PLYWOOD COVERED DITCH SOIL EXCAVATION REPORT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

March 30, 2004

consulting scientists and engineers

G

PLYWOOD COVERED DITCH SOIL EXCAVATION REPORT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

March 30, 2004

Prepared For:

SIERRA PACIFIC INDUSTRIES

Prepared By:

MFG, INC. 875 Crescent Way Arcata, California 95521 (707) 826-8430 GEOMATRIX CONSULTANTS, INC. 2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4100

MFG Project No. 030229.8

PROFESSIONAL CERTIFICATION

This report was prepared by MFG, Inc. and Geomatrix Consultants, Inc. under the professional supervision of Edward P. Conti. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional hydrogeologic practice, and within the scope of the project. There is no other warranty, either express or implied.

Edward P. Conti C.HG. No. HG 214 Principal Geologist

TABLE OF CONTENTS

Page

LIST OI	TABLESiii
LIST OI	FIGURESiii
LIST O	APPENDICESiii
1.0	NTRODUCTION1
	ACKGROUND
	.1 Site Description 2 .2 Plywood Covered Ditch Area 2
3.0	ITE GEOLOGY AND HYDROGEOLOGY
	OIL EXCAVATION AND CONFIRMATION SAMPLING51Soil Excavation Field Methods52Stratigraphy and Field Observations63Water Sampling74.3.1Field Methods74.3.2Chemical Analysis Methods74.3.3Chemical Analysis Results84Confirmation Soil Sampling84.4.1Field Methods84.4.2Chemical Analysis Methods94.4.3Chemical Analysis Results10
5.0	DISPOSAL OF INVESTIGATION-DERIVED WASTE
6.0	EFERENCES

LIST OF TABLES

Table <u>No.</u>	<u>Title</u>
1	Summary of Chemical Analyses of the Sample of Water that Entered the Excavation from Leaking Pipe
2	Summary of Chemical Analyses of Confirmation Soil Samples from the Excavation for TPPH, TEPH and Oil and Grease
3	Summary of Chemical Analyses of Confirmation Soil Samples from the Excavation for Volatile Organic Compounds

LIST OF FIGURES

Figure <u>No.</u>	Title
1	Location Map
2	Site Plan
3	Plywood Covered Ditch Excavation Area and Sample Locations

LIST OF APPENDICES

<u>Appendix</u>	Title
A	Laboratory Report and Chain-of-Custody Record for the Sample of Water that Entered the Excavation from Leaking Pipe
В	Laboratory Reports and Chain-of-Custody Records for Soil Samples
С	Laboratory Report and Chain-of-Custody Record for the Soil Sample Analyzed by Zymax
D	Waste Disposal Documentation

1.0 INTRODUCTION

MFG, Inc. and Geomatrix Consultants, Inc. (Geomatrix) have prepared this report on behalf of Sierra Pacific Industries (SPI) to document soil excavation and confirmation sampling activities in the vicinity of the former plywood covered ditch at SPI's Arcata Division Sawmill. The Arcata Division Sawmill is located at 2593 New Navy Base Road in Arcata, California (hereinafter "the Site"). The Site location is shown in Figure 1. A Site plan showing the location of the plywood covered ditch investigation area is presented in Figure 2. An enlargement of this portion of the Site, showing features of the plywood covered ditch investigation area, is presented in Figure 3.

This additional work was performed in accordance with the scope of work presented in MFG's *Plywood Covered Ditch Investigation Report*, dated June 9, 2003 (MFG, 2003). The scope of work consisted of the removal of soil in the vicinity of the plywood covered ditch that was impacted with petroleum hydrocarbons and the collection of confirmation samples. This work was conducted in conjunction with maintenance work being performed by SPI on an electrical conduit in the ditch. This report summarizes the methods and results of the implemented scope of work.

This report is organized as described below. The Site background is provided in Section 2.0. The Site geology and hydrogeology is described in Section 3.0. The plywood covered ditch excavation and sampling activities, including chemical analysis methods and results, are presented in Section 4.0. The disposal of investigation-derived waste is discussed in Section 5.0, and references cited in this report are listed in Section 6.0.

2.0 BACKGROUND

2.1 Site Description

The Site is located on the Samoa Peninsula in Arcata, Humboldt County, California (Figure 1). A Site plan showing features of the mill is included in Figure 2. The Site features in the area of the former plywood covered ditch are included in Figure 3.

The Site was originally undeveloped land, consisting of sand dunes and mud flats, until approximately 1950 when SPI converted the land into a lumber mill. During conversion, SPI filled in portions of the Site. SPI began operations at this facility before the area was completely filled. The mill has been active from approximately 1950 to present day.

2.2 Plywood Covered Ditch Area

The former plywood covered ditch is located in the southwestern portion of the property (Figure 2). The ditch was approximately 20 feet long. The ditch ran between the parts storage shed and an oil shed, immediately northwest of the Hyster Shop (Figure 3). The ditch was excavated to install an underground electrical conduit and was temporarily covered with plywood. After the electrical conduit was installed, the plywood was removed and the ditch was temporarily backfilled with native soil. In April 2003, MFG conducted soil sampling activities along the plywood covered ditch to satisfy the requirements of paragraph 18 of the Consent Decree between Ecological Rights Foundation and Sierra Pacific Industries, Inc. et al (case number C-01-0520-MEJ). Petroleum hydrocarbons and low levels of some volatile organic compounds (VOCs) were detected in soil samples collected from sampling locations PD-1 and PD-2 during the investigation (Figure 3) (MFG, 2003). As a result, the impacted soil in the vicinity of the plywood covered ditch was scheduled for removal in conjunction with maintenance work related to the recently installed electrical conduit.

The source of petroleum hydrocarbons detected in the vicinity of the former plywood covered ditch is not known. However, according to SPI personnel, a 500-gallon kerosene above ground storage tank (AST) was previously located adjacent to the parts storage shed, just northeast of the plywood covered ditch location (Figure 3). The former kerosene AST was reported to have been present from

2

approximately 1980 to 2001. The AST supplied kerosene to the steam cleaner by way of above ground piping. The AST and associated piping was removed in 2001 and replaced with the kerosene AST located in the kerosene oil shed (Figure 3). Given its location and long period of use, this former kerosene AST and associated piping may have been a source of petroleum hydrocarbons.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

The subsurface lithology and hydrogeology in the central and eastern portions of the Site were previously investigated and described by Environet Consulting (Environet, 2003). The subsurface lithology consists primarily of fine- to medium-grained sand of apparent sand dune origin to a depth of approximately 22 feet below ground level (bgl), the maximum depth explored during previous drilling activities at the Site. The sand is sporadically interbedded with thin lenses of "bay mud," consisting of a mixture of sand and silt.

The subsurface lithology and hydrogeology in the vicinity of the former plywood covered ditch was investigated by MFG and Geomatrix and are described in the *Former Waste Oil Underground Storage Tank Additional Investigation Report*, dated March 30, 2004 (MFG and Geomatrix, 2004). The subsurface lithology observed in eight borings generally consisted of sand with varying amounts of clay, silt and gravel to depths ranging from 6.0 to 7.5 feet bgl, except in one boring where the sand extended to a depth of approximately 10 feet bgl. Peat was observed beneath the sand in four borings at depths ranging from approximately 7.0 to 8.5 feet bgl and had an approximate thickness of 0.8 to 1.0 foot. The peat in the four borings and the sand in two borings were underlain by silt to a depth of approximately 10 feet bgl, the maximum depth explored during the investigation.

In the eastern portion of the Site, groundwater has been measured in existing monitoring wells at depths ranging from approximately 1 to 5 feet bgl and the groundwater flow direction is generally to the east, toward the Mad River Slough (Figure 2) (Environet, 2003).

The occurrence of groundwater in the vicinity of the former plywood covered ditch was investigated by MFG and Geomatrix and is described in the *Former Waste Oil Underground Storage Tank Additional Investigation Report*, dated March 30, 2004 (MFG and Geomatrix, 2004). During the investigation, the depth to groundwater was measured in eight temporary wells on July 24, 2003 at depths ranging from approximately 3.5 to 5.2 feet bgl. The interpreted groundwater flow direction was to the south-southeast, toward Humboldt Bay.

4.0 SOIL EXCAVATION AND CONFIRMATION SAMPLING

4.1 Soil Excavation Field Methods

On July 30, 2003, soil impacted with petroleum hydrocarbons in the former plywood covered ditch containing the electrical conduit was excavated by SPI personnel. Due to the presence of nearby underground structures and utilities, soil was removed using hand tools. The excavation was completed to depths ranging from approximately 1.5 to 3.5 feet below ground level (bgl) and had a width of approximately four feet (two feet on either side of the electrical conduit), as shown in Figure 3. The resulting excavation was observed by MFG on July 30, 2003. Additional soil excavation on either side of the electrical conduit was not feasible due to the presence of a concrete slab to the southwest and the steam cleaner wastewater process sumps to the northeast (Figure 3). The depth of the excavation was limited by the compacted fill material present at a depth of approximately 3.5 feet bgl, which consisted of a mixture of gravel and silty sand with clay. Soil stained with petroleum hydrocarbon was observed along the southeastern sidewall of the excavation, near the parts storage shed. MFG recommended that additional excavation take place to remove the stained soil in the area to the extent feasible considering the proximity of structural foundations and surrounding utilities.

On July 31, 2003, MFG returned to the Site to collect confirmation soil samples. However, standing water with a petroleum sheen was observed in the southeastern portion of the excavation. It was determined that the standing water in the excavation was not groundwater, but water that had leaked from a crack in an underground water pipe located along the northwestern wall of the parts storage shed. The underground pipe was repaired by SPI and a sample of the standing water in the excavation was collected by MFG. The methods and results of the water sampling activities are presented in Section 4.3. Following water sampling, the standing water was pumped into a single, steel, 55-gallon, Department of Transportation (DOT)-approved drum that was sealed, labeled and temporarily stored at the Site pending disposal (Section 5.0). After repairing the pipe and removing the standing water, no additional water was observed in the excavation. While uncovering the water pipe, additional excavation was conducted on August 1, 2003 to a depth of approximately 2.0 feet bgl along the northwestern wall of the parts storage shed to remove soil impacted with petroleum hydrocarbons. At the conclusion of the excavation activities on August 1, 2003, the total volume of soil removed was approximately 19 cubic yards.

5

On July 31 and August 1, 2003, MFG documented the final dimensions of the excavation and collected confirmation soil samples. On August 6, 2003, MFG collected two additional confirmation soil samples from the floor of the excavation. The methods and results of the confirmation soil sampling activities are presented in Section 4.4. Note that the soil surrounding sampling locations PD-1 (0-.5), PD-1 (2-2.5) and PD-2 (0-.5) collected in April 2003 and the soil surrounding sampling location PD-NE2-1.5' collected during this investigation was subsequently excavated during soil removal activities.

Soil generated during excavation activities was placed in a 20-yard storage bin that was sealed, labeled and temporarily stored in a secure location of the Site pending disposal (Section 5.0). Equipment wash water was placed in a separate, steel, 55-gallon, DOT-approved drum that was sealed, labeled and temporarily stored in a secure location of the Site pending disposal (Section 5.0).

At the conclusion of the sampling activities (Sections 4.3 and 4.4), the excavation was backfilled with native sand by SPI.

4.2 Stratigraphy and Field Observations

The material encountered during sampling activities consisted of concrete debris, gravel and medium-grained sand from the ground surface to a depth of approximately 2.0 feet bgl. Silty sand with clay was encountered from depths ranging from approximately 2.0 to 3.5 feet bgl. Subangular gravel was encountered in the silty sand with clay below approximately 3.5 feet bgl. Following completion of the excavation activities, stained soil and moderate to strong petroleum-like odors were noted along the southeastern sidewall of the excavation near the parts storage shed. Slight to moderate petroleum-like odors were noted along the remaining sidewalls and the floor of the excavation. Saturated soil and groundwater were not encountered during excavation activities.

4.3 Water Sampling

4.3.1 Field Methods

On July 31, 2003, a sample of the water that had entered the excavation from a leaking pipe was collected using a peristaltic pump and polyethylene tubing. The water sample was placed into the following containers supplied by the laboratory: five 40-milliliter (mL) glass vials containing hydrochloric acid for sample preservation and sealed with screw caps with Teflon[®]-lined septa; and two 1-liter (L) amber glass bottles sealed with Teflon[®]-lined screw caps. The sample containers were labeled and immediately placed in an ice-cooled, insulated chest for transport to the laboratory. A chain-of-custody record was completed for the sample and accompanied the sample until receipt by the laboratory. A copy of the chain-of-custody record is included in Appendix A.

All equipment used to collect the water sample was dedicated; therefore, no wash water was generated for disposal.

4.3.2 Chemical Analysis Methods

The sample of water that had entered the excavation from the leaking pipe was submitted for chemical analysis to Alpha Analytical Laboratories Inc. (Alpha) of Ukiah, California. The sample was analyzed for the following constituents:

- Oil and grease using EPA Method 1664A with silica gel cleanup;
- Total extractable petroleum hydrocarbons (TEPH) as diesel and motor oil using modified EPA Method 8015M with silica gel cleanup;
- Total purgeable petroleum hydrocarbons (TPPH) as gasoline using modified EPA Method 8015M; and
- Volatile organic compounds (VOCs) using EPA Method 8260B.

The chemical analysis results are summarized in Table 1. Copies of the laboratory report and chain-of-custody record are included in Appendix A.

4.3.3 Chemical Analysis Results

Oil and grease was detected in the water sample at a concentration of 9,100 micrograms per liter (μ g/L). TEPH as diesel was detected in the sample at a concentration of 10,000 μ g/L. However, the laboratory indicated that approximately 7/8 of the diesel range detection was due to the presence of kerosene. TEPH as motor oil was detected in the water sample at a concentration of 8,900 μ g/L. TPPH as gasoline was detected in the water sample at a concentration of 1,100 μ g/L (Table 1).

The following VOCs were detected in the water sample: ethylbenzene at a concentration of 9.4 μ g/L, naphthalene at a concentration of 13 μ g/L; n-propylbenzene at a concentration of 4.4 μ g/L; 1,2,4-trimethylbenzene at a concentration of 44 μ g/L; 1,3,5-trimethylbenzene at a concentration of 11 μ g/L; and total xylenes at a concentration of 79 μ g/L (Table 1). No other VOCs were detected at or above their respective laboratory reporting limits (Table 1).

It is important to note that the water in the excavation was apparently not groundwater. It was water that had entered the excavation from a nearby leaking pipe. Consequently, these data are not representative of groundwater conditions.

4.4 Confirmation Soil Sampling

4.4.1 Field Methods

On July 31, August 1 and August 6, 2003, confirmation soil samples were collected from the excavation by MFG. Five confirmation soil samples were collected from the sidewalls of the excavation: one from the northwestern sidewall at a depth of approximately 3.0 feet bgl (PD-NW-3'); one from the southwestern sidewall at a depth of approximately 2.5 feet bgl (PD-SW-2.5'); and three from the northeastern sidewalls at depths of approximately 2.5 feet bgl (PD-NE-2.5'), 1.5 feet bgl (PD-NE2-1.5') and 2.0 feet bgl (PD-NE3-2'). Three additional confirmation soil samples were collected from the bottom of the excavation at depths of approximately 3.5 feet bgl (PD-NW1-Bottom and PD-NW2-Bottom) and 2.0 feet bgl (PD-SE-Bottom). The soil surrounding sampling location PD-NE2-1.5' was subsequently excavated during soil removal activities on August 1, 2003 (Section 4.1).

The soil samples were collected in clean, 6-inch long, brass liners inserted into a stainless steel drive sampler that was manually driven into the soil at each location using a slide hammer. Prior to sample collection, approximately three inches of soil was removed from the soil surface at each location; the brass liner was then driven into the newly exposed soil. Following sample collection, the ends of each liner were covered with Teflon[®] sheets, capped with polyethylene lids, and then sealed using duct tape. Additional soil was collected from each sampling location using EnCoreTM samplers that were manually driven into the newly exposed soil. The sample containers were labeled, placed into individual Ziplock[®] bags, and immediately placed in an ice-cooled, insulated chest for transport to the laboratory. Chain-of-custody records were completed for the samples collected on each day and accompanied the samples until receipt by the laboratory. Copies of the chain-of-custody records are included in Appendix B.

Reusable sampling equipment was decontaminated before and after use at each sampling location by washing it in a solution of Liquinox[®] detergent and water and triple rinsing with distilled water.

Equipment wash water generated during soil sampling activities was placed in the steel, 55-gallon, DOT-approved drum that was used to contain equipment wash water generated from cleaning the hand tools used during excavation activities (Section 4.1). The drum was sealed, labeled and temporarily stored next in a secure location at the Site pending disposal (Section 5.0).

4.4.2 Chemical Analysis Methods

The eight confirmation soil samples were submitted for chemical analysis to Alpha Analytical Laboratories Inc. (Alpha) of Ukiah, California. The samples were analyzed for the following constituents:

- Oil and grease using EPA Method 9071B with silica gel cleanup;
- Total extractable petroleum hydrocarbons (TEPH) as diesel and motor oil using modified EPA Method 8015M with silica gel cleanup;
- Total purgeable petroleum hydrocarbons (TPPH) as gasoline using modified EPA Method 8015M; and
- Volatile organic compounds (VOCs) using EPA Method 8260B/5035.

The chemical analysis results are summarized in Tables 2 and 3. Copies of the laboratory reports and chain-of-custody records are included in Appendix B.

At the request of MFG, Alpha sent a portion of soil sample PD-NE2-1.5' to Zymax Envirotechnology, Inc. (Zymax) of San Luis Obispo, California. Zymax analyzed the soil sample for the following constituents:

- Oil and grease using a modified version of EPA Method 1664A with silica gel cleanup; and
- Total extractable petroleum hydrocarbons (TEPH) as kerosene and diesel using gas chromatogram/mass spectrometer combination with and without silica gel cleanup.

The chemical analysis results are summarized in Table 2. Copies of the laboratory report and chain-of-custody record are included in Appendix C.

4.4.3 Chemical Analysis Results

Oil and grease was detected in the eight soil samples at concentrations ranging from 5,100 to 25,000 milligrams per kilogram (mg/kg). TEPH as diesel was detected in the eight soil samples at concentrations ranging from 220 to 10,000 mg/kg. However, the laboratory indicated that the diesel range organics detected in the samples consisted of varying amounts of kerosene. In addition, the laboratory indicated that the diesel range organics detected in soil sample PD-NW1-Bottom were primarily due to overlap from a heavy oil range product. TEPH as motor oil was detected in the eight soil samples at concentrations ranging from 2,500 to 9,700 mg/kg. TPPH as gasoline was detected in the eight soil samples at concentrations ranging from 38 to 7,000 mg/kg. However, the laboratory indicated that the gasoline range organics detected in seven of the eight samples were primarily due to overlap from a diesel range product.

VOCs were detected in two of the five confirmation soil samples from the excavation sidewalls and the three confirmation soil samples from the floor of the excavation. The following VOCs were detected in the soil sample (concentrations in parentheses): 1,4-dichlorobenzene (1.1 mg/kg) in soil sample PD-NW-3'; n-butylbenzene (21 mg/kg), sec-butylbenzene (9.0 mg/kg), ethylbenzene (9.2 mg/kg), isopropylbenzene (5.1 mg/kg), p-isopropyltoluene (13 mg/kg), naphthalene (14 mg/kg), n-propylbenzene (13 mg/kg), 1,2,4-trimethylbenzene (100 mg/kg), 1,3,5-trimethylbenzene (22 mg/kg) and total xylenes (14 mg/kg) in soil sample PD-NE3-2'; n-butylbenzene (8.8 mg/kg), 1,2,4-trimethylbenzene (49 mg/kg), 1,3,5trimethylbenzene (14 mg/kg) and total xylenes (29 mg/kg) in soil sample PD-SE-Bottom; 2-chlorotoluene (0.19 mg/kg), toluene (0.23 mg/kg), 1,2,4-trimethylbenzene (0.34 mg/kg), 1,3,5-trimethylbenzene (0.23 mg/kg) in soil sample PD-NW1-Bottom; and n-butylbenzene (0.81 mg/kg), sec-butylbenzene (0.50 mg/kg), chlorobenzene (0.87 mg/kg), 2-chlorotoluene (0.28 mg/kg), 4-chlorotoluene (0.32 mg/kg), 1,2dichlorobenzene (0.58 mg/kg), 1,3-dichlorobenzene (0.20 mg/kg), 1,4-dichlorobenzene (1.2 mg/kg), isopropylbenzene (0.21 mg/kg), p-isopropyltoluene (0.23 mg/kg), naphthalene (1.7 mg/kg), npropylbenzene (0.37 mg/kg), 1,2,4-trimethylbenzene (1.9 mg/kg) and total xylenes (0.27 mg/kg) in soil sample PD-NW2-Bottom. No other VOCs were detected at or above their respective laboratory reporting limits (Table 3).

The additional analyses performed by Zymax on a portion of soil sample PD-NE2-1.5' detected oil and grease (with silica gel cleanup) at a concentration of 13,000 mg/kg, TEPH as kerosene at concentrations of 5,800 mg/kg (without silica gel cleanup) and 4,100 mg/kg (with silica gel cleanup), and TEPH as motor oil at concentrations of 12,000 mg/kg (without silica gel cleanup) and 8,400 mg/kg (with silica gel cleanup) (Table 2). The silica gel cleanup procedure is intended to remove polar organic constituents that could interfere with the quantitation of petroleum hydrocarbons. However, a common limitation associated with silica gel cleanup is the potential for incomplete cleanup due to the volume of silica gel used.

5.0 DISPOSAL OF INVESTIGATION-DERIVED WASTE

Equipment wash water and water removed from the excavation (water from leaking pipe) were placed in two, separate, steel, 55-gallon, DOT-approved drums that were sealed, labeled and temporarily stored at a secure location of the Site. The drum containing water removed from the excavation was removed from the Site as part of a bulk shipment on August 15, 2003 by Asbury Environmental Services and transported to Demenno/Kerdoon in Compton, California for treatment. A copy of the Uniform Hazardous Waste Manifest for this shipment, which also included petroleum-containing waste water associated with plant operations, is included in Appendix D. The drum containing equipment wash water was removed from the Site on September 12, 2003 by Asbury Environmental Services and also transported to Demenno/Kerdoon in Compton, California for treatment. A copy of the Uniform Hazardous Waste Manifest for this shipment for treatment. A copy of the Uniform Hazardous Waste Manifest for this shipment in the Site on September 12, 2003 by Asbury Environmental Services and also transported to Demenno/Kerdoon in Compton, California for treatment. A copy of the Uniform Hazardous Waste Manifest for this shipment, which also included four additional 55-gallon drums associated with other investigations at the Site, is included in Appendix D. Following treatment, the water was discharged to the Los Angeles Sanitation District sewer system.

The storage bin containing soil from the excavation was removed from the Site on September 11, 2003 by Asbury Environmental Services and transported to Altamont Landfill in Livermore, California for disposal. A copy of the Non-Hazardous Waste Manifest is included in Appendix D.

6.0 **REFERENCES**

- Environet Consulting (Environet), 2003, Results of the Remedial Investigation for Sierra Pacific Industries - Arcata Division Sawmills, Arcata, California: January 30.
- MFG, Inc., 2003, Plywood Covered Ditch Investigation Report, Sierra Pacific Industries, Arcata Division Sawmill, 2593 New Navy Base Road, Arcata California: June 9.
- MFG, Inc. and Geomatrix Consultants, Inc (Geomatrix), 2004, Former Waste Oil Underground Storage Tank Additional Investigation Report, Sierra Pacific Industries, Arcata Division Sawmill, 2593 New Navy Base Road, Arcata California: March 30.

TABLES

TABLE 1

SUMMARY OF CHEMICAL ANALYSES OF THE SAMPLE OF WATER THAT ENTERED THE EXCAVATION FROM LEAKING PIPE¹

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

						VOLATILE ORGANIC COMPOUNDS								
				TEPH AS					1,2,4-	1,3,5-				
		OIL AND	TEPH AS	MOTOR	TPPH AS	ETHYL-	NAPHTHA-	n-PROPYL-	TRIMETHYL-	TRIMETHYL-	TOTAL	OTHER		
SAMPLE	SAMPLE	GREASE	DIESEL	OIL	GASOLINE	BENZENE	LENE	BENZENE	BENZENE	BENZENE	XYLENES	VOCs		
ID	DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		
PD-Water	31-Jul-03	9,100	10,000 ²	8,900	1,100	9.4	13	4.4	44	11	79	<1.5-25		

NOTES:

TEPH Total extractable petroleum hydrocarbons. Analyzed using modified EPA Method 8015M with silica gel cleanup and quantified against diesel and motor oil standards.

TPPH Total purgeable petroleum hydrocarbons. Analyzed using modified EPA Method 8015M and quantified against a gasoline standard.

VOCs Volatile organic compounds. Analyzed using EPA Method 8260B.

μg/L Micrograms per liter.

< Target analyte was not detected at or above the laboratory reporting limit shown.

1. The water in the excavation was apparently not groundwater. It was water that had entered the excavation from a nearby leaking pipe. Consequently, these data are not representative of groundwater conditions.

2. Laboratory indicated that kerosene is present at about 7/8 of the diesel response and is included therein.

Oil and grease was analyzed using EPA Method 1664A with silica gel cleanup.

TABLE 2

SUMMARY OF CHEMICAL ANALYSES OF CONFIRMATION SOIL SAMPLES FROM THE EXCAVATION FOR TPPH, TEPH AND OIL AND GREASE ¹

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

	SAMPLE			TPPH AS	TEPH AS DIESEL		TEDOGENIE	TEDILACA	IOTOD OU	OIL AND GREASE
SAMPLE	DEPTH	SAMPLE		GASOLINE	w/ Silica Gel	TEPH AS K w/o Silica Gel	w/ Silica Gel	w/o Silica Gel	IOTOR OIL w/ Silica Gel	w/ Silica Gel
ID	(feet bgl)	DATE	LITHOLOGY	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
PD-1(05)	0.0-0.5	8-Apr-03	SAND		17 ²				160	1,200
PD-1(2-2.5)	2.0-2.5	8-Apr-03	SILTY SAND W/ CLAY		330				1,300	7,800
PD-2(05)	0.0-0.5	8-Apr-03	SAND		20 ²				250	1,100
PD-2(2-2.5)	2.0-2.5	8-Apr-03	SILTY SAND W/ CLAY		140				850	8,200
PD-NW-3'	3.0	31-Jul-03	SILTY SAND W/ CLAY	140 ³	1,400 4				9,700	20,000
PD-NE-2.5'	2.5	31-Jul-03	SILTY SAND W/ CLAY	480 ³	3,100 5				8,800	11,000
PD-NE2-1.5'	1.5	31-Jul-03	SAND	2,700 ³	5,500 ⁶	5,800 7	4,100 ⁷	12,000 7	7,000 / 8,400 7	25,000 / 13,000 ⁸
PD-SW-2.5'	2.5	31-Jul-03	SILTY SAND W/ CLAY	120 ³	610 4				2,500	6,000
PD-NE3-2'	2.0	01-Aug-03	SILTY SAND W/ CLAY	7,000 ³	10,000 9				5,300	9,300
PD-SE-Bottom	2.0	01-Aug-03	SILTY SAND W/ CLAY	3,700 ³	4,100 10				3,700	18,000
PD-NW1-Bottom	3.5	06-Aug-03	SILTY SAND W/ CLAY	38	220 11, 12				2,700	5,200
PD-NW2-Bottom	3.5	06-Aug-03	SILTY SAND W/ CLAY	610 ³	1,700 13				3,900	5,100

NOTES	
NOTES:	Tetal more able water budge and and an advice and the d FDA Mathed 2015M and event field according at a dard
TPPH	Total purgeable petroleum hydrocarbons. Analyzed using modified EPA Method 8015M and quantified against a gasoline standard.
TEPH	Total extractable petroleum hydrocarbons. Analyzed using modified EPA Method 8015M with silica gel cleanup and quantified against diesel and motor oil standards unless otherwise noted.
bgl	Below ground level.
mg/kg	Milligrams per kilogram.
	Shaded entries represent soil subsequently excavated.
	Not analyzed.
1	All samples were analyzed by Alpha Analytical Laboratories Inc. (Alpha) of Ukiah, California unless otherwise noted.
2	Laboratory indicated that the result is primarily due to overlap from a heavier oil range compound.
3	Laboratory indicated that the result is primarily due to overlap from a diesel range product.
4	Laboratory indicated that kerosene is present at about 1/10 of the diesel response and is included therein.
5	Laboratory indicated that kerosene is present at about 1/6 of the diesel response and is included therein.
6	Laboratory indicated that kerosene is present at about 3/4 of the diesel response and is included therein.
7	Analyzed by Zymax Envirotechnology, Inc. (Zymax) of San Luis Obispo, California using gas chromatograph/mass spectrometer (GC/MS) combination and quantified against kerosene and motor
8	Analyzed by Zymax using a modified version of EPA Method 1664A with silica gel cleanup.
9	Laboratory indicated that kerosene is present at about 11/13 of the diesel response and is included therein.
10	Laboratory indicated that the diesel response is primarily due to kerosene.
11	Laboratory indicated that the result is primarily due to overlap from a heavy oil range product.
12	Laboratory indicated that kerosene may be present at about 1/20 or less of the diesel response, which itself is due to overlap of motor oil.
13	Laboratory indicated that kerosene is present at about 2/15 of the diesel response and is included therein.

Oil and grease was analyzed by Alpha using EPA Method 9071B with silica gel cleanup.

otor oil standards.

TABLE 3

SUMMARY OF CHEMICAL ANALYSES OF CONFIRMATION SOIL SAMPLES FROM THE EXCAVATION FOR VOLATILE ORGANIC COMPOUNDS

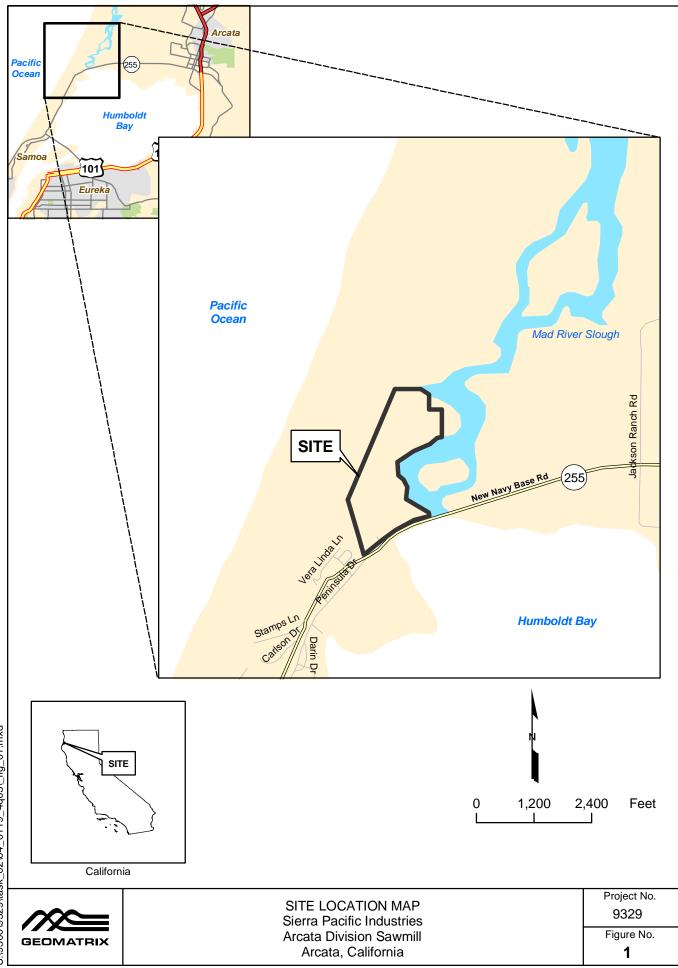
Sierra Pacific Industries Arcata Division Sawmill Arcata, California

SAMPLE ID	SAMPLE DEPTH (feet bgl)	SAMPLE DATE	LITHOLOGY			CHLORO- BENZENE (mg/kg)	2-CHLORO- TOLUENE (mg/kg)	4-CHLORO- TOLUENE (mg/kg)	1,2-DI- CHLORO- BENZENE (mg/kg)	1,3-DI- CHLORO- BENZENE (mg/kg)	1,4-DI- CHLORO- BENZENE (mg/kg)	ETHYL- BENZENE (mg/kg)	ISO- PROPYL- BENZENE (mg/kg)	p-ISO- PROPYL- TOLUENE (mg/kg)	NAPHTHA- LENE (mg/kg)	n-PROPYL- BENZENE (mg/kg)	TOLUENE (mg/kg)	1,2,4-TRI- METHYL- BENZENE (mg/kg)	1,3,5-TRI- METHYL- BENZENE (mg/kg)	TOTAL XYLENES (mg/kg)	OTHER VOCs (mg/kg)
PD-1(05)	0.0-0.5	8-Apr-03	SAND	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050-0.020
PD-1(2-2.5)	2.0-2.5	8-Apr-03	SILTY SAND W/ CLAY	< 0.22	< 0.22	0.49	< 0.22	< 0.22	< 0.22	< 0.22	0.39	< 0.22	< 0.22	< 0.22	0.24	< 0.22	< 0.22	0.33	< 0.22	< 0.22	<0.22-0.87
PD-2(05)	0.0-0.5	8-Apr-03	SAND	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050-0.020
PD-2(2-2.5)	2.0-2.5	8-Apr-03	SILTY SAND W/ CLAY	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	0.35	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22-0.87
PD-NW-3'	3.0	31-Jul-03	SILTY SAND W/ CLAY	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	1.1	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	<0.87-3.5
PD-NE-2.5'	2.5	31-Jul-03	SILTY SAND W/ CLAY	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	<0.87-3.5
PD-NE2-1.5'	1.5	31-Jul-03	SAND	<43	<43	<43	<43	<43	<43	<43	<43	<43	<43	<43	<43	<43	<43	<43	<43	<43	<43-170
PD-SW-2.5'	2.5	31-Jul-03	SILTY SAND W/ CLAY	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	< 0.87	<0.87-3.5
PD-NE3-2'	2.0	01-Aug-03	SILTY SAND W/ CLAY	21	9.0	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	9.2	5.1	13	14	13	<4.3	100	22	14	<4.3-17
PD-SE-Bottom	2.0	01-Aug-03	SILTY SAND W/ CLAY	8.8	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	49	14	29	<8.7-35
PD-NW1-Bottom	3.5	06-Aug-03	SILTY SAND W/ CLAY	< 0.17	< 0.17	< 0.17	0.19	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	0.23	0.34	0.23	< 0.17	<0.17-0.69
PD-NW2-Bottom	3.5	06-Aug-03	SILTY SAND W/ CLAY	0.81	0.50	0.87	0.28	0.32	0.58	0.20	1.2	< 0.17	0.21	0.23	1.7	0.37	< 0.17	1.9	< 0.17	0.27	<0.17-0.69

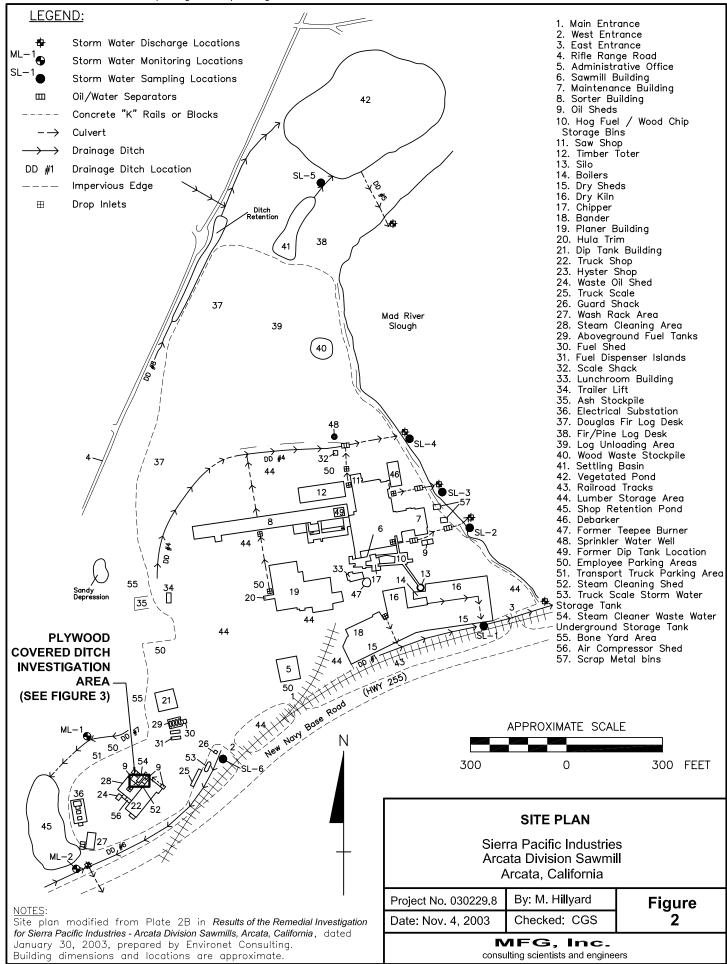
NOTES:

<

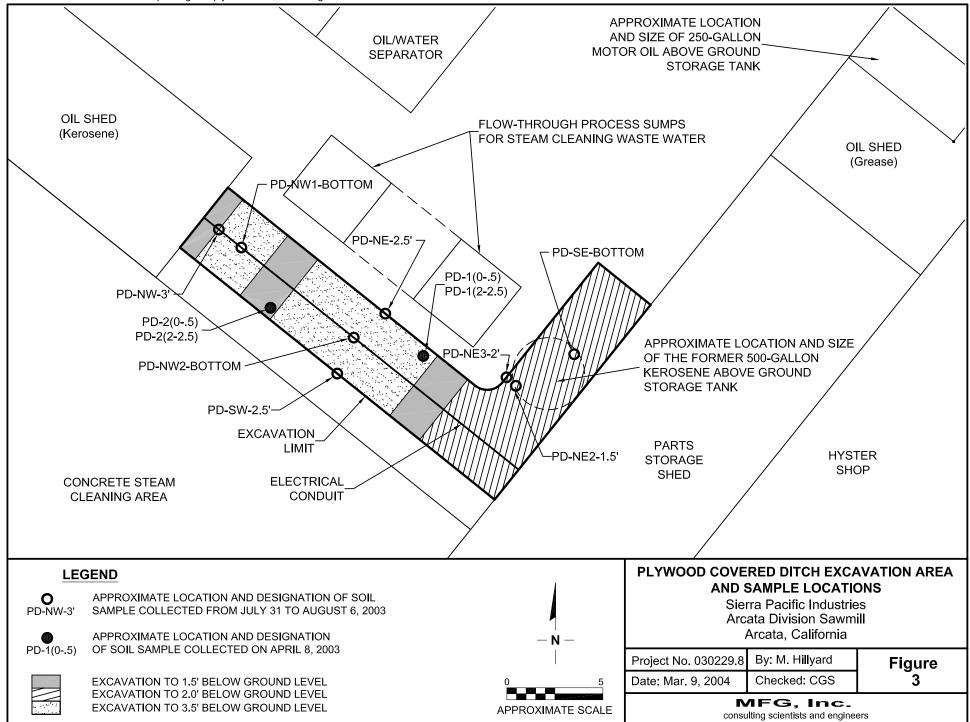
VOCs Volatile organic compounds. Analyzed using EPA Method 8260B in April 2003 and EPA Method 8260B/5035 in July and August 2003.


bgl Below ground level.

mg/kg Milligrams per kilogram.


Target analyte was not detected at or above the laboratory reporting limit shown.

Shaded entries represent soil subsequently excavated.


FIGURES

S:\9300\9329\task_02\04_0119_4q03_fig_01.mxd

J:\030229\Task 8\Add'I Invest Report\Figures\plywood ditch excav.dwg PLOT SCALE 1:1

APPENDIX A

Laboratory Report and Chain-of-Custody Record for the Sample of Water that Entered the Excavation from Leaking Pipe

۲. F

> Alpha V Analytical Laboratories Inc. 208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

18 August 2003

MFG, Inc - Arcata Attn: Ed Conti 875 Crescent Way Arcata, CA 95521 RE: SPI Arcata Sawmill Work Order: A308008

Enclosed are the results of analyses for samples received by the laboratory on 08/01/03 14:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Juny M

Cheryl Watson For Karen A. Daly Project Manager

RECEIVED

AUG 2 1 2003

Alpha ♥ Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 19

MFG. Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 10:22 Project No: 030229.B Project ID: SPI Arcata Sawmill

Client PO/Reference

Order Number A308008

Receipt Date/Time 08/01/2003 14:20

Client Code MFGARC

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PD - Water	A308008-01	Water	07/31/03 11:25	08/01/03 14:20

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

Tetra Tech/MEG Inc

Jung R

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

٠ä

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 10:22 Project No: 030229.B Project ID: SPI Arcata Sawmill

Attn: Ed Cont	1	Project ID: SPI Arcata Sawmill									
Order Number A308008	Receipt Date/Time 08/01/2003 14:20			<u>ent Code</u> FGARC		Client PO/Reference	<u>2e</u>				
		Alpha A	Analytical	Laborato	ries, Inc.						
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE			
PD - Water (A308008-01)			Sample Ty	pe: Water	S	ampled: 07/31/03 11:25					
Volatile Organic Compounds by	EPA Method 8260B		• •	•				R-06			
Acetone	8260B	AH31121	08/10/03	08/11/03	5	ND ug/l	25				
Benzene	"	"	и	u		ND "	1.5				
Bromobenzene	"	**	17			ND "	2.5				
Bromochloromethane	**	**	11		"	ND "	2.5				
Bromodichloromethane	"	"		0	"	ND "	2.5				
Bromoform	"	"	86	"	"	ND "	2.5				
Bromomethane	11	"	"	+		ND "	2.5				
n-Butylbenzene	11	"	**	"	**	ND "	2.5				
sec-Butylbenzene	*1	**	11	11	55	ND "	2.5				
tert-Butylbenzene	"	11	11	88	97	ND "	2.5				
Carbon tetrachloride	"	"			**	ND "	2.5				
Chlorobenzene	u	**	#	**	"	ND "	2.5				
Chloroethane	"	"	н	**	11	ND "	2.5				
Chloroform	"	"			**	ND "	2.5				
Chloromethane	**	н	п	"	"	ND "	2.5				
2-Chlorotoluene	"	11	н	**	**	ND "	2,5				
4-Chlorotoluene	**	11				ND "	2.5				
Dibromochloromethane	Ħ	11	**		"	ND "	2.5				
1,2-Dibromo-3-chloropropane	"	11	"		"	ND "	2.5				
1,2-Dibromoethane (EDB)		**	**	**	11	ND "	2.5				
Dibromomethane	"	**	**	"	"	ND "	2.5				
1,2-Dichlorobenzene)T	11	"	"	ND "	2.5				
1,3-Dichlorobenzene		**	11	"	**	ND "	2.5				
1,4-Dichlorobenzene	н	*1	н	"	"	ND "	2.5				
Dichlorodifluoromethane	н	**	11		"	ND "	2.5				
1,1-Dichloroethane	n	**	17	"	11	ND "	2.5				
1,2-Dichloroethane	11	**		"	**	ND "	2.5				
1,1-Dichloroethene	"	*1	"	**	**	ND "	1.5				
cis-1,2-Dichloroethene	11	Ħ	"			ND "	2.5				
trans-1,2-Dichloroethene	"	н		**	*	ND "	2.5				
1.2 Disblasses							2.0				

.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1,2-Dichloropropane

RECEIVED

AUG 2 1 2003

lungt

ND "

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

2.5

Totra Toch/MEO In-

f 1,3

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 19

MFG, Inc - A 875 Crescent Arcata, CA 9 Attn: Ed Con	Way 5521				Project N	te: 08/18/03 10:22 o: 030229.B D: SPI Arcata Sawmill		
<u>Order Number</u> A308008	Receipt Date/Time 08/01/2003 14:20			<u>ient Code</u> IFGARC		Client PO/Referenc	<u>e</u>	
		Alpha	Analytica	l Laborato	ries, Inc.			
	METHOD	BATCH	PREPAREI	O ANALYZED	DILUTION	RESULT	PQL	NOTE
PD - Water (A308008-01)			Sample Ty	pe: Water	Sa	mpled: 07/31/03 11:25		
Volatile Organic Compounds b	y EPA Method 8260B (co	nt'd)						R-06
1,3-Dichloropropane	8260B	н	"	08/11/03		ND "	2.5	
2,2-Dichloropropane	11	н	н	**	"	ND "	2.5	
1,1-Dichloropropene		"	11	**	н	ND "	2.5	
cis-1,3-Dichloropropene	"	*1	"	**	"	ND "	2.5	
trans-1,3-Dichloropropene	"	11	11	11		ND "	2.5	
Ethylbenzene	н	It.	11	н	"	9.4 ''	2.5	
Hexachlorobutadiene	"	"	"	"		ND "	2.5	
Isopropylbenzene	"	н	"	н		ND "	2.5	
p-Isopropyltoluene	"	"	11	"	"	ND "	2.5	
Methyl ethyl ketone	11	**	н	"	0	ND "	5.0	
Methyl isobutyl ketone	11	**	"	"	"	ND "	5.0	
Methyl tert-butyl ether	"	"	"	п	**	ND "	2.5	
Methylene chloride	11		"		**	ND "	2.5	
Naphthalene	11	"		11	н	13 "	2.5	
n-Propylbenzene	в	"	11		"	4.4 "	2.5	
Styrene	"	*1	**	0	u	ND "	2.5	
1,1,1,2-Tetrachloroethane	"	**	"	"	н	ND "	2.5	
1,1,2,2-Tetrachloroethane	"	"	"	"	"	ND "	2.5	
Tetrachloroethene	"		"		"	ND "	2.5	
Toluene	"	"	**	**	N	ND "	1.5	
1,2,3-Trichlorobenzene	"	**	"	17	n	ND "	2.5	
1,2,4-Trichlorobenzene	*	**	"	"	"	ND "	2.5	
1,1,1-Trichloroethane	"	FT		**	"	ND "	2.5	
1,1,2-Trichloroethane	"	11	11	**	n	ND "	2.5	
Trichloroethene	ъ. 1 1	11	11	н	11	ND "	2.5	
Trichlorofluoromethane	"	"	н	11	"	ND "	2.5	
Trichlorotrifluoroethane	11	н		**		ND "	2.5	
1,2,3-Trichloropropane	**		"	"	"	ND "	2.5	
1,2,4-Trimethylbenzene	11	"			**	44 ''	2.5	
1,3,5-Trimethylbenzene	н	"	11	11	n	11 "	2.5	
Vinyl chloride	"	"	**	н	**	ND "	2.5	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lungt

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

RECEIVED

ч., -

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	C	HEMIC	AL EXAN	MINATIO	N REPORT				Page 4 of 19
MFG, Inc - Arca 875 Crescent Wa Arcata, CA 9552 Attn: Ed Conti	ay				Report Date: Project No: Project ID:	030229.B			
1.0.0.0.0	Receipt Date/Time 08/01/2003 14:20			<u>ent Code</u> FGARC		Client PC)/Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
PD - Water (A308008-01)			Sample Ty	pe: Water	Samj	pled: 07/31/03 1	1:25		
Volatile Organic Compounds by EF	A Method 8260B (co	ont'd)							R-06
m,p-Xylene	8260B	н	"	08/11/03	**	55 "		2.5	
o-Xylene	**	"	**	"	"	24 "		2.5	
Xylenes (total)	**	"	"		n	79 "		2.5	
Surrogate: Dibromofluoromethane	#	"	n	"		86.4 %	69-119		
Surrogate: Toluene-d8	"	"	"	"		86.4 %	74-118		
Surrogate: Bromofluorobenzene	"	"	n	"		88.0 %	58-112		
Conventional Chemistry Parameter	rs by APHA/EPA Me	thods							
Oil & Grease (HEM-SG)	EPA 1664	AH31508	08/14/03	08/15/03	1	9.1 mg/l		5.0	
TPH as Diesel and Motor Oil by EP	A Method 8015 Mod	lified							
TPH as Diesel	8015DRO	AH30714	08/07/03	08/07/03	1.0205	10000 ug/l		51	A-01
TPH as Motor Oil	11	"	н	**	**	8900 "		100	
Surrogate: 1,4-Bromofluorobenzer	1e "	"	H	"		110 %	14-116		
TPH as Gasoline by GCFID/5030									
TPH as Gasoline	8015GRO	AH30820	08/07/03	08/07/03	1	1100 ug/l		50	
Surrogate: 1,4-Bromofluorobenzer	ie "	"	"	"		119 %	63-150		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Juny M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

٠.

