

Monitoring Wells MW-20 and MW-21 Installation and Soil Sampling Report

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

Prepared for:

Sierra Pacific Industries

April 7, 2004

Project No. 9329, Task 5

Geomatrix Consultants

April 7, 2004 Project 9329 Task 5

Executive Officer California Regional Water Quality Control Board North Coast Region 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

Attention: Dean Prat

Subject: Monitoring Wells MW-20 and MW-21 Installation and Soil Sampling Report Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

Dear Mr. Prat:

As requested by Sierra Pacific Industries, we have enclosed a copy of the subject report prepared on behalf of Sierra Pacific Industry Industries.

Sincerely yours, GEOMATRIX CONSULTANTS, INC.

Brian Thompson, C.E.G., C.HG. Project Geologist

cheran fort

Edward P. Conti, C.E.G., C.HG. Principal Geologist

BJT/RAS/EPC/abr Enclosure

Geomatrix Consultants, Inc. Engineers Geologists and Environmental Scientists

Ross A. Seenson

Ross Steenson, C.HG. Senior Hydrogeologist

California Regional Water Quality Control Board North Coast Region Attention: Dean Prat April 7, 2004 Page 2

cc: Bob Ellery, Sierra Pacific Industries (with enclosure)
 Gordie Amos, Sierra Pacific Industries (with enclosure)
 David Dun, Dun and Martinek, LLP (with enclosure)
 Fred Evenson, Law Offices of Frederic Evenson (with enclosure)
 Jim Lamport, Ecological Rights Foundation (with enclosure)

Monitoring Wells MW-20 and MW-21 Installation and Soil Sampling Report

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

Prepared for:

Sierra Pacific Industries

Prepared by:

Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4100

April 7, 2004

Project No. 9329, Task 5

Geomatrix Consultants

PROFESSIONAL CERTIFICATION

MONITORING WELLS MW-20 AND MW-21 INSTALLATION AND SOIL SAMPLING REPORT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

April 7, 2004 Project No. 9329.000, Task 5

This report was prepared by Geomatrix Consultants, Inc., under the professional supervision of Edward P. Conti. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional hydrogeologic practice, and within the scope of the project. There is no other warranty, either express or implied.

Edward P. Conti, C.E.G., C.HG. Principal Geologist

Page

TABLE OF CONTENTS

1.0	INTF	RODUCTION	1
2.0	FIEL	D AND LABORATORY METHODOLOGY	1
	2.1	MONITORING WELL MW-20 INSTALLATION	2
	2.2	MONITORING WELL MW-21 INSTALLATION	3
		2.2.1 Boring	3
		2.2.2 Soil Sampling and Laboratory Methods	
		2.2.3 Well Construction	
	2.3	DEVELOPMENT OF MW-20 AND MW-21 MONITORING WELLS	5
	2.4	INVESTIGATION-DERIVED WASTE	
	2.5	Well Survey	5
3.0	SOIL	SAMPLING RESULTS	6
	3.1	SUBSURFACE CONDITIONS	
	3.2	LABORATORY ANALYTICAL RESULTS	
	3.3	LABORATORY DATA QUALITY REVIEW	7
4.0	FUT	URE WELL MONITORING AND SAMPLING	8
5.0	REFI	ERENCES	9

TABLES

Table 1	Monitoring Well Construction Details
Table 2	Soil Sample Analytical Results For pH, TOC, and Chlorinated Phenols
Table 3	Soil Sample Analytical Results For Dioxins and Furans

FIGURES

Figure 1	Site Location Map
----------	-------------------

- Figure 2 Site Plan
- Figure 3 Former Green Chain Area Plan
- Figure 4 Former Green Chain Area Sample Location Map
- Figure 5 Pentachlorophenol in Soil

APPENDICES

- Appendix A Permits Humboldt County Division of Environmental Health
- Appendix B Boring Logs, Well Construction Details, and Well Development Records
- Appendix C Laboratory Analytical Reports and Chain-of-Custody Records
- Appendix D Topographic Plat and Monitor Well (Survey) Data

MW-20 AND MW-21 WELL INSTALLATION AND SOIL SAMPLING REPORT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

1.0 INTRODUCTION

Geomatrix Consultants, Inc. (Geomatrix) has prepared this report on behalf of Sierra Pacific Industries, Inc. (SPI) to document the installation of two monitoring wells (MW-20 and MW-21) and provide results for related soil sampling activities at the SPI Arcata Division Sawmill, located in Arcata, California (Figure 1). The well installations and soil sampling were performed in accordance with requirements of the Consent Decree between the Ecological Rights Foundation and Sierra Pacific Industries, Inc., et al (case number C-01-0520-MEJ) and according to a work plan prepared by Geomatrix on January 20, 2004 and approved by the California Regional Water Quality Control Board, North Coast Region (RWQCB) on January 29, 2004.

Monitoring wells MW-20 and MW-21 were installed for the purpose of monitoring chlorinated phenols in groundwater in the former green chain area at the site (Figure 2). Monitoring well MW-20 was constructed within the footprint of the source area removal excavation conducted during interim remedial measures (Geomatrix, 2003a) to monitor groundwater for chlorinated phenols at the former source area (Figure 3). Monitoring well MW-21 was constructed approximately 30 feet east of existing monitoring well MW-7 to further define the extent of chlorinated phenols in groundwater in the former green chain area and to collect additional data pertaining to the natural attenuation of chlorinated phenols in groundwater (Figure 3).

Soil samples were collected during the installation of monitoring well MW-21. Soil samples were not collected during the installation of monitoring well MW-20 as a boring was not advanced for this well construction, as discussed in Section 3.1. Results from analysis of the MW-21 soil samples are included in this report.

2.0 FIELD AND LABORATORY METHODOLOGY

Monitoring wells MW-20 and MW-21 were installed at the SPI Arcata Division Sawmill facility in January and February 2004, respectively. During preparation for the field activities,

drilling permits were obtained from the Humboldt County Division of Environmental Health (HCDEH), Underground Service Alert (USA) was notified of the work area, and a site-specific health and safety plan was prepared for the work. Fieldwork was implemented according to the HCDEH permit and health and safety plan, and in accordance with the RWQCB-approved work plan. A California-registered geologist supervised the fieldwork. The following sections document field and analytical methodology of the well installations and related soil sampling activities.

2.1 MONITORING WELL MW-20 INSTALLATION

Fisch Environmental of Valley Springs, California (C57 License Number 683865) constructed well MW-20 on January 23, 2004 in accordance with HCDEH Well and Boring Permit Number 27-J (Appendix A) and under the supervision of Geomatrix. The well was installed in the green chain area within the footprint of the source-area removal excavation conducted during interim remedial measures (Geomatrix, 2003a) (Figure 3). USA ticket number 022795 was issued for this work. Norm Crawford of the HCDEH inspected the well on February 13, 2004.

Fisch Environmental installed well MW-20 through a 12-inch-diameter section of polyvinyl chloride (PVC) pipe that was placed vertically within the source area removal excavation prior to backfill. Fisch Environmental placed well casing and annular materials through the PVC pipe as the pipe was removed from the ground using a hoist, toe strap, and equipment operator from the SPI Arcata Division Sawmill facility. Well construction details are summarized in Table 1, graphically represented on a log in Appendix B, and discussed below.

The monitoring well was constructed of 4-inch-diameter, Schedule 40 PVC blank casing and 0.010-inch, slotted casing (screen). The well casing was placed at a depth of 7 feet below the ground surface (bgs) on sandy backfill material; based on this depth and the depth of the former excavation (approximately 8 feet bgs), it is estimated that approximately 1 foot of slough was present within the 12-inch-diameter PVC pipe. The well screen was installed from 3.2 to 6.8 feet bgs.

Fisch Environmental added filter pack sand (RMC Lonestar Number 2/12) and directed the crane operator to simultaneously pull the 12-inch-diameter PVC pipe out of the ground. Approximately three to four feet of filter pack sand was added. Due to difficulty encountered removing the 12-inch-diameter PVC pipe with the crane and based on the predicted volume of sand to be added over this interval, the filter pack is composed of a mixture of the RMC Lonestar Number 2/12 sand and sand that was used to backfill the excavation. Sandy backfill material collapsed around the 4-inch-diameter well casing between approximately one and three feet bgs after the filter pack was added and during final removal of the PVC pipe. Fisch Environmental removed a foot of this material by hand to install a bentonite transition seal, from one to two feet bgs. Completion at the surface consisted of an 8-inch-diameter, traffic-rated well box that was encased within a sand-cement slurry that was placed to the approximate level of the base of surrounding concrete pavement. The approximate two inches of well box stick-up will be filled-in when the excavation is paved over by SPI.

2.2 MONITORING WELL MW-21 INSTALLATION

Monitoring well MW-21 was installed in the green chain area approximately 30 feet east of existing monitoring well MW-7 (Figure 3). Due to limited access to this location, because of facility structures, this well was installed at a later date (February 13, 2004) than well MW-20 and using a different drilling company with limited access equipment, Precision Sampling, Inc. (PSI) of Richmond, California (C57 License Number 636387). PSI constructed well MW-21 in accordance with HCDEH Permit (well and boring) number 27-K (Appendix A) and under the supervision of Geomatrix. USA ticket number 022795 was issued for this work. Norm Crawford of the HCDEH inspected the well on February 13, 2004.

2.2.1 Boring

PSI advanced a 2.5-inch-diameter boring to a total depth of approximately eight feet for the MW-21 well installation using a DA-II limited access drill rig. PSI utilized the Enviro-coreTM sampling system to continuously core soil during advancement of the borehole. A Geomatrix geologist screened recovered soil core for organic vapors using an organic vapor meter with a photoionization detector and described the soil using American Society of Testing and Materials Standard D2488-90, based on the Unified Soil Classification System, for guidance. A log of this boring is included in Appendix B.

2.2.2 Soil Sampling and Laboratory Methods

Geomatrix collected samples of soil during continuous core of the boring for monitoring well MW-21. Soil was recovered during the core sampling within plastic tubing; samples were

collected from the tubing by cutting the tubing into approximately six-inch sections and sealing each end of the cut sections with TeflonTM sheets and plastic end caps. Each sample was then labeled, tightly wrapped in a zip-sealed bag and taped, and placed in an ice-chilled cooler for transfer to an analytical laboratory for selected analyses that included the following:

- Chlorinated phenols Canadian Pulp Method;
- Total organic carbon U.S. Environmental Protection Agency (EPA) Method 9060;
- pH EPA Method 9045B; and
- Dioxins and furans EPA Method 1613.

Samples were delivered under chain-of-custody to Alpha Analytical Laboratories, Inc. of Ukiah, California (Alpha Analytical), a California Department of Health Services-certified analytical laboratory. Samples collected at depths of 1.5, 3.0, 5.0, and 7.0 feet bgs were analyzed by Alpha Analytical for chlorinated phenols, total organic carbon, and pH and the results were reported on a wet-weight basis. Samples collected at depths of 1 and 4.5 feet bgs were transferred under chain-of-custody to Frontier Analytical Laboratory of El Dorado Hills, California (Frontier Analytical), also a California Department of Health Services-certified analytical laboratory, and analyzed for dioxins and furans. Dioxin and furan results are reported on both dry- and wet-weight basis. The dioxin and furan results are a complex mixture of various dioxin/furan congeners, which are generally summarized in terms of their 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) toxicity equivalence (TEQ) based on toxicity equivalency factors adopted by the California Environmental Protection Agency's Office of Environmental Health Hazard Assessment (Cal-EPA, 2003).

Laboratory analytical reports and chain-of-custody documentation are included in Appendix C. Soil sampling results are discussed in Section 3.

2.2.3 Well Construction

PSI installed monitoring well MW-21 through drive casing advanced for the 2.5-inch-diameter boring described in Section 2.2.1. Well casing and annular materials were placed through the drive casing as it was retracted from the borehole. PSI installed a pre-pack well constructed of ³/₄-inch-diameter (nominal inner) and 1.5-inch-diameter (nominal outer), schedule 40, PVC casing and 0.01-inch slotted well screen. Filter pack sand (RMC Lonestar Number 2/16) was placed between the inner and outer well screens, during field construction of the pre-pack well, and in the annular space from the bottom of the well to about six inches above the well screen

section, which was set from 2.1 to 8.1 feet bgs. The remaining annular space was filled with a bentonite seal (from 1 to 1.5 feet bgs). The surface completion consisted of a four-inch-square, steel, stand pipe. The four-foot-long, stand pipe was completed three feet above grade with 1 foot placed below grade and encased in concrete. Annular space within the stand pipe was filled with filter pack sand followed by a two-inch cap of concrete to just below the top of the well casing.

2.3 DEVELOPMENT OF MONITORING WELLS MW-20 AND MW-21

Geomatrix developed monitoring well MW-20 on February 12, 2004 and monitoring well MW-21 on February 13, 2004 using a combination of surging and pumping techniques. Monitoring well MW-20 was surged with a 4-inch-diameter, rubber swab, and monitoring well MW-21 was surged with a ½ -inch-diameter, steel fitting. A diaphragm pump and a peristaltic pump were used to remove sediment and pump the well screen intervals at monitoring wells MW-20 and MW-21, respectively.

Pumping across various depths within the well screen interval continued until purged groundwater was visibly clear and water quality parameters stabilized to within 10 percent for specific conductance, 0.08 pH units of pH, and 1 degree Celsius for temperature. A total of approximately 85 gallons (about 30 casing volumes) and 3 gallons (about 43 casing volumes) of groundwater were extracted from monitoring wells MW-20 and MW-21, respectively, during development.

2.4 INVESTIGATION-DERIVED WASTE

Drilling and sampling equipment used during the well installation and soil sampling activities were cleaned prior to use. The equipment was either steam cleaned, or it was washed in a mixture of environmental-grade detergent and municipal water and then rinsed with municipal water.

Waste that resulted from the cleaning procedures and from the sampling and well installation activities, including soil that was generated and purge water from well development (Section 2.3), were placed in 55-gallon, steel drums and labeled. The drums were temporary stored in a secure location at the site pending characterization and disposal at an appropriate off-site, waste-disposal facility.

2.5 WELL SURVEY

Omsberg & Company (Omsberg), a California-licensed land surveyor of Eureka, California, surveyed monitoring wells MW-20 and MW-21 on February 13, 2004. The other 19

monitoring wells at the facility (Table 1 and Figure 3) were resurveyed with these wells to resolve discrepancies with previous survey data. Survey data and a plot of well locations (topographic plat) from Omsberg are included in Appendix D.

Omsberg located the wells relative to regional datum for horizontal (latitude and longitude) and vertical (elevation) control; the horizontal datum was North American Datum of 1983 and the vertical datum was National Geodetic Vertical Datum of 1929. For vertical control, both the top of the north-side of the well casing and the ground surface were surveyed. Survey data is summarized in Table 1 with the well construction details.

3.0 SOIL SAMPLING RESULTS

This section presents results of soil sampling activities. Observations of subsurface conditions (lithology and groundwater occurrence) are discussed relative to previous investigation and well monitoring results, and soil sampling results are presented and discussed.

