13	8.79
	09-Mar-05	9.92	0.94	8.98
	07-Sep-05	9.92	1.36	8.56
MW-20	23-Mar-04	11.87	2.36	9.51
	17-May-04	11.87	2.35	9.52
	30-Aug-04	11.87	2.70	9.17
	14-Dec-04	11.87	2.80	9.07
	09-Mar-05	11.87	2.72	9.15
	07-Sep-05	11.87	3.06	8.81
MW-21	23-Mar-04	12.89	3.97	8.92
	17-May-04	12.89	3.99	8.90
	30-Aug-04	12.89	4.23	8.66
	14-Dec-04	12.89	4.36	8.53
	09-Mar-05	12.89	4.35	8.54
	07-Sep-05	12.89	4.65	8.24
Deep Wells	1			
MW-13D	02-Dec-02	9.84	4.18	5.66
	18-Mar-03	9.84	4.21	5.63
	31-Mar-03	9.84	4.26	5.58
	21-May-03	9.84	4.52	5.32
	27-Aug-03	9.84	4.45	5.39
	03-Nov-03	9.84	4.30	5.54
	23-Mar-04	9.96	4.42	5.54
	17-May-04	9.96	4.54	5.42
	30-Aug-04	9.96	4.57	5.39
	14-Dec-04	9.96	4.56	5.40
	09-Mar-05	9.96	4.26	5.70
	07-Sep-05	9.96	4.55	5.41

TABLE 2

SUMMARY OF WATER LEVEL MEASUREMENTS

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-15D	02-Dec-02	11.08	5.31	5.77
	18-Mar-03	11.08	5.44	5.64
	31-Mar-03	11.08	5.46	5.62
	21-May-03	11.08	5.74	5.34
	27-Aug-03	11.08	5.71	5.37
	03-Nov-03	11.08	5.51	5.57
	23-Mar-04	11.19	5.66	5.53
	17-May-04	11.19	5.77	5.42
	30-Aug-04	11.19	5.83	5.36
	14-Dec-04	11.19	5.75	5.44
	09-Mar-05	11.19	5.48	5.71
	07-Sep-05	11.19	5.83	5.36
MW-16D	02-Dec-02	9.80	3.99	5.81
	18-Mar-03	9.80	4.17	5.63
	31-Mar-03	9.80	3.91	5.89
	21-May-03	9.80	4.11	5.69
	27-Aug-03	9.80	3.95	5.85
	03-Nov-03	9.80	4.26	5.54
	23-Mar-04	9.83	4.01	5.82
	17-May-04	9.83	4.13	5.70
	30-Aug-04	9.83	4.13	5.70
	14-Dec-04	9.83	4.38	5.45
	09-Mar-05	9.83	4.22	5.61
	07-Sep-05	9.83	4.23	5.60
MW-19D	02-Dec-02	11.00	4.31	6.69
	18-Mar-03	11.00	4.23	6.77
	31-Mar-03	11.00	4.02	6.98
	21-May-03	11.00	4.22	6.78
	27-Aug-03	11.00	4.26	6.74
	03-Nov-03	11.00	4.61	6.39
	23-Mar-04	11.06	4.13	6.93
	17-May-04	11.06	4.63	6.43
	30-Aug-04	11.06	4.60	6.46
	14-Dec-04	11.06	4.82	6.24
	09-Mar-05	11.06	4.46	6.60
	07-Sep-05	11.06	4.59	6.47

TABLE 2

SUMMARY OF WATER LEVEL MEASUREMENTS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
Mad River Slough ⁴	31-Mar-03	15.70	15.15	0.55
	31-Mar-03	15.70	15.84	-0.14
	21-May-03	15.70	17.23	-1.53
	21-May-03	15.70	16.75	-1.05
	27-Aug-03	15.70	16.20	-0.50
	27-Aug-03	15.70	12.60	3.10
	03-Nov-03	15.70	9.63	6.07
	03-Nov-03	15.70	10.53	5.17
	23-Mar-04	15.70	15.00	0.70
	23-Mar-04	15.70	12.16	3.54
	17-May-04	15.70	14.48	1.22
	17-May-04	15.70	12.50	3.20
	30-Aug-04	15.70	15.17	0.53
	30-Aug-04	15.70	12.20	3.50
	14-Dec-04	15.70	12.05	3.65
	14-Dec-04	15.70	9.90	5.80
	09-Mar-05	15.70	9.31	6.39
	09-Mar-05	15.70	8.43	7.27
	07-Sep-05	15.70	16.35	-0.65
	07-Sep-05	15.70	12.95	2.75

Notes:

- 1. Data prior to March 18, 2003 were obtained from Results of the Remedial Investigation for Sierra Pacific Industries Arcata Division Sawmill, Arcata, California, dated January 30, 2003, prepared by Environet Consulting.
- Monitoring wells surveyed by Omsberg & Company of Eureka, California. Wells were resurveyed on February 13, 2004; elevations shown are relative to the Northern American Vertical Datum of 1988.
- 3. Water level was above the top of casing measuring point.
- 4. Mad River Slough measuring point on railroad bridge. Water level measurements are obtained before and after the water level measurements in the monitoring wells.

Abbreviations:

ft NAVD 88 = feet above North American Vertical Datum of 1988

ft bMP = feet below measuring point

-- = not measured or sample not collected for analysis

NC = not calcuated

			Laboratory Measurement ²			
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
Shallow Wells						
	20-Mar-03	14	2,600	6.5		
	22-May-03	14	2,700	6.7		1,400
	27-Aug-03	18	2,500	6.7	1,800	1,400
MW-1	04-Nov-03	17	2,400	6.6	1,800	1,300
14144 1	17-May-04	15	2,600	6.3	1,900	1,400
	15-Dec-04	15	3,800	6.6	2,500	
	11-Mar-05	14	2,100	6.5	1,400	
	07-Sep-05	18	2,400	6.5	1,700	
_	20-Mar-03	13	2,100	6.2		
	22-May-03	14	1,700	6.4	1,100	860
	27-Aug-03	18	1,500	6.6	1,100	760
MW-2	03-Nov-03	16	1,590	6.3	1,100	760
	24-Mar-04	13	1,390	6.3	970	740
	17-May-04	15	1,400	6.2	980	730
	30-Aug-04	19	1,200	3	850	680
	15-Dec-04	14	1,100	6.4	740	
	11-Mar-05	13	1,200	6.2	790	
	07-Sep-05	18	1,300	6.4	900	
	20-Mar-03	13	1,100	6.4		
	22-May-03	15	1,000	6.4	630	510
	27-Aug-03	20	1,000	6.5	720	470
MW-3	03-Nov-03	16	980	6.6		410
IVI VV -3	17-May-04	16	1,100	6.2	750	510
	15-Dec-04	13	700	6.4	460	
	10-Mar-05	13	600	6.4	390	
	07-Sep-05	19	810	6.4	810	
	20-Mar-03	14	830	6.5		
	22-May-03	16	730	6.4	440	420
MW-4	27-Aug-03	21	730	6.5	500	340
IVI VV -4	03-Nov-03	18	760	6.6	520	310
	17-May-04	18	880	6.2	590	360
	15-Dec-04	14	640	6.4	410	
	20-Mar-03	14	670	6.6		
	22-May-03	14	690	6.6	410	360
	27-Aug-03	18	670	6.7	450	360
NASS / 7	03-Nov-03	17	660	6.6	450	380
MW-5	17-May-04	15	660	6.3	440	360
	15-Dec-04	15	470	6.4	310	
	10-Mar-05	14	570	6.3	390	
	07-Sep-05	18	660	6.5	450	

			Laboratory Measurement ²			
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
	20-Mar-03	11	950	6.6		
	22-May-03	14	1,000	6.3	620	430
	27-Aug-03	17	890	6.4	620	410
	04-Nov-03	13	920	6.6	630	430
MW-6	24-Mar-04	11	920	6.5	640	410
IVI VV -0	17-May-04	14	930	6.3	640	420
	30-Aug-04	17	880	³	610	430
	15-Dec-04	11	700	6.4	460	
	11-Mar-05	11	900	6.7	620	
	07-Sep-05	16	900	6.4	610	
	20-Mar-03	11	910	6.6		
MW-7	22-May-03	11	960	6.5		460
	27-Aug-03	14	840	6.6	580	400
	03-Nov-03	12	870	6.6	600	460
	24-Mar-04	11	960	6.4		440
	18-May-04	12	730	6.6	490	370
	30-Aug-04	14	840	3	580	410
	15-Dec-04	11	700	6.4	460	
	09-Mar-05	11	850	6.3	580	
	07-Sep-05	13	920	6.4	630	
	18-Mar-03	14	730	6.4		
	21-May-03	16	740	6.3	460	390
	27-Aug-03	21	730	6.2	500	370
	04-Nov-03	17	740	6.4	510	380
	24-Mar-04	14	780	6.2	530	400
MW-8	17-May-04	18	800	6.1	530	390
	30-Aug-04	21	760	- 3	520	390
	14-Dec-04	14	650	6.3	420	
	11-Mar-05	13	800	6.5	550	
	07-Sep-05	20	810	6.4	540	
	18-Mar-03	14	820	6.4		
	23-May-03	16	870	6.6	550	400
	27-Aug-03	20	830	6.2	570	350
	04-Nov-03	17	820	6.6	560	350
	24-Mar-04	14	880	6.4	600	380
MW-9	17-May-04	16	930	6.1	620	380
	30-Aug-04	20	860	- 3	550	440
	14-Dec-04	13	800	6.4	520	
	11-Mar-05	13	900	6.7	620	
	07-Sep-05	19	920	6.4	620	

			Laboratory Measurement ²			
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
	18-Mar-03	14	920	6.4		
	23-May-03	17	970	6.7		460
MW-10	27-Aug-03	22	860	6.3	600	400
IVI VV - 1 U	04-Nov-03	18	880	6.6	600	430
	17-May-04	19	920	6.2	610	420
	14-Dec-04	14	700	6.4	450	
	20-Mar-03	14	870	6.4		
	21-May-03	17	890	6.4	560	460
MW-11	27-Aug-03	23	870	6.2	600	440
IVI VV - 1 1	04-Nov-03	19	880	6.6	600	450
	17-May-04	18	880	6.2	590	430
	14-Dec-04	15	740	6.4	480	
MW-12	18-Mar-03	15	830	6.3		
	21-May-03	18	840	6.1		460
	27-Aug-03	23	870	6.2	600	480
	04-Nov-03	18	920	6.5	630	480
	17-May-04	20	900	6.0	600	490
	14-Dec-04	14	710	6.4	460	
	20-Mar-03	14	3,200	6.7		
	22-May-03	15	3,400	6.6		2,100
	27-Aug-03	20	3,600	6.6	2,300	1,900
MW-14	04-Nov-03	16	3,300	6.6	2,500	2,100
IVI VV - 1 4	17-May-04	17	2,800	6.4	2,000	1,800
	15-Dec-04	14	2,500	6.6	1,300	
	09-Mar-05	13	2,400	6.6	1,600	
	07-Sep-05	20	2,700	6.4	2,000	
	20-Mar-03	13	980	6.4		
	22-May-03	15	1,000	6.5		450
MXX 17	27-Aug-03	19	860	7.0	600	420
MW-17	04-Nov-03	15	920	6.6	640	450
	17-May-04	15	940	6.5	620	440
	14-Dec-04	12	830	6.4	540	
	18-Mar-03	14	1,000	6.5		
	23-May-03	17	980	6.6	610	640
MW 10	27-Aug-03	23	1,100	6.3	780	520
MW-18	04-Nov-03	17	1,100	6.6	760	490
	17-May-04	19	1,000	6.3	670	430
	14-Dec-04	13	860	6.5	560	