Order Number

A308008

Alpha 🛛 Analytical Laboratories Inc.

Receipt Date/Time

08/01/2003 14:20

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Report Date: 08/18/03 10:22

Project ID: SPI Arcata Sawmill

Project No: 030229.B

CHEMICAL EXAMINATION REPORT

Page 5 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

> Client Code MFGARC

Client PO/Reference

SourceResult

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31121 - EPA 5030 Wa	iter MS								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Blank (AH31121-BLK1)				Prepared	& Analyze	ed: 08/10/0	03			
Acetone	ND	5.0	ug/l							
Benzene	ND	0.30	"							
Bromobenzene	ND	0.50	н							
Bromochloromethane	ND	0.50	**							
Bromodichloromethane	ND	0.50	"							
Bromoform	ND	0.50	н							
Bromomethane	ND	0.50	11							
n-Butylbenzene	ND	0.50	"							
ec-Butylbenzene	ND	0.50	**							
ert-Butylbenzene	ND	0.50	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	0.50								
Chloroethane	ND	0.50	0							
Chloroform	ND	0.50	"							
Chloromethane	ND	0.50	"							
2-Chlorotoluene	ND	0.50	"							
-Chlorotoluene	ND	0.50	"							
Dibromochloromethane	ND	0.50								
,2-Dibromo-3-chloropropane	ND	0.50	**							
,2-Dibromoethane (EDB)	ND	0.50	**							
Dibromomethane	ND	0.50	n							
,2-Dichlorobenzene	ND	0.50	н							
,3-Dichlorobenzene	ND	0.50	"							
1,4-Dichlorobenzene	ND	0.50	**							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	0.50								

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

Tetra Tech/MFG. Inc.

Jung M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

٠.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 6 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 10:22 Project No: 030229.B Project ID: SPI Arcata Sawmill

	Valatila Organic Compo	unde by FDA Method 9760D	Quality Control
Order Number A308008	Receipt Date/Time 08/01/2003 14:20	Client Code MFGARC	Client PO/Reference

Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31121 - EPA 5030 Wa	iter MS									
Blank (AH31121-BLK1)				Prepared	& Analyze	d: 08/10/0	03			
1,2-Dichloroethane	ND	0.50	(1	<u> </u>			· · · · · · · · · · · · · · · · · · ·	/		
1,1-Dichloroethene	ND	0.30	"							
cis-1,2-Dichloroethene	ND	0.50	11							
trans-1,2-Dichloroethene	ND	0.50	"							
1,2-Dichloropropane	ND	0.50	"							
1,3-Dichloropropane	ND	0.50								
2,2-Dichloropropane	ND	0.50	"							
1,1-Dichloropropene	ND	0.50								
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	**							
Ethylbenzene	ND	0.50	"							
Hexachlorobutadiene	ND	0.50								
Isopropylbenzene	ND	0.50	"							
p-Isopropyltoluene	ND	0.50	"							
Methyl ethyl ketone	ND	1.0	"							
Methyl isobutyl ketone	ND	1.0	"							
Methyl tert-butyl ether	ND	0.50	**							
Methylene chloride	ND	0.50	"							
Naphthalene	ND	0.50	"							
n-Propylbenzene	ND	0.50	"							
Styrene	ND	0.50	"							
1,1,1,2-Tetrachloroethane	ND	0.50	"							
1,1,2,2-Tetrachloroethane	ND	0.50	**							
Tetrachloroethene	ND	0.50	"							
Toluene	ND	0.30	"							
1,2,3-Trichlorobenzene	ND	0.50	н							
1,2,4-Trichlorobenzene	ND	0.50	**							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analy iced in its entirety. CFIVE

Jung R

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

Alpha Analutical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 7 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Order Number

A308008

Report Date: 08/18/03 10:22 Project No: 030229.B Project ID: SPI Arcata Sawmill

Client Code MFGARC

Client PO/Reference

08/01/2003 14:20

Receipt Date/Time

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31121 - EPA 5030 Water MS										

I,1-Trichloroethane ND 0.50 " I,12-Trichloroethane ND 0.50 " Prichloroethane ND 0.50 " Frichloroethane ND 0.50 " Frichloroethane ND 0.50 " Trichloroethane ND 0.50 " L2.3-Trichloropropane ND 0.50 " L3.5-Trimethylbenzene ND 0.50 " Np, -Xylene ND 0.50 " Nylenes (total) ND 0.50 " Surrogate: Dibromofluoromethane 21.5 " 25.0 86.0 69-119 Surrogate: Bromofluorobenzene 21.6 " 25.0 86.4 74-118 Surrogate: Bromofluorobenzene 21.6 " 25.0 87.2 58-112 CCS (ATI31121-BS1) Terpared & Analyzet's Non 99 9.30 " 10.0 99 79-116 Bromochloromethane 9.00 0.50 " 10.0 138 48-147 Bromochloromethane 9.68 0.50 " </th <th></th> <th></th> <th></th> <th></th> <th>D 10 1</th> <th>1 1.00/10/</th> <th>2</th> <th></th>					D 10 1	1 1.00/10/	2	
ND 0.50 " Frichloroethane ND 0.50 " Frichloroothoromethane ND 0.50 " Frichloroothoromethane ND 0.50 " L2,3-Trichloropropane ND 0.50 " L2,4-Trimethylbenzene ND 0.50 " L3,5-Trimethylbenzene ND 0.50 " Np,-Xylene ND 0.50 " s-Xylene ND 0.50 " Svylene ND 0.50 " Svarogate: Tollowonfluoromethane 21.5 " 25.0 86.0 69-119 Svarogate: Tollowonbenzene 21.8 " 25.0 86.4 74-118 Svarogate: Tollowonbenzene 54.3 5.0 ug/l 39.4 138 48-147 Benzene 9.99 0.30 " 10.0	Blank (AH31121-BLK1)				Prepared & An	alyzed: 08/10/0)3	
ND 0.50 " Frichloroethane ND 0.50 " Frichloroothane ND 0.50 " L,2,3-Trichloropropane ND 0.50 " J,3,5-Trimethylbenzene ND 0.50 " Np, Sylene ND 0.50 " n-P-Xylene ND 0.50 " n-Sylene ND 0.50 " Swrrogate: Dibromofluoromethane 21.5 " 25.0 86.0 69-119 Swrrogate: Bromofluorobenzene 21.6 " 25.0 86.4 74-118 Swrrogate: Bromofluorobenzene 21.8 " 25.0 86.4 74-118 Swrrogate: Bromofluorobenzene 21.8 " 25.0 86.4 74-118 Swrrogate: Bromofluorobenzene 21.8 " 25.0 86.4 74-118 Swrrogate: Bromofluorobenzene 9.99 0.30 " 10.0 99.9 79-116 Bromobenzene 9.68 0.50 " 10.0 96.8 85-117 Bromobenzene 9.68								
ND 0.50 " Frichlorotrifluoroethane ND 0.50 " L,2,3-Trichloropropane ND 0.50 " L,2,3-Trichloropropane ND 0.50 " L,2,3-Trinethylbenzene ND 0.50 " Njj,5-Trimethylbenzene ND 0.50 " Np-Xylene ND 0.50 " Np-Xylene ND 0.50 " Svylenes (total) ND 0.50 " Svyrogate: Dibromofluoromethane 21.5 " 25.0 86.0 69-119 Svyrogate: Bromofluorobenzene 21.8 " 25.0 86.4 74-118 Svarogate: Bromofluorobenzene 21.8 " 25.0 87.4 74-118 Svarogate: Bromofluorobenzene 21.8 " 25.0 87.4 74-118 Svarogate: Bromofluorobenzene 9.99 0.30 " 10.0 99.9 79-116 Benzene 9.99 0.30 " 10.0 96.8 85-117 Bromobloromethane 10.0 0.00 74 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Trichlorotrifluoroethane ND 0.50 " 1,2,3-Trichloropropane ND 0.50 " 1,2,4-Trimethylbenzene ND 0.50 " 1,3,5-Trimethylbenzene ND 0.50 " 1,3,5-Trimethylbenzene ND 0.50 " 1,3,5-Trimethylbenzene ND 0.50 " n,p-Xylene ND 0.50 " >-Xylene ND 0.50 " Surrogate: Dibromofluoromethane 21.5 " 25.0 86.0 69-119 Surrogate: Bromofluorobenzene 21.6 " 25.0 86.4 74-118 Surrogate: Bromofluorobenzene 21.8 " 25.0 87.2 58-112 LCS (AH31121-BS1) Terpared & Analyzet: 08/10/0" Terpared & Analyzet: 08/10/0" Terpared & Analyzet: 08/10/0" Bromobenzene 9.68 0.50 " 10.0 99.9 79-116 Bromodichloromethane 10.0 0.50 " 10.0 144 76-117 Bromodichloromethane 10.0 0.50 " 10.0 114								
1,2,3-Trichloropropane ND 0.50 " 1,2,4-Trimethylbenzene ND 0.50 " 1,3,5-Trimethylbenzene ND 0.50 " 1,3,5-Trimethylbenzene ND 0.50 " yinyl chloride ND 0.50 " n,p-Xylene ND 0.50 " >5-Xylene ND 0.50 " >5-Xylene ND 0.50 " Surrogate: Ibibromofluoromethane 21.5 " 25.0 86.0 69-119 Surrogate: Bromofluorobenzene 21.6 " 25.0 86.4 74-118 Surrogate: Bromofluorobenzene 21.8 " 25.0 86.4 74-118 Surrogate: Bromofluorobenzene 21.8 " 25.0 86.4 74-118 Surrogate: Bromofluorobenzene 21.8 " 25.0 86.4 74-118 Benzene 9.99 0.30 " 10.0 99.9 79-116 Bromobenzene 9.68 0.50 " 10.0 10.4 76-117 Bromodichloromethane	Trichlorofluoromethane	ND	0.50	**				
1,2,4-TrimethylbenzeneND0.50"1,3,5-TrimethylbenzeneND0.50",3,5-TrimethylbenzeneND0.50",n,p-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-XyleneND0.50"5-Xylene21.6"25.05-Xylene21.6"25.05-Xylene21.8"25.05-Xylene21.8"25.05-Xylene21.8"25.05-Xylene21.8"25.05-Xylene21.8"10.05-YleneY10.01385-Ylene9.990.30"10099.979-116Bromochloromethane10.00.5010.011476-117Bromochloromethane11.40.5011.80.50"10.011.80.50"10.011471-118Bromochloromethane13.1<	Trichlorotrifluoroethane	ND	0.50	н				
1,3,5-Trimethylbenzene ND 0.50 1,3,5-Trimethylbenzene ND 0.50 n,p-Xylene ND 0.50 >-Xylene ND 0.50 >-Xylene ND 0.50 Surrogate: Dibromofluoromethane 21.5 " Surrogate: Bromofluorobenzene 21.6 " Surrogate: Bromofluorobenzene 21.8 " Surrogate: Bromofluorobenzene 54.3 5.0 ug/l Surrogate: Bromofluorobenzene 9.99 0.30 " Bromobenzene 9.68 0.50 " 10.0 Bromobenzene 9.68 0.50 " 10.0 Bromodichloromethane 11.4 0.50 " 10.0 Bromodichloromethane 11.4 0.50 " 10.0 11.8 0.50 " 10.0<	1,2,3-Trichloropropane	ND	0.50	**				
ND 0.50 ND 0.50 n,p-Xylene ND >-Xylene ND ND 0.50 Surrogate: Dibromofluoromethane 21.5 21.5 " 25.0 86.0 69-119 Surrogate: Toluene-d8 21.6 " 25.0 86.4 74-118 Surrogate: Bromofluoromethane 21.8 " 25.0 87.2 58-112 LCS (AH31121-BS1) Prepared & Analyzet: 08/10/03 88-147 Benzene 9.99 0.30 10.0 99.9 79-116 Bromobenzene 9.68 0.50 10.0 99.9 79-116 Bromochloromethane 10.0 0.50 10.0 114 76-117 Bromochloromethane 11.4 0.50 " 10.0 118 71-118 Bromoform 11.8 0.50 " 10.0 118 71-118 Bromoform 11.8 0.50 " 10.0 114 76-117 Bromoform 11.8 0.50 " 10.0 118 <	1,2,4-Trimethylbenzene	ND	0.50	11				
Np.ND0.50">-XyleneND0.50"Xylenes (total)ND0.50"Surrogate: Dibromofluoromethane21.5"25.086.069-119Surrogate: Toluene-d821.6"25.086.474-118Surrogate: Bromofluorobenzene21.8"25.087.258-112LCS (AH31121-BS1)Prepared & Analyzed: 08/10/03Acetone54.35.0ug/l39.413848-147Benzene9.990.30"10.099.979-116Bromochloromethane10.00.50"10.010075-120Bromochloromethane11.40.50"10.011476-117Bromofium11.80.50"10.011871-118Bromofium13.10.50"10.013151-182n-Butylbenzene9.080.50"10.090.877-115	1,3,5-Trimethylbenzene	ND	0.50	Ħ				
ND0.50"Xylenes (total)ND0.50"Surrogate: Dibromofluoromethane21.5"25.086.069-119Surrogate: Toluene-d821.6"25.086.474-118Surrogate: Bromofluorobenzene21.8"25.087.258-112LCS (AH31121-BS1)Prepared & Analyzet: 08/10//3Acetone54.35.0ug/l39.413848-147Benzene9.990.30"10.099.979-116Bromobenzene9.680.50"10.096.885-117Bromochloromethane11.40.50"10.011476-117Bromoform11.80.50"10.011871-118Bromomethane13.10.50"10.013151-182Analyzie9.080.50"10.090.877-115	Vinyl chloride	ND	0.50	11				
ND 0.50 Xylenes (total) ND 0.50 Surrogate: Dibromofluoromethane 21.5 " 25.0 86.0 69-119 Surrogate: Toluene-d8 21.6 " 25.0 86.4 74-118 Surrogate: Bromofluorobenzene 21.8 " 25.0 87.2 58-112 LCS (AH31121-BS1) Prepared & Analyzed: 08/10/03 9.99 0.30 " 10.0 99.9 79-116 Benzene 9.99 0.30 " 10.0 99.9 79-116 Bromobenzene 9.68 0.50 " 10.0 96.8 85-117 Bromochloromethane 10.0 0.50 " 10.0 114 76-117 Bromochloromethane 11.4 0.50 " 10.0 114 76-117 Bromochloromethane 13.1 0.50 " 10.0 131 51-182 Bromocherane 9.08 0.50 " 10.0 131 51-182 Bromocherane 13.1 0.50 " 10.0 90.8 77-115	m,p-Xylene	ND	0.50	"				
Surrogate: Dibromofluoromethane 21.5 " 25.0 86.0 69-119 Surrogate: Toluene-d8 21.6 " 25.0 86.4 74-118 Surrogate: Bromofluorobenzene 21.8 " 25.0 87.2 58-112 LCS (AH31121-BS1) Prepared & Analyzed: 08/10/03 Acetone 54.3 5.0 ug/l 39.4 138 48-147 Benzene 9.99 0.30 " 10.0 99.9 79-116 Bromobenzene 9.68 0.50 " 10.0 96.8 85-117 Bromochloromethane 10.0 0.50 " 10.0 100 75-120 Bromoform 11.4 0.50 " 10.0 114 76-117 Bromoform 13.1 0.50 " 10.0 131 51-182 Bromomethane 13.1 0.50 " 10.0 131 51-182 Bromomethane 13.1 0.50 " 10.0 90.8 77-115	o-Xylene	ND	0.50	**				
Surrogate: Dioromonation 21.5 25.0 80.0 09-119 Surrogate: Toluene-d8 21.6 " 25.0 86.4 74-118 Surrogate: Bromofluorobenzene 21.8 " 25.0 87.2 58-112 LCS (AH31121-BS1) Prepared & Analyzed: 08/10/03 Acetone 54.3 5.0 ug/l 39.4 138 48-147 Benzene 9.99 0.30 " 10.0 99.9 79-116 Bromobenzene 9.68 0.50 " 10.0 96.8 85-117 Bromochloromethane 10.0 0.50 " 10.0 100 75-120 Bromoform 11.4 0.50 " 10.0 114 76-117 Bromoform 11.8 0.50 " 10.0 118 71-118 Bromomethane 13.1 0.50 " 10.0 131 51-182 Bromothane 9.08 0.50 " 10.0 90.8 77-115	Xylenes (total)	ND	0.50	11				
Surrogate: Bromofluorobenzene 21.0 21.0 21.0 80.4 74-118 Surrogate: Bromofluorobenzene 21.8 " 25.0 87.2 58-112 LCS (AH31121-BS1) Prepared & Analyzed: 08/10/03 Acetone 54.3 5.0 ug/l 39.4 138 48-147 Benzene 9.99 0.30 " 10.0 99.9 79-116 Bromobenzene 9.68 0.50 " 10.0 96.8 85-117 Bromochloromethane 10.0 0.50 " 10.0 100 75-120 Bromoform 11.4 0.50 " 10.0 114 76-117 Bromoform 11.8 0.50 " 10.0 118 71-118 Bromomethane 13.1 0.50 " 10.0 131 51-182 Bromomethane 9.08 0.50 " 10.0 90.8 77-115	Surrogate: Dibromofluoromethane	21.5		#	25.0	86.0	69-119	
Arrogate: Bromoglation obtenzente 21.0 21.0 87.2 36-112 LCS (AH31121-BS1) Prepared & Analyzed: 08/10/03 Acetone 54.3 5.0 ug/l 39.4 138 48-147 Benzene 9.99 0.30 " 10.0 99.9 79-116 Bromobenzene 9.68 0.50 " 10.0 96.8 85-117 Bromochloromethane 10.0 0.50 " 10.0 100 75-120 Bromodichloromethane 11.4 0.50 " 10.0 114 76-117 Bromodichloromethane 11.8 0.50 " 10.0 118 71-118 Bromoform 13.1 0.50 " 10.0 131 51-182 n-Butylbenzene 9.08 0.50 " 10.0 90.8 77-115	Surrogate: Toluene-d8	21.6		"	25.0	86.4	74-118	
Acetone54.35.0ug/l39.413848-147Benzene9.990.30"10.099.979-116Bromobenzene9.680.50"10.096.885-117Bromochloromethane10.00.50"10.010075-120Bromodichloromethane11.40.50"10.011476-117Bromodename11.80.50"10.011871-118Bromomethane13.10.50"10.013151-182Acetone9.080.50"10.090.877-115	Surrogate: Bromofluorobenzene	21.8		"	25.0	87.2	58-112	
Acetone54.35.0ug/l39.413848-147Benzene9.990.30"10.099.979-116Bromobenzene9.680.50"10.096.885-117Bromochloromethane10.00.50"10.010075-120Bromodichloromethane11.40.50"10.011476-117Bromoform11.80.50"10.011871-118Bromomethane13.10.50"10.013151-182an-Butylbenzene9.080.50"10.090.877-115	LCS (AH31121-BS1)				Prepared & Ar	nalyzed: 08/10/	03	
Bromobenzene9.680.50"10.096.885-117Bromochloromethane10.00.50"10.010075-120Bromodichloromethane11.40.50"10.011476-117Bromoform11.80.50"10.011871-118Bromomethane13.10.50"10.013151-182an-Butylbenzene9.080.50"10.090.877-115	Acetone	54.3	5.0	ug/l	39.4	138	48-147	
Bromochloromethane10.00.50"10.010075-120Bromodichloromethane11.40.50"10.011476-117Bromoform11.80.50"10.011871-118Bromomethane13.10.50"10.013151-182an-Butylbenzene9.080.50"10.090.877-115	Benzene	9.99	0.30	**	10.0	99.9	79-116	
Bromodichloromethane11.40.50"10.011476-117Bromoform11.80.50"10.011871-118Bromomethane13.10.50"10.013151-182n-Butylbenzene9.080.50"10.090.877-115	Bromobenzene	9.68	0.50		10.0	96.8	85-117	
Bromoform11.80.50"10.011871-118Bromomethane13.10.50"10.013151-182an-Butylbenzene9.080.50"10.090.877-115	Bromochloromethane	10.0	0.50	"	10.0	100	75-120	
Bromomethane13.10.50"10.013151-182n-Butylbenzene9.080.50"10.090.877-115	Bromodichloromethane	11.4	0.50	н	10.0	114	76-117	
n-Butylbenzene 9.08 0.50 " 10.0 90.8 77-115	Bromoform	11.8	0.50	н	10.0	118	71-118	
n-Butylbenzene 9.08 0.50 " 10.0 90.8 77-115	Bromomethane	13.1	0.50	н	10.0	131	51-182	
·	n-Butylbenzene	9.08	0.50	"	10.0	90.8		
	sec-Butylbenzene	9.27	0.50	н	10.0	92.7		

10.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytica be reproduced in its entirety.

9.19

0.50

lungl

79-116

Cheryl Watson For Karen A. Daly Project Manager

91.9

8/18/03

AUG 2 1 2003

EI

RE

tert-Butylbenzene

Alpha Analytical Laboratories Inc.

aboratories Inc. 208 Mase ervices@alpha-labs.com • Phone: (707) 468-(

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 8 of 19

		Pro	oject No:	08/18/03 10:22 030229.B SPI Arcata Sawmill	
Order Number A308008	Receipt Date/Time 08/01/2003 14:20	<u>Client Code</u> MFGARC		Client PO/Reference	

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag

Batch AH31121 - EPA 5030 Water MS

LCS (AH31121-BS1)				Prepared & Ar	alyzed: 08/10/	03
Carbon tetrachloride	11.6	0.50	11	10.0	116	72-125
Chlorobenzene	9.80	0.50	"	10.0	98.0	82-112
Chloroethane	8.74	0.50	н	10.0	87.4	75-126
Chloroform	10.2	0.50	н	10.0	102	77-117
Chloromethane	8.91	0.50	"	10.0	89.1	68-133
2-Chlorotoluene	9.45	0.50	н	10.0	94.5	79-119
4-Chlorotoluene	9.31	0.50	н	10.0	93.1	76-117
Dibromochloromethane	11.4	0.50	11	10.0	114	80-116
1,2-Dibromo-3-chloropropane	11.2	0.50	"	10.0	112	68-122
1,2-Dibromoethane (EDB)	10.3	0.50	"	10.0	103	84-117
Dibromomethane	9.90	0.50	11	10.0	99.0	83-115
1,2-Dichlorobenzene	9.66	0.50	Ħ	10.0	96.6	83-113
1,3-Dichlorobenzene	9.32	0.50	н	10.0	93.2	82-117
1,4-Dichlorobenzene	9.73	0.50	"	10.0	97.3	85-113
Dichlorodifluoromethane	8.32	0.50	"	10.0	83.2	58-162
1,1-Dichloroethane	9.80	0.50	"	10.0	98.0	75-126
1,2-Dichloroethane	10.1	0.50	**	10.0	101	78-115
1,1-Dichloroethene	10.2	0.30	11	10.0	102	77-123
cis-1,2-Dichloroethene	10.0	0.50	н	10.0	100	75-117
trans-1,2-Dichloroethene	10.0	0.50	n	10.0	100	79-114
1,2-Dichloropropane	9.92	0.50	"	10.0	99.2	75-116
1,3-Dichloropropane	10.2	0.50	"	10.0	102	83-118
2,2-Dichloropropane	10.6	0.50	"	10.0	106	71-123
1,1-Dichloropropene	9.88	0.50	н	10.0	98.8	74-119
cis-1,3-Dichloropropene	10.4	0.50	"	10.0	104	77-124
trans-1,3-Dichloropropene	10.7	0.50		10.0	107	70-113
Ethylbenzene	9.92	0.50		10.0	99.2	81-119

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analyzed is the epiroduced in its entirety.

Juny M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 9 of 19

MFG, Inc - Arcata
875 Crescent Way
Arcata, CA 95521
Attn: Ed Conti

Report Date: 08/18/03 10:22 Project No: 030229.B Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308008	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Method 8260B - Quality Control

				Spike	Source		%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH31121 - EPA 5030 Water MS

LCS (AH31121-BS1)				Prepared & Ar	alyzed: 08/10/	03	
Hexachlorobutadiene	9.97	0.50	Ħ	10.0	99.7	79-122	
Isopropylbenzene	9.23	0.50		10.0	92.3	80-116	
p-Isopropyltoluene	8.80	0.50		10.0	88.0	73-114	
Methyl ethyl ketone	22.5	1.0	n	20.0	112	73-125	
Methyl isobutyl ketone	20.1	1.0	н	20.0	100	68-125	
Methyl tert-butyl ether	10.1	0.50	#	10.0	101	73-127	
Methylene chloride	9.83	0.50	"	10.0	98.3	79-113	
Naphthalene	9.78	0.50	"	10.0	97.8	66-116	
n-Propylbenzene	9.43	0.50	"	10.0	94.3	78-117	
Styrene	9.77	0.50	"	10.0	97.7	62-135	
1,1,1,2-Tetrachloroethane	11.5	0.50	Ħ	10.0	115	79-124	
1,1,2,2-Tetrachloroethane	9.93	0.50		10.0	99.3	80-116	
Tetrachloroethene	15.0	0.50	11	10.0	150	82-120	QM-03
Toluene	9.91	0.30	Ħ	10.0	99.1	83-120	
1,2,3-Trichlorobenzene	9.40	0.50	11	10.0	94.0	80-115	
1,2,4-Trichlorobenzene	9.29	0.50	**	10.0	92.9	78-114	
1,1,1-Trichloroethane	10.5	0.50	н	10.0	105	74-120	
1,1,2-Trichloroethane	10.2	0.50	Ħ	10.0	102	79-117	
Trichloroethene	10.4	0.50	**	10.0	104	77-124	
Trichlorofluoromethane	9.25	0.50	н	10.0	92.5	78-124	
Trichlorotrifluoroethane	9.06	0.50	"	9.84	92.1	83-123	
1,2,3-Trichloropropane	10.2	0.50	"	10.0	102	86-117	
1,2,4-Trimethylbenzene	9.25	0.50	"	10.0	92.5	82-120	
1,3,5-Trimethylbenzene	9.01	0.50		10.0	90.1	78-116	
Vinyl chloride	8.83	0.50	"	10.0	88.3	72-131	
m,p-Xylene	19.1	0.50	"	20.0	95.5	80-118	
o-Xylene	9.38	0.50		10.0	93.8	79-121	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This an margin eper hast be provided in its entirety.

ang A

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Page 10 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

CHEMICAL EXAMINATION REPORT

Report Date: 08/18/03 10:22 Project No: 030229.B Project ID: SPI Arcata Sawmill

Client PO/Reference

Receipt Date/Time Order Number A308008 08/01/2003 14:20

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Client Code

MFGARC

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31121 - EPA 5030 Wate	er MS									
LCS (AH31121-BS1)				Prepared	& Analyz	ed: 08/10/	03			
Xylenes (total)	28.5	0.50	n	30.0		95.0	79-121			
Surrogate: Dibromofluoromethane	21.9		H	25.0		87.6	69-119			
Surrogate: Toluene-d8	22.4		n	25.0		89.6	74-118			
Surrogate: Bromofluorobenzene	21.7		н	25.0		86.8	58-112			
LCS Dup (AH31121-BSD1)				Prepared	& Analyz	ed: 08/10/	03			QM-10
Acetone	64.1	5.0	ug/l	39.4		163	48-147	16.6	25	QM-03
Benzene	10.4	0.30	"	10.0		104	79-116	4.02	25	
Bromobenzene	10.1	0.50		10.0		101	85-117	4.25	25	
Bromochloromethane	9.95	0.50	н	10.0		99.5	75-120	0.501	25	
Bromodichloromethane	11.8	0.50	"	10.0		118	76-117	3.45	25	QL-03
Bromoform	12.2	0.50	"	10.0		122	71-118	3.33	25	QL-03
Bromomethane	13.3	0.50	н	10.0		133	51-182	1.52	25	
n-Butylbenzene	9.32	0.50	н	10.0		93.2	77-115	2.61	25	
sec-Butylbenzene	9.66	0.50	"	10.0		96.6	80-122	4.12	25	
tert-Butylbenzene	9.57	0.50	11	10.0		95.7	79-116	4.05	25	
Carbon tetrachloride	12.2	0.50	11	10.0		122	72-125	5.04	25	
Chlorobenzene	10.2	0.50	"	10.0		102	82-112	4.00	25	
Chloroethane	9.02	0.50	п	10.0		90.2	75-126	3.15	25	
Chloroform	10.7	0.50	11	10.0		107	77-117	4.78	25	
Chloromethane	9.09	0.50	11	10.0		90.9	68-133	2.00	25	
2-Chlorotoluene	9.64	0.50	u	10.0		96.4	79-119	1.99	25	
4-Chlorotoluene	9.58	0.50	*1	10.0		95.8	76-117	2.86	25	
Dibromochloromethane	12.2	0.50	11	10.0		122	80-116	6.78	25	QL-03
1,2-Dibromo-3-chloropropane	11.5	0.50	11	10.0		115	68-122	2.64	25	
1,2-Dibromoethane (EDB)	10.5	0.50	n	10.0		105	84-117	1.92	25	
Dibromomethane	9.96	0.50	"	10.0		99.6	83-115	0.604	25	

The results in this report up to the san Net under the chain of custody document. This analysical report must be reproduced in its entirety.

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Juny R

Cheryl Watson For Karen A. Daly Project Manager

۰، ۴

Alpha 🛿 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 11 of 19

MFG, Inc - Arcata
875 Crescent Way
Arcata, CA 95521
Attn: Ed Conti

Report Date:	08/18/03 10:22
Project No:	030229.B
Project ID:	SPI Arcata Sawmill

A308008 08/01/2003 14:20 MFGARC	Order Number	Receipt Date/Time	Client Code	Client PO/Reference
	A308008	08/01/2003 14:20	MFGARC	

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31121 - EPA 5030 Wat	er MS									
LCS Dup (AH31121-BSD1)				Prepared	& Analyze	ed: 08/10/	03			QM-1
1,2-Dichlorobenzene	9.70	0.50	Ħ	10.0		97.0	83-113	0.413	25	
1,3-Dichlorobenzene	9.58	0.50	*1	10.0		95.8	82-117	2.75	25	
1,4-Dichlorobenzene	10.0	0.50	41	10.0		100	85-113	2.74	25	
Dichlorodifluoromethane	8.67	0.50	11	10.0		86.7	58-162	4.12	25	
1,1-Dichloroethane	10.2	0.50	#1	10.0		102	75-126	4.00	25	
1,2-Dichloroethane	10.2	0.50	Ħ	10.0		102	78-115	0.985	25	
1,1-Dichloroethene	10.6	0.30	u –	10.0		106	77-123	3.85	25	
cis-1,2-Dichloroethene	10.4	0.50	"	10.0		104	75-117	3.92	25	
trans-1,2-Dichloroethene	10.4	0.50	11	10.0		104	79-114	3.92	25	
1,2-Dichloropropane	10.2	0.50	н	10.0		102	75-116	2.78	25	
1,3-Dichloropropane	10.5	0.50	"	10.0		105	83-118	2.90	25	
2,2-Dichloropropane	10.9	0.50	"	10.0		109	71-123	2.79	25	
1,1-Dichloropropene	10.4	0.50		10.0		104	74-119	5.13	25	
cis-1,3-Dichloropropene	10.9	0.50	17	10.0		109	77-124	4.69	25	
trans-1,3-Dichloropropene	10.6	0.50	"	10.0		106	70-113	0.939	25	
Ethylbenzene	10.3	0.50	н	10.0		103	81-119	3.76	25	
Hexachlorobutadiene	10.2	0.50	н	10.0		102	79-122	2.28	25	
Isopropylbenzene	9.41	0.50	"	10.0		94.1	80-116	1.93	25	
p-Isopropyltoluene	9.13	0.50	н	10.0		91.3	73-114	3.68	25	
Methyl ethyl ketone	24.4	1.0	"	20.0		122	73-125	8.10	25	
Methyl isobutyl ketone	20.2	1.0	"	20.0		101	68-125	0.496	25	
Methyl tert-butyl ether	10.3	0.50	11	10.0		103	73-127	1.96	25	
Methylene chloride	10.3	0.50	"	10.0		103	79-113	4.67	25	
Naphthalene	9.59	0.50	н	10.0		95.9	66-116	1.96	25	
n-Propylbenzene	9.76	0.50		10.0		97.6	78-117	3.44	25	
Styrene	9.91	0.50		10.0		99.1	62-135	1.42	25	
1,1,1,2-Tetrachloroethane	11.9	0.50	"	10.0		119	79-124	3.42	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This anal roduced in its entirety.

RECEIVED

Juny M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 12 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 10:22
Project No:	030229.B
Project ID:	SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308008	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Method 8260B - Quality Control

	Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
--	------------	--------	-----	-------	----------------	------------------	------	----------------	-----	--------------	------

Batch AH31121 - EPA 5030 Water MS

LCS Dup (AH31121-BSD1)				Prepared 8	k Analyze	d: 08/10/	03			QM-1(
1,1,2,2-Tetrachloroethane	9.47	0.50	11	10.0		94.7	80-116	4.74	25	
Tetrachloroethene	17.2	0.50	**	10.0		172	82-120	13.7	25	QM-03
Toluene	10.3	0.30	11	10.0		103	83-120	3.86	25	
1,2,3-Trichlorobenzene	9.44	0.50	n	10.0		94.4	80-115	0.425	25	
1,2,4-Trichlorobenzene	9.33	0.50	н	10.0		93.3	78-114	0.430	25	
1,1,1-Trichloroethane	11.0	0.50	"	10.0		110	74-120	4.65	25	
1,1,2-Trichloroethane	10.4	0.50	н	10.0		104	79-117	1.94	25	
Trichloroethene	11.4	0.50	**	10.0		114	77-124	9.17	25	
Trichlorofluoromethane	9.46	0.50	**	10.0		94.6	78-124	2.24	25	
Trichlorotrifluoroethane	9.57	0.50	н	9.84		97.3	83-123	5.48	25	
1,2,3-Trichloropropane	10.4	0.50	"	10.0		104	86-117	1.94	25	
1,2,4-Trimethylbenzene	9.50	0.50	н	10.0		95.0	82-120	2.67	25	
1,3,5-Trimethylbenzene	9.37	0.50	н	10.0		93.7	78-116	3.92	25	
Vinyl chloride	8.99	0.50	"	10.0		89.9	72-131	1.80	25	
m,p-Xylene	19.7	0.50	"	20.0		98.5	80-118	3.09	25	
o-Xylene	9.82	0.50	н	10.0		98.2	79-121	4.58	25	
Xylenes (total)	29.5	0.50	11	30.0		98.3	79-121	3.45	25	
Surrogate: Dibromofluoromethane	21.8		u	25.0		87.2	69-119			
Surrogate: Toluene-d8	22.3		"	25.0		<i>89.2</i>	74-118			
Surrogate: Bromofluorobenzene	21.2		"	25.0		84.8	58-112			
Matrix Spike (AH31121-MS1)	Sou	rce: A308 [,]	143-05	Prepared a	& Analyz	ed: 08/10	/03			
Acetone	32.3	5.0	ug/l	39.4	ND	82.0	40-150			
Benzene	10.2	0.30	"	10.0	ND	102	63-144			
Bromobenzene	9.46	0.50	"	10.0	ND	94.6	61-143			
Bromochloromethane	9.66	0.50		10.0	ND	96.6	65-136			
Bromodichloromethane	11.0	0.50	"	10.0	ND	110	60-141			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analyzed report must be reproduced in its entirety.

lung R J.

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 13 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Order Number

1,1-Dichloroethane

1,2-Dichloroethane

1.1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

trans-1,2-Dichloroethene

A308008

Report Date: 08/18/03 10:22 Project No: 030229.B Project ID: SPI Arcata Sawmill

Receipt Date/Time 08/01/2003 14:20

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		1	5			<u> </u>				
Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31121 - EPA 5030 Water	MS									
Matrix Spike (AH31121-MS1)	Sou	rce: A308 [,]	143-05	Prepared	& Analyze	ed: 08/10/	03			
Bromoform	11.2	0.50		10.0	ND	112	53-140			
Bromomethane	13.1	0.50	11	10.0	ND	131	47-175			
n-Butylbenzene	9.35	0.50	ц	10.0	ND	93.5	55-154			
sec-Butylbenzene	9.79	0.50	**	10.0	ND	97.9	57-159			
tert-Butylbenzene	9.59	0.50	**	10.0	ND	95.9	57-150			
Carbon tetrachloride	11.9	0.50	**	10.0	ND	119	61-160			
Chlorobenzene	9.61	0.50	"	10.0	ND	96.1	62-139			
Chloroethane	9.28	0.50	11	10.0	ND	92.8	63-152			
Chloroform	10.1	0.50	n	10.0	ND	101	57-152			
Chloromethane	10.0	0.50	n	10.0	ND	100	59-160			
2-Chlorotoluene	9.34	0.50	0	10.0	ND	93.4	62-146			
4-Chlorotoluene	9.36	0.50	71	10.0	ND	93.6	58-146			
Dibromochloromethane	10.6	0.50	11	10.0	ND	106	56-141			
1,2-Dibromo-3-chloropropane	9.93	0.50	11	10.0	ND	99.3	51-136			
1,2-Dibromoethane (EDB)	9.17	0.50	11	10.0	ND	91.7	58-140			
Dibromomethane	9.34	0.50	11	10.0	ND	93.4	63-136			
1,2-Dichlorobenzene	8.95	0.50	11	10.0	ND	89.5	62-137			
1,3-Dichlorobenzene	9.41	0.50		10.0	ND	94.1	59-140			
1,4-Dichlorobenzene	9.13	0.50	"	10.0	ND	91.3	62-136			
Dichlorodifluoromethane	8.75	0.50		10.0	ND	87.5	45-204			

10.0

10.0

10.0

10.0

10.0

10.0

10.0

ND

ND

ND

ND

ND

ND

ND

The results in this report app to the complete data set in accordance with the chain of

10.0

9.72

10.6

10.2

10.7

9.71

9.39

0.50

0.50

0.30

0.50

0.50

0.50

0.50

custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

lungl

Cheryl Watson For Karen A. Daly Project Manager

100

97.2

106

102

107

97.1

93.9

62-156

61-134

70-154

64-144

64-146

61-140

60-140

8/18/03

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 14 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 10:22
Project No:	030229.B
Project ID:	SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308008	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31121 - EPA 5030 Water MS										
Matrix Spike (AH31121-MS1)	Sou	rce: A308	143-05	Prepared	& Analyz	ed: 08/10/	03			
2,2-Dichloropropane	10.6	0.50	11	10.0	ND	106	61-167			

2,2-Dichloropropane	10.6	0.50	**	10.0	ND	106	61-167	
1,1-Dichloropropene	10.4	0.50	"	10.0	ND	104	64-157	
cis-1,3-Dichloropropene	10.1	0.50	н	10.0	ND	101	61-151	
trans-1,3-Dichloropropene	9.41	0.50	н	10.0	ND	94.1	54-136	
Ethylbenzene	9.86	0.50	"	10.0	ND	98.6	57-155	
Hexachlorobutadiene	9.56	0.50	"	10.0	ND	95.6	60-153	
Isopropylbenzene	9.28	0.50	"	10.0	ND	92.8	56-148	
p-Isopropyltoluene	9.34	0.50	**	10.0	ND	93.4	53-149	
Methyl ethyl ketone	16.9	1.0		20.0	ND	84.5	54-140	
Methyl isobutyl ketone	17.7	1.0	н	20.0	ND	88.5	54-138	
Methyl tert-butyl ether	9.44	0.50	11	10.0	ND	94.4	62-156	
Methylene chloride	9.91	0.50	н	10.0	ND	99.1	61-136	
Naphthalene	9.59	0.50	н	10.0	ND	95.9	53-154	
n-Propylbenzene	9.77	0.50	н	10.0	ND	97.7	60-152	
Styrene	9.64	0.50	11	10.0	ND	96.4	58-153	
1,1,1,2-Tetrachloroethane	10.6	0.50	Ħ	10.0	ND	106	57-149	
1,1,2,2-Tetrachloroethane	9.25	0.50	н	10.0	ND	92.5	60-134	
Tetrachloroethene	8.26	0.50	**	10.0	ND	82.6	50-160	
Toluene	9.71	0.30	н	10.0	ND	97.1	65-145	
1,2,3-Trichlorobenzene	9.39	0.50	et .	10.0	ND	93.9	55-141	
1,2,4-Trichlorobenzene	9.25	0.50	"	10.0	ND	92.5	52-145	
1,1,1-Trichloroethane	11.1	0.50	11	10.0	ND	111	62-151	
1,1,2-Trichloroethane	9.15	0.50	97	10.0	ND	91.5	57-136	
Trichloroethene	10.3	0.50	**	10.0	ND	103	62-153	
Trichlorofluoromethane	9.60	0.50	**	10.0	ND	96.0	64-159	
Trichlorotrifluoroethane	9.22	0.50	**	9.84	ND	93.7	64-163	
1,2,3-Trichloropropane	9.24	0.50	**	10.0	ND	92.4	60-137	

The results in this report apprentice of the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

Jung M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 15 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 10:22
Project No:	030229.B
Project ID:	SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308008	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31121 - EPA 5030 Water	MS									
Matrix Spike (AH31121-MS1)	Sour	ce: A3081	143-05	Prepared	& Analyze	ed: 08/10/0	03			
1,2,4-Trimethylbenzene	9.95	0.50	"	10.0	ND	99.5	55-155			
1,3,5-Trimethylbenzene	9.61	0.50	Ħ	10.0	ND	96.1	49-155			
Vinyl chloride	9.57	0.50	н	10.0	ND	95.7	65-168			
m,p-Xylene	19.3	0.50	11	20.0	ND	96.5	60-149			
o-Xylene	9.50	0.50	11	10.0	ND	95.0	59-148			
Xylenes (total)	28.8	0.50	H	30.0	ND	96.0	59-149			
Surrogate: Dibromofluoromethane	21.7		H	25.0		86.8	69-119		1999 (
Surrogate: Toluene-d8	21.8		u	25.0		87.2	74-118			
Surrogate: Bromofluorobenzene	21.6		"	25.0		86.4	58-112			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analyting provide the provided in its entirety.

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Juny M

Cheryl Watson For Karen A. Daly Project Manager

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 16 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Order Number A308008

Report Date:	08/18/03 10:22
Project No:	030229.B
Project ID:	SPI Arcata Sawmill

Client Code Client PO/Reference Receipt Date/Time 08/01/2003 14:20 MFGARC

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31508 - General Preparation										
Blank (AH31508-BLK1)				Prepared:	08/14/03	Analyzed	: 08/15/03			
Oil & Grease (HEM-SG)	ND	5.0	mg/l							
LCS (AH31508-BS1)				Prepared:	08/14/03	Analyzed	l: 08/15/03			
Oil & Grease (HEM-SG)	9.10	5.0	mg/l	10.0		91.0	83-116			
LCS Dup (AH31508-BSD1)				Prepared:	08/14/03	Analyzed	l: 08/15/03			QM-10
Oil & Grease (HEM-SG)	9.80	5.0	mg/l	10.0	A - Andrew Sec. 2 - community	98.0	83-116	7.41	28	

The results in this report apply to the complex analysed traces dance with the chain of custody document. This analytical reportment be reproduced in its entirety.

ling M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

Tetra Tech/MFG, Inc.

AUG 2 1 2003

MFG, Inc - Arcata

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 17 of 19

875	Crescent Way	Report Dat	e: 08/18/03 10:22
Arca	ita, CA 95521	Project N	o: 030229.B
Attn	: Ed Conti	Project II	D: SPI Arcata Sawmill
Order Number A308008	<u>Receipt Date/Time</u> 08/01/2003 14:20	<u>Client Code</u> MFGARC	Client PO/Reference

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30714 - EPA 3510B Water										
Blank (AH30714-BLK1)				Prepared	& Analyz	ed: 08/07/	03			
TPH as Diesel	ND	50	ug/l							
TPH as Motor Oil	ND	100	H .							
Surrogate: 1,4-Bromofluorobenzene	484		n	620		78.1	14-116		*******	
LCS (AH30714-BS1)				Prepared	& Analyz	ed: 08/07/	03			
TPH as Diesel	2020	50	ug/l	2090		96.7	57-136			
TPH as Motor Oil	2170	100	11	2090		104	58-138			
Surrogate: 1,4-Bromofluorobenzene	537	·	"	620		86.6	14-116			
LCS Dup (AH30714-BSD1)				Prepared	& Analyz	ed: 08/07/	03			QM-10
TPH as Diesel	2050	50	ug/l	2090		98.1	57-136	1.47	25	
TPH as Motor Oil	2200	100	"	2090		105	58-138	1.37	25	
Surrogate: 1,4-Bromofluorobenzene	536	9 - 17 - 17 - 20 - 20 - 2	"	620		86.5	14-116			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytic Read must be optical cod in its entirety.

Juny M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

Tetra Tech/MFG, Inc.

AUG 2 1 2003

Receipt Date/Time

08/01/2003 14:20

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 18 of 19

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Order Number

A308008

Report Date:	08/18/03 10:22
Project No:	
Project ID:	SPI Arcata Sawmill

Client Code MFGARC

Client PO/Reference

TPH as Gasoline by GCFID/5030 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30820 - EPA 5030 Water	GC									
Blank (AH30820-BLK1)				Prepared	& Analyz	ed: 08/07/	03			
TPH as Gasoline	ND	50	ug/l							
Surrogate: 1,4-Bromofluorobenzene	20.5		IJ	23.1		88.7	63-150			
LCS (AH30820-BS2)				Prepared	& Analyz	ed: 08/07/	03			
TPH as Gasoline	52.6	50	ug/l	50.0		105	79-123			
Surrogate: 1,4-Bromofluorobenzene	23.3		"	20.0		116	63-150			
LCS Dup (AH30820-BSD2)				Prepared	& Analyz	ed: 08/07/	03			QM-10
TPH as Gasoline	51.0	50	ug/l	50.0		102	79-123	3.09	15	
Surrogate: 1,4-Bromofluorobenzene	22.8		H	20.0	··· ···	114	63-150			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. **RECEIVED**

AUG 2 1 2003

Tetra Tech/MFG, Inc.

lung W.