3.1 SUBSURFACE CONDITIONS

Subsurface conditions, including lithology and occurrence of groundwater, were similar to previous investigation results (Geomatrix, 2000b). Soil encountered consisted of fine- to medium-sand that has been characterized as being of sand dune origin. Native soil was encountered during the installation of monitoring well MW-21. Soil surrounding monitoring well MW-20 was excavation backfill material obtained from the facility property, as discussed in the Report on Interim Remedial Measures: Source Area Removal (Geomatrix, 2003a), and appears to be consistent with dune sand exposed on the property.

Wet soil was first encountered during monitoring well MW-20 and MW-21 installations at depths of approximately 1.25 feet bgs (2.25 feet below the raised former green chain platform) and approximately 1 foot bgs, respectively. These depths are similar to the depth-to-groundwater that have been measured in the vicinity during groundwater monitoring events (Geomatrix, 2004).

3.2 LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for soil samples collected during the installation of monitoring well MW-21 (Appendix C) are summarized in Tables 2 and 3. Figure 4 shows investigation samples have been collected in the former green chain area vicinity, and Figure 5 summarizes MW-21 and previous soil sample results.

Table 2 presents results for soil samples collected at depths of 1.5, 3.0, 5.0 and 7.0 feet bgs and analyzed for pH, TOC, and chlorinated phenols. Soil pH in the samples ranged from 6.4 to 6.8, and TOC concentrations ranged from 925 to 1070 milligrams per kilogram (mg/kg; parts per million), with the higher TOC concentrations in the vicinity of 3.0 and 5.0 feet bgs. Chlorinated phenols were not detected in the soil samples collected form depths of 1.5, 5.0, and 7.0. Pentachlorophenol (PCP) was detected in the 3-foot sample at a concentration of 4.1 mg/kg. As shown on Figure 5, this PCP concentration at this depth is consistent with other soil sampling results for PCP in the vicinity; PCP, if detected, is present at a depth around 3 feet (± 2 feet) bgs. PCP has not been detected at depths greater than 5 feet bgs.

Table 3 presents results for soil samples collected at depths of 1.0 and 4.5 feet bgs and analyzed for dioxins and furans. As discussed in Section 2.2.2, dioxin and furan concentrations refer to a complex mixture of various dioxin/furan congeners that are generally summarized in terms of 2,3,7,8-TCDD and based on toxicity equivalency factors. The toxicity equivalence (TEQ) calculated from the soil samples collected at 1.0 and 4.5 feet were 1.32 and 0.006 picograms per gram (pg/g; parts per trillion), respectively, for wet-weight results and 1.54 and 0.007 pg/g, respectively, for dry-weight results. The percent of toxicity equivalence contributed by 2,3,7,8-TCDD for each sample was zero.

Soil sample results were consistent with our current understanding of the distribution of constituents of concern at the former green chain area. The results confirm the presence of low concentrations of PCP and some dioxin/furan congeners. The concentrations of these constituents will be further monitored through groundwater sampling events scheduled for monitoring well MW-21 (Section 4.0).

3.3 LABORATORY DATA QUALITY REVIEW

Geomatrix evaluated data quality using data verification procedures described in the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (U.S. EPA, 1999) and Inorganic Data Review (U.S. EPA, 2002). A check of laboratory quality assurance and quality control (QA/QC) procedures, such as method blank analyses, surrogate recoveries, and laboratory control spikes and duplicate spikes, were included in the review. Based on our review, the soil sampling results appear to be representative, as qualified below.

The laboratory control spike for chlorinated phenols had zero recovery. The laboratory QA/QC official believes that the spike was not added as the duplicate spike results were within control limits. All other laboratory QA/QC procedures were within acceptable limits.

Some analytical results for dioxin and furan concentrations were flagged by the laboratory for being below (less than) the instrument calibration range. Results for these low concentration congeners should therefore be considered approximate. All other analytical results appear to be accurate. The Geomatrix project manager has reviewed the data, and the soil sampling data are considered representative and complete.

4.0 FUTURE WELL MONITORING AND SAMPLING

Monitoring wells MW-20 and MW-21, installed to further evaluate chlorinated phenols in groundwater at the SPI facility, will be monitored and sampled and results will be reported on a quarterly frequency in accordance with RWQCB Monitoring and Reporting Program No. R1-203-0127. The first monitoring and sampling event for these wells was performed in March 2004.

5.0 **REFERENCES**

- Cal-EPA, 2003, Adoption of the Revised Toxic Equivalency Factors (TEFWHO-97) for PCDDs, PCDFs, and Dioxin-like PCBs (memorandum), Office of Environmental health hazard Assessment, August 29.
- Geomatrix, 2003a, Report on Interim Remedial Measures: Source Area Removal, Sierra Pacific Industries, Arcata Division Sawmill, 2593 New Navy Base Road, Arcata, California, December 1.
- Geomatrix, 2003b, Final Feasibility Study for Remediation of Wood Surface Protection Chemicals, Arcata Division Sawmill, 2593 New Navy Base Road, Arcata, California, December 1.
- Geomatrix, 2004, Fourth Quarter 2003 Groundwater Monitoring Report, Arcata Division Sawmill, 2593 New Navy Base Road, Arcata, California, January 22.
- U.S. EPA, 1999, Contract Laboratory Program National Functional Guidelines for Organic Data Review (OSWER 9240.1-05A-P PB99-963506, EPA 540/R-99-008; October, 1999).
- U.S. EPA, 2002, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (OSWER 9240.1-35, EPA 540-R-01-008; July, 2002).

TABLES

TABLE 1 MONITORING WELL CONSTRUCTION DETAILS 1

Sierra Pacific Industries

Arcata Division Sawmill

Arcata, California

Well	Date	Total Boring	Total Well	Well			Ground Level	Top of Casing	Screened	Screen Slot	Filter Pack	Bentonite Seal	Surface Seal
No.	Installed	Depth	Depth	Diameter	Latitude ²	Longitude ²	Elevation ²	Elevation ²	Interval	Size	Interval	Interval	Interval ³
		(ft bgs)	(ft bgs)	(inches)			(ft msl)	(ft msl)	(ft bgs)	(inches)	(ft bgs)	(ft bgs)	(ft bgs)
Shallow Wel	ls												
MW-1	5-Mar-02	8	8	2	40.8661595	124.1521395	6.77	6.34	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-2	5-Mar-02	9	8	2	40.8661024	124.1525276	7.06	6.26	2.0 - 8.0	0.01	1.5 - 9.0	1.0 - 1.5	0 - 1.0
MW-3	5-Mar-02	8.5	8	2	40.8662689	124.1530739	8.32	7.87	2.0 - 8.0	0.01	1.5 - 8.5	1.0 - 1.5	0 - 1.0
MW-4	5-Mar-02	8	8	2	40.8662303	124.1533599	7.82	7.39	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-5	7-Mar-02	8	8	2	40.8660945	124.1536734	7.91	7.39	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-6	7-Mar-02	8	8	2	40.8660710	124.1531061	6.78	6.48	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-7	7-Mar-02	8	8	2	40.8659980	124.1531187	6.74	6.39	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-8	8-Mar-02	8	8	2	40.8657492	124.1535343	7.20	6.98	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-9	8-Mar-02	8	8	2	40.8657520	124.1532218	7.01	6.56	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-10	11-Nov-02	9.5	8	2	40.8656910	124.1530670	6.73	6.50	2.0 - 8.0	0.01	1.5 - 9.5	1.0 - 1.5	0 - 1.0
MW-11	12-Nov-02	8.5	8	2	40.8655740	124.1533817	7.16	6.93	2.0 - 8.0	0.01	1.5 - 8.5	1.0 - 1.5	0 - 1.0
MW-12	12-Nov-02	9.5	8	2	40.8656625	124.1537231	7.66	7.41	2.0 - 8.0	0.01	1.5 - 9.5	1.0 - 1.5	0 - 1.0
MW-14	13-Nov-02	8	8	2	40.8657622	124.1523580	6.25	5.80	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-17	14-Nov-02	9	8	2	40.8656690	124.1526420	6.11	5.81	2.0 - 8.0	0.01	1.5 - 9.0	1.0 - 1.5	0 - 1.0
MW-18	13-Nov-02	9.5	8	4	40.8657448	124.1531649	6.77	6.57	2.0 - 8.0	0.01	1.5 - 9.5	1.0 - 1.5	0 - 1.0
MW-20 ⁴	23-Jan-03	8	7	4	40.8658416	124.1532563	7.57	8.52	3.2 - 6.8	0.01	2.0 - 7.0	1.0 - 2.0	0 - 1.0
MW-21	12-Feb-03	8.3	8.3	0.75	40.8660161	124.1530089	6.76	9.54	2.1 - 8.1	0.01	1.5 - 8.3	1.0 - 1.5	0 - 1.0
Deep Wells													
MW-13D	12-Nov-02	21	20	2	40.8660809	124.1525231	6.91	6.61	15.0 - 20.0	0.01	13.5 - 21.0	12.0 - 13.5	0-12.0
MW-15D	13-Nov-02	21	20	2	40.8662658	124.1528255	8.24	7.84	15.0 - 20.0	0.01	14.0 - 21.0	12.0 - 14.0	0-12.0
MW-16D	14-Nov-02	21.5	20	2	40.8655571	124.1530363	6.78	6.48	15.0 - 20.0	0.01	14.0 - 21.5	12.0 - 14.0	0-12.0
MW-19D	14-Nov-02	21.5	20	2	40.8662419	124.1532744	7.86	7.71	15.0 - 20.0	0.01	14.0 - 21.0	12.0 - 14.0	0 - 12.0

Notes:

1. Construction details for wells MW-1 through MW-9 were obtained from *Report on Recent Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill,* dated April 19, 2002 prepared by Environet Consulting. Construction details for wells MW-10 through MW-19D were obtained from *Results of the Remedial Investigation for Sierra Pacific Industries – Arcata Division Sawmills, Arcata, California*, dated January 30, 2003, prepared by Environet Consulting. Installation of wells MW-20 and MW-21 documented in this report.

2. Monitoring wells surveyed by Omsberg Suveyors and Company of Eureka California on February 13, 2003; latitude and longitude surveyed relative to North American Datum (NAD) of 1983 and elevations surveyed relative to National Geodetic Vertical Datum (NGVD) of 1929.

3. Surface seal interval consists of the concrete surface completion and a neat cement sanitary seal, if applicable.

4. Well installed on a raised concrete pad of the former green chain. Depth measurements (ft bgs) relative to local ground surface of the concrete pad, which is approximately 1 foot above ground surface of the surrounding grade.

Abbreviations: ft bgs = feet below ground surface ft msl = feet mean sea level

TABLE 2SOIL SAMPLE ANALYTICAL RESULTS FORpH, TOC, AND CHLORINATED PHENOLS1Sierra Pacific IndustriesArcata Division SawmillArcata, California

Sample ID	Date Sampled	Depth (ft bgs)	рН	TOC (mg/kg)	2,4,6-TCP (mg/kg)	2,3,5,6-TCP (mg/kg)	2,3,4,6-TCP (mg/kg)	2,3,4,5-TCP (mg/kg)	PCP (mg/kg)
MW-21-1.5	12-Feb-04	1.5	6.7	925	<1.0	<1.0	<1.0	<1.0	<1.0
MW-21-3.0	12-Feb-04	3.0	6.7	1070	<1.0	<1.0	<1.0	<1.0	4.1
MW-21-5.0	12-Feb-04	5.0	6.8	1040	<1.0	<1.0	<1.0	<1.0	<1.0
MW-21-7.0	12-Feb-04	7.0	6.4	976	<1.0	<1.0	<1.0	<1.0	<1.0

Notes:

1. Alpha Analytical analyzed samples for TOC using EPA Method 9060; for pH using EPA Method 9045B; and for chlorinated phenols by the Canadian Pulp Method (results for chlorinated phenol data reported in wet-weight format).

Abbreviations:

TOC = total organic carbon

2,4,6-TCP = 2,4,6-tetrachlorophenol

2,3,5,6-TCP = 2,3,5,6-tetrachlorophenol

2,3,4,6-TCP = 2,3,4,6-tetrachlorophenol

2,3,4,5-TCP = 2,3,4,5-tetrachlorophenol

PCP = pentachlorophenol

<= Target analyte was not detected at or above the laboratory reporting limit shown.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram (parts per million)

TABLE 3 SOIL SAMPLE ANALYTICAL RESULTS FOR **DIOXINS AND FURANS¹** Sierra Pacific Industries Arcata Division Sawmill Arcata, California

<i>a</i>				(()
Concentrations	In	nicoorams	ner oram	$(n\sigma/\sigma)$
Concentrations	in	picograms	pergrum	(PS'S)

							n					1 0	unis per g	5 UOC)/							r.			
SAMPLE ID	BORING ID	SAMPLE DEPTH (feet bgs)	SAMPLE DATE	LITHOLOGY	2, 3, 7, 8- TCDD	1, 2, 3, 7, 8- PeCDD	1, 2, 3, 4, 7, 8- HxCDD	1, 2, 3, 6, 7, 8- HxCDD	1, 2, 3, 7, 8, 9- HxCDD	1, 2, 3, 4, 6, 7, 8- HpCDD	OCDD	Total Dioxins	2, 3, 7, 8- TCDF	1, 2, 3, 7, 8- PeCDF	2, 3, 4, 7, 8- PeCDF	1, 2, 3, 4, 7, 8- HxCDF	1, 2, 3, 6, 7, 8- HxCDF	2, 3, 4, 6, 7, 8- HxCDF	1, 2, 3, 7, 8, 9- HxCDF	1, 2, 3, 4, 6, 7, 8- HpCDF	1, 2, 3, 4, 7, 8, 9- HpCDF	OCDF	Total Furans	TOTAL TEO ^{2, 3}	PERCEN 2,3,7,8- TCDD ⁴
Dry-Weight Re	esults	· · · · ·																							
MW-21-1.0	MW-21	1.0	12-Apr-04	sand	< 0.132	< 0.197	< 0.358	1.67 J	0.534 J	83.0	2640	384	< 0.0597	< 0.387	< 0.381	0.289 J	< 0.145	0.456 J	< 0.103	13.3	0.959 J	54.0	70.2	1.54	0
MW-21-4.5	MW-21	4.5	12-Apr-04	sand	< 0.118	< 0.135	< 0.226	< 0.237	< 0.212	00.710 J	2.44 J	1.31 J	< 0.0538	< 0.173	< 0.177	< 0.0561	< 0.0695	< 0.0871	< 0.0959	< 0.0878	< 0.0922	< 0.409	0.146 J	0.00734	0
Wet-Weight Re	esults																								
MW-21-1.0	MW-21	1.0	12-Apr-04	sand	< 0.114	< 0.170	< 0.308	1.43 J	0.460 J	71.4	2270	331	< 0.0513	< 0.333	< 0.328	0.248 J	< 0.124	0.392 J	< 0.0890	11.5	0.826 J	46.5	60.5	1.32	0
MW-21-4.5	MW-21	4.5	12-Apr-04	sand	< 0.0989	< 0.113	< 0.189	< 0.199	< 0.178	0.595 J	2.05 J	1.10 J	< 0.0451	< 0.145	< 0.148	< 0.0470	< 0.0582	< 0.0730	< 0.0803	< 0.0735	< 0.0772	< 0.342	0.122 J	0.00615	0
				TEF ⁵ :	1	1	0.1	0.1	0.1	0.01	0.0001		0.1	0.05	0.5	0.1	0.1	0.1	0.1	0.01	0.01	0.0001			

Notes:

1. Frontier Analytical Laboratory analyzed samples for dioxins and furans using EPA Method 1613.

2. Calculated as the sum of congener concentrations after each has been multiplied by its TEF.

3. Concentrations not detected above the laboratory reporting limit were assigned a concentration of 0 pg/g to calculate TEQ.