			Laboratory Measurement ²			
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
vven rvo.	24-Mar-04	14	420	6.9	280	250
-	18-May-04	18	470	6.7	310	280
-	30-Aug-04	21	500	3	330	300
MW-20	15-Dec-04	12	370	6.5	240	
	09-Mar-05	13	320	6.6	220	
	07-Sep-05	19	510	6.6	340	
	24-Mar-04	12	990	6.3	680	460
-	18-May-04	14	1,000	6.3	660	420
MW-21	30-Aug-04	16	960	3	660	450
	15-Dec-04	11	760	6.2	500	
	10-Mar-05	11	930	6.3	640	
-	07-Sep-05	15	1,000	6.4	690	
Deep Wells	07 Bep 03	10	1,000	0.1	0,0	
zep wes	20-Mar-03	14	1,200	6.2		
	22-May-03	14	1,100	6.2		
	27-Aug-03	15	1,100	6.1	750	690
MW-13D	04-Nov-03	15	1,000	6.1		580
	17-May-04	14	1,000	5.8	700	610
	15-Dec-04	14	620	6.1	400	
	11-Mar-05	14	900	6.2	620	
	20-Mar-03	13	1,300	6.8		
	22-May-03	13	1,300	6.8		800
	27-Aug-03	14	1,300	6.3	900	810
MW-15D	04-Nov-03	14	1,300	6.8		790
	17-May-04	13	1,400	6.3	930	800
	15-Dec-04	14	1,000	6.7	650	
	11-Mar-05	13	1,300	6.8	880	
	18-Mar-03	14	5,200	7.7		
	23-May-03	14	5,200	7.6		3,200
	27-Aug-03	16	5,000	7.4	3,400	3,000
MW-16D	04-Nov-03	16	4,800	7.6	3,700	2,800
	17-May-04	15	4,600	7.3	3,500	2,800
	14-Dec-04	16	3,700	7.7	2,400	
	11-Mar-05	15	4,400	7.8	3,400	

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

			Laboratory Measurement ²			
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
	20-Mar-03	16	810	6.7		
	22-May-03	16	860	6.6	520	480
MW-19D	27-Aug-03	17	810	6.5	560	410
WI W-19D	03-Nov-03	17	760	6.7	520	370
	17-May-04	16	840	6.5	560	430
	15-Dec-04	17	490	6.5	320	

Notes:

- 1. Water quality parameters measured in the field using an Ultrameter instrument or a YSI Model 556 instrument; reported measurements recorded towards end of purge after parameters stabilized or from the last purge volume if a well was repeatedly purged dry.
- 2. Water quality parameter analyzed in the laboratory; EPA Method 160.1. Laboratory analysis of TDS was discontinued during the fourth quarter 2004.
- 3. pH meter inoperable.

Abbreviations:

°C = degrees Celsius

μmhos/cm = micromhos per centimeter at 25 °C

mg/L = milligrams per liter

-- = not measured or sample not collected for analysis

TDS = total dissolved solids

EPA = U.S. Environmental Protection Agency

Sierra Pacific Industries **Arcata Division Sawmill** Arcata, California

Monitoring	Date	Penta-	2,4,6- trichloro-	2,3,5,6- tetrachloro-	2,3,4,6- tetrachloro-	2,3,4,5- tetrachloro-	Comments
Well Number	Sampled 1	chlorophenol	phenol	phenol	phenol	phenol	
Shallow Wells	•	-	-	•	-	-	
	14-Mar-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	1.8	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Oct-02 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	02-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
M337 1	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-1	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	04-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	14-Mar-02	7.4	< 1.0	< 1.0	< 1.0	< 1.0	•
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	2.5	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-2	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
IVI W -2	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	14-Mar-02	1.2	< 1.0	< 1.0	< 1.0	< 1.0	•
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	5.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW 2	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-3	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Sierra Pacific Industries **Arcata Division Sawmill** Arcata, California

			2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled ¹	chlorophenol	phenol	phenol	phenol	phenol	
	14-Mar-02	8.6	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	5.7	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-4	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
IVI VV -4	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Mar-02	4.3	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	9.1	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	25	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-5	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	duplicate sample
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Mar-02	4.5	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	6.3	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-6	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Sierra Pacific Industries **Arcata Division Sawmill**

Arcata, California

			2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled ¹	chlorophenol	phenol	phenol	phenol	phenol	
	14-Mar-02	31,000	< 1.0	41	650	24	
	18-Jul-02	33,000	< 1.0	< 1.0	990	56	
	16-Sep-02	44,000	< 1.0	< 1.0	920	64	
	03-Dec-02	46,000	< 1.3	76	1,300	52	
	14-Jan-03 ³	51,000	2.4	< 1.0	970	52	
	20-Mar-03	19,000	< 1.0	36	460	22	
	22-May-03	19,000	< 1.0	< 1.0	470	< 100	
	22-May-03	16,000	< 1.0	< 1.0	400	< 100	duplicate sample
	22-May-03	14,000	< 1.0	< 1.0	400	< 100	filtered
	27-Aug-03	31,000	< 1.5	41	710	39	
	27-Aug-03	18,000	< 1.0	28	450	26	duplicate sample
	3-Nov-03	28,000	< 5.0	36	580	35	bailer sample / unfiltered
MW-7	3-Nov-03	31,000	< 5.0	47	740	43	bailer sample / filtered
	3-Nov-03	20,000	< 5.0	28	450	24	low flow sample / unfiltered
	3-Nov-03	14,000	< 5.0	19	300	17	low flow sample / filtered
	24-Mar-04	19,000	< 1.5	19	450	19	
	24-Mar-04	7,400	< 1.0	8.7	150	9.9	duplicate sample
	18-May-04	25,000	< 2.5	86	480	41	
	30-Aug-04	13,000	< 1.0	54	200	17	
	15-Dec-04	22,000	1.7	57	310	42	
	09-Mar-05	24,000	< 1.0	39	420	32	low flow sample
	07-Sep-05	16,000	< 1.0	19	280	16	
	07-Sep-05	13,000	< 1.0	17	230	14	duplicate sample
	14-Mar-02	\	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	31	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	4.8	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	21-May-03	1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-8	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
1.1,,	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Sierra Pacific Industries **Arcata Division Sawmill** Arcata, California

3.6 14			2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled ¹	chlorophenol	phenol	phenol	phenol	phenol	
	14-Mar-02	94	3.1	21	130	5.5	
	18-Jul-02	2.1	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	3.1	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-9	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
1V1 VV - 9	04-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-10	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	21-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-11	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	21-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-12	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Sierra Pacific Industries **Arcata Division Sawmill**

Arcata, California

			2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled ¹	chlorophenol	phenol	phenol	phenol	phenol	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-14	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	09-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-17	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-18	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	24-Mar-04	35	< 1.0	< 1.0	5.1	3.8	
	18-May-04	3.6	< 1.0	< 1.0	1.1	< 1.0	
MW-20	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
IVI W -20	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	09-Mar-05	71	3.4	27	< 1.0	4.6	low flow sample
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	24-Mar-04	800	< 1.0	6.3	17	12	
	18-May-04	1,900	< 1.0	11	36	11	
	18-May-04	670	< 1.0	3.5	16	4.4	duplicate sample
	30-Aug-04	2,700	< 1.0	6.4	66	5.4	
	30-Aug-04	2,800	< 1.0	6.9	68	5.5	duplicate sample
MW-21	15-Dec-04	3,200	< 1.0	34	50	5.5	
	15-Dec-04	8,100	2.1	64	120	8.3	duplicate sample
	10-Mar-05	4,700	< 1.0	8.1	31	< 1.5	low flow sample
	10-Mar-05	4,600	2.7	26	86	6.5	low flow sample / duplicate
	07-Sep-05	4,900	< 1.0	11	170	4.8	

TABLE 4

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill

Arcata, California Concentrations in micrograms per liter ($\mu g/L$)

			2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled 1	chlorophenol	phenol	phenol	phenol	phenol	
Deep Wells							
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-13D	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
WIW-13D	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-15D	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
W -13D	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	1.3	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-16D	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
W - 10D	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-19D	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Notes:

- Data prior to March 18, 2003 were obtained from Results of the Remedial Investigation for Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California, dated January 30, 2003, prepared by EnviroNet Consulting.
- 2. Confirmation sample collected due to detection of pentachlorophenol on September 16, 2002.
- 3. Sample also contained 280 mg/L of 2,3,4-trichlorophenol and 190 mg/L of 2,4,5-trichlorophenol. Abbreviation:
- < = target analyte was not detected at or above the laboratory reporting limit shown.
- -- = not measured or sample not collected for analysis.

TABLE 5

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS AND PHENOL (8270 SIM METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations in micrograms per liter (µg/L)

Monitoring	Date		3,4,5-	2,3,5,6-	2,3,4,5-	2,3,4,6-	3,4-	2,3,6-	3,5-	2,3,4-	2,4,5-	2,4,6-	2,3,5-	2,5-	3-СР	2,6-	2,3-	2,4-	2-	
Well	Sampled	PCP	TCP	TeCP	TeCP	TeCP	DCP	TCP	DCP	TCP	TCP	TCP	TCP	DCP	+ 4-CP ²	DCP	DCP	DCP	CP	Phenol
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	3	<1	<1	<1	<1	<1
MW-1	11-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
IVI VV - I	07-Sep-05 ³	<1																		
	07-Sep-05 ^{3, 4}	<1						-												
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-2	11-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
	07-Sep-05 ³	<1																		
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-3	10-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
	07-Sep-05 ³	<1																		
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-5	10-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
	07-Sep-05 ³	<1																		
MW-7	24-Mar-04	15,000	92	320	17	23	390	<1	18	1	56	<1	2	<1	460	<1	<1	4	<1	2
1,1,,,	09-Mar-05	12,000	290	490	37	17	610	1	28	2	75	1	2	<1	890	<1	1	5	<1	3
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-14	09-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
	07-Sep-05 ³	<1																		
MW-20	24-Mar-04	9	2	2	2	<1	8	<1	<1	<1	1	<1	<1	<1	2	<1	<1	<1	<1	<1
	09-Mar-05	100	4	2	4	12	15	<1	9	<1	<1	4	5	<1	9	<1	<1	1	<1	<1
	24-Mar-04	520	52 ve	16	16	7	130	<1	9	<1	3	<1	<1	<1	200	<1	<1	<1	<1	<1
MW-21	24-Mar-04 ⁴	570	50 ve	17	14	6	120	<1	9	<1	3	<1	<1	<1	200	<1	<1	<1	<1	<1
	10-Mar-05	5,500	250	109	4	27	310	<1	19	<1	5	<1	<1	<1	270	<1	<1	2	<1	<1
	10-Mar-05 ⁴	5,500	250	110	4	27	310	<1	20	<1	5	<1	<1	<1	270	<1	<1	2	<1	<1

Notes:

- 1. EPA Method 8270 SIM analysis of groundwater samples.
- 2. Results shown are for both 3-CP and 4-CP (the sum of) since these compounds could not be separated for individual analysis in the laboratory.
- 3. Confirmation sample collected due to detection of pentachlorophenol on March 10 or 11, 2005.
- 4. Duplicate sample.