Cheryl Watson For Karen A. Daly Project Manager

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

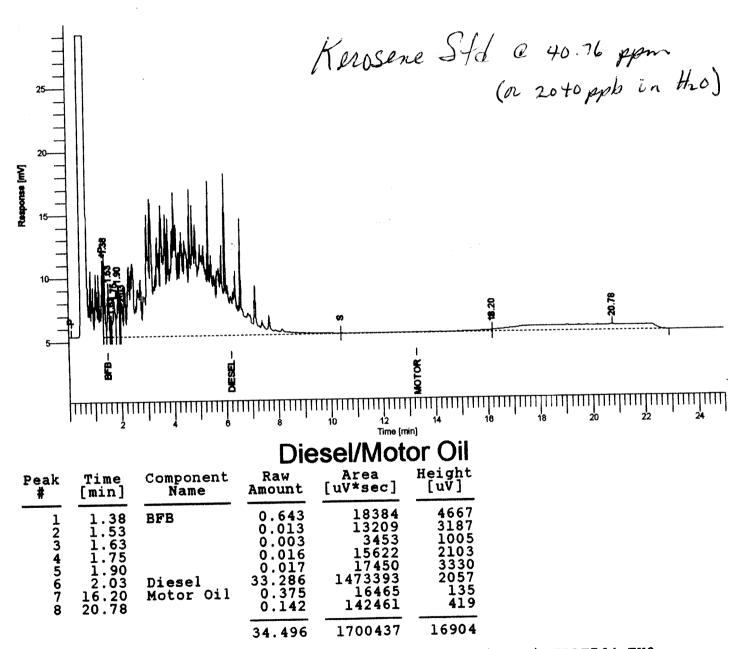
Page 19 of 19

MFG, Inc 875 Cresc Arcata, C. Attn: Ed (ent Way A 95521	Project N	te: 08/18/03 10:22 lo: 030229.B D: SPI Arcata Sawmill
Order Number	<u>Receipt Date/Time</u>	<u>Client Code</u>	Client PO/Reference
A308008	08/01/2003 14:20	MFGARC	

Notes and Definitions

* .j

- A-01 Kerosene is present at about 7/8 of the Diesel response and is included therein.
- **OL-03** Although the LCS/LCSD recovery for this analyte is outside of in-house developed control limits, it is within the EPA recommended range of 70-130%.
- The spike recovery was high for this analyte. The batch was accepted based on a non-detect for the analyte. QM-03
- QM-10 LCSD prepared with analytical batch due to insufficient sample for MS/MSD.
- R-06 The Reporting Limits for this analysis have been raised to account for matrix interference.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- Sample results reported on a dry weight basis dry
- RPD **Relative Percent Difference**
- PQL Practical Quantitation Limit


AUG 2 1 2003

coc No. <u>42865</u> w.	PAGE: 1 OF: 1 DATE: 7/3//03 DESTINATION: Alpha Analy trail	ANALYSIS REQUEST	Handling Remarks	ПОН Нгия Пяадиатг	V Please Note temp on	U chan offerstad.	Silica gel cloange	ler oil and Greaze.	MITTE WHETHER DIESEL		KEPUSENE PER DARIA	NU 8.4.03		PRINTED NAME COMPANY	SALL AUDIN VILL	LI HIT WO LO	
MFG, INC. Seatle Office DY RECORD AND REQUEST FOR ANALYSIS Coburn Office Coburn Office Osburn Office Coburn Office Coburn Office Osburn Office			Constitutents/Me		2 V V	S V V								SIGNATIRE			warn warn
MFG, INC. CORD AND REQUEST F Ban Francisco Office 180 Howard Street, Suite 200 180 Howard Street, Suite 200 180 Home (415) 495-7110- FAX (415) 495-7107 5-2271 Phone (415) 495-7110- FAX (415) 495-7107	ted Ed		Containers	VOLUME (ml/oz) FLTRATION*		Jomi C								U H			h ~~~ / 50
STODY RECOR	F NAME: <u>SPT - Arcas</u> PROJECT MANAGER: CARRIER/WAYBILL NO:		Preservation	20ΓD H ⁵ RO ⁴ HO ³ HCI Wgtμx _*	4		>									1	THE 2/11
CHAIN-OF-CUSTO Invine Office 17770 Cartwright Road Nume, CN 22614-5850 Teit. (949) 253-2954 Fax: (949) 253-2954	PROJECT NAME: PR CARRIE	SAMPLES	Sample			11,25								P		MFG	47074
Arcata Office S. Created Mice eats. C. 95231-6741 one (707) 826-8437 Fax: (303) 447-1836 Fax: (303) 447-1836	PROJECT NO: <u>O3022 9, 8</u> SAMPLER (Signature): <u>Oallar</u> METHOD OF SHIPMENT: <u>Currit</u>			Field Sample		D- Warer				RECEIVED		AUG 2 1 2003	Tetra Tech/MFG, Inc.	RELINQUISHED BY:	SIGNATURE PRINTED NAME	An Orin Healer	John 7 DAY

Page 1 of 1

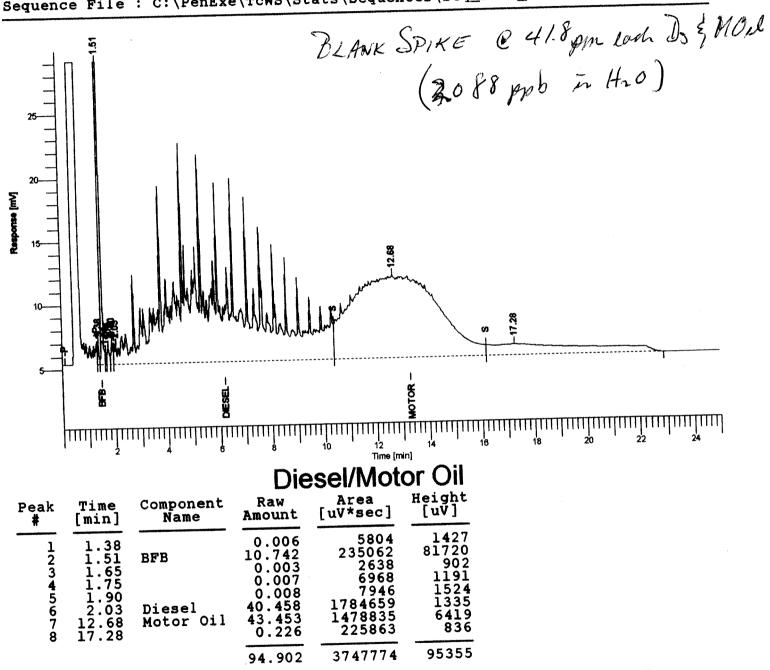
Software Version Sample Name Instrument Name	:	6.1.2.0.1:D19 KERO(40.76) DSMO	Date Data Acquisition Time		8/7/03 11:36:1 8/7/03 11:11:05 M
Rack/Vial Sample Amount Cycle	::	0/0 1.000000 13	Channel Operator Dilution Factor	::	A marvin 1.000000

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT764.TX0

Software Version Sample Name Instrument Name	:	6.1.2.0.1:D19 AH30714-BLK1	Date Data Acquisition Time		8/7/03 5:31:4 8/7/03 5:06:25
Rack/Vial Sample Amount Cycle		DsMo 0/0 1.000000 4	Channel Operator Dilution Factor	: : :	PM A marvin 1.000000

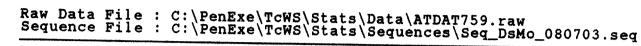
Result File : C:\PenExe\TcWS\Stats\Data\ATDAT755.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_080703.seq

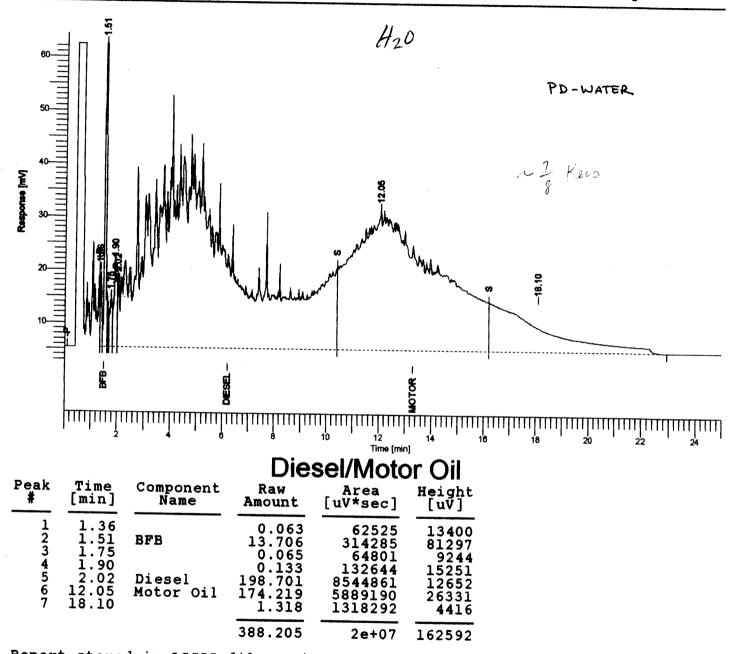
Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT755.TX0


uter -Nev a

Page 1 of

Page 1 of 1


Software Version Sample Name	:	6.1.2.0.1:D19 AH30714-BS1	Date Data Acquisition Time	8/7/03 6:12:14 /7/03 5:47:00
Instrument Name Rack/Vial Sample Amount Cycle	::	D sMo 0/0 1.000000 5	Channel Operator Dilution Factor	A marvin 1.000000


Result File : C:\PenExe\TcWS\Stats\Data\ATDAT756.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_080703.seq

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT756.TX0

			Page 1 of
Software Version	: 6.1.2.0.1:D19	 Date Data Acquisition Time Channel Operator Dilution Factor 	: 8/8/03 8:43
Sample Name	: A308008-01		: 8/7/03 7:48:2
Instrument Name	: DsMo		PM
Rack/Vial	: 0/0		: A
Sample Amount	: 1.000000		: marvin
Cycle	: 8		: 1.000000

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT759.TX0

APPENDIX B

Laboratory Reports and Chain-of-Custody Records for Soil Samples

¥ 1

AlphaAnalytical Laboratories Inc.208 Mason St. Ukiah, California 95482e-mail: clientservices@alpha-labs.com• Phone: (707) 468-0401• Fax: (707) 468-5267

18 August 2003

MFG, Inc - Arcata Attn: Ed Conti 875 Crescent Way Arcata, CA 95521 RE: SPI Arcata Sawmill Work Order: A308011

Enclosed are the results of analyses for samples received by the laboratory on 08/01/03 14:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ing UN

Cheryl Watson For Karen A. Daly Project Manager

RECEIVED

AUG 2 1 2003

7 . 5

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

<u>Order Number</u>	Receipt Date/Time	Client Code	Client PO/Reference
A308011	08/01/2003 14:20	MFGARC	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PD-NW-3'	A308011-01	Soil	07/31/03 15:18	08/01/03 14:20
PD-NE-2.5'	A308011-02	Soil	07/31/03 15:29	08/01/03 14:20
PD-NE2-1.5'	A308011-03	Soil	07/31/03 15:41	08/01/03 14:20
PD-SW-2.5'	A308011-04	Soil	07/31/03 15:36	08/01/03 14:20
PD-SW-2.5'	A308011-05	Soil	07/31/03 16:12	08/01/03 14:20
PD-NE2-1.5'	A308011-06	Soil	07/31/03 16:20	08/01/03 14:20
PD-NE-2.5'	A308011-07	Soil	07/31/03 00:00	08/01/03 14:20
PD-NW-3'	A308011-08	Soil	07/31/03 15:55	08/01/03 14:20

The results in this report apply to the samples analyzed in accordance with the chain of custody document. The reproduced in its entirety. alynci

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Jung M

Cheryl Watson For Karen A. Daly Project Manager

r[⊥]r ¥∵ ∉

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc - Arc: 875 Crescent W Arcata, CA 955 Attn: Ed Conti	ay				Report Date: Project No: Project ID:				
Order Number A308011	Receipt Date/Time 08/01/2003 14:20			<u>ent Code</u> FGARC		Client P	O/Reference		
		Alnha A		Laborato	rice Inc				
	METHOD	-	-	ANALYZED		RESULT		PQL	NOTE
PD-NW-3' (A308011-01)			Sample Ty			pled: 07/31/03	15.18		
Conventional Chemistry Parameter	rs by APHA/EPA Me		~ …	percon	Durin	51041 0 115 1105	13.10		
Oil & Grease (HEM-SG)	EPA 9071B	AH31502	08/13/03	08/14/03	1	20000 mg/l	κg	50	
TPH as Diesel and Motor Oil by El	PA Method 8015 Mod	lified							
TPH as Diesel	8015DRO	AH30518	08/05/03	08/05/03	40	1400 mg/k	æ	40	A-01
TPH as Motor Oil	71	11	"	"		9700 " [¯]	8	80	
Surrogate: 1,4-Bromofluorobenzer	ne "	"	"	n		%	21-110		S-06
TPH as Gasoline by GCFID/5030									
TPH as Gasoline	8015GRO	AH30711	08/03/03	08/07/03	1	140 mg/l	cg	1.0	G-1
Surrogate: 1,4-Bromofluorobenzer	1e "	"	H	"	····	105 %	60-156		
PD-NE-2.5' (A308011-02)			Sample Ty	pe: Soil	Sam	pled: 07/31/03	15:29		
Conventional Chemistry Parameter	rs by APHA/EPA Me			•					
Oil & Grease (HEM-SG)	EPA 9071B	AH31502	08/13/03	08/14/03	1	11000 mg/ł	кg	50	
TPH as Diesel and Motor Oil by EF	PA Method 8015 Mod	lified							
TPH as Diesel	8015DRO	AH30518	08/05/03	08/05/03	40	3100 mg/l	kg	40	A-01a
TPH as Motor Oil	"	"	**	11	"	8800 "	0	80	
Surrogate: 1,4-Bromofluorobenzer	1e "	H	"	"	 An andre an extension of a single constant and an extension of a single constant of the single consta	140 %	21-110		S-02
TPH as Gasoline by GCFID/5030									
TPH as Gasoline	8015GRO	AH30711	08/03/03	08/06/03	1	480 mg/l	κg	1.0	G-1
Surrogate: 1,4-Bromofluorobenzer	1e "	11	"	H		111 %	60-156		
PD-NE2-1.5' (A308011-03)			Sample Ty	pe: Soil	Sam	pled: 07/31/03	15:41		
Conventional Chemistry Parameter	rs by APHA/EPA Me		•			-			
Oil & Grease (HEM-SG)	EPA 9071B	AH31502	08/13/03	08/14/03	1	25000 mg/l	٨g	50	

CHEMICAL EXAMINATION REPORT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Juny M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

Page 2 of 30

1 j 7 - 1

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc - Arc		HEMIC	AL EXA	MINATIO	N REPORT			Page 3 of 30
875 Crescent W Arcata, CA 955 Attn: Ed Conti	⁷ ay				Project No:	08/18/03 12:55 030229.8 SPI Arcata Sawmil	l	
<u>Order Number</u> A308011	Receipt Date/Time 08/01/2003 14:20			<u>ent Code</u> FGARC		Client PO/Reference	<u>:e</u>	
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
PD-NE2-1.5' (A308011-03)	······································		Sample Ty	pe: Soil	Sam	oled: 07/31/03 15:41		
TPH as Diesel and Motor Oil by E	PA Method 8015 Mod	lified						
TPH as Diesel	8015DRO	AH30518	08/05/03	08/05/03	40	5500 mg/kg	40	A-01b
TPH as Motor Oil	11	"	"	"	11	7000 "	80	
Surrogate: 1,4-Bromofluorobenze	ne "	H	<i>n</i>	"		581 % 21-110		S-02
TPH as Gasoline by GCFID/5030								
TPH as Gasoline	8015GRO	AH30711	08/03/03	08/06/03	1	2700 mg/kg	1.0	G-1
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	п		117 % 60-156		
PD-SW-2.5' (A308011-04)			Sample Ty	pe: Soil	Sam	oled: 07/31/03 15:36		
Conventional Chemistry Paramete	rs by APHA/EPA Me	thods		-				
Oil & Grease (HEM-SG)	EPA 9071B	AH31502	08/13/03	08/14/03	1	6000 mg/kg	50	
TPH as Diesel and Motor Oil by E	PA Method 8015 Mod	ified						
TPH as Diesel	8015DRO	AH30518	08/05/03	08/05/03	30	610 mg/kg	30	A-01
TPH as Motor Oil	n	**	11	11	**	2500 "	60	
Surrogate: 1,4-Bromofluorobenze	ne "	n	n	"		39.4 % 21-110		
TPH as Gasoline by GCFID/5030								
TPH as Gasoline	8015GRO	AH30711	08/03/03	08/07/03	1 .	120 mg/kg	1.0	G-1
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		109 % 60-156		
PD-SW-2.5' (A308011-05)			Sample Ty	pe: Soil	Sam	oled: 07/31/03 16:12		
Volatile Organic Compounds by E	PA Methods 8260B/50			-				R-06
Acetone	8260B	AH30902	08/01/03	08/08/03	173.2	ND mg/kg	3.5	
Benzene	"	"	łt	**	*1	ND "	0.87	
Bromobenzene	"	"	Ħ	"	11	ND "	0.87	
Bromochloromethane	11	"	**	**	11	ND "	0.87	
Bromodichloromethane	11	"	**	н	11	ND "	0.87	
Bromoform	"	"	"	**	"	ND "	0.87	
Bromomethane	**	**		**	"	ND "	0.87	
n-Butylbenzene	"	"	"	"	"	ND "	0.87	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analyzed to the samples of th

Jung M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

۲¹ ۲

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

.		HEMIC	CAL EXA	MINATIO	N REPORT			Page 4 of 30
MFG, Inc - At								
875 Crescent V						08/18/03 12:55		
Arcata, CA 95					Project No:			
Attn: Ed Cont	i				Project ID:	SPI Arcata Sawmill		
Order Number	Receipt Date/Time		C	lient Code		Client PO/Reference		
A308011	08/01/2003 14:20			MFGARC		Cheffer 1 O/Reference		
	08/01/2003 14:20		I,					
		Alpha	Analytica	al Laborato	ries, Inc.			
	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
D-SW-2.5' (A308011-05)			Sample T	ype: Soil	Sam	pled: 07/31/03 16:12		
Volatile Organic Compounds by	EPA Methods 8260B/50)35 (cont'o	1)					R-06
sec-Butylbenzene	8260B	"	"	08/08/03	н	ND "	0.87	
tert-Butylbenzene	"	"	**	"	**	ND "	0.87	
Carbon tetrachloride	"	11	**	"	n	ND "	0.87	
Chlorobenzene	11	"	**	"	"	ND "	0.87	
Chloroethane	"	**	"	"	11	ND "	0.87	
Chloroform	n	н	н	"	11	ND "	0.87	
Chloromethane	11	11	n	"	u	ND "	0.87	
2-Chlorotoluene	II.	Ħ	11	0		ND "	0.87	
4-Chlorotoluene	"	"	"		"	ND "	0.87	
Dibromochloromethane	"	"	н	11	"	ND "	0.87	
1,2-Dibromo-3-chloropropane	"		"	11	н	ND "	0.87	
1,2-Dibromoethane (EDB)	Ħ	11	"	**	11	ND "	0.87	
Dibromomethane	н	н	"	ч	n	ND "	0.87	
1,2-Dichlorobenzene	п	"	"	11	н	ND "	0.87	
1,3-Dichlorobenzene	н	"	**	Ħ	н	ND "	0.87	
1,4-Dichlorobenzene	"		11.	*	11	ND "	0.87	
Dichlorodifluoromethane		"	н	u	"	ND "	0.87	
1,1-Dichloroethane	"	11	**	**	"	ND "	0.87	
1,2-Dichloroethane	**	**	**	**	**	ND "	0.87	
1,1-Dichloroethene	"	*1	11	**		ND "	0.87	
cis-1,2-Dichloroethene	**	11	**	"	"	ND "	0.87	
trans-1,2-Dichloroethene	"	11	**	"	"	ND "	0.87	
1,2-Dichloropropane		**	11	"	"	ND "	0.87	
1,3-Dichloropropane	"	n	**	"	**	ND "	0.87	
2,2-Dichloropropane	**	**	"	**		ND "	0.87	
1,1-Dichloropropene	"	"	u		н	ND "	0.87	
cis-1,3-Dichloropropene	"	n	u	"	**	ND "	0.87	
trans-1,3-Dichloropropene	"		"	**	**	ND "	0.87	
Ethylbenzene	"	н	"	**	**	ND "	0.87	
Hexachlorobutadiene	11		н	**	"	ND "	0.87	
Isopropylbenzene	"		н	11	11	ND "	0.87	

The results in this report to the samples analyzed in accordance with the chain of custody document. This analytical report hus be reproduced in its entirety.

lung

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

11.1

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 5 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521

Report Date: 08/18/03 12:55 Project No: 030229.8 ...

Attn: Ed Conti	Project ID: SPI Arcata Sawmill									
<u>Drder Number</u> 4308011	Receipt Date/Time 08/01/2003 14:20			lient Code 1FGARC		Client PC	D/Reference			
*********		Alpha A	nalytica	l Laborator	ries, Inc.					
	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE		
D-SW-2.5' (A308011-05)		S	Sample T	ype: Soil	San	npled: 07/31/03	16:12			
Volatile Organic Compounds by El	PA Methods 8260B/50	35 (cont'd)		-		-		R-06		
p-Isopropyltoluene	8260B	11	**	08/08/03	**	ND "	0.87			
Methyl ethyl ketone	н	n	**	п	**	ND "	2.6			
Methyl isobutyl ketone	"	n	"			ND "	1.7			
Methyl tert-butyl ether	"	н	**	"		ND "	0.87			
Methylene chloride	"		н	ч		ND "	0.87			
Naphthalene	"	"	н	п	**	ND "	0.87			
n-Propylbenzene	"			"	"	ND "	0.87			
Styrene	n			н	н	ND "	0.87			
1,1,1,2-Tetrachloroethane	"	н		"	"	ND "	0.87			
1,1,2,2-Tetrachloroethane	11	н	н	"	19	ND "	0.87			
Tetrachloroethene	11	0		"	"	ND "	0.87			
Toluene	11	**	н	"	**	ND "	0.87			
1,2,3-Trichlorobenzene	11	н	"	"	**	ND "	0.87			
1,2,4-Trichlorobenzene	11	**	н	11	"	ND "	0.87			
1,1,1-Trichloroethane	"	"	**	"	"	ND "	0.87			
1,1,2-Trichloroethane	н	**	"	н	11	ND "	0.87			
Trichloroethene	u.		"	11	**	ND "	0.87			
Trichlorofluoromethane	11		"		11	ND "	0.87			
Trichlorotrifluoroethane	"	11	"	11	11	ND "	0.87			
1,2,3-Trichloropropane	**	"	**	11	*1	ND "	0.87			
1,2,4-Trimethylbenzene	11		"		**	ND "	0.87			
1,3,5-Trimethylbenzene	"	**	**	11		ND "	0.87			
Vinyl chloride	н	**	**	11	"	ND "	0.87			
m,p-Xylene	**	н	н	11	н	ND "	0.87			
o-Xylene	н	н	**	11	н	ND "	0.87			
Xylenes (total)	H		"	n	"	ND "	0.87			
Surrogate: Dibromofluoromethan	e "	"	"	"		93.2 %	57-144			
Surrogate: Toluene-d8	"	"	"	"		90.1 %	65-127			
Surrogate: Bromofluorobenzene	"	"	n	"		86.1 %	56-130			

PD-NE2-1.5' (A308011-06)

Sample Type: Soil

Sampled: 07/31/03 16:20

The results in this report the tothe sampler makered in accordance with the chain of custody document. This analytical report must be enroduced in its entirety.

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Ung l

Cheryl Watson For Karen A. Daly Project Manager

e * ',

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 6 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Attn: Ed Cont	Project ID: SPI Arcata Sawmill									
Order Number A308011	Receipt Date/Time 08/01/2003 14:20			<u>ent Code</u> FGARC		Client PO/Reference	<u>ce</u>			
		Alpha A	nalytical	Laborato	ries, Inc.					
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE		
PD-NE2-1.5' (A308011-06)			Sample Ty	pe: Soil	Sa	mpled: 07/31/03 16:20				
Volatile Organic Compounds by	EPA Methods 8260B/5	035				·		R-00		
Acetone	8260B	AH30902	08/01/03	08/07/03	8660	ND mg/kg	170			
Benzene	"	н	"		н	ND "	43			
Bromobenzene	"	Ħ	**	"	**	ND "	43			
Bromochloromethane	"	**	11		н	ND "	43			
Bromodichloromethane	11	**		11	н	ND "	43			
Bromoform	"	**	"		п	ND "	43			
Bromomethane	11	"	"	0	n	ND "	43			
n-Butylbenzene	"	11	"	"	"	ND "	43			
sec-Butylbenzene	"	**	*	"	"	ND "	43			
tert-Butylbenzene	"	**	"		**	ND "	43			
Carbon tetrachloride	п	*	**		"	ND "	43			
Chlorobenzene	11	"	"	**	н	ND "	43			
Chloroethane	н	**	"	"	"	ND "	43			
Chloroform	н	**	"	**	"	ND "	43			
Chloromethane	tt.	**	"	"	u	ND "	43			
2-Chlorotoluene	11	**	**	**	**	ND "	43			
4-Chlorotoluene	"	"	**	**	n	ND "	43			
Dibromochloromethane	"	"	"	"	n	ND "	43			
1,2-Dibromo-3-chloropropane		"	**	**	11	ND "	43			
1,2-Dibromoethane (EDB)	"	н	"	"	"	ND "	43			
Dibromomethane	15	"	"		u	ND "	43			
1,2-Dichlorobenzene	**	"	"	"	"	ND "	43			
1,3-Dichlorobenzene	"	n	H	"	*1	ND "	43			
1,4-Dichlorobenzene	"			**	**	ND "	43			
Dichlorodifluoromethane	11	н		"	"	ND "	43			
1,1-Dichloroethane	11	"	"	**	"	ND "	43			
1,2-Dichloroethane	11	"	"	**	"	ND "	43			
1,1-Dichloroethene	11			"	"	ND "	43			
cis-1,2-Dichloroethene	11	"	"	**	"	ND "	43			
trans-1,2-Dichloroethene	**	11	н	"	"	ND "	43			
1,2-Dichloropropane	ч	н	. #	**	"	ND "	43			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. The anytica report nust be reproduced in its entirety.

lungl

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

4 1 8

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 7 of 30

MFG, Inc - Arcata
875 Crescent Way
Arcata, CA 95521
Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Attn: Ed Con	tı		Project ID: SPI Arcata Sawmill									
<u>Order Number</u> A308011	Receipt Date/Time 08/01/2003 14:20			lient <u>Code</u> 1FGARC		Client PO/Reference	<u>ce</u>					
		Alpha A	Analytica	l Laborato	ries, Inc.							
	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE				
PD-NE2-1.5' (A308011-06)			Sample T	ype: Soil	Sa	mpled: 07/31/03 16:20						
Volatile Organic Compounds by	y EPA Methods 8260B/50)35 (cont'd)					R-06				
1,3-Dichloropropane	8260B	tt	н	08/07/03	н	ND "	43					
2,2-Dichloropropane	**	"	"	**	н	ND "	43					
1,1-Dichloropropene	н	11	11	"	11	ND "	43					
cis-1,3-Dichloropropene	11	11	n	11	17	ND "	43					
trans-1,3-Dichloropropene	"	н	11	11	"	ND "	43					
Ethylbenzene	17	н	"	11	"	ND "	43					
Hexachlorobutadiene	"	"	11	n	"	ND "	43					
Isopropylbenzene	"	11	"	н	15	ND "	43					
p-Isopropyltoluene	"	"	"	n	u	ND "	43					
Methyl ethyl ketone		"	"	n	"	ND "	130					
Methyl isobutyl ketone	"	**	н	11	ч	ND "	87					
Methyl tert-butyl ether	11	**	н	11	н	ND "	43					
Methylene chloride	"	**	**	u.	ч	ND "	43					
Naphthalene	11	"	**		"	ND "	43					
n-Propylbenzene	11		11	"	"	ND "	43					
Styrene	"	"	u	"	"	ND "	43					
1,1,1,2-Tetrachloroethane	"	F 1	**	"	"	ND "	43					
1,1,2,2-Tetrachloroethane	"	11	**	"	**	ND "	43					
Tetrachloroethene	н	**	**	**	n	ND "	43					
Toluene	н	**	f1	**		ND "	43					
1,2,3-Trichlorobenzene	н	"	11	"	"	ND "	43					
1,2,4-Trichlorobenzene	11	п	11		**	ND "	43					
1,1,1-Trichloroethane	11	"	**	"	н	ND "	43					
1,1,2-Trichloroethane	"	"	н	11	"	ND "	43					
Trichloroethene	**	"	"	11	"	ND "	43					
Trichlorofluoromethane	"	н	н	н	"	ND "	43					
Trichlorotrifluoroethane	**	"	u	**	11	ND "	43					
1,2,3-Trichloropropane	*	н		н	**	ND "	43					
1,2,4-Trimethylbenzene	**	"		"	**	ND "	43					
1,3,5-Trimethylbenzene		"	n	**	"	ND "	43					
Vinyl chloride	"			**	"	ND "	43					

The results in this proof apply to the samples analyzed in accordance with the chain of custody document. This analyzed is export in subserver to the reproduced in its entirety.

lung

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

, ¹¹

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	CI	HEMIC	AL EXA	MINATIO	N REPOR	Т		Page 8 of 30
MFG, Inc - Arc 875 Crescent W Arcata, CA 955 Attn: Ed Conti	ata Yay 21				Report Da Project I	ate: 08/18/03 12:55 No: 030229.8 ID: SPI Arcata Sawn	nill	
Order Number A308011	Receipt Date/Time 08/01/2003 14:20			<u>ent Code</u> FGARC		Client PO/Refer	ence	
	***************	Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
PD-NE2-1.5' (A308011-06)			Sample Ty	pe: Soil	S	ampled: 07/31/03 16:20		<u> </u>
Volatile Organic Compounds by E	PA Methods 8260B/50			•		•		R-06
m,p-Xylene	8260B	"	н	08/07/03	"	ND "	43	
o-Xylene	"	"	17	"		ND "	43	
Xylenes (total)	11	"	"	"	"	ND "	43	
Surrogate: Dibromofluoromethan	e "	н	#	"		94.3 % 57-	144	······································
Surrogate: Toluene-d8	"	"	"	"		90.0 % 65-		
Surrogate: Bromofluorobenzene	"	"	"	"		85.9 % 56-	130	
PD-NE-2.5' (A308011-07)			Sample Ty	ne: Soil	s	ampled: 07/31/03 00:00		
Volatile Organic Compounds by E.	PA Methods 8260B/50		Sumple 13	pet Son	b	ampicu. 07/51/05 00.00		R-06
Acetone	8260B	AH30902	08/01/03	08/08/03	173.2	ND mg/kg	3.5	11-00
Benzene	"	11	"	"	"	ND "	0.87	
Bromobenzene	11	"	11	"	**	ND "	0.87	
Bromochloromethane	11	11	н	"		ND "	0.87	
Bromodichloromethane	11	"	н	н		ND "	0.87	
Bromoform	11	"		н		ND "	0.87	
Bromomethane	**	"	"	"		ND "	0.87	
n-Butylbenzene	11	"	n			ND "	0.87	
sec-Butylbenzene	11	11		"	"	ND "	0.87	
tert-Butylbenzene	11	n	U	u		ND "	0.87	
Carbon tetrachloride	**	11	"	"	"	ND "	0.87	
Chlorobenzene	11	"	0	"		ND "	0.87	
Chloroethane	"	"	"			ND "	0.87	
Chloroform	"	19	н	"		ND "	0.87	
Chloromethane	"	11		9	н .	ND "	0.87	
2-Chlorotoluene	"	"			"	ND "	0.87	
4-Chlorotoluene	"	11		"	"	ND "	0.87	
Dibromochloromethane	"	11		"	"	ND "	0.87	
1,2-Dibromo-3-chloropropane	"	н		н	"	ND "	0.87	
1,2-Dibromoethane (EDB)	и	"	н	11	н	ND "	0.87	
Dibromomethane	11	"	n	11	**	ND "	0.87	
1,2-Dichlorobenzene	11	11	"	U	и	ND "	0.87	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This material series where the reproduced in its entirety.

Jung M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 9 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Atun. Ed Conti			Troject ID. SI I Alcata Sawiiiii									
<u>Order Number</u> A308011	Receipt Date/Time 08/01/2003 14:20			<u>ent Code</u> FGARC		Client PO/Referen	<u>ce</u>					
		Alpha	Analytical	Laborato	ries, Inc.							
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE				
PD-NE-2.5' (A308011-07)			Sample Ty	pe: Soil	San	npled: 07/31/03 00:00						
Volatile Organic Compounds b	y EPA Methods 8260B/50	035 (cont'd	I)			•		R-0				
1,3-Dichlorobenzene	8260B	"	н	08/08/03	**	ND "	0.87					
1,4-Dichlorobenzene	11	"	"	**	"	ND "	0.87					
Dichlorodifluoromethane	н	**		**	**	ND "	0.87					
1,1-Dichloroethane	"	"	н	**	н	ND "	0.87					
1,2-Dichloroethane	11	"	**	"	"	ND "	0.87					
1,1-Dichloroethene	"	**	н	**	n	ND "	0.87					
cis-1,2-Dichloroethene	"	н	11	**	n	ND "	0.87					
trans-1,2-Dichloroethene	"	11	"	**	н	ND "	0.87					
1,2-Dichloropropane	**	**	**	**	н	ND "	0.87					
1,3-Dichloropropane	н	"	"	"	n	ND "	0.87					
2,2-Dichloropropane	n	"	"	*1	4	ND "	0.87					
1,1-Dichloropropene	*1	51	"	**	11	ND "	0.87					
cis-1,3-Dichloropropene	"	"		"	**	ND "	0.87					
trans-1,3-Dichloropropene	11	**	**	**		ND "	0.87					
Ethylbenzene	"	**		**	**	ND "	0.87					
Hexachlorobutadiene	"	"	**	**	11	ND "	0.87					
Isopropylbenzene		"	89	**	11	ND "	0.87					
p-Isopropyltoluene	"		**	**	"	ND "	0.87					
Methyl ethyl ketone	"	"	u	"	**	ND "	2.6					
Methyl isobutyl ketone	"			"	*1	ND "	1.7					
Methyl tert-butyl ether	11		п	"	*1	ND "	0.87					
Methylene chloride	11		"	"	"	ND "	0.87					
Naphthalene	11			**	"	ND "	0.87					
n-Propylbenzene	"	"	н	"	u	ND "	0.87					
Styrene	11	"		"	"	ND "	0.87					
1,1,1,2-Tetrachloroethane	11	"	0		"	ND "	0.87					
1,1,2,2-Tetrachloroethane	H	11	n	"	"	ND "	0.87					
Tetrachloroethene	11	"		"	11	ND "	0.87					
Toluene	11	"	н			ND "	0.87					
1,2,3-Trichlorobenzene	11	**	"	"	11	ND "	0.87					
1,2,4-Trichlorobenzene		н		n	u	ND "	0.87					

The results in this reperparent is the paneles analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lungl

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

с ^{с.} т

CHEMICAL EXAMINATION REPORT

Page 10 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn. Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 :11 n ` iect ID: SPI Arcata S

Attn: Ed Conti	Attn: Ed Conti				Projec	t ID: SPI Arcata Sawmi	11	
<u>Order Number</u> A308011	Receipt Date/Time 08/01/2003 14:20			<u>ent Code</u> FGARC		Client PO/Referen	ice	
		Alpha A	Analytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
PD-NE-2.5' (A308011-07)			Sample Ty	pe: Soil		Sampled: 07/31/03 00:00		
Volatile Organic Compounds by E	PA Methods 8260B/50	035 (cont'd))					R-06
1,1,1-Trichloroethane	8260B	**	11	08/08/03	**	ND "	0,87	
1,1,2-Trichloroethane	н	**	Ħ	**	n	ND "	0.87	
Trichloroethene	"	"	н	11	**	ND "	0.87	
Trichlorofluoromethane	"	"	11	**	11	ND "	0.87	
Trichlorotrifluoroethane	11	"	0	н	11	ND "	0.87	
1,2,3-Trichloropropane	11	"	11	11	n	ND "	0.87	
1,2,4-Trimethylbenzene	**	**		н	н	ND "	0.87	
1,3,5-Trimethylbenzene	11	**		н	н	ND "	0.87	
Vinyl chloride	"		ч	"		ND "	0.87	
m,p-Xylene	H	"	0	n	"	ND "	0.87	
o-Xylene	u	н	11	"		ND "	0.87	
Xylenes (total)	н	н	Ħ	Ħ	11	ND "	0.87	
Surrogate: Dibromofluoromethan	e "	u	"	n		91.7% 57-14	4	
Surrogate: Toluene-d8	n	"	n	"		88.5 % 65-12	7	
Surrogate: Bromofluorobenzene	"	"	"	"		89.5 % 56-13	0	
PD-NW-3' (A308011-08)			Sample Ty	pe: Soil		Sampled: 07/31/03 15:55		
Volatile Organic Compounds by E	PA Methods 8260B/5	035						R-06
Acetone	8260B	AH30902	08/01/03	08/08/03	173.2	ND mg/kg	3.5	

~								
Acetone	8260B	AH30902	08/01/03	08/08/03	173.2	ND mg/kg	3.5	
Benzene	**	"	**	**	"	ND "	0.87	
Bromobenzene	"	11	**	**	**	ND "	0.87	
Bromochloromethane	"	"	88	**	Ħ	ND "	0.87	
Bromodichloromethane	"	u	**	"	"	ND "	0.87	
Bromoform	п	11	**	**	"	ND "	0.87	
Bromomethane	"	**	**	**	11	ND "	0.87	
n-Butylbenzene	"	11	**			ND "	0.87	
sec-Butylbenzene		"	17	**	"	ND "	0.87	
tert-Butylbenzene	"	u	"	"	**	ND "	0.87	
Carbon tetrachloride		"	"	11	n	ND "	0.87	
Chlorobenzene	"	"	**	"	"	ND "	0.87	
Chloroethane	"	11	**	**	n	ND "	0.87	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. The analytic trapy is the reproduced in its entirety.

Juny M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

, ¹,

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 11 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521

Report Date: 08/18/03 12:55 Project No: 030229.8

Attn: Ed Cont		Project ID: SPI Arcata Sawmill						
Order Number A308011	Receipt Date/Time 08/01/2003 14:20			lient Code ⁄IFGARC		Client PO/Referen	<u>ce</u>	
	· · · · · · · · · · · · · · · · · · ·	Alpha A	nalytics	al Laborato	ories, Inc.			
	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
PD-NW-3' (A308011-08)			Sample T	ype: Soil	Sar	npled: 07/31/03 15:55		
Volatile Organic Compounds by	EPA Methods 8260B/50	35 (cont'd)						R-06
Chloroform	8260B	"	17	08/08/03	"	ND "	0.87	
Chloromethane	"	"	"	"	"	ND "	0.87	
2-Chlorotoluene	**	**	87	"	"	ND "	0.87	
4-Chlorotoluene	"	"	н	**	**	ND "	0.87	
Dibromochloromethane	"	11	"	**	н	ND "	0.87	
1,2-Dibromo-3-chloropropane	"	**	"		**	ND "	0.87	
1,2-Dibromoethane (EDB)	11	11	"		**	ND "	0.87	
Dibromomethane	"	н	"	14	"	ND "	0.87	
1,2-Dichlorobenzene	**	**	н	"	"	ND "	0.87	
1,3-Dichlorobenzene	"	**	"	**	**	ND "	0.87	
1,4-Dichlorobenzene	"	"		**	"	1.1 "	0.87	
Dichlorodifluoromethane	0	н	**	94	"	ND "	0.87	
1,1-Dichloroethane	11	"	u	••	"	ND "	0.87	
1,2-Dichloroethane	"	"		"	"	ND "	0.87	
1,1-Dichloroethene	n	"	11	**	"	ND "	0.87	
cis-1,2-Dichloroethene	· · · ·	"	*1	11	n	ND "	0.87	
trans-1,2-Dichloroethene	11	"	н	**	11	ND "	0.87	
1,2-Dichloropropane	н	*1	**	"	"	ND "	0.87	
1,3-Dichloropropane	11	Ħ	н	"	"	ND "	0.87	
2,2-Dichloropropane	n	**	н		"	ND "	0.87	
1,1-Dichloropropene	"	"	н		11	ND "	0.87	
cis-1,3-Dichloropropene	"	н	11	"	11	ND "	0.87	
trans-1,3-Dichloropropene	0	**	н	"	n	ND "	0.87	
Ethylbenzene	"	**	"	"	15	ND "	0.87	
Hexachlorobutadiene	"	н	"		11	ND "	0.87	
Isopropylbenzene	"	**	"	"	**	ND "	0.87	
p-Isopropyltoluene	"	11	"	11	"	ND "	0.87	
Methyl ethyl ketone	"	Ħ	"	"	"	ND "	2.6	
Methyl isobutyl ketone	"	11	**	"	"	ND "	1.7	
Methyl tert-butyl ether	"	"		11	**	ND "	0.87	
Methylene chloride	"	"	"	"	"	ND "	0.87	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. The deliverer of the reproduced in its entirety.

lungl

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Cheryl Watson For Karen A. Daly Project Manager

۰. ۲ i

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 12 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn. Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Attn: Ed Conti		Project ID: SPI Arcata Sawmill									
<u>Order Number</u> A308011	Receipt Date/Time 08/01/2003 14:20			<u>lient Code</u> 1FGARC		Client PO/Reference					
		Alpha A	Analytica	l Laborato	ries, Inc.						
	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE			
PD-NW-3' (A308011-08)			Sample T	ype: Soil	S	ampled: 07/31/03 15	5:55				
Volatile Organic Compounds by E	PA Methods 8260B/50	035 (cont'd)					R-06			
Naphthalene	8260B	11	"	08/08/03	"	ND "	0.87				
n-Propylbenzene	**	11	**			ND "	0.87				
Styrene	11	n	"	**	**	ND "	0.87				
1,1,1,2-Tetrachloroethane	"	n	"	"	11	ND "	0.87				
1,1,2,2-Tetrachloroethane	"	11	11	11	"	ND "	0.87				
Tetrachloroethene	u .	11	"	**	**	ND "	0.87				
Toluene	"	11	"	**		ND "	0.87				
1,2,3-Trichlorobenzene	"	11	11	**		ND "	0.87				
1,2,4-Trichlorobenzene	**	11	11	**		ND "	0.87				
1,1,1-Trichloroethane	"	11	11	11	"	ND "	0.87				
1,1,2-Trichloroethane	**	11	11	**	**	ND "	0.87				
Trichloroethene	"	11	n	11	**	ND "	0.87				
Trichlorofluoromethane	"	"	н	**	"	ND "	0.87				
Trichlorotrifluoroethane		"	"	"	12	ND "	0.87				
1,2,3-Trichloropropane	"	"	11		"	ND "	0.87				
1,2,4-Trimethylbenzene	"	"	11		"	ND "	0.87				
1,3,5-Trimethylbenzene	"	"	"	11	**	ND "	0.87				
Vinyl chloride	**	n	"	**	**	ND "	0.87				
m,p-Xylene	"		n	**	11	ND "	0.87				
o-Xylene	11	"	"	**	HT .	ND "	0.87				
Xylenes (total)	n	"	n	"	*1	ND "	0.87				
Surrogate: Dibromofluoromethan	e "	"	"	"		89.7 %	57-144				
Surrogate: Toluene-d8	n	"	"	11		88.8 %	65-127				
Surrogate: Bromofluorobenzene	"	"	"	"		88.8 %	56-130				

The results in this report any others analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Jung U

Cheryl Watson For Karen A. Daly Project Manager

4 j - 4

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 13 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number Rec		Client Code	Client PO/Reference
A308011 08/0	/01/2003 14:20	MFGARC	

SourceResult

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
Blank (AH30902-BLK1)				Prepared	& Analyze	ed: 08/07/	03			
Acetone	ND	3.5	mg/kg							
Benzene	ND	0.87	н							
Bromobenzene	ND	0.87								
Bromochloromethane	ND	0.87								
Bromodichloromethane	ND	0.87	"							
Bromoform	ND	0.87								
Bromomethane	ND	0.87	"							
n-Butylbenzene	ND	0.87	**							
sec-Butylbenzene	ND	0.87	**							
tert-Butylbenzene	ND	0.87	"							
Carbon tetrachloride	ND	0.87	**							
Chlorobenzene	ND	0.87	"							
Chloroethane	ND	0.87	**							
Chloroform	ND	0.87	"							
Chloromethane	ND	0.87	"							
2-Chlorotoluene	ND	0.87	11							
4-Chlorotoluene	ND	0.87	"							
Dibromochloromethane	ND	0.87	"							
1,2-Dibromo-3-chloropropane	ND	0.87	"							
1,2-Dibromoethane (EDB)	ND	0.87	н							
Dibromomethane	ND	0.87	n							
1,2-Dichlorobenzene	ND	0.87	н							
1,3-Dichlorobenzene	ND	0.87	"							
1,4-Dichlorobenzene	ND	0.87	**							
Dichlorodifluoromethane	ND	0.87	"							
1,1-Dichloroethane	ND	0.87	"							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This eproduced in its entirety. CEIVE

lung M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 14 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 12:55
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Order Number A308011	Receipt Date/Time 08/01/2003 14:20	Client Code	Client PO/Reference
	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
Blank (AH30902-BLK1)				Prepared	& Analyze	ed: 08/07/	03			
1,2-Dichloroethane	ND	0.87	II							
1,1-Dichloroethene	ND	0.87	**							
cis-1,2-Dichloroethene	ND	0.87	**							
trans-1,2-Dichloroethene	ND	0.87	"							
1,2-Dichloropropane	ND	0.87	Ħ							
1,3-Dichloropropane	ND	0.87	*1							
2,2-Dichloropropane	ND	0.87	11							
1,1-Dichloropropene	ND	0.87	"							
cis-1,3-Dichloropropene	ND	0.87	"							
trans-1,3-Dichloropropene	ND	0.87	"							
Ethylbenzene	ND	0.87	Ħ							
Hexachlorobutadiene	ND	0.87	11							
Isopropylbenzene	ND	0.87	n							
p-Isopropyltoluene	ND	0.87	"							
Methyl ethyl ketone	ND	2.6	n							
Methyl isobutyl ketone	ND	1.7	"							
Methyl tert-butyl ether	ND	0.87	n							
Methylene chloride	ND	0.87	"							
Naphthalene	ND	0.87	"							
n-Propylbenzene	ND	0.87	11							
Styrene	ND	0.87	"							
1,1,1,2-Tetrachloroethane	ND	0.87	11							
1,1,2,2-Tetrachloroethane	ND	0.87	Ħ							
Tetrachloroethene	ND	0.87	"							
Toluene	ND	0.87	"							
1,2,3-Trichlorobenzene	ND	0.87	"							
1,2,4-Trichlorobenzene	ND	0.87	"							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This an ZEIVED^{oduced} in its entirety. cui

Jung R

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 15 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 12:55
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308011	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
Blank (AH30902-BLK1)				Prepared	& Analyze	ed: 08/07/0	03			
1,1,1-Trichloroethane	ND	0.87	H							
1,1,2-Trichloroethane	ND	0.87	**							
Trichloroethene	ND	0.87	**							
Trichlorofluoromethane	ND	0.87								
Trichlorotrifluoroethane	ND	0.87	11							
1,2,3-Trichloropropane	ND	0.87	**							
1,2,4-Trimethylbenzene	ND	0.87	11							
1,3,5-Trimethylbenzene	ND	0.87	11							
Vinyl chloride	ND	0.87	п							
m,p-Xylene	ND	0.87	"							
o-Xylene	ND	0.87	**							
Xylenes (total)	ND	0.87	**							
Surrogate: Dibromofluoromethane	4.07		"	4.33		94.0	57-144			
Surrogate: Toluene-d8	4.01		н	4.33		92.6	65-127			
Surrogate: Bromofluorobenzene	3.75		"	4.33		86.6	56-130			
LCS (AH30902-BS1)				Prepared	& Analyz	ed: 08/07/	03			
Acetone	6.40	3.5	mg/kg	6.84		93.6	36-154			**************************************
Benzene	1.71	0.87	n	1.73		98.8	72-123			
Bromobenzene	1.68	0.87	"	1.73		97.1	71-127			
Bromochloromethane	1.80	0.87	*1	1.73		104	62-132			
Bromodichloromethane	2.22	0.87	n	1.73		128	57-125			QL-03
Bromoform	2.11	0.87	"	1.73		122	57-138			
Bromomethane	1.89	0.87	'n	1.73		109	56-150			
n-Butylbenzene	1.67	0.87	"	1.73		96.5	68-121			
sec-Butylbenzene	1.68	0.87	н	1.73		97.1	68-126			
tert-Butylbenzene	1.69	0.87		1.73		97.7	66-124			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. be reproduced in its entirety. CEIV

lung M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

`, ь

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 16 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308011	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

	_			Spike	Source	A/DEC	%REC		RPD	171
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH30902 - EPA 5035 MS

LCS (AH30902-BS1)				Prepared & Ar	alyzed: 08/07/	03	
Carbon tetrachloride	2.36	0.87	0	1.73	136	57-133	QM-03
Chlorobenzene	1.68	0.87	**	1.73	97.1	76-117	
Chloroethane	1.63	0.87	"	1.73	94.2	59-128	
Chloroform	1.80	0.87		1.73	104	60-128	
Chloromethane	1.56	0.87	"	1.73	90.2	45-140	
2-Chlorotoluene	1.74	0.87	н	1.73	101	67-127	
4-Chlorotoluene	1.70	0.87	11	1.73	98.3	65-125	
Dibromochloromethane	2.20	0.87	**	1.73	127	56-141	
1,2-Dibromo-3-chloropropane	2.16	0.87	"	1.73	125	61-134	
1,2-Dibromoethane (EDB)	1.77	0.87		1.73	102	70-132	
Dibromomethane	1.81	0.87	н	1.73	105	66-123	
1,2-Dichlorobenzene	1.72	0.87	Ħ	1.73	99.4	70-121	
1,3-Dichlorobenzene	1.69	0.87	11	1.73	97.7	65-124	
1,4-Dichlorobenzene	1.74	0.87	**	1.73	101	71-120	
Dichlorodifluoromethane	1.56	0.87		1.73	90.2	52-145	
1,1-Dichloroethane	1.75	0.87	H	1.73	. 101	58-136	
1,2-Dichloroethane	1.75	0.87	"	1.73	101	64-117	
1,1-Dichloroethene	1.71	0.87	11	1.73	98.8	66-131	
cis-1,2-Dichloroethene	2.55	0.87	n	1.73	147	57-131	QM-03
trans-1,2-Dichloroethene	1.73	0.87	11	1.73	100	59-127	
1,2-Dichloropropane	1.76	0.87	n	1.73	102	72-121	
1,3-Dichloropropane	1.74	0.87	+1	1.73	101	70-135	
2,2-Dichloropropane	1.80	0.87	н	1.73	104	38-152	
1,1-Dichloropropene	1.75	0.87	"	1.73	101	73-124	
cis-1,3-Dichloropropene	1.90	0.87	н	1.73	110	66-132	
trans-1,3-Dichloropropene	1.91	0.87	н	1.73	110	55-133	
Ethylbenzene	1.74	0.87	н	1.73	101	71-125	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. The e reproduced in its entirety. F

Jung A

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 17 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 12:55
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308011	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
LCS (AH30902-BS1)				Prepared	& Analyze	ed: 08/07/0)3			
Hexachlorobutadiene	1.75	0.87	н	1.73	, , , , , , , , , , , , , , , , , , ,	101	68-131			
Isopropylbenzene	1.72	0.87	н	1.73		99.4	66-125			
p-Isopropyltoluene	1.65	0.87	11	1.73		95.4	62-120			
Methyl ethyl ketone	3.36	2.6	**	3.48		96.6	58-138			
Methyl isobutyl ketone	3.08	1.7	11	3.46		89.0	59-133			
Methyl tert-butyl ether	1.79	0.87	11	1.73		103	71-127			
Methylene chloride	1.51	0.87	"	1.73		87.3	60-128			
Naphthalene	1.79	0.87	**	1.73		103	58-133			
n-Propylbenzene	1.70	0.87	**	1.73		98.3	67-124			
Styrene	1.84	0.87	"	1.73		106	65-126			
1,1,1,2-Tetrachloroethane	2.06	0.87		1.73		119	65-136			
1,1,2,2-Tetrachloroethane	1.66	0.87		1.73		96.0	40-149			
Tetrachloroethene	1.76	0.87	"	1.73		102	52-148			
Toluene	1.74	0.87	"	1.73		101	72-126			
1,2,3-Trichlorobenzene	1.77	0.87	**	1.73		102	67-124			
1,2,4-Trichlorobenzene	1.76	0.87	u	1.73		102	63-125			
1,1,1-Trichloroethane	1.97	0.87	н	1.73		114	55-134			
1,1,2-Trichloroethane	1.70	0.87	н	1.73		98.3	61-138			
Trichloroethene	1.74	0.87		1.73		101	74-129			
Trichlorofluoromethane	1.81	0.87		1.73		105	61-132			
Trichlorotrifluoroethane	1.76	0.87	"	1.70		104	52-138			
1,2,3-Trichloropropane	1.54	0.87	0	1.73		89.0	66-132			
1,2,4-Trimethylbenzene	1.70	0.87	u.	1.73		98.3	66-128			
1,3,5-Trimethylbenzene	1.76	0.87		1.73		102	65-123			
Vinyl chloride	1.62	0.87	н	1.73		93.6	59-135			
m,p-Xylene	3.48	0.87	н	3.46		101	67-128			
o-Xylene	1.74	0.87	"	1.73		101	67-126			

The results in thi **Report on the tambles** analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Ing R

Cheryl Watson For Karen A. Daly Project Manager

۰,

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 18 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308011	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
LCS (AH30902-BS1)	Prepared & Analyzed: 08/07/03									
Xylenes (total)	5.22	0.87	11	5.20		100	67-127			
Surrogate: Dibromofluoromethane	4.09		"	4.33		94.5	57-144			
Surrogate: Toluene-d8	3.84		н	4.33		88.7	65-127			
Surrogate: Bromofluorobenzene	3.66		n	4.33		84.5	56-130			
LCS Dup (AH30902-BSD1)				Prepared	& Analyze	ed: 08/07/	03			
Acetone	6.66	3.5	mg/kg	6.84		97.4	36-154	3.98	25	
Benzene	1.71	0.87	"	1.73		98.8	72-123	0.00	25	
Bromobenzene	1.74	0.87	и	1.73		101	71-127	3.51	25	
Bromochloromethane	1.77	0.87	"	1.73		102	62-132	1.68	25	
Bromodichloromethane	2.14	0.87		1.73		124	57-125	3.67	25	
Bromoform	2.14	0.87	н	1.73		124	57-138	1.41	25	
Bromomethane	1.92	0.87	"	1.73		111	56-150	1.57	25	
n-Butylbenzene	1.70	0.87	"	1.73		98.3	68-121	1.78	25	
ec-Butylbenzene	1.69	0.87	"	1.73		97.7	68-126	0.593	25	
ert-Butylbenzene	1.70	0.87	"	1.73		98.3	66-124	0.590	25	
Carbon tetrachloride	2.25	0.87	11	1.73		130	57-133	4.77	25	
Chlorobenzene	1.73	0.87	**	1.73		100	76-117	2.93	25	
Chloroethane	1.69	0.87	"	1.73		97.7	59-128	3.61	25	
Chloroform	1.75	0.87	11	1.73		101	60-128	2.82	25	
Chloromethane	1.71	0.87	u	1.73		98.8	45-140	9.17	25	
2-Chlorotoluene	1.68	0.87	"	1.73		97.1	67-127	3.51	25	
4-Chlorotoluene	1.72	0.87	"	1.73		99.4	65-125	1.17	25	
Dibromochloromethane	2.20	0.87	"	1.73		127	56-141	0.00	25	
1,2-Dibromo-3-chloropropane	2.09	0.87	11	1.73		121	61-134	3.29	25	
1,2-Dibromoethane (EDB)	1.80	0.87	11	1.73		104	70-132	1.68	25	
Dibromomethane	1.74	0.87	н	1.73		101	66-123	3.94	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG 2 1 2003

Tetra Tech/MFG, Inc.

lung l

Cheryl Watson For Karen A. Daly Project Manager

1.1.4

Order Number

A308011

Alpha Analytical Laboratories Inc.

