FORMER WASTE OIL UNDERGROUND STORAGE TANK ADDITIONAL INVESTIGATION REPORT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

March 30, 2004

consulting scientists and engineers

FORMER WASTE OIL UNDERGROUND STORAGE TANK ADDITIONAL INVESTIGATION REPORT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

March 30, 2004

Prepared For:

SIERRA PACIFIC INDUSTRIES

Prepared By:

MFG, INC. 875 Crescent Way Arcata, California 95521 (707) 826-8430 GEOMATRIX CONSULTANTS, INC. 2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4100

MFG Project No. 030229.14

PROFESSIONAL CERTIFICATION

This report was prepared by MFG, Inc. and Geomatrix Consultants, Inc. under the professional supervision of Edward P. Conti. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional hydrogeologic practice, and within the scope of the project. There is no other warranty, either express or implied.

Edward P. Conti C.HG. No. HG 214 Principal Geologist

TABLE OF CONTENTS

Page

LIST O	TABLESiii
LIST O	FIGURESiii
LIST O	APPENDICES
1.0	NTRODUCTION1
2.0	BACKGROUND 2 .1 Site Description 2 .2 Former Waste Oil UST 2
3.0	TTE GEOLOGY AND HYDROGEOLOGY
4.0	OIL SAMPLING METHODS AND RESULTS4.1Field Methods4.2Stratigraphy and Field Observations6.3Chemical Analysis Methods6.4Chemical Analysis Results7
5.0	EVALUATION OF LATERAL HYDRAULIC GRADIENT9
6.0	GROUNDWATER SAMPLING METHODS AND RESULTS101Field Methods102Field Observations103Chemical Analysis Methods104Chemical Analysis Results11
7.0	DISPOSAL OF INVESTIGATION-DERIVED WASTE
8.0	REFERENCES

LIST OF TABLES

Table <u>No.</u>	Title
1	Summary of Chemical Analyses of Soil Samples Collected from Borings
2	Water Level Elevations
3	Summary of Chemical Analyses of Groundwater Samples Collected from Borings

LIST OF FIGURES

Figure <u>No.</u>	<u>Title</u>
1	Location Map
2	Site Plan
3	Boring Locations
4	Potentiometric Surface Map, July 24, 2003

LIST OF APPENDICES

<u>Appendix</u>	Title
А	Humboldt County Division of Environmental Health Boring Permit
В	Boring Logs
С	Laboratory Report and Chain-of-Custody Records for Soil Samples
D	Laboratory Report and Chain-of-Custody Records for Groundwater Samples
E	Waste Disposal Documentation

1.0 INTRODUCTION

MFG, Inc. and Geomatrix Consultants, Inc. (Geomatrix) have prepared this report on behalf of Sierra Pacific Industries (SPI) to document additional soil and groundwater investigation related to a former waste oil underground storage tank (UST) at the SPI Arcata Division Sawmill. This work was performed in response to the discovery of soil and groundwater impacted with petroleum hydrocarbons in the immediate vicinity of the former waste oil UST during an investigation in April 2003. The Arcata Division Sawmill is located at 2593 New Navy Base Road, Arcata, California (hereinafter "the Site"). The Site location is shown in Figure 1. A Site plan showing the location of the former waste oil UST investigation area is presented in Figure 2. An enlargement of this portion of the Site, showing features of the former waste oil UST area, is presented in Figure 3.

This work was performed in accordance with the scope of work presented in MFG's *Waste Oil UST Additional Investigation Work Plan*, dated June 11, 2003, and the California Regional Water Quality Control Board, North Coast Region (RWQCB) work plan approval letter, dated July 10, 2003. The scope of work included the following activities: (1) drilling a minimum of six direct-push borings; (2) collection of soil samples for chemical analysis; (3) measurement of the depth to water at each boring; (4) collection of grab groundwater samples for chemical analysis; and (5) surveying of the relative vertical elevation of each boring to estimate the direction of groundwater flow. This report summarizes the methods and results of the implemented work plan.

The remainder of this report is organized as follows. The Site background is provided in Section 2.0. The Site geology and hydrogeology is described in Section 3.0. The soil sampling methods, chemical analysis methods and chemical analysis results are presented in Section 4.0. The evaluation of the lateral hydraulic gradient is presented in Section 5.0. The grab groundwater sampling methods, chemical analysis methods and chemical analysis results are presented in Section 6.0. The disposal of the investigation-derived waste is discussed in Section 7.0, and references cited in this report are listed in Section 8.0.

2.0 BACKGROUND

2.1 Site Description

The Site is located on the Samoa Peninsula in Arcata, Humboldt County, California (Figure 1). A Site plan showing features of the mill is included in Figure 2. The Site features in the area of the former waste oil UST are included in Figure 3.

The Site was originally undeveloped land, consisting of sand dunes and mud flats, until approximately 1950 when SPI converted the land into a lumber mill. During conversion, SPI filled in portions of the Site. SPI began operations at this facility before the area was completely filled. The mill has been active from approximately 1950 to present day.

2.2 Former Waste Oil UST

In early 2003, MFG reviewed historical documents and interviewed various SPI employees that were knowledgeable about the Site's history and the historical use and location of a suspected waste oil UST. The location of the UST was estimated to be adjacent to the southwestern edge of the steam cleaning pad near the Truck Shop (Figure 3). The interviewed employees believed that the waste oil UST was taken out of service in the 1970s, but there were conflicting recollections as to whether it had been removed from the subsurface. There was no evidence of a UST at the ground surface.

On April 7, 2003, the out-of-service waste oil UST was discovered in-place during an investigation to evaluate the soil and groundwater quality in the vicinity of the suspected UST location. As a result, the waste oil UST was removed from the subsurface on April 22, 2003 along with approximately 430 gallons of groundwater and 18 cubic yards of soil that were impacted with petroleum hydrocarbons. A groundwater sample from boring WO-1 collected during the initial investigation and confirmation samples from the waste oil UST excavation indicated that residual petroleum hydrocarbons in soil and groundwater remained in the vicinity of the former waste oil UST (MFG, 2003).

3.0 SITE GEOLOGY AND HYDROGEOLOGY

The subsurface lithology and hydrogeology at the Site were previously investigated and described by Environet Consulting (Environet, 2003). The subsurface lithology consists primarily of fine- to medium-grained sand of apparent sand dune origin to a depth of approximately 22 feet below ground level (bgl), the maximum depth explored during previous drilling activities at the Site. The sand is sporadically interbedded with thin lenses of "bay mud," consisting of a mixture of sand and silt. The subsurface stratigraphy encountered during the additional investigation reported herein is described in Section 4.2.

In the eastern portion of the Site, groundwater has been measured in existing monitoring wells at depths ranging from approximately 1 to 5 feet bgl and the groundwater flow direction is generally to the east, toward the Mad River Slough (Figure 2) (Environet, 2003). In the vicinity of the former waste oil UST, groundwater was measured at a depth of approximately 1.7 feet bgl in temporary monitoring well WO-1 in April 2003 (MFG, 2003). In the eight borings drilled during the additional investigation reported herein, the depth to groundwater measured on July 24, 2003 ranged from approximately 3.5 to 5.2 feet bgl and the interpreted groundwater flow direction was to the south-southeast toward Humboldt Bay (Section 5.0).

4.0 SOIL SAMPLING METHODS AND RESULTS

4.1 Field Methods

Prior to drilling, MFG obtained a boring permit from the Humboldt County Division of Environmental Health (HCDEH). A copy of the HCDEH boring permit is presented in Appendix A. Underground Service Alert (USA) was contacted to mark the area for underground utilities and knowledgeable SPI personnel were consulted about the presence of underground utilities in the vicinity of the boring locations.

On July 24, 2003, eight soil borings (WO-3 through WO-10) were advanced to depths of approximately 10 feet below ground level (bgl). The boring locations are show in Figure 3. The soil borings were advanced using a direct-push drilling rig operated by Fisch Environmental Exploration Services (Fisch) of Valley Springs, California under the observation of MFG personnel. The direct-push drilling system advanced flush-threaded, 4-foot long, stainless steel drive casing with a 2 ¼-inch outer diameter (o.d.) into the subsurface to collect continuous soil cores. The soil was collected in clear, butyrate liners fitted inside the drive casing. Continuous soil coring was performed at each boring from approximately 1 to 10 feet bgl.

The soil encountered during drilling was described in the field for lithologic classification, color and moisture content in accordance with the American Society of Testing and Materials (ASTM) Standard Practice for Description and Identification of Soils (Visual-Manual Procedure) D 2488-93. Indications of contamination, including observations regarding odor or staining, if any, were noted in the field on boring logs. The boring logs are included in Appendix B.

Headspace measurements of soil from each selected sample interval were made in the field using a Thermo-Environmental Instruments Model 580B portable photoionization detector (PID). The PID was calibrated using a 96 parts per million by volume (ppmv) isobutylene gas standard. The response factor of the PID was set such that the instrument would read in ppmv as isobutylene. To prepare the soil for headspace measurements, the soil was placed in a sealable plastic bag, the bag was sealed, and then the soil was broken up and agitated. The bag was allowed to stand for approximately 10 minutes, agitated again,

and then the PID probe was inserted into the bag. The highest PID reading was recorded for each selected sample and noted on the boring log opposite the respective sample interval (Appendix B).

Soil samples were selected from two depth intervals in each boring and preserved for chemical analysis. The soil samples for chemical analysis were generally selected at the depth interval corresponding to the approximate top of the saturated zone and the depth interval with the highest field indications of contamination, if any. If no field indications of contamination were noted, then the second soil sample from each boring was selected at a depth interval corresponding to a change in lithology. The 4-foot long butyrate liners were cut into smaller sections at the desired depth intervals. The ends of each section of liner were covered with Teflon[®] sheets, capped with polyethylene lids, and then sealed using duct tape. Additional soil was collected at the top or bottom of each sample interval using EnCoreTM samplers. The samples were labeled, placed into individual Ziploc[®] bags, and immediately placed in an ice-cooled, insulated chest for transport to the laboratory. Chain-of-custody records were completed for the samples and accompanied the samples until receipt by the laboratory. Copies of the chain-of-custody records are included in Appendix C. The chemical analysis methods and results are presented in Sections 4.3 and 4.4.

Soil cuttings generated during drilling were placed in a 55-gallon, Department of Transportation (DOT)-approved steel drum that was sealed, labeled and temporarily stored at a secure location of the Site pending disposal (Section 7.0).

Reusable drilling and sampling equipment was decontaminated before and after use by washing in a solution of Liquinox[®] detergent and distilled water and then triple rinsing with distilled water. Equipment wash water was placed in a separate, 55-gallon, DOT-approved steel drum that was sealed, labeled and temporarily stored in a secure location of the Site pending disposal (Section 7.0).

The borings were subsequently backfilled with neat cement at the conclusion of groundwater sampling activities (Section 6.0).

4.2 Stratigraphy and Field Observations

The surface material encountered during drilling activities consisted of concrete, asphalt, baserock and sand with gravel to a depth of approximately 1 to 2 feet bgl. The surface material was underlain by sand with varying amounts of clay, silt and gravel to depths ranging from approximately 6 to 7 feet bgl in all the borings, except boring WO-7 where the sand layer extended to a depth of approximately 10 feet bgl, the maximum depth explored during drilling activities. In boring WO-3, clay was encountered at an approximate depth of 6 feet bgl; however, poor soil recovery at the corresponding depth interval resulted in limited lithologic information at this boring location. A thin peat layer was encountered in these borings and the sand encountered in borings WO-9 and WO-10 were underlain by silt to a depth of approximately 10 feet bgl, the maximum depth explored during drilling activities. The peat layer was not encountered in borings WO-9 and WO-10; however, poor soil recovery at the corresponding depth intervals resulted in limited lithologic information at these boring by SMO-4, WO-5, WO-6 and WO-8. The peat layer encountered in these borings and the sand encountered in borings WO-9 and WO-10 were underlain by silt to a depth of approximately 10 feet bgl, the maximum depth explored during drilling activities. The peat layer was not encountered in borings WO-3, WO-9 and WO-10; however, poor soil recovery at the corresponding depth intervals resulted in limited lithologic information at these three boring locations. Saturated soil was encountered at depths ranging from 3.5 to 5.2 feet bgl (Appendix B).

Stained soil and petroleum-like odors were noted in the soil collected from boring WO-3 (Appendix B). The PID readings from headspace measurements of the soil in the borings ranged from 0.0 to 4.0 ppmv (Appendix B).

4.3 Chemical Analysis Methods

The soil samples were submitted for chemical analysis to Alpha Analytical Laboratories Inc. (Alpha) of Ukiah, California, a laboratory certified by the California Department of Health Services (DHS). The samples were analyzed for the following constituents:

- Total extractable petroleum hydrocarbons (TEPH) as diesel and motor oil using modified EPA Method 8015M with silica gel cleanup;
- Total purgeable petroleum hydrocarbons (TPPH) as gasoline using modified EPA Method 8015M;
- Volatile organic compounds (VOCs) using EPA Method 8260B/5035;
- Semi-volatile organic compounds (SVOCs) using EPA Method 8270D;

- Chlorinated phenols using the Canadian Pulp Method;
- Polychlorinated biphenyls (PCBs) using EPA Method 8080A; and
- Wear metals (cadmium, chromium, nickel, lead and zinc) and copper using EPA Method 6010B.

The chemical analysis results are summarized in Table 1. Copies of the laboratory report and chain-of-custody records are included in Appendix C.

4.4 Chemical Analysis Results

TEPH as diesel was detected in 13 soil samples at concentrations ranging from 1.2 to 110 milligrams per kilogram (mg/kg). However, the laboratory indicated that the chromatogram patterns for samples WO-3 (3.25-4.0'), WO-3 (6.0-6.5'), WO-5 (8.0-8.75') and WO-9 (8.0-8.75') did not resemble the diesel standard, and the diesel range organics detected in samples WO-4 (5.5-6.25'), WO-4 (8.5-9.25'), WO-5 (3.25-4.0'), WO-6 (4.5-5.25'), WO-8 (3.25-4.0') and WO-8 (6.0-6.75') were primarily due to overlap from a heavy oil range product (Table 1). TEPH as diesel was detected at a concentration exceeding 100 mg/kg (110 mg/kg) in only one sample (WO-3 (3.25 to 4.0')). TEPH as diesel was not detected at or above the laboratory reporting limit of 1.0 mg/kg in the remaining three soil samples (Table 1).

TEPH as motor oil was detected in all of the soil samples at concentrations ranging from 2.0 to 840 mg/kg. However, the laboratory indicated that the chromatogram patterns for samples WO-4 (8.5-9.25'), WO-5 (8.0-8.75'), WO-6 (9.0-9.75'), WO-7 (8.0-8.75'), WO-9 (8.0-8.75') and WO-10 (9.0-9.75') did not resemble the motor oil standard. TEPH as motor oil was detected at a concentration exceeding 100 mg/kg in only 4 samples. TEPH as motor oil was detected in one sample at a concentration of 840 mg/kg, and in the other three samples at concentrations of 130, 150 and 150 mg/kg (Table 1).

TPPH as gasoline was detected in eight soil samples at concentrations ranging from 1.1 to 9.9 mg/kg (Table 1). However, the laboratory indicated that the gasoline range organics detected in samples WO-4 (8.5'), WO-9 (4.0') and WO-10 (5.0') were primarily due to overlap from a diesel range product. TPPH as gasoline was not detected at or above the laboratory reporting limit in the remaining seven soil samples (Table 1).

The following VOCs were detected in the soil samples: acetone in 13 soil samples at concentrations ranging from 0.029 to 1.3 mg/kg; p-isopropyltoluene in one soil sample at a concentration of 0.0082 mg/kg; and methyl ethyl ketone in seven soil samples at concentrations ranging from 0.015 to 0.20 mg/kg (Table 1). No other VOCs were detected at or above their respective laboratory reporting limits (Table 1).

SVOCs, chlorinated phenols and PCBs were not detected at or above their respective laboratory reporting limits in any of the soil samples (Table 1).

Chromium was detected in all of the soil samples at concentrations ranging from 6.4 to 53 mg/kg, lead was detected in seven samples at concentrations ranging from 7.3 to 18 mg/kg, nickel was detected in fourteen samples at concentrations ranging from 11 to 80 mg/kg, zinc was detected in 12 samples at concentrations ranging from 14 to 57 mg/kg, and copper was detected in eight samples at concentrations ranging from 10 to 36 mg/kg. Cadmium was not detected in any of the samples at or above the laboratory reporting limit of 1.0 mg/kg.

5.0 EVALUATION OF LATERAL HYDRAULIC GRADIENT

On July 24, 2003, a temporary well was installed in each boring to an approximate depth of 10 feet below ground level (bgl) for the collection of water level readings and grab groundwater samples. The temporary wells were constructed of 1-inch diameter, flush-threaded, Schedule 40 PVC blank casing and screen with 0.010-inch slot size. The PVC screen was encased in pre-packed silica sand filter sleeves. The blank casing extended to a depth of approximately 1 foot bgl and the screened interval extended from approximately 1 to 10 feet bgl.

After installation, the temporary wells were developed by removing groundwater using a peristaltic pump and dedicated polyethylene tubing. During development, the temperature, pH and specific conductance of the purge water were measured periodically. Well development continued until the water quality parameters stabilized and the groundwater removed from the wells was relatively free of sediment. Approximately three casing volumes of groundwater were removed from each of the temporary wells during the development process, except in the temporary wells at borings WO-4, WO-6 and WO-8, which went dry.

After development, the water levels in each boring were allowed to equilibrate to static levels prior to obtaining water level readings. The depth to water was measured in each temporary well using an electronic water level probe. The depth-to-water measurements in the temporary wells ranged from 4.00 to 6.62 feet below the top of casing and 3.47 to 5.23 feet bgl (Table 2).

The relative elevation of the top of casing at each temporary well was surveyed by MFG using standard surveying equipment. A stationary metal pipe on the northwestern side of the bathroom was selected as an arbitrary benchmark and assigned an elevation of 100.00 feet. Water level elevations were then calculated using the depth-to-water measurements and the surveyed elevations of the tops of the casings of the temporary wells. Based on the arbitrary datum, the calculated water level elevations in the temporary wells ranged from 92.33 to 93.76 feet (Table 2).

Based on the interpreted potentiometric surface, the groundwater flow direction in the vicinity of the former waste oil UST was to the south-southeast, toward Humboldt Bay, with a magnitude of approximately 0.012 foot/foot (Figure 4).

9

6.0 GROUNDWATER SAMPLING METHODS AND RESULTS

6.1 Field Methods

On July 24, 2003, the temporary wells were sampled using a peristaltic pump and dedicated polyethylene tubing. The groundwater samples from each temporary well were placed in the following containers supplied by the laboratory: three 1-liter (L) amber glass jars sealed with Teflon[®]-lined screw caps; six 40-milliliter (ml) glass vials containing hydrochloric acid for sample preservation and sealed with screw caps with Teflon[®]-lined septa; and one 4-ounce glass vial sealed with a Teflon[®]-lined screw cap. The sample containers were labeled and immediately placed in an ice-cooled, insulated chest for transport to the laboratory. Chain-of-custody records were completed for the samples and accompanied the samples until receipt by the laboratory. Copies of the chain-of-custody records are provided in Appendix D.

All equipment used to collect the groundwater samples was dedicated or did not come into contact with the groundwater during sampling; therefore, no wash water was generated for disposal.

After completion of the groundwater sampling activities, the temporary wells and silica sand filter sleeves were removed from the borings. The borings were subsequently grouted with neat cement using a tremie pipe.

6.2 Field Observations

A slight petroleum-like odor was noted in the purge water from boring WO-3 during development and sampling activities.

6.3 Chemical Analysis Methods

The groundwater samples were submitted for chemical analysis to Alpha Analytical Laboratories Inc. (Alpha) of Ukiah, California, a laboratory certified by the California Department of Health Services (DHS). The samples were analyzed for the following constituents:

- Total extractable petroleum hydrocarbons (TEPH) as diesel and motor oil using modified EPA Method 8015 with silica gel cleanup;
- Total purgeable petroleum hydrocarbons (TPPH) as gasoline using modified EPA Method 8015;
- Volatile organic compounds (VOCs) using EPA Method 8260B;
- Semi-volatile organic compounds (SVOCs) using EPA Method 8270D;
- Chlorinated phenols using the Canadian Pulp Method; and
- Polychlorinated biphenyls (PCBs) using EPA Method 8080A.

Copies of the laboratory report and chain-of-custody records are included in Appendix D. The chemical analysis results are summarized in Table 3.

6.4 Chemical Analysis Results

TEPH as diesel was detected in the groundwater samples from all eight temporary wells at concentrations ranging from 63 to 1,100 micrograms per liter (μ g/L). However, the laboratory indicated that the chromatogram patterns for samples WO-9-GW (210 μ g/L) and WO-10-GW (190 μ g/L) did not resemble the diesel standard. TEPH as diesel was detected in one sample (WO-3-GW) at a concentration of 1,100 μ g/L; the concentrations detected in the seven other samples ranged from 63 to 210 μ g/L. At temporary well WO-10, located approximately 30 feet downgradient of WO-3, TEPH as diesel was detected at a concentration of 190 μ g/L.

TEPH as motor oil was detected in the groundwater samples from temporary wells WO-3 WO-5, WO-6, WO-8 and WO-9 at concentrations ranging from 120 to 9,100 μ g/L. However, the laboratory indicated that the chromatogram pattern for sample WO-9-GW (150 μ g/L) did not resemble the motor oil standard. TEPH as motor oil was detected in one sample (WO-3-GW) at a concentration of 9,100 μ g/L; the concentrations detected in the four other samples ranged from 120 to 230 μ g/L. TEPH as motor oil was not detected at or above the laboratory reporting limit of 110 μ g/L in the remaining three groundwater samples. At temporary well WO-10, located approximately 30 feet downgradient of WO-3, TEPH as motor oil was not detected at or above the laboratory reporting limit.

TPPH as gasoline was not detected at or above the laboratory reporting limit of 50 μ g/L in any of the groundwater samples (Table 3).

The VOC acetone was detected in the groundwater sample from temporary well WO-7 at a concentration of 120 μ g/L. No other VOCs were detected at or above their respective laboratory reporting limits in any of the groundwater samples (Table 3).

The following SVOCs were detected in the groundwater samples: benzoic acid at a concentration of 57 μ g/L in the groundwater sample from temporary well WO-4; 3 &/or 4-methylphenol at a concentration of 11 μ g/L in the groundwater sample from temporary well WO-9; and phenol at concentrations ranging from 11 to 130 μ g/L in seven groundwater samples. No other SVOCs were detected at or above their respective laboratory reporting limits (Table 3).

Chlorinated phenols and PCBs were not detected at or above their respective laboratory reporting limits in any of the groundwater samples (Table 3).

7.0 DISPOSAL OF INVESTIGATION-DERIVED WASTE

The soil cuttings generated during this investigation were placed in a 55-gallon, DOT-approved steel drum that was sealed, labeled and temporarily stored at a secure location of the Site. In September 2003, the soil cuttings in the drum were emptied into the storage bin containing soil from the former plywood covered ditch excavation conducted in July and August 2003 (MFG and Geomatrix, 2004). The storage bin containing soil from both activities was removed from the Site on September 11, 2003 by Asbury Environmental Services and transported to Altamont Landfill in Livermore, California for disposal. A copy of the Non-Hazardous Waste Manifest is included in Appendix E.

The purge water and equipment wash water generated during this investigation was placed in a 55gallon, DOT-approved steel drum that was sealed, labeled and temporarily stored at a secure location of the Site. The drum was removed from the Site on September 12, 2003 by Asbury Environmental Services and transported to Demenno/Kerdoon in Compton, California for treatment. Following treatment, the water was discharged to the Los Angeles Sanitation District sewer system. A copy of the Uniform Hazardous Waste Manifest for this shipment, which also included four additional 55-gallon drums associated with other investigations at the Site, is included in Appendix E.

8.0 **REFERENCES**

- Environet Consulting (Environet), 2003, Results of the Remedial Investigation for Sierra Pacific Industries - Arcata Division Sawmills, Arcata, California: January 30.
- MFG, Inc., 2003, Waste Oil Underground Storage Tank Investigation and Closure Report, Sierra Pacific Industries, Arcata Division Sawmill, 2593 New Navy Base Road, Arcata California: June 10.
- MFG, Inc. and Geomatrix Consultants, Inc. (Geomatrix), 2004, Plywood Covered Ditch Soil Excavation Report, Sierra Pacific Industries, Arcata Division Sawmill, 2593 New Navy Base Road, Arcata California: March 30.

SUMMARY OF CHEMICAL ANALYSES OF SOIL SAMPLES COLLECTED FROM BORINGS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

						_		V	OCs				CHLORIN	ATED PH	ENOLS								
SAMPLE ID	SAMPLE DEPTH (feet bgl)	SAMPLE DATE	LITHOLOGY	TEPH AS DIESEL (mg/kg)	TEPH AS MOTOR OIL (mg/kg)	TPPH AS GASOLINE (mg/kg)	ACETONE (mg/kg)	p-ISO- PROPYL- TOLUENE (mg/kg)	MEK (mg/kg)	OTHER VOCs (mg/kg)	SVOCs (mg/kg)	2,4,6-TRI- CHLORO- PHENOL (mg/kg)	2,3,5,6- TCP (mg/kg)	2,3,4,6- TCP (mg/kg)	2,3,4,5- TCP (mg/kg)	PCP (mg/kg)	PCBs (mg/kg)	CADMIUM (mg/kg)	CHROMIUM (mg/kg)	COPPER (mg/kg)		LEAD (mg/kg)	ZINC (mg/kg)
WO-3 (4.0')	4.0	24-Jul-03	SAND			1.1	0.10	< 0.0050	0.015	< 0.0050-0.010													
WO-3 (3.25-4.0')	3.25-4.0	24-Jul-03	SAND	110^{-1}	99						< 3.3-16	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	48	29	54	12	53
WO-3 (6.0-6.5')	6.0-6.5	24-Jul-03	CLAY	82 1	150						< 3.3-16	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20-0.80	< 1.0	47	26	60	13	51
WO-4 (5.5')	5.5	24-Jul-03	SAND			2.3	0.029	< 0.0050	< 0.015	< 0.0050-0.010													
WO-4 (5.5-6.25')	5.5-6.25	24-Jul-03	SAND	62 ²	840						< 33-160	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	33	22	36	10	38
WO-4 (8.5')	8.5	24-Jul-03	SILT			2.3 ³	1.3	< 0.0084	0.15	< 0.0084-0.017													
WO-4 (8.5-9.25')	8.5-9.25	24-Jul-03	SILT	6.4 ²	94 ⁴						< 1.6-8.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	6.4	< 10	< 10	< 5.0	< 10
WO-5 (3.25')	3.25	24-Jul-03	SAND			3.1	0.13	0.0082	0.018	< 0.0050-0.010													
WO-5 (3.25-4.0')	3.25-4.0	24-Jul-03	SAND	16 ²	130						< 1.6-8.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	52	31	80	8.5	47
WO-5 (8.0')	8.0	24-Jul-03	SILT			< 1.1	0.96	< 0.0091	0.20	< 0.0091-0.018													
WO-5 (8.0-8.75')	8.0-8.75	24-Jul-03	SILT	1.2 1	50 ⁴						< 1.6-8.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	15	< 10	11	< 5.0	< 10
WO-6 (4.5')	4.5	24-Jul-03	SAND			1.2	0.19	< 0.0050	0.027	< 0.0050-0.010													
WO-6 (4.5-5.25')	4.5-5.25	24-Jul-03	SAND	18^{2}	99						< 0.33-1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	43	13	41	7.3	30
WO-6 (9.0')	9.0	24-Jul-03	SILT			< 1.0	0.090	< 0.0050	< 0.015	< 0.0050-0.010													
WO-6 (9.0-9.75')	9.0-9.75	24-Jul-03	SILT	< 1.0	2.2 4						< 0.33-1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	39	< 10	31	< 5.0	16
WO-7 (4.0')	4.0	24-Jul-03	SAND			< 1.0	0.17	< 0.0050	0.018	< 0.0050-0.010													
WO-7 (4.0-4.75')	4.0-4.75	24-Jul-03	SAND	< 1.0	2.0						< 0.33-1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	53	< 10	38	< 5.0	24
WO-7 (8.0')	8.0	24-Jul-03	SAND			< 1.0	0.066	< 0.0050	< 0.015	< 0.0050-0.010													
WO-7 (8.0-8.75')	8.0-8.75	24-Jul-03	SAND	7.3	44 4						< 1.6-8.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	9.9	< 10	< 10	< 5.0	< 10
WO-8 (3.25')	3.25	24-Jul-03	SAND			< 1.0	0.064	< 0.0050	< 0.015	< 0.0050-0.010													
WO-8 (3.25-4.0')	3.25-4.0	24-Jul-03	SAND	2.1^{-2}	8.0						< 0.33-1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	27	< 10	29	< 5.0	20
WO-8 (6.0')	6.0	24-Jul-03	SAND			3.0	0.081	< 0.0050	< 0.015	< 0.0050-0.010													
WO-8 (6.0-6.75')	6.0-6.75	24-Jul-03	SAND	19 ²	74						< 1.6-8.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	20	36	22	18	50
WO-9 (4.0')	4.0	24-Jul-03	SAND			4.3 ³	< 3.5	< 0.87	< 2.6	< 0.87-1.7													
WO-9 (4.0-4.75')	4.0-4.75	24-Jul-03	SAND	24	28						< 0.33-1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	30	10	34	< 5.0	27
WO-9 (8.0')	8.0	24-Jul-03	SILT			< 1.0	1.0	< 0.0088	0.16	< 0.0088-0.018													
WO-9 (8.0-8.75')	8.0-8.75	24-Jul-03	SILT	1.2^{-1}	37 4						< 0.33-1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	27	< 10	15	< 5.0	< 10

SUMMARY OF CHEMICAL ANALYSES OF SOIL SAMPLES COLLECTED FROM BORINGS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

						_		V	OCs				CHLORIN	ATED PH	ENOLS								
						-		p-ISO-				2,4,6-TRI-											
	SAMPLE			TEPH AS	TEPH AS	TPPH AS		PROPYL-		OTHER		CHLORO-	2,3,5,6-	2,3,4,6-	2,3,4,5-								
SAMPLE	DEPTH	SAMPLE		DIESEL	MOTOR OIL	GASOLINE	ACETONE	TOLUENE	MEK	VOCs	SVOCs	PHENOL	TCP	TCP	TCP	PCP	PCBs	CADMIUM	CHROMIUM	COPPER	NICKEL	LEAD	ZINC
ID	(feet bgl)	DATE	LITHOLOGY	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
WO-10 (5.0')	5.0	24-Jul-03	SAND			9.9 ³	< 4.5	< 1.1	< 3.3	< 1.1-3.3													
WO-10 (5.0-5.75')	5.0-5.75	24-Jul-03	SAND	42	150						< 3.3-16	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	19	22	22	12	57
WO-10 (9.0')	9.0	24-Jul-03	SILT			< 1.0	0.10	< 0.0050	< 0.015	< 0.0050-0.010													
WO-10 (9.0-9.75')	9.0-9.75	24-Jul-03	SILT	< 1.0	6.5 4						< 0.33-1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.20	< 1.0	30	< 10	22	< 5.0	14

NOTES:

4.

TEPH Total extractable petroleum hydrocarbons. Analyzed using modified EPA Method 8015 with silica gel cleanup and quantified against diesel and motor oil standards.

TPPH Total purgeable petroleum hydrocarbons. Analyzed using modified EPA Method 8015 and quantified against a gasoline standard.

VOCs Volatile organic compounds. Analyzed using EPA Method 8260B/5035.

MEK Methyl ethyl ketone.

SVOCs Semi-volatile organic compounds. Analyzed using EPA Method 8270D.

TCP Tetrachlorophenol.

PCP Pentachlorophenol.

PCBs Polychlorinated biphenyls. Analyzed using EPA Method 8080A. Target analytes included PCB-1016, PCB-1221, PCB-1232, PCB-1242, PCB-1248, PCB-1254, PCB-1260 and PCB-1262.

bgl Below ground level.

mg/kg Milligrams per kilogram.

< Target analyte was not detected at or above the laboratory reporting limit shown.

-- Not analyzed.

1. The laboratory indicated that the chromatogram pattern contains resolved peaks within the diesel range that do not resemble diesel.

2. The laboratory indicated that the results in the diesel organics range are primarily due to overlap from a heavy oil range product.

3. The laboratory indicated that the results in the gasoline organics range are primarily due to overlap from a diesel range product.

The laboratory indicated that the chromatogram pattern contains resolved peaks within the motor oil range that do not resemble motor oil.

Chlorinated phenols were analyzed using the Canadian Pulp Method. Metals were analyzed using EPA Method 6010B.

WATER LEVEL ELEVATIONS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

BORING NO.	MEASUREMENT DATE	TOP OF CASING ELEVATION ¹ (feet above arbitrary datum)	DEPTH TO WATER (feet bTOC)	DEPTH TO WATER (feet bgl)	WATER LEVEL ELEVATION (feet above arbitrary datum)
WO-3	24-Jul-03	98.56	6.16	5.20	92.40
WO-4	24-Jul-03	100.38	6.62	4.03	93.76
WO-5	24-Jul-03	97.14	4.00	3.47	93.14
WO-6	24-Jul-03	98.69	6.24	4.52	92.45
WO-7	24-Jul-03	98.06	4.43	4.30	93.63
WO-8	24-Jul-03	98.40	5.31	4.16	93.09
WO-9	24-Jul-03	98.23	5.79	5.23	92.44
WO-10	24-Jul-03	98.65	6.32	4.97	92.33

NOTES:

bTOC Below top of casing.

bgl Below ground level.

1. Top of casing elevations are referenced to an arbitrary datum using an elevation benchmark of 100.00 feet at a metal pipe on the northwestern side of the bathroom.

SUMMARY OF CHEMICAL ANALYSES OF GROUNDWATER SAMPLES COLLECTED FROM BORINGS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

						VO	Cs		SVO	Cs			CHLORIN	ATED PH	ENOLS									
					-				3 &/or 4-			2,4,6-TRI-					_							
		OIL &	TEPH AS		TPPH AS		OTHER	BENZOIC	METHYL-		OTHER	CHLORO-	2,3,5,6-	2,3,4,6-		DCD	DCD 1	TOTAL	2	CADMINA.		NICKEI	LEAD	
SAMPLE ID	SAMPLE DATE	GREASE (µg/L)	DIESEL (µg/L)	MOTOR OIL (µg/L)	GASOLINE (µg/L)	ACETONE (µg/L)	VOCs (µg/L)	ACID (µg/L)	PHENOL (µg/L)	PHENOL (µg/L)	SVOCs (µg/L)	PHENOL (µg/L)	TCP (µg/L)	TCP (µg/L)	TCP (µg/L)	PCP (µg/L)	PCP ¹ $(\mu g/L)$	PCBs ¹ (µg/L)	PCBs ² (µg/L)	CADMIUM (µg/L)	CHROMIUM (µg/L)	NICKEL (μg/L)	LEAD (µg/L)	
10	DITL	(µg/12)	(µg/L)	(µg/L)	(µg/12)	(µg/L)	(µg/L)	(µg/L)	(µg/12)	(µg/1)	(µg/1)	(µg/L)	(μg/ L)	(μg/ L)	(µg/L)	(µg/L)	(με/ Δ)	(µg/L)	(µg/12)	(µg/L)	(μ5/ Ε)	(µg/L)	(με/ L)	(µg/L)
WO-1-GW ³	08-Apr-03	< 5,000	200	290	< 50	< 50	< 3.0-10	< 50	< 10	< 10	< 10-50						< 50	< 100		< 10	< 50	< 100	< 50	< 100
WO-2-GW 4	08-Apr-03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
WO-3-GW	24-Jul-03		1,100	9,100	< 50	< 100	< 6.0-20	< 50	< 10	< 10	< 10-50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 0.20-1.0					
WO-4-GW	24-Jul-03		63	< 110	< 50	< 50	< 3.0-10	57	< 10	33	< 10-50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 0.20					
WO-5-GW	24-Jul-03		97	230	< 50	< 500	< 30-100	< 50	< 10	18	< 10-50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 0.20					
WO-6-GW	24-Jul-03		98	120	< 50	< 500	< 30-100	< 50	< 10	130	< 10-50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 0.20-0.80					
WO-7-GW	24-Jul-03		210	< 110	< 50	120	< 6.0-20	< 50	< 10	22	< 10-50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 0.20					
WO-8-GW	24-Jul-03		94	210	< 50	< 50	< 3.0-10	< 50	< 10	17	< 10-50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 0.20					
WO-9-GW	24-Jul-03		210 5	150 6	< 50	< 100	< 6.0-20	< 50	11	26	< 10-50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 0.20					
WO-10-GW	24-Jul-03		190 5	< 110	< 50	< 500	< 30-100	< 50	< 10	11	< 10-50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 0.20					

NOTES:

TEPH Total extractable petroleum hydrocarbons. Analyzed using modified EPA Method 8015 with silica gel cleanup and quantified against diesel and motor oil standards.

TPPH Total purgeable petroleum hydrocarbons. Analyzed using modified EPA Method 8015 and quantified against a gasoline standard.

VOCs Volatile organic compounds. Analyzed using EPA Method 8260B.

SVOCs Semi-volatile organic compounds. Analyzed using EPA Method 8270D.

TCP Tetrachlorophenol.

PCP Pentachlorophenol.

PCBs Polychlorinated biphenyls.

μg/L Micrograms per liter.

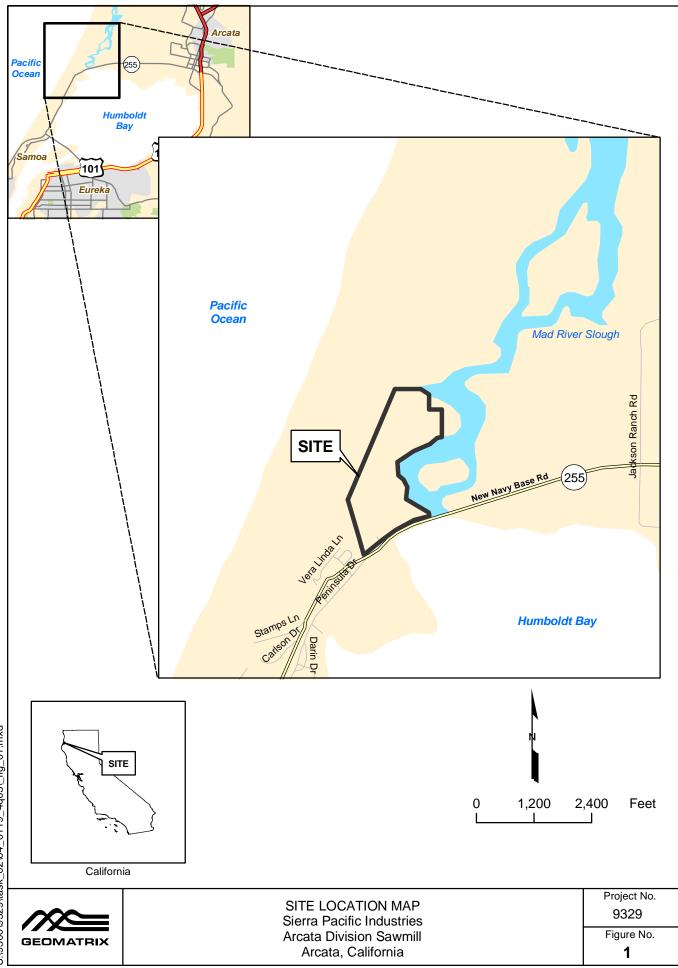
NS Not sampled.

< Target analyte was not detected at or above the laboratory reporting limit shown.

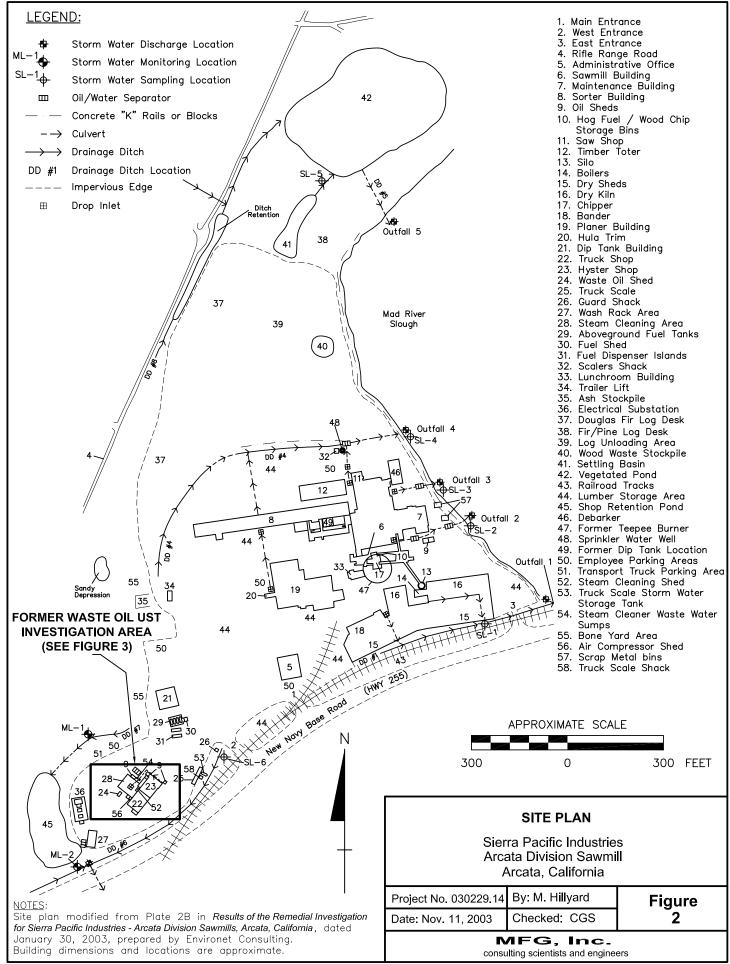
-- Not analyzed.

1. Analyzed using EPA Method 8270D.

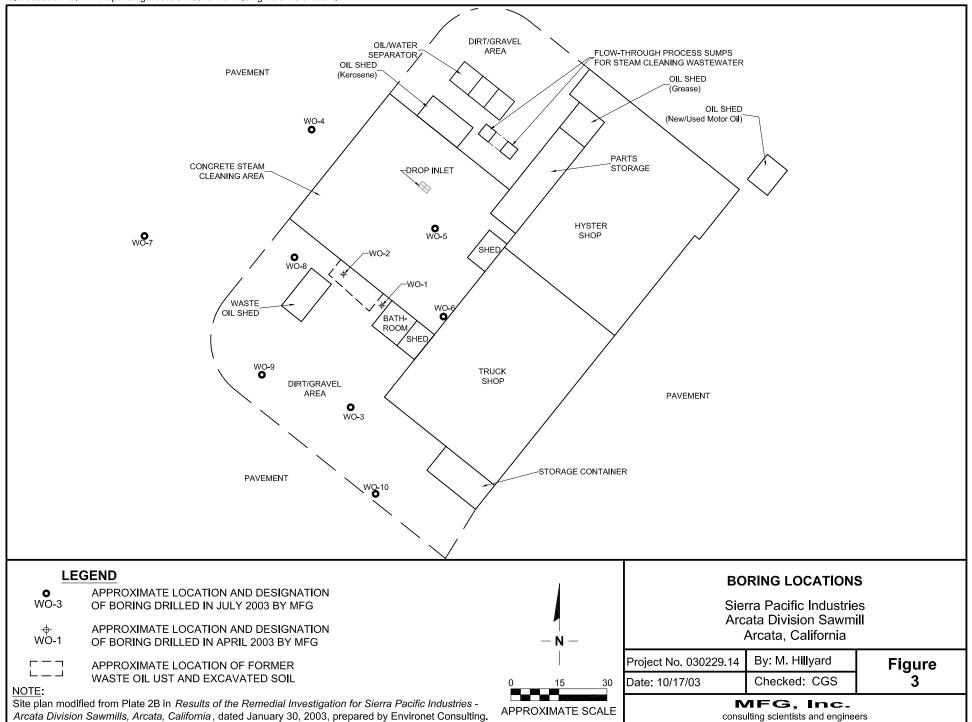
2. Analyzed using EPA Method 8080A. Target analytes were PCB-1016, PCB-1221, PCB-1232, PCB-1242, PCB-1248, PCB-1260 and PCB-1262.

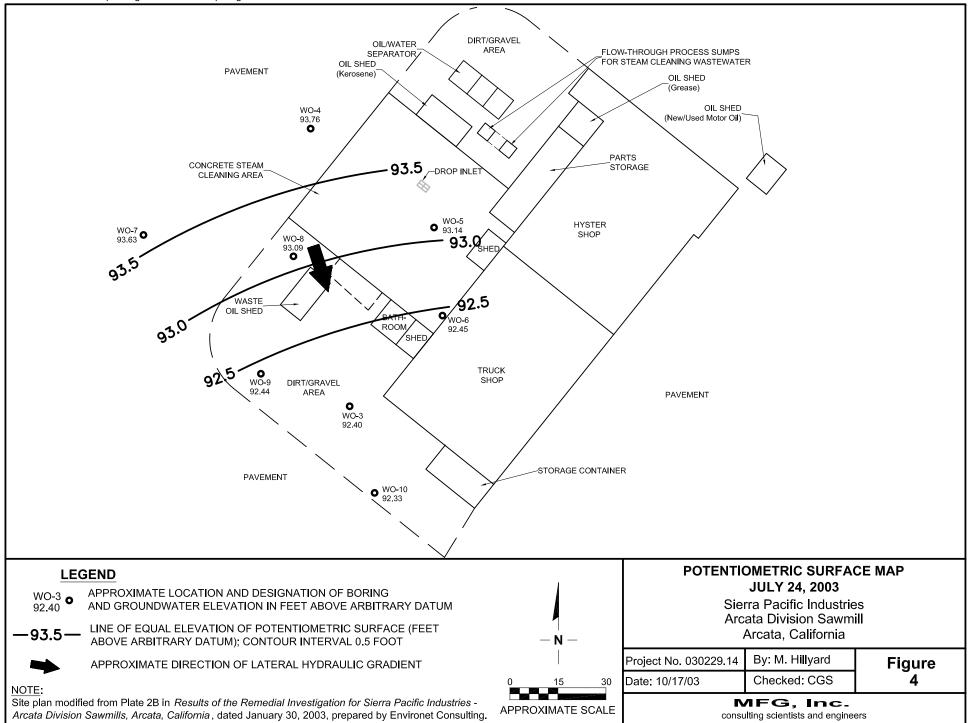

3. Sample WO-1-GW collected from a temporary monitoring well located approximately 6 feet southeast of the former UST (Figure 3).

4. Encountered the waste oil UST during drilling of the boring; therefore, no groundwater sample was collected.


5. The laboratory report indicated that the chromatogram pattern contains resolved peaks within the diesel range that do not resemble diesel.

6. The laboratory report indicated that the chromatogram pattern contains resolved peaks within the motor oil range that do not resemble motor oil.


Oil and Grease was analyzed using EPA Method 1664A with silica gel cleanup. Chlorinated phenols were analyzed using the Canadian Pulp Method. Metals (dissolved) were analyzed using EPA Method 6010B. FIGURES


S:\9300\9329\task_02\04_0119_4q03_fig_01.mxd

APPENDIX A

Humboldt County Division of Environmental Health Boring Permit

• • •		RECEIVED
	f ENVIRONMENTAL HEALTH - HAZARD and BORING PERMIT APPLICATION	OUS MATERIALS UNIT
, WELL		JUL 18 2003
Facility ID # 1	14U526 Permit # /	OF ENVIRONMENTAL HEALTH
Facility Name: Sierra Pacific	Industrias Arceta Sawmill	Division
Site Address: 2293 Samoa Ro.		
Site Owner:		Telephone: 530-378-8000
Address: PO Box 496028 Re	dd: y. CA 96049-6028	AP#:
RP Name: Sierra Pacific Inc		Telephone: 530-378-800
Address: PO Bot 496028 7		<u></u>
Consultant: MFG. Tnc.	<i>d</i> , <i>-</i>	Telephone: 107-1326-19430
Address: 875 Clescen + Way	Arcuta, CA 95518	Reg.#/Type:
Driller: Fisch Environment		Telephone: 209-772-3570
Address: 399 Sheris Place,	Jalley Spring , CA 95252	C-57 Lic.#: 683 865
# On-site		# Off-site
Wells Borings	6 Wells	Borings
Activity: 🖾 Construct 🖾 Destroy 🗖 R	epair/Modify Electrode Type	:
Investigation Type: 🔲 Site Assessment	•	
*Specify:		
Investigation Phase: Initial X Subsequent	Remediation Closure	
Suspected Contaminants:	compounds	
Disposal/Containment for Soil Cuttings: _	Ash Luray 1 55-gallon	drum
Disposal/Containment for Rinsate:	Ashbula, 55-galund	T Jm
Disposal/Containment for Development Wa	iter: Ashberry 55-gollo	ndrum
Permits will not be processed with a	out the following information:	
Scaled Construction Detail	🗹 Appropriate Fees	
□ Detailed Site Plan	Copy of Workplan (if not on file	at HCDEH)
Lead Agency Approval Letter		
Off Site Well Requirements: Legal Right of Entry	Proposed Work Date: 7/24	(03
Off Site Address/Location	/	
Encroachment Permit		
Coastal Zone Permit		

,

HUMBOLDT COUNTY DIVISION of ENVIRONMENTAL HEALTH - HAZARDOUS MATERIALS UNIT WELL and BORING PERMIT APPLICATION

Facility ID # INHUS 26 Permit #

I hereby agree to comply with all laws, ordinances and regulations of the county of Humboldt and State of California pertaining to water well construction. <u>I will contact the Humboldt County Hazardous Materials Unit at (707) 445-6215 five</u> (5) working days prior to commencing this work. I will furnish to the County of Humboldt, Division of Environmental Health, and the owner a legible copy of the State Water Well Completion Report (form DWR 188) within fifteen (15) days after completion of work to obtain final approval of the well(s). I acknowledge that the application will become a permit ONLY after site approval by the Local Implementing Agency (HCDEH, NCRWQCB, DTSC, EPA). I understand this permit is not transferable and expires one hundred twenty (120) days from the date of issuance.

Certificates of Insurance:

- A currently effective General Liability Certificate of Insurance is on file with this office, <u>endorsed to include</u> the Humboldt County Division of Environmental Health as additional named insured.
- A currently effective Worker's Compensation Certificate of Insurance is on file with this office, <u>endorsed to</u> include the Humboldt County Division of Environmental Health as additional named insured.

Signature of Well Driller - no proxies - original signature only in blue ink

- Well identification number and type must be affixed to exterior surface of security structure.
- The applicant is responsible for notifying Underground Services Alert at least 48 hours prior to the scheduled work date.
- A State of California Department of Water resources Well Completion Report (Form DWR 1-88) must be filed within 15 days of completion of work for all well completions and destructions.
- A licensed California C-57 Well Driller is required for all wells and direct push work.

	FOR OFFICE USE ONLY
Permit Approval:	Verimen Genfiel Date: 7.18.2003
Fee: 10612	Date: 7.18-2003 Receipt: 219521
Initial Inspection: _	Date:
Final Inspection:	Date:

7/18/03

£

2

APPENDIX B

Boring Logs

ABBREVIATIONS / SYMBOLS USED IN BORING LOGS

GENERAL

- PID Photoionization Detector
- OVM Organic Vapor Meter
- ppm parts per million in air
- sfc csg surface casing USCS Unitied Soil Classification System
- NGVD National Geodetic Vertical Datum of 1929
- NAVD North American Vertical Datum of 1988
 - NA Not Analyzed

COLORS

v - very

- It light
- dk dark
- yel yellow/yellowish
- brn brown/brownish
- red-brn reddish brown
 - a.a. as above
- (10YR 4/6) Munsell notation (hue value/chroma)

DENSITY / STIFFNESS

Med - Medium

V - Very

GEOTECHNICAL

- L.L. Liquid Limit in percent
- P.I. Plasticity Index in percent
 - K Vertical Hydraulic Conductivity (permeability) in cm/sec

NOTE:

Field soil logging procedures were performed in accordance with ASTM D-2488-93 (Visual-Manual Procedure).

- slt slight or slightly
- bgl below ground level
- DTW depth to water

VF - Very Fine

SAND GRAIN SIZE

- F Fine
- Med Medium
- Crs Coarse

GEOLOGICAL CONTACTS

- - Observed Contact
- ---- Inferred Contact

MOISTURE CONTENT

✓ - Observed top of saturated soil interval

EXPLANATION FOR BORING LOGS

MFG, Inc. consulting scientists and engineers

	MFG, Inc.			L	.0G	OF BORING WO	D-3 (Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: D : 2 d : F	Direct P 2 1/4 ind PVC Lir	ch-O.D. ners	Reviewed By , 4-foot long drive sampler	: Christopher Spill, R.G. ; Ross Steenson, C.HG.
	MFG Project No. 030229.14	Ground Elevatio	n :9	97.60 fe	et abov	/e arbitrary datum	
Depth in Feet	DESCRIPTION		nscs	Sample Interval	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003
0	SAND W/ GRAVEL: pale brn (10YR 6/3) subangular to angular F gravel, dry.	: Med sand,	sw			PID calibrated using 96 ppmv isobutylene. Hand augered boring to 1.5 feet bgl.	
- - 2- -	SAND: grey (10YR 6/1); F sand, trace s angular F gravel, organic material (rootle	ilt, trace ts), dry.				PID = 2.6 ppmv (2.75-3.25	
3-	- moist.		SP	1	30	feet bgl). Mild petroleum odor. Collected soil samples WO-3 (3.25-4.0') and WO-3 (4.0').	
4 - - - 5 - - -							▼ Neat Cement
6 - - 7 - -	CLAY: blk (10YR 2/1); some silt, trace o material, wet.	 rganic		2	6	PID = NA (poor recovery). Collected soil sample WO-3 (6.0-6.5').	
- - 8 - - - -			CL				
9				3	0	PID = NA (no recovery).	
	NOTES: 1. Drilling completed at 10 feet bgl. 2. Installed 1-inch diameter PVC tempor pre-packed sand filter sleeves to a del feet bgl.	ary well with oth of 10					
- 12- -	 Collected groundwater sample WO-3- July 24, 2003. Removed temporary well and grouted on July 24, 2003. 						
13 							
14 — - - 15 —							

	MFG, Inc.	LOG OF BORING WO-4 (Page 1 of 1)					
Arcata Division Sawmill Drillin Arcata, California Sam Sam			Drilling Method : Direct Push Reviewed By Sampler Type : 2 1/4 inch-O.D., 4-foot long drive sampler Sampling Method : PVC Liners				: Christopher Spill, R.G. y : Ross Steenson, C.HG.
	MFG Project No. 030229.14	Ground Elevation	n :9	97.79 f€ 	et abov	ve arbitrary datum	
Depth in Feet	DESCRIPTION		NSCS	Sample Interval	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003
0-	ASPHALT AND BASEROCK.					PID calibrated using 96	
-						ppmv isobutylene.	
1- - - 2-	CLAYEY SAND W/ GRAVEL: brn (10YR 3/3); Med sand, little subangular F gravel, few silt, moist.		SC			PID = 0.0 ppmv (1.0-1.25 feet bgl).	
3-	SILTY SAND W/ CLAY: v dk grey (10YF sand, some silt, few subangular F gravel moist.		SM	1	3		
4	SAND: grey (10YR 6/1); F sand, trace silt, wet.					PID = 0.0 ppmv (4.0-4.5 feet bgl).	×
5 - - - - - - - - - - - - - - - - - - -			SP	2	34	PID = 0.0 ppmv (5.0-5.5 feet bgl). Collected soil samples WO-4 (5.5') and WO-4 (5.5-6.25').	- Neat Cement
7-							
- - 8- -	PEAT: dk brn (10YR 3/3); mostly organic material (fiberous, spongy), few F sand, few silt.		PT			PID = 0.0 ppmv (8.0-8.5 feet bgl).	
- - 9 - - -	SILT: v dk grey brn (10YR 3/2); few F sa clay, organic material (rootlets).	and, few	ML	3	14	Collected soil samples WO-4 (8.5') and WO-4 (8.5-9.25').	
10 		ary well with oth of 10	<u> </u>	11 1	<u>I</u>	<u> </u>	K////
- - - 12- -	 feet bgl. 3. Collected groundwater sample WO-4- July 24, 2003. 4. Removed temporary well and grouted on July 24, 2003. 	GW on					
- 13- -							
14							
- 15-							

	MFG, Inc.			l	_OG	OF BORING W	D-5 (Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: [: 2 d : F	Direct F 2 1/4 in PVC Lii	ch-O.D. ners	Reviewed B , 4-foot long drive sampler	: Christopher Spill, R.G.
	MFG Project No. 030229.14	Ground Elevatio	n :9	96.61 fe	et abov	e arbitrary datum	
Depth in Feet	DESCRIPTION		NSCS	Sample Interval	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003
0-	CONCRETE AND BASEROCK.					PID calibrated using 96	
- - 1- - -	CLAYEY SAND W/ GRAVEL: brn (10YF sand, little subangular F gravel, few silt, i	noist.	SC SM			ppmv isobutylene.	
2-	SILTY SAND W/ CLAY: vdk grey (10YR sand, some silt, few subangular F gravel moist. SAND: grey (10YR 6/1); F sand, trace si	, few clay,	Sivi	1	18	PID = 0.0 ppmv (2.0-2.5 feet bgl).	
3	- wet.	it, moist.		2	12	PID = 4.0 ppmv (3.0-3.25 feet bgl). Collected soil samples WO-5 (3.25') and WO-5 (3.25 to 4.0').	_
5			SP	3	43	PID = 1.9 ppmv (5.5-6.0 feet bgl).	-Neat Cement
- - 7 - - - 8	PEAT: dk brn (10YR 3/3); mostly organic (fiberous, spongy), few F sand, few silt. SILT: v dk grey brn (10YR 3/2); few F sa		РТ			PID = 2.2 ppmv (7.0-7.5' feet bgl). Organic odor.	
9 9 10 11 11 12 13 14 14 14 14	clay, organic material (rootlets).		ML	4	16	Collected soil samples WO-5 (8.0') and WO-5 (8.0-8.75'). PID = 3.2 ppmv (8.75-9.25 feet bgl).	
10	NOTES: 1. Drilling completed at 10 feet bgl. 2. Installed 1-inch diameter PVC tempora pre-packed sand filter sleeves to a dep feet bgl.	oth of 10	1				
12-	 Collected groundwater sample WO-5- July 24, 2003. Removed temporary well and grouted on July 24, 2003. 						
13-							
- 15							

	MFG, Inc.				LOG	OF BORING W	' O-6 (Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: E : 2 id : F	Direct I 2 1/4 ir PVC Li	nch-O.D. ners	, 4-foot long drive sampler	
	MFG Project No. 030229.14	Ground Elevatio	n :9	96.97 f	eet abov	/e arbitrary datum	1
Depth in Feet	DESCRIPTION		USCS	Sample Interval	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003
0	CONCRETE AND BASEROCK.					PID calibrated using 96 ppmv isobutylene.	
1	CLAYEY SAND W/ GRAVEL: brn (10Yf sand, little subangular F gravel, few silt, SILTY SAND W/ CLAY: vdk grey (10YR sand, some silt, few subangular F gravel moist. SAND: grey (10YR 6/1); F sand, trace s	moist. 3/2); Med , few clay,	SC SM	. 1	28	PID = 2.6 ppmv (3.0-3.25 feet bgl).	
4 4 5 - -	- wet.		SP			PID = 2.6 ppmv (4.0-4.5 feet bgl). Collected soil samples WO-6 (4.5') and WO-6 (4.5 to 5.25').	▼ Neat Cement
6 - 7 -	PEAT: dk brn (10YR 3/3); mostly organic (fiberous, spongy), few F sand, few silt.	material	РТ	2	35	PID = 2.6 ppmv (6.5-7.0 feet bgl).	
9	SILT: v dk grey brn (10YR 3/2); few F sa clay, organic material (rootlets).	nd, few	ML	3	24	PID = 2.2 ppmv (8.5-9.0 feet bgl). Collected soil samples WO-6 (9.0') and WO-6 (9.0-9.75').	
10	 NOTES: 1. Drilling completed at 10 feet bgl. 2. Installed 1-inch diameter PVC temporpre-packed sand filter sleeves to a depfeet bgl. 3. Collected groundwater sample WO-6-July 24, 2003. 4. Removed temporary well and grouted on July 24, 2003. 	oth of 10 GW on					

	MFG, Inc.			l	_0G	OF BORING W	O-7 (Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: E : 2 od : F	Direct F 1/4 in VC Lii	ch-O.D. ners	Reviewed B , 4-foot long drive sampler	: Christopher Spill, R.G. y : Ross Steenson, C.HG.
	MFG Project No. 030229.14	Ground Elevatio	n :9	97.93 f€	eet abov		
Depth in Feet	DESCRIPTION		NSCS	Sample Interval	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003
0-	ASPHALT AND BASEROCK.					PID calibrated using 96 ppmv isobutylene.	
1 - - 2 -	CLAYEY SAND W/ GRAVEL: brn (10YF sand, little subangular F gravel, few silt, i	R 3/3); Med moist.	sc			PID = 3.0 ppmv (2.25-2.75	
3-	SILTY SAND W/ CLAY: v dk grey (10YF sand, some silt, few subangular F gravel moist. SAND: grey (10YR 6/1); F sand, trace si	, few clay,	SM	1	22	feet bgl).	
4 - - 5 -	SAND. grey (1011 0/1), 1 Sand, trace si	n, wet.				Collected soil samples WO-7 (4.0') and WO-7 (4.0-4.75'). PID = 2.1 ppmv (4.75-5.25 feet bgl).	_▼Neat Cement
6-			0.5	2	28	PID = 1.2 ppmv (5.75-6.25 feet bgl).	
7-			SP				
8-	- dk brn (10YR 3/2); few silt, trace organ (rootlets).	iic material				Collected soil samples WO-7 (8.0') and WO-7 (8.0-8.75'). PID = 2.2 ppmv (8.75-9.25	
9				3	24	feet bgl).	
	NOTES: 1. Drilling completed at 10 feet bgl. 2. Installed 1-inch diameter PVC tempora pre-packed sand filter sleeves to a dep fact bal	ary well with oth of 10					
- - 12- -	 feet bgl. 3. Collected groundwater sample WO-7- July 24, 2003. 4. Removed temporary well and grouted on July 24, 2003. 						
- 13 - -							
14 							
15-							

	MFG, Inc.			l	_0G		O-8 (Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: [: 2 d : F	Direct F 2 1/4 in PVC Lii	ch-O.D. ners	Reviewed B , 4-foot long drive sampler	: Christopher Spill, R.G. By : Ross Steenson, C.HG.
	MFG Project No. 030229.14	Ground Elevatio	n :9	97.25 f€ 	eet abov	ve arbitrary datum	
Depth in Feet	DESCRIPTION	PTION		Sample Interval	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003
0-	SAND W/ GRAVEL: pale brn (10YR 6/3)	: Med sand,				PID calibrated using 96 ppmv isobutylene.	
- - 1	subangular to angular F gravel, dry.		sw				
2-	SAND: grey (10YR 6/1); F sand, trace s angular F gravel, organic material (rootle	ilt, trace ts), moist.		1	36		
3						PID = 2.6 ppmv (3.0-3.25 feet bgl). Collected soil samples WO-8 (3.25') and WO-8	
4-	- wet.					(3.25-4.0').	
5	- dk brn (10YR 3/2); few silt, trace organ	ic material.	SP	2	34	PID = 0.0 ppmv (5.5-6.0 feet bgl). Collected soil samples WO-8 (6.0') and WO-8	- Neat Cement
7-						(6.0-6.75').	
- - 8 -	PEAT: dk brn (10YR 3/3); mostly organi (fiberous, spongy), few F sand, few silt.	c material	РТ				
9	SILT: v dk grey brn (10YR 3/2); few F sa clay, organic material (rootlets).	and, few	ML	3	18		
	NOTES:						
	 Drilling completed at 10 feet bgl. Installed 1-inch diameter PVC tempora pre-packed sand filter sleeves to a dep feet bgl. 	oth of 10					
	 Collected groundwater sample WO-8- July 24, 2003. Removed temporary well and grouted on July 24, 2003. 						
13							
15							

	MFG, Inc.				LOG	OF BORING W	O-9 (Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: E : 2 d : F	Direct F 2 1/4 in PVC Li	ch-O.D ners	Reviewed E ., 4-foot long drive sampler	
	MFG Project No. 030229.14	Ground Elevatio	n :9	97.67 f	eet abo [,]	ve arbitrary datum I	
Depth in Feet	DESCRIPTION		nscs	Sample Interval	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003
0-	SAND W/ GRAVEL: pale brn (10YR 6/3)	: Med sand,				PID calibrated using 96 ppmv isobutylene.	
-	subangular to angular F gravel, dry.		0.04			ppini isobutyiene.	
1- - - 2-			SW			PID = 0.0 ppmv (1.75-2.25 feet bgl).	
-	SAND: grey (10YR 6/1); F sand, trace s angular F gravel, organic material (rootle	ilt, trace ets), moist.		1	27		
3-							
4-						Collected soil samples	
-			SP			WO-9 (4.0') and WO-9 (4.0-4.75').	
5-	- wet.					PID = 0.0 ppmv (4.75-5.25 feet bgl).	Neat Cement
-							
6-				2	14		
- 7- -	SILT: v dk grey brn (10YR 3/2); few F sa clay, organic material (rootlets).	and, few					
- - 8-						Collected soil samples	
-			ML			WO-9 (8.0') and WO-9 (8.0-8.75').	
9-				3	22	PID = 0.0 ppmv (8.75-9.25 feet bgl).	
-							
10	NOTES:		I	11	1	1	
- - 11	 Drilling completed at 10 feet bgl. Installed 1-inch diameter PVC temporary pre-packed sand filter sleeves to a dep feet bgl. 						
- 12	 Collected groundwater sample WO-9- July 24, 2003. Removed temporary well and grouted on July 24, 2003. 						
- - 13-							
-							
14-							
-							
15-							

	MFG, Inc.			L	OG	OF BORING WC)-10 (Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: [: 2 d : F	PVC Lir	ush ch-O.D. iers	Reviewed B , 4-foot long drive sampler	: Christopher Spill, R.G.
	MFG Project No. 030229.14	Ground Elevatio	n :9	97.30 fe	et abov	/e arbitrary datum	
Depth in Feet	DESCRIPTION		USCS	Sample Interval	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003
0-	SAND W/ GRAVEL: pale brn (10YR 6/3)	: Med sand,				PID calibrated using 96 ppmv isobutylene.	
1- 2- 	subangular to angular F gravel, dry.		SW	1	12	PID = 0.0 ppmv (1.5-2.0 feet bgl).	
3	SAND: grey (10YR 6/1); F sand, trace s angular F gravel, organic material (rootle	ilt, trace tts), moist.				PID = 0.0 ppmv (4.5-5.0 feet bgl).	
5— - - 6— - -	- wet.		SP	2	20	Collected soil samples WO-10 (5.0') and WO-10 (5.0-5.75').	Neat Cement
7	SILT: v dk grey brn (10YR 3/2); few F sa clay, organic material (rootlets).	and, few					
			ML	3	24	PID = 0.0 ppmv (8.5-9.0 feet bgl). Collected soil samples WO-10 (9.0') and WO-10 (9.0-9.75').	
10	NOTES: 1. Drilling completed at 10 feet bgl. 2. Installed 1-inch diameter PVC tempor pre-packed sand filter sleeves to a dep feet bgl.	ary well with oth of 10	<u> </u>		<u> </u>		
- - 12- - -	 Teet bgi. Collected groundwater sample WO-10 July 24, 2003. Removed temporary well and grouted on July 24, 2003. 						
13- 							
14 							
- 15—							

APPENDIX C

Laboratory Report and Chain-of-Custody Records for Soil Samples

HEUL ---AUG 1 5 2003 MFG, Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

12 August 2003

MFG, Inc Attn: Ed Conti 180 Howard St. Suite 200 San Francisco, CA 94105-2941 RE: SPI-Arcata/Task #4 Work Order: A307601

Enclosed are the results of analyses for samples received by the laboratory on 07/25/03 15:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Juny M

Cheryl Watson For Sheri L. Speaks Project Manager

----AUG 1 5 2003

MFG, Inc.

208 Mason St. Ukiah, California 95482

Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Cheryl Watson For Sheri L. Speaks Project Manager

Page 1 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Client Code

Client PO/Reference

Report Date: 08/12/03 11:41

Project ID: SPI-Arcata/Task #4

Project No: 030229.4

Order Number A307601

Receipt Date/Time 07/25/2003 15:40

MFGINC

CHEMICAL EXAMINATION REPORT

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
WO-3 (4.0')	A307601-01	Soil	07/24/03 09:00	07/25/03 15:40
WO-3 (3.25-4.0')	A307601-02	Soil	07/24/03 09:00	07/25/03 15:40
WO-3 (6.0-6.5')	A307601-03	Soil	07/24/03 09:20	07/25/03 15:40
WO-4 (5.5')	A307601-04	Soil	07/24/03 09:50	07/25/03 15:40
WO-4 (5.5-6.25')	A307601-05	Soil	07/24/03 09:50	07/25/03 15:40
WO-4 (8.5')	A307601-06	Soil	07/24/03 10:10	07/25/03 15:40
WO-4 (8.5-9.25')	A307601-07	Soil	07/24/03 10:10	07/25/03 15:40
WO-5 (3.25')	A307601-08	Soil	07/24/03 10:40	07/25/03 15:40
WO-5 (3.25-4.0')	A307601-09	Soil	07/24/03 10:40	07/25/03 15:40
WO-5 (8.0')	A307601-10	Soil	07/24/03 11:00	07/25/03 15:40
WO-5 (8.0-8.75')	A307601-11	Soil	07/24/03 11:00	07/25/03 15:40
WO-6 (4.5')	A307601-12	Soil	07/24/03 11:30	07/25/03 15:40
WO-6 (4.5-5.25')	A307601-13	Soil	07/24/03 11:30	07/25/03 15:40
WO-6 (9.0')	A307601-14	Soil	07/24/03 11:50	07/25/03 15:40
WO-6 (9.0-9.75')	A307601-15	Soil	07/24/03 11:50	07/25/03 15:40
WO-7 (4.0')	A307601-16	Soil	07/24/03 12:15	07/25/03 15:40
WO-7 (4.0-4.75')	A307601-17	Soil	07/24/03 12:15	07/25/03 15:40
WO-7 (8.0')	A307601-18	Soil	07/24/03 12:40	07/25/03 15:40
WO-7 (8.0-8.75')	A307601-19	Soil	07/24/03 12:40	07/25/03 15:40
WO-8 (3.25')	A307601-20	Soil	07/24/03 13:10	07/25/03 15:40
WO-8 (3.25-4.0')	A307601-21	Soil	07/24/03 13:10	07/25/03 15:40
WO-8 (6.0')	A307601-22	Soil	07/24/03 13:30	07/25/03 15:40
WO-8 (6.0-6.75')	A307601-23	Soil	07/24/03 13:30	07/25/03 15:40
WO-9 (4.0')	A307601-24	Soil	07/24/03 14:00	07/25/03 15:40

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

FUEIVEN AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 90

	rd St. Suite 200 isco, CA 94105-2941	Project No:	: 08/12/03 11:41 : 030229.4 : SPI-Arcata/Task #4			
Order Number A307601	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC		Client PO/Refe	rence	
WO-9 (4.0-4.75')		A307601-25	Soil	07/24/03 14:00	07/25/03 15:40	
WO-9 (8.0')		A307601-26	Soil	07/24/03 14:20	07/25/03 15:40	
WO-9 (8.0-8.75')		A307601-27	Soil	07/24/03 14:20	07/25/03 15:40	
WO-10 (5.0')		A307601-28	Soil	07/24/03 14:45	07/25/03 15:40	
WO-10 (9.0')		A307601-29	Soil	07/24/03 15:00	07/25/03 15:40	
WO-10 (9.0-9.75')		A307601-30	Soil	07/24/03 15:00	07/25/03 15:40	
WO-10 (5.0-5.75')		A307601-31	Soil	07/24/03 14:45	07/25/03 15:40	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Any M Sor

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

07/25/2003 15:40 MFGINC

Alpha Analytical Laboratories, Inc.

Client Code

		•	J		,,			
	METHOD			ANALYZED		RESULT	PQL	NOTI
WO-3 (4.0') (A307601-01)			Sample Ty	pe: Soil		Sampled: 07/24/03 09:00		
Volatile Organic Compounds by EP	A Methods 8260B	/5035						
Acetone	8260B	AH30109	07/25/03	08/01/03	1	0.10 mg/kg	0.020	
Benzene	"	"	"	**	"	ND "	0.0050	
Bromobenzene	"	"	"	"		ND "	0.0050	
Bromochloromethane		"	н	"		ND "	0.0050	
Bromodichloromethane	"	"	"	**	"	ND "	0.0050	
Bromoform	t1	*	**	11	**	ND "	0.0050	
Bromomethane	"	"	**	"	"	ND "	0.0050	
n-Butylbenzene	**	н	11	**	"	ND "	0.0050	
sec-Butylbenzene	"		n	"	"	ND "	0.0050	
tert-Butylbenzene	"	11	н	**	**	ND "	0.0050	
Carbon tetrachloride	"	**		"	"	ND "	0.0050	
Chlorobenzene		**	"	"	**	ND "	0.0050	
Chloroethane	"	**	**	"	"	ND "	0.0050	
Chloroform	"	*	"	11	**	ND "	0.0050	
Chloromethane		"	"	"	**	ND "	0.0050	
2-Chlorotoluene	11	**	**	11	**	ND "	0.0050	
4-Chlorotoluene	п	**	"	"	**	ND "	0.0050	
Dibromochloromethane	"	**	**	"	н	ND "	0.0050	
1,2-Dibromo-3-chloropropane			**		"	ND "	0.0050	
1,2-Dibromoethane (EDB)	"	"	**	"	11	ND "	0.0050	
Dibromomethane	"	11	"	"	"	ND "	0.0050	
1,2-Dichlorobenzene	"	"	. 11	**	11	ND "	0.0050	
1,3-Dichlorobenzene	**	*	"	11	"	ND "	0.0050	
1,4-Dichlorobenzene	"	"		**	"	ND "	0.0050	
Dichlorodifluoromethane	"	**	"	"	"	ND "	0.0050	
1,1-Dichloroethane	**	**	**		"	ND "	0.0050	
1,2-Dichloroethane	n	*1	"	"		ND "	0.0050	
1,1-Dichloroethene	**	• • •	17	"	"	ND "	0.0050	
cis-1,2-Dichloroethene	**	**	**	**	"	ND "	0.0050	
trans-1,2-Dichloroethene	**	**	**	"		ND "	0.0050	
1,2-Dichloropropane	**	n	**	**	**	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

PEUEIVEN

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code MFGINC

Client PO/Reference

		Alpha 4	Analytica	l Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTI
WO-3 (4.0') (A307601-01)			Sample Ty	pe: Soil		Sampled: 07/24/03 09:00		
Volatile Organic Compounds by E	PA Methods 8260B	/5035 (cont'	d)					
1,3-Dichloropropane	8260B	"	"	08/01/03	"	ND "	0.0050	
2,2-Dichloropropane	"	"	"	**	"	ND "	0.0050	
1,1-Dichloropropene	"	"	"	"	"	ND "	0.0050	
cis-1,3-Dichloropropene	"	**	**	"	"	ND "	0.0050	
trans-1,3-Dichloropropene	**	"		"	"	ND "	0.0050	
Ethylbenzene	11	۳.	11	"	**	ND "	0.0050	
Hexachlorobutadiene	"	**	11	"	"	ND "	0.0050	
Isopropylbenzene	"	"	"	"	"	ND "	0.0050	
p-Isopropyltoluene		"	**		.11	ND "	0.0050	
Methyl ethyl ketone	"	"		**	**	0.015 "	0.015	
Methyl isobutyl ketone	**	**		11	**	ND "	0.010	
Methyl tert-butyl ether	**	м		**	**	ND "	0.0050	
Methylene chloride	"	"	"	"	"	ND "	0.0050	
Naphthalene	**	"	"	"	H	ND "	0.0050	
n-Propylbenzene	"	"	"	"	**	ND "	0.0050	
Styrene	**	н	"	"	**	ND "	0.0050	
1,1,1,2-Tetrachloroethane	"	"	"	**	"	ND "	0.0050	
1,1,2,2-Tetrachloroethane	"	"		**	"	ND "	0.0050	
Tetrachloroethene	"	"	"	"	"	ND "	0.0050	
Toluene		"	**	**		ND "	0.0050	
1,2,3-Trichlorobenzene				"	"	ND "	0.0050	
1,2,4-Trichlorobenzene		**		"	n	ND "	0.0050	
1,1,1-Trichloroethane	*1		и.			ND "	0.0050	
1,1,2-Trichloroethane		"	"	**	"	ND "	0.0050	
Trichloroethene	**		н	"	"	ND "	0.0050	
Trichlorofluoromethane	"	"		**	"	ND "	0.0050	
Trichlorotrifluoroethane	"		**	**	"	ND "	0.0050	
1,2,3-Trichloropropane	"	**	**	**		ND "	0.0050	
1,2,4-Trimethylbenzene	н	"	**	"	**	ND "	0.0050	
1,3,5-Trimethylbenzene	"	"	"	••	"	ND "	0.0050	
Vinyl chloride	"	*	17	**	**	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

CECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha 🛿 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT MFG. Inc 180 Howard St. Suite 200 Report Date: 08/12/03 11:41 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Order Number Receipt Date/Time Client Code Client PO/Reference A307601 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL NOTE WO-3 (4.0') (A307601-01) Sample Type: Soil Sampled: 07/24/03 09:00 Volatile Organic Compounds by EPA Methods 8260B/5035 (cont'd) m,p-Xylene 8260B . 08/01/03 ND " 0.0050 ... o-Xylene ,, ••, ND " 0.0050 •• ** Xylenes (total) ... ND " 0.0050 Surrogate: Dibromofluoromethane ,, 116 % 57-144 Surrogate: Toluene-d8 " .. 78.8 % 65-127 .. Surrogate: Bromofluorobenzene ,, " 86.4 % 56-130 **TPH Gasoline by GCFID/5035 TPH as Gasoline** 8015GRO AH30510 07/25/03 07/30/03 1 1.0 1.1 mg/kg " Surrogate: 1,4-Bromofluorobenzene " " " 115 % 60-156 WO-3 (3.25-4.0') (A307601-02) Sample Type: Soil Sampled: 07/24/03 09:00 Metals by EPA 6000/7000 Series Methods Cadmium EPA 6010 AG32804 07/29/03 07/29/03 1 ND mg/kg 1.0 Chromium 11 48 " 5.0 " Copper ** 29 " 10 •• 54 " Nickel .. 10 Lead 12 " 5.0 Zinc 53 " 10 Polychlorinated Biphenyls by EPA Method 8080A PCB-1016 8080 AH31117 07/31/03 08/07/03 1 ND mg/kg 0.20 PCB-1221 ** " ND " 0.20 ** PCB-1232 ** ., .. ND " 0.20 PCB-1242 ** .. ** ND " 0.20 PCB-1248 11 ND " 0.20 PCB-1254 ND " 0.20 PCB-1260 •• ., " ND " 0.20 ., PCB-1262 н ND " 0.20 Surrogate: Tetrachloro-meta-xylene " " " n % 10-150 S-06

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Surrogate: Decachlorobiphenyl

,,

"

..

,,

lung M

%

10-150

Cheryl Watson For Sheri L. Speaks Project Manager

S-06

8/12/03

Page 5 of 90

FEUEIVEU

AUG 1 5 2003

Report Date: 08/12/03 11:41 Project No: 030229.4

Project ID: SPI-Arcata/Task #4

MFG, Inc.