4. Calculated by dividing the concentration of 2,3,7,8-TCDD by the Total TEQ (multiplied by 100). When the concentration of 2,3,7,8-TCDD was not detected, it was assigned a concentration of 0 pg/g for this calculcation. 5. Toxicity equivalency factor (unitless) from the World Health Organization, 1997 (WHO-97), adopted from F.X.R. van Leeuwen, 1997.

Abbreviations:

TCDD = tetrachlorodibenzo-p-dioxin PeCDD = pentachlorodibenzo-p-dioxin

HxCDD = hexachlorodibenzo-p-dioxin HpCDD = heptachlorodibenzo-p-dioxin OCDD = octachlorodibenzo-p-dioxin

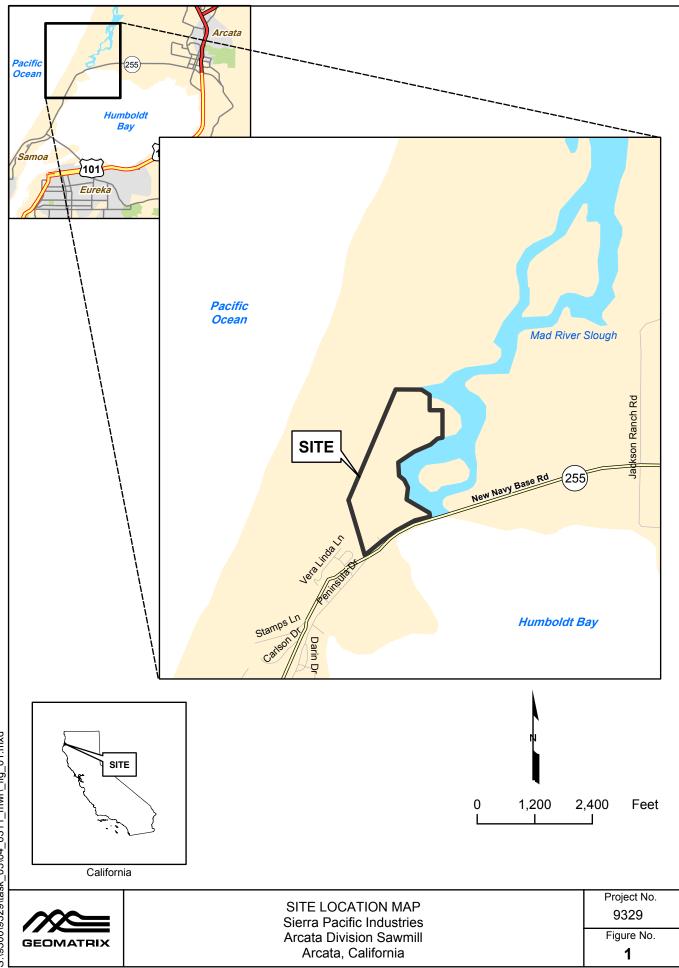
TCDF = tetrachlorodibenzofuran PeCDF = pentachlorodibenzofuran

HxCDF = pentachlorodibenzofuran HxCDF = hexachlorodibenzofuran HpCDF = heptachlorodibenzofuran OCDF = octachlorodibenzofuran TEQ = toxicity equivalence TEF = toxicity equivalency factor (unitless)

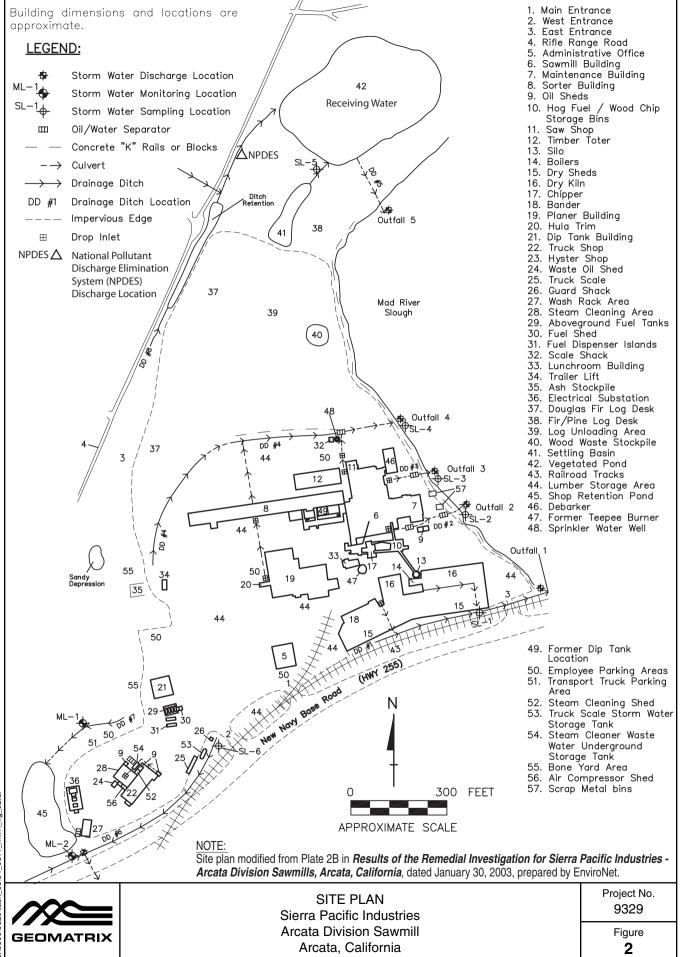
EPA = U.S. Environmental Protection Agency