Receipt Date/Time

08/01/2003 14:20

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 19 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
LCS Dup (AH30902-BSD1)				Prepared	& Analyz	ed: 08/07/	03			
1.2-Dichlorobenzene	1 77	0.87	11	1 73		102	70-121	287	25	

1,2-Dichlorobenzene	1.77	0.87	"	1.73	102	70-121	2.87	25	
1,3-Dichlorobenzene	1.73	0.87	**	1.73	100	65-124	2.34	25	
1,4-Dichlorobenzene	1.77	0.87	**	1.73	102	71-120	1.71	25	
Dichlorodifluoromethane	1.70	0.87		1.73	98.3	52-145	8.59	25	
1,1-Dichloroethane	1.72	0.87	"	1.73	99.4	58-136	1.73	25	
1,2-Dichloroethane	1.69	0.87	11	1.73	97.7	64-117	3.49	25	
1,1-Dichloroethene	1.72	0.87	**	1.73	99.4	66-131	0.583	25	
cis-1,2-Dichloroethene	2.54	0.87	11	1.73	147	57-131	0.393	25	QM-03
trans-1,2-Dichloroethene	1.67	0.87	"	1.73	96.5	59-127	3.53	25	
1,2-Dichloropropane	1.74	0.87		1.73	101	72-121	1.14	25	
1,3-Dichloropropane	1.75	0.87	"	1.73	101	70-135	0.573	25	
2,2-Dichloropropane	1.73	0.87	н	1.73	100	38-152	3.97	25	
1,1-Dichloropropene	1.70	0.87	**	1.73	98.3	73-124	2.90	25	
cis-1,3-Dichloropropene	1.88	0.87		1.73	109	66-132	1.06	25	
trans-1,3-Dichloropropene	1.97	0.87	"	1.73	114	55-133	3.09	25	
Ethylbenzene	1.75	0.87	**	1.73	101	71-125	0.573	25	
Hexachlorobutadiene	1.71	0.87	"	1.73	98.8	68-131	2.31	25	
Isopropylbenzene	1.73	0.87	"	1.73	100	66-125	0.580	25	
p-Isopropyltoluene	1.66	0.87	н	1.73	96.0	62-120	0.604	25	
Methyl ethyl ketone	4.33	2.6		3.48	124	58-138	25.2	25	QL-04
Methyl isobutyl ketone	3.18	1.7	**	3.46	91.9	59-133	3.19	25	
Methyl tert-butyl ether	1.73	0.87	**	1.73	100	71-127	3.41	25	
Methylene chloride	1.57	0.87	"	1.73	90.8	60-128	3.90	25	
Naphthalene	1.74	0.87	**	1.73	101	58-133	2.83	25	
n-Propylbenzene	1.75	0.87	"	1.73	101	67-124	2.90	25	
Styrene	1.76	0.87	11	1.73	102	65-126	4.44	25	
1,1,1,2-Tetrachloroethane	2.06	0.87	**	1.73	119	65-136	0.00	25	

The results in this report apply to the samples analyzed in accordance with the chain of RECEIVED custody document. This an

Ing M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

ъ.,

A308011

Alpha Analytical Laboratories Inc.

Receipt Date/Time

08/01/2003 14:20

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 20 of 30

MFG, Inc - Arcata
875 Crescent Way
Arcata, CA 95521
Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Client PO/Reference

Order Number

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Client Code

MFGARC

Analyte(s) Result PQL Units Level Result /MREC Limits RPD Lim	Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	RPD	RPD Limit	Flag

Batch AH30902 - EPA 5035 MS

LCS Dup (AH30902-BSD1)				Prepared &	& Analyz	ed: 08/07/	/03			
1,1,2,2-Tetrachloroethane	1.79	0.87	11	1.73		103	40-149	7.54	25	
Tetrachloroethene	1.75	0.87	"	1.73		101	52-148	0.570	25	
Toluene	1.74	0.87	"	1.73		101	72-126	0.00	25	
1,2,3-Trichlorobenzene	1.74	0.87		1.73		101	67-124	1.71	25	
1,2,4-Trichlorobenzene	1.74	0.87		1.73		101	63-125	1.14	25	
1,1,1-Trichloroethane	1.92	0.87	"	1.73		111	55-134	2.57	25	
1,1,2-Trichloroethane	1.74	0.87	"	1.73		101	61-138	2.33	25	
Trichloroethene	1.72	0.87		1.73		99.4	74-129	1.16	25	
Trichlorofluoromethane	1.76	0.87	"	1.73		102	61-132	2.80	25	
Trichlorotrifluoroethane	1.74	0.87		1.70		102	52-138	1.14	25	
1,2,3-Trichloropropane	1.67	0.87	"	1.73		96.5	66-132	8.10	25	
1,2,4-Trimethylbenzene	1.71	0.87	"	1.73		98.8	66-128	0.587	25	
1,3,5-Trimethylbenzene	1.73	0.87	"	1.73		100	65-123	1.72	25	
Vinyl chloride	1.67	0.87	"	1.73		96.5	59-135	3.04	25	
m,p-Xylene	3.49	0.87		3.46		101	67-128	0.287	25	
o-Xylene	1.72	0.87		1.73		99.4	67-126	1.16	25	
Xylenes (total)	5.21	0.87	"	5.20		100	67-127	0.192	25	
Surrogate: Dibromofluoromethane	3.88		Ħ	4.33		89.6	57-144			
Surrogate: Toluene-d8	3.85		H	4.33		88.9	65-127			
Surrogate: Bromofluorobenzene	3.71		"	4.33		85.7	56-130			
Matrix Spike (AH30902-MS2)	Sour	ce: A308	028-02	Prepared:	08/03/03	Analyze	d: 08/07/03			
Acetone	83.4	17	mg/kg	33.4	ND	250	9-181			QM-01
Benzene	9.23	4.3	"	8.46	ND	109	49-137			
Bromobenzene	7.97	4.3	**	8.46	ND	94.2	55-136			
Bromochloromethane	7.96	4.3	, "	8.46	ND	94.1	58-133			
Bromodichloromethane	10.7	4.3	"	8.46	ND	126	51-126			

The results in this report a provide the samples analyzed in accordance with the chain of custody document. This analytical capter into the corduced in its entirety.

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Jung M

Cheryl Watson For Karen A. Daly Project Manager

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 21 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 12:55
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308011	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

	******			Spike	Source		%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH30902 - EPA 5035 MS

Matrix Spike (AH30902-MS2)	Sourc	e: A30802	8-02	Prepared: (08/03/03	Analyzed	1: 08/07/03	
Bromoform	10.0	4.3	H	8.46	ND	118	47-138	
Bromomethane	8.67	4.3	11	8.46	ND	102	32-180	
n-Butylbenzene	15.4	4.3	11	8.46	21	NR	29-153	QM-01
sec-Butylbenzene	10.2	4.3	**	8.46	9.0	14.2	44-148	QM-01
tert-Butylbenzene	8.61	4.3	Ħ	8.46	ND	102	49-141	
Carbon tetrachloride	11.0	4.3	11	8.46	ND	130	52-133	
Chlorobenzene	8.72	4.3	11	8.46	ND	103	54-133	
Chloroethane	6.28	4.3	11	8.46	ND	74.2	53-136	
Chloroform	9.72	4.3	**	8.46	ND	115	61-126	
Chloromethane	3.92	4.3	"	8.46	ND	46.3	57-130	QM-01
2-Chlorotoluene	8.25	4.3	"	8.46	ND	97.5	52-140	
4-Chlorotoluene	8.16	4.3	"	8.46	ND	96.5	39-149	
Dibromochloromethane	11.2	4.3	"	8.46	ND	132	48-135	
1,2-Dibromo-3-chloropropane	9.52	4.3	"	8.46	ND	113	48-139	
1,2-Dibromoethane (EDB)	8.75	4.3	"	8.46	ND	103	36-156	
Dibromomethane	7.45	4.3		8.46	ND	88.1	61-128	
1,2-Dichlorobenzene	8.79	4.3	**	8.46	ND	104	36-156	
1,3-Dichlorobenzene	7.78	4.3	88	8.46	ND	92.0	45-138	
1,4-Dichlorobenzene	8.78	4.3	"	8.46	ND	104	60-136	
Dichlorodifluoromethane	6.75	4.3	н	8.46	ND	79.8	24-189	
1,1-Dichloroethane	9.15	4.3	11	8.46	ND	108	58-142	
1,2-Dichloroethane	9.36	4.3	"	8.46	ND	111	55-125	
1,1-Dichloroethene	9.94	4.3	**	8.46	ND	117	54-147	
cis-1,2-Dichloroethene	13.9	4.3	**	8.46	ND	164	52-129	QM-01
trans-1,2-Dichloroethene	9.45	4.3	**	8.46	ND	112	61-120	
1,2-Dichloropropane	9.25	4.3	4	8.46	ND	109	61-123	
1,3-Dichloropropane	8.35	4.3	n	8.46	ND	98.7	45-150	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This and produced in its entirety.

Jung M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 22 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308011	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

				Spike	Source		%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH30902 - EPA 5035 MS

Matrix Spike (AH30902-MS2)	Sour	ce: A30802	28-02	Prepared:	08/03/03	Analyzed	l: 08/07/03	
2,2-Dichloropropane	ND	4.3	#1	8.46	ND		32-160	QM-01
1,1-Dichloropropene	9.75	4.3	н.,	8.46	ND	115	56-131	
cis-1,3-Dichloropropene	3.37	4.3	н	8.46	ND	39.8	55-129	QM-01
trans-1,3-Dichloropropene	4.94	4.3	"	8.46	ND	58.4	34-139	
Ethylbenzene	10.7	4.3	*1	8.46	9.2	17.7	55-138	QM-01
Hexachlorobutadiene	10.2	4.3	**	8.46	ND	121	16-172	
Isopropylbenzene	9.47	4.3	"	8.46	5.1	51.7	51-137	
p-Isopropyltoluene	10.6	4.3	"	8.46	13	NR	37-143	QM-01
Methyl ethyl ketone	21.0	13	н	17.0	ND	124	32-146	
Methyl isobutyl ketone	14.8	8.7	"	16.9	ND	87.6	29-155	
Methyl tert-butyl ether	6.69	4.3	"	8.46	ND	79.1	50-140	
Methylene chloride	7.63	4.3	**	8.46	ND	90.2	53-137	
Naphthalene	13.0	4.3	Ħ	8.46	14	NR	26-152	QM-01
n-Propylbenzene	11.0	4.3	"	8.46	13	NR	47-143	QM-01
Styrene	8.81	4.3	"	8.46	ND	104	32-150	
1,1,1,2-Tetrachloroethane	10.6	4.3	**	8.46	ND	125	39-153	
1,1,2,2-Tetrachloroethane	8.42	4.3	н	8.46	ND	99.5	42-140	
Tetrachloroethene	15.7	4.3	**	8.46	ND	186	9-206	
Toluene	9.29	4.3	*	8.46	ND	110	50-148	
1,2,3-Trichlorobenzene	10.4	4.3	"	8.46	ND	123	31-148	
1,2,4-Trichlorobenzene	10.7	4.3	н	8.46	ND	126	30-148	
1,1,1-Trichloroethane	9.09	4.3	"	8.46	ND	107	52-132	
1,1,2-Trichloroethane	9.31	4.3	н	8.46	ND	110	39-152	
Trichloroethene	9.85	4.3	**	8.46	ND	116	50-146	
Trichlorofluoromethane	9.97	4.3	**	8.46	ND	118	51-150	
Trichlorotrifluoroethane	9.66	4.3	11	8.33	ND	116	51-138	
1,2,3-Trichloropropane	7.47	4.3	"	8.46	ND	88.3	38-152	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. The result icit provide the perpenduced in its entirety.

ing A

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 23 of 30

MFG, Inc - Arcata
875 Crescent Way
Arcata, CA 95521
Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

<u>Order Number</u>	Receipt Date/Time	<u>Client Code</u>	Client PO/Reference
A308011	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag

Batch AH30902 - EPA 5035 MS

Matrix Spike (AH30902-MS2)	Sour	Source: A308028-02			08/03/03	Analyzed	1: 08/07/03	
1,2,4-Trimethylbenzene	25.3	4.3	11	8.46	100	NR	43-150	QM-4X
1,3,5-Trimethylbenzene	9.46	4.3	**	8.46	22	NR	47-140	QM-01
Vinyl chloride	8.61	4.3	"	8.46	ND	102	46-150	
m,p-Xylene	19.7	4.3	11	16.9	14	33.7	54-139	QM-01
o-Xylene	8.41	4.3	"	8.46	ND	99.4	58-136	-
Xylenes (total)	28.1	4.3	"	25.4	14	55.5	54-139	
Surrogate: Dibromofluoromethane	4.00		#	4.23		94.6	57-144	
Surrogate: Toluene-d8	3.84		"	4.23		90.8	65-127	
Surrogate: Bromofluorobenzene	3.43		"	4.23		81.1	56-130	

Matrix Spike Dup (AH30902-MSD2)	Sour	ce: A308	028-02	Prepared:	08/03/03	Analyzed	1: 08/07/03			
Acetone	58.8	17	mg/kg	32.2	ND	183	9-181	34.6	25	QM-04
Benzene	7.30	4.3	**	8.16	ND	89.5	49-137	23.4	25	
Bromobenzene	6.96	4.3	17	8.16	ND	85.3	55-136	13.5	25	
Bromochloromethane	7.05	4.3	**	8.16	ND	86.4	58-133	12.1	25	
Bromodichloromethane	8.75	4.3	**	8.16	ND	107	51-126	20.1	25	
Bromoform	8.29	4.3	м	8.16	ND	102	47-138	18.7	25	
Bromomethane	9.01	4.3	n	8.16	ND	110	32-180	3.85	25	
n-Butylbenzene	17.1	4.3	н	8.16	21	NR	29-153	10.5	25	QM-01
sec-Butylbenzene	11.1	4.3	"	8.16	9.0	25.7	44-148	8.45	25	QM-01
tert-Butylbenzene	7.80	4.3	"	8.16	ND	95.6	49-141	9.87	25	
Carbon tetrachloride	10.0	4.3	**	8.16	ND	123	52-133	9.52	25	
Chlorobenzene	7.27	4.3	11	8.16	ND	89.1	54-133	18.1	25	
Chloroethane	8.72	4.3	"	8.16	ND	107	53-136	32.5	25	QM-04
Chloroform	7.00	4.3	"	8.16	ND	85.8	61-126	32.5	25	QM-04
Chloromethane	7.27	4.3	"	8.16	ND	89.1	57-130	59.9	25	QM-04
2-Chlorotoluene	7.46	4.3	Ŧ	8.16	ND	91.4	52-140	10.1	25	•

The results in this Reference has more analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Jung M

Cheryl Watson For Karen A. Daly Project Manager

· ``.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 24 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 12:55
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

<u>Order Number</u>	<u>Receipt Date/Time</u>	<u>Client Code</u>	Client PO/Reference
A308011	08/01/2003 14:20	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
										0

Batch AH30902 - EPA 5035 MS

Matrix Spike Dup (AH30902-MSD2)	Sour	Source: A308028-02			Prepared: 08/03/03 Analyzed: 08/07/03					
4-Chlorotoluene	7.52	4.3	#	8.16	ND	92.2	39-149	8.16	25	
Dibromochloromethane	8.69	4.3	"	8.16	ND	106	48-135	25.2	25	QM-04
1,2-Dibromo-3-chloropropane	8.56	4.3	н	8.16	ND	105	48-139	10.6	25	
1,2-Dibromoethane (EDB)	6.82	4.3	"	8.16	ND	83.6	36-156	24.8	25	
Dibromomethane	6.62	4.3	**	8.16	ND	81.1	61-128	11.8	25	
1,2-Dichlorobenzene	7.15	4.3	11	8.16	ND	87.6	36-156	20.6	25	
1,3-Dichlorobenzene	7.17	4.3	**	8.16	ND	87.9	45-138	8.16	25	
1,4-Dichlorobenzene	7.09	4.3	н	8.16	ND	86.9	60-136	21.3	25	
Dichlorodifluoromethane	7.00	4.3	н	8.16	ND	85.8	24-189	3.64	25	
1,1-Dichloroethane	6.92	4.3	11	8.16	ND	84.8	58-142	27.8	25	QM-04
1,2-Dichloroethane	6.56	4.3	н	8.16	ND	80.4	55-125	35.2	25	QM-04
1,1-Dichloroethene	6.98	4.3	11	8.16	ND	85.5	54-147	35.0	25	OM-04
cis-1,2-Dichloroethene	10.0	4.3	н	8.16	ND	123	52-129	32.6	25	OM-04
trans-1,2-Dichloroethene	6.87	4.3	"	8.16	ND	84.2	61-120	31.6	25	QM-04
1,2-Dichloropropane	7.01	4.3	н	8.16	ND	85.9	61-123	27.6	25	QM-04
1,3-Dichloropropane	6.62	4.3	ŧ	8.16	ND	81.1	45-150	23.1	25	
2,2-Dichloropropane	7.40	4.3	н	8.16	ND	90.7	32-160		25	
1,1-Dichloropropene	7.35	4,3	н	8.16	ND	90.1	56-131	28.1	25	OM-04
cis-1,3-Dichloropropene	7.40	4.3	н	8.16	ND	90.7	55-129	74.8	25	QM-04
trans-1,3-Dichloropropene	7.28	4.3	f1	8.16	ND	89.2	34-139	38.3	25	OM-04
Ethylbenzene	10.9	4.3	н	8.16	9.2	20.8	55-138	1.85	25	QM-01
Hexachlorobutadiene	8.51	4.3	**	8.16	ND	104	16-172	18.1	25	Z
Isopropylbenzene	9.38	4.3	н	8.16	5.1	52.5	51-137	0.955	25	
p-Isopropyltoluene	12.6	4.3	"	8.16	13	NR	37-143	17.2	25	QM-01
Methyl ethyl ketone	24.0	13	"	16.4	ND	146	32-146	13.3	25	V -
Methyl isobutyl ketone	12.5	8.7	"	16.3	ND	76.7	29-155	16.8	25	
Methyl tert-butyl ether	6.51	4.3	**	8.16	ND	79.8	50-140	2.73	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. must be reproduced in its entirety. RE

Jung M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 25 of 30

MFG, Inc - Arcata
875 Crescent Way
Arcata, CA 95521
Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Receipt Date	e/Time
08/01/2003	14:20

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

				Spike	Source		%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH30902 - EPA 5035 MS

Order Number

A308011

Matrix Spike Dup (AH30902-MSD2)	Sou	rce: A3080	28-02	Prepared:	08/03/03	Analyzed	1: 08/07/03			
Methylene chloride	7.14	4.3	11	8.16	ND	87.5	53-137	6.64	25	
Naphthalene	14.7	4.3	**	8.16	14	8.58	26-152	12.3	25	QM-01
n-Propylbenzene	12.5	4.3	11	8.16	13	NR	47-143	12.8	25	QM-01
Styrene	7.99	4.3	н	8.16	ND	97.9	32-150	9.76	25	
1,1,1,2-Tetrachloroethane	8.12	4.3	н	8.16	ND	99.5	39-153	26.5	25	QM-04
1,1,2,2-Tetrachloroethane	8.28	4.3	0	8.16	ND	101	42-140	1.68	25	
Tetrachloroethene	10.5	4.3		8.16	ND	129	9-206	39.7	25	QM-04
Toluene	7.56	4.3	"	8.16	ND	92.6	50-148	20.5	25	
1,2,3-Trichlorobenzene	9.02	4.3	"	8.16	ND	111	31-148	14.2	25	
1,2,4-Trichlorobenzene	9.18	4.3	**	8.16	ND	112	30-148	15.3	25	
1,1,1-Trichloroethane	8.20	4.3	**	8.16	ND	100	52-132	10.3	25	
1,1,2-Trichloroethane	6.74	4.3	**	8.16	ND	82.6	39-152	32.0	25	QM-04
Trichloroethene	7.32	4.3	"	8.16	ND	89.7	50-146	29.5	25	QM-04
Trichlorofluoromethane	7.37	4.3	**	8.16	ND	90.3	51-150	30.0	25	QM-04
Trichlorotrifluoroethane	7.45	4.3	"	8.03	ND	92.8	51-138	25.8	25	QM-04
1,2,3-Trichloropropane	6.04	4.3	"	8.16	ND	74.0	38-152	21.2	25	
1,2,4-Trimethylbenzene	43.7	4.3	**	8.16	100	NR	43-150	53.3	25	QM-4X
1,3,5-Trimethylbenzene	13.3	4.3	**	8.16	22	NR	47-140	33.7	25	QM-04
Vinyl chloride	9.97	4.3	11	8.16	ND	122	46-150	14.6	25	
m,p-Xylene	19.9	4.3	п	16.3	14	36.2	54-139	1.01	25	QM-01
o-Xylene	7.37	4.3	11	8.16	ND	90.3	58-136	13.2	25	
Xylenes (total)	27.2	4.3	н	24.5	14	53.9	54-139	3.25	25	QM-01
Surrogate: Dibromofluoromethane	3.43		n	4.08		84.1	57-144			
Surrogate: Toluene-d8	3.66		н	4.08		89.7	65-127			
Surrogate: Bromofluorobenzene	3.56		и	4.08		87.3	56-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This attaining report needs by reproduced in its entirety.

Jung A

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 26 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308011	08/01/2003 14:20	MFGARC	

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31502 - General Preparation										
Blank (AH31502-BLK1)				Prepared:	08/13/03	Analyzed	1: 08/14/03			
Oil & Grease (HEM-SG)	ND	50	mg/kg		2			14 Terrandonom e canto conto		
LCS (AH31502-BS1)				Prepared:	08/13/03	Analyzed	1: 08/14/03			
Oil & Grease (HEM-SG)	2470	50	mg/kg	2500		98.8	80-120			
Duplicate (AH31502-DUP1)	Sou	rce: A308	011-03	Prepared	08/13/03	Analyzed	i: 08/14/03			
Oil & Grease (HEM-SG)	38100	50	mg/kg		25000			41.5	20	QM-04
Matrix Spike (AH31502-MS1)	Sou	rce: A308	011-03	Prepared	08/13/03	Analyzed	1: 08/14/03			
Oil & Grease (HEM-SG)	27700	50	mg/kg	1500	25000	180	80-120			QM-4X
Matrix Spike Dup (AH31502-MSD1)	Sou	rce: A308	011-03	Prepared	: 08/13/03	Analyzed	1: 08/14/03			
Oil & Grease (HEM-SG)	28300	50	mg/kg	1500	25000	220	80-120	2.14	20	QM-4X

The results in this report applying the same second with the chain of custody document. This analytical second second with the result of the same second sec

Jung M

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 27 of 30

MFG. Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 12:55
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

A308011 08/01/20	003 14:20	MFGARC	

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30518 - CA LUFT - orb	shaker									
Blank (AH30518-BLK1)				Prepared	& Analyz	ed: 08/05/	03			
TPH as Diesel	ND	1.0	mg/kg							
TPH as Motor Oil	ND	2.0	"							
Surrogate: 1,4-Bromofluorobenzene	11.3		N	12.4		91.1	21-110			
LCS (AH30518-BS1)				Prepared	& Analyz	ed: 08/05/	03			
TPH as Diesel	32.4	1.0	mg/kg	41.8		77.5	63-126			secol - doe be a de la bide la secolar
TPH as Motor Oil	33.0	2.0	"	41.8		78.9	57-139			
Surrogate: 1,4-Bromofluorobenzene	9.61		N	12.4		77.5	21-110			
LCS Dup (AH30518-BSD1)				Prepared	& Analyz	ed: 08/05/	03			
TPH as Diesel	44.7	1.0	mg/kg	41.8		107	63-126	31.9	20	QL-04, A-01c
TPH as Motor Oil	45.7	2.0	11	41.8		109	57-139	32.3	20	QL-04
Surrogate: 1,4-Bromofluorobenzene	9.29		ĸ	12.4		74.9	21-110			

The results in this report apply the camples analyzed in accordance with the chain of custody document. This analytic trace must be reproduced in its entirety.

Jung a

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 28 of 30

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

<u>Order Number</u> A308011	Receipt Date/Time 08/01/2003 14:20		<u>Client</u> MFG.				Client PC	O/Referen	ice	
	TPH as Gaso	line by (GCFID	/5030 - Q	uality C	ontrol				
Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30711 - EPA 5030	Soil GC									
Blank (AH30711-BLK1)				Prepared a	& Analyze	ed: 08/06/0)3			
TPH as Gasoline	ND	1.0	mg/kg							
Surrogate: 1,4-Bromofluorobenzene	7.51		"	5.00		150	60-156			
LCS (AH30711-BS2)				Prepared:	08/06/03	Analyzed	: 08/07/03			
TPH as Gasoline	33.6	1.0	mg/kg	29.0		116	77-139			
Surrogate: 1,4-Bromofluorobenzene	5.50		n	5.00		110	60-156	analasian an interation of data far		annean anna ann ann ann ann ann ann ann
Matrix Spike (AH30711-MS2)	Sour	ce: A3070	614-01	Prepared	& Analyz	ed: 08/06/	03			
TPH as Gasoline	30.2	1.0	mg/kg	29.0	2.4	95.9	72-138			
Surrogate: 1,4-Bromofluorobenzene	5.04		"	5.00		101	60-156			

Matrix Spike Dup (AH30711-MSD2)	Source	e: A307614-01	Prepared a	& Analyz	ed: 08/06/	03			
TPH as Gasoline	31.3	1.0 mg/kg	29.0	2.4	99.7	72-138	3.58	25	
Surrogate: 1,4-Bromofluorobenzene	5.59	"	5.00		112	60-156			

The results in this report the chain of custody document. This unarytical report must be reproduced in its entirety.

Jung A

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

MEC I. Austr

Ipha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 29 of 30

Notes and Definitions

- A-01 Kerosene is present at about 1/10 of the Diesel response and is included therein.
- A-01a Kerosene is present at about 1/6 of the Diesel response and is included therein.
- A-01b Kerosene is present at about 3/4 of the Diesel response and is included therein.
- A-01c LCSD prepared instead of MS/MSD due to high concentrations of heavy hydrocarbons in all samples associated with the analytical batch.
- G-1 Results in the gasoline organics range are primarily due to overlap from a diesel range product
- **OL-03** Although the LCS/LCSD recovery for this analyte is outside of in-house developed control limits, it is within the EPA recommended range of 70-130%.
- QL-04 The LCS/LCSD RPD for this analyte was outside of established control limits. Batch accepted based on acceptable recovery for both LCS/LCSD.
- QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.
- QM-03 The spike recovery was high for this analyte. The batch was accepted based on a non-detect for the analyte.
- **QM-04** High RPD and/or poor percent recovery may reflect sample non-homogeneity.
- OM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- The Reporting Limits for this analysis have been raised to account for matrix interference. **R-06**
- S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
- S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interferences.

DET Analyte DETECTED

The results in this repercent to be have any produced in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ung WT

Cheryl Watson For Karen A. Daly Project Manager

8/18/03

Tetra Tech/MFG, Inc.

AUG 2 1 2003

CHEMICAL EXAMINATION REPORT

Page 30 of 30

MFG. Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 12:55 Project No: 030229.8 Project ID: SPI Arcata Sawmill

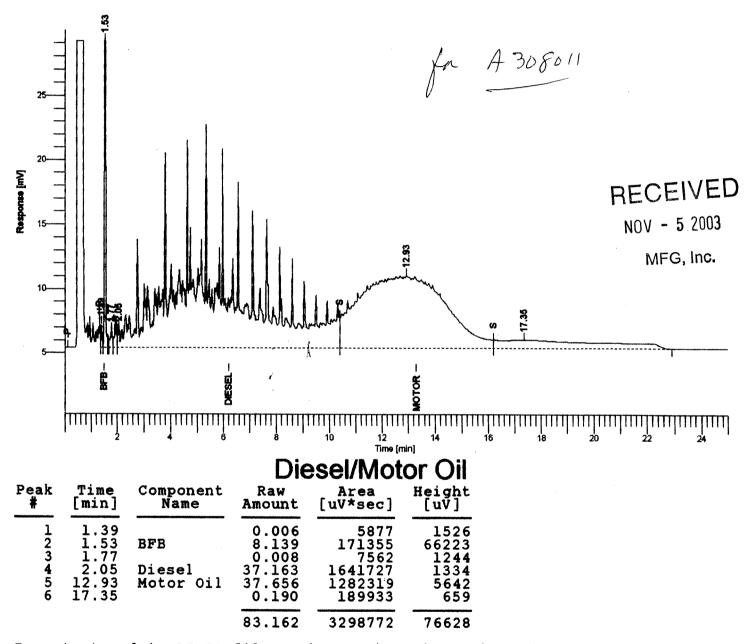
Client Code Client PO/Reference Order Number Receipt Date/Time A308011 08/01/2003 14:20 MFGARC ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported

dry Sample results reported on a dry weight basis

RPD **Relative Percent Difference**

PQL Practical Quantitation Limit

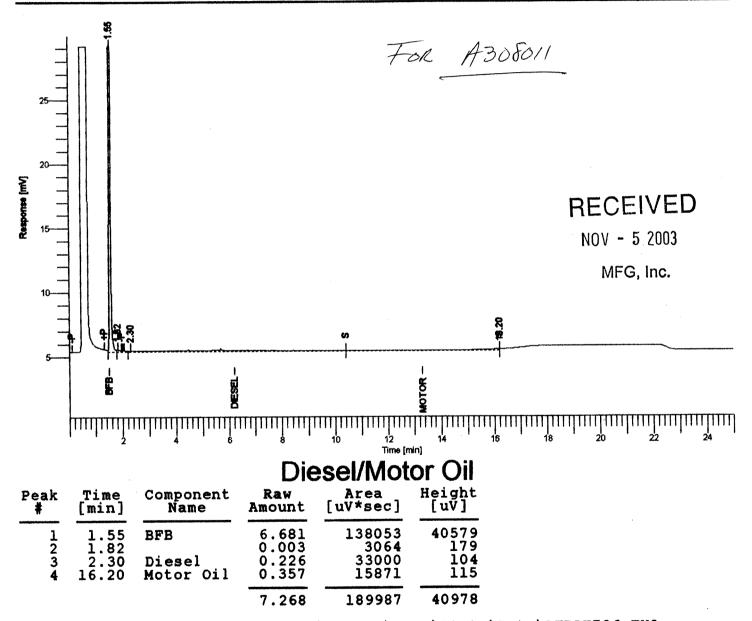
RECEIVED


AUG 2 1 2003 Tetra Tech/MFG, Inc.

													12. H. A.	18 81 (1)
Arcata Office Development of the A900 Pearl E 4900 Pearl E 4900 Pearl E 4900 Pearl E 4900 Pearl E 5 Creacen Way Builde CO Fast, CA 95521-6741 Builde CO 95521 Builde CO Fast, CA 95521-6741 Builde CO 95521 Bu	□ Boulder Office 4900 Pearl East Circle Suite 200W Boulder, C0 80301-6118 Tel: (303) 447-1823 Fax: (303) 447-1836	CHAIN-OF-CUSTC □ Irvine Office 17770 Cartwright Road Suite 500 Tai: (949) 253-2954 Fax: (949) 253-2954	DF-CU right Road 53-2951 33-2954		DPY RECOF DOV RECOF DOSUM Office DOSUM Office DOSUM Office SW18600 D0000 556-6811 Tel: (208) 556-7271 Fax: (208) 556-7271	MFG, INC CORD AND San Francisco, CA Isto Houned Street Isto Houne (415) 495-7 Phone (415) 495-7	MFG, INC. RECORD AND REQUEST FOR ANALYSIS n Office San Francisco Office 1920 36h Avenue V to 800 to 800 t	EST F(DR ANALYSIS □ Seattle Office 1 Seattle Office 1 Seattle Office 1 Suite 101 1 Lymwood, WA 98036-5707 Tei: (425) 921-4000 Tei: (425) 921-4040 Fax: (425) 921-4040	LYSIS fiftce th Avenue W M A98036) 921-4000) 921-4000	5707	Ŏ	COC No. 42866	n t t t t t t t t t t t t t t t t t t t
PROJECT NO: <u>030224, 8</u> SAMPLER (Signature): <u>0,04</u> 2 METHOD OF SHIPMENT: <u>0</u>	9.8 mplodu Currer		PROJECT NA		NAME: SPJ - Ar cuta PROJECT MANAGER: CARRIER/WAYBILL NO:	-Arcuta MANAGER BILL NO:	SER: Ed C	(ill Centi	DES.	DESTINATION:	N: A	PAGE: DATE: DATE:	: 1 0F: 1 : 7/3/63 Ardyfral Lob.	
		SAMPLES	LES							A	VALYSI	ANALYSIS REQUEST	ST	
		Sa	Sample		Preservation		Containers		Consitingents/Method		Handling		Remarks	
Field Sample Identification		DATE	111	HCI HCI	COFD H ⁵ 20 [⊄] HNO ³		LABE* (WI\oz) NOLUME FILTRATION*	илов ощрир 154-019201 ON	2022 2020 2		HSUA	QAADNAT2	A 308011-	
PD-NW-31		1	3.18	20			2 15, 9	7	د د			L Silica	a gel cloorp for	2-
PD- NE-2.5'		_					ļ	1	7 7			V 0.7	Oil and freese,	60-
70- NE2-1,5'			3:4				12"4	2	7			6 7b	Place note couler	-03
PD-SW-25'			3:36				6 12 3	1 1	L V			V te	terpor chair of custa	1-01
PD- 5W-2,5'			1.1				E	3				L Use	1 PD-NE-2.5' for	-0S
I.	*		4/20				53 00		7	7		V Voc	c ms/msp	، دو
PD- NE-2.5'							Sym Cor	6		2				\overline{p}_{k}
70 - NW-31			3 257		\uparrow		Sgm @	ξ	4			V NOT	NOTE WHETHER DIESCL	-02
# 8/103 14: 30 Rev	math	2		1 1			 	C				CHEO	CHPOM. RESOMALES	
O	walkin		CANCE	. \	450 ON	102	-26 ダーイン	Ż	SEGRETIN B	Q.4.07	con	KEX	KERTSENE PER EREIN.	
					TOTAL NUMBER OF CONTAINERS	ER OF CON	VTAINERS	19 LABC	LABORATORY COMMENTS/CONDITION OF	ENTS/CON	- HO NOLLIC	SAMPLES	Cooler Temp: NU	7
	RELINQUISHED BY:							-		$\overline{}$	RECIEVED BY:	ED ΒΥ:	2,2,0 9.403.	40
SIGNATURE	PRINTED NAME		COMPANY	ANY	DATE	щ	TIME	SIG	SIGNATURE		PRINTED NAME	NAME	COMPANY	
P. M. J.	UNi HODI	٤	M PG, Buc.	י. ג	1/1/8	03	10: 21An	O T	Lasks		5	17	ALPHA LAPS	
- Maria	DALY	¥.	0HU	LABS		93	14/20	Jerel.	Lilin	1/Kest	e (Suin	HLR Na (abs	
	EIVE Datrix: AO - aqueous NA - nonaqueous SO - soil SL - sludge Distraturi	sous NA - nonaque	n SO - SOI S		P - petroleum A - air 07 - other Containers: P - IOM: PINK: Field Coov YELLOW: Laboratory Copy	- other Co. YELLOW: Labo		lastic G - glass T - teflon B WHITE: Return to Originator	- brass OT - other	Fitration: For	Filtration: $F \in filtered$ $U \leftarrow unfiltered$	tered		
AUG 2 1 20	2003									- NN NINO 4	N N	20'-7	DRRIN UN - CANCELLED THES	152
	}								•	ž	- IOW	I ZZK	OF IN MIN AND	210

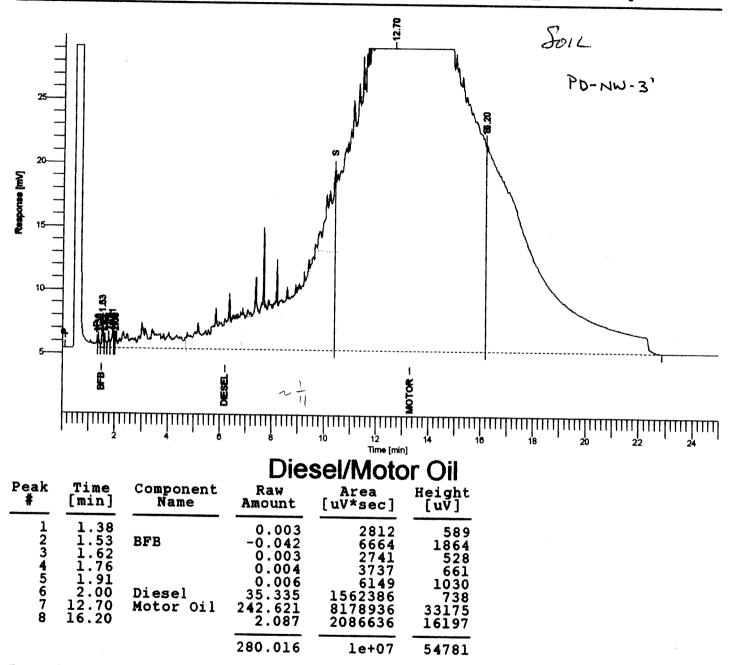
Software Version Sample Name Instrument Name	:	DM 40.32 DsMo	Date Data Acquisition Time		8/5/03 2:30:17 8/5/03 11:59:58
Rack/Vial Sample Amount Cycle	:	0/0 1.000000 2	Channel Operator Dilution Factor	::	A marvin 1.000000

Page 1 of 1



Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT727.TX0

Software Version Sample Name Instrument Name	:	6.1.2.0.1:D19 Blank Hex DsMo	Date Data Acquisition Time		8/5/03 2:29:54 8/5/03 11:19:25 M
Rack/Vial Sample Amount Cycle	•	0/0 1.000000 1	Channel Operator Dilution Factor	•	A marvin 1.000000

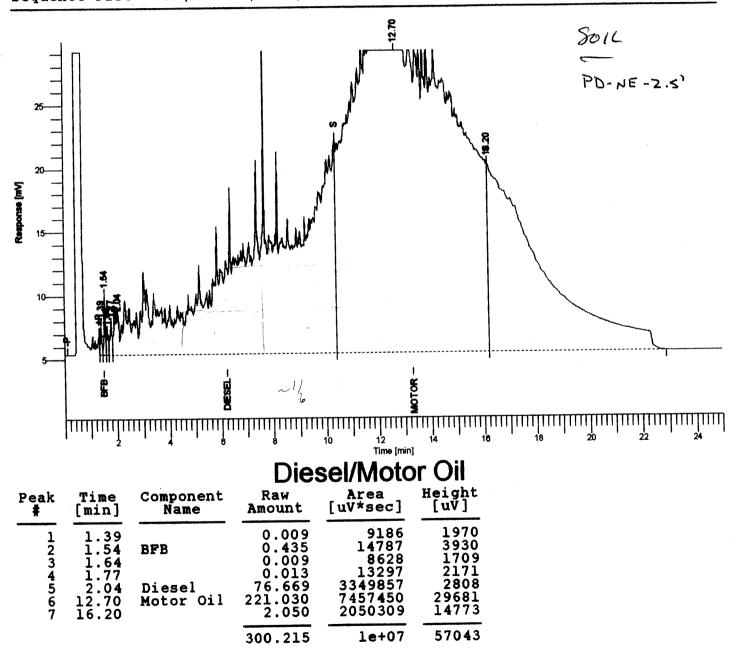


Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT726.TX0

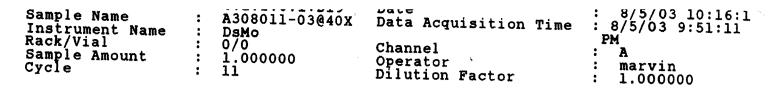
Software Version Sample Name Instrument Name	::	6.1.2.0.1:D19 A308011-01@40X DsMo	Date Data Acquisition Time	:	8/5/03 8:55:12 8/5/03 8:30:05
Rack/Vial Sample Amount Cycle	0/0 1.000000 9	Channel Operator Dilution Factor		M A marvin 1.000000	

Page 1 of 1

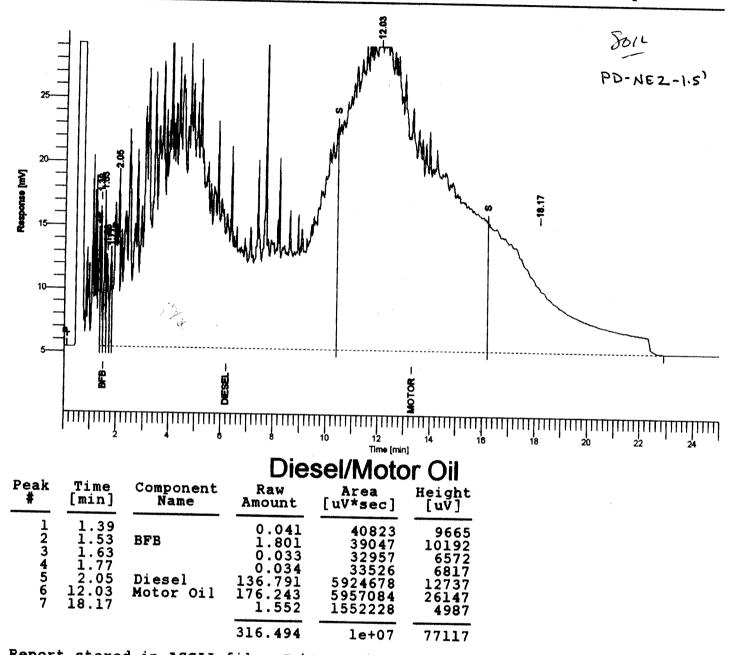
Result File : C:\PenExe\TcWS\Stats\Data\ATDAT735.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_080503.seq



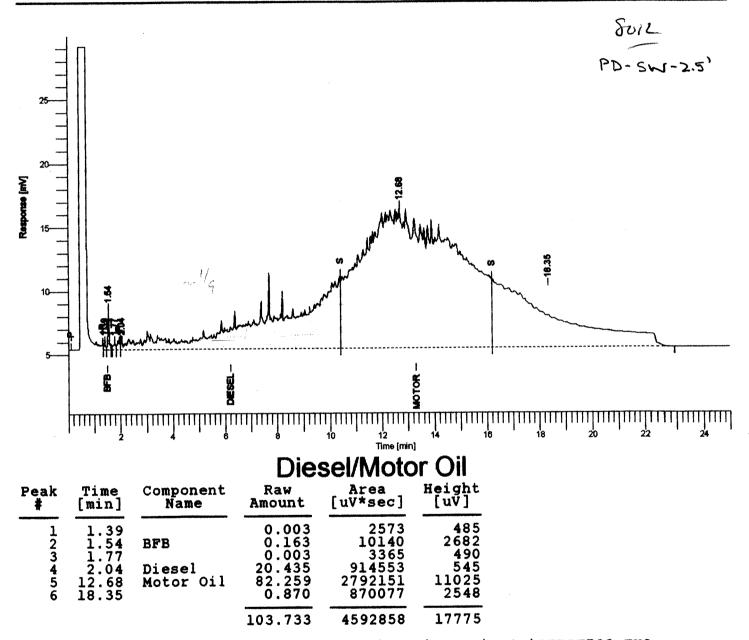
Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT735.TX0