Alpha ∦Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 hone: (707) 468-0401 • Fax: (707) 468-5267

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 6 of 90

MFG, Inc
180 Howard St. Suite 200
San Francisco, CA 94105-2941
Attn: Ed Conti

Order Number A307601	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/Refere	nce	
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-3 (3.25-4.0') (A307601-02)			Sample Ty	pe: Soil		Sampled: 07/24/03 09:00		
Chlorinated Phenols by Canadian	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	**	**	н		"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	11	**	"	**	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	11	н	"	**	**	ND "	1.0	
Pentachlorophenol	*	н	**	"	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		71.8 % 23-1	40	*******
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified					÷	
TPH as Diesel	8015DRO	AG33112	07/31/03	08/01/03	20	110 mg/kg	20	D-13
TPH as Motor Oil	*	11	11	"	"	99 "	40	
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		53.9 % 21-1	10	
WO-3 (6.0-6.5') (A307601-03)			Sample Ty	pe: Soil		Sampled: 07/24/03 09:20		
Metals by EPA 6000/7000 Series M	lethods			-		•		
Cadmium	EPA 6010	AG32804	07/29/03	07/29/03	1	ND mg/kg	1.0	
Chromium	"	"	"		"	47 "	5.0	
Copper	n			**	**	26 "	10	
Nickel		11	"	"	**	60 "	10	
Lead	"	"	"	**	"	13 "	5.0	
Zinc	**	"	"	"	n	51 "	10	
Polychlorinated Biphenyls by EPA	Method 8080A							
PCB-1016	8080	AH31117	07/31/03	08/07/03	4	ND mg/kg	0.80	R-01
PCB-1221	"	"	"		"	ND "	0.80	
PCB-1232	11	"	"		**	ND "	0.80	
PCB-1242	**	**	**	"	н	ND "	0.80	
PCB-1248	**	"	"	"	"	ND "	0.80	
PCB-1254	**	**	"	**	1	ND "	0.20	
PCB-1260	"	"	"	**		ND "	0.20	
PCB-1262	"	"	"		*	ND "	0.20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	CI	HEMICA	L EXAN	MINATIO	N REPORT				Page 7 of 90
MFG, Inc 180 Howard S San Francisco Attn: Ed Cont	St. Suite 200 , CA 94105-2941				Report Date: Project No:				
Order Number A307601	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/	Reference		
	· · · · · · · · · · · · · · · · · · ·	Alpha A	nalytical	Laborato	ries, Inc.	, <u></u>	· · · · · · · · · · · · · · · · · · ·		
	METHOD			ANALYZED		RESULT		PQL	NOTE
WO-3 (6.0-6.5') (A307601-03)			Sample Ty			oled: 07/24/03 09	:20		
Polychlorinated Biphenyls by El									
Surrogate: Tetrachloro-meta-xy Surrogate: Decachlorobipheny		"	"	08/07/03 "		% %	10-150 10-150		S-06 S-06
Chlorinated Phenols by Canadia	an Pulp Method								
2,4,6-Trichlorophenol	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg		1.0	
2,3,5,6-Tetrachlorophenol	**	**	"	Ħ	11	ND "		1.0	
2,3,4,6-Tetrachlorophenol	"	н	**		н	ND "		1.0	
2,3,4,5-Tetrachlorophenol		п		"	*1	ND "		1.0	
Pentachlorophenol	11		n	"	"	ND "		1.0	
Surrogate: Tribromophenol	"	"	"	"		67.7 %	23-140		
TPH as Diesel and Motor Oil by	EPA Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AG33112	07/31/03	08/01/03	10	82 mg/kg		10	D-13
TPH as Motor Oil	"	"	"	"	"	150 "		20	2.10
Surrogate: 1,4-Bromofluorober	nzene "	"	"	11		82.3 %	21-110		
WO-4 (5.5') (A307601-04)			Sample Ty	me: Soil	Sam	pled: 07/24/03 09	0.50		
Volatile Organic Compounds by	y EPA Methods 8260B/5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	person		prod 0772 1700 0.			
Acetone	8260B	AH30109	07/25/03	08/01/03	1	0.029 mg/kg		0.020	
Benzene	11	"	"	"		ND "		0.0050	
Bromobenzene	"	n	"	n		ND "		0.0050	
Bromochloromethane	**	н	"	11	**	ND "		0.0050	
Bromodichloromethane	11	**	**	**	"	ND "		0.0050	
Bromoform	"	"	"	"	"	ND "		0.0050	
Bromomethane	"	"	**	"	"	ND "		0.0050	
n-Butylbenzene	**	n	**	"	"	ND "		0.0050	
sec-Butylbenzene	n		17	**	"	ND "		0.0050	
tert-Butylbenzene	11		"	**	"	ND "		0.0050	
Carbon tetrachloride		**	"	"	"	ND "		0.0050	
Chlorobenzene	**	"	"	"	н	ND "		0.0050	
Chloroethane	"	"	"	**	**	ND "		0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Uny WITSon

Cheryl Watson For Sheri L. Speaks Project Manager

FREIVED

AUG 1 5 2003

MFG, Inc.

Alpha 🛿 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 8 of 90

MFG, Inc
180 Howard St. Suite 200
San Francisco, CA 94105-2941
Attn: Ed Conti

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

07/25/2003 15:40

Receipt Date/Time

Alpha Analytical Laboratories, Inc.

Client Code

MFGINC

	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-4 (5.5') (A307601-04)			Sample Ty	ype: Soil		Sampled: 07/24/03 09:50		
Volatile Organic Compounds by EP	A Methods 8260B	/5035 (cont'o	l)					
Chloroform	8260B	"	**	08/01/03	n	ND "	0.0050	
Chloromethane	"	n	"	"	11	ND "	0.0050	
2-Chlorotoluene	"	"	"	**	"	ND "	0.0050	
4-Chlorotoluene	"	"	**	**	"	ND "	0.0050	
Dibromochloromethane	**	"	**	n		ND "	0.0050	
1,2-Dibromo-3-chloropropane	**	**	**	**	**	ND "	0.0050	
1,2-Dibromoethane (EDB)	**	11	n	11	"	ND "	0.0050	
Dibromomethane	"	"	11	н	H	ND "	0.0050	
1,2-Dichlorobenzene	"	"	"	"	*1	ND "	0.0050	
1,3-Dichlorobenzene	"	**	**	"		ND "	0.0050	
1,4-Dichlorobenzene	*1	**	**	**	*	ND "	0.0050	
Dichlorodifluoromethane	"	"		11		ND "	0.0050	
1,1-Dichloroethane		"	n	"	**	ND "	0.0050	
1,2-Dichloroethane		"	"	"	"	ND "	0.0050	
1,1-Dichloroethene	"	**	"	"		ND "	0.0050	
cis-1,2-Dichloroethene	11	*		"	"	ND "	0.0050	
trans-1,2-Dichloroethene	11	н	"	"	**	ND "	0.0050	
1,2-Dichloropropane	"	н	"	*1	11	ND "	0.0050	
1,3-Dichloropropane	*1	**	**	**	"	ND "	0.0050	
2,2-Dichloropropane	"	**	**	*	"	ND "	0.0050	
1,1-Dichloropropene	**	"	**	**	"	ND "	0.0050	
cis-1,3-Dichloropropene	**	11	"	"	· #	ND "	0.0050	
trans-1,3-Dichloropropene	14	**	*1	"	17	ND "	0.0050	
Ethylbenzene	"	"	11	. 11	**	ND "	0.0050	
Hexachlorobutadiene	н	"	н	17	**	ND "	0.0050	
Isopropylbenzene	11	"	"	11	"	ND "	0.0050	
p-Isopropyltoluene	**	11	**	**	"	ND "	0.0050	
Methyl ethyl ketone	"	"	"	"		ND "	0.015	
Methyl isobutyl ketone	**	"	"	**	"	ND "	0.010	
Methyl tert-butyl ether	"	"	"	**	n	ND "	0.0050	
Methylene chloride	"	"	n	**	**	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M Son

Cheryl Watson For Sheri L. Speaks Project Manager

CEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 9 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307601

Project No: 030229.4 Project ID: SPI-Arcata/Task #4 Client PO/Reference

Report Date: 08/12/03 11:41

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-4 (5.5') (A307601-04)			Sample Typ	e: Soil	·····	Sampled: 07/24/03 09:5		
Volatile Organic Compounds by EPA	Methods 8260B/	5035 (cont'	d)			- ,		
Naphthalene	8260B	"	"	08/01/03	**	ND "	0.0050	
n-Propylbenzene		"	**	"	"	ND "	0.0050	
Styrene	••		н	н	"	ND "	0.0050	
1,1,1,2-Tetrachloroethane	"	11	**	"	"	ND "	0.0050	
1,1,2,2-Tetrachloroethane	**	**	11	"	**	ND "	0.0050	
Tetrachloroethene	"	"	"	"	н	ND "	0.0050	
Toluene	11	"	"	"	"	ND "	0.0050	
1,2,3-Trichlorobenzene	н	"	**	"	"	ND "	0.0050	
1,2,4-Trichlorobenzene	11	"	"	"		ND "	0.0050	
1,1,1-Trichloroethane	**	"	"	"	"	ND "	0.0050	
1,1,2-Trichloroethane	11	*1	"	"	"	ND "	0.0050	
Trichloroethene	**	**	"	"	н	ND "	0.0050	
Trichlorofluoromethane	**	11	"	"	"	ND "	0.0050	
Trichlorotrifluoroethane			**	**	"	ND "	0.0050	
1,2,3-Trichloropropane	н	"	"	••	**	ND "	0.0050	
1,2,4-Trimethylbenzene	п	**	"	**	"	ND "	0.0050	
1,3,5-Trimethylbenzene	"	"	**	95	н	ND "	0.0050	
Vinyl chloride	"	"		**		ND "	0.0050	
m,p-Xylene	"	"	"	**	**	ND "	0.0050	
o-Xylene	U	**		"	**	ND "	0.0050	
Xylenes (total)	н	**		n	11	ND "	0.0050	
Surrogate: Dibromofluoromethane	"	"	#	"		126 %	57-144	·····
Surrogate: Toluene-d8	"	n	"	"		88.4 %	65-127	
Surrogate: Bromofluorobenzene	"	"	"	"		72.4 %	56-130	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 10 of 90

MFG, Inc
180 Howard St. Suite 200
San Francisco, CA 94105-2941
Attn: Ed Conti

Order Number

A307601

Receipt Date/Time

07/25/2003 15:40

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Client Code MFGINC

		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-4 (5.5') (A307601-04) TPH Gasoline by GCFID/5035		l	Sample Ty	oe: Soil		Sampled: 07/24/03 09:50)	
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	2.3 mg/kg	1.0	
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		84.0 % 6	0-156	
WO-4 (5.5-6.25') (A307601-05)			Sample Ty	pe: Soil		Sampled: 07/24/03 09:50)	
Metals by EPA 6000/7000 Series Metho	ods							
Cadmium	EPA 6010	AG32804	07/29/03	07/29/03	1	ND mg/kg	1.0	
Chromium	"	и	11	**		33 "	5.0	
Copper	**	**	11	"	n	22 "	10	
Nickel		"	"	**	**	36 "	10	
Lead	"	n	n	**	"	10 "	5.0	
Zinc	**	"	"	"	"	38 "	10	
Polychlorinated Biphenyls by EPA Me	thod 8080A							
PCB-1016	8080	AH31117	07/31/03	08/07/03	1	ND mg/kg	0.20	
PCB-1221	**	"		"	**	ND "	0.20	
PCB-1232	**		"	"	н	ND "	0.20	
PCB-1242	"	"	H	+1	"	ND "	0.20	
PCB-1248		"	17	**	n	ND "	0.20	
PCB-1254	**	**	"	"	"	ND "	0.20	
PCB-1260	**	**	"	"	"	ND "	0.20	
PCB-1262	.,	12	n	n	"	ND "	0.20	
Surrogate: Tetrachloro-meta-xylene	"	"	"	"		%	10-150	S-0
Surrogate: Decachlorobiphenyl	"	"	"	"		%	10-150	S-0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

Chloroform

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

RECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 11 of 90

180 San	G, Inc Howard St. Suite 200 Francisco, CA 94105-2941 I: Ed Conti		Project No:	08/12/03 11:41 030229.4 SPI-Arcata/Task #4
Order Number A307601	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC		Client PO/Reference

Alpha Analytical Laboratories, Inc. NOTE BATCH PREPARED ANALYZED DILUTION RESULT PQL METHOD WO-4 (5.5-6.25') (A307601-05) Sample Type: Soil Sampled: 07/24/03 09:50 **Chlorinated Phenols by Canadian Pulp Method** 07/28/03 ND mg/kg 07/26/03 1.0 2,4,6-Trichlorophenol EnvCan AG32909 1 2,3,5,6-Tetrachlorophenol ** ** . ** ND " 1.0 ND " .. 1.0 2,3,4,6-Tetrachlorophenol ND " 1.0 2,3,4,5-Tetrachlorophenol ** ** .. . н ND " 1.0 Pentachlorophenol Surrogate: Tribromophenol " " 71.8 % 23-140 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG33112 07/31/03 08/01/03 20 62 mg/kg 20 D-09 н 840 " 40 **TPH as Motor Oil** Surrogate: 1,4-Bromofluorobenzene " " " " 93.5 % 21-110 WO-4 (8.5') (A307601-06) Sample Type: Soil Sampled: 07/24/03 10:10 Volatile Organic Compounds by EPA Methods 8260B/5035 Acetone 8260B AH30109 07/25/03 08/01/03 1 1.3 mg/kg 0.034 C-01 • Benzene ND " 0.0084 ** ., Bromobenzene ND " 0.0084 11 ... Bromochloromethane ND " 0.0084 Bromodichloromethane ND " 0.0084 ., Bromoform ND " 0.0084 ** ., Bromomethane ND " 0.0084 11 " ,, n-Butylbenzene ND " 0.0084 .. ., н sec-Butylbenzene ND " 0.0084 ... ** ... " tert-Butylbenzene ND " 0.0084 ... ,, Carbon tetrachloride ND " 0.0084 ., Chlorobenzene ND " 0.0084 Chloroethane ND " 0.0084

••

**

.,

.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

ND "

ND "

ND "

ND "

Cheryl Watson For Sheri L. Speaks Project Manager

8/12/03

0.0084

0.0084

0.0084

0.0084

AUG 1 5 2003

· · · ·

MFG, Inc.

Alpha Analytical Laboratories Inc.

Receipt Date/Time

07/25/2003 15:40

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 12 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPAREI	D ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-4 (8.5') (A307601-06)	-	5	Sample Ty	pe: Soil	San	npled: 07/24/03 10:10		
Volatile Organic Compounds by EP	A Methods 8260B/	5035 (cont'd)						
Dibromochloromethane	8260B	н	"	08/01/03		ND "	0.0084	
1,2-Dibromo-3-chloropropane	*	"	"	**	**	ND "	0.0084	
1,2-Dibromoethane (EDB)	**	"	н	"	"	ND "	0.0084	
Dibromomethane	**	"	11	"	Ħ	ND "	0.0084	
1,2-Dichlorobenzene	"	. 11	"	"	"	ND "	0.0084	
1,3-Dichlorobenzene	**	**	11	"	**	ND "	0.0084	
1,4-Dichlorobenzene	11	59		"	**	ND "	0.0084	
Dichlorodifluoromethane	11	"	"	"	"	ND "	0.0084	
1,1-Dichloroethane	н	"	"	"	**	ND "	0.0084	
1,2-Dichloroethane	n	"	**	**	11	ND "	0.0084	
1,1-Dichloroethene	н	"	11	"	н	ND "	0.0084	
cis-1,2-Dichloroethene	"	"	"	11	"	ND "	0.0084	
trans-1,2-Dichloroethene	"	"	"	**	11	ND "	0.0084	
1,2-Dichloropropane	"	"	**	12	"	ND "	0.0084	
1,3-Dichloropropane		"	**	19	н	ND "	0.0084	
2,2-Dichloropropane	н	"	**	n	**	ND "	0.0084	
1,1-Dichloropropene	н	**	**	**		ND "	0.0084	
cis-1,3-Dichloropropene	Ħ	н	**	"	81	ND "	0.0084	
trans-1,3-Dichloropropene	**	**	**	**	**	ND "	0.0084	
Ethylbenzene	n	**	"	11		ND "	0.0084	
Hexachlorobutadiene	"	"	н	"		ND "	0.0084	
Isopropylbenzene	**		11	**	"	ND "	0.0084	
p-Isopropyltoluene	**		**	18	"	ND "	0.0084	
Methyl ethyl ketone	**		"	"		0.15 "	0.025	
Methyl isobutyl ketone	"	**	**	11	**	ND "	0.017	
Methyl tert-butyl ether	"	**	"	"	"	ND "	0.0084	
Methylene chloride	"	. **	11	"	"	ND "	0.0084	
Naphthalene	tt	**	**	"	"	ND "	0.0084	
n-Propylbenzene	"	*	**	**	n	ND "	0.0084	
Styrene	**	"	"	**	*	ND "	0.0084	
1,1,1,2-Tetrachloroethane	"	"		"	"	ND "	0.0084	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

n---AUG 1 5 2003 MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 13 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601

Receipt Date/Time

07/25/2003 15:40

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

		Alpha A	nalytical	Laborator	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-4 (8.5') (A307601-06)		2	Sample Ty	oe: Soil		Sampled: 07/24/03 10:1	0	
Volatile Organic Compounds by EPA N	1ethods 8260B/	5035 (cont'd))					
1,1,2,2-Tetrachloroethane	8260B	"	11	08/01/03	**	ND "	0.0084	
Tetrachloroethene	**	"	**	"	"	ND "	0.0084	
Toluene	"	"	H	"	**	ND "	0.0084	
1,2,3-Trichlorobenzene	"	**	**		"	ND "	0.0084	
1,2,4-Trichlorobenzene	"	**	**	"	"	ND "	0.0084	
1,1,1-Trichloroethane	**	**		"	"	ND "	0.0084	
1,1,2-Trichloroethane	**		11	"	н	ND "	0.0084	
Trichloroethene	11	"	"	"	́н	ND "	0.0084	
Trichlorofluoromethane	"	**	n		11	ND "	0.0084	
Trichlorotrifluoroethane	**	17	"	**	**	ND "	0.0084	
1,2,3-Trichloropropane	"	**	"	*	"	ND "	0.0084	
1,2,4-Trimethylbenzene	"	"	**	"	*	ND "	0.0084	
1,3,5-Trimethylbenzene	"	"	11	**		ND "	0.0084	
Vinyl chloride	"		"	**	"	ND "	0.0084	
m,p-Xylene	"	н	11	**	"	ND "	0.0084	
o-Xylene	**	н	"	"		ND "	0.0084	
Xylenes (total)	**	**	"	"	**	ND "	0.0084	
Surrogate: Dibromofluoromethane	"	"	"	11		115 %	57-144	
Surrogate: Toluene-d8	"	"	"	"		88.0 %	65-127	
Surrogate: Bromofluorobenzene	"	"	"	"		78.0 %	56-130	
TPH Gasoline by GCFID/5035								
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	2.3 mg/kg	1.0	G-
Surrogate: 1,4-Bromofluorobenzene	"	"	"	n		112 %	60-156	
WO-4 (8.5-9.25') (A307601-07)			Sample Ty	pe: Soil		Sampled: 07/24/03 10:3	10	
Metals by EPA 6000/7000 Series Metho	ods							
Cadmium	EPA 6010	AG32804	07/29/03	07/29/03	1	ND mg/kg	1.0	
Chromium	**			н	11	6.4 "	5.0	
Copper	**	"	**	"	**	ND "	10	
Nickel	"	**	"			ND "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

PECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 14 of 90

	C.		ALI L'ARI	un Alto	IN MELONI				age 14 01 70
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti Order Number			Cli	ent Code	Report Date Project No Project II	o: 030229.4	ask #4		
A307601	07/25/2003 15:40			FGINC					
		Alpha A	nalytical	Laborato	ries, Inc.	· · · · · · · · · · · · · · · · · · ·			*****************
	METHOD	-	-	ANALYZED		RESULT		PQL	NOTE
WO-4 (8.5-9.25') (A307601-07)			Sample Ty	pe: Soil	Sai	mpled: 07/24/03 10:	:10		
Metals by EPA 6000/7000 Series M	lethods (cont'd)		• •						
Lead	EPA 6010	"		07/29/03	**	ND "		5.0	
Zinc	17	"	"	11	"	ND "		10	
Polychlorinated Biphenyls by EPA	Method 8080A								
PCB-1016	8080	AH31117	07/31/03	08/07/03	1	ND mg/kg		0.20	
PCB-1221	**	"	"	"	11	ND "		0.20	
PCB-1232	"	"	"	**	"	ND "		0.20	
PCB-1242		11	"	11	**	ND "		0.20	
PCB-1248	**	"	**	**	**	ND "		0.20	
PCB-1254	**	"	"	**		ND "		0.20	
PCB-1260	11	"	n		"	ND "		0.20	
PCB-1262	"	н	**	**	"	ND "		0.20	
Surrogate: Tetrachloro-meta-xyle	ne "	"	"	"		%	10-150		S-06
Surrogate: Decachlorobiphenyl	"	"	"	"		%	10-150		S-06
Chlorinated Phenols by Canadian	Pulp Method								
2,4,6-Trichlorophenol	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg		1.0	
2,3,5,6-Tetrachlorophenol	"	*	11	**	н	ND "		1.0	
2,3,4,6-Tetrachlorophenol	"	"	**	**	"	ND "		1.0	
2,3,4,5-Tetrachlorophenol	"	"	"	11	21	ND "		1.0	
Pentachlorophenol	н	**	"	**	ŧt	ND "		1.0	
Surrogate: Tribromophenol	"	n	"	"		74.2 %	23-140		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M For

Cheryl Watson For Sheri L. Speaks Project Manager

DECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	C	IFMIC	AT TYAN		N REPORT			Page 15 of 90
MFG, Inc 180 Howard St. San Francisco, 6 Attn: Ed Conti	Suite 200	HEIVII CA	AL EAAr	MINATIO	Report Date Project No	: 08/12/03 11:4 : 030229.4 : SPI-Arcata/T		Fage 13 01 90
Order Number A307601	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/I	Reference	
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQI	. NOTE
WO-4 (8.5-9.25') (A307601-07)			Sample Ty	pe: Soil	San	npled: 07/24/03 10	:10	
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AG33112	07/31/03	08/02/03	1	6.4 mg/kg	1.0	D-09
TPH as Motor Oil	11	11	11	**	"	94 ''	2.0) D-12
Surrogate: 1,4-Bromofluorobenze	ene "	n	n	"		67.5 %	21-110	
WO-5 (3.25') (A307601-08)			Sample Ty	pe: Soil	Sar	npled: 07/24/03 10	:40	
Volatile Organic Compounds by E	PA Methods 8260B/5	6035						
Acetone	8260B	AH30109	07/25/03	08/01/03	1	0.13 mg/kg	0.020)
Benzene	н	11	"	**	"	ND "	0.0050	0
Bromobenzene	**	11	**	**	11	ND "	0.005	C
Bromochloromethane	*	н	"	"	"	ND "	0.005	0
Bromodichloromethane	"	11	11	"	"	ND "	0.005	0
Bromoform	11	"	**	**	"	ND "	0.005	0
Bromomethane	"	"	"	"	"	ND "	0.005	0
n-Butylbenzene	**	"	**	"	**	ND "	0.005	0
sec-Butylbenzene	"	**	**	**	**	ND "	0.005	0
tert-Butylbenzene	**	**	11	**	*	ND "	0.005	0
Carbon tetrachloride	**	H	"	11	*1	ND "	0.005	0
Chlorobenzene	м	"	"	"	**	ND "	0.005	0
Chloroethane	**	"	"	"	19	ND "	0.005	0
Chloroform	**	11		"	"	ND "	0.005	0
Chloromethane	"	"	"	"	"	ND "	0.005	0
2-Chlorotoluene	"	"	**	"	70	ND "	0.005	0
4-Chlorotoluene	"	**	"	11	"	ND "	0.005	0
Dibromochloromethane	"	"	**	"	n	ND "	0.005	0
1,2-Dibromo-3-chloropropane	н	"	"			ND "	0.005	0
1,2-Dibromoethane (EDB)	"		"		**	ND "	0.005	0
Dibromomethane	**		**	**	"	ND "	0.005	0
1,2-Dichlorobenzene	**	"	**	"	"	ND "	0.005	50
1,3-Dichlorobenzene	"	**	"	"	"	ND "	0.005	i0
1,4-Dichlorobenzene	"	11	"	n	••	ND "	0.005	50
Dichlorodifluoromethane	**	"	"	"	"	ND "	0.005	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 16 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code Client PO/Reference Order Number Receipt Date/Time A307601 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories Inc.

		-	-	ll Laborator				
	METHOD	BATCH		D ANALYZED		RESULT	PQL	NOTE
WO-5 (3.25') (A307601-08)			Sample Type: Soil			Sampled: 07/24/03 10:40		
Volatile Organic Compounds by El	PA Methods 8260B/	5035 (cont'	d)					
1,1-Dichloroethane	8260B	**	"	08/01/03	н	ND "	0.0050	
1,2-Dichloroethane	"	"	"	"	"	ND "	0.0050	
1,1-Dichloroethene	"	"	"		"	ND "	0.0050	
cis-1,2-Dichloroethene		"		11	**	ND "	0.0050	
trans-1,2-Dichloroethene	"	11	"		*	ND "	0.0050	
1,2-Dichloropropane	11	"	"	*	**	ND "	0.0050	
1,3-Dichloropropane	"	н	"	**	11	ND "	0.0050	
2,2-Dichloropropane	n	"	"	"	11	ND "	0.0050	
1,1-Dichloropropene	"	**	**	"	**	ND "	0.0050	
cis-1,3-Dichloropropene	**	"	**	"	**	ND "	0.0050	
trans-1,3-Dichloropropene	"	**	**	*	11	ND "	0.0050	
Ethylbenzene	"	"	**	"	"	ND "	0.0050	
Hexachlorobutadiene	н	"	**	**	"	ND "	0.0050	
Isopropylbenzene	"	н	"	"	11	ND "	0.0050	
p-Isopropyltoluene	**	"	н		н	0.0082 "	0.0050	
Methyl ethyl ketone	**	*	ħ	"	**	0.018 "	0.015	
Methyl isobutyl ketone	"	"	**	"	**	ND "	0.010	
Methyl tert-butyl ether	11	**	"	"	**	ND "	0.0050	
Methylene chloride	"	**	"	"	"	ND "	0.0050	
Naphthalene		"	"	"	n	ND "	0.0050	
n-Propylbenzene	"	**	"	"	"	ND "	0.0050	
Styrene	"	+1	"	"	"	ND "	0.0050	
1,1,1,2-Tetrachloroethane	**	"	**	**	"	ND "	0.0050	
1,1,2,2-Tetrachloroethane	**	"	**		**	ND "	0.0050	
Tetrachloroethene	"	**	"	"	"	ND "	0.0050	
Toluene	**	"	"	**	"	ND "	0.0050	
1,2,3-Trichlorobenzene	н	"	"	**	"	ND "	0.0050	
1,2,4-Trichlorobenzene	н	"		**	н	ND "	0.0050	
1,1,1-Trichloroethane	н	n	"	"	"	ND "	0.0050	
1,1,2-Trichloroethane		"	"	**	**	ND "	0.0050	
Trichloroethene	**	"	"	11	"	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 17 of 90

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

A307601	07/25/2003 15:40	MFGINC Analytical Laboratories, In	
Order Number	Receipt Date/Time	Client Code	Client PO/Reference

		Alpha A	maryucar	Laborato	11cs, 111c.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-5 (3.25') (A307601-08)			Sample Typ	e: Soil		Sampled: 07/24/03 10:4	40	
Volatile Organic Compounds by EPA M	//ethods 8260B	5035 (cont'd)					
Trichlorofluoromethane	8260B	Ħ	11	08/01/03		ND "	0.0050	
Trichlorotrifluoroethane	**	ł r	11	"	н	ND "	0.0050	
1,2,3-Trichloropropane	**		**	н	**	ND "	0.0050	
1,2,4-Trimethylbenzene		"	**	**	"	ND "	0.0050	
1,3,5-Trimethylbenzene	**	11	**	"	**	ND "	0.0050	
Vinyl chloride	**	**	*		"	ND "	0.0050	
m,p-Xylene	**	"	**	"	"	ND "	0.0050	
o-Xylene	**	"	**	**	н	ND "	0.0050	
Xylenes (total)	n	н	Ħ	н	n	ND "	0.0050	
Surrogate: Dibromofluoromethane	"	"	#	"		111 %	57-144	
Surrogate: Toluene-d8	"	"	"	"		84.8 %	65-127	
Surrogate: Bromofluorobenzene	"	"	"	"		63.2 %	56-130	
TPH Gasoline by GCFID/5035								
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	3.1 mg/kg	1.0	
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		128 %	60-156	
WO-5 (3.25-4.0') (A307601-09)			Sample Ty	pe: Soil		Sampled: 07/24/03 10:	40	
Metals by EPA 6000/7000 Series Metho	ods							
Cadmium	EPA 6010	AG32804	07/29/03	07/29/03	1	ND mg/kg	1.0	
Chromium	**	"	".	"	**	52 "	5.0	
Copper	"	"	"	"	**	31 "	10	
Nickel	**	"	**	"	"	80 "	10	
Lead	н	"	11		11	8.5 "	5.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Zinc

lung M

47 "

Cheryl Watson For Sheri L. Speaks Project Manager

8/12/03

10

ILULI --AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

00/10/00 11 11

Client PO/Reference

CHEMICAL EXAMINATION REPORT

Client Code

Page 18 of 90

MFG, Inc
180 Howard St. Suite 200
San Francisco, CA 94105-2941
Attn: Ed Conti

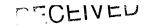
Receipt Date/Time

Order Number

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

A307601 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc. NOTE METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL WO-5 (3.25-4.0') (A307601-09) Sample Type: Soil Sampled: 07/24/03 10:40 Polychlorinated Biphenyls by EPA Method 8080A PCB-1016 8080 07/31/03 08/07/03 AH31117 1 ND mg/kg 0.20 PCB-1221 ... " ND " . n 0.20 .. PCB-1232 ., •• ., ND " 0.20 ** . PCB-1242 ND " 0.20 н -ND " PCB-1248 0.20 PCB-1254 ND " 0.20 PCB-1260 ND " 0.20 ** ** н ** " PCB-1262 ND " 0.20 " " " 10-150 S-06 Surrogate: Tetrachloro-meta-xylene " % Surrogate: Decachlorobiphenyl ., 10-150 S-06 % Chlorinated Phenols by Canadian Pulp Method 2,4,6-Trichlorophenol EnvCan AG32909 07/26/03 07/28/03 1 ND mg/kg 1.0 2,3,5,6-Tetrachlorophenol . 11 ... ** ** ND " 1.0 ** ** 11 •• ,, ND " 2,3,4,6-Tetrachlorophenol 1.0 " 17 ** 41 ., 2,3,4,5-Tetrachlorophenol ND " 1.0 " ** ., ... " ND " Pentachlorophenol 1.0 Surrogate: Tribromophenol # " " " 75.0 % 23-140

TPH as Diesel and Motor Oil by EPA Method 8015 Modified


TPH as Diesel	8015DRO	AG33112	07/31/03	08/01/03	1	16 mg/kg		1.0	D-09
TPH as Motor Oil	**	**	**	**	"	130 "		2.0	
Surrogate: 1,4-Bromofluorobenzene	n	"	"	"		92.7 %	21-110		

WO-5 (8.0') (A307601-10) Volatile Organic Compounds by EPA Methods 8260B			Sample Ty	pe: Soil	S	Sampled: 07/24/03 11:00		
Acetone	8260B	AH30109	07/25/03	08/01/03	1	0.96 mg/kg	0.037	
Benzene	11	11	"	**	**	ND "	0.0091	
Bromobenzene	**	"	**	**	"	ND "	0.0091	
Bromochloromethane	**	**	**	**	*	ND "	0.0091	
Bromodichloromethane	n	"	"	н	**	ND "	0.0091	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 19 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601 Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client

Client PO/Reference

Receipt Date/Time 07/25/2003 15:40

Alpha Analytical Laboratories, Inc.

Client Code

MFGINC

	METHOD	BATCH	PREPARED	ANALYZED		RESULT	PQL	NOTE
/O-5 (8.0') (A307601-10)	with mod	DAICH	Sample Typ		DILUTION	Sampled: 07/24/03 11:00	• ₹₽	
Volatile Organic Compounds by EP.	A Methods 8760B	5035 (cont)				Sampicu. 0//44/03 11.00		
Bromoform	8260B	3033 (cont) "	"	08/01/03	"	ND "	0.0091	
Bromonorthane	6200B "		**	108/01/05	11	ND "	0.0091	
				11	**	ND "	0.0091	
n-Butylbenzene			"	"	"	ND "	0.0091	
sec-Butylbenzene		11	**	n	17	ND "		
tert-Butylbenzene	**	**			"		0.0091	
Carbon tetrachloride	**	**	**			ND "	0.0091	
Chlorobenzene						ND "	0.0091	
Chloroethane	11	"	"	11	**	ND "	0.0091	
Chloroform	**	**	**	11	**	ND "	0.0091	
Chloromethane	"	н	"		11	ND "	0.0091	
2-Chlorotoluene	11	"	"	"	**	ND "	0.0091	
4-Chlorotoluene	81	11	"	**	**	ND "	0.0091	
Dibromochloromethane	"	**	"	**	**	ND "	0.0091	
1,2-Dibromo-3-chloropropane	n	"	"	**	"	ND "	0.0091	
1,2-Dibromoethane (EDB)	"	*	"	**	"	ND "	0.0091	
Dibromomethane	11	**	11	"	**	ND "	0.0091	
1,2-Dichlorobenzene		"	"	"	"	ND "	0.0091	
1,3-Dichlorobenzene	"	**	*	n	"	ND "	0.0091	
1,4-Dichlorobenzene	"	**	п	**	**	ND "	0.0091	
Dichlorodifluoromethane	**			"	"	ND "	0.0091	
1,1-Dichloroethane	"	"	**	н	**	ND "	0.0091	
1,2-Dichloroethane	н	"		**	"	ND "	0.0091	
1,1-Dichloroethene	**	"	"	"	0	ND "	0.0091	
cis-1,2-Dichloroethene	"	**	**		**	ND "	0.0091	
trans-1,2-Dichloroethene	**	"	н	н	H	ND "	0.0091	
1,2-Dichloropropane	н	"	0	"	"	ND "	0.0091	
1,3-Dichloropropane			"	**	"	ND "	0.0091	
2,2-Dichloropropane		"	"	*	"	ND "	0.0091	
1,1-Dichloropropene	**	"	**	n	**	ND "	0.0091	
cis-1,3-Dichloropropene	**	"		11	ŧ	ND "	0.0091	
trans-1,3-Dichloropropene		**	11		"	ND "	0.0091	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

PECEIVED

AUG 1 5 2003

MFG, inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 20 of 90

PQL

NOTE

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

Order Number

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code monio

Client PO/Reference

		Alpha Analytical Laborato	ries, Inc.	
	METHOD	BATCH PREPARED ANALYZED	DILUTION	RESULT
WO-5 (8 0') (A 307601-10)		Sample Type: Soil		Sampled: 07/24/03 11:00

O-5 (8.0') (A307601-10)			Sample Ty	pe: Soil		Sampled: 07/24/03 11:0	0
volatile Organic Compounds by EPA N	Aethods 8260B/	5035 (cont'd)				
Ethylbenzene	8260B	"	"	08/01/03	**	ND "	0.0091
Hexachlorobutadiene	"	"	11	"	**	ND "	0.0091
Isopropylbenzene	"	"	"	"	**	ND "	0.0091
p-Isopropyltoluene	**	"	н	**	Ħ	ND "	0.0091
Methyl ethyl ketone	"	**	"	**		0.20 "	0.027
Methyl isobutyl ketone		N	"	**	"	ND "	0.018
Methyl tert-butyl ether	"	"	"	"	**	ND "	0.0091
Methylene chloride	**	**	"	"	**	ND "	0.0091
Naphthalene	**	**	"	"	11	ND "	0.0091
n-Propylbenzene	**	11	**	**	"	ND "	0.0091
Styrene	"	**	**	**	11	ND "	0.0091
1,1,1,2-Tetrachloroethane	**	"	"	*	"	ND "	0.0091
1,1,2,2-Tetrachloroethane	**	"	"	"	n	ND "	0.0091
Tetrachloroethene	"	н	*	11	"	ND "	0.0091
Toluene	"	"	"		н	ND "	0.0091
1,2,3-Trichlorobenzene	н		"	н	n	ND "	0.0091
1,2,4-Trichlorobenzene	"	"	**	"	**	ND "	0.0091
1,1,1-Trichloroethane	"	**	"	"	H 1	ND "	0.0091
1,1,2-Trichloroethane	"	11	"	n	11	ND "	0.0091
Trichloroethene	н	**	"	"	11	ND "	0.0091
Trichlorofluoromethane	"	**	Ħ	**	н	ND "	0.0091
Trichlorotrifluoroethane	"	**	**	11	*	ND "	0.0091
1,2,3-Trichloropropane	"	**	17	**	**	ND "	0.0091
1,2,4-Trimethylbenzene	**		Ħ	**	**	ND "	0.0091
1,3,5-Trimethylbenzene	"	11	H	'n	**	ND "	0.0091
Vinyl chloride	"	**	"	"	"	ND "	0.0091
m,p-Xylene		"	"	"	**	ND "	0.0091
o-Xylene	"	n	**	**	"	ND "	0.0091
Xylenes (total)	11	"	**	11	"	ND "	0.0091
Surrogate: Dibromofluoromethane	"	"	"	"		104 %	57-144
Surrogate: Toluene-d8	"	"	"	"		90.8 %	65-127

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

----AUG 1 5 2003 MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com •

Phone:	(707) 408-0401	•	rax:	(707)4	00-520

	C	HEMICA	AL EXAN	AINATIO	N REPORT]	Page 21 of 90
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti			,		Project No:	08/12/03 11 030229.4 SPI-Arcata/			
Order Number A307601	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO	/Reference		
	*****	Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
WO-5 (8.0') (A307601-10)		· · · · · · · · · · · · · · · · · · ·	Sample Typ	pe: Soil	Sam	pled: 07/24/03 1	1:00		
Volatile Organic Compounds by E	PA Methods 8260B/5					•			
Surrogate: Bromofluorobenzene	8260B	"	11	08/01/03		70.0 %	56-130		
TPH Gasoline by GCFID/5035									
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1.1	ND mg/kg		1.1	R-02
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		115 %	60-156		
WO-5 (8.0-8.75') (A307601-11)			Sample Ty	pe: Soil	Sam	pled: 07/24/03 1	1:00		
Metals by EPA 6000/7000 Series M	lethods								
Cadmium	EPA 6010	AG32804	07/29/03	07/29/03	1	ND mg/kg		1.0	
Chromium	"	**	**	н	"	15 "		5.0	
Copper	"	"	"	**	"	ND "		10	
Nickel	"	"	"		n	11 "		10	
Lead	"	**	"	"	**	ND "		5.0	
Zinc	71	**	**	"	••	ND "		10	
Polychlorinated Biphenyls by EPA	Method 8080A								
PCB-1016	8080	AH31117	07/31/03	08/07/03	1	ND mg/kg		0.20	
PCB-1221	n	**	"	*		ND "		0.20	
PCB-1232	n		"	**	**	ND "		0.20	
PCB-1242		"	"	"	**	ND "		0.20	
PCB-1248	"	"	**	ч	**	ND "		0.20	
PCB-1254	"		n	"	**	ND "		0.20	
PCB-1260	"	"	"	"	**	ND "		0.20	
PCB-1262	"	**	n	**	**	ND "		0.20	
Surrogate: Tetrachloro-meta-xyle	ene "	"	n	n		%	10-150		S-06
Surrogate: Decachlorobiphenyl	"	"	11	"		%	10-150		S-06

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M Bor

Cheryl Watson For Sheri L. Speaks Project Manager

8/12/03

MEC Inc

RECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 22 of 90

	Alph	ha Analytical Laboratories, Inc.	
Order Number A307601	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC	Client PO/Reference
	Attn: Ed Conti	Project ID	: SPI-Arcata/Task #4
	San Francisco, CA 94105-2941		: 030229.4
	180 Howard St. Suite 200		: 08/12/03 11:41
1			

METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL NOTE WO-5 (8.0-8.75') (A307601-11) Sample Type: Soil Sampled: 07/24/03 11:00 **Chlorinated Phenols by Canadian Pulp Method** 2,4,6-Trichlorophenol AG32909 07/26/03 07/28/03 EnvCan 1 ND mg/kg 1.0 2,3,5,6-Tetrachlorophenol ** . 11 ND " ei, ** 1.0 " . ** 2,3,4,6-Tetrachlorophenol ., ND " 1.0 " ,, ** 2,3,4,5-Tetrachlorophenol ND " 1.0 " ** ** н Pentachlorophenol ** ND " 1.0 Surrogate: Tribromophenol " " 69.4 % 23-140 TPH as Diesel and Motor Oil by EPA Method 8015 Modified

TPH as Diesel	8015DRO	AG33112	07/31/03	08/01/03	1	1.2 mg/kg	1.0	D-13
TPH as Motor Oil	**	11	*	"		50 "	2.0	D-12
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		85.5 %	21-110	

Sample Type: Soil

A307601-12)
A307601-12)

Volatile Organic Compounds by EPA	Methods 8260B	8/5035					
Acetone	8260B	AH30109	07/25/03	08/01/03	1	0.19 mg/kg	0.020
Benzene	"	"	**	"	n	ND "	0.0050
Bromobenzene	"	"	**	**	"	ND "	0.0050
Bromochloromethane	"	**	**	**	Pt	ND "	0.0050
Bromodichloromethane	**		**	**	**	ND "	0.0050
Bromoform	"	"	**	**	"	ND "	0.0050
Bromomethane	**	"	**	"	**	ND "	0.0050
n-Butylbenzene	"	"	11		11	ND "	0.0050
sec-Butylbenzene	"	н	**	"	"	ND "	0.0050
tert-Butylbenzene	н	**	**	11	**	ND "	0.0050
Carbon tetrachloride	"	**	"	"	**	ND "	0.0050
Chlorobenzene	**	**	**	"	"	ND "	0.0050
Chloroethane	**	"	**	"	**	ND "	0.0050
Chloroform	**	**	*1	"	**	ND "	0.0050
Chloromethane	"	**	*1	*1	**	ND "	0.0050
2-Chlorotoluene	"	**	H	"	u	ND "	0.0050
4-Chlorotoluene	**	"	ti		**	ND "	0.0050

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Sampled: 07/24/03 11:30

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha 🛿 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 23 of 90

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Client Code MFGINC

. al Tah madantan Tra

		Alpha A	Analytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-6 (4.5') (A307601-12)			Sample Ty	pe: Soil	S	ampled: 07/24/03 11:30		
Volatile Organic Compounds by EP	A Methods 8260B/	5035 (cont'	d)					
Dibromochloromethane	8260B	**	Ħ	08/01/03	12	ND "	0.0050	
1,2-Dibromo-3-chloropropane	**	"	n	**	**	ND "	0.0050	
1,2-Dibromoethane (EDB)	11	H	1 1	11	**	ND "	0.0050	
Dibromomethane	"	"	"	**	"	ND "	0.0050	
1,2-Dichlorobenzene	"	"	11	*1	**	ND "	0.0050	
1,3-Dichlorobenzene	11	11	n	11	11	ND "	0.0050	
1,4-Dichlorobenzene	"		**	"	**	ND "	0.0050	
Dichlorodifluoromethane	**	**	"	"	н	ND "	0.0050	
1,1-Dichloroethane	"	**	11	"	"	ND "	0.0050	
1,2-Dichloroethane	**	"	11	**	**	ND "	0.0050	
1,1-Dichloroethene		**	"		"	ND "	0.0050	
cis-1,2-Dichloroethene	"	"	"	"	"	ND "	0.0050	
trans-1,2-Dichloroethene	**	"	11	**	**	ND "	0.0050	
1,2-Dichloropropane	n	**	11	**	"	ND "	0.0050	
1,3-Dichloropropane	"	11	**	*		ND "	0.0050	
2,2-Dichloropropane	"	**	"		**	ND "	0.0050	
1,1-Dichloropropene	"	51	"	**	**	ND "	0.0050	
cis-1,3-Dichloropropene	"	*1	"	"	**	ND "	0.0050	
trans-1,3-Dichloropropene	"	"	**	**	**	ND "	0.0050	
Ethylbenzene	**		"	**	"	ND "	0.0050	
Hexachlorobutadiene	"	"	"	11	11	ND "	0.0050	
Isopropylbenzene	"	"	**	"	"	ND "	0.0050	
p-Isopropyltoluene	**	"	*1	"	"	ND "	0.0050	
Methyl ethyl ketone	11	**	"	n	11	0.027 "	0.015	
Methyl isobutyl ketone	"	**	"	**	11	ND "	0.010	
Methyl tert-butyl ether	"	**	"	"	**	ND "	0.0050	
Methylene chloride	11	"	"	"	"	ND "	0.0050	
Naphthalene	"	"	"		"	ND "	0.0050	
n-Propylbenzene	**	n	н	11		ND "	0.0050	
Styrene	11	n	**	"		ND "	0.0050	
1,1,1,2-Tetrachloroethane	"	**	"	"	"	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

PEOFIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

Receipt Date/Time

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 24 of 90

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code MFGINC

Client PO/Reference

A307601	07/25/2003 15:40		Ν	AFGINC				
		Alpha A	Analytica	l Laborato	ries, Inc.			
	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-6 (4.5') (A307601-12)		Sample Type: Soil				Sampled: 07/24/03 11:30		
Volatile Organic Compounds by	y EPA Methods 8260B/50)35 (cont'o	d)					
1,1,2,2-Tetrachloroethane	8260B		"	08/01/03	**	ND "	0.0050	
Tetrachloroethene	"	**			"	ND "	0.0050	
Toluene	*1	**	"	**		ND "	0.0050	
1,2,3-Trichlorobenzene	"	"	"	**	**	ND "	0.0050	
1,2,4-Trichlorobenzene		11	n	**	+1	ND "	0.0050	
1,1,1-Trichloroethane	· ••	Ħ	n	"	11	ND "	0.0050	
1,1,2-Trichloroethane	**	n	"	"	**	ND "	0.0050	
Trichloroethene	**	H.	"	*1	tı	ND "	0.0050	
Trichlorofluoromethane	*	11		"	"	ND "	0.0050	
Trichlorotrifluoroethane	11	н		"	"	ND "	0.0050	
1,2,3-Trichloropropane	"	"	"	н	"	ND "	0.0050	
1,2,4-Trimethylbenzene	**	**	**	"	"	ND "	0.0050	
1,3,5-Trimethylbenzene		"			**	ND "	0.0050	

Vinyl chloride	"	"	"		"	ND "	0.0050	
m,p-Xylene	"	11	**		*1	ND "	0.0050	
o-Xylene	**	11	**	**	**	ND "	0.0050	
Xylenes (total)	"	**	*	"	**	ND "	0.0050	
Surrogate: Dibromofluoromethane	"	И.	"	, It		112 %	57-144	
Surrogate: Toluene-d8	11	"	"	"		84.0 %	65-127	
Surrogate: Bromofluorobenzene	"	"	"	"		73.6 %	56-130	

TPH Gasoline by GCFID/5035

TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	1.2 mg/kg	1.0
Surrogate: 1,4-Bromofluorobenzene	"	H	"	"		120 % 60-1	56
WO-6 (4.5-5.25') (A307601-13)	,	Sample Type: Soil					
Metals by EPA 6000/7000 Series Metho	ds						
Cadmium	EPA 6010	AG32804	07/29/03	07/29/03	1	ND mg/kg	1.0
Chromium	**	"	"	**	**	43 "	5.0
Copper	Ħ	"	**	**	H	13 "	10
Nickel	"	н	n	"	н	41 "	10

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

RECEIVED

AUG 1 5 2003

MFG. Inc.

Alpha VAnalytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 25 of 90

MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Project No:	08/12/03 11:4 030229.4 SPI-Arcata/T			
	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/H	Reference		
Re (,	· ·	Alpha A	Analytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
WO-6 (4.5-5.25') (A307601-13) Metals by EPA 6000/7000 Series M	ethods (cont'd)		Sample Ty	pe: Soil	Sam	pled: 07/24/03 11:	30		
Lead	EPA 6010	**		07/29/03	**	7.3 "		5.0	
Zinc	"	"	"	**	**	30 "		10	
Polychlorinated Biphenyls by EPA	Method 8080A								
PCB-1016	8080	AH31117	07/31/03	08/07/03	1	ND mg/kg		0.20	
PCB-1221	н	**	67	"	n	ND "		0.20	
PCB-1232	11		"	"	**	ND "		0.20	
PCB-1242	"	"	"	п	**	ND "		0.20	
PCB-1248	"	"	**	"	**	ND "		0.20	
PCB-1254		**	**	**	**	ND "		0.20	
PCB-1260	"	"	**	**	"	ND "		0.20	
PCB-1262	"	"	11	"	"	ND "		0.20	
Surrogate: Tetrachloro-meta-xyle	ne "	"	"	"		%	10-150		S-06
Surrogate: Decachlorobiphenyl	"	"	"	"		%	10-150		S-06
Chlorinated Phenols by Canadian	Pulp Method								
2,4,6-Trichlorophenol	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg		1.0	
2,3,5,6-Tetrachlorophenol	"	"	"	**	"	ND "		1.0	
2,3,4,6-Tetrachlorophenol	"	"	**	••	"	ND "		1.0	
2,3,4,5-Tetrachlorophenol	'n	"	"	"	"	ND "		1.0	
Pentachlorophenol	"	n	**	11	"	ND "		1.0	
Surrogate: Tribromophenol	"	"	"	"		75.0 %	23-140		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Juny and Sor

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	CI	HEMICA	AL EXAN	MINATIO	N REPORT			Page 26 of 90
MFG, Inc 180 Howard S San Francisco Attn: Ed Conti	, CA 94105-2941				Report Date: Project No: Project ID:			
Order Number A307601	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/I	Reference	
************	1 - Example of the second s	Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-6 (4.5-5.25') (A307601-13))		Sample Ty	pe: Soil	Samı	oled: 07/24/03 11	:30	
TPH as Diesel and Motor Oil by				-	•			
TPH as Diesel	8015DRO	AG33112	07/31/03	08/01/03	1	18 mg/kg	1.0	D-09
TPH as Motor Oil	n	**	**	11	н	99 "	2.0	
Surrogate: 1,4-Bromofluoroben	ızene "	"	H	"		83.9 %	21-110	
WO-6 (9.0') (A307601-14)			Sample Ty	pe: Soil	Sam	oled: 07/24/03 11	:50	
Volatile Organic Compounds by	EPA Methods 8260B/5	5035						
Acetone	8260B	AH30109	07/25/03	08/01/03	1	0.090 mg/kg	0.020	
Benzene	**	11	**	**	"	ND "	0.0050	
Bromobenzene	**	**	**	••	"	ND "	0.0050	
Bromochloromethane	"	**	**		"	ND "	0.0050	
Bromodichloromethane	*	"	н	**	"	ND "	0.0050	
Bromoform	**	н	"	**	"	ND "	0.0050	
Bromomethane	**	**	11	**	**	ND "	0.0050	
n-Butylbenzene	"	**	н	"	"	ND "	0.0050	
sec-Butylbenzene	"	**	**	**	"	ND "	0.0050	1
tert-Butylbenzene	**	"	"	"	**	ND "	0.0050)
Carbon tetrachloride	"	"		'n	н	ND "	0.0050)
Chlorobenzene	"	**	"	11		ND "	0.0050)
Chloroethane	*	**	**		**	ND "	0.0050)
Chloroform	"	11	11	**	**	ND "	0.0050)
Chloromethane	"	"	"	"	"	ND "	0.0050)
2-Chlorotoluene	"	17	"	"	**	ND "	0.0050)
4-Chlorotoluene	"	"	"	**	"	ND "	0.0050)
Dibromochloromethane	n	"	n	"	"	ND "	0.0050)
1,2-Dibromo-3-chloropropane	"	**	"	17	"	ND "	0.0050)
1,2-Dibromoethane (EDB)	"	"		"	**	ND "	0.005	
Dibromomethane	"		n	**	н	ND "	0.005)
1,2-Dichlorobenzene	"	"	н	**	"	ND "	0.005	
1,3-Dichlorobenzene	**	"	**	"	"	ND "	0.005	
1,4-Dichlorobenzene	"	"	р	"	**	ND "	0.005	
Dichlorodifluoromethane		11	н	"		ND "	0.005	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung N

Cheryl Watson For Sheri L. Speaks Project Manager

PROEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 27 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC

		Alpha A	Analytical	l Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
VO-6 (9.0') (A307601-14)			Sample Ty	pe: Soil	S	ampled: 07/24/03 11:50		
Volatile Organic Compounds by EP.	A Methods 8260B/	'5035 (cont'	i)	•				
1,1-Dichloroethane	8260B	"	"	08/01/03	"	ND "	0.0050	
1,2-Dichloroethane	"	"	"	"		ND "	0.0050	
1,1-Dichloroethene		11	"	"	"	ND "	0.0050	
cis-1,2-Dichloroethene	**	"	"	"	"	ND "	0.0050	
trans-1,2-Dichloroethene	**	"	"	**	"	ND "	0.0050	
1,2-Dichloropropane	**	"	"	"	**	ND "	0.0050	
1,3-Dichloropropane	н	"	"	"	**	ND "	0.0050	
2,2-Dichloropropane	"	**	"	"	· ••	ND "	0.0050	
1,1-Dichloropropene	"	"		**	**	ND "	0.0050	
cis-1,3-Dichloropropene	n	"	"	**	28	ND "	0.0050	
trans-1,3-Dichloropropene	"		**		**	ND "	0.0050	
Ethylbenzene	"	**		**	**	ND "	0.0050	
Hexachlorobutadiene	"	"	"	**	••	ND "	0.0050	
Isopropylbenzene	"		**	**	"	ND "	0.0050	
p-Isopropyltoluene	"	н	11	"	**	ND "	0.0050	
Methyl ethyl ketone	"	"		**	**	ND "	0.015	
Methyl isobutyl ketone	"	**	"	"	"	ND "	0.010	
Methyl tert-butyl ether	"	**		**	"	ND "	0.0050	
Methylene chloride	11	"	**	11	"	ND "	0.0050	
Naphthalene	*1	н	"	**	"	ND "	0.0050	
n-Propylbenzene	"	**	H '	"	**	ND "	0.0050	
Styrene	"	**	**	"	"	ND "	0.0050	
1,1,1,2-Tetrachloroethane	"	**		"	**	ND "	0.0050	
1,1,2,2-Tetrachloroethane	н	**	н	"	**	ND "	0.0050	
Tetrachloroethene	n	"	"	"	"	ND "	0.0050	
Toluene		*1	"	"		ND "	0.0050	
1,2,3-Trichlorobenzene	11	**	"	н	**	ND "	0.0050	
1,2,4-Trichlorobenzene	"	"	"		**	ND "	0.0050	
1,1,1-Trichloroethane	"	ti	**	**	*	ND "	0.0050	
1,1,2-Trichloroethane	"		*1	"	"	ND "	0.0050	
Trichloroethene	"		"	"	**	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

KEUEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 28 of 90

MFG,	Inc			
180 Ho	ward St. Suite 200		Report Date:	08/12/03 11:41
San Fra	ncisco, CA 94105-2941		Project No:	030229.4
Attn: E	d Conti		Project ID:	SPI-Arcata/Task #4
ler Number	Receipt Date/Time	Client Code		Client PO/Referenc

A307601	07/25/2003 15:40	MFGINC Analytical Laboratories. In	
Order Number	Receipt Date/Time	Client Code	Client PO/Reference

		Агрпа А	naiyucai	Laborato	ries, inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
VO-6 (9.0') (A307601-14)		Sample Type: Soil			Sampled: 07/24/03 11:50		:50		
Volatile Organic Compounds by EPA M	1ethods 8260B/	'5035 (cont'd)							
Trichlorofluoromethane	8260B		"	08/01/03	"	ND "	0	.0050	
Trichlorotrifluoroethane	"		11	**	*	ND "	0	.0050	
1,2,3-Trichloropropane	"	"			"	ND "	0	.0050	
1,2,4-Trimethylbenzene	"	11	н	**	"	ND "	0	.0050	
1,3,5-Trimethylbenzene	**	"		**	**	ND "	0	.0050	
Vinyl chloride	19	н	"	. "	**	ND "	0	.0050	
m,p-Xylene	"	11	н	**	11	ND "	0	.0050	
o-Xylene	**	**	**	**	"	ND "	0	.0050	
Xylenes (total)	**	"	"	н	"	ND "	0	.0050	
Surrogate: Dibromofluoromethane	"	"	"	"		98.4 %	57-144		
Surrogate: Toluene-d8	"	"	n	"		76.4 %	65-127		
Surrogate: Bromofluorobenzene	"	"	"	"		73.6 %	56-130		
TPH Gasoline by GCFID/5035									
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	ND mg/kg		1.0	
Surrogate: 1,4-Bromofluorobenzene	"	Ħ	"	"		116 %	60-156		
WO-6 (9.0-9.75') (A307601-15)	Sample Type: Soil					Sampled: 07/24/03 11:50			
Metals by EPA 6000/7000 Series Metho	ods								
Cadmium	EPA 6010	AG32804	07/29/03	07/29/03	1	ND mg/kg		1.0	
Chromium	**		"		11	39 "		5.0	
Copper	**	"	"	"	"	ND "		10	
Nickel		**	**	**	"	31 "		10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lead

Zinc

Jung M 501

ND "

16 "

Cheryl Watson For Sheri L. Speaks Project Manager

8/12/03

5.0

10

FECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CH

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

IEMICAL	LEXAMI	NATION	REPORT

Page 29 of 90

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Order Number Receipt Date/Time Client Code Client PO/Reference A307601 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc.

NOTE METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL WO-6 (9.0-9.75') (A307601-15) Sample Type: Soil Sampled: 07/24/03 11:50 Polychlorinated Biphenyls by EPA Method 8080A PCB-1016 8080 AH31117 07/31/03 08/07/03 ND mg/kg 0.20 1 PCB-1221 ND " 0.20 PCB-1232 ** " ND " 0.20 PCB-1242 ND " 0.20 ND " PCB-1248 0.20 PCB-1254 ND " 0.20 PCB-1260 •• .. ND " 0.20 ** ND " PCB-1262 0.20 " " " S-06 % 10-150 Surrogate: Tetrachloro-meta-xylene 10-150 Surrogate: Decachlorobiphenyl % S-06 **Chlorinated Phenols by Canadian Pulp Method** 2,4,6-Trichlorophenol EnvCan AG32909 07/26/03 07/28/03 ND mg/kg 1.0 .1 2,3,5,6-Tetrachlorophenol ND " 1.0 ,, 2,3,4,6-Tetrachlorophenol ** " ., ND " 1.0 2,3,4,5-Tetrachlorophenol .. ** . . ND " 1.0 ND " Pentachlorophenol 1.0 74.2 % Surrogate: Tribromophenol 23-140 TPH as Diesel and Motor Oil by EPA Method 8015 Modified TPH as Diesel 8015DRO AG33112 07/31/03 08/01/03 1 ND mg/kg 1.0 **TPH as Motor Oil** 2.2 " 2.0 D-12 Surrogate: 1,4-Bromofluorobenzene 27.7 % 21-110 WO-7 (4.0') (A307601-16) Sample Type: Soil Sampled: 07/24/03 12:15 Volatile Organic Compounds by EPA Methods 8260B/5035 8260B AH30109 0.020 Acetone 07/25/03 08/01/03 1 0.17 mg/kg ,, ** ND " 0.0050 Benzene ** ., . *1 • ., ... ND " Bromobenzene 0.0050 ** .. ** ,, Bromochloromethane ND " 0.0050 ., ... •• Bromodichloromethane ND " 0.0050

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung A

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482 one: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 30 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

Order Number

A307601

Report Date:08/12/03 11:41Project No:030229.4Project ID:SPI-Arcata/Task #4

Client Code MFGINC Client PO/Reference

07/25/2003 15:40 MFGINC

Alpha Analytical Laboratories, Inc.								
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-7 (4.0') (A307601-16)			Sample Ty	pe: Soil		Sampled: 07/24/03 12:15		
Volatile Organic Compounds by EP	A Methods 8260B/	/5035 (cont'o	i)					
Bromoform	8260B	"	**	08/01/03	"	ND "	0.0050	
Bromomethane	"	"	"		11	ND "	0.0050	
n-Butylbenzene	н	11	"	**		ND "	0.0050	
sec-Butylbenzene	11	**	"		**	ND "	0.0050	
tert-Butylbenzene	"	Ħ	**	**	"	ND "	0.0050	
Carbon tetrachloride	"	"	"		"	ND "	0.0050	
Chlorobenzene	**	"	"	"	11	ND "	0.0050	
Chloroethane	**	н	"	"	n	ND "	0.0050	
Chloroform	"	**	н	"	*1	ND "	0.0050	
Chloromethane			"	"	"	ND "	0.0050	
2-Chlorotoluene	"	"	н	**	**	ND "	0.0050	
4-Chlorotoluene	**	**		"	"	ND "	0.0050	
Dibromochloromethane	**	11		"	"	ND "	0.0050	
1,2-Dibromo-3-chloropropane	н	"			"	ND "	0.0050	
1,2-Dibromoethane (EDB)	11	**	**	"	**	ND "	0.0050	
Dibromomethane		**	11	**	"	ND "	0.0050	
1,2-Dichlorobenzene	**	"	**	**	"	ND "	0.0050	
1,3-Dichlorobenzene	**	"	"		**	ND "	0.0050	
1,4-Dichlorobenzene		"		**	"	ND "	0.0050	
Dichlorodifluoromethane	"	"	**	н	"	ND "	0.0050	
1,1-Dichloroethane	"	н	н	**	11	ND "	0.0050	
1,2-Dichloroethane	"	н	"	"	"	ND "	0.0050	
1,1-Dichloroethene	71	*	11	"	11	ND "	0.0050	
cis-1,2-Dichloroethene	**	"	"		"	ND "	0.0050	
trans-1,2-Dichloroethene	"	"	"	**	н	ND "	0.0050	
1,2-Dichloropropane	**				"	ND "	0.0050	
1,3-Dichloropropane		**	11	**	**	ND "	0.0050	
2,2-Dichloropropane		н	Ħ	**	"	ND "	0.0050	
1,1-Dichloropropene	11	"	"		"	ND "	0.0050	
cis-1,3-Dichloropropene	"	"	"	"	- H	ND "	0.0050	
trans-1,3-Dichloropropene	**	**	"	**		ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ung M

Cheryl Watson For Sheri L. Speaks Project Manager

KEVEIVED

AUG 1 5 2003

WFG, Inc.

Alpha ∦Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 hone: (707) 468-0401 • Fax: (707) 468-5267

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 31 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

 Order Number
 Receipt Date/Time
 Client Code
 Client PO/Reference

 A307601
 07/25/2003 15:40
 MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPAREI	O ANALYZED	DILUTION	RESULT	PQL NOTE
'O-7 (4.0') (A307601-16)			Sample Ty			Sampled: 07/24/03 12:15	5
Volatile Organic Compounds by EPA	Methods 8260B/	5035 (cont'c		-		-	
Ethylbenzene	8260B		łt	08/01/03	u.	ND "	0.0050
Hexachlorobutadiene	"	**	**	"	"	ND "	0.0050
Isopropylbenzene		"	"	**	"	ND "	0.0050
p-Isopropyltoluene	"		"		"	ND "	0.0050
Methyl ethyl ketone	**	**		"	**	0.018 "	0.015
Methyl isobutyl ketone	н	**	**	**	û	ND "	0.010
Methyl tert-butyl ether	"	**	"	**	"	ND "	0.0050
Methylene chloride	"	"	**	"	**	ND "	0.0050
Naphthalene		"	**	11	**	ND "	0.0050
n-Propylbenzene	"	"	**	"	11	ND "	0.0050
Styrene	"	**	**	**	"	ND "	0.0050
1,1,1,2-Tetrachloroethane		н	**	"	"	ND "	0.0050
1,1,2,2-Tetrachloroethane		"	**	"	"	ND "	0.0050
Tetrachloroethene	**	11	"	"	"	ND "	0.0050
Toluene	**	"	**	"	**	ND "	0.0050
1,2,3-Trichlorobenzene	"	"	н	"	"	ND "	0.0050
1,2,4-Trichlorobenzene		**	n	"	"	ND "	0.0050
1,1,1-Trichloroethane		11	"		"	ND "	0.0050
1,1,2-Trichloroethane	"	"	**			ND "	0.0050
Trichloroethene	"	,,	"		**	ND "	0.0050
Trichlorofluoromethane	**		"		**	ND "	0.0050
Trichlorotrifluoroethane	н	"	"	**	н	ND "	0.0050
1,2,3-Trichloropropane	**	"	"	**	**	ND "	0.0050
1,2,4-Trimethylbenzene	**	"	**	"	"	ND "	0.0050
1,3,5-Trimethylbenzene	**	н	**	"	"	ND "	0.0050
Vinyl chloride	"	"	"	"	11	ND "	0.0050
m,p-Xylene		"	"	"	"	ND "	0.0050
o-Xylene	"	"	н	"	"	ND "	0.0050
Xylenes (total)	**	"		**	11	ND "	0.0050
Surrogate: Dibromofluoromethane	"	"	"	"		113 %	57-144
Surrogate: Toluene-d8	"	"	"	"		79.2 %	65-127

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

~									
	CH	IEMIC A	AL EXAN	/IINATIO	N REPORT				Page 32 of 90
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti	Suite 200				Report Date: Project No:	08/12/03 11: 030229.4 SPI-Arcata/T			
	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/	Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
WO-7 (4.0') (A307601-16)			Sample Ty	pe: Soil	Sam	pled: 07/24/03 12	:15		
Volatile Organic Compounds by El	PA Methods 8260B/5	035 (cont'd	0						
Surrogate: Bromofluorobenzene	8260B	"	"	08/01/03		86.4 %	56-130		
TPH Gasoline by GCFID/5035				2					
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	ND mg/kg		1.0	
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		115 %	60-156		
WO-7 (4.0-4.75') (A307601-17)	,		Sample Ty	pe: Soil	Sam	pled: 07/24/03 12	:15		
Metals by EPA 6000/7000 Series N	lethods								
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg		1.0	
Chromium	"	"	11	"	**	53 "		5.0	
Copper	**	11	"	"		ND "		10	
Nickel	11	"	"	н	"	38 "		10	
Lead	н	"	"	**	**	ND "		5.0	
Zinc	"	"	**	"	**	24 "		10	
Polychlorinated Biphenyls by EPA	Method 8080A								
PCB-1016	8080	AH31118	08/01/03	08/08/03	1	ND mg/kg		0.20	
PCB-1221	"	"	*	"	н	ND "		0.20	
PCB-1232	**	"	**		"	ND "		0.20	
PCB-1242	13	11	11	**		ND "		0.20	
PCB-1248	**	**	17	,,	"	ND "		0.20	
PCB-1254	17	"	**	"	11	ND "		0.20	
PCB-1260	"	*	"	"	**	ND "		0.20	
PCB-1262	**	**	ti	11	11	ND "		0.20	
Surrogate: Tetrachloro-meta-xyl	ene "	<i>11</i>	11	"		%	10-150		S-06
Surrogate: Decachlorobiphenyl	"	"	"	"		%	10-150		S-06

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Juny av, For

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 33 of 90

	Suite 200 CA 94105-2941 Receipt Date/Time	HEIVII CA	Cli	ent Code	Report Date: Project No: Project ID:	08/12/03 11: 030229.4 SPI-Arcata/T Client PO/	Task #4		rage 55 01 90
A307601	07/25/2003 15:40		M	FGINC					
		Alpha A	nalytical	Laborato	ories, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT]	PQL	NOTE
WO-7 (4.0-4.75') (A307601-17)			Sample Ty	pe: Soil	Samp	oled: 07/24/03 12	:15		
Chlorinated Phenols by Canadian	Pulp Method								
2,4,6-Trichlorophenol	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg		1.0	
2,3,5,6-Tetrachlorophenol	**	u.	"	"	"	ND "		1.0	
2,3,4,6-Tetrachlorophenol		**	**	17		ND "		1.0	
2,3,4,5-Tetrachlorophenol	11	"	**	"	"	ND "		1.0	
Pentachlorophenol	**	Ħ	н	**	11	ND "		1.0	
Surrogate: Tribromophenol	"	"	"	"		81.5 %	23-140		
TPH as Diesel and Motor Oil by E TPH as Diesel TPH as Motor Oil Surrogate: 1,4-Bromofluorobenze	8015DRO "	dified AG33112 " "	07/31/03	08/01/03 "	1	ND mg/kg 2.0 " 76.2 %	21-110	1.0 2.0	
WO-7 (8.0') (A307601-18)			Sample Ty	pe: Soil	Sam	pled: 07/24/03 12	2:40		
Volatile Organic Compounds by E	PA Methods 8260B/5	5035		•		•			
Acetone	8260B	AH30109	07/25/03	08/01/03	1	0.066 mg/kg	().020	
Benzene	"	**	**	"	11	ND "	0.	0050	
Bromobenzene	11	**	н	"	**	ND "	0.	0050	
Bromochloromethane		**	**	"	"	ND "	0.	0050	
Bromodichloromethane	"	"	"	"	**	ND "	0.	.0050	
Bromoform	**	"	"	"	"	ND "	0.	.0050	
Bromomethane	**	**	11	"	"	ND "	0.	.0050	
n-Butylbenzene	н	**	"	"	**	ND "	0.	.0050	
sec-Butylbenzene	"	**	"		11	ND "	0.	.0050	
tert-Butylbenzene	"	8	*1	"	"	ND "	0.	.0050	
Carbon tetrachloride	"	n	**		**	ND "	0.	.0050	
Chlorobenzene	н	**		"	"	ND "		.0050	
Chloroethane	**	"	,,	"	"	ND "	0.	.0050	
Chloroform	**	n		**	**	ND "	0.	.0050	
Chloromethane	"	"	**			ND "	0	.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

н

**

2-Chlorotoluene

4-Chlorotoluene

Juny M

ND "

ND "

Cheryl Watson For Sheri L. Speaks Project Manager

**

n

0.0050

0.0050

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Page 34 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Client PO/Reference

Order Number

A307601

Client Code MFGINC

Alpha	Analytical	Laboratories,	Inc.
-------	------------	---------------	------

CHEMICAL EXAMINATION REPORT

	METHOD	-	•	ANALVZED		RESULT	PQL	NOTE
	METHOD			O ANALYZED		npled: 07/24/03 12:40		110112
WO-7 (8.0') (A307601-18)	A 34-46- J. 03/00		Sample Ty	pe: 2011	541	npicu: 0//24/05 12:40		
Volatile Organic Compounds by EP		5035 (cont.a)		00/01/02	") II.	0.0050	
Dibromochloromethane	8260B	"		08/01/03	**	ND "	0.0050	
1,2-Dibromo-3-chloropropane	н					ND "	0.0050	
1,2-Dibromoethane (EDB)	**	**	**	**	"	ND "	0.0050	
Dibromomethane	11	**	**	**	"	ND "	0.0050	
1,2-Dichlorobenzene	11	"	11	"	"	ND "	0.0050	
1,3-Dichlorobenzene	**	n		11	"	ND "	0.0050	
1,4-Dichlorobenzene	**	59	"	"	"	ND "	0.0050	
Dichlorodifluoromethane	"	**	**	**	"	ND "	0.0050	
1,1-Dichloroethane	"	"	*1	"	**	ND "	0.0050	
1,2-Dichloroethane	**	**	"		.,	ND "	0.0050	
1,1-Dichloroethene	"	**	**	**	"	ND "	0.0050	
cis-1,2-Dichloroethene	"	++	"		**	ND "	0.0050	
trans-1,2-Dichloroethene	**	**	*	**	**	ND "	0.0050	
1,2-Dichloropropane	11	**	11	"	**	ND "	0.0050	
1,3-Dichloropropane	"	"	н	"		ND "	0.0050	
2,2-Dichloropropane	**	"		**	"	ND "	0.0050	
1,1-Dichloropropene	**	"	"	**	**	ND "	0.0050	
cis-1,3-Dichloropropene	"	"	"	**	11	ND "	0.0050	
trans-1,3-Dichloropropene	"	н	"	"	"	ND "	0.0050	
Ethylbenzene	"	"	"	н	**	ND "	0.0050	
Hexachlorobutadiene	"	**	и	н	"	ND "	0.0050	
Isopropylbenzene	"	"	11	"		ND "	0.0050	
p-Isopropyltoluene		**	**	**	**	ND "	0.0050	
Methyl ethyl ketone	"	**	"	"	"	ND "	0.015	
Methyl isobutyl ketone	**	11	"		**	ND "	0.010	
Methyl tert-butyl ether	n	**	**		**	ND "	0.0050	
Methylene chloride	н	**	**		n	ND "	0.0050	
Naphthalene	"	**	п	**	**	ND "	0.0050	
n-Propylbenzene	. н		**	**	**	ND "	0.0050	
Styrene	**	"	"	**	**	ND "	0.0050	
1,1,1,2-Tetrachloroethane		8	н	"	**	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 35 of 90

MFG, Inc	
180 Howard St. Suite 200	
San Francisco, CA 94105-2941	
Attn: Ed Conti	

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

A307601	07/25/2003 15:40	MFGINC Analytical Laboratories, II	
A307601	07/25/2003 15:40	MFGINC	
Order Number	Receipt Date/Time	Client Code	Client PO/Reference

		Alpha Al	nalytical	Laborator	ries, Inc.			
	METHOD	BATCH I	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-7 (8.0') (A307601-18)		S	ample Typ	e: Soil		Sampled: 07/24/03 12:4	0	
Volatile Organic Compounds by EPA M	lethods 8260B/	5035 (cont'd)						
1,1,2,2-Tetrachloroethane	8260B	n '	**	08/01/03	**	ND "	0.0050	
Tetrachloroethene	"	*	**	**	"	ND "	0.0050	
Toluene	••	**		**	"	ND "	0.0050	
1,2,3-Trichlorobenzene	••	**	"	"	н	ND "	0.0050	
1,2,4-Trichlorobenzene	11	"	**	"	**	ND "	0.0050	
1,1,1-Trichloroethane	n	н	*	**	**	ND "	0.0050	
1,1,2-Trichloroethane	n	**	"	"	н	ND "	0.0050	
Trichloroethene	**	м	**	"	**	ND "	0.0050	
Trichlorofluoromethane	"	**	"	"	"	ND "	0.0050	
Trichlorotrifluoroethane	"	**	"	"	11	ND "	0.0050	
1,2,3-Trichloropropane	15	"	"	"	**	ND "	0.0050	
1,2,4-Trimethylbenzene		"		"		ND "	0.0050	
1,3,5-Trimethylbenzene	"	n	"	**	*	ND "	0.0050	
Vinyl chloride	**	"	**		**	ND "	0.0050	
m,p-Xylene	11	"		**	n	ND "	0.0050	
o-Xylene	"	"	"	**	11	ND "	0.0050	
Xylenes (total)	**	11	H	**	"	ND "	0.0050	
Surrogate: Dibromofluoromethane	"	"	"	"		130 %	57-144	
Surrogate: Toluene-d8	"	"	"	"		79.6 %	65-127	
Surrogate: Bromofluorobenzene	"	"	"	"		90.8 %	56-130	
TPH Gasoline by GCFID/5035								
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	ND mg/kg	1.0	
Surrogate: 1,4-Bromofluorobenzene	"	11	"	"		113 %	60-156	
WO-7 (8.0-8.75') (A307601-19)			Sample Ty	pe: Soil		Sampled: 07/24/03 12:	40	
Metals by EPA 6000/7000 Series Metho	ods			-				
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	14	"	"	"	н	9.9 "	5.0	
Copper	"	"	"	11	**	ND "	10	
Nickel		н	**	**	"	ND "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M Son

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

Alpha Analytical Laboratories Inc.

MEG. Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EVAMINATION DEDODT

Page 36 of 90

	C.			mano	NKEPUKI				Fage 50 01 90
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Report Date: Project No: Project ID:	030229.4			
	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/I	Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				<u></u>
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
WO-7 (8.0-8.75') (A307601-19)	·····		Sample Ty	pe: Soil	Sam	pled: 07/24/03 12	:40		
Metals by EPA 6000/7000 Series M	ethods (cont'd)								
Lead	EPA 6010		"	08/01/03	"	ND "		5.0	
Zinc	"	**		"	**	ND "		10	
Polychlorinated Biphenyls by EPA	Method 8080A								
PCB-1016	8080	AH31118	08/01/03	08/08/03	1	ND mg/kg		0.20	
PCB-1221	11	14	"	"	**	ND "		0.20	
PCB-1232	**	"	**	11	"	ND "		0.20	
PCB-1242	**	n	"	n	**	ND "		0.20	
PCB-1248	"	**	11	11	"	ND "		0.20	
PCB-1254	**	14	**		"	ND "		0.20	
PCB-1260	"	н	**	**	**	ND "		0.20	
PCB-1262	"	11		"	**	ND "		0.20	
Surrogate: Tetrachloro-meta-xyle Surrogate: Decachlorobiphenyl	ne " "	" "	11 11	n n	γο τη	%	10-150 10-150		S-06 S-06
Chlorinated Phenols by Canadian	Pulp Mathod								
	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg		1.0	
2,4,6-Trichlorophenol 2,3,5,6-Tetrachlorophenol	EnvCan	AG32909	07/20/05	07/28/03	1	ND mg/kg		1.0	
2,3,5,6-Tetrachlorophenol		· 11	"	"		ND ND "		1.0	
2,3,4,5-Tetrachlorophenol			**	**	"	ND "		1.0	
Pentachlorophenol	**	**	**	"	"	ND "		1.0	
	"	"	"	n			23-140		
Surrogate: Tribromophenol	"	"	"	"		96.0 %	23-140		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M For

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	CI	HEMICA	AL EXAN	MINATIO	N REPORT				Page 37 of 90
MFG, Inc 180 Howard St	Suite 200				Report Date:	08/12/03 11:	41		
	CA 94105-2941				Project No:				
Attn: Ed Conti						SPI-Arcata/7	Fask #4		
					j				
Order Number A307601	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/	Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
WO-7 (8.0-8.75') (A307601-19)	The Mothed 9015 Mer		Sample Typ	pe: Soil	Samı	oled: 07/24/03 12	:40		
TPH as Diesel and Motor Oil by I			07/21/02	09/01/02	,	7.2 malles		1.0	
TPH as Diesel	8015DRO "	AG33112	07/31/03	08/01/03	1	7.3 mg/kg 44 "		1.0 2.0	D-12
TPH as Motor Oil			"	"			21.110	2.0	D-12
Surrogate: 1,4-Bromofluorobenz	ene "	"	"	"		85.5 %	21-110		
WO-8 (3.25') (A307601-20)			Sample Ty	ne: Soil	Sami	pled: 07/24/03 13	3:10		
Volatile Organic Compounds by 1	EPA Methods 8260B/5								
Acetone	8260B	AH30109	07/25/03	08/01/03	1	0.064 mg/kg		0.020	
Benzene	"	"	"	"	н	ND "		0.0050	
Bromobenzene	11	17	"	**	н	ND "		0.0050	
Bromochloromethane	"	"	"		"	ND "		0.0050	
Bromodichloromethane	89	"	**	11	"	ND "		0.0050	
Bromoform	"		н	"	11	ND "		0.0050	
Bromomethane	"	**	**	**	**	ND "		0.0050	
n-Butylbenzene	"	"	"	**	"	ND "		0.0050	
sec-Butylbenzene	11	"	"	**	**	ND "		0.0050	
tert-Butylbenzene	"	"	11	"	**	ND "		0.0050	
Carbon tetrachloride	"	"	11	17	**	ND "		0.0050	
Chlorobenzene	**		H	"	88	ND "		0.0050	
Chloroethane	"	н	11	"	**	ND "		0.0050	
Chloroform	"	**	и	"	"	ND "		0.0050	
Chloromethane	н	"	"	"	n	ND "		0.0050	
2-Chlorotoluene	**	"	н	н	"	ND "		0.0050	
4-Chlorotoluene	"	"		"	"	ND "		0.0050	
Dibromochloromethane	"	"	11	11	"	ND "		0.0050	
1,2-Dibromo-3-chloropropane	"	"	"	"	"	ND "		0.0050	
1,2-Dibromoethane (EDB)	"	"	"	"	"	ND "		0.0050	
Dibromomethane	"	"	**			ND "		0.0050	
1,2-Dichlorobenzene	"	"	**	"	**	ND "		0.0050	
1,3-Dichlorobenzene	"	**		"	"	ND "		0.0050	
1,4-Dichlorobenzene	"	**	**	n	**	ND "		0.0050	
Dichlorodifluoromethane	"	"	"	"	*1	ND "		0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung A

Cheryl Watson For Sheri L. Speaks Project Manager

EIVEU ŀ

AUG 1 5 2003

MFG, Inc.