bgs = below ground surface

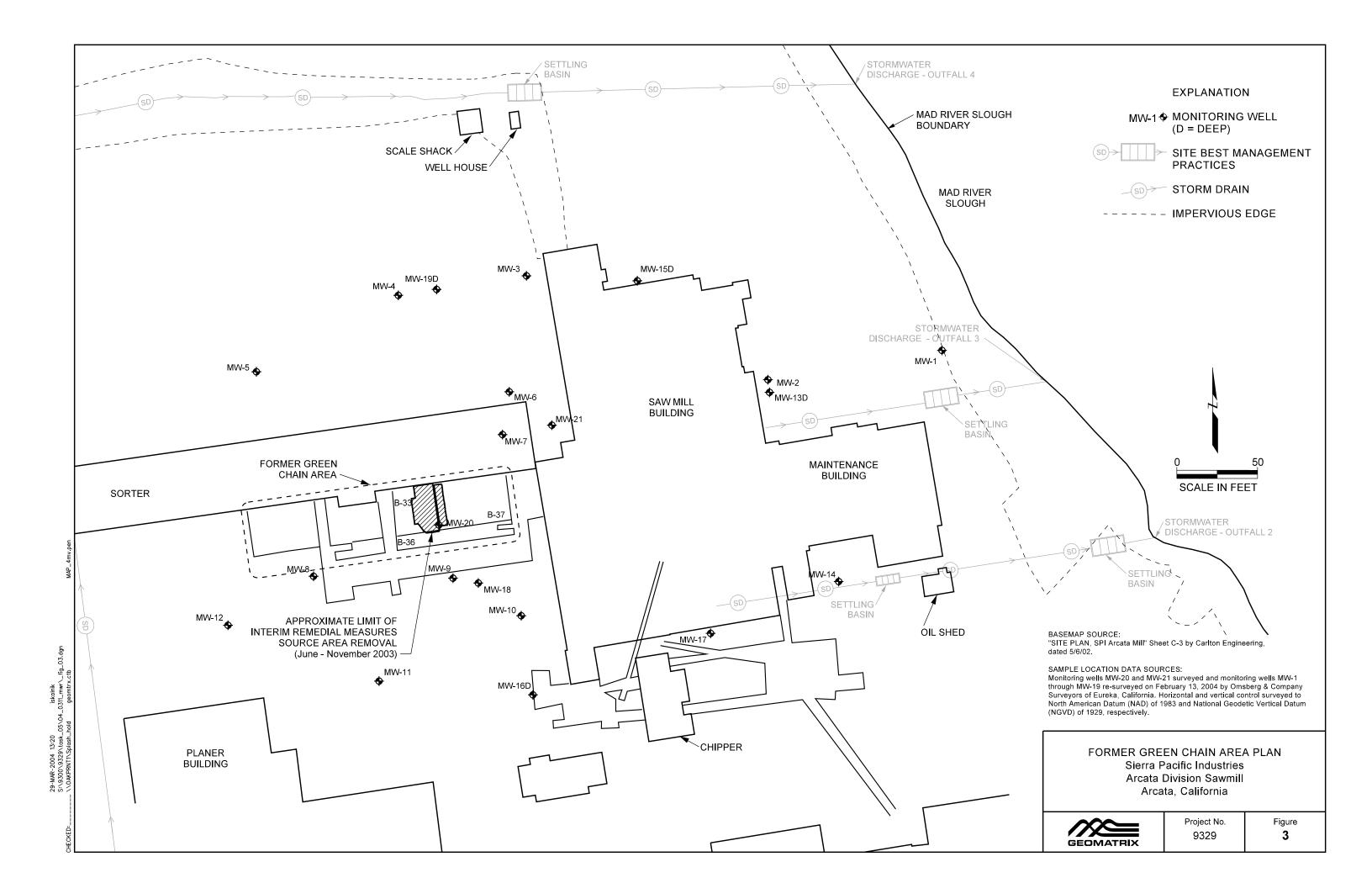
pg/g = picograms per gram

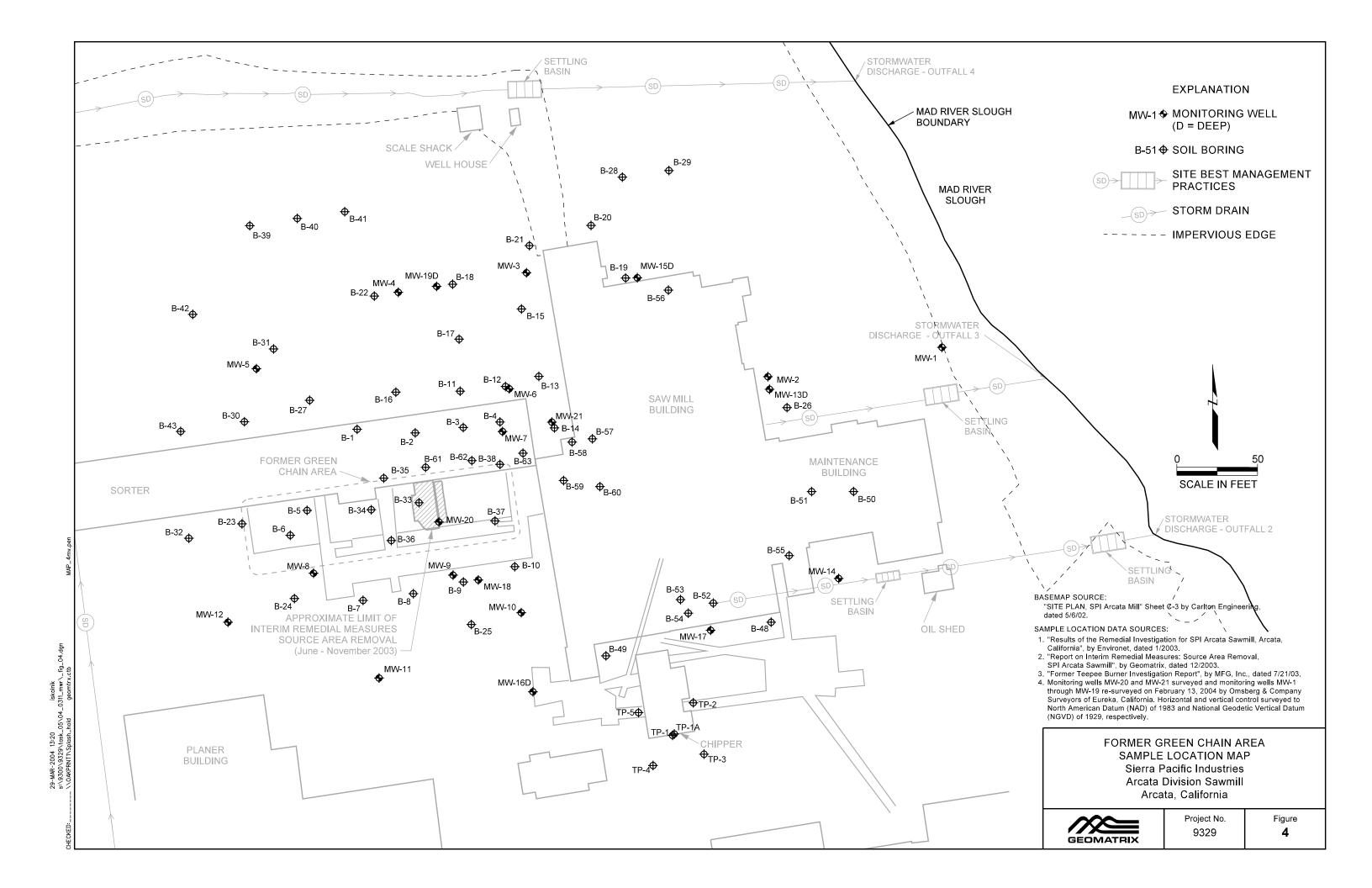

-- = not applicable

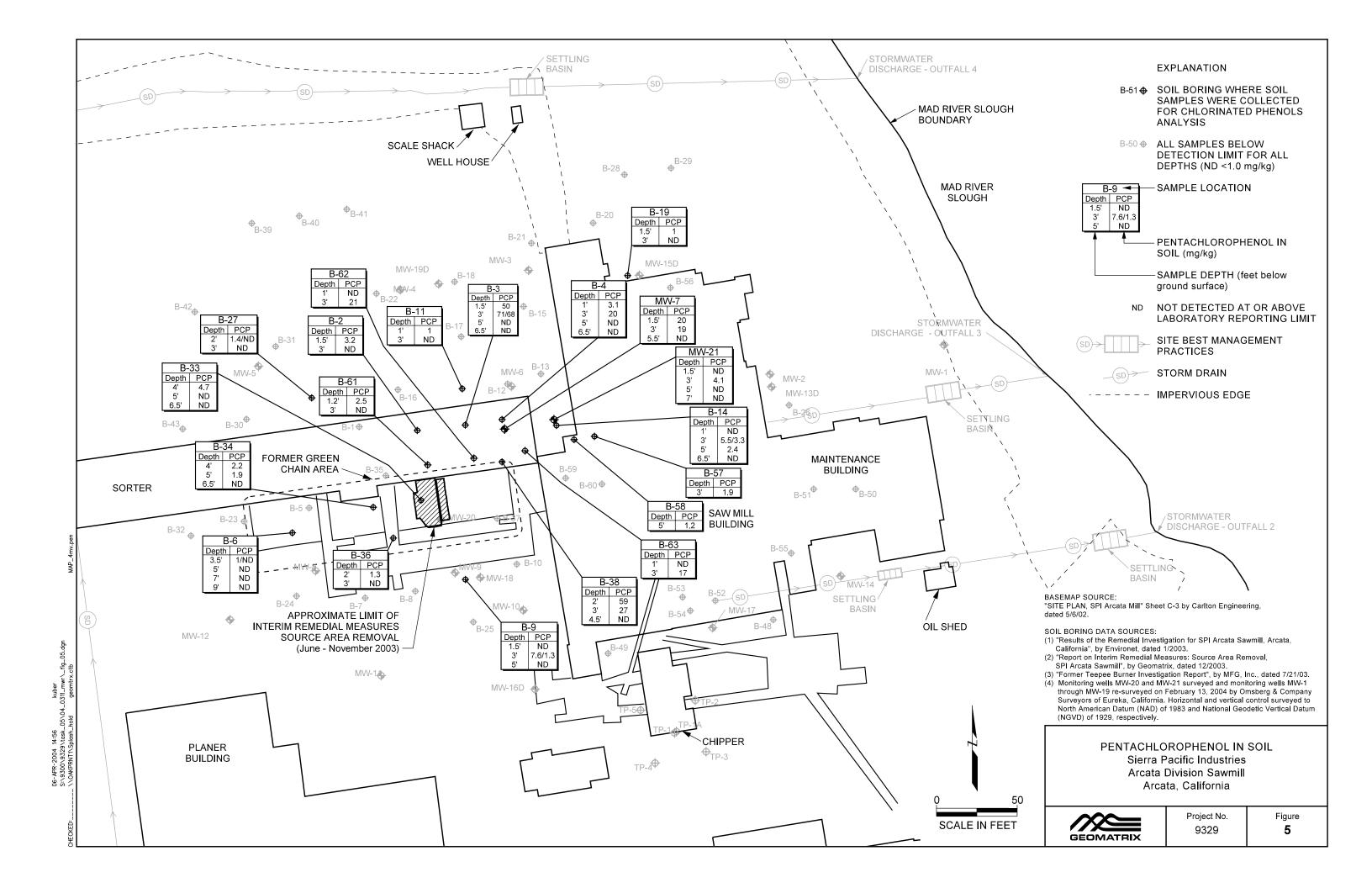
< = target analyte was not detected at or above the laboratory reporting limit shown


J = concentration detected was below the calibration range

FIGURES




S:\9300\9329\task_05\04_0311_mwr_fig_01.mxd



05\04 0311 mwr\ fig 02.ai

S:\9300\9329\task

APPENDIX A Permits – Humboldt County Division of Environmental Health

2004/FEB/IU/TUE 02:12	Z PM ENVIKUNMENIAL HE	ALIH FA	X No. /U'/ 441	2033	P. UU4
* *	\bigcirc		۰	· · ·	, t
HUM		f BNVIRONMENT and BORING PER			als unit l
Facility Name:	Sierra Pacific Industries,	Arcata Sawmil	l Division		
Site Address:	2593 New Navy Base Road		<u>, I</u>	41	<u>بالمحمد من محمد من محمد المحمد المحمد المحمد من محمد م</u>
Sile Owner:	Sierra Pacific Industries P.O. Box 496028 Redding	CA 96049-607	8		530-378-8000
			·	AP#:	530 278 8000
	ra Pacific Industries — . Box 496028 Redding, CA		ery	Telephone:	530-378-8000
Consultant: G	eomatrix Consultants, Inc.	- Ross Steensor		Telephone:	(510) 663-4107
Maria Contractor	Webster Street, 12th Floor		94612	\$\%\$-#/\T.3204:	
	Environmental Exploration				209-772-3570
Address: 399 5	Sheris Place, Valley Spring	s, CA 95252	 ■ ■ ■<td>C-57 Lit.#:</td><td>، ، ». سروری است</td>	C-57 Lit.#:	، ، ». سروری است
Wells	<u># Qa-site</u> 1 Borings		Wells	# Off-site Boriags	<u></u>
L	Construct Destroy DR		Electrod		
Well Туре;	X Monitoring Well I lojectio	an Well V leter V fir Protection II	Appor Extraction Appor Point Direct Push Boring Action DUST	Cologie Boring Soil Gas Survey Temporary Well Pi	ojnt
	*Specify:				<u> </u>
	Physes 🗍 Initial 😿 Subsequent tamInanzs: <u>Chlorinated Pl</u>			,	
Disposal/Cours	inment for Soll Cutlings:	Āsbury/DOT -	55 gallon drum	S	·
Disposal/Conta	inment for Rinsate: Asbu	urv/DOT - 55 ga	llon druins		
Disposal/Conta	jament for Development Wa	ater: <u>Asburv/D</u>	OT - 55 gallon	drums	
Permits <u>will</u>	not be processed with a	out the follow	ing informati	iont	, • , ,
B Scaled	Construction Detail.	В Аррториїз	er Fres		
Detail	ed Site Plan	, -		on file at ACDEN)	
	igency Approval Letter 16 Well Requirements:	•			
Ū L	egal Right of Epity	Proposed Work	Date: Week o	f October 29th, 200	3

- Off Site Address/Location
- 🛄 Encroachinent Permit

Coastal Zone Permit

tex. 6/98

10/13/03

2

HUMBOLDT COUNTY DIVISION of ENVIRONMENTAL HEALTH - HAZARDOUS MATERIALS UNIT WELL and BORING PERMIT APPLICATION

27-J Facility ID # 1NHU 526 Permit #

I hereby agree to comply with all laws, ordinances and regulations of the county of Humboldt and State of California pertaining to water well construction. <u>I will contact the Humboldt County Hazardous Materials Unit at (707) 445-6215 five</u> (5) working days prior to commencing this work. I will furnish to the County of Humboldt, Division of Environmental Health, and the owner a legible copy of the State Water Well Completion Report (form DWR 188) within fifteen (15) days after completion of work to obtain final approval of the well(s). I acknowledge that the application will become a permit ONLY after site approval by the Local Implementing Agency (HCDEH, NCRWQCB, DTSC, EPA). I understand this permit is not transferable and expires one hundred twenty (120) days from the date of issuance.

Certificates of Insurance:

A currently effective General Liability Certificate of Insurance is on file with this office, endorsed to include the Humboldt County Division of Environmental Health as additional named insured.

A currently effective Worker's Compensation Certificate of Insurance is on file with this office, <u>endorsed to</u> include the Humboldt County Division of Environmental Health as additional named insured.

Signature of Well Driller - no proxies - original signature only in blue ink

Well identification number and type must be affixed to exterior surface of security structure.

- The applicant is responsible for notifying Underground Services Alert at least 48 hours prior to the scheduled work date.
- A State of California Department of Water resources Well Completion Report (Form DWR 1-88) must be filed within 15 days of completion of work for all well completions and destructions.
- A licensed California C-57 Well Driller is required for all wells and direct push work.

·	FOR OFFICE USE ON			
Permit Approval:	1 Colwant Ordes	fort Date:	10 23	2003
Fee: \$220"	Date: 10 23 2003 Receipt:	219585		,
Initial Inspection:	Date:	<u></u>		
Final Inspection:		-		