Abbreviations:

PCP = pentachlorophenol

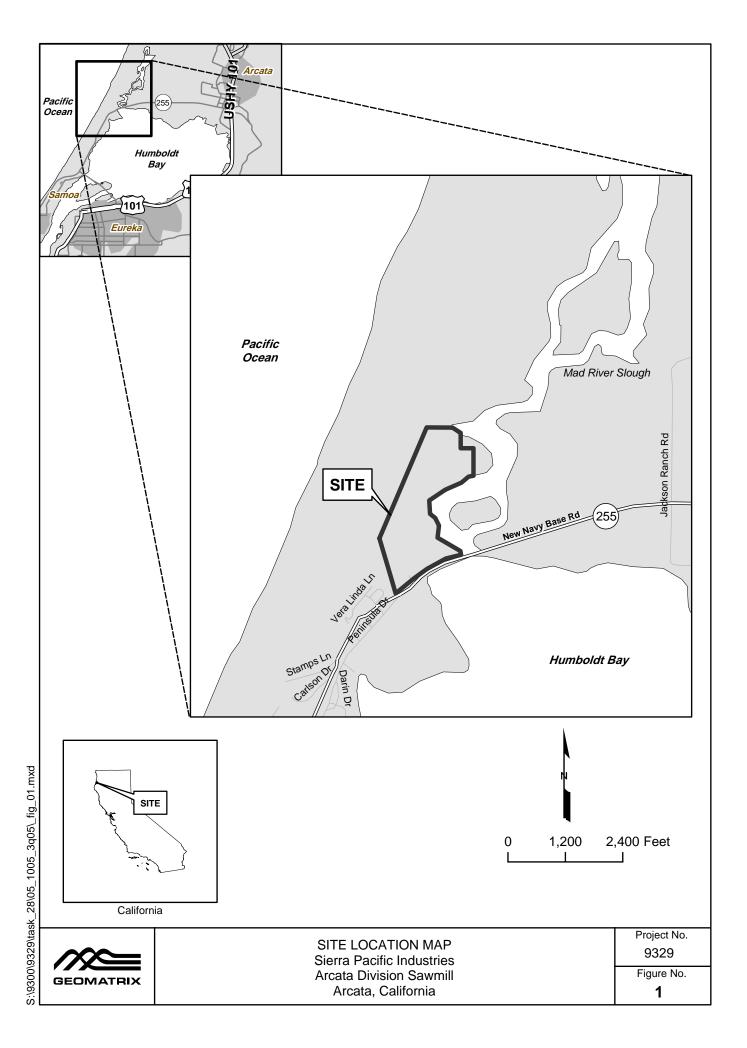
TeCP = tetrachlorophenol

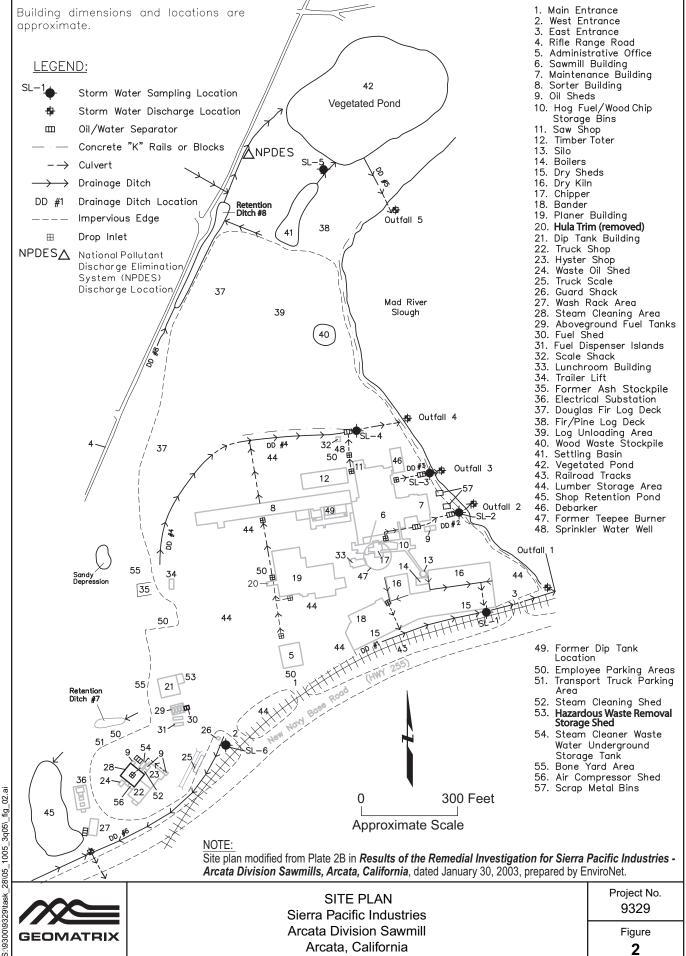
TCP = trichlorophenol

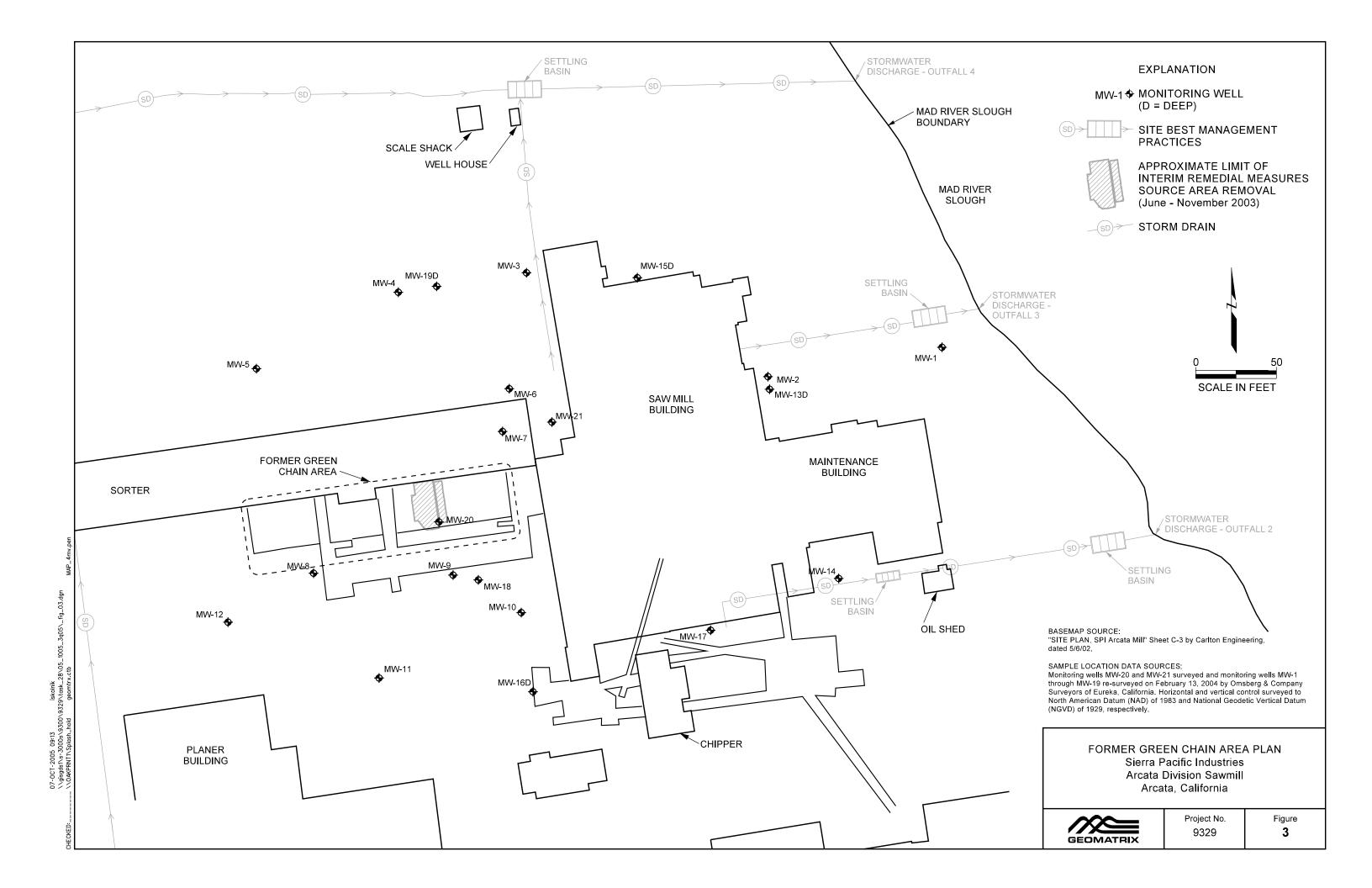
DCP = dichlorophenol

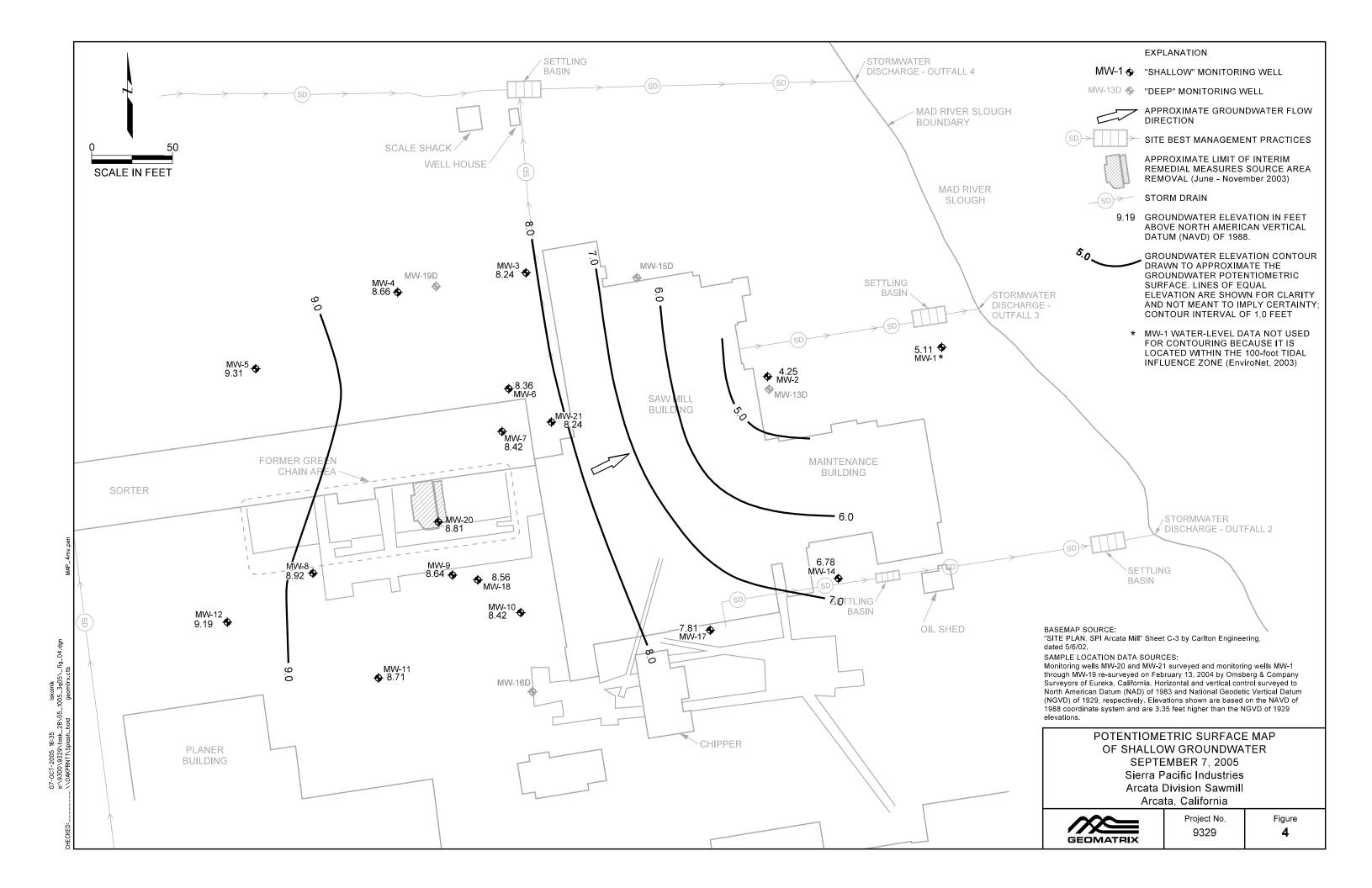
CP = chlorophenol

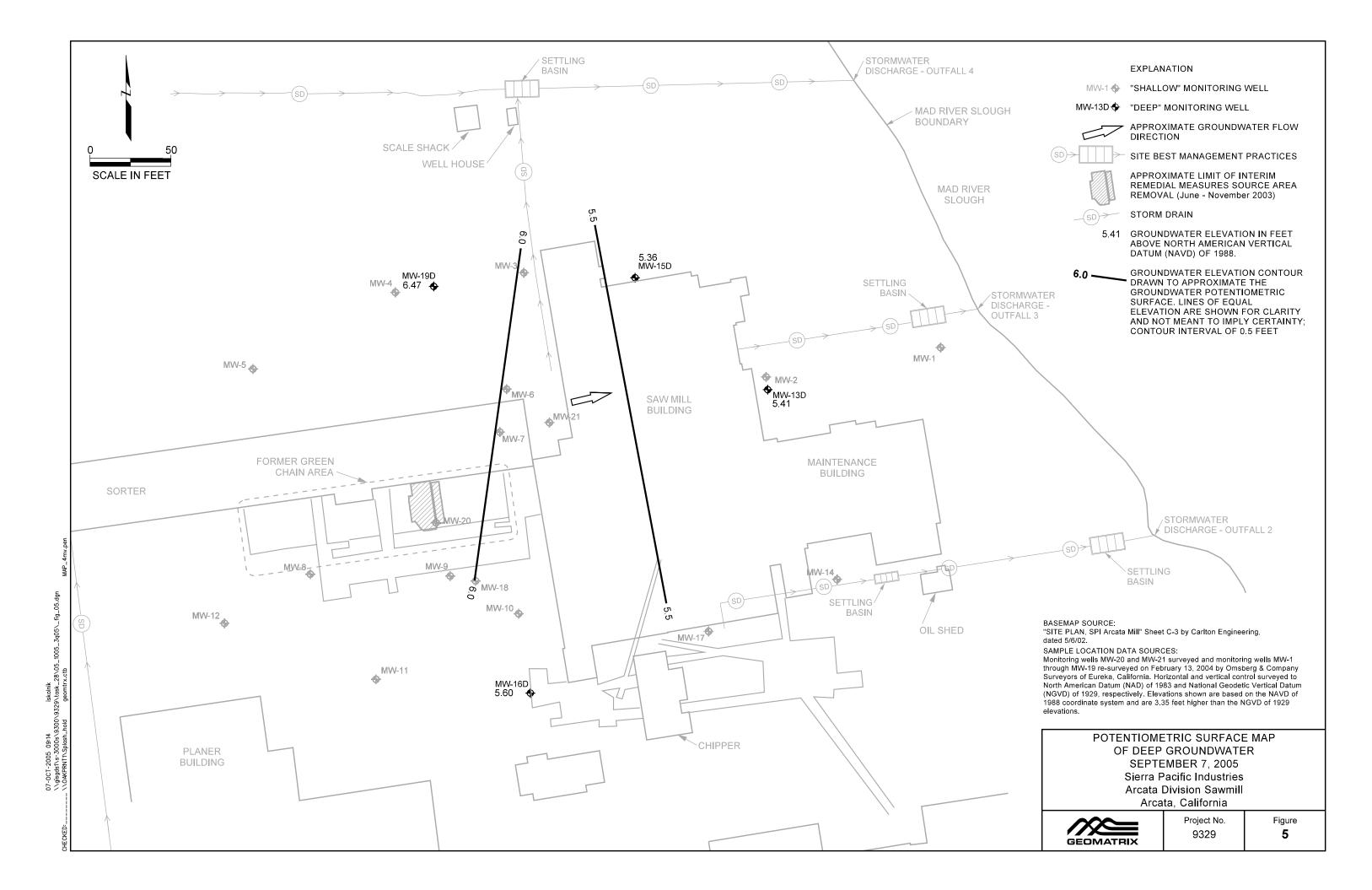
EPA = U.S. Environmental Protection Agency

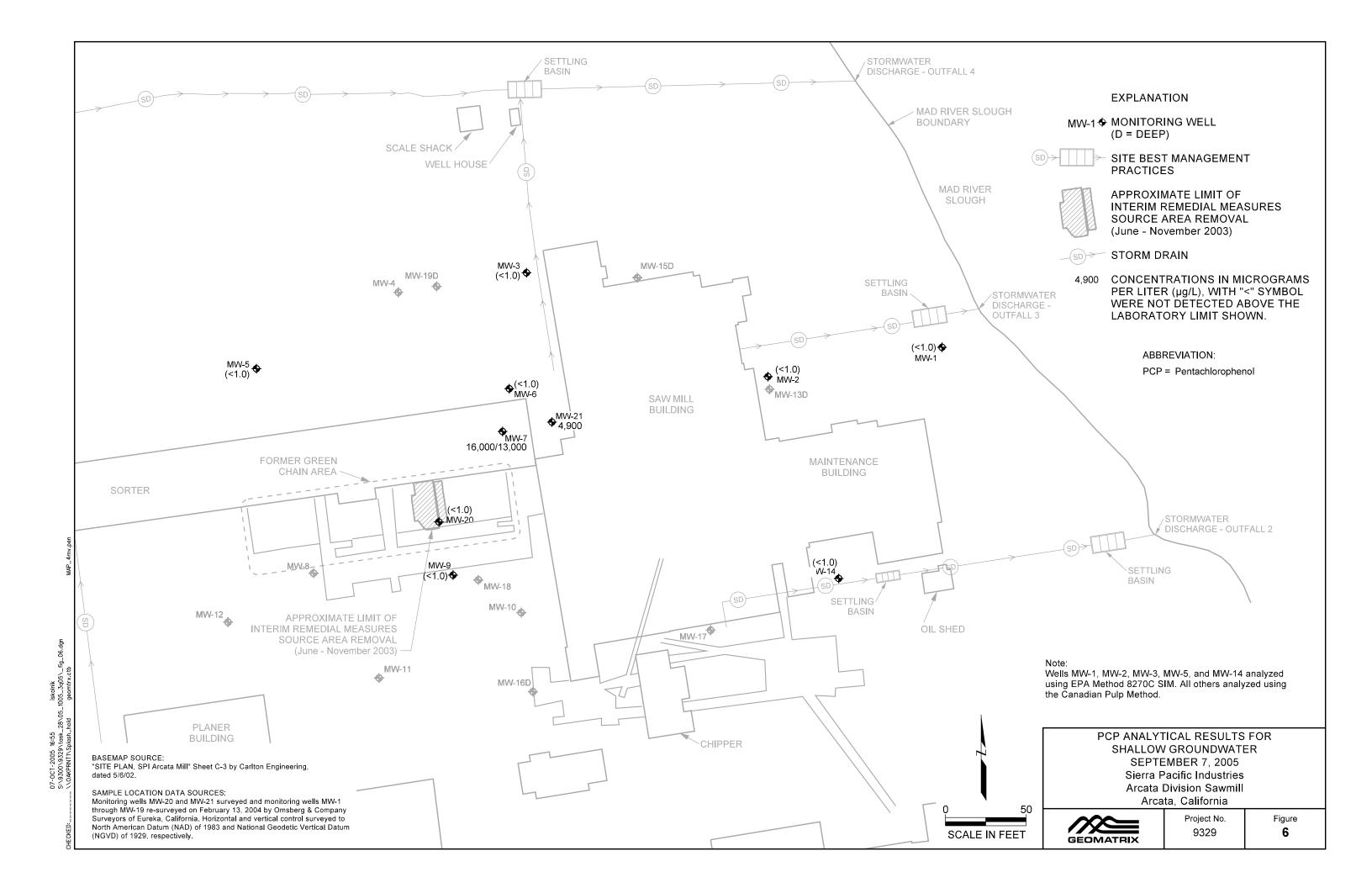

SIM = select ion monitoring


- -- = not measured or sample not collected for analysis
- < = target analyte was not detected at or above the laboratory reporting limit shown.


ve = value exceeded the calibration range established for the instrument and is therefore considered an estimate; result upon dilution and re-analysis was not detected at or above a laboratory reporting limit of 50.




FIGURES



APPENDIX A

Field Documentation

Groundwater Monitoring and Sampling Records Pilot Study Groundwater Sampling Records

DAILY FIELD RECORD

***	i i						Pa	ge 1 of _		
Project and Ta		00.0 28	3/23		7/05					
Project Name:		-		Field Activity: G		toring				
Location:	Arcata			Weather: ang/(
PERSONNEL:	Name			Company	Time In	Time Out				
Matt Hillyard			Geomatrix		8:00	17:10				
Mike Keim			Geomatrix			8:00	16:00			
Carrie			1165				8:00	10:45		
DEDSONALO	AFETY OUR OWNER									