Alpha 🛿 Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 38 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Client Code MFGINC

Alpha Analytical Laboratoric	s. Inc.

	METHOD	BATCH	PREPARED A	NALYZED	DILUTION	RESULT	PQL	NOTE
WO-8 (3.25') (A307601-20)		5	Sample Type	e: Soil	\$	Sampled: 07/24/03 13:10		
Volatile Organic Compounds by El	PA Methods 8260B	/5035 (cont'd))					
1,1-Dichloroethane	8260B	"	"	08/01/03	"	ND "	0.0050	
1,2-Dichloroethane	н	**	н	*1	"	ND "	0.0050	,
1,1-Dichloroethene	**	"	"	Ħ	**	ND "	0.0050	
cis-1,2-Dichloroethene	"		**			ND "	0.0050	
trans-1,2-Dichloroethene	"	"	**	Ħ	"	ND "	0.0050	
1,2-Dichloropropane	"	"	"	**	"	ND "	0.0050	
1,3-Dichloropropane	**	"	**	11	н	ND "	0.0050	
2,2-Dichloropropane	"	11	**	"	"	ND "	0.0050	
1,1-Dichloropropene	**	11	*	**	"	ND "	0.0050	
cis-1,3-Dichloropropene	**	11	"	n	**	ND "	0.0050	
trans-1,3-Dichloropropene	**	"	"	"	19	ND "	0.0050	
Ethylbenzene	"	11	11	**	11	ND "	0.0050	
Hexachlorobutadiene	n	"	"	"	11	ND "	0.0050	
Isopropylbenzene	**		**	"	11	ND "	0.0050	
p-Isopropyltoluene	n	н	11	89	11	ND "	0.0050	
Methyl ethyl ketone	**	"	**	**	U.	ND "	0.015	
Methyl isobutyl ketone	**	"	**	н.		ND "	0.010	
Methyl tert-butyl ether	"	"	"	**		ND "	0.0050	
Methylene chloride	**	"	"	н	11	ND "	0.0050	
Naphthalene	"	11	"	"	н	ND "	0.0050	
n-Propylbenzene	н	**	"	11		ND "	0.0050	
Styrene	**		**	19	"	ND "	0.0050	
1,1,1,2-Tetrachloroethane	"	"		97	**	ND "	0.0050	
1,1,2,2-Tetrachloroethane	"	**	"	**		ND "	0.0050	
Tetrachloroethene	"	"	**	"	"	ND "	0.0050	
Toluene		"	**	**	"	ND "	0.0050	
1,2,3-Trichlorobenzene	н	н		"	"	ND "	0.0050	
1,2,4-Trichlorobenzene	**	11	"	"	"	ND "	0.0050	
1,1,1-Trichloroethane	н	11	"	**	H	ND "	0.0050	
1,1,2-Trichloroethane	"	"	**	**	"	ND "	0.0050	
Trichloroethene	н		19	"	**	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ung M

Cheryl Watson For Sheri L. Speaks Project Manager

NLULIVLU

AUG 1 5 2003

MFG, Inc.

Alpha 🛿 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

.

Client PO/Reference

CHEMICAL EXAMINATION REPORT

Page 39 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number

A307601

Receipt Date/Time

07/25/2003 15:40

08/12/03 11:41
030229.4
SPI-Arcata/Task #4

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-8 (3.25') (A307601-20)			Sample Ty	pe: Soil		Sampled: 07/24/03 13	:10	
Volatile Organic Compounds by EPA M	/lethods 8260B/	'5035 (cont'd)					
Trichlorofluoromethane	8260B	н	н	08/01/03	11	ND "	0.0050	
Trichlorotrifluoroethane	"	"	"	**	"	ND "	0.0050	
1,2,3-Trichloropropane	**	11		"	**	ND "	0.0050	
1,2,4-Trimethylbenzene	87		**	**	н	ND "	0.0050	
1,3,5-Trimethylbenzene	,,	н	"	"	"	ND "	0.0050	
Vinyl chloride	"	н	11	"	**	ND "	0.0050	
m,p-Xylene	**	"	"	*	**	ND "	0.0050	
o-Xylene		"	11	19	"	ND "	0.0050	
Xylenes (total)	••	**	"	**		ND "	0.0050	
Surrogate: Dibromofluoromethane	"	"	"	"		134 %	57-144	
Surrogate: Toluene-d8	"	"	"	"		80.8 %	65-127	
Surrogate: Bromofluorobenzene	"	"	"	"		90.8 %	56-130	
TPH Gasoline by GCFID/5035								
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	ND mg/kg	1.0	
Surrogate: 1,4-Bromofluorobenzene	"	"	#	"		117 %	60-156	
WO-8 (3.25-4.0') (A307601-21)			Sample Ty	pe: Soil	,	Sampled: 07/24/03 13	3:10	
Metals by EPA 6000/7000 Series Metho	ods							
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	"	"	"	"	н	27 "	5.0	
Copper	"	"	**	"	"	ND "	10	
Nickel	**	"	"	**	"	29 "	10	
Lead	"	"	"	"	"	ND "	5.0	
Zinc		н		**	**	20 "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 40 of 90

18 Sa	FG, Inc 0 Howard St. Suite 200 n Francisco, CA 94105-2941 tn: Ed Conti	Project No:	08/12/03 11:41 030229.4 SPI-Arcata/Task #4
Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307601	07/25/2003 15:40	MFGINC	

A307001	07/25/2003 15:40		M	FGINC				
		Alpha A	Analytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-8 (3.25-4.0') (A307601-21)			Sample Ty	oe: Soil		Sampled: 07/24/03 13:10		
Polychlorinated Biphenyls by EPA	Method 8080A					-		
PCB-1016	8080	AH31118	08/01/03	08/08/03	1	ND mg/kg	0.20	
PCB-1221	**	"	"	"	"	ND "	0.20	
PCB-1232	"	**	11	"	11	ND "	0.20	
PCB-1242	**	**	"	**	**	ND "	0.20	
PCB-1248	11	**		59	"	ND "	0.20	
PCB-1254	n	"	"	**	n	ND "	0.20	
PCB-1260	**	n	"	**	**	ND "	0.20	
PCB-1262	"	11	"	11	**	ND "	0.20	
Surrogate: Tetrachloro-meta-xyler	ne "	"	н	"		% 10-	150	S-0
Surrogate: Decachlorobiphenyl	"	"	"	"			150	S-0
Chlorinated Phenols by Canadian l	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	11	**	**	**	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	11		**	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	н	"	"	**	ND "	1.0	
Pentachlorophenol	11	**	**	**	**	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	".		87.9 % 23	-140	
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AH30111	08/01/03	08/01/03	1	2.1 mg/kg	1.0	D-0
TPH as Motor Oil	**	"	**	**	"	8.0 "	2.0	
Surrogate: 1,4-Bromofluorobenze	ne "	11	"	"		91.9 % 21	-110	
WO-8 (6.0') (A307601-22)			Sample Ty	pe: Soil		Sampled: 07/24/03 13:30		
Volatile Organic Compounds by E	PA Methods 8260B/	5035						
Acetone	8260B	AH30109	07/25/03	08/01/03	1	0.081 mg/kg	0.020	
Benzene	*	**	"	11	"	ND "	0.0050	
Bromobenzene	**	**	"	"	**	ND "	0.0050	
Bromochloromethane	**	11	"	"	"	ND "	0.0050	
Bromodichloromethane	*	"	"	**		ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M For

AUG 1 5 2003

MFG, Inc.

Alpha 🛿 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 41 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Receipt Date/Time Client Code 07/25/2003 15:40 MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPAREI	D ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-8 (6.0') (A307601-22)		5	Sample Ty	pe: Soil	San	npled: 07/24/03 13:30		
Volatile Organic Compounds by EP	A Methods 8260B/			7				
Bromoform	8260B	"	"	08/01/03	"	ND "	0.0050	
Bromomethane	**	**	**	**	**	ND "	0.0050	
n-Butylbenzene	**	"	**	**	n	ND "	0.0050	
sec-Butylbenzene	и	н		**	"	ND "	0.0050	
tert-Butylbenzene	"	"	"	11	**	ND "	0.0050	
Carbon tetrachloride	н	"	**	"	"	ND "	0.0050	
Chlorobenzene	"	17	11	**	"	ND "	0.0050	
Chloroethane	**			"	"	ND "	0.0050	
Chloroform	11	**	"		"	ND "	0.0050	
Chloromethane	н	n	"	"	**	ND "	0.0050	
2-Chlorotoluene	**	**	9	**	"	ND "	0.0050	
4-Chlorotoluene	"	"	**	"	"	ND "	0.0050	
Dibromochloromethane	"	"	**	"	**	ND "	0.0050	
1,2-Dibromo-3-chloropropane	"	**	"	"	n	ND "	0.0050	
1,2-Dibromoethane (EDB)	"	"		**	"	ND "	0.0050	
Dibromomethane	17	"	"	. "	**	ND "	0.0050	
1,2-Dichlorobenzene	11	н	"	"	**	ND "	0.0050	
1,3-Dichlorobenzene	"	**	*	"	*1	ND "	0.0050	
1,4-Dichlorobenzene	"	**	"	**	**	ND "	0.0050	
Dichlorodifluoromethane	**	н	**	**	"	ND "	0.0050	
1,1-Dichloroethane	11	**	**	**	**	ND "	0.0050	
1,2-Dichloroethane	"	"	"		**	ND "	0.0050	
1,1-Dichloroethene	"	"	"	**	*1	ND "	0.0050	
cis-1,2-Dichloroethene	"	"	"	54	**	ND "	0.0050	
trans-1,2-Dichloroethene	**	"	"		"	ND "	0.0050	
1,2-Dichloropropane	"	*1	11	**	н	ND "	0.0050	
1,3-Dichloropropane	"	"	"	**		ND "	0.0050	
2,2-Dichloropropane	"	"	**	"	**	ND "	0.0050	
1,1-Dichloropropene	н	**	"	**	"	ND "	0.0050	
cis-1,3-Dichloropropene	"	**	"	"	**	ND "	0.0050	
trans-1,3-Dichloropropene	"	**	**	**	"	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ing M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha VAnalytical Laboratories Inc.

Receipt Date/Time

07/25/2003 15:40

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 42 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
VO-8 (6.0') (A307601-22)			Sample T	ype: Soil		Sampled: 07/24/03 13:3)	
Volatile Organic Compounds by EPA	Methods 8260B	/5035 (cont'o	l)					
Ethylbenzene	8260B	"	"	08/01/03	"	ND "	0.0050	
Hexachlorobutadiene	"	11	"	*1	"	ND "	0.0050	
Isopropylbenzene	n	**	"	н.,		ND "	0.0050	
p-Isopropyltoluene	**	11	"	11	**	ND "	0.0050	
Methyl ethyl ketone	**	**	"	"	"	ND "	0.015	
Methyl isobutyl ketone	"	11		11	"	ND "	0.010	
Methyl tert-butyl ether	"		**	11		ND "	0.0050	
Methylene chloride	"	"	11		**	ND "	0.0050	
Naphthalene	"	"	11	11	н	ND "	0.0050	
n-Propylbenzene	"	11	н	**	"	ND "	0.0050	
Styrene	17	**	11	"	н	ND "	0.0050	
1,1,1,2-Tetrachloroethane	"	"		"	11	ND "	0.0050	
1,1,2,2-Tetrachloroethane	н	"		"	91	ND "	0.0050	
Tetrachloroethene	"	"	**	**	"	ND "	0.0050	
Toluene			н	"	н	ND "	0.0050	
1,2,3-Trichlorobenzene	**	"	*1	**	**	ND "	0.0050	
1,2,4-Trichlorobenzene	**	"	"	"	"	ND "	0.0050	
1,1,1-Trichloroethane	"	"	**	н	**	ND "	0.0050	
1,1,2-Trichloroethane	**	11	**	"	"	ND "	0.0050	
Trichloroethene	**	"	н	"	"	ND "	0.0050	
Trichlorofluoromethane	**	. "	*1	"	11	ND "	0.0050	
Trichlorotrifluoroethane	"	"	**	н.	"	ND "	0.0050	
1,2,3-Trichloropropane	••	"	n	11	**	ND "	0.0050	
1,2,4-Trimethylbenzene	"	"	"	ti	n	ND "	0.0050	
1,3,5-Trimethylbenzene	••	**	**	"	"	ND "	0.0050	
Vinyl chloride	**	**	"	"	**	ND "	0.0050	
m,p-Xylene	"	"	"	**	"	ND "	0.0050	
o-Xylene	"	"	"	"	11	ND "	0.0050	
Xylenes (total)	11	"	"	"	11	ND "	0.0050	
Surrogate: Dibromofluoromethane	"	"	"	"		101 %	57-144	
Surrogate: Toluene-d8	"	n	н	н		83.6 %	65-127	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

HHUEIVED

AUG 1 5 2003

ivir-G, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

	U	HEMICA	AL EXAN	IIINA I IO	N REPORT			1	age 45 01 90
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Project No	: 08/12/03 11: : 030229.4 : SPI-Arcata/T			
	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/	Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
WO-8 (6.0') (A307601-22) Volatile Organic Compounds by El	PA Methods 8260B/5		Sample Tyj)	pe: Soil	San	npled: 07/24/03 13	:30		
Surrogate: Bromofluorobenzene	8260B	"	"	08/01/03		44.0 %	56-130		S-04
TPH Gasoline by GCFID/5035									
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	3.0 mg/kg		1.0	
Surrogate: 1,4-Bromofluorobenzer	ne "	"	"	"		111 %	60-156		
WO-8 (6.0-6.75') (A307601-23)			Sample Ty	pe: Soil	San	npled: 07/24/03 13	3:30		
Metals by EPA 6000/7000 Series M	ethods		• •			•			
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg		1.0	
Chromium	"	**	11	11	**	20 "		5.0	
Copper	"			"		36 "		10	
Nickel	"		"	"	**	22 "		10	
Lead	н	"	"	**	"	18 "		5.0	
Zinc	**		**	n	"	50 "		10	
Polychlorinated Biphenyls by EPA	Method 8080A								
PCB-1016	8080	AH31118	08/01/03	08/08/03	1	ND mg/kg		0.20	
PCB-1221	**	"	Ħ	**	"	ND "		0.20	
PCB-1232	**	n	**	"	"	ND "		0.20	
PCB-1242	"	"	11	н	Ħ	ND "		0.20	
PCB-1248	"	**	**	н	"	ND "		0.20	
PCB-1254	"	11	"		"	ND "		0.20	
PCB-1260	Ħ	**	"		**	ND "		0.20	
PCB-1262	**	"	"	"	*	ND "		0.20	
Surrogate: Tetrachloro-meta-xyle	ne "	H	"	"	·	%	10-150		S-06
Surrogate: Decachlorobiphenyl	"	"	"	"		%	10-150		S-06

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M * SOI

Cheryl Watson For Sheri L. Speaks Project Manager

8/12/03

CHEMICAL EXAMINATION REPORT

Page 43 of 90

HEUEIVED

AUG 1 5 2003

MFG, Inc.

alpha Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

Report Date: 08/12/03 11:41

Project No: 030229.4

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 44 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941

Attn: Ed Conti					Project II	: SPI-Arcata/	Fask #4		
	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/	Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
WO-8 (6.0-6.75') (A307601-23)			Sample Ty	pe: Soil	Sai	mpled: 07/24/03 13	3:30		
Chlorinated Phenols by Canadian	Pulp Method								
2,4,6-Trichlorophenol	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg		1.0	
2,3,5,6-Tetrachlorophenol	"	**	**	"	"	ND "		1.0	
2,3,4,6-Tetrachlorophenol	"	"	"	**		ND "		1.0	
2,3,4,5-Tetrachlorophenol	"	"	11	"	н	ND "		1.0	
Pentachlorophenol	**	**	11	"	**	ND "		1.0	
Surrogate: Tribromophenol	n	"	"	"		90.3 %	23-140		
TPH as Diesel TPH as Motor Oil Surrogate: 1,4-Bromofluorobenze	8015DRO " ne "	AH30111 "	08/01/03 "	08/01/03 "	10 "	19 mg/kg 74 " 67.8 %	21-110	10 20	D-09
WO-9 (4.0') (A307601-24)			Sample Ty	pe: Soil	Sa	mpled: 07/24/03 1	4:00		
Volatile Organic Compounds by E	PA Methods 8260B/	5035		-					R-06
Acetone	8260B	AH30413	07/25/03	07/31/03	173.2	ND mg/kg		3.5	
Benzene	**	*1	"	**	**	ND "		0.87	
Bromobenzene	**	"	11	*1	"	ND "		0.87	
Bromochloromethane	**	"	11	**	"	ND "		0.87	
Bromodichloromethane	"	"		**	"	ND "		0.87	
Bromoform	"	**	11	"	"	ND "		0.87	
Bromomethane	"	11	**	**	**	ND "		0.87	
n-Butylbenzene	**	"		**		ND "		0.87	
sec-Butylbenzene	**		"	н	**	ND "		0.87	
tert-Butylbenzene	*		**	**	**	ND "		0.87	
Carbon tetrachloride	н	**	**			ND "		0.87	

,,

**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

**

"

=

,,

**

n

••

-

Chlorobenzene

Chloroethane Chloroform

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

Ung M

ND "

ND "

ND "

ND "

ND "

ND "

Cheryl Watson For Sheri L. Speaks Project Manager

8/12/03

0.87

0.87

0.87

0.87

0.87

0.87

AUG 1 5 2003

MFG, Inc.

AUG 1 5 2003

PECEIVED

alpha Alpha VAnalytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 45 of 90

NOTE

DOT

MFG. Inc 180 Howard St. Suite 200 Report Date: 08/12/03 11:41 Project No: 030229.4 San Francisco, CA 94105-2941 Project ID: SPI-Arcata/Task #4 Attn: Ed Conti Order Number Receipt Date/Time Client Code Client PO/Reference A307601 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc. DATCH DREDADED ANALYZED DILLTION DECHT VETTOD

	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-9 (4.0') (A307601-24)		5	Sample Ty	pe: Soil		Sampled: 07/24/03 14:00		
Volatile Organic Compounds by EP	A Methods 8260B/	5035 (cont'd))					R-06
Dibromochloromethane	8260B	"	"	07/31/03	"	ND "	0.87	
1,2-Dibromo-3-chloropropane	11	H	**	"	"	ND "	0.87	
1,2-Dibromoethane (EDB)	н	**	"	H	17	ND "	0.87	
Dibromomethane			"	**	"	ND "	0.87	
1,2-Dichlorobenzene		"	**	71	"	ND "	0.87	
1,3-Dichlorobenzene			11	"	"	ND "	0.87	
1,4-Dichlorobenzene	Ħ	**	H	"	"	ND "	0.87	
Dichlorodifluoromethane	н	**	"	**	"	ND "	0.87	
1,1-Dichloroethane	"		11	**	**	ND "	0.87	
1,2-Dichloroethane	**	n	"	**	**	ND "	0.87	
1,1-Dichloroethene	"	**	**	"		ND "	0.87	
cis-1,2-Dichloroethene	"	**	"	"	**	ND "	0.87	
trans-1,2-Dichloroethene	11	"	"	"	11	ND "	0.87	
1,2-Dichloropropane	*	**	**	"	**	ND "	0.87	
1,3-Dichloropropane	"	n	н	**		ND "	0.87	
2,2-Dichloropropane			"	"	"	ND "	0.87	
1,1-Dichloropropene		11	"	"	"	ND "	0.87	
cis-1,3-Dichloropropene	**	н	"	"	**	ND "	0.87	
trans-1,3-Dichloropropene	"	"	"	н	**	ND "	0.87	
Ethylbenzene		"	"			ND "	0.87	
Hexachlorobutadiene	**	"		"	"	ND "	0.87	
Isopropylbenzene	**	"	"	"	*	ND "	0.87	
p-Isopropyltoluene	**	"	"		"	ND "	0.87	
Methyl ethyl ketone	**	"	**	,,	"	ND "	2.6	
Methyl isobutyl ketone	"	н	**	8		ND "	1.7	
Methyl tert-butyl ether	11	"	11	"	"	ND "	0.87	
Methylene chloride	н	**	**	**	**	ND "	0.87	
Naphthalene	**	**	"		"	ND "	0.87	
n-Propylbenzene	*		**	**	H	ND "	0.87	
Styrene	и	"	**	**	11	ND "	0.87	
1,1,1,2-Tetrachloroethane	"	**		11	"	ND "	0.87	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 46 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-9 (4.0') (A307601-24)		S	Sample Typ	oe: Soil		Sampled: 07/24/03 14:00		
Volatile Organic Compounds by EPA M	/ethods 8260B/	5035 (cont'd)						R-06
1,1,2,2-Tetrachloroethane	8260B	11	"	07/31/03	"	ND "	0.87	
Tetrachloroethene	"	"	**	"	н	ND "	0.87	
Toluene	"		"	"	**	ND "	0.87	
1,2,3-Trichlorobenzene	"	11	**	**	**	ND "	0.87	
1,2,4-Trichlorobenzene	"	н	"	"	11	ND "	0.87	
1,1,1-Trichloroethane	**	"	n		"	ND "	0.87	
1,1,2-Trichloroethane	"	"	11	**	**	ND "	0.87	
Trichloroethene	"	"	"	**	**	ND "	0.87	
Trichlorofluoromethane	**	"	"	**	"	ND "	0.87	
Trichlorotrifluoroethane	**	**	**	R	u	ND "	0.87	
1,2,3-Trichloropropane	**	"		"	**	ND "	0.87	
1,2,4-Trimethylbenzene	.,	"	"	11	"	ND "	0.87	
1,3,5-Trimethylbenzene	"	"	"	"	"	ND "	0.87	
Vinyl chloride	**	"	"	ŧr	**	ND "	0.87	
m,p-Xylene	"	"	**	"	**	ND "	0.87	
o-Xylene	**	"	"	"	**	ND "	0.87	
Xylenes (total)	"	"	**	11	**	ND "	0.87	
Surrogate: Dibromofluoromethane	"	"	n	"		78.3 %	57-144	
Surrogate: Toluene-d8	"	"	"	"		89.4 %	55-127	
Surrogate: Bromofluorobenzene	"	"	"	"		87.7 %	56-130	
TPH Gasoline by GCFID/5035								
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	4.3 mg/kg	1.0	G-1
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		114 %	50-156	
WO-9 (4.0-4.75') (A307601-25)		Sample Type: Soil			Sampled: 07/24/03 14:00			
Metals by EPA 6000/7000 Series Metho	ods							
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	"	n		"	*1	30 "	5.0	
Copper	**	**		"	. 11	10 "	10	
Nickel	"	11	"	"		34 "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

EIVEN

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 47 of 90

MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti						08/12/03 11:4 030229.4 SPI-Arcata/T			
	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/F	Reference	*	
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
WO-9 (4.0-4.75') (A307601-25)			Sample Typ	pe: Soil	Sam	pled: 07/24/03 14	00		
Metals by EPA 6000/7000 Series M	lethods (cont'd)								
Lead	EPA 6010	"	"	08/01/03		ND "		5.0	
Zinc	11	"	"	"	"	27 "		10	
Polychlorinated Biphenyls by EPA	Method 8080A								
PCB-1016	8080	AH31118	08/01/03	08/08/03	1	ND mg/kg		0.20	
PCB-1221	**	**	"	"	*	ND "		0.20	
PCB-1232	"	Ħ	**	"	**	ND "		0.20	
PCB-1242	"	**	"		**	ND "		0.20	
PCB-1248	*	n		*1	"	ND "		0.20	
PCB-1254	**	н	**		"	ND "		0.20	
PCB-1260	**	"	**		n	ND "		0.20	
PCB-1262	n	"	"		11	ND "		0.20	
Surrogate: Tetrachloro-meta-xyle	ne "	"	"	"		%	10-150		S-06
Surrogate: Decachlorobiphenyl	"	"	"	"		%	10-150		S-06
Chlorinated Phenols by Canadian	Pulp Method								
2,4,6-Trichlorophenol	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg		1.0	
2,3,5,6-Tetrachlorophenol	"	H	"	**	**	ND "		1.0	
2,3,4,6-Tetrachlorophenol	"	"	"	**		ND "		1.0	
2,3,4,5-Tetrachlorophenol	**	"	н	"	**	ND "		1.0	
Pentachlorophenol	"	"	"	"	**	ND "		1.0	
Surrogate: Tribromophenol	11	"	н	n		83.1 %	23-140		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung auton

Cheryl Watson For Sheri L. Speaks Project Manager

FILLIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

	Cl	HEMICA	AL EXAN	MINATIO	N REPORT			Page 48 of 90
MFG, Inc 180 Howard St. San Francisco, G Attn: Ed Conti					Project N	e: 08/12/03 11:4 o: 030229.4 D: SPI-Arcata/T		
Order Number A307601	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/I		
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	<u> </u>	•	ANALYZED		RESULT	PQL	NOTE
WO-9 (4.0-4.75') (A307601-25)			Sample Ty			mpled: 07/24/03 14	:00	
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo		~					
TPH as Diesel	8015DRO	AH30111	08/01/03	08/01/03	1	24 mg/kg	1.0	
TPH as Motor Oil	"	"	н	"		28 "	2.0	
Surrogate: 1,4-Bromofluorobenze	ene "	"	"	"		103 %	21-110	
WO-9 (8.0') (A307601-26)			Sample Ty	pe: Soil	Sa	mpled: 07/24/03 14	:20	
Volatile Organic Compounds by E	PA Methods 8260B/5					•		
Acetone	8260B	AH30109	07/25/03	08/01/03	1	1.0 mg/kg	0.035	
Benzene	"	"	n (1997)	**		ND "	0.0088	
Bromobenzene	"	н	"	"	n	ND "	0.0088	
Bromochloromethane	"	"	*1	"	"	ND "	0.0088	
Bromodichloromethane	"	"	"		"	ND "	0.0088	
Bromoform	п	**	**	24	**	ND "	0.0088	
Bromomethane	"	**	*	"	"	ND "	0.0088	
n-Butylbenzene	"	"	"	*	te	ND "	0.0088	
sec-Butylbenzene	**	**	**	"	**	ND "	0.0088	
tert-Butylbenzene	*1	"	11	**	"	ND "	0.0088	
Carbon tetrachloride	"	**	n	**	**	ND "	0.0088	
Chlorobenzene	**		**	"	"	ND "	0.0088	;
Chloroethane	"	**	**	"	"	ND "	0.0088	
Chloroform	"	"		11	**	ND "	0.0088	í.
Chloromethane	**	11		*1	"	ND "	0.0088	<u>;</u>
2-Chlorotoluene	**	n	0	••	"	ND "	0.0088	ś
4-Chlorotoluene	"	11	н			ND "	0.0088	\$
Dibromochloromethane	"	"	"		**	ND "	0.0088	\$
1,2-Dibromo-3-chloropropane	н	"	"	"	"	ND "	0.0088	\$
1,2-Dibromoethane (EDB)	"	"	"	"	"	ND "	0.008	3
Dibromomethane	"	"	"	*	"	ND "	0.008	3
1,2-Dichlorobenzene		"	"	**	**	ND "	0.008	3
1,3-Dichlorobenzene	"	"	**	"	"	ND "	0.008	3
1,4-Dichlorobenzene	"	"	**	**	"	ND "	0.008	3
Dichlorodifluoromethane	"	*1	"	н	**	ND "	0.008	3

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dichlorodifluoromethane

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601

Tetrachloroethene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene

Toluene

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Receipt Date/Time 07/25/2003 15:40

Client Code MFGINC

		Alpha A	Analytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-9 (8.0') (A307601-26)			Sample Typ	e: Soil		Sampled: 07/24/03 14:20		
Volatile Organic Compounds by E	PA Methods 8260B/	/5035 (cont'o	d)					
1,1-Dichloroethane	8260B	"	*	08/01/03	"	ND "	0.0088	
1,2-Dichloroethane	н	"	"	н	11	ND "	0.0088	
1,1-Dichloroethene	11	н	**	"	"	ND "	0.0088	
cis-1,2-Dichloroethene	"	"	"	n	**	ND "	0.0088	
trans-1,2-Dichloroethene	"	"	"	"	"	ND "	0.0088	
1,2-Dichloropropane	N	11	н	17	"	ND "	0.0088	
1,3-Dichloropropane	"	"	*1	*	11	ND "	0.0088	
2,2-Dichloropropane	**	"		**	8	ND "	0.0088	
1,1-Dichloropropene	"	"	"	"	H	ND "	0.0088	
cis-1,3-Dichloropropene	**		**	*1	**	ND "	0.0088	
trans-1,3-Dichloropropene	n	"	•	"	**	ND "	0.0088	
Ethylbenzene	"	**	"	"		ND "	0.0088	
Hexachlorobutadiene	n	**	11	11	"	ND "	0.0088	
Isopropylbenzene	11	"	"	"	"	ND "	0.0088	
p-Isopropyltoluene	łf	**	"	11	11	ND "	0.0088	
Methyl ethyl ketone	"	**	**	**	71	0.16 "	0.027	
Methyl isobutyl ketone	н	н	"	"	"	ND "	0.018	
Methyl tert-butyl ether	11	**	**	"	n	ND "	0.0088	
Methylene chloride	**	11	"	"		ND "	0.0088	
Naphthalene	**	"	"	"	"	ND "	0.0088	
n-Propylbenzene	11	"	"	**	н	ND "	0.0088	
Styrene	и	"	"	17	**	ND "	0.0088	
1,1,1,2-Tetrachloroethane	11	"	11	11	**	ND "	0.0088	
1,1,2,2-Tetrachloroethane		"	**	н	**	ND "	0.0088	
						A 175 II	0.0000	

"

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

"

,,

**

**

11

.,

lung M

ND "

Cheryl Watson For Sheri L. Speaks Project Manager

Page 49 of 90

8/12/03

0.0088

0.0088

0.0088

0.0088

0.0088

0.0088

0.0088

Zinc

RECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 50 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti			Project No:	08/12/03 11:41 030229.4 SPI-Arcata/Task #4		
Order Number A307601	Receipt Date/Time 07/25/2003 15:40			Client PO/Reference		
		Alpha Analytical Laboratori	es, Inc.			
	METHOD	BATCH PREPARED ANALYZED D	DILUTION	RESULT	PQL	NOTE

WO-9 (8.0') (A307601-26)		S	Sample Typ	oe: Soil		Sampled: 07/24/03 14:2	0
Volatile Organic Compounds by EPA M	lethods 8260B/	'5035 (cont'd)	1				
Trichlorofluoromethane	8260B	**	Ħ	08/01/03	**	ND "	0.0088
Trichlorotrifluoroethane	**	**	**	**	"	ND "	0.0088
1,2,3-Trichloropropane	"		< 0	**		ND "	0.0088
1,2,4-Trimethylbenzene	**	н	"	11	**	ND "	0.0088
1,3,5-Trimethylbenzene	11	"	1 1	"	"	ND "	0.0088
Vinyl chloride	**	**	"	"	н	ND "	0.0088
m,p-Xylene		"	**		**	ND "	0.0088
o-Xylene	"		"	**	**	ND "	0.0088
Xylenes (total)	**	11	"	**	n	ND "	0.0088
Surrogate: Dibromofluoromethane	"	"	"	"		116 %	57-144
Surrogate: Toluene-d8	"	"	"	"		79.2 %	65-127
Surrogate: Bromofluorobenzene	"	"	"	"		56.8 %	56-130
TPH Gasoline by GCFID/5035							
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	ND mg/kg	1.0
Surrogate: 1,4-Bromofluorobenzene	11	II	"	"		121 %	60-156
WO-9 (8.0-8.75') (A307601-27)			Sample Ty	pe: Soil		Sampled: 07/24/03 14:	20
Metals by EPA 6000/7000 Series Metho	ds						
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0
Chromium	**	"	"	"	"	27 "	5.0
Copper	**	"	"	"	**	ND "	10
Nickel	**	н	**	**	**	15 "	10
Lead	"	11	"	"	"	ND "	5.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11

11

н

11

..

ung WITSon

ND "

Cheryl Watson For Sheri L. Speaks Project Manager

8/12/03

10

CEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

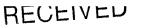
Page 51 of 90

MFG, Inc	
180 Howard St. Suite 200	
San Francisco, CA 94105-2941	
Attn: Ed Conti	

Order Number A307601

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Receipt Date/Time Client Code Client PO/Reference 07/25/2003 15:40 MFGINC


Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
WO-9 (8.0-8.75') (A307601-27)			Sample Typ	oe: Soil		Sampled: 07/24/03 14:2	0		
Polychlorinated Biphenyls by EPA Me	thod 8080A								
PCB-1016	8080	AH31118	08/01/03	08/08/03	1	ND mg/kg		0.20	
PCB-1221	"	"	*	"	"	ND "		0.20	
PCB-1232	**	**	**	"	"	ND "		0.20	
PCB-1242	ч	"	97	"	u	ND "		0.20	
PCB-1248	"	"	11	"	11	ND "		0.20	
PCB-1254	11	н	**			ND "		0.20	
PCB-1260	"	"	н	"	н	ND "		0.20	
PCB-1262	"	**	**	"	"	ND "		0.20	
Surrogate: Tetrachloro-meta-xylene	"	"	"	"		%	10-150		S-06
Surrogate: Decachlorobiphenyl	"	"	"	"		%	10-150		S-06
Chlorinated Phenols by Canadian Pulp	Method								
2,4,6-Trichlorophenol	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg		1.0	
2,3,5,6-Tetrachlorophenol	**	"	n	"	**	ND "		1.0	
2,3,4,6-Tetrachlorophenol		**	"	"	"	ND "		1.0	
2,3,4,5-Tetrachlorophenol		**	**	"	н	ND "		1.0	
Pentachlorophenol	"	"	"	**	11	ND "		1.0	
Surrogate: Tribromophenol	"	"	"	11		95.2 %	23-140		
TPH as Diesel and Motor Oil by EPA	Method 8015 M	lodified							
TPH as Diesel	8015DRO	AH30111	08/01/03	08/01/03	1	1.2 mg/kg		1.0	D-11
TPH as Motor Oil	**	н		"	**	37 "		2.0	D-12
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		96.8 %	21-110		
WO-10 (5.0') (A307601-28)			Sample Ty	pe: Soil		Sampled: 07/24/03 14:4	45		
Volatile Organic Compounds by EPA	Methods 8260B			-		-			R-0
Acetone	8260B	AH30413	07/25/03	07/31/03	173.2	ND mg/kg		4.5	
Benzene	94	11	"	H	"	ND "		1.1	
Bromobenzene	"	**	*	**	11	ND "		1.1	
Bromochloromethane	**	"	"	**	н	ND "		1.1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M 501

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Client PO/Reference

Alpha Analytical Laboratories Inc.

Receipt Date/Time

07/25/2003 15:40

a maile clientsenices@alpha.labs.com

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Report Date: 08/12/03 11:41

Project ID: SPI-Arcata/Task #4

Project No: 030229.4

CHEMICAL EXAMINATION REPORT

Page 52 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601 Client Code MFGINC

		Alpha /	Analytica	l Laborato	ries, inc.			
	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-10 (5.0') (A307601-28)			Sample Ty	pe: Soil		Sampled: 07/24/03 14:45		
Volatile Organic Compounds by EP.	A Methods 8260B/	/5035 (cont'	d)					R-
Bromoform	8260B	"	"	07/31/03	"	ND "	1.1	
Bromomethane	"	"	"	**	**	ND "	1.1	
n-Butylbenzene	**	"	"	*1	"	ND "	1.1	
sec-Butylbenzene	"	н	"	**	"	ND "	1.1	
tert-Butylbenzene	**	н	"	н	**	ND "	1.1	
Carbon tetrachloride	"	17	"	79	**	ND "	1.1	
Chlorobenzene	"		"	"	**	ND "	1.1	
Chloroethane		"	11	"	**	ND "	1.1	
Chloroform	"	"	"	"	**	ND "	1.1	
Chloromethane	11	"	"	**	n	ND "	1.1	
2-Chlorotoluene	"	"	"	"	"	ND "	1.1	
4-Chlorotoluene	"	"	**		"	ND "	1.1	
Dibromochloromethane	**	"	"	**	"	ND "	1.1	
1,2-Dibromo-3-chloropropane	"	**	**	**	"	ND "	1.1	
1,2-Dibromoethane (EDB)	**	"	"	**	**	ND "	1.1	
Dibromomethane	"	Ħ	**		**	ND "	1.1	
1,2-Dichlorobenzene		n	"	**	**	ND "	1.1	
1,3-Dichlorobenzene	"	н	"		"	ND "	1.1	
1,4-Dichlorobenzene	"	н	н		**	ND "	1.1	
Dichlorodifluoromethane	**	11	"	••	"	ND "	1.1	
1,1-Dichloroethane	"	"	- 14	"	"	ND "	1.1	
1,2-Dichloroethane	**		11	**	"	ND "	1.1	
1,1-Dichloroethene	**	"	н	"	H	ND "	1.1	
cis-1,2-Dichloroethene	"	**	11		*1	ND "	1.1	
trans-1,2-Dichloroethene		"		**	н	ND "	1.1	
1,2-Dichloropropane	"	11	"	"	11	ND "	1.1	
1,3-Dichloropropane	"	н	"	"	"	ND "	1.1	
2,2-Dichloropropane	**	"	**	"	"	ND "	1.1	
1,1-Dichloropropene	11	"	11	11	"	ND "	1.1	
cis-1,3-Dichloropropene	11	"	**	"	"	ND "	1.1	
trans-1,3-Dichloropropene	**	**		н		ND "	1.1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

alpha

HEULIV-

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Client PO/Reference

CHEMICAL EXAMINATION REPORT

Page 53 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
VO-10 (5.0') (A307601-28)			Sample Ty	pe: Soil	S	ampled: 07/24/03 14:4	5	
Volatile Organic Compounds by EPA	Methods 8260B	/5035 (cont'd)					R-0
Ethylbenzene	8260B	71	11	07/31/03	**	ND "	1.1	
Hexachlorobutadiene	**	**	"	"	"	ND "	1.1	
Isopropylbenzene	**	17	**	11	**	ND "	1.1	
p-Isopropyltoluene	"		"	"	"	ND "	1.1	
Methyl ethyl ketone	н	*		**	**	ND "	3.3	
Methyl isobutyl ketone	**	H	**	17		ND "	2.2	
Methyl tert-butyl ether	75	"	**	n	"	ND "	1.1	
Methylene chloride	"	**		"	**	ND "	1.1	
Naphthalene	"	**	"	11	"	ND "	1.1	
n-Propylbenzene	"	"	"	**	"	ND "	1.1	
Styrene	"	. "	**	"	"	ND "	1.1	
1,1,1,2-Tetrachloroethane	"	**	"	"	11	ND "	1.1	
1,1,2,2-Tetrachloroethane	"	"	"	**	"	ND "	1.1	
Tetrachloroethene	"	**	**	"	"	ND "	1.1	
Toluene	**	"	**	17	"	ND "	1.1	
1,2,3-Trichlorobenzene	**	**	"	"	"	ND "	1.1	
1,2,4-Trichlorobenzene	"	11	"	"	"	ND "	1.1	
1,1,1-Trichloroethane	"	"	"			ND "	1.1	
1,1,2-Trichloroethane	"	n		"	**	ND "	1.1	
Trichloroethene	"	"	11	"	"	ND "	1.1	
Trichlorofluoromethane	"	"	11	"	"	ND "	1.1	
Trichlorotrifluoroethane	"	**	"	**	**	ND "	1.1	
1,2,3-Trichloropropane		"	"	**	**	ND "	1.1	
1,2,4-Trimethylbenzene	n	"	"	**		ND "	1.1	
1,3,5-Trimethylbenzene	**	"	**	"	**	ND "	1.1	
Vinyl chloride		"	"	**	"	ND "	1.1	
m,p-Xylene		"	"	**	**	ND "	1.1	
o-Xylene	"	"	"	**	**	ND "	1.1	
Xylenes (total)	11	"	**	**	11	ND "	1.1	
Surrogate: Dibromofluoromethane	"	"	"	"		84.1 %	57-144	
Surrogate: Toluene-d8	"	"	"	"		91.2 %	65-127	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CI	IEMICA	AL EXAN	AINATIO	N REPORT			F	Page 54 of 9
. Suite 200 CA 94105-2941				Project No:	030229.4			
Receipt Date/Time 07/25/2003 15:40					Client PO/	Reference		
	Alpha A	nalytical	Laborato	ries, Inc.				
METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
					led: 07/24/03 14	1:45		
EPA Methods 8260B/5								R-06
8260B	"	"	07/31/03		89.8 %	56-130		
8015GRO	AH30510	07/25/03	07/30/03	1	9.9 mg/kg		1.0	G-1
ene "	"	"	"		120 %	60-156		
		Sample Ty	pe: Soil	Sam	oled: 07/24/03 1	5:00		
EPA Methods 8260B/5								
8260B	AH30109	07/25/03	08/01/03	1	0.10 mg/kg		0.020	
n	11	"	"		ND "		0.0050	
	"	"		**	ND "		0.0050	
**	"	11	**	"	ND "		0.0050	
11	**	"	**		ND "		0.0050	
"	**	н	**	**	ND "		0.0050	
"	"	"	**	"	ND "		0.0050	
н	"	11	11	**	ND "		0.0050	
**	"		н	**	ND "			
15	н	11	"	"				
"	н	"	"	"				
**				11				
ч	**	**		н				
"	"	"	11	"				
"	**	**	11	"				
**	"	"	"	**				
"	**		n	"				
	**	11	**	"				
"		**						
"		*1						
"		"	*	*				
"		"	**	**				
	Suite 200 CA 94105-2941 Receipt Date/Time 07/25/2003 15:40 METHOD CPA Methods 8260B/5 8260B 8015GRO ene " CPA Methods 8260B/5 8260B " " " " " " " " " " " " " " " " " " "	Suite 200 CA 94105-2941 Receipt Date/Time 07/25/2003 15:40 Alpha A METHOD BATCH SPA Methods 8260B/5035 (cont'd) 8260B AH30510 ene " " " EPA Methods 8260B/5035 8260B AH30109 " " " " " " " " " " " " " " "	Suite 200 CA 94105-2941 Clie 07/25/2003 15:40 Receipt Date/Time 07/25/2003 15:40 Clie 07/25/2003 15:40 METHOD BATCH PREPARED Sample Type B015GRO AH30510 07/25/03 8015GRO AH30510 07/25/03 ene " " 8015GRO AH30510 07/25/03 ene " " 8015GRO AH30109 07/25/03 ene " " 8260B AH30109 07/25/03 ene " " 8260B AH30109 07/25/03 " " " Receipt Autenhods 8260B/5035 " " B15GRO AH30109 07/25/03 " " " " " " " " " " " " " " " " 8260B AH30109 07/25/03 " " " " " " " " " <	Suite 200 Client Code Receipt Date/Time Client Code 07/25/2003 15:40 Alpha Autytical Laborato METHOD BATCH PREPARED ANALYZED Sample Type: Soil Sample Type: Soil FA Methods 8260B/5035 (cont'd) 07/31/03 8015GRO AH30510 07/25/03 07/30/03 ene " " " 8015GRO AH30510 07/25/03 08/01/03 ene " " " 8015GRO AH30109 07/25/03 08/01/03 ene " " " 8260B AH30109 07/25/03 08/01/03 " " " " 8260B AH30109 07/25/03 08/01/03 " " " " " " " " " " " " " " " " # " " " # " " " # " " "	CA 94105-2941 Project No: Project ID: Receipt Date/Time Client Code 07/25/2003 15:40 Client Code 07/25/2003 15:40 ALPREP ANALYZED DILUTION ATT PREPARED ANALYZED DILUTION Sample Type: Soil Samp 28260B AH30510 07/25/03 07/30/03 1 Pre " " " " " Sample Type: Soil Samp 8015GRO AH30510 07/25/03 07/30/03 1 Pre " " " " Sample Type: Soil Samp 8260B AH30510 07/25/03 08/01/03 1 Pre " " " " Sample Type: Soil Samp 8260B AH3010 07/25/03 08/01/03 1 Pre " " " " Project ID: Project ID: Proje	Suite 200 Report Date: 08/12/03 11: CA 94105-2941 Project No: 030229.4 Receipt Date/Time Client Code Client PO/ 07/25/2003 15:40 MFGINC Client PO/ Merition Supervises, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT Sample Type: Soil Sampled: 07/21/03 89.8 % 8260B/5035 (cont'd) Sample Type: Soil Sampled: 07/24/03 12 PA Methods 8260B/5035 Sample Type: Soil Sampled: 07/24/03 12 PA Methods 8260B/5035 Sampled: 07/25/03 08/01/03 1 0.10 mg/kg "" "" "" ND" ND" ""	Suite 200 CA 94105-2941 Report Date: Time 030229.4 Project ID: 030229.4 SPT-Arcata/Task #4 Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Client PO/Reference Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT Sample Type: Soil Samplet: 07/24/03 14:45 Sample Type: Soil Samplet: 07/24/03 15:00 Sample Type: Soil Samplet: 07/24/03 15:00 Sample Type: Soil Sample: 07/24/03 15:00 Sample Type: Soil Sample: 07/24/03 15:00 Sample: 10/24/03 15:00 PA Methods 8260B/5055 Sample: 07/24/03 15:00 Sample: 120 % 010 mg/kg % % 8260B Alf 10 mg/kg % % ND <td< td=""><td>Suite 200 CA 94105-2941 Report Date: 08/12/03 11:41 Project No: 030229.4 Project No: Suite 200 S0229.4 Project No: Suite 200 S0229.4 SPI-Arcata/Task #4 Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Client PO/Reference METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL Samplet soit Sampled: 07/24/03 14:45 Samplet Type: Soit Sampled: 07/24/03 14:45 Report Date: 07/31/03 1 9.9 mg/kg 1.0 8260B AH30510 07/25/03 07/30/03 1 9.9 mg/kg 0.00 ene " " " 1/20 % 60-156 1 Samplet Type: Soit Sampled: 07/24/03 15:00 PRP NRED Type: Soit Sampled: 07/24/03 16:00 8260B AH30109 07/25/03 07/30/03 1 0.00 mg/kg 0.020 ene " " " ND 0.0050 0 0.0050 " " " " ND 0.0050 0.0050 " "</td></td<>	Suite 200 CA 94105-2941 Report Date: 08/12/03 11:41 Project No: 030229.4 Project No: Suite 200 S0229.4 Project No: Suite 200 S0229.4 SPI-Arcata/Task #4 Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Client PO/Reference METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL Samplet soit Sampled: 07/24/03 14:45 Samplet Type: Soit Sampled: 07/24/03 14:45 Report Date: 07/31/03 1 9.9 mg/kg 1.0 8260B AH30510 07/25/03 07/30/03 1 9.9 mg/kg 0.00 ene " " " 1/20 % 60-156 1 Samplet Type: Soit Sampled: 07/24/03 15:00 PRP NRED Type: Soit Sampled: 07/24/03 16:00 8260B AH30109 07/25/03 07/30/03 1 0.00 mg/kg 0.020 ene " " " ND 0.0050 0 0.0050 " " " " ND 0.0050 0.0050 " "

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

any M Sor

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

nne: (707) 468-0401 • Fax: (707) 468-526

CHEMICAL EXAMINATION REPORT

Page 55 of 90

	A	pha Analytical Laboratories,	Inc.
Order Numb A307601	er Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC	Client PO/Reference
	180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti	Pro	ort Date: 08/12/03 11:41 oject No: 030229.4 oject ID: SPI-Arcata/Task #4
	MFG, Inc	Den	

		-	•	li Ladorato	-			
	METHOD			D ANALYZED		RESULT	PQL	NOTE
WO-10 (9.0') (A307601-29)			Sample Ty	pe: Soil	Sa	mpled: 07/24/03 15:00		
Volatile Organic Compounds by E	PA Methods 8260B/	5035 (cont'd)	ł					
1,4-Dichlorobenzene	8260B	н	"	08/01/03	"	ND "	0.0050	
Dichlorodifluoromethane	"	n	†1	**	"	ND "	0.0050	
1,1-Dichloroethane	**	н	*1	n	"	ND "	0.0050	
1,2-Dichloroethane	"		**	"	"	ND "	0.0050	
1,1-Dichloroethene	"	11	**	"	"	ND "	0.0050	
cis-1,2-Dichloroethene	"	"	**	"	Ħ	ND "	0.0050	
trans-1,2-Dichloroethene	"	"	"	"	**	ND "	0.0050	
1,2-Dichloropropane	"	11	н	"	*	ND "	0.0050	
1,3-Dichloropropane	**	**	**	**	"	ND "	0.0050	
2,2-Dichloropropane	**	"	"		н	ND "	0.0050	
1,1-Dichloropropene	"	"	"	"	**	ND "	0.0050	
cis-1,3-Dichloropropene	**	"	11	**	**	ND "	0.0050	
trans-1,3-Dichloropropene	**	н	"	**	97	ND "	0.0050	
Ethylbenzene	**	"	"	**	"	ND "	0.0050	
Hexachlorobutadiene	н	*	"	"	"	ND "	0.0050	
Isopropylbenzene	"	11	"	**		ND "	0.0050	
p-Isopropyltoluene	**	**	•	"	n	ND "	0.0050	
Methyl ethyl ketone	**	**	**	11	"	ND "	0.015	
Methyl isobutyl ketone	**		**	**	"	ND "	0.010	
Methyl tert-butyl ether	**		**	"	"	ND "	0.0050	
Methylene chloride	**	"	Ħ	**	"	ND "	0.0050	
Naphthalene	**	"	11	"	"	ND "	0.0050	
n-Propylbenzene		"	**	"		ND "	0.0050	
Styrene	"	**	"	"	**	ND "	0.0050	
1,1,1,2-Tetrachloroethane	. "	11	"	\$1	, 17	ND "	0.0050	
1,1,2,2-Tetrachloroethane	**	11	н	11	**	ND "	0.0050	
Tetrachloroethene	**	"	"	"	*	ND "	0.0050	
Toluene	**	*	"	**	**	ND "	0.0050	
1,2,3-Trichlorobenzene	**	"	"	**	**	ND "	0.0050	
1,2,4-Trichlorobenzene	н	"	"	11	"	ND "	0.0050	
1,1,1-Trichloroethane					"	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Juny UN, Sor

Cheryl Watson For Sheri L. Speaks Project Manager

FECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 56 of 90

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307601

Project No: 030229.4 Project ID: SPI-Arcata/Task #4 Client PO/Reference

Report Date: 08/12/03 11:41

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

		. Tribue v	situry cicus	LIMOUTHU	i ies, inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTI
WO-10 (9.0') (A307601-29)		1	Sample Typ	pe: Soil		Sampled: 07/24/03 15	:00	
Volatile Organic Compounds by EPA M	Methods 8260B/	5035 (cont'd))					
1,1,2-Trichloroethane	8260B	"	11	08/01/03	17	ND "	0.0050	
Trichloroethene	"	"	"	**	. 11	ND "	0.0050	
Trichlorofluoromethane	"	"	"	"		ND "	0.0050	
Trichlorotrifluoroethane	"	"	н	**	**	ND "	0.0050	
1,2,3-Trichloropropane	"	н	"	"	**	ND "	0.0050	
1,2,4-Trimethylbenzene	**	**	"	"	"	ND "	0.0050	
1,3,5-Trimethylbenzene	"	*	**	"	н	ND "	0.0050	
Vinyl chloride	"		"	**	"	ND "	0.0050	
m,p-Xylene	н	**	11	**	"	ND "	0.0050	
o-Xylene	"	11	"	**	51	ND "	0.0050	
Xylenes (total)	"	"	**	"	**	ND "	0.0050	
Surrogate: Dibromofluoromethane	. 11	"	"	"		114 %	57-144	
Surrogate: Toluene-d8	и	'n	"	"		80.8 %	65-127	
Surrogate: Bromofluorobenzene	"	"	"	"		82.0 %	56-130	
TPH Gasoline by GCFID/5035								
TPH as Gasoline	8015GRO	AH30510	07/25/03	07/30/03	1	ND mg/kg	1.0	
Surrogate: 1,4-Bromofluorobenzene	"	11	"	"		112 %	60-156	
WO-10 (9.0-9.75') (A307601-30)			Sample Ty	pe: Soil		Sampled: 07/24/03 15	5:00	
Metals by EPA 6000/7000 Series Metho	ods							
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	**	н	"	"		30 "	5.0	
Copper	**	, u	"	"	**	ND "	10	
Nickel	"	**	"	**	**	22 "	10	
Lead	"	н	"	**	**	ND "	5.0	
Zinc			**	"	**	14 "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

alpha

FECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 57 of 90

	ward St. Suite 200 ncisco, CA 94105-2941	•	Project No:	08/12/03 11:41 030229.4 SPI-Arcata/Task #4
Order Number A307601	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC		Client PO/Reference

Alpha Analytical Laboratories, Inc. RESULT NOTE BATCH PREPARED ANALYZED DILUTION PQL METHOD WO-10 (9.0-9.75') (A307601-30) Sample Type: Soil Sampled: 07/24/03 15:00 Polychlorinated Biphenyls by EPA Method 8080A 08/08/03 0.20 PCB-1016 8080 AH31118 08/01/03 ND mg/kg 1 PCB-1221 ** . ND " 0.20 ,, ND " 0.20 PCB-1232 •• ND " 0.20 PCB-1242 " ND " 0.20 PCB-1248 ND " 0.20 PCB-1254 ** PCB-1260 ND " 0.20 ** " ** ** ... ND " 0.20 PCB-1262 Surrogate: Tetrachloro-meta-xylene # " " " % 10-150 S-06 Surrogate: Decachlorobiphenyl " " 10-150 S-06 % Chlorinated Phenols by Canadian Pulp Method 1.0 07/28/03 ND mg/kg 2,4,6-Trichlorophenol EnvCan AG32909 07/26/03 1 . H ND " 1.0 2,3,5,6-Tetrachlorophenol .. * ., ND " 1.0 2,3,4,6-Tetrachlorophenol ND " 1.0 2,3,4,5-Tetrachlorophenol •• •• ND " ... 1.0 Pentachlorophenol ,, ,, Surrogate: Tribromophenol " 85.5 % 23-140 TPH as Diesel and Motor Oil by EPA Method 8015 Modified 1.0 8015DRO 08/01/03 08/02/03 1 ND mg/kg TPH as Diesel AH30111 ., 6.5 " 2.0 D-12 **TPH as Motor Oil** ... ** " Surrogate: 1,4-Bromofluorobenzene " 83.9 % 21-110 Sampled: 07/24/03 14:45 WO-10 (5.0-5.75') (A307601-31) Sample Type: Soil Metals by EPA 6000/7000 Series Methods Cadmium EPA 6010 AG33003 07/30/03 08/01/03 1 ND mg/kg 1.0 ** ,, ., ** ... 19 " 5.0 Chromium ** " Copper ŧt ** 22 " 10 11 22 " 10 Nickel ** н 12 " 5.0 Lead

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

alpha

HEUEIVLU

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

07/25/2003 15:40

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 58 of 90

	nc ward St. Suite 200 ncisco, CA 94105-2941	Project No:		
Attn: Eo	1 Conti		Project ID:	SPI-Arcata/Task #4
Order Number A307601	Receipt Date/Time	Client Code		Client PO/Reference
A30/001	07/25/2003 15:40	MFGINC		

- ,, -								
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE .
VO-10 (5.0-5.75') (A307601-31)		S	Sample Typ	oe: Soil		Sampled: 07/24/03 14:45		
Metals by EPA 6000/7000 Series Metho	ds (cont'd)							
Zinc	EPA 6010	**	11	08/01/03	**	57 "	10	
Polychlorinated Biphenyls by EPA Met	thod 8080A							
PCB-1016	8080	AH31118	08/01/03	08/08/03	1	ND mg/kg	0.20	
PCB-1221	**	**	*	**		ND "	0.20	
PCB-1232	17	**	"	**	**	ND "	0.20	
PCB-1242	"	"	"	"	"	ND "	0.20	
PCB-1248	n	**	"	**	**	ND "	0.20	
PCB-1254	"	**	"	н	"	ND "	0.20	
PCB-1260	"	**	**	"	"	ND."	0.20	
PCB-1262	"	"	"	"	**	ND "	0.20	
Surrogate: Tetrachloro-meta-xylene	11	n	"	"		% 10-	150	S-0
Surrogate: Decachlorobiphenyl	"	"	"	"		% 10-	150	S-0
Chlorinated Phenols by Canadian Pulp	o Method							
2,4,6-Trichlorophenol	EnvCan	AG32909	07/26/03	07/28/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	**	**	"	**	11	ND "	1.0	
2,3,4,6-Tetrachlorophenol		"	**	11	17	ND "	1.0	
2,3,4,5-Tetrachlorophenol		11	**	"	**	ND "	1.0	
Pentachlorophenol	**	**	**	Ħ	**	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		20.2 % 23-	-140	S-(
TPH as Diesel and Motor Oil by EPA	Method 8015 M	lodified						
TPH as Diesel	8015DRO	AH30111	08/01/03	08/02/03	10	42 mg/kg	10	
TPH as Motor Oil	11	**	**	**	**	150 "	20	
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		97.6 % 21-	-110	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M 50

AUG 1 5 2003

MFG, Inc.

Alpha ♥ Analytical Laboratories Inc.

Receipt Date/Time

07/25/2003 15:40

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Page 59 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

SourceResult

Metals by EPA 6000/7000 Series Methods - Quality Control

CHEMICAL EXAMINATION REPORT

Client Code

MFGINC

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG32804 - EPA 3051 Micr	owave									
Blank (AG32804-BLK1)				Prepared:	07/28/03	Analyzed	l: 07/29/03			
Cadmium	ND	1.0	mg/kg							
Chromium	ND	5.0	**							
Copper	ND	10	"							
Lead	ND	5.0	**							
Nickel	ND	10	"							
Zinc	ND	10	'n							
LCS (AG32804-BS1)				Prepared	: 07/28/03	Analyzed	1: 07/29/03			
Cadmium	19.8	1.0	mg/kg	20.0		99.0	85-115			
Chromium	19.9	5.0	**	20.0		99.5	85-115			
Copper	19.9	10	"	20.0		99.5	85-115			
Lead	20.0	5.0	"	20.0		100	85-115			
Nickel	20.1	10	н	20.0		100	85-115			
Zinc	21.1	10	"	20.0		106	87.1-126			
LCS Dup (AG32804-BSD1)				Prepared	: 07/28/03	Analyze	d: 07/29/03			
Cadmium	20.3	1.0	mg/kg	20.0		102	85-115	2.49	20	
Chromium	20.5	5.0	"	20.0		102	85-115	2.97	20	
Copper	20.6	10	**	20.0		103	85-115	3.46	20	
Lead	20.6	5.0	"	20.0		103	85-115	2.96	20	
Nickel	21.5	10	"	20.0		108	85-115	6.73	20	
Zinc	22.3	10	н	20.0		112	87.1-126	5.53	20	
Duplicate (AG32804-DUP1)	Sou	rce: A307	572-01	Preparec	1: 07/28/03	3 Analyze	d: 07/29/03	}		
Cadmium	ND	1.0	mg/kg		ND				20	
Chromium	26.0	5.0	11		28			7.41	20	
Copper	30.6	10	**		32			4.47	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

PECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 60 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti		Project	ate: 08/12/03 11:41 No: 030229.4 ID: SPI-Arcata/Task #4
Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307601	07/25/2003 15:40	MFGINC	

Metals by EPA 6000/7000 Series Methods - Quality Control

				Spike	Source		%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AG32804 - EPA 3051 Microwave

Duplicate (AG32804-DUP1)	Sour	ce: A307572-01	Prepared:	07/28/03	Analyzed	: 07/29/03			
Lead	5.42	5.0 "		6.7			21.1	20	QM-04
Nickel	17.8	10 "		19			6.52	20	
Zinc	81.3	10 "		81			0.370	20	
Matrix Spike (AG32804-MS1)	Sour	ce: A307572-01	Prepared:	07/28/03	Analyzed	l: 07/29/03			
Cadmium	20.4	1.0 mg/kg	20.0	ND	101	70-130			
Chromium	39.0	5.0 "	20.0	28	55.0	70-130			QM-04
Copper	49.5	10 "	20.0	32	87.5	70-130			
Lead	25.9	5.0 "	20.0	6.7	96.0	70-130			
Nickel	37.5	10 "	20.0	19	92.5	70-130			
Zinc	111	10 "	20.0	81	150	70-130			QM-4X
Matrix Spike Dup (AG32804-MSD1)	Sour	ce: A307572-01	Prepared:	07/28/03	Analyzed	1: 07/29/03			
Cadmium	18.4	1.0 mg/kg	20.0	ND	91.1	70-130	10.3	20	
Chromium	44.8	5.0 "	20.0	28	84.0	70-130	13.8	20	
Copper	50.0	10 "	20.0	32	90.0	70-130	1.01	20	
Lead	24.4	5.0 "	20.0	6.7	88.5	70-130	5.96	20	
Nickel	37.8	10 "	20.0	19	94.0	70-130	0.797	20	
Zinc	103	10 "	20.0	81	110	70-130	7.48	20	

Batch AG33003 - EPA 3051 Microwave

Blank (AG33003-BLK1)				Prepared: 07/30/03 Analyzed: 08/01/03	
Cadmium	ND	1.0	mg/kg		
Chromium	ND	5.0	"		
Copper	ND	10	**		
Lead	ND	5.0	"		
Nickel	ND	10	"		
Zinc	ND	10	"		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

FTTEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 61 of 90

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

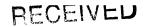
07/25/2003 15:40

Order Number

A307601

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Client Code Client PO/Reference MFGINC


Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG33003 - EPA 3051 Micro	wave									
LCS (AG33003-BS1)				Prepared:	07/30/03	Analyzed	: 07/31/03			
Cadmium	19.7	1.0	mg/kg	20.0		98.5	85-115			
Chromium	19.8	5.0	11	20.0		99.0	85-115			
Copper	20.2	10	H	20.0		101	85-115			
Lead	20.6	5.0	Ħ	20.0		103	85-115			
Nickel	19.5	10	н	20.0		97.5	85-115			
Zinc	20.8	10	u	20.0		104	87.1-126			
LCS Dup (AG33003-BSD1)				Prepared:	07/30/03	Analyzed	l: 07/31/03			
Cadmium	20.0	1.0	mg/kg	20.0		100	85-115	1.51	20	
Chromium	20.2	5.0	H	20.0		101	85-115	2.00	20	
Copper	20.1	10		20.0		100	85-115	0.496	20	
Lead	19.8	5.0	н	20.0		99.0	85-115	3.96	20	
Nickel	19.9	10	н	20.0		99.5	85-115	2.03	20	
Zinc	21.1	10	"	20.0		106	87.1-126	1.43	20	
Duplicate (AG33003-DUP1)	Sou	rce: A307	601-17	Prepared	: 07/30/03	Analyzed	1: 08/01/03			
Cadmium	ND	1.0	mg/kg		ND				20	
Chromium	52.4	5.0	**		53			1.14	20	
Copper	ND	10	**		ND				20	
Lead	ND	5.0	**		ND				20	
Nickel	40.1	10	#		38			5.38	20	
Zinc	26.0	10	"		24			8.00	20	
Matrix Spike (AG33003-MS1)	Sou	rce: A307	601-17	Prepared	: 07/30/03	Analyze	d: 08/01/03	·		
Cadmium	18.9	1.0	mg/kg	20.0	ND	94.5	70-130			
Chromium	73.7	5.0	"	20.0	53	104	70-130			
Copper	25.5	10	**	20.0	ND	104	70-130			
Lead	24.3	5.0	**	20.0	ND	100	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1.5 2003

world, Inc.

Alpha ∦Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Client Code

MFGINC

Page 62 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Metals by EPA 6000/7000 Series Methods - Quality Control

				Spike	Source		%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AG33003 - EPA 3051 Microwave

Order Number

A307601

Matrix Spike (AG33003-MS1)	Sour	ce: A3076	01-17	Prepared:	07/30/03	Analyzed	1: 08/01/03			
Nickel	60.5	10	н	20.0	38	112	70-130			
Zinc	47.7	10	"	20.0	24	118	70-130			
Matrix Spike Dup (AG33003-MSD1)	Sour	ce: A3076	01-17	Prepared:	07/30/03	Analyzed	1: 08/01/03			
Cadmium	18.6	1.0	mg/kg	20.0	ND	93.0	70-130	1.60	20	
Chromium	65.8	5.0	**	20.0	53	64.0	70-130	11.3	20	QM-04
Copper	24.6	10	н	20.0	ND	100	70-130	3.59	20	
Lead	24.1	5.0	**	20.0	ND	99.5	70-130	0.826	20	
Nickel	58.8	10	¥1	20.0	38	104	70-130	2.85	20	
Zinc	44.6	10	"	20.0	24	103	70-130	6.72	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

FROEIVED

ALIG 1 5 2003

. Inc.

Alpha 🕻 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 63 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601

Receipt Date/Time

07/25/2003 15:40

Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Report Date: 08/12/03 11:41

Client Code MFGINC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30109 - EPA 5035 MS										
Blank (AH30109-BLK1)				Prepared:	07/30/03	Analyzed	l: 07/31/03			
Acetone	ND	0.020	mg/kg							
Benzene	ND	0.0050	"							
Bromobenzene	ND	0.0050								
Bromochloromethane	ND	0.0050	**							
Bromodichloromethane	ND	0.0050	"							
Bromoform	ND	0.0050	"							
Bromomethane	ND	0.0050	**							
n-Butylbenzene	ND	0.0050	11							
sec-Butylbenzene	ND	0.0050	"							
tert-Butylbenzene	ND	0.0050	"							
Carbon tetrachloride	ND	0.0050	"							
Chlorobenzene	ND	0.0050	"							
Chloroethane	ND	0.0050	"							
Chloroform	ND	0.0050	**							
Chloromethane	ND	0.0050	**							
2-Chlorotoluene	ND	0.0050								
4-Chlorotoluene	ND	0.0050	"							
Dibromochloromethane	ND	0.0050	"							
1,2-Dibromo-3-chloropropane	ND	0.0050	.,							
1,2-Dibromoethane (EDB)	ND	0.0050	**							
Dibromomethane	ND	0.0050	**							
1,2-Dichlorobenzene	ND	0.0050	11							
1,3-Dichlorobenzene	ND	0.0050	"							
1,4-Dichlorobenzene	ND	0.0050	"							
Dichlorodifluoromethane	ND	0.0050	"							
1,1-Dichloroethane	ND	0.0050	н							
1,2-Dichloroethane	ND	0.0050	"							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 64 of 90

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time A307601 07/25/2003 15:40

Client Code MFGINC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30109 - EPA 5035 MS										
Blank (AH30109-BLK1)				Prepared:	07/30/03	Analyzed	: 07/31/03			
1,1-Dichloroethene	ND	0.0050	Ħ							
cis-1,2-Dichloroethene	ND	0.0050	n							
trans-1,2-Dichloroethene	ND	0.0050	"							
1,2-Dichloropropane	ND	0.0050								
1,3-Dichloropropane	ND	0.0050	**							
2,2-Dichloropropane	ND	0.0050	**							
1,1-Dichloropropene	ND	0.0050	**							
cis-1,3-Dichloropropene	ND	0.0050	**							
trans-1,3-Dichloropropene	ND	0.0050	11							
Ethylbenzene	ND	0.0050	"							
Hexachlorobutadiene	ND	0.0050								
Isopropylbenzene	ND	0.0050								
p-Isopropyltoluene	ND	0.0050	H							
Methyl ethyl ketone	ND	0.015	н							
Methyl isobutyl ketone	ND	0.010	н							
Methyl tert-butyl ether	ND	0.0050	**							
Methylene chloride	ND	0.0050	"							
Naphthalene	ND	0.0050	**							
n-Propylbenzene	ND	0.0050	"							
Styrene	ND	0.0050	**							
1,1,1,2-Tetrachloroethane	ND	0.0050	97							
1,1,2,2-Tetrachloroethane	ND	0.0050	"							
Tetrachloroethene	ND	0.0050	"							
Toluene	ND	0.0050	**							
1,2,3-Trichlorobenzene	ND	0.0050	"							
1,2,4-Trichlorobenzene	ND	0.0050	**							
1,1,1-Trichloroethane	ND	0.0050	"							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

EIVED AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 65 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Report Date: 08/12/03 11:41

Client PO/Reference

Receipt Date/Time Order Number A307601 07/25/2003 15:40

Client Code MFGINC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30109 - EPA 5035 MS										
Blank (AH30109-BLK1)				Prepared:	07/30/03	Analyzed	: 07/31/03			
1,1,2-Trichloroethane	ND	0.0050	n							
Trichloroethene	ND	0.0050	17							
Trichlorofluoromethane	ND	0.0050	**							
Trichlorotrifluoroethane	ND	0.0050	**							
1,2,3-Trichloropropane	ND	0.0050	17							
1,2,4-Trimethylbenzene	ND	0.0050	"							
1,3,5-Trimethylbenzene	ND	0.0050	"							
Vinyl chloride	ND	0.0050	"							
m,p-Xylene	ND	0.0050	**							
o-Xylene	ND	0.0050	**							
Xylenes (total)	ND	0.0050	"							
Surrogate: Dibromofluoromethane	30.5		"	25.0		122	57-144			
Surrogate: Toluene-d8	22.5		"	25.0		90.0	65-127			
Surrogate: Bromofluorobenzene	19.5		"	25.0		78.0	56-130			
LCS (AH30109-BS1)				Prepared:	07/30/03	Analyzed	1: 08/01/03			
Acetone	0.0249	0.020	mg/kg	0.0197		126	36-154			
Benzene	0.00509	0.0050	н	0.00500		102	72-123			
Bromobenzene	0.00508	0.0050	"	0.00500		102	71-127			
Bromochloromethane	0.00457	0.0050	"	0.00500		91.4	62-132			
Bromodichloromethane	0.00466	0.0050	"	0.00500		93.2	57-125			
Bromoform	0.00483	0.0050	н	0.00500		96.6	57-138			
Bromomethane	0.00645	0.0050	"	0.00500		129	56-150			
n-Butylbenzene	0.00458	0.0050	**	0.00500		91.6	68-121			
sec-Butylbenzene	0.00493	0.0050	"	0.00500		98.6	68-126			
tert-Butylbenzene	0.00464	0.0050	*	0.00500		92.8	66-124			
Carbon tetrachloride	0.00466	0.0050	"	0.00500		93.2	57-133			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analutical I

Alpha 🕻 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Report Date: 08/12/03 11:41

Project ID: SPI-Arcata/Task #4

Project No: 030229.4

CHEMICAL EXAMINATION REPORT

Page 66 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Client Code MFGINC

Client PO/Reference

Order Number A307601

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30109 - EPA 5035 MS										
LCS (AH30109-BS1)				Prepared:	07/30/03	Analyzed	: 08/01/03			
Chlorobenzene	0.00493	0.0050	"	0.00500		98.6	76-117			
Chloroethane	0.00513	0.0050	**	0.00500		103	59-128			
Chloroform	0.00495	0.0050	"	0.00500		99.0	60-128			
Chloromethane	0.00536	0.0050	н	0.00500		107	45-140			
2-Chlorotoluene	0.00494	0.0050	n	0.00500		98.8	67-127			
4-Chlorotoluene	0.00496	0.0050	**	0.00500		99.2	65-125			
Dibromochloromethane	0.00474	0.0050	**	0.00500		94.8	56-141			
1,2-Dibromo-3-chloropropane	0.00561	0.0050	"	0.00500		112	61-134			
1,2-Dibromoethane (EDB)	0.00554	0.0050	**	0.00500		111	70-132			
Dibromomethane	0.00501	0.0050	**	0.00500		100	66-123			
1,2-Dichlorobenzene	0.00501	0.0050	"	0.00500		100	70-121			
1,3-Dichlorobenzene	0.00486	0.0050	"	0.00500		97.2	65-124			
1,4-Dichlorobenzene	0.00500	0.0050	**	0.00500		100	71-120			
Dichlorodifluoromethane	0.00625	0.0050	"	0.00500		125	52-145			
1,1-Dichloroethane	0.00493	0.0050	**	0.00500		98.6	58-136			
1,2-Dichloroethane	0.00546	0.0050	**	0.00500		109	64-117			
1,1-Dichloroethene	0.00505	0.0050	"	0.00500		101	66-131			
cis-1,2-Dichloroethene	0.00508	0.0050	н	0.00500		102	57-131			
trans-1,2-Dichloroethene	0.00494	0.0050	н	0.00500		98.8	59-127			
1,2-Dichloropropane	0.00506	0.0050	"	0.00500		101	72-121			
1,3-Dichloropropane	0.00558	0.0050		0.00500		112	70-135			
2,2-Dichloropropane	0.00481	0.0050	"	0.00500		96.2	38-152			
1,1-Dichloropropene	0.00533	0.0050	11	0.00500		107	73-124			
cis-1,3-Dichloropropene	0.00516	0.0050	н	0.00500		103	66-132			
trans-1,3-Dichloropropene	0.00489	0.0050		0.00500		97.8	55-133			
Ethylbenzene	0.00475	0.0050	**	0.00500		95.0	71-125			
Hexachlorobutadiene	0.00533	0.0050	"	0.00500		107	68-131			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

PECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 67 of 90

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time A307601 07/25/2003 15:40

Client Code MFGINC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30109 - EPA 5035 MS										
LCS (AH30109-BS1)				Prepared:	07/30/03	Analyzed	: 08/01/03			
Isopropylbenzene	0.00513	0.0050	*1	0.00500		103	66-125			
p-Isopropyltoluene	0.00438	0.0050	19	0.00500		87.6	62-120			
Methyl ethyl ketone	0.0130	0.015	11	0.0100		130	58-138			
Methyl isobutyl ketone	0.0118	0.010	н	0.00999		118	59-133			
Methyl tert-butyl ether	0.00549	0.0050	"	0.00500		110	71-127			
Methylene chloride	0.00362	0.0050	11	0.00500		72.4	60-128			
Naphthalene	0.00514	0.0050	**	0.00500		103	58-133			
n-Propylbenzene	0.00461	0.0050	"	0.00500		92.2	67-124			
Styrene	0.00436	0.0050	**	0.00500		87.2	65-126			
1,1,1,2-Tetrachloroethane	0.00504	0.0050	"	0.00500		101	65-136			
1,1,2,2-Tetrachloroethane	0.00542	0.0050	**	0.00500		108	40-149			
Tetrachloroethene	0.00527	0.0050	**	0.00500		105	52-148			
Toluene	0.00557	0.0050	**	0.00500		111	72-126			
1,2,3-Trichlorobenzene	0.00539	0.0050	"	0.00500		108	67-124			
1,2,4-Trichlorobenzene	0.00529	0.0050	**	0.00500		106	63-125			
1,1,1-Trichloroethane	0.00484	0.0050	**	0.00500		96.8	55-134			
1,1,2-Trichloroethane	0.00518	0.0050	"	0.00500		104	61-138			
Trichloroethene	0.00533	0.0050	**	0.00500		107	74-129			
Trichlorofluoromethane	0.00514	0.0050	н	0.00500		103	61-132			
Trichlorotrifluoroethane	0.00522	0.0050	17	0.00492		106	52-138			
1,2,3-Trichloropropane	0.00553	0.0050	"	0.00500		111	66-132			
1,2,4-Trimethylbenzene	0.00484	0.0050	"	0.00500		96.8	66-128			
1,3,5-Trimethylbenzene	0.00477	0.0050	11	0.00500		95.4	65-123			
Vinyl chloride	0.00459	0.0050	н	0.00500		91.8	59-135			
m,p-Xylene	0.00955	0.0050	"	0.0100		95.5	67-128			
o-Xylene	0.00486	0.0050	"	0.00500		97.2	67-126			
Xylenes (total)	0.0144	0.0050	**	0.0150		96.0	67-127			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

C-CEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 68 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Client PO/Reference

Receipt Date/Time Order Number A307601 07/25/2003 15:40

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Client Code

MFGINC

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30109 - EPA 5035 MS										
LCS (AH30109-BS1)				Prepared:	07/30/03	Analyzed	: 08/01/03			
Surrogate: Dibromofluoromethane	25.7		n	25.0		103	57-144			
Surrogate: Toluene-d8	24.2		"	25.0		96.8	65-127			
Surrogate: Bromofluorobenzene	25.0		"	25.0		100	56-130			
LCS Dup (AH30109-BSD1)				Prepared:	07/30/03	Analyzed	l: 08/01/03			QM-10
Acetone	0.0225	0.020	mg/kg	0.0197		114	36-154	10.1	25	
Benzene	0.00512	0.0050	**	0.00500		102	72-123	0.588	25	
Bromobenzene	0.00517	0.0050	"	0.00500		103	71-127	1.76	25	
Bromochloromethane	0.00493	0.0050	11	0.00500		98.6	62-132	7.58	25	
Bromodichloromethane	0.00476	0.0050	**	0.00500		95.2	57-125	2.12	25	
Bromoform	0.00418	0.0050	11	0.00500		83.6	57-138	14.4	25	
Bromomethane	0.00667	0.0050	**	0.00500		133	56-150	3.35	25	
n-Butylbenzene	0.00431	0.0050	"	0.00500		86.2	68-121	6.07	25	
sec-Butylbenzene	0.00498	0.0050	"	0.00500		99.6	68-126	1.01	25	
tert-Butylbenzene	0.00483	0.0050		0.00500		96.6	66-124	4.01	25	
Carbon tetrachloride	0.00482	0.0050	"	0.00500		96.4	57-133	3.38	25	
Chlorobenzene	0.00497	0.0050	я	0.00500		99.4	76-117	0.808	25	
Chloroethane	0.00522	0.0050	**	0.00500		104	59-128	1.74	25	
Chloroform	0.00511	0.0050	"	0.00500		102	60-128	3.18	25	
Chloromethane	0.00545	0.0050	11	0.00500		109	45-140	1.67	25	
2-Chlorotoluene	0.00507	0.0050	"	0.00500		101	67-127	2.60	25	
4-Chlorotoluene	0.00495	0.0050	"	0.00500		99.0	65-125	0.202	25	
Dibromochloromethane	0.00451	0.0050	**	0.00500		90.2	56-141	4.97	25	
1,2-Dibromo-3-chloropropane	0.00516	0.0050	"	0.00500		103	61-134	8.36	25	
1,2-Dibromoethane (EDB)	0.00502	0.0050	**	0.00500		100	70-132	9.85	25	
Dibromomethane	0.00484	0.0050		0.00500		96.8	66-123	3.45	25	
1,2-Dichlorobenzene	0.00507	0.0050	"	0.00500		101	70-121	1.19	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Page 69 of 90

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601 Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

07/25/2003 15:40 MFGINC

Receipt Date/Time

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Client Code

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30109 - EPA 5035 MS										
LCS Dup (AH30109-BSD1)				Prepared:	07/30/03	Analyzed	: 08/01/03			QM-10
1,3-Dichlorobenzene	0.00500	0.0050	**	0.00500		100	65-124	2.84	25	
1,4-Dichlorobenzene	0.00503	0.0050	"	0.00500		101	71-120	0.598	25	
Dichlorodifluoromethane	0.00635	0.0050	11	0.00500		127	52-145	1.59	25	
1,1-Dichloroethane	0.00496	0.0050	"	0.00500		99.2	58-136	0.607	25	
1,2-Dichloroethane	0.00544	0.0050	"	0.00500		109	64-117	0.367	25	
1,1-Dichloroethene	0.00513	0.0050	11	0.00500		103	66-131	1.57	25	
cis-1,2-Dichloroethene	0.00506	0.0050	"	0.00500		101	57-131	0.394	25	
trans-1,2-Dichloroethene	0.00493	0.0050	31	0.00500		98.6	59-127	0.203	25	
1,2-Dichloropropane	0.00511	0.0050	**	0.00500		102	72-121	0.983	25	
1,3-Dichloropropane	0.00526	0.0050		0.00500		105	70-135	5.90	25	
2,2-Dichloropropane	0.00458	0.0050	"	0.00500		91.6	38-152	4.90	25	
1,1-Dichloropropene	0.00534	0.0050	"	0.00500		107	73-124	0.187	25	
cis-1,3-Dichloropropene	0.00510	0.0050	19	0.00500		102	66-132	1.17	25	
trans-1,3-Dichloropropene	0.00460	0.0050	n	0.00500		92.0	55-133	6.11	25	
Ethylbenzene	0.00487	0.0050	**	0.00500		97.4	71-125	2.49	25	
Hexachlorobutadiene	0.00545	0.0050	н	0.00500		109	68-131	2.23	25	
Isopropylbenzene	0.00543	0.0050	"	0.00500		109	66-125	5.68	25	
p-Isopropyltoluene	0.00439	0.0050	"	0.00500		87.8	62-120	0.228	25	
Methyl ethyl ketone	0.0118	0.015	н	0.0100		118	58-138	9.68	25	
Methyl isobutyl ketone	0.0110	0.010	**	0.00999		110	59-133	7.02	25	
Methyl tert-butyl ether	0.00514	0.0050	"	0.00500		103	71-127	6.59	25	
Methylene chloride	0.00373	0.0050	**	0.00500		74.6	60-128	2.99	25	
Naphthalene	0.00424	0.0050	**	0.00500		84.8	58-133	19.2	25	
n-Propylbenzene	0.00467	0.0050	**	0.00500		93.4	67-124	1.29	25	
Styrene .	0.00447	0.0050	**	0.00500		89.4	65-126	2.49	25	
1,1,1,2-Tetrachloroethane	0.00472	0.0050	17	0.00500		94.4	65-136	6.56	25	
1,1,2,2-Tetrachloroethane	0.00525	0.0050	"	0.00500		105	40-149	3.19	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

PECEIVED

AUG 1 5 2003

-G. Inc.

