RETENTION POND, DITCHES 6 AND 7 AND TRUCK SCALE SUMP DISCHARGE POINT INVESTIGATION REPORT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

October 21, 2003

consulting scientists and engineers

RETENTION POND, DITCHES 6 AND 7 AND TRUCK SCALE SUMP DISCHARGE POINT INVESTIGATION REPORT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

October 21, 2003

Prepared For:

SIERRA PACIFIC INDUSTRIES

Prepared By:

MFG, INC. 875 Crescent Way Arcata, California 95521 (707) 826-8430

MFG Project No. 030229.4

PROFESSIONAL CERTIFICATION

This report was prepared by MFG, Inc. under the professional supervision of Edward P. Conti. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional hydrogeologic practice, and within the scope of the project. There is no other warranty, either express or implied.

Edward P. Conti C.HG. No. HG 214 Senior Consulting Geologist

TABLE OF CONTENTS

		Page
LIST C	OF TABLES	iii
LIST C	OF FIGURES	iii
LIST C	OF APPENDICES	iv
1.0	INTRODUCTION	
2.0	BACKGROUND	2 2
3.0	SITE GEOLOGY AND HYDROGEOLOGY	
4.0	 SOIL SAMPLING METHODS AND RESULTS	4 5 6 7 7 8 8 10 11 11
	 5.3.1 Retention Pond (Area E) 5.3.2 Ditches 6 and 7 (Area F) 5.3.3 Truck Scale Sump Discharge Point (Area G) 	11
6.0	SURFACE WATER SAMPLING METHODS AND RESULTS6.1Field Methods6.2Chemical Analysis Methods6.3Chemical Analysis Results	13 13
7.0	DISPOSAL OF INVESTIGATION-DERIVED WASTE	15
8.0	REFERENCES	16

LIST OF TABLES

Table <u>No.</u>	Title
1	Summary of Chemical Analysis Results of Soil Samples for Oil and Grease, Chlorinated Phenols, Wear Metals and pH
2	Summary of Chemical Analysis Results of Groundwater Samples for TEPH and Dissolved Wear Metals
3	Summary of Chemical Analysis Results of the Surface Water Sample Collected from the Retention Pond for TEPH and Dissolved Wear Metals

LIST OF FIGURES

Figure <u>No.</u>	Title
1	Location Map
2	Site Plan Showing Sampling Areas
3	Sampling Locations

LIST OF APPENDICES

<u>Appendix</u>	Title
А	Humboldt County Division of Environmental Health Boring Permit
В	California Department of Transportation Encroachment Permit
С	Boring Logs
D	Laboratory Reports and Chain-of-Custody Records for Soil Samples
E	Laboratory Reports, including Chromatograms, and Chain-of-Custody Records for Groundwater Samples and the Surface Water Sample from the Retention Pond

1.0 INTRODUCTION

MFG, Inc. has prepared this report on behalf of Sierra Pacific Industries (SPI) to document soil and groundwater sampling activities at the retention pond (Area E), ditches 6 and 7 (Area F) and the truck scale sump discharge point (Area G) of SPI's Arcata Division Sawmill. This work was performed to satisfy the requirements of Sections 12.A.5 and 12.C of the Consent Decree between Ecological Rights Foundation and Sierra Pacific Industries, Inc. et al (case number C-01-0520-MEJ) (Consent Decree). The Arcata Division Sawmill is located at 2593 New Navy Base Road in Arcata, California (hereinafter "the Site"). The Site location is shown in Figure 1. A Site plan of the Arcata Division Sawmill, including Areas E, F and G as defined in the Consent Decree, is presented in Figure 2. An enlargement of a portion of the Site showing the features of the retention pond (Area E), ditches 6 and 7 (Area F) and the truck scale sump discharge point (Area G) is presented in Figure 3.

This work was performed in accordance with the scope of work presented in MFG's *Retention Pond, Ditches 6 and 7 and Truck Scale Sump Discharge Point Investigation* work plan (Work Plan), dated May 28, 2003. The Work Plan was approved by the California Regional Water Quality Control Board, North Coast Region, on June 13, 2003. Investigation activities consisted of collecting and chemically analyzing soil and groundwater samples from two locations in the retention pond, every 20 feet along ditches 6 and 7, and one location at the truck scale sump discharge point. Although not a requirement of the Consent Decree and not included in the Work Plan, a surface water sample was collected from the retention pond. This report summarizes the methods and results of the sampling and analysis activities.

This report is organized as described below. Background information is provided in Section 2.0. The geology and hydrogeology of the Site is discussed in Section 3.0. The soil sampling methods and chemical analysis methods and results are presented in Section 4.0. The groundwater sampling methods and chemical analysis methods and results are presented in Section 5.0. The surface water sampling methods and chemical analysis methods and results are presented in Section 6.0. Disposal of investigation-derived waste is discussed in Section 7.0. References cited in this report are listed in Section 8.0.

1

2.0 BACKGROUND

2.1 Site Description

The Site is located on the Samoa Peninsula in Arcata, Humboldt County, California (Figure 1). A Site plan showing features of the Arcata Division Sawmill is included in Figure 2. The Site features in the area of the retention pond (Area E), ditches 6 and 7 (Area F) and the truck scale sump discharge point (Area G) are included in Figure 3.

The Site was originally undeveloped land, consisting of sand dunes and mud flats, until approximately 1950 when SPI converted the land into a lumber mill. During conversion, SPI filled portions of the Site. SPI began operations at this facility before the area was completely filled in. The mill has been active from 1950 to the present day.

2.2 Retention Pond, Ditches 6 and 7 and the Truck Scale Sump Discharge Point

The retention pond, ditches 6 and 7, and the truck scale sump discharge point are located in the southwestern portion of the property (Figure 2). The retention pond is a densely vegetated, swampy area located near the southwestern-most portion of the property. The retention pond receives runoff from ditch 7 and the surrounding area. Ditch 6 is approximately 460 feet in length and runs in a northeast to southwest direction along New Navy Base Road. Ditch 6 receives runoff from the pavement in the vicinity of the truck shop as well as New Navy Base Road. Ditch 7 is approximately 320 feet in length and also runs in a northeast to southwest direction toward the northern portion of the retention pond (Figure 3). Ditch 7 receives runoff from the pavement in the vicinity of the truck shop and from the surrounding area. The truck scale sump discharge point is located between the southeast corner of the truck scale and ditch 6. In the past, this has periodically been the discharge point for the sump pump installed in the former truck scale sump. A new, completely above-ground, truck scale was installed at the Site earlier in 2003.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

The subsurface lithology and hydrogeology at the Site was previously investigated and described by Environet Consulting (Environet, 2003). The subsurface lithology consists primarily of fine- to medium-grained sand of apparent sand dune origin to a depth of approximately 22 feet below ground level (bgl), the maximum depth explored during previous drilling activities at the Site. The sand is sporadically interbedded with thin lenses of "Bay Mud," consisting of a mixture of sand and silt.

In the eastern portion of the Site, groundwater has been measured in existing monitoring wells at depths ranging from approximately 1 to 5 feet bgl and the groundwater flow direction is generally to the east, toward the Mad River Slough (Figure 2) (Environet, 2003). Groundwater was measured at a depth of approximately 2 feet bgl in a temporary monitoring well that was installed in April 2003 in the vicinity of the truck shop, which is located in the general vicinity of the retention pond, ditches 6 and 7, and the truck scale sump discharge point. During this investigation, groundwater was encountered at depths ranging from the ground surface (in portions of the ditches and in the retention pond) to approximately 3 feet bgl. Based on the proximity of this portion of the site to Humboldt Bay, the groundwater flow direction in this area is likely to the south-southeast, toward Humboldt Bay.