	AFETY CHECKLIST	 T	Т.				,			
	ped Boots	X	Hard Hat				k Coveralls			
DRUM I.D.	Gloves	X	Safety Go			1/2-F	ace Respira			
GW1				AND QUANTITY	LOCATION					
GWZ	luge weife	~ 70	0~ 16	P-impacted h	els !	Uncl	er sorte	rear-7		
6000	Purge muter	10	n- PCPin	facted wells	n	par	NW -	8		
TIME			DESCRIPTION	ON OF WORK PER	FORME	D				
8:00	Arrive a	7			5.	,		,		
	nike + Com						. '	· · · · · · · · · · · · · · · · · · ·		
8:05	check for			ms non-e avai	lable					
8.12	begin open									
9:25	F:1154 OF									
9:30	Begin	<u> </u>	aler le	,						
[(102	Finish	263	, 140m	· Mike a	and	Site	-			
11:40	Lunch	•	.)							
12:15	Begin a	11/1	1	14 · · · = -') 11	<i>C</i> :	00			
10,00	Calibrate	4/1/	raneter	FC 207	10	> /	500+300	epn .		
12:32	Pegin purge	M1 :=	. 1	00 101	0 +	447	45			
1650	Finish @ MW-7, cleans									
17110	ceare Site		/ / 61	Enap						
	2010 2716	•			4					
	*									
·	1.1				-		· · · · · · · · · · · · · · · · · · ·			

WATER LEVEL MONITORING RECORD

Project Name: SPI A	Arcata		Project and Task Nu	umber:	9329.000.0 28	
Date: 9/7/05	Measured by:MAH_		Instrument	Used:	ES#1	-
Note: For you conve	nience, the following abb	reviat	ions may be used.	• • •		
P = Pumping ST = Steel Tape	I = Inaccessible ES = Electric Sounder		= Dedicated Pump = Measuring Point	WL =	Water Level	