Page 3	1 0	f	1
--------	-----	---	---

Software Version Sample Name	:	6.1.2.0.1:D19 A308011-02@40X	Date Data Acquisition Time		8/5/03 9:35:41 8/5/03 9:10:38
Instrument Name Rack/Vial Sample Amount Cycle	:::::::::::::::::::::::::::::::::::::::	DsMo 0/0 1.000000 10	Channel Operator Dilution Factor	: : :	A marvin 1.000000



Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT736.TX0


Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT737.TX0

. •-• -

Software Version Sample Name Instrument Name	:	6.1.2.0.1:D19 A308011-04@30X DsMo	Date Data Acquisition Time		8/5/03 10:56:4 8/5/03 10:31:46
Rack/Vial Sample Amount Cycle	:	0/0 1.000000 12	Channel Operator Dilution Factor	::	A marvin 1.00 00 00

Page 1 of 1

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT738.TX0

14 34

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

18 August 2003

MFG, Inc - Arcata Attn: Ed Conti 875 Crescent Way Arcata, CA 95521 RE: SPI Arcata Sawmill Work Order: A308028

Enclosed are the results of analyses for samples received by the laboratory on 08/02/03 09:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

aren dy

Karen A. Daly Project Manager

RECEIVED

AUG 2 1 2003

CHEMICAL EXAMINATION REPORT

Page 1 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 14:51 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number A308028

Receipt Date/Time 08/02/2003 09:00 Client Code MFGARC

Client PO/Reference

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PD-SE-Bottom	A308028-01	Soil	08/01/03 15:00	08/02/03 09:00
PD-NE3-2'	A308028-02	Soil	08/01/03 15:00	08/02/03 09:00
PD-SE-Bottom	A308028-03	Soil	08/01/03 15:00	08/02/03 09:00
PD-NE3-2'	A308028-04	Soil	08/01/03 15:00	08/02/03 09:00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG 2 1 2003

Tetra Tech/MFG, Inc.

aren aly

Karen A. Daly Project Manager

MFG, Inc - Arcata 875 Crescent Way

1 F 3 - E

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 25

Report Date: 08/18/03 14:51 Project No: 030220.8

Arcata, CA 95521 Attn: Ed Conti					Project ID: SPI Arcata Sawmill					
Order Number A308028	Receipt Date/Time 08/02/2003 09:00			ent Code FGARC		Client PO/Referer	ice			
		Alpha A	Analytical	l Laborato	ries, Inc.					
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE		
PD-SE-Bottom (A308028-01)			Sample Ty	pe: Soil	San	npled: 08/01/03 15:00				
Volatile Organic Compounds by	EPA Methods 8260B/5	5035				•		R-06		
Acetone	8260B	AH30902	08/03/03	08/08/03	1732	ND mg/kg	35			
Benzene	11	"	"	**	н	ND "	8.7			
Bromobenzene	**		**	"		ND "	8.7			
Bromochloromethane	"	"		tt	*1	ND "	8.7			
Bromodichloromethane	"	н			н	ND "	8.7			
Bromoform	**	"	"	**	"	ND "	8.7			
Bromomethane	**	17	n	"	u .	ND "	8.7			
n-Butylbenzene	"	"	11		11	8.8 "	8.7			
sec-Butylbenzene	"	"		**	"	ND "	8.7			
tert-Butylbenzene	**	н	11	**	"	ND "	8.7			
Carbon tetrachloride		н	н	**	"	ND "	8.7			
Chlorobenzene	11	11			11	ND "	8.7			
Chloroethane	**	"	н		u	ND "	8.7			
Chloroform		n	**	**	u	ND "	8.7			
Chloromethane	**	n	н	**	11	ND "	8.7			
2-Chlorotoluene	"	u			н	ND "	8.7			
4-Chlorotoluene	"	11	0	**	н	ND "	8.7			
Dibromochloromethane	**	11	U.	**	н	ND "	8.7			
1,2-Dibromo-3-chloropropane	"	"	n	27	11	ND "	8.7			
1,2-Dibromoethane (EDB)	11	н	"	**	н	ND "	8.7			
Dibromomethane	11	н	н	**	**	ND "	8.7			
1,2-Dichlorobenzene	"	п	"		"	ND "	8.7			
1,3-Dichlorobenzene	"	11		**	и	ND "	8.7			
1,4-Dichlorobenzene	"	н		"	11	ND "	8.7			
Dichlorodifluoromethane		н	11	11	11	ND "	8.7			
1,1-Dichloroethane	н	"	"	н	11	ND "	8.7			
1,2-Dichloroethane			"	н	"	ND "	8.7			
1,1-Dichloroethene	**		"	"		ND "	8.7			
cis-1,2-Dichloroethene	11	11	11	"	"	ND "	8.7			
torus 1.2 Distribution of							0.7			

11

.,

н

.,

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

,,

...

aren aly

ND "

ND "

Karen A. Daly Project Manager

8/18/03

8.7

8.7

AUG 2 1 2003

RECEIVED

trans-1,2-Dichloroethene

1,2-Dichloropropane

. ma

् हें ∓ां

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

> 08/18/03 14:51 030229.8

SPI Arcata Sawmill

Client PO/Reference

CHEMICAL EXAMINATION REPORT

Page 3 of 25

	Alpha	Analytical Laborat	ories. Inc.
A308028	08/02/2003 09:00	MFGARC	
Order Number	Receipt Date/Time	Client Code	
Attn: Ec	I Conti		Project ID:
	CA 95521		Project No:
875 Cre	scent Way		Report Date:
MFG, li	ic - Arcata		

Alpha Allalytical Laboratories, fife.								
	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
PD-SE-Bottom (A308028-01)			Sample T	ype: Soil	Sa	mpled: 08/01/03 15:00		
Volatile Organic Compounds by EP	A Methods 8260B/			•		•		R-0
1,3-Dichloropropane	8260B	17	**	08/08/03		ND "	8.7	
2,2-Dichloropropane	"	"	11		18	ND "	8.7	
1,1-Dichloropropene	11		н	"	"	ND "	8.7	
cis-1,3-Dichloropropene	11		u	**	"	ND "	8.7	
trans-1,3-Dichloropropene	н	"	"	"	"	ND "	8.7	
Ethylbenzene	11	11	11	"	**	ND "	8.7	
Hexachlorobutadiene	н		0	**		ND "	8.7	
Isopropylbenzene	11	"	11	"	**	ND "	8.7	
p-lsopropyltoluene	н	"	"	н	ł1	ND "	8.7	
Methyl ethyl ketone		"	"	"	"	ND "	26	
Methyl isobutyl ketone			"	n		ND "	17	
Methyl tert-butyl ether		"		"		ND "	8.7	
Methylene chloride		11	п		n	ND "	8.7	
Naphthalene	"	u	н		"	ND "	8.7	
n-Propylbenzene			н	н	н	ND "	8.7	
Styrene	"		н			ND "	8.7	
1,1,1,2-Tetrachloroethane	"		"	**	"	ND "	8.7	
1,1,2,2-Tetrachloroethane	н	U	"	"	"	ND "	8.7	
Tetrachloroethene	н	"	**		н	ND "	8.7	
Toluene	0		"	н	'n	ND "	8.7	
1,2,3-Trichlorobenzene	н	"	**		н	ND "	8.7	
1,2,4-Trichlorobenzene	"	"	"	n		ND "	8.7	
1,1,1-Trichloroethane	н	"	н	**		ND "	8.7	
1,1,2-Trichloroethane	н	**		11	п	ND "	8.7	
Trichloroethene	н	11		"	**	ND "	8.7	
Trichlorofluoromethane	н	"	"	н		ND "	8.7	
Trichlorotrifluoroethane	н	**		н		ND "	8.7	
1,2,3-Trichloropropane	н	**		0		ND "	8.7	
1,2,4-Trimethylbenzene	11	*1				49 "	8.7	
1,3,5-Trimethylbenzene		**		"	11	14 ''	8.7	
Vinyl chloride	н	**	н			ND "	8.7	

The results in this report apply to the samples analyzed in accordance with the chain of custody documenters for the state of the

aren dly

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Karen A. Daly Project Manager

1 1

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT P MFG, Inc - Arcata									
875 Crescent W Arcata, CA 955 Attn: Ed Conti	/ay				Report Date: Project No: Project ID:				
<u>Order Number</u> A308028	Receipt Date/Time 08/02/2003 09:00			<u>ent Code</u> FGARC		Client PC	<u>D/Reference</u>		
		Alpha A	nalytical	Laborato	ories, Inc.		*********		
	METHOD	-	-	ANALYZED		RESULT		PQL	NOTE
PD-SE-Bottom (A308028-01)			Sample Ty	pe: Soil	Samr	oled: 08/01/03	15:00		
Volatile Organic Compounds by E	PA Methods 8260B/5	035 (cont'd)						R-06
m,p-Xylene	8260B	н	**	08/08/03		20 "		8.7	
o-Xylene	"	н	"	*1	"	8.7 "		8.7	
Xylenes (total)		н	**	a		29 "		8.7	
Surrogate: Dibromofluoromethan	10 "	"	n	H		96.5 %	57-144	511	
Surrogate: Toluene-d8	n	"	"	11		90.3 %	65-127		
Surrogate: Bromofluorobenzene	"	"	"	"		86.6 %	56-130		
TPH Gasoline by GCFID/5035									
TPH as Gasoline	8015GRO	AH30712	**	08/07/03	1	3700 mg/kg	g	1.0	G-1
Surrogate: 1,4-Bromofluorobenze	ene "	"	"	"	······	116 %	60-156		0.
			_						
PD-NE3-2' (A308028-02) Volatile Organic Compounds by E	PA Methods 8260B/5		Sample Ty	pe: Soil	Sam	oled: 08/01/03	15:00		R-06
Acetone	8260B	AH30902	08/03/03	08/08/03	866	ND mg/kg	'n	17	11-00
Benzene	02000	"	11	#	"	ND Ing/K	5	4.3	
Bromobenzene			"	14	**	ND "		4.3	
Bromochloromethane	11		"	11	"	ND "		4.3	
Bromodichloromethane	**	8	17	n	**	ND "		4.3	
Bromoform	**	н	"	н		ND "		4.3	
Bromomethane	н		u	u	11	ND "		4.3	
n-Butylbenzene		н	11	u	**	21 "		4.3	
sec-Butylbenzene		0	"		*1	9.0 "		4.3	
tert-Butylbenzene	n	н	n	u	н	ND "		4.3	
Carbon tetrachloride	**	н	н	н	"	ND "		4.3	
Chlorobenzene		н	н	п		ND "		4.3	
Chloroethane		н	н	n	"	ND "		4.3	
Chloroform	11	"	"	н	n	ND "		4.3	
Chloromethane	"	"	"	"		ND "		4.3	
2-Chlorotoluene	"	**	11	n	u .	ND "		4.3	
4-Chlorotoluene	11	11	"	"		ND "		4.3	
Dibromochloromethane	"	11	н	"	"	ND "		4.3	

The results in this report apply to the samples analyzed in accordance with the of custody document the day find the part must be reproduced in its entirety. apply to the samples analyzed in accordance with the chain

aren aly

Karen A. Daly Project Manager

AUG 2 1 2003

5 Å 9 - 5

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

> Report Date: 08/18/03 14:51 Project No: 030229.8

Project ID: SPI Arcata Sawmill

Client PO/Reference

CHEMICAL EXAMINATION REPORT

Page 5 of 25

MFG, In	c - Arcata			
875 Cres	cent Way			Report I
Arcata, C	CA 95521			Project
Attn: Ed	Conti			Projec
Order Number	Receipt Date/Time		Client Code	
A308028	08/02/2003 09:00		MFGARC	
		Alpha /	Analytical Laborato	ries, Inc.
	METHOD	BATCH	PREPARED ANALYZED	DILUTION
PD-NE3-2' (A308028-02)		Sample Type: Soil	
Volatile Organic Compou	inds by EPA Methods 8260B/5	035 (cont'	d)	

	METHOD	BATCH	PREPAREI	O ANALYZED	DILUTION	RESULT	PQL	NOTE
'D-NE3-2' (A308028-02)		Ş	Sample Ty	pe: Soil		Sampled: 08/01/03 15:00		
Volatile Organic Compounds by EP.	A Methods 8260B/			•		·		R-06
1,2-Dibromo-3-chloropropane	8260B	**		08/08/03	11	ND "	4.3	
1,2-Dibromoethane (EDB)	"	"	"	"	11	ND "	4.3	
Dibromomethane	н	**	"	**		ND "	4.3	
1,2-Dichlorobenzene	"	**	"	11	11	ND "	4.3	
1,3-Dichlorobenzene		**	"	n		ND "	4.3	
1,4-Dichlorobenzene	н	"	11	11	н	ND "	4.3	
Dichlorodifluoromethane		11	11	"	n	ND "	4.3	
1,1-Dichloroethane	н	"		н		ND "	4.3	
1,2-Dichloroethane	"	11		"	н	ND "	4.3	
1,1-Dichloroethene	н	11	**	н	"	ND "	4.3	
cis-1,2-Dichloroethene	"	ч			**	ND "	4.3	
trans-1,2-Dichloroethene	"	·	**	17	**	ND "	4.3	
1,2-Dichloropropane	"		н	"	0	ND "	4.3	
1,3-Dichloropropane	"	a.	"		u	ND "	4.3	
2,2-Dichloropropane	11	"	**	**	"	ND "	4.3	
1,1-Dichloropropene	11	0	"		u.	ND "	4.3	
cis-1,3-Dichloropropene	**		н	**		ND "	4.3	
trans-1,3-Dichloropropene	11	**		"	**	ND "	4.3	
Ethylbenzene	11	"	"	"		9.2 ''	4.3	
Hexachlorobutadiene	11	"	11	ч	*	ND "	4.3	
Isopropyibenzene		**	"	**	н	5.1 "	4.3	
p-Isopropyltoluene	*1	н		"	"	13 "	4.3	
Methyl ethyl ketone	н	"		**	"	ND "	13	
Methyl isobutyl ketone	н	"	0	"	"	ND "	8.7	
Methyl tert-butyl ether		н	н		н	ND "	4.3	
Methylene chloride	н	"		#1	н	ND "	4.3	
Naphthalene		11	н		11	14 "	4.3	
n-Propylbenzene	"	**			n	13 "	4.3	
Styrene		n	н	**	tı	ND "	4.3	
1,1,1,2-Tetrachloroethane	"	*1	"	**	"	ND "	4.3	
1,1,2,2-Tetrachloroethane	u.	11	н		IJ	ND "	4.3	

The results in this report apply to the samples analyzed in accordance with the chain of custody document fus any still de for must be reproduced in its entirety.

aren aly

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Karen A. Daly Project Manager

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EVAMINATION DEPODT

Daga 6 of 25

MFG, Inc - Arca			AL EAAP		N KEI UKI				1 age 0 01 25
875 Crescent W					Report Date	08/18/03 1	1.51		
Arcata, CA 9552						030229.8	4.51		
Attn: Ed Conti	21				5	SPI Arcata	Soumill		
Atul. Eu Collu					i loject iD	STIAIdata	Sawiiiii		
	Receipt Date/Time		Cli	ent Code		Client P	O/Reference		
A308028	08/02/2003 09:00		M	FGARC					
		Alpha A	Analytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
PD-NE3-2' (A308028-02)			Sample Ty	pe: Soil	Sam	pled: 08/01/03	15:00		
Volatile Organic Compounds by El	PA Methods 8260B/5	035 (cont'c	l)						R-06
Tetrachloroethene	8260B	Ð	0	08/08/03	"	ND "		4.3	
Toluene	н	**	н	"	**	ND "		4.3	
1,2,3-Trichlorobenzene	n	**	"	**	11	ND "		4.3	
1,2,4-Trichlorobenzene	11	п		**	н	ND "		4.3	
1,1,1-Trichloroethane	11		"	**	"	ND "		4.3	
1,1,2-Trichloroethane	17	"	"	11	11	ND "		4.3	
Trichloroethene	n	"	"	п	"	ND "		4.3	
Trichlorofluoromethane	н	н		н	"	ND "		4.3	
Trichlorotrifluoroethane	в	"	н	FT	н	ND "		4.3	
1,2,3-Trichloropropane	**	"	11	0	**	ND "		4.3	
1,2,4-Trimethylbenzene	"	н	н	08/08/03	8660	100 "		43	
1,3,5-Trimethylbenzene	11	"	"	08/08/03	866	22 ''		4.3	
Vinyl chloride	"	"	11	н	"	ND "		4.3	
m,p-Xylene	"	н	"		"	14 "		4.3	
o-Xylene	11	"	"	н	"	ND "		4.3	
Xylenes (total)		н	"	**		14 "		4.3	
Surrogate: Dibromofluoromethan	e "	"	"	"		91.8 %	57-144		
Surrogate: Toluene-d8	"	"	н	"		90.7 %	65-127		
Surrogate: Bromofluorobenzene	"	"	"	"		90.0 %	56-130		
TPH Gasoline by GCFID/5035									
TPH as Gasoline	8015GRO	AH30712	08/03/03	08/07/03	1	7000 mg/l	٨g	1.0	G-1
Surrogate: 1,4-Bromofluorobenze	ene "	"	n	"		114 %	60-156		
PD-SE-Bottom (A308028-03)			Sample Ty	pe: Soil	Sar	npled: 08/01/03	15:00		

Conventional Chemistry Parameters by	АРНА/ЕРА М					•	
Oil & Grease (HEM-SG)	EPA 9071B	AH31123	08/08/03	08/11/03	1	18000 mg/kg	50

The results in this reported by the stars in a coordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Xaren aly

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Karen A. Daly Project Manager

, ¹

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 7 of 25

MFG, Inc - Arca 875 Crescent Wa Arcata, CA 9552 Attn: Ed Conti	ıy				Project No	e: 08/18/03 14 o: 030229.8 D: SPI Arcata			
· · · · · · · · · · · · · · · · · · ·	Receipt Date/Time 08/02/2003 09:00			ient Code FGARC		<u>Client PO</u>	/Reference		
		Alpha A	Analytica	l Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED) ANALYZED	DILUTION	RESULT		PQL	NOTE
PD-SE-Bottom (A308028-03)			Sample Ty	pe: Soil	Sa	mpled: 08/01/03 1	5:00		
TPH as Diesel and Motor Oil by EP	A Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AH31525	08/15/03	08/15/03	30	4100 mg/kg		30	A-01
TPH as Motor Oil	"	**	"	H	11	3700 "		60	
Surrogate: 1,4-Bromofluorobenzen	e "	"	"	"		679 %	21-110		S-06
PD-NE3-2' (A308028-04)			Sample Ty	pe: Soil	Sa	mpled: 08/01/03 1	5:00		
Conventional Chemistry Parameter	s by APHA/EPA M	ethods							
Oil & Grease (HEM-SG)	EPA 9071B	AH31123	08/08/03	08/11/03	1	9300 mg/kg		50	
TPH as Diesel and Motor Oil by EP	A Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AH31525	08/15/03	08/18/03	200	10000 mg/kg	ļ	200	A-02
TPH as Motor Oil	"	**	"	"	н	5300 "		400	
Surrogate: 1,4-Bromofluorobenzer	ie "	"	"	"		2840 %	21-110		S-06

The results in RECOGNIVIES moles analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

aren aly

Karen A. Daly Project Manager

54

Order Number A308028

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 8 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 14:51 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Receipt Date/Time 08/02/2003 09:00

Client Code MFGARC

Client PO/Reference

SourceResult

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
Blank (AH30902-BLK1)				Prepared	& Analyze	ed: 08/07/	03			
Acetone	ND	3.5	mg/kg							
Benzene	ND	0.87								
Bromobenzene	ND	0.87	**							
Bromochloromethane	ND	0.87	11							
Bromodichloromethane	ND	0.87	**							
Bromoform	ND	0.87	"							
Bromomethane	ND	0.87	"							
n-Butylbenzene	ND	0.87	**							
sec-Butylbenzene	ND	0.87	**							
tert-Butylbenzene	ND	0.87	"							
Carbon tetrachloride	ND	0.87								
Chlorobenzene	ND	0.87	н							
Chloroethane	ND	0.87	11							
Chloroform	ND	0.87	11							
Chloromethane	ND	0.87	Ħ							
2-Chlorotoluene	ND	0.87								
4-Chlorotoluene	ND	0.87								
Dibromochloromethane	ND	0.87	**							
1,2-Dibromo-3-chloropropane	ND	0.87	"							
1,2-Dibromoethane (EDB)	ND	0.87	11							
Dibromomethane	ND	0.87	"							
1,2-Dichlorobenzene	ND	0.87	н							
1,3-Dichlorobenzene	ND	0.87	"							
1,4-Dichlorobenzene	ND	0.87	"							
Dichlorodifluoromethane	ND	0.87								
1,1-Dichloroethane	ND	0.87								

The results in this report apply to the samples analyzed in accordance with the chain of custody document This malytic meror must be reproduced in its entirety.

aren aly

Karen A. Daly Project Manager

1

Alpha Analytical Laboratories Inc.

Receipt Date/Time

08/02/2003 09:00

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 9 of 25

MFG. Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 14:51
Project No:	030229.8

Project ID: SPI Arcata Sawmill

Order Number A308028

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
Blank (AH30902-BLK1)				Prepared	& Analyze	ed: 08/07/	03			
1,2-Dichloroethane	ND	0.87	n							
1,1-Dichloroethene	ND	0.87	H							
cis-1,2-Dichloroethene	ND	0.87	"							
trans-1,2-Dichloroethene	ND	0.87	P1							
1,2-Dichloropropane	ND	0.87	11							
1,3-Dichloropropane	ND	0.87	"							
2,2-Dichloropropane	ND	0.87	"							
1,1-Dichloropropene	ND	0.87	u.							
cis-1,3-Dichloropropene	ND	0.87	n							
trans-1,3-Dichloropropene	ND	0.87								
Ethylbenzene	ND	0.87								
Hexachlorobutadiene	ND	0.87	11							
Isopropylbenzene	ND	0.87	11							
p-lsopropyltoluene	ND	0.87	"							
Methyl ethyl ketone	ND	2.6								
Methyl isobutyl ketone	ND	1.7	"							
Methyl tert-butyl ether	ND	0.87	"							
Methylene chloride	ND	0.87	n							
Naphthalene	ND	0.87	"							
n-Propylbenzene	ND	0.87	9							
Styrene	ND	0.87	11							
1,1,1,2-Tetrachloroethane	ND	0.87								
1,1,2,2-Tetrachloroethane	ND	0.87	н							
Tetrachloroethene	ND	0.87	"							
Toluene	ND	0.87	"							
1,2,3-Trichlorobenzene	ND	0.87	Ħ							
1.2,4-Trichlorobenzene	ND	0.87	"							

The results in this ECEND head analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

aren aly

Karen A. Daly Project Manager

\;+

Report Date: 08/18/03 14:51

Project No: 030229.8

CHEMICAL EXAMINATION REPORT

Page 10 of 25

8/18/03

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Attn: Ed	Conti	Pro	ject ID: SPI Arcata Sawmill
Order Number A308028	<u>Receipt Date/Time</u> 08/02/2003 09:00	<u>Client Code</u> MFGARC	Client PO/Reference
	Volatile Organic Compound	ls by EPA Methods 8260B/	/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
Blank (AH30902-BLK1)				Prepared	& Analyze	ed: 08/07/0	03			
1,1,1-Trichloroethane	ND	0.87	11							
1,1,2-Trichloroethane	ND	0.87	н							
Trichloroethene	ND	0.87	"							
Trichlorofluoromethane	ND	0.87	U							
Trichlorotrifluoroethane	ND	0.87	Ħ							
1,2,3-Trichloropropane	ND	0.87	ч							
1,2,4-Trimethylbenzene	ND	0.87								
1,3,5-Trimethylbenzene	ND	0.87	"							
Vinyl chloride	ND	0.87	11							
m,p-Xylene	ND	0.87								
o-Xylene	ND	0.87	11							
Xylenes (total)	ND	0.87	"							
Surrogate: Dibromofluoromethane	4.07		"	4.33		94.0	57-144			
Surrogate: Toluene-d8	4.01		"	4.33		92.6	65-127			
Surrogate: Bromofluorobenzene	3.75		"	4.33		86.6	56-130			
LCS (AH30902-BS1)				Prepared	& Analyz	ed: 08/07/	/03			
Acetone	6.40	3.5	mg/kg	6.84	······	93.6	36-154			
Benzene	1.71	0.87		1.73		98.8	72-123			
Bromobenzene	1.68	0.87		1.73		97.1	71-127			
Bromochloromethane	1.80	0.87	н	1.73		104	62-132			
Bromodichloromethane	2.22	0.87		1.73		128	57-125			QL-0.
Bromoform	2.11	0.87	11	1.73		122	57-138			
Bromomethane	1.89	0.87		1.73		109	56-150			
n-Butylbenzene	1.67	0.87	**	1.73		96.5	68-121			
sec-Butylbenzene	1.68	0.87	**	1.73		97.1	68-126			
tert-Butylbenzene	1.69	0.87	н	1.73		97.7	66-124			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. (his maple in the chain the sample state of the same state of the same state of the same st

aren aly

Karen A. Daly Project Manager

AUG 2 1 2003 Tetra Tech/MFG, Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 11 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 14:51 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308028	08/02/2003 09:00	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

				Spike	Source		%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH30902 - EPA 5035 MS

LCS (AH30902-BS1)				Prepared & An	alyzed: 08/07/	03	
Carbon tetrachloride	2.36	0.87	н	1.73	136	57-133	QM-03
Chlorobenzene	1.68	0.87		1.73	97.1	76-117	
Chloroethane	1.63	0.87	**	1.73	94.2	59-128	
Chloroform	1.80	0.87	11	1.73	104	60-128	
Chloromethane	1.56	0.87	**	1.73	90.2	45-140	
2-Chlorotoluene	1.74	0.87		1.73	101	67-127	
4-Chlorotoluene	1.70	0.87	**	1.73	98.3	65-125	
Dibromochloromethane	2.20	0.87	"	1.73	127	56-141	
1,2-Dibromo-3-chloropropane	2.16	0.87	н	1.73	125	61-134	
1,2-Dibromoethane (EDB)	1.77	0.87	"	1.73	102	70-132	
Dibromomethane	1.81	0.87	н	1.73	105	66-123	
1,2-Dichlorobenzene	1.72	0.87	н	1.73	99.4	70-121	
1,3-Dichlorobenzene	1.69	0.87		1.73	97.7	65-124	
1,4-Dichlorobenzene	1.74	0.87	**	1.73	101	71-120	
Dichlorodifluoromethane	1.56	0.87	**	1.73	90.2	52-145	
1,1-Dichloroethane	1.75	0.87		1.73	101	58-136	
1,2-Dichloroethane	1.75	0.87	11	1.73	101	64-117	
1,1-Dichloroethene	1.71	0.87		1.73	98.8	66-131	
cis-1,2-Dichloroethene	2.55	0.87	"	1.73	147	57-131	QM-03
trans-1,2-Dichloroethene	1.73	0.87	81	1.73	100	59-127	
1,2-Dichloropropane	1.76	0.87	11	1.73	102	72-121	
1,3-Dichloropropane	1.74	0.87		1.73	101	70-135	
2,2-Dichloropropane	1.80	0.87		1.73	104	38-152	
1,1-Dichloropropene	1.75	0.87	**	1.73	101	73-124	
cis-1,3-Dichloropropene	1.90	0.87	"	1.73	110	66-132	
trans-1,3-Dichloropropene	1.91	0.87	n	1.73	110	55-133	
Ethylbenzene	1.74	0.87	u	1.73	101	71-125	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG 2 1 2003

Tetra Tech/MFG, Inc.

aren aly

Karen A. Daly Project Manager

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 12 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 14:51 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Receipt Date/Time 08/02/2003 09:00

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

				Spike	Source		%REC		RPD	****
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH30902 - EPA 5035 MS

Order Number

A308028

LCS (AH30902-BS1)				Prepared & Ar	alyzed: 08/07/	03	
Hexachlorobutadiene	1.75	0.87	н	1.73	101	68-131	
Isopropylbenzene	1.72	0.87	н	1.73	99.4	66-125	
p-lsopropyltoluene	1.65	0.87		1.73	95.4	62-120	
Methyl ethyl ketone	3.36	2.6		3.48	96.6	58-138	
Methyl isobutyl ketone	3.08	1.7	п	3.46	89.0	59-133	
Methyl tert-butyl ether	1.79	0.87		1.73	103	71-127	
Methylene chloride	1.51	0.87	н	1.73	87.3	60-128	
Naphthalene	1.79	0.87	н	1.73	103	58-133	
n-Propylbenzene	1.70	0.87	н	1.73	98.3	67-124	
Styrene	1.84	0.87	11	1.73	106	65-126	
1,1,1,2-Tetrachloroethane	2.06	0.87		1.73	119	65-136	
1,1,2,2-Tetrachloroethane	1.66	0.87		1.73	96.0	40-149	
Tetrachloroethene	1.76	0.87	11	1.73	102	52-148	
Toluene	1.74	0.87	**	1.73	101	72-126	
1,2,3-Trichlorobenzene	1.77	0.87	"	1.73	102	67-124	
1,2,4-Trichlorobenzene	1.76	0.87	**	1.73	102	63-125	
1,1,1-Trichloroethane	1.97	0.87	**	1.73	114	55-134	
1,1,2-Trichloroethane	1.70	0.87	"	1.73	98.3	61-138	
Trichloroethene	1.74	0.87		1.73	101	74-129	
Trichlorofluoromethane	1.81	0.87	14	1.73	105	61-132	
Trichlorotrifluoroethane	1.76	0.87		1.70	104	52-138	
1,2,3-Trichloropropane	1.54	0.87	0	1.73	89.0	66-132	
1,2,4-Trimethylbenzene	1.70	0.87	и	1.73	98.3	66-128	
1,3,5-Trimethylbenzene	1.76	0.87	H.	1.73	102	65-123	
Vinyl chloride	1.62	0.87	24	1.73	93.6	59-135	
m,p-Xylene	3.48	0.87	"	3.46	101	67-128	
o-Xylene	1.74	0.87	*1	1.73	101	67-126	

The results in this report apply to the samples analyzed in accordance with the chain ret report must be reproduced in its entirety. of custody doc RECENT

aren aly

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Karen A. Daly Project Manager

MFG, Inc - Arcata

875 Crescent Way

Arcata, CA 95521

Attn: Ed Conti

Alpha Analytical Laboratories Inc.

Receipt Date/Time

08/02/2003 09:00

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 13 of 25

Report Date: 08/18/03 14:51 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Client Code MFGARC

Client PO/Reference

Order Number A308028

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
LCS (AH30902-BS1)				Prepared	& Analyz	ed: 08/07/0	03			
Xylenes (total)	5.22	0.87		5.20		100	67-127			
Surrogate: Dibromofluoromethane	4.09		H	4.33		94.5	57-144			
Surrogate: Toluene-d8	3.84		n	4.33		88.7	65-127			
Surrogate: Bromofluorobenzene	3.66		"	4.33		84.5	56-130			
				Proparad	& Applyz	ed: 08/07/	03			
LCS Dup (AH30902-BSD1)	6.66	3.5	mg/kg	6.84	a maryz	97.4	36-154	3.98	25	
Acetone	1.71	0.87	" "	1.73		98.8	72-123	0.00	25	
Benzene	1.74	0.87		1.73		101	71-127	3.51	25	
Bromobenzene Bromochloromethane	1.77	0.87	**	1.73		102	62-132	1.68	25	
Bromodichloromethane	2.14	0.87	**	1.73		124	57-125	3.67	25	
Bromoform	2.14	0.87	"	1.73		124	57-138	1.41	25	
Bromomethane	1.92	0.87	11	1.73		111	56-150	1.57	25	
n-Butylbenzene	1.70	0.87	"	1.73		98.3	68-121	1.78	25	
sec-Butylbenzene	1.69	0.87	**	1.73		97.7	68-126	0.593	25	
tert-Butylbenzene	1.70	0.87		1.73		98.3	66-124	0.590	25	
Carbon tetrachloride	2.25	0.87	"	1.73		130	57-133	4.77	25	
Chlorobenzene	1.73	0.87	11	1.73		100	76-117	2.93	25	
Chloroethane	1.69	0.87	11	1.73		97.7	59-128	3.61	25	
Chloroform	1.75	0.87	11	1.73		101	60-128	2.82	25	
Chloromethane	1.73	0.87	н	1.73		98.8	45-140	9.17	25	
2-Chlorotoluene	1.68	0.87		1.73		97.1	67-127	3.51	25	
4-Chlorotoluene	1.00	0.87	н	1.73		99.4	65-125	1.17	25	
Dibromochloromethane	2.20	0.87	"	1.73		127	56-141	0.00	25	
1,2-Dibromo-3-chloropropane	2.09	0.87	11	1.73		121	61-134	3.29	25	
1,2-Dibromoethane (EDB)	1.80	0.87	**	1.73		104	70-132	1.68	25	
Dibromomethane	1.74	0.87		1.73		101	66-123	3.94	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document ust be reproduced in its entirety.

aren aly

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Karen A. Daly Project Manager

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 14 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 14:51 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	<u>Client Code</u>	Client PO/Reference
A308028	08/02/2003 09:00	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

				Spike	Source		%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH30902 - EPA 5035 MS

LCS Dup (AH30902-BSD1)				Prepared & An	alyzed: 08/07/	03			
1,2-Dichlorobenzene	1.77	0.87	8	1.73	102	70-121	2.87	25	
1,3-Dichlorobenzene	1.73	0.87	11	1.73	100	65-124	2.34	25	
1,4-Dichlorobenzene	1.77	0.87	"	1.73	102	71-120	1.71	25	
Dichlorodifluoromethane	1.70	0.87		1.73	98.3	52-145	8.59	25	
1,1-Dichloroethane	1.72	0.87		1.73	99.4	58-136	1.73	25	
1,2-Dichloroethane	1.69	0.87	11	1.73	97.7	64-117	3.49	25	
1,1-Dichloroethene	1.72	0.87	0	1.73	99.4	66-131	0.583	25	
cis-1,2-Dichloroethene	2.54	0.87	**	1.73	147	57-131	0.393	25	QM-03
trans-1,2-Dichloroethene	1.67	0.87	н	1.73	96.5	59-127	3.53	25	
1,2-Dichloropropane	1.74	0.87	"	1.73	101	72-121	1.14	25	
1,3-Dichloropropane	1.75	0.87	n	1.73	101	70-135	0.573	25	
2,2-Dichloropropane	1.73	0.87	**	1.73	100	38-152	3.97	25	
1,1-Díchloropropene	1.70	0.87	"	1.73	98.3	73-124	2.90	25	
c1s-1,3-Dichloropropene	1.88	0.87	"	1.73	109	66-132	1.06	25	
trans-1,3-Dichloropropene	1.97	0.87	"	1.73	114	55-133	3.09	25	
Ethylbenzene	1.75	0.87	*	1.73	101	71-125	0.573	25	
Hexachlorobutadiene	1.71	0.87	н	1.73	98.8	68-131	2.31	25	
Isopropylbenzene	1.73	0.87	H	1.73	100	66-125	0.580	25	
p-Isopropyltoluene	1.66	0.87	**	1.73	96.0	62-120	0.604	25	
Methyl ethyl ketone	4.33	2.6	н	3.48	124	58-138	25.2	25	QL-04
Methyl isobutyl ketone	3.18	1.7	"	3.46	91.9	59-133	3.19	25	
Methyl tert-butyl ether	1.73	0.87	н	1.73	100	71-127	3.41	25	
Methylene chloride	1.57	0.87	11	1.73	90.8	60-128	3.90	25	
Naphthalene	1.74	0.87	н	1.73	101	58-133	2.83	25	
n-Propylbenzene	1.75	0.87	R	1.73	101	67-124	2.90	25	
Styrene	1.76	0.87		1.73	102	65-126	4.44	25	
1,1,1,2-Tetrachloroethane	2.06	0.87		1.73	119	65-136	0.00	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document Estimate A Vere Dust be reproduced in its entirety.

Faren dly

Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

MFG. Inc - Arcata

875 Crescent Way

Arcata, CA 95521

Alpha Analytical Laboratories Inc.

Receipt Date/Time

08/02/2003 09:00

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 15 of 25

Report Date: 08/18/03 14:51 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Attn: Ed Conti Order Number A308028

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
LCS Dup (AH30902-BSD1)				Prepared	& Analyze	ed: 08/07/	03			
1,1,2,2-Tetrachloroethane	1.79	0.87		1.73		103	40-149	7.54	25	
Tetrachloroethene	1.75	0.87	**	1.73		101	52-148	0.570	25	
Toluene	1.74	0.87	**	1.73		101	72-126	0.00	25	
1,2,3-Trichlorobenzene	1.74	0.87	**	1.73		101	67-124	1.71	25	
1,2,4-Trichlorobenzene	1.74	0.87	*1	1.73		101	63-125	1.14	25	
1,1,1-Trichloroethane	1.92	0.87	**	1.73		111	55-134	2.57	25	
1,1,2-Trichloroethane	1.74	0.87	"	1.73		101	61-138	2.33	25	
Trichloroethene	1.72	0.87	Ħ	1.73		99.4	74-129	1.16	25	
Trichlorofluoromethane	1.76	0.87	"	1.73		102	61-132	2.80	25	
Trichlorotrifluoroethane	1.74	0.87	"	1.70		102	52-138	1.14	25	
1,2,3-Trichloropropane	1.67	0.87		1.73		96.5	66-132	8.10	25	
1,2,4-Trimethylbenzene	1.71	0.87	н	1.73		98.8	66-128	0.587	25	
1,3,5-Trimethylbenzene	1.73	0.87	**	1.73		100	65-123	1.72	25	
Vinyl chloride	1.67	0.87	0	1.73		96.5	59-135	3.04	25	
m,p-Xylene	3.49	0.87		3.46		101	67-128	0.287	25	
o-Xylene	1.72	0.87	н	1.73		99.4	67-126	1.16	25	
Xylenes (total)	5.21	0.87	"	5.20		100	67-127	0.192	25	
Surrogate: Dibromofluoromethane	3.88		"	4.33		89.6	57-144			
Surrogate: Toluene-d8	3.85		"	4.33		88.9	65-127			
Surrogate: Bromofluorobenzene	3.71		"	4.33		85.7	56-130			
Matrix Spike (AH30902-MS2)	Sou	rce: A308	028-02	Prepared	1: 08/03/03	Analyze	d: 08/07/0	3		
Acetone	83.4	17	mg/kg	33.4	ND	250	9-181			QM-01
Benzene	9.23	4.3	"	8.46	ND	109	49-137			
Bromobenzene	7.97	4.3	11	8.46	ND	94.2	55-136			
Bromochloromethane	7.96	4.3	**	8.46	ND	94.1	58-133			
Bromodichloromethane	10.7	4.3	"	8.46	ND	126	51-126			

The results in this report apply to the samples analyzed in accordance with the chain of custody docuret man and promust be reproduced in its entirety.

aren aly

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Karen A. Daly Project Manager

Receipt Date/Time

08/02/2003 09:00

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 16 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 14:51 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number A308028

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag

Batch AH30902	2 - EI	PA 503	35 MS
---------------	--------	--------	-------

Matrix Spike (AH30902-MS2)	Sour	ce: A30802	8-02	Prepared: (08/03/03	Analyzed	: 08/07/03	
Bromoform	10.0	4.3	H	8.46	ND	118	47-138	
Bromomethane	8.67	4.3	"	8.46	ND	102	32-180	
n-Butylbenzene	15.4	4.3	н	8.46	21	NR	29-153	QM-01
sec-Butylbenzene	10.2	4.3		8.46	9.0	14.2	44-148	QM-01
tert-Butylbenzene	8.61	4.3	"	8.46	ND	102	49-141	
Carbon tetrachloride	11.0	4.3	**	8.46	ND	130	52-133	
Chlorobenzene	8.72	4.3	"	8.46	ND	103	54-133	
Chloroethane	6.28	4.3	н	8.46	ND	74.2	53-136	
Chloroform	9.72	4.3	н	8.46	ND	115	61-126	
Chloromethane	3.92	4.3	Ħ	8.46	ND	46.3	57-130	QM-01
2-Chlorotoluene	8.25	4.3		8.46	ND	97.5	52-140	
4-Chlorotoluene	8.16	4.3	"	8.46	ND	96.5	39-149	
Dibromochloromethane	11.2	4.3	ч	8.46	ND	132	48-135	
1,2-Dibromo-3-chloropropane	9.52	4.3	н	8.46	ND	113	48-139	
1,2-Dibromoethane (EDB)	8.75	4.3	*1	8.46	ND	103	36-156	
Dibromomethane	7.45	4.3	**	8.46	ND	88.1	61-128	
1,2-Dichlorobenzene	8.79	4.3	**	8.46	ND	104	36-156	
1,3-Dichlorobenzene	7.78	4.3	н	8.46	ND	92.0	45-138	
1,4-Dichlorobenzene	8.78	4.3	н	8.46	ND	104	60-136	
Dichlorodifluoromethane	6.75	4.3	"	8.46	ND	79.8	24-189	
1,1-Dichloroethane	9.15	4.3	"	8.46	ND	108	58-142	
1,2-Dichloroethane	9.36	4.3	н	8.46	ND	111 -	55-125	
1,1-Dichloroethene	9.94	4.3	н	8.46	ND	117	54-147	
cis-1,2-Dichloroethene	13.9	4.3	н	8.46	ND	164	52-129	QM-01
trans-1,2-Dichloroethene	9.45	4.3	"	8.46	ND	112	61-120	
1,2-Dichloropropane	9.25	4.3	**	8.46	ND	109	61-123	
1,3-Dichloropropane	8.35	4.3	**	8.46	ND	98.7	45-150	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. **RECEIVED**

AUG 2 1 2003

Tetra Tech/MFG. Inc.

Faren dly

Karen A. Daly Project Manager

8/18/03

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 17 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 14:51
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308028	08/02/2003 09:00	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

				Spike	Source		%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH30902 - EPA 5035 MS

Matrix Spike (AH30902-MS2)	Sour	ce: A308028-02	Prepared:	08/03/03	Analyzed	d: 08/07/03	
2,2-Dichloropropane	ND	4.3 "	8.46	ND		32-160	QM-01
1,1-Dichloropropene	9.75	4.3 "	8.46	ND	115	56-131	
cis-1,3-Dichloropropene	3.37	4.3 "	8.46	ND	39.8	55-129	QM-01
trans-1,3-Dichloropropene	4.94	4.3 "	8.46	ND	58.4	34-139	
Ethylbenzene	10.7	4.3 "	8.46	9.2	17.7	55-138	QM-01
Hexachlorobutadiene	10.2	4.3 "	8.46	ND	121	16-172	
lsopropylbenzene	9.47	4.3 "	8.46	5.1	51.7	51-137	
p-Isopropyltoluene	10.6	4.3 "	8.46	13	NR	37-143	QM-01
Methyl ethyl ketone	21.0	13 "	17.0	ND	124	32-146	
Methyl isobutyl ketone	14.8	8.7 "	16.9	ND	87.6	29-155	
Methyl tert-butyl ether	6.69	4.3 "	8.46	ND	79.1	50-140	
Methylene chloride	7.63	4.3 "	8.46	ND	90.2	53-137	
Naphthalene	13.0	4.3 "	8.46	14	NR	26-152	QM-01
n-Propylbenzene	11.0	4.3 "	8.46	13	NR	47-143	QM-01
Styrene	8.81	4.3 "	8.46	ND	104	32-150	
1,1,1,2-Tetrachloroethane	10.6	4.3 "	8.46	ND	125	39-153	
1,1,2,2-Tetrachloroethane	8.42	4.3 "	8.46	ND	99.5	42-140	
Tetrachloroethene	15.7	4.3 "	8.46	ND	186	9-206	
Toluene	9.29	4.3 "	8.46	ND	110	50-148	
1,2,3-Trichlorobenzene	10.4	4.3 "	8.46	ND	123	31-148	
1,2,4-Trichlorobenzene	10.7	4.3 "	8.46	ND	126	30-148	
1,1,1-Trichloroethane	9.09	4.3 "	8.46	ND	107	52-132	
1,1,2-Trichloroethane	9.31	4.3 "	8.46	ND	110	39-152	
Trichloroethene	9.85	4.3 "	8.46	ND	116	50-146	
Trichlorofluoromethane	9.97	4.3 "	8.46	ND	118	51-150	
Trichlorotrifluoroethane	9.66	4.3 "	8.33	ND	116	51-138	
1,2,3-Trichloropropane	7.47	4.3 "	8.46	ND	88.3	38-152	

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety. RECEIVED

aren aly

Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 18 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 14:51
Project No:	030229.8
D	CDT 1 C

Project ID: SPI Arcata Sawmill

Order Number A308028

1

Receipt Date/Time 08/02/2003 09:00 Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
Matrix Spike (AH30902-MS2)	Sou	rce: A308	028-02	Prepared:	08/03/03	Analyzed	1: 08/07/03			
1,2,4-Trimethylbenzene	25.3	4.3	11	8.46	100	NR	43-150			QM-4X
1,3,5-Trimethylbenzene	9.46	4.3		8.46	22	NR	47-140			QM-01
Vinyl chloride	8.61	4.3	**	8.46	ND	102	46-150			
m,p-Xylene	19.7	4.3	"	16.9	14	33.7	54-139			QM-01
o-Xylene	8.41	4.3		8.46	ND	99.4	58-136			
Xylenes (total)	28.1	4.3	**	25.4	14	55.5	54-139			
Surrogate: Dibromofluoromethane	4.00		"	4.23		94.6	57-144			
Surrogate: Toluene-d8	3.84		н	4.23		90.8	65-127			
Surrogate: Bromofluorobenzene	3.43		"	4.23		81.1	56-130			
Matrix Spike Dup (AH30902-MSD2)	Sou	irce: A308	028-02	Prepared	: 08/03/03	Analyzed	d: 08/07/03			
Acetone	58.8	17	mg/kg	32.2	ND	183	9-181	34.6	25	QM-04
Benzene	7.30	4.3	"	8.16	ND	89.5	49-137	23.4	25	
Bromobenzene	6.96	4.3	"	8.16	ND	85.3	55-136	13.5	25	
Bromochloromethane	7.05	4.3	"	8.16	ND	86.4	58-133	12.1	25	
Bromodichloromethane	8.75	4.3	"	8.16	ND	107	51-126	20.1	25	
Bromoform	8.29	4.3	*	8.16	ND	102	47-138	18.7	25	
Bromomethane	9.01	4.3	"	8.16	ND	110	32-180	3.85	25	
n-Butylbenzene	17.1	4.3	*1	8.16	21	NR	29-153	10.5	25	QM-0
sec-Butylbenzene	11.1	4.3	n	8.16	9.0	25.7	44-148	8.45	25	QM-0
tert-Butylbenzene	7.80	4.3	н	8.16	ND	95.6	49-141	9.87	25	
Carbon tetrachloride	10.0	4.3	11	8.16	ND	123	52-133	9.52	25	
Chlorobenzene	7.27	4.3		8.16	ND	89.1	54-133	18.1	25	
Chloroethane	8.72	4.3	**	8.16	ND	107	53-136	32.5	25	QM-0
Chloroform	7.00	4.3	**	8.16	ND	85.8	61-126	32.5	25	QM-0
Chloromethane	7.27	4.3	н	8.16	ND	89.1	57-130	59.9	25	QM-0
2-Chlorotoluene	7.46	4.3	"	8.16	ND	91.4	52-140	10.1	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody dRECEN port must be reproduced in its entirety.

Faren dly

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Karen A. Daly Project Manager

8/18/03

Ś

Order Number A308028

Alpha Analytical Laboratories Inc.