4.0 SOIL SAMPLING METHODS AND RESULTS

4.1 Field Methods

Prior to sampling activities, MFG obtained a boring permit from the Humboldt County Division of Environmental Health (HCDEH) (Appendix A). A standard encroachment permit for performing work within the right-of-way of New Navy Base Road (Highway 255) was also obtained from the California Department of Transportation (Caltrans) for sampling activities along ditch 6 (Appendix B). Underground Service Alert (USA) was contacted to mark the area for underground utilities and knowledgeable SPI personnel were consulted about the presence of underground utilities in the vicinity of the sampling locations.

On July 8, 9 and 10, 2003, soil borings were advanced using a hand auger at two locations in the retention pond, 17 locations in ditch 7 and one location at the truck scale sump discharge point. The two borings in the retention pond (borings RP-1 and RP-2) were located approximately 55 feet south-southeast and 15 feet east, respectively, of the locations presented in MFG's Work Plan because of the presence of surface water in the pond and very dense vegetation, which limited access. Upon receipt of the encroachment permit from Caltrans, soil borings were advanced using a hand auger on July 22, 23, and 24, 2003 at 24 locations in ditch 6. The sampling locations are shown in Figure 3.

In accordance with the Work Plan, soil samples were collected at the ground surface (0.0 to 0.5 feet bgl) and at 6-inch intervals to a depth of 2.5 feet bgl from borings RP-1 and RP-2 located in the retention pond. Soil samples were collected at the ground surface (0.0 to 0.5 feet bgl) in ditches 6 and 7. Soil samples were collected at the ground surface (0.0 to 0.5 feet bgl) and from the depth interval of 2.0 to 2.5 feet bgl in boring SDP-1, located at the track scale sump discharge point.

The soil samples were collected from the desired sample interval in a 6-inch brass liner inserted into a stainless steel drive sampler that was manually driven into the subsurface using a slide hammer, in advance of the hand auger. After sample collection, the brass liner was removed from the drive sampler, the ends were covered with Teflon[®] sheets, capped with polyethylene lids, then sealed with duct tape. The liners were labeled and immediately placed in an ice-cooled, insulated chest for transport to the laboratory. Chain-of-custody records were completed for the samples and accompanied the samples until receipt by the laboratory.

The soil was described in the field for lithologic classification, color and moisture content in accordance with the American Society of Testing and Materials (ASTM) Standard Practice for Description and Identification of Soils (Visual-Manual Procedure) D 2488. Indications of contamination, including observations regarding odor or staining, if any, were noted on a boring log for each sampling location. The boring logs are included as Appendix C. Headspace measurements of soil from each sample interval were made in the field using a Thermo-Environmental Instruments Model 580B portable photoionization detector (PID). The PID was calibrated using a 96 parts per million by volume (ppmv) isobutylene gas standard. The response factor of the PID was set such that the instrument would read in ppmv as isobutylene. To prepare the soil for headspace measurements, the soil was placed in a sealable plastic bag, the bag was sealed, and then the soil was broken up and agitated. The bag was allowed to stand for approximately 10 minutes, agitated again, and then the PID probe was inserted into the bag. The highest PID reading was recorded for each sample and noted on the boring log opposite the respective sample interval (Appendix C).

At the conclusion of soil sampling activities, the borings were hand augered to depths ranging from 1.5 to 4.0 feet bgl for the collection of grab groundwater samples (Section 5.0).

Sampling equipment was decontaminated before and after use at each sampling location by washing it in a solution of Liquinox[®] detergent and distilled water and double or triple rinsing with distilled water.

Soil cuttings and equipment wash water generated during sampling activities were placed in separate steel, 55-gallon, Department of Transportation (DOT)-approved drums that were sealed and labeled and are being temporarily stored in a secure location at the Site pending disposal (Section 7.0).

4.2 Stratigraphy and Field Observations

The soil encountered during sampling activities consisted of sandy silts to a depth of approximately one foot bgl and silty sands or sands to a depth of 4 feet bgl, the maximum depth explored. Gravel was present near the surface in some borings. The depth of saturated soil encountered in the borings ranged from ground surface to approximately 3 feet bgl (Appendix C). The PID readings from headspace measurements of the soil samples ranged from 0.0 to 4.5 ppmv (Appendix C). A slight

petroleum-like odor was noted in the soil from borings D7-3 and D7-12 at a depth of approximately 0.5 feet bgl in both borings.

4.3 Chemical Analysis Methods

The soil samples were submitted for chemical analysis to Alpha Analytical Laboratories Inc. (Alpha) of Ukiah, California. The samples were analyzed for the following constituents:

- Total oil and grease using EPA Method 9071B;
- Chlorinated phenols using the Canadian Pulp Method;
- Wear metals (cadmium, chromium, lead, nickel, and zinc) using EPA Method 6010B; and
- pH using EPA Method 9045.

Analysis of soil samples for total oil and grease was a requirement of the Consent Decree. Soil samples were analyzed for total oil and grease using EPA Method 9071B. During sample collection, field personnel did not observe visible petroleum hydrocarbons in the soil samples; however, total oil and grease was detected in the samples. Since the total oil and grease method detects some non-petroleum organic compounds as well as petroleum hydrocarbons, the still-available¹ sample extracts were subjected to the EPA Method 9071B method-specific silica gel cleanup procedure and then re-analyzed. The silica gel cleanup procedure is intended to remove polar organic constituents that could interfere with the quantitation of petroleum hydrocarbons.

Oil and grease was detected in the samples following the silica gel cleanup, although at lower concentrations than detected prior to silica gel cleanup in most samples. Visible evidence of petroleum hydrocarbons was not noted in the field during sample collection, although a petroleum odor was noted in two samples (Section 4.2). A common limitation associated with silica gel cleanup is the potential for incomplete cleanup due to the limited volume of silica gel used. In addition, the presence of organic

¹ For most samples, the extracts were analyzed first, then subjected to the silica gel cleanup, and then re-analyzed. However, for some of the samples, the original extracts had already been disposed by the laboratory and therefore the sample had to be re-extracted, subjected to the silica gel cleanup, and then analyzed. For these latter samples, the pre- and post-silica gel cleanup analyses were performed on extracts prepared from different aliquots of the soil sample. Due to inherent soil heterogeneities, these data are not easily compared.

compounds that are not removed by silica gel can interfere with the quantitation of petroleum hydrocarbons. The chemical analysis results for the soil samples are summarized in Table 1. Copies of the laboratory reports and chain-of-custody records are included in Appendix D.

4.4 Chemical Analysis Results

4.4.1 Retention Pond (Area E)

Total oil and grease was detected at concentrations ranging from 6,200 to 40,000 milligrams per kilogram (mg/kg) in the five soil samples from boring RP-1 and 120 to 1,400 mg/kg in the five soil samples from boring RP-2. Oil and grease (silica gel cleanup) was detected at concentrations ranging from 5,000 to 25,000 mg/kg in the five soil samples from boring RP-1 and 50 to 160 mg/kg in the five soil samples from boring RP-2.

Chlorinated phenols were not detected at or above the laboratory reporting limit of 1.0 mg/kg in any of the soil samples from borings RP-1 and RP-2.