Well No.	Time	MP Elevation (feet)	Water Level Below MP (feet)	Water Level Elevation (feet)	Previous Water Level Below MP	Remarks
RR	930	15.70	16.35	-0.65		
, МW-12	942	10.76	1.57	9.19		
MW-8	944	10.33	1.41	8.92	TO = 8.15	
<u>√</u> MW-11	748	10.28	1.57	8.71		
MW-9	951	9.91	1:27	8-64.	70=7.97	nerds new nell box.
_ MW-18	953	9.92	1.36	8.56		
_ MW-10	956	9.85	1.43	8,42		
MW-16D	1000	9.83	4.23	5-60		
MW-17	1006	9.16	135	7.81		
MW-14	1012	9.15	2.37	6.78	,	
MW-1	1018	9.69	4.98	5.11		u Eres 1204
MW-2	1020	9.61	5.36	4.25		
, MW-13D	1021	9.96	4.55	5.41		needs 1 bolt
, MW-15D	1029	11.19	5.83	5.36		metals
MW-3	1032	11.22	2.98	8.24		
MW-19D	1033	11.06	4.59	6,47	242	
MW-4	1037	10.74	2.08	8.66		
MW-5	1041	10.74	1.43	_	TD=7.97	
MW-6	1045	9.83	1.47	8.36	ro= 7.98	
MW-20	1052	11.87	306		TD=6.72	
MW-21	1050	12.89	4.65	8.24	10=10.77	
MW-7	1095	9.74	1.32	A 11-		threaded hole in well box ad best cloning
RR	1102	15.70	12.95	2-75		
			A -	·		
1			200			
				7		
v						,
	,u SB				7	
			e 3			

	Well ID:MW-1 Initial Depth to Water:											
Sample	ID: <u>MW-01-</u>	200509 E	Ouplicate	D: 60-	01-2050	Depth to Wat	er after Sampling:					
	Depth: Mid						o Well:					
Project a	and Task N	o.: <u>9329.00</u>	00.0 23			Well Diamete						
Project I	Name: SP	I ARCATA				1 Casing/Bore	ehole Volume:					
Date: <u>0</u>	9/07/05					(Circle one)						
Sampled	By: <u>MAH</u>	/MRK				3 Casing/Borehole Volumes:(Circle one)						
Method	of Purging:	Low Flor	w				Parah ala					
Method	of Sampling	g: <u>Low Flo</u>	ow			Total Casing/Borehole Volumes Removed:						
Time	(gal.) (°C) (units)			pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)						
1243	mod screen	0.2	0	18-1	7.60	3012	ORP=-132mV TDS=2235pm 1+ye	llow				
1247			0,4	17.8	7,00	7434	ORP =- 110mV TOS = 1758 pm "					
1246			0.6	17,7	6.82	2353	OKP =- 13 Lav TDS = 1695 ppm	tr'				
1248			1.0	17.7	6. 54	2 387	04413	t >				
1250			1-4	17.7	6.53	2384		11				
						1 1	Sample					
				:								
				4								
	pH C	ALIBRATION	ON (choo	se two)		Model or U	Jnit No.: Ultrameter 6P					
Buffer So	lution	pH 4.0	pH 7.	0 pH 10	0.0							
Temperat	ture C											
Instrume	nt Reading											
SPECIF	IC ELECTR	RICAL CON	IDUCTAN	CE – CAL	IBRATION	Model or U	Init No.: Ultrameter 6P					
KCL Solu	tion (μS/cm	=μmhos/cm) 447	2070								
Temperat	ture C											
Instrumer	nt Reading											
Notes:			•									
			,									
				·								
					•							
sf3\ppingree\$	\FORMATS\WF	I I SAMPI IN	G Penord don									

Well ID:	MW-2					_					
1	-	2-200500		ID:		,					
	Depth: 🗥						ter after Sampling:				
	and Task N						o Well: '				
	Name: SI										
i	9/07/05					1 Casing/Borehole Volume:(Circle one)					
	d By: MA					3 Casing/Bor	ehole Volumes:				
1	of Purging		-			(Circle one)					
1	of Samplin					Total Casing/Borehole Volumes Removed:					
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)				
1312	mid screen	0. 21/min	0	18.2	690	1317	ORP - 69-V TOS= 910 Clas				
1714			0.4	18-1	649	1300	ORP= - 69-N TDS= 910pm Clear ORP=-79-N TDS=896pm				
1716			0.8	18.1	6.37	1304	OLF = -84mV +05 = 901ppm 11				
1319			1.4	18,1	6.35	1301	OKP = - 74mV TB - 899pm				
							Sample				
	,	÷									
	pH C	ALIBRATI	ON (choo	se two)		Model or U	Jnit No.: Ultrameter 6P				
Buffer Sc	lution	pH 4.0	0 pH 7.	0 pH 10	0.0						
Tempera	ture C										
Instrume	nt Reading										
SPECIF	IC ELECTI	RICAL CO	NDUCTAN	CE - CAL	IBRATION	Model or U	Init No.: Ultrameter 6P				
KCL Solu	tion (μS/cm	=μmhos/cm	1)		75						
Temperat	ure C										
Instrumer	nt Reading										
Notes:					-						
sf3\nningree®	FORMATCHI	ELL CAMPINI					in the state of t				

Well ID:	MW-3					Initial Depth to Water:					
	ID: <u>MW-03</u>										
Sample I	Depth:	1id som	een				o Well: _'				
Project a	and Task N	lo.: <u>9329.0</u>	00.0 23				r: <u>2"</u>				
Project N	Name: <u>SF</u> 9/07/05	PI ARCATA	A			1 Casing/Bore (Circle one)	ehole Volume:				
	By: MAH	/MRK				3 Casing/Borehole Volumes:					
	of Purging					(Circle one)					
Method o	of Samplin	g: <u>Low Fl</u>	ow			Total Casing/Borehole Volumes Removed:					
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)				
1348		0.2	0	15.7	6.65	860	ORP=07mV TDS=582ppm clean				
1350			0.4	18.6	6.71	850	ORP = -53mV TDS = 576 Clean				
1752			0.8	18.6	641	851	ORP :- 79 TOS : 557				
1357			1,4	18.6	6.37	814	OKP 87mV TOS = 551				
1356			1.6	18.6	6.37	812	OCP= -89 TOS -550 11				
·							sample				
							11000				
							19-4-				
				*							
	pH C	ALIBRAT	ION (choo	se two)		Model or L	Jnit No.: Ultrameter 6P				
Buffer So	lution	pH 4.	0 pH 7.	.0 pH 10	0.0						
Temperat	ture C										
Instrume	nt Reading	1									
SPECIF	IC ELECT	RICAL CO	NDUCTAN	ICE – CAL	IBRATION	Model or U	Init No.: Ultrameter 6P				
KCL Solu	tion (µS/cm	n=μmhos/cr	m)		1	'					
Temperat	ure C										
Instrumer	nt Reading				-						
Notes:		•	-								
			. •.								
-											
\\sf3\nningree\$	EODM ATOW	ELL CAMPUD	IC P. 11								

Well ID:	MW-5					_ Initial Depth to Water: 1, 4 3						
Sample I	D: <u>MW-05</u>	5-200509 [Duplicate				er after Sampling:					
		lid scren					o Well: _'					
ı		No.: <u>9329.0</u>				Well Diameter						
		PI ARCATA				1 Casing/Borehole Volume:						
Date: _09	9/07/05					(Circle one)						
	By: MAH	H/MRK				3 Casing/Borehole Volumes:(Circle one)						
		: Low Flo		. "	<u> </u>		Pavahala					
		ng: <u>Low Fl</u>				Total Casing/Borehole Volumes Removed:						
Time	Depth (gpm) (gal.) (°C		Temp.	pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)						
1411	screen	0.2	0	18,4	6.93	675	ORP-ONV TOSI454ppm Clear					
1412		Ø1	0.2	18.2	6.63	671	OFF-ONV TOS-451 PPM 11					
1415			0.8	18.2	6.54	664	ORP=ONV TDS=446ppm					
1417			1,2	18.2	6.53	664	ORP=0_V TDS=447 ",					
						:						
				_								
,		CALIBRATI				Model or U	Jnit No.: Ultrameter 6P					
Buffer So		pH 4.0	0 pH 7.	0 pH 10	1.0		•					
Temperat												
	nt Reading											
		RICAL CO		CE - CAL	IBRATION	Model or U	Init No.: Ultrameter 6P					
		n=μmhos/cm	n) .									
Temperati												
Instrumen	t Reading	<u> </u>										
Notes:												
					200							
							·					
\a62\min a 6\	DODLE L DOUGL											

Well ID:	MW-6					Initial Depth to Water: 1.47						
1		-200509 [
							o Well:7.98					
		No.: <u>9329.0</u>										
1		PI ARCATA				Well Diameter: 2" 1 Casing/Borehole Volume: 5 x 0.163 gal/ft = 1						
1	9/07/05			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(Circle one)						
Sample	d By: MAH		,			3 Casing/Borehole Volumes: 3.3						
		: DISPOS	ABLE TE	FLON BAI	LER	(Circle one)						
I		g: DISPOS				Total Casing/Borehole Volumes Removed:						
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	(color, turbidit	Remarks urbidity, and sediment)				
1539			0	16.1	6.59	970	TOS = 630 am	Clear				
1540			l	15-8	6.47	975	TO5=65500m	11				
1541			2	15.7	6.70	912	TOS= 624000	Slightly Cloudy 14 yollo				
1542			3	15.8	6.42	890	TD5=608000	11 11 11				
1544			3.5	15.7	6.41	876	TOS=613000	11 11 1/				
			· .				sample	Clear 11 Slightly (londy thydla 11 11 11				
					·							
					-							
								: .				
D. # - 0		ALIBRATIO				Model or U	Init No.: Ultrameter 6F					
Buffer So		pH 4.0	pH 7.	0 pH 10	0.0							
Temperat			-									
	nt Reading											
		RICAL CON		CE - CAL	IBRATION	Model or U	nit No.: Ultrameter 6P					
-		n=μmhos/cm)				100					
Temperat			-									
Notes:	nt Reading											
140165.							-					
			, in the second									
							,					
						· · · · · · · · · · · · · · · · · · ·						
\\a\\\\a\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	JEON V. TOV						,					
1213 ppingree\$	wormats/wi	ELL SAMPLING	Record.doc									

Well ID:	MW-7					Initial Depth to Water: 132				
Sample	D: <u>MW-07</u>	<u>-200509</u>	Ouplicate I	D: <u>BD~07</u>	2-200509	Depth to Water after Sampling:				
Sample	Depth:					Total Depth to	well: 7.97			
Project a	nd Task N	o.: <u>9329.00</u>	00.0 28			Well Diamete	r: <u>2"</u>			
Project N	lame: <u>SF</u>	PI ARCATA				1 Casing/Bore	ehole Volume:			
Date: _0	9/07/05					(Circle one)				
Sampled	By: MAH	I/MRK				3 Casing/Borehole Volumes: 3 3 (Circle one)				
1	of Purging:		· ·			Total Casing/	Borehole			
Method o	of Samplin	g: <u>DISPOS</u>	SABLE TE	FLON BAI	LER	Volumes Removed:				
Time	Depth (gpm) (gal.) (°C) (units				pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)			
1642			0	13.5	6.91	890	TDS=611ppm clean			
643			. \	13.3	6.58	917	103E631ppm 11			
1645			2	137	6.40	931	TDS=631ppm 11 TDS=640ppm 11 TDS=648ppm 513144 (books TDS=631ppm 11 Sample			
1646				127	6-39	940	TDS=648 ppm Signaly Cloudy			
1647			3,5	132	G-39	917	T09=631 ppm in 11			
				•			Sample			
							#P.			
D. # .		ALIBRATI				Model or U	Init No.: Ultrameter 6P			
Buffer So		pH 4.0) pH 7.	0 pH 10	.0	- '				
Temperat										
	nt Reading									
	IC ELECT			CE - CAL	BRATION	Model or U	nit No.: Ultrameter 6P			
	tion (µS/cm	=μmhos/cm	1)							
Temperat										
	nt Reading									
Notes:										
\\sf3\ppingree\$'	FORMATS\W	ELL SAMPLIN	G Record.doc							