Receipt Date/Time

08/02/2003 09:00

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 19 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 14:51 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Client PO/Reference

Client Code MFGARC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30902 - EPA 5035 MS										
Matrix Spike Dup (AH30902-MSD2)	Sou	rce: A308	028-02	Prepared:	08/03/03	Analyzed	I: 08/07/03			
4-Chlorotoluene	7.52	4.3	n	8.16	ND	92.2	39-149	8.16	25	
Dibromochloromethane	8.69	4.3		8.16	ND	106	48-135	25.2	25	QM-04
1,2-Dibromo-3-chloropropane	8.56	4.3	н	8.16	ND	105	48-139	10.6	25	
1,2-Dibromoethane (EDB)	6.82	4.3	0	8.16	ND	83.6	36-156	24.8	25	
Dibromomethane	6.62	4.3	19	8.16	ND	81.1	61-128	11.8	25	
1,2-Dichlorobenzene	7.15	4.3	н	8.16	ND	87.6	36-156	20.6	25	
1,3-Dichlorobenzene	7.17	, 4.3	"	8.16	ND	87.9	45-138	8.16	25	
1,4-Dichlorobenzene	7.09	4.3	Ħ	8.16	ND	86.9	60-136	21.3	25	
Dichlorodifluoromethane	7.00	4.3	f1	8.16	ND	85.8	24-189	3.64	25	
1,1-Dichloroethane	6.92	4.3	"	8.16	ND	84.8	58-142	27.8	25	QM-04
1,2-Dichloroethane	6.56	4.3	11	8.16	ND	80.4	55-125	35.2	25	QM-04
1,1-Dichloroethene	6.98	4.3	n	8.16	ND	85.5	54-147	35.0	25	QM-04
cis-1,2-Dichloroethene	10.0	4.3	11	8.16	ND	123	52-129	32.6	25	QM-04
trans-1,2-Dichloroethene	6.87	4.3	"	8.16	ND	84.2	61-120	31.6	25	QM-04
1,2-Dichloropropane	7.01	4.3	**	8.16	ND	85.9	61-123	27.6	25	QM-04
1,3-Dichloropropane	6.62	4.3	11	8.16	ND	81.1	45-150	23.1	25	
2.2-Dichloropropane	7.40	4.3	* н	8.16	ND	90.7	32-160		25	
1,1-Dichloropropene	7.35	4.3		8.16	ND	90.1	56-131	28.1	25	QM-04
cis-1,3-Dichloropropene	7.40	4.3		8.16	ND	90.7	55-129	74.8	25	QM-04
trans-1,3-Dichloropropene	7.28	4.3	**	8.16	ND	89.2	34-139	38.3	25	QM-0-
Ethylbenzene	10.9	4.3	н	8.16	9.2	20.8	55-138	1.85	25	QM-0
Hexachlorobutadiene	8.51	4.3	"	8.16	ND	104	16-172	18.1	25	
Isopropylbenzene	9.38	4.3	"	8.16	5.1	52.5	51-137	0.955	25	
p-lsopropyltoluene	12.6	4.3		8.16	13	NR	37-143	17.2	25	QM-0
Methyl ethyl ketone	24.0	13	"	16.4	ND	146	32-146	13.3	25	
Methyl isobutyl ketone	12.5	8.7	**	16.3	ND	76.7	29-155	16.8	25	
Methyl tert-butyl ether	6.51	4.3	"	8.16	ND	79.8	50-140	2.73	25	

The results in this port-apply to the samples analyzed in accordance with the chain of custody document. This can build a fewer must be reproduced in its entirety.

AUG 2 1 2003

Tetra Tech/MFG, Inc.

facen aly

Karen A. Daly Project Manager

8/18/03

Receipt Date/Time

08/02/2003 09:00

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 20 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 14:51
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Client PO/Reference

Client Code MFGARC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s) Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH30902 - EPA 5035 MS

Order Number

A308028

Matrix Spike Dup (AH30902-MSD2)	Sour	ce: A30802	28-02	Prepared:	08/03/03	Analyzed	l: 08/07/03			
Methylene chloride	7.14	4.3	11	8.16	ND	87.5	53-137	6.64	25	
Naphthalene	14.7	4.3	**	8.16	14	8.58	26-152	12.3	25	Q
n-Propylbenzene	12.5	4.3	н	8.16	13	NR	47-143	12.8	25	Q
Styrene	7.99	4.3	**	8.16	ND	97.9	32-150	9.76	25	
1,1,1,2-Tetrachloroethane	8.12	4.3		8.16	ND	99.5	39-153	26.5	25	QI
1,1,2,2-Tetrachloroethane	8.28	4.3	н	8.16	ND	101	42-140	1.68	25	
Fetrachloroethene	10.5	4.3	н	8.16	ND	129	9-206	39.7	25	Q
Foluene	7.56	4.3	"	8.16	ND	92.6	50-148	20.5	25	
1,2,3-Trichlorobenzene	9.02	4.3	н	8.16	ND	111	31-148	14.2	25	
,2,4-Trichlorobenzene	9.18	4.3	#	8.16	ND	112	30-148	15.3	25	
,1,1-Trichloroethane	8.20	4.3	11	8.16	ND	100	52-132	10.3	25	
,1,2-Trichloroethane	6.74	4.3	0	8.16	ND	82.6	39-152	32.0	25	Q
Frichloroethene	7.32	4.3	"	8.16	ND	89.7	50-146	29.5	25	Q
frichlorofluoromethane	7.37	4.3	11	8.16	ND	90.3	51-150	30.0	25	Q
Frichlorotrifluoroethane	7.45	4.3	"	8.03	ND	92.8	51-138	25.8	25	Q
,2,3-Trichloropropane	6.04	4.3		8.16	ND	74.0	38-152	21.2	25	
,2,4-Trimethylbenzene	43.7	4.3	н	8.16	100	NR	43-150	53.3	25	QI
1,3,5-Trimethylbenzene	13.3	4.3	H	8.16	22	NR	47-140	33.7	25	Q
Vinyl chloride	9.97	4.3	"	8.16	ND	122	46-150	14.6	25	
n,p-Xylene	19.9	4.3	**	16.3	14	36.2	54-139	1.01	25	Q
p-Xylene	7.37	4.3	**	8.16	ND	90.3	58-136	13.2	25	
Xylenes (total)	27.2	4.3	"	24.5	14	53.9	54-139	3.25	25	Ç
Surrogate: Dibromofluoromethane	3.43		Ħ	4.08		84.1	57-144			
Surrogate: Toluene-d8	3.66		"	4.08		89.7	65-127			
Surrogate: Bromofluorobenzene	3.56		н	4.08		87.3	56-130			

The results in this report apply to the same analyzed in accordance with the chain of custody document. This analytical heport must be reproduced in its entirety.

aren aly

Karen A. Daly Project Manager

8/18/03

AUG 2 1 2003

1,8

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 21 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 14:51
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308028	08/02/2003 09:00	MFGARC	

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31123 - General Preparation										
Blank (AH31123-BLK1)				Prepared:	08/08/03	Analyzed:	08/11/03			
Oil & Grease (HEM-SG)	ND	50	mg/kg							
LCS (AH31123-BS1)				Prepared:	08/08/03	Analyzed	08/11/03			
Oil & Grease (HEM-SG)	2360	50	mg/kg	2500		94.4	80-120			
LCS Dup (AH31123-BSD1)				Prepared:	08/08/03	Analyzed	08/11/03			
Oil & Grease (HEM-SG)	2420	50	mg/kg	2500		96.8	80-120	2.51	20	
Duplicate (AH31123-DUP1)	Sou	rce: A308	022-01	Prepared:	08/08/03	Analyzed	: 08/11/03			
Oil & Grease (HEM-SG)	355	50	mg/kg		620			54.4	200	
Matrix Spike (AH31123-MS1)	Sou	rce: A308	022-01	Prepared:	08/08/03	Analyzed	: 08/11/03			
Oil & Grease (HEM-SG)	1950	50	mg/kg	1500	620	88.7	80-120			
Matrix Spike Dup (AH31123-MSD1)	Sou	rce: A308	022-01	Prepared:	08/08/03	Analyzed	: 08/11/03			
Oil & Grease (HEM-SG)	2200	50	mg/kg	1500	620	105	80-120	12.0	20	

The results in the report apply to the samples analyzed in accordance with the chain of custody about the first and the alternative must be reproduced in its entirety.

2

Xaren aly

Karen A. Daly Project Manager

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 22 of 25

MFG, Inc - Arcata
875 Crescent Way
Arcata, CA 95521
Attn: Ed Conti

Report Date: 08/18/03 14:51

Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308028	08/02/2003 09:00	MFGARC	

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31525 - CA LUFT - orb sh	aker									
Blank (AH31525-BLK1)				Prepared	& Analyze	ed: 08/15/	03			
TPH as Diesel	ND	1.0	mg/kg							
TPH as Motor Oil	ND	2.0	"							
Surrogate: 1,4-Bromofluorobenzene	11.0		u	10.4		106	21-110			
LCS (AH31525-BS1)				Prepared	& Analyz	ed: 08/15/	03			
TPH as Diesel	44.9	1.0	mg/kg	41.8		107	63-126			
TPH as Motor Oil	44.7	2.0	11	41.8		107	57-139			
Surrogate: 1,4-Bromofluorobenzene	11.3		n	10.4		109	21-110			
Matrix Spike (AH31525-MS1)	Sou	rce: A308	226-02	Prepared	& Analyz	ed: 08/15/	03			
TPH as Diesel	44.9	1.0	mg/kg	41.8	ND	107	61-134			
TPH as Motor Oil	44.6	2.0	n	41.8	ND	105	61-126			
Surrogate: 1,4-Bromofluorobenzene	11.6		"	10.4		112	21-110			S-04
Matrix Spike Dup (AH31525-MSD1)	Sou	rce: A308	3226-02	Prepared	& Analyz	ed: 08/15/	/03			
TPH as Diesel	41.6	1.0	mg/kg	41.8	ND	99.5	61-134	7.63	20	
TPH as Motor Oil	42.6	2.0	н	41.8	ND	100	61-126	4.59	20	
Surrogate: 1,4-Bromofluorobenzene	8.99		11	10.4		86.4	21-110			

The results in the end of the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly Project Manager

8/18/03

Tetra Tech/MFG, Inc.

AUG 2 1 2003

4 14

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 23 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 14:51 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308028	08/02/2003 09:00	MFGARC	

TPH Gasoline by GCFID/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30712 - EPA 5035 GC										
Blank (AH30712-BLK1)				Prepared	& Analyze	ed: 08/06/	03			
TPH as Gasoline	ND	1.0	mg/kg							
Surrogate: 1,4-Bromofluorobenzene	6.00		"	4.00		150	60-156			
LCS (AH30712-BS1)				Prepared	08/06/03	Analyzed	l: 08/07/03			
TPH as Gasoline	26.9	1.0	mg/kg	23.2		116	77-139			
Surrogate: 1,4-Bromofluorobenzene	4.40		**	4.00		110	60-156			
LCS Dup (AH30712-BSD1)				Prepared	& Analyze	ed: 08/06/	03			
TPH as Gasoline	23.6	1.0	mg/kg	23.2		102	77-139	13.1	20	
Surrogate: 1,4-Bromofluorobenzene	4.80		11	4.00		120	60-156			

The results in this report apply to the samples analyzed in accordance with the chain of custody document misting the the produced in its entirety.

aren dly

Karen A. Daly Project Manager 8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 24 of 25

MFG, Inc - 875 Cresce Arcata, CA Attn: Ed Co	nt Way 95521	Project N	te: 08/18/03 14:51 lo: 030229.8 D: SPI Arcata Sawmill
<u>Order Number</u>	Receipt Date/Time	<u>Client Code</u>	Client PO/Reference
A308028	08/02/2003 09:00	MFGARC	

Notes and Definitions

- A-01 The diesel response is primarily due to kerosene.
- Kerosene is presenet at about 11/13 of the diesel response and is included therein. A-02
- G-1 Results in the gasoline organics range are primarily due to overlap from a diesel range product
- QL-03 Although the LCS/LCSD recovery for this analyte is outside of in-house developed control limits, it is within the EPA recommended range of 70-130%.
- QL-04 The LCS/LCSD RPD for this analyte was outside of established control limits. Batch accepted based on acceptable recovery for both LCS/LCSD.
- QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.
- The spike recovery was high for this analyte. The batch was accepted based on a non-detect for the analyte. QM-03
- High RPD and/or poor percent recovery may reflect sample non-homogeneity. OM-04
- The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration OM-4X at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- R-06 The Reporting Limits for this analysis have been raised to account for matrix interference.
- S-04 The surrogate recovery for this sample is outside of established control limits possibly due to a sample matrix effect.
- The recovery of this surrogate is outside control limits due to sample dilution required from high analyte S-06 concentration and/or matrix interferences.
- DET Analyte DETECTED
- Analyte NOT DETECTED at or above the reporting limit ND
- NR Not Reported
- Sample results reported on a dry weight basis dry

The results in this report apply to the samples analyzed in accordance with the chain of custody doc the this and we trapped must be reproduced in its entirety.

aren aly

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Karen A. Daly Project Manager

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 25 of 25

875 Are	FG, Inc - Arcata 5 Crescent Way cata, CA 95521 m: Ed Conti		Project No:	08/18/03 14:51 030229.8 SPI Arcata Sawmill
<u>Order Number</u> A308028	<u>Receipt Date/Time</u> 08/02/2003 09:00	<u>Client Code</u> MFGARC	Ū	Client PO/Reference

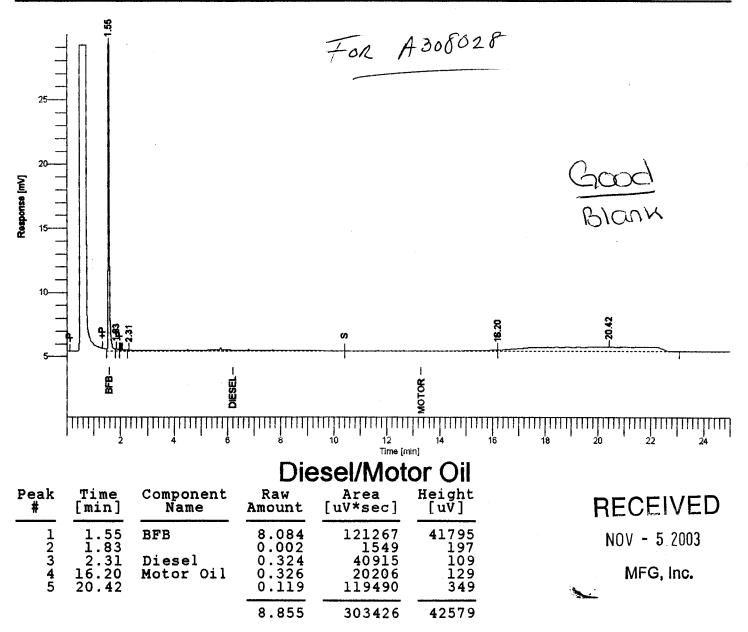
Relative Percent Difference RPD

PQL Practical Quantitation Limit

AUG 2 1 2003

SPI - Mcarka Sau Maill DATE: 2PLI 03 OLECT MANAGER: Counding DATE: 2LI 03 OLECT MANAGER: Counding DATE: 2LI 103 ANAVBILL NO: 7916 7424 DESTINATION: AnaLYSIS REQUEST Remarks Servation Containers Conditions AnaLYSIS REQUEST Reservation Containers Containers Containers AnaLYSIS REQUEST Reservation Containers Containers Containers Containers Reservation Containers Containers Containers	SP1 - Wreak Sum mill PAGE: U OLECT MANAGER: E Co-h DATE: 8/11/03 OLECT MANAGER: E Co-h DATE: 8/11/03 OLECT MANAGER: E Co-h DATE: 8/11/03 OLECT MANAGER: E Co-h AMALYSIS REQUEST Page State E E E E E State E E	CHAIN-OF-CUSTC Irvine Office Suff 500 Trvine CA 255145550 Tel: (949) 253-2954 Fax: (949) 253-2954
ANLYSIS REOUEST Containers Containers Containers Constituents Containers Constituents Containers Constituents Constituents Construct Construn	AMALYSIS REQUEST AMALYSIS REQUEST Containers Container Container Container Conter Container	PROJECT NAME: PR CARRIE
Containers Construents	Containers Construents Construents <thcon< th=""> Con Construents</thcon<>	SAMPLES
Визон Настрански сонструкт К К К К К К К К К К К К К К К К <	Number I 5-уни (millor) I 5-уни (millor) X X I 5-уни (millor) X X V U 5-уни (millor) X V U X X V U X X V V X X V V X X V V X X V X X X V X X X V X X X V X X X V X X X V X X X V X X X V X X X V X X X V X X X V X X X V X X X X X X X X X X X X X X X X X X X X X X X X	Sample
X U 59m word 3 X X X Shica 6el cleanup fix X L 59m word 4 X X X N Shica 6el cleanup fix X L Shica 6el cleanup fix X X X N Shica 6el cleanup fix X L L'1 B X X X Ber voc ms1-sec X V L'1 B X X Ber voc ms1-sec N X V L'1 X N X Ber voc ms1-sec N X V L N X Ber voc ms1-sec N N X V N N N N N N N X V N	U 59m Low ¹⁶ 2 X X X X Si'ca 6el cleanup fix 1 59m L'51 B 1 X X X bit Si'ca 6el cleanup fix V L'51 B 1 X X bit X Bit	HCI Matrix* Matrix*
1 59m Kr. ¹⁰ L X X X 1 4 V U'51 B 1 X X Ex VIS V U'51 B 1 X X Ex Ex V U'51 B 1 X Y Free V U D D C Ex Free V U D D D Free Free V U D D D C Free V D D D D C OF D C D C OF D C D C	1 59m 6. Vel. X X x 0:1 4. 426.32 V U'51 B 1 X X b X fev Voc MSI MSD V U'51 B 1 X X b Voc MSI MSD V U'51 B 1 X X b Voc MSI MSD V U'51 B 1 X X b Voc MSI MSD V U'51 B 1 X X b Voc MSI MSD V U'7 B V D D D D D V U'7 B V D D D D V D D D D D D N D D D D D D CONTAINERS I.ABORATORY COMMENTSCONDITION OF SAMPLES COOR COMPANYL D CONTAINERS I.MED CONPANDE CONPANDE COMPANYL D TIME System Y D A D D I.MED CONTAINER D COMPANYL D D	1 K D N
I U U V K <td>I L'51 B I X X Ise PD-NE3-2' V L'51 B I X X Ev VOC MS/MSD V L'51 B I X X Ev VOC MS/MSD V L'51 B I X Kev VOC MS/MSD V L'51 B I X Ev VOC MS/MSD V L NonE NonE NonE VUCHENHES VIC SHAM I N NonE NonE VIC SHAM SHAM I NonE NonE NonE CONPANES SHAM SHAM I I NonE NonE Conference Conference SHAM SHAM I I I I I I I SHAM SHAM</td> <td>1201</td>	I L'51 B I X X Ise PD-NE3-2' V L'51 B I X X Ev VOC MS/MSD V L'51 B I X X Ev VOC MS/MSD V L'51 B I X Kev VOC MS/MSD V L'51 B I X Ev VOC MS/MSD V L NonE NonE NonE VUCHENHES VIC SHAM I N NonE NonE VIC SHAM SHAM I NonE NonE NonE CONPANES SHAM SHAM I I NonE NonE Conference Conference SHAM SHAM I I I I I I I SHAM	1201
V L''51 B I X X For VOC MS/MSD P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P	W L'51 B I X X For VOC MS/MSD I I X X I NOE NOE NOE NOE I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	1500
OF CONTAINERS () COMPANY COMPANY OF CONTRACT OF CONTRA	Image: contrainers Image: contra	J 1500 V
OF CONTAINERS (CONTAINERS) (CHECK CHECK CHEKK CHECK CHEKK CHECK CHEKK CHECK CHEKK CHEKKK CHEKK CHEKK CHEKK CHEKK CHEKK CHEKKK CHEKKK CHEKKK CHEKKK CHEKKKKKK CHEKKKKKKKKKK	Image: Second and Control of Control o	
OF CONTAINERS (1) LABORATORY COMMENTS/CONDITION OF SAMPLES K OF CONTAINERS (1) LABORATORY COMMENTS/CONDITION OF SAMPLES COOLEY (1/1/10) 6.4/ RECIEVED BY: TIME SIGNATIURE PRINTED NAME COMPANY, (2010) 3 1600 COMPANY, (2010) 7. COMPANY, (2010) 3 1600 COMPANY, (2010) 7. COMPANY, (2010) 2.	Contrainers CHCONN, RESERVALES K CONTAINERS CONPACTORY COMMENTS/CONDITION OF SAMPLES COORDANY, UNU 6.44 CONTAINERS LABORATORY COMMENTS/CONDITION OF SAMPLES COORDANY, UNU 6.44 FIIME SIGNATIURE PRINTED NAME COMPANY, INU 6.44 ILED K AAA UNU 6.44 ILED K AAA COMPANY, INU 6.45 ILED SIGNATIURE PRINTED NAME COMPANY, INU 6.45 ILED K AAA UNU 6.45 ILED K AAAA UNU 6.45 ILED K AAAA UNU 6.45 ILED K AAAA UNU 6.45 ILED K AAAAA UNU 6.45 ILED K AAAAAAAAAAAAAA UNU 6.45	
OF CONTAINERS () LABORATORY COMMENTS/CONDITION OF SAMPLES COOLER TEMP: PEC DACIN. UW RECIEVED BY: TIME SIGNATURE PRINTED NAME COMPANY 3 1600 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONTAINERS DECOMPATION COMMENTS/CONDITION OF SAMPLES COOLER TEMP: CONTAINERS DISTANTIONE RECIEVED BY: TIME SUGNATIONE PRINTED NAME COMPANY 1600 COMPANY 1600 COMPANY 1600 COMPANY COMMENS: P field 6 - dass 7 - other Fination: F - fittered U - unfiltered Containers: P - plastic 6 - dass 7 - other Fination: F - fittered U - unfiltered	
OF CONTAINERS (1) LABORATORY COMMENTS/CONDITION OF SAMPLES Cooler Temp: RECIEVED BY: TIME SKINATURE PRINTED NAME COMPANY 3 1600 200 200 200 200 200 200 200 200 200	CONTAINERS DEPARTORY COMMENTS/CONDITION OF SAMPLES COOLER TEmp: COMPANY TIME SySTNATURE PRINTED NAME COMPANY 16.00 COMPANY	
OF CONTAINERS (1) LABORATORY COMMENTS CONTAINED & COOLET LEMPS, TIME SIGNATURE PRINTED NAME COMPANY 3 1600 2 1600 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2	CONTAINERS (1) LABORATOMMENT SCONTAINER COMPANY TIME SIGNATURE PRINTED NAME COMPANY 16.00 2000 100 2000 2000 2000 2000 2000 20	
DATE TIME SIGNATURE PRINTED NAME COMPANY 11/03 1600 2 6 0 2 2 4 2 4 0 0 10 0	TIME SUGNATIURE PRINTED NAME COMPANY 1600 2000 2000 2000 2000 2000 2000 2000	
DATE TIME SKINATURE PRINTED NAME COMPANY 11/03 1600 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TIME SKINATURE PRINTED NAME COMPANY 1600 2000 2000 2000 2000 2000 2000 2000	RELINOUISHED BY:
11/03 1600 x day X. DALY alla b	1600 X 600 X 800 X 100 X 204 Y 0 V 100 X containers: P-plastic G-gass T-tetton B-brass 0T-other Fittered U-untiltered w. Laborator Copy Writt: Aterim to Originator	COMPANY
LABORATORY	containers: P - plastic G - glass T - tellon B - brass OT - other Filtration: F - littered U - unfiltered W. Laboratov. Copy WHITE: Return to Originator	Plocher MF6, Inc.
	Containers: P - pilostic G - glass T - terlion B - brass OT - other Filtration: W: Laboratory Copy WHITE: Return to Originator	

F . 4 .


.

					Page 1 of 1
Software Ver Sample Name Instrument N Rack/Vial	: 2 ame : 1	5.1.2.0.1:D 20.16 DsMo D/0	19 Date Data Ac	quisition Time	: 8/15/03 10:06: : 8/15/03 9:41:44 AM
Sample Amoun Cycle	.t :]	Ĺ. Ŏ00000 3	Channel Operato Dilutic	or on Factor	: A : marvin : 1.000000
Result File Sequence Fil	: C:\PenE: e : C:\Per	ke\TcWS\Sta hExe\TcWS\S	ts\Data\ATDA tats\Sequence	T876.rst es\Seq_DsMo_08]	1503.seq
			For	2 A 308028	
20					RECEIVED
(Am) esuodsea	MMMMM		60 El	17.52	NOV - 5.2003 MFG, Inc.
			и Ми м м м м м м м м м м м м м м		
			6 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Die: Die:		11111111111111111111111111111111111111	
Peak Time		$ \frac{1}{22.038} $	s	11111111111111111111111111111111111111	

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT876.TX0

Software Version Sample Name Instrument Name		0x DsMo	Date Data Acquisition Time		8/15/03 9:26:0 8/15/03 9:00:58 M
Rack/Vial Sample Amount Cycle	:	0/0 1.000000 2	Channel Operator Dilution Factor	::	A marvin 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT875.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_081503.seq

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT875.TX0

1					Page 1 of 1
Software Version Sample Name Instrument Name	:	6.1.2.0.1:D19 A308028-03@30X DsMo	Date Data Acquisition Time		8/16/03 12:09: 8/15/03 11:44:3 M
Rack/Vial Sample Amount Cycle	:	0/0 1.000000 10	Channel Operator Dilution Factor	::	A marvin 1.000000
Result File : C:\ Sequence File : C	Pen :\P	Exe\TcWS\Stats\D PenExe\TcWS\Stats	ata\ATDAT886.rst \Sequences\Seq_DsMo_081		_2.seq
			0		
25				PD	- SE-BOTTOM

1

Height [uV]

8579

7287

5453

6638 7617 19599

7685

62858

Time [min]

Diesel/Motor Oil

Area [uV*sec]

30920 28739

22793

43024

le+07

5933831

4193049

1216302

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT886.TX0

Ò 3

Raw Amount

2.354 0.029 0.023

0.043

137.902 121.677 1.216

263.244

Component Name

Diesel Motor Oil

BFB

Willing

15.20

20

15

5

Peak #

1234567

Time [min]

1.411.551.65

1.80

2.06

12.10 16.20

Response [mV]

t.

24

22

18

20

	Ŋ										
Ś	Soft	ware Ve	reion	•	6.1.2.0.1:		D - + -				Page 1 of 1
ŧ,	Samp: Inst	le Name rument		:	A308028-04 DsMo		Date Data	Acquisition	Time	: : 8 AM	8/18/03 10:58: 3/18/03 10:33:4
	Rack, Samp Cycle	le Amou	nt	*	0/0 1.000000 3	(Chanr Opera Dilut	el tor ion Factor		:	A marvin 1.000000
	Resul Seque	lt File ence Fi	: C:\ le : C	PenE :\Pe	xe\TcWS\St nExe\TcWS\	ats\Dat Stats\S	a\AT eque	DAT900.rst nces\Seq_DsM	0_0818	803_3	2.seq
	-	- - - -							S	01	Ļ
	 25								P	D-N	E3-2'
						37	13				
	20				1 et						
	00										
	 10				A		-12.10				
				4	Tulling		0	under 0			
	-				- 3/s; 3/s;	·	- aoton				
				IIIIIII		10	12 Time [min]	 	18	20	$\begin{array}{ccc} 1 \\ 1 \\ 1 \\ 22 \\ 24 \end{array}$
	Deele	m :	-			sel/M	loto				
	Peak #	Time [min]	Compo Na	me	t Raw Amount	Area [uV*se	c] [leight [uV]			
	1 2	1.41 1.55	BFB		$1.476 \\ 0.015$	193 152	14	4932 3772			
	1 2 3 4 5 6	1.65 1.79 2.08	Diese	> 1	0.012 0.023 50.844	119 232 21226	43	3216 3 49 2 3929			
	6	12.10	Motor	Oi!	26.283	8704	0.8	3964			
					78.653	30628	U /	23305			

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT900.TX0

Alpha Analytical Laboratories Inc. 208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

18 August 2003

MFG, Inc - Arcata Attn: Ed Conti 875 Crescent Way Arcata, CA 95521 RE: SPI Arcata Sawmill Work Order: A308177

Enclosed are the results of analyses for samples received by the laboratory on 08/07/03 15:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Melanie D. Treece

Melanie B. Neece For Sheri L. Speaks Project Manager

RECEIVED

AUG 2 1 2003 Tetra Tech/MFG, Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number A308177

Receipt Date/Time 08/07/2003 15:30 Client Code MFGARC

Client PO/Reference

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PD-NW1- Bottom	A308177-01	Soil	08/06/03 14:30	08/07/03 15:30
PD-NW1- Bottom	A308177-02	Soil	08/06/03 14:41	08/07/03 15:30
PD-NW2 - Bottom	A308177-03	Soil	08/06/03 14:50	08/07/03 15:30
PD-NW2- Bottom	A308177-04	Soil	08/06/03 15:05	08/07/03 15:30
Temp Blank	A308177-05	Water	08/06/03 00:00	08/07/03 15:30

RECEIVED

AUG 2 1 2003

Tetra Tech/MFG, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie S. Theca

Melanie B. Neece For Sheri L. Speaks Project Manager

۰ ·

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	Cl	HEMIC	AL EXAN	MINATIO	N REPORT			Page 2 of 25
MFG, Inc - Arca 875 Crescent W Arcata, CA 9552 Attn: Ed Conti	ay				Project No:	08/18/03 15:2. 030229.8 SPI Arcata Sa		
Order Number	Receipt Date/Time		CH	ent Code		Client PO/Re		
A308177	08/07/2003 15:30			FGARC		Cilent FO/K	elerence	
		Alpha A	nalvtical	Laborato	ries. Inc.		······································	,
	METHOD	-	•	ANALYZED	-	RESULT	PQL	NOTE
PD-NW1- Bottom (A308177-01)			Sample Ty			oled: 08/06/03 14:3	10	
Conventional Chemistry Parameter	rs by APHA/EPA Me			•	.*			
Oil & Grease (HEM-SG)	EPA 9071B	AH31502	08/13/03	08/14/03	1	5200 mg/kg	50	
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AH31213	08/12/03	08/13/03	10	220 mg/kg	16	D-09, A-01a
TPH as Motor Oil	"	"	"	"	"	2700 "	20	
Surrogate: 1,4-Bromofluorobenze	ne "	"	n				21-110	S-06
PD-NW1- Bottom (A308177-02)			Sample Ty	ne: Soil	Sam	pled: 08/06/03 14:4	11	
Volatile Organic Compounds by E	PA Methods 8260B/5			P - · ~ · · ·	~			
Acetone	8260B	AH31515	08/08/03	08/13/03	173.2	ND mg/kg	0.69)
Benzene	"	н	"	"	**	ND "	0.17	,
Bromobenzene	**	"	"	"	"	ND "	0.17	7
Bromochloromethane	**	u	"	**	"	ND "	0.17	7
Bromodichloromethane		"	"	"	"	ND "	0.17	7
Bromoform	"	"	"		u	ND "	0.17	7
Bromomethane	Ħ	n	**	"	"	ND "	0.17	7
n-Butylbenzene	"	"	"	••		ND "	0.17	7
sec-Butylbenzene	"	**	"	••	**	ND "	0.17	7
tert-Butylbenzene		"	"	"	"	ND "	0.1	7
Carbon tetrachloride	**	**		**		ND "	0.12	7
Chlorobenzene	"	**	"	**	n	ND "	0.17	7
Chloroethane	**		"	"	"	ND "	0.11	7
Chloroform	"	"	"	"	"	ND "	0.12	7
Chloromethane	"		"	**	"	ND "	0.17	7
2-Chlorotoluene		"	**	"	"	0.19 "	0.1	7
4-Chlorotoluene	"	*	**	**	**	ND "	0.1	7
Dibromochloromethane	"	"	"	11	"	ND "	0.1	7
1,2-Dibromo-3-chloropropane	"		#	*	n	ND "	0.1	7
1,2-Dibromoethane (EDB)	"	"	**	"	**	ND "	0.1	7
Dibromomethane	"	**	"	"	"	ND "	0.1	7
1,2-Dichlorobenzene	**	11	"	*1	**	ND "	0.1	7

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

. S. There

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

AUG 2 1 2003

Tetra Tech/MFG, Inc.

RECEIVED

, i i

Alpha VAnalytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 25

MFGARC	
lient Code	Client PO/Reference
Project ID:	SPI Arcata Sawmill
Project No:	030229.8
Report Date:	08/18/03 15:23
	Project No:

		Агриа А	narytica	I Laborator	ies, me.			
	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	PQL	NOTE
PD-NW1- Bottom (A308177-02)		S	Sample Ty	pe: Soil	Sam			
Volatile Organic Compounds by EPA	Methods 8260B/	5035 (cont'd))					
1,3-Dichlorobenzene	8260B	"	"	08/13/03	**	ND "	0.17	
1,4-Dichlorobenzene	**	н	**		**	ND "	0.17	
Dichlorodifluoromethane	"	"	"	"	"	ND "	0.17	
1,1-Dichloroethane	"	"	"	"	"	ND "	0.17	
1,2-Dichloroethane	"	"	"	**	11	ND "	0.17	
1,1-Dichloroethene		"	"	"		ND "	0.17	
cis-1,2-Dichloroethene	**	"	11	"	"	ND "	0.17	
trans-1,2-Dichloroethene	**	"	"	**	"	ND "	0.17	
1,2-Dichloropropane			"	*1	"	ND "	0.17	
1,3-Dichloropropane	"	"	**	**	"	ND "	0.17	
2,2-Dichloropropane	**	**	11	"		ND "	0.17	
1,1-Dichloropropene	"	"	"	"		ND "	0.17	
cis-1,3-Dichloropropene	**	"	**	"		ND "	0.17	
trans-1,3-Dichloropropene	"	"	*1	**	"	ND "	0.17	
Ethylbenzene	**	"		н	"	ND "	0.17	
Hexachlorobutadiene	**	*	**	"	**	ND "	0.17	
Isopropylbenzene	**		**	"	**	ND "	0.17	
p-Isopropyltoluene	**	**		11	**	ND "	0.17	
Methyl ethyl ketone	"	**	"	"	**	ND "	0.52	
Methyl isobutyl ketone	"	**	"	11	**	ND "	0.35	
Methyl tert-butyl ether	**	н	51	"	**	ND "	0.17	
Methylene chloride	84	"	**	"		ND "	0.17	
Naphthalene	**	"	**	**	11	ND "	0.17	
n-Propylbenzene	"	н	"	"	**	ND "	0.17	
Styrene		**	**	"	*	ND "	0.17	
1,1,1,2-Tetrachloroethane	"	11	n	11	71	ND "	0.17	
1,1,2,2-Tetrachloroethane	**	"	н		**	ND "	0.17	
Tetrachloroethene	н	"	"	"	"	ND "	0.17	
Toluene	"	**	"		**	0.23 "	0.17	
1,2,3-Trichlorobenzene	"	"	11	"		ND "	0.17	
1,2,4-Trichlorobenzene	**	"	"	**		ND "	0.17	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report menter pottuced in Emgrety.

Malanie D. There

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

AUG 2 1 2003 Tetra Tech/MFG, Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 25

NOTE

PD-NW1- Bottom (A30817	7-02)		Sample Type: Soil	Sami	oled: 08/06/03 14:41	
	METHOD	BATCH	PREPARED ANALYZED	DILUTION	RESULT	PQL
		Alpha A	Analytical Laborato	ries, Inc.		
Order Number A308177	Receipt Date/Time 08/07/2003 15:30		Client Code MFGARC		Client PO/Reference	
Attn: Ed Co	onti			Project ID:	SPI Arcata Sawmill	
Arcata, CA		MFGARC Alpha Analytical Laboratories, Inc.				
875 Cresce	nt Way			Report Date:	08/18/03 15:23	
MFG, Inc -	Arcata					

		•	sample 1	ype, son	5	ampicu. 00/00/05	14.41
olatile Organic Compounds by EPA N	lethods 8260B/5	5035 (cont'd))				
1,1,1-Trichloroethane	8260B	"	**	08/13/03		ND "	0.17
1,1,2-Trichloroethane	**	**	"	"	"	ND "	0.17
Trichloroethene	"	"	**	17	11	ND "	0.17
Trichlorofluoromethane		н	**	**	"	ND "	0.17
Trichlorotrifluoroethane	"	**	11	**	"	ND "	0.17
1,2,3-Trichloropropane	"	"	11	**	**	ND "	0.17
1,2,4-Trimethylbenzene	11	"	"	**	**	0.34 "	0.17
1,3,5-Trimethylbenzene	**	"	11		n	0.23 "	0.17
Vinyl chloride	••	**	11	"	"	ND "	0.17
m,p-Xylene	**	**	**	97	11	ND "	0.17
o-Xylene	11	"	н	п	"	ND "	0.17
Xylenes (total)	**	н	"	н	"	ND "	0.17
Surrogate: Dibromofluoromethane	"	n	"	"		89.2 %	57-144
Surrogate: Toluene-d8	"	"	"	"		96.2 %	65-127
Surrogate: Bromofluorobenzene	"	"	"	"		93.7 %	56-130

TPH Gasoline by GCFID/5035

TPH as Gasoline	8015GRO	AH31512	08/08/03	08/14/03	1	38 mg/kg	1.0
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		142 % 60	156
PD-NW2 - Bottom (A308177-03)		:	Sample Ty	pe: Soil		Sampled: 08/06/03 14:50	
Conventional Chemistry Parameters by	APHA/EPA N	lethods					
Oil & Grease (HEM-SG)	EPA 9071B	AH31502	08/13/03	08/14/03	1	5100 mg/kg	50

The results in this report apply to the samples analyze Checo Vale wh the chain of custody document. This analytical report must be reproduced in its entirety. AUG 2 1 2003

Melanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager

`` 1

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	Cl	HEMICA	AL EXAN	MINATIO	N REPORT				Page 5 of 2:
MFG, Inc - Arca 875 Crescent W Arcata, CA 9552 Attn: Ed Conti	ay				Project No:	08/18/03 15 030229.8 SPI Arcata S			
	Receipt Date/Time 08/07/2003 15:30			ent Code FGARC		Client PO	/Reference		
	<u></u>	Alpha A	nalvtical	Laborato	ries. Inc.				
	METHOD	-	-	ANALYZED		RESULT		PQL	NOTE
PD-NW2 - Bottom (A308177-03)			Sample Ty			pled: 08/06/03 1	4:50		
TPH as Diesel and Motor Oil by El						•			
TPH as Diesel	8015DRO	AH31213	08/12/03	08/13/03	20	1700 mg/kg		20	A-01
TPH as Motor Oil	**	"	11	**	"	3900 "		40	
Surrogate: 1,4-Bromofluorobenzel	ne "	"	"	"		159 %	21-110		S-02
PD-NW2- Bottom (A308177-04)			Sample Ty	na, Sail	Sam	ipled: 08/06/03 1	5.05		
Volatile Organic Compounds by El	PA Methods 8260B/5		Sample Ty	her zon	San	ipicu. 00/00/03 1	5.05		
Acetone	8260B	AH31515	08/08/03	08/13/03	173.2	ND mg/kg		0.69	
Benzene	820013	**************************************	100/00/05	100/10/00	175.2	ND mg/kg		0.09	
Bromobenzene	u	**	"	"	**	ND "		0.17	
Bromochloromethane	"	11	н	"	11	ND "		0.17	
Bromodichloromethane	**		"		"	ND "		0.17	
Bromoform	"	"		**	**	ND "		0.17	
Bromomethane		*1	н		"	ND "		0.17	
n-Butylbenzene	"	**	"	14		0.81 "		0.17	
•	"	"		**	"	0.50 "		0.17	
sec-Butylbenzene	"	**	"		u	0.30 ND "		0.17	
tert-Butylbenzene Carbon tetrachloride	"	"	"	**	"	ND "		0.17	
		"	н	**	"	0.87 "		0.17	
Chlorobenzene			"	"				0.17	
Chloroethane			n		**	ND "			
Chloroform				**	H.	ND "		0.17	
Chloromethane				11		ND "		0.17	
2-Chlorotoluene				**	11	0.28 "		0.17	
4-Chlorotoluene	**		**	"	11	0.32 "		0.17	
Dibromochloromethane	**	"				ND "		0.17	
1,2-Dibromo-3-chloropropane	11	**	"	11	"	ND "		0.17	
1,2-Dibromoethane (EDB)	11	11	**	"	**	ND "		0.17	
Dibromomethane						ND "		0.17	
1,2-Dichlorobenzene	н	**	"	**		0.58 "		0.17	
1,3-Dichlorobenzene	н	"	H	"	**	0.20 "		0.17	
1,4-Dichlorobenzene	"	"	11	n	"	1.2 "		0.17	
Dichlorodifluoromethane	11	*1	"		**	ND "		0.17	

The results in this report apply to the samples analyzed in account dance with the chain of custody document. This analytical report must be reproduced in its entirety. AUG 2 1 2003

Melanie B. There

Tetra Tech/MFG, Inc.

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

.'

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

TIFMICAL EVANINATION DEDODT

....

	CH	IEMIC	AL EXA	MINATIO	N REPORT			Page 6 of 25
MFG, Inc - A 875 Crescent Arcata, CA 9 Attn: Ed Con	Arcata t Way 95521 hti				Report Date: Project No:	SPI Arcata Sawmill		
Order Number A308177	Receipt Date/Time 08/07/2003 15:30			ient Code IFGARC		Client PO/Reference	9	
		Alpha A	Analytica	l Laborato	ries, Inc.	<u></u>		
	METHOD	BATCH	PREPAREI	D ANALYZED	DILUTION	RESULT	PQL	NOTE
PD-NW2- Bottom (A308177-	04)		Sample Ty	pe: Soil	Samu	led: 08/06/03 15:05		
Volatile Organic Compounds b	-	035 (cont'o		•	•			
1,1-Dichloroethane	8260B	**		08/13/03	**	ND "	0.17	
1,2-Dichloroethane	"		"	"	11	ND "	0.17	
1,1-Dichloroethene	**		**	"	**	ND "	0.17	
cis-1,2-Dichloroethene	11	"	"	**	"	ND "	0.17	
trans-1,2-Dichloroethene	**	**	н	**	**	ND "	0.17	
1,2-Dichloropropane	"	**	"	**		ND "	0.17	
1,3-Dichloropropane	**	"	**	**	11	ND "	0.17	
2,2-Dichloropropane	"	11	"	н	"	ND "	0.17	
1,1-Dichloropropene	"	н	**	**	**	ND "	0.17	
cis-1,3-Dichloropropene	**	**	"	**	11	ND "	0.17	
trans-1,3-Dichloropropene	"	**	н	**	"	ND "	0.17	
Ethylbenzene	11	"	"	"	"	ND "	0.17	
Hexachlorobutadiene		"	"	11	"	ND "	0.17	
Isopropylbenzene	"	**		"	"	0.21 "	0.17	
p-Isopropyltoluene	"	н	н	n	"	0.23 "	0.17	
Methyl ethyl ketone	н	**	"	"		ND "	0.52	
Methyl isobutyl ketone	n	**		"	**	ND "	0.35	
Methyl tert-butyl ether	**	**	**	"	"	ND "	0.17	
Methylene chloride	"	"	"	"	"	ND "	0.17	
Naphthalene	**	n	"	"	"	1.7 "	0.17	
n-Propylbenzene	**	"	"	"	"	0.37 "	0.17	
Styrene	"	**	"	"	н	ND "	0.17	
1,1,1,2-Tetrachloroethane	**	*1	"	**	**	ND "	0.17	
1,1,2,2-Tetrachloroethane	"	"	"	**	"	ND "	0.17	
Tetrachloroethene	"	"	"	"	н	ND "	0.17	
Toluene	11	"	"	**	**	ND "	0.17	
1,2,3-Trichlorobenzene	u.	"	"	"	"	ND "	0.17	
1,2,4-Trichlorobenzene	"	**	"		"	ND "	0.17	
1,1,1-Trichloroethane	"	**	"	**	"	ND "	0.17	
1,1,2-Trichloroethane	"	"	"	11	n	ND "	0.17	
Trichloroethene	"	14	u	"	**	ND "	0.17	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. AUG 2 1 202 4

Melanie B. There

Tetra Tech/MFG, Inc.

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

4 4

Alpha 🛿 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 7 of 25

MFG, Inc - Arca 875 Crescent W Arcata, CA 9552 Attn: Ed Conti	ay				Project No:	08/18/03 15 030229.8 SPI Arcata			
Order Number A308177	Receipt Date/Time 08/07/2003 15:30			ent Code FGARC		Client PC)/Reference		
		Alpha A	analytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
PD-NW2- Bottom (A308177-04)			Sample Ty	pe: Soil	Sam	pled: 08/06/03 1	5:05		
Volatile Organic Compounds by El	PA Methods 8260B/5					-			
Trichlorofluoromethane	8260B	"	"	08/13/03	"	ND "		0.17	
Trichlorotrifluoroethane	**	"	11	**	n	ND "		0.17	
1,2,3-Trichloropropane	**	н	н	"	"	ND "		0.17	
1,2,4-Trimethylbenzene	"	11	"	**	**	1.9 "		0.17	
1,3,5-Trimethylbenzene	"	"		**	"	ND "		0.17	
Vinyl chloride	"	11		**	"	ND "		0.17	
m,p-Xylene	*	**	"	н	**	ND "		0.17	
o-Xylene	**	19	11	n	**	0.27 "		0.17	
Xylenes (total)	**	11	"	**	**	0.27 "		0.17	
Surrogate: Dibromofluoromethan	e "	"	"	"		88.3 %	57-144		
Surrogate: Toluene-d8	"	"	"	"		87.2 %	65-127		
Surrogate: Bromofluorobenzene	"	"	"	"		96.9 %	56-130		
TPH Gasoline by GCFID/5035									
TPH as Gasoline	8015GRO	AH31512	08/08/03	08/14/03	1	610 mg/kg	,	1.0	G-1
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		138 %	60-156		
Temp Blank (A308177-05)			Sample Ty	pe: Water	San	npled: 08/06/03 (00:00		

Conventional Chemistry Parameters by APHA/EPA Methods Temperature Temperature AH30818 08/07/03 08/07/03 3.4 °C

1

RECEIVED

The results in this report apply to the sample Apply 201 in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Tetra Tech/MFG, Inc.