Of the five soil samples collected from boring RP-1, cadmium was detected in two samples at concentrations of 1.3 and 1.2 mg/kg, chromium was detected in five samples at concentrations ranging from 43 to 110 mg/kg, lead was detected in all of the samples at concentrations ranging from 14 to 27 mg/kg, nickel was detected in all of the samples at concentrations ranging from 58 to 210 mg/kg, and zinc was detected in all of the samples at concentrations ranging from 63 to 150 mg/kg.

Of the five soil samples collected from boring RP-2, chromium was detected in four samples at concentrations ranging from 18 to 25 mg/kg, lead was detected in three samples at concentrations ranging from 8.8 to 28 mg/kg, nickel was detected in four samples at concentrations ranging from 16 to 22 mg/kg and zinc was detected in all of the samples at concentrations ranging from 18 to 61 mg/kg. Cadmium was not detected in any of the samples at or above the laboratory reporting limit of 1.0 mg/kg.

The pH of the soil samples from boring RP-1 ranged from 5.1 to 5.8 and the pH of the soil samples from boring RP-2 ranged from 5.2 to 6.1.

4.4.2 Ditches 6 and 7 (Area F)

Total oil and grease was detected in all 24 surface soil samples from ditch 6 at concentrations ranging from 140 to 12,000 mg/kg and all 17 surface soil samples from ditch 7 at concentrations ranging from 130 to 26,000 mg/kg. Oil and grease (silica gel cleanup) was detected in 23 surface soil samples from ditch 6 at concentrations ranged from 110 to 6,000 mg/kg and all 17 surface soil samples from ditch 7 at concentrations ranging from 100 to 11,000 mg/kg.

Chlorinated phenols were not detected at or above the laboratory reporting limit of 1.0 mg/kg in any of the surface soil samples from ditches 6 and 7.

Of the 24 surface soil samples collected from ditch 6, chromium was detected in all of the samples at concentrations ranging from 17 to 51 mg/kg, lead was detected in 21 samples at concentrations ranging from 5.2 to 59 mg/kg, nickel was detected in 23 samples at concentrations ranging from 10 to 63 mg/kg and zinc was detected in all of the samples at concentrations ranging from 14 to 280 mg/kg. Cadmium was not detected in any of the samples at or above the laboratory reporting limit of 1.0 mg/kg.

Of the 17 surface soil samples collected from ditch 7, cadmium was detected in one sample at a concentration of 5.1 mg/kg, chromium was detected in all of the samples at concentrations ranging from 10 to 46 mg/kg, lead was detected in 15 samples at concentrations ranging from 5.8 to 35 mg/kg, nickel was detected in all of the samples at concentrations ranging from 11 to 46 mg/kg, and zinc was detected in all of the samples at concentrations ranging from 23 to 460 mg/kg.

The pH of the surface soil samples from ditch 6 ranged from 5.0 to 6.7 and the pH of the surface soil samples from ditch 7 ranged from 5.1 to 6.3.

4.4.3 Truck Scale Sump Discharge Point (Area G)

Total oil and grease was detected at a concentration of 8,100 mg/kg in the surface soil sample from boring SDP-1 and 460 mg/kg in the soil sample collected from the depth interval of 2.0 to 2.5 feet bgl in boring SDP-1. Oil and grease (silica gel cleanup) was detected at a concentration of 3,600 mg/kg in the

surface soil sample from boring SDP-1 and 150 mg/kg in the soil sample collected from the depth interval of 2.0 to 2.5 feet bgl in boring SDP-1.

Chlorinated phenols were not detected at or above the laboratory reporting limit of 1.0 mg/kg in the two soil samples from boring SDP-1.

In the surface soil sample collected from boring SDP-1, chromium was detected at a concentration of 44 mg/kg, lead was detected at a concentration of 31 mg/kg, nickel was detected at a concentration of 61 mg/kg and zinc was detected at a concentration of 160 mg/kg. Cadmium was not detected at or above the laboratory reporting limit of 1.0 mg/kg.

In the soil sample collected from the depth interval of 2.0 to 2.5 feet bgl in boring SDP-1, chromium was detected at a concentration of 21 mg/kg, nickel was detected at a concentration of 49 mg/kg and zinc was detected at a concentration of 37 mg/kg. Cadmium was not detected at or above the laboratory reporting limit of 1.0 mg/kg and lead was not detected at or above the laboratory reporting limit of 5.0 mg/kg.

The pH of the surface soil sample from boring SDP-1 was 6.7 and the pH of the soil sample collected from the depth interval of 2.0 to 2.5 feet bgl in boring SDP-1 was 6.0.

5.0 GROUNDWATER SAMPLING METHODS AND RESULTS

5.1 Field Methods

On July 8, 9 and 10, 2003, groundwater samples were collected for chemical analysis from 2 borings at the retention pond, 17 borings along ditch 7 and 1 boring at the truck scale sump discharge point. On July 22, 23 and 24, 2003, groundwater samples were collected for chemical analysis from 24 borings along ditch 6. The sampling locations are shown in Figure 3.

Groundwater was purged and sampled from each boring using a peristaltic pump and dedicated polyethylene tubing. Prior to sampling, groundwater was purged from each boring until relatively free of sediment. During sampling, groundwater from each boring was placed into two glass, 1-liter amber containers sealed with Teflon[®]-lined screw caps. One of the amber containers was preserved with nitric acid added by the laboratory. Prior to filling the preserved container, groundwater was filtered in the field using a 0.45-micron filter.

The sample containers were labeled and immediately placed in an ice-cooled, insulated chest for transport to the laboratory. Chain-of-custody records were completed for the samples and accompanied the samples until receipt by the laboratory.

After completion of sampling activities on June 8, 9 and 10, 2003, the borings at the retention pond, ditch 7 and the truck scale sump discharge point were grouted to approximately six inches below grade with cement grout. The top six inches of the borings were backfilled with native material. After completion of the sampling activities on June 22, 23 and 24, 2003, the saturated zone in the borings along ditch 6 were grouted with bentonite chips and the unsaturated zone was backfilled with 3/4-inch gravel in accordance with Caltrans requirements.

All equipment used to collect groundwater samples was dedicated to each boring; therefore, no wash water was generated for disposal.

Purge water generated during groundwater sampling activities was placed in the steel, 55-gallon, DOT-approved drum containing soil sampling equipment wash water (Section 4.1). The drum was sealed and labeled and is being temporarily stored in a secure location at the Site pending disposal (Section 7.0).

5.2 Chemical Analysis Methods

The groundwater samples were submitted for chemical analysis to Alpha of Ukiah, California. The samples were analyzed for the following constituents:

- Total extractable petroleum hydrocarbons (TEPH) as diesel and motor oil using EPA Method 8015M with silica gel cleanup; and
- Dissolved wear metals (cadmium, chromium, lead, nickel and zinc) using EPA Method 6010B.

The chemical analysis results are summarized in Table 2. Copies of the laboratory reports, including chromatograms, and chain-of-custody records are included in Appendix E.

5.3 Chemical Analysis Results

5.3.1 Retention Pond (Area E)

TEPH as diesel was detected at a concentration of 170 micrograms per liter (μ g/L) in the groundwater sample from boring RP-1. However, the laboratory indicated that the diesel range detection was primarily due to overlap from a heavier oil range (higher carbon number) compound. TEPH as motor oil was detected at a concentration of 1,100 μ g/L in the groundwater sample from boring RP-1. TEPH as diesel and motor oil were not detected at or above the laboratory reporting limits of 50 and 100 μ g/L, respectively, in the groundwater sample from boring RP-2.