Alpha 🛿 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 70 of 90

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time A307601 07/25/2003 15:40

Client Code MFGINC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30109 - EPA 5035 MS										
LCS Dup (AH30109-BSD1)				Prepared:	07/30/03	Analyzed	: 08/01/03			QM-10
Tetrachloroethene	0.00497	0.0050	11	0.00500		99.4	52-148	5.86	25	
Toluene	0.00549	0.0050	"	0.00500		110	72-126	1.45	25	
1,2,3-Trichlorobenzene	0.00487	0.0050	**	0.00500		97.4	67-124	10.1	25	
1,2,4-Trichlorobenzene	0.00479	0.0050	"	0.00500		95.8	63-125	9.92	25	
1,1,1-Trichloroethane	0.00486	0.0050	"	0.00500		97.2	55-134	0.412	25	
1,1,2-Trichloroethane	0.00509	0.0050	"	0.00500		102	61-138	1.75	25	
Trichloroethene	0.00526	0.0050	**	0.00500		105	74-129	1.32	25	
Trichlorofluoromethane	0.00516	0.0050	**	0.00500		103	61-132	0.388	25	
Trichlorotrifluoroethane	0.00531	0.0050	n	0.00492		108	52-138	1.71	25	
1,2,3-Trichloropropane	0.00512	0.0050	11	0.00500		102	66-132	7.70	25	
1,2,4-Trimethylbenzene	0.00474	0.0050	"	0.00500		94.8	66-128	2.09	25	
1,3,5-Trimethylbenzene	0.00474	0.0050	"	0.00500		94.8	65-123	0.631	25	
Vinyl chloride	0.00460	0.0050	#	0.00500		92.0	59-135	0.218	25	
m,p-Xylene	0.00973	0.0050	"	0.0100		97.3	67-128	1.87	25	
o-Xylene	0.00502	0.0050	"	0.00500		100	67-126	3.24	25	
Xylenes (total)	0.0148	0.0050	**	0.0150		98.7	67-127	2.74	25	
Surrogate: Dibromofluoromethane	26.0		"	25.0		104	57-144			
Surrogate: Toluene-d8	25.5		"	25.0		102	65-127			
Surrogate: Bromofluorobenzene	26.3		"	25.0		105	56-130			
Matrix Spike (AH30109-MS1)	So	urce: A307	595-01	Prepared	: 07/30/03	8 Analyze	d: 08/01/03			
Acetone	0.0279	0.020	mg/kg	0.0197	ND	142	9-181			
Benzene	0.00433	0.0050	11	0.00500	ND	86.6	49-137			
Bromobenzene	0.00456	0.0050	"	0.00500	ND	91.2	55-136			
Bromochloromethane	0.00413	0.0050	"	0.00500	ND	82.6	58-133			
Bromodichloromethane	0.00415	0.0050	**	0.00500	ND	83.0	51-126			
Bromoform	0.00439	0.0050		0.00500	ND	87.8	47-138			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

RECEIVEN

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 71 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601

Receipt Date/Time

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

MEGINC 07/25/2003 15:40

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Client Code

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30109 - EPA 5035 MS										
Matrix Spike (AH30109-MS1)	Sou	rce: A307	595-01	Prepared:	07/30/03	Analyzed	: 08/01/03			
Bromomethane	0.00518	0.0050	н	0.00500	ND	104	32-180			
n-Butylbenzene	0.00385	0.0050	"	0.00500	ND	77.0	29-153	•		
sec-Butylbenzene	0.00446	0.0050	"	0.00500	ND	89.2	44-148			
tert-Butylbenzene	0.00433	0.0050	"	0.00500	ND	86.6	49-141			
Carbon tetrachloride	0.00398	0.0050	"	0.00500	ND	79.6	52-133			
Chlorobenzene	0.00451	0.0050	**	0.00500	ND	90.2	54-133			
Chloroethane	0.00413	0.0050		0.00500	ND	82.6	53-136			
Chloroform	0.00417	0.0050	"	0.00500	ND	83.4	61-126			
Chloromethane	0.00456	0.0050	19	0.00500	ND	91.2	57-130			
2-Chlorotoluene	0.00451	0.0050	**	0.00500	ND	90.2	52-140			
4-Chlorotoluene	0.00447	0.0050	"	0.00500	ND	89.4	39-149			
Dibromochloromethane	0.00434	0.0050	**	0.00500	ND	86.8	48-135			
1,2-Dibromo-3-chloropropane	0.00489	0.0050	"	0.00500	ND	97.8	48-139			
1,2-Dibromoethane (EDB)	0.00515	0.0050	"	0.00500	ND	103	36-156			
Dibromomethane	0.00432	0.0050		0.00500	ND	86.4	61-128			
1,2-Dichlorobenzene	0.00452	0.0050	"	0.00500	ND	90.4	36-156			
1,3-Dichlorobenzene	0.00445	0.0050	91	0.00500	ND	89.0	45-138			
1,4-Dichlorobenzene	0.00451	0.0050	**	0.00500	ND	90.2	60-136			
Dichlorodifluoromethane	0.00512	0.0050	"	0.00500	ND	102	24-189			
1,1-Dichloroethane	0.00412	0.0050		0.00500	ND	82.4	58-142			
1,2-Dichloroethane	0.00472	0.0050	**	0.00500	ND	94.4	55-125			
1,1-Dichloroethene	0.00413	0.0050	"	0.00500	ND	82.6	54-147			
cis-1,2-Dichloroethene	0.00436	0.0050	**	0.00500	ND	87.2	52-129			
trans-1,2-Dichloroethene	0.00406	0.0050	n	0.00500	ND	81.2	61-120			
1,2-Dichloropropane	0.00439	0.0050	u	0.00500	ND	87.8	61-123			
1,3-Dichloropropane	0.00501	0.0050	**	0.00500	ND	100	45-150			
2,2-Dichloropropane	0.00422	0.0050	"	0.00500	ND	84.4	32-160			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

MEULIN--AUG 1 5 2003 MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 72 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Receipt Date/Time 07/25/2003 15:40

Client Code MFGINC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

				Spike	Source	WDEC	%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH30109 - EPA 5035 MS	Batch	AH30109	- EPA	5035 MS
-----------------------------	-------	---------	-------	---------

Order Number A307601

Matrix Spike (AH30109-MS1)	Sou	rce: A30759	5-01	Prepared: 0	7/30/03	Analyzed	l: 08/01/03	
1,1-Dichloropropene	0.00449	0.0050	Ħ	0.00500	ND	89.8	56-131	
cis-1,3-Dichloropropene	0.00441	0.0050	"	0.00500	ND	88.2	55-129	
trans-1,3-Dichloropropene	0.00443	0.0050	"	0.00500	ND	88.6	34-139	
Ethylbenzene	0.00438	0.0050	n	0.00500	ND	87.6	55-138	
Hexachlorobutadiene	0.00441	0.0050	"	0.00500	ND	88.2	16-172	
Isopropylbenzene	0.00477	0.0050	*	0.00500	ND	95.4	51-137	
p-Isopropyltoluene	0.00383	0.0050	н	0.00500	ND	76.6	37-143	
Methyl ethyl ketone	0.0123	0.015	"	0.0100	ND	123	32-146	
Methyl isobutyl ketone	0.00975	0.010	н	0.00999	ND	97.6	29-155	
Methyl tert-butyl ether	0.00510	0.0050	"	0.00500	ND	102	50-140	
Methylene chloride	0.00223	0.0050	n	0.00500	ND	44.6	53-137	QM-
Naphthalene	0.00379	0.0050	"	0.00500	ND	75.8	26-152	
n-Propylbenzene	0.00422	0.0050	**	0.00500	ND	84.4	47-143	
Styrene	0.00252	0.0050	"	0.00500	ND	50.4	32-150	
1,1,1,2-Tetrachloroethane	0.00446	0.0050		0.00500	ND	89.2	39-153	
1,1,2,2-Tetrachloroethane	0.00493	0.0050	"	0.00500	ND	98.6	42-140	
Tetrachloroethene	0.00490	0.0050	"	0.00500	ND	54.0	9-206	
Toluene	0.00492	0.0050	"	0.00500	ND	98.4	50-148	
1,2,3-Trichlorobenzene	0.00418	0.0050	Ħ	0.00500	ND	83.6	31-148	
1,2,4-Trichlorobenzene	0.00406	0.0050	**	0.00500	ND	81.2	30-148	
1,1,1-Trichloroethane	0.00423	0.0050	"	0.00500	ND	84.6	52-132	
1,1,2-Trichloroethane	0.00496	0.0050	"	0.00500	ND	99.2	39-152	
Trichloroethene	0.00449	0.0050	"	0.00500	ND	89.8	50-146	
Trichlorofluoromethane	0.00428	0.0050	"	0.00500	ND	85.6	51-150	
Trichlorotrifluoroethane	0.00440	0.0050	"	0.00492	ND	89.4	51-138	
1,2,3-Trichloropropane	0.00506	0.0050	н	0.00500	ND	101	38-152	
1,2,4-Trimethylbenzene	0.00471	0.0050	"	0.00500	ND	94.2	43-150	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha 🛿 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 73 of 90

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number Receipt Date/Time A307601 07/25/2003 15:40

Client Code MFGINC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30109 - EPA 5035 MS										
Matrix Spike (AH30109-MS1)	Soι	Irce: A307	595-01	Prepared:	07/30/03	Analyzed	: 08/01/03			
1,3,5-Trimethylbenzene	0.00468	0.0050	11	0.00500	ND	93.6	47-140			
Vinyl chloride	0.00380	0.0050	H	0.00500	ND	76.0	46-150			
m,p-Xylene	0.00900	0.0050	H	0.0100	ND	90.0	54-139			
o-Xylene	0.00433	0.0050	"	0.00500	ND	86.6	58-136			
Xylenes (total)	0.0133	0.0050	14	0.0150	ND	88.7	54-139			
Surrogate: Dibromofluoromethane	24.0		"	25.0		96.0	57-144			
Surrogate: Toluene-d8	24.9		n	25.0		99.6	65-127			
Surrogate: Bromofluorobenzene	25.6		n	25.0		102	56-130			

Batch AH30413 - EPA 5035 MS

Acetone	ND	3.5	mg/kg
Benzene	ND	0.87	"
Bromobenzene	ND	0.87	н
Bromochloromethane	ND	0.87	**
Bromodichloromethane	ND	0.87	n
Bromoform	ND	0.87	"
Bromomethane	ND	0.87	Ħ
n-Butylbenzene	ND	0.87	n
sec-Butylbenzene	ND	0.87	"
tert-Butylbenzene	ND	0.87	'n
Carbon tetrachloride	ND	0.87	"
Chlorobenzene	ND	0.87	"
Chloroethane	ND	0.87	"
Chloroform	ND	0.87	н
Chloromethane	ND	0.87	н

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

Prepared & Analyzed: 07/30/03

Project Manager

Cheryl Watson For Sheri L. Speaks

lung M

MFG. Inc. Alpha 🛛 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control RPD Spike %REC Source %REC Limits Result Flag Result PQL Units Level RPD Limit Analyte(s) Batch AH30413 - EPA 5035 MS Prepared & Analyzed: 07/30/03 Blank (AH30413-BLK1) ND 0.87 •• 2-Chlorotoluene " 4-Chlorotoluene ND 0.87 15 ND 0.87 Dibromochloromethane 1,2-Dibromo-3-chloropropane ND 0.87 0.87 ND 1,2-Dibromoethane (EDB) ND 0.87 Dibromomethane 1.2-Dichlorobenzene ND 0.87 ND 0.87 1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 0.87 ND 0.87 Dichlorodifluoromethane ND 0.87 1,1-Dichloroethane ND 0.87 1,2-Dichloroethane 1,1-Dichloroethene ND 0.87 cis-1.2-Dichloroethene ND 0.87 0.87 trans-1,2-Dichloroethene ND ND 0.87 1,2-Dichloropropane 1,3-Dichloropropane ND 0.87 0.87 ND 2,2-Dichloropropane 1,1-Dichloropropene ND 0.87 0.87 cis-1,3-Dichloropropene ND ND 0.87 trans-1,3-Dichloropropene ND 0.87 Ethylbenzene 0.87 ND Hexachlorobutadiene ND 0.87 Isopropylbenzene p-Isopropyltoluene ND 0.87 ND 2.6 Methyl ethyl ketone

1.7

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

alpha

180 Howard St. Suite 200

San Francisco, CA 94105-2941

Receipt Date/Time

07/25/2003 15:40

MFG. Inc

Order Number

Methyl isobutyl ketone

A307601

Attn: Ed Conti

5 200**3**

inc.

Client Code

CHEMICAL EXAMINATION REPORT

RECEIVED

AUG 1 5 2003

Client PO/Reference

Report Date: 08/12/03 11:41

Page 74 of 90

Project ID: SPI-Arcata/Task #4

MFGINC

Project No: 030229.4

AUG 1 5 2003

MFG, Inc.

alpha Alpha VAnalytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 75 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number A307601

Client Code MFGINC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30413 - EPA 5035 MS										
Blank (AH30413-BLK1)				Prepared	& Analyze	ed: 07/30/0	03			
Methyl tert-butyl ether	ND	0.87	Ħ							
Methylene chloride	ND	0.87	"							
Naphthalene	ND	0.87	"							
n-Propylbenzene	ND	0.87	"							
Styrene	ND	0.87	"							
1,1,1,2-Tetrachloroethane	ND	0.87	**							
1,1,2,2-Tetrachloroethane	ND	0.87	**							
Tetrachloroethene	ND	0.87	"							
Toluene	ND	0.87	"							
1,2,3-Trichlorobenzene	ND	0.87	"							
1,2,4-Trichlorobenzene	ND	0.87	**							
1,1,1-Trichloroethane	ND	0.87	Ħ							
1,1,2-Trichloroethane	ND	0.87	11							
Trichloroethene	ND	0.87	н							
Trichlorofluoromethane	ND	0.87								
Trichlorotrifluoroethane	ND	0.87	**							
1,2,3-Trichloropropane	ND	0.87	11							
1,2,4-Trimethylbenzene	ND	0.87	"							
1,3,5-Trimethylbenzene	ND	0.87	"							
Vinyl chloride	ND	0.87	н							
m,p-Xylene	ND	0.87	**							
o-Xylene	ND	0.87	"							
Xylenes (total)	ND	0.87	**							
Surrogate: Dibromofluoromethane	4.10		Ħ	4.33		94.7	57-144			
Surrogate: Toluene-d8	3.87		"	4.33		89.4	65-127			
Surrogate: Bromofluorobenzene	3.72		"	4.33		85.9	56-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

PECEIVED

AUG 1 5 2003

MFG, Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 76 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Client PO/Reference

Order Number A307601

Client Code MFGINC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30413 - EPA 5035 MS										
LCS (AH30413-BS1)				Prepared	& Analyze	d: 07/30/0)3			
Acetone	5.63	3.5	mg/kg	6.84		82.3	36-154			
Benzene	1.55	0.87	**	1.73		89.6	72-123			
Bromobenzene	1.53	0.87		1.73		88.4	71-127			
Bromochloromethane	1.88	0.87	"	1.73		109	62-132			
Bromodichloromethane	1.76	0.87	Ħ	1.73		102	57-125			
Bromoform	1.70	0.87		1.73		98.3	57-138			
Bromomethane	1.87	0.87		1.73		108	56-150			
n-Butylbenzene	1.61	0.87	н	1.73		93.1	68-121			
sec-Butylbenzene	1.68	0.87		1.73		97.1	68-126			
tert-Butylbenzene	1.66	0.87	"	1.73		96.0	66-124			
Carbon tetrachloride	1.96	0.87	"	1.73		113	57-133			
Chlorobenzene	1.52	0.87	"	1.73		87.9	76-117			
Chloroethane	1.60	0.87	**	1.73		92.5	59-128			
Chloroform	1.63	0.87	**	1.73		94.2	60-128			
Chloromethane	1.11	0.87	**	1.73		64.2	45-140			
2-Chlorotoluene	1.57	0.87	**	1.73		90.8	67-127			
4-Chlorotoluene	1.59	0.87	. 11	1.73		91.9	65-125			
Dibromochloromethane	1.65	0.87	"	1.73		95.4	56-141			
1,2-Dibromo-3-chloropropane	1.43	0.87	**	1.73		82.7	61-134			
1,2-Dibromoethane (EDB)	1.53	0.87	н	1.73		88.4	70-132			
Dibromomethane	1.56	0.87	**	1.73		90.2	66-123			
1,2-Dichlorobenzene	1.50	0.87	н	1.73		86.7	70-121			
1,3-Dichlorobenzene	1.54	0.87	"	1.73		89.0	65-124			
1,4-Dichlorobenzene	1.51	0.87	**	1.73		87.3	71-120			
Dichlorodifluoromethane	1.31	0.87		1.73		75.7	52-145			
1,1-Dichloroethane	1.58	0.87	**	1.73		91.3	58-136			
1,2-Dichloroethane	1.60	0.87	"	1.73		92.5	64-117			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha 🛿 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 77 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time 07/25/2003 15:40

A307601

Client Code MEGINC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30413 - EPA 5035 MS										
LCS (AH30413-BS1)				Prepared	& Analyze	d: 07/30/0	03			
1,1-Dichloroethene	1.66	0.87	n	1.73		96.0	66-131			
cis-1,2-Dichloroethene	1.70	0.87	**	1.73		98.3	57-131			
trans-1,2-Dichloroethene	1.56	0.87	Ħ	1.73		90.2	59-127			
1,2-Dichloropropane	1.60	0.87	"	1.73		92.5	72-121			
1,3-Dichloropropane	1.56	0.87	**	1.73		90.2	70-135			
2,2-Dichloropropane	1.79	0.87	"	1.73		103	38-152			
1,1-Dichloropropene	1.64	0.87	"	1.73		94.8	73-124			
cis-1,3-Dichloropropene	1.74	0.87	"	1.73		101	66-132			
trans-1,3-Dichloropropene	1.60	0.87	"	1.73		92.5	55-133			
Ethylbenzene	1.58	0.87	"	1.73		91.3	71-125			
Hexachlorobutadiene	1.66	0.87	**	1.73		96.0	68-131			
Isopropylbenzene	1.59	0.87	**	1.73		91.9	66-125			
p-Isopropyltoluene	1.57	0.87	**	1.73		90.8	62-120			
Methyl ethyl ketone	3.10	2.6	Ħ	3.48		89.1	58-138			
Methyl isobutyl ketone	2.98	1.7	"	3.46		86.1	59-133			
Methyl tert-butyl ether	1.50	0.87	н	1.73		86.7	71-127			
Methylene chloride	1.35	0.87	**	1.73		78.0	60-128			
Naphthalene	1.34	0.87	**	1.73		77.5	58-133			
n-Propylbenzene	1.66	0.87	**	1.73		96.0	67-124			
Styrene	1.65	0.87	**	1.73		95.4	65-126			
1,1,1,2-Tetrachloroethane	1.74	0.87	**	1.73		101	65-136			
1,1,2,2-Tetrachloroethane	1.43	0.87		1.73		82.7	40-149			
Tetrachloroethene	1.59	0.87	"	1.73		91.9	52-148			
Toluene	1.53	0.87	. "	1.73		88.4	72-126			
1,2,3-Trichlorobenzene	1.46	0.87	**	1.73		84.4	67-124			
1,2,4-Trichlorobenzene	1.49	0.87	"	1.73		86.1	63-125			
1,1,1-Trichloroethane	1.74	0.87	"	1.73		101	55-134			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

MFG, Inc

Order Number A307601

RECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Report Date: 08/12/03 11:41

180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30413 - EPA 5035 MS										
LCS (AH30413-BS1)				Prepared	& Analyze	ed: 07/30/0	03			
1,1,2-Trichloroethane	1.56	0.87	**	1.73		90.2	61-138			
Trichloroethene	1.70	0.87	"	1.73		98.3	74-129			
Trichlorofluoromethane	1.63	0.87	"	1.73		94.2	61-132			
Trichlorotrifluoroethane	1.72	0.87	н	1.70		101	52-138			
1,2,3-Trichloropropane	1.43	0.87	"	1.73		82.7	66-132			
1,2,4-Trimethylbenzene	1.64	0.87	**	1.73		94.8	66-128			
1,3,5-Trimethylbenzene	1.62	0.87	"	1.73		93.6	65-123			
Vinyl chloride	1.73	0.87	"	1.73		100	59-135			
m,p-Xylene	3.17	0.87	*	3.46		91.6	67-128			
o-Xylene	1.63	0.87	"	1.73		94.2	67-126			
Xylenes (total)	4.80	0.87	"	5.20		92.3	67-127			
Surrogate: Dibromofluoromethane	3.97		Ħ	4.33		91.7	57-144			
Surrogate: Toluene-d8	3.87		"	4.33		89.4	65-127			
Surrogate: Bromofluorobenzene	3.77		"	4.33		87.1	56-130			
LCS Dup (AH30413-BSD1)				Prepared	l & Analyz	zed: 07/30	/03			QM-1
Acetone	5.81	3.5	mg/kg	6.84		84.9	36-154	3.15	25	
Benzene	1.45	0.87	"	1.73		83.8	72-123	6.67	25	
Bromobenzene	1.50	0.87	"	1.73		86.7	71-127	1.98	25	
Bromochloromethane	1.68	0.87	"	1.73		97.1	62-132	11.2	25	
Bromodichloromethane	1.53	0.87	**	1.73		88.4	57-125	14.0	25	
Bromoform	1.60	0.87	"	1.73		92.5	57-138	6.06	25	
Bromomethane	2.08	0.87	n	1.73		120	56-150	10.6	25	
n-Butylbenzene	1.47	0.87	**	1.73		85.0	68-121	9.09	25	
sec-Butylbenzene	1.56	0.87	"	1.73		90.2	68-126	7.41	25	
tert-Butylbenzene	1.53	0.87	**	1.73		88.4	66-124	8.15	25	
Carbon tetrachloride	1.68	0.87	*	1.73		97.1	57-133	15.4	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

8/12/03

Page 78 of 90

Client Code

MFGINC

AUG 1 5 2003

Arto, Hit.

alpha Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

A307601

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Client Code Client PO/Reference Receipt Date/Time Order Number MFGINC 07/25/2003 15:40

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30413 - EPA 5035 MS										
LCS Dup (AH30413-BSD1)				Prepared	& Analyze	ed: 07/30/	03			QM-10
Chlorobenzene	1.45	0.87	11	1.73		83.8	76-117	4.71	25	
Chloroethane	1.59	0.87	**	1.73		91.9	59-128	0.627	25	
Chloroform	1.57	0.87	"	1.73		90.8	60-128	3.75	25	
Chloromethane	1.61	0.87	**	1.73		93.1	45-140	36.8	25	QL-04
2-Chlorotoluene	1.47	0.87	**	1.73		85.0	67-127	6.58	25	
4-Chlorotoluene	1.51	0.87	"	1.73		87.3	65-125	5.16	25	
Dibromochloromethane	1.45	0.87	н	1.73		83.8	56-141	12.9	25	
1,2-Dibromo-3-chloropropane	1.57	0.87	"	1.73		90.8	61-134	9.33	25	
1,2-Dibromoethane (EDB)	1.49	0.87	**	1.73		86.1	70-132	2.65	25	
Dibromomethane	1.48	0.87	**	1.73		85.5	66-123	5.26	25	
1,2-Dichlorobenzene	1.47	0.87	"	1.73		85.0	70-121	2.02	25	
1,3-Dichlorobenzene	1.50	0.87	**	1.73		86.7	65-124	2.63	25	
1,4-Dichlorobenzene	1.47	0.87	n	1.73		85.0	71-120	2.68	25	
Dichlorodifluoromethane	1.49	0.87	"	1.73		86.1	52-145	12.9	25	
1,1-Dichloroethane	1.49	0.87	"	1.73		86.1	58-136	5.86	25	
1,2-Dichloroethane	1.53	0.87	**	1.73		88.4	64-117	4.47	25	
1,1-Dichloroethene	1.53	0.87	"	1.73		88.4	66-131	8.15	25	
cis-1,2-Dichloroethene	1.49	0.87	"	1.73		86.1	57-131	13.2	25	
trans-1,2-Dichloroethene	1.51	0.87	**	1.73		87.3	59-127	3.26	25	
1,2-Dichloropropane	1.51	0.87		1.73		87.3	72-121	5.79	25	
1,3-Dichloropropane	1.54	0.87	11	1.73		89.0	70-135	1.29	25	
2,2-Dichloropropane	1.67	0.87	11	1.73		96.5	38-152	6.94	25	
1,1-Dichloropropene	1.55	0.87	н	1.73		89.6	73-124	5.64	25	
cis-1,3-Dichloropropene	1.62	0.87	"	1.73		93.6	66-132	7.14	25	
trans-1,3-Dichloropropene	1.50	0.87	"	1.73		86.7	55-133	6.45	25	
Ethylbenzene	1.49	0.87	"	1.73		86.1	71-125	5.86	25	
Hexachlorobutadiene	1.62	0.87	H	1.73		93.6	68-131	2.44	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

8/12/03

Page 79 of 90

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 80 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time 07/25/2003 15:40

A307601

MFGINC

Client Code

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30413 - EPA 5035 MS				,						
LCS Dup (AH30413-BSD1)				Prepared	& Analyze	ed: 07/30/0)3			QM-10
Isopropylbenzene	1.48	0.87	n	1.73		85.5	66-125	7.17	25	
p-Isopropyltoluene	1.43	0.87	"	1.73		82.7	62-120	9.33	25	
Methyl ethyl ketone	3.33	2.6	"	3.48		95.7	58-138	7.15	25	
Methyl isobutyl ketone	3.38	1.7	**	3.46		97.7	59-133	12.6	25	
Methyl tert-butyl ether	1.58	0.87	0	1.73		91.3	71-127	5.19	25	
Methylene chloride	1.33	0.87	н	1.73		76.9	60-128	1.49	25	
Naphthalene	1.42	0.87	"	1.73		82.1	58-133	5.80	25	
n-Propylbenzene	1.56	0.87	**	1.73		90.2	67-124	6.21	25	
Styrene	1.55	0.87	"	1.73		89.6	65-126	6.25	25	
1,1,1,2-Tetrachloroethane	1.58	0.87		1.73		91.3	65-136	9.64	25	
1,1,2,2-Tetrachloroethane	1.61	0.87	"	1.73		93.1	40-149	11.8	25	
Tetrachloroethene	1.50	0.87	**	1.73		86.7	52-148	5.83	25	
Toluene	1.47	0.87	"	1.73		85.0	72-126	4.00	25	
1,2,3-Trichlorobenzene	1.39	0.87	**	1.73		80.3	67-124	4.91	25	
1,2,4-Trichlorobenzene	1.42	0.87	H	1.73		82.1	63-125	4.81	25	
1,1,1-Trichloroethane	1.60	0.87	n	1.73		92.5	55-134	8.38	25	
1,1,2-Trichloroethane	1.49	0.87	11	1.73		86.1	61-138	4.59	25	
Trichloroethene	1.57	0.87	"	1.73		90.8	74-129	7.95	25	
Trichlorofluoromethane	1.61	0.87	"	1.73		93.1	61-132	1.23	25	
Trichlorotrifluoroethane	1.72	0.87	"	1.70		101	52-138	0.00	25	
1,2,3-Trichloropropane	1.63	0.87	"	1.73		94.2	66-132	13.1	25	
1,2,4-Trimethylbenzene	1.50	0.87	"	1.73		86.7	66-128	8.92	25	
1,3,5-Trimethylbenzene	1.47	0.87	"	1.73		85.0	65-123	9.71	25	
Vinyl chloride	1.59	0.87	"	1.73		91.9	59-135	8.43	25	
m,p-Xylene	2.99	0.87	**	3.46		86.4	67-128	5.84	25	
o-Xylene	1.52	0.87	"	1.73		87.9	67-126	6.98	25	
Xylenes (total)	4.50	0.87	11	5.20		86.5	67-127	6.45	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 81 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601

Receipt Date/Time

07/25/2003 15:40

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Client Code

MFGINC

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30413 - EPA 5035 MS										
LCS Dup (AH30413-BSD1)	Prepared & Analyzed: 07/30/03								QM-10	
Surrogate: Dibromofluoromethane	3.86		#	4.33		89.1	57-144			
Surrogate: Toluene-d8	3.87		"	4.33		89.4	65-127			
Surrogate: Bromofluorobenzene	3.86		"	4.33		89.1	56-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

ALC 1 ٣ 0000

AUG 1 5 2003

MFG, Inc.

alpha

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 82 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference Client Code Order Number Receipt Date/Time MFGINC 07/25/2003 15:40

Polychlorinated Biphenyls by EPA Method 8080A - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31117 - Solvent Extraction										
Blank (AH31117-BLK1)				Prepared:	07/31/03	Analyzed	: 08/07/03			
PCB-1016	ND	0.20	mg/kg							
PCB-1221	ND	0.20	"							
PCB-1232	ND	0.20	"							
PCB-1242	ND	0.20	**							
PCB-1248	ND	0.20	Ħ							
PCB-1254	ND	0.20	"							
PCB-1260	ND	0.20	н							
PCB-1262	ND	0.20	"							
Surrogate: Tetrachloro-meta-xylene	0.0000780		"	0.000750		10.4	10-150			
Surrogate: Decachlorobiphenyl	0.000310		"	0.000750		41.3	10-150			
LCS (AH31117-BS1)				Prepared:	07/31/03	Analyzed	1: 08/07/03			
PCB-1016	0.0390	0.20	mg/kg	0.0500		78.0	41-166			
PCB-1260	0.0300	0.20	**	0.0500		60.0	41-166			
Surrogate: Tetrachloro-meta-xylene	0.000160		"	0.000750		21.3	10-150			
Surrogate: Decachlorobiphenyl	0.000530		"	0.000750		70.7	10-150			
Matrix Spike (AH31117-MS1)	Sou	rce: A307	601-02	Prepared:	07/31/03	Analyze	d: 08/07/03			
PCB-1016	ND	0.20	mg/kg	0.0500	ND		41-166			QM-05
PCB-1260	0.0260	0.20	**	0.0500	ND	52.0	41-166			
Surrogate: Tetrachloro-meta-xylene	0.00		Ħ	0.000750			10-150			S-06
Surrogate: Decachlorobiphenyl	0.00		11	0.000750	ł		10-150			S-06
Matrix Spike Dup (AH31117-MSD1)	Sou	ırce: A307	601-02	Prepared	: 07/31/03	3 Analyze	d: 08/07/03	3		
PCB-1016	ND	0.20	mg/kg	0.0500	ND		41-166		35	QM-05
PCB-1260	0.0200	0.20	**	0.0500	ND	40.0	41-166	26.1	35	QM-05

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ling M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 83 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307601	07/25/2003 15:40	MFGINC	

Polychlorinated Biphenyls by EPA Method 8080A - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31117 - Solvent Extraction										
Matrix Spike Dup (AH31117-MSD1)	Sou	rce: A307	601-02	Prepared:	07/31/03	Analyzed	: 08/07/03			
Surrogate: Tetrachloro-meta-xylene	0.00		Ħ	0.000750			10-150			S-00
Surrogate: Decachlorobiphenyl	0.00		"	0.000750			10-150			S-00
Batch AH31118 - Solvent Extraction										
Blank (AH31118-BLK1)				Prepared:	08/01/03	Analyzed	1: 08/08/03			
PCB-1016	ND	0.20	mg/kg							
PCB-1221	ND	0.20	"							
PCB-1232	ND	0.20	"							
PCB-1242	ND	0.20	**							
PCB-1248	ND	0.20	н							
PCB-1254	ND	0.20	"							
PCB-1260	ND	0.20	"							
PCB-1262	ND	0.20	"							
Surrogate: Tetrachloro-meta-xylene	0.000130		"	0.000750		17.3	10-150			
Surrogate: Decachlorobiphenyl	0.000460		"	0.000750		61.3	10-150			
LCS (AH31118-BS1)				Prepared:	08/01/03	Analyze	d: 08/08/03			
PCB-1016	0.0230	0.20	mg/kg	0.0500		46.0	41-166			
PCB-1260	0.0290	0.20	"	0.0500		58.0	41-166			
Surrogate: Tetrachloro-meta-xylene	0.000120		"	0.000750		16.0	10-150			
Surrogate: Decachlorobiphenyl	0.000580		н	0.000750		77.3	10-150			
Matrix Spike (AH31118-MS1)	Source: A307601-21		Prepared: 08/01/03 Analyzed: 08/08/03			3				
PCB-1016	0.0270	0.20	mg/kg	0.0500	ND	54.0	41-166			
PCB-1260	0.0410	0.20	*1	0.0500	ND	82.0	41-166			
Surrogate: Tetrachloro-meta-xylene	0.000780		Ħ	0.000750		104	10-150			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Juny M

Cheryl Watson For Sheri L. Speaks Project Manager

REVEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

Page 84 of 90

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	08/12/03 11:41
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307601	07/25/2003 15:40	MFGINC	

Polychlorinated Biphenyls by EPA Method 8080A - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31118 - Solvent Extraction										
Matrix Spike (AH31118-MS1)	Sou	rce: A307	601-21	Prepared:	08/01/03	Analyzed	: 08/08/03			
Surrogate: Decachlorobiphenyl	0.000580		11	0.000750		77.3	10-150			
Matrix Spike Dup (AH31118-MSD1)	Sou	rce: A307	601-21	Prepared:	08/01/03	Analyzed	l: 08/08/03			
PCB-1016	0.0330	0.20	mg/kg	0.0500	ND	66.0	41-166	20.0	35	
PCB-1260	0.0430	0.20	"	0.0500	ND	86.0	41-166	4.76	35	
Surrogate: Tetrachloro-meta-xylene	0.000850		n	0.000750		113	10-150			
Surrogate: Decachlorobiphenyl	0.000620		"	0.000750		82.7	10-150			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ing M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1.5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Report Date: 08/12/03 11:41 Project No: 030229.4

180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

	Project ID:	SPI-Arcata/Task #4
•		Client PO/Referenc

Client PO/Reference

Page 85 of 90

Receipt Date/Time Order Number A307601 07/25/2003 15:40

MFG, Inc

Client Code MFGINC

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
atch AG32909 - Solvent Extraction										
Blank (AG32909-BLK1)				Prepared:	07/26/03	Analyzed	: 07/28/03			
2,4,6-Trichlorophenol	ND	1.0	mg/kg							
2,3,5,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,5-Tetrachlorophenol	ND	1.0	"							
Pentachlorophenol	ND	1.0	"							
Surrogate: Tribromophenol	0.101		"	0.124		81.5	23-140			
LCS (AG32909-BS1)				Prepared	: 07/26/03	Analyzed	1: 07/28/03			
2,4,6-Trichlorophenol	0.0192	1.0	mg/kg	0.0250		76.8	32-116			
2,3,5,6-Tetrachlorophenol	0.0150	1.0	"	0.0250		60.0	18-80			
2,3,4,6-Tetrachlorophenol	0.0177	1.0	11	0.0250		70.8	28-89			
2,3,4,5-Tetrachlorophenol	0.0198	1.0	"	0.0250		79.2	54-85			
Pentachlorophenol	0.0184	1.0	"	0.0250		73.6	17-85			
Surrogate: Tribromophenol	0.106		"	0.124		85.5	23-140			
LCS Dup (AG32909-BSD1)				Prepared	: 07/26/03	Analyzed	1: 07/28/03			
2,4,6-Trichlorophenol	0.0179	1.0	mg/kg	0.0250		71.6	32-116	7.01	50	
2,3,5,6-Tetrachlorophenol	0.0154	1.0	"	0.0250		61.6	18-80	2.63	50	
2,3,4,6-Tetrachlorophenol	0.0199	1.0	**	0.0250		79.6	28-89	11.7	50	
2,3,4,5-Tetrachlorophenol	0.0202	1.0	**	0.0250		80.8	54-85	2.00	50	
Pentachlorophenol	0.0199	1.0	"	0.0250		79.6	17-85	7.83	50	
Surrogate: Tribromophenol	0.102		"	0.124		82.3	23-140			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

NEVEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number

A307601

Report Date: 08/12/03 11:41 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code Receipt Date/Time MFGINC 07/25/2003 15:40

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
atch AG33112 - CA LUFT - orb sha	ker									
Blank (AG33112-BLK1)				Prepared	& Analyze	ed: 07/31/	03			
TPH as Diesel	ND	1.0	mg/kg							
TPH as Motor Oil	ND	2.0	n							
Surrogate: 1,4-Bromofluorobenzene	10.4		Ħ	12.4		83.9	21-110			
LCS (AG33112-BS1)		Prepared	& Analyz	ed: 07/31/						
TPH as Diesel	42.4	1.0	mg/kg	41.8		101	63-126			
TPH as Motor Oil	43.3	, 2.0	"	41.8		104	57-139			
Surrogate: 1,4-Bromofluorobenzene	11.8		"	12.4		95.2	21-110			
Matrix Spike (AG33112-MS1)	Source: A307573-01			Prepared	: 07/31/03	Analyze	d: 08/01/03			
TPH as Diesel	41.0	1.0	mg/kg	41.8	ND	96.1	61-134			
TPH as Motor Oil	43.6	2.0		41.8	3.0	97.1	61-126			
Surrogate: 1,4-Bromofluorobenzene	11.2		n	12.4		90.3	21-110			
Matrix Spike Dup (AG33112-MSD1)	Sou	rce: A307	573-01	Preparec	l: 07/31/03	Analyze	d: 08/01/03			
TPH as Diesel	43.1	1.0	mg/kg	41.8	ND	101	61-134	4.99	20	
TPH as Motor Oil	45.2	2.0	0	41.8	3.0	101	61-126	3.60	20	
Surrogate: 1,4-Bromofluorobenzene	11.7		"	12.4		94.4	21-110			
Batch AH30111 - CA LUFT - orb sh	aker									
Blank (AH30111-BLK1)				Prepared	l & Analy	zed: 08/01	/03			
TPH as Diesel	ND	1.0	mg/kg							
TPH as Motor Oil	ND	2.0	**							
Surrogate: 1,4-Bromofluorobenzene	12.4		11	12.4		100	21-110			
LCS (AH30111-BS1)					d & Analy					
TPH as Diesel	42.9	1.0	mg/kg	41.8		103	63-126			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

8/12/03

alpha

Client PO/Reference

Page 86 of 90

AUG 1 5 2003

MFG, Inc.

alpha Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601

Report Date:	08/12/03 11:41
Project No:	
Project ID:	SPI-Arcata/Task #4

Client PO/Reference

Page 87 of 90

Receipt Date/Time 07/25/2003 15:40

MFGINC TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Client Code

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30111 - CA LUFT - orb sha	ıker									
LCS (AH30111-BS1)				Prepared	& Analyz	ed: 08/01/	03			
TPH as Motor Oil	42.8	2.0	JT	41.8		102	57-139			
Surrogate: 1,4-Bromofluorobenzene	12.5		"	12.4		101	21-110			
Matrix Spike (AH30111-MS1)	Sou	rce: A307	601-21	Prepared	& Analyz	ed: 08/01/	/03			
TPH as Diesel	47.0	1.0	mg/kg	41.8	2.1	107	61-134			
TPH as Motor Oil	56.5	2.0	11	41.8	8.0	116	61-126			
Surrogate: 1,4-Bromofluorobenzene	11.9		11	12.4		96.0	21-110			
Matrix Spike Dup (AH30111-MSD1)	Sou	rce: A307	601-21	Prepared	l & Analyz	ed: 08/01	/03			
TPH as Diesel	44.6	1.0	mg/kg	41.8	2.1	102	61-134	5.24	20	
TPH as Motor Oil	54.0	2.0	**	41.8	8.0	110	61-126	4.52	20	
Surrogate: 1,4-Bromofluorobenzene	11.5		n	12.4		92.7	21-110			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 88 of 90

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307601

Receipt Date/Time

07/25/2003 15:40

Report Date:	08/12/03 11:41
Project No:	
Project ID:	SPI-Arcata/Task #4

Client PO/Reference

TPH Gasoline by GCFID/5035 - Quality Control

Client Code

MFGINC

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30510 - EPA 5035 GC										
Blank (AH30510-BLK1)				Prepared	& Analyz	ed: 07/30/	03			
TPH as Gasoline	ND	1.0	mg/kg							
Surrogate: 1,4-Bromofluorobenzene	6.25		N	4.00		156	60-156			
LCS (AH30510-BS1)				Prepared	& Analyz	ed: 07/30/	03			
TPH as Gasoline	26.6	1.0	mg/kg	23.2		115	77-139			
Surrogate: 1,4-Bromofluorobenzene	5.57		"	4.00		139	60-156			
LCS Dup (AH30510-BSD1)				Prepared	& Analyz	ed: 07/30/	03			QM-10
TPH as Gasoline	29.0	1.0	mg/kg	23.2		125	77-139	8.63	20	
Surrogate: 1,4-Bromofluorobenzene	4.28		"	4.00		107	60-156			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jung M

Cheryl Watson For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG. Inc.

Inha Analutical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 89 of 90

	ard St. Suite 200 cisco, CA 94105-2941		Project No:	08/12/03 11:41 030229.4 SPI-Arcata/Task #4
Order Number A307601	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC		Client PO/Reference

Notes and Definitions

MEG Inc

- Value of this analyte is above the highest low-level calibration point and below the lowest high-level C-01 calibration point due to sample non-homogeneity.
- Results in the diesel organics range are primarily due to overlap from a heavy oil range product. D-09
- The sample chromatogram contains resolved peaks within the motor oil range that do not resemble motor oil. D-12
- The sample chromatogram contains resolved peaks within the diesel range that do not resemble diesel. D-13
- Results in the gasoline organics range are primarily due to overlap from a diesel range product G-1
- The LCS/LCSD RPD for this analyte was outside of established control limits. Batch accepted based on **OL-04** acceptable recovery for both LCS/LCSD.
- The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix QM-01 interference.
- High RPD and/or poor percent recovery may reflect sample non-homogeneity. **OM-04**
- The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS QM-05 and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- LCSD prepared with analytical batch due to insufficient sample for MS/MSD. OM-10
- The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration QM-4X at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- The Reporting Limit for this analyte has been raised to account for matrix interference. R-01
- Elevated Reporting Limits due to limited sample volume. R-02
- The Reporting Limits for this analysis have been raised to account for matrix interference. **R-06**
- The surrogate recovery for this sample is outside of established control limits possibly due to a sample matrix S-04 effect.

lung M

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cheryl Watson For Sheri L. Speaks Project Manager

L. Senan 🛶 Sama J., Y., Sama Sama AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 90 of 90

180 San	G, Inc Howard St. Suite 200 Francisco, CA 94105-2941 : Ed Conti		Project No:	08/12/03 11:41 030229.4 SPI-Arcata/Task #4
Order Number A307601	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC		Client PO/Reference

Notes and Definitions

- The recovery of this surrogate is outside control limits due to sample dilution required from high analyte S-06 concentration and/or matrix interferences.
- Analyte DETECTED DET
- Analyte NOT DETECTED at or above the reporting limit ND
- NR Not Reported
- Sample results reported on a dry weight basis dry
- Relative Percent Difference RPD
- Practical Quantitation Limit PQL

	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
McCampbell Analytical Inc.	Telephone : 925-798-1620 Fax : 925-798-1622
B	http://www.mccampbell.com E-mail: main@mccampbell.com

Alpha Analytical Laboratories	Client Project ID: #A307601	Date Sampled: 07/24/03
208 Mason Street		Date Received: 07/29/03
Ukiah, CA 95482	Client Contact: Sheri Speaks	Date Reported: 08/04/03
Okiali, CA 95462	Client P.O.:	Date Completed: 08/04/03

WorkOrder: 0307485

August 04, 2003

Dear Sheri:

Enclosed are:

1). the results of 16 analyzed samples from your #A307601 project,

2). a QC report for the above samples

3). a copy of the chain of custody, and

4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Angela Rydelius, Lab Manager

RECEIVED AUG 1 5 2003

wire, Inc.

Alpha Analytical Laboratories 208 Mason Street Ukiah, CA 95482 Extraction Method: SW3550C Lab ID Client ID Matrix	Client Proje Client Conta Client P.O.: Semi-Volatile					-					
Ukiah, CA 95482 Extraction Method: SW3550C Lab ID Client ID	Client P.O.:	act: Sh	ieri Spe	aks	Date Sampled: 07/24/03 Date Received: 07/29/03						
Extraction Method: SW3550C Lab ID Client ID	Client P.O.:	act: Sh	ieri Spe	aks							
Extraction Method: SW3550C Lab ID Client ID				uno	Date Extra	acted: 07/29/03					
Lab ID Client ID	Semi-Volatile				Date Anal	lyzed: 07/30/03-0	8/01/03	3			
Lab ID Client ID		Organ	ics by (GC/MS (Basic Targ	get List)*						
Client ID		Ana	lytical Me	thod: SW8270D		Work	Order: 03)7485			
				0307485-00							
Matrix				WO-3(3.25-4	4.0')						
			·	Soil							
Compound	Concentration *	DF	Reporting Limit	Compoun	đ	Concentration *	DF	Reportir Limit			
Acenaphthene	ND<3.3	10	0.33	Acenaphthylene		ND<3.3	10	0.33			
Anthracene	ND<3.3	10	0.33	Benzidine		ND<16	10	1.6			
Benzoic Acid	ND<16	10	1.6	Benz(a)anthracene		ND<3.3	10	0.33			
Benzo(b)fluoranthene	ND<3.3	10	0.33	Benzo(k)fluoranthene		ND<3.3	10	0.33			
Benzo(g,h,i)perylene	ND<3.3	10	0.33	Benzo(a)pyrene		ND<3.3	10	0.33			
Benzyl Alcohol	ND<6.6	10	0.66	Bis (2-chloroethoxy) M	ethane	ND<3.3	10	0.3			
Bis (2-chloroethyl) Ether	ND<3.3	10	0.33	Bis (2-chloroisopropyl)		ND<3.3	10	0.3			
Bis (2-ethylhexyl) Phthalate	ND<3.3	10	0.33	4-Bromophenyl Phenyl		ND<3.3	10	0.3			
Butylbenzyl Phthalate	ND<3.3	10	0.33	4-Chloroaniline		ND<6.6	10	0.6			
4-Chloro-3-methylphenol	ND<3.3	10	0.33	2-Chloronaphthalene		ND<3.3	10	0.3			
2-Chlorophenol	ND<3.3	10	0.33	4-Chlorophenyl Phenyl	Ether	ND<3.3	10	0.3			
Chrysene	ND<3.3	10	0.33	Dibenzo(a,h)anthracene		ND<3.3	10	0.3			
Dibenzofuran	ND<3.3	10	0.33	Di-n-butyl Phthalate	*******	ND<3.3	10	0.3			
1,2-Dichlorobenzene	ND<3.3	10	0.33	1,3-Dichlorobenzene		ND<3.3	10	0.3			
1,4-Dichlorobenzene	ND<3.3	10	0.33	3,3-Dichlorobenzidine		ND<6.6	10	0.6			
2,4-Dichlorophenol	ND<3.3	10	0.33	Diethyl Phthalate		ND<3.3	10	0.3			
2,4-Dimethylphenol	ND<3.3	10	0.33	Dimethyl Phthalate		ND<3.3	10	0.3			
4,6-Dinitro-2-methylphenol	ND<16	10	1.6	2,4-Dinitrophenol		ND<16	10	1.6			
2,4-Dinitrotoluene	ND<3.3	10	0.33	2,6-Dinitrotoluene		ND<3.3	10	0.3			
Di-n-octyl Phthalate	ND<3.3	10	0.33	1,2-Diphenylhydrazine		ND<3.3	10	0.3			
Fluoranthene	ND<3.3	10	0.33	Fluorene		ND<3.3	10	0.3			
Hexachlorobenzene	ND<3.3	10	0.33	Hexachlorobutadiene		ND<3.3	10	0.3			
Hexachlorocyclopentadiene	ND<16	10	1.6	Hexachloroethane		ND<3.3	10	0.3			
Indeno (1,2,3-cd) pyrene	ND<3.3	10	0.33	Isophorone		ND<3.3	10	0.3			
2-Methylnaphthalene	ND<3.3	10	0.33	2-Methylphenol (o-Cre	sol)	ND<3.3	10	0.3			
3 &/or 4-Methylphenol (m,p-Cresol)	ND<3.3	10	0.33	Naphthalene		ND<3.3	10	0.3			
2-Nitroaniline	ND<16	10	1.6	3-Nitroaniline		ND<16	10	1.0			
4-Nitroaniline	ND<16	10	1.6	2-Nitrophenol		ND<16	10	1.0			
4-Nitrophenol	ND<16	10	1.6	Nitrobenzene		ND<3.3	10	0.3			
N-Nitrosodiphenylamine	ND<3.3	10	0.33	N-Nitrosodi-n-propylar	nine	ND<3.3	10	0.3			
Pentachlorophenol	ND<16	10	1.6	Phenanthrene		ND<3.3	10	0.3			
Phenol 1,2,4-Trichlorobenzene	ND<3.3 ND<3.3	10 10	0.33	Pyrene	ND<3.3 ND<3.3		10	0.3			
2,4,6-Trichlorophenol	ND<3.3	10	0.33	2,4,5-Trichlorophenol		ND<3.3	10	0.3			
2,4,0-11010000000	ND~3.5			ecoveries (%)							
%SS1:	01		i ogate it								
%\$\$1: %\$\$3:	81.			%SS2:	86.						
%SS5:	66.	******		%SS4: %SS6:				Ш			
Comments: j				1				\geq			
* water samples and all TCLP & SPLP	extracts are reported	in 110/I	. soil/shu	dge/solid samples in ma/L	g wine com	les in ug/wine produc	t/oil/non	- []			
aqueous liquid samples in mg/L.		µ6/L	,	abe some samples in mg/r	5, mpc samp	nes in µg/wipe, produc		- <u> </u>			
· · · · · · · · · · · · · · · · · · ·								C			
ND means not detected above the report	ting limit; N/A mean	ns analy	te not apr	blicable to this analysis.				L			

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

P

Angela Rydelius, Lab Manager

AUG 1 5 2003 MFG, Inc.

Compound Concentration* DF Limit Compound Concentration* DF Acenaphthene ND<3.3 10 0.33 Acenaphthylene ND<3.3 10 Anthracene ND<3.3 10 0.33 Benza(in- Benzo(k-lid) ND<3.3 10 10.33 Benza(k)/fluoranthene ND<3.3 10 Benzo(k)/fluoranthene ND<3.3 10 0.33 Benzo(k)/fluoranthene ND<3.3 10 Benzo(k)/fluoranthene ND<3.3 10 0.33 Benzo(k)/fluoranthene ND<3.3 10 Benzo(k)/fluoranthene ND<3.3 10 0.33 Bis (2-chloroethoxy) Methane ND<3.3 10 Bis (2-chloroethy) Ether ND<3.3 10 0.33 4-Bromophenyl Phenyl Ether ND<3.3 10 Bis (2-chloroethy) Phther ND<3.3 10 0.33 4-Chloroantine ND<3.3 10 Chlorophenol ND<3.3 10 0.33 10 0.33 10 10 10 1.4-Chloroantine ND<3.3	Alpha Analytical Laboratories	Client Proje	ct ID:	#A307	7601	Date Sam	pled: 07/24/03			
	208 Mason Street					Date Rece	vived: 07/29/03			
Ukiah, CA 95482 Date Analyzed: 07/30/03-08/01/03 Semi-Volatile Organics by GC/MS (Basic Target List)* Extraction Method: SW3550C Analytical Method: SW8270D Work Order: 037 Client ID 0307485-002A Client ID W0-3(6.0-6.5') Matrix Soil Compound Concentration * DF Method: SW8270D Work Order: 037 Acenaphthylene ND<3.3 10 O307485-002A Compound DF Method: MO<-36.0-6.5') Matrix Soil Compound DF Acenaphthylene ND<3.3 10 Benzoic Acid ND<16.0 O Acenaphthylene ND<3.3 10 Benzoic Acid ND<4.3 10 Benzoic Acid <td></td> <td>Client Cont</td> <td>act: Sl</td> <td>heri Spe</td> <td>aks</td> <td>Date Extra</td> <td>acted: 07/29/03</td> <td></td> <td></td>		Client Cont	act: Sl	heri Spe	aks	Date Extra	acted: 07/29/03			
Extraction Method: SW3550C Analytical Method: SW2270D Work Order: 03C Compound Concentration * DF Restormed Soil ND<3.3 10 Acenaphthylene ND<3.3 10 Benzoic Acid ND<16 10 0.3.3 10 Benzoic Acid ND<66 10 0.3.3 10 Benzoic Acid ND<3.3 10 0.3.3 4 Benzoic Acid ND<3.3 10 0.3.3 10 Benzoic Acid ND<3.3 10 <th col<="" td=""><td>Ukiah, CA 95482</td><td></td><td></td><td></td><td></td><td>Date Anal</td><td>yzed: 07/30/03-0</td><td>8/01/0</td><td>3</td></th>	<td>Ukiah, CA 95482</td> <td></td> <td></td> <td></td> <td></td> <td>Date Anal</td> <td>yzed: 07/30/03-0</td> <td>8/01/0</td> <td>3</td>	Ukiah, CA 95482					Date Anal	yzed: 07/30/03-0	8/01/0	3
Lab ID 0307485-002A Client ID WO-3(6.0-6.5') Soil Soil Compound DF Acenaphthyne ND<3.3 ID Acenaphthyne ND<3.3 ID Anthracene ND<3.3 ID Benzo(h)fuoranthene ND<3.3 ID Benzo(h)fuoranthene ND<3.3 ID Benzo(h)fuoranthene ND<3.3 ID Benzo(h)fuoranthene ND<3.3 ID Benzo(h)fuoranthene ND<3.3 ID Benzo(h)fuoranthene ND<3.3 ID Benzo(h)fuoranthene ND<3.3 ID Benzo(h)fuoranthene ND<3.3 ID Benzo(h)fuoranthene ND<3.3 ID Benzo(h)fuoranthene		Semi-Volatile	Organ	nics by (GC/MS (Basic Targ	et List)*				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Extraction Method: SW3550C		Anz	lytical Met	thod: SW8270D	· · ·	Work	Order: 0	307485	
Matrix Soil Compound Concentration * DF Reporting Lumit Compound Concentration * DF Acenaphthene ND<3.3	Lab ID				0307485-00	2A				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Client ID				WO-3(6.0-6	.5')				
Compound Concentration * DF i.mm Compound Concentration * DF Acenaphthene ND<3.3	Matrix				Soil					
Accenaphthene ND<3.3 10 0.33 Acenaphthylene ND<3.3 10 Anthracene ND<3.3	Compound	Concentration *	DF		Compound	1	Concentration *	DF	Reportin	
Anthracene ND<3.3 10 0.33 Benzaiche ND<16 10 Benzoic Acid ND<16	1								Limit 0.33	
Benzoic Acid ND<16 10 1.6 Benza(k)fluoranthene ND<3.3 10 Benza(k)fluoranthene ND<3.3									1.6	
Benzo(b)fluoranthene ND<3.3 10 0.33 Benzo(k)fluoranthene ND<3.3 10 Benzo(b,j)perylene ND<3.3						·	·		0.33	
Benzo(g,h,i)perylene ND<3.3 10 0.33 Benzo(a)pyrene ND<3.3 10 Benzyl Alcohol ND<6.6									0.33	
Benzyl Alcohol ND<6.6 10 0.66 Bis (2-chloroethyty) Methane ND<3.3 10 Bis (2-chloroethyl) Ether ND<3.3			··· · · · · · · · · ·						0.33	
Bis (2-chloroethyl) Ether ND<3.3 10 0.33 Bis (2-chloroisopropyl) Ether ND<3.3 10 Bis (2-chlylhexyl) Phthalate ND<3.3		ND<6.6	10	0.66	·····	ethane			0.33	
Bis (2-ethylhexyl) Phthalate ND<3.3 10 0.33 4-Bromophenyl Phenyl Ether ND<3.3 10 Butylbenzyl Phthalate ND<3.3		ND<3.3	10						0.33	
4-Chloro-3-methylphenol ND<3.3 10 0.33 2-Chloronaphthalene ND<3.3 10 2-Chlorophenol ND<3.3	Bis (2-ethylhexyl) Phthalate	ND<3.3	10	0.33					0.33	
2-Chlorophenol ND<3.3 10 0.33 4-Chlorophenyl Phenyl Ether ND<3.3 10 Chrysene ND<3.3	Butylbenzyl Phthalate	ND<3.3	10	0.33	4-Chloroaniline		ND<6.6	10	0.66	
Chrysene ND<3.3 10 0.33 Dibenzo(a,h)anthracene ND<3.3 10 Dibenzofuran ND<3.3	4-Chloro-3-methylphenol	ND<3.3	10	0.33	2-Chloronaphthalene		ND<3.3	10	0.33	
Dibenzofuran ND<3.3 10 0.33 Di-n-bulyl Phthalate ND<3.3 10 1,2-Dichlorobenzene ND<3.3	2-Chlorophenol	ND<3.3	10	0.33	4-Chlorophenyl Phenyl	Ether	ND<3.3	10	0.33	
1,2-Dichlorobenzene ND<3.3 10 0.33 1,3-Dichlorobenzene ND<3.3 10 1,4-Dichlorobenzene ND<3.3	Chrysene	ND<3.3	10	0.33	Dibenzo(a,h)anthracene		ND<3.3	10	0.33	
1,4-Dichlorobenzene ND<3.3 10 0.33 3,3-Dichlorobenzidine ND<6.6 10 2,4-Dichlorophenol ND<3.3	Dibenzofuran	ND<3.3	10	0.33	Di-n-butyl Phthalate		ND<3.3	10	0.33	
2,4-Dichlorophenol ND<3.3 10 0.33 Diethyl Phthalate ND<3.3 10 2,4-Dimethylphenol ND<3.3	1,2-Dichlorobenzene	ND<3.3	10	0.33	1,3-Dichlorobenzene		ND<3.3	10	0.33	
2,4-Dimethylphenol ND<3.3 10 0.33 Dimethyl Phthalate ND<3.3 10 4,6-Dinitro-2-methylphenol ND<16		ND<3.3	10	0.33	3,3-Dichlorobenzidine		ND<6.6	10	0.66	
4,6-Dinitro-2-methylphenol ND<16 10 1.6 2,4-Dinitrophenol ND<16 10 2,4-Dinitrotoluene ND<3.3					Diethyl Phthalate		ND<3.3	10	0.33	
2,4-Dinitrotoluene ND<3.3 10 0.33 2,6-Dinitrotoluene ND<3.3 10 Di-n-octyl Phthalate ND<3.3	raiorona and a second and a second a s						ND<3.3	10	0.33	
Di-n-octyl Phthalate ND<3.3 10 0.33 1,2-Diphenylhydrazine ND<3.3 10 Fluoranthene ND<3.3									1.6	
Fluoranthene ND<3.3 10 0.33 Fluorene ND<3.3 10 Hexachlorobenzene ND<3.3									0.33	
Hexachlorobenzene ND<3.3 10 0.33 Hexachlorobutadiene ND<3.3 10 Hexachlorocyclopentadiene ND<16									0.33	
Hexachlorocyclopentadiene ND<16 10 1.6 Hexachlorocthane ND<3.3 10 Indeno (1,2,3-cd) pyrene ND<3.3									0.33	
Indeno (1,2,3-cd) pyrene ND<3.3 10 0.33 Isophorone ND<3.3 10 2-Methylnaphthalene ND<3.3									0.33	
2-Methylnaphthalene ND<3.3 10 0.33 2-Methylphenol (o-Cresol) ND<3.3 10 3 &/or 4-Methylphenol (m,p-Cresol) ND<3.3		~~~~							0.33	
3 &/or 4-Methylphenol (m,p-Cresol) ND<3.3 10 0.33 Naphthalene ND<3.3 10 2-Nitroaniline ND<16	the second se				······································	•			0.33	
2-Nitroaniline ND<16 10 1.6 3-Nitroaniline ND<16 10 4-Nitroaniline ND<16					+	501)			0.33	
4-Nitroaniline ND<16 10 1.6 2-Nitrophenol ND<16 10 4-Nitrophenol ND<16									0.33	
4-Nitrophenol ND<16 10 1.6 Nitrobenzene ND<3.3 10 N-Nitrosodiphenylamine ND<3.3									1.6	
N-Nitrosodiphenylamine ND<3.3 10 0.33 N-Nitrosodi-n-propylamine ND<3.3 10 Pentachlorophenol ND<16									0.33	
Pentachlorophenol ND<16 10 1.6 Phenanthrene ND<3.3 10 Phenol ND<3.3						nine			0.3	
Phenol ND<3.3 10 0.33 Pyrene ND<3.3 10 1,2,4-Trichlorobenzene ND<3.3						inte			0.3	
ND<3.3 10 0.33 2,4,5-Trichlorophenol ND<3.3 10 2,4,6-Trichlorophenol ND<3.3								******	0.3	
2,4,6-Trichlorophenol ND<3.3 10 0.33 Surrogate Recoveries (%)	1,2,4-Trichlorobenzene								0.3	
	2,4,6-Trichlorophenol				, ,		1			
%SS1: 82.8 %SS2: 91.4			Sur	rogate Re	ecoveries (%)					
	%SS1:	82.8		-	%SS2:		Q1	4	~	
%SS3: 82.5 %SS4: 77.7		·····								
%SS5: 60.5 %SS6: 76.8										
Comments: j										
* water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-	2	extracts are reported	in 110/I	soil/ehrd	re/solid samples in ma/k	g wine come	les in un/wing produc	t/oil/ma		

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

DHS Certification No. 1644

.

AUG 1 5 2003 MFG. Inc.

McCampbell Analy	,) Fax : 925-798-1622 mail: main@mccampbel	l.com		
Alpha Analytical Laboratories	Client Proje	ect ID:	#A307	7601 Da	ate Samp	led: 07/24/03			
208 Mason Street				Da	ate Recei	ved: 07/29/03			
Jkiah, CA 95482	Client Cont	act: Sł	neri Spe	aks Da	ate Extra	oted: 07/29/03			
Skian, 011 75 102	Client P.O.:			Da	ate Analy	zed: 07/30/03-0	8/01/0	3	
	Semi-Volatile	Organ	ics by (GC/MS (Basic Target	List)*				
Extraction Method: SW3550C		Ana	lytical Met	hod: SW8270D	1101.111.111.1111.1111	Work	Order: 03	307485	
Lab ID				0307485-003A					
Client ID				WO-4(5.5-6.25'))				
Matrix				Soil					
Compound	Concentration *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit	
Acenaphthene	ND<33	100	0.33	Acenaphthylene	ND<33	100	0.33		
Anthracene	ND<33	100	0.33	Benzidine		ND<160	100	1.6	
Benzoic Acid	ND<160	100	1.6	Benz(a)anthracene	ND<33	100	0.33		
Benzo(b)fluoranthene	ND<33	100	0.33	Benzo(k)fluoranthene		ND<33	100	0.33	
enzo(g,h,i)perylene	ND<33	100	0.33	Benzo(a)pyrene		ND<33	100	0.33	
enzyl Alcohol	ND<66	100	0.66	Bis (2-chloroethoxy) Metha		ND<33	100	0.33	
is (2-chloroethyl) Ether	ND<33	100	0.33	Bis (2-chloroisopropyl) Ethe		ND<33	100	0.33	
is (2-ethylhexyl) Phthalate	ND<33	100	0.33	4-Bromophenyl Phenyl Ethe	er	ND<33	100	0.33	
utylbenzyl Phthalate	ND<33	100	0.33	4-Chloroaniline		ND<66	100	0.66	
Chloro-3-methylphenol	ND<33	100	0.33	2-Chloronaphthalene		ND<33	100	0.33	
Chlorophenol	ND<33	100	0.33	4-Chlorophenyl Phenyl Eth	ND<33	100	0.33		
nrysene	ND<33	100	0.33	Dibenzo(a,h)anthracene		ND<33	100	0.33	
benzofuran	ND<33	100	0.33	Di-n-butyl Phthalate		ND<33	100	0.33	
2-Dichlorobenzene	ND<33	100	0.33	1,3-Dichlorobenzene		ND<33	100	0.33	
4-Dichlorobenzene		ND<33 100 0.33 3,3-Dichlorobenzidine ND<66 100 0.66							
4-Dichlorophenol	ND<33	100	0.33	Diethyl Phthalate		ND<33	100	0.33	
4-Dimethylphenol	ND<33	100	0.33	Dimethyl Phthalate		ND<33	100	0.33	
6-Dinitro-2-methylphenol	ND<160	100	1.6	2,4-Dinitrophenol 2,6-Dinitrotoluene		ND<160	100	1.6	
,4-Dinitrotoluene	ND<33	100 100	0.33			ND<33	100	0.33	
Di-n-octyl Phthalate	ND<33 ND<33	100	0.33	1,2-Diphenylhydrazine Fluorene		ND<33 ND<33	100	0.33	
Iexachlorobenzene	ND<33	100	0.33	Hexachlorobutadiene		ND<33	100	0.33	
Iexachlorocyclopentadiene	ND<33 ND<160	100	1.6	Hexachloroethane		ND<33	100	0.33	
ndeno (1,2,3-cd) pyrene	ND<100	100	0.33	Isophorone		ND<33	100	0.33	
R-Methylnaphthalene	ND<33	100	0.33	IsophoroneND<332-Methylphenol (o-Cresol)ND<33				0.33	
&/or 4-Methylphenol (m,p-Cresol)	ND<33	100	0.33	** ``					
-Nitroaniline	ND<160	100	1.6	3-Nitroaniline		ND<160	100	1.6	
-Nitroaniline	ND<160	100	1.6	2-Nitrophenol		ND<160	100	1.6	
-Nitrophenol	ND<160	100	1.6	Nitrobenzene ND<33 100 0.33					
I-Nitrosodiphenylamine	ND<33	100	0.33	N-Nitrosodi-n-propylamine	e	ND<33	100	0.33	
entachlorophenol	ND<160	100	1.6	Phenanthrene		ND<33	100	0.33	
henol	ND<33	100	0.33	Pyrene		ND<33	100	0.33	
,2,4-Trichlorobenzene	ND<33	100	0.33	2,4,5-Trichlorophenol		ND<33	100	0.33	
4,6-Trichlorophenol	ND<33	100	0.33						
		Sur	rogate R	ecoveries (%)		· · · · · · · · ·		\sim	
%SS1:	39.	39.7 %SS2: 46.8							
%SS3:	80.	6		%SS4:		78	.5	Ш	
%SS5:		#		%SS6:		79	.5	\geq	
Comments: j									
Comments: j water samples and all TCLP & SPLI queous liquid samples in mg/L. ID means not detected above the repo	extracts are reported	l in μg/L ns analy		lge/solid samples in mg/kg, v	wipe sampl				

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

DHS Certification No. 1644

.

Alpha Analytical Laboratories	Client Proje	ct ID:	#A307	7601 Da	ate Sample	ed: 07/24/03			
208 Mason Street				Da	Date Received: 07/29/03				
	Client Cont	act: Sl	neri Spe	aks Da	Date Extracted: 07/29/03				
Jkiah, CA 95482	Client P.O.	:		Da	ate Analyz	ed: 07/30/03-0	8/01/0	13	
	Semi-Volatile	Orgar	nics by (GC/MS (Basic Target l	List)*				
Extraction Method: SW3550C		Ana	alytical Met	hod: SW8270D		Work	Order: 0	307485	
Lab ID				0307485-004A					
Client ID				WO-4(8.5-9.25'))				
Matrix				Soil					
Compound	Concentration *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit	
cenaphthene	ND<1.6	5.0	0.33	Acenaphthylene		ND<1.6	5.0	0.33	
nthracene	ND<1.6	5.0	0.33	Benzidine		ND<8.0	5.0	1.6	
Benzoic Acid	ND<8.0	5.0	1.6	Benz(a)anthracene		ND<1.6	5.0	0.33	
enzo(b)fluoranthene	ND<1.6	5.0	0.33	Benzo(k)fluoranthene		ND<1.6	5.0	0.33	
enzo(g,h,i)perylene	ND<1.6	5.0	0.33	Benzo(a)pyrene		ND<1.6	5.0	0.33	
enzyl Alcohol	ND<3.3	5.0	0.66	Bis (2-chloroethoxy) Metha		ND<1.6	5.0	0.33	
is (2-chloroethyl) Ether	ND<1.6	5.0	0.33	Bis (2-chloroisopropyl) Ethe	er	ND<1.6	5.0	0.33	
s (2-ethylhexyl) Phthalate	ND<1.6	5.0	0.33	4-Bromophenyl Phenyl Ethe	er	ND<1.6	5.0	0.33	
itylbenzyl Phthalate	ND<1.6	5.0	0.33	4-Chloroaniline		ND<3.3	5.0	0.66	
Chloro-3-methylphenol	ND<1.6	5.0	0.33	2-Chloronaphthalene		ND<1.6	5.0	0.33	
Chlorophenol	ND<1.6	5.0	0.33	4-Chlorophenyl Phenyl Ethe	er	ND<1.6	5.0	0.33	
rysene	ND<1.6	5.0	0.33	Dibenzo(a,h)anthracene		ND<1.6	5.0	0.33	
penzofuran	ND<1.6	5.0	0.33	Di-n-butyl Phthalate		ND<1.6	5.0	0.33	
-Dichlorobenzene	ND<1.6	5.0	0.33	1,3-Dichlorobenzene		ND<1.6	5.0	0.33	
-Dichlorobenzene	ND<1.6	5.0	0.33	3,3-Dichlorobenzidine		ND<3.3	5.0	0.66	
4-Dichlorophenol	ND<1.6	5.0	0.33	Diethyl Phthalate		ND<1.6	5.0	0.33	
4-Dimethylphenol	ND<1.6	5.0	0.33	Dimethyl Phthalate		ND<1.6	5.0	0.33	
6-Dinitro-2-methylphenol	ND<8.0	5.0	1.6	2,4-Dinitrophenol		ND<8.0	5.0	1.6	
4-Dinitrotoluene	ND<1.6	5.0	0.33	2,6-Dinitrotoluene		ND<1.6	5.0	0.33	
i-n-octyl Phthalate	ND<1.6	5.0	0.33	1,2-Diphenylhydrazine		ND<1.6	5.0	0.33	
luoranthene	ND<1.6	5.0	0.33	Fluorene		ND<1.6	5.0	0.33	
exachlorobenzene	ND<1.6 ND<8.0	5.0	0.33	Hexachlorobutadiene Hexachloroethane		ND<1.6 ND<1.6	5.0	0.33	
(exachlorocyclopentadiene		5.0	0.33			ND<1.6	5.0	0.33	
ndeno (1,2,3-cd) pyrene -Methylnaphthalene	ND<1.6 ND<1.6	5.0	0.33	Isophorone 2-Methylphenol (o-Cresol)		ND<1.6	5.0	0.33	
Methylnaphthalene &/or 4-Methylphenol (m,p-Cresol)	ND<1.6	5.0	0.33	Naphthalene		ND<1.6	5.0	0.33	
-Nitroaniline	ND<8.0	5.0	1.6	3-Nitroaniline		ND<1.6 ND<8.0	5.0	1.6	
-Nitroaniline	ND<8.0	5.0	1.6	2-Nitrophenol		ND<8.0	5.0	1.6	
-Nitrophenol	ND<8.0	5.0	1.6	Nitrobenzene		ND<1.6	5.0	0.33	
-Nitrosodiphenylamine	ND<8.0	5.0	0.33	N-Nitrosodi-n-propylamine	e	ND<1.6	5.0	0.33	
entachlorophenol	ND<1.0	5.0	1.6	Phenanthrene	-	ND<1.6	5.0	0.3	
nenol	ND<0.0	5.0	0.33	Pyrene		ND<1.6	5.0	0.3	
2,4-Trichlorobenzene	ND<1.6	5.0	0.33	2,4,5-Trichlorophenol		ND<1.6	5.0	0.3	
4.6-Trichlorophenol	ND<1.6	5.0	0.33		l				
	<u> </u>	Surrogate Recoveries (%)							
/ \$\$1.	80			%8S2:	84.6				
%SS1: %SS3:			%SS4:				<u> </u>		
		0,10 /0,501, /1.1							
	80.			1 /0000	1	80			
%SS5: %SS5: Comments: j water samples and all TCLP & SPLP queous liquid samples in mg/L.	80.	4	., soil/sluc	%SS6:	wipe sample	80	.5		

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

DHS Certification No. 1644

٠

				T		E-mail: main@mccampbe	ll.com		
Alpha Analytical Laboratories	Client Proje	ct ID:	#A301	7601	Date Sam	pled: 07/24/03			
208 Mason Street					Date Rec	eived: 07/29/03			
Ukiah, CA 95482	Client Cont	act: Sł	neri Spe	Speaks Date Extracted: 07/29/03					
Oklan, C/Y 55402	Client P.O.:				Date Ana	lyzed: 07/30/03-0	08/01/0	3	
	Semi-Volatile	Organ	ics by (GC/MS (Basic Targ	et List)*				
Extraction Method: SW3550C		Ana	lytical Me	thod: SW8270D		Work	Order: 03	07485	
Lab ID				0307485-00					
Client ID				WO-5(3.25-4	.0')				
Matrix			1	Soil		÷			
Compound	Concentration *	DF	Reporting Limit	Compound	1	Concentration *	DF	Reportin Limit	
Acenaphthene	ND<1.6	5.0	0.33	Acenaphthylene		ND<1.6	5.0	0.33	
Anthracene	ND<1.6	5.0	0.33	Benzidine		ND<8.0	5.0	1.6	
Benzoic Acid	ND<8.0	5.0	1.6	Benz(a)anthracene		ND<1.6	5.0	0.33	
Benzo(b)fluoranthene	ND<1.6	5.0	0.33	Benzo(k)fluoranthene		ND<1.6	5.0	0.33	
Benzo(g,h,i)perylene	ND<1.6	5.0	0.33	Benzo(a)pyrene		ND<1.6	5.0	0.33	
Benzyl Alcohol	ND<3.3	5.0	0.66	Bis (2-chloroethoxy) Me	thane	ND<1.6	5.0	0.33	
Bis (2-chloroethyl) Ether	ND<1.6	5.0	0.33	Bis (2-chloroisopropyl)	Ether	ND<1.6	5.0	0.33	
Bis (2-ethylhexyl) Phthalate	ND<1.6	5.0	0.33	4-Bromophenyl Phenyl	Ether	ND<1.6	5.0	0.33	
Butylbenzyl Phthalate	ND<1.6	5.0	0.33	4-Chloroaniline		ND<3.3	5.0	0.66	
4-Chloro-3-methylphenol	ND<1.6	5.0	0.33	2-Chloronaphthalene		ND<1.6	5.0	0.33	
2-Chlorophenol	ND<1.6	5.0	0.33	4-Chlorophenyl Phenyl	Ether	ND<1.6	5.0	0.33	
Chrysene	ND<1.6	5.0	0.33	Dibenzo(a,h)anthracene		ND<1.6	5.0	0.33	
Dibenzofuran	ND<1.6	5.0	0.33	Di-n-butyl Phthalate		ND<1.6	5.0	0.33	
1,2-Dichlorobenzene	ND<1.6	5.0	0.33	1,3-Dichlorobenzene		ND<1.6	5.0	0.33	
1,4-Dichlorobenzene	ND<1.6	5.0	0.33	3,3-Dichlorobenzidine		ND<3.3	5.0	0.60	
2,4-Dichlorophenol	ND<1.6	5.0	0.33			ND<1.6	5.0	0.33	
2,4-Dimethylphenol	ND<1.6	5.0	0.33	Dimethyl Phthalate		ND<1.6	5.0	0.33	
4,6-Dinitro-2-methylphenol	ND<8.0	5.0	1.6	2,4-Dinitrophenol		ND<8.0	5.0	1.6	
2,4-Dinitrotoluene	ND<1.6	5.0	0.33	2,6-Dinitrotoluene		ND<1.6	5.0	0.33	
Di-n-octyl Phthalate	ND<1.6	5.0	0.33	1,2-Diphenylhydrazine		ND<1.6	5.0	0.32	
Fluoranthene	ND<1.6	5.0	0.33	Fluorene		ND<1.6	5.0	0.33	
Hexachlorobenzene	ND<1.6	5.0	0.33	Hexachlorobutadiene		ND<1.6	5.0	0.33	
Hexachlorocyclopentadiene	ND<8.0	5.0	1.6	Hexachloroethane		ND<1.6	5.0	0.3	
Indeno (1,2,3-cd) pyrene	ND<1.6	5.0	0.33	Isophorone		ND<1.6	5.0	0.3	
2-Methylnaphthalene	ND<1.6	5.0	0.33	2-Methylphenol (o-Cres	ol)	ND<1.6	5.0	0.3	
3 &/or 4-Methylphenol (m,p-Cresol)	ND<1.6	5.0	0.33	Naphthalene		ND<1.6	5.0	0.3	
2-Nitroaniline	ND<8.0	5.0	1.6	3-Nitroaniline		ND<8.0	5.0	1.6	
4-Nitroaniline	ND<8.0	5.0	1.6	2-Nitrophenol		ND<8.0	5.0	1.6	
4-Nitrophenol	ND<8.0	5.0	1.6	Nitrobenzene		ND<1.6	5.0	0.3	
N-Nitrosodiphenylamine	ND<1.6	5.0	0.33	N-Nitrosodi-n-propylan	nine	ND<1.6	5.0	0.3	
Pentachlorophenol Phenol	ND<8.0 ND<1.6	5.0 5.0	1.6	Phenanthrene		ND<1.6	5.0	0.3	
1,2,4-Trichlorobenzene	ND<1.6	5.0	0.33	Pyrene 2,4,5-Trichlorophenol		ND<1.6 ND<1.6	5.0	0.3	
2,4,6-Trichlorophenol	ND<1.6	5.0	0.33	2,7,3,3~Inchorophenol		0.1/UN	5.0	0.3	
2,4,0-111011010010101	ND -1.0			lecoveries (%)					
0/ 001	82		TO GULC I			0.5	0	Hard	
%SS1: %SS3:	82.			%SS2: %SS4:	*	85		\sim	
%SS3: %SS5:	75.			%\$\$4: %\$\$6:		79		___	
	15.			/0000.			.+	╡╧╧╧	
Comments: j	• • • • • • • • • •	·		Jan /		-lesion ()	- 4 1 - 11 /	\geq	
* water samples and all TCLP & SPLF	extracts are reported	in μg/L	., sou/slue	oge/solid samples in mg/k	g, wipe sam	pies in µg/wipe, produ	ct/oil/noi	1- 	
aqueous liquid samples in mg/L.								E C E C E	
ND means not detected above the repo	rting limit: N/A mea	ns analv	te not apr	plicable to this analysis				\odot	
		unury	upp	prisacio to tino unurysis.				11	
								Ë	

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

DHS Certification No. 1644

*

٠

Angela Rydelius, Lab Manager

\$4

AUG 1 5 2003 MFG, Inc.