Malanie D. There

Melanie B. Neece For Sheri L. Speaks Project Manager

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 8 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308177	08/07/2003 15:30	MFGARC	

SourceResult

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31515 - EPA 5035 MS										
Blank (AH31515-BLK1)				Prepared:	08/12/03	Analyzed	l: 08/13/03			
Acetone	ND	0.69	mg/kg							
Benzene	ND	0.17	"							
Bromobenzene	ND	0.17	**							
Bromochloromethane	ND	0.17	"							
Bromodichloromethane	ND	0.17	**							
Bromoform	ND	0.17	"							
Bromomethane	ND	0.17	"							
n-Butylbenzene	ND	0.17								
sec-Butylbenzene	ND	0.17	"							
tert-Butylbenzene	ND	0.17	"							
Carbon tetrachloride	ND	0.17	"							
Chlorobenzene	ND	0.17	"							
Chloroethane	ND	0.17								
Chloroform	ND	0.17	н							
Chloromethane	ND	0.17	*							
2-Chlorotoluene	ND	0.17	"							
4-Chlorotoluene	ND	0.17	**							
Dibromochloromethane	ND	0.17	"							
1,2-Dibromo-3-chloropropane	ND	0.17	**							
1,2-Dibromoethane (EDB)	ND	0.17	11							
Dibromomethane	ND	0.17	"							
1,2-Dichlorobenzene	ND	0.17	**							
1,3-Dichlorobenzene	ND	0.17	"							
1,4-Dichlorobenzene	ND	0.17	n							
Dichlorodifluoromethane	ND	0.17	"							
1,1-Dichloroethane	ND	0.17	"							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. **RECEIVED**

Melanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

AUG 2 1 2003

Receipt Date/Time

08/07/2003 15:30

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 9 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number A308177

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31515 - EPA 5035 MS										
Blank (AH31515-BLK1)				Prepared:	: 08/12/03	Analyzed	: 08/13/03			
1,2-Dichloroethane	ND	0.17	ti							
1,1-Dichloroethene	ND	0.17	**							
cis-1,2-Dichloroethene	ND	0.17	79							
trans-1,2-Dichloroethene	ND	0.17	**							
1,2-Dichloropropane	ND	0.17	"							
1,3-Dichloropropane	ND	0.17	"							
2,2-Dichloropropane	ND	0.17	"							
1,1-Dichloropropene	ND	0.17	**							
cis-1,3-Dichloropropene	ND	0.17	"							
trans-1,3-Dichloropropene	ND	0.17	"							
Ethylbenzene	ND	0.17								
Hexachlorobutadiene	ND	0.17	"							
Isopropylbenzene	ND	0.17								
p-Isopropyltoluene	ND	0.17	**							
Methyl ethyl ketone	ND	0.52	**							
Methyl isobutyl ketone	ND	0.35	"							
Methyl tert-butyl ether	ND	0.17	"							
Methylene chloride	ND	0.17	"						~	
Naphthalene	ND	0.17	"							
n-Propylbenzene	ND	0.17	"							
Styrene	ND	0.17	"							
1,1,1,2-Tetrachloroethane	ND	0.17	**							
1,1,2,2-Tetrachloroethane	ND	0.17	**							
Tetrachloroethene	ND	0.17	"							
Toluene	ND	0.17	**							
1,2,3-Trichlorobenzene	ND	0.17	n							
1,2,4-Trichlorobenzene	ND	0.17	"							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

Melanie B. Neece For Sheri L. Speaks Project Manager

Melanie D. There

8/18/03

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 10 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 15:23
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Order Number Receipt Date/Time Client Code A308177 08/07/2003 15:30 MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31515 - EPA 5035 MS										
Blank (AH31515-BLK1)				Prepared:	08/12/03	Analyzed	: 08/13/03			
1,1,1-Trichloroethane	ND	0.17	н	F						
1,1,2-Trichloroethane	ND	0.17	н							
Trichloroethene	ND	0.17	н							
Trichlorofluoromethane	ND	0.17	**							
Trichlorotrifluoroethane	ND	0.17								
1,2,3-Trichloropropane	ND	0.17								
1,2,4-Trimethylbenzene	ND	0.17	*1							
1,3,5-Trimethylbenzene	ND	0.17	"							
Vinyl chloride	ND	0.17	**							
m,p-Xylene	ND	0.17								
o-Xylene	ND	0.17	"							
Xylenes (total)	ND	0.17	"							
Surrogate: Dibromofluoromethane	4.97		"	4.33		115	57-144			
Surrogate: Toluene-d8	4.19		"	4.33		96.8	65-127			
Surrogate: Bromofluorobenzene	3.35		"	4.33		77.4	56-130			
LCS (AH31515-BS1)				Prepared:	: 08/12/03	Analyzed	l: 08/13/03			
Acetone	3.54	0.69	mg/kg	3.42		104	36-154			
Benzene	0.973	0.17	"	0.865		112	72-123			
Bromobenzene	0.866	0.17	**	0.865		100	71-127			
Bromochloromethane	0.996	0.17	11	0.865		115	62-132			
Bromodichloromethane	0.998	0.17	"	0.865		115	57-125			
Bromoform	0.766	0.17	n	0.865		88.6	57-138			
Bromomethane	2.35	0.17	"	0.865		272	56-150			QM-(
n-Butylbenzene	0.748	0.17	n	0.865		86.5	68-121			
sec-Butylbenzene	0.793	0.17	"	0.865		91.7	68-126			
tert-Butylbenzene	0.776	0.17		0.865		89.7	66-124			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analy CEIVE roduced in its entirety.

Telanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

AUG 2 1 2003

Receipt Date/Time

08/07/2003 15:30

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 11 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number A308177

Client Code MFGARC

Client PO/Reference

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31515 - EPA 5035 MS										
LCS (AH31515-BS1)				Prepared:	08/12/03	Analyzed	: 08/13/03			
Carbon tetrachloride	1.01	0.17	**	0.865		117	57-133			
Chlorobenzene	0.831	0.17	"	0.865		96.1	76-117			
Chloroethane	1.23	0.17	**	0.865		142	59-128			QM-03
Chloroform	0.977	0.17	"	0.865		113	60-128			
Chloromethane	0.913	0.17		0.865		106	45-140			
2-Chlorotoluene	0.812	0.17	**	0.865		93.9	67-127			
4-Chlorotoluene	0.809	0.17	н	0.865		93.5	65-125			
Dibromochloromethane	0.759	0.17	"	0.865		87.7	56-141			
1,2-Dibromo-3-chloropropane	0.828	0.17	**	0.865		95.7	61-134			
1,2-Dibromoethane (EDB)	0.818	0.17	"	0.865		94.6	70-132			
Dibromomethane	0.949	0.17	"	0.865		110	66-123			
1,2-Dichlorobenzene	0.849	0.17	89	0.865		98.2	70-121			
1,3-Dichlorobenzene	0.814	0.17	11	0.865		94.1	65-124			
1,4-Dichlorobenzene	0.842	0.17	"	0.865		97.3	71-120			
Dichlorodifluoromethane	0.875	0.17	"	0.865		101	52-145			
1,1-Dichloroethane	0.636	0.17	"	0.865		73.5	58-136			
1,2-Dichloroethane	0.951	0.17		0.865		110	64-117			
1,1-Dichloroethene	1.03	0.17	**	0.865		119	66-131			
cis-1,2-Dichloroethene	1.02	0.17	"	0.865		118	57-131			
trans-1,2-Dichloroethene	1.01	0.17	**	0.865		117	59-127			
1,2-Dichloropropane	0.925	0.17		0.865		107	72-121			
1,3-Dichloropropane	0.842	0.17	"	0.865		97.3	70-135			
2,2-Dichloropropane	1.08	0.17	**	0.865		125	38-152			
1,1-Dichloropropene	1.02	0.17	**	0.865		118	73-124			
cis-1,3-Dichloropropene	0.954	0.17	H	0.865		110	66-132			
trans-1,3-Dichloropropene	0.766	0.17	"	0.865		88.6	55-133			
Ethylbenzene	0.830	0.17	11	0.865		96.0	71-125			

The results in this report apply to the samples analyzed in accordance with the of custody document. This analytical report must be reportinged in its entirety. ance with the chain

Melanie D. Thece

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 12 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A308177	08/07/2003 15:30	MFGARC	

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag

Batch AH31515 - EPA 5035 MS

LCS (AH31515-BS1)				Prepared: 08/1	2/03 Analyzed	l: 08/13/03	
Hexachlorobutadiene	0.949	0.17	11	0.865	110	68-131	
Isopropylbenzene	0.927	0.17	"	0.865	107	66-125	
p-Isopropyltoluene	0.714	0.17	н	0.865	82.5	62-120	
Methyl ethyl ketone	1.92	0.52	Ħ	1.74	110	58-138	
Methyl isobutyl ketone	1.62	0.35	н	1.73	93.6	59-133	
Methyl tert-butyl ether	0.608	0.17	"	0.865	70.3	71-127	QL-03
Methylene chloride	0.954	0.17	**	0.865	110	60-128	
Naphthalene	0.743	0.17	"	0.865	85.9	58-133	
n-Propylbenzene	0.766	0.17	н	0.865	88.6	67-124	
Styrene	0.755	0.17	-	0.865	87.3	65-126	
1,1,1,2-Tetrachloroethane	0.764	0.17	**	0.865	88.3	65-136	
1,1,2,2-Tetrachloroethane	0.743	0.17	**	0.865	85.9	40-149	
Tetrachloroethene	0.869	0.17	11	0.865	100	52-148	
Toluene	0.875	0.17	**	0.865	101	72-126	
1,2,3-Trichlorobenzene	0.795	0.17	н	0.865	91.9	67-124	
1,2,4-Trichlorobenzene	0.842	0.17	"	0.865	97.3	63-125	
1,1,1-Trichloroethane	1.03	0.17	"	0.865	119	55-134	
1,1,2-Trichloroethane	0.818	0.17	"	0.865	94.6	61-138	
Trichloroethene	1.00	0.17	"	0.865	116	74-129	
Trichlorofluoromethane	0.934	0.17		0.865	108	61-132	
Trichlorotrifluoroethane	0.927	0.17	"	0.852	109	52-138	
1,2,3-Trichloropropane	0.790	0.17	"	0.865	91.3	66-132	
1,2,4-Trimethylbenzene	0.778	0.17	n	0.865	89.9	66-128	
1,3,5-Trimethylbenzene	0.750	0.17	"	0.865	86.7	65-123	
Vinyl chloride	1.01	0.17	n	0.865	117	59-135	
m,p-Xylene	1.59	0.17	**	1.73	91.9	67-128	
o-Xylene	0.807	0.17	Ħ	0.865	93.3	67-126	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytic **Preparity of the produced** in its entirety.

Melanie S. There

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 13 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Client PO/Reference

Order Number Receipt Date/Time Client Code A308177 08/07/2003 15:30 MFGARC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31515 - EPA 5035 MS										
LCS (AH31515-BS1)				Prepared:	08/12/03	Analyzed	1: 08/13/03			
Xylenes (total)	2.40	0.17	11	2.60		92.3	67-127			
Surrogate: Dibromofluoromethane	4.69		H	4.33		108	57-144			
Surrogate: Toluene-d8	4.15		a	4.33		<i>95</i> .8	65-127			
Surrogate: Bromofluorobenzene	4.29		"	4.33		<i>99.1</i>	56-130			
LCS Dup (AH31515-BSD1)				Prepared:	08/12/03	Analyzed	l: 08/13/03			
Acetone	3.21	0.69	mg/kg	3.42		93.9	36-154	9.78	25	
Benzene	0.989	0.17	"	0.865		114	72-123	1.63	25	
Bromobenzene	0.857	0.17	"	0.865		99.1	71-127	1.04	25	
Bromochloromethane	0.970	0.17	17	0.865		112	62-132	2.64	25	
Bromodichloromethane	0.939	0.17	**	0.865		109	57-125	6.09	25	
Bromoform	0.772	0.17	**	0.865		89.2	57-138	0.780	25	
Bromomethane	1.08	0.17	**	0.865		125	56-150	74.1	25	QL-04
n-Butylbenzene	0.854	0.17	**	0.865		98.7	68-121	13.2	25	
sec-Butylbenzene	0.816	0.17		0.865		94.3	68-126	2.86	25	
tert-Butylbenzene	0.795	0.17	"	0.865		91.9	66-124	2.42	25	
Carbon tetrachloride	0.979	0.17	"	0.865		113	57-133	3.12	25	
Chlorobenzene	0.864	0.17		0.865		99.9	76-117	3.89	25	
Chloroethane	0.861	0.17		0.865		99.5	59-128	35.3	25	QL-04
Chloroform	0.944	0.17	"	0.865		109	60-128	3.44	25	
Chloromethane	0.837	0.17	**	0.865		96.8	45-140	8.69	25	
2-Chlorotoluene	0.823	0.17	"	0.865		95.1	67-127	1.35	25	
4-Chlorotoluene	0.818	0.17	"	0.865		94.6	65-125	1.11	25	
Dibromochloromethane	0.792	0.17	"	0.865		91.6	56-141	4.26	25	
1,2-Dibromo-3-chloropropane	0.809	0.17	"	0.865		93.5	61-134	2.32	25	
1,2-Dibromoethane (EDB)	0.871	0.17		0.865		101	70-132	6.28	25	
Dibromomethane	0.920	0.17	"	0.865		106	66-123	3.10	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytica RECENTED in its entirety.

Melanie B. Thece

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

AUG 2 1 ZUUS

Receipt Date/Time

08/07/2003 15:30

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 14 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number A308177

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31515 - EPA 5035 MS										

LCS Dup (AH31515-BSD1)				Prepared: 08/1	2/03 Analyzed	: 08/13/03		
1,2-Dichlorobenzene	0.861	0.17	"	0.865	99.5	70-121	1.40	25
1,3-Dichlorobenzene	0.826	0.17	"	0.865	95.5	65-124	1.46	25
1,4-Dichlorobenzene	0.847	0.17	"	0.865	97.9	71-120	0.592	25
Dichlorodifluoromethane	0.776	0.17	"	0.865	89.7	52-145	12.0	25
1,1-Dichloroethane	0.643	0.17	n	0.865	74.3	58-136	1.09	25
1,2-Dichloroethane	0.935	0.17	н	0.865	108	64-117	1.70	25
1,1-Dichloroethene	0.979	0.17	"	0.865	113	66-131	5.08	25
cis-1,2-Dichloroethene	0.991	0.17	"	0.865	115	57-131	2.88	25
trans-1,2-Dichloroethene	0.992	0.17	Ħ	0.865	115	59-127	1.80	25
1,2-Dichloropropane	0.909	0.17	н	0.865	105	72-121	1.74	25
1,3-Dichloropropane	0.880	0.17	"	0.865	102	70-135	4.41	25
2,2-Dichloropropane	1.05	0.17	11	0.865	121	38-152	2.82	25
1,1-Dichloropropene	0.994	0.17	n	0.865	115	73-124	2.58	25
cis-1,3-Dichloropropene	0.951	0.17	Ħ	0.865	110	66-132	0.315	25
trans-1,3-Dichloropropene	0.795	0.17	n	0.865	91.9	55-133	3.72	25
Ethylbenzene	0.864	0.17	"	0.865	99.9	71-125	4.01	25
Hexachlorobutadiene	0.925	0.17	"	0.865	107	68-131	2.56	25
Isopropylbenzene	0.928	0.17	**	0.865	107	66-125	0.108	25
p-Isopropyltoluene	0.774	0.17	"	0.865	89.5	62-120	8.06	25
Methyl ethyl ketone	1.75	0.52	n	1.74	101	58-138	9.26	25
Methyl isobutyl ketone	1.70	0.35	"	1.73	98.3	59-133	4.82	25
Methyl tert-butyl ether	0.653	0.17	"	0.865	75.5	71-127	7.14	25
Methylene chloride	0.930	0.17	*	0.865	108	60-128	2.55	25
Naphthalene	0.868	0.17	"	0.865	100	58-133	15.5	25
n-Propylbenzene	0.793	0.17	"	0.865	91.7	67-124	3.46	25
Styrene	0.779	0.17	"	0.865	90.1	65-126	3.13	25
1,1,1,2-Tetrachloroethane	0.852	0.17	**	0.865	98.5	65-136	10.9	25

The results in this report of the to the total of the total of custody document. This analytical report must be reproduced in its entirety.

Melanie B. Thece

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

AUG 2 1 2003 Tetra Tech/MFG, Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 15 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number A308177

Receipt Date/Time 08/07/2003 15:30

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31515 - EPA 5035 MS										<u></u>

LCS Dup (AH31515-BSD1)				Prepared: (08/12/03	Analyzed	1: 08/13/03			
1,1,2,2-Tetrachloroethane	0.779	0.17	"	0.865		90.1	40-149	4.73	25	
Tetrachloroethene	0.883	0.17	0	0.865		102	52-148	1.60	25	
Toluene	0.940	0.17	**	0.865		109	72-126	7.16	25	
1,2,3-Trichlorobenzene	0.913	0.17	"	0.865		106	67-124	13.8	25	
1,2,4-Trichlorobenzene	0.947	0.17	**	0.865		109	63-125	11.7	25	
1,1,1-Trichloroethane	0.977	0.17	**	0.865		113	55-134	5.28	25	
1,1,2-Trichloroethane	0.842	0.17		0.865		97.3	61-138	2.89	25	
Trichloroethene	1.01	0.17	**	0.865		117	74-129	0.995	25	
Trichlorofluoromethane	0.873	0.17	**	0.865		101	61-132	6.75	25	
Trichlorotrifluoroethane	0.885	0.17	н	0.852		104	52-138	4.64	25	
1,2,3-Trichloropropane	0.807	0.17	**	0.865		93.3	66-132	2.13	25	
1,2,4-Trimethylbenzene	0.818	0.17	"	0.865		94.6	66-128	5.01	25	
1,3,5-Trimethylbenzene	0.797	0.17	"	0.865		92.1	65-123	6.08	25	
Vinyl chloride	0.887	0.17	"	0.865		103	59-135	13.0	25	
m,p-Xylene	1.65	0.17	11	1.73		95.4	67-128	3.70	25	
o-Xylene	0.818	0.17	11	0.865		94.6	67-126	1.35	25	
Xylenes (total)	2.47	0.17	н	2.60		95.0	67-127	2.87	25	
Surrogate: Dibromofluoromethane	4.13	***	H	4.33		95.4	57-144			
Surrogate: Toluene-d8	4.12		"	4.33		95.2	65-127			
Surrogate: Bromofluorobenzene	3.91		"	4.33		90.3	56-130			
Matrix Spike (AH31515-MS1)	Sour	rce: A3081	177-04	Prepared:	08/12/03	Analyzed	1: 08/13/03			
Acetone	3.88	0.69	mg/kg	3.42	ND	113	9-181			
Benzene	1.03	0.17	**	0.865	ND	119	49-137			
Bromobenzene	1.01	0.17	H	0.865	ND	117	55-136			
Bromochloromethane	0.963	0.17	"	0.865	ND	111	58-133			
Bromodichloromethane	0.986	0.17	**	0.865	ND	114	51-126			

The results in this report apply **Russings have in** accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie S. There

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

AUG 2 1 2003 Tetra Tech/MFG, Inc.

Receipt Date/Time

08/07/2003 15:30

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 16 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number A308177

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

A	D16	DOI	T T., 14 -	* *	Source Result	%REC	%REC Limits	סחת	RPD	Elec
Analyte(s)	Result	PQL	Units	Level	Result	701020	Diffits	RPD	Limit	Flag

Batch AH31515 - EPA 5035 MS

Matrix Spike (AH31515-MS1)	Sour	ce: A308177	7-04	Prepared: (08/12/03	Analyzed	l: 08/13/03	
Bromoform	0.819	0.17	н	0.865	ND	94.7	47-138	
Bromomethane	1.14	0.17	"	0.865	ND	132	32-180	
n-Butylbenzene	1.53	0.17	**	0.865	0.81	83.2	29-153	
sec-Butylbenzene	1.13	0.17	ŧ	0.865	0.50	72.8	44-148	
tert-Butylbenzene	1.15	0.17	"	0.865	ND	133	49-141	
Carbon tetrachloride	1.02	0.17	11	0.865	ND	118	52-133	
Chlorobenzene	1.35	0.17	H -	0.865	0.87	55.5	54-133	
Chloroethane	0.953	0.17		0.865	ND	110	53-136	
Chloroform	0.987	0.17	**	0.865	ND	114	61-126	
Chloromethane	0.878	0.17		0.865	ND	102	57-130	
2-Chlorotoluene	0.992	0.17	**	0.865	0.28	82.3	52-140	
4-Chlorotoluene	1.06	0.17		0.865	0.32	85.5	39-149	
Dibromochloromethane	0.837	0.17	"	0.865	ND	96.8	48-135	
1,2-Dibromo-3-chloropropane	0.889	0.17		0.865	ND	103	48-139	
1,2-Dibromoethane (EDB)	0.932	0.17	н	0.865	ND	108	36-156	
Dibromomethane	0.954	0.17	**	0.865	ND	110	61-128	
1,2-Dichlorobenzene	1.17	0.17	"	0.865	0.58	68.2	36-156	
1,3-Dichlorobenzene	0.979	0.17	"	0.865	0.20	90.1	45-138	
1,4-Dichlorobenzene	1.39	0.17	"	0.865	1.2	22.0	60-136	QM-01
Dichlorodifluoromethane	0.710	0.17	н	0.865	ND	82.1	24-189	
1,1-Dichloroethane	0.876	0.17	н	0.865	ND	101	58-142	
1,2-Dichloroethane	0.966	0.17	"	0.865	ND	112	55-125	
1,1-Dichloroethene	1.03	0.17	**	0.865	ND	119	54-147	
cis-1,2-Dichloroethene	1.02	0.17	**	0.865	ND	118	52-129	
trans-1,2-Dichloroethene	1.02	0.17	н	0.865	ND	118	61-120	
1,2-Dichloropropane	0.984	0.17	Ħ	0.865	ND	114	61-123	
1,3-Dichloropropane	0.954	0.17	н	0.865	ND	110	45-150	

The results in this report apply to the sample and yted is a cordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

Tetra Tech/MFG, Inc.

Melanie D. There

Melanie B. Neece For Sheri L. Speaks Project Manager

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 17 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Order Number A308177

Receipt Date/Time 08/07/2003 15:30 Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag

Batch AH31515 - EPA 5035 MS

Matrix Spike (AH31515-MS1)	Sour	ce: A30817	77-04	Prepared: (08/12/03	Analyzed	: 08/13/03	
2,2-Dichloropropane	1.11	0.17	**	0.865	ND	128	32-160	
1,1-Dichloropropene	1.09	0.17	0	0.865	ND	126	56-131	
cis-1,3-Dichloropropene	1.01	0.17	"	0.865	ND	117	55-129	
trans-1,3-Dichloropropene	0.875	0.17	**	0.865	ND	101	34-139	
Ethylbenzene	0.970	0.17	"	0.865	ND	112	55-138	
Hexachlorobutadiene	1.22	0.17	**	0.865	ND	141	16-172	
Isopropylbenzene	1.05	0.17	**	0.865	0.21	97.1	51-137	
p-Isopropyltoluene	1.19	0.17	"	0.865	0.23	111	37-143	
Methyl ethyl ketone	2.01	0.52	"	1.74	ND	98.3	32-146	
Methyl isobutyl ketone	1.92	0.35	"	1.73	ND	111	29-155	
Methyl tert-butyl ether	1.04	0.17	"	0.865	ND	120	50-140	
Methylene chloride	0.906	0.17	*	0.865	ND	105	53-137	
Naphthalene	2.11	0.17		0.865	1.7	47.4	26-152	
n-Propylbenzene	1.12	0.17	Ħ	0.865	0.37	86.7	47-143	
Styrene	0.935	0.17	"	0.865	ND	108	32-150	
1,1,1,2-Tetrachloroethane	0.913	0.17	н	0.865	ND	106	39-153	
1,1,2,2-Tetrachloroethane	0.866	0.17	11	0.865	ND	100	42-140	
Tetrachloroethene	0.975	0.17	"	0.865	ND	113	9-206	
Toluene	0.991	0.17	H	0.865	ND	115	50-148	
1,2,3-Trichlorobenzene	1.38	0.17	"	0.865	ND	160	31-148	QM-01
1,2,4-Trichlorobenzene	1.54	0.17	"	0.865	ND	178	30-148	QM-01
1,1,1-Trichloroethane	1.01	0.17	**	0.865	ND	117	52-132	
1,1,2-Trichloroethane	0.908	0.17	"	0.865	ND	105	39-152	
Trichloroethene	1.05	0.17	**	0.865	ND	121	50-146	
Trichlorofluoromethane	0.921	0.17	"	0.865	ND	106	51-150	
Trichlorotrifluoroethane	0.935	0.17	19	0.852	ND	110	51-138	
1,2,3-Trichloropropane	0.911	0.17	11	0.865	ND	105	38-152	

The results in this report apply to the supply suppredict accordance with the chain of custody document. This analytical report was be repreduced in its entirety.

Melanie D. There

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

Tetra Tech/MFG, Inc.

AUG 2 1 2003

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 18 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Order Number

A308177

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Receipt Date/Time 08/07/2003 15:30 Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31515 - EPA 5035 MS										
Matrix Spike (AH31515-MS1)	Sou	rce: A308 ⁻	177-04	Prepared:	08/12/03	Analyzed	: 08/13/03			
1,2,4-Trimethylbenzene	1.45	0.17	17	0.865	1.9	NR	43-150			QM-01
1,3,5-Trimethylbenzene	1.13	0.17	"	0.865	ND	131	47-140			
Vinyl chloride	0.857	0.17	"	0.865	ND	99.1	46-150			
m,p-Xylene	1.83	0.17	11	1.73	ND	106	54-139			
o-Xylene	0.977	0.17	"	0.865	0.27	81.7	58-136			
Xylenes (total)	2.81	0.17	11	2.60	0.27	97.7	54-139			
Surrogate: Dibromofluoromethane	4.18		"	4.33		96.5	57-144			
Surrogate: Toluene-d8	4.28		"	4.33		98.8	65-127			
Surrogate: Bromofluorobenzene	4.39		"	4.33		101	56-130			
Matrix Spike Dup (AH31515-MSD1)	Sou	rce: A308	177-04	Prepared	: 08/12/03	Analyzed	1: 08/13/03			
Acetone	4.23	0.69	mg/kg	3.42	ND	124	9-181	8.63	25	
Benzene	0.994	0.17	"	0.865	ND	115	49-137	3.56	25	
Bromobenzene	0.977	0.17	**	0.865	ND	113	55-136	3.32	25	
Bromochloromethane	0.956	0.17	"	0.865	ND	111	58-133	0.730	25	
Bromodichloromethane	0.920	0.17	"	0.865	ND	106	51-126	6.93	25	
Bromoform	0.779	0.17	"	0.865	ND	90.1	47-138	5.01	25	
Bromomethane	0.864	0.17	**	0.865	ND	99.9	32-180	27.5	25	QM-04
n-Butylbenzene	1.57	0.17	**	0.865	0.81	87.9	29-153	2.58	25	
sec-Butylbenzene	1.12	0.17	"	0.865	0.50	71.7	44-148	0.889	25	
tert-Butylbenzene	1.14	0.17	"	0.865	ND	132	49-141	0.873	25	
Carbon tetrachloride	0.930	0.17	"	0.865	ND	108	52-133	9.23	25	
Chlorobenzene	1.30	0.17	**	0.865	0.87	49.7	54-133	3.77	25	QM-01
Chloroethane	0.800	0.17	**	0.865	ND	92.5	53-136	17.5	25	
Chloroform	0.944	0.17	**	0.865	ND	109	61-126	4.45	25	
Chloromethane	0.863	0.17	**	0.865	ND	99.8	57-130	1.72	25	
2-Chlorotoluene	0.987	0.17	"	0.865	0.28	81.7	52-140	0.505	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie B. There

AUG 2 1 2003

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

*

Order Number

Methyl tert-butyl ether

A308177

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 19 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date: 08/18/03 15:23 Project No: 030229.8 Project ID: SPI Arcata Sawmill

Receipt Date	e/Time
08/07/2003	15:30

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31515 - EPA 5035 MS										
Matrix Spike Dup (AH31515-MSD1)	Source: A308177-04			Prepared:	: 08/12/03	Analyzed	: 08/13/03			
4-Chlorotoluene	1.04	0.17	Ħ	0.865	0.32	83.2	39-149	1.90	25	
Dibromochloromethane	0.721	0.17	**	0.865	ND	83.4	48-135	14.9	25	
1,2-Dibromo-3-chloropropane	0.972	0.17	"	0.865	ND	112	48-139	8.92	25	
1,2-Dibromoethane (EDB)	0.928	0.17		0.865	ND	107	36-156	0.430	25	
Dibromomethane	0.921	0.17	"	0.865	ND	106	61-128	3.52	25	
1,2-Dichlorobenzene	1.17	0.17	"	0.865	0.58	68.2	36-156	0.00	25	
1,3-Dichlorobenzene	0.958	0.17	"	0.865	0.20	87.6	45-138	2.17	25	
1,4-Dichlorobenzene	1.39	0.17	"	0.865	1.2	22.0	60-136	0.00	25	QM-
Dichlorodifluoromethane	0.684	0.17	"	0.865	ND	79.1	24-189	3.73	25	~~~
								2110	20	

NJO DICINOTODONIZONO	0.958	0.17		0.805	0.20	ð/.0	45-138	2.17	25	
1,4-Dichlorobenzene	1.39	0.17	**	0.865	1.2	22.0	60-136	0.00	25	
Dichlorodifluoromethane	0.684	0.17	F1	0.865	ND	79.1	24-189	3.73	25	
1,1-Dichloroethane	0.878	0.17	**	0.865	ND	102	58-142	0.228	25	
1,2-Dichloroethane	0.965	0.17	11	0.865	ND	112	55-125	0.104	25	
1,1-Dichloroethene	0.989	0.17	11	0.865	ND	114	54-147	4.06	25	
cis-1,2-Dichloroethene	0.996	0.17	**	0.865	ND	115	52-129	2.38	25	
trans-1,2-Dichloroethene	0.937	0.17	п	0.865	ND	108	61-120	8.48	25	
1,2-Dichloropropane	0.932	0.17	"	0.865	ND	108	61-123	5.43	25	
1,3-Dichloropropane	0.946	0.17	н	0.865	ND	109	45-150	0.842	25	
2,2-Dichloropropane	1.04	0.17		0.865	ND	120	32-160	6.51	25	
1,1-Dichloropropene	1.04	0.17		0.865	ND	120	56-131	4.69	25	
cis-1,3-Dichloropropene	0.970	0.17		0.865	ND	112	55-129	4.04	25	
trans-1,3-Dichloropropene	0.871	0.17	H	0.865	ND	101	34-139	0.458	25	
Ethylbenzene	0.963	0.17	"	0.865	ND	111	55-138	0.724	25	
Hexachlorobutadiene	1.22	0.17	"	0.865	ND	141	16-172	0.00	25	
Isopropylbenzene	1.02	0.17	"	0.865	0.21	93.6	51-137	2.90	25	
p-Isopropyltoluene	1.19	0.17		0.865	0.23	111	37-143	0.00	25	
Methyl ethyl ketone	2.25	0.52	"	1.74	ND	112	32-146	11.3	25	
Methyl isobutyl ketone	2.11	0.35	"	1.73	ND	122	29-155	9.43	25	

0.17

••

0.865

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

B. There

3.77

25

50-140

Melanie B. Neece For Sheri L. Speaks Project Manager

125

8/18/03

AUG 2 1 2003

1.08

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 20 of 25

MFG. Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 15:23
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Order Number Receipt Date/Time Client Code Client PO/Reference A308177 08/07/2003 15:30 MFGARC

Volatile Organic Compounds by EPA Methods 8260B/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag

Batch AH31515 - EPA 5035 MS

Matrix Spike Dup (AH31515-MSD1)	Sou	ce: A3081	77-04	Prepared:	08/12/03	Analyzed	l: 08/13/03			
Methylene chloride	0.899	0.17	н	0.865	ND	104	53-137	0.776	25	
Naphthalene	2.32	0.17	19	0.865	1.7	71.7	26-152	9.48	25	
n-Propylbenzene	1.11	0.17	**	0.865	0.37	85.5	47-143	0.897	25	
Styrene	0.968	0.17	**	0.865	ND	112	32-150	3.47	25	
1,1,1,2-Tetrachloroethane	0.873	0.17	**	0.865	ND	101	39-153	4.48	25	
1,1,2,2-Tetrachloroethane	0.856	0.17	"	0.865	ND	99.0	42-140	1.16	25	
Tetrachloroethene	1.27	0.17		0.865	ND	147	9-206	26.3	25	QM-04
Toluene	0.960	0.17	"	0.865	ND	111	50-148	3.18	25	-
1,2,3-Trichlorobenzene	1.42	0.17	*1	0.865	ND	164	31-148	2.86	25	QM-01
1,2,4-Trichlorobenzene	1.59	0.17	**	0.865	ND	184	30-148	3.19	25	QM-01
1,1,1-Trichloroethane	0.942	0.17	"	0.865	ND	109	52-132	6.97	25	
1,1,2-Trichloroethane	0.908	0.17	"	0.865	ND	105	39-152	0.00	25	
Trichloroethene	1.01	0.17		0.865	ND	117	50-146	3.88	25	
Trichlorofluoromethane	0.840	0.17	**	0.865	ND	97.1	51-150	9.20	25	
Trichlorotrifluoroethane	0.863	0.17	"	0.852	ND	101	51-138	8.01	25	
1,2,3-Trichloropropane	0.892	0.17	**	0.865	ND	103	38-152	2.11	25	
1,2,4-Trimethylbenzene	1.45	0.17		0.865	1.9	NR	43-150	0.00	25	QM-01
1,3,5-Trimethylbenzene	1.12	0.17	"	0.865	ND	129	47-140	0.889	25	-
Vinyl chloride	0.760	0.17	**	0.865	ND	87.9	46-150	12.0	25	
m,p-Xylene	1.83	0.17	"	1.73	ND	106	54-139	0.00	25	
o-Xylene	0.954	0.17	"	0.865	0.27	79.1	58-136	2.38	25	
Xylenes (total)	2.78	0.17	Ħ	2.60	0.27	96.5	54-139	1.07	25	
Surrogate: Dibromofluoromethane	4.17		Ħ	4.33		96.3	57-144			
Surrogate: Toluene-d8	4.31		"	4.33		99.5	65-127			
Surrogate: Bromofluorobenzene	4.40		n	4.33		102	56-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG 2 1 2003

Malanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

Tetra Tech/MFG. Inc.

Alpha Analytical Laboratories Inc.

Receipt Date/Time

08/07/2003 15:30

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 21 of 25

MFG, Inc - Arcata
875 Crescent Way
Arcata, CA 95521
Attn: Ed Conti

Report Date:	08/18/03 15:23
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Order Number A308177

Client Code MFGARC

Client PO/Reference

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31502 - General Preparation										
Blank (AH31502-BLK1)				Prepared:	08/13/03	Analyzed	: 08/14/03			
Oil & Grease (HEM-SG)	ND	50	mg/kg							
LCS (AH31502-BS1)				Prepared:	08/13/03	Analyzed	l: 08/14/03			
Oil & Grease (HEM-SG)	2470	50	mg/kg	2500		98.8	80-120			
Duplicate (AH31502-DUP1)	Sou	rce: A308	011-03	Prepared:	08/13/03	Analyzed	1: 08/14/03			
Oil & Grease (HEM-SG)	38100	50	mg/kg		25000			41.5	20	QM-04
Matrix Spike (AH31502-MS1)	Sou	rce: A308	011-03	Prepared	: 08/13/03	Analyzed	l: 08/14/03			
Oil & Grease (HEM-SG)	27700	50	mg/kg	1500	25000	180	80-120			QM-4X
Matrix Spike Dup (AH31502-MSD1)	Sou	rce: A308	011-03	Prepared	: 08/13/03	Analyzed	1: 08/14/03			
Oil & Grease (HEM-SG)	28300	50	mg/kg	1500	25000	220	80-120	2.14	20	QM-4X

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical reporting to the report thread in its entirety.

Melanie S. There

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

AUG 2 1 2003 Tetra Tech/MFG, Inc.

£. 24 3

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 22 of 25

	scent Way CA 95521		Project No:	08/18/03 15:23	
Attn: Ed			•	SPI Arcata Sawmill	
Order Number	Receipt Date/Time	Client Code		Client PO/Reference	
A308177	08/07/2003 15:30	MFGARC			

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31213 - CA LUFT - orb sha	ıker									
Blank (AH31213-BLK1)				Prepared	& Analyze	ed: 08/12/0	03			
TPH as Diesel	ND	1.0	mg/kg							
TPH as Motor Oil	ND	2.0	**							
Surrogate: 1,4-Bromofluorobenzene	11.1		"	12.4		89.5	21-110			
LCS (AH31213-BS1)				Prepared	& Analyz	ed: 08/12/	03			
TPH as Diesel	47.6	1.0	mg/kg	41.8		114	63-126			
TPH as Motor Oil	46.6	2.0	н	41.8		111	57-139			
Surrogate: 1,4-Bromofluorobenzene	12.5		"	12.4		101	21-110			
Matrix Spike (AH31213-MS1)	Sou	rce: A308	105-04	Prepared	: 08/12/03	Analyzed	l: 08/13/03			
TPH as Diesel	42.7	1.0	mg/kg	41.8	ND	100	61-134			
TPH as Motor Oil	43.6	2.0	"	41.8	ND	102	61-126			
Surrogate: 1,4-Bromofluorobenzene	10.9		n	12.4		87.9	21-110			
Matrix Spike Dup (AH31213-MSD1)	Sou	rce: A308	105-04	Prepared	: 08/12/03	Analyzed	1: 08/13/03			
TPH as Diesel	42.7	1.0	mg/kg	41.8	ND	100	61-134	0.00	20	
TPH as Motor Oil	43.8	2.0	11	41.8	ND	103	61-126	0.458	20	
Surrogate: 1,4-Bromofluorobenzene	10.9		"	12.4		87.9	21-110			

The results in this report apply to the sample prayed prayed and with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager

8/18/03

Tetra Tech/MFG, Inc.

AUG 2 1 2003

1

A308177

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 23 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti

Report Date:	08/18/03 15:23
Project No:	030229.8
Project ID:	SPI Arcata Sawmill

Receipt Date/Time Order Number 08/07/2003 15:30

Client Code MFGARC

Client PO/Reference

TPH Gasoline by GCFID/5035 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH31512 - EPA 5035 GC										
Blank (AH31512-BLK1)				Prepared	& Analyze	ed: 08/14/	03			
TPH as Gasoline	ND	1.0	mg/kg							
Surrogate: 1,4-Bromofluorobenzene	4.89		n	4.00		122	60-156			
LCS (AH31512-BS1)				Prepared	& Analyz	ed: 08/14/	03			
TPH as Gasoline	26.9	1.0	mg/kg	23.2		116	77-139			
Surrogate: 1,4-Bromofluorobenzene	4.92		"	4.00		123	60-156			
LCS Dup (AH31512-BSD1)				Prepared	& Analyz	ed: 08/14/	/03			
TPH as Gasoline	26.3	1.0	mg/kg	23.2		113	77-139	2.26	20	QM-10
Surrogate: 1,4-Bromofluorobenzene	4.77		"	4.00		119	60-156			QM-1

The results in this report apply to the samples anatyzed in accordance Dith the chain of custody document. This analytical report must be reproduced in its entirety. AUG 2 1 2003

Malanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager

Tetra Tech/MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 24 of 25

875 C Arcat	, Inc - Arcata Crescent Way a, CA 95521 Ed Conti	Project 1	ate: 08/18/03 15:23 No: 030229.8 ID: SPI Arcata Sawmill
Order Number A308177	Receipt Date/Time 08/07/2003 15:30	Client Code MFGARC	Client PO/Reference

Notes and Definitions

- A-01 KEROSENE IS PRESENT AT ABOUT 2/15 OF THE DIESEL RESPONSE AND IS INCLUDED THERE IN.
- A-01a KEROSENE MAY BE PRESENT AT ABOUT 1/20 OR LESS OF THE DIESEL RESPONSE, WHICH ITSELF IS DUE TO OVERLAP OF MOTOR OIL.
- D-09 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- G-1 Results in the gasoline organics range are primarily due to overlap from a diesel range product
- QL-03 Although the LCS/LCSD recovery for this analyte is outside of in-house developed control limits, it is within the EPA recommended range of 70-130%.
- The LCS/LCSD RPD for this analyte was outside of established control limits. Batch accepted based on QL-04 acceptable recovery for both LCS/LCSD.
- QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.
- QM-03 The spike recovery was high for this analyte. The batch was accepted based on a non-detect for the analyte.
- OM-04 High RPD and/or poor percent recovery may reflect sample non-homogeneity.
- OM-10 LCSD prepared with analytical batch due to insufficient sample for MS/MSD.
- QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
- S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interferences.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit

The results in this report apply to the samples analyzed in accordance with the of custody document. This analytical report must be reproduced to its entirety. e with the chain

Melanie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager

Tetra Tech/MFG, Inc.

AUG 2 1 2003

'____

445

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

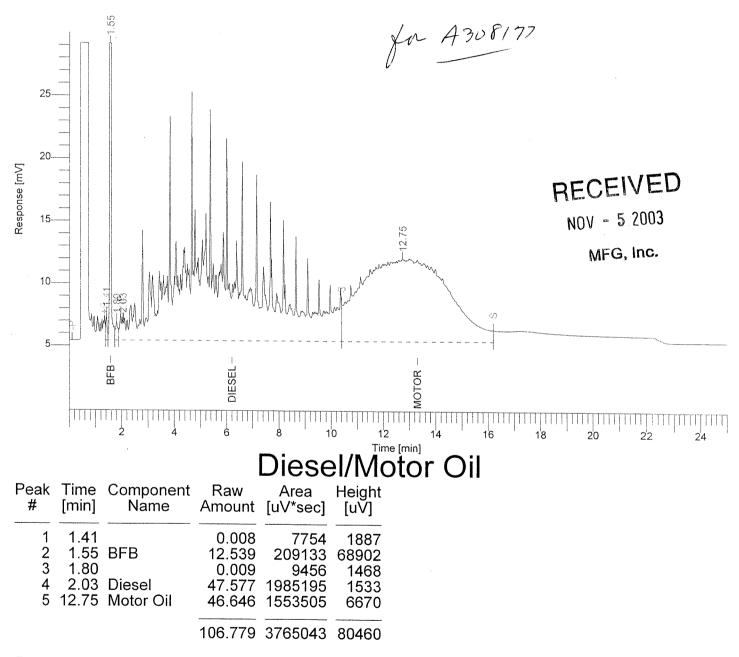
CHEMICAL EXAMINATION REPORT

Page 25 of 25

MFG, Inc - Arcata 875 Crescent Way Arcata, CA 95521 Attn: Ed Conti				Project No:	08/18/03 15:23 030229.8 SPI Arcata Sawmill	
Order Num A308177	ıber	Receipt Date/Time 08/07/2003 15:30	Client Code MFGARC		Client PO/Reference	
NR	Not Reported					

- Sample results reported on a dry weight basis dry
- RPD Relative Percent Difference
- PQL Practical Quantitation Limit

RECEIVED

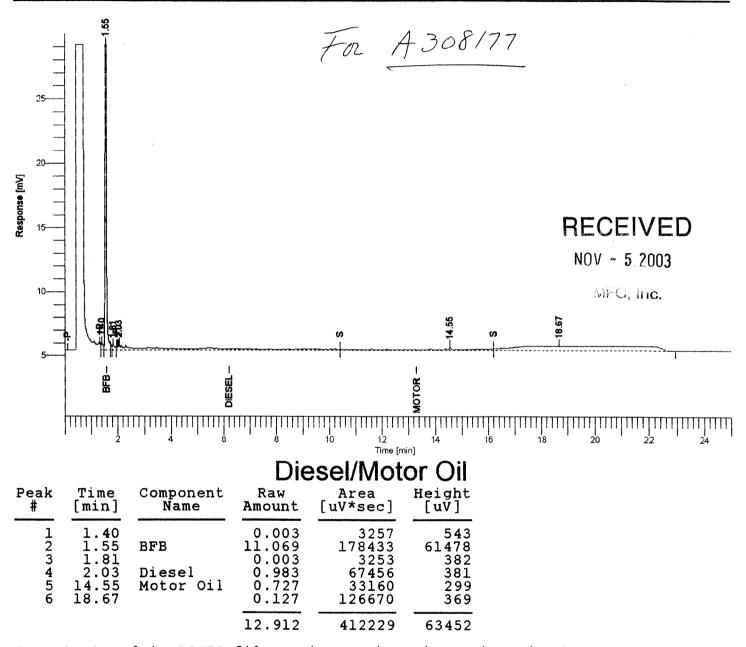

AUG 2 1 2003

Tetra Tech/MFG, Inc.