Well ID:	MW-8					_ Initial Depth to Water: [.u (
	ID: <u>MW-08</u> -	-200509 [er after Sampling:					
	Depth:		-			•	o Well: 8.15					
1	and Task N						r: _2"					
i	Name: SP					1 Casing/Borehole Volume:						
Date: _0						(Circle one)						
	By: MAH	I/MRK				3 Casing/Borehole Volumes: 3 (Circle one)						
1	of Purging:		ABLE TER	LON BAIL	ER .							
	of Samplin					Total Casing/Borehole Volumes Removed:						
Time	Depth (gpm) (gal.) (°C) (units)				(units)	Specific Electrical Conductance (μS/cm)	Remarks (color, turbidity, and sediment)					
1515			0	20.5	7.03	820	TOS=55400m It yellow clear					
1517			1	20.7	6.80	817	TOS=554ppm It yellow clear TOS=551ppm 11 11					
1518			2	20,6	6.52	811	TDS=547 ppm 11 11					
1517			7	26,5	6,40	808						
1520			4	20.5	6.35	408	T05=545ppm 11 11 11					
	•					,	sample					
	i i					6.						
				·								
		ALIBRATI				Model or U	Jnit No.: Ultrameter 6P					
Buffer So		pH 4.0	0 pH 7.	0 pH 10	.0							
Temperat												
	nt Reading						<u> </u>					
	IC ELECT			CE - CALI	BRATION	Model or U	Jnit No.: Ultrameter 6P					
	tion (μS/cm	ı=μmhos/cm	1)									
Temperat												
	nt Reading											
Notes:	-											
\\c f2\mminamosf	LEODM ATCHUI	ELI CALIDID										

Well ID:	MW-9					Initial Depth to Water: 1.27						
Sample II	D: <u>MW-09</u> -	200509 D	uplicate l	D:		Depth to Water after Sampling:						
Sample [Depth:					Total Depth to	Well: <u>7,97</u>					
1		o.: <u>9329.00</u>					r: _ 2"					
Project N	lame: SP	I ARCATA				1 Casing/Bore	ehole Volume:					
Date: _09	/07/05					(Circle one)						
Sampled	By: MAH	/MRK				3 Casing/Borehole Volumes:						
1		DISPOS				Total Casing/l	Borobolo					
Method o	of Samplin	g: DISPOS	SABLE TE	FLON BA	LER		noved:					
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)						
1527			0	20.1	6.57	904	TDS=614pp clear It yellow orange farticles					
1529			1	19.5	6.43	978	TD5-632ppm 11					
1530			7	193	6.40	926	TDS=632ppm 11 11 TDS=630ppm 51194444 Clonely TDS=626ppm 11 11 TDS=623ppm 11 11					
15-91			3	19.2	6.38	920	TOS=6261000 11 11					
1533			3.5	19.1	6.38	916	TPS=623,pm 11 4,					
	-						//					
	*											
	рН (CALIBRAT	ION (choo	se two)		Model or I	Unit No.: Ultrameter 6P					
Buffer Sc	olution	pH 4.	.0 pH 7	.0 pH 1	0.0							
Tempera	ture C											
Instrume	nt Reading	9				,						
SPECI	FIC ELECT	RICAL CO	NDUCTA	NCE - CAI	LIBRATION	Model or I	Unit No.: Ultrameter 6P					
KCL Solu	ution (μS/cr	n=μmhos/ci	m)									
Tempera	ture C											
Instrume	nt Reading	9										
Notes:			•									

				·								
\\sf3\ppingree	\$\FORMATS\\	WELL SAMPLI	NG Record.do	oc								

Well ID: MW-14						Initial Depth to Water: 2, 3 7					
Sample I	D: <u>MW-14-</u>	200509 D	uplicate l	D:		Depth to Water after Sampling:					
Sample Depth: mid screen						Total Depth to Well:					
Project and Task No.: <u>9329.000.0</u> 23						Well Diameter: 2"					
Project Name: SPI ARCATA							ehole Volume:	_			
Date: _09	Date: 09/07/05					(Circle one)	•.				
Sampled By: MAH/MRK						3 Casing/Bore (Circle one)	ehole Volumes:	_			
Method of Purging: Low Flow							Banahala				
Method o	Method of Sampling: <u>Low Flow</u>					Total Casing/I Volumes Rem	oved:	_			
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)				
1432	midscreen		0	18.9	6.55	3017	ORI= -San TDS = 2224 pm Yellow Clear				
1435		Ang.	0.6	20-1	6.50	2548	OK1=-69mV T05=1846/pm "				
1437		MYGI	1.0	Zo. 4	6.40	2482		,			
1439		/ <i>A</i> -/A-//	1.4	20.2	6.36	2585	ORP = -90mV TDS=1875ppm " "	,			
1440		V.VY	1-6	19.9	6.39	2711	ORP=93mV T05=1980ppm				
			*	5	5		3ample				
			,								
								-			
						246					
	pH (CALIBRAT	ION (choc	se two)		Model or I	Unit No.: Ultrameter 6P				
Buffer Sc	olution	pH 4.	.0 pH 7	.0 pH 10	0.0						
Tempera	ture C										
Instrume	nt Reading	g									
SPECII	FIC ELECT	RICAL CO	NDUCTA	NCE - CAL	IBRATION	Model or t	Unit No.: Ultrameter 6P				
KCL Solu	ution (μS/cr	m=μmhos/ci	m)				/ ·				
Tempera	ture C										
Instrume	nt Reading	9									
Notes:											
							· · · · · · · · · · · · · · · · · · ·				
,											
			-				· · · · · · · · · · · · · · · · · · ·				

Well ID:	MW-20					Initial Depth t	o Water: 3.06				
Sample I	D: <u>MW-20</u> -	-200509 D	Duplicate I	D:							
Sample I	Depth:				Total Depth to Well: <u></u> ピフヱ						
Project a	nd Task N	lo.: <u>9329.00</u>	00.0 28		Well Diameter: 4"						
Project N	Name: SF	I ARCATA			1 Casing/Bore	ehole Volume: ラーピx0.653 gal/ft = マリュー					
Date: _09	9/07/05				(Circle one)	· · · · · · · · · · · · · · · · · · ·					
Sampled	By: MAH	/MRK				3 Casing/Bore (Circle one)	ehole Volumes: 7-299/				
Method o	of Purging	DISPOS	ABLE TER	LON BAIL	ER	Total Casing/	Parahala				
Method o	of Samplin	g: DISPOS	SABLE TE	FLON BA	Volumes Rem						
Time	Intake Depth	Rate (gpm)	Cum. Vol. (ĝal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)				
1954			0	18.7	7.00	576	705=307 pp clear				
1600		·	Z	190	6.71	513	TD5=3430P= (1				
1603			4	18.9	6.61	505	352 pm 11. 705=515 pm clan w/ said TOS = 341 pm 11 11 Saup 1-e				
1607			G	19.0	6.59	913	7 ps=5/5 ppm clan w/ sand				
1616		*	7.5	Pr. 0	6.59	509	TDS = 341mm 11 11				
							Sample				
42.											
			. <u>U</u>								
	2										
			-				1				
			. A.				u .				
. 4	pH (CALIBRAT	ION (choo	se two)		् Model or I	Unit No.; Ultrameter 6P				
Buffer Sc	olution	pH 4.	0 pH 7	.0 pH 10	0.0	9					
Tempera	ture C		-			1 1.1					
Instrume	nt Reading	3					· /				
SPECIF	IC ELECT	RICAL CO	NDUCTAN	ICE – CAL	IBRATION	Model or U	Unit No.: Ultrameter 6P				
KCL Solu	ition (μS/cr	n=µmhos/cr	n)			-					
Tempera	ture C										
Instrume	nt Reading	3					. в				
Notes: S	ample vol	ume doubl	ed for MS	MSD.							
						# \$1 · · ·					
						: !					
						4.					
\\afl\mmin and	NEODY CLERCITY										

Well ID:	MW-21					Initial Depth to	o Water: ५.6 र			
Sample I	D: <u>MW-21</u>	-200509 D	Duplicate I	D:		Depth to Wate	er after Sampling:			
Sample [Depth:					Total Depth to	Well:10_ペフ			
Project and Task No.: 9329.000.0 28						Well Diameter: 0.75"				
Project Name: SPI ARCATA						1 Casing/Bore	ehole Volume. 132x 0.023 gal/ft = 0.15			
Date: _09	/07/05				· · · · · · · · · · · · · · · · · · ·	(Circle one)				
Sampled	By: MAH	I/MRK				3 Casing/Bore (Circle one)	phole Volumes:			
Sampled By: MAH/MRK Method of Purging: Peristaltic Pump						Total Casing/	Boroholo			
Method o	f Samplin	g: <u>Perista</u>	ltic Pump				noved:			
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)			
625		0.23Ps	0	6534	6.54	1187	523 pon clear			
1627		07/11	0.4	148	6.58	1006	TOS= (94 pom clear			
1629		97.74 94.8,	0.8	148	6.40	1002	705=691 ppm Clear			
1630		MA	1.0	14.8	6.37	1002	523 ppm clear TOS=691 ppm clear TOS=691 ppm clear TOS=691 ppm 11 Sample			
	-						Sample			
						4				
			. , . ,							
:	, , , , , •	# 1		•						
					·					
					a.					
	pH (CALIBRATI	ION (choo	se two)		Model or U	Jnit No.: Ultrameter 6P			
Buffer So	lution	pH 4.	0 pH 7	.0 pH 10	0.0					
Temperat					<u>.</u>					
Instrume	nt Reading	9								
SPECIF	IC ELECT	RICAL CO	NDUCTAN	ICE – CAL	IBRATION	Model or U	Jnit No.: Ultrameter 6P			
KCL Solu	tion (μS/cr	n=µmhos/cr	n)		-					
Temperat	ure C									
Instrume	nt Reading	3								
Notes:										
•										
							`			
						and the second	·			
\\sf3\ppingree\$	\FORMATS\W	VELL SAMPLI	NG Record.doc			<u> </u>	· · · · · · · · · · · · · · · · · · ·			

APPENDIX B

Laboratory Reports and Chain-of-Custody Records for Groundwater Samples

Laboratory reports in order of appearance:

Alpha Analytical Work Order: A509231 Friedman & Bruya Project: 509072

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

22 September 2005

Geomatrix Consultants

Attn: Mike Keim

2101 Webster Street, 12th Floor

Oakland, CA 94612

RE: 9329

Work Order: A509231

Enclosed are the results of analyses for samples received by the laboratory on 09/08/05 16:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sheri L. Speaks Project Manager

Alpha Analytical Laboratories Inc. 208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 7

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 09/22/05 12:07

Project No: 9329/28 Project ID: 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A509231

09/08/2005 16:20

GEOMAT

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-02-200509	A509231-01	Water	09/07/05 13:19	09/08/05 16:20
MW-06-200509	A509231-02	Water	09/07/05 15:44	09/08/05 16:20
MW-07-200509	A509231-03	Water	09/07/05 16:47	09/08/05 16:20
MW-08-200509	A509231-04	Water	09/07/05 15:20	09/08/05 16:20
MW-09-200509	A509231-05	Water	09/07/05 15:33	09/08/05 16:20
MW-20-200509	A509231-06	Water	09/07/05 16:16	09/08/05 16:20
MW-21-200509	A509231-07	Water	09/07/05 16:30	09/08/05 16:20
BD-02-200509	A509231-08	Water	09/07/05 00:00	09/08/05 16:20