McCampbell Analy	T					E-mail: main@mccampbel	ll.com			
Alpha Analytical Laboratories	Client Proje	#A307	7601	Date Sampled: 07/24/03						
208 Mason Street					Date Received: 07/29/03					
Ukiah, CA 95482	Client Cont	act: S	heri Spe	aks	Date Extracted: 07/29/03					
Client P.O.:				Date Analyzed: 07/30/03-08/01/03						
	Semi-Volatile	-		GC/MS (Basic Targ	get List)*		0.1			
Extraction Method: SW3550C		An	alytical Met	hod: SW8270D	л <u>с</u> л	Work	Order: 0	307485		
Lab ID Client ID		0307485-006A								
Matrix		WO-5(8.0-8.75') Soil								
			Reporting					Reportin		
Compound	Concentration *	DF	Limit	Compoun	d	Concentration *	DF	Limit		
Acenaphthene	ND<1.6	5.0	0.33	Acenaphthylene		ND<1.6	5.0	0.33		
Anthracene	ND<1.6	5.0	0.33	Benzidine		ND<8.0	5.0	1.6		
Benzoic Acid	ND<8.0	5.0	1.6	Benz(a)anthracene		ND<1.6	5.0	0.33		
Benzo(b)fluoranthene	ND<1.6	5.0	0.33	Benzo(k)fluoranthene		ND<1.6	5.0	0.33		
Benzo(g,h,i)perylene	ND<1.6	5.0	0.33	Benzo(a)pyrene		ND<1.6	5.0	0.33		
Benzyl Alcohol	ND<3.3	5.0	0.66	Bis (2-chloroethoxy) Methane		ND<1.6	5.0	0.33		
Bis (2-chloroethyl) Ether	ND<1.6	5.0	0.33	Bis (2-chloroisopropyl) Ether		ND<1.6	5.0	0.33		
Bis (2-ethylhexyl) Phthalate	ND<1.6	5.0	0.33	4-Bromophenyl Phenyl Ether		ND<1.6	5.0	0.33		
Butylbenzyl Phthalate	ND<1.6	5.0	0.33	4-Chloroaniline		ND<3.3	5.0	0.66		
4-Chloro-3-methylphenol	ND<1.6	5.0 5.0	0.33			ND<1.6	5.0	0.33		
2-Chlorophenol	ND<1.6	5.0	0.33	4-Chlorophenyl Phenyl Ether Dibenzo(a,h)anthracene		ND<1.6 ND<1.6	5.0	0.33		
Chrysene Dibenzofuran	ND<1.6 ND<1.6	5.0	0.33	Di-n-butyl Phthalate		ND<1.6	5.0	0.33		
1,2-Dichlorobenzene	ND<1.6	5.0	0.33	1.3-Dichlorobenzene		ND<1.6	5.0	0.33		
1,4-Dichlorobenzene	ND<1.6	5.0	0.33	3,3-Dichlorobenzidine		ND<3.3	5.0	0.66		
2,4-Dichlorophenol	ND<1.6	5.0	0.33	Diethyl Phthalate		ND<1.6	5.0	0.33		
2,4-Dimethylphenol	ND<1.6	5.0	0.33	Dimethyl Phthalate		ND<1.6	5.0	0.33		
4,6-Dinitro-2-methylphenol	ND<8.0	5.0	1.6	2,4-Dinitrophenol		ND<8.0	5.0	1.6		
2.4-Dinitrotoluene	ND<1.6	5.0	0.33	2,6-Dinitrotoluene		ND<1.6	5.0	0.33		
Di-n-octyl Phthalate	ND<1.6	5.0	0.33	1,2-Diphenylhydrazine		ND<1.6	5.0	0.33		
Fluoranthene	ND<1.6	5.0	0.33	Fluorene		ND<1.6	5.0	0.33		
Hexachlorobenzene	ND<1.6	5.0	0.33	Hexachlorobutadiene		ND<1.6	5.0	0.33		
Hexachlorocyclopentadiene	ND<8.0	5.0	1.6	Hexachloroethane		ND<1.6	5.0	0.33		
Indeno (1,2,3-cd) pyrene	ND<1.6	5.0	0.33	Isophorone		ND<1.6	5.0	0.33		
2-Methylnaphthalene	ND<1.6	5.0	0.33	2-Methylphenol (o-Cresol)		ND<1.6	5.0	0.33		
3 &/or 4-Methylphenol (m,p-Cresol)	ND<1.6	5.0	0.33	Naphthalene		ND<1.6	5.0	0.33		
2-Nitroaniline	ND<8.0	5.0	1.6	3-Nitroaniline		ND<8.0	5.0	1.6		
4-Nitroaniline	ND<8.0	5.0	1.6	2-Nitrophenol		ND<8.0	5.0	1.6		
4-Nitrophenol	ND<8.0	5.0	1.6	Nitrobenzene		ND<1.6	5.0	0.3		
N-Nitrosodiphenylamine	ND<1.6	5.0	0.33	N-Nitrosodi-n-propylamine		ND<1.6	5.0	0.3		
Pentachlorophenol	ND<8.0	5.0	1.6	Phenanthrene		ND<1.6	5.0	0.3		
Phenol	ND<1.6	5.0	0.33			ND<1.6	5.0	0.3		
1,2,4-Trichlorobenzene	ND<1.6	5.0	0.33	2,4,5-Trichlorophenol	· · · · · · · · · · · · · · · · · · ·	ND<1.6	5.0	0.3		
2,4,6-Trichlorophenol	ND<1.6	5.0	0.33	anowarios (8/)						
2/201			rogate R	ecoveries (%)				£		
%SS1:	82.1			%SS2:		86.4				
%SS3:	87.3 81.1			%SS4: %SS6:		91.4 79.6				
<u>%SS5:</u>	81	.1		1 70000		/9	.0			
Comments: j										
* water samples and all TCLP & SPLP	extracts are reported	l in μg/I	., soil/sluc	lge/solid samples in mg/	kg, wipe samp	oles in μg/wipe, produ	ct/oil/no	ⁿ⁻ 7		
aqueous liquid samples in mg/L.								<u> </u>		

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol, % sediment; j) sample diluted due to high organic content.

.

.

🗛 🗛 Angela Rydelius, Lab Manager

AUG 1 5 2003 MFG. Inc.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n E-mail: main@mccampb	ell.com						
Dot Mason Street Client Contact: Sheri Speaks Date Ex Ukiah, CA 95482 Client Contact: Sheri Speaks Date An Semi-Volatile Organics by GC/MS (Basic Target List)* Analytical Method: SW8270D Lab ID 0307485-007A Client Contact: Sheri Speaks Soil Compound Concentration * DF Remoting Compound Concentration * DF Remoting Compound Concentration * DF Contophythythen	Date Sampled: 07/24/03							
Ukiah, CA 95482 Client P.O.: Date An Client P.O.: Date An Semi-Volatile Organics by GC/MS (Basic Target List)* Extraction Method: SW3590C Analytical Method: SW270D Lab ID O307485-007A Cient ID WO-6(4.5-5.25) Matrix Soil Compound Compound Compound Compound Accentration * DF Reporting Benzo(Aid ND 1.0 0.33 Accid ND 1.0 0.33 Benzo(Aid) Benzo(Aid) ND 1.0 0.33 Benzo(Aid) Benzo(Aid) ND 1.0 0.33 Benzo(Aid) Benzo(Aid) ND 1.0 0.33 Compound	Date Received: 07/29/03							
Date An Semi-Volatile Organics by GC/MS (Basic Target Listy)* Extraction Method: SW3550C Analytical Method: SW8270D Client ID WO-6(4.5-5.25') Matrix Soil Compound Concentration * DF Reporting Compound Acenaphthylene ND 1.0 0.337485-007A Client ID WO-6(4.5-5.25') Matrix Soil Compound Concentration * DF Reporting Compound Acenaphthylene ND 1.0 0.33 Acenaphthylene Acenaphthylene ND 1.0 0.33 Bis (2-chlorothylyl Methale Bis (2-chlorothyl) Phthyl Mutale ND 1.0 0.33 3 2-Chlorothylyl Methale Bis (2-chlorothylyl	tracted: 07/29/03							
Extraction Method: SW3550C Analytical Method: SW32702 Lab ID WO-6(4.5-5.25') WO-6(4.5-5.25') Matrix Soil Compound Concentration * DF Reporting Limit Compound Acenaphthene ND 1.0 0.33 Acenaphthylene Anthracene ND 1.0 0.33 Benza(k)fuaranthene Benzo(c,h)fuoranthene ND 1.0 0.33 Benza(k)fluoranthene Benza(k,h)perylene ND 1.0 0.33 Benza(k)fluoranthene Benza(k,h)perylene ND 1.0 0.33 Benza(k)fluoranthene Benza(k,k)perylene ND 1.0 0.33 Benza(k)fluoranthene Benza(k,k)persking ND 1.0 0.33 Benza(k)prene Bis (2-chloroethyl) Ether ND 1.0 0.33 4-Chloroanthyl Denyl Ether Butylbenzyl Phthalate ND 1.0 0.33 1.4-Dirchlorobenzene ND 1.0 0.33 J.3-Dirchlorobenzene Dibenzo(k)hanthracene <	Date Analyzed: 07/30/03-08/01/03							
Lab ID 0307485-007A Client ID WO-6(4.5-5.25') Matrix Soil Compound Concentration * DF Reporting Limit Compound Acenaphthene ND 1.0 0.33 Benziol Acenaphthylene Anthracene ND 1.0 1.6 Benz(a) Benzo(h)fluoranthene ND 1.0 0.33 Benz(a) Ben								
Client ID WO-6(4.5-5.25') Matrix Soil Compound Concentration * DF Reporting Limit Compound Acenaphthene ND 1.0 0.33 Acenaphthylene Anthracene ND 1.0 0.33 Benzidine Benzo(c)filuoranthene ND 1.0 1.6 Benz(a)anthracene Benzo(b)fluoranthene ND 1.0 0.33 Benzo(k)fluoranthene Benzo(b)fluoranthene ND 1.0 0.33 Benzo(k)fluoranthene Benzyl Alcohol ND 1.0 0.33 Benzo(k)fluoranthene Benzyl Alcohol ND 1.0 0.33 E-chlorosthypyMethane Bis (2-chlorosthyl) Ether ND 1.0 0.33 4-Chloroshenyl Phenyl Ether Dibenzofuran ND 1.0 0.33 Li-chlorobenzitane Dibenzo(a,hjanthracene Dibenzofuran ND 1.0 0.33 Li-hintroshenzene ND 1.4-Dichlorobenzene ND 1.0 0.33 Li-bichlorobenzene	Wor	k Order: 0	307485					
Matrix Soil Compound Concentration * DF Reporting Immediate Compound Acenaphthene ND 1.0 0.33 Acenaphthylene Anthracene ND 1.0 0.33 Benza(biluoranthene Benzolo Acid ND 1.0 0.33 Benza(k)fluoranthene Benzyl Alcohol ND 1.0 0.33 Benza(k)fluoranthene Bis (2-chloroethyl) Ether ND 1.0 0.33 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate ND 1.0 0.33 4-Chloroanptthalene 2-Chlorophenol ND 1.0 0.33 4-Chloroanptthalene 1.2-Dichlorobenzene ND 1.0 0.33 1.3-Dichlorobenzene ND 1.0 0.33 1.3-Dichlorobenzene ND	0307485-007A							
Compound Concentration * DF Reporting Limit Compound Acenaphthene ND 1.0 0.33 Acenaphthylene Anthracene ND 1.0 0.33 Benz(alphilene) Benzoic Acid ND 1.0 0.33 Hernorphenyl Pithane Bis (2-chlorochtxyl) Pithalate ND 1.0 0.33 4-Chloroanilline 4-Chloro-3-methylphenol ND 1.0 0.33 4-Chloroanilline 2-Chlorophenol ND 1.0 0.33 1-b-butyl Pithalate 1.2-Dichlorobenzene ND 1.0 0.33 1-b-butyl Pithalate 1.2-Dichlorobenzene ND 1.0 <t< td=""><td colspan="8">WO-6(4.5-5.25')</td></t<>	WO-6(4.5-5.25')							
Compound Concentration* DF i_mm* Compound Acenaphthene ND 1.0 0.33 Acenaphthylene Anthracene ND 1.0 0.33 Benzoline Benzoic Acid ND 1.0 0.33 Benzolynamic Benzoic Acid ND 1.0 0.33 Benzo(a)anthracene Benzoic Acid ND 1.0 0.33 Benzo(a)anthracene Benzoic Acid ND 1.0 0.33 Benzo(a)pyrene Benzoic Acido ND 1.0 0.33 Benzo(a)pyrene Benzol (Achol ND 1.0 0.33 Horoschney) Phenyl Ether Bis (2-chloroethyl) Ether ND 1.0 0.33 4-Chloroanilhae Chlorophenol ND 1.0 0.33 2-Chloroaphenyl Phenyl Ether Chlorophenol ND 1.0 0.33 1-Dienzo(A)anthracene Dibenzo(In/an ND 1.0 0.33 1-Dienbyl Phthalate 1,2-Dichlorobenzene ND 1.0 0.33 <								
Acenaphthene ND 1.0 0.33 Acenaphthylene Anthracene ND 1.0 0.33 Benzidine Benzoic Acid ND 1.0 1.6 Benz(a)anthracene Benzo(b)fluoranthene ND 1.0 0.33 Benzo(a)pyrene Benzo(b,fluoranthene ND 1.0 0.33 Benzo(a)pyrene Benzo(b,fluoranthene ND 1.0 0.33 Benzo(b)fluoranthene Benzo(b,fluoranthene ND 1.0 0.33 Benzo(b)fluoranthene Benzo(b,fluoranthene ND 1.0 0.33 4-Chlorosphryl Ptherpl Ether Bis (2-cth)rotexyl) Pthhalate ND 1.0 0.33 4-Chlorophenyl Phenyl Ether Bis (2-cth)rotexplphenol ND 1.0 0.33 Dibenzo(a,f)anthracene Chrysene ND 1.0 0.33 Dibenzo(a,f)anthracene Dibenzofuran ND 1.0 0.33 J;3-Dichlorobenzene 1,4-Dichlorobenzene ND 1.0 0.33 Dichlate 2,4-Dinitrobuene	Concentration *	DF	Reportin Limit					
AnthraceneND1.00.33BenzidineBenzoic AcidND1.01.6BenzidineBenzoic AcidND1.00.33Benzo(k)fluorantheneBenzo(g,i,i)peryleneND1.00.33Benzo(k)fluorantheneBenzol AcholoND1.00.33Benzo(k)fluorantheneBenzyl AlcoholND1.00.33Benzo(k)fluorantheneBis (2-chloroethyl) EtherND1.00.334-Bromophenyl Phenyl EtherBis (2-chloroethyl) EtherND1.00.334-ChloroantineButylbenzyl PhthalateND1.00.332-Chloroanpthalene2-Chloro-3-methylphenolND1.00.332-Chloroanpthalene2-ChlorophenolND1.00.33Dibenzo(a,h)anthraceneDibenzofuranND1.00.33Dibenzo(a,h)anthraceneDibenzofuranND1.00.33Jiethyl Phenyl Ether1,4-DichlorobenzeneND1.00.33Dibenzo(a,h)anthracene2,4-DinethylphenolND1.00.33Jiethyl Phenyl Ether1,4-DichlorobenzeneND1.00.33Jiethyl Phenyl Ether2,4-DinethylphenolND1.00.33Jiethyl Phenyl Ether1,4-DichlorobenzeneND1.00.33Jiethyl Phenyl Ether2,4-DinethylphenolND1.00.33Jiethyl Phenyl Ether2,4-DinethylphenolND1.00.33Jiethyl Phenyl Ether2,4-DinethylphenolND1.0 <t< td=""><td>ND</td><td>1.0</td><td>0.33</td></t<>	ND	1.0	0.33					
Benzoic Acid ND 1.0 1.6 Benza(a)anthracene Benzo(b)fluoranthene ND 1.0 0.33 Benzo(a)prene Benzy Alcohol ND 1.0 0.33 Benzo(a)prene Benzyl Alcohol ND 1.0 0.33 Benzo(a)prene Bis (2-chloroethyl) Ether ND 1.0 0.33 4-Bromophenyl Phenyl Ether Bit (2-chloroethyl) Phthalate ND 1.0 0.33 4-Chloroaniline At-Chloroaniline ND 1.0 0.33 4-Chloroanpithalene 2-Chlorophenol ND 1.0 0.33 4-Chloroanpithalene 2-Chlorophenol ND 1.0 0.33 Dibenzo(a,h)anthracene Dibenzofuran ND 1.0 0.33 Dibenzo(a,h)anthracene I_4-Dichlorobenzene ND 1.0 0.33 Ja-Dictyl Phthalate 1_2-Dichlorobenzene ND 1.0 0.33 Ja-Dictyl Phthalate 1_4-Dichlorobenzene ND 1.0 0.33 Ichtyl Phthalate 2_4-Dinintrotoluene	ND	1.0	1.6					
Benzo(b)fluoranthene ND 1.0 0.33 Benzo(k)fluoranthene Benzo(g,h,i)perylene ND 1.0 0.33 Benzo(k)fluoranthene Benzyl Alcohol ND 1.0 0.66 Bis (2-chlorosthy) Methane Bis (2-chlorosthy) Ether ND 1.0 0.33 4-Bromophenyl Phenyl Ether Bis (2-chloros-3-methylphenol ND 1.0 0.33 4-Chloroanithtalene 2-Chloroshorophyl Phenyl Ether ND 1.0 0.33 4-Chloroanphthalene 2-Chlorophenol ND 1.0 0.33 2-Chloronphthalene 2-Chlorophenol ND 1.0 0.33 Dibenzo(a,h)anthracene Dibenzofuran ND 1.0 0.33 Ja-Dichlorobenzene ND 1.0 0.33 Ja-Dichlorobenzeni 2,4-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1.0 0.33 Ja-Dichlorobenzeni 2,4-Dinitrotoluene 2,4-Dinitrotoluene ND 1.0 0.33 Ja-Dichlorobenzeni 2,4-Dinitrotoluene 2,4-Dinitrotoluene ND </td <td>ND</td> <td>1.0</td> <td>0.33</td>	ND	1.0	0.33					
Benzo(g,h,i)perylene ND 1.0 0.33 Benzo(a)pyrene Benzyl Alcohol ND 1.0 0.66 Bis (2-chloroethoxy) Methane Bis (2-chloroethyl) Ether ND 1.0 0.33 Bis (2-chloroethoxy) Methane Bis (2-chlylhexyl) Phthalate ND 1.0 0.33 4-Chloroanline Butylbenzyl Phthalate ND 1.0 0.33 4-Chlorophenyl Phenyl Ether Butylbenzyl Phthalate ND 1.0 0.33 2-Chlorophenyl Phenyl Ether Chlorophenol ND 1.0 0.33 10-n-butyl Phthalate 2-Chlorophenol ND 1.0 0.33 Dienzo(a,h)anthracene Dibenzofuran ND 1.0 0.33 Distenzo(a,h)anthracene Dibenzofuran ND 1.0 0.33 Distenzo(a,h)anthracene J.4-Dichlorobenzene ND 1.0 0.33 Distenzo(a,h)anthracene J.4-Dichlorobenzene ND 1.0 0.33 Distenzo(a,h)anthate J.4-Dichlorobenzene ND 1.0 0.33 Distenzo(a,h)anthate </td <td>ND</td> <td>1.0</td> <td>0.33</td>	ND	1.0	0.33					
Benzyl Akcohol ND 1.0 0.66 Bis (2-chloroethoxy) Methane Bis (2-chloroethyl) Ether ND 1.0 0.33 Bis (2-chloroethoxy) Methane Bis (2-ethylnexyl) Phthalate ND 1.0 0.33 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate ND 1.0 0.33 4-Chloroaniline 4-Chloro-3-methylphenol ND 1.0 0.33 2-Chloronaphthalene 2-Chlorophenol ND 1.0 0.33 2-Chlorophenyl Phenyl Ether Chrysene ND 1.0 0.33 Dibenzo(a,h)anthracene Dibenzofuran ND 1.0 0.33 J3-Dichlorobenzene 1,4-Dichlorobenzene ND 1.0 0.33 J3-Dichlorobenzidine 2,4-Dinitorobenzene ND 1.0 0.33 J3-Dichlorobenzidine 2,4-Dinitroroluene ND 1.0 0.33 Diethyl Phthalate 2,4-Dinitrotoluene ND 1.0 0.33 I_2-Diphenyl Hylphenol 2,4-Dinitrotoluene ND 1.0 0.33 I_2-Diphynylydrazine	ND	1.0	0.33					
Bis (2-chloroethyl) Ether ND 1.0 0.33 Bis (2-chloroisopropyl) Ether Bis (2-ethylhexyl) Phthalate ND 1.0 0.33 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate ND 1.0 0.33 4-Bromophenyl Phenyl Ether 2-Chlorophenol ND 1.0 0.33 2-Chlorophenyl Phenyl Ether Chrysene ND 1.0 0.33 Dibenzo(a,h)anthracene Dibenzofuran ND 1.0 0.33 Dibenzo(a,h)anthracene A-Dichlorobenzene ND 1.0 0.33 J.3-Dichlorobenzene 2,4-Dichlorobenzene ND 1.0 0.33 Dibenzo(a,h)anthracene 2,4-Dichlorobenzene ND 1.0 0.33 J.3-Dichlorobenzene 2,4-Dinthorophenol ND 1.0 0.33 Diethyl Phthalate 2,4-Dintrotoluene ND 1.0 0.33 Iperbinkrophenol 2,4-Dintrotoluene ND 1.0 0.33 Iperbinkrophenol 2,4-Dinitrooluene ND 1.0 0.33 Hexachlorobtazene	ND	1.0	0.33					
Bis (2-ethylhexyl) PhthalateND1.00.334-Bromophenyl Phenyl EtherButylbenzyl PhthalateND1.00.334-Chloroaniline4-Chloro-3-methylphenolND1.00.334-Chloroaphthalene2-ChlorophenolND1.00.332-Chloronaphthalene2-ChlorophenolND1.00.332-Chloronaphthalene2-ChlorophenolND1.00.33Dibenzo(a,h)anthraceneDibenzofuranND1.00.331,3-Dichlorobenzene1,4-DichlorobenzeneND1.00.333,3-Dichlorobenzidine2,4-DichlorophenolND1.00.33Dimethyl Phthalate2,4-Dintro-2-methylphenolND1.00.33Dimethyl Phthalate4,6-Dinitro-2-methylphenolND1.00.331,2-DiphenylhydrazineFluorantheneND1.00.33IsophoroneHexachlorobenzeneND1.00.33Isophorone2,4-DinitrotolueneND1.00.33Isophorone2,4-DinitrotolueneND1.00.33Isophorone2,4-DinitrotolueneND1.00.33Isophorone2,4-DinitrotolueneND1.00.33Isophorone2,4-DinitrotolueneND1.00.33Isophorone2,4-DinitrotolueneND1.00.33Isophorone2,4-DinitrotolueneND1.00.33Isophorone2,4-DinitrotolueneND1.00.33Isophorone2,4	ND	1.0	0.32					
Butylbenzyl Phthalate ND 1.0 0.33 4-Chloroaniline 4-Chloro-3-methylphenol ND 1.0 0.33 2-Chloroaphthalene 2-Chlorophenol ND 1.0 0.33 2-Chloroaphthalene 2-Chlorophenol ND 1.0 0.33 Dibenzo(a,h)anthracene Dibenzofuran ND 1.0 0.33 Jibenzo(a,h)anthracene 1,2-Dichlorobenzene ND 1.0 0.33 J;3-Dichlorobenzene 1,4-Dichlorobenzene ND 1.0 0.33 J;3-Dichlorobenzene 2,4-Dintorophenol ND 1.0 0.33 Diethyl Phthalate 2,4-Dinitro-2-methylphenol ND 1.0 0.33 Ijethyl Phthalate 2,4-Dinitrotoluene ND 1.0 0.33 Ijez-Diphenylhydrazine Fluoranthene ND 1.0 0.33 Ijez-Diphenylhydrazine Fluoranthene ND 1.0 0.33 Isenhoroethane Indeno (1,2,3-ed) pyrene ND 1.0 0.33 Isophorone 2-Methylphenol (m,p-Cre	ND	1.0	0.33					
4-Chloro-3-methylphenol ND 1.0 0.33 2-Chloronaphthalene 2-Chlorophenol ND 1.0 0.33 4-Chlorophenyl Phenyl Ether Chrysene ND 1.0 0.33 Dibenzo(a,h)anthracene Dibenzofuran ND 1.0 0.33 Di-n-butyl Phthalate 1,2-Dichlorobenzene ND 1.0 0.33 1,3-Dichlorobenzene 2,4-Dichlorophenol ND 1.0 0.33 Join-butyl Phthalate 2,4-Dichlorophenol ND 1.0 0.33 Join-butyl Phthalate 2,4-Dichlorophenol ND 1.0 0.33 Jointro-2 2,4-Dinitroluene ND 1.0 0.33 Z-Ge-Dinitrosluene Di-n-octyl Phthalate ND 1.0 0.33 Fluorene Hexachlorobenzene ND 1.0 0.33 Hexachlorobutadiene Hexachlorocyclopentadiene ND 1.0 0.33 Hexachlorobutadiene Hexachlorocyclopentadiene ND 1.0 0.33 Isophorone 2-Methylnaphthalene	ND	1.0	0.66					
2-Chlorophenol ND 1.0 0.33 4-Chlorophenyl Phenyl Ether Chrysene ND 1.0 0.33 Dibenzo(a,h)anthracene Dibenzofuran ND 1.0 0.33 Dibenzo(a,h)anthracene 1,2-Dichlorobenzene ND 1.0 0.33 1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzene 2,4-Dichlorophenol ND 1.0 0.33 Diethyl Phthalate 2,4-Dichlorophenol ND 1.0 0.33 Diethyl Phthalate 2,4-Dinitrotoluene ND 1.0 0.33 Z,6-Dinitrotoluene 2,4-Dinitrotoluene ND 1.0 0.33 Florente Pionarthene ND 1.0 0.33 Ize-Diphenylhydrazine Fluoranthene ND 1.0 0.33 Florene Hexachlorobenzene ND 1.0 0.33 Isephorone Hexachlorobenzene ND 1.0 0.33 Isophorone 2.Methylphenolentdiene ND 1.0	ND	1.0	0.33					
ND 1.0 0.33 Dibenzo(a,h)anthracene Dibenzofuran ND 1.0 0.33 Di-n-butyl Phthalate 1,2-Dichlorobenzene ND 1.0 0.33 1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzene 2,4-Dichlorobenzene ND 1.0 0.33 Diethyl Phthalate 2,4-Dichlorobenzene ND 1.0 0.33 Diethyl Phthalate 2,4-Dinitro-2-methylphenol ND 1.0 0.33 Dimethyl Phthalate 2,4-Dinitrotoluene ND 1.0 0.33 I,2-Diphenylhydrazine Fluoranthene ND 1.0 0.33 I,2-Diphenylhydrazine Fluoranthene ND 1.0 0.33 I,2-Diphenylhydrazine Fluoranthene ND 1.0 0.33 Isophorone 2-Methylnaphthalene ND 1.0 0.33 Isophorone 2-Methylnaphthalene ND 1.0 0.33 Isophorone 2-Methylnaphthalene ND 1.0 <t< td=""><td>ND</td><td>1.0</td><td>0.33</td></t<>	ND	1.0	0.33					
Dibenzofuran ND 1.0 0.33 Di-n-butyl Phthalate 1,2-Dichlorobenzene ND 1.0 0.33 1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzene 2,4-Dichlorophenol ND 1.0 0.33 Diethyl Phthalate 2,4-Dinitro-2-methylphenol ND 1.0 0.33 Dimethyl Phthalate 2,4-Dinitroduene ND 1.0 0.33 Z,4-Dinitrophenol 2,4-Dinitroduene ND 1.0 0.33 Z,6-Dinitroduene 2,4-Dinitrotoluene ND 1.0 0.33 Izerbinitroduene Di-n-octyl Phthalate ND 1.0 0.33 Izerbinitroduene Pluoranthene ND 1.0 0.33 Hexachlorobutadiene Hexachlorobenzene ND 1.0 0.33 Hexachlorobutadiene Hexachlorocyclopentadiene ND 1.0 0.33 Isophorone 2-Methylnaphthalene ND 1.0 0.33 Isophorone 2-Nitroaniline ND </td <td>ND</td> <td>1.0</td> <td>0.33</td>	ND	1.0	0.33					
1,2-Dichlorobenzene ND 1.0 0.33 1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzidine 2,4-Dichlorophenol ND 1.0 0.33 Diethyl Phthalate 2,4-Dimethylphenol ND 1.0 0.33 Dimethyl Phthalate 2,4-Dimitro-2-methylphenol ND 1.0 0.33 Dimethyl Phthalate 2,4-Dinitroduene ND 1.0 0.33 2,6-Dinitroduene Di-n-octyl Phthalate ND 1.0 0.33 1,2-Diphenylhydrazine Fluoranthene ND 1.0 0.33 Hexachlorobutadiene Hexachlorobenzene ND 1.0 0.33 Hexachlorobutadiene Indeno (1,2,3-cd) pyrene ND 1.0 0.33 Isophorone 2-Methylnaphthalene ND 1.0 0.33 Isophorone 2-Nitroaniline ND 1.0 0.33 Naphthalene 2-Nitroaniline ND 1.0 1.6 2-Nitroaniline 4-Nitroaniline ND 1.0 1.6 2-Nitrosodi-n-propylamine Pentadhorophenol	ND	1.0	0.33					
1.4-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzidine 2,4-Dichlorophenol ND 1.0 0.33 Diethyl Phthalate 2,4-Dimethylphenol ND 1.0 0.33 Dimethyl Phthalate 2,4-Dimethylphenol ND 1.0 0.33 Dimethyl Phthalate 4,6-Dinitro-2-methylphenol ND 1.0 1.6 2,4-Dinitrophenol 2,4-Dinitrotoluene ND 1.0 0.33 2,6-Dinitrotoluene 2,4-Dinitrotoluene ND 1.0 0.33 1,2-Diphenylhydrazine Fluoranthene ND 1.0 0.33 Hexachlorobutadiene Hexachlorocyclopentadiene ND 1.0 0.33 Isophorone 2-Methylnaphthalene ND 1.0 0.33 Isophorone 2-Nitroaniline ND 1.0 0.33 Naphthalene 2-Nitroaniline ND 1.0 1.6 3-Nitroaniline 4-Nitroaniline ND 1.0 1.6 Nitrobenzene N-Nitrosodiphenylamine ND	ND	1.0	0.33					
2,4-DichlorophenolND1.00.33Diethyl Phthalate2,4-DimethylphenolND1.00.33Dimethyl Phthalate4,6-Dinitro-2-methylphenolND1.01.62,4-Dinitrophenol2,4-DinitrotolueneND1.00.332,6-Dinitrotoluene2,4-DinitrotolueneND1.00.332,6-Dinitrotoluene2,4-DinitrotolueneND1.00.331,2-DiphenylhydrazineDi-n-octyl PhthalateND1.00.33FluoreneHexachlorobenzeneND1.00.33HexachlorobutadieneHexachlorocyclopentadieneND1.00.33Isophorone2-Methylphenol (m,p-Cresol)ND1.00.33Naphthalene2-NitroanilineND1.01.63-Nitroaniline2-NitroanilineND1.01.63-Nitroaniline4-NitrophenolND1.01.6NitrobenzeneN-NitrosodiphenylamineND1.01.6NitrobenzeneN-NitrosodiphenylamineND1.00.33Naphthalene1,2,4-TrichlorobenzeneND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00	ND	1.0	0.66					
2.4-DimethylphenolND1.00.33Dimethyl Phthalate4,6-Dinitro-2-methylphenolND1.01.62,4-Dinitrophenol2,4-DinitrotolueneND1.00.332,6-DinitrotolueneDi-n-octyl PhthalateND1.00.331,2-DiphenylhydrazineFluorantheneND1.00.33FluoreneHexachlorobenzeneND1.00.33HexachlorobutadieneHexachlorocyclopentadieneND1.00.33Isophorone2-MethylnaphthaleneND1.00.33Isophorone2-Methylphenol (m,p-Cresol)ND1.00.33Naphthalene2-NitroanilineND1.01.63-Nitroaniline4-NitroanilineND1.01.63-Nitroaniline4-NitrosodiphenylamineND1.01.6NitrobenzeneND1.01.63-Nitrosodi-n-propylaminePentachlorophenolND1.00.33Pyrene1,2,4-TrichlorobenzeneND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlo	ND	1.0	0.33					
A.6-Dinitro-2-methylphenolND1.01.62,4-Dinitrophenol2,4-DinitrotolueneND1.00.332,6-DinitrotolueneDi-n-octyl PhthalateND1.00.331,2-DiphenylhydrazineFluorantheneND1.00.33FluoreneHexachlorobenzeneND1.00.33HexachlorobutadieneIndeno (1,2,3-cd) pyreneND1.00.33Isophorone2-MethylnaphthaleneND1.00.33Sephorone2-Methylphenol (m,p-Cresol)ND1.00.33Naphthalene2-NitroanilineND1.01.63-Nitroaniline4-NitroanilineND1.01.63-Nitroaniline4-NitrosodiphenylamineND1.01.63-Nitrosodi-n-propylaminePentachlorophenolND1.00.33Pyrene1,2,4-TrichlorobenzeneND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol1,2,4-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND <td>ND</td> <td>1.0</td> <td>0.33</td>	ND	1.0	0.33					
2.4-DinitrotolueneND1.00.332.6-DinitrotolueneDi-n-octyl PhthalateND1.00.331,2-DiphenylhydrazineFluorantheneND1.00.33FluoreneHexachlorobenzeneND1.00.33HexachlorobutadieneHexachlorocyclopentadieneND1.01.6HexachloroethaneIndeno (1,2,3-cd) pyreneND1.00.33Isophorone2-MethylnaphthaleneND1.00.332-Methylphenol (o-Cresol)3 &/or 4-Methylphenol (m,p-Cresol)ND1.00.33Naphthalene2-NitroanilineND1.01.63-Nitroaniline4-NitroanilineND1.01.63-NitrobenzeneND1.01.63-NitrobenzeneN-NitrosodiphenylamineND1.01.6PentachlorophenolND1.01.6ND1.00.33N-Nitrosodi-n-propylaminePhenolND1.00.33Pyrene1,2,4-TrichlorobenzeneND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol%SS1:85.9%SS2:%SS4:	ND	1.0	1.6					
FluorantheneND 1.0 0.33 FluoreneHexachlorobenzeneND 1.0 0.33 HexachlorobutadieneHexachlorocyclopentadieneND 1.0 1.6 HexachloroethaneIndeno $(1,2,3-cd)$ pyreneND 1.0 0.33 Isophorone2-MethylnaphthaleneND 1.0 0.33 2 -Methylphenol (o-Cresol) $3 \&/or 4$ -Methylphenol (m,p-Cresol)ND 1.0 0.33 Naphthalene2-NitroanilineND 1.0 1.6 3 -Nitroaniline 4 -NitroanilineND 1.0 1.6 3 -Nitroaniline 4 -NitrophenolND 1.0 1.6 3 -NitrobenzeneN-NitrosodiphenylamineND 1.0 1.6 NitrobenzeneND 1.0 1.6 PhenanthrenePhenolND 1.0 0.33 Pyrene $1,2,4$ -TrichlorobenzeneND 1.0 0.33 $2,4,5$ -Trichlorophenol $2,4,6$ -TrichlorophenolND 1.0 0.33 $2,4,5$ -Trichlorophenol $2,4,6$ -TrichlorophenolND 1.0 0.33 $2,4,5$ -Trichlorophenol $2,4,6$ -TrichlorophenolND 1.0 0.33 $2,4,5$ -Trichlorophenol 3.6 93.2 $\%$ SS1: $\%$ SS4:	ND	1.0	0.33					
FluorantheneND 1.0 0.33 FluoreneHexachlorobenzeneND 1.0 0.33 HexachlorobutadieneHexachlorocyclopentadieneND 1.0 1.6 HexachloroethaneIndeno $(1,2,3-cd)$ pyreneND 1.0 0.33 Isophorone2-MethylnaphthaleneND 1.0 0.33 2 -Methylphenol (o-Cresol) $3 \&/or 4$ -Methylphenol (m,p-Cresol)ND 1.0 0.33 Naphthalene2-NitroanilineND 1.0 1.6 3 -Nitroaniline 4 -NitroanilineND 1.0 1.6 3 -Nitroaniline 4 -NitrophenolND 1.0 1.6 3 -NitrobenzeneN-NitrosodiphenylamineND 1.0 1.6 NitrobenzeneND 1.0 1.6 PhenanthrenePhenolND 1.0 0.33 Pyrene $1,2,4$ -TrichlorobenzeneND 1.0 0.33 $2,4,5$ -Trichlorophenol $2,4,6$ -TrichlorophenolND 1.0 0.33 $2,4,5$ -Trichlorophenol $2,4,6$ -TrichlorophenolND 1.0 0.33 $2,4,5$ -Trichlorophenol $2,4,6$ -TrichlorophenolND 1.0 0.33 $2,4,5$ -Trichlorophenol 3.6 93.2 $\%$ SS1: $\%$ SS4:	ND	1.0	0.33					
HexachlorocyclopentadieneND1.01.6HexachloroethaneIndeno (1,2,3-cd) pyreneND1.00.33Isophorone2-MethylnaphthaleneND1.00.332-Methylphenol (o-Cresol)3 &/or 4-Methylphenol (m,p-Cresol)ND1.00.33Naphthalene2-NitroanilineND1.01.63-Nitroaniline4-NitroanilineND1.01.62-Nitrophenol4-NitrophenolND1.01.6NitrobenzeneN-NitrosodiphenylamineND1.01.6N-Nitrosodi-n-propylaminePentachlorophenolND1.01.6PhenanthrenePhenolND1.00.33Pyrene1,2,4-TrichlorobenzeneND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.332,4,5-Trichlorophenol%SS1:85.9%SS2:%SS2:%SS3:93.2%SS4:%SS4:	ND	1.0	0.33					
Indeno (1,2,3-cd) pyrene ND 1.0 0.33 Isophorone 2-Methylnaphthalene ND 1.0 0.33 Isophorone 2-Methylnaphthalene ND 1.0 0.33 2-Methylphenol (o-Cresol) 3 &/or 4-Methylphenol (m,p-Cresol) ND 1.0 0.33 Naphthalene 2-Nitroaniline ND 1.0 1.6 3-Nitroaniline 4-Nitroaniline ND 1.0 1.6 2-Nitrophenol 4-Nitroaniline ND 1.0 1.6 2-Nitrophenol 4-Nitrosodiphenylamine ND 1.0 1.6 N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine Pentachlorophenol ND 1.0 0.33 Pyrene 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol %SS1:	ND	1.0	0.3					
2-MethylaphthaleneND1.00.332-Methylphenol (o-Cresol)3 &/or 4-Methylphenol (m,p-Cresol)ND1.00.33Naphthalene2-NitroanilineND1.01.63-Nitroaniline4-NitroanilineND1.01.62-Nitrophenol4-NitroanilineND1.01.6NitrobenzeneN-NitrosodiphenylamineND1.01.6PhenanthrenePentachlorophenolND1.01.6PhenanthrenePhenolND1.00.33Pyrene1,2,4-TrichlorobenzeneND1.00.332,4,5-Trichlorophenol2,4,6-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-TrichlorophenolND1.00.33Pyrene1,2,4-Trich	ND	1.0	0.3					
3 &/or 4-Methylphenol (m,p-Cresol) ND 1.0 0.33 Naphthalene 2-Nitroaniline ND 1.0 1.6 3-Nitroaniline 4-Nitroaniline ND 1.0 1.6 3-Nitroaniline 4-Nitroaniline ND 1.0 1.6 2-Nitrophenol 4-Nitrophenol ND 1.0 1.6 Nitrobenzene N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine Pentachlorophenol ND 1.0 1.6 Phenanthrene Phenol ND 1.0 0.33 Pyrene 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol %SS1: 85.9 %SS2: %SS4:	ND	1.0	0.3					
2-Nitroaniline ND 1.0 1.6 3-Nitroaniline 4-Nitroaniline ND 1.0 1.6 3-Nitroaniline 4-Nitrophenol ND 1.0 1.6 2-Nitrophenol 4-Nitrophenol ND 1.0 1.6 Nitrobenzene N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine Pentachlorophenol ND 1.0 1.6 Phenanthrene Phenol ND 1.0 0.33 Pyrene 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0.33 Escoveries (%) SS1: 85.9 %SS2: %SS3: 93.2 %SS4: %SS4: %SS4:	ND	1.0	0.3					
4-Nitroaniline ND 1.0 1.6 2-Nitrophenol 4-Nitrophenol ND 1.0 1.6 Nitrobenzene N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine Pentachlorophenol ND 1.0 1.6 Phenanthrene Phenol ND 1.0 0.33 Pyrene 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol %SS1: 85.9 %SS2: %SS4: %SS3: 93.2 %SS4:	ND	1.0	0.3					
4-Nitrophenol ND 1.0 1.6 Nitrobenzene N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine Pentachlorophenol ND 1.0 1.6 Phenanthrene Phenol ND 1.0 0.33 Pyrene 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol ND X4,6-Trichlorophenol ND 1.0 0.33 Constant SS1: 85.9 %SS2: %SS4: %SS3: 93.2 %SS4:	ND	1.0	1.6					
N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine Pentachlorophenol ND 1.0 1.6 Phenanthrene Phenol ND 1.0 0.33 Pyrene 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol Surrogate Recoveries (%) %SS1: %SS2: %SS2: %SS3: 93.2 %SS4: %SS4:	ND	1.0	1.6					
Pentachlorophenol ND 1.0 1.6 Phenanthrene Phenol ND 1.0 0.33 Pyrene 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol ND 1.0 0.33	ND	1.0	0.3					
Phenol ND 1.0 0.33 Pyrene 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol Surrogate Recoveries (%) %SS1: 85.9 %SS2: %SS3: 93.2 %SS4:	ND	1.0	0.3					
ND 1.0 0.33 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol Surrogate Recoveries (%) %SS1: %SS2: %SS2: %SS4:	ND	1.0	0.3					
2,4,6-Trichlorophenol ND 1.0 0.33 Surrogate Recoveries (%) %SS1: 85.9 %SS2: %SS3: 93.2 %SS4:	ND	1.0	0.3					
Surrogate Recoveries (%) %SS1: 85.9 %SS2: %SS3: 93.2 %SS4:	ND	1.0	0.3					
%SS1: 85.9 %SS2: %SS3: 93.2 %SS4:								
%SS3: 93.2 %SS4:								
		3.1						
<u>%\$\$5:</u> 99.2 %\$\$6:		0.2	Ш					
	7	8.4						
Comments:								
* water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe sa	nples in µg/wipe, prod	uct/oil/no	m LL					
aqueous liquid samples in mg/L.	· - · · ·		()					
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.								

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

AUG 1 5 2003 MFG, Inc.

.

McCampbell Analy	tical Inc.			Telephone : 925-79	, #D7, Pacheco, CA 94553-556 8-1620 Fax : 925-798-1622 om E-mail: main@mccampbel				
Alpha Analytical Laboratories	Client Projec	et ID:	#A307	601 Date S	Date Sampled: 07/24/03				
208 Mason Street				Date R	Date Received: 07/29/03				
Ukiah, CA 95482	Client Conta	ct: Sh	eri Spe	aks Date E	Date Extracted: 07/29/03 Date Analyzed: 07/30/03-08/01/03				
Okiali, CA 95462	Client P.O.:			Date A					
	Semi-Volatile (Drgan	ics by (GC/MS (Basic Target List)*				
Extraction Method: SW3550C		Ana	lytical Met	hod: SW8270D	Work	Order: 03	07485		
Lab ID				0307485-008A					
Client ID				WO-6(9.0-9.75')					
Matrix				Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
Acenaphthene	ND	1.0	0.33	Acenaphthylene	ND	1.0	0.33		
Anthracene	ND	1.0	0.33	Benzidine	ND	1.0	1.6		
Benzoic Acid	ND	1.0	1.6	Benz(a)anthracene	ND	1.0	0.33		
Benzo(b)fluoranthene	ND	1.0	0.33	Benzo(k)fluoranthene	ND	1.0	0.33		
Benzo(g,h,i)perylene	- ND	1.0	0.33	Benzo(a)pyrene	ND	1.0	0.33		
Benzyl Alcohol	ND	1.0	0.66	Bis (2-chloroethoxy) Methane	ND	1.0	0.33		
Bis (2-chloroethyl) Ether	ND	1.0	0.33	Bis (2-chloroisopropyl) Ether	ND	1.0	0.33		
is (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Ether	ND	1.0	0.33		
utylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline	ND	1.0	0.66		
Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene	ND	1.0	0.33		
Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Ether	ND	1.0	0.33		
hrysene	ND	1.0	0.33	Dibenzo(a,h)anthracene	ND	1.0	0.33		
ibenzofuran	ND	1.0	0.33	Di-n-butyl Phthalate	ND	1.0	0.33		
2-Dichlorobenzene	ND	1.0	0.33	1,3-Dichlorobenzene	ND	1.0	0.33		
4-Dichlorobenzene	ND	1.0	0.33	3,3-Dichlorobenzidine	ND	1.0	0.66		
4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate	ND	1.0	0.33		
,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate	ND	1.0	0.33		
,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol	ND	1.0	1.6		
,4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene	ND	1.0	0.33		
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine	ND ND	1.0	0.33		
Iuoranthene	ND	1.0	0.33	Fluorene Hexachlorobutadiene	ND	1.0	0.33		
Hexachlorobenzene	ND	<u> </u>	0.33	Hexachloroethane	ND	1.0	0.33		
Hexachlorocyclopentadiene	ND ND	1.0	0.33	Isophorone	ND	1.0	0.33		
Indeno (1,2,3-cd) pyrene	ND ND	1.0	0.33	2-Methylphenol (o-Cresol)	ND	1.0	0.33		
2-Methylnaphthalene 3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.33	Naphthalene	ND	1.0	0.33		
2-Nitroaniline	ND	1.0	1.6	3-Nitroaniline	ND	1.0	1.6		
4-Nitroaniline	ND	1.0	1.6	2-Nitrophenol	ND	1.0	1.6		
4-Nitrophenol	ND	1.0	1.6	Nitrobenzene	ND	1.0	0.33		
N-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamine	ND	1.0	0.33		
Pentachlorophenol	ND	1.0	1.6	Phenanthrene	ND	1.0	0.33		
Phenol	ND	1.0	0.33	Pyrene	ND	1.0	0.33		
,2,4-Trichlorobenzene	ND	1.0	0.33	2,4,5-Trichlorophenol	ND	1.0	0.33		
2,4,6-Trichlorophenol	ND	1.0	0.33						
Lead on the second s				ecoveries (%)					
%SS1:	95.			%SS2:	89	9.4	-C		
%\$\$3:		102 %SS4:							
%SS5:	10			%SS6:		5.7 5.4			
Comments:									
water samples and all TCLP & SPLI queous liquid samples in mg/L. ND means not detected above the repo	orting limit; N/A mean	ns analy	te not app	licable to this analysis.	samples in μg/wipe, produ	ict/oil/no			

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

DHS Certification No. 1644

McCampbell Analy	tical Inc.			Telephor	ne: 925-798-16	', Pacheco, CA 94553-55 20 Fax : 925-798-1622 E-mail: main@mccampbel				
Alpha Analytical Laboratories	Client Proje	ct ID:	#A307	/601	Date Sampled: 07/24/03					
208 Mason Street					Date Received: 07/29/03					
Ukiah, CA 95482	Client Conta	act: Sł	neri Spe	aks	Date Extra	acted: 07/29/03				
O'Riuli, 071 99 102	Client P.O.:				Date Analyzed: 07/30/03-08/01/03					
Extraction Method: SW3550C	Semi-Volatile	Ű	•	GC/MS (Basic Targ	get List)*	Work	Order: 03	307485		
Lab ID				0307485-00	9A					
Client ID		WO-7(4.0-4.75')								
Matrix				Soil						
Compound	Concentration *	DF	Reporting Limit	Compoun	d	Concentration *	DF	Reporting Limit		
Acenaphthene	ND	1.0	0.33	Acenaphthylene		ND	1.0	0.33		
Anthracene	ND	1.0	0.33	Benzidine		ND	1.0	1.6		
Benzoic Acid	ND	1.0	1.6	Benz(a)anthracene		ND	1.0	0.33		
Benzo(b)fluoranthene	ND	1.0	0.33	Benzo(k)fluoranthene		ND	1.0	0.33		
Benzo(g,h,i)perylene	ND	1.0	0.33	Benzo(a)pyrene		ND ND	1.0	0.33		
Benzyl Alcohol	ND	1.0	0.66	and the second	2-chloroethoxy) Methane		1.0	0.33		
Bis (2-chloroethyl) Ether	ND	1.0	0.33		Bis (2-chloroisopropyl) Ether		1.0	0.33		
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Ether		ND	1.0	0.33		
Butylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline		ND	1.0	0.66		
4-Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene		ND ND	1.0	0.33		
2-Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Ether Dibenzo(a,h)anthracene		ND	1.0	0.33		
Chrysene	ND ND	$\frac{1.0}{1.0}$	0.33	Di-n-butyl Phthalate		ND	1.0	0.33		
Dibenzofuran 1.2-Dichlorobenzene	ND	1.0	0.33	1.3-Dichlorobenzene		ND	1.0	0.33		
1,4-Dichlorobenzene	ND	1.0	0.33	3,3-Dichlorobenzidine		ND	1.0	0.66		
2,4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate		ND	1.0	0.33		
2,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate		ND	1.0	0.33		
4,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol		ND	1.0	1.6		
2,4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene		ND	1.0	0.33		
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine		ND	1.0	0.33		
Fluoranthene	ND	1.0	0.33	Fluorene		ND	1.0	0.33		
Hexachlorobenzene	ND	1.0	0.33	Hexachlorobutadiene		ND	1.0	0.33		
Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane		ND	1.0	0.33		
Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone		ND	1.0	0.33		
2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)		ND	1.0	0.3		
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.33			ND	1.0	0.3		
2-Nitroaniline	ND	1.0	1.6	3-Nitroaniline		ND	1.0	1.6		
4-Nitroaniline	ND	1.0	1.6	2-Nitrophenol		ND	1.0	0.3		
4-Nitrophenol	ND ND	1.0	0.33	Nitrobenzene		ND ND	1.0	0.3		
N-Nitrosodiphenylamine Pentachlorophenol	ND ND	1.0	1.6	N-Nitrosodi-n-propylamine Phenanthrene		ND	1.0	0.3		
Phenol	ND	1.0	0.33			ND	1.0	0.3		
1,2,4-Trichlorobenzene	ND	1.0	0.33			ND	1.0	0.3		
2.4.6-Trichlorophenol	ND	1.0	0.33	1.						
				ecoveries (%)						
%SS1:	88.4			%SS2:		85	85.4			
%SS3:	95.1			%SS4:		80.9				
%SS5:	96.3			%SS6:		79.6				
Comments:								<		

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 2 vol. % sediment; j) sample diluted due to high organic content.

PECEIVE AUG 1 5 2003 MFG. Inc

.

Compound Concentration DF Line Compound Concentration DF Line Anthracene ND<1.6 5.0 0.33 Acenaphtylene ND<1.6 5.0 0.33 Benzolchloranthene ND<1.6 5.0 0.33 Benzolchloranthene ND<1.6 5.0 0.33 Benzolchloranthene ND<1.6 5.0 0.33 Benzolchloranthene ND<1.6 5.0 0.33 Benzolchloranthene ND<1.6 5.0 0.33 Benzolchloranthene ND<1.6 5.0 0.33 Benzolchloranthylphene ND<1.6 5.0 0.33 4Enorophenyl Heart ND<1.6 5.0 0.33 Bit (2-chloroshylphthalate ND<1.6 5.0 0.33 4Chlorantilne ND<1.6 5.0 0.33 Bit (2-chloroshylphthalate ND<1.6 5.0 0.33 4Chlorantilne ND<1.6 5.0 0.33 Dibezzofuran ND<1.6 5.0 0.33 J2-Dichlorophenzene ND<1.6 5.0 0.33 1,2-Dichlorop	Alpha Analytical Laboratories	Client Proje	ect ID:	#A30′	7601	Date San	npled: 07/24/03		
Ukiah, CA 95482 Date Analyzed: 07/30/03-08/01/03 Semi-Volatile Organics by GC/MS (Basic Target List)* Extraction Method: 5W3500 Work Order: 0307485 Colspan="2">Distribution of the semiplicity of	208 Mason Street				-	Date Rec	eived: 07/29/03		
Date Analyzed: 07/30/03-08/01/03 Semi-Volatile Organies by GC/MS (Basic Target List)* Extraction Method: SW3500 Work Order: 03/07485 Lab ID O3/07485-010A Client ID Work Order: 03/07485 Compound Concentration * DF Reporting Compound Concentration * DF Reporting Compound Concentration * DF Reporting Reporting Concentration * DF Reporting Concentration * DF Reporting Reporting		Client Cont	act: Sl	heri Spe	aks	Date Ext	racted: 07/29/03		
Extraction Method: \$W3550C Analytical Method: \$W8270D Work Order: 0307485 Lab ID Client ID 0307485-010A WO-7(8.0-8.75) Matrix Soil Soil Accnaphthene ND<1.6 5.0 0.33 Accnaphthylene ND<1.6 5.0 0.53 Addmacene ND<1.6 5.0 0.33 Beraz(a)(Invanithene ND<1.6 5.0 0.50 Berazols Addid ND<8.0 5.0 1.6 Beraz(a)(Invanithene ND<1.6 5.0 0.50 1.6 Berazols/Illowanthene ND<1.6 5.0 0.33 Berazols/Illowanthene ND<1.6 5.0 0.50 Berazols/Illowanthene ND<1.6 5.0 0.33 Berazols/Illowanthene ND<1.6 5.0 0.50 Berazols/Illowanthene ND<1.6 5.0 0.33 4-Chiorosinghynyl Methane ND<1.6 5.0 0.50 Berazols/Illowanthene ND<1.6 5.0 0.33 4-Chiorosinghynyl Methane ND<1.6 5.0 0.33 Berazols/Inbreavis/Inserving ND<1.6 <t< td=""><td>Ukiah, CA 95482</td><td>Client P.O.:</td><td></td><td></td><td></td><td>Date Ana</td><td>lyzed: 07/30/03-0</td><td>8/01/0</td><td>3</td></t<>	Ukiah, CA 95482	Client P.O.:				Date Ana	lyzed: 07/30/03-0	8/01/0	3
Detenction Method: \$W9350C Analytical Method: \$W8270D Work Order: 0307485 Lab ID Client ID 0307485-010A WO-7(6.0-8.75) Work Order: 0307485 Accnaphthene ND<1.6 5.0 0.33 Accnaphthylene ND<1.6 5.0 0.73 Accnaphthene ND<1.6 5.0 0.33 Berazialine ND<1.6 5.0 0.33 Charomophynyl Deter ND<1.6 5.		 Semi-Volatile	Organ	nics by (GC/MS (Basic Targ	get List)*			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Extraction Method: SW3550C		-	•		, , 	Work	Order: 03	307485
Matrix Soil Compound Concentration * DF Resonance Iana Compound Concentration * DF Resonance Iana Acenaphthene ND<1.6									
Compound Concentration * DF Repering Compound Concentration * DF Repering Acenaphthene ND<1.6						75')			
Accenaphthene ND<1.6 5.0 0.33 Accenaphthylene ND<1.6 5.0 0.33 Anthracene ND-1.6 5.0 0.33 Benzigentice ND<1.6		Concentration *	DF			4	Concentration *	DF	Reportin
Anthracene ND-1.6 5.0 0.33 Benzidine ND-8.0 5.0 1.1 Benzok Acid ND<4.6			5.0		+	-			0.33
Benzoic Acid ND<8.0 5.0 1.6 Benzo(h)houranthene ND<1.6 5.0 0.3 Benzo(h)houranthene ND<1.6					······································				1.6
Benzo(b)fluoranthene ND<1.6 5.0 0.33 Benzo(k)fluoranthene ND<1.6 5.0 0.33 Benzy(k),Dperytene ND<1.6									0.33
Benzo(g,h.i)perylene ND<1.6 5.0 0.33 Benzy(a,b)perate ND<1.6 5.0 0.2 Benzyl Akcohol ND<3.3									0.33
Benzyl Alcohol ND<3.3 5.0 0.66 Bis (2-chloroethyl) Ether ND<1.6 5.0 0.3 Bis (2-chloroethyl) Ether ND<1.6					terre and the second				0.33
Bis (2-chloroethyl) Ether ND<1.6 5.0 0.33 Bis (2-chlorosopropyl) Ether ND<1.6 5.0 0.3 Bis (2-chloroethyl) Ether ND<1.6						ethane			
Bis (2-ethylhexyl) Phthalate ND<1.6 5.0 0.33 4-Bromophenyl Phenyl Ether ND<1.6 5.0 0.3 Burylbenzyl Phthalate ND<1.6	· · · · · · · · · · · · · · · · · · ·								
Butylbenzyl Phthalate ND<1.6 5.0 0.33 4-Chloronanitine ND<3.3 5.0 0.0 4-Chloro-3-methylphenol ND<1.6					fan an a	······			
4-Chloro-3-methylphenol ND<1.6 5.0 0.33 2-Chloronaphthalene ND<1.6 5.0 0.33 2-Chlorophenol ND<1.6					4	Durei			
2-Chlorophenol ND<1.6 5.0 0.33 4-Chlorophenyl Phenyl Ether ND<1.6 5.0 0.3 Chrysene ND<1.6									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					The second se	Ethor			
Dibenzofuran ND<1.6 5.0 0.33 Din-butyl Phthalate ND<1.6 5.0 0.3 1,2-Dichlorobenzene ND<1.6									
1,2-Dichlorobenzene ND<1.6 5.0 0.33 1,3-Dichlorobenzene ND<1.6 5.0 0.3 2,4-Dinchlorobenzene ND<1.6		· · · · · · · · · · · · · · · · · · ·			+				
1.4-Dichlorobenzene ND<1.6 5.0 0.33 3,3-Dichlorobenzidine ND<3.3 5.0 0.0 2,4-Dichlorophenol ND<1.6									
2,4-Dichlorophenol ND<1.6 5.0 0.33 Diethyl Phthalate ND<1.6 5.0 0.3 2,4-Dimethylphenol ND<1.6									
2,4-Dimethylphenol ND<1.6 5.0 0.33 Dimethyl Phthalate ND<1.6 5.0 0.4 4,6-Dinitro-2-methylphenol ND<8.0	· / · · · · · · · · · · · · · · · · · ·								
4.6-Dinitro-2-methylphenol ND<8.0 5.0 1.6 2,4-Dinitrophenol ND<8.0 5.0 1.1 2,4-Dinitrotoluene ND<1.6					· · · · · · · · · · · · · · · · · · ·		*****		*****
2,4-Dinitrotoluene ND<1.6 5.0 0.33 2,6-Dinitrotoluene ND<1.6 5.0 0.0 Di-n-octyl Phthalate ND<1.6									
Di-n-octyl Phthalate ND<1.6 5.0 0.33 1,2-Diphenylhydrazine ND<1.6 5.0 0.0 Fluoranthene ND<1.6		*******							1.6
Fluoranthene ND<1.6 5.0 0.33 Fluorene ND<1.6 5.0 0. Hexachlorobenzene ND<1.6									
Hexachlorobenzene ND<1.6 5.0 0.33 Hexachlorobutadiene ND<1.6 5.0 0. Hexachlorocyclopentadiene ND<8.0									
Hexachlorocyclopentadiene ND<8.0 5.0 1.6 Hexachloroethane ND<1.6 5.0 0. Indeno (1,2,3-cd) pyrene ND<1.6			······						
Indeno (1,2,3-cd) pyrene ND<1.6 5.0 0.33 Isophorone ND<1.6 5.0 0. 2-Methylaphthalene ND<1.6					+			+	
2-Methylnaphthalene ND<1.6 5.0 0.33 2-Methylphenol (o-Cresol) ND<1.6 5.0 0. 3 &/or 4-Methylphenol (m,p-Cresol) ND<1.6									
3 &/or 4-Methylphenol (m,p-Cresol) ND<1.6 5.0 0.33 Naphthalene ND<1.6 5.0 0. 2-Nitroaniline ND<8.0									
2-Nitroaniline ND<8.0 5.0 1.6 3-Nitroaniline ND<8.0 5.0 1 4-Nitroaniline ND<8.0						501)			0.3
4-Nitroaniline ND<8.0 5.0 1.6 2-Nitrophenol ND<8.0 5.0 1 4-Nitrophenol ND<8.0	· · · · · · · · · · · · · · · · · · ·								0.3
4-Nitrophenol ND<8.0 5.0 1.6 Nitrobenzene ND<1.6 5.0 0. N-Nitrosodiphenylamine ND<1.6			******		······································				1.6
N-Nitrosodiphenylamine ND<1.6 5.0 0.33 N-Nitrosodi-n-propylamine ND<1.6 5.0 0. Pentachlorophenol ND<8.0					······				1.6
Pentachlorophenol ND<8.0 5.0 1.6 Phenanthrene ND<1.6 5.0 0. Phenol ND<1.6						nina		+	0.3
Phenol ND<1.6 5.0 0.33 Pyrene ND<1.6 5.0 0. 1,2,4-Trichlorobenzene ND<1.6						nne			0.3
1,2,4-Trichlorobenzene ND<1.6 5.0 0.33 2,4,5-Trichlorophenol ND<1.6 5.0 0. 2,4,6-Trichlorophenol ND<1.6 5.0 0.33 2,4,5-Trichlorophenol ND<1.6 5.0 0. 2,4,6-Trichlorophenol ND<1.6 5.0 0.33 2,4,5-Trichlorophenol ND<1.6 5.0 0. %SS1: 82.0 %SS2: 83.1 4 4 4 %SS3: 81.3 %SS6: 79.4 4 4 4 4 59.8 %SS6: 76.9 4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
ND<1.6 5.0 0.33 Surrogate Recoveries (%) %SS1: 82.0 %SS2: 83.1 %SS3: 81.3 %SS4: 79.4 14 %SS5: 59.8 %SS6: 76.9 14 * water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-14 24									
Surrogate Recoveries (%) %SS1: 82.0 %SS2: 83.1 %SS3: 81.3 %SS4: 79.4 4 %SS5: 59.8 %SS6: 76.9 4 Comments: j * * * * * * * * water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-Liqueous liquid samples in mg/L.							0.1/UNI	5.0	0.3
%SS1: 82.0 %SS2: 83.1 %SS3: 81.3 %SS4: 79.4 %SS5: 59.8 %SS6: 76.9 Comments: j * water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-Laqueous liquid samples in mg/L.		110-110			ecoveries (%)				
%SS3: 81.3 %SS4: 79.4 %SS5: 59.8 %SS6: 76.9 Comments: j * water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-U * aqueous liquid samples in mg/L. * *	0/ 551.	011		- oguto It	· · · ·		02	1	~
%SS5: 59.8 %SS6: 76.9 Comments: j *									_ <u>[_]</u>
Comments: j * water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-									<u> </u>
* water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-		57.	5		///////////////////////////////////////		70.	.9	>
aqueous liquid samples in mg/L.									
		extracts are reported	in µg/L	., soil/sluc	lge/solid samples in mg/k	g, wipe sam	ples in µg/wipe, produc	ct/oil/no	n-111
	queous liquid samples in mg/L.								()
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.									

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

.

AUG 1 5 2003 MFG, Inc.

Alpha Analytical Laboratories	Client Proje	ect ID:	#A307	7601 Date San	npled: 07/24/03		
208 Mason Street				Date Rec	eived: 07/29/03		
Ilicah CA 05492	Client Cont	act: Sł	neri Spe	aks Date Ext	racted: 07/29/03		
Ukiah, CA 95482	Client P.O.:			Date Ana	alyzed: 07/30/03-0	8/01/0	3
	Semi-Volatile	Organ	ics by (GC/MS (Basic Target List)*			
Extraction Method: SW3550C		-		hod: SW8270D	Work	Order: 03	807485
Lab ID				0307485-011A			
Client ID				WO-8(3.25-4.0')			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acenaphthene	ND	1.0	0.33	Acenaphthylene	ND	1.0	0.33
nthracene	ND	1.0	0.33	Benzidine	ND	1.0	1.6
enzoic Acid	ND	1.0	1.6	Benz(a)anthracene	ND	1.0	0.33
enzo(b)fluoranthene	ND	1.0	0.33	Benzo(k)fluoranthene	ND	1.0	0.33
enzo(g,h,i)perylene	ND	1.0	0.33	Benzo(a)pyrene	ND	1.0	0.33
enzyl Alcohol	ND	1.0	0.66	Bis (2-chloroethoxy) Methane	ND	1.0	0.33
is (2-chloroethyl) Ether	ND	1.0	0.33	Bis (2-chloroisopropyl) Ether	ND	1.0	0.33
is (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Ether	ND	1.0	0.33
itylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline	ND	1.0	0.66
hloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene	ND	1.0	0.33
hlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Ether	ND	1.0	0.33
rysene	ND	1.0	0.33	Dibenzo(a,h)anthracene	ND	1.0	0.33
enzofuran	ND	1.0	0.33	Di-n-butyl Phthalate	ND	1.0	0.33
-Dichlorobenzene	ND	1.0	0.33	1,3-Dichlorobenzene	ND	1.0	0.33
-Dichlorobenzene	ND	1.0	0.33	3,3-Dichlorobenzidine	ND	1.0	0.66
Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate	ND	1.0	0.33
4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate	ND	1.0	0.33
Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol	ND	1.0	1.6
4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene	ND	1.0	0.33
i-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine	ND	1.0	0.33
uoranthene	ND	1.0	0.33	Fluorene	ND	1.0	0.33
exachlorobenzene	ND ND	1.0	0.33	Hexachlorobutadiene	ND	1.0	0.33
exachlorocyclopentadiene deno (1,2,3-cd) pyrene	ND ND	1.0	1.6	Hexachloroethane	ND ND	1.0	0.33
Methylnaphthalene	ND ND	1.0		Isophorone 2-Methylphenol (o-Cresol)	ND ND	1.0	0.33
&/or 4-Methylphenol (m,p-Cresol)	ND ND	1.0	0.33	Naphthalene	ND ND	1.0	0.33
Nitroaniline	ND	1.0	1.6	3-Nitroaniline	ND	1.0	0.33
Nitroaniline	ND	1.0	1.6	2-Nitrophenol	ND	1.0	1.6
Nitrophenol	ND	1.0	1.6	Nitrobenzene	ND	1.0	0.33
-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamine	ND	1.0	0.33
ntachlorophenol	ND	1.0	1.6	Phenanthrene	ND	1.0	0.33
enol	ND	1.0	0.33	Pyrene	ND	1.0	0.33
2,4-Trichlorobenzene	ND	1.0	0.33	2,4,5-Trichlorophenol	ND	1.0	0.33
I,6-Trichlorophenol	ND	1.0	0.33			1.0	1 0.55
				ecoveries (%)			
%SS1:	90.		-	%SS2:	87.	9	(
	98.			%SS4:	83.		
%883:				%SS6:	77.		
%\$\$3: %\$\$5:	91.	0		///////////////////////////////////////	· · · ·	Million and a second second	

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

•

-

Alpha Analytical Laboratories 208 Mason Street Jkiah, CA 95482 <u>Straction Method: SW3550C</u> Lab ID	Client Proje Client Conta Client P.O.:			601	Date Samp	oled: 07/24/03		
Jkiah, CA 95482 Sextraction Method: SW3550C	Client P.O.:	act: Sh			DID			
Sextraction Method: SW3550C	Client P.O.:	act: Sh	Cara		Date Rece	ived: 07/29/03		
Sextraction Method: SW3550C	L		ien spe	aks	Date Extra	cted: 07/29/03		
Extraction Method: SW3550C					Date Anal	yzed: 07/30/03-0	8/01/03	3
	emi-Volatile			GC/MS (Basic Targ	et List)*			
Lab ID		Ana	lytical Met	hod: SW8270D	-	Work	Order: 03	07485
				0307485-01				
Client ID				WO-8(6.0-6.	75')			
Matrix				Soil		······		
Compound Co	oncentration *	DF	Reporting Limit	Compound	ł	Concentration *	DF	Reporting Limit
cenaphthene	ND<1.6	5.0	0.33	Acenaphthylene		ND<1.6	5.0	0.33
Inthracene	ND<1.6	5.0	0.33	Benzidine		ND<8.0	5.0	1.6
enzoic Acid	ND<8.0	5.0	1.6	Benz(a)anthracene		ND<1.6	5.0	0.33
Benzo(b)fluoranthene	ND<1.6	5.0	0.33	Benzo(k)fluoranthene	······································	ND<1.6	5.0	0.33
Benzo(g,h,i)perylene	ND<1.6	5.0	0.33	Benzo(a)pyrene		ND<1.6	5.0	0.33
Benzyl Alcohol	ND<3.3	5.0	0.66	Bis (2-chloroethoxy) M	ethane	ND<1.6	5.0	0.33
Bis (2-chloroethyl) Ether	ND<1.6	5.0	0.33	Bis (2-chloroisopropyl)		ND<1.6	5.0	0.33
Bis (2-ethylhexyl) Phthalate	ND<1.6	5.0	0.33	4-Bromophenyl Phenyl		ND<1.6	5.0	0.33
Butylbenzyl Phthalate	ND<1.6	5.0	0.33	4-Chloroaniline		ND<3.3	5.0	0.6
-Chloro-3-methylphenol	ND<1.6	5.0	0.33	2-Chloronaphthalene		ND<1.6	5.0	0.3
-Chlorophenol	ND<1.6	5.0	0.33	4-Chlorophenyl Phenyl	Ether	ND<1.6	5.0	0.3
Chrysene	ND<1.6	5.0	0.33	Dibenzo(a,h)anthracene	;	ND<1.6	5.0	0.3
Dibenzofuran	ND<1.6	5.0	0.33	Di-n-butyl Phthalate		ND<1.6	5.0	0.3
.2-Dichlorobenzene	ND<1.6	5.0	0.33	1,3-Dichlorobenzene		ND<1.6	5.0	0.3
,4-Dichlorobenzene	ND<1.6	5.0	0.33	3,3-Dichlorobenzidine		ND<3.3	5.0	0.6
4-Dichlorophenol	ND<1.6	5.0	0.33	Diethyl Phthalate		ND<1.6	5.0	0.3
,4-Dimethylphenol	ND<1.6	5.0	0.33	Dimethyl Phthalate		ND<1.6	5.0	0.3
.6-Dinitro-2-methylphenol	ND<8.0	5.0	1.6	2,4-Dinitrophenol		ND<8.0	5.0	1.6
.4-Dinitrotoluene	ND<1.6	5.0	0.33	2,6-Dinitrotoluene		ND<1.6	5.0	0.3
Di-n-octyl Phthalate	ND<1.6	5.0	0.33	1,2-Diphenylhydrazine		ND<1.6	5.0	0.3
Fluoranthene	ND<1.6	5.0	0.33	Fluorene		ND<1.6	5.0	0.3
Iexachlorobenzene	ND<1.6	5.0	0.33	Hexachlorobutadiene		ND<1.6	5.0	0.3
Iexachlorocyclopentadiene	ND<8.0	5.0	1.6	Hexachloroethane		ND<1.6	5.0	0.3
ndeno (1,2,3-cd) pyrene	ND<1.6	5.0	0.33	Isophorone		ND<1.6	5.0	0.3
2-Methylnaphthalene	ND<1.6	5.0	0.33	2-Methylphenol (o-Cre	sol)	ND<1.6	5.0	0.3
3 &/or 4-Methylphenol (m,p-Cresol)	ND<1.6	5.0	0.33	Naphthalene		ND<1.6	5.0	0.3
2-Nitroaniline	ND<8.0	5.0	1.6	3-Nitroaniline		ND<8.0	5.0	1.6
4-Nitroaniline	ND<8.0	5.0	1.6	2-Nitrophenol		ND<8.0	5.0	1.6
4-Nitrophenol	ND<8.0	5.0	1.6	Nitrobenzene		ND<1.6	5.0	0.3
N-Nitrosodiphenylamine	ND<1.6	5.0	0.33	N-Nitrosodi-n-propyla	nine	ND<1.6	5.0	0.3
Pentachlorophenol	ND<8.0	5.0	1.6	Phenanthrene		ND<1.6	5.0	0.3
Phenol	ND<1.6	5.0	0.33	Pyrene		ND<1.6	5.0	0.3
1,2,4-Trichlorobenzene	ND<1.6	5.0	0.33	2,4,5-Trichlorophenol		ND<1.6	5.0	0.3
2,4,6-Trichlorophenol	ND<1.6	5.0	0.33					
		Sur	rogate R	ecoveries (%)				
%SS1:	81.	2		%SS2:		82	. 1	7
%SS3:	82.	1		%SS4:		81	.7	I
%SS5:	60.	1		%SS6:		77	.3	~
Comments: j								2
water samples and all TCLP & SPLP ext	racts are reported	in ua/T	soil/ehu	toe/solid samples in mal	o wine com	les in ug/wine produ	ct/oil/ne	n- L

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol % sediment; j) sample diluted due to high organic content.

AUG 1 5 2003 MFG inc

DHS Certification No. 1644

.

Alpha Analytical Laboratories	Client Proje	ect ID:	#A30	T	pbell.com E-mail: mail: ma	07/24/03		
	Cheine i roje		11100		ate Received:			
208 Mason Street								
Ukiah, CA 95482	Client Cont	act: S	heri Spe	caks Da	ate Extracted:	07/29/03		
·	Client P.O.	:		D	ate Analyzed:	07/30/03-0	8/01/0)3
Extraction Method: SW3550C	Semi-Volatile	-	•	GC/MS (Basic Target thod: SW8270D	List)*	Work	Order: 0	307
Lab ID				0307485-013A				
Client ID				WO-9(4.0-4.75')			
Matrix				Soil				
Compound	Concentration *	DF	Reporting Limit	Compound	Conc	entration *	DF	Re
Acenaphthene	ND	1.0	0.33	Acenaphthylene		ND	1.0	
Anthracene	ND	1.0	0.33	Benzidine		ND	1.0	
Benzoic Acid Benzo(b)fluoranthene	ND ND	1.0 1.0	1.6	Benz(a)anthracene		ND	1.0	
Benzo(g,h,i)perylene	ND	1.0	0.33	Benzo(k)fluoranthene Benzo(a)pyrene		ND ND	1.0	
Benzyl Alcohol	ND	1.0	0.66	Bis (2-chloroethoxy) Metha	ane	ND	1.0	
Bis (2-chloroethyl) Ether	ND	1.0	0.33	Bis (2-chloroisopropyl) Eth		ND	1.0	-
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Eth		ND	1.0	
Butylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline		ND	1.0	
4-Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene		ND	1.0	
2-Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Eth	ier	ND	1.0	
Chrysene	ND	1.0	0.33	Dibenzo(a,h)anthracene		ND	1.0	
Dibenzofuran	ND	1.0	0.33	Di-n-butyl Phthalate		ND	1.0	
1,2-Dichlorobenzene	ND ND	1.0	0.33	1,3-Dichlorobenzene 3,3-Dichlorobenzidine		ND	1.0	-
2,4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate		ND ND	1.0 1.0	
2,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate		ND	1.0	+
4,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol		ND	1.0	
2,4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene		ND	1.0	
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine		ND	1.0	-
Fluoranthene	ND	1.0	0.33	Fluorene		ND	1.0	
Hexachlorobenzene	ND	1.0	0.33	Hexachlorobutadiene		ND	1.0	
Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane		ND	1.0	
Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone		ND	1.0	
2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)	· · · · · · · · · · · · · · · · · · ·	ND	1.0	
3 &/or 4-Methylphenol (m,p-Cresol) 2-Nitroaniline	ND ND	1.0	0.33	Naphthalene 3-Nitroaniline		ND ND	1.0	_
4-Nitroaniline	ND	1.0	1.6	2-Nitrophenol		ND ND	1.0	
4-Nitrophenol	ND	1.0	1.6	Nitrobenzene	·····	ND	1.0	
N-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamin	e	ND	1.0	
Pentachlorophenol	ND	1.0	1.6	Phenanthrene		ND	1.0	
Phenol	ND	1.0	0.33	Ругепе		ND	1.0	
1,2,4-Trichlorobenzene	ND	1.0	0.33	2,4,5-Trichlorophenol		ND	1.0	
2,4,6-Trichlorophenol	ND	1.0	0.33					
%SS1:	85.		rogate R	ecoveries (%) %SS2:		07	0	
						85.		6
		·						L
						70.		
%SS3: %SS5: Comments: * water samples and all TCLP & SPLP aqueous liquid samples in mg/L.	92. 86. extracts are reported	5	., soil/sluc	%SS4: %SS6: lge/solid samples in mg/kg, v	wipe samples in µg	92. 78. g/wipe, produc	3	'n

DHS Certification No. 1644

_ Angela Rydelius, Lab Manager

AL,

		· 1D				E-mail: main@mccampbel	1.0011	
Alpha Analytical Laboratories	Client Proje	ect ID:	#A30.	/601 D	ate Samp	oled: 07/24/03		
208 Mason Street				D	ate Recei	ived: 07/29/03		
Ukiah, CA 95482	Client Cont	act: Sl	heri Spe	aks D	ate Extra	cted: 07/29/03		
Oklan, 011 75402	Client P.O.			D	ate Analy	yzed: 07/30/03-0	8/01/0	13
	Semi-Volatile	Organ	nics by (GC/MS (Basic Target	: List)*			
Extraction Method: SW3550C		Ana	alytical Met	hod: SW8270D		Work	Order: 0	307485
Lab ID				0307485-014A	1			
Client ID				WO-9(8.0-8.75	')			
Matrix				Soil				
Compound	Concentration *	DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit
Acenaphthene	ND	1.0	0.33	Acenaphthylene		ND	1.0	0.33
Anthracene	ND	1.0	0.33	Benzidine		ND	1.0	1.6
Benzoic Acid	ND	1.0	1.6	Benz(a)anthracene		ND	1.0	0.33
Benzo(b)fluoranthene	ND	1.0	0.33	Benzo(k)fluoranthene		ND	1.0	0.33
Benzo(g,h,i)perylene	ND	1.0	0.33	Benzo(a)pyrene		ND	1.0	0.33
Benzyl Alcohol	ND	1.0	0.66	Bis (2-chloroethoxy) Meth	ane	ND	1.0	0.33
Bis (2-chloroethyl) Ether	ND	1.0	0.33	Bis (2-chloroisopropyl) Et		ND	1.0	0.33
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Etl		ND	1.0	0.33
Butylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline		ND	1.0	0.66
4-Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene		ND	1.0	0.33
2-Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Etl	her	ND	1.0	0.33
Chrysene	ND	1.0	0.33	Dibenzo(a,h)anthracene		ND	1.0	0.33
Dibenzofuran	ND	1.0	0.33	Di-n-butyl Phthalate		ND	1.0	0.33
1,2-Dichlorobenzene	ND	1.0	0.33	1.3-Dichlorobenzene		ND	1.0	0.33
1,4-Dichlorobenzene	ND	1.0	0.33	3,3-Dichlorobenzidine		ND	1.0	0.66
2,4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate		ND	1.0	0.33
2,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate		ND	1.0	0.33
4,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol		ND	1.0	1.6
2,4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene		ND	1.0	0.33
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine		ND	1.0	0.33
Fluoranthene	ND	1.0	0.33	Fluorene		ND	1.0	0.33
Hexachlorobenzene	ND	1.0	0.33	Hexachlorobutadiene		ND	1.0	0.33
Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane		ND	1.0	0.33
Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone		ND	1.0	0.33
2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)	ND	1.0	0.3
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.33	Naphthalene		ND	1.0	0.3
2-Nitroaniline	ND	1.0	1.6	3-Nitroaniline		ND	1.0	1.6
4-Nitroaniline	ND	1.0	1.6	2-Nitrophenol		ND	1.0	1.6
4-Nitrophenol	ND	1.0	1.6	Nitrobenzene		ND	1.0	0.3
N-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamin	ne	ND	1.0	0.3
Pentachlorophenol	ND	1.0	1.6	Phenanthrene		ND	1.0	0.3
Phenol	ND	1.0	0.33	Pyrene		ND	1.0	0.3
1,2,4-Trichlorobenzene	ND	1.0	0.33	2,4,5-Trichlorophenol		ND	1.0	0.3
2,4,6-Trichlorophenol	ND	1.0	0.33	(9/)				
2/021			rogate R	ecoveries (%)		· · · · · · · · · · · · · · · · · · ·	~	
%SS1:	83.			%SS2:		83		
%SS3:	87.			%SS4:		86		L
%SS5:	82.	2		%SS6:		76	.U	\rightarrow
Comments:								
* water samples and all TCLP & SPLP aqueous liquid samples in mg/L.	extracts are reported	in μg/L	., soil/slud	lge/solid samples in mg/kg,	wipe samp	les in μg/wipe, produc	ct/oil/no	

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

AUG 1 5 2003 MFG. Inc

.