1	MFG, INC.	CHAIN-C	N-OF-CUSTODY		RECORD	AND	REQUEST	EST	FOR ANALYSIS	
k fa, Cresc resc 70 Cresc	Arcata Office CA - Irvine CA - Irvine CA 575 Crescent Way Sts Crescent Way Sts Crescent Way Sts Crescent Way CA - 100 San San Arcsut, CA 5521-6741 Tel (949) 253-2954 Tel Tel (949) 253-2954 Tel Tel (949) 253-2954 Tel CA - 100 San	CA - San Francisco 180 Howard St., Ste. 200 San Francisco CA 94105 Fancisco CA 94105 Fail (415) 495-7110 Fail (415) 495-7107 Fail (303) 447-1823 Fax (415) 495-7107 Fax (303) 447-1835	L Clr. PO Box 30 PO Box 30 Waltace, 10 83873 301 Tel (208) 556-6811 823 Fax (208) 556-7271 836		MT - Missoula PO Box 7158 Missoula MT 59807 Tel (406) 728-4600 Fax (406) 728-4690	□ NJ - Edison 1090 King G 1030 King G 1020 X Edison, NJ Tel (732) 73 Fax (732) 73	□ NJ - Edison 1090 King Georges Post Rd. 2ka - 703 Edison. NJ 08837 Tel (732) 738-5707 Fax (732) 738-5711		RECEIVED	
	□ OR - Portland □ PA - Pittsburgh □ T 1020 SW Taylor St. B00 Vinial St., Bldg. A 44 Ste. 530 Pittsburgh, PA 15212 BI Portland, OR 97205 Tel (412) 321-2278 A Tel (412) 321-2283 Te Fax (503) 228-8631 Fax (412) 321-2283 Te	☐ TX - Austin ☐ TX - Hoi 4807 Spicewood Springs Rd. 12337 J Bidg, IX, ¹⁴ Floor Ste. 230 Austin, TX 78759 Houston Tel (512) 338-1567 Fax (261 Fax (512) 338-1331	JTX - Houston JTX - Houston 12337 Jones Rd. 320 1 Ste. 230 Port Huston T7070 Tel (281) 890-5044 Fax (281)	☐ TX - Port Lavaca 320 East Main Port Lavaca TX 77979 Tel (361) 552-8839 Fax (361) 553-6115	□TX - Texarkana 4522 Summerhill Rd. Texarkan, TX 7503 Tel (903) 794-0625 Fax (903) 794-0625		□ WA - Seattle 19203 36th Ave. W. Ste. 100 Lymwood, WA 98036 Tel (425) 921-4000 Fax (425) 921-4040		AUG 2 1 2003 Tetra Tech/MFG, İnd,	
	PROJECT NO: 030224.8 SAMPLER (Signature): 02m/24 METHOD OF SHIPMENT: 021/01	PROJECT NAME:	SPT- OJECT MAN ER/WAYBILL	Cata ER: E	Sawmill Ed (Ont		DESTINATION:	Ald	PAGE: <u>1</u> OF: <u>1</u> DATE: <u>8/6/03</u> ha Andrytic 1 Lelo	
		SAMPLES					ANAL	YSIS RI	ANALYSIS REQUEST	1
		Sample	Preservation	Containers	ers Cor	istigents/Method		Handling	Remarks	
	A308/77 Field Sample Identification	HCI Matrix* DATE DATE	COLD H₂SO₄ HNO₃	TYPE* (ml/oz) TYPE*	ON	2021823+ 20928 5701 20928 5701 20978 - H di- 20978 - H di- 20078 - H di 20078 - H di 20078 - H di- 20078 - H di- 2	Terpreture Terpreture	HSUA DAADNAT2	OSilica gel Cleono Aroilgr Brease not cooler Tenp	
-	PD-NWI- BO Hem	8/1/15 2:30 50	2	6-1 m B	1 1	V		1	3 Run Kerosene	
3	PD-NW1 BOHOW	14:2	2	53m 0T	m	× 		>	standard w/mu	Ł
3	PD-NW2-Botton	B/6/30 2:50 50	7	6 m B	<u>Z</u>	7		3	Dicsel save by	
Ŧ	PD-NW2-Botton	3,65	2	SJm ST	6	7		7	Q USE PD-NWZ-B	र्भ हो
	Tem P Blan K	Bleles 2:15 Ag	>	tan G			>		Ar ws/mso &	(ئە
									- -	
			TOTAL NUMBER OF C						Cooler Temp: VS	╧┪
	RELINQUISHED BY:	3Y:					RECI	RECEIVED BY		
	SIGNATURE PRINTED NAME	E COMPANY	DATE	TIME	SIGI	SIGNATURE	A PRIN	PRINTED NAME	AE COMPANY	
	Quelling 1 Ori. Pochy	1 MPG	0/42	WY 05:01		your	L'S	T Ma	FUR HIPHA	T
~	Phillips John TAyar	ac 13 (24)	8/1/8	1530	202	3 A V		-	Deales HADHA	
J	- GK Matrix AO-	Matrix: AQ-aqueous MA-nonaqueous SO-soil SL-sludge P-petroleum normanurrono: PiNY-	A - air OT - other Field Conv YELLOW: I	other Containers: P - plastic G - glass T - tetlon B - brass VELLOW: Laboratory Copy WHITE: Return to Orioinator	lastic G - glass T - teflon B - WHITE: Return to Originator	brass OT - other	Filtration: F - filtered U - unfiltered) - unfittered		1
					,					1

Software Version Sample Name Instrument Name Rack/Vial Sample Amount Cycle	: AH31213-BS1 : DsMo : 0/0	Data Acquisition Time Channel Operator	: 8/13/03 5:21:01 PM : 8/12/03 11:56:48 PM : A : marvin : 1.000000
---	----------------------------------	--	--

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT821.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_081203.idx



Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT821.TX0

Page	1	of	1
------	---	----	---

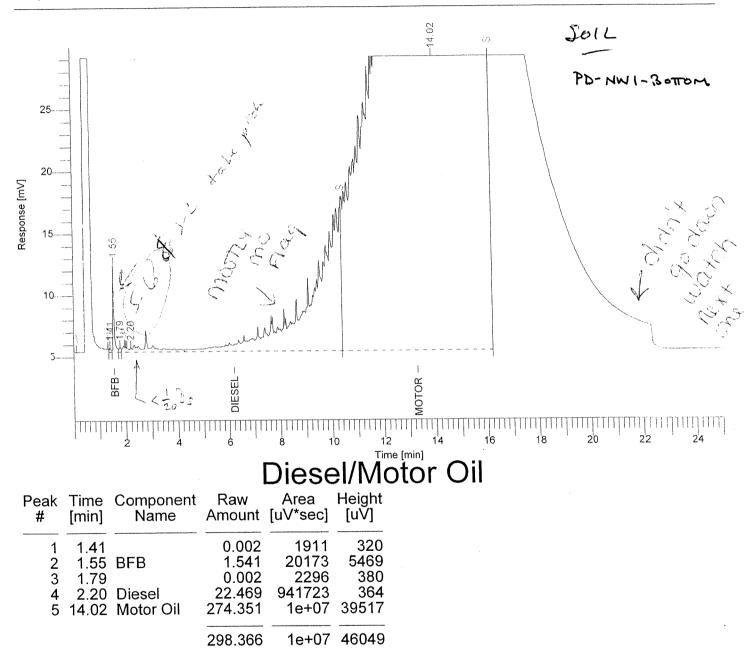
Software Version Sample Name Instrument Name Rack/Vial	:	6.1.2.0.1:D19 AH31213-BLK1 DsMo 0/0	Date Data Acquisition Time		8/14/03 10:25: 8/12/03 11:16:0 M
Sample Amount Cycle	:	1.000000	Channel Operator Dilution Factor	::	A marvin 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\atdat820.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_081203.idx

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\atdat820.TX0

Software Version	: 6.1.2.0.1:D19	Date	: 8/13/03 5:21:03 PM
Sample Name	: A308105-04	Data Acquisition Time	: 8/13/03 12:37:20 AM
Instrument Name	: DsMo	Channel	: A
Rack/Vial	: 0/0	Operator	: marvin
Sample Amount	: 1.000000	Dilution Factor	: 1.000000
Cycle	: 23		

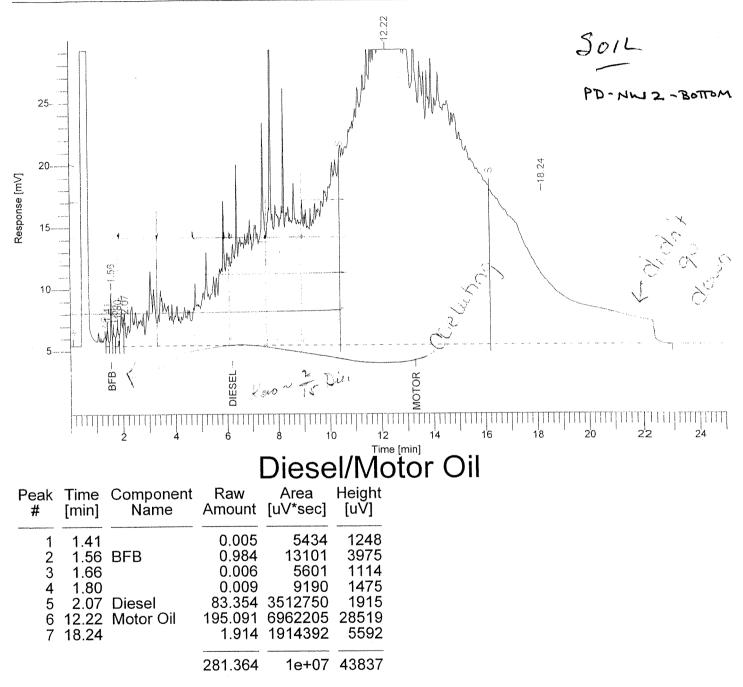
Result File : C:\PenExe\TcWS\Stats\Data\ATDAT822.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_081203.idx


25- 20- <u>Tu</u> succ succ 25- 15- 10- 10- 5-					for clean Sho Ja	A308177 Client Sangle- ning System was clear before an Jongles was run- RECEIVED NOV - 5.2003 MFG, Inc.
		B B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DIESEL			
		2, 4	6	-	Ti	$\begin{bmatrix} 11 & 12 & 14 & 16 & 18 & 20 & 22 & 24 \\ \hline ime [min] \\ Otor Oil \\ \end{bmatrix}$
Peak #	Time [min]	Component Name		Area [uV*sec]	Height [uV]	
1 2 3 4 5 6	1.40 1.56 1.71 1.82 2.05 16.20	BFB Diesel Motor Oil	0.002 11.754 0.003 0.003 0.896 0.841 13.498	1951 192534 2553 2548 63968 36848 300403	367 62107 589 321 317 198 63900	

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT822.TX0

			Page	;10
mple Name	: 0/0	Date Data Acquisition Time Channel Operator Dilution Factor	: 8/13/03 5:21:17 PM : 8/13/03 4:41:13 AM : A : marvin : 1.000000	

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT828.rst


Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_081203.idx

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT828.TX0

ware Version : 6. ample Name : A hstrument Name : D Rack/Vial : 0/	.1.2.0.1:D19 .308177-03@20X 0sMo		: 8/13/03 5:21:19 PM : 8/13/03 5:21:51 AM : A
Rack/Vial : 0/ Sample Amount : 1. Cycle : 30	.000000	operater	: marvin : 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT829.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_081203.idx

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT829.TX0

APPENDIX C

Laboratory Report and Chain-of-Custody Record for the Soil Sample Analyzed by Zymax

Client: Ed Cont	i	Lab Number:	32743-1
MFG, Ir	iC.	Collected:	07/31/03
180 Ho	ward St., Ste. 200	Received:	08/12/03
San Fra	ncisco, CA 94105	Matrix:	Soil
Project:	SPI-Arcata/Task #14	Sample Descrip	tion:
			PD-NE2-1.5'
Project Number:		Analyzed:	08/18/03
Collected by:	Client	Method:	See Below
CONSTITUENT		PQL*	RESULT**
		mg/kg	mg/kg
TOTAL PETROLE	UM HYDROCARBONS		
Total Petroleum H	lydrocarbons (C10-C18)	2000.	5800.
	lydrocarbons (C18-C40)	2000.	12000.
	e Recovery		* * *

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717 *PQL - Practical Quantitation Limit

**Results listed as ND would have been reported if present at or above the listed PQL.

***Surrogate not detected due to dilution.

Note: Analyzed by GC/MS Combination.

Note: Extracted by EPA 3550 on 08/12/03.

Note: TPH (C10-C18) quantitated against kerosene.

Note: TPH (C18-C40) quantitated against motor oil.

SS4714 MSD #4 32743-1t.xls MN/jdm/kg/yl/eg/pe Submitted by, ZymaX envirotechnology, inc.

aal

Michael Ng Assistant Lab Director

MFG, his.

REPORT OF ANALYTICAL RESULTS

Ed Conti	Lab Number:	32743-1
MFG, Inc.	Collected:	07/31/03
180 Howard St., Ste. 200	Received:	08/12/03
San Francisco, CA 94105	Matrix:	Soil
SPI-Arcata/Task #14	Sample Descript	ion:
		PD-NE2-1.5'
Imber:	Analyzed:	08/16/03
by: Client	Method:	EPA 1664A
JENT	PQL*	RESULT**
	mg/kg	mg/kg
	MFG, Inc. 180 Howard St., Ste. 200 San Francisco, CA 94105 SPI-Arcata/Task #14 Imber: by: Client	MFG, Inc. 180 Howard St., Ste. 200 San Francisco, CA 94105 SPI-Arcata/Task #14 Imber: by: Client JENT PQL*

OIL & GREASE - SILICA GEL TREATED

Oil and Grease	200.	13000.

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717 *PQL - Practical Quantitation Limit

**Results listed as ND would have been reported if present at or above the listed PQL.

Submitted by, ZymaX envirotechnology, inc.

Michael Ng Assistant Lab Director

O&G213 32743-1o.xls MN/jdm/kg/mm/dg

RECE" SEP 1 5 2003 MFG, inc.

mg/kg	RESULT **
POI *	RESULT**
Method: S	See Below
	9/03/03
	'D-NE2-1.5'
Sample Description:	
Matrix:	Soil
Received:	08/12/03
Collected:	07/31/03
Lab Number:	32743-1
	Received: Matrix: Sample Description: P Analyzed: 0

TOTAL PETROLEUM HYDROCARBONS-SILICA GEL TREATED

Total Petroleum Hydrocarbons (C10-C18)	1000.	4100.
Total Petroleum Hydrocarbons (C18-C40)	1000.	8400.
Percent Surrogate Recovery		* * *

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

*PQL - Practical Quantitation Limit

**Results listed as ND would have been reported if present at or above the listed PQL.

***Surrogate not detected due to dilution.

Note: Analyzed by GC/MS Combination.

Note: Extracted by EPA 3550 on 08/12/03.

Note: Cleanup performed on extract by EPA 3630 (Silica Gel) on 09/02/03.

Note: TPH (C10-C18) quantitated against kerosene.

Note: TPH (C18-C40) quantitated against motor oil.

SS4714/SG1694 MSD #5 32743-1s.xls MN/jdm/kg/yl/sd/pe Submitted by, ZymaX envirotechnology, inc.

Michael Ng 🛛 🕅 Assistant Lab Director

RECEIVED OCT 3 1 2003 MFG, Inc.

Zymax		QUALITY ASSUR S	ANCE REPORT PIKE RESULTS
Client:	Lab Number:	QS SS	4714
ZymaX envirotechnology, inc.	Collected:		
71 Zaca Lane, Suite 110	Received:		
San Luis Obispo, CA 93401	Matrix:	Soil	
Project:	Sample Descri	ption:	
		Quality Assurance	Spike
Project Number:	Analyzed:	08/13/03	
Collected by:	Method:	See Below	
CONSTITUENT	Amount Spiked	Amount Recovered	Percent
	mg/kg	mg/kg	Recovery
TOTAL PETROLEUM HYDROCARBONS			
Total Petroleum Hydrocarbons	40.	39.	98
Percent Surrogate Recovery			110

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Analyzed by GC/MS Combination.

- Note: Extracted by EPA 3550 on 08/12/03.
- Note: Analytical range is C10-C40.

Note: Spiked with diesel fuel.

SS4714 MSD #4 SS4714q.xls MN/jdm/kg/yl/eg/hb Submitted by, ZymaX envirotechnology, inc.

Race

Michael Ng 🛛 🗸 🗸 Assistant Lab Director

وب المروب

Client:		Lab Number:	Q	ISD SS4714
ZymaX envirotechnology, inc.		Collected:		
71 Zaca Lane, Suite 110		Received:		
San Luis Obispo, CA 93401		Matrix:	S	oil
Project:		Sample Descrip	otion:	"", "
-			Quality Assur	ance Spike Duplicate
Project Number:		Analyzed:	08/14/03	
Collected by:		Method:	See Below	
CONSTITUENT	Amount Spiked	Amount Recovered	Percent	Relative Percent
	mg/kg	mg/kg	Recovery	Difference*
TOTAL PETROLEUM HYDROCARBONS				
Total Petroleum Hydrocarbons	40.	32.	80	20
Percent Surrogate Recovery			97	

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717 *Relative Percent Difference of the spike and spike duplicate

Note: Analyzed by GC/MS Combination.

- Note: Re-extracted by EPA 3550 on 08/14/03.
- Note: Analytical range is C10-C40.

Note: Spiked with diesel fuel.

SS4714 MSD #3 SS4714q.xls MN/jdm/kg/yl/eg/hb Submitted by, ZymaX envirotechnology, inc.

Race

Michael Ng 🛛 🖡 Assistant Lab Director

Zymax	٥	UALITY ASSURANCE REPOR BLANK RESULT
Client:	Lab Number:	BLK SS4714
ZymaX envirotechnology, inc.	Collected:	
71 Zaca Lane, Suite 110	Received:	
San Luis Obispo, CA 93401	Matrix:	Soil
Project:	Sample Description:	
		iod Blank
Project Number:	Analyzed: 08/1	3/03
Collected by:	Method: See	Below
CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg
TOTAL PETROLEUM HYDROCARBONS		
Total Petroleum Hydrocarbons	10.	ND
		101

**Results listed as ND would have been reported if present at or above the listed PQL.

Note: Analyzed by GC/MS Combination.

Note: Extracted by EPA 3550 on 08/12/03.

Note: Analytical range is C10-C40.

Note: TPH quantitated against diesel fuel.

SS4714 MSD #4 SS4714b.xls MN/jdm/kg/yl/eg/hb Submitted by, ZymaX envirotechnology, inc.

Michael Ng Assistant Lab Director

lvii -,

	_/		QUALITY ASSURANCE REPORT
Zym			SAMPLE DUPLICATE
Client: Ed Co	onti	Lab Number:	32743-1DUP
MFG,	Inc.	Collected:	07/31/03
180 H	loward St., Ste. 200	Received:	08/12/03
San F	rancisco, CA 94105	Matrix:	Soil
Project:	SPI-Arcata/Task #14	Sample Descript	ion:
			PD-NE2-1.5'
Project Number	:	Analyzed:	08/16/03
Collected by:	Client	Method:	EPA 1664A
CONSTITUENT		PQL*	RESULT**
		mg/kg	mg/kg

Oil	and	Grease	

200.

10000.

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717 *PQL - Practical Quantitation Limit

**Results listed as ND would have been reported if present at or above the listed PQL.

Submitted by, ZymaX envirotechnology, inc.

Michael Ng Assistant Lab Director

O&G213 32743-1d.xls MN/jdm/kg/mm/dg

> RECEIVED SEP 1 5 2003 MFG, Inc.

4

Zymax enviloiedixoogy				RANCE REPORT
Client:		Lab Number:	QS O	&G213
ZymaX enviro	technology, inc.	Collected:		
71 Zaca Lane		Received:		
San Luis Obis	oo, CA 93401	Matrix:	Soil	
Project:		Sample Descrip	tion:	
			Quality Assurance	Spike
Project Number:		Analyzed:	08/16/03	•
Collected by:		Method:	EPA 1664A	
CONSTITUENT	Amount Spiked	Amount Re	ecovered	Percent
	mg/kg	mg/l	(g	Recovery
Oil and Grease	800.	82	8	104

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

O&G213 O&G213q.xls MN/jdm/kg/mm/dg Submitted by, ZymaX envirotechnology, inc.

Michael Ng

Michael Ng Assistant Lab Director

> SEP 1 5 2003 MFG, Inc.

QUALITY ASSURANCE REPORT SPIKE DUPLICATE RESULTS

Client:		Lab Number:	QSI	D 0&G213
ZymaX enviro	technology, inc.	Collected:		
71 Zaca Lane		Received:		
San Luis Obis	oo, CA 93401	Matrix:	Soil	
Project:		Sample Descript	tion:	
			Quality Assuran	ce Spike Duplicate
Project Number:		Analyzed:	08/16/03	
Collected by:		Method:	EPA 1664A	
CONSTITUENT	Amount Spiked	Amount Recovered	Percent	Relative Percent
	mg/kg	mg/kg	Recovery	Difference*
Oil and Grease	800.	888	111	7

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717 *Relative Percent Difference of the spike and spike duplicate

O&G213 O&G213q.xls MN/jdm/kg/mm/dg Submitted by, ZymaX envirotechnology, inc.

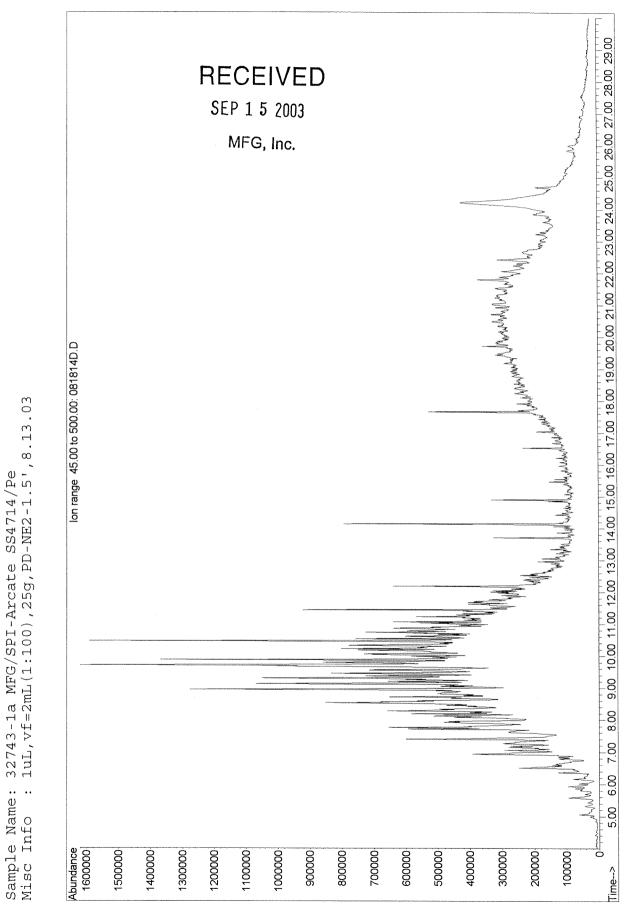
Michael Ng 0 **Assistant Lab Director**

SEP 1 5 2003 MFG, Inc.

Client:	Lab Number:	BLK Q&G213
ZymaX envirotechnology, inc.	Collected:	
71 Zaca Lane, Suite 110	Received:	
San Luis Obispo, CA 93401	Matrix:	Soil
Project:	Sample Descripti	on:
		Method Blank
Project Number:	Analyzed:	08/16/03
Collected by:	Method:	EPA 1664A
CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg
Oil and Grease	200.	ND

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717 *PQL - Practical Quantitation Limit

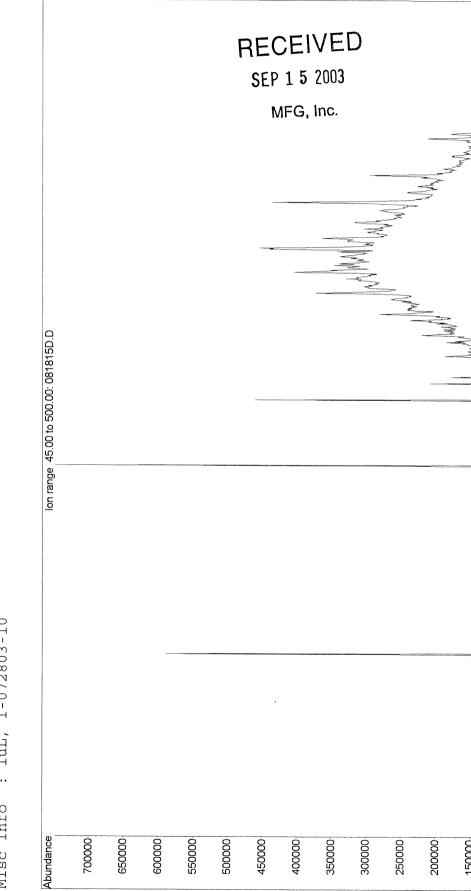
**Results listed as ND would have been reported if present at or above the listed PQL.

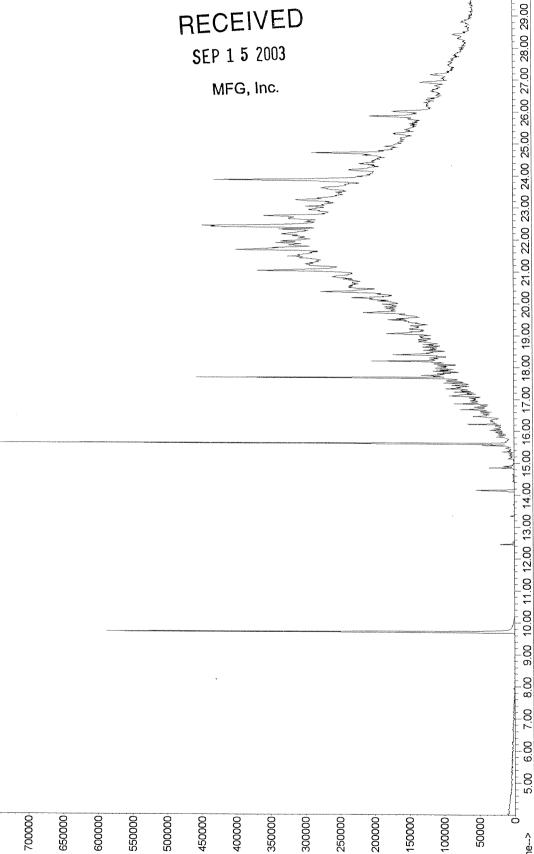

Q&G213 Q&G213b.xls MN/jdm/kg/mm/dg Submitted by, ZymaX envirotechnology, inc.

Michael Ng

Assistant Lab Director

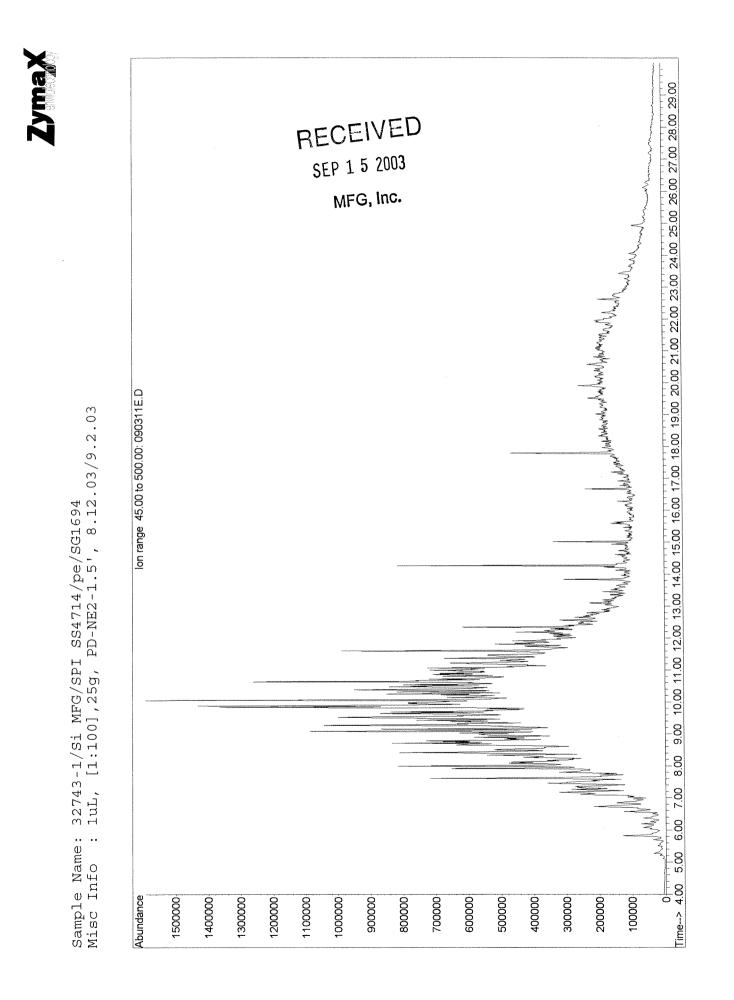
SEP 1 5 2003 MFG, Inc.




9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 RECEIVED SEP 1 5 2003 MFG, Inc. lon range 45.00 to 500.00: 081813D.D ŧ 8.00 5.00 6.00 7.00 N Time--> 4.00 0 3500000 3000000 250000 2000000 1500000 1000000 500000 Abundance 4000000

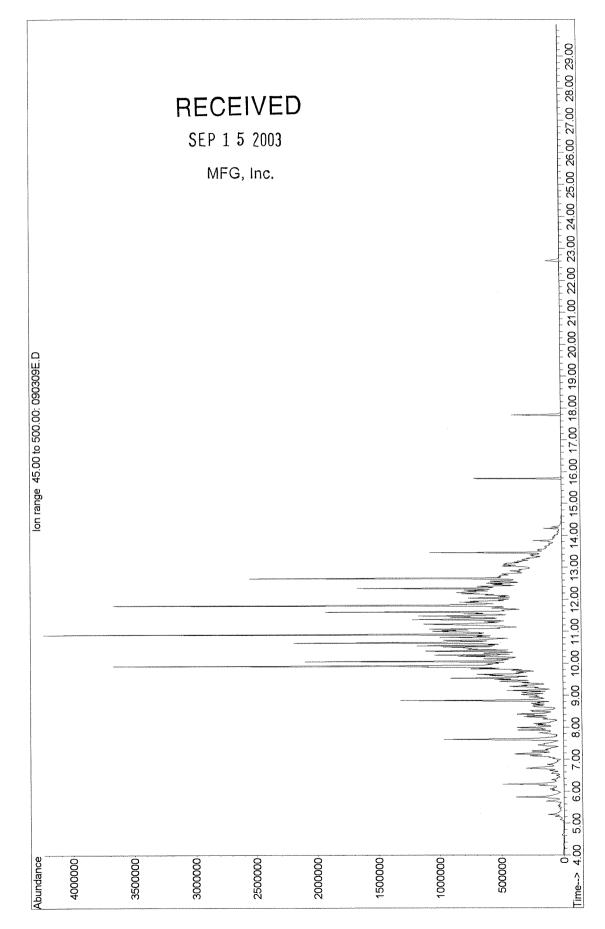
Sample Name: 800ug/mL Kerosene Std Misc Info : 1uL, I-030303-3

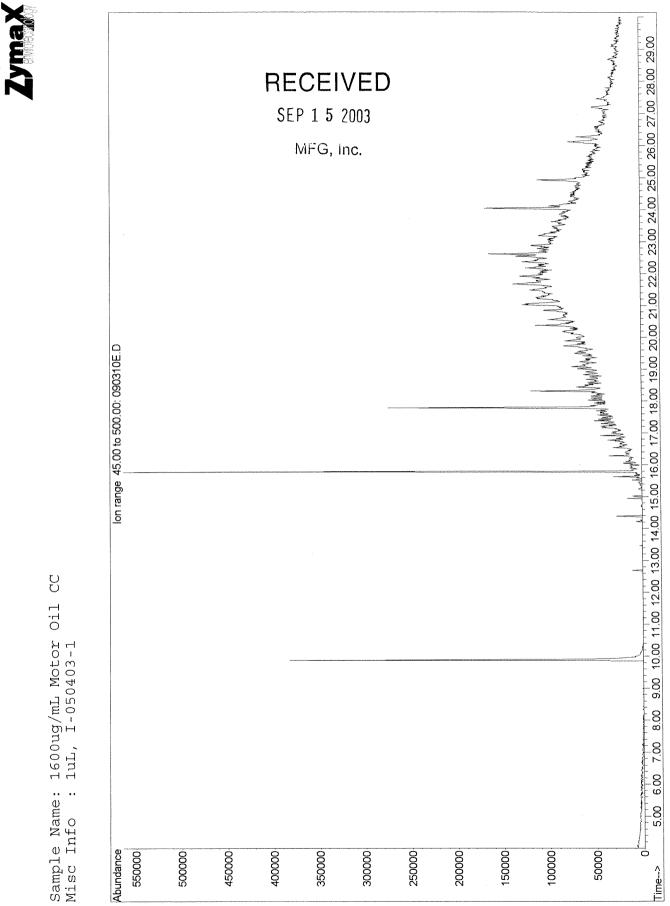
Sample Name: 1600ug/mL Motor Oil CC Misc Info : 1uL, I-072803-10



6.00

5.00


Time-->


ZymaX

Sample Name: 800ug/mL Kerosene Std. Misc Info : 1uL, I-030303-3

				WORK	WORK ORDER		
Alnha Analutical I ahoratories Inc • 208 Mason Street Ilkiah CA 95482 • (707) 468-0401 • FAX (707) 468-5267	ios Inc	208 Mag	on Stroot Ulkiah	CA 95482 • (707) 468-0401 • FAX	(707) 468-5267	DATE 8-11-03 PAGE 1 OF
CLIENT'S NAME		004	PR	OJECT MANAGER			ANNIVERS SAMPLE CONDITION ON
MF9, INC				B	Conti		FECEIPT:
STEET ADDRESS STS (RESCERT WAV Arcate	/ Arc	TS 1	A 9552	ER -	826-8430		Le Contraction Contraction
PROJECT NAME	ー ゴ サ		FA	FAX NUMBER	826-8437	*0	3 BUB
CONTRACT/PURCHASE ORDER/QUOTE NUMBER	+		LIS	SITE CONTACT		1.0%	
SIGNATURE OF PERSON AUTHORIZING WORK UNDER TERMS STATED ON REVERSE SIDE OF THIS FORM			SAMPLED BY	JBY			WAY SI WERE SAMPLES PRESERVED !
SAMPLE NUMBER/IDENTIFICATION	DATE	TIME	LAB SAMPLE N		SAMPLE TYPE NO. OF 10 AIR SOLID COMP GRAB CONTS.	Ŕ	EXPLAIN IRREGULARITIES BELOW
PD-NE2-1.5'	7/31/03	15:41	32743-	_		7	* Tentative hydrocarbon ID
							require di avanitate agaism
							the Identified Fueli
							Provide. Chrometograms of
				RECEI	VED		Dresel, KEROSENE And
				SEP 1 5	2003		the Identified Fuel.
				MFG, Inc	Inc.		If there are any question.
							PIERSE CALL ED CONFI
							H15-495-7110
							N.
RELINOUISHED BY	8-11-03		RECEIVED BY: (SIGNATLIRE)			DATE	
			RECEIVED BY:			DATE	TIME
(Signature) Relinquished BY:				Rin K	Z man X &	S/12/03 SAMPLE CO	SAMPLE CONTROL OFFICER
(Signaluhe) Method of Shipment					n i sultar	<u> </u>	SAMPLE DESPOSITION: 1. STORAGE TIME REQUESTED 1. SAMPLES WILL BE STORED FOR 30 DAYS WITHOUT ADDITIONAL CHARGES:
SPECIAL INSTRUCTIONS	SITE TIME	JEMP	200	TOTAL TIME		2. SAMPI HAZARDO RESPOND	THEREATER STORAGE CHARGES WILL BE BILLED AT THE PUBLISHED RATES.) 2. SAMPLE TO BE RETURNED TO CLIENT? HAZAPDOUS MATERIALS ARE THE PROPERTY OF THE CLIENT. THE CLIENT IS RESPONSIBLE FOR PROPER DISPOSAL OF HAZAPDOUS WASTES. CLIENTS NOT RESPONSIBLE FOR PROPER DISPOSAL OF HAZAPDOUS WASTES. CLIENTS NOT PREVING IN PAZAPDOUS WASTES MAY BE ASSESSED AN APPROPRIATE FEE.
3							

APPENDIX D

Waste Disposal Documentation

UNIFORM HAZARDOUS WASTE MANIFEST		JS EPA ID No.	Manifest Documen	t No.	2. Page 1		in the shaded areas ired by Federal law.
WASIE MAINEST		4 7 4 0 3 6 9 6	1 8 9	3 3	of1	is nor requi	irea by rederal law.
3. Generator's Name and Mailing Address SIERRA PACIFIC INDUSTRIES - A	RCATA		- 	A. State /	Manifest Document N	umber	228189
P.O. BOX 1189		÷*		B State C	Senerator's ID		
ARCATA 4. Generator's Phone (707 443-3111	CA	95518				100	TTA 1
5. Transporter 1 Company Name	·····	6. US EPA ID Number	<u></u>	C. State 1	ransporter's ID [<u>Rese</u>	rved.]	
ASBURY ENVIRONMENTAL SERV	ICES	C1710121912	17101216	D. Transp	orter's Phone	(800)97	
7. Transporter 2 Company Name		C A D 0 2 8 2	[/]/[0]3]0	E. State T	ransporter's ID [Rese	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		n in States and States	1997 - 1997 -		orter's Phone		e de la companya de l
9. Designated Facility Name and Site Address	·	10. US EPA ID Number		같다. 요구 말을 가지 않는다.	New York Ward and the second sec	500 6048 •	المرجد ورور
DEMENNO / KERDOON				Ĺ	ATOSE	PPVI	1115-
2000 NORTH ALAMEDA STREET	00000	പ്ര നാന് നെ നി നി	1 13 13 15 12	H. Focilit	/'s Phone 37-7100		1
COMPTON CA	30222		12. Cor	A CONTRACTOR OF A	13. Total	14. Unit	₹ ₩
11. US DOT Description (including Proper Shipp	oing Name, Hazard (Class, and ID Number)	No.	Туре	Quantity	Wt/Vol	I. Waste Number
NON RCRA HAZARDOUS WASTE	LIQUID, (OILY	(WATER)			1.1.		Stote 223
			001	TT	ØØSSØ	G	EPA/Other NONE
b.							State
							EPA/Other
	ALLE REEN	OUNITIEN					State
THIS WASTE STRE	AM HAD DUT A	T THE METON.					EPA/Other
THIS WADIC ING!	TREALMENTY	IN CUMPT CESSARY					244 PA
							State
DOMETICANA. TH	IS THE VOUR	WASIE ST080013352.					EPA/Other
J. Additional Descriptions for Again S. Luda	SOVE MIND	B D VIII		K. Handli	ing Codes for Waster	Listed Abo	ve station in the
11A) 208848	₩ IJŊŸŸ	NASTE STREAM AS WASTE STREAM AS A IS CATOBODI3352.	lle i se and the second	a. 🔻 🤇	7	b. 4.00	
				c.	<u>그는 아파는 것이다.</u> 같은 것은 사람이라는 것	d. (HE TODESE
	<u> : </u>					<u>j</u> i ŝ	$(\mathbf{J}_{i}) \geq 0$
a second s	I Information			OUTAT		(The second	
15. Special Handling Instructions and Additiona			INV MONTANT			I	
USE PPE			ICY CONTACT				
•	TA, CA 95518						3
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA	eclare that the conte	Proj 4 3061	7A12	PC	# A0800	2119. ame and are	classified, packed,
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA	eclare that the conte	Proj 4 3061	7A12	PC	# A0800	2119. ame and are	classified, packed,
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby di marked, and labeled, and are in all respect If I am a large quantity generator. I certify	leclare that the conte ts in proper conditio	Pr D + 3061 ints of this consignment are fully in for transport by highway accor ram in place to reduce the volu	7ATZ and accurately descri ording to applicable me and toxicity of w	PC bed above l internationa	# A 0 8 00 by proper shipping nu il and national gover ted to the degree f	2119 ame and are nment regul	classified, packed, ations. ined to be economica
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby di marked, and labeled, and are in all respect	leclare that the conte ts in proper conditio that I have a progr acticable method of t	Proj 4 3061 ints of this consignment are fully in for transport by highway accur tram in place to reduce the volu treatment, storage, or disposal	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to	PC bed above I internationa aste genera o me which	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul	classified, packed, ations. ined to be economica threat to human hea
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby d marked, and labeled, and are in all respect If I am a large quantity generator, I certify practicable and that I have selected the pra and the environment; OR, if I am a small g	leclare that the conte ts in proper conditio that I have a progr acticable method of t	Proj 4 3061 ints of this consignment are fully in for transport by highway accur tram in place to reduce the volu treatment, storage, or disposal	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to	PC bed above I internationa aste genera o me which	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul	classified, packed, ations. ined to be economica threat to human hea agement method that
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby d marked, and labeled, and are in all respect If I am a large quantity generator, I certify practicable and that I have selected the pra and the environment; OR, if I am a small g available to me and that I can afford. Printed/Type Narge	lectare that the conte ts in proper conditio that I have a progr acticable method of t yuantity generator, I	Project 3061 ints of this consignment are fully in for transport by highway accur ram in place to reduce the volu treatment, storage, or disposal have made a good faith effort	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to	PC bed above I internationa aste genera o me which	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul ave determine t and future t waste man	classified, packed, ations. ined to be economica threat to human hea agement method that
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby d marked, and labeled, and are in all respect If I am a large quantity generator, I certify practicable and that I have selected the pra and the environment; OR, if I am a small q available to me and that I can afford. Printed/Turget Name/ DDJ 44/ 17. Transporter 1 Acknowledgement of Receipt of Divided Name	lectare that the conte ts in proper conditio that I have a progr acticable method of t yuantity generator, I	Project 3061 ints of this consignment are fully in for transport by highway accur ram in place to reduce the volu treatment, storage, or disposal have made a good faith effort	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to	PC bed above I internationa aste genera o me which	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul ave determine t and future t waste man	classified, packed, ations. Inter to be economica threat to human hea hagement method that $\frac{1}{2}$
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby d marked, and labeled, and are in all respect If I am a large quantity generator, I certify practicable and that I have selected the pra and the environment; OR, if I am a small q available to me and that I can afford. Printed/Typed Name/ Birl/ PDZ 44/1 17. Transporter 1 Acknowledgement of Receipt of	lectare that the conte ts in proper conditio that I have a progr acticable method of t yuantity generator, I	Pr Ditt 3061 ints of this consignment are fully in for transport by highway accur ram in place to reduce the volu treatment, storage, or disposal have made a good faith effort Signature	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to	PC bed above I internationa aste genera o me which	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul ave determine t and future t waste man	classified, packed, ations. Inter to be economica threat to human hea hagement method that $\frac{1}{2}$
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby d marked, and labeled, and are in all respect If I am a large quantity generator, I certify practicable and that I have selected the pra and the environment; OR, if I am a small q available to me and that I can afford. Printed/Typed Name PDZ 44/4 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name BULLDW 18. Transporter 2 Acknowledgement of Receipt of	leclare that the conte ts in proper conditio that I have a progr acticable method of t yuantity generator, I of Materials	Pr Ditt 3061 ints of this consignment are fully in for transport by highway accur tram in place to reduce the volu treatment, storage, or disposal have made a good faith effort Signature	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to	PC bed above I internationa aste genera o me which	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul ave determine t and future t waste man	classified, packed, ations. ined to be economica threat to human hea hagement method that Day Day C
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby d marked, and labeled, and are in all respect If I am a large quantity generator, I certify practicable and that I have selected the pra and the environment; OR, if I am a small q available to me and that I can afford. Printed/Turget Name/ Printed/Turget Name/ Printed/ Printed/ Printed/ Printed/ Printed/ Printed/ Printed/ Printed/ Pr	leclare that the conte ts in proper conditio that I have a progr acticable method of t yuantity generator, I of Materials	Pr Ditt 3061 ints of this consignment are fully in for transport by highway accur ram in place to reduce the volu treatment, storage, or disposal have made a good faith effort Signature	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to	PC bed above I internationa aste genera o me which	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul ave determine t and future t waste man	classified, packed, ations. ined to be economica threat to human hea hagement method that $\frac{1}{2} \frac{Day}{2} C$
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby d marked, and labeled, and are in all respect If I am a large quantity generator, I certify practicable and that I have selected the pra and the environment; OR, if I am a small q available to me and that I can afford. Printed/Typed Name Printed/Typed Name Printed/Typed Name BULLD Printed Typed Name BULLD 18. Transporter 2 Acknowledgement of Receipt of 18. Transporter 2 Acknowledgement of Receipt of	leclare that the conte ts in proper conditio that I have a progr acticable method of t yuantity generator, I of Materials	Pr Ditt 3061 ints of this consignment are fully in for transport by highway accur tram in place to reduce the volu treatment, storage, or disposal have made a good faith effort Signature	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to	PC bed above I internationa aste genera o me which	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul ave determine t and future t waste man	classified, packed, ations. ined to be economica threat to human hea hagement method that $\frac{1}{2} \frac{Day}{2} C$
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby d marked, and labeled, and are in all respect If I am a large quantity generator, I certify practicable and that I have selected the pra and the environment; OR, if I am a small q available to me and that I can afford. Printed/Typed Name Printed/Typed Name Bittatow 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name	leclare that the conte ts in proper conditio that I have a progr acticable method of t yuantity generator, I of Materials	Pr Ditt 3061 ints of this consignment are fully in for transport by highway accur tram in place to reduce the volu treatment, storage, or disposal have made a good faith effort Signature	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to	PC bed above I internationa aste genera o me which	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul ave determine t and future t waste man	classified, packed, ations. ined to be economica threat to human hea hagement method that $\frac{1}{2} \frac{Day}{2} C$
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby d marked, and labeled, and are in all respect If I am a large quantity generator, I certify practicable and that I have selected the pra and the environment; OR, if I am a small q available to me and that I can afford. Printed/Typed Name Printed/Typed Name BULLAND 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name	leclare that the conte ts in proper conditio that I have a progr acticable method of t yuantity generator, I of Materials	Pr Ditt 3061 ints of this consignment are fully in for transport by highway accur tram in place to reduce the volu treatment, storage, or disposal have made a good faith effort Signature	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to	PC bed above I internationa aste genera o me which	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul ave determine t and future t waste man	classified, packed, ations. ined to be economica threat to human hea hagement method that $\frac{1}{2} \frac{Day}{2} C$
USE PPE NAERG #: 11A. 171 SITE: 2293 SAMOA ROAD, ARCA 16. GENERATOR'S CERTIFICATION: I hereby d marked, and labeled, and are in all respect If I am a large quantity generator, I certify practicable and that I have selected the pra and the environment; OR, if I am a small q available to me and that I can afford. Printed/Typed Name Printed/Typed Name BULLAD 18. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name	leclare that the conte ts in proper conditio that I have a progr acticable method of 1 quantity generator, I of Materials	Pr 0,44 3667 ints of this consignment are fully on for transport by highway accu- tram in place to reduce the volu treatment, storage, or disposal have made a good faith effort Signature Signature Signature	7A1Z and accurately descri ording to applicable me and toxicity of w currently available to to minimize my wast	PC bed above I internationa aste generation o me which te generation	A 0800 py proper shipping nu il and national gover ted to the degree I f minimizes the preser	2119 ame and are nment regul ta and future t waste man Mon D	classified, packed, ations. ined to be economica threat to human hea hagement method that $\frac{1}{2} \frac{Day}{2} C$

TSDF SENDS THIS COPY TO GENERATOR WITHIN 30 DAYS. (Generators who submit hazardous waste for transport out-of-state, produce completed copy of this copy and send to DTSC within 30 days.)

.

÷

SCCOT022

2

	UNIFORM HAZARDOUS	S EPA ID No. Ann Man	ifest Document	No.	2. Page 1	Sacramento, Californ Information in the shaded area	
-		7 4 0 3 6 9 6 1	7 6	1.5	of1	is not required by Federal law	
[3. Generator's Name and Mailing Address SIERRA PACIFIC INDUSTRIES - ARCATA		<u>l</u>	A. State M	anifest Document	Number 0001 70	
	P.O. BOX 1189	SITE - 2593 NEW NAVY BA	SE RD.	0 - 49 B		6 228170	
	ARCATA CA 4. Generator's Phone (707 443-3111		8. State Generation's ID				
	5. Transporter 1 Company Name						
	ASBURY ENVIRONMENTAL SERVICES	D: Transpa	rter's Phone	(800)974-4495			
	7. Transporter 2 Company Name	E. State Transporter's ID [Reserved.]					
		F. Transporter's Phone					
	9. Designated Facility Name and Site Address	G. State Facility's ID					
	DEMENNO / KERDOON 2000 NORTH ALAMEDA STREET			e	ATTOP	CU BBBZ	
	COMPTON CA 90222	C I 0 8 0 T A 3	13 15 12	H. Facility (310)53	Phone 7-7100	1 K. 19	
	11. US DOT Description (including Proper Shipping Name, Hazard C		12. Con	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	13. Total	14. Unit 50. 14.	
			No.	Туре	Quantity	Wt/Vol L Waste Number	
	NON RCRA HAZARDOUS WASTE LIQUID WATE PENTACHLOROPHENCHASTE STREAM HAS BE THIS WASTE STREAM HAS BE	ENVIUATIFIED				Signa 349	
	FOR RECYCLING/TREATMEN	TATTHE	Phe	DMC	0230		
	FOR RECYCLING/TREATMEN FOR RECYCLING/TREATMEN DeMENNO/KERDOON FACILI DeMENNO/KERDOON FACILITY	TY-IN COMPTUM,				Stote 2018	
2						EPA/Other	
}	DEMENNOVALITY CALIFORNIA THIS FACILITY PERMITS TO RECEIVE YOUR PERMITS TO RECEIVE YOUR	WASH SINCATOROA13352				State 5	
2	PERMITS TO RECEIVE YOUF QUALIFIED. OUR EPA NUME	SEK 12 CHINNA			-	EPA/Other	
Ì	d.		╞╌┚╶┛╴┤				
					·· .	State State	
						EPA/Other	
	J. Additional Descriptions for Materials Listed Above	4 .	-	K. Handling	Codes for Waste	s Listed Above Sector	
	A A A A A A A A A A A A A A A A A A A			<u>(</u>	川韓語でき		
				C.		d.	
	15. Special Handling Instructions and Additional Information	en e	an series and a second and a s				
	USE PPE NAERG #: 11A. 171	EMERGENCY	ONTACT :	CHEMTRI	EC 1-800-424	19300	
	SITE: 2593 NEW NAVY BASE ROAD, ARCATA, C	A 95518 Prof# 3121	EASE				
		softhis consignment are fully and	2412	ad about to			
	 GENERATOR'S CERTIFICATION: I hereby declare that the contents marked, and labeled, and are in all respects in proper condition 	for transport by highway according to	o applicable in	ternational a	nd national gover	ame ana are classified, packed, rnment regulations.	
	If I am a large quantity generator, I certify that I have a program	n in place to reduce the volume and	toxicity of wa	ste generated	to the degree I I	nave determined to be economic	
	practicable and that I have selected the practicable method of tre and the environment; OR, if I am a small quantity generator, I have available to me and that I can afford?	ament storage or disposal currently	v ovoiloble to	ma which mi	ining the success		
, -	Printed/Typed Name	Signature /	,	<u></u>	······································	Month Day	
<u> </u> .	- Angl MANCey	1 the	neup	, 		01911210	
	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature (= +			Month Bay	
L	Unlliam Non	NUL 10	V			09100	
	18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature				Month Day	
1	19. Discrepancy Indication Space			5	AND THE REAL PROPERTY AND A		
		//					
2 P	20. Facility Owner or Operator Certification of receipt of hazardous m Printed/Typed Name OSC 1170 01 Calu	aterials covered by this manifest exce Signature	ept as noted in	ltem 19.		Month- Day	

٠.

NON-HAZARDOUS WASTE MANIFEST		US EPATO No. 47403696		Manifest Document No	0 1 4 6	2. Page 1 of		
3. Generatore Name and Malling Address SIERRA PACIFIC INDUSTRIES - P.O. BOX 1189 ARCATA 4glianurator's Phone (707 443-3111	2503 NEW NAVY BASE ROAL 95518							
KSEDINY ENVIRONMENTAL SER	CAD028277036	CAD028277036			A. State Transporter's ID B. Transporter's ID B. Transporter's ID			
7. Transporter 2 Company Name	8. US EPA 1D Number		B. Transporter 1 Phone BUILD 9 74-44993 C. State Transporter's ID					
• Design which is a start of the Address	10. US EPA ID Number			D. Transporter 2 Phone E. State Facility's ID				
NNN ALTANONT PASS ROLD								
UMERICRE ()	CAD981382732	981382732		VITO TO				
11. WASTE DEBCRIPTION			12. O No.	poteiners		14. Unit WL/Vol		
NON HAZARDOUS SOLD (10	L WITH DIES	EL, MOTOR CIL)				çebi çe,		
				cm	<u> </u>	<u> N :</u>		
t de lages.		i in a care a						
•	<u>.</u> 		and and a second se Second second	an water a sea	in an	× N Ma		
			2 x					
					en 1 1			
Gr. Additional Descriptions for Manarials Linked Abo 1140 UNCONDO		4×		H. Handling Co	the for Vientite Listed Abs	n		
					1/1			
	·收入了。 "全国之子"。"你	the free		197-23 972		ુ 🦗		
18. Boostel Hundling Letterations and Additional In	formetica				REC 1-00-04.0			
10 +3 (858A15	Pd AC8	021884						
			e program					
and the second sec	deéoritzed en itée tr		ine replicion.		•	<u> </u>		
- the cherry		Bynam /	ℓ					
	Materials		muca	1		Den		
Clen Lil	liam	· Then	Sile	in		7. 17 B		
18. Transporter 2 Administedgement of Receipt of Printed/Typed Name						Dep		
		Signature				mih Diny Yi		
19. Discription vindication Space								
20. Facility Owner or Operator, Certification of rec	Not of the works me	terists covered by this manifiest surrout as both	ed in Kem 10			•		
4				·		Dete		
Printed/Typed Name		Signature	16	NU	je je	PS /		

۰,