HUMBOLDT COUNTY DIVISION of ENVIRONMENTAL HEALTH - HAZARDOUS MATERIALS UNIT WELL and BORING PERMIT APPLICATION

Facility ID # 1NHU526	Permit #7	<u>- K</u>
Facility Name: _SIERRA PACIFIC INDUSTRIES	ARCATA DIVISION	Sammer
Site Address: 2593 NEW NAVY PASE ROAD, ARCA	TA, CALIFORNIA	
Site Owner: <u>SAME AS ABOVE</u> CONTACT BOB Address:	Eugry	
RP Name (SAME AS ABOVE) Address:	-	Telephone:
Consultant: GEOMATRIX CONSULTANTS INC.	· · · · · · · · · · · · · · · · · · ·	Telephone: (S10) 663-4100
Address: 2101 WEBSTER ST. 12TH FLOOR OAKLAND CA	94612	Reg.#/Type: <u>C.HG. 710</u>
		``` <u>`</u> `
Driller: PRECISION SAMPLING, INC.		Telephone: <u>(S10) 237 - 4575</u>
Address: 1400 SOVTH 50TH STREET		C-57 Lic.#: <u>636387</u>
# On-site		# Offsite
Wells <u>1</u> Borings	Wells	Borings
	Vapor Point S Direct Push Boring T actice UST X oundment AST	Geologic Boring Goil Gas Survey Cemporary Well Point Other*
Diff Site Well Requirements:	te Fees Vorkplan (if not on fil Seisfonoint) Date: <u>FEBRVAN</u>	<u>y 12, 200 y</u>

1

#### HUMBOLDT COUNTY DIVISION of ENVIRONMENTAL HEALTH - HAZARDOUS MATERIALS UNIT WELL and BORING PERMIT APPLICATION

Facility ID # 1NHU526 Permit # 27-K

I hereby agree to comply with all laws, ordinances and regulations of the county of Humboldt and State of California pertaining to water well construction. <u>I will contact the Humboldt County Hazardous Materials Unit at (707) 445-6215 five</u> (5) working days prior to commencing this work. I will furnish to the County of Humboldt, Division of Environmental Health, and the owner a legible copy of the State Water Well Completion Report (form DWR 188) within fifteen (15) days after completion of work to obtain final approval of the well(s). I acknowledge that the application will become a permit ONLY after site approval by the Local Implementing Agency (HCDEH, NCRWQCB, DTSC, EPA). I understand this permit is not transferable and expires one hundred twenty (120) days from the date of issuance.

Certificates of Insurance:

- A currently effective General Liability Certificate of Insurance is on file with this office, endorsed to include the Humboldt County Division of Environmental Health as additional named insured.
- A currently effective Worker's Compensation Certificate of Insurance is on file with this office, endorsed to include the Humboldt County Division of Environmental Health as additional named insured.

Signature of Well Driller - no proxies - original signature only in blue ink

- Well identification umber and type must be affixed to exterior surface of security structure.
- The applicant is responsible for notifying Underground Services Alert at least 48 hours prior to the scheduled work date.
- A State of California Deprtment of Water resources Well Completion Report (Form DWR 1-88) must be filed within 15 days of completion of work for all well completions and destructions.
- A licsenced california C-57 Well Driller is required for all wells and direct push work.

FOR OFFICE USE ONLY Date: 2 10 2004 orman Permit Approval: Receipt: 219118 2004 Fee: Date: Initial Inspection: Date: Final Inspection:

2



## **APPENDIX B**

## Boring Logs, Well Construction Details, and Well Development Records

BORING LOCATION:         ELEVATION AND DATUM:           DRILLING CONTRACTOR:         DATE STARTED:         DATE FINISHED:         DATE FINISHED:           DRILLING CONTRACTOR:         DEDIT         MEASURING POINT.         DEPTH TO WATER;         FIRST         COMPL.           DRILLING ECUIPMENT:         DEPTH TO WATER;         FIRST         COMPL.         RESPONSIBLE PROFESSIONAL:         REG NO.           HAMMER WEIGHT:         DROP:         DESCRIPTION         RESPONSIBLE PROFESSIONAL:         REG NO.           Hammer Weight:         DROP:         DESCRIPTION         DESCRIPTION         REMARKS           Sufface Evaluation:         Sufface Evaluation:         DESCRIPTION         REMARKS           Sufface Evaluation:         Sufface Evaluation:         Sufface Evaluation:         REMARKS           Sufface Evaluation:         Sufface Evaluation:         Sufface Evaluation:         RESONAL:         REMARKS           Sufface Evaluation:         Sufface Evaluation:         Sufface Evaluation:         Sufface Evaluation:         RESONAL:         REMARKS           Sufface Evaluation:         Sufface Evaluation:         Sufface Evaluation:         Sufface Evaluation:         REG NO.         REMARKS           Sufface Evaluation:         Sufface Evaluation:         Sufface Evaluation:         Sufface Evaluation:	PROJI		Proje	ect Lo	ocatio				Boring Log Explanation					
DRILLING LOW INACION       TOTAL DEPTH:       MASUFINE FOILT:         SAMPLING METHOD:       DROP:       RESPONSIBLE PROFESSIONAL:       RE	BORIN	NG LO	CATIO	ON:					ELEVATION AND DATUM	:				
Diricultative Field         Communicative field <thcommunicative field<="" th="">         Communicative field</thcommunicative>	DRILL	ING C	ONTR	RACT	OR:				DATE STARTED:	DATE	FINISHED:			
Dirt       DEPTH 10 WATER       DEPTH 10 WATER       IOOC       RESONSIBLE PROFESSIONAL:       REAL	DRILL	ING M	1ETHC	OD:					TOTAL DEPTH:	MEAS	SURING POINT:			
BADAFINE IN LUE:       PERFORMENT IN LUE:	DRILL	ING E	QUIP	MEN	T:				DEPTH TO WATER:	RST	COMPL.			
Product weight weight is the product of the product	SAMP	LING	METH	HOD:					LOGGED BY:		•			
Image: Project No. #       Notes       Image: Project No. #         Project No. #       1. Soil descriptions are based on the Unified Soil Classification System (USCS). ASTM D2489-90 "Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)" used for guidance to describe soils and provide USCS Names and Symbols.       2. Soil color described according to Munsell Color Chart.         3. Dashed lines separating soil strata represent inferred boundaries between sampled intervals that may be abrupt or gradual transitions. Solid lines represent approximate boundaries between sampled intervals.       4. OVM = organic vapor meter, reading in parts per million.         5. Odor, if noted, is subjective and not necessarily indicative of specific compounds or concentrations       1. Interval of recovered soil core collected with split-barrel         B1-4       Sample collected for chemical analysis and sample identification       1. Interval of no recovery         Project No. #       Geomatrix Consultants       1. Project No. #	НАММ	IER W	/EIGH	IT:			DROP:		RESPONSIBLE PROFES	SIONAL:	REG. NO.			
Image: Project No. #       Notes       Image: Project No. #         Project No. #       1. Soil descriptions are based on the Unified Soil Classification System (USCS). ASTM D2489-90 "Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)" used for guidance to describe soils and provide USCS Names and Symbols.       2. Soil color described according to Munsell Color Chart.         3. Dashed lines separating soil strata represent inferred boundaries between sampled intervals that may be abrupt or gradual transitions. Solid lines represent approximate boundaries between sampled intervals.       4. OVM = organic vapor meter, reading in parts per million.         5. Odor, if noted, is subjective and not necessarily indicative of specific compounds or concentrations       1. Interval of recovered soil core collected with split-barrel         B1-4       Sample collected for chemical analysis and sample identification       1. Interval of no recovery         Project No. #       Geomatrix Consultants       1. Project No. #	DEPTH (feet)	L			VM Reading (ppm)	NAME (USCS Syr	nbol): color, moist, % by weight., plast., consistence	cy, structure	e, cementation, react. w/HCl. geo. inte	ər.	REMARKS			
Image: Project No. #       1. Soil descriptions are based on the Unified Soil Classification System (USCS). ASTM D2488-90 "Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)" used for guidance to describe soils and provide USCS Names and Symbols.         Image: Soli color described according to Munsell Color Chart.       3. Dashed lines separating soil strata represent inferred boundaries observed within sample intervals.         Image: Soli color describe between sampled intervals.       4. OVM = organic vapor meter, reading in parts per million.         Image: Soli color describe soil core collected with split-barrel       1. Interval of recovered soil core collected with split-barrel         Image: Soli provide collected for chemical analysis and sample       1. Interval of no recovery         Image: Soli provide collected for chemical analysis and sample       1. Interval of recovered soil core collected with split-spoon         Image: Project No. #       Geomatrix Consultants       1. Soli compounds or consentrations		S	S L	ш	0			n						
Project No. # Geomatrix Consultants Figure #		B1-4				Syste Descr Proce USCS 2. Soil c 3. Dash bound gradu bound 4. OVM 5. Odor, specif Interval c Interval c Sample c	escriptions are based on the L m (USCS). ASTM D2488-90 " iption and Identification of Soi dure)" used for guidance to de S Names and Symbols. olor described according to Mu ed lines separating soil strata in daries between sampled interv al transitions. Solid lines repre- laries observed within sample = organic vapor meter, reading if noted, is subjective and not ic compounds or concentration of recovered soil core collected of recovered soil core collected of no recovery	Standa Is (Visu escribe unsell ( represe rals tha isent ap interva g in par necess ns d with s	rd Practice for ual-Manual soils and provide Color Chart. ent inferred t may be abrupt or oproximate als. rts per million. sarily indicative of plit-barrel					
	L -										B-1 (3/97)			
	<u> </u>		#				Geomatrix C	onsulta	ints		Figure #			

PROJECT: SIERRA PACIFIC IND Arcata, California	JSTRIES	Log of Well	No. MW-20
BORING LOCATION: N: 40.8658416	; E: 124.1532563 (NAD 1983)	TOP OF CASING ELEVATION 8.52' MSL (NGVD 1929)	
DRILLING CONTRACTOR: Fisch Env	ironmental Exploration Services	DATE STARTED: 1/23/04	DATE FINISHED: 1/23/04
DRILLING METHOD: NA*		TOTAL DEPTH (ft.): 8.0	SCREEN INTERVAL (ft.): 3.2-6.8
DRILLING EQUIPMENT: NA*		DEPTH TO FIRST COMPL WATER (ft.) 2.25 NA	. CASING: 4" Sch. 40 PVC
SAMPLING METHOD: NA		LOGGED BY: B. Thompson	
HAMMER WEIGHT: NA	drop: NA	RESPONSIBLE PROFESSION B. Thompson	NAL: REG. NO. C.HG. 710
) AMVN ) AWVN ) AWVN	DESCRIPTION USCS): color, moist, % by wt., plast. density, stru cementation, react. w/HCl, geo. inter.	cture,	WELL CONSTRUCTION DETAILS AND/OR
	Surface Elevation: 7.57' MSL (NGVD		DRILLING REMARKS
- POOF 1- 6/2), r	CRETE(to be paved) RLY GRADED SAND (SP): light olive gray noist, 95% fine to medium sand, 5% nonpla	(5Y 8	Fraffic Box Sand/cement slurry
fines	[FILL; EXCAVATION BACKFILL]		Bentonite chip seal
wet			Excavation backfill
_			
			4" Schedule 40 PVC, 0.010" slot well screen
5-			#2/12 sand mixed with
6-			excavation backfill
7-			Schedule 40 PVC
			endcap Excavation backfill
8-Botto	m of former excavation approximately 8.0 fe		
9-		_  .	* Well installed within
			12" diameter Schedule 40 PVC
			pipe that was placed within excavation prior
			to backfill. Pipe
			removed during the well installation.
12-			** Ground surface elevation at top of
			concrete pad, approximately 1 foot
			above ground surface
14-			of surrounding grade.
	triv Concultor to		OAKWELLV_TOC(REV. 9/00)
Geoma Geoma	trix Consultants	Project No. 9329.000	D Page 1 of 1

PROJECT: SIERRA PACIFIC INDUSTRIES Arcata, California						Log of Well No. MW-21									
BORING LOCATION: N: 40.8660161; E: 124.1530089 (NAD 1983)								TOP OF CASING ELEVATION AND DATUM: 9.54' MSL (NGVD 1929)							
DRILLING CONTRACTOR: Precision Sampling Incorporated								DATE ST/ 2/12/04	DATE STARTED: DATE FINISH 2/12/04 2/12/04			/04			
DRILLING METHOD: Direct push								8.0					3.1		
DRILLING EQUIPMENT: DA-II								WATER (ft	DEPTH TO FIRST COMPL. CASING: WATER (ft.): 1.0 NA 0.75 Sch. 40 PVC						
SAMPLING METHOD: Enviro coro compling evetom 14' y 1 5"									LOGGED BY: B. Thompson						
HAMMER WEIGHT: NA DROP: NA						RESPONSIBLE PROFESSIONAL:REG. NO.B. ThompsonC.HG. 710									
DEPTH (feet)	SAMPLES       DESCRIPTION         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Image: Second structure       Image: Second structure         Image: Second structure       Ima						wt., plast. density, stru						CONSTRUCTION AILS AND/OR		