Dissolved wear metals (cadmium, chromium, lead, nickel and zinc) were not detected at or above their respective laboratory reporting limits in the groundwater samples from borings RP-1 and RP-2 (Table 2).

5.3.2 Ditches 6 and 7 (Area F)

TEPH as diesel was detected in 18 of the 24 water samples collected from ditch 6 at concentrations ranging from 59 to 1,000 μ g/L. However, the laboratory indicated that the detections in the

diesel range were primarily due to overlap from a heavier oil range (higher carbon number) compound. TEPH as motor oil was detected in 19 of the 24 water samples collected from ditch 6 at concentrations ranging from 170 to 4,400 μ g/L. TEPH as diesel and motor oil were not detected at or above their respective laboratory reporting limits in the remaining water samples (Table 2).

TEPH as diesel was detected in 14 of the 17 water samples collected from ditch 7 at concentrations ranging from 67 to 880 μ g/L. However, the laboratory indicated that the detections in the diesel range were primarily due to overlap from a heavier oil range (higher carbon number) compound. TEPH as motor oil was detected in 15 of the 17 water samples collected from ditch 7 at concentrations ranging from 170 to 4,400 μ g/L. TEPH as diesel and motor oil were not detected at or above their respective laboratory reporting limits in the remaining water samples (Table 2).

Dissolved wear metals (cadmium, chromium, lead, nickel and zinc) were not detected at or above their respective laboratory reporting limits in the water samples collected from ditch 6 (Table 2). The only wear metal detected in samples from ditch 7 was dissolved zinc at a concentration of 200 μ g/L in sample D7-10-GW. The other wear metals were not detected at or above their respective laboratory reporting limits in sample D7-10-GW, and dissolved wear metals were not detected at or above their respective laboratory reporting limits in the remaining water samples from ditch 7 (Table 2).

5.3.3 Truck Scale Sump Discharge Point (Area G)

TEPH as diesel was detected at a concentration of 300 μ g/L in the groundwater sample from boring SDP-1. However, the laboratory indicated that the diesel range detection was primarily due to overlap from a heavier oil range (higher carbon number) compound. TEPH as motor oil was detected at a concentration of 890 μ g/L in the groundwater sample from boring SDP-1.

Dissolved wear metals (cadmium, chromium, lead, nickel and zinc) were not detected at or above their respective laboratory reporting limits in the groundwater sample from boring SDP-1 (Table 2).

6.0 SURFACE WATER SAMPLING METHODS AND RESULTS

6.1 Field Methods

On July 24, 2003, a surface water sample was collected for chemical analysis from the retention pond. The approximate sampling location is shown in Figure 3. The surface water sample (RP-3-SW) was collected using the "Direct Method" where two unpreserved, glass, 1-liter amber containers were inverted, submerged, turned upright and allowed to fill, then removed from the water. One of the containers was immediately sealed with a Teflon[®]-lined screw cap. The second container was used to pump the sample through a 0.45-micron filter and into a nitric acid-preserved, glass, 1-liter amber container using a peristaltic pump and polyethylene tubing. The preserved container was then sealed with a Teflon[®]-lined screw cap.

All equipment used to collect the surface water sample was dedicated; therefore, no wash water was generated for disposal.

6.2 Chemical Analysis Methods

The surface water sample was submitted for chemical analysis to Alpha of Ukiah, California. The sample was analyzed for the following constituents:

- Total extractable petroleum hydrocarbons (TEPH) as diesel and motor oil using EPA Method 8015M with silica gel cleanup; and
- Dissolved wear metals (cadmium, chromium, lead, nickel and zinc) using EPA Method 6010B.

The chemical analysis results are summarized in Table 3. Copies of the laboratory report, including chromatograms, and the chain-of-custody record are included in Appendix E.

6.3 Chemical Analysis Results

TEPH as diesel was detected at a concentration of 60 μ g/L. However, the laboratory indicated that the chromatogram pattern for the sample did not resemble the pattern of the diesel standard used by the laboratory. TEPH as motor oil was detected at a concentration of 120 μ g/L.

Dissolved wear metals (cadmium, chromium, lead, nickel and zinc) were not detected at or above their respective laboratory reporting limits (Table 3).

7.0 DISPOSAL OF INVESTIGATION-DERIVED WASTE

Soil cuttings and equipment wash water are being stored temporarily at the Site in steel, 55-gallon drums (Section 4.1 and 5.1). The investigation-derived waste from this investigation will be disposed of in accordance with applicable regulations by SPI.

8.0 **REFERENCES**

Environet Consulting (Environet), 2003, Results of the Remedial Investigation for Sierra Pacific Industries - Arcata Division Sawmills, Arcata, California: January 30. TABLES

TABLE 1SUMMARY OF CHEMICAL ANALYSIS RESULTS OF SOIL SAMPLES FOROIL AND GREASE, CHLORINATED PHENOLS, WEAR METALS AND pH

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

						CHLORINATED PHENOLS										
SAMPLE ID	DATE SAMPLED	SAMPLE LOCATION	SAMPLE DEPTH (ft bgl)	TOTAL OIL AND GREASE (mg/kg)	OIL AND GREASE (mg/kg)	2,3,4,5- TETRA- CHLORO- PHENOL (mg/kg)	2,3,4,6- TETRA- CHLORO- PHENOL (mg/kg)	2,3,5,6- TETRA- CHLORO- PHENOL (mg/kg)	2,4,6-TRI- CHLORO- PHENOL (mg/kg)	PENTA- CHLORO- PHENOL (mg/kg)	CADMIUM (mg/kg)	CHROMIUM (mg/kg)	LEAD (mg/kg)	NICKEL (mg/kg)	ZINC (mg/kg)	pH (Std. Units)
RP-1-0.0-0.5*	08-Jul-03	Retention Pond	0.0-0.5	12,000	6,400	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	48	17	58	150	5.1
RP-1-0.5-1.0*	08-Jul-03	Retention Pond	0.5-1.0	16,000	13,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	110	17	210	140	5.2
RP-1-1.0-1.5*	08-Jul-03	Retention Pond	1.0-1.5	40,000	25,000	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	49	22	86	140	5.1
RP-1-1.5-2.0*	08-Jul-03	Retention Pond	1.5-2.0	11,000	5,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	50	27	72	100	5.1
RP-1-2.0-2.5*	08-Jul-03	Retention Pond	2.0-2.5	6,200	7,100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	43	14	68	63	5.8
RP-2-0.0-0.5*	08-Jul-03	Retention Pond	0.0-0.5	1,400	75	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	28	<10	61	5.2
RP-2-0.5-1.0*	08-Jul-03	Retention Pond	0.5-1.0	120	130	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25	8.8	22	55	5.7
RP-2-1.0-1.5*	08-Jul-03	Retention Pond	1.0-1.5	300	160	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	18	12	18	53	6.1
RP-2-1.5-2.0*	08-Jul-03	Retention Pond	1.5-2.0	260	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	19	<5.0	16	18	6.0
RP-2-2.0-2.5*	08-Jul-03	Retention Pond	2.0-2.5	260	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	18	<5.0	16	19	5.8
D6-1-0.0-0.5	22-Jul-03	Ditch 6	0.0-0.5	3,700	1,600	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	42	31	56	110	6.2
D6-2-0.0-0.5	22-Jul-03	Ditch 6	0.0-0.5	12,000	6,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	48	59	63	190	6.4
D6-3-0.0-0.5	22-Jul-03	Ditch 6	0.0-0.5	10,000	4,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	44	37	58	280	6.4
D6-4-0.0-0.5	22-Jul-03	Ditch 6	0.0-0.5	5,800	1,600	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	40	29	49	160	6.4
D6-5-0.0-0.5	22-Jul-03	Ditch 6	0.0-0.5	3,800	1,900	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	37	24	44	76	6.6
D6-6-0.0-0.5	22-Jul-03	Ditch 6	0.0-0.5	3,700	1,500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	34	23	41	120	6.4
D6-7-0.0-0.5	22-Jul-03	Ditch 6	0.0-0.5	1,200	540	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25	8.6	30	39	6.5
D6-8-0.0-0.5	23-Jul-03	Ditch 6	0.0-0.5	1,200	580	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	23	18	31	58	6.4
D6-9-0.0-0.5	23-Jul-03	Ditch 6	0.0-0.5	660	180	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	22	7.9	22	46	6.4
D6-10-0.0-0.5	23-Jul-03	Ditch 6	0.0-0.5	1,100	340	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	33	13	35	51	6.6
D6-11-0.0-0.5	23-Jul-03	Ditch 6	0.0-0.5	2,400	1,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	51	12	61	56	5.4
D6-12-0.0-0.5	23-Jul-03	Ditch 6	0.0-0.5	9,800	4,300	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	37	31	42	240	5.0
D6-13-0.0-0.5	23-Jul-03	Ditch 6	0.0-0.5	1,500	650	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	29	15	32	58	5.8