208 Mason Street Date Received: 07/29/03 Ukiah, CA 95482 Client Contact: Sheri Speaks Date Extracted: 07/29/03 Semi-Volatile Organics by GC/MS (Basic Target List)* Exaction Method: SW350C List)* Semi-Volatile Organics by GC/MS (Basic Target List)* Work Order:: 0.107485:015A Client ID Work Order:: 0.107485:015A Compound Concentration * Df No 10 0.307485:015A Compound Concentration * DF No 10 1.0 1.0 Administic Compound Concentration * DF No 1.0 0.10 1.0 1.0 0.0 2.0 Anthracene ND 1.0 0.0 2.0 Anthracene ND 1.0 0.0 0.0 2.0 Anthracene ND 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Alpha Analytical Laboratories	Client Proie	ect ID·	#A30′			ed: 07/24/03			
Date Nation Studel Client Contact: Sheri Speaks Date Extracted: 07/29/03 Ukiah, CA 95482 Client P.O.: Date Analyzed: 07/30/03-08/01/03 Semi-Volatile Organics by GC/MS (Basic Target List)* Lab ID Work Order: 0307485-015A Compound Concentration * DF Solit Compound Concentration * DF Rescue Conconcentration * DF		Cheminio	ot ID.	11100						
Name status Difference of the status Name status Semi-Volatile Organics by GC/MS (Basic Target List)* Exerction Method: \$W3590C Matrix Work Order: 0307485-015.A Colspan="2">Colspan="2">Work Order: 0307485-015.A Client ID Work Order: 0307485 Compound Concentration * DF Reget Austraction Method: \$W3590C ND 1.0 0.0 Compound DF Reget Austraction Method: \$W3590C ND 1.0 0.0 Austraction Method: ND 1.0 0.0 Austraction Method: ND 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <th colspa<="" td=""><td>208 Mason Street</td><td></td><td></td><td></td><td></td><td>ite Receiv</td><td>ed: 07/29/03</td><td></td><td></td></th>	<td>208 Mason Street</td> <td></td> <td></td> <td></td> <td></td> <td>ite Receiv</td> <td>ed: 07/29/03</td> <td></td> <td></td>	208 Mason Street					ite Receiv	ed: 07/29/03		
Date Analyzed: 07/30/03-08/01/03 Semi-Volatile Organics by GC/MS (Basic Target List)* Extraction Method: SW3200 Work Order: 0307485 Lab ID Other Colspan="2">Other Colspan= Colspan="2">Other Colspan="2">Other Colspan="2">Other	Ukiah, CA 95482	Client Cont	act: Sł	ieri Spe	eaks Da	ite Extract	ted: 07/29/03			
Extraction Method: SW1550C Analytical Method: SW1270D Work Order: 0307485-015A Client ID WO-10(9.0-9.75) Soil Soil Compound Concentration * DF Regenting issue Compound Concentration * DF Regenting issue Autracene ND 1.0 0.33 Beraziolith/Uncenthene ND 1.0 0.1 Autracene ND 1.0 0.33 Beraziolithoratine ND 1.0 0.1 Berazolphiloranthene ND 1.0 0.33 Beraziolphiloranthene ND 1.0 0.33 Beraziolphiloranthene ND 1.0 0.33 Berazolphiloranthene ND 1.0 0.33 Beraziolphiloranthene ND 1.0 0.33 Berazolphiloranthene ND 1.0 0.33 Beraziolphiloranthene ND 1.0 0.0 Berazolphiloranthene ND 1.0 0.33 Beraziolphiloranthene ND 1.0 0.0 Berazolphiloranthene ND		Client P.O.	:		Da	ate Analyz	ed: 07/30/03-0	8/01/0	3	
Use 100 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	•	Semi-Volatile	Organ	ics by (GC/MS (Basic Target	List)*				
W0-10(9.0-9.75') Soil Soil Soil Compound Concentration* DF Regenting Compound Concentration* DF Regenting Compound Concentration* DF Regenting Concentration MD 1.0 0.3 Anthracene ND 1.0 0.3 Berzo(s)filouranthene ND 1.0 0.0	Extraction Method: SW3550C		Ana	lytical Me	thod: SW8270D		Work	Order: 03	07485	
Matrix Soil Compound Concentration * DF Reporting limit Compound Concentration * DF Reporting limit Acenaphthene ND 1.0 0.33 Berazia ND 1.0 0.1 Berazia Acid ND 1.0 1.6 Berazia ND 1.0 0.1 Berazia ND 1.0 0.33 Berazia ND 1.0 0.0 Berazia ND 1.0 0.33 Berazia ND 1.0 0.0 Berazia ND 1.0 0.33 Berazia ND 1.0 0.0 Berazia ND 1.0 0.33 Heine ND 1.0 0.0 Berazia ND 1.0 0.33 Heineraia ND 1.0 0.0 Berazia ND 1.0 0.33 Chioronanine ND 1.0 0.0 Berazia ND 1.0 0.33 Chioronanine ND				······						
Compound Concentration * DF Research Acenaphthene ND 1.0 0.33 Acenaphthylene ND 1.0 0.33 Anthracene ND 1.0 0.33 Benzole Area ND 1.0 0.33 Benzole Arid ND 1.0 0.33 Benzoly Area ND 1.0 0.33 Benzole Arid ND 1.0 0.33 Benzologhyloarnthene ND 1.0 0.33 Benzole Arid ND 1.0 0.33 Benzole Aride Area ND 1.0 0.33 Benzole Aride ND 1.0 0.33 Benzole Aride Area ND 1.0 0.33 Bis (2-chloroethyl) Bthate ND 1.0 0.33 4-Chloroasingorogyl Ether ND 1.0 0.33 Bis (2-chloroethyl) Phanyl Ether ND 1.0 0.33 4-Chloroasinghyl Phanyl Ether ND 1.0 0.3 Bis (2-chloroethyle Phanyl Ether ND 1.0 0.33 1.2 1.0 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>')</td><td></td><td></td><td></td></td<>						')				
Compound Concentration* DF Limit Compound Concentration * DF Limit Anthracene ND 1.0 0.33 Accampthylene ND 1.0 0.33 Benzolofilouranthene ND 1.0 1.3 Benzolofilouranthene ND 1.0 0.33 Benzolofilouranthene ND 1.0 0.33 Benzolofilouranthene ND 1.0 0.33 Benzolofilouranthene ND 1.0 0.33 Benzolofilouranthene ND 1.0 0.33 Benzolofilouranthene ND 1.0 0.33 Benzolofilouranthene ND 1.0 0.33 Bis (2-chloroschery) Pithalate ND 1.0 0.33 4-Bromophenyl Phenyl Ether ND 1.0 0.33 Bis (2-hiloroschery) Pithalate ND 1.0 0.33 4-Chloroscheryl Pithalate ND 1.0 0.34 Chloroscherzene ND 1.0 0.33 1.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td>Matrix</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>	Matrix			1						
Anthracene ND 1.0 0.33 Benzaloi Acid ND 1.0 1.0 1.0 Benzoli Acid ND 1.0 0.33 Benzaloi Microanthene ND 1.0 0.3 Benzoli Agi, Diperviene ND 1.0 0.33 Benzalo Agi, Diperviene ND 1.0 0.0 Benzoli Agi, Diperviene ND 1.0 0.33 Benzalo Agi, Diperviene ND 1.0 0.33 Benzoli Agi, Diperviene ND 1.0 0.33 Benzalo Agi, Diperviene ND 1.0 0.33 Bis (2-chloroethy) Ether ND 1.0 0.33 4-Chloronpheny Phenyl Ether ND 1.0 0.33 Buylbenzyl Phthalate ND 1.0 0.33 2-Chloronphenyl Phenyl Ether ND 1.0 0.0 Chlorophenol ND 1.0 0.33 2-Chloronphenyl Phenyl Ether ND 1.0 0.0 L2-Dichlorobenzene ND 1.0 0.33 1.3-Dichlorobenzene ND 1.0 0.0 L3-Dichl	Compound	Concentration *	DF		Compound		Concentration *	DF	Reportin Limit	
Benzoic Acid ND 1.0 1.0 1.0 1.0 0.33 Benzo(gh.)perylene ND 1.0 0.33 Benzo(gh.)perylene ND 1.0 0.33 Benzo(gh.)perylene ND 1.0 0.33 Benzo(gh.)perylene ND 1.0 0.33 Benzo(gh.)perylene ND 1.0 0.33 Benzo(gh.)perylene ND 1.0 0.33 Bis (2-chloroethyl) Ether ND 1.0 0.33 4-Chloroaniline ND 1.0 0.33 Bis (2-chloroethyl) Phenyl Ether ND 1.0 0.33 4-Chloroaniline ND 1.0 0.0 Bis (2-chloroethyl) Phenyl Ether ND 1.0 0.33 4-Chlorophenyl Phenyl Ether ND 1.0 0.0 Chlorobenzene ND 1.0 0.33 1.3-Dichlorobenzene ND 1.0 0.3 L2-Dichlorobenzene ND 1.0 0.33 Dichtyl Phthalate ND 1.0 0. L4-Dichlorophenol ND 1.0 0.33 <td>Acenaphthene</td> <td>ND</td> <td>1.0</td> <td>0.33</td> <td>Acenaphthylene</td> <td></td> <td>ND</td> <td>1.0</td> <td>0.33</td>	Acenaphthene	ND	1.0	0.33	Acenaphthylene		ND	1.0	0.33	
Benzo(b)fluoranthene ND 1.0 0.33 Benzo(k)fluoranthene ND 1.0 0.2 Benzy(k),b)perylene ND 1.0 0.33 Benzo(k)fluoranthene ND 1.0 0.6 Benzy(k),b)perylene ND 1.0 0.33 Bis (2-chlorosebroxy) Methane ND 1.0 0.3 Bis (2-chlorosebroxy) Ether ND 1.0 0.33 4-Bromophenyl Phenyl Ether ND 1.0 0.3 Bis (2-chlorosebroxy) Phthalate ND 1.0 0.33 4-Chlorosenthyl Ether ND 1.0 0.3 Chlorosphenol ND 1.0 0.33 4-Chlorosenthyl Phenyl Ether ND 1.0 0.0 Chlorosphenol ND 1.0 0.33 4-Chloroshnyl Phenyl Ether ND 1.0 0.0 Lobiotrocorbarcane ND 1.0 0.33 4-Chloroshnyl Phenyl Ether ND 1.0 0.0 Lobiotrobenzene ND 1.0 0.33 3-Dichorobenzene ND 1.0 0.2 L4-Dichlorobenze	Anthracene		1.0	0.33	Benzidine		ND	1.0	1.6	
Benzo(g,h,i)perylene ND 1.0 0.33 Benzo(a)pyrene ND 1.0 0.0 Benzyl Alcohol ND 1.0 0.36 Bis (2-chloroethxy) Methane ND 1.0 0.3 Benzyl Alcohol ND 1.0 0.33 4-Bromophenyl Phenyl Ether ND 1.0 0.3 Bis (2-chloroethyl) Ether ND 1.0 0.33 4-Bromophenyl Phenyl Ether ND 1.0 0.0 Butylbenzyl Pthalate ND 1.0 0.33 4-Chloros-Innthalene ND 1.0 0.3 Chlorophenol ND 1.0 0.33 Dich-stopphenyl Phenyl Ether ND 1.0 0.3 Dicharofuran ND 1.0 0.33 Dichorobenzide ND 1.0 0.3 J.2-Dichlorobenzene ND 1.0 0.33 J3-Dichlorobenzidine ND 1.0 0.3 J.4-Dinitrotolucne ND 1.0 0.33 J3-Dichlorobenzidine ND 1.0 0.3 J.4-Dinitrotolucne ND <t< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td>0.33</td></t<>				+					0.33	
Benzyl Alcohol ND 1.0 0.66 Bis (2-chloroethxy) Methane ND 1.0 0.2 Bis (2-chloroethyl) Ether ND 1.0 0.33 Bis (2-chloroethxy) Pethalate ND 1.0 0.33 Bis (2-thloroethyl) Ether ND 1.0 0.33 4-Chlorosethyl) Ether ND 1.0 0.33 Bis (2-thloroethyl) Ether ND 1.0 0.33 4-Chlorosethyl) Ether ND 1.0 0.33 Bis (2-chloroethyl) Ether ND 1.0 0.33 2-Chlorophyl Pethyl Ether ND 1.0 0.0 Chlorophenol ND 1.0 0.33 2-Chlorophyl Pethyl Ether ND 1.0 0.0 L-Dichlorobenzene ND 1.0 0.33 Dibenzo(a,h)anthracene ND 1.0 0.0 L-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzene ND 1.0 0.0 L-Dichlorobenzene ND 1.0 0.33 1,2-Diphylophenzene ND 1.0 0.3 L-Dichlylpheno									0.33	
Bis (2-chloroethyl) Ether ND 1.0 0.33 Bis (2-chloroisopropyl) Ether ND 1.0 0.3 Bis (2-ethylnexyl) Phthalate ND 1.0 0.33 4-Chloroaniline ND 1.0 0.0 Bis (2-ethylnexyl) Phthalate ND 1.0 0.33 4-Chloroaniline ND 1.0 0.0 Buylbenzyl Phthalate ND 1.0 0.33 4-Chloroaniline ND 1.0 0.0 2-Chlorophenol ND 1.0 0.33 4-Chloroaniline ND 1.0 0.0 2-Chlorophenol ND 1.0 0.33 Dibenzo(a,h)anthracene ND 1.0 0.0 Chrysene ND 1.0 0.33 Dibenzo(a,h)anthracene ND 1.0 0.0 1,2-Dichlorobenzene ND 1.0 0.33 Dibenzo(a,h)anthracene ND 1.0 0.0 1,2-Dichlorobenzene ND 1.0 0.33 J.3-Dichlorobenzene ND 1.0 0.0 2,4-Dichlorobenzene ND 1.0 0.33 Dibenzo(a,h)anthracene ND 1.0 0.0 2,4-Dichlorobenzene ND 1.0 0.33 Dibenzo(a,h)anthracene ND 1.0 0.0 2,4-Dichlorobenzene ND 1.0 0.33 Dibenzo(a,h)anthracene ND 1.0 0.0 2,4-Dintrolobenzene ND 1.0 0.33 Dibentyl Phthalate ND 1.0 0.0 2,4-Dintrolobenzene ND 1.0 0.33 Iz-Dintrolobenzene ND 1.0 0.0 1,4-Dintrolobene ND 1.0 0.33 Iz-Dintrolobene ND 1.0 0.0 1,4-Dintrolobene ND 1.0 0.33 Iz-Dintrolobene ND 1.0 0.0 1,6-octyl Phthalate ND 1.0 0.33 Iz-Dintrolobene ND 1.0 0.0 1,6-octyl Phthalate ND 1.0 0.33 Iz-Dintrolobene ND 1.0 0.0 1,6-octyl Phthalate ND 1.0 0.33 Isophorone ND 1.0 0.0 1,6-achloroocclopentadiene ND 1.0 1.6 Avexhlorobetradiene ND 1.0 0.0 2-Nitroaniline ND 1.0 1.6 Avexhlorobetradiene ND 1.0 0.0 2-Nitroaniline ND 1.0 1.6 Avexhlorobetradiene ND 1.0 0.0 1.2-Methylphenol (m,p-Cresol) ND 1.0 0.33 Naphthalene ND 1.0 0.0 1.2-Methylphenol ND 1.0 1.6 Nitrobenzene ND 1.0 0.0 1.2,4-Trichlorobenzene ND 1.0 0.33 Pyrene ND 1.0 0.0 1.2,4-Trichlorobenzene ND 1.0 0.33 Pyrene ND 1.0 0.0 2.4,6-Tirkhorophenol ND 1.0 1.6 Avitroaniline ND 1.0 0.0 2.4,6-Tirkhorophenol ND 1.0 0.33 Pyrene ND 1.0 0.0									0.33	
Bis (2-ethylhexyl) Phthalate ND 1.0 0.33 4-Bromophenyl Phenyl Ether ND 1.0 0.3 Burylbenzyl Phthalate ND 1.0 0.33 4-Chloroaniline ND 1.0 0.0 (C-Chloro3-methylphenol ND 1.0 0.33 2-Chloroanphthalene ND 1.0 0.0 (C-Chloro3-methylphenol ND 1.0 0.33 2-Chloroanphthalene ND 1.0 0.0 (C-Chloro3-methylphenol ND 1.0 0.33 Din-brulyl Phthalate ND 1.0 0.0 (D-Chrysene ND 1.0 0.33 Din-brulyl Phthalate ND 1.0 0.0 (1,2-Dichlorobenzene ND 1.0 0.33 J-Dichlorobenzene ND 1.0 0.0 (1,2-Dichlorobenzene ND 1.0 0.33 J-Dichlorobenzene ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 J-Dichlorobenzene ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 Dimethyl Phthalate ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 Dimethyl Phthalate ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 J-Dichlorobenzene ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 J-Dichlorobenzene ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 J-Dichlorobenzene ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 Dimethyl Phthalate ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 J-Dichlorobenzene ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 Li2-Diphenylhydrazine ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 Li2-Diphenylhydrazine ND 1.0 0.0 (1,4-Dichlorobenzene ND 1.0 0.33 Hza-Diphenylhydrazine ND 1.0 0.0 (1,2,3-cd) pyrene ND 1.0 0.33 Hza-Diphenylhydrazine ND 1.0 0.0 (1,2,3-cd) pyrene ND 1.0 0.33 Li2-Diphenylhydrazine ND 1.0 0.0 (2,4-drihylphenol (m,p-Cresol) ND 1.0 0.33 Li2-Diphenol (o-Cresol) ND 1.0 0.0 (2,4-drihylphenol (m,p-Cresol) ND 1.0 0.33 Naphthalene ND 1.0 0.0 (2,4-drihylphenol (m,p-Cresol) ND 1.0 1.6 Nitrosodi-n-propylamine ND 1.0 0.0 (2,4-drihylphenol ND 1.0 1.6 Pienanthrene ND 1.0 0.0 (2,4-drihylphenol ND 1.0 1.6 Pienanthrene ND 1.0 0.0 (2,4-drihylphenol ND 1.0 0.33 Pyrene ND 1.0 0.0 (2,4									0.33	
Butylbenzyl Phthalate ND 1.0 0.33 4-Chloroanitine ND 1.0 0.0 4-Chloro-3-methylphenol ND 1.0 0.33 2-Chloronaphthalene ND 1.0 0.0 Chlorophenol ND 1.0 0.33 2-Chloronaphthalene ND 1.0 0.0 Chrysene ND 1.0 0.33 Dibenzo(a,h)anthracene ND 1.0 0.0 1,2-Dichlorobenzene ND 1.0 0.33 1,3-Dichlorobenzene ND 1.0 0.33 1,4-Dichlorobenzene ND 1.0 0.33 Dibenzo(a,h)anthracene ND 1.0 0.3 2,4-Dichlorobenzene ND 1.0 0.33 Dientyl Phthalate ND 1.0 0.4 2,4-Dinitrotoluene ND 1.0 0.33 Z-6-Dinitrotoluene ND 1.0 0.33 2,4-Dinitrotoluene ND 1.0 0.33 Hexachlorobutadiene ND 1.0 0.4 2,4-Dinitrotoluene ND 1.0 <					······································				0.33	
4-Chioro-3-methylphenol ND 1.0 0.33 2-Chloronaphthalene ND 1.0 0.0 2-Chlorophenol ND 1.0 0.33 4-Chlorophenyl Ether ND 1.0 0.0 Chlorophenol ND 1.0 0.33 Dibenzofuran ND 1.0 0.0 Dibenzofuran ND 1.0 0.33 Dishozofa)anthracene ND 1.0 0.0 1.4-Dichlorobenzene ND 1.0 0.33 Ja-Dichlorobenzene ND 1.0 0.0 4.4-Dichlorophenol ND 1.0 0.33 Dientyl Pithalate ND 1.0 0.0 4.4-Dichlorophenol ND 1.0 0.33 Dientyl Pithalate ND 1.0 0.0 4.6-Dinitrotoluene ND 1.0 0.33 Floorene ND 1.0 0.0 4.6-Dinitrotoluene ND 1.0 0.33 Floorene ND 1.0 0.0 Pithalate ND 1.0 0.33 Floorene						er			0.33	
ND 1.0 0.33 4-Chlorophenyl Phenyl Ether ND 1.0 0.3 Chrysene ND 1.0 0.33 Dibenzo(a,h)anutracene ND 1.0 0.0 Dibenzo(a,h)anutracene ND 1.0 0.33 Dibenzo(a,h)anutracene ND 1.0 0.0 Jobenzofuran ND 1.0 0.33 Dibenzo(a,h)anutracene ND 1.0 0.0 L-Dichlorobenzene ND 1.0 0.33 Dibenzofuran ND 1.0 0.0 L4-Dichlorobenzene ND 1.0 0.33 Dibenzofurbenzene ND 1.0 0.33 L4-Dinchlyphenol ND 1.0 0.33 Dimethyl Phthalate ND 1.0 0.33 L4-Dinitrylphenol ND 1.0 0.33 Z-Dimethyl Phthalate ND 1.0 0.0 L4-Dinitrylphenol ND 1.0 0.33 Heachlorobulene ND 1.0 0.0 L4-Dichlorobenzene ND 1.0 0.33 Heachlorobulene <td>ž</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.66</td>	ž								0.66	
ND 1.0 0.33 Dibenzo(a,h)anthracene ND 1.0 0.3 Dibenzofuran ND 1.0 0.33 Din-buty Phthalate ND 1.0 0.3 1.2-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzene ND 1.0 0.0 1.4-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzene ND 1.0 0.0 2,4-Dichlorobenzene ND 1.0 0.33 Dimetryl Phthalate ND 1.0 0.0 2,4-Dinitroplenol ND 1.0 0.33 Dichryl Phthalate ND 1.0 0.0 6,4-Dinitroplenol ND 1.0 0.33 Ize-Dinitroplenol ND 1.0 0.0 1,4-Dinitrocloure ND 1.0 0.33 Ize-Dinitroplenol ND 1.0 0.0 1,4-Dinitrocloure ND 1.0 0.33 Ize-Dinitroplenol ND 1.0 0.0 1-backolorobenzene ND 1.0 0.33 Ize-Ninorotence									0.33	
Dibenzofuran ND 1.0 0.33 Din-butyl Phthalate ND 1.0 0.0 1,2-Dichlorobenzene ND 1.0 0.33 1,3-Dichlorobenzene ND 1.0 0.0 1,4-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzidine ND 1.0 0.0 4-Dichlorobenzene ND 1.0 0.33 Jiethyl Phthalate ND 1.0 0.0 2,4-Dimethylphenol ND 1.0 0.33 Dimethyl Phthalate ND 1.0 0.0 2,4-Dimitrotoluene ND 1.0 0.33 Z-Dimitrotoluene ND 1.0 0.0 0:n-octyl Phthalate ND 1.0 0.33 I,2-Diphenylhydrazine ND 1.0 0.0 Plavanthene ND 1.0 0.33 I,2-Diphenylhydrazine ND 1.0 0.0 Hexachlorobenzene ND 1.0 0.33 Isphenolehorotatiene ND 1.0 0.0 Hexachlorobenzene ND 1.0 0.33<				+		er			+	
1,2-Dichlorobenzene ND 1.0 0.33 1,3-Dichlorobenzene ND 1.0 0.0 1,4-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzidine ND 1.0 0.0 2,4-Dinethylphenol ND 1.0 0.33 Direthyl Phthalate ND 1.0 0.0 4,4-Dinethylphenol ND 1.0 0.33 Direthyl Phthalate ND 1.0 0.0 4,4-Dinethylphenol ND 1.0 0.33 2,6-Dinitrotoluene ND 1.0 0.0 4,6-Dinitro-2-methylphenol ND 1.0 0.33 1,2-Diphenylhydrazine ND 1.0 0.0 Pluoranthene ND 1.0 0.33 Fluorene ND 1.0 0.0 Hexachlorocyclopentadiene ND 1.0 0.33 Isophorone ND 1.0 0.0 Admitopic planuthine ND 1.0 0.33 Isophorone ND 1.0 0.0 Admitopic planuthine ND 1.0 0.33 </td <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td>				+						
1.4-Dichlorobenzene ND 1.0 0.33 3,3-Dichlorobenzidine ND 1.0 0.0 2,4-Dichlorophenol ND 1.0 0.33 Diethyl Phthalate ND 1.0 0.2 2,4-Dimethylphenol ND 1.0 0.33 Dimethyl Phthalate ND 1.0 0.2 4,6-Dinitro-2-methylphenol ND 1.0 1.6 2,4-Dinitrotoluene ND 1.0 0.33 2,4-Dinitrotoluene ND 1.0 0.33 1,2-Dinitrotoluene ND 1.0 0.1 2,4-Dinitrotoluene ND 1.0 0.33 1,2-Diphenylhydrazine ND 1.0 0.1 2,4-Dinitrotoluene ND 1.0 0.33 1,2-Diphenylhydrazine ND 1.0 0.0 A-Dinitrotoluene ND 1.0 0.33 1,2-Diphenylhydrazine ND 1.0 0.0 Fluoranthene ND 1.0 0.33 1,2-Dintorobutadiene ND 1.0 0.1 Hexachlorocyclopentadiene ND 1.0 0.33 Isophorone ND 1.0 0.2 Le										
2,4-Dichlorophenol ND 1.0 0.33 Diethyl Phthalate ND 1.0 0.0 2,4-Dimethylphenol ND 1.0 0.33 Dimethyl Phthalate ND 1.0 0.33 4,6-Dinitro-2-methylphenol ND 1.0 1.6 2,4-Dinitroblene ND 1.0 0.33 2,4-Dinitrotoluene ND 1.0 0.33 2,6-Dinitrotoluene ND 1.0 0. 0.1n-octyl Phthalate ND 1.0 0.33 1,2-Diphenylhydrazine ND 1.0 0. Fluoranthene ND 1.0 0.33 Hexachlorobutadiene ND 1.0 0. Hexachloroberzene ND 1.0 0.33 Isophorone ND 1.0 0. Ledenot, 2,3-cd) pyrene ND 1.0 0.33 Isophorone ND 1.0 0. 2-Methylnaphthalene ND 1.0 0.33 Z-Methylphenol (o_C-Cresol) ND 1.0 0. 2-Nitroaniline ND 1.0 1.6	· · · · · · · · · · · · · · · · · · ·								+	
2,4-Dimethylphenol ND 1.0 0.33 Dimethyl Phthalate ND 1.0 0.0 4,6-Dinitro-2-methylphenol ND 1.0 1.6 2,4-Dinitrophenol ND 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 2,4-Dinitrotoluene ND 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0										
A.6-Dinitro-2-methylphenol ND 1.0 1.6 2,4-Dinitrophenol ND 1.0 0.33 2,6-Dinitrotoluene ND 1.0 0.0										
2,4-Dinitrotoluene ND 1.0 0.33 2,6-Dinitrotoluene ND 1.0 0.0 Di-n-octyl Phthalate ND 1.0 0.33 1,2-Diphenylhydrazine ND 1.0 0.0 Fluoranthene ND 1.0 0.33 Fluorene ND 1.0 0.3 Hexachlorobenzene ND 1.0 0.33 Fluorene ND 1.0 0.4 Hexachlorobenzene ND 1.0 0.33 Iscohlorobutadiene ND 1.0 0.4 Indeno (1,2,3-cd) pyrene ND 1.0 0.33 Iscohlorobutadiene ND 1.0 0.3 2-Methylnaphthalene ND 1.0 0.33 Iscohlorobutadiene ND 1.0 0.0 2-Nitroaniline ND 1.0 0.33 Iscohlorobutadiene ND 1.0 0.0 2-Nitroaniline ND 1.0 1.6 3-Nitroaniline ND 1.0 1.0 4-Nitrophenol ND 1.0 1.6 Nitrobenzene <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.6</td>									1.6	
Di-n-octyl Phthalate ND 1.0 0.33 1,2-Diphenylhydrazine ND 1.0 0. Fluoranthene ND 1.0 0.33 Fluorene ND 1.0 0. Hexachlorobenzene ND 1.0 0.33 Hexachlorobutadiene ND 1.0 0. Hexachlorocyclopentadiene ND 1.0 0.33 Hexachlorochane ND 1.0 0. Indeno (1,2,3-cd) pyrene ND 1.0 0.33 Isophorone ND 1.0 0. 2-Methylnaphthalene ND 1.0 0.33 Isophorone ND 1.0 0. 3 &/or 4-Methylphenol (m,p-Cresol) ND 1.0 0.33 Naphthalene ND 1.0 0. 2-Nitroaniline ND 1.0 1.6 3-Nitroaniline ND 1.0 1.0 4-Nitrophenol ND 1.0 1.6 2-Nitroaniline ND 1.0 0. N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosod									0.3	
Fluoranthene ND 1.0 0.33 Fluorene ND 1.0 0. Hexachlorobenzene ND 1.0 0.33 Hexachlorobutadiene ND 1.0 0. Hexachlorocyclopentadiene ND 1.0 1.6 Hexachloroethane ND 1.0 0. Indeno (1,2,3-cd) pyrene ND 1.0 0.33 Isophorone ND 1.0 0. 2-Methylnaphthalene ND 1.0 0.33 Isophorone ND 1.0 0. 2-Methylnaphthalene ND 1.0 0.33 Naphthalene ND 1.0 0. 2-Nitroaniline ND 1.0 0.33 Naphthalene ND 1.0 1.0 4-Nitroaniline ND 1.0 1.6 3-Nitroaniline ND 1.0 1.0 1.0 4-Nitrophenol ND 1.0 1.6 Nitrobenzene ND 1.0 1.0 1.0 1.0 1.0 1.0 0.33 Pyrene ND								+	0.33	
Hexachlorobenzene ND 1.0 0.33 Hexachlorobutadiene ND 1.0 0. Hexachlorocyclopentadiene ND 1.0 1.6 Hexachloroethane ND 1.0 0. Indeno (1,2,3-cd) pyrene ND 1.0 0.33 Isophorone ND 1.0 0. 2-Methylnaphthalene ND 1.0 0.33 2-Methylphenol (o-Cresol) ND 1.0 0. 3 &/or 4-Methylphenol (m,p-Cresol) ND 1.0 0.33 Naphthalene ND 1.0 0. 2-Nitroaniline ND 1.0 1.6 3-Nitroaniline ND 1.0 1.0 4-Nitroaniline ND 1.0 1.6 2-Nitrophenol ND 1.0 1.0 4-Nitrophenol ND 1.0 1.6 Nitrobenzene ND 1.0 0. N-Nitrosodiphenylamine ND 1.0 1.6 Phenanthrene ND 1.0 0. 1,2,4-Trichlorobenzene ND 1.0 0.33 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.3</td></t<>									0.3	
Hexachlorocyclopentadiene ND 1.0 1.6 Hexachloroethane ND 1.0 0. Indeno (1,2,3-cd) pyrene ND 1.0 0.33 Isophorone ND 1.0 0. 2-Methylnaphthalene ND 1.0 0.33 2-Methylphenol (o-Cresol) ND 1.0 0. 3 &/or 4-Methylphenol (m,p-Cresol) ND 1.0 0.33 Naphthalene ND 1.0 0. 2-Nitroaniline ND 1.0 1.6 3-Nitroaniline ND 1.0 1.0 4-Nitroaniline ND 1.0 1.6 2-Nitrobenol ND 1.0 1.0 4-Nitrophenol ND 1.0 1.6 2-Nitrobenzene ND 1.0 1.0 N-Nitrosodiphenylamine ND 1.0 1.6 Nenanthrene ND 1.0 0. Phenol ND 1.0 0.33 N-Nitrosodi-n-propylamine ND 1.0 0. 1.2,4-Trichlorobenzene ND 1.0 0.33 2,	Hexachlorobenzene	ND	1.0	0.33	Hexachlorobutadiene		ND		0.3	
2-Methylnaphthalene ND 1.0 0.33 2-Methylphenol (o-Cresol) ND 1.0 0. 3 &/or 4-Methylphenol (m,p-Cresol) ND 1.0 0.33 Naphthalene ND 1.0 0. 2-Nitroaniline ND 1.0 0.33 Naphthalene ND 1.0 0. 2-Nitroaniline ND 1.0 1.6 3-Nitroaniline ND 1.0 1.0 4-Nitroaniline ND 1.0 1.6 2-Nitrophenol ND 1.0 1 4-Nitrosodiphenylamine ND 1.0 1.6 Nitrosodi-n-propylamine ND 1.0 0. N-Nitrosodiphenylamine ND 1.0 1.6 Phenanthrene ND 1.0 0. Pentachlorophenol ND 1.0 0.33 Pyrene ND 1.0 0. 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. 2,4,6-Trichlorophenol ND 1.0 0.33	Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane		ND	1.0	0.3	
3 &/or 4-Methylphenol (m,p-Cresol) ND 1.0 0.33 Naphthalene ND 1.0 0. 2-Nitroaniline ND 1.0 1.6 3-Nitroaniline ND 1.0 1.0 0. 2-Nitroaniline ND 1.0 1.6 3-Nitroaniline ND 1.0 1.0 1.0 4-Nitroaniline ND 1.0 1.6 2-Nitrophenol ND 1.0 1.0 4-Nitrophenol ND 1.0 1.6 Nitrobenzene ND 1.0 0. N-Nitrosodiphenylamine ND 1.0 1.6 Nitrobenzene ND 1.0 0. Pentachlorophenol ND 1.0 0.33 N-Nitrosodi-n-propylamine ND 1.0 0. Phenol ND 1.0 0.33 Pyrene ND 1.0 0. 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. %SS1: 85.	Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone		ND	1.0	0.3	
2-Nitroaniline ND 1.0 1.6 3-Nitroaniline ND 1.0 1 4-Nitroaniline ND 1.0 1.6 3-Nitrophenol ND 1.0 1 4-Nitrophenol ND 1.0 1.6 2-Nitrophenol ND 1.0 1 4-Nitrophenol ND 1.0 1.6 Nitrobenzene ND 1.0 0 N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine ND 1.0 0. Pentachlorophenol ND 1.0 0.33 Pyrene ND 1.0 0. Phenol ND 1.0 0.33 Pyrene ND 1.0 0. 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. %SS1: 85.4 %SS2: 81.6 89.1 6SS5: 83.9	2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)		ND	1.0	0.3	
4-Nitroaniline ND 1.0 1.6 2-Nitrophenol ND 1.0 1 4-Nitrophenol ND 1.0 1.6 Nitrobenzene ND 1.0 0. N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine ND 1.0 0. N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine ND 1.0 0. Pentachlorophenol ND 1.0 0.33 Pyrene ND 1.0 0. Phenol ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. 1,2,4-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. %SS1: 85.4 %SS2: 81.6 89.1 48.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5	3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.33	Naphthalene		ND	1.0	0.3	
A-Nitrophenol ND 1.0 1.6 Nitrobenzene ND 1.0 0. N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine ND 1.0 0. Pentachlorophenol ND 1.0 1.6 Phenanthrene ND 1.0 0. Phenol ND 1.0 0.33 Pyrene ND 1.0 0. 1.2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. %SS1: 85.4 %SS2: 81.6 89.1 6853: 90.3 %SS6: 77.2 90.3 77.2 90.3 90.55: 77.2 90.3 90.55: 77.2 90.55: 77.2 90.55: 90.55: 77.2 90.55: 90.55: 90.55: 77.2 90.55: 90.55: 77.2 90.55: 90.55: 77.2 90.55: <		****	1.0	1.6			ND	1.0	1.6	
N-Nitrosodiphenylamine ND 1.0 0.33 N-Nitrosodi-n-propylamine ND 1.0 0. Pentachlorophenol ND 1.0 1.6 Phenanthrene ND 1.0 0. Phenol ND 1.0 0.33 Pyrene ND 1.0 0. 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. Surrogate Recoveries (%) %SS1: 85.4 %SS2: 81.6 %SS5: 83.9 %SS6: 77.2									1.6	
Pentachlorophenol ND 1.0 1.6 Phenanthrene ND 1.0 0. Phenol ND 1.0 0.33 Pyrene ND 1.0 0. 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. 2,4,6-Trichlorophenol ND 1.0 0.33								1.0	0.3	
ND 1.0 0.33 Pyrene ND 1.0 0.0 1,2,4-Trichlorobenzene ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. 2,4,6-Trichlorophenol ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. %SS1: 85.4 %SS2: 81.6 89.1 %SS5: 83.9 %SS6: 77.2 Comments:						;			0.3	
ND 1.0 0.33 2,4,5-Trichlorophenol ND 1.0 0. 2,4,6-Trichlorophenol ND 1.0 0.33					······································				0.3	
ND 1.0 0.33 Surrogate Recoveries (%) %SS1: 85.4 %SS2: 81.6 %SS3: 90.3 %SS4: 89.1 %SS5: 83.9 %SS6: 77.2									0.3	
Surrogate Recoveries (%) %SS1: 85.4 %SS2: 81.6 %SS3: 90.3 %SS4: 89.1 %SS5: 83.9 %SS6: 77.2 Comments:					2,4,5-1richlorophenol		ND	1.0	0.3	
%SS1: 85.4 %SS2: 81.6 %SS3: 90.3 %SS4: 89.1 %SS5: 83.9 %SS6: 77.2 Comments:	2,4,0-1 richlorophenol	ND			ecoveries (%)					
%SS3: 90.3 %SS4: 89.1 %SS5: 83.9 %SS6: 77.2 Comments:	%SS1	85		- Jente IX			Q1	6	r	
%SS5: 83.9 %SS6: 77.2 Comments: 77.2 77.2 77.2									<u>با</u> ا	
Comments:					······································					
						na sa			_	
water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-		extracts are reported	in µg/L	, soil/shu	lge/solid samples in mg/kg. w	vipe samples	in ug/wine. produ	ct/oil/non	<u>-</u>	
									Ĺ	

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

AUG 1 5 2003 MFG. Inc

McCampbell Analy						20 Fax : 925-798-1622 8-mail: main@mccampbel	l.com	
Alpha Analytical Laboratories	Client Proje	ct ID:	#A307	/601	Date Samp	oled: 07/24/03		
208 Mason Street					Date Rece	ived: 07/29/03		
Ukiah, CA 95482	Client Cont	act: Sl	heri Spe	aks	Date Extra	cted: 07/29/03		
Okiali, CA 95462	Client P.O.:				Date Anal	yzed: 07/30/03-0	8/01/0	3
	Semi-Volatile	Orgai	nics by (GC/MS (Basic Targ	et List)*			
Extraction Method: SW3550C		An	alytical Met	hod: SW8270D		Work	Order: 03	307485
Lab ID				0307485-016	A			
Client ID				WO-10(5.0-5.	75')			
Matrix				Soil				
Compound	Concentration *	DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit
Acenaphthene	ND<3.3	10	0.33	Acenaphthylene		ND<3.3	10	0.33
Anthracene	ND<3.3	10	0.33	Benzidine		ND<16	10	1.6
Benzoic Acid	ND<16	10	1.6	Benz(a)anthracene		ND<3.3	10	0.33
Benzo(b)fluoranthene	ND<3.3	10	0.33	Benzo(k)fluoranthene		ND<3.3	10	0.33
Benzo(g,h,i)perylene	ND<3.3	10	0.33	Benzo(a)pyrene		ND<3.3	10	0.33
Benzyl Alcohol	ND<6.6	10	0.66	Bis (2-chloroethoxy) Me	thane	ND<3.3	10	0.33
Bis (2-chloroethyl) Ether	ND<3.3	10	0.33	Bis (2-chloroisopropyl) I		ND<3.3	10	0.33
Bis (2-ethylhexyl) Phthalate	ND<3.3	10	0.33	4-Bromophenyl Phenyl H		ND<3.3	10	0.33
Butylbenzyl Phthalate	ND<3.3	10	0.33	4-Chloroaniline		ND<6.6	10	0.66
4-Chloro-3-methylphenol	ND<3.3	10	0.33	2-Chloronaphthalene		ND<3.3	10	0.33
2-Chlorophenol	ND<3.3	10	0.33	4-Chlorophenyl Phenyl I	Ether	ND<3.3	10	0.33
Chrysene	ND<3.3	10	0.33	Dibenzo(a,h)anthracene		ND<3.3	10	0.33
Dibenzofuran	ND<3.3	10	0.33	Di-n-butyl Phthalate		ND<3.3	10	0.33
1,2-Dichlorobenzene	ND<3.3	10	0.33	1,3-Dichlorobenzene		ND<3.3	10	0.33
1,4-Dichlorobenzene	ND<3.3	10	0.33	3,3-Dichlorobenzidine		ND<6.6	10	0.60
2,4-Dichlorophenol	ND<3.3	10	0.33	Diethyl Phthalate		ND<3.3	10	0.33
2,4-Dimethylphenol	ND<3.3	10	0.33	Dimethyl Phthalate		ND<3.3	10	0.33
4,6-Dinitro-2-methylphenol	ND<16	10	1.6	2,4-Dinitrophenol		ND<16	10	1.6
2,4-Dinitrotoluene	ND<3.3	10	0.33	2,6-Dinitrotoluene		ND<3.3	10	0.33
Di-n-octyl Phthalate	ND<3.3	10	0.33	1,2-Diphenylhydrazine		ND<3.3	10	0.3
Fluoranthene	ND<3.3	10	0.33	Fluorene		ND<3.3	10	0.33
Hexachlorobenzene	ND<3.3	10	0.33	Hexachlorobutadiene		ND<3.3	10	0.3
Hexachlorocyclopentadiene	ND<16	10	1.6	Hexachloroethane		ND<3.3	10	0.3
Indeno (1,2,3-cd) pyrene	ND<3.3	10	0.33	Isophorone		ND<3.3	10	0.3
2-Methylnaphthalene	ND<3.3	10	0.33	2-Methylphenol (o-Cres	ol)	ND<3.3	10	0.3
3 &/or 4-Methylphenol (m,p-Cresol)	ND<3.3	10	0.33	Naphthalene		ND<3.3	10	0.3
2-Nitroaniline	ND<16	10	1.6	3-Nitroaniline		ND<16	10	1.6
4-Nitroaniline	ND<16	10	1.6	2-Nitrophenol		ND<16	10	1.6
4-Nitrophenol	ND<16	10	1.6	Nitrobenzene		ND<3.3	10	0.3
N-Nitrosodiphenylamine	ND<3.3	10	0.33	N-Nitrosodi-n-propylam	ine	ND<3.3	10	0.3
Pentachlorophenol	ND<16	10	1.6	Phenanthrene		ND<3.3	10	0.3
Phenol	ND<3.3	10	0.33	Pyrene		ND<3.3	10	0.3
1,2,4-Trichlorobenzene	ND<3.3	10	0.33	2,4,5-Trichlorophenol		ND<3.3	10	0.3
2,4,6-Trichlorophenol	ND<3.3	10	0.33					
			rogate R	ecoveries (%)				
%SS1:	71.			%SS2:		84		f
%SS3:	83.			%8S4:		83		
%SS5:	70.	/		%SS6:		72	.0	
Comments: j								
water samples and all TCLP & SPLP	extracts are reported	in µg/l	., soil/slud	lge/solid samples in mg/kg	g, wipe samp	les in µg/wipe, produ	ct/oil/no	n- 🖵
queous liquid samples in mg/L.								C

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

•

Angela Rydelius, Lab Manager

AUG 1 5 2003 MFG, Inc.

QC SUMMARY REPORT FOR SW8270D

				Matrix:	S				WorkOrder:	0307485
EPA Method: SW8270D	E	Extraction:	SW3550C		BatchID:	8000	S	piked Sampl	e ID: 03074	95-002A
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Acenaphthene	ND	2	71.6	68.8	3.86	95.9	97.4	1.55	30	130
4-Chloro-3-methylphenol	ND	4	84.5	84.2	0.302	97.8	97	0.816	30	130
2-Chlorophenol	ND	4	86.6	85.4	1.44	96.8	96.1	0.679	30	130
1,4-Dichlorobenzene	ND	2	79.2	77.2	2.56	99.6	100	0.531	30	130
2,4-Dinitrotoluene	ND	2	83	79.2	4.60	92.6	93.6	1.01	30	130
4-Nitrophenol	ND	4	85.3	87.7	2.78	92.8	93.4	0.677	30	130
N-Nitrosodi-n-propylamine	ND	2	117	117	0	103	106	2.78	30	130
Pentachlorophenol	ND	4	57.1	55.6	2.66	90.5	90.4	0.0719	30	130
Phenol	ND	4	86.4	84.6	2.15	97.1	97.5	0.401	30	130
Pyrene	ND	2	73.4	69.8	5.07	90.4	90.6	0.133	30	130
1,2,4-Trichlorobenzene	ND	2	72.4	70	3.44	94.5	95.5	1.07	30	130
%SS1:	94.5	100	91.7	89.1	2.95	98.7	101	2.52	30	130
%SS2:	96.9	100	99.4	91.7	8.14	110	110	0	30	130
%SS3:	101	100	99.7	95	4.83	96.9	97.6	0.811	30	130
%SS4:	88.5	100	83.6	80.2	4.15	97.7	98.5	0.752	30	130
%\$\$\$;	101	100	106	98	8.06	103	98.1	4.97	30	130
%SS6:	84.8	100	81.9	77.5	5.60	89.7	89.8	0.148	30	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

RECEIVED

AUG 1 5 2003

MFG, Inc.

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

& = low or no surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8270D

				Matrix:	S				WorkOrder:	0307485
EPA Method: SW8270D	6	Extraction:	SW3550C	;	BatchID:	7980	S	piked Samp	le ID: 03074	63-001A
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Acenaphthene	ND	2	95.2	94.5	0.696	83.5	83.3	0.192	30	130
4-Chloro-3-methylphenol	ND	4	92.4	92.8	0.383	104	103	1.40	30	130
2-Chlorophenol	ND	4	86.1	85.9	0.192	97.1	96.6	0.547	30	130
1,4-Dichlorobenzene	ND	2	86.3	86	0.348	92.6	90.8	1.91	30	130
2,4-Dinitrotoluene	ND	2	89.2	85.5	4.19	98	97.9	0.153	30	130
4-Nitrophenol	ND	4	100	102	1.80	84.8	85.2	0.488	30	130
N-Nitrosodi-n-propylamine	ND	2	118	117	1.16	116	117	1.30	30	130
Pentachlorophenol	ND	4	81.6	81.9	0.385	74.2	74	0.148	30	130
Phenol	ND	4	90.1	88.9	1.33	96.6	94.8	1.89	30	130
Pyrene	ND	2	73.5	73.3	0.368	80.7	80.7	0	30	130
1,2,4-Trichlorobenzene	ND	2	81.8	83.9	2.54	89.6	89.5	0.156	30	130
%SS1:	93.5	100	93.7	93.7	0	86.7	87.6	0.981	30	130
%SS2:	83.4	100	92.4	90.6	1.98	97.3	96.3	1.07	30	130
%SS3:	94.6	100	98.1	98	0.129	95.9	95.5	0.455	30	130
%SS4:	81.3	100	83.2	83	0.254	84.3	83.8	0.603	30	130
%SS5:	81.4	100	93.9	91.3	2.80	87.4	91.4	4.45	30	130
%SS6:	87.7	100	89.6	88.6	1.10	81.3	81.6	0.402	30	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

RECEIVED

AUG 1 5 2003

MFG, Inc.

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

& = low or no surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CT NO: 03.02.2.1.1. PROJECT NAME: Sec. Didl: 2.12.4.0. DATE: 2.12.4.0.0. DATE: 2.12.4.0.0. DATE: 2.12.4.0.0. DATE: 2.12.4.0.0. DATE: 2.12.4.0.0. DATE: 2.12.4.0.0.0. DATE: 2.12.4.0.0.0. DATE: 2.12.4.0.0.0. DATE: 2.12.4.0.0.0. DATE: 2.12.4.0.0.0.0.0.0.0.0.0.0.0.0. DATE: 2.12.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. DATE: 2.12.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	. Creata Office □ 165 G Street, Suite E Arcata, CA 95541-5817 Fex: (707) 826-8430 Fex: (707) 826-8437	□ Boulder Office 4900 Pearl East Circle Suite 300W Boulder, CO 80301-6118 Tei: (303) 447-1823 Teix: (303) 447-1836	CHAIN-OF-CUS' Irvine Office 17770 Cartwright Road Suite 500 Tel: (949) 253-2954 Fax: (949) 253-2954	STODY RECORD A Costum Office X 53 P.O. Box 30 P.O. Box 30 S3873-0030 S3873-0030 Fax. (208) 556-6311 Fax. (208) 556-7271 Phone	D AND REQUEST FOI X San Francisco Office 180 Howard Street, Suite 200 180	EST FOR ANALYSIS fice □Seattle Office 19203 36th Avenue W. 197 Ustramod, WA 98036-5707 6415) 495-7107 Tel: (425) 921-4000 Fax: (425) 921-4040	v	COC No. 43252
Efficiency PROLECT MANAGER: Ed. John: PROLECT MANAGER: Ed. John: PROLECT MANAGER: DATE: Frazero DOF SHIPMENT: Jake Analysis Recuest Analysis Recuest Analysis Recuest Amarcel Sample Preservation Containers Constituent/Merinol Handing Hernation Amarcel Sample Preservation Containers Constituent/Merinol Handing Hernation Remote DATE Time af Eq. 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;	PROJECT NO:	-	L	VAME: S	دباذ	Industries	PA	- OF
SAMPLES SAMPLE SAMPLES Construction Construction Construction	SAMPLER (Signatur METHOD OF SHIPN	VT: Lab (PROJECT MI ARRIER/WAYBIL		Contri I	A	Arehytical
Field Sample Preservation Identified Handling Remarks Field DATE Time APC			SAMPLES				ANALYSIS REQ	UEST
Field Field DATE TIME # HCI QSSP 6.4 & SSSP 6.4 & SSSSP 6.4 & SSSSP 6.4 & SSSSP 6.4 & SSSSP 6.4 & SSSSSSSSSSSSP 6.4 & SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS			Sample	Preservation	Container		┣	Remarks
(1.0.1) 7/24/03 9:00 50 X 9:00 50 X	Fiel	d Ple offici	T	^t SO ^t H ³ ON	(wijoz) Nornwe	VOCS 8260 VOCS 8260 VOCS 8270 VOCS 8270 VOCS 8270 VOCS 8260	HSUR HOLD HOLD	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	andri	9 , 00	1	201		J X	-109/021
3 (6.0 - 6.5') 9:20 次 55 67 7 5 67 7 <th7< th=""> <th7< th=""> 7</th7<></th7<>	1	() ()				××	x X	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ų ų	(i)	1		1	XX		1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	י גיאי גיאי גיאי			×			X	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(5,5-	(e.25')	1	×		× X	×	ı .Ci
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(8.5 ')			- X			×	
x' (3.25') $ 0:40$ (50 χ $ x' $ $ x' $ χ' $ x' $ χ' $ x' $ χ' $ x' $ $ $	(8.5-9	SZ		X		XXX	X	' VE
5 $(3.25'-4,0)$ $ 0:4050$ $ X $ $ 20 $ $ X $	5 (3.25			×			× *	ED
S (8.0') V II:00 SO SO SO A INTURE PRINTED NAME TOTAL NUMBER OF CONTAINERS TOTAL NUMBER OF CONTAINERS COOLE COOLE INATURE PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME INATURE PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME INATURE PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME INATURE PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME INATURE PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME INATURE PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME INATURE PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME INATURE PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME INATURE PRINTED NAME PRINTED NAME TIME TIME SIGNATURE PRINTED NAME	 ភ	(0,4.		×,	:	X X X -		
TOTAL NUMBER OF CUMANNES COLOR RELINCUISHED BY: RELINCUISHED BY: RECIEVED BY: RELINCUISHED BY: RECIEVED BY: PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME Christophe Spill MEG-SF 7/28/03 7/35/33 N/MUGUUS M/MHUUC M/M OULL DALK M25/03 15.540 D.5000L D/M	ហ	(11:00			ξ		
RELINOUISHED BY: RELINOUISHED BY: PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME Christophe Sp. 11 MFG-SF JUL JOLK MMAFieure JOLK MMAFieure 15:34.0 D. North Printed Name				TOTAL NUMBER	Ч			-
PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME PRINTED NAME Christophe South MEG-SF 7/25/03 11:35 M.M.M. 2002 KO SSOCCE AL		RELINQUISHED BY:					RECIEVED BY:	-
- Christophe Seil MER-SF 7/25/03 1/35 M.Machue J. MMHHUIC ALA UNU Jack Milthreuse 7/05/03 15:40 B. Speeks S Speeks ALP	SIGNATURE	PRINTED NAME			TIME	SIGNATURE	PRINTED NAME	
Univ Jack MATRANC 19:40 B. Speck & Speck		Chestholes Cont	MFG-S		5012	Martinos	J. MATHIWC	Alaha
		Jack MAThew		7/25/0	3 15:4	B. Speeks	M	2 HPPhA
				ا		-		

Encloted No. <u>63.627.91.11</u> PROJECT NAME: Siter, Activity Control Date: 71.61.3 Encloted Supprise). Date: 71.61.41.41.41.41.41.41.41.41.41.41.41.41.41	. □ Arcata Office □ Bc 1165 G Street. Suite E 49 Arcata, CA 95521-5817 Bc Tei: (707) 826-8437 Te Fax: (707) 826-8437 Te	□ Boulder Office 4900 Pearl East Circle Sulte 300W Bouldar C0 80301-6118 Tel: (303) 447-1823 Tel: (303) 447-1836 Fax: (303) 447-1836	CHAIN-OF-CUSTODY RECORD AND REQUEST Chaine Office Post office 17770 Cationight Road Name React Suite 200 Suite 500 Suite 500 Su	TODY RECOR □ Osburn Office P.O. Box 30 Wellace. ID 83873-0030 Tel: (206) 556-6811 Fax: (208) 556-7271	CORD AND REQUEST FOI San Francisco Office 180 Howard Street, Suite 200 5an Francisco, CA 94105-1617 San Francisco, CA 94105-1617 Phone (415) 485-7110 - Fax (415) 485-7107	REQUE Incisco Offi treet, Suite 200 , CA 94105-16 95-7110 - Fax (• FOF	FOR ANALYSIS Seattle Office 19203 36th Avenue W. Sumwood. WA 98036-5707 Tel: (425) 921-4000 Fax: (425) 921-4040	SIS /enue W	СОС	COC No. 43253	
PROJECT MANAGER. Ed. Codi. DATE: 7/5/3 dETHOD OF SHIPMENT. LAJ Curic CARRIERWAYBIL NO. DESTINATION: JAN. AMALER (Signature). AMALER (Signature). DESTINATION: JAN. DATE: 7/5/3 ARTHOD OF SHIPMENT. LAJ Curic CARRIERWAYBIL NO. DESTINATION: JAN. AMALER (Signature) Amary Sis REQUEST Amary Sis REQUEST Amary Sis REQUEST Amary Sis REQUEST Remittation Date The Remit of Remittation Date The Remittation Containers Amary Sis REQUEST 00-6 (14, S ⁻) The Remit of Remittation The Remittation Containers Containers Amary Sis REQUEST 00-6 (14, S ⁻) The Remit of Remittation The Remittation Containers Amary Sis REQUEST Remittation 00-6 (14, S ⁻) The Remittation The Remittation Containers Containers Containers 00-6 (14, S ⁻) The Remittation The Remittation The Remittation Containers Containers Remittat		5				مدني. مدني		stries		PAGE:	Z 0F:	
EFIND OF SHIPNENT: LA Cavic CARRENVABIL NO: A Price Service And A Marking Field A Mark Strengts Frequencial A Mark Strengt Streng	SAMPLER (Signature			PROJECT M	ANAGER:	P.J				DATE:	°/22/⊥	
SAMPLES AMALYSIS REGLEST SAMPLES AMALYSIS REGLEST SAMPLES SAMPLES SAMPLES SAMPLES SAMPLE AMALYSIS REGLEST SAMPLE SAMPLES SAMPLE AMALYSIS REGLEST SAMPLE AMALYSIS REGLEST BAMPLE AMALYSIS REGLEST BAMPLE AMALYSIS REGLEST BAMPLE AMALYSIS REGLEST BAMPLE DATE TAPALIED IN TAPE Construction AMALYSIS REGLEST DOTE TAPALIED IN TAPE COLDITION DOTE AMALYSIS REGLEST Construction AMALYSIS REGLEST Construction CONTINUE COLDITION COLSPANE Construction COLDITION COL COLDITION <th colspa="</td"><td>METHOD OF SHIPM</td><td>NT: LAB C</td><td>uricr</td><td>ARRIER/WAYBII</td><td>LL NO:</td><td>١</td><td></td><td>DESTIN</td><td>1</td><td>pha</td><td>haly trad</td></th>	<td>METHOD OF SHIPM</td> <td>NT: LAB C</td> <td>uricr</td> <td>ARRIER/WAYBII</td> <td>LL NO:</td> <td>١</td> <td></td> <td>DESTIN</td> <td>1</td> <td>pha</td> <td>haly trad</td>	METHOD OF SHIPM	NT: LAB C	uricr	ARRIER/WAYBII	LL NO:	١		DESTIN	1	pha	haly trad
Field Sample Preservation Constituents/Method Handling Remarks 0-5 (B, 0) 7 0 7 2			SAMPLES						ANALYSI		31	
Field Sample Date Time Matrix Field Sample 10-5 (B.0-8.35') 3129/Jgs 11/2 25<			Sample	Preservation		Containers		tuents/Metho		ð	Remarks	
(1)-5 (9.0-5) 371 11 X X X A A A A A A A A A X	Field Sampl	U U	E T T	l ⁵ 2O⁵ HO ³		LAbE* (ml/oz)	2109 576412L 0928 5700	6808 2009	нз∩я ногр	GRAGNATS		
(0-6 (1,5.') (1,5.525') (1,9.55) (1,1.55)	10-5 (6	(1)	11/80		1	5		X X		È		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			11.30	×		5		· · · · · · · · ·		X		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-2'h)		1		6	*		×			R	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(10,6)			, Х								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(9.0				0-	-	× -	×			江	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C 4.0				(1)						1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		75')		× 		1=		×		с. Х		
(B.O - B. 35') 12:40 SD X Y X							3 X			, X		
(3.25) Value	-0.8) f-	5f			0		•	X				
RELINQUISHED BY: RECIEVED BY: RELINQUISHED BY: RECIEVED BY: PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME Christhelber Srill MEA-SF Thr/o3 T/125/03 Mark Michtarc J/15/03 Mark Michtarc J/15/03 Mark Mark and Status St. Studie Mark Analaeous So-seil Ststudie Petroteum A-at ID-oten	\sim							ORY COMMENT				
RELINOUISHED BY: RECIEVED BY: PRINTED NAME COMPANY DATE TIME SIGNATURE RECIEVED BY: PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME VW Christopher Spill MFA-SF 7/35/03 1/35/03 N/MATHUNC M VW dariet MAHA.ucc 7/45/63 1/5:440 Signature Signature M VK Matrix 40-agneous 80-sell St-studge P-petroteum A-at IDT-other Containers: P-platic G-gass T-tellon B-nose IDT-other Containered Printend						\neg					COOLEL LELLIP.	
PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME PRINTED NAME Christopher Si II MEA-SF 7/25/03 1/1:35 Mathua J. MAThuac H. Mathuac J. MAThuac H. Mathuac J. MAThuac H. Mathuac J. MAThuac H. Mathuac J. MAThuac J. MAThuac H. Mathuac J. J. Janua J. J. MAThuac J. Janua J. MAThuac J. Janua J. MAThuac J. Janua J. Janua J. J. MAThuac J. Janua J. J. MAThuac J. Janua J.		RELINQUISHED BY:				1			RECIEV			
W Christopher Spill MEG-SF 7/25/03 7/25/03 Matthun N. MAthun N. MAthun M. Mathun N. M. Mathun M.	SIGNATURE	PRINTED NAME	COMPAN			IME	SIGNA	TURE	PRINTEL	O NAME	COMPANY	
W dark MKHh (u.s. VEX Matrix: A0-aqueous S0-soli SL-shudge P-petroleum A-air OT-other Containers: P-plastic 6-glass T-tellon B-brass OT-other Filtration: F-littered U-untilitered	2	is in the Soi	MFG-	ISAL	14	2503	an man	chus	~ 1	heur	Alpha	
Matrix: A0-aqueous NA-nonaqueous S0-soil SL-sludge P-petroleum A-air 0T-other Containers: P-plastic G-glass T-terlion B-brass 0T-other Filtration:	Laik Matthew	dark MAthiu			Ŕ	Ł	A A	Pak	3	Re Ko	YULONA ABORATORY	
		Matrix:	SO - Soil	etroleum A-air DT	Containers:	1 1 1		07 - other	ation: F - filtered U - uni	filtered		

□ Arcata Office Arcata. CA 95521-5817 Arcata. CA 95521-5817 Tel: (707) 826-8430 Fax: (707) 826-8437	□ Boulder Office 4900 Pearl East Circle Suite 300W Boulder, CO 80301-6118 Tel: (303) 447-1823 Tel: (303) 447-1836 Fax: (303) 447-1836	□ Irvine Office 17770 Cartwright Road Suite 500 Irvine, CA 92614-5850 Tel: (949) 253-2954 Fax: (949) 253-2954	LJ	Osburn O P.O. Box 3 Wallace, I, 83873-00 Tel: (208) Fax: (208)	□Osburn Office P.O. Box 30 Wallace, ID 83873-00555-6811 Tel: (208) 556-7271 Fax: (208) 556-7271	San Fra Phone	X San Francisco Office 180 Howard Street, Suite 200 San Francisco, CA 94105-1617 Phone (415) 495-7110 – Fax (415) 495-7107	cisco O at, Suite 20 A 94105- 7110 - Fa	office 00 1617 ax (415) 4	t95-7107		title Utit 03 36th 101 nwood, 1 (425) 9 : (425) 9	Caatile Office 19203 36th Avenue W. Suita 101 Lymrwood, WA 98036-5707 Tel: (425) 921-4000 Fax: (425) 921-4040	v. 5-5707				
PROJECT NO:	030221.14	PROJEC	L NAN	AE:	U U U	Sierra	Preilie		Tot I	Produstries	دح					PAGE:	m m r	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Jap	Gurler	CAR	RIER/	CARRIER/WAYBILL NO:			L		f l		ESTI	DESTINATION:	Ż	Alp	pha A	3 I	22
		SAMPLES												ANALYSIS		REQUEST	11	
		Sample		Prese	Preservation			Containers	ers	Cons	Constituents/Method	s/Meth	po	Handling	lling		Remarks	ks Ks
Fi San Identif	Field Sample Identification	DATE TIME	Matrix* HCI	80NH	COFD H ⁵ 20 [⊄]			±۲۲۹۲ (ml/oz)	ON	21052 8540 14412 808 1056 8260	10.11+6+193T	0808 278	trober 6010 New Mamils	нзпы Ногр	QAAQNATS			
W0-8 (3.25-	ų.o, h	7/24/03 13:10	8		+		5	6	-		\mathbf{x}	X	X		X	H3	09 FO	16-10
		06:21 1			×		ES	53	M	X					X			Ba
-8 (6.0	-6.75')	08:21	Sð		X		6			\sim	\times \times	X	X		X		ľ	93
0.4.)	(00;h1	Я		X		Sa	Er	3	X	-				X,		RE AL	Re L
	(1,0-4,75')	00; 11	ی ا		X		je I	م			X	X	X		X	MF		05
	(02:h1	So		X		Ś	لَكْ	2	X					×	G,	5	90
	(1,54.8-0.8)	07:141	R		X		5	T	_	4	X	X	X		X	Ind.	200	$\sqrt{\mathbf{I}}$
01-	oʻ)	54:41	R		\times		5			$\overline{\times}$					×		3	= h
(10-10 (J.o.)	(15:00			\times		5	ĔŻ	m	×					X			
W0-10 (9.0	(, St. 6-0.6)	V 15:00	2				9"		=		X	<u>NME</u>	X		XXXXX X X X X X X	S.	F	
				101	AL NUMBE		NIAINEH	(ق									Cooler lemp	:d u b:
	RELINQUISHED BY:													RECI	RECIEVED BY:	÷		
SIGNATURE	PRINTED NAME	COM	COMPANY		DATE			TIME		SIGN	SIGNATURE			PRIN	PRINTED NAME	ME	CO	COMPANY
EL EL	- Chrishahur Sill	MFG-SI	٦	1	125/0-	3	7/25/7	203		γ/m	the	S		WH4	Hhus	Y	1Apr	19
al Marden	Jacy Mathews				725/	3	15%	40	60	Â	al al	K	()	Ņ	ge	R	R N	ABORATORY
/	>									-								
	+ <u>KEY</u> Matrix AQ - aqueo	Matrix: AD - aqueous NA - nonaqueous SO - soli SL - sludge P - petroleum A - air OT - other	il SL-studge P-p	- petroleum	oleum A - air 07 - c		Containers: P - plastic G - glass T - tellon B - brass	- plastic G -	Vastic G - glass T - teflon	effon B - br	ass 07 - other		Filtration: F	F - filtered U	U - unfiltered			

□ Arcata Office □ Arcata Office 165 G Street, Suite E Artata, CA 95251-5617 Telt. (707) 826-8437 Fax: (707) 826-8437	Boulder Office 4900 Pearl East Circle 80466, CO 80301-6118 Boulder (303) 447-1836 Fax: (303) 447-1836	CHAIN-OF-CU □ Irvine Office 17770 Cartwright Road 17770 Cartwright Road Irvine, CA 92614-5850 Tel: (949) 253-2954 Fax: (949) 253-2954)F-CUS ight Road 3-2954 3-2954		24 Box 5 (0. Box 5 Vallace, 1 3873-00 et: (208)	DPY RECOF Doburn Office Doburn Office Doburn Office Bar75-0050 Sam		, INC AND San Fi Francisco re (415) 4	BEC BEC Street, Sulf Street, Sulf Street, Sulf B5-7110-	DUE 00 05-1617 05-1617	MFG, INC. USTODY RECORD AND REQUEST FOR ANALYSIS Cosburn office PO Box 30 Cosburn office PO Box 30 Po Howard Street, Suite 200 San Francisco, CA 94105-1617 Phone (415) 495-7110 - Fax (415) 495-7107 Part (202) 556-8011 Phone (415) 495-7110 - Fax (415) 495-7107 Part (202) 556-8711 Phone (215) 556-871	OR /	NNAI Seattle O Suite 101 Suite 101 Fax: (425	LYSI Mffice th Avenu d, WA 96 0, 21-400) 921-400	ANALYSIS Seatle Office 158eathe Office Suite 101 Lymwood, WA 98036-5707 Tel: (425) 921-4000 Fax: (425) 921-4040		0		•	COC No. 43255	
PROJECT NO: <u>O3</u> SAMPLER (Signature): <u>C</u> METHOD OF SHIPMENT	030229,14 ture): 2000 PMENT: Lab	Course P	PROJECT	CT NAME: PF CARRIE	PRO. RER/	JECT WAY	' NAME: Sicro PROJECT MANAGE CARRIER/WAYBILL NO:			HBI	Industries Ed Conti	it.	ν DES	TINA	ک DESTINATION:	1	PAGE: DATE: Alpha A.	に で よ よ よ よ	t Izs ytic	0F: 4 /03 L	
		SAMPLES	LES												ANA	ANALYSIS	REQUEST	JEST			
		Sai	Sample	ļ	Pres	Preservation	L L		Conta	Containers		Constituents/Method	nts/Me	thod	Hai	Handling			Remarks	ırks	
E Sar	Field Sample Identification	DATE	H M Matrix*	HCI	100 ³	tos ^z H	согр	*NOITAATIOU	(ml/oz) VOLUME	LYPE*	ADER 8260 NOCE 8260 ON	1544 40 00 00 00 00 00 00 00 00 00 00 00 0	P.G. P.J. Mal	+ (1) + (1)	ногр	HSUA GRAGNAT2					
No-10 (5.0-	(,St'S-0'S	Eol H2/L	as Shihl	0			×		ں۔ ئ	Р		X	$\frac{\lambda}{\lambda}$	X		$\overline{}$	XA	3	1001	Į	3
				-																R	
																		ſ	ÐUA	E	
													┝──┤					лғ¢	1	55	
																		s, Inc	5 200	_\/E	
										_									3	D	
				<u> </u>																	
					101	AL NUM	BER OF	TOTAL NUMBER OF CONTAINERS	ERS	G	LAB(DRATOR	Y COMM	IENTS/C	ONDITIO	N OF S/	LABORATORY COMMENTS/CONDITION OF SAMPLES	O	Cooler Temp:	emp:	
	RELINQUISHED BY:				╞─										RE	RECIEVED BY:	о вҮ:				
SIGNATURE	PRINTED NAME		COMPANY	ž		DA	DATE		TIME		SIC	SIGNATURE	RE		PRI	NTED	PRINTED NAME		Ŭ .	COMPANY	
6	Christianha C Sill		NF4-5	Ŀ	ļ -	22/2	103		135/03		Ma.	15th	n		· M	HHH	Hhurs		AP	49	в 4
cul a tarken	cloud M Hillmurs					7/25	403	12	4 0	6	$\left(\begin{array}{c} c \\ c$	De	1		c/d	R	fer	2	J	PH A BORATORY	
		Matrix 40 - annenis NA - nonanienis SD - soli		- sludae P	- petroleum	St - studoe P - petroleum A - air 07 - other	17 - other	Containers	P - plastic	G - glass	Containers: P - plastic G - glass T - tellon B - brass 0T - other	- brass 0	- other	Filtration:	Filtration: F - filtered U - unfiltered	U - unfilte	ted				
	- AU MAINA - AU	mohnunu . WAL COOS		TRIBUTIO	V: PINK	DISTRIBUTION: PINK: Field Copy	KELLOW.	YELLOW: Laboratory Copy	TIHW VQO	E: Return to	WHITE: Return to Originator										

APPENDIX D

Laboratory Report and Chain-of-Custody Records for Groundwater Samples

MFG, Inc.

Ŧ

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

12 August 2003

MFG, Inc Attn: Ed Conti 180 Howard St. Suite 200 San Francisco, CA 94105-2941 RE: SPI-Arcata/Task #4 Work Order: A307608

Enclosed are the results of analyses for samples received by the laboratory on 07/25/03 15:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Page 1 of 45

Order Number A307608

Client Code MFGINC

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
WO-3-GW	A307608-01	Water	07/24/03 18:30	07/25/03 15:40
WO-4-GW	A307608-02	Water	07/24/03 17:00	07/25/03 15:40
WO-5-GW	A307608-03	Water	07/24/03 16:15	07/25/03 15:40
WO-6-GW	A307608-04	Water	07/24/03 16:00	07/25/03 15:40
WO-7-GW	A307608-05	Water	07/24/03 17:30	07/25/03 15:40
WO-8-GW	A307608-06	Water	07/24/03 17:15	07/25/03 15:40
WO-9-GW	A307608-07	Water	07/24/03 18:15	07/25/03 15:40
WO-10-GW	A307608-08	Water	07/24/03 18:45	07/25/03 15:40

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

Client PO/Reference

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 45

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307608

Receipt Date/Time

07/25/2003 15:40

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

		mpna B	marytica	1/4001400	nes, me.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-3-GW (A307608-01)			Sample Ty	pe: Water	San	pled: 07/24/03 18:30		
Volatile Organic Compounds by EP	A Method 8260B							R-0
Acetone	8260B	AH30516	07/31/03	08/01/03	20	ND ug/l	100	
Benzene	"	n	**	**	n	ND "	6.0	
Bromobenzene	**	11	**	17	"	ND "	10	
Bromochloromethane	"		"	10	"	ND "	10	
Bromodichloromethane	H	н	"	**		ND "	10	
Bromoform	н	11	"	**	**	ND "	10	
Bromomethane	"	11	Ħ	11	**	ND "	10	
n-Butylbenzene	"	"	**	"	11	ND "	10	
sec-Butylbenzene		"	**	"	11	ND "	10	
tert-Butylbenzene	"	11		'n	**	ND "	10	
Carbon tetrachloride	"	"	"	"	11	ND "	10	
Chlorobenzene	"	"	"	17	н	ND "	10	
Chloroethane	"	"	"	"		ND "	10	
Chloroform	"	**		"	H	ND "	10	
Chloromethane	"	**	**	"	"	ND "	10	
2-Chlorotoluene		11	"	"	n	ND "	10	
4-Chlorotoluene	fi .	n	"		"	ND "	10	
Dibromochloromethane	** .	"	"	"	"	ND "	10	
1,2-Dibromo-3-chloropropane	**	**	"	"		ND "	10	
1,2-Dibromoethane (EDB)	**	"	*	"	"	ND "	10	
Dibromomethane	**	"	"	"		ND "	10	
1,2-Dichlorobenzene	"	**	**	"	"	ND "	10	
1,3-Dichlorobenzene	н	"	"	14	"	ND "	10	
1,4-Dichlorobenzene	"	"	**	"	"	ND "	10	
Dichlorodifluoromethane	**	"	17	"		ND "	10	
1,1-Dichloroethane	**	**	н	**	"	ND "	10	
1,2-Dichloroethane	"	"	"	17	**	ND "	10	
1,1-Dichloroethene	**	**	*1		"	ND "	6.0	
cis-1,2-Dichloroethene	**	"	**	*	11	ND "	10	
trans-1,2-Dichloroethene	**	"	**	"	35	ND "	10	
1,2-Dichloropropane	**	н	n	"	"	ND "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HEUEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307608

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code MFGINC

Client PO/Reference

		Alpha .	Analytica	l Laborato	ries, Inc.			
	METHOD	BATCH	PREPAREI	D ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-3-GW (A307608-01)			Sample Ty	pe: Water		Sampled: 07/24/03 18:30		
Volatile Organic Compounds by H	EPA Method 8260B	(cont'd)						R-0
1,3-Dichloropropane	8260B	"	"	08/01/03	"	ND "	10	
2,2-Dichloropropane	н	"	H	"	"	ND "	10	
1,1-Dichloropropene	11	н	11	"	n	ND "	10	
cis-1,3-Dichloropropene	14	**	"		"	ND "	10	
trans-1,3-Dichloropropene	п	**	"	"	"	ND "	10	
Ethylbenzene	**	**	"	"	"	ND "	10	
Hexachlorobutadiene	U U	н	u.	**	н	ND "	10	
Isopropylbenzene	"	"	"	**	"	ND "	10	
p-Isopropyltoluene	ŧ	"	n	**	"	ND "	10	
Methyl ethyl ketone	11	"	"	**	н	ND "	20	
Methyl isobutyl ketone	"	**		11		ND "	20	
Methyl tert-butyl ether	н	"	**	**	"	ND "	10	
Methylene chloride	**	57	"	"	"	ND "	10	
Naphthalene	łŦ	"		n	**	ND "	10	
n-Propylbenzene	**		"	"	"	ND "	10	
Styrene	11	н	11	"		ND "	10	
1,1,1,2-Tetrachloroethane	"	"	"	"	"	ND "	10	
1,1,2,2-Tetrachloroethane	н	"	н	"	*	ND "	10	
Tetrachloroethene	"	"		u	"	ND "	10	
Toluene	"	"	"	"	"	ND "	6.0	
1,2,3-Trichlorobenzene	"	*	"	11	**	ND "	10	
1,2,4-Trichlorobenzene	"	**	**	**	**	ND "	10	
1,1,1-Trichloroethane	"	"	· #		**	ND "	10	
1,1,2-Trichloroethane	"		**	**	11	ND "	10	
Trichloroethene	"			**	**	ND "	10	
Trichlorofluoromethane	"	**	**	**	11	ND "	10	
Trichlorotrifluoroethane	"	"	"	**	"	ND "	10	
1,2,3-Trichloropropane	"	н	**	**	"	ND "	10	
1,2,4-Trimethylbenzene	"	n	**	,,		ND "	10	
1,3,5-Trimethylbenzene	н	11	**		"	ND "	10	
Vinyl chloride	п	**	**	"	"	ND "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

MFG, Inc.