DEPT (feet) (feet) Sample No. Sample Blows/ Foot CVN				Re		1929)	1929)			DRILLING REMARKS					
-	MW-21-1.0	CONCRETE								_		46	Stove pip Concrete	be well box	
1-	1− ≧							P): dark greenish g	-				Bentonite	e chip seal	
2-	MW-21-1.5					nplastic fine		% fine to medium sa	and,				er pack sand meter Schedule		
3-	MW-21-3.0			0								-	40 PVC casing		
- 3		$\square$												well screen.	
4-	MW-21-4.5									-			0.75" dia	neter outer & meter inner	
5-	MW-21-5.0												Schedule 0.010" sl	e 40 PVC, ot	
6-	MM												2 25" dia	meter borehole	
-0	MW-21-7.0												2.25 Ula		
7-	-MM			0											
8-										-	Schedule	e 40 PVC			
-										<u>[].</u>	]	endcap			
9-													OVM = T	hermo	
10-	10-										Environn				
-									-			calibrate	d with 100 ppm		
11-													isobutyle	ne standard.	
12-										-					
13-															
-										-					
14-															
15-													0.1121		
			1	×	Geoma	trix Consu	Iltants			Pro	oject No. §	9329.00		Page 1 of 1	



#### WELL SAMPLING AND/OR DEVELOPMENT RECORD

Well ID:								Initial Depth to Water: _ <u>2.33 ( roc)</u>							
Sample I	Duplic	ate ID: _/	NA_												
Sample I	Depth:	NA			1H Str. 5			Total Depth to Well: <u>6.63′(τυς</u> )							
Project a	nd Task I	No.:	1325.0	<u> </u>				Well Diameter: _ <u>4</u> "							
		-								ole Volume	: 2.87	<u></u>			
	2/12/04									le Velume	007				
Sampled	By: <u></u> 2	Tra	in a son	<u>~</u>	λ,ρ			A ^{lC} asing/Borehole Volumes: <u>28.7</u> (Circle one)							
Method	of Purging		p 14,16.	1 Pu,1				Total Casing/Borehole							
Method	of Samplin	ng:	NA				<u> </u>	olume	s Remov	ed:ک	35 calienz				
e un e									. 4- <u>5</u> .	e digera Sector					
					Sec.										
14:46			+								MLASIME T.D.	×			
14:49						<u> </u>			`````		CANT SUNKI				
15.07	7'	NA				6.5	1 40.				STOP SURGIN				
15:30	7'		- INID 5.0			7.00					67, Glay 1: 3	IN FIT N			
15 56		A	<u> </u>			<u>1.00</u> 6.91			<u>+</u>						
16.07	1 105	NA	25.			7.0									
16 7.3	3' 10'	NA	1/5.			6.8			+						
16:54	3'107'	NA	65.			7.0					SUGHTLY JOU				
17:14	-1'	NA	85.	-		6.96			1		Vising ice				
						1		· • •	1						
$\Phi_{i}^{(1)} > i$	14 A	) - 31		(CATO)		tors av	a si			Mode	I or Unit No.: $\pm$				
				pH 4.0	4.0 pH 7.0		) pH	pH 10.0			· · · · · ·				
Instrume	nt Reading	)				692	10 1	54							
	and a de	19743	stino:		(G) (		17.11.	Ton:	a a second second second	Mode	l or Unit No.:				
KCL Solution (μS/cm=μmhos/cm)					1413 at 25°C 1288			25°C	terije in Analaika in Sala						
Field Tem	perature °	С													
Instrumen	t Reading				1411		<u> </u>								
	1110733	01:174		Contraction of the local division of the loc	and the second	and the second se				Notes	;				
Standard Solution 468 mV			S	Salinity % Altitude Instrument Reading					* 4"	* 4" RITIN THE STOL - SULF ACROIS MELL SCREEN ** TURBIDITY METER NOT					
Field Temperature °C Instrument Reading									AI						
									In						
Model or Unit No.:					Model or Unit No.:						WORKING. TURBIDITY BALED				
	Ag/AgCl Electrode (SSCE)											ON VISUAL OBSCRUATION.			

G \FORMATS\WELL SAMPL Rec-DO.doc



#### WELL SAMPLING AND/OR DEVELOPMENT RECORD

Well ID: MW-21 Initial Depth to Water: 3.69												
Well ID:												
Sample ID: <u>NA</u>	Duplicate II	D: <u>NA</u>	th to Water after Sampling:									
Sample Depth: <u>NA</u>				Total Depth to Well:/0.94								
Project and Task No.: _	9329,000 -	TASIC # 5	Well	Diameter: 0.3	75" (D.D)	; ~ h" (ID)						
Project Name: <u>Sterre</u>	A PACIFIC 1	MUWIR 15		Casing/Borehole Volume: 0.07 gal								
Date:/13/04	<u> </u>		10	(Circle one) - ( ¹⁰ / ₁₀ )								
Sampled By: <u>P</u>	DY ALO.V			Casing/Borehole Volumes: 0.7 gcl								
Method of Purging:1	CRISTALTIC	pump	Tota	Total Casing/Borehole								
Method of Sampling: <u>MA</u> Total Casing/Borehole <u>Synthese</u> Volumes Removed: <u>Synthese</u>												
	e e de la composition											
Rossie					1777 B							
09.41						MEANNE TD. 4 D.T.W.						
0:45		······································				STAT SURGING WELL						
09:57						SIM SURGING NEW						
11:24 8' 895 500	"Sec 0.5	11.3 6.5	3 1129			GREENISH GRAY MED-HIGH NTU						
11:28 11 11	1.0	11.3 6.5	9 1081			LT GREENISH GRAY; LOW MED NTU						
11-34 2708 045 1	1.5	11.2 6.6	6 1036			CLOVDY; HIGH TO Y. LOW						
						NTU AS TUBINA MOVED TO PUMP AT VARIABLE DEATHS						
11:41 2'70 8'845 1	1 25	11.4 6.61	1 1059			SUGATI CLOUDY TO VISIBLY CLEAR						
11:49 5'845 11	3.0	113 6.65	1018			VISIBLY CLEAR						
					Model or l	Jnit No.: -# /						
Buffer Solution	p⊢	14.0 pH 7.	0 pH 10.	0								
Field Temperature °C		17.1	17-0									
Instrument Reading		7.03	10,11		1							
	યુલભારો(જ, દ્વિગે		a data a data	ΟŊ,	Model or l	Jnit No.:						
KCL Solution (µS/cm≂µm	nhos/cm)	1413 at 25°C	12880 at 25°	C	<i><i><i>T</i>/</i></i>							
Field Temperature °C		<i>и с</i>			4							
Instrument Reading		16.8										
				/.nai=1-7/17(3).5	Notes:							
Standard Solution	468 mV	Salinity %										
Field Temperature °C	400 111	Altitude	. <u> </u>		* WELL SURGED WIDI &" SWAB							
Instrument Reading	-	Instrument R	eading		** TURBIDITY METER NOT							
Model or Unit No.:	<u> </u>	Model or Uni			WORFING TURDIDITY BAJED ON							
	<b>F'</b> \				VISVAL	VISUAL OBSELVATIONS.						
Ag/AgCI Electrode (SSC												
		1										

G \FORMATS\WELL SAMPL Rec-DO.doc



# **APPENDIX C**

# Laboratory Analytical Reports and Chain-of-Custody Records



FILE 9329

Alpha Analytical Laboratories Inc

208 Mason St. Ukiah, California 95482 e-mail clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267



01 March 2004

Geomatrix Consultants Attn: Ross Steenson 2101 Webster Street, 12th Floor Oakland, CA 94612 RE: SPI - (GeoMatrix) Task 5 Work Order: A402360

TASK 5 MW-21 CONSTRUCTION Soil SAMPLES

Enclosed are the results of analyses for samples received by the laboratory on 02/13/04 14:13. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sheri Speake

Sheri L. Speaks Project Manager



Alpha Analytical Laboratories Inc e-mail clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson

Receipt Date/Time

02/13/2004 14.13

Report Date: 03/01/04 12:45 Project No: 9329.000 Task 5 Project ID: SPI - (GeoMatrix) Task 5

208 Mason St. Ukiah, California 95482

Order Number	
A402360	

GEOMAT

### Client PO/Reference

# ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-21-1 5	A402360-01	Soil	02/12/04 11 13	02/13/04 14 13
MW-21-3 0	A402360-02	Soil	02/12/04 11 19	02/13/04 14 13
MW-21-5.0	A402360-03	Soil	02/12/04 11.28	02/13/04 14 13
MW-21-7 0	A402360-04	Soil	02/12/04 11 37	02/13/04 14 13
MW-21-1 0	A402360-05	Soil	02/12/04 11 12	02/13/04 14 13
MW-21-4 5	A402360-06	Soil	02/12/04 11 26	02/13/04 14 13

The results in this report apply to the samples analyzed in accordance with the chain of custody document This analytical report must be reproduced in its entirety

sheri Speake

Page 1 of 7

Client Code



Alpha Analytical Laboratories Inc

208 Mason St. Ukiah, California 95482 e-mail clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

#### **CHEMICAL EXAMINATION REPORT**

Page 2 of 7

Order Number A402360	Receipt Date/Time 02/13/2004 14 13	Client Code GEOMAT		Client PO/Reference	
2101 Oakl			Project No.	03/01/04 12:45 9329.000 Task 5 SPI - (GeoMatrix) Task 5	

		Alpha A	nalytical	Laborato	ries, Inc.		
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL NOTE
MW-21-1.5 (A402360-01)		5	Sample Typ	oe: Soil		Sampled: 02/12/04 11:13	
Organic Carbon by 9060							
Total Organic Carbon	EPA 9060	AB42415	02/24/04	02/29/04	1	925 mg/kg	1.00
Chlorinated Phenols by Canadian I	Pulp Method						
2,4,6-Trichlorophenol	EnvCan	AB42616	02/26/04	02/27/04	1	ND mg/kg	10
2,3,5,6-Tetrachlorophenol	"	н	"	**	"	ND "	10
2,3,4,6-Tetrachlorophenol		"	"	"	"	ND "	10
2,3,4,5-Tetrachlorophenol		"	"	*1	"	ND "	10
Pentachlorophenol	"	**	"	••	*	ND "	10
Surrogate Tribromophenol		"	"	"		76 6 % 23-140	
рН MW-21-3.0 (А402360-02)	EPA 9045B	AB41716	02/17/04 Sample Tyj	02/17/04	I	6.7 pH Units Sampled: 02/12/04 11:19	1.0
VIW-21-3.0 (A402300-02) Organic Carbon by 9060		i.	sample Typ	De: 3011		Sampleu. V2/12/V4 11.17	
Organic Carbon by 9000				•			
Total Organic Carbon	EPA 9060	AB42415	02/24/04	02/29/04	1	1070 mg/kg	1.00
Total Organic Carbon Chlorinated Phenols by Canadian		AB42415	02/24/04	-		·	1.00
		AB42415 AB42616	02/24/04 02/26/04	-		·	<b>1.00</b> 1 0
Chlorinated Phenols by Canadian	Pulp Method			02/29/04		1070 mg/kg	
Chlorinated Phenols by Canadian 2,4,6-Trichlorophenol	Pulp Method EnvCan	AB42616	02/26/04	02/29/04	1	1070 mg/kg ND mg/kg	10
Chlorinated Phenols by Canadian 2,4,6-Trichlorophenol 2,3,5,6-Tetrachlorophenol	Pulp Method EnvCan "	AB42616	02/26/04	02/29/04 02/27/04 "	1 1 "	1070 mg/kg ND mg/kg ND "	1 0 1 0
Chlorinated Phenols by Canadian 2,4,6-Trichlorophenol 2,3,5,6-Tetrachlorophenol 2,3,4,6-Tetrachlorophenol	Pulp Method EnvCan "	AB42616 "	02/26/04	02/29/04 02/27/04 "	1 " "	1070 mg/kg ND " ND "	10 10 10

The results in this report apply to the samples analyzed in accordance with the chain of custody document This analytical report must be reproduced in its entirety

Shari Speake



Alpha Analytical Laboratories Inc e-mail clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

Sheri

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT								
Geomatrix Co 2101 Webster Oakland, CA Attn: Ross St	r Street, 12th Floor 94612				Report Date Project No Project ID	: 9329.000 Task 5		
Order Number A402360	Receipt Date/Time 02/13/2004 14.13			ent Code EOMAT		Client PO/Refer	rence	
	<u> </u>	Alpha A	Analytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
MW-21-3.0 (A402360-02)			Sample Ty	pe: Soil	San	npled: 02/12/04 11:19		
<b>Conventional Chemistry Param</b>	neters by APHA/EPA Me	ethods				-		
рН	EPA 9045B	AB41716	02/17/04	02/17/04	1	6.7 pH Units	1.0	
MW-21-5.0 (A402360-03) Organic Carbon by 9060			Sample Ty	pe: Soil	San	npled: 02/12/04 11:28		
Total Organic Carbon	EPA 9060	AB42415	02/24/04	02/29/04	1	1040 mg/kg	1.00	
Chlorinated Phenols by Canadi	an Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AB42616	02/26/04	02/27/04	1	ND mg/kg	10	
2,3,5,6-Tetrachlorophenol	*1	"	**	11	"	ND "	10	
2,3,4,6-Tetrachlorophenol		н	**	"	"	ND "	10	
2,3,4,5-Tetrachlorophenol	**	**	**	"	"	ND "	10	
Pentachlorophenol	"		*	"	"	ND "	10	
Surrogate Tribromophenol	"	**	"	"		71 4 % 23-	-140	
Conventional Chemistry Paran	neters by APHA/EPA M	ethods						
рН	EPA 9045B	AB41716	02/17/04	02/17/04	1	6.8 pH Units	1.0	
MW-21-7.0 (A402360-04)			Sample Ty	pe: Soil	Sar	npled: 02/12/04 11:37		
Organic Carbon by 9060								
Total Organic Carbon	EPA 9060	AB42415	02/24/04	02/29/04	1	976 mg/kg	1.00	

The results in this report apply to the samples analyzed in accordance with the chain of custody document This analytical report must be reproduced in its entirety

3/1/04

Speake

Sheri L Speaks Project Manager



Alpha Analytical Laboratories Inc e-mail clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

208 Mason St. Ukiah, California 95482

#### **CHEMICAL EXAMINATION REPORT**

Page 4 of 7

	Alpha	Analytical Laboratori	ies. Inc.	
A402360	02/13/2004 14 13	GEOMAT		
Order Number	Receipt Date/Time	Client Code		Client PO/Reference
2101 Webster Street, 12th Floor Oakland, CA 94612 Attn: Ross Steenson		Project ID:	SPI - (GeoMatrix) Task 5	
Oakland				9329.000 Task 5
2101 W	ebster Street, 12th Floor	]	Report Date:	03/01/04 12:45
Geomati	rix Consultants			

	· · · · · · · · · · · · · · · · · · ·		Laborato	100, 11101			
METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
		Sample Ty	oe: Soil	5	Sampled: 02/12/04 11:37		
ulp Method							
EnvCan	AB42616	02/26/04	02/27/04	1	ND mg/kg	10	
"	"	"	*	*	ND "	10	
**	"	**	"	н	ND "	10	
**	"	**		н	ND "	10	
1,	"		n	"	ND "	10	
"	"	"	"		618% 23-140		
s by APHA/EPA N	lethods						
EPA 9045B	AB41716	02/17/04	02/17/04	1	6.4 pH Units	1.0	