TABLE 1SUMMARY OF CHEMICAL ANALYSIS RESULTS OF SOIL SAMPLES FOROIL AND GREASE, CHLORINATED PHENOLS, WEAR METALS AND pH

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

						CHLORINATED PHENOLS										
SAMPLE ID	DATE SAMPLED	SAMPLE LOCATION	SAMPLE DEPTH (ft bgl)	TOTAL OIL AND GREASE (mg/kg)	OIL AND GREASE (mg/kg)	2,3,4,5- TETRA- CHLORO- PHENOL (mg/kg)	2,3,4,6- TETRA- CHLORO- PHENOL (mg/kg)	2,3,5,6- TETRA- CHLORO- PHENOL (mg/kg)	2,4,6-TRI- CHLORO- PHENOL (mg/kg)	PENTA- CHLORO- PHENOL (mg/kg)	CADMIUM (mg/kg)	CHROMIUM (mg/kg)	LEAD (mg/kg)	NICKEL (mg/kg)	ZINC (mg/kg)	pH (Std. Units)
D6-14-0.0-0.5	23-Jul-03	Ditch 6	0.0-0.5	4,800	1,800	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	22	18	22	110	6.2
D6-15-0.0-0.5	23-Jul-03	Ditch 6	0.0-0.5	4,300	2,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	17	11	18	110	5.8
D6-16-0.0-0.5	23-Jul-03	Ditch 6	0.0-0.5	4,900	2,400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	20	9.5	24	78	6.0
D6-17-0.0-0.5	23-Jul-03	Ditch 6	0.0-0.5	1,200	320	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	34	12	23	19	5.9
D6-18-0.0-0.5	24-Jul-03	Ditch 6	0.0-0.5	1,400	130	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25	5.2	<10	30	6.2
D6-19-0.0-0.5	24-Jul-03	Ditch 6	0.0-0.5	2,600	1,400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	19	8.1	17	49	6.7
D6-20-0.0-0.5	24-Jul-03	Ditch 6	0.0-0.5	2,100	890	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	28	9.8	27	37	6.1
D6-21-0.0-0.5	24-Jul-03	Ditch 6	0.0-0.5	530	180	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	29	<5.0	10	14	5.3
D6-22-0.0-0.5	24-Jul-03	Ditch 6	0.0-0.5	380	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	31	<5.0	28	21	6.3
D6-23-0.0-0.5	24-Jul-03	Ditch 6	0.0-0.5	280	170	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	32	<5.0	29	17	5.3
D6-24-0.0-0.5	24-Jul-03	Ditch 6	0.0-0.5	140	110	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	35	8.8	25	48	5.2
D7-1-0.0-0.5*	09-Jul-03	Ditch 7	0.0-0.5	1,900	400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	18	12	23	170	6.3
D7-2-0.0-0.5*	09-Jul-03	Ditch 7	0.0-0.5	3,100	780	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	44	18	42	140	6.1
D7-3-0.0-0.5*	09-Jul-03	Ditch 7	0.0-0.5	1,900	1,100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	16	13	21	60	6.2
D7-4-0.0-0.5*	09-Jul-03	Ditch 7	0.0-0.5	4,100	1,500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	13	14	18	150	6.3
D7-5-0.0-0.5*	09-Jul-03	Ditch 7	0.0-0.5	8,800	3,200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	11	12	11	39	5.1
D7-6-0.0-0.5*	09-Jul-03	Ditch 7	0.0-0.5	160	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	44	<5.0	35	23	5.2
D7-7-0.0-0.5*	09-Jul-03	Ditch 7	0.0-0.5	130	160	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	46	<5.0	35	27	5.4
D7-8-0.0-0.5*	09-Jul-03	Ditch 7	0.0-0.5	1,800	1,200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	36	5.8	29	34	5.7
D7-9-0.0-0.5*	10-Jul-03	Ditch 7	0.0-0.5	2,300	320	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	40	20	41	140	6.0
D7-10-0.0-0.5*	10-Jul-03	Ditch 7	0.0-0.5	1,400	630	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	20	23	46	370	6.0
D7-11-0.0-0.5*	10-Jul-03	Ditch 7	0.0-0.5	17,000	6,100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	38	35	38	120	5.9
D7-12-0.0-0.5*	10-Jul-03	Ditch 7	0.0-0.5	1,100	120	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	44	13	38	75	6.0

TABLE 1SUMMARY OF CHEMICAL ANALYSIS RESULTS OF SOIL SAMPLES FOROIL AND GREASE, CHLORINATED PHENOLS, WEAR METALS AND pH

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

							CHLC	RINATED PHE	NOLS							
SAMPLE ID	DATE SAMPLED	SAMPLE LOCATION	SAMPLE DEPTH (ft bgl)	TOTAL OIL AND GREASE (mg/kg)	OIL AND GREASE (mg/kg)	2,3,4,5- TETRA- CHLORO- PHENOL (mg/kg)	2,3,4,6- TETRA- CHLORO- PHENOL (mg/kg)	2,3,5,6- TETRA- CHLORO- PHENOL (mg/kg)	2,4,6-TRI- CHLORO- PHENOL (mg/kg)	PENTA- CHLORO- PHENOL (mg/kg)	CADMIUM (mg/kg)	CHROMIUM (mg/kg)	LEAD (mg/kg)	NICKEL (mg/kg)	ZINC (mg/kg)	pH (Std. Units)
D7-13-0.0-0.5*	10-Jul-03	Ditch 7	0.0-0.5	4,100	960	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10	6.2	17	70	6.1
D7-14-0.0-0.5*	10-Jul-03	Ditch 7	0.0-0.5	2,800	840	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	16	7.6	24	110	5.7
D7-15-0.0-0.5*	10-Jul-03	Ditch 7	0.0-0.5	3,100	1,100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	27	12	36	100	6.0
D7-16-0.0-0.5*	10-Jul-03	Ditch 7	0.0-0.5	8,000	7,200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	32	25	39	210	6.3
D7-17-0.0-0.5*	10-Jul-03	Ditch 7	0.0-0.5	26,000	11,000	<1.0	<1.0	<1.0	<1.0	<1.0	5.1	31	27	35	460	5.6
SDP-1-0.0-0.5*	09-Jul-03	Sump Discharge Point	0.0-0.5	8,100	3,600	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	44	31	61	160	6.7
SDP-1-2.0-2.5*	09-Jul-03	Sump Discharge Point	2.0-2.5	460	150	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	21	<5.0	49	37	6.0

NOTES:

ft bgl Feet below ground level.

mg/kg Milligrams per kilogram.