Alpha 🛿 Analutical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT Page 4 of 45 MFG, Inc 180 Howard St. Suite 200 Report Date: 08/12/03 08:25 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Order Number Receipt Date/Time Client Code Client PO/Reference A307608 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc. BATCH PREPARED ANALYZED DILUTION RESULT PQL NOTE METHOD WO-3-GW (A307608-01) Sample Type: Water Sampled: 07/24/03 18:30 Volatile Organic Compounds by EPA Method 8260B (cont'd) R-04 8260B m,p-Xylene 08/01/03 ND " 10 11 . ND " o-Xylene ... 10, •• ** ** Xylenes (total) ND " 10 ,, .. " ,, Surrogate: Dibromofluoromethane 94.4 % 69-119 74-118 Surrogate: Toluene-d8 ,, ., .. 82.8 % ,, " Surrogate: Bromofluorobenzene 85.6 % 58-112 Polychlorinated Biphenyls by EPA Method 8080A PCB-1016 8080 AH31111 07/30/03 08/11/03 5 ND ug/l 1.0 R-01 ** ... PCB-1221 ND " R-01 1.0PCB-1232 ND " 1.0 R-01 ., ., " ND " PCB-1242 1.0 R-01 PCB-1248 ND " 1.0 R-01 PCB-1254 1 ND " 0.20 •• .. ., PCB-1260 ** ND " 0.20 .. •• PCB-1262 ND " 0.20 ,, 92.0 % 50-170 Surrogate: Decachlorobiphenyl ,, " Surrogate: Tetrachloro-meta-xylene 500 % 40-140 S-04 Chlorinated Phenols by Canadian Pulp Method 2,4,6-Trichlorophenol EnvCan AH30107 07/30/03 07/30/03 ND ug/l 1.0 1 2,3,5,6-Tetrachlorophenol ., 11 ** ND " 1.0 " " 2,3,4,6-Tetrachlorophenol ND " 1.0 •• = 11 2,3,4,5-Tetrachlorophenol .. ND " 1.0 0 ** Pentachlorophenol ND " 1.0 Surrogate: Tribromophenol " ... 101 % 79-119

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	MFG, Inc	C	HEMIC	AL EXAN	MINATIO	N REPORT				Page 5 of 45
	180 Howard St. San Francisco, C Attn: Ed Conti					Report Date: Project No: Project ID:				
Order Numbe A307608		Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO	/Reference		
			Alpha A	Analytical	Laborato	ries, Inc.				<u></u>
		METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		POL	NOTE
WO-3-GW (A	\307608-01)			Sample Ty			oled: 07/24/03 1	8.30		
	l and Motor Oil by El	PA Method 8015 Mo		p		~~~				
TPH as Die		8015DRO	AG33007	07/30/03	07/31/03	1.0204	1100 ug/l		51	
TPH as Mo	otor Oil	"	11	"	•	Tt .	9100 "		100	
Surrogate:	1,4-Bromofluorobenzer	ne "	"	"	"		46.3 %	14-116		
TPH as Gasol	line by GCFID/5030									
TPH as Gas	soline	8015GRO	AH30519	08/01/03	08/01/03	1	ND ug/l		50	
Surrogate:	1,4-Bromofluorobenzer	ne "	"	"	"		73.6 %	63-150		
WO-4-GW (A	\307608-02)			Sample Ty	pe: Water	Samr	oled: 07/24/03 1	7:00		
Volatile Orga	nic Compounds by El	PA Method 8260B								R-04
Acetone		8260B	AH30516	07/31/03	08/01/03	10	ND ug/l		50	
Benzene		**	11	н	11	"	ND "		3.0	
Bromobenz	ene	**	"	**	"	"	ND "		5.0	
Bromochlor	romethane	**	"	**	"	н	ND "		5.0	
Bromodichl	loromethane	11	"	**	"	"	ND "		5.0	
Bromoform	1	н	"	"	"	"	ND "		5.0	
Bromometh	nane	"	**	*	*	"	ND "		5.0	
n-Butylben:	zene	**	"	**	**	"	ND "		5.0	
sec-Butylbe	enzene	"	"	"	"	n .	ND "		5.0	
tert-Butylbe	enzene	"	**	"	"	н	ND "		5.0	
Carbon tetra	achloride	**	**	**	**	"	ND "		5.0	
Chlorobenz	ene	**	"		**	"	ND "		5.0	
Chloroethar	ne	"	"	**	**	н	ND "		5.0	
Chloroform	1	"	"	**	"	"	ND "		5.0	
Chlorometh	nane	"	n	"		"	ND "		5.0	
2-Chlorotol	uene	"	"	"	••	"	ND "		5.0	
4-Chlorotol	uene	"	"	"	**	"	ND "		5.0	
Dibromoch	loromethane	"	"	"	"	"	ND "		5.0	
1,2-Dibrom	10-3-chloropropane	**	11	"	"	**	ND "		5.0	
1,2-Dibrom	noethane (EDB)	"	"	**	"	"	ND "		5.0	
Dibromome	ethane	11	"	**	"	n	ND "		5.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha VAnalytical Laboratories Inc. e-mail: clientservices@alpha-labs.com

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 6 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307608

Report Date:08/12/03 08:25Project No:030229.4Project ID:SPI-Arcata/Task #4

Client Code MFGINC Client PO/Reference

		Alpha A	Analytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-4-GW (A307608-02)			Sample Typ	e: Water		Sampled: 07/24/03 17:00		
Volatile Organic Compounds by E	EPA Method 8260B (cont'd)						R-(
1,2-Dichlorobenzene	8260B	**	"	08/01/03	**	ND "	5.0	
1,3-Dichlorobenzene	"	"	11	"		ND "	5.0	
1,4-Dichlorobenzene	"	"	**	н		ND "	5.0	
Dichlorodifluoromethane	11	н	**	н	**	ND "	5.0	
1,1-Dichloroethane	11	н	"			ND "	5.0	
1,2-Dichloroethane	"	"	"	"		ND "	5.0	
1,1-Dichloroethene	"	'n	"	11	**	ND "	3.0	
cis-1,2-Dichloroethene	**	"	**	"	**	ND "	5.0	
trans-1,2-Dichloroethene	11	11	"	"	**	ND "	5.0	
1,2-Dichloropropane	н	"	"	11	"	ND "	5.0	
1,3-Dichloropropane	11	"	11	11	"	ND "	5.0	
2,2-Dichloropropane	"	н	n	11	n	ND "	5.0	
1,1-Dichloropropene	n	**	"	**		ND "	5.0	
cis-1,3-Dichloropropene	**	"	"	"	"	ND "	5.0	
trans-1,3-Dichloropropene	н	"	"	**	"	ND "	5.0	
Ethylbenzene	"	"	"	**	**	ND "	5.0	
Hexachlorobutadiene	n	n	"	**	**	ND "	5.0	
Isopropylbenzene	"	"	"		"	ND "	5.0	
p-Isopropyltoluene	**	"	"	"	"	ND "	5.0	
Methyl ethyl ketone	"	11	"	11	**	ND "	10	
Methyl isobutyl ketone	**		**	"	"	ND "	10	
Methyl tert-butyl ether	**	"	11	"	"	ND "	5.0	
Methylene chloride	"	u.	**	**	**	ND "	5.0	
Naphthalene	"	"	11	"	**	ND "	5.0	
n-Propylbenzene	11	"	**	"	"	ND "	5.0	
Styrene	"	"	**	**	**	ND "	5.0	
1,1,1,2-Tetrachloroethane	**	"	"		*	ND "	5.0	
1,1,2,2-Tetrachloroethane	**	"	**	**	**	ND "	5.0	
Tetrachloroethene	**	*1	**	**	**	ND "	5.0	
Toluene	11	"	**	11	**	ND "	3.0	
1,2,3-Trichlorobenzene	"	"	"	"	"	ND "	5.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

_ _ _ _

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

Client PO/Reference

e-mail: clientservices@alpha-labs.com • Phone: (707).468-0401 • Fax: (707).468-5267

. .

CHEMICAL EXAMINATION REPORT

Page 7 of 45

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

A307608 07/25/2003 15:40 MFGINC	Order Number	Receipt Date/Time	Client Code
	A307608	07/25/2003 15:40	MFGINC

Alpha Analytical Laboratories, Inc.

		1 mp ma 1	inaly treat	Laborato					
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	F	PQL	NOTE
WO-4-GW (A307608-02)			Sample Typ	oe: Water		Sampled: 07/24/03 17	:00		
Volatile Organic Compounds by EPA	Method 8260B ((cont'd)							R-04
1,2,4-Trichlorobenzene	8260B		"	08/01/03	"	ND "		5.0	
1,1,1-Trichloroethane	**	11	н	**	11	ND "		5.0	
1,1,2-Trichloroethane	"	"	"	**	14	ND "		5.0	
Trichloroethene	"	"	n	**	11	ND "		5.0	
Trichlorofluoromethane	"	"	**	"	n	ND "		5.0	
Trichlorotrifluoroethane	**		11	**		ND "		5.0	
1,2,3-Trichloropropane	"	"	"	17	**	ND "		5.0	
1,2,4-Trimethylbenzene	**	"	*		11	ND "		5.0	
1,3,5-Trimethylbenzene	"	**	**	11	"	ND "		5.0	
Vinyl chloride	"		**	**	*1	ND "		5.0	
m,p-Xylene	"	н		"	"	ND "		5.0	
o-Xylene	**	н	**	**	"	ND "		5.0	
Xylenes (total)	"	"	"	**	**	ND "		5.0	
Surrogate: Dibromofluoromethane	"	"	"	"		96.8 %	69-119		
Surrogate: Toluene-d8	"	"	"	"		82.0 %	74-118		
Surrogate: Bromofluorobenzene	"	"	"	"		86.0 %	58-112		
Polychlorinated Biphenyls by EPA Me	ethod 8080A								
PCB-1016	8080	AH31111	07/30/03	08/11/03	1	ND ug/l		0.20	
PCB-1221	"	"	**	**	"	ND "		0.20	
PCB-1232	"	*	"	"	**	ND "		0.20	
PCB-1242	**	"	"	n	н	ND "		0.20	
PCB-1248	**	. 11		н	n	ND "		0.20	
PCB-1254	"	**	"	**	"	ND "		0.20	
PCB-1260	**	"	"	н		ND "		0.20	

11

"

...

"

"

Ħ

Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene

PCB-1262

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

...

"

ND "

56.0 %

52.0 %

Nena M. Burgess For Sheri L. Speaks Project Manager

8/12/03

0.20

50-170

40-140

.0110

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 8 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	08/12/03 08:25
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Order Number A307608	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/Re	eference	
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-4-GW (A307608-02)			Sample Ty	pe: Water		Sampled: 07/24/03 17:0	0	
Chlorinated Phenols by Canadian	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AH30107	07/30/03	07/30/03	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	11	t 9	"	11	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	н	11	H	17	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	14	**	11	**	"	ND "	1.0	
Pentachlorophenol	н	11	n	11	21	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		112 %	79-119	
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AG33007	07/30/03	07/31/03	1.0638	63 ug/l	53	
TPH as Motor Oil	11	"	**	17	**	ND "	110	
Surrogate: 1,4-Bromofluorobenze	ne "	"	11	n		33.2 %	14-116	
TPH as Gasoline by GCFID/5030								
TPH as Gasoline	8015GRO	AH30519	08/01/03	08/01/03	1	ND ug/l	50	
Surrogate: 1,4-Bromofluorobenze.	ne "	"	"	"		69.7 %	63-150	
WO-5-GW (A307608-03)			Sample Ty	pe: Water		Sampled: 07/24/03 16:1	.5	
Volatile Organic Compounds by E	PA Method 8260B							R-04
Acetone	8260B	AH30516	07/31/03	08/01/03	100	ND ug/l	500	
Benzene	"		**	**	"	ND "	30	
Bromobenzene	**	"	"	**	11	ND "	50	
Bromochloromethane	"	† 7	"	"	**	ND "	50	
Bromodichloromethane	"	**	"	**	"	ND "	50	
Bromoform	**		"		"	ND "	50	
Bromomethane	11	**	н	**		ND "	50	
n-Butylbenzene	89	**	н	"		ND "	50	
sec-Butylbenzene	"	"	**		**	ND "	50	
tert-Butylbenzene	n	**	**	**	"	ND "	50	
Carbon tetrachloride	"	**	**	"	"	ND "	50	
Chlorobenzene	"	**	**	**	**	ND "	50	
Chloroethane	**	"	"	"		ND "	50	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 9 of 45

San Fra	Inc oward St. Suite 200 ancisco, CA 94105-2941 Ed Conti		Project No:	08/12/03 08:25 030229.4 SPI-Arcata/Task #4
er Number	Receipt Date/Time	Client Code		Client PO/Reference

Orde e A307608 07/25/2003 15:40 MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-5-GW (A307608-03)			Sample Typ	be: Water		Sampled: 07/24/03 16:15		
Volatile Organic Compounds by EP	A Method 8260B (cont'd)						R-0-
Chloroform	8260B	"	"	08/01/03	**	ND "	50	
Chloromethane	**	**	**	**	н	ND "	50	
2-Chlorotoluene	"	н	"	0	"	ND "	50	
4-Chlorotoluene	"	"	"	н	"	ND "	50	
Dibromochloromethane	"	**	11	**	"	ND "	50	
1,2-Dibromo-3-chloropropane	"	"	н	"	**	ND "	50	
1,2-Dibromoethane (EDB)	"	"	"	"	11	ND "	50	
Dibromomethane	и	"	n	"	**	ND "	50	
1,2-Dichlorobenzene	"	"		11		ND "	50	
1,3-Dichlorobenzene	"	"	"	"	"	ND "	50	
1,4-Dichlorobenzene	н	**	"	**	**	ND "	50	
Dichlorodifluoromethane	"	"	"	**	n	ND "	50	
1,1-Dichloroethane	**	"		"	"	ND "	50	
1,2-Dichloroethane	"	"	**	"	n	ND "	50	
1,1-Dichloroethene		"	**	"	**	ND "	30	
cis-1,2-Dichloroethene	"	н	**	н	"	ND "	50	
trans-1,2-Dichloroethene		"	**	**	"	ND "	50	
1,2-Dichloropropane	**	"	**	н		ND "	50	
1,3-Dichloropropane	**	"		"	**	ND "	50	
2,2-Dichloropropane	**	"	н	"	"	ND "	50	
1,1-Dichloropropene	**	11	"	"		ND "	50	
cis-1,3-Dichloropropene	**	**	"	"	"	ND "	50	
trans-1,3-Dichloropropene	11	"	**		"	ND "	50	
Ethylbenzene	11	"	19	83	**	ND "	50	
Hexachlorobutadiene	. "		"	**	n	ND "	50	
Isopropylbenzene	**	**	n	11	"	ND "	50	
p-Isopropyltoluene	**	"	"	"	**	ND "	50	
Methyl ethyl ketone	11	"	"	n	"	ND "	100	
Methyl isobutyl ketone	89	"	**	*	"	ND "	100	
Methyl tert-butyl ether	n	**	*1	H	"	ND "	50	
Methylene chloride	"	"	"	"	"	ND "	50	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 1 5 2003

MFG, Inc.

Client PO/Reference

Alpha 🕻 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Report Date: 08/12/03 08:25

Project ID: SPI-Arcata/Task #4

Project No: 030229.4

CHEMICAL EXAMINATION REPORT

Page 10 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307608

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
VO-5-GW (A307608-03)			Sample T	ype: Water		Sampled: 07/24/03 16:	15	
Volatile Organic Compounds by EPA	Method 8260B (cont'd)						R-0 4
Naphthalene	8260B	**	"	08/01/03	**	ND "	50	
n-Propylbenzene	**		**	"	n	ND "	50	
Styrene	11	**	**	**	**	ND "	50	
1,1,1,2-Tetrachloroethane		"		**	**	ND "	50	
1,1,2,2-Tetrachloroethane	**	**	**	**	н	ND "	50	
Tetrachloroethene	"	**	**	"	n	ND "	50	
Toluene	"	"	"		"	ND "	30	
1,2,3-Trichlorobenzene	"	"	"	**	**	ND "	50	
1,2,4-Trichlorobenzene	"	"	**	**	н	ND "	50	
1,1,1-Trichloroethane	**	"		"	"	ND "	50	
1,1,2-Trichloroethane	**	**	"	"	"	ND "	50	
Trichloroethene	"	**	**	ч	**	ND "	50	
Trichlorofluoromethane	"	**		**	"	ND "	50	
Trichlorotrifluoroethane	**	**		**	**	ND "	50	
1,2,3-Trichloropropane	**	**	**	"	**	ND "	50	
1,2,4-Trimethylbenzene	"	n	"	"	**	ND "	50	
1,3,5-Trimethylbenzene	"	**	11	**	н	ND "	50	
Vinyl chloride	"	n	н	**	"	ND "	50	
m,p-Xylene	**	**	н	"	"	ND "	50	
o-Xylene	"	**	"	**	**	ND "	50	
Xylenes (total)	*	11	**	**	n	ND "	50	
Surrogate: Dibromofluoromethane	"	"	"	"		96.4 %	69-119	
Surrogate: Toluene-d8	"	"	"	"		82.4 %	74-118	
Surrogate: Bromofluorobenzene	"	"	"	"		87.2 %	58-112	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

HEUEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 11 of 45

MFG, Iı	nc			
180 How	vard St. Suite 200		Report Date:	08/12/03 08:25
San Fran	cisco, CA 94105-2941		Project No:	030229.4
Attn: Ed	Conti		Project ID:	SPI-Arcata/Task #4
Order Number	Receipt Date/Time	Client Code		Client PO/Reference
A307608	07/25/2003 15:40	MEGINC		

A307608 07/25/2003 15:40 MFGINC
Alpha Analytical Laboratories, Inc.

		•		<i>,</i>			
METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQ	L NOTE
		Sample Typ	oe: Water	1	Sampled: 07/24/03 16	:15	
hod 8080A					-		
8080	AH31111	07/30/03	08/11/03	1	ND ug/l	0.2	Ò
"	11	"	17	"	ND "	0.2	0
	"	**	"	"	ND "	0.2	0
**	"	**	"	н	ND "	0.2	0
**	"	"	*1		ND "	0.2	0
**	"	*	"		ND "	0.2	0
**	v	**	**		ND "	0.2	0
**	н	11	"		ND "	0.2	0
#	Ħ	11	11		78.0 %	50-170	
"	"	"	"		78.0 %	40-140	
Method							
EnvCan	AH30107	07/30/03	07/30/03	1	ND ug/l	1	.0
**	**	11	"	**	ND "	1	.0
**	"	"	"	**	ND "	1	.0
**	"	"	"	**	ND "	1	.0
••	11	"	"	**	ND "	1	.0
"	"	"	"		114 %	79-119	
1ethod 8015 M	odified						
8015DRO	AG33007	07/30/03	07/31/03	1.0417	97 ug/l	:	52
"	'n	"	**	**	230 "	10)0
	hod 8080A 8080 " " " " " " " " " " " " "	hod 8080A 8080 AH31111 " " " " " " " " " " " " " " " " "	Sample Typ hod 8080A 8080 AH31111 07/30/03 " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " # " " # " " # " " # " " # " " # " " # " " # " " # " " # " " # " " # " " #	Sample Type: Water hod 8080A 8080 AH31111 07/30/03 08/11/03 " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " # " " " # " " " # " " " # " " " # " " " # " " " </td <td>Sample Type: Water hod 8080A 8080 AH31111 07/30/03 08/11/03 1 """"""""""""""""""""""""""""""""""""</td> <td>Sample Type: Water Sampled: 07/24/03 16 hod 8080A 8080 AH31111 07/30/03 08/11/03 1 ND ug/1 " " " " ND " ND " " " " " ND " " " " ND " ND " " " " ND " ND " " " " ND " ND " " " " ND " ND " " " " ND " ND " " " " " ND " " " " "</td> <td>Sample Type: Water Sampled: 07/24/03 16:15 hod 8080A 8080 AH31111 07/30/03 08/11/03 1 ND ug/1 0.2 " " " ND " 0.2 # " "</td>	Sample Type: Water hod 8080A 8080 AH31111 07/30/03 08/11/03 1 """"""""""""""""""""""""""""""""""""	Sample Type: Water Sampled: 07/24/03 16 hod 8080A 8080 AH31111 07/30/03 08/11/03 1 ND ug/1 " " " " ND " ND " " " " " ND " " " " ND " ND " " " " ND " ND " " " " ND " ND " " " " ND " ND " " " " ND " ND " " " " " ND " " " " "	Sample Type: Water Sampled: 07/24/03 16:15 hod 8080A 8080 AH31111 07/30/03 08/11/03 1 ND ug/1 0.2 " " " ND " 0.2 # " "

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

alpha

HEUEIX .

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT Page 12 of 45 MFG. Inc 180 Howard St. Suite 200 Report Date: 08/12/03 08:25 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Client Code Receipt Date/Time Client PO/Reference Order Number A307608 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL NOTE WO-5-GW (A307608-03) Sample Type: Water Sampled: 07/24/03 16:15 TPH as Gasoline by GCFID/5030 TPH as Gasoline 8015GRO AH30519 08/01/03 08/01/03 1 ND ug/l 50 Surrogate: 1,4-Bromofluorobenzene " " " u 76.6 % 63-150 WO-6-GW (A307608-04) Sample Type: Water Sampled: 07/24/03 16:00 Volatile Organic Compounds by EPA Method 8260B R-04 8260B AH30516 07/31/03 08/01/03 100 ND ug/l 500 Acetone 8 ND " 30 Benzene Bromobenzene ND " 50 ., ND " Bromochloromethane 50 •• " ND " Bromodichloromethane 50 Bromoform ND " 50 •• .. Bromomethane ND " 50 n-Butylbenzene, ND " 50 sec-Butylbenzene ND " 50 ,, ND " tert-Butvlbenzene 50 ND " Carbon tetrachloride ., 50 Chlorobenzene ND " 50 Chloroethane ,, ** ND " 50 ... " Chloroform ND " 50 Ħ Chloromethane ND " 50 2-Chlorotoluene ... ** ND " 50 •• ND " 4-Chlorotoluene 50 Dibromochloromethane ND " 50 1,2-Dibromo-3-chloropropane ... ND " 50 " 1,2-Dibromoethane (EDB) ND " 50 Dibromomethane " ND " 50 ** ... ND " 1.2-Dichlorobenzene 50 11 ** 1,3-Dichlorobenzene ND " 50 .. ** ND " 50 1,4-Dichlorobenzene . " ** Dichlorodifluoromethane ND " 50 ** 1,1-Dichloroethane ND " 50

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Client PO/Reference

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 13 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307608

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-6-GW (A307608-04)			Sample Typ	e: Water		Sampled: 07/24/03 16:00		
Volatile Organic Compounds by I	EPA Method 8260B (cont'd)				-		R-04
1,2-Dichloroethane	8260B	**	**	08/01/03	n	ND "	50	
1,1-Dichloroethene	n	"	11	"		ND "	30	
cis-1,2-Dichloroethene	"	*1	Ħ	11	"	ND "	50	
trans-1,2-Dichloroethene	"	**	"	"		ND "	50	
1,2-Dichloropropane	"	"	н	**	"	ND "	50	
1,3-Dichloropropane	"	11	"	"	"	ND "	50	
2,2-Dichloropropane	"	**	"	**	"	ND "	50	
1,1-Dichloropropene	"		**		"	ND "	50	
cis-1,3-Dichloropropene		"	"		"	ND "	50	
trans-1,3-Dichloropropene	**		"	"	91	ND "	50	
Ethylbenzene	n	"	"	**	H	ND "	50	
Hexachlorobutadiene	"		"		u	ND "	50	
Isopropylbenzene	"	**		"	11	ND "	50	
p-Isopropyltoluene	"	**	**	**	"	ND "	50	
Methyl ethyl ketone		"	"	**	"	ND "	100	
Methyl isobutyl ketone	**		**	**	"	ND "	100	
Methyl tert-butyl ether	n	"	"	11		ND "	50	
Methylene chloride	n	**	**	**	11	ND "	50	
Naphthalene	**	**	**	**	"	ND "	50	
n-Propylbenzene		**	"	"		ND "	50	
Styrene	"	**	**	"	"	ND "	50	
1,1,1,2-Tetrachloroethane	11	**		39	"	ND "	50	
1,1,2,2-Tetrachloroethane			**	n		ND "	50	
Tetrachloroethene	"	"	11	**	"	ND "	50	
Toluene	11	n	**	"	**	ND "	30	
1,2,3-Trichlorobenzene	**	11	**	"	**	ND "	50	
1,2,4-Trichlorobenzene	**	11	"	п	**	ND "	50	
1,1,1-Trichloroethane	**	11	**	н	**	ND "	50	
1,1,2-Trichloroethane	**	11	11	"	"	ND "	50	
Trichloroethene	"	11	11	**	11	ND "	50	
Trichlorofluoromethane	н	**	"		. 11	ND "	50	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 14 of 45

MFG,	Inc			
180 Ho	oward St. Suite 200		Report Date:	08/12/03 08:25
San Fra	ancisco, CA 94105-2941		Project No:	030229.4
Attn: E	Ed Conti		Project ID:	SPI-Arcata/Task #4
Number	Receipt Date/Time	Client Code		Client DO/Deference

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307608	07/25/2003 15:40	MFGINC	

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	-	PQL	NOTE
WO-6-GW (A307608-04)			Sample Typ	pe: Water	S	ampled: 07/24/03 10	5:00		
Volatile Organic Compounds by EPA M	1ethod 8260B ((cont'd)							R-04
Trichlorotrifluoroethane	8260B	"	**	08/01/03	"	ND "		50	
1,2,3-Trichloropropane		**	"	"	"	ND "		50	
1,2,4-Trimethylbenzene	**	**	8	"	**	ND "		50	
1,3,5-Trimethylbenzene	**	**	"			ND "		50	
Vinyl chloride	11	"	**	"	"	ND "		50	
m,p-Xylene	"	*1	"			ND "		50	
o-Xylene	**	"	"			ND "		50	
Xylenes (total)	"	0	**	"	*	ND "		50	
Surrogate: Dibromofluoromethane	"	"	"	"		95.2 %	69-119		
Surrogate: Toluene-d8	"	"	"	"		82.8 %	74-118		
Surrogate: Bromofluorobenzene	"	"	"	"		87.2 %	58-112		
Polychlorinated Biphenyls by EPA Met	hod 8080A								
PCB-1016	8080	AH31111	07/30/03	08/11/03	4	ND ug/l		0.80	R-0
PCB-1221	"	**	**	"	**	ND "		0.80	R-0
PCB-1232	"	**	"	11	"	ND "		0.80	R-0
PCB-1242	**	"	"	"	18	ND "		0.80	R-0
PCB-1248	"	"	"	"	n	ND "		0.80	R-0
PCB-1254	"	**	"	11	1	ND "		0.20	
PCB-1260	"	**	**	"	**	ND "		0.20	
PCB-1262	n	**	**	н	11	ND "		0.20	
Surrogate: Decachlorobiphenyl	"	n	"	n	Anna - Carrolanda - Alf Pannar A. (1997), 1997	64.0 %	50-170		
Surrogate: Tetrachloro-meta-xylene	"	n	"	"		100 %	40-140		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

MFG, Inc

AUG 1 5 2003

MFG, Inc.

NLVL

AUG 1 5 2003

Nor S, InC.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 15 of 45

180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti Order Number Receipt Date/Tim				Project N	o: 030229.4			
Receipt Date/Time 07/25/2003 15:40					Client PO	/Reference		
	Alpha A	nalytical	Laborato	ries, Inc.	inton : i			
METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
	;	Sample Typ	oe: Water	Sa	mpled: 07/24/03 1	6:00		
Pulp Method								
EnvCan	AH30107	07/30/03	07/30/03	1	ND ug/l		1.0	
**	*	**	"	"	ND "		1.0	
**	"	11	11	*	ND "		1.0	
"	"	"	**	**	ND "		1.0	
"	"	*	н	**	ND "		1.0	
11	"	"	"		89.6 %	79-119		
EPA Method 8015 Mo	dified							
8015DRO		07/30/03	07/31/03	1.0152	98 ug/l		51	
**	"	"	"	"	0			
ene "	"	#	"		51.0 %	14-116	100	
	AH30519	08/01/03	08/01/03	1	ND ug/l		50	
ene "	"	"	"	•	75.3 %	63-150		
		0 1 7	XX7 /	0				
		Sample Ty	pe: Water	5:	ampled: 07/24/03 1	7:30		
								R-04
					120 ug/l			
17	"	"	"					
**	"	"	**					
"								
"	н				ND "		10	
"	"			**	ND "		10	
**	11				ND "		10	
	11				ND "		10	
**	"	"	"	**	ND "		10	
"	11	"	"	"	ND "		10	
11	н	"	*	"	ND "		10	
		"	"	"	NUT II		10	
"					ND "		10	
	CA 94105-2941 Receipt Date/Time 07/25/2003 15:40 METHOD Pulp Method EnvCan " " " " EPA Method 8015 Mo 8015DRO " ene " EPA Method 8260B 8260B " " " "	CA 94105-2941 Receipt Date/Time 07/25/2003 15:40 Alpha A METHOD BATCH Pulp Method EnvCan AH30107 " " " " " " " " " " " " " " " " " "	CA 94105-2941 Receipt Date/Time Clia 07/25/2003 15:40 M Alpha Analytical METHOD BATCH PREPARED METHOD BATCH PREPARED Pulp Method EnvCan AH30107 07/30/03 " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " B015GRO AH30519 08/01/03 ene " " " # " " " # " " " # " " "	CA 94105-2941 Client Code MFGINC Alpha Analytical Laborato METHOD METHOD BATCH PREPARED ANALYZED Sample Type: Water Pulp Method EnvCan AH30107 07/30/03 07/30/03 " " " " " " " " " " " " " " " " " " " " " " " " " " <th< td=""><td>CA 94105-2941 Project N Project II Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION Sample Type: Water Sa Pulp Method " " " Pulp Method # " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " <</td><td>CA 94105-2941 Project No: 030229.4 Project ID: SPI-Arcata/ SPI-Arcata/ MEGINC Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Client PO Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT Method Sample Type: Water Sampled: 07/24/03 10 Pulp Method " " " ND " " " " " " " ND " " ND " " " " " " " ND " " ND " " " " " " ND " " ND " " " " " " " ND " " ND " " " " " " " ND " " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " " ND " ND ug/l " " " " " " " " ND " ND ug/l " " " " " " " " ND " ND ug/l " " " " " " " ND " ND ug/l B015GRO AH30519 08/01/03 08/01/03 20<</td><td>CA 94105-2941 Project No: 030229.4 Project ID: SPI-Arcata/Task #4 Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Client PO/Reference METHOD BATCH PREPARED ANALYZED DILUTION RESULT METHOD BATCH PREPARED ANALYZED DILUTION RESULT METHOD BATCH PREPARED ANALYZED DILUTION RESULT Pulp Method Sample Type: Water Sampled: 07/24/03 16:00 Pulp Method " " " " ND " ND ug/I " " " " " " ND " ND ug/I " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND ug/I " " " " " " ND " I20 " EPA Method 8015 Motified I20 " SPA Method 8015 Motified I20 " EPA Method 8015 Motified I20 " EPA Method 8015 Motified I20 " Seample Type: Water Sampled: 07/24/03 17:30 @ 15 GRO AH30519 08/01/03 1 ND ug/I @ 16 T " " " " ND " ND " ND "<!--</td--><td>CA 94105-2941 Project No: 030229.4 Project ID: SPI-Arcata/Task #4 Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Client PO/Reference METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL Batch AH30107 07/30/03 07/30/03 1 ND ug/l 1.0 " " " " ND<" 1.0 " " " " ND " 1.0 " " " " ND " 1.0 " " " " ND " 1.0 " " " " Sampled 07</td></td></th<>	CA 94105-2941 Project N Project II Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION Sample Type: Water Sa Pulp Method " " " Pulp Method # " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " <	CA 94105-2941 Project No: 030229.4 Project ID: SPI-Arcata/ SPI-Arcata/ MEGINC Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Client PO Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT Method Sample Type: Water Sampled: 07/24/03 10 Pulp Method " " " ND " " " " " " " ND " " ND " " " " " " " ND " " ND " " " " " " ND " " ND " " " " " " " ND " " ND " " " " " " " ND " " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " " ND " ND ug/l " " " " " " " " ND " ND ug/l " " " " " " " " ND " ND ug/l " " " " " " " ND " ND ug/l B015GRO AH30519 08/01/03 08/01/03 20<	CA 94105-2941 Project No: 030229.4 Project ID: SPI-Arcata/Task #4 Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Client PO/Reference METHOD BATCH PREPARED ANALYZED DILUTION RESULT METHOD BATCH PREPARED ANALYZED DILUTION RESULT METHOD BATCH PREPARED ANALYZED DILUTION RESULT Pulp Method Sample Type: Water Sampled: 07/24/03 16:00 Pulp Method " " " " ND " ND ug/I " " " " " " ND " ND ug/I " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND " " " " " " " ND " ND ug/I " " " " " " ND " I20 " EPA Method 8015 Motified I20 " SPA Method 8015 Motified I20 " EPA Method 8015 Motified I20 " EPA Method 8015 Motified I20 " Seample Type: Water Sampled: 07/24/03 17:30 @ 15 GRO AH30519 08/01/03 1 ND ug/I @ 16 T " " " " ND " ND " ND " </td <td>CA 94105-2941 Project No: 030229.4 Project ID: SPI-Arcata/Task #4 Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Client PO/Reference METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL Batch AH30107 07/30/03 07/30/03 1 ND ug/l 1.0 " " " " ND<" 1.0 " " " " ND " 1.0 " " " " ND " 1.0 " " " " ND " 1.0 " " " " Sampled 07</td>	CA 94105-2941 Project No: 030229.4 Project ID: SPI-Arcata/Task #4 Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC Client PO/Reference METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL Batch AH30107 07/30/03 07/30/03 1 ND ug/l 1.0 " " " " ND<" 1.0 " " " " ND " 1.0 " " " " ND " 1.0 " " " " ND " 1.0 " " " " Sampled 07

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECLIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Client PO/Reference

j,

CHEMICAL EXAMINATION REPORT

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307608

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-7-GW (A307608-05)			Sample Ty	pe: Water	S	ampled: 07/24/03 17:30		
Volatile Organic Compounds by EP	A Method 8260B	(cont'd)						R-6
Chloroform	8260B	"	"	08/01/03	**	ND "	10	
Chloromethane	"	*1	"	"	**	ND "	10	
2-Chlorotoluene	"	**	**	**	**	ND "	10	
4-Chlorotoluene	"	11	**	**	**	ND "	10	
Dibromochloromethane	**	**	"	"	**	ND "	10	
1,2-Dibromo-3-chloropropane	**	"	"	"	n	ND "	10	
1,2-Dibromoethane (EDB)	**	**	**	"	"	ND "	10	
Dibromomethane	"	**	**	"	"	ND "	10	
1,2-Dichlorobenzene	n	11	"	11	"	ND "	10	
1,3-Dichlorobenzene	**		н	**	"	ND "	10	
1,4-Dichlorobenzene	**	**		"	"	ND "	10	
Dichlorodifluoromethane	"	**	"	"	"	ND "	10	
1,1-Dichloroethane	"	"	"	"	**	ND "	10	
1,2-Dichloroethane	**	**	n	"		ND "	10	
1,1-Dichloroethene	t#	**	n	"	"	ND "	6.0	
cis-1,2-Dichloroethene	**	"	n	"	"	ND "	10	
trans-1,2-Dichloroethene	"		*1	"	**	ND "	10	
1,2-Dichloropropane	**	"	**	"		ND "	10	
1,3-Dichloropropane	"	**	11	"	"	ND "	10	
2,2-Dichloropropane	**	"		"	41	ND "	10	
1,1-Dichloropropene	н	**	9	"	"	ND "	10	
cis-1,3-Dichloropropene	**	**	**	n	**	ND "	10	
trans-1,3-Dichloropropene	11	**	"	"	**	ND "	10	
Ethylbenzene	"	**	"	**	**	ND "	10	
Hexachlorobutadiene		"	"	"	"	ND "	10	
Isopropylbenzene	"	**	"	"	"	ND "	10	
p-Isopropyltoluene	"	**	"	•	**	ND "	10	
Methyl ethyl ketone	н	"		**	"	ND "	20	
Methyl isobutyl ketone	"	**		**	"	ND "	20	
Methyl tert-butyl ether	11	**	"	**	n	ND "	10	
Methylene chloride	17	0	"	"	"	ND "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

8/12/03

Page 16 of 45

AUG 1 5 2003

٠.

MFG, Inc.

.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

Client PO/Reference

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 17 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307608

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code MEGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
VO-7-GW (A307608-05)			Sample Typ	e: Water		Sampled: 07/24/03 17:3	30	
Volatile Organic Compounds by EPA	Method 8260B (cont'd)						R-04
Naphthalene	8260B	**	"	08/01/03	**	ND "	10	
n-Propylbenzene	11	**	"	11		ND "	10	
Styrene	**	11	"	11	**	ND "	10	
1,1,1,2-Tetrachloroethane	**		"	"	**	ND "	10	
1,1,2,2-Tetrachloroethane	"	"		"	"	ND "	10	
Tetrachloroethene	"	**	**	"	**	ND "	10	
Toluene	"	**	н	H.	н	ND "	6.0	
1,2,3-Trichlorobenzene	"	"			**	ND "	10	
1,2,4-Trichlorobenzene	**	"	**	н	**	ND "	10	
1,1,1-Trichloroethane				"	н	ND "	10	
1,1,2-Trichloroethane	**		"	**	н	ND "	10	
Trichloroethene	**	"	**	**	**	ND "	10	
Trichlorofluoromethane	"	11	**			ND "	10	
Trichlorotrifluoroethane	**	11	"	н	17	ND "	10	
1,2,3-Trichloropropane	**	11	**	**	н	ND "	10	
1,2,4-Trimethylbenzene	**	"	**	"	"	ND "	10	
1,3,5-Trimethylbenzene	**	**	"	**	**	ND "	10	
Vinyl chloride		н	*1	"	"	ND "	10	
m,p-Xylene	**	"	"	**	"	ND "	10	
o-Xylene	11	"	"	"	"	ND "	10	
Xylenes (total)	**	**	"	**		ND "	10	
Surrogate: Dibromofluoromethane	"	"	"	"		96.4 %	69-119	
Surrogate: Toluene-d8	"	"	"	"		84.0 %	74-118	
Surrogate: Bromofluorobenzene	"	"	"	"		87.6 %	58-112	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

ECEIVE

AUG 1 5 2003

"FG, Ini

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 18 of 45

MFG, I	nc			
180 Hov	vard St. Suite 200		Report Date:	08/12/03 08:25
San Frar	ncisco, CA 94105-2941		Project No:	030229.4
Attn: Ed	Conti		Project ID:	SPI-Arcata/Task #4
Order Number	Receipt Date/Time	Client Code		Client PO/Reference
A307608	07/25/2003 15:40	MFGINC		

		Alpha A	alytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
/O-7-GW (A307608-05)			Sample Typ	oe: Water		Sampled: 07/24/03 17	/:30		
Polychlorinated Biphenyls by EPA Met	hod 8080A								
PCB-1016	8080	AH31111	07/30/03	08/11/03	1	ND ug/l		0.20	
PCB-1221	"	"	**	"	**	ND "		0.20	
PCB-1232			"	"		ND "		0.20	
PCB-1242		71	u	*	"	ND "		0.20	
PCB-1248	"	n	"		**	ND "		0.20	
PCB-1254	**	11	"	"	n	ND "		0.20	
PCB-1260	**	н	"	**	"	ND "		0.20	
PCB-1262	**	11	"	**	"	ND "		0.20	
Surrogate: Decachlorobiphenyl	"	"	"	"		64.0 %	50-170		
Surrogate: Tetrachloro-meta-xylene	"	"	"	n		100 %	40-140		
Chlorinated Phenols by Canadian Pulp	Method								
2,4,6-Trichlorophenol	EnvCan	AH30107	07/30/03	07/30/03	1	ND ug/l		1.0	
2,3,5,6-Tetrachlorophenol	11	**	"	"	"	ND "		1.0	
2,3,4,6-Tetrachlorophenol	**	"	"	"	"	ND "		1.0	
2,3,4,5-Tetrachlorophenol	"	"	**	"		ND "		1.0	
Pentachlorophenol		"	n	"	**	ND "		1.0	
Surrogate: Tribromophenol	"	"	"	"		102 %	79-119		*****
TPH as Diesel and Motor Oil by EPA N	lethod 8015 M	odified							
TPH as Diesel	8015DRO	AG33007	07/30/03	07/31/03	1.0526	210 ug/l		53	
TPH as Motor Oil	"	"	"	**	"	ND "		110	R-
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		55.3 %	14-116		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Page 19 of 45

MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti Order Number				ent Code	Report Da Project N	te: 08/12/03 08 No: 030229.4 D: SPI-Arcata/			
	07/25/2003 15:40			FGINC		Chefit PO	Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	-	· ·	ANALYZED		RESULT		PQL	NOTE
WO-7-GW (A307608-05)			Sample Ty	pe: Water	S	ampled: 07/24/03 1	7:30		
TPH as Gasoline by GCFID/5030									
TPH as Gasoline	8015GRO	AH30519	08/01/03	08/01/03	1	ND ug/l		50	
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		68.0 %	63-150		
WO-8-GW (A307608-06)		Sample Type: Water			Sampled: 07/24/03 17:15				
Volatile Organic Compounds by El	PA Method 8260B					•			R-04
Acetone	8260B	AH30516	07/31/03	08/01/03	10	ND ug/l		50	
Benzene	"	"	"	"	**	ND "		3.0	
Bromobenzene	11	**	17	"	**	ND "		5.0	
Bromochloromethane	**	**	**	"	"	ND "		5.0	
Bromodichloromethane	"	**	**	"	**	ND "		5.0	
Bromoform	11	11	11	"	"	ND "		5.0	
Bromomethane	"	"	Ħ	"	**	ND "		5.0	
n-Butylbenzene	"	"	**	**	**	ND "		5.0	
sec-Butylbenzene	**	**	**	**	**	ND "		5.0	
tert-Butylbenzene	"	**	**	n	*	ND "		5.0	
Carbon tetrachloride		"	Ħ	"	"	ND "		5.0	
Chlorobenzene	Ħ	11	"	"	"	ND "		5.0	
Chloroethane	**	"	"	"	**	ND "		5.0	
Chloroform	**	"	"	"	0	ND "		5.0	
Chloromethane	н	"	"	**	"	ND "		5.0	
2-Chlorotoluene	"	"	"		**	ND "		5.0	
4-Chlorotoluene	"		"	**	**	ND "		5.0	
Dibromochloromethane	**	"	"		**	ND "		5.0	
1,2-Dibromo-3-chloropropane	"	**	**	**	**	ND "		5.0	
1,2-Dibromoethane (EDB)	**	"	"	n	**	ND "		5.0	
Dibromomethane	**	"	"	"	"	ND "		5.0	
1,2-Dichlorobenzene	"	"	"	"	**	ND "		5.0	
1,3-Dichlorobenzene	**	**	н	"	**	ND "		5.0	
1,4-Dichlorobenzene	"	"	**	"	**	ND "		5.0	
Dichlorodifluoromethane	**	**	"	"	"	ND "		5.0	
1,1-Dichloroethane	19	"	"	**	11	ND "		5.0	

CHEMICAL EXAMINATION REPORT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

ECEIVE

AUG 1 5 2003

FG. Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 20 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307608

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Receipt Date/Time 07/25/2003 15:40 Client Code MFGINC

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
/O-8-GW (A307608-06)	memor	billen	Sample Ty			Sampled: 07/24/03 17:15		
Volatile Organic Compounds by E	PA Method 8260B (cont'd)	Sample Ty	per water .	L.	ampica. 07/24/05 17:15		R-0
1,2-Dichloroethane	8260B	"	*1	08/01/03		ND "	5.0	
1,1-Dichloroethene	8200D "	"	н	"	**	ND "	3.0	
cis-1,2-Dichloroethene	11	"	**		**	ND "	5.0	
trans-1,2-Dichloroethene	'n			"		ND "	5.0	
1,2-Dichloropropane		н	**		**	ND "	5.0	
1,3-Dichloropropane	11	**	11	"	"	ND "	5.0	
2,2-Dichloropropane	н	**	н		**	ND "	5.0	
1,1-Dichloropropene	"		"			ND "	5.0	
cis-1,3-Dichloropropene	"	"	,,	**	"	ND "	5.0	
trans-1,3-Dichloropropene	"	**		58		ND "	5.0	
Ethylbenzene		"			"	ND "	5.0	
Hexachlorobutadiene	**	"	**			ND "	5.0	
Isopropylbenzene	**	**	"	н	"	ND "	5.0	
	11	17	**	**	**	ND "	5.0	
p-Isopropyltoluene	**		и	"		ND "	10	
Methyl ethyl ketone	**	**	11	**	"	ND "	10	
Methyl isobutyl ketone	**		"	**		ND "	5.0	
Methyl tert-butyl ether		11	"		**	ND "	5.0	
Methylene chloride						ND "	5.0	
Naphthalene					**	ND "	5.0	
n-Propylbenzene	**			"		ND "		
Styrene	**		"	"			5.0	
1,1,1,2-Tetrachloroethane		**	"			ND "	5.0	
1,1,2,2-Tetrachloroethane		"	"	"	"	ND "	5.0	
Tetrachloroethene		"		"	"	ND "	5.0	
Toluene					1	ND "	3.0	
1,2,3-Trichlorobenzene	**	"	11	"		ND "	5.0	
1,2,4-Trichlorobenzene	"	"	**	"	"	ND "	5.0	
1,1,1-Trichloroethane	"	Ħ	"	"	н	ND "	5.0	
1,1,2-Trichloroethane	"	"	"	**	**	ND "	5.0	
Trichloroethene	**	"	"	**	11	ND "	5.0	
Trichlorofluoromethane	**	11	"			ND "	5.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 21 of 45

	ard St. Suite 200 cisco, CA 94105-2941		Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Tas			
Order Number A307608	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC		Client PO/Reference		

Alpha Analytical Laboratories, Inc.

		4	•						
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
VO-8-GW (A307608-06)			Sample Typ	be: Water		Sampled: 07/24/03 17	7:15		
Volatile Organic Compounds by EPA M	1ethod 8260B ((cont'd)							R-0
Trichlorotrifluoroethane	8260B	"	**	08/01/03	**	ND "		5.0	
1,2,3-Trichloropropane	"	"	**	"	"	ND "		5.0	
1,2,4-Trimethylbenzene	"	н	н		"	ND "		5.0	
1,3,5-Trimethylbenzene	"	н	11	"	"	ND "		5.0	
Vinyl chloride	**		11	49	"	ND "		5.0	
m,p-Xylene	**	"	"	**	**	ND "		5.0	
o-Xylene	••	"	"	"	n	ND "		5.0	
Xylenes (total)	"	87	"	71	ч	ND "		5.0	
Surrogate: Dibromofluoromethane	"	<i>n</i> .	"	"		96.4 %	69-119		
Surrogate: Toluene-d8	"	"	"	"		84.0 %	74-118		
Surrogate: Bromofluorobenzene	"	"	"	"		86.8 %	58-112		
Polychlorinated Biphenyls by EPA Met	hod 8080A								
PCB-1016	8080	AH31111	07/30/03	08/11/03	1	ND ug/l		0.20	
PCB-1221	"	"	**	н	"	ND "		0.20	
PCB-1232	11	Ħ		**	"	ND "		0.20	
PCB-1242	н	"	н	**	н	ND "		0.20	
PCB-1248	"	"	**	н		ND "		0.20	
PCB-1254	"	"		"	**	ND "		0.20	
PCB-1260	**	Ħ	*	**	"	ND "		0.20	
PCB-1262	"	"	"	"	"	ND "		0.20	
Surrogate: Decachlorobiphenyl	"	"	"	"		74.0 %	50-170		
Surrogate: Tetrachloro-meta-xylene	"	"	"	ъ <i>"</i>		60.0 %	40-140		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

MFG, Inc

•

RECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 22 of 45

180 Howard St San Francisco, Attn: Ed Conti	. Suite 200 CA 94105-2941				Project No	e: 08/12/03 08 b: 030229.4 b: SPI-Arcata/			
Drder Number A307608	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO	/Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				······································
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
VO-8-GW (A307608-06)			Sample Typ	oe: Water	Sai	mpled: 07/24/03 1	7:15		
Chlorinated Phenols by Canadian	1 Pulp Method								
2,4,6-Trichlorophenol	EnvCan	AH30107	07/30/03	07/30/03	1	ND ug/l		1.0	
2,3,5,6-Tetrachlorophenol	11	"		"	**	ND "		1.0	
2,3,4,6-Tetrachlorophenol	11	**	**		**	ND "		1.0	
2,3,4,5-Tetrachlorophenol	"	**	"	"	"	ND "		1.0	
Pentachlorophenol	11	n	"	**	**	ND "		1.0	
Surrogate: Tribromophenol	"	"	"	"		96.0 %	79-119		
TPH as Diesel and Motor Oil by l	EPA Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AG33007	07/30/03	07/31/03	1.111	94 ug/l		56	
TPH as Motor Oil	u	"	**	"	n	210 "		110	
Surrogate: 1,4-Bromofluorobenz	zene "	"	"	н		52.1 %	14-116		
TPH as Gasoline by GCFID/5030	•								
TPH as Gasoline	8015GRO	AH30519	08/01/03	08/01/03	1	ND ug/l		50	
Surrogate: 1,4-Bromofluorobenz	zene "	"	"	"		62.8 %	63-150		
VO-9-GW (A307608-07)			Sample Ty	pe: Water	Sa	mpled: 07/24/03 1	8:15		
Volatile Organic Compounds by I	EPA Method 8260B								R-04
Acetone	8260B	AH30516	07/31/03	08/01/03	20	ND ug/l		100	
Benzene	**	"	"	"	"	ND "		6.0	
Bromobenzene	**	"	"	10	н	ND "		10	
Bromochloromethane	**	**	"	"	**	ND "		10	
Bromodichloromethane	**	"	**	"	**	ND "		10	
Bromoform	"	"	"		10	ND "		10	
Bromomethane	"	"	"	"	"	ND "		10	
n-Butylbenzene	T	"	"	"	"	ND "		10	
sec-Butylbenzene	"	n	"	"	11	ND "		10	
tert-Butylbenzene	"	н	"	"	**	ND "		10	
Carbon tetrachloride	"	"	**			ND "		10	
Carbon tetracmonue									
Chlorobenzene	**		"			ND "		10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

PECEIVE

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 23 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

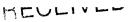
07/25/2003 15:40

Order Number

A307608

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference


Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-9-GW (A307608-07)			Sample T	ype: Water		Sampled: 07/24/03 18:15		
Volatile Organic Compounds by EP	A Method 8260B (cont'd)						R-0
Chloroform	8260B	"	**	08/01/03	"	ND "	10	
Chloromethane	н	"	**	13	"	ND "	10	
2-Chlorotoluene	"		Ħ	**	**	ND "	10	
4-Chlorotoluene	"	Ħ	"	11	**	ND "	10	
Dibromochloromethane	н	**	11	"	0	ND "	10	
1,2-Dibromo-3-chloropropane	"	"	и	**	**	ND "	10	
1,2-Dibromoethane (EDB)	0	17	н	17	н	ND "	10	
Dibromomethane	**	n	"	u	"	ND "	10	
1,2-Dichlorobenzene	"	"	"	"	"	ND "	10	
1,3-Dichlorobenzene	**		11	"	"	ND "	10	
1,4-Dichlorobenzene	"	"		"	"	ND "	10	
Dichlorodifluoromethane	"	**		11	**	ND "	10	
1,1-Dichloroethane	n	н	"	"	"	ND "	10	
1,2-Dichloroethane		"	"	17	11	ND "	10	
1,1-Dichloroethene	"	**	11	**	н	ND "	6.0	
cis-1,2-Dichloroethene			н	"	11	ND "	10	
trans-1,2-Dichloroethene	**	**	"	**	"	ND "	10	
1,2-Dichloropropane	Ħ	**	**	**	"	ND "	10	
1,3-Dichloropropane	"	"	**	"	н	ND "	10	
2,2-Dichloropropane	**	**	**	"	"	ND "	10	
1,1-Dichloropropene	**	"	**	**	11	ND "	10	
cis-1,3-Dichloropropene		"	"	**	"	ND "	10	
trans-1,3-Dichloropropene	**	"	"	**	"	ND "	10	
Ethylbenzene	"	**	"	**		ND "	10	
Hexachlorobutadiene	"	"	**	53	**	ND "	10	
Isopropylbenzene	**		**	**	**	ND "	10	
p-Isopropyltoluene	"	"	11	••	**	ND "	10	
Methyl ethyl ketone	"	n	**	**		ND "	20	
Methyl isobutyl ketone	"	n	n	**		ND "	20	
Methyl tert-butyl ether	**	**	n	"	**	ND "	10	
Methylene chloride	"	"	n	"	**	ND "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha ∦Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 24 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

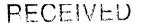
07/25/2003 15:40

Order Number

A307608

Report Date:08/12/03 08:25Project No:030229.4Project ID:SPI-Arcata/Task #4

Client PO/Reference


Client Code MFGINC

Alpha	Analytical	Laboratories,	Inc.
2.771.1110	CARGE VICES	LADULAUULIUS	

	METHOD	BATCH	PREPAREI	D ANALYZED	DILUTION	RESULT	PQL	NOTE
VO-9-GW (A307608-07)			Sample Ty	pe: Water	,	Sampled: 07/24/03 18:	15	
Volatile Organic Compounds by EPA	Method 8260B ((cont'd)						R-04
Naphthalene	8260B	"	"	08/01/03	"	ND "	10	
n-Propylbenzene	"	**	11	"	**	ND "	10	
Styrene	**	**	"	**	**	ND "	10	
1,1,1,2-Tetrachloroethane	"	"	"	*1		ND "	10	
1,1,2,2-Tetrachloroethane	**	"	11	**	"	ND "	10	
Tetrachloroethene	"	"	"	**	**	ND "	10	
Toluene	**	"	17	**	"	ND "	6.0	
1,2,3-Trichlorobenzene	"	"	**	"	"	ND "	10	
1,2,4-Trichlorobenzene	"	"	н	"	"	ND "	10	
1,1,1-Trichloroethane	**	H-	11	**	*	ND "	10	
1,1,2-Trichloroethane	**	**	н	"	*1	ND "	10	
Trichloroethene	**		н	**	"	ND "	10	
Trichlorofluoromethane	· 11	**	**	"	11	ND "	10	
Trichlorotrifluoroethane	"	**	**	**	**	ND "	10	
1,2,3-Trichloropropane	**	**	"	11	"	ND "	10	
1,2,4-Trimethylbenzene	**	н	"	"	"	ND "	10	
1,3,5-Trimethylbenzene	"	"	"	*		ND "	10	
Vinyl chloride	**	"	**	"	**	ND "	10	
m,p-Xylene	"	"	**	"	"	ND "	10	
o-Xylene	**	**	"	"	"	ND "	10	
Xylenes (total)		М	"	"	"	ND "	10	
Surrogate: Dibromofluoromethane	"	"	"	"		96.0 %	69-119	
Surrogate: Toluene-d8	"		"	#		83.6 %	74-118	
Surrogate: Bromofluorobenzene	"	"	"	"		86.8 %	58-112	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

alpha Alpha ∦Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 25 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

A307608

	Project No: Project ID:	030229.4 SPI-Arcata/Task #4	
t Code		Client PO/Reference	

Report Date: 08/12/03 08:25

Order Number Receipt Date/Time Client Code 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
VO-9-GW (A307608-07)			Sample Typ	pe: Water	San	npled: 07/24/03 1	8:15		
Polychlorinated Biphenyls by EPA Met	thod 8080A								
PCB-1016	8080	AH31111	07/30/03	08/11/03	1	ND ug/l		0.20	
PCB-1221	**	"	"	"	"	ND "		0.20	
PCB-1232	11	**	11	**		ND "		0.20	
PCB-1242	"		н		11	ND "		0.20	
PCB-1248	"	"	"		**	ND "		0.20	
PCB-1254	"	"	"	"	"	ND "		0.20	
PCB-1260	"	"	"	**	"	ND "		0.20	
PCB-1262	ч	**	"	Ħ	н	ND "		0.20	
Surrogate: Decachlorobiphenyl	"	"	17	"		70.0 %	50-170		
Surrogate: Tetrachloro-meta-xylene	"	"	"	"		68.0 %	40-140		
Chlorinated Phenols by Canadian Pulp	Method								
2,4,6-Trichlorophenol	EnvCan	AH30107	07/30/03	07/30/03	1	ND ug/l		1.0	
2,3,5,6-Tetrachlorophenol	"	"	"	"	**	ND "		1.0	
2,3,4,6-Tetrachlorophenol	**	Ħ	"	**		ND "		1.0	
2,3,4,5-Tetrachlorophenol	**	"	**	"	"	ND "		1.0	
Pentachlorophenol		**	17	n	"	ND "		1.0	
Surrogate: Tribromophenol	"	"	"	"		97.6 %	79-119		
TPH as Diesel and Motor Oil by EPA	Method 8015 M	lodified							
TPH as Diesel	8015DRO	AG33007	07/30/03	07/31/03	1.1236	210 ug/l		56	D-13
TPH as Motor Oil	**	H	17	"	"	150 "		110	D-12
Surrogate: 1,4-Bromofluorobenzene	11	11	"	"		59.8 %	14-116		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

PECEIVEN

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MEC	C	HEMICA	AL EXAN	MINATIO	N REPORT]	Page 26 of 45
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Project No:	08/12/03 08 030229.4 SPI-Arcata/			
Order Number A307608	Receipt Date/Time 07/25/2003 15:40			ent Code IFGINC		Client PO	0/Reference		
		Alpha A	nalytical	Laborato	ories, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT]	PQL	NOTE
WO-9-GW (A307608-07) TPH as Gasoline by GCFID/5030			Sample Ty	pe: Water	Sam	pled: 07/24/03 1	8:15		
TPH as Gasoline	8015GRO	AH30519	08/01/03	08/01/03	1	ND ug/l		50	
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		63.2 %	63-150		
WO-10-GW (A307608-08)			Sample Ty	ne: Water	Sam	pled: 07/24/03 1	8:45		
Volatile Organic Compounds by El	PA Method 8260B								R-04
Acetone	8260B	AH30516	07/31/03	08/01/03	100	ND ug/l		500	
Benzene	**	**	"	"	**	ND "		30	
Bromobenzene	н	n	*1	**		ND "		50	
Bromochloromethane	"	"	"	**		ND "		50	
Bromodichloromethane			11	*	"	ND "		50	
Bromoform	н	"	,,	**	"	ND "		50	
Bromomethane	"	"	**	**	н ,	ND "		50	
n-Butylbenzene	**	"	н	"	"	ND "		50	
sec-Butylbenzene	н	"	"	**	"	ND "		50	
tert-Butylbenzene	**	"		Ħ	"	ND "		50	
Carbon tetrachloride	"	"	"	Ħ	**	ND "		50	
Chlorobenzene	"	"		n	**	ND "		50	
Chloroethane	"	n	"	"	**	ND "		50	
Chloroform	"	"		"	**	ND "		50	
Chloromethane	17	"	"	"	**	ND "		50	
2-Chlorotoluene	**	"	"	"	*	ND "		50	
4-Chlorotoluene	**	"		"	*	ND "		50	
Dibromochloromethane	11	"			**	ND "		50	
1,2-Dibromo-3-chloropropane	н	"	н	**	**	ND "		50	
1,2-Dibromoethane (EDB)	11	**		"	11	ND "		50	
Dibromomethane	"	**	**	"	11	ND "		50	
1,2-Dichlorobenzene	"	н	"	"	"	ND "		50	
1,3-Dichlorobenzene	"	**	"	"	"	ND "		50	
1,4-Dichlorobenzene	"	"	**	"	1 7	ND "		50	
Dichlorodifluoromethane	u	"	**		**	ND "		50	
1,1-Dichloroethane	11	**	**	"	"	ND "		50	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

Order Number

A307608

RECEIVED

AUG 1 5 2003

MFG, Inc.

Client PO/Reference

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 27 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Report Date:	08/12/03 08:25
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Client Code MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
WO-10-GW (A307608-08)			Sample T	ype: Water	S	ampled: 07/24/03 18:45		
Volatile Organic Compounds by E	PA Method 8260B	(cont'd)						R-04
1,2-Dichloroethane	8260B	"	"	08/01/03	"	ND "	50	
1,1-Dichloroethene	**	**	"	н	**	ND "	30	
cis-1,2-Dichloroethene	"	**	"	11	"	ND "	50	
trans-1,2-Dichloroethene	11		11	11	n	ND "	50	
1,2-Dichloropropane	"	н	Ħ	"	н	ND "	50	
1,3-Dichloropropane	**	11	"	"	79	ND "	50	
2,2-Dichloropropane	**	**	"	"	"	ND "	50	
1,1-Dichloropropene	11	"	71	"	"	ND "	50	
cis-1,3-Dichloropropene	84	"	н	**	"	ND "	50	
trans-1,3-Dichloropropene	11	**	"	"		ND "	50	
Ethylbenzene	"	**	н	"	**	ND "	50	
Hexachlorobutadiene	н	**	11	"		ND "	50	
Isopropylbenzene	**	**	11	"	**	ND "	50	
p-Isopropyltoluene	n		"	"		ND "	50	
Methyl ethyl ketone	н	**	н	"	*	ND "	100	
Methyl isobutyl ketone	"	**	**	**	"	ND "	100	
Methyl tert-butyl ether	"		**	11	**	ND "	50	
Methylene chloride	"	*	н		11	ND "	50	
Naphthalene		"	"	"	**	ND "	50	
n-Propylbenzene	11	"	*	"	**	ND "	50	
Styrene	**	"		"	"	ND "	50	
1,1,1,2-Tetrachloroethane	"	"	"	11	**	ND "	50	
1,1,2,2-Tetrachloroethane	99	**	**	"	"	ND "	50	
Tetrachloroethene	"	11	"	"	"	ND "	50	
Toluene	"	**	н	"	"	ND "	30	
1,2,3-Trichlorobenzene	"	n	*1	"	"	ND "	50	
1,2,4-Trichlorobenzene		"	**	**	"	ND "	50	
1,1,1-Trichloroethane	"		11	"	n	ND "	50	
1,1,2-Trichloroethane	ft	**		"	"	ND "	50	
Trichloroethene	"	н	"	"	**	ND "	50	
Trichlorofluoromethane	**	"	"	**	"	ND "	50	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 28 of 45

	MFG, Inc 180 Howard St. S San Francisco, CA Attn: Ed Conti			Project No:	08/12/03 08:25 030229.4 SPI-Arcata/Task #4
Order Numbe A307608		ecceipt Date/Time 7/25/2003 15:40	Client Code MFGINC		Client PO/Reference

Alpha Analytical Laboratories, Inc.

		·	,						
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
WO-10-GW (A307608-08)			Sample Typ	e: Water		Sampled: 07/24/03 18	8:45		
Volatile Organic Compounds by EPA	Method 8260B	(cont'd)							R-0
Trichlorotrifluoroethane	8260B	"	"	08/01/03	**	ND "		50	
1,2,3-Trichloropropane		n	"	"	t1	ND "		50	
1,2,4-Trimethylbenzene	"	"	**	It	**	ND "		50	
1,3,5-Trimethylbenzene	**		"	**	**	ND "		50	
Vinyl chloride	**	*	**	**	11	ND "		50	
m,p-Xylene		"	H	"	"	ND "		50	
o-Xylene		"	"	"	"	ND "		50	
Xylenes (total)		"	н	"	11	ND "		50	
Surrogate: Dibromofluoromethane	"	"	"	"		93.6 %	69-119		
Surrogate: Toluene-d8	"	"	"	"		82.4 %	74-118		
Surrogate: Bromofluorobenzene	"	"	"	"		86.4 %	58-112		
Polychlorinated Biphenyls by EPA Me	thod 8080A								
PCB-1016	8080	AH31111	07/30/03	08/11/03	1	ND ug/l		0.20	
PCB-1221	**	"	"	"	**	ND "		0.20	
PCB-1232	*	"	"	"	н	ND "		0.20	
PCB-1242	"	"	"	n	"	ND "		0.20	
PCB-1248	"	*	"	11	**	ND "		0.20	
PCB-1254	11	"	"	97	*	ND "		0.20	
PCB-1260	н		**	**	"	ND "		0.20	
PCB-1262	**	*1	"	**	"	ND "		0.20	
Surrogate: Decachlorobiphenyl	n	"	"	"		72.0 %	50-170		
Surrogate: Tetrachloro-meta-xylene	"	"	n	"		58.0 %	40-140		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

alpha Alpha 🛿 Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 29 of 45

MFG, Inc Report Date: 08/12/03 08:25 180 Howard St. Suite 200 Project No: 030229.4 San Francisco, CA 94105-2941 Project ID: SPI-Arcata/Task #4 Attn: Ed Conti Receipt Date/Time Client Code Client PO/Reference Order Number A307608 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc. NOTE RESULT POL BATCH PREPARED ANALYZED DILUTION METHOD Sample Type: Water Sampled: 07/24/03 18:45 WO-10-GW (A307608-08) Chlorinated Phenols by Canadian Pulp Method ND ug/l 07/30/03 1.0 2,4,6-Trichlorophenol EnvCan AH30107 07/30/03 1 2,3,5,6-Tetrachlorophenol u ND " 1.0 'n ... ND " 1.0 2,3,4,6-Tetrachlorophenol . ., ** ND " 1.0 2,3,4,5-Tetrachlorophenol ., . .. н ... ND " Pentachlorophenol 1.0 Surrogate: Tribromophenol n ., ,, " 94.8 % 79-119 TPH as Diesel and Motor Oil by EPA Method 8015 Modified 190 ug/l **TPH** as Diesel 8015DRO AG33007 07/30/03 07/31/03 1.0526 53 D-13 110 TPH as Motor Oil •• ... 0 ... ND " Surrogate: 1,4-Bromofluorobenzene " " " " 60.2 % 14-116 TPH as Gasoline by GCFID/5030 TPH as Gasoline 8015GRO AH30519 08/01/03 08/01/03 1 ND ug/l 50 " " " " 70.1 % 63-150 Surrogate: 1,4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

PECEIVED

AUG 1 5 2003

MFG, Inc.

Page 30 of 45

alpha

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307608

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code

Client PO/Reference

SourceResult

Volatile Organic Compounds by EPA Method 8260B - Quality Control

MFGINC

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30516 - EPA 5030 Wa	iter MS								x	
Blank (AH30516-BLK1)				Prepared	& Analyze	ed: 07/31/0	03			
Acetone	ND	5.0	ug/l							
Benzene	ND	0.30	Ħ							
Bromobenzene	ND	0.50	11							
Bromochloromethane	ND	0.50	**							
Bromodichloromethane	ND	0.50	H							
Bromoform	ND	0.50	"							
Bromomethane	ND	0.50	*1							
n-Butylbenzene	ND	0.50	*1							
sec-Butylbenzene	ND	0.50								
ert-Butylbenzene	ND	0.50	*							
Carbon tetrachloride	ND	0.50	Ħ							
Chlorobenzene	ND	0.50	**							
Chloroethane	ND	0.50	11							
Chloroform	ND	0.50	"							
Chloromethane	ND	0.50	**							
2-Chlorotoluene	ND	0.50	н.							
4-Chlorotoluene	ND	0.50	"							
Dibromochloromethane	ND	0.50	n							
,2-Dibromo-3-chloropropane	ND	0.50	"							
1,2-Dibromoethane (EDB)	ND	0.50	**							
Dibromomethane	ND	0.50	**							
1,2-Dichlorobenzene	ND	0.50	**							
,3-Dichlorobenzene	ND	0.50	**							
1,4-Dichlorobenzene	ND	0.50								
Dichlorodifluoromethane	ND	0.50								
1,1-Dichloroethane	ND	0.50	**							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 31 of 45

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

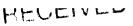
Order Number

A307608

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Volatile Organic Compounds by EPA Method 8260B - Quality Control


Client Code

MFGINC

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30516 - EPA 5030 Wa	ter MS									
Blank (AH30516-BLK1)				Prepared	& Analyze	ed: 07/31/0	03			
1,2-Dichloroethane	ND	0.50	**	· · · · · · · · · · · · · · · · · · ·						
1,1-Dichloroethene	ND	0.30	"							
cis-1,2-Dichloroethene	ND	0.50	"							
trans-1,2-Dichloroethene	ND	0.50	"							
1,2-Dichloropropane	ND	0.50	Ħ							
1,3-Dichloropropane	ND	0.50	11							
2,2-Dichloropropane	ND	0.50	"							
1,1-Dichloropropene	ND	0.50	**							
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	u							
Ethylbenzene	ND	0.50	"							
Hexachlorobutadiene	ND	0.50	"							
Isopropylbenzene	ND	0.50								
p-Isopropyltoluene	ND	0.50	"							
Methyl ethyl ketone	ND	1.0	"							
Methyl isobutyl ketone	ND	1.0	**							
Methyl tert-butyl ether	ND	0.50	**							
Methylene chloride	ND	0.50	"							
Naphthalene	ND	0.50	н							
n-Propylbenzene	ND	0.50	**							
Styrene	ND	0.50	**							
1,1,1,2-Tetrachloroethane	ND	0.50	**							
1,1,2,2-Tetrachloroethane	ND	0.50	**							
Tetrachloroethene	ND	0.50	"							
Toluene	ND	0.30								
1,2,3-Trichlorobenzene	ND	0.50	**							
1,2,4-Trichlorobenzene	ND	0.50	"							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 32 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:08/12/03 08:25Project No:030229.4Project ID:SPI-Arcata/Task #4

Client PO/Reference

Order NumberReceipt Date/TimeA30760807/25/2003 15:40

Client Code MFGINC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30516 - EPA 5030 Wate	r MS									
Blank (AH30516-BLK1)				Prepared	& Analyze	ed: 07/31/0)3			
1,1,1-Trichloroethane	ND	0.50	11	·····						
1,1,2-Trichloroethane	ND	0.50	**							
Trichloroethene	ND	0.50	**							
Trichlorofluoromethane	ND	0.50	**							
Trichlorotrifluoroethane	ND	0.50	**							
1,2,3-Trichloropropane	ND	0.50	"							
1,2,4-Trimethylbenzene	ND	0.50	11							
1,3,5-Trimethylbenzene	ND	0.50	**							
Vinyl chloride	ND	0.50								
m,p-Xylene	ND	0.50	"							
o-Xylene	ND	0.50	**							
Xylenes (total)	ND	0.50								
Surrogate: Dibromofluoromethane	23.6		"	25.0		94.4	69-119			
Surrogate: Toluene-d8	21.0		"	25.0		84.0	74-118			
Surrogate: Bromofluorobenzene	21.8		"	25.0		87.2	58-112			
LCS (AH30516-BS1)				Prepared	& Analyz	ed: 07/31/	03			
Acetone	36.1	5.0	ug/l	39.4		91.6	48-147			
Benzene	9.90	0.30	"	10.0		99.0	79-116			
Bromobenzene	9.64	0.50	"	10.0		96.4	85-117			
Bromochloromethane	9.77	0.50	"	10.0		97.7	75-120			
Bromodichloromethane	10.1	0.50	"	10.0		101	76-117			
Bromoform	10.9	0.50	**	10.0		109	71-118			
Bromomethane	10.6	0.50	"	10.0		106	51-182			
n-Butylbenzene	9.99	0.50	17	10.0		99.9	77-115			
sec-Butylbenzene	10.3	0.50	н	10.0		103	80-122			
tert-Butylbenzene	9.89	0.50	н	10.0		98.9	79-116			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

PECEIVED

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 33 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

A307608

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time 07/25/2003 15:40

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Client Code

MFGINC

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30516 - EPA 5030 Water MS										

LCS (AH30516-BS1)				Prepared & Ar	nalyzed: 07/31/	03
Carbon tetrachloride	11.0	0.50	"	10.0	110	72-125
Chlorobenzene	9.83	0.50	н	10.0	98.3	82-112
Chloroethane	10.4	0.50	н	10.0	104	75-126
Chloroform	9.67	0.50	**	10.0	96.7	77-117
Chloromethane	10.5	0.50	Ħ	10.0	105	68-133
2-Chlorotoluene	10.3	0.50	9	10.0	103	79-119
4-Chlorotoluene	10.0	0.50	11	10.0	100	76-117
Dibromochloromethane	10.6	0.50	H	10.0	106	80-116
1,2-Dibromo-3-chloropropane	10.8	0.50	**	10.0	108	68-122
1,2-Dibromoethane (EDB)	10.4	0.50	"	10.0	104	84-117
Dibromomethane	9.74	0.50	"	10.0	97.4	83-115
1,2-Dichlorobenzene	9.89	0.50	"	10.0	98.9	83-113
1,3-Dichlorobenzene	9.72	0.50	"	10.0	97.2	82-117
1,4-Dichlorobenzene	9.86	0.50	**	10.0	98.6	85-113
Dichlorodifluoromethane	13.0	0.50	"	10.0	130	58-162
1,1-Dichloroethane	9.37	0.50	n	10.0	93.7	75-126
1,2-Dichloroethane	9.45	0.50	"	10.0	94.5	78-115
1,1-Dichloroethene	10.4	0.30	Ħ	10.0	104	77-123
cis-1,2-Dichloroethene	9.60	0.50	н	10.0	96.0	75-117
trans-1,2-Dichloroethene	9.16	0.50	"	10.0	91.6	79-114
1,2-Dichloropropane	10.5	0.50	**	10.0	105	75-116
1,3-Dichloropropane	10.5	0.50	"	10.0	105	83-118
2,2-Dichloropropane	9.48	0.50		10.0	94.8	71-123
1,1-Dichloropropene	10.1	0.50	**	10.0	101	74-119
cis-1,3-Dichloropropene	10.8	0.50	**	10.0	108	77-124
trans-1,3-Dichloropropene	10.2	0.50	**	10.0	102	70-113
Ethylbenzene	10.1	0.50	**	10.0	101	81-119

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 34 of 45

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time A307608 07/25/2003 15:40

Client Code MFGINC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30516 - EPA 5030 Wa	ater MS									
LCS (AH30516-BS1)				Prepared	& Analyze	ed: 07/31/0)3			
Hexachlorobutadiene	10.9	0.50	"	10.0		109	79-122			
Isopropylbenzene	9.60	0.50		10.0		96.0	80-116			
p-Isopropyltoluene	9.53	0.50		10.0		95.3	73-114			
Methyl ethyl ketone	21.1	1.0		20.0		106	73-125			
Methyl isobutyl ketone	20.2	1.0	**	20.0		101	68-125			
Methyl tert-butyl ether	9.59	0.50	**	10.0		95.9	73-127			
Methylene chloride	10.1	0.50	**	10.0		101	79-113			
Naphthalene	9.88	0.50	**	10.0		98.8	66-116			
n-Propylbenzene	9.88	0.50	**	10.0		98.8	78-117			
Styrene	11.1	0.50	*1	10.0		111	62-135			
1,1,1,2-Tetrachloroethane	11.2	0.50	11	10.0		112	79-124			
1,1,2,2-Tetrachloroethane	10.5	0.50	н	10.0		105	80-116			
Tetrachloroethene	9.66	0.50	Ħ	10.0		96.6	82-120			
Toluene	9.97	0.30	н	10.0		99.7	83-120			
1,2,3-Trichlorobenzene	10.0	0.50	"	10.0		100	80-115			
1,2,4-Trichlorobenzene	9.85	0.50	"	10.0		98.5	78-114			
1,1,1-Trichloroethane	10.8	0.50	"	10.0		108	74-120			
1,1,2-Trichloroethane	10.3	0.50	**	10.0		103	79-117			
Trichloroethene	10.4	0.50	"	10.0		104	77-124			
Trichlorofluoromethane	10.3	0.50	**	10.0		103	78-124			
Trichlorotrifluoroethane	10.4	0.50		9.84		106	83-123			
1,2,3-Trichloropropane	10.4	0.50	"	10.0		104	86-117			
1,2,4-Trimethylbenzene	10.4	0.50	"	10.0		104	82-120			
1,3,5-Trimethylbenzene	9.85	0.50	"	10.0		98.5	78-116			
Vinyl chloride	10.8	0.50	"	10.0		108	72-131			
m,p-Xylene	20.5	0.50	**	20.0		102	80-118			
o-Xylene	10.0	0.50	11	10.0		100	79-121			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 35 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time A307608 07/25/2003 15:40

Client Code MFGINC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
atch AH30516 - EPA 5030 Water	r MS									
LCS (AH30516-BS1)				Prepared	& Analyze	ed: 07/31/0	03			
Xylenes (total)	30.5	0.50	H	30.0		102	79-121			
Surrogate: Dibromofluoromethane	19.6		"	25.0		78.4	69-119			
Surrogate: Toluene-d8	20.9		"	25.0		83.6	74-118			
Surrogate: Bromofluorobenzene	21.7		"	25.0		86.8	58-112			
LCS Dup (AH30516-BSD1)				Prepared	& Analyze	ed: 07/31/	03			
Acetone	41.2	5.0	ug/l	39.4		105	48-147	13.2	25	
Benzene	9.85	0.30	**	10.0		98.5	79-116	0.506	25	
Bromobenzene	9.59	0.50	"	10.0		95.9	85-117	0.520	25	
Bromochloromethane	9.14	0.50	"	10.0		91.4	75-120	6.66	25	
Bromodichloromethane	10.6	0.50	**	10.0		106	76-117	4.83	25	
Bromoform	11.2	0.50	11	10.0		112	71-118	2.71	25	
Bromomethane	9.36	0.50	"	10.0		93.6	51-182	12.4	25	
n-Butylbenzene	9.70	0.50	"	10.0		97.0	77-115	2.95	25	
sec-Butylbenzene	9.64	0.50	"	10.0		96.4	80-122	6.62	25	
tert-Butylbenzene	9.21	0.50	11	10.0		92.1	79-116	7.12	25	
Carbon tetrachloride	11.0	0.50	11	10.0		110	72-125	0.00	25	
Chlorobenzene	9.60	0.50	**	10.0		96.0	82-112	2.37	25	
Chloroethane	9.45	0.50	и	10.0		94.5	75-126	9.57	25	
Chloroform	10.2	0.50	"	10.0		102	77-117	5.33	25	
Chloromethane	10.0	0.50	"	10.0		100	68-133	4.88	25	
2-Chlorotoluene	9.28	0.50	"	10.0		92.8	79-119	10.4	25	
4-Chlorotoluene	9.35	0.50	н	10.0		93.5	76-117	6.72	25	
Dibromochloromethane	11.2	0.50	0	10.0		112	80-116	5.50	25	
1,2-Dibromo-3-chloropropane	11.1	0.50	"	10.0		111	68-122	2.74	25	
1,2-Dibromoethane (EDB)	10.8	0.50	*1	10.0		108	84-117	3.77	25	
Dibromomethane	9.38	0.50		10.0		93.8	83-115	3.77	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 1 5 2003

MFG, Inc.