	ulp Method EnvCan " " " " s by APHA/EPA M	METHOD BATCH Pulp Method EnvCan AB42616 """"" """" """" """" s by APHA/EPA Methods	METHOD BATCH PREPARED Sample Typ rulp Method EnvCan AB42616 02/26/04 """"" """"" """""" s by APHA/EPA Methods	METHOD     BATCH     PREPARED ANALYZED       Sample Type: Soil       ulp Method     EnvCan     AB42616     02/26/04     02/27/04       """"""""""""""""""""""""""""""""""""	Sample Type: Soil         Sample Type: Soil	METHOD         BATCH         PREPARED ANALYZED         DILUTION         RESULT           Sample Type:         Soil         Sampled:         02/12/04 11:37           Julp Method         EnvCan         AB42616         02/26/04         02/27/04         1         ND mg/kg           "         "         "         "         ND "         "         ND "           "         "         "         "         ND "         "         ND "           "         "         "         "         ND "         "         ND "           "         "         "         "         ND "         "         ND "           "         "         "         "         ND "         "         0/18 %         23-140           s by APHA/EPA Methods         Solution         Solution	METHOD         BATCH         PREPARED ANALYZED         DILUTION         RESULT         PQL           Sample Type:         Soil         Sampled:         02/12/04         11:37           ulp Method         EnvCan         AB42616         02/26/04         02/27/04         1         ND mg/kg         10           "         "         "         "         ND "         10           "         "         "         ND "         23-140

The results in this report apply to the samples analyzed in accordance with the chain of custody document This analytical report must be reproduced in its entirety

Speake shari



Alpha V Analytical Laboratories Inc. e-mail clientservices@alpha-labs.com • P

The results in this report apply to the samples analyzed in accordance with the chain of custody document This analytical report must be reproduced in its entirety

Attn: Ross Steenson Project ID: SPI - (GeoMatrix) Task 5 Order Number Receipt Date/Time Client Code Client PO/Reference A402360 02/13/2004 14 13 GEOMAT SourceResult **Organic Carbon by 9060 - Quality Control** RPD Spike Source %REC Result %REC Limits Flag Analyte(s) Result PQL Units Level RPD Limit Batch AB42415 - General Prep Blank (AB42415-BLK1) Prepared: 02/24/04 Analyzed 02/29/04 Total Organic Carbon ND 100 mg/kg Prepared 02/24/04 Analyzed 02/29/04 LCS (AB42415-BS1) Total Organic Carbon 6720 1 00 mg/kg 6250 108 85-115 Prepared 02/24/04 Analyzed 02/29/04 LCS Dup (AB42415-BSD1) Total Organic Carbon 6590 6250 1 00 mg/kg 105 85-115 1 95 20 Duplicate (AB42415-DUP1) Source: A402360-01 Prepared 02/24/04 Analyzed 02/29/04 Total Organic Carbon 1040 1 00 mg/kg 925 117

#### CHEMICAL EXAMINATION REPORT

Geomatrix Consultants 2101 Webster Street, 12th Floor Oakland, CA 94612

	208 Mason St.	U	kiah,	California 9	5482
hone	(707) 468-0401	•	Fax	(707) 468-	5267

Page 5 of 7

20

Report Date: 03/01/04 12:45 Project No: 9329.000 Task 5

#### hari Speake



Alpha Analytical Laboratories Inc

shari

The results in this report apply to the samples analyzed in accordance with the chain of custody document This analytical report must be reproduced in its entirety

Geomatrix Consultants 2101 Webster Street, 12th Floor Report Date: 03/01/04 12:45 Project No: 9329.000 Task 5 Oakland, CA 94612 Attn: Ross Steenson Project ID: SPI - (GeoMatrix) Task 5 Receipt Date/Time Client Code Client PO/Reference Order Number A402360 02/13/2004 14 13 GEOMAT

CHEMICAL EXAMINATION REPORT

<b>Chlorinated Phen</b>	ols by Canadia	n Pulp Method -	Quality Control
-------------------------	----------------	-----------------	-----------------

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AB42616 - Solvent Extraction										
Blank (AB42616-BLK1)				Prepared	& Analyze	ed 02/26/0	04			
2,4,6-Trichlorophenol	ND	10	mg/kg	<b>·</b>						
2.3,5,6-Tetrachlorophenol	ND	10	"							
2,3,4,6-Tetrachlorophenol	ND	10								
2,3,4,5-Tetrachlorophenol	ND	10								
Pentachlorophenol	ND	10	"							
Surrogate Tribromophenol	0 0742	· · · ·	n	0 125		59 4	23-140			
LCS (AB42616-BS1)				Prepared	& Analyze	ed 02/26/0	04			<b>A</b> -0 ²
2,4,6-Trichlorophenol	ND	10	mg/kg	0 0250			32-116			
2,3,5,6-Tetrachlorophenol	ND	10	н	0 0250			18-80			
2,3,4,6-Tetrachlorophenol	ND	10		0 0250			28-89			
2,3,4,5-Tetrachlorophenol	ND	10	**	0 0250			54-85			
Pentachlorophenol	ND	10	**	0 0250			17-85			
Surrogate Tribromophenol	0 0730		n	0 125		58 4	23-140		············	
LCS Dup (AB42616-BSD1)				Prepared	& Analyze	ed 02/26/	04			
2,4,6-Trichlorophenol	0 0169	10	mg/kg	0 0250		67 6	32-116		50	
2,3,5,6-Tetrachlorophenol	0 0139	10	"	0 0250		55 6	18-80		50	
2,3,4,6-Tetrachlorophenol	0 01 52	10	"	0 0250		60 8	28-89		50	
2,3,4,5-Tetrachlorophenol	0 01 54	10	"	0 0250		61 6	54-85		50	
Pentachlorophenol	0 0202	10	••	0 0250		80 8	17-85		50	
Surrogate Tribromophenol	0 0834		N	0 125		66 7	23-140			

208 Mason St. Ukiah, California 95482 e-mail clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

Page 6 of 7

3/1/04

Speake



Alpha Analytical Laboratories Inc.

#### CHEMICAL EXAMINATION REPORT

Page 7 of 7

2101 W Oakland	rix Consultants ebster Street, 12th Floor I, CA 94612 oss Steenson		Project No:	03/01/04 12:45 9329.000 Task 5 SPI - (GeoMatrıx) Task 5
Order Number A402360	Receipt Date/Time 02/13/2004 14 13	Chent Code GEOMAT		Client PO/Reference

#### **Notes and Definitions**

- A-01 The spike was inadvertently omitted during sample preparation and extraction.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- Sample results reported on a dry weight basis dry
- RPD Relative Percent Difference
- PQL Practical Quantitation Limit

FILE 9329



March 16, 2004

# RECEIVED

### FAL Project ID: 2466 (Addendum)

TASK 5

Mr. Ross Steenson Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612 MW-21 soil samples Wet Weight Addendum + DRY WEIGHT ADDENDUM

Dear Mr. Steenson,

Enclosed are the addendum results for Frontier Analytical Laboratory project **2466**. The addendum report contains the wet weight results for the two soil samples we received on 2/18/2004 from Alpha Analytical. The wet weight data sheets have been marked as "Wet Weight" and do not have a % Solids field on them. As per your request, future Geomatrix projects that consist of "solid" samples will be reported in both a wet weight format and a dry weight format.

If you have any questions regarding the addendum to project **2466**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Dun Vickers

Dan Vickers Director of Air Toxics

.



AL ID: 2466-001-SA	· · ·	Date Extrac			ICal: pcddfal1-1-2	7-04 Acqu	ired: 2	25-FEB-	04
lient ID: A402360-05 (m) Atrix: Soil		Date Receiv Amount: 11.		- 18-2004	GC Column: db5 Units: pg/g	UHO	TEQ: 1.	32	
atrix: Solt Batch No.: X0185		Wet Weight	.00 g		Wet Weight		Weight	, <i>J</i> L	
atch No.: Autoj	-	wet weight			wet weight	Het	nergite		
Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual	#Hon
2,3,7,8-TCDD	-	0.114		-					
1,2,3,7,8-PeCDD	-	0.170		-					
1,2,3,4,7,8-HxCDD	-	0.308		-					
1,2,3,6,7,8-HxCDD	1.43	-	ſ	0.143	Total Tetra-Dioxins	1.71	-		4
1,2,3,7,8,9-HxCDD	0.460	-	J	0.0460	Total Penta-Dioxins	11.6	-		3
1,2,3,4,6,7,8-HpCDD	71.4	-		0.714	Total Hexa-Dioxins	75.5	-		5
OCDD	2270	-		0.227	Total Hepta-Dioxins	242	-		2
2,3,7,8-TCDF	-	0.0513		-					
1,2,3,7,8-PeCDF	-	0.333		-					
2,3,4,7,8-PeCDF	-	0.328		-					
1,2,3,4,7,8-HxCDF	0.248	-	J	0.0248					
1,2,3,6,7,8-HxCDF	-	0.124		-					
2,3,4,6,7,8-HxCDF	0.392	-	J	0.0392					
1,2,3,7,8,9-HxCDF	-	0.0890		-	Total Tetra-Furans	0.655	-		3
1,2,3,4,6,7,8-HpCDF	11.5	-		0.115	Total Penta-Furans	2.01	-	J	1
1,2,3,4,7,8,9-HpCDF	0.826	-	J	0.00826	Total Hexa-Furans	15.2	-		7
OCDF	46.5	-		0.00465	Total Hepta-Furans	42.6	-		4
Internal Standards	% Rec	QC Limits	ક Qા	Jal					
13C-2,3,7,8-TCDD	102	25.0 - 16	4						
13C-1,2,3,7,8-PeCDD	93.5	25.0 - 18							
13C-1,2,3,4,7,8-HxCDD	100	32.0 - 14							
13C-1,2,3,6,7,8-HxCDD	113	28.0 - 13							
3C-1,2,3,4,6,7,8-HpCDD	94.4	23.0 - 14							
13C-OCDD	84.5	17.0 - 15							
13C-2,3,7,8-TCDF	104	24.0 - 16	9						
13C-1,2,3,7,8-PeCDF	96.6	24.0 - 18							
13C-2,3,4,7,8-PeCDF	93.5	21.0 - 17							
13C-1,2,3,4,7,8-HxCDF	117	26.0 - 15							
13C-1,2,3,6,7,8-HxCDF	120	26.0 - 12							
13C-2,3,4,6,7,8-HxCDF	115	29.0 - 14							
13C-1,2,3,7,8,9-HxCDF	107	28.0 - 13							
3C-1,2,3,4,6,7,8-HpCDF	112	28.0 - 14							
3C-1,2,3,4,7,8,9-HpCDF	120	26.0 - 13							
13C-OCDF	84.2	17.0 - 15							
Cleanup Surrogate									
37Cl-2,3,7,8-TCDD	86.8	35.0 - 19	-						

Analyst:_______ Date:___3]16/04/_____

Reviewed by: DN Date: 3/16/2004

000002A of 000003A



FAL ID: 2466-002-SA	×	Date Extra			ICal: pcddfall-1-	27-04 Acc	quired: 2	25-FEB-	04
Client ID: A402360-06 (M Matrix: Soil		Amount: 12.		- 18-2004	GC Column: db5 Units: pg/g	UHC	) TEQ: 0.	00615	
Batch No.: X0185		Wet Weight	.00 g		Wet Weight		: Weight	.00015	
					-				
Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual	#Hom
2,3,7,8-TCDD	-	0.0989		-					
1,2,3,7,8-PeCDD	-	0.113		-					
1,2,3,4,7,8-HxCDD	-	0.189		-					
1,2,3,6,7,8-HxCDD	-	0.199		-	Total Tetra-Dioxins	-	0.0989		0
1,2,3,7,8,9-HxCDD	-	0.178		-	Total Penta-Dioxins	-	0.113		0
1,2,3,4,6,7,8-HpCDD	0.595	-	J	0.00595	Total Hexa-Dioxins	-	0.199		0
OCDD	2.05	-	J	0.000205	Total Hepta-Dioxins	1.10	•	J	2
2,3,7,8-TCDF	-	0.0451		-					
1,2,3,7,8-PeCDF	-	0.145		-					
2,3,4,7,8-PeCDF	-	0.148		-					
1,2,3,4,7,8-HxCDF	-	0.0470		-					
1,2,3,6,7,8-HxCDF	-	0.0582		-					
2,3,4,6,7,8-HxCDF	-	0.0730		-					
1,2,3,7,8,9-HxCDF	-	0.0803		-	Total Tetra-Furans	0.122	-	J	1
1,2,3,4,6,7,8-HpCDF	-	0.0735		-	Total Penta-Furans	-	0.148		0
1,2,3,4,7,8,9-HpCDF	-	0.0772		-	Total Hexa-Furans	-	0.0803		0
OCDF	-	0.342		-	Total Hepta-Furans	-	0.0772		0
Internal Standards	% Rec	QC Limits	ն	Jal					
13C-2,3,7,8-TCDD	99.6	25.0 - 16	4						
13C-1,2,3,7,8-PeCDD	104	25.0 - 18							
13C-1,2,3,4,7,8-HxCDD	98.2	32.0 - 14							
13C-1,2,3,6,7,8-HxCDD	109	28.0 - 13							
13C-1,2,3,4,6,7,8-HpCDD	99.5	23.0 - 14							
13C-OCDD	77.0	17.0 - 15							
13C-2,3,7,8-TCDF	95.2	24.0 - 16	9						
13C-1,2,3,7,8-PeCDF	102	24.0 - 18	5						
13C-2,3,4,7,8-PeCDF	93.4	21.0 - 17	8						
13C-1,2,3,4,7,8-HxCDF	120	26.0 - 15	2						
13C-1,2,3,6,7,8-HxCDF	122	26.0 - 12	3						
13C-2,3,4,6,7,8-HxCDF	103	29.0 - 14							
13C-1,2,3,7,8,9-HxCDF	108	28.0 - 13	6						
13C-1,2,3,4,6,7,8-HpCDF	120	28.0 - 14							
13C-1,2,3,4,7,8,9-HpCDF	134	26.0 - 13	8						
13C-OCDF	92.0	17.0 - 15	7						
Cleanup Surrogate									
37cl-2,3,7,8-TCDD	85.6	35.0 - 19	7						
Analyst: X						Reviewed		A	

Analyst: Date:__3/16/01

Reviewed by: DN Date: 3/11/2004

000003A of 000003A



# **Qualifier Reference Guide**

- A Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers
- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J[‡] Analyte concentration is below calibration range
- M Maximum possible concentration
- NP Not Provided
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection
- Analyte Not Detected
  - [‡] "J" values are equivalent to DNQ (detected but not quantified) for California Toxics Rule (CTR)/National Pollutant Discharge Elimination System (NPDES) samples

### EPA Method 1613/8290 Solid MDL (Soxhlet/SDS Extraction)



Analyte	ML	MDL
2,3,7,8-TCDD	0.500	0.132
1,2,3,7,8-PeCDD	2.50	0.213
1,2,3,4,7,8-HxCDD	2.50	0.321
1,2,3,6,7,8-HxCDD	2.50	0.364
1,2,3,7,8,9-HxCDD	2.50	0.315
1,2,3,4,6,7,8-HpCDD	2.50	0.328
OCDD	5.00	0.832
2,3,7,8-TCDF	0.500	0.108
1,2,3,7,8-PeCDF	2.50	0.252
2,3,4,7,8-PeCDF	2.50	0.236
1,2,3,4,7,8-HxCDF	2.50	0.101
1,2,3,6,7,8-HxCDF	2.50	0.0991
1,2,3,7,8,9-HxCDF	2.50	0.101
2,3,4,6,7,8-HxCDF	2.50	0.122
1,2,3,4,6,7,8-HpCDF	2.50	0.140
1,2,3,4,7,8,9-HpCDF	2.50	0.168
OCDF	5.00	0.594

Project 2330, Extracted 11/25/03; analyzed 12/01/03. Based on 10g sample, pg/g.



FAL ID [.] 2466-001-MB Client ID: Method Blank Matrix. Soil Batch No. X0185	Date I	Extracted: 02-2 Received NA nt: 10.00 g	3-2004	ICal: pcddfal1-1-27-04 GC Column: DB5 Units: pg/g	Acquired: WHO TE	02-25-2004 Q. 0 00
Compound	Conc	DL Qu	al WHO Tox	Compound	Conc DL	Qual #Hom
2,3,7,8-TCDD	-	0.133	-			
1,2,3,7,8-PeCDD	-	0.258	-			
1,2,3,4,7,8-HxCDD	-	0.342	-			
1,2,3,6,7,8-HxCDD	-	0.399	-	Total Tetra-Dioxins	- 0.133	0
1,2,3,7,8,9-HxCDD	-	0 355	-	Total Penta-Dioxins	- 0.258	0
1,2,3,4,6,7,8-HpCDD	-	0 479	-	Total Hexa-Dioxins	- 0.399	0
ÓCDD	-	1.05	-	Total Hepta-Dioxins	- 0.479	0
2,3,7,8-TCDF	-	0 0876				
1.2.3.7.8-PeCDF	-	0.318	-			
2,3,4,7,8-PeCDF	-	0.293	-			
1,2,3,4,7,8-HxCDF	-	0 172	-			
1,2,3,6,7,8-HxCDF	-	0.222	-			
2,3,4,6,7,8-HxCDF	-	0.253	-			
1,2,3,7,8,9-HxCDF	-	0.284	-	Total Tetra-Furans	-0 0876	0
1,2,3,4,6,7,8-HpCDF	-	0.175	-	Total Penta-Furans	- 0.439	0