< Target analyte was not detected at or above the laboratory reporting limit shown.

* Indicates that the Total Oil and Grease analysis and the Oil and Grease analysis (silica gel cleanup) were performed on extracts prepared from different aliquots of this soil sample, because the original extract (used for the Total Oil and Grease analysis) had already been disposed by the laboratory.

Total oil and grease analyzed by EPA Method 9071B.

Oil and grease analyzed by EPA Method 9071B with silica gel cleanup.

Chlorinated phenols analyzed by the Canadian Pulp Method.

Metals analyzed by EPA Method 6010.

pH analyzed by EPA Method 9045B.

TABLE 2 SUMMARY OF CHEMICAL ANALYSIS RESULTS OF GROUNDWATER SAMPLES FOR TEPH AND DISSOLVED WEAR METALS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

SAMPLE ID	SAMPLE LOCATION	DATE SAMPLED	TEPH AS DIESEL (ug/L)	TEPH AS MOTOR OIL (ug/L)	CADMIUM (ug/L)	CHROMIUM (ug/L)	LEAD (ug/L)	NICKEL (ug/L)	ZINC (ug/L)
RP-1-GW	Retention Pond	08-Jul-03	170 *	1,100	<10	<50	<50	<100	<100
RP-2-GW	Retention Pond	08-Jul-03	<50	<100	<10	<50	<50	<100	<100
D6-1-GW	Ditch 6	22-Jul-03	190 *	1,000	<10	<50	<50	<100	<100
D6-2-GW	Ditch 6	22-Jul-03	440 *	2,000	<10	<50	<50	<100	<100
D6-3-GW	Ditch 6	22-Jul-03	250 *	930	<10	<50	<50	<100	<100
D6-4-GW	Ditch 6	22-Jul-03	670 *	2,500	<10	<50	<50	<100	<100
D6-5-GW	Ditch 6	22-Jul-03	<71	380	<10	<50	<50	<100	<100
D6-6-GW	Ditch 6	22-Jul-03	380 *	1,400	<10	<50	<50	<100	<100
D6-7-GW	Ditch 6	22-Jul-03	290 *	1,200	<10	<50	<50	<100	<100
D6-8-GW	Ditch 6	23-Jul-03	220 *	830	<10	<50	<50	<100	<100
D6-9-GW	Ditch 6	23-Jul-03	59 *	250	<10	<50	<50	<100	<100
D6-10-GW	Ditch 6	23-Jul-03	<61	<120	<10	<50	<50	<100	<100
D6-11-GW	Ditch 6	23-Jul-03	<55	<110	<10	<50	<50	<100	<100
D6-12-GW	Ditch 6	23-Jul-03	74 *	170	<10	<50	<50	<100	<100
D6-13-GW	Ditch 6	23-Jul-03	58 *	170	<10	<50	<50	<100	<100
D6-14-GW	Ditch 6	23-Jul-03	500 *	2,500	<10	<50	<50	<100	<100
D6-15-GW	Ditch 6	23-Jul-03	1,000 *	4,400	<10	<50	<50	<100	<100
D6-16-GW	Ditch 6	23-Jul-03	440 *	2,100	<10	<50	<50	<100	<100
D6-17-GW	Ditch 6	23-Jul-03	310 *	1,300	<10	<50	<50	<100	<100
D6-18-GW	Ditch 6	24-Jul-03	320 *	1,300	<10	<50	<50	<100	<100
D6-19-GW	Ditch 6	24-Jul-03	80 *	320	<10	<50	<50	<100	<100
D6-20-GW	Ditch 6	24-Jul-03	63 *	190	<10	<50	<50	<100	<100
D6-21-GW	Ditch 6	24-Jul-03	130 *	430	<10	<50	<50	<100	<100
D6-22-GW	Ditch 6	24-Jul-03	<56	<110	<10	<50	<50	<100	<100
D6-23-GW	Ditch 6	24-Jul-03	<58	<120	<10	<50	<50	<100	<100

TABLE 2 SUMMARY OF CHEMICAL ANALYSIS RESULTS OF GROUNDWATER SAMPLES FOR TEPH AND DISSOLVED WEAR METALS

	Arcata, California								
SAMPLE ID	SAMPLE LOCATION	DATE SAMPLED	TEPH AS DIESEL (ug/L)	TEPH AS MOTOR OIL (ug/L)	CADMIUM (ug/L)	CHROMIUM (ug/L)	LEAD (ug/L)	NICKEL (ug/L)	ZINC (ug/L)
D6-24-GW	Ditch 6	24-Jul-03	<55	<110	<10	<50	<50	<100	<100
D7-1-GW	Ditch 7	09-Jul-03	<54	170	<10	<50	<50	<100	<100
D7-2-GW	Ditch 7	09-Jul-03	85 *	240	<10	<50	<50	<100	<100
D7-3-GW	Ditch 7	09-Jul-03	<50	<100	<10	<50	<50	<100	<100
D7-4-GW	Ditch 7	09-Jul-03	67 *	280	<10	<50	<50	<100	<100
D7-5-GW	Ditch 7	09-Jul-03	560 *	4,100	<10	<50	<50	<100	<100
D7-6-GW	Ditch 7	09-Jul-03	70 *	380	<10	<50	<50	<100	<100
D7-7-GW	Ditch 7	09-Jul-03	<56	<110	<10	<50	<50	<100	<100
D7-8-GW	Ditch 7	09-Jul-03	240 *	1,500	<10	<50	<50	<100	<100
D7-9-GW	Ditch 7	10-Jul-03	300 *	1,600	<10	<50	<50	<100	<100
D7-10-GW	Ditch 7	10-Jul-03	220 *	1,500	<10	<50	<50	<100	200
D7-11-GW	Ditch 7	10-Jul-03	190 *	1,500	<10	<50	<50	<100	<100
D7-12-GW	Ditch 7	10-Jul-03	140 *	810	<10	<50	<50	<100	<100
D7-13-GW	Ditch 7	10-Jul-03	310 *	1,700	<10	<50	<50	<100	<100
D7-14-GW	Ditch 7	10-Jul-03	180 *	1,300	<10	<50	<50	<100	<100
D7-15-GW	Ditch 7	10-Jul-03	310 *	2,600	<10	<50	<50	<100	<100
D7-16-GW	Ditch 7	10-Jul-03	880 *	4,400	<10	<50	<50	<100	<100
D7-17-GW	Ditch 7	10-Jul-03	380 *	2,100	<10	<50	<50	<100	<100
SDP-1-GW	Sump Discharge Point	09-Jul-03	300 *	890	<10	<50	<50	<100	<100

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

NOTES:

TEPH Total extractable petroleum hydrocarbons analyzed by EPA Method 8015 with silica gel cleanup and quantified against diesel and motor oil standards.

ug/L Micrograms per liter.