Alpha ∦Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 36 of 45

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time A307608 07/25/2003 15:40

Client Code MFGINC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30516 - EPA 5030 Wat	er MS									
LCS Dup (AH30516-BSD1)				Prepared	& Analyze	ed: 07/31/0)3			
1,2-Dichlorobenzene	9.97	0.50	tt	10.0		99.7	83-113	0.806	25	
1,3-Dichlorobenzene	9.24	0.50	н	10.0		92.4	82-117	5.06	25	
1,4-Dichlorobenzene	10.1	0.50	**	10.0		101	85-113	2.40	25	
Dichlorodifluoromethane	12.0	0.50	"	10.0		120	58-162	8.00	25	
1,1-Dichloroethane	10.0	0.50	н	10.0		100	75-126	6.50	25	
1,2-Dichloroethane	9.74	0.50	"	10.0		97.4	78-115	3.02	25	
1,1-Dichloroethene	10.9	0.30	**	10.0		109	77-123	4.69	25	
cis-1,2-Dichloroethene	10.4	0.50	11	10.0		104	75-117	8.00	25	
trans-1,2-Dichloroethene	9.46	0.50	"	10.0		94.6	79-114	3.22	25	
1,2-Dichloropropane	10.4	0.50	**	10.0		104	75-116	0.957	25	
1,3-Dichloropropane	11.1	0.50	**	10.0		111	83-118	5.56	25	
2,2-Dichloropropane	7.38	0.50	0	10.0		73.8	71-123	24.9	25	
1,1-Dichloropropene	10.4	0.50	н	10.0		104	74-119	2.93	25	
cis-1,3-Dichloropropene	10.1	0.50		10.0		101	77-124	6.70	25	
trans-1,3-Dichloropropene	10.4	0.50	"	10.0		104	70-113	1.94	25	
Ethylbenzene	9.69	0.50	**	10.0		96.9	81-119	4.14	25	
Hexachlorobutadiene	10.7	0.50	"	10.0		107	79-122	1.85	25	
Isopropylbenzene	9.11	0.50	**	10.0		91.1	80-116	5.24	25	
p-Isopropyltoluene	8.99	0.50	**	10.0		89.9	73-114	5.83	25	
Methyl ethyl ketone	21.5	1.0	"	20.0		108	73-125	1.88	25	
Methyl isobutyl ketone	20.7	1.0		20.0		104	68-125	2.44	25	
Methyl tert-butyl ether	10.2	0.50	"	10.0		102	73-127	6.16	25	
Methylene chloride	9.60	0.50	••	10.0		96.0	79-113	5.08	25	
Naphthalene	9.92	0.50	"	10.0		99.2	66-116	0.404	25	
n-Propylbenzene	9.39	0.50	**	10.0		93.9	78-117	5.09	25	
Styrene	9.69	0.50	**	10.0		96.9	62-135	13.6	25	
1,1,1,2-Tetrachloroethane	11.7	0.50	н	10.0		117	79-124	4.37	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 1 5 2003

MFG, Inc.

Page 37 of 45

alpha Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number A307608

Client Code MFGINC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30516 - EPA 5030 Water	MS									
LCS Dup (AH30516-BSD1)				Prepared	& Analyze	ed: 07/31/0)3			
1,1,2,2-Tetrachloroethane	10.7	0.50	t1	10.0		107	80-116	1.89	25	
Tetrachloroethene	9.59	0.50		10.0		95.9	82-120	0.727	25	
Toluene	9.86	0.30	**	10.0		98.6	83-120	1.11	25	
1,2,3-Trichlorobenzene	9.88	0.50	"	10.0		98.8	80-115	1.21	25	
1,2,4-Trichlorobenzene	10.1	0.50	**	10.0		101	78-114	2.51	25	
1,1,1-Trichloroethane	11.5	0.50	н	10.0		115	74-120	6.28	25	
1,1,2-Trichloroethane	10.8	0.50	*1	10.0		108	79-117	4.74	25	
Trichloroethene	10.4	0.50	11	10.0		104	77-124	0.00	25	
Trichlorofluoromethane	11.2	0.50	11	10.0		112	78-124	8.37	25	
Trichlorotrifluoroethane	10.6	0.50	**	9.84		108	83-123	1.90	25	
1,2,3-Trichloropropane	10.6	0.50	"	10.0		106	86-117	1.90	25	
1,2,4-Trimethylbenzene	9.67	0.50	"	10.0		96.7	82-120	7.27	25	
1,3,5-Trimethylbenzene	9.16	0.50	n	10.0		91.6	78-116	7.26	25	
Vinyl chloride	10.4	0.50	11	10.0		104	72-131	3.77	25	
m,p-Xylene	19.2	0.50	"	20.0		96.0	80-118	6.55	25	
o-Xylene	9.51	0.50	"	10.0		95.1	79-121	5.02	25	
Xylenes (total)	28.7	0.50		30.0		95.7	79-121	6.08	25	
Surrogate: Dibromofluoromethane	21.0		#	25.0		84.0	69-119			
Surrogate: Toluene-d8	21.4		#	25.0		85.6	74-118			
Surrogate: Bromofluorobenzene	21.0		"	25.0		84.0	58-112			
Matrix Spike (AH30516-MS1)	Sou	rce: A307	610-03	Prepared	& Analyz	ed: 07/31/	'03			
Acetone	34.4	5.0	ug/l	39.4	ND	87.3	40-150			
Benzene	8.62	0.30	"	10.0	ND	86.2	63-144			
Bromobenzene	8.54	0.50	**	10.0	ND	85.4	61-143			
Bromochloromethane	9.91	0.50	н	10.0	ND	99.1	65-136			
Bromodichloromethane	9.39	0.50	"	10.0	ND	93.9	60-141			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 38 of 45

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Receipt Date/Time Order Number A307608 07/25/2003 15:40 Client Code MFGINC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30516 - EPA 5030 Water	MS									
Matrix Spike (AH30516-MS1)	Sou	rce: A3076	610-03	Prepared	& Analyze	ed: 07/31/0	03			
Bromoform	9.19	0.50	н	10.0	ND	91.9	53-140		******	
Bromomethane	10.4	0.50	"	10.0	ND	104	47-175			
n-Butylbenzene	9.14	0.50	"	10.0	ND	91.4	55-154			
sec-Butylbenzene	9.33	0.50	"	10.0	ND	93.3	57-159			
tert-Butylbenzene	8.81	0.50	**	10.0	ND	88.1	57-150			
Carbon tetrachloride	10.0	0.50	**	10.0	ND	100	61-160			
Chlorobenzene	8.53	0.50	11	10.0	ND	85.3	62-139			
Chloroethane	8.83	0.50	"	10.0	ND	88.3	63-152			
Chloroform	9.68	0.50	**	10.0	ND	96.8	57-152			
Chloromethane	9.68	0.50		10.0	ND	96.8	59-160			•
2-Chlorotoluene	8.85	0.50	"	10.0	ND	88.5	62-146			
4-Chlorotoluene	8.83	0.50		10.0	ND	88.3	58-146			
Dibromochloromethane	9.04	0.50	**	10.0	ND	90.4	56-141			
1,2-Dibromo-3-chloropropane	8.18	0.50	Ħ	10.0	ND	81.8	51-136			
1,2-Dibromoethane (EDB)	8.71	0.50	**	10.0	ND	87.1	58-140			
Dibromomethane	9.68	0.50		10.0	ND	96.8	63-136			
1,2-Dichlorobenzene	8.46	0.50	**	10.0	ND	84.6	62-137			
1,3-Dichlorobenzene	8.54	0.50	н	10.0	ND	85.4	59-140			
1,4-Dichlorobenzene	8.49	0.50	"	10.0	ND	84.9	62-136			
Dichlorodifluoromethane	11.5	0.50	*1	10.0	ND	115	45-204			
1,1-Dichloroethane	9.42	0.50	**	10.0	ND	94.2	62-156			
1,2-Dichloroethane	9.53	0.50	**	10.0	ND	95.3	61-134			
1,1-Dichloroethene	10.6	0.30	71	10.0	ND	106	70-154			
cis-1,2-Dichloroethene	9.95	0.50	"	10.0	ND	99.5	64-144			
trans-1,2-Dichloroethene	9.51	0.50	"	10.0	ND	95.1	64-146			
1,2-Dichloropropane	8.78	0.50	"	10.0	ND	87.8	61-140			
1,3-Dichloropropane	9.04	0.50	**	10.0	ND	90.4	60-140			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 1 5 2003

MFG, Inc.

alpho Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 39 of 45

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time A307608 07/25/2003 15:40 Client Code MFGINC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30516 - EPA 5030 Water	MS						·			
Matrix Spike (AH30516-MS1)	Sou	rce: A307	610-03	Prepared	& Analyze	ed: 07/31/0)3			
2,2-Dichloropropane	10.2	0.50	11	10.0	ND	102	61-167			
1,1-Dichloropropene	9.16	0.50	"	10.0	ND	91.6	64-157			
cis-1,3-Dichloropropene	10.1	0.50	n	10.0	ND	101	61-151			
trans-1,3-Dichloropropene	8.80	0.50	n	10.0	ND	88.0	54-136			
Ethylbenzene	8.77	0.50	н	10.0	ND	87.7	57-155			
Hexachlorobutadiene	9.65	0.50	"	10.0	ND	96.5	60-153			
Isopropylbenzene	8.25	0.50	н	10.0	ND	82.5	56-148			
p-Isopropyltoluene	8.78	0.50	**	10.0	ND	87.8	53-149			
Methyl ethyl ketone	15.7	1.0	9	20.0	ND	78.5	54-140			
Methyl isobutyl ketone	17.4	1.0	**	20.0	ND	87.0	54-138			
Methyl tert-butyl ether	8.92	0.50	"	10.0	ND	89.2	62-156			
Methylene chloride	8.20	0.50		10.0	ND	82.0	61-136			
Naphthalene	9.45	0.50	**	10.0	ND	94.5	53-154			
n-Propylbenzene	8.84	0.50	11	10.0	ND	88.4	60-152			
Styrene	9.76	0.50	н	10.0	ND	97.6	58-153			
1,1,1,2-Tetrachloroethane	9.45	0.50	**	10.0	ND	94.5	57-149			
1,1,2,2-Tetrachloroethane	8.80	0.50	**	10.0	ND	88.0	60-134			
Tetrachloroethene	8.38	0.50	**	10.0	ND	83.8	50-160			
Toluene	8.67	0.30	"	10.0	ND	86.7	65-145			
1,2,3-Trichlorobenzene	8.87	0.50	н	10.0	ND	88.7	55-141			
1,2,4-Trichlorobenzene	9.01	0.50	"	10.0	ND	90.1	52-145			
1,1,1-Trichloroethane	10.3	0.50	**	10.0	ND	103	62-151			
1,1,2-Trichloroethane	8.89	0.50	v	10.0	ND	88.9	57-136			
Trichloroethene	9.20	0.50	"	10.0	ND	92.0	62-153			
Trichlorofluoromethane	10.4	0.50	**	10.0	ND	104	64-159			
Trichlorotrifluoroethane	11.1	0.50	"	9.84	ND	113	64-163			
1,2,3-Trichloropropane	8.72	0.50	н	10.0	ND	87.2	60-137			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 1 5 2003

MFG, Inc.

Alpha VAnalytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 40 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time A307608 07/25/2003 15:40

Client Code MFGINC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30516 - EPA 5030 Water	r MS									
Matrix Spike (AH30516-MS1)	Sou	rce: A307	610-03	Prepared	& Analyze	ed: 07/31/	03			
1,2,4-Trimethylbenzene	9.42	0.50	**	10.0	ND	94.2	55-155			
1,3,5-Trimethylbenzene	8.85	0.50	"	10.0	ND	88.5	49-155			
Vinyl chloride	9.72	0.50	"	10.0	ND	97.2	65-168			
m,p-Xylene	17.8	0.50	n	20.0	ND	89.0	60-149			
o-Xylene	8.74	0.50	u	10.0	ND	87.4	59-148			
Xylenes (total)	26.5	0.50	"	30.0	ND	88.3	59-149			
Surrogate: Dibromofluoromethane	23.3		"	25.0		93.2	69-119			
Surrogate: Toluene-d8	21.2		"	25.0		84.8	74-118			
Surrogate: Bromofluorobenzene	22.6		"	25.0		90.4	58-112			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- CEIVED 5

AUG 1 5 2003

Wir O, HIU.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 41 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time A307608 07/25/2003 15:40

Client Code MFGINC

Polychlorinated Biphenyls by EPA Method 8080A - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31111 - Solvent Extraction		•								
Blank (AH31111-BLK1)				Prepared:	07/30/03	Analyzed	: 08/11/03			
PCB-1016	ND	0.20	ug/l							
PCB-1221	ND	0.20	**							
PCB-1232	ND	0.20								
PCB-1242	ND	0.20								
PCB-1248	ND	0.20	"							
PCB-1254	ND	0.20	**							
PCB-1260	ND	0.20	11							
PCB-1262	ND	0.20	71							
Surrogate: Decachlorobiphenyl	0.0530		"	0.0500		106	50-170			
Surrogate: Tetrachloro-meta-xylene	0.0270		"	0.0500		54.0	40-140			
LCS (AH31111-BS1)				Prepared:	: 07/30/03	Analyzed	l: 08/11/03			
PCB-1016	2.83	0.20	ug/l	3.00		94.3	54-146			
PCB-1260	2.83	0.20		3.00		94.3	54-146			
Surrogate: Decachlorobiphenyl	0.0500		H	0.0500		100	50-170			
Surrogate: Tetrachloro-meta-xylene	0.0370		"	0.0500		74.0	40-140			
LCS Dup (AH31111-BSD1)				Prepared	: 07/30/03	Analyzed	1: 08/11/03			QM-10
PCB-1016	2.91	0.20	ug/l	3.00		97.0	54-146	2.79	40	
PCB-1260	2.91	0.20	11	3.00		97.0	54-146	2.79	40	
Surrogate: Decachlorobiphenyl	0.0480		"	0.0500		96.0	50-170			
Surrogate: Tetrachloro-meta-xylene	0.0310		"	0.0500		62.0	40-140			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

A307608

E Second A to be a the second AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 42 of 45

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	08/12/03 08:25
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time Client Code 07/25/2003 15:40 MFGINC

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30107 - Solvent Extraction										
Blank (AH30107-BLK1)				Prepared	& Analyze	ed: 07/30/0)3			
2,4,6-Trichlorophenol	ND	1.0	ug/l							
2,3,5,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,6-Tetrachlorophenol	ND	1.0	11							
2,3,4,5-Tetrachlorophenol	ND	1.0	"							
Pentachlorophenol	ND	1.0	**							
Surrogate: Tribromophenol	22.9		n	24.9		92.0	79-119			
LCS (AH30107-BS1)				Prepared	& Analyze	ed: 07/30/0	03			
2,4,6-Trichlorophenol	4.60	1.0	ug/l	5.00		92.0	81-120			
2,3,5,6-Tetrachlorophenol	4.12	1.0	"	5.00		82.4	78-108			
2,3,4,6-Tetrachlorophenol	4.18	1.0	"	5.00		83.6	76-108			
2,3,4,5-Tetrachlorophenol	4.16	1.0	*	5.00		83.2	80-116			
Pentachlorophenol	4.32	1.0		5.00		86.4	86-109			
Surrogate: Tribromophenol	20.4		"	24.9		81.9	79-119			
LCS Dup (AH30107-BSD1)				Prepared	& Analyz	ed: 07/30/	03			
2,4,6-Trichlorophenol	5.04	1.0	ug/l	5.00		101	81-120	9.13	20	
2,3,5,6-Tetrachlorophenol	4.38	1.0		5.00		87.6	78-108	6.12	20	
2,3,4,6-Tetrachlorophenol	4.93	1.0		5.00		98.6	76-108	16.5	20	
2,3,4,5-Tetrachlorophenol	4.96	1.0	н	5.00		99.2	80-116	17.5	20	
Pentachlorophenol	5.17	1.0	"	5.00		103	86-109	17.9	20	
Surrogate: Tribromophenol	24.9		11	24.9		100	79-119			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 1 5 2003

MFG, Inc.

Alpha 🕻 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Page 43 of 45

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:08/12/03 08:25Project No:030229.4Project ID:SPI-Arcata/Task #4

Client PO/Reference

 Order Number
 Receipt Date/Time

 A307608
 07/25/2003 15:40

Client Code MFGINC

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG33007 - EPA 3510B Water										
Blank (AG33007-BLK1)				Prepared:	: 07/30/03	Analyzed	l: 07/31/03			
TPH as Diesel	ND	50	ug/l							
TPH as Motor Oil	ND	100	11							
Surrogate: 1,4-Bromofluorobenzene	463		"	620		74.7	14-116			
LCS (AG33007-BS1)				Prepared	: 07/30/03	Analyzed	1: 07/31/03			
TPH as Diesel	1990	50	ug/l	2090		95.2	57-136			
TPH as Motor Oil	2190	100	"	2090		105	58-138			
Surrogate: 1,4-Bromofluorobenzene	503		R	620		81.1	14-116			
LCS Dup (AG33007-BSD1)				Prepared	: 07/30/03	Analyzed	1: 07/31/03			QM-10
TPH as Diesel	1910	50	ug/l	2090		91.4	57-136	4.10	25	
TPH as Motor Oil	2130	100	"	2090		102	58-138	2.78	25	
Surrogate: 1,4-Bromofluorobenzene	460		n	620		74.2	14-116			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

Receipt Date/Time

07/25/2003 15:40

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 44 of 45

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number

A307608

Report Date: 08/12/03 08:25 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Client Code MFGINC

TPH as Gasoline by GCFID/5030 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30519 - EPA 5030 Water	GC									
Blank (AH30519-BLK1)				Prepared	& Analyze	ed: 08/01/0	03			
TPH as Gasoline	ND	50	ug/l							
Surrogate: 1,4-Bromofluorobenzene	20.0		"	23.1		86.6	63-150			
LCS (AH30519-BS2)				Prepared	& Analyze	ed: 08/01/	03			
TPH as Gasoline	52.4	50	ug/l	50.0		105	79-123			
Surrogate: 1,4-Bromofluorobenzene	20.2		H	20.0		101	63-150			
LCS Dup (AH30519-BSD2)				Prepared	& Analyze	ed: 08/01/	03			
TPH as Gasoline	47.3	50	ug/l	50.0		94.6	79-123	10.2	15	
Surrogate: 1,4-Bromofluorobenzene	21.0		Ħ	20.0		105	63-150			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG 1 5 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 45 of 45

	St. Suite 200 20, CA 94105-2941 ati	Pro	ject No:	08/12/03 08:25 030229.4 SPI-Arcata/Task #4	
Order Number A307608	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC		Client PO/Reference	

Notes and Definitions

- The sample chromatogram contains resolved peaks within the motor oil range that do not resemble motor oil. D-12
- D-13 The sample chromatogram contains resolved peaks within the diesel range that do not resemble diesel.
- QM-10 LCSD prepared with analytical batch due to insufficient sample for MS/MSD.
- R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.
- R-02 Elevated Reporting Limits due to limited sample volume.
- R-04 The Reporting Limits for this analysis are elevated due to sample foaming.
- S-04 The surrogate recovery for this sample is outside of established control limits possibly due to a sample matrix effect.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- Sample results reported on a dry weight basis dry
- RPD **Relative Percent Difference**
- PQL **Practical Quantitation Limit**

Alpha Analytical Laboratories	Client Proje	ect ID:	#A307	7608 Date Sam	pled: 07/24/03		
208 Mason Street					eived: 07/29/03		
208 Mason Sheet	Client Cont	act: S	heri Sne		acted: 07/29/03		
Jkiah, CA 95482			lien spe			0.00.00	
	Client P.O.:				yzed: 07/30/03-0	18/02/0	
Extraction Method: SW3510C	Semi-Volatile	-	•	GC/MS (Basic Target List)* hod: SW8270D	Work	Order: 0	207487
Lab ID		7 114		0307487-001A	W OIK	Oldel. 0	307487
Client ID				WO-3-GW			
Matrix				Water	······		
Compound	Concentration *	DF	Reporting	Compound	Concentration *	DF	Reporting
cenaphthene	ND	1.0	Limit 10	Acenaphthylene	ND	1.0	Limit
nthracene	ND	1.0	10	Benzidine	ND	1.0	10
enzoic Acid	ND	1.0	50	Benz(a)anthracene	ND	1.0	10
enzo(b)fluoranthene	ND	1.0	10	Benzo(k)fluoranthene	ND	1.0	10
enzo(g,h,i)perylene	ND	1.0	10	Benzo(a)pyrene	ND	1.0	10
enzyl Alcohol	ND	1.0	20	Bis (2-chloroethoxy) Methane	ND	1.0	10
s (2-chloroethyl) Ether	ND	1.0	10	Bis (2-chloroisopropyl) Ether	ND	1.0	10
s (2-ethylhexyl) Phthalate	ND	1.0	10	4-Bromophenyl Phenyl Ether	ND	1.0	10
itylbenzyl Phthalate	ND	1.0	10	4-Chloroaniline	ND	1.0	20
Chloro-3-methylphenol	ND	1.0	10	2-Chloronaphthalene	ND	1.0	10
Chlorophenol	ND	1.0	10	4-Chlorophenyl Phenyl Ether	ND	1.0	10
rysene	ND	1.0	10	Dibenzo(a,h)anthracene	ND	1.0	10
benzofuran	ND	1.0	10	Di-n-butyl Phthalate	ND	1.0	10
Dichlorobenzene	ND	1.0	10	1,3-Dichlorobenzene	ND	1.0	10
-Dichlorobenzene	ND	1.0	10	3,3-Dichlorobenzidine	ND	1.0	20
-Dichlorophenol	ND	1.0	10	Diethyl Phthalate	ND	1.0	10
4-Dimethylphenol 5-Dinitro-2-methylphenol	ND ND	1.0	10	Dimethyl Phthalate	ND	1.0	10
4-Dinitrotoluene	ND	1.0	10	2,4-Dinitrophenol 2,6-Dinitrotoluene	ND ND	1.0	50
-n-octyl Phthalate	ND	1.0	10	1,2-Diphenylhydrazine	ND	1.0	10
uoranthene	ND	1.0	10	Fluorene	ND	1.0	10
exachlorobenzene	ND	1.0	10	Hexachlorobutadiene	ND	1.0	10
exachlorocyclopentadiene	ND	1.0	50	Hexachloroethane	ND	1.0	10
deno (1,2,3-cd) pyrene	ND	1.0	10	Isophorone	ND	1.0	10
Methylnaphthalene	ND	1.0	10	2-Methylphenol (o-Cresol)	ND	1.0	10
&/or 4-Methylphenol (m,p-Cresol)	ND	1.0	10	Naphthalene	ND	1.0	10
Nitroaniline	ND	1.0	50	3-Nitroaniline	ND	1.0	50
Nitroaniline	ND	1.0	50	2-Nitrophenol	ND	1.0	50
Nitrophenol	ND	1.0	50	Nitrobenzene	ND	1.0	10
Nitrosodiphenylamine	ND	1.0	10	N-Nitrosodi-n-propylamine	ND	1.0	10
ntachlorophenol	ND	1.0	50	Phenanthrene	ND	1.0	10
enol	ND	1.0	10	Pyrene	ND	1.0	10
,4-Trichlorobenzene	ND	1.0	10	2,4,5-Trichlorophenol	ND	1.0	10
6-Trichlorophenol	ND	1.0	10				
		Sur	rogate Re	coveries (%)			\frown
5SS1:	44.4			%SS2:	43.	8	
6SS3:	60.0			%SS4:	61.	3	Ш
%SS5:	72.4	1		%SS6:	63.	1	\geq
omments:							т Ш

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

Angela Rydelius, Lab Manager V.

Alpha Analytical Laboratories	Client Proje	ect ID:	#A30	7608 Dat	e Sampled: 07/24/03		
					-		
208 Mason Street				Dat	e Received: 07/29/03		
Ukiah, CA 95482	Client Cont	act: Sl	heri Spe	eaks Dat	e Extracted: 07/29/03		
Okiali, CA 99402	Client P.O.	•		Dat	e Analyzed: 07/30/03-0	08/02/0	93
	Semi-Volatile	Organ	nics by	GC/MS (Basic Target L	.ist)*		
Extraction Method: SW3510C		-	-	thod: SW8270D		Order: 0	307487
Lab ID				0307487-002A			
Client ID				WO-4-GW			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acenaphthene	ND	1.0	10	Acenaphthylene	ND	1.0	10
Anthracene	ND	1.0	10	Benzidine	ND	1.0	50
Benzoic Acid	57	1.0	50	Benz(a)anthracene	ND	1.0	10
Benzo(b)fluoranthene	ND	1.0	10	Benzo(k)fluoranthene	ND	1.0	10
Benzo(g,h,i)perylene	ND	1.0	10	Benzo(a)pyrene	ND	1.0	10
Benzyl Alcohol	ND	1.0	20	Bis (2-chloroethoxy) Methan		1.0	10
Bis (2-chloroethyl) Ether	ND	1.0	10	Bis (2-chloroisopropyl) Ether		1.0	10
Bis (2-ethylhexyl) Phthalate	ND	1.0	10	4-Bromophenyl Phenyl Ether		1.0	10
utylbenzyl Phthalate -Chloro-3-methylphenol	ND ND	1.0	10	4-Chloroaniline 2-Chloronaphthalene	ND	1.0	20
-Chlorophenol	ND	1.0	10	4-Chlorophenyl Phenyl Ether	ND	1.0	10
hrysene	ND	1.0	10	Dibenzo(a,h)anthracene	ND ND	1.0	10
vibenzofuran	ND	1.0	10	Dion-butyl Phthalate	ND ND	1.0	10
2-Dichlorobenzene	ND	1.0	10	1.3-Dichlorobenzene	ND ND	1.0	10
4-Dichlorobenzene	ND	1.0	10	3,3-Dichlorobenzidine	ND	1.0	20
4-Dichlorophenol	ND	1.0	10	Diethyl Phthalate	ND	1.0	10
,4-Dimethylphenol	ND	1.0	10	Dimethyl Phthalate	ND	1.0	10
,6-Dinitro-2-methylphenol	ND	1.0	50	2,4-Dinitrophenol	ND	1.0	50
,4-Dinitrotoluene	ND	1.0	10	2,6-Dinitrotoluene	ND	1.0	10
Di-n-octyl Phthalate	ND	1.0	10	1,2-Diphenylhydrazine	ND	1.0	10
luoranthene	ND	1.0	10	Fluorene	ND	1.0	10
Hexachlorobenzene	ND	1.0	10	Hexachlorobutadiene	ND	1.0	10
Hexachlorocyclopentadiene	ND	1.0	50	Hexachloroethane	ND	1.0	10
ndeno (1,2,3-cd) pyrene	ND	1.0	10	Isophorone	ND	1.0	10
2-Methylnaphthalene	ND	1.0	10	2-Methylphenol (o-Cresol)	ND	1.0	10
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	10	Naphthalene	ND	1.0	10
2-Nitroaniline	ND	1.0	50	3-Nitroaniline	ND	1.0	50
4-Nitroaniline	ND	1.0	50	2-Nitrophenol	ND	1.0	50
I-Nitrophenol	ND	1.0	50	Nitrobenzene	ND	1.0	10
N-Nitrosodiphenylamine	ND	1.0	10	N-Nitrosodi-n-propylamine	ND	1.0	10
entachlorophenol	ND	1.0	50	Phenanthrene	ND	1.0	10
							10
				2,4,3-1richlorophenol	ND	1.0	10
,4,8-Inchlorophenol	ND			acoveries (%)			
%SS1·	57		- opute N		50	2	
							0
							TT
	01.			/0555.	10		
Phenol 1,2,4-Trichlorobenzene 2,4,6-Trichlorophenol %SS1: %SS3: %SS5: Comments: water samples and all TCLP & SPLI queous liquid samples in mg/L.	33 ND ND 57. 69. 81. extracts are reported	6 4 4		Pyrene 2,4,5-Trichlorophenol ecoveries (%) %SS2: %SS4: %SS6: //ge/solid samples in mg/kg, with	pe samples in µg/wipe	61 78	1.0 1.0 52.2 61.7 78.3 , product/oil/not

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

DHS Certification No. 1644

Angela Rydelius, Lab Manager 4

				m E-mail: main@mccampbel	1.00111				
Client Proje	ct ID:	#A30	7608 Date Sa	mpled: 07/24/03					
			Date Re	eceived: 07/29/03					
Client Cont	act: S	heri Spe	eaks Date Er	tracted: 07/29/03					
Client P.O.:			Date Ar	Date Analyzed: 07/30/03-08/02/03					
Semi-Volatile	0	•							
	An	alytical Me		Work	Order: 03	107487			
	D D	Reporting	I			Reporting			
		Limit	Compound			Limit			
			A			10			
					· · · · · · · · · · · · · · · · · · ·	50 10			
ND	1.0					10			
ND	1.0	10				10			
ND	1.0	20	Bis (2-chloroethoxy) Methane	ND	1.0	10			
ND	1.0	10		ND	1.0	10			
ND	1.0	10	4-Bromophenyl Phenyl Ether	ND	1.0	10			
ND	1.0	10	4-Chloroaniline	ND	1.0	20			
ND	1.0	10	2-Chloronaphthalene	ND	1.0	10			
ND	1.0	10	4-Chlorophenyl Phenyl Ether	ND	1.0	10			
	1.0	10	Dibenzo(a,h)anthracene	ND	1.0	10			
ND	1.0	10	Di-n-butyl Phthalate	ND	1.0	10			
ND	1.0	10	1,3-Dichlorobenzene	ND	1.0	10			
		10		ND	1.0	20			
				ND	1.0	10			
						10			
						50			
			+			10			
						10			
						10			
						10			
						10			
						10			
ND	1.0	10			1	10			
ND	1.0	50				50			
ND	1.0	50	2-Nitrophenol			50			
ND	1.0	50	Nitrobenzene	ND	1.0	10			
ND	1.0	10	N-Nitrosodi-n-propylamine	ND	1.0	10			
ND	1.0	50	Phenanthrene	ND	1.0	10			
18	1.0	10	Pyrene	ND	1.0	10			
ND	1.0	10	2,4,5-Trichlorophenol	ND	1.0	10			
ND	1.0			·					
		rogate R							
			%SS2:			0			
	******					-Ш			
74.1			%SS6:	69.	3				
						~			
extracts are reported	in μg/L	, soil/sluc	lge/solid samples in mg/kg, wipe sa	mples in µg/wipe, produc	t/oil/non	- 11			
-						- Щ С			
						C			
rting limit; N/A mean	s analy	te not app	licable to this analysis.			Ц Ц Ц			
	Client P.O.: Semi-Volatile Concentration * ND ND ND ND ND ND ND ND ND ND	Client P.O.: Semi-Volatile Organ Anderset organ Semi-Volatile Organ Organ	Client P.O.: Semi-Volatile Organics by Analytical Me Analytical Me Concentration * DF Reporting Limit ND 1.0 10 10 ND 1	Client Contact: Sheri Speaks Date Ex Client P.O.: Date An Client P.O.: Comerity Contacts by CC/MS (Basic Target Listy) Analytical Method: SW8270D MO-5-GW WO-5-GW WO-5-GW Workstreig ND 1.0 10 Acenaphthylene ND 1.0 10 Benzidine ND 1.0 10 Benzo(a)pyrene ND 1.0 10 Benzo(a)pyrene ND 1.0 10 Benzo(a)pyrene ND 1.0 10 Bis (2-chlorosthoxy) Methane ND 1.0 10 4-Chloroshilaene ND 1.0 10 4-Chlorophenyl Phenyl Ether ND 1.0 10 Jointers/a)nhtracene ND 1.0 10 Jointers/a)nhtracene ND 1.0 10 Jointers/a)nhtracene ND 1.0 10 Jointers/a)nhtracene <td>Date Analyzed: 07/30/03-0 Semi-Volatile Organics by GC/MS (Basic Target List)* Analytical Method: SW8270D Work O37487-003A WO-5-GW Water Concentration * DF Reporting Concentration * ND 10 Benza(a)anthracene ND ND 10 Benza(a)anthracene ND ND 10 10 ND 10 10 ND 10 10 ND 10 1</td> <td>Client Contact: Sheri Speaks Date Extracted: 07/29/03 Client P.O.: Date Analyzed: 07/29/03 Semi-Volatile Organics by GC/MS (Basic Target List)* Analytical Method: SWE COME O307487-003A WOr 5-GW WOr 5-GW Work Order: 0: Oscillation * DF ND 1.0 ND ND 1.0 ND ND ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 NO 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND</td>	Date Analyzed: 07/30/03-0 Semi-Volatile Organics by GC/MS (Basic Target List)* Analytical Method: SW8270D Work O37487-003A WO-5-GW Water Concentration * DF Reporting Concentration * ND 10 Benza(a)anthracene ND ND 10 Benza(a)anthracene ND ND 10 10 ND 10 10 ND 10 10 ND 10 1	Client Contact: Sheri Speaks Date Extracted: 07/29/03 Client P.O.: Date Analyzed: 07/29/03 Semi-Volatile Organics by GC/MS (Basic Target List)* Analytical Method: SWE COME O307487-003A WOr 5-GW WOr 5-GW Work Order: 0: Oscillation * DF ND 1.0 ND ND 1.0 ND ND ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 NO 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND			

DHS Certification No. 1644

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

McCampbell Analy) Fax : 925-798-1622 mail: main@mccampbel	l.com	
Alpha Analytical Laboratories	Client Proje	ect ID:	#A30	7608 Da	ate Samp	led: 07/24/03		
208 Mason Street				Da	ate Recei	ved: 07/29/03		
Ukiah, CA 95482	Client Cont	act: Sl	neri Spe	eaks Da	ate Extra	cted: 07/29/03		
	Client P.O.			Da	ate Analy	zed: 07/30/03-0	8/02/0	3
	Semi-Volatile	Orgar	ics by	GC/MS (Basic Target]	List)*			
Extraction Method: SW3510C		Ana	lytical Me	thod: SW8270D		Work	Order: 03	307487
Lab ID				0307487-004A				
Client ID				WO-6-GW				
Matrix				Water				
Compound	Concentration *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit
Acenaphthene	ND	1.0	10	Acenaphthylene		ND	1.0	10
Anthracene	ND	1.0	10	Benzidine		ND	1.0	50
Benzoic Acid	ND	1.0	50	Benz(a)anthracene		ND	1.0	10
Benzo(b)fluoranthene	ND	1.0	10	Benzo(k)fluoranthene		ND	1.0	10
Benzo(g,h,i)perylene	ND	1.0	10	Benzo(a)pyrene		ND	1.0	10
Benzyl Alcohol	ND	1.0	20	Bis (2-chloroethoxy) Metha	ine	ND	1.0	10
Bis (2-chloroethyl) Ether	ND	1.0	10	Bis (2-chloroisopropyl) Ethe		ND	1.0	10
Bis (2-ethylhexyl) Phthalate	ND	1.0	10	4-Bromophenyl Phenyl Ethe		ND	1.0	10
Butylbenzyl Phthalate	ND	1.0	10	4-Chloroaniline		ND	1.0	20
4-Chloro-3-methylphenol	ND	1.0	10	2-Chloronaphthalene		ND	1.0	10
2-Chlorophenol	ND	1.0	10	4-Chlorophenyl Phenyl Ethe	er	ND	1.0	10
Chrysene	ND	1.0	10	Dibenzo(a,h)anthracene		ND	1.0	10
Dibenzofuran	ND	1.0	10	Di-n-butyl Phthalate		ND	1.0	10
1,2-Dichlorobenzene	ND	1.0	10	1,3-Dichlorobenzene		ND	1.0	10
1,4-Dichlorobenzene	ND	1.0	10	3,3-Dichlorobenzidine		ND	1.0	20
2,4-Dichlorophenol	ND	1.0	10	Diethyl Phthalate		ND	1.0	10
2,4-Dimethylphenol	ND	1.0	10	Dimethyl Phthalate		ND	1.0	10
4,6-Dinitro-2-methylphenol	ND	1.0	50	2,4-Dinitrophenol		ND	1.0	50
2,4-Dinitrotoluene	ND	1.0	10	2,6-Dinitrotoluene		ND	1.0	10
Di-n-octyl Phthalate	ND	1.0	10	1,2-Diphenylhydrazine		ND	1.0	10
Fluoranthene	ND	1.0	10	Fluorene		ND	1.0	10
Hexachlorobenzene	ND	1.0	10	Hexachlorobutadiene		ND	1.0	10
Hexachlorocyclopentadiene	ND	1.0	50	Hexachloroethane		ND	1.0	10
Indeno (1,2,3-cd) pyrene	ND	1.0	10	Isophorone		ND	1.0	10
2-Methylnaphthalene	ND	1.0	10	2-Methylphenol (o-Cresol)		ND	1.0	10
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	10	Naphthalene		ND	1.0	10
2-Nitroaniline	ND	1.0	50	3-Nitroaniline		ND	1.0	50
4-Nitroaniline	ND	1.0	50	2-Nitrophenol		ND	1.0	50
4-Nitrophenol	ND	1.0	50	Nitrobenzene		ND	1.0	10
N-Nitrosodiphenylamine	ND	1.0	10	N-Nitrosodi-n-propylamine	;	ND	1.0	10
Pentachlorophenol	ND	1.0	50	Phenanthrene		ND	1.0	10
Phenol	130	1.0	10	Pyrene		ND	1.0	10
1,2,4-Trichlorobenzene	ND	1.0	10	2,4,5-Trichlorophenol		ND	1.0	10
2,4,6-Trichlorophenol	ND	1.0	<u>10</u>					
			rogate R	ecoveries (%)				
%SS1:	47.:			%SS2:		. 47.		\cap
%SS3:	62			%SS4:		61.		111
%SS5:	70.)		%SS6:		65.	7	
Comments:								
water samples and all TCLP & SPLP equeous liquid samples in mg/L. ND means not detected above the report					vipe sample	s in μg/wipe, produc	t/oil/nor	RECE

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

.

Angela Rydelius, Lab Manager

McCampbell Analy	ytical lnc.					20 Fax : 925-798-1622 E-mail: main@mccampbe	ll.com	
Alpha Analytical Laboratories	Client Proje	ct ID:	#A307	7608	Date Samj	pled: 07/24/03		
208 Mason Street					Date Rece	vived: 07/29/03		
Ukiah, CA 95482	Client Cont	act: Sl	heri Spe	aks	Date Extra	acted: 07/29/03		
·	Client P.O.:				Date Anal	yzed: 07/30/03-0	08/02/0	3
	Semi-Volatile	-	•	GC/MS (Basic Targ	get List)*			
Extraction Method: SW3510C		Ana	alytical Met	thod: SW8270D	~ .	Work	Order: 03	07487
Lab ID				0307487-00				
Client ID				WO-7-GV	V		· · · · · · · · · · · · · · · · · · ·	
Matrix				Water				
Compound	Concentration *	DF	Reporting Limit	Compoun	d	Concentration *	DF	Reporting Limit
Acenaphthene	ND	1.0	10	Acenaphthylene		ND	1.0	10
Anthracene	ND	1.0	10	Benzidine		ND	1.0	50
Benzoic Acid	ND	1.0	50	Benz(a)anthracene		ND	1.0	10
Benzo(b)fluoranthene	ND	1.0	10	Benzo(k)fluoranthene		ND	1.0	10
Benzo(g,h,i)perylene	ND	1.0	10	Benzo(a)pyrene		ND	1.0	10
Benzyl Alcohol	ND	1.0	20	Bis (2-chloroethoxy) M	ethane	ND	1.0	10
Bis (2-chloroethyl) Ether	ND	1.0	10	Bis (2-chloroisopropyl)	Ether	ND	1.0	10
Bis (2-ethylhexyl) Phthalate	ND	1.0	10	4-Bromophenyl Phenyl	Ether	ND	1.0	10
Butylbenzyl Phthalate	ND	1.0	10	4-Chloroaniline		ND	1.0	20
4-Chloro-3-methylphenol	ND	1.0	10	2-Chloronaphthalene		ND	1.0	10
2-Chlorophenol	ND	1.0	10	4-Chlorophenyl Phenyl	Ether	ND	1.0	10
Chrysene	ND	1.0	10	Dibenzo(a,h)anthracene)	ND	1.0	10
Dibenzofuran	ND	1.0	10	Di-n-butyl Phthalate		ND	1.0	10
1,2-Dichlorobenzene	ND	1.0	10	1,3-Dichlorobenzene		ND	1.0	10
1,4-Dichlorobenzene	ND	1.0	10	3,3-Dichlorobenzidine		ND	1.0	20
2,4-Dichlorophenol	ND	1.0	10	Diethyl Phthalate		ND	1.0	10
2,4-Dimethylphenol	ND	1.0	10	Dimethyl Phthalate		ND	1.0	10
4,6-Dinitro-2-methylphenol	ND	1.0	50	2,4-Dinitrophenol		ND	1.0	50
2,4-Dinitrotoluene	ND	1.0	10	2,6-Dinitrotoluene		ND	1.0	10
Di-n-octyl Phthalate Fluoranthene	ND	1.0	10	1,2-Diphenylhydrazine		ND	1.0	10
	ND	1.0	10	Fluorene		ND	1.0	10
Hexachlorobenzene Hexachlorocyclopentadiene	ND ND	1.0	10	Hexachlorobutadiene Hexachloroethane		ND ND	1.0	10
Indeno (1,2,3-cd) pyrene	ND	1.0	10	Isophorone		ND ND	1.0	10
2-Methylnaphthalene	ND	1.0	10	2-Methylphenol (o-Cre	sol)	ND	1.0	10
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	10	Naphthalene		ND	1.0	10
2-Nitroaniline	ND	1.0	50	3-Nitroaniline		ND	1.0	50
4-Nitroaniline	ND	1.0	50	2-Nitrophenol		ND	1.0	50
4-Nitrophenol	ND	1.0	50	Nitrobenzene		ND	1.0	10
N-Nitrosodiphenylamine	ND	1.0	10	N-Nitrosodi-n-propylar	nine	ND	1.0	10
Pentachlorophenol	ND	1.0	50	Phenanthrene		ND	1.0	10
Phenol	22	1.0	10	Pyrene		ND	1.0	10
1,2,4-Trichlorobenzene	ND	1.0	10	2,4,5-Trichlorophenol		ND	1.0	10
2,4,6-Trichlorophenol	ND	1.0	10					
		Sur	rogate R	ecoveries (%)				
%SS1:	37.			%SS2:		37	.0	$\overline{\mathbf{n}}$
%SS3:	47.0			%SS4:		46	.8	
%SS5:	51.()		%SS6:		43	.5	Ш
Comments:								2
* water samples and all TCLP & SPLP aqueous liquid samples in mg/L.	extracts are reported	in μg/L	., soil/slud	lge/solid samples in mg/k	g, wipe samp	les in μg/wipe, produ	ct/oil/noi	л-Ш О
ND means not detected above the repo #) surrogate diluted out of range; &) lo	•	·		•				ЦЦ

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

AUG 1 5 2003 MFG, Inc.

4

DHS Certification No. 1644

.

_ Angela Rydelius, Lab Manager

ΔĄ

McCampbell Analyt	tical Inc.			Telephor	ne : 925-798-16	7, Pacheco, CA 94553-5: 20 Fax : 925-798-1622 E-mail: main@mccampbe				
Alpha Analytical Laboratories	Client Proje	ect ID:	#A307	7608	Date Samp	oled: 07/24/03				
208 Mason Street					Date Rece	ived: 07/29/03				
Ukiah, CA 95482	Client Cont	act: Sl	heri Spe	aks	Date Extra	acted: 07/29/03				
·	Client P.O.:				Date Analyzed: 07/30/03-08/02/0					
Extraction Method: SW3510C	Semi-Volatile	0	•	GC/MS (Basic Targ	et List)*	Work	Order: 0	307487		
Lab ID				0307487-00	6A					
Client ID				WO-8-GW	/					
Matrix				Water						
Compound	Concentration *	DF	Reporting Limit	Compound	1	Concentration *	DF	Reportin Limit		
Acenaphthene	ND	1.0	_10	Acenaphthylene		ND	1.0	10		
Anthracene	ND	1.0	10	Benzidine		ND	1.0	50		
Benzoic Acid	ND	1.0	50	Benz(a)anthracene		ND	1.0	10		
Benzo(b)fluoranthene	ND ND	<u>1.0</u> 1.0	10	Benzo(k)fluoranthene Benzo(a)pyrene	· · · · · · · · · · · · · · · · · · ·	ND ND	1.0 1.0	10		
Benzo(g,h,i)perylene	ND	1.0	20	Bis (2-chloroethoxy) Me	thone	ND	1.0	10		
Bis (2-chloroethyl) Ether	ND	1.0	10	Bis (2-chloroisopropyl)		ND	1.0	10		
Bis (2-ethylhexyl) Phthalate	ND	1.0	10	4-Bromophenyl Phenyl		ND	1.0	10		
Butylbenzyl Phthalate	ND	1.0	10	4-Chloroaniline		ND	1.0	20		
4-Chloro-3-methylphenol	ND	1.0	10	2-Chloronaphthalene		ND	1.0	10		
2-Chlorophenol	ND	1.0	10	4-Chlorophenyl Phenyl	Ether	ND	1.0	10		
Chrysene	ND	1.0	10	Dibenzo(a,h)anthracene		ND	1.0	10		
Dibenzofuran	ND	1.0	10	Di-n-butyl Phthalate		ND	1.0	10		
1,2-Dichlorobenzene	ND	1.0	10	1,3-Dichlorobenzene		ND	1.0	10		
1,4-Dichlorobenzene	ND	1.0	10	3,3-Dichlorobenzidine		ND	1.0	20		
2,4-Dichlorophenol	ND ND	<u> </u>	10	Diethyl Phthalate Dimethyl Phthalate		ND ND	1.0	10		
2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol	ND	1.0	50	2,4-Dinitrophenol		ND	1.0	10		
2.4-Dinitrotoluene	ND	1.0	10	2,6-Dinitrotoluene		ND	1.0	10		
Di-n-octyl Phthalate	ND	1.0	10	1,2-Diphenylhydrazine		ND	1.0	10		
Fluoranthene	ND	1.0	10	Fluorene		ND	1.0	10		
Hexachlorobenzene	ND	1.0	10	Hexachlorobutadiene		ND	1.0	10		
Hexachlorocyclopentadiene	ND	1.0	50	Hexachloroethane		ND	1.0	10		
Indeno (1,2,3-cd) pyrene	ND	1.0	10	Isophorone		ND	1.0	10		
2-Methylnaphthalene	ND	1.0	10	2-Methylphenol (o-Cres	ol)	ND	1.0	10		
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	10	Naphthalene		ND	1.0	10		
2-Nitroaniline 4-Nitroaniline	ND ND	1.0	50 50	3-Nitroaniline 2-Nitrophenol		ND	1.0	50		
4-Nitrophenol	ND ND	1.0	50	Nitrobenzene		ND ND	1.0 1.0	50		
N-Nitrosodiphenylamine	ND	1.0	10	N-Nitrosodi-n-propylan	nine	ND	1.0	10		
Pentachlorophenol	ND	1.0	50	Phenanthrene		ND	1.0	10		
Phenol	17	1.0	10	Pyrene		ND	1.0	10		
1,2,4-Trichlorobenzene	ND	1.0	10	2,4,5-Trichlorophenol		ND	1.0	10		
2,4,6-Trichlorophenol	ND	1.0	10							
		Sur	rogate Re	ecoveries (%)						
%SS1:	40.0			%SS2:		38.		C		
%SS3: %SS5:	51.0			%SS4:		51.				
	56.	7		%SS6:		49.	•			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

•

Angela Rydelius, Lab Manager

McCampbell Analy	tical Inc.			Telepho	ne : 925-798-16	7, Pacheco, CA 94553-55 20 Fax : 925-798-1622 E-mail: main@mccampbel				
Alpha Analytical Laboratories	Client Proje	ect ID:	#A307	7608	Date Sam	pled: 07/24/03				
208 Mason Street					Date Received: 07/29/03					
Ukiah, CA 95482	Client Cont	act: S	heri Spe	aks	Date Extra	acted: 07/29/03				
,	Client P.O.				Date Anal	yzed: 07/30/03-0	8/02/0	3		
Extraction Method: SW3510C	Semi-Volatile	0	nics by (alytical Me	get List)*	Work	Order: 0	307487			
Lab ID				0307487-00)7A					
Client ID				WO-9-G\	V					
Matrix				Water						
Compound	Concentration *	DF	Reporting Limit	Compoun	d	Concentration *	DF	Reporting Limit		
Acenaphthene	ND	1.0	10	Acenaphthylene		ND	1.0	10		
Anthracene	ND	1.0	10	Benzidine		ND	1.0	50		
Benzoic Acid	ND	1.0	50	Benz(a)anthracene		ND	1.0	10		
Benzo(b)fluoranthene	ND	1.0	10	Benzo(k)fluoranthene		ND	1.0	10		
Benzo(g,h,i)perylene	ND	1.0	10	Benzo(a)pyrene		ND	1.0	10		
Benzyl Alcohol	ND	1.0	20	Bis (2-chloroethoxy) M		ND	1.0	10		
Bis (2-chloroethyl) Ether	ND	1.0	10	Bis (2-chloroisopropyl)		ND	1.0	10		
Bis (2-ethylhexyl) Phthalate	ND	1.0	10	4-Bromophenyl Phenyl	Ether	ND	1.0	10		
Butylbenzyl Phthalate	ND	1.0	10	4-Chloroaniline		ND	1.0	20		
4-Chloro-3-methylphenol	ND	1.0	10	2-Chloronaphthalene	X3.1	ND	1.0	10		
2-Chlorophenol	ND	1.0	10	4-Chlorophenyl Phenyl		ND	1.0	10		
Chrysene	ND	1.0	10	Dibenzo(a,h)anthracene	3	ND	1.0	10		
Dibenzofuran 1,2-Dichlorobenzene	ND ND	1.0	10	Di-n-butyl Phthalate 1,3-Dichlorobenzene		ND	1.0	10		
1,4-Dichlorobenzene	ND	1.0	10	3,3-Dichlorobenzidine		ND ND	1.0 1.0	10		
2,4-Dichlorophenol	ND	1.0	10	Diethyl Phthalate		ND ND	1.0	10		
2,4-Dimethylphenol	ND	1.0	10	Dimethyl Phthalate		ND ND	1.0	10		
4,6-Dinitro-2-methylphenol	ND	1.0	50	2,4-Dinitrophenol		ND	1.0	50		
2.4-Dinitrotoluene	ND	1.0	10	2,6-Dinitrotoluene		ND	1.0	10		
Di-n-octyl Phthalate	ND	1.0	10	1,2-Diphenylhydrazine		ND	1.0	10		
Fluoranthene	ND	1.0	10	Fluorene		ND	1.0	10		
Hexachlorobenzene	ND	1.0	10	Hexachlorobutadiene		ND	1.0	10		
Hexachlorocyclopentadiene	ND	1.0	50	Hexachloroethane		ND	1.0	10		
Indeno (1,2,3-cd) pyrene	ND	1.0	10	Isophorone		ND	1.0	10		
2-Methylnaphthalene	ND	1.0	10	2-Methylphenol (o-Cre	sol)	ND	1.0	10		
3 &/or 4-Methylphenol (m,p-Cresol)	11	1.0	10	Naphthalene		ND	1.0	10		
2-Nitroaniline	ND	1.0	50	3-Nitroaniline		ND	1.0	50		
4-Nitroaniline	ND	1.0	50	2-Nitrophenol		ND	1.0	50		
4-Nitrophenol	ND	1.0	50	Nitrobenzene		ND	1.0	10		
N-Nitrosodiphenylamine	ND	1.0	10	N-Nitrosodi-n-propyla	nine	ND	1.0	10		
Pentachlorophenol	ND 26	1.0	50	Phenanthrene		ND	1.0	10		
Phenol 1,2,4-Trichlorobenzene	26 ND	1.0	10	Pyrene 2,4,5-Trichlorophenol		ND ND	1.0	10		
2,4,6-Trichlorophenol	ND	1.0	10	2,4,5-Inchiorophenol		ND	1.0	10		
2,7,0-111011010pil0101				ecoveries (%)						
%SS1:	46.		i ogate N	%SS2:		A A	6	~		
%SS1: %SS3:	40. 62.			%882: %884:		44.		[
%SS5:	<u> </u>			%SS6:		59		— Ц		
10000.	09.	v		//0000.			.0			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

Alpha Analytical Laboratories	Client Proj	ect ID:	#A30	7608 Date	Sampled: 07/24/03		
208 Mason Street				Date	Received: 07/29/03		
	Client Cont	tact: Sl	heri Spe	eaks Date	Extracted: 07/29/03		
Ukiah, CA 95482	Client P.O.	:		Date	Analyzed: 07/30/03-0	08/02/0	13
	 Semi-Volatile	Orgar	ics by	GC/MS (Basic Target Li	st)*		
Extraction Method: SW3510C		0	•	thod: SW8270D	,	c Order: 03	307487
Lab ID				0307487-008A			
Client ID Matrix				WO-10-GW			
			Reporting	Water		T	Reporting
Compound	Concentration *	DF	Limit	Compound	Concentration *	DF	Limit
Acenaphthene	ND	1.0	10	Acenaphthylene	ND	1.0	10
Anthracene	ND	1.0	10	Benzidine	ND	1.0	50
Benzoic Acid	ND	1.0	50	Benz(a)anthracene	ND	1.0	10
Benzo(b)fluoranthene Benzo(g,h,i)perylene	ND ND	1.0 1.0	10	Benzo(k)fluoranthene	ND	1.0	10
Benzyl Alcohol	ND	1.0	20	Benzo(a)pyrene Bis (2-chloroethoxy) Methane	ND	1.0	10
Bis (2-chloroethyl) Ether	ND	1.0	10	Bis (2-chloroisopropyl) Ether	ND ND	1.0	10
Bis (2-ethylhexyl) Phthalate	ND	1.0	10	4-Bromophenyl Phenyl Ether	ND ND	1.0	10
Butylbenzyl Phthalate	ND ND	1.0	10	4-Chloroaniline	ND	1.0	10
4-Chloro-3-methylphenol	ND	1.0	10	2-Chloronaphthalene	ND	1.0	10
2-Chlorophenol	ND	1.0	10	4-Chlorophenyl Phenyl Ether	ND	1.0	10
Chrysene	ND	1.0	10	Dibenzo(a,h)anthracene	ND	1.0	10
Dibenzofuran	ND	1.0	10	Di-n-butyl Phthalate	ND	1.0	10
1,2-Dichlorobenzene	ND	1.0	10	1,3-Dichlorobenzene	ND	1.0	10
1,4-Dichlorobenzene	ND	1.0	10	3,3-Dichlorobenzidine	ND	1.0	20
2,4-Dichlorophenol	ND	1.0	10	Diethyl Phthalate	ND	1.0	10
2,4-Dimethylphenol	ND	1.0	10	Dimethyl Phthalate	ND	1.0	10
4,6-Dinitro-2-methylphenol	ND	1.0	50	2,4-Dinitrophenol	ND	1.0	50
2,4-Dinitrotoluene	ND	1.0	10	2,6-Dinitrotoluene	ND	1.0	10
Di-n-octyl Phthalate	ND	1.0	10	1,2-Diphenylhydrazine	ND	1.0	10
Fluoranthene	ND	1.0	10	Fluorene	ND	1.0	10
Hexachlorobenzene	ND	1.0	10	Hexachlorobutadiene	ND	1.0	10
Hexachlorocyclopentadiene	ND	1.0	50	Hexachloroethane	ND	1.0	10
Indeno (1,2,3-cd) pyrene	ND	1.0	10	Isophorone	ND	1.0	10
2-Methylnaphthalene	ND	1.0	10	2-Methylphenol (o-Cresol)	ND	1.0	10
3 &/or 4-Methylphenol (m,p-Cresol) 2-Nitroaniline	ND ND	1.0	10	Naphthalene	ND	1.0	10
4-Nitroaniline	ND ND	1.0	50	3-Nitroaniline 2-Nitrophenol	ND	1.0	50
4-Nitrophenol	ND ND	1.0	50	Nitrobenzene	ND ND	1.0	50
N-Nitrosodiphenylamine	ND	1.0	10	N-Nitrosodi-n-propylamine	ND	1.0	10
Pentachlorophenol	ND	1.0	50	Phenanthrene	ND ND	1.0	10
Phenol	11	1.0	10	Pyrene	ND	1.0	10
1,2,4-Trichlorobenzene	ND	1.0	10	2,4,5-Trichlorophenol	ND	1.0	10
2,4,6-Trichlorophenol	ND	1.0	10	-,,,,		1.0	
		Sur	rogate R	ecoveries (%)			
%SS1:	41.			%SS2:	42	7	-
%SS3:	60.			%SS4:	58		C
%SS5:	69.			%SS6:	62		
Comments:							5
water samples and all TCLP & SPLP	extracts are reported	in μg/L	, soil/sluc	ge/solid samples in mg/kg, wipe	samples in µg/wipe, produ	ct/oil/noi	RECEIVED
queous liquid samples in mg/L.							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ND means not detected above the repo							

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

Angela Rydelius, Lab Manager

M1

AUG 1 5 2003 AFG, Inc.

QC SUMMARY REPORT FOR SW8270D

				Matrix:	W				WorkOrder:	0307487
EPA Method: SW8270D	E	Extraction:	SW35100	2	BatchID:	7995	S	piked Sampl	le ID: N/A	
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Acenaphthene	N/A	50	N/A	N/A	N/A	56.6	55.6	1.64	30	130
4-Chloro-3-methylphenol	N/A	100	N/A	N/A	N/A	56.9	55.1	3.19	30	130
2-Chlorophenol	N/A	100	N/A	N/A	N/A	53	51.7	2.57	30	130
1,4-Dichlorobenzene	N/A	50	N/A	N/A	N/A	54.8	53.8	1.73	30	130
2,4-Dinitrotoluene	N/A	50	N/A	N/A	N/A	57.7	50.7	13.0	30	130
4-Nitrophenol	N/A	100	N/A	N/A	N/A	45.8	47.3	3.42	30	130
N-Nitrosodi-n-propylamine	N/A	50	N/A	N/A	N/A	79.2	66.5	17.4	30	130
Pentachlorophenol	N/A	100	N/A	N/A	N/A	53.4	50.4	5.70	30	130
Phenol	N/A	100	N/A	N/A	N/A	53.3	49.7	6.97	30	130
Ругепе	N/A	50	N/A	N/A	N/A	53.5	53.8	0.559	30	130
1,2,4-Trichlorobenzene	N/A	50	N/A	N/A	N/A	53.2	53.5	0.468	30	130
%SS1:	N/A	100	N/A	N/A	N/A	59.7	54.4	9.31	30	130
%SS2:	N/A	100	N/A	N/A	N/A	61	58	5.12	30	130
%SS3:	N/A	100	N/A	N/A	N/A	75.5	69.5	8.17	30	130
%SS4:	N/A	100	N/A	N/A	N/A	68.2	69.8	2.40	30	130
%SS5:	N/A	100	N/A	N/A	N/A	79.8	72.6	9.47	30	130
%SS6:	N/A	100	N/A	N/A	N/A	80	65.7	19.6	30	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

RECEIVED

AUG 1 5 2003

MFG, Inc.

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

	□ Boulder Office 4900 Panf East Circle Suite 300W Boulder, CO 80301-6118 Tei: (303) 447-1836 Fax: (303) 447-1836	CITAIN-OF-COSIOUT □Irvine Office □Osbut □Irvine Office □Osbut 17770 Gatwright Road PO.16 Nine, Store 20514-5550 Teir (943) 253-2954 B3877 Fax: (943) 253-2954 Fax: (943)	520200	ODY RECORL Cosburn Office PO. Box 30 Wallace, ID 83873-0030 B3873-0030 Faix: (208) 556-6811 Faix: (208) 556-7271	RECORD AND REQUEST FO office A suff Francisco Office a 30 180 Howard Street, suite 200 a 10 San Francisco, CA 94105-1617 0030 S56-6811 Phone (415) 485-7110 - Fax (415) 495-7107 08) 556-7271	7EQU cisco 0f1 et Suite 200 A 94105-16 7110 - Fax	. 6	a	ANALYSIS Seattle Office Suite 101 Lynnwood, WA 98036-5707 Teit: (425) 921-4040 Fax: (425) 921-4040	YSIS ce Avenue V WA 98034 921-4040 921-4040	v. 5-5707		COC No. 43242	
METHOD OF SHIPMENT	030229.14 Ire):	PROJECT	- NAN CARI	- NAME: Sizro (PROJECT MANAGER CARRIER/WAYBILL NO:		Pacific Pacific		Industries Contri D	DEST	A DESTINATION:		PAGE: DATE: Alpha An	1 OF: _ 7/25/03 alytical	M
		SAMPLES					┣			▲	NALY	ANALYSIS REQUEST	EST	
		Sample	Pre	Preservation		Containers	<u> </u>	Constituents/Method	ents/Metl	por	Handling	bu	Remarks	
Field Sample Identification	1	DATE DATE	HOO ³ HCI	COLD H₂SO₄	FILTRATIOU* • • • • • • • • • • • • • • • • • • •	⊥λbE∗ (ωl/oz)	NO.	5106 8540 1464 100 8012	Con. P. I. P. M. O.	6265 8080	нзпы ногр	QAAQNATS		·
W0-3-GW		7 124 103 18:30 A	As X		U YOM	1 ک	6 X					XAR	307608 -	
N0-3-6N		6:30	Aq	×	N 11	S	R	×	X	Х		×		
M0-3-6M		18:30 A	A	×	л Ч	402 G	_		\times		: 	X		
M9-H-0M		A 00:F1	AQ X	×	<u>ч</u> 1	HOMI G	× 9				-	X	R	3
W0-4-6W		17:00 AQ	۵	X	N IL	ی	3	×	X	X		X		
W0-4-6W		IN 00:EI	&	X	U Yor	2	_		<u>×</u>			×)Е 15 FG,	
mo-5-0m		1 16:15 A	Ag ×	×	7	40ml G	X P					X		
20-5-6M		16:15 A(Q	×	M IL	5	m	×	×	X		×		
m9-5-0m		16:15 1	AQ	X	ہ کر	Yor G	_		×		-	X	C	
W0-6-6W		V 16:00 A	X	×	3	40ml G	× 9						Ţ	
			<u>Þ</u>	TOTAL NUMBER OF	F CONTAINERS	60	$\overline{\frown}$	LABORATORY COMMENTS/CONDITION OF	Y COMME	NTS/CON		- SAMPLES	Cooler Temp:	
	RELINQUISHED BY:										RECIE	RECIEVED BY:		
SIGNATURE	PRINTED NAME	COMPA	٨	DATE	Ē	TIME	s s	SIGNATURE	RE		PRINT	PRINTED NAME	COMPANY	
R	Christopher Spil	MFG-SF		7/25/03	56:11	50/5	W-	althurs	er g	-i-	2	Hthew S	Alpha	
and Marine	Jack Methicurs	Aloha		1/25/0-	3 15.	1	0.00	d	2	Ø	0	Pecik	LABORATORY	

畜

NECT NO. DATE: 71/2 /03 PROJECT NAME: Sec. P.C. C. CARRIERMANGER: E. D.F. 3 PROJECT NAMORER: DATE: 71/2 /03 PROJECT NAMORER: C. CARRIERMANGEL, DATE: 71/2 /03 PROJECT NAMORER: CARRIERMANGEL DATE: 71/2 /03 AMOLECT NAMORER: CARRIERMANGEL DATE: 71/2 /03 AMOLECT NAMORER: CARRIERMANGEL DATE: 71/2 /03 AMOLECT NAMORER: CARRIERMANGEL DATE: 71/2 /03 SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES SAMOLES </th <th>Arcata Office 1165 G Street, Suite E Arcata, CA 95521-5817 Tel: (707) 826-8430 Fax: (707) 826-8437</th> <th>Boulder Office 4900 Pearl East Circle Suite 300W Boulder, C0 80301-5118 Tai: (303) 447-1835 Fax: (303) 447-1836</th> <th>CHAIN-OF-CUST Invine Office 17770 Cartwright Road Ivine, CA 22514-5850 Tel: (949) 253-2954 Fax: (949) 253-2954</th> <th>STODY RECORD A □ Osburn Office X Sa POSburn Office X Sa Profice X Sa</th> <th>RECORD AND REQUEST FO Office San Francisco Office x 30 180 Howard Street, Suite 200 180 Howa</th> <th>EST FOR ANALYSIS fice Seattle Office 317 317 (415) 495-7107 (415) 495-7107 (415) 495-7107 (415) 921-4040 Fax (425) 921-4040</th> <th></th> <th>coc No. 43244</th>	Arcata Office 1165 G Street, Suite E Arcata, CA 95521-5817 Tel: (707) 826-8430 Fax: (707) 826-8437	Boulder Office 4900 Pearl East Circle Suite 300W Boulder, C0 80301-5118 Tai: (303) 447-1835 Fax: (303) 447-1836	CHAIN-OF-CUST Invine Office 17770 Cartwright Road Ivine, CA 22514-5850 Tel: (949) 253-2954 Fax: (949) 253-2954	STODY RECORD A □ Osburn Office X Sa POSburn Office X Sa Profice X Sa	RECORD AND REQUEST FO Office San Francisco Office x 30 180 Howard Street, Suite 200 180 Howa	EST FOR ANALYSIS fice Seattle Office 317 317 (415) 495-7107 (415) 495-7107 (415) 495-7107 (415) 921-4040 Fax (425) 921-4040		coc No. 43244		
Pretry constratue; Carrier Carrier Constratue; Destruction Entroper Preservation Destruction Entroper Preservation Destruction Entroper Preservation Constrate Preservation Preservation Constrate Preservation Constrate Preservation Constrate Preservation Pr	PROJECT NO:	14. 14	PROJEC.	AME: Sier	۱۱ ب ب	Industries	PAG	: 2 OF: 2 hs/63		
Sample AMALES Sample Preservation Containers Constituents/Method AMALES Sample Preservation Containers Containers Constituents/Method Preservation Preservation Preservation Sample Freedow Preservation Preservation Preservation Preservation Preservation <th <="" colspan="2" td=""><td>SAMPLEH (Signa METHOD OF SHI</td><td>Lab</td><td></td><td>RRIERWAYBILL N</td><td></td><td>E</td><td>Alpha</td><td>ely tical</td></th>	<td>SAMPLEH (Signa METHOD OF SHI</td> <td>Lab</td> <td></td> <td>RRIERWAYBILL N</td> <td></td> <td>E</td> <td>Alpha</td> <td>ely tical</td>		SAMPLEH (Signa METHOD OF SHI	Lab		RRIERWAYBILL N		E	Alpha	ely tical
Field Sample Freeworthom Containers Constituents/Method Handling Hematics $f=0.4$ DATE TME TME <td< td=""><td></td><td></td><td>SAMPLES</td><td></td><td></td><td></td><td>ANALYSIS REQUE</td><td>EST</td></td<>			SAMPLES				ANALYSIS REQUE	EST		
Field Field Endle M H <			Sample	Preservation	Containe			Remarks		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E Sar Identif	ield mple ification	LIME	[⊅] OS ⁷ H 100 ³	(שו/oz) AOFNWE	CAN. Pup Rep. TPPH d + M.o. Droce B270 Voce B260 Voce B260	нร∩ы ногр			
	-6- GW				1	××	X A	H -809L09		
$7 - 6\omega$ $7 + 6\omega$ $17:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $12:30$ 10 $10:30$ <th< td=""><td>Ι.</td><td></td><td></td><td>×</td><td>4 02</td><td>×</td><td>×</td><td></td></th<>	Ι.			×	4 02	×	×			
$7 - 6_{\rm LW}$ $17:3_{\circ}$ Md X W $V_{\rm esc}$ X	W9-7-0M		A 0		How I		×	<u>ا</u> رار		
$7 - 6_{\rm W}$ $7 - 6_{\rm W}$ $17 \cdot 13_{\rm S}$ $M_{\rm R}$ X W $W_{\rm BS}$ 6 1 X X W W $W_{\rm BS}$ W W $W_{\rm BS}$ W <td>20- 7- GW</td> <td></td> <td></td> <td>X</td> <td>1</td> <td>× ×</td> <td></td> <td></td>	20- 7- GW			X	1	× ×				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V	×	4 0E	×		AUG		
$\Theta - G,W$ $ 17:15$ $ Q $ $ Y U$ $ Q_{02} G U$ $ X X X X$ $ X X X X X X X X X X$	1 8 1		<	×	Hom			1		
- B - 5W - 9 - 5W - 9 - 5W - 9 - 6W - 1001 Fem: - 100	10		V	× ×	1	××	×	5 2		
- 9 - 6 W - 18: 15 M - 10 ⁻¹ N ¹ 16 - 5 X - 10 ⁻¹ 10 ⁻¹ 16 - 5 X - 10 ⁻¹ 10 ⁻¹ 16 - 5 X - 10 ⁻¹ 10	01		~	×	Yoz	×				
-9-6W Part Number of Containers Relination of Samples of Containers Relination of Samples of Containers Relination of the Signature of Samples Coole Signature Printed BY: Relination of the Signature Printed By: Relination of the Signat	- 6 -		- SE	×	Hom		×	н Е D		
Tell Noulished BY: Total Number OF CONTINUES Total Number OF CONTINUES Tell Noulished BY: RELINQUISHED BY: RELINQUISHED BY: RECIEVED BY: RECIEVED BY: PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME COOL Chrisholue	- 6-		X	X				+		
RELINGUISHED BY: RELINGUISHED BY: RECIEVED BY: PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME Chrisholuc Soill MFa. SF 7/25/03 1/35/03 1/3000 1/1000 Aur Mithouse Aur Mithouse Aur Mithouse Airbound 5.5000 5.5000				TOTAL NUMBER OF C	М			Cooler lemp:		
- Christophic Soill MFR-SF 7/25/03 1/127/23/3 1/1277/24/20 2/10/11/11/11/11/11/11/11/11/11/11/11/11/		RELINQUISHED BY:					RECIEVED BY:			
Mitchner Coill MEar-SF 7/25/03 11:35 Mitchell J. M.H.H. Curs High Mitchner C. Alpha 7/25/03 15:40 S. Speaks S. Speaks Mitchner Alpha 7/25/03 15:40 S. Speaks S. Speaks	SIGNATURE	PRINTED NAME	COMPANY	DATE	TIME	SIGNATURE	PRINTED NAME	COMPANY		
Mitchner Alpha 7/25/03 15:40 5. Speak S. Speak S. Speak		Christianer Soill	MFG-SF	20/22/2	~ 10	A Matthews		1		
and the second	and Mouline	2	Alpha	~	ŧ,	3	· Speak	LABORATORY		
attribute to contraction with a construction Constructio				obidae D. notrolern 4 - 31 OT. Ather	Containers: P - plastic G - dia	07 - other	Filtration: F - filtered U - unfiltered			

Arcata, C.G. 95521-5817 Build Suite 3005 Tei: (707) 826-8437 Boulde Fax: (707) 826-8437 Tei: (3 Fax: (707) 826-8437 Tei: (3 Fax: (707) 826-8437 Tei: (3	Boulder Office 4900 Pearl East Circle Suite 3000 1-61 118 Boulder, CO 80301-61 118 Tei: (303) 447-1823 Fax: (303) 447-1836 Fax: (303) 447-1836	CHAIN-OF-CO Itvine Office Suite 500 Trvine. CA 92614-850 Tei: (949) 253-2951 Fax: (949) 253-2954		STODY RECORD AND REQUESI Cosburn Office X San Francisco Office No. Box 30 Wallace, ID San Francisco, CA 94105-1617 San Francisco, CA 94105-1617 San Francisco, CA 94105-1617 Teit. (200) 556-5811 Fhone (415) 495-7110 - Fax (415)		D AND REQUEST FOI San Francisco Office 180 Howard Street, suite 200 San Francisco, CA 94105-1617 Phone (415) 495-7110 - Fax (415) 495-7107 Phone (415) 495-7110 - Fax (415) 495-7107	F.C.O. isco O. 94105-1 7110 - Far	<u>o</u>		FOR ANALYSIS Seattle Office Seattle Office Suffa 101 Suffa 101 Lymmwood, WA 98036-5707 Tymmwood, WA 98036-5707 Fax: (425) 921-4000 Fax: (425) 921-4000	Y512 fice Avenue WA 9805 921-4000 921-4040	N. 6-5707			COU NO. 43243
PROJECT NO: 03	030229.14	PROJEC	T NAN	Г V Ш	Sierra	x prei		A	idustries				A		-
SAMPLER (Signature):				PROJECT MANAGER:	MANA MANA	, GER:	ωı		Certi	DESTINATION	INATI	ŇĊ		DATE: 7/	-/25/03
) a 3					; ;									
		SAMPLES										INALY	ANALYSIS REQUEST	QUEST	
		Sample		Preservation	L.	ö	Containers		Constitue	Constituents/Method	poq	Handling	ing	ш	Remarks
Field Sample Identification	L	DATE	HCI Matrix*	COFD H ⁵ 80⁴ HNO ³		FILTRATION*	⊥АЬЕ∗ (wl\oz)	0979 701 ON	0228 57015 5109 5444L	10. M. P. H. M. D.	9000 2029	нслы Ногр	GRAGNATS		
1, 10-9-6N	<u>_</u>	SI:81 co/hult	-3		×	U 402	S	_		×			X	A307608	L - 300
0						M 40ml		X د					X		90
01-1		Sk: 81	49	×.		M IL	ى	3	×	×	×		X		
W0-10-61W		118:45	44		×	U 402	لا ک	_		×			×		F
												-+			H AU
														M	
												-+		G,	E `
														Ind.	VE[2003
					-	-									P
				TOTAL NUMBER OF CONTAINERS	BER OF CC	INTAINERS	00	4	BORATOR	Y COMME	INTS/COL	IDITION	LABORATORY COMMENTS/CONDITION OF SAMPLES		Cooler Temp:
æ	RELINQUISHED BY:											RECIE	RECIEVED BY:		
SIGNATURE	PRINTED NAME	CON	COMPANY	DA	DATE	TIME	ш	0.	SIGNATURE	RE		PRINT	PRINTED NAME	ш	COMPANY
	Chartenter Coll	MEG-SF	L.	= 125/03	103	15 c/L	503	Non	atter	2	7	MA	HHAW S	2	210hg
alman de	CLOCK MATTING UK	Alpha	đ	7/25	29/28	/5.*	. 40	R.	Spea	ملاه		0	Peak	<u>ک</u>	LABORATORY
	• <u>KEY</u> Matrix: AQ - aqueous NA - nonaqueous	NA - nonaqueous S0 - soil	SL - sludge	et)			lastic G - gl	ass T - teflor	B - brass 0		Filtration: F	Filtration: F - filtered U - unfiltered	unfiltered		
			DISTRIBUTION:	PINK: Field Copy	YELLOW: La	YELLOW: Laboratory Copy	WHITE: Retu	WHITE: Return to Originator	or						

APPENDIX E

Waste Disposal Documentation

	UNIFORM HAZARDOUS	SEPAID No.	nifest Documen	t No.	2. Page 1		on in the shaded areas
		7 4 0 3 6 9 6 1	7 6	1 5	of 1	is not requ	vired by Federal law.
	ARCATA	SITE - 2593 NEW NAVY BA 95518	SE RD.		Manifest Document N Generator's ID	lumber	228176:
	4. Generator's Phone (707 443-3111 5. Transporter 1 Company Name	6. US EPA ID Number		C. State	Transporter's ID (Res		
	ACCURACENTINON CONTACTOR	C A D 0 2 8 2 7	7.0.3.6		porter's Phone	(800)97	1 1 / CE - 10
	7. Transporter 2 Company Name	8. US EPA ID Number	<u>, 0 0 0</u>		fransporter's ID (Res		
	0			F. Transp	orter's Phone		THE
	9. Designated Facility Name and Site Address DEMENNO / KERDOON	10. US EPA ID Number		G. State	Facility's ID	and.	3855Z
	2000 NORTH ALAMEDA STREET	ር እ.ም.ስ. ዓ. ስ.ስ. 1. 3	0.0.5.0		y's Phone	(\$	
	COMPTON CA 90222		12. Cor	1. S.	37-7100	14. Unit	
	11. US DOT Description (including Proper Shipping Name, Hazard Cl		No.	Туре	Quantity	Wt/Vol	L Waste Number
 G	NON RCRA HAZARDOUS WASTE LIQUID (WATE) PENTACHLOROPHENCIASTE STREAM HAS BE	ENVUALIFIEM		n		5	EPA/OHA
E			PPP	M	010121310	<u> </u>	NONE
E .	b. FOR RECYCLING/TREATMENT DeMENNO/KERDOON FACILIT CALIFORNIA THIS FACILITY I CALIFORNIA THIS FACILITY I	HAS THE NECESSARY					EPA/Other
R A T			╉				State 6 2 2 4
0	CALIFURINA RECEIVE YOUR PERMITS TO RECEIVE YOUR QUALIFIED. OUR EPA NUMB	ER IS CAIUSUDISSUE					EPA/Other
	A. QUALIFICA CONT	• • • • • • • • • • • • • • • • • • •	+	<u> </u>			State State
						`¥	EPA/Other
	J. Additional Descriptions for Materials Listed Above			K. Handli	ing Codes for Waster	Listed Abo	******
	11A1208828; <u>5 X S G</u>		aree or an	ă	OH Th	b.*******	
				C.		d. 🤾	
	15. Special Handling Instructions and Additional Information	and the second		States Sile			
	USE PPE NAERG #: 11A. 171	44		CHEMT	REC 1-800-424	-9300	
	SITE: 2593 NEW NAVY BASE ROAD, ARCATA, CA	A 95518 Froff 3121	5A15				
	 GENERATOR'S CERTIFICATION: I hereby declare that the contents marked, and labeled, and are in all respects in proper condition f 			nternationa	by proper shipping no I and national gover	ime and are	classified, packed, ations.
	If I am a large quantity generator, I certify that I have a program practicable and that I have selected the practicable method of tree and the environment; OR, if I am a small quantity generator, I ha available to me and that I can afford.	n in place to reduce the volume and atments storage, or disposal current	toxicity of wa	ste general me which i	ied to the degree I h	ave determi	ined to be economically
•	Printed/Typed Name Ang MANCey	Signature	new	1			4 1 Day Yes
R A N	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	signature ID P				Mon	The Yes
	18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature				Mon	th Day Yea
i F	19. Discrepancy Indication Space	·····			and the second s		
		Λ					
	20. Facility Owner or Operator Certification of receipt of hazardous ma		ept as noted in	ltem 19.			· · · · · · · · · · · · · · · · · · ·
r I	Printed/Typed Name	Signature				Mon	the Day Yea

,

NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EF CAD047	403696		Manifest Document No	146	2. Page 1 of
3. Generators Name and Mailing Address SHERRA PACIFIC INDUSTRIES - P.O. BOX 1129 ARCATA 4:glanamators Phone (707 443-3) 11	2	1503 NEW NAVY BASE ROAD 15518	:			····
* ASBURY ENVIRONMENTAL SER	VICES	CAD028277836		A. State Transpo B. Transporter 1	the state of the s	4495
7. Transporter 2 Company Name		8. US EPA ID Number	<u> </u>	C. State Transpo	vier's ID	
· Destruction Facility Manual and She Antrone		10. US EPA iD Number		D. Transporter 2 E. State Facility:		
10010 ALTANONT PASS ROAD	94659	CAD981382732		54578-23		
LIMERMORE CA	1 1100	<u>1</u>	12. 0	stainers	·	<u> </u>
		•	No.	Туре		Wilvor.
NON HAZARDOUS SOLID (90	I, WITH DIESEL, N	MOTOR OL)			· · · ·	
•				<u>C</u> W		
						•
						∼↓
	<u>4</u> 11					
C. Altilideal Descriptions for Materials Listed Abo	•			H. Handling Cod	e for Washing Linked Abo	1-1
110) (1225230)	d n					
4					≈	
TS. Special Hundling Interactions and Additional in	formation.	<u>ere ere ere ere ere ere ere ere ere ere</u>				
17 18 19 19		BAERCEN	GY CONT	NOT : CHEATH	EC 1400-0248	
Nort-30158A15	PC NORCO	21884				-
			an pangangan			
	discribed on the marine	t are not adapt to formal teaching the	a regulations.			
Paner Gale Lings		Spraw. K.	(
17. Transporter (Responseligement of Resident of	Materiala	<u> </u>	ance /	<u> </u>		Den
tomotyped theme Clen Lil	liams	them !	Sin	angren A		1110
18. Transporter 2 Addrigwledgement of Receipt of Printed/Typied Name	Ng Barraia	Signature				Date
	· · · · ·				Mo	nth Djay Yee
19. Discrepancy Indication Space						
20. Facility Owner or Operator, Certification of rec	sipt of the waste materials	covered by this manifest, except as noted	in tiem 19.	<u></u>		
Printed/Typed Name	· ·	Signature	-17		<u>. </u>	Date
· · · · · · · · · · · · · · · · · · ·			15	1 13 1 2	. 8	ディアンノン