1,2,3,4,7,8,9-HpCDF	-	0.166	-	Total Hexa-Furans	- 0.284	0
OCDF	-	0.688	-	Total Hepta-Furans	- 0175	0

Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD	59.5	25.0 - 164	
13C-1,2,3,7,8-PeCDD	62 4	25.0 - 181	
13C-1,2,3,4,7,8-HxCDD	57 2	32.0 - 141	
13C-1,2,3,6,7,8-HxCDD	64 8	28.0 - 130	
13C-1,2,3,4,6,7,8-HpCDD	58.1	23.0 - 140	
13C-OCDD	49 4	17.0 - 157	
13C-2.3,7,8-TCDF	59.5	24.0 - 169	
13C-1,2,3,7,8-PeCDF	62.0	24.0 - 185	
13C-2,3,4,7,8-PeCDF		21.0 - 178	
13C-1,2,3,4,7,8-HxCDF	70.8	26.0 - 152	
13C-1,2,3,6,7,8-HxCDF	70.2	26 0 - 123	
13C-2,3,4,6,7,8-HxCDF	66.0	28.0 - 136	
13C-1,2,3.7 8.9-HxCDF	66 9	29.0 - 147	
13C-1,2,3,4,6,7,8-HpCDF	67 5	28.0 - 143	
13C-1,2,3,4,7,8,9-HpCDF	79.0		
13C-OCDF	59.5	17 0 - 157	

Cleanup Surrogate

37CI-2,3,7,8-TCDD 53.9 35.0 - 197

2/26/04 Analyst Date ____

Reviewed By ______ Date:______²/27/2004



FAL ID 2466-001-OPR Client ID' OPR Matrix Soil Batch No: X0185	Date Extracted. 02-23-2004 Date Received: NA Amount [.] 10 00 g
Compound	Conc QC Limits
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	11.0       6.70 - 15.8         58 8       35.0 - 71 0         53.3       35.0 - 82.0         58.0       38.0 - 67.0         49.3       32 0 - 81.0         57 1       35.0 - 70 0         116       78.0 - 144
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3 6 7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	11.5 $7.50 - 15.8$ $63.0$ $40.0 - 67.0$ $63.7$ $34.0 - 80.0$ $60.7$ $36.0 - 67.0$ $60.4$ $42.0 - 65.0$ $61.1$ $35.0 - 78.0$ $59.5$ $39.0 - 65.0$ $59.3$ $41.0 - 61.0$ $59.1$ $39.0 - 69.0$ $125$ $63.0 - 170$
Internal Standards	% Rec QC Limits
13С-2,3,7,8-TCDD 13C-1,2,3,7,8-РеСDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	102       20 0 - 175         100       21.0 - 227         106       21.0 - 193         118       25.0 - 163         99 3       26 0 - 166         75.2       13.0 - 198
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	94 0       22.0 - 152         99.6       21.0 - 192         86.0       13.0 - 328         123       19.0 - 202         131       21.0 - 159         95.1       22.0 - 176         106       17.0 - 205         126       21 0 - 158         128       20.0 - 186         91.1       13 0 - 198
Cleanup Surrogate	
37CI-2,3,7,8-TCDD	86 7 31.0 - 191

Analyst ð. Date

, `

Reviewed By _____ 3/1/2004 Date ____

ICal pcddfal1-1-27-04 Acquired[.] 02-25-2004 GC Column. DB5 WHO TEQ: NA Units[.] ng/ml



FAL ID: 2466-001-SA Client ID. A402360-05 <b>(mw-2</b> Matrix [.] Soil Batch No. X0185	1-1.0)Da An %	te Extracted ( te Received: ( nount: 10.03 g Solids. 86.0 AY WEIGH	02-18-2		ICal [.] pcddfal1-1-27-04 GC Column: DB5 Units: pg/g			: 02-25-2004 Q: 1 54
Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual #Hom
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 0CDD 2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	- 1.67 0.534 83 0 2640 - 0.289 - 0.289 - 0.456 - 13.3	0.132 0.197 0.358 - - - - - - - - - - - - - - - - - - -	J J	- 0.167 0.0534 0.830 0.264 - - - - - - - - - - - - - - - - - - -	Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins Total Tetra-Furans Total Penta-Furans	1.99 13 5 87.7 281 0.762 2.33		4 3 5 2 3 J 1
1,2,3,4,7,8,9-HpCDF OCDF Internal Standards	0 959 54.0 % Rec	- - QC Limits	J Quai	0.00960 0.00540		17.6 49.5	-	7 4
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	102 93.5 100 113 94.4 84.5 104 96.6 93.5 117 120 115	25.0 - 164 25 0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123						

Cleanup Surrogate

37CI-2,3,7,8-TCDD 86 8 35.0 - 197

Analyst ICM. Date.

Reviewed By Date 2/27/2004

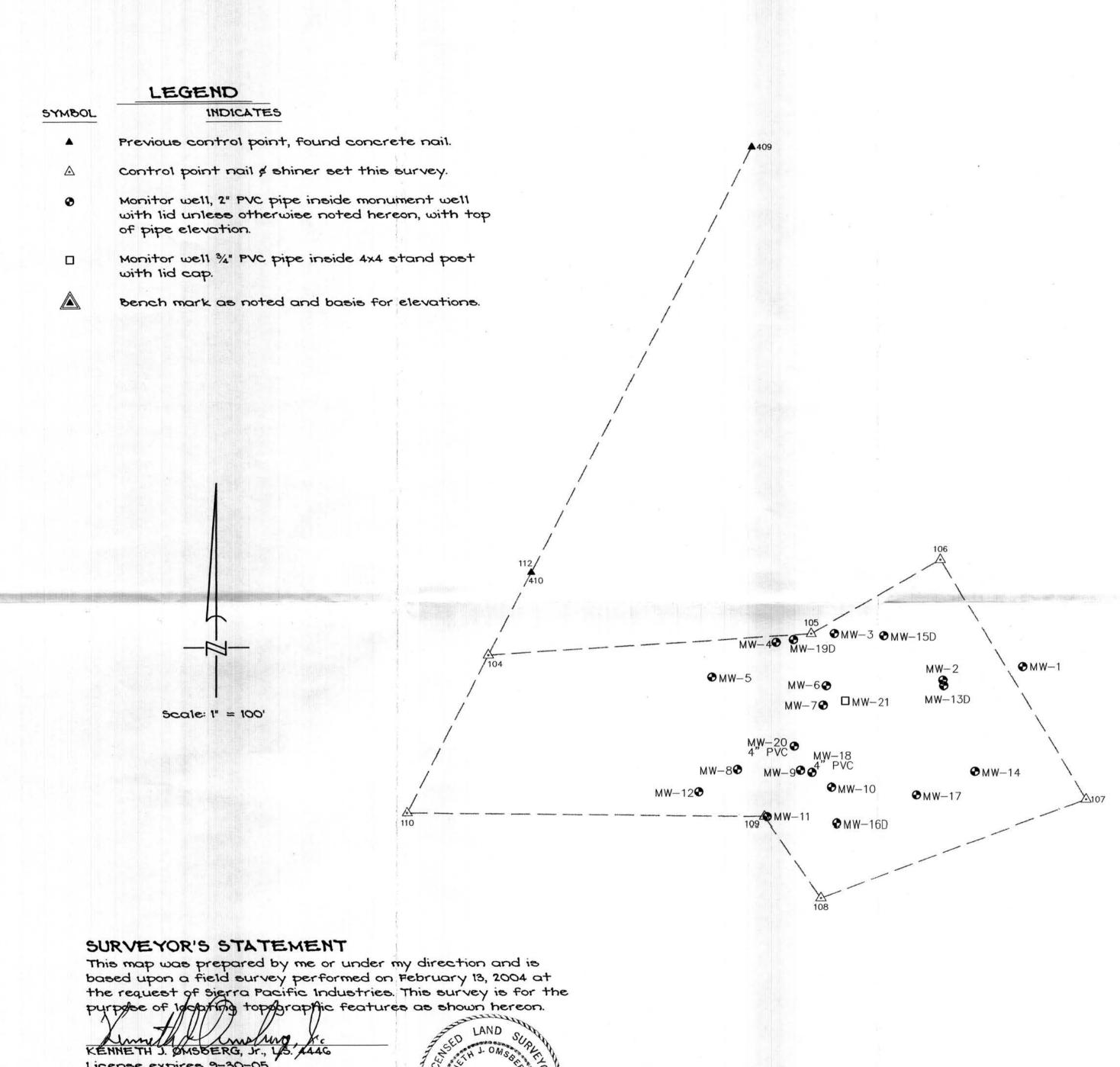


FAL ID. 2466-002-SA Client ID. A402360-06 <b>(mw-2</b> Matnx: Soil Batch No: X0185	- <b>1-43)</b> Ar %	ate Extracted ( ate Received: 0 nount, 10.06 g Solids 83.8 ORY WBIGH1	)2-18-2	004	ICal pcddfal1-1-27-04 GC Column: DB5 Units: pg/g	,	. 02-25-2004 Q [.] 0.00734
Compound	Conc	DL	Qual	WHO Tox	Compound	Conc DL	Qual #Hom
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF	- - - - - 2.44 - - - -	0 118 0.135 0.226 0.237 0.212 - - - - - 0.0538 0 173 0 177 0.0561	J J	- - 0.00710 0.000244 - -	Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	- 0 118 - 0 135 - 0.237 1.31 -	0 0 J 2
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF		0.0695 0.0871 0.0959 0.0878 0.0922 0 409			Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans	0.146 - - 0 177 - 0.0959 - 0.0922	J 1 0 0 0
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	% Rec 99.6 104 98.2 109 99 5 77.0	QC Limits 25 0 - 164 25 0 - 181 32.0 - 141 28.0 - 130 23 0 - 140 17.0 - 157	Qual				
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	95.2 102 93 4 120 122 103 103 108 120 134 92.0	24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136					
Cleanup Surrogate							

37CI-2,3,7,8-TCDD 85 6 35.0 - 197

Analyst д MA Date.

Reviewed By DR Date 2/27 /04


	Chain	of Cus	stody P	Rec	orc	1					0	14	19	77				Dat	ie 2	-12	-04	ł	Page	of	2
Project No	9329	000 TA	isk 5	Ī						NAL													REMARKS		
Samplers (	Signature')			athod 8021 an)	EPA Method 8021 (Hal VOCs only) EPA Method 8021	only) ethod 8260	sthod 8270 san)	EPA Method 8270 SIM (PAHS only)	l 8015m (Gasoline)	Method 8015m (Diesel)	Method 8015m (Motor Oil)	Silica Gel Cleanup	NOLS NOLS		TOTAL ORGANIC			Soil (S), Water (W) Vapor (V), or Other (o)		be		Containers	Additional SPIA SOILS	RCA-7 Amp	74
Date	Time	Sampl	e Number	EPA Me (Full Sc	EPA Me (Hal VC EPA Me	(BETX EPA Me	EPA Me (Full Sc	EPA Me SIM (P	Method	Method	Method	Stirca G	o He D He		LAR	T O	4		Fittered	Preserved	Cooled	No of C	mw	-21	
2-12-04	11:13	mw-21-	1.5	AU	<u>02</u>	34	20-	11					$\times$		X		$( \square$	S	-	-	Y	1	1.5" × 6" L	INIR	(PLASTIC)
2-12-04	11:19	mw-21.	-3.0				-	2					X		X			2	_	-	Y	1	4	4	4
2-12-04	11:28	mw-21-	- 5,0					3				$\square$	X	_	$\times$		$\left\{ - \right\}$	S	-	-	Y	1	4	4	4
2-12-04	11:37	mw-21-	7.0					4					<u>X</u>		X		$\square$	S	-	-	ž		4	4	-بر
$\mid >$		ļ	<u></u>	╉╌┥				┝┤	-+			-+	-+			_					$\square$	4			h
ļ			······	┨╶┼			+	╞╌┨	_		_			_	_	+		$\vdash$	Ĺ	-		_	ANAWIZE So,	<u>SAn</u>	rus
}				+	$\rightarrow$			┝╌╽			_				$\rightarrow$	1	+					-	FOR CHURNI	VATED	
		ļ		+7	$\Rightarrow$			╪═╡	=	⇒‡	$\checkmark$	$ \rightarrow $	4							<b>_</b>			PHENOLS US	ING T	74E 4
				┹┙		$\square$	Þ			$\triangleleft$	$\square$	71	$ \rightarrow $	$ \downarrow $									CANADIAN	PULA	NETHOD
							≽	9	Z	<u>*</u>	$\square$			2	_								TOTAL ORGAN	" CAR	Ben
			<u></u>		4	1	+	[		_		$\rightarrow$	$\triangleleft$	$ \rightarrow $	$ \rightarrow$								VSING EPA	METH	~ 415.1
L	<b> </b>		$\checkmark$	14			+	$\downarrow$				_			$\rightarrow$	$\rightarrow$							AND PH USI	NG E	PA
ļ			LCS OVIT								_		- T			<u>~4</u> _	$\uparrow$	4					METTOD 90	<u> </u>	]
			BATCH. S	POK	<u>e 10</u>	1 pt	<u>t</u> ts (	\$7E	24	s01	14	B	21			7			$ \geq $				- CALL BRIAN	THOM	PICAL OR
			REPORT	DA	m-	- RE	AOR	1 u	177	FIL	163	. (	ÛX	2	2.7	703	/ 10,	p)				/	Ross STEEN	SUN A	T(510)
Laborato	ry.			1	narou					Res					Total	No	of Co	ntair	iers			4/	663-4100	WIT	77
ALPM	+ ANA	LYACAL			TAN					<u>B.</u>				~								16	QUES TON.	<u> </u>	
Relinguis	hed by (S	ignature)	Date. R 		ushed V	all	∕Sign ≰	ature	)	2/	ate [.]		elino	quisi	hed b	y (Si	gnatu	re)		Date		/leth Co	od of Shipment	K-U/	,
Printed N Brian			Time:	rinted	Mam			•		Tı	me		rinte	d N	ame					Time	. [L		ratory Comments		
Company	ATRIX	as an	10:55 0	ompa	Elo		Ca	ba			413		omp					·	-1						
Received	Dole		Date. R	eceive	ed by	30	0.	1 n		3R.	ate 3/ou	R	ecei	ved	by.	-				Date		Q	a		
Printed			Time		Nam	20	<u> </u>	<u>ل- حر</u> ۷ ۲	,	-]τ,	me	P	rinte	d N	ame					Tıme		Ň	Geomatr		
Company	PALT PALT		- <b>6</b> 55 °	AIG	She	<u></u> 7		5		- <u> </u> r	1.13	c	omp	any	,						2		Vebster Street, 12th Floo Phone 510-663-4100 Fa	r • Oaklan	d, CA 94612

	Chain-	of Custo	dy R	ec	or	ď		· ·				(	JT	49	78					Date	2	-12	L-0	4	Page 2 of 2
Project No	9329.	000 TASK S	- 1							A	NA	LYSI	ES								_				REMARKS
Samplers (S				thod 8021 an)	thoa 8021 Cs only)	EPA Method 8021 (BETX only)	thod 8260	EPA Method 8270 (Full Scan)	thod 8270 HS only)	Method 8015m (Gasoline)	Method 8015m (Diesel)	Method 8015m (Motor Oil)	Silica Gel Cleanup		<u>ws/FURANS</u>					Water (W) ), or Other (o)		g		Containers	Additional Comments SPI ARCATA SCIL SAMPLES
Date	Time	Sample Num	ft	EPA Mer (Full Sca	EPA Me (Hal VO	EPA Me (BETX o	EPA Me	EPA Me (Full Sca	EPA Me SIM (PA	Method	Method	Method	Silica Ge		DIOXINS					Soil (S). Vapor (V	Filtered	Preserved	Cooled	No of C	MW-21
2-12-04	41-12	MW-21-1.0		A	4	)Z	X	b	-5						X					S	-	_	Y		45"×6" LINON (PLASTIC)
2-12-04	11:26	mw-21-4.5		$\square$				-	6						X					S	_	-	1		h h h
				$ \downarrow$			ļ										$\downarrow$	4	$\square$		_	_			
	$\sum$			_													_	$\downarrow$	4	4					ANALTER SOIL SAMPLES
				$\rightarrow$							<b> </b>				-	$\rightarrow$	4	4	_	$\rightarrow$					FOR DIOXINS AND
ļ	ļ			-			<b></b>								4		+	+		_					FURANS BY EPA
			$\rightarrow$	$\rightarrow$	$\exists$				_				K	+		+	+	-+					<u> </u>		METHOD 1613.
				-+		$\sum$					Þ	$\vdash$		+	-+	-+-	+	+		-			<u> </u>		
				-+		X	Ź		1K		K	F	$\vdash$			-+	+	+		-+	{				CALL BRIAN THOMOSON
	[			オ		-						>	$\vdash$	$\Box$		$\uparrow$	+	$\uparrow$		- {					on Ross STEENSON AT (510) 663-4100 WITH
															$\neg$	$\triangleleft$	$\uparrow$	+			_				QUESTIONS
				-1														$\triangleleft$	$\Box$						
																									(BOT)
Laborator	Annex	2 (4)				vnd VD,					l	sult: $\sqrt{T_1}$		450m	,	Total	No	of	Con	taın	ers			2/6	
Relinguis	hed by (Si	gnature) Dat	te Rel 5-01 Pri	linqu	JIS h	ed b	1) (S	Signa	ature	e).		Date		Relin	aush	ned b	y (S	ligna	atur	e).	-10	ate	1	K Vieth	CONCER PICK-UP
Printed N.	ame Thom	101 III	ie.	-/	1			Y			T	ime	<b>۲</b> [	Print	∋d Na	ame						īme			pratory Comments and Log No
Company		10:	55 Coi	1	20	ha		ha	bo	L	7	4/	3	Com	any										
Received	Laly	Dat	te Rey	Sh'č	ed b	ס עי	20	φr	K.	5	1	ate 13/	24	Rece	ived	bγ.					ſ	ate		Z.	a
Printed N			1 Y 1	nteo	Na	mS	PE	EAH	25		-	י יות פ רוי (		Print								ime			Geometrix Consultants
Company	a tab	1	5- C .	mpa	5h	A					]	٦·١.	1	Comp	any [.]								2		Vebster Street, 12th Floor • Oakland, CA 94612 Phone 510-663 4100 Fax 510-663-4141



# **APPENDIX D**

# **Topographic Plat and Monitor Well (Survey) Data**



License expires 9-30-05 Date 3-26-04

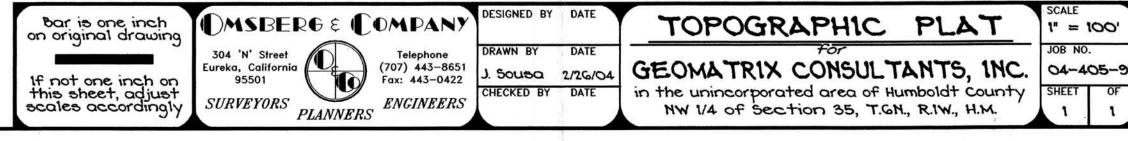


		MONITOR	WELL D	ATA		
Monitor Well	Northing	Easting	Latitude	Longitude	Elevation	Ground
MW-1	2206125.91	5966526.44	40.8661595	124.1521395	6.34	6.8
MW-2	2206107.76	5966418.62	40.8661024	124.1525276	6.26	7.1
MW-3	2206172.11	5966269.08	40.8662689	124.1530739	7.87	8.3
MW-4	2206159.98	5966189.64	40.8662303	124.1533599	7.39	7.8
MW-5	2206112.66	5966101.76	40.8660945	124.1536734	7.39	7.9
MW-6	2206100.26	5966258.39	40.8660710	124.1531061	6.48	6.8
MW-7	2206073.73	5966254.26	40.8659980	124.1531187	6.39	6.7
MW-8	2205985.98	5966137.13	40.8657492	124.1535343	6.98	7.2
MW-9	2205984.84	5966223.56	40.8657520	124.1532218	6.56	7.0
MW-10	2205961.59	5966265.80	40.8656910	124.1530670	6.50	6.7
MW-11	2205921.10	5966177.74	40.8655740	124.1533817	6.93	7.2
MW-12	2205955.66	5966084.14	40.8656625	124.1537231	7.41	7.7
MW-13D	2206099.89	5966419.66	40.8660809	124.1525231	6.61	6.9
MW-14	2205982.72	5966462.45	40.8657622	124.1523580	5.80	6.3
MW-15D	2206169.03	5966337.72	40.8662658	124.1528255	7.84	8.2
MW-16D	2205912.61	5966273.09	40.8655571	124.1530363	6.48	6.8
MW-17	2205950.68	5966383.11	40.8656690	124.1526420	5.81	6.1
MW-18	2205981.85	5966239.22	40.8657448	124.1531649	6.57	6.8
MW-19D	2206163.64	5966213.40	40.8662419	124.1532744	7.71	7.9
MW-20	2206017.72	5966214.82	40.8658416	124.1532563	8.52	7.6
MW-21	2206079.61	5966284.77	40.8660161	124.1530089	9.54	6.8
BM-111	2205758.19	5966974.30	40.8651806	124.1504879	11.55	11.55

Coordinate values are NAD 83 based on control and aerial mapping survey and points established by Carlton Engineering, Inc. Elevation datum is NGVD 29 based on bench mark J-735 RESET 1970 shown hereon.

# CLIENT

Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612 (510) 663-4141


### SURVEYOR / ENGINEER

Omsberg & Company 304 'N' Street Eureka, CA 95501 (707) 443-8651

Bench Mark - 2" brass cap stamped "J-735 RESET 1970" in top of railroad bridge pillar D southwest corner of bridge. Elevation = 11.55'

# SIERRA PACIFIC INDUSTRIES - MILL SITE 2293 SAMOA ROAD ARCATA, CA

APN 506-061-028, 506-181-006 & 028