< Target analyte was not detected at or above the laboratory reporting limit shown.

Laboratory indicated that the diesel range result is primarily due to overlap from a heavier oil range compound (i.e., higher carbon number).
 Dissolved metals analyzed by EPA Method 6010.

TABLE 3

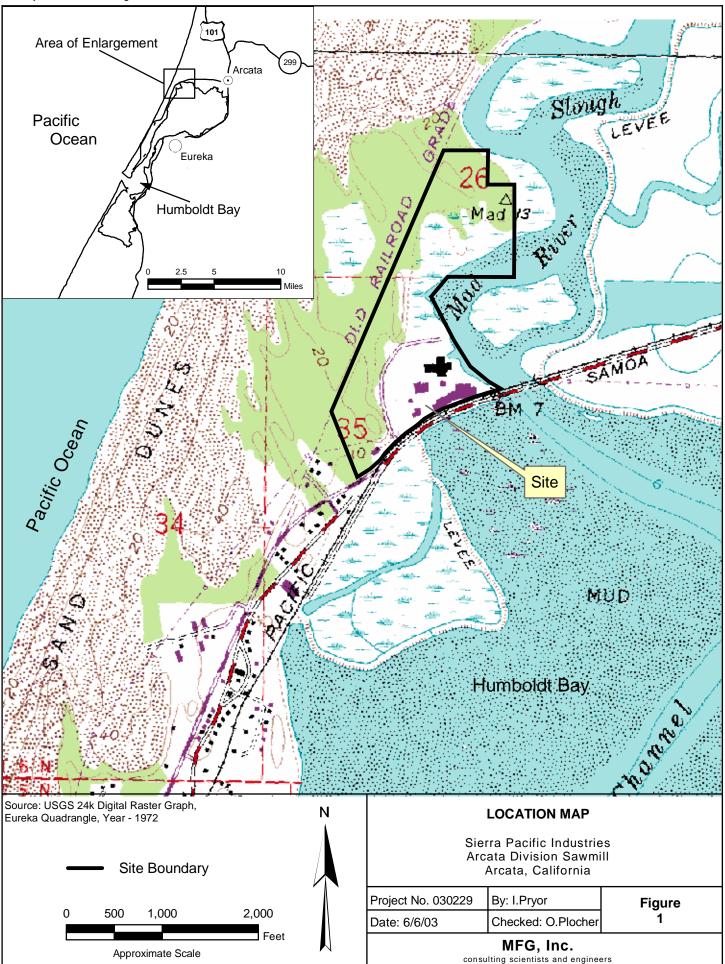
SUMMARY OF CHEMICAL ANALYSIS RESULTS OF THE SURFACE WATER SAMPLE COLLECTED FROM THE RETENTION POND FOR TEPH AND DISSOLVED WEAR METALS

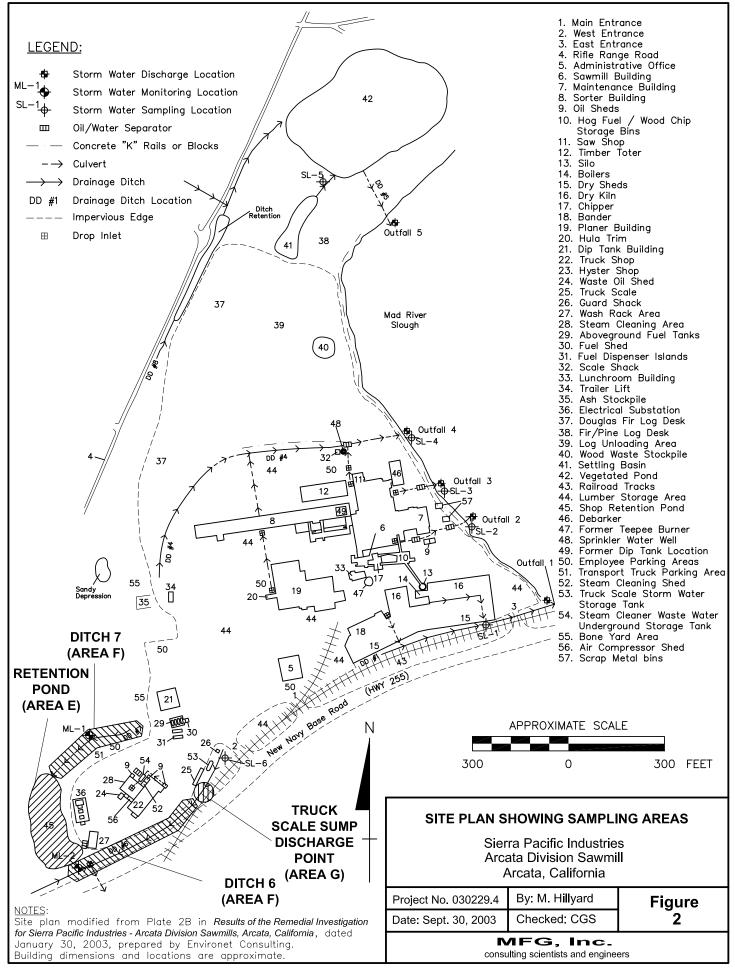
Sierra Pacific Industries Arcata Division Sawmill Arcata, California

SAMPLE ID	DATE SAMPLED	TEPH AS DIESEL (ug/L)	TEPH AS MOTOR OIL (ug/L)	CADMIUM (ug/L)	CHROMIUM (ug/L)	LEAD (ug/L)	NICKEL (ug/L)	ZINC (ug/L)
RP-3-SW	24-Jul-03	60 *	120	<10	<50	<50	<100	<100

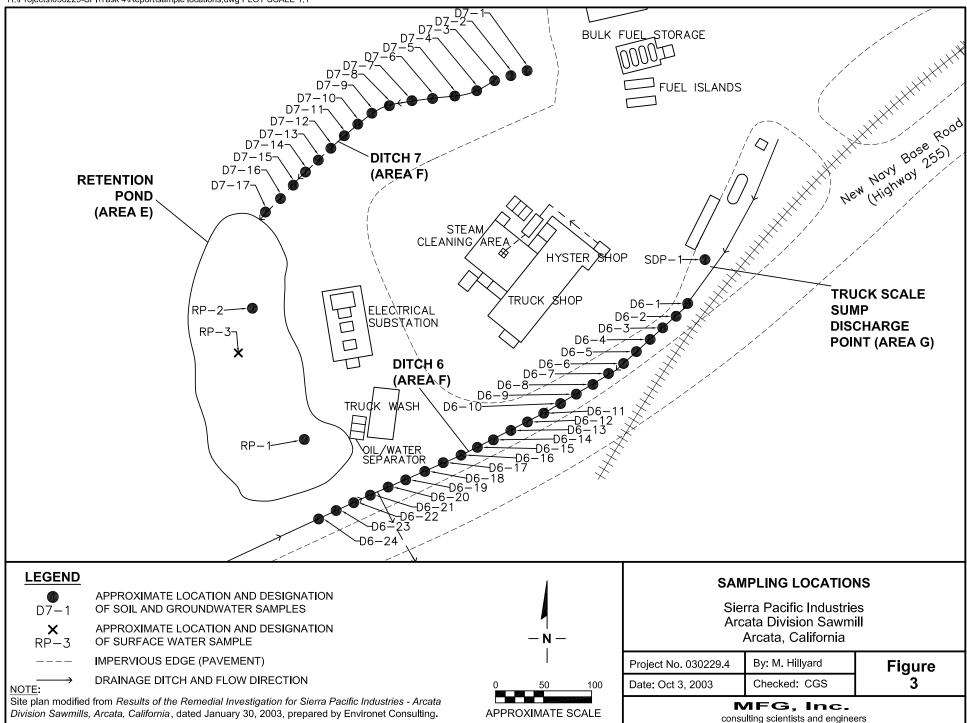
NOTES:

TEPH Total extractable petroleum hydrocarbons analyzed by EPA Method 8015 with silica gel cleanup and quantified against diesel and motor oil standards.


ug/L Micrograms per liter.