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaks

Sheri L. Speaks Project Manager

9/22/2005

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 7

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 09/22/05 12:07

Project No: 9329/28 Project ID: 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A509231

09/08/2005 16:20

GEOMAT

	07/00/2003 10.20			7011111				
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL N	TO
MW-02-200509 (A509231-01)			Sample Typ	e: Water		Sampled: 09/07/05 13:19)	
Chlorinated Phenols by Canadian P	ulp Method							
2,4,6-Trichlorophenol	EnvCan	AI51617	09/14/05	09/16/05	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	11	"	"	"	н	ND "	1.0	
2,3,4,6-Tetrachlorophenol	н	"	"	11	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	н	**	**	11	**	ND "	1.0	
Pentachlorophenol	H	**	#	н	"	ND"	1.0	
Surrogate: Tribromophenol	"	"	"	"		102 % 7	0-124	
MW-06-200509 (A509231-02)			Sample Typ	e: Water		Sampled: 09/07/05 15:44	ı	
Chlorinated Phenols by Canadian F	Pulp Method					-		
2,4,6-Trichlorophenol	EnvCan	AI51617	09/14/05	09/17/05	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	**		"	11	ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	"	"	"	н	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**	"	"	"	н	ND "	1.0	
Pentachlorophenol	11	"	11	11	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		99.2 % 7	0-124	
MW-07-200509 (A509231-03)			Sample Ty	pe: Water		Sampled: 09/07/05 16:47	7	
Chlorinated Phenols by Canadian I	Pulp Method					•		
2,4,6-Trichlorophenol	EnvCan	AI51617	09/14/05	09/17/05	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	n	"	"	"	19 "	1.0	
2,3,4,6-Tetrachlorophenol		"		09/20/05	100	280 "	100	
2,3,4,5-Tetrachlorophenol	u	"		09/17/05	1	16 "	1.0	
Pentachlorophenol	"	"	v	09/21/05	1000	16000 "	1000	
Surrogate: Tribromophenol	"	"	"	09/17/05		83.2 % 7	0-124	
MW-08-200509 (A509231-04)			Sample Ty	pe: Water		Sampled: 09/07/05 15:20)	
Chlorinated Phenols by Canadian I	Pulp Method			-		-		
2,4,6-Trichlorophenol	EnvCan	AI51617	09/14/05	09/20/05	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	"	H	"	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	н	11	n	*		ND "	1.0	
2,3,4,5-Tetrachlorophenol	H	n	"	**		ND "	1.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speake

Alpha √Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 7

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 09/22/05 12:07

Project No: 9329/28 Project ID: 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A509231

09/08/2005 16:20

GEOMAT

Alpha Analytical Laboratories, Inc. BATCH PREPARED ANALYZED DILUTION RESULT METHOD **PQL** NOTE MW-08-200509 (A509231-04) Sample Type: Water Sampled: 09/07/05 15:20 Chlorinated Phenols by Canadian Pulp Method (cont'd) 09/20/05 ND" Pentachlorophenol EnvCan 1.0 Surrogate: Tribromophenol 95.6 % 70-124 MW-09-200509 (A509231-05) Sampled: 09/07/05 15:33 Sample Type: Water Chlorinated Phenols by Canadian Pulp Method 2,4,6-Trichlorophenol AI51617 09/14/05 09/17/05 1.0 EnvCan ND ug/l 2,3,5,6-Tetrachlorophenol ND" 1.0 2,3,4,6-Tetrachlorophenol ND" 1.0 2,3,4,5-Tetrachlorophenol ND" 1.0 Pentachlorophenol ND" 1.0 Surrogate: Tribromophenol 101 % 70-124 MW-20-200509 (A509231-06) Sample Type: Water Sampled: 09/07/05 16:16 Chlorinated Phenols by Canadian Pulp Method 2,4,6-Trichlorophenol AI51617 09/14/05 09/17/05 ND ug/l EnvCan 1.0 2,3,5,6-Tetrachlorophenol ND" 1.0 ND" 2,3,4,6-Tetrachlorophenol 1.0 2,3,4,5-Tetrachlorophenol ND" 1.0 Pentachlorophenol ND " 1.0 Surrogate: Tribromophenol 100 % 70-124 MW-21-200509 (A509231-07) Sample Type: Water Sampled: 09/07/05 16:30 Chlorinated Phenols by Canadian Pulp Method 2,4,6-Trichlorophenol EnvCan AI51617 09/14/05 09/17/05 ND ug/l 1 1.0 2,3,5,6-Tetrachlorophenol 11" 1.0 09/20/05 170 " 2,3,4,6-Tetrachlorophenol 10 10 2,3,4,5-Tetrachlorophenol 09/17/05 4.8 " 1 1.0 4900 " 1000 Pentachlorophenol 09/21/05 1000 Surrogate: Tribromophenol 09/17/05 70-124 94.0 %

Sample Type: Water

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BD-02-200509 (A509231-08)

Sampled: 09/07/05 00:00

Speaks

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 7

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 09/22/05 12:07

Project No: 9329/28 Project ID: 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A509231

09/08/2005 16:20

GEOMAT

		Alpha A	nalytical	Laborato	ries, Inc.		
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL NOT
BD-02-200509 (A509231-08)			Sample Ty	e: Water	Sa	mpled: 09/07/05 00:0	00
Chlorinated Phenols by Canadian Pu	ılp Method						
2,4,6-Trichlorophenol	EnvCan	AI51617	09/14/05	09/17/05	1	ND ug/l	1.0
2,3,5,6-Tetrachlorophenol	"	n	*	"	11	17 "	1.0
2,3,4,6-Tetrachlorophenol	"	"	**	09/20/05	10	230 "	10
2,3,4,5-Tetrachlorophenol	v	"	"	09/17/05	1	14 "	1.0
Pentachlorophenol	v	v	"	09/21/05	1000	13000 "	1000
Surrogate: Tribromophenol	"	"	"	09/17/05		94.4 %	70-124

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaks

Sheri L. Speaks Project Manager

9/22/2005

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 5 of 7

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 09/22/05 12:07

Project No: 9329/28 Project ID: 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A509231

09/08/2005 16:20

GEOMAT

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AI51617 - Solvent Extraction										
Blank (AI51617-BLK1)				Prepared:	09/14/05	Analyzed	: 09/16/05			
2,4,6-Trichlorophenol	ND	1.0	ug/l							
2,3,5,6-Tetrachlorophenol	ND	1.0	**							
2,3,4,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,5-Tetrachlorophenol	ND	1.0	n							
Pentachlorophenol	ND	1.0	**							
Surrogate: Tribromophenol	20.2		"	25.0		80.8	70-124		and the second s	at a the state of
LCS (AI51617-BS1)				Prepared	: 09/14/05	Analyzed	1: 09/16/05			
2,4,6-Trichlorophenol	5.77	1.0	ug/l	5.00		115	81-120			
2,3,5,6-Tetrachlorophenol	5.13	1.0	11	5.00		103	78-108			
2,3,4,6-Tetrachlorophenol	4.91	1.0	11	5.00		98.2	76-108			
2,3,4,5-Tetrachlorophenol	4.97	1.0	Ħ	5.00		99.4	80-116			
Pentachlorophenol	4.14	1.0	**	5.00		82.8	86-109			QL-03
Surrogate: Tribromophenol	24.1		и	25.0		96.4	70-124			
Matrix Spike (AI51617-MS1)	Sou	rce: A509	231-01	Prepared	: 09/14/05	Analyzed	d: 09/16/05			
2,4,6-Trichlorophenol	4.87	1.0	ug/l	5.00	ND	97.4	75-125			
2,3,5,6-Tetrachlorophenol	4.78	1.0	"	5.00	ND	95.6	69-115			
2,3,4,6-Tetrachlorophenol	3.94	1.0	**	5.00	ND	78.8	66-117			
2,3,4,5-Tetrachlorophenol	4.70	1.0	н	5.00	ND	94.0	70-115			
Pentachlorophenol	3.41	1.0	"	5.00	ND	68.2	55-124			
Surrogate: Tribromophenol	21.6		"	25.0		86.4	70-124			
Matrix Spike Dup (AI51617-MSD1)		rce: A509	231-01	Prepared	: 09/14/05	Analyzed	d: 09/16/05			
2,4,6-Trichlorophenol	5.36	1.0	ug/l	5.00	ND	107	75-125	9.58	20	
2,3,5,6-Tetrachlorophenol	5.26	1.0	"	5.00	ND	105	69-115	9.56	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaks

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 6 of 7

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 09/22/05 12:07

Project No: 9329/28 Project ID: 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A509231

09/08/2005 16:20

GEOMAT

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AI51617 - Solvent Extraction									4	
Matrix Spike Dup (AI51617-MSD1)	Sour	ce: A509	231-01	Prepared:	09/14/05	Analyzed	1: 09/16/05			
2,3,4,6-Tetrachlorophenol	4.41	1.0	*	5.00	ND	88.2	66-117	11.3	20	
2,3,4,5-Tetrachlorophenol	5.12	1.0	**	5.00	ND	102	70-115	8.55	20	
Pentachlorophenol	3.94	1.0	n	5.00	ND	78.8	55-124	14.4	20	
Surrogate: Tribromophenol	23.7		"	25.0		94.8	70-124			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri Speake

Sheri L. Speaks Project Manager

9/22/2005

Alpha √Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 7 of 7

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 09/22/05 12:07

Project No: 9329/28 Project ID: 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A509231

09/08/2005 16:20

GEOMAT

Notes and Definitions

QL-03 Although the LCS/LCSD recovery for this analyte is outside of in-house developed control limits, it is within

the EPA recommended range of 70-130%.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference PQL Practical Quantitation Limit

Chai	Chain-of Custody	Record	Date: 0/8/05
Project No.:	9329/28	ANALYSES	REMARKS
Samplers (Signature:)	Mat 1	0828 bor 0728 bor 0738 bor	Water (W) J. or Other (o) Additional Comments
Date Time	e Sample Number	EPA Medi (FETX oil (FETX oil (FETX oil EPA Medi EPA Medi SIN (FAH Medihod 8 Medihod 8 Medihod 8	Vapor (V Filtered Preserve
8/2/05 1319	NW-02-200509	509231-01	×
11544	+ MW-06-200509	7	1 2 EDF (drop datesuffix
1647	7 MW-07-20509	25	(02 tor 10catron ID)
1520	MW-08-200500	ゴ	2
1533	3 MW-09-200509	\(\sigma\)	2
1016	MW-20-200709	3	2
1630	0 MW-21-20050d		2
7	80-02-200509	>	1 2
/			
			Global IU#
			T0602393344
			1 per matt. 9/9/05
Laboratory:	Alphon	Turnaround Time: Results to: Stendard Mite Keim Total No. of Cor	Containers /6
Relinquished by	(Signature): Date: R	Retinquished by (Signature); Policy Relinquished by (Signature	e): Date: Method of Shipment: (our'er
Printed Name			Time: Laboratory Comments and Log No.:
Ď	5411	Solon	
Received by:	Jegie Jane	Peceived by:	Date:
Printed Name:	Fully Time: P		Time: Geometrix Consultants
Company: 7 /	69	Company:	2101 Webster Street, 12th Floor - Oakland, CA 94612 Phone: 510-663-4100 Fax: 510-663-4141
700			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

September 21, 2005

Mike Keim, Project Manager Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612

Dear Mr. Keim:

Included are the results from the testing of material submitted on September 12, 2005 from the 9329/23, F&BI 509072 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Charlene Morron

Charlene Morrow

Chemist

Enclosures GMC0921R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 12, 2005 by Friedman & Bruya, Inc. from the Geomatrix Consultants, Inc. 9329/23, F&BI 509072 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Geomatrix Consultants, Inc.
509072-01	MW-01-200509
509072-02	MW-02-200509
509072-03	MW-03-200509
509072-04	MW-05-200509
509072-05	MW-14-200509
509072-06	BD-01-200509

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	09/12/05 09/13/05 09/14/05 water	Client: Project: Lab ID: Data File: Instrument:	Geomatrix Consultants, Inc. 9329/23, F&BI 509072 509072-01 091422.D GCMS3
Units:	ug/L (ppb)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	65	13	89
Phenol-d6	46	12	85
2,4,6-Tribromophenol	115	40	129

Concentration

Compounds: ug/L (ppb)

Pentachlorophenol <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: MW-02-200509
Date Received: 09/12/05
Date Extracted: 09/13/05
Date Analyzed: 09/15/05
Matrix: water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc.
Project: 9329/23, F&BI 509072

Lab ID: 509072-02

Data File: 091423.D

Instrument: GCMS3

Operator: YA

		Lower	$_{ m Upper}$
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	69	13	89
Phenol-d6	47	12	85
2,4,6-Tribromophenol	122	40	129

Concentration

Compounds: ug/L (ppb)

Pentachlorophenol <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

MW-03-200509 Client Sample ID: Date Received: 09/12/05 Date Extracted: 09/13/05 Date Analyzed: 09/15/05 Matrix: water ug/L (ppb) Units:

Client: 9329/23, F&BI 509072 Project: Lab ID: 509072-03 091424.DData File: Instrument: GCMS3 Operator: YA

Geomatrix Consultants, Inc.

		Lower	$_{ m Upper}$
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	61	13	89
Phenol-d6	44	12	85
2,4,6-Tribromophenol	112	40	129

Concentration ug/L (ppb)

<1 Pentachlorophenol

Compounds:

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID:	MW-05-200509
Date Received:	09/12/05
Date Extracted:	09/13/05
Date Analyzed:	09/15/05
Matrix:	water
Matrix:	water
Units:	ug/L (ppb)

Client:	Geomatrix Consultants, Inc.
Project:	9329/23, F&BI 509072
Lab ID:	509072-04
Data File:	091425.D
Instrument:	GCMS3
Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	62	13	89
Phenol-d6	42	12	85
2,4,6-Tribromophenol	102	40	129

Pentachlorophenol <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: MW-14-200509
Date Received: 09/12/05
Date Extracted: 09/13/05
Date Analyzed: 09/15/05
Matrix: water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc.
Project: 9329/23, F&BI 509072
Lab ID: 509072-05
Data File: 091426.D
Instrument: GCMS3

Operator: YA

Lower Upper Limit: Limit: % Recovery: Surrogates: 89 13 2-Fluorophenol 69 1285 Phenol-d6 48 97 40 129 2,4,6-Tribromophenol

Concentration ug/L (ppb)

Pentachlorophenol <1

Compounds:

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: BD-01-200509
Date Received: 09/12/05
Date Extracted: 09/13/05
Date Analyzed: 09/15/05
Matrix: water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc.
Project: 9329/23, F&BI 509072

Lab ID: 509072-06

Data File: 091427.D

Instrument: GCMS3

Operator: YA

		Lower	$_{ m Upper}$
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	70	13	89
Phenol-d6	46	12	85
2,4,6-Tribromophenol	113	40	129

Pentachlorophenol <1

ENVIRONMENTAL CHEMISTS

Client:

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: Method Blank
Date Received: Not Applicable
Date Extracted: 09/13/05
Date Analyzed: 09/14/05
Matrix: water
Units: ug/L (ppb)

 Project:
 9329/23, F&BI 509072

 Lab ID:
 051221 mb

 Data File:
 091421.D

 Instrument:
 GCMS3

 Operator:
 YA

Geomatrix Consultants, Inc.

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	51	13	89
Phenol-d6	35	12	85
2,4,6-Tribromophenol	71	40	129

Pentachlorophenol <1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/05 Date Received: 09/12/05

Project: 9329/23, F&BI 509072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270C SIM

Laboratory Code: Laboratory Control Sample

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Pentachlorophenol	μg/L (ppb)	7.5	69	68	63-115	1

•	509	509072	. 1										J	CM 09-12-05	1 (2)	0	6		18845	A051
		Chain-of	of Custody	1.	Record	ā									Date:	6/6	0	1/2	Page) to
	Project I	Project No.: 9329	4/23						A	ANALYSES	SES							_	REMARKS	
	Sampler	rs (Signature:)	Samplers (Signature:) That HML		1508	8021		0758	(Gasoline)	(Dieseld) mo		huanda-19			(o) refro			snani	Additional Comments	comments
Lab	Date T	Time	Sample Number		EPA Method (Full Scan) EPA Method	(Hel. VOCs o	EPA Method	(Full Scan) EPA Method SIM (PAHS o		2108 borteM 	Silica Gel Cl	ors8			Soll (S), Wate Vapor (V), or Filtered	beviesei9	Cooled	No. of Conta		
2 4 C	4/2/08	1250	605002-10-NW	П	1 1		\vdash	H	-	\vdash	\vdash	X			3		×	7	Need Ge	3 potrader
A	28	13/9	MW-62-200508	66												\dashv			Global ID	
) ((20	1356	MW-03-200509	bo			-			-								\exists	T060239	M
D d	B	1417	MW-05-200509	60												_			けいなかられ	fix for
00 V	8	0271	AW-14-200709	Σ.											=	_		=	landion I	O
₽. Ф.	B		BD-01-200509	6								>			—		>	>		
																4	1			
		/_			_		_			_	_			7	\					
				7			-	-					1							
					⊬	/	 			\vdash	1									
							\vdash	\wedge	X	//	1									
					1	1						/	-/							
													-	\mathcal{A}						
											_					\mathcal{A}				
	\															-				
	Laboratory:		Friedman + Bruxan		Turnaround	Stenel	Time			Results to:	its to	Results to:	Total No. of Containers	of Cor	taine	Ś		12	1901 4842 2	No. 1 2022 2055
	Reling	Relinquished by (8	(Signature): Date:		Relinquished by	hed b	y (Sig	(Signature)	e):	Date		Relinquished	ed by (Si	by (Signature):	e):	Date		Method	od of Shipment:	Fedex
	Printed	Printed Name			Printed Name	ame:				Tine		Printed Name	ıme:			Time		abor	Laboratory Comments and Log No.:	s and Log No.:
	Compa	Company: Company	1500		Company							Company:								
	Received by:	ed by:	Gu glalo		Received by	by:				Date		Received by	by:			Date:				
	PHING Nam	V Cameral	Time:		Printed Name	ame:				Time:		Printed Name	ıme:			Time:		8	Geomatrix	ix Consultants
	Сомрапу:	N. FRBI	U8:3C	Cor	Company:							Company				_	-	101 We	2101 Webster Street, 12th Floor • Oakland, CA 94612 Phone: 510-663-4100 Fax: 510-663-4141	r - Oakland, CA 9461 k: 510-663-4141

APPENDIX C

Laboratory Data Quality Review

APPENDIX C

LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed quality assurance and quality control (QA/QC) procedures to assess quality of the analytical results by evaluating the precision, accuracy, and completeness of the data. Data quality was reviewed using U.S. Environmental Protection Agency *National Functional Guidelines for Organic Data Review* (U.S. EPA, 1999).

PRECISION

Data precision is evaluated by comparing analytical results for the following:

- primary and (blind) duplicate field samples
- matrix spike (MS) and matrix spike duplicate (MSD) concentrations
- laboratory control sample (LCS) and laboratory control sample duplicate (LCSD)

Concentrations detected in the primary or spiked samples are compared with respective concentrations in duplicate or duplicate spiked samples. Relative percent differences (RPDs) are used to calculate results, using the following equation:

$$RPD = \frac{[S-D]}{(S+D)/2} \times 100$$

Where,

S = Sample concentration

D = Duplicate sample concentration

RPDs for primary and duplicate field samples are calculated in Table C-1. RPDs are only calculated when primary and duplicate sample concentrations are greater than or equal to two times the laboratory reporting limits. In cases where the detection in either the primary or duplicate sample, or both, are less than two times the reporting limit, the absolute difference between the primary and duplicate sample concentration is calculated. RPDs for MS/MSD and LCS/LCSD analyses (if performed) are reported in laboratory analytical reports, included in Appendix B.

The RPDs between the primary (MW-7) and the duplicate (BD-02) field samples are consistent and are considered acceptable for pentachlorophenol and tetrachlorophenol (see Table C-1).

ACCURACY

Data accuracy is assessed by evaluating holding times required by analytical methods, sample preservation, laboratory method blank results, recovery of laboratory surrogates, MS/MSD results, and LCS/LCSD results if performed. We evaluated these criteria for samples collected for the groundwater monitoring program. Results of the review are summarized below.

- **Hold times.** Samples were analyzed within the holding time for each analytical method, except for the dissolved gases. Because these results are similar to the previous event, these data are considered satisfactory.
- Preservation. Samples were collected in laboratory-supplied containers with preservatives, if applicable. Samples were stored and transported to analytical laboratories in chilled coolers.
- **Method blanks.** No detections were observed in any of the method blanks analyzed by the laboratory.
- **Surrogate recoveries.** Laboratory surrogates were recovered at concentrations within acceptable ranges.
- **MS/MSD analysis.** RPDs were acceptable.
- LCS analysis. Percent recovery for pentachlorophenol was below the in-house control limits; however, it was within the EPA recommended range for the method.

COMPLETENESS

Based on our laboratory data quality review, data contained in this report are considered complete and representative.

TABLE C-1 RELATIVE PERCENT DIFFERENCES BETWEEN DUPLICATE SAMPLES

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Samples collected on September 7, 2005

Constituent	Reporting Limit ¹	Sample Concentration MW-07	Duplicate Sample Concentration BD-02	Relative Percent Difference ²
Chlorinated Phenols by Canadia	n Pulp Method (reported in microgran	ns per liter [µg/L]) ³	
PCP	1000	16,000	13,000	20.7%
2,3,4,5-TeCP	1.0	16	14	13.3%
2,3,4,6-TeCP	100/10	280	230	19.6%
2,3,5,6-TeCP	1.0	19	17	11.1%
2,4,6-TCP	1.0	ND	ND	

Constituent	Reporting Limit	Sample Concentration MW-01	Duplicate Sample Concentration BD-01	Relative Percent Difference ²
Pentachlorophenol by EPA Metl	nod 8270 SIM (re	ported in µg/L) 4		
PCP	1.0	ND	ND	

Notes:

- 1. The reporting limit is presented as the reporting limit for MW-07/BD-02 for the listed constituent when the laboratory chose to use different dilutions with which to analyze the respective samples.
- 2.RPD calculated as $([2(S-D)]/[S+D]) \times 100$ where S is the sample concentration and D is the blind duplicate sample concentration. For sample concentrations less than two times the reporting limit, the absolute difference between the sample concentration and the blind duplicate sample is calculated.
- 3. Analyzed by Alpha Analytical Laboratory, of Ukiah, California.
- 4. Analyzed by Friedman & Bruya, Inc. Environmental Chemists, of Seattle, Washington.

Abbreviations:

PCP = pentachlorophenol

TeCP = tetrachlorophenol

TCP = trichlorophenol