< Target analyte was not detected at or above the laboratory reporting limit shown.

Laboratory indicated that the chromatogram pattern did not resemble the pattern of the diesel standard used.
 Dissolved metals analyzed by EPA Method 6010.


FIGURES

H:\Projects\030229-SPI\fig1_arcata

APPENDIX A

Humboldt County Division of Environmental Health Boring Permit HUMBOLDT COUNTY DIVISION of ENVIRONMENTAL HEALTH - HAZARDOUS MATERIALS UNIT WELL and BORING PERMIT APPLICATION

.

-3

1

a.

Facility ID # 1 NHU	526 Permit # <u>21</u>	<u>- G</u>
Facility Name: Sierra Pacific In di	ustrics. Arcata Sa	wmill Division
Site Address: 2293 Samoa Road Ara	Ho, CA	,
Site Owner: <u>Sierra Pacific Industy</u> Address: <u>PO Bot 496028 Redding</u>		Telephone: <u>530–378–8000</u> AP#:
RP Name: <u>Sierra Pari fic Industrie</u> Address: <u>PO Box 496028</u> Reddin	>	Telephone: <u>530-378-900</u> 0
Consultant: MF6, Enc Orrin	Ptocher	Telephone: <u>707-826-94</u> 30
Address: 1165 G. Street, Suile F	2 HV (ATY CH 400 2)	
Driller: NA Address:		Telephone: C-57 Lic.#:
# On-site		# Off-site
Wells Borings 44	Wells	Borings
Activity: Construct Destroy Repair/Modi	fy Electrode Typ	e:
Well Type: Monitoring Well Injection Well Extraction Well Piezometer Vadose Well Cathodic Protection Investigation Type: Site Assessment Disp Surface Contamination Surface *Specify:	Vapor Point So on Direct Push Boring Te oosal Practice UST O	
Investigation Phase: Initial Subsequent Remo Suspected Contaminants: Pertolem Corport	۱ · · ·	ends, pH
Disposal/Containment for Soil Cuttings: <u>A 76 b</u> Disposal/Containment for Rinsate: <u>Ashborn</u> Disposal/Containment for Development Water:		
Permits <u>will not</u> be processed with out the	following information:	
 Detailed Site Plan Co Lead Agency Approval Letter Off Site Well Requirements: 	propriate Fees py of Workplan (if not on fil d Work Date:/7_/	e at HCDEH) 63 -7/11/03
 Encroachment Permit Coastal Zone Permit 		

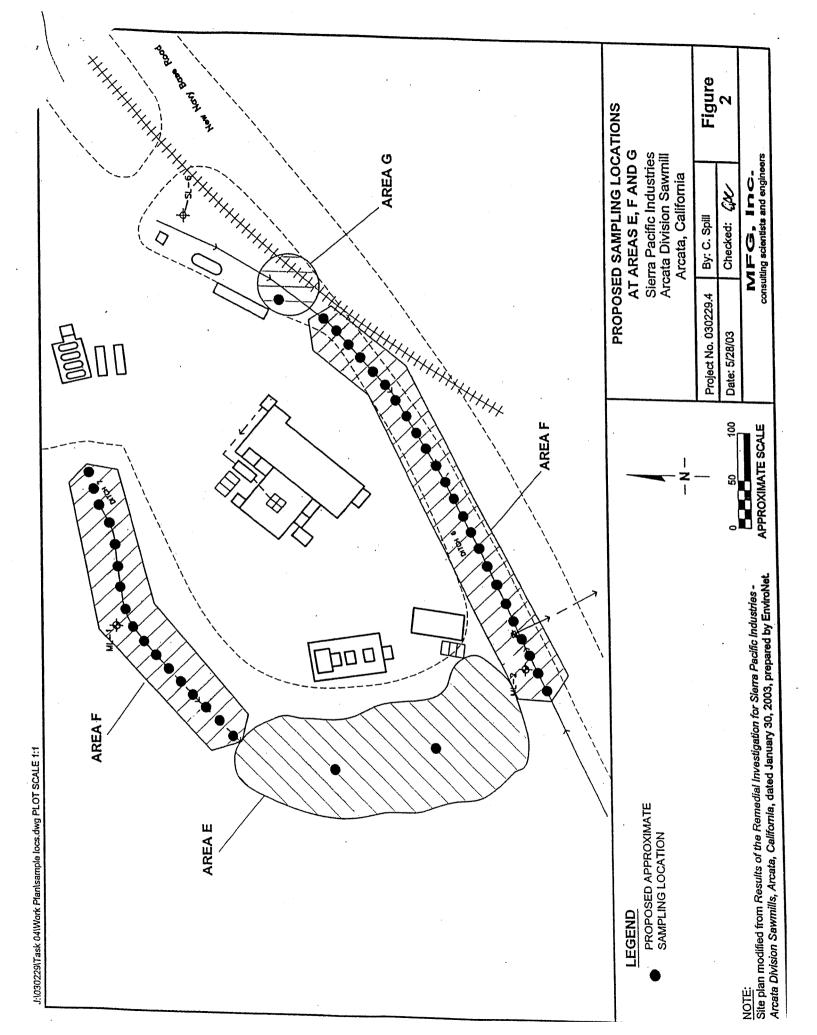
HUMBOLDT COUNTY DIVISION of ENVIRONMENTAL HEALTH - HAZARDOUS MATERIALS UNIT WELL and BORING PERMIT APPLICATION

> 1 NHU 526 Permit # 27-G Facility ID #

I hereby agree to comply with all laws, ordinances and regulations of the county of Humboldt and State of California pertaining to water well construction. I will contact the Humboldt County Hazardous Materials Unit at (707) 445-6215 five (5) working days prior to commencing this work. I will furnish to the County of Humboldt, Division of Environmental Health, and the owner a legible copy of the State Water Well Completion Report (form DWR 188) within fifteen (15) days after completion of work to obtain final approval of the well(s). I acknowledge that the application will become a permit ONLY after site approval by the Local Implementing Agency (HCDEH, NCRWQCB, DTSC, EPA). I understand this permit is not transferable and expires one hundred twenty (120) days from the date of issuance.

Certificates of Insurance:

- A currently effective General Liability Certificate of Insurance is on file with this office, endorsed to include the Humboldt County Division of Environmental Health as additional named insured.
- A currently effective Worker's Compensation Certificate of Insurance is on file with this office, endorsed to include the Humboldt County Division of Environmental Health as additional named insured.


<u>Ayer (mF6)</u> Well Driller - <u>no proxies</u> - original signature only in blue ink

Date

- Well identification number and type must be affixed to exterior surface of security structure.
- The applicant is responsible for notifying Underground Services Alert at least 48 hours prior to the scheduled work date.
- A State of California Department of Water resources Well Completion Report (Form DWR 1-88) must be filed within 15 days of completion of work for all well completions and destructions.
- A licensed California C-57 Well Driller is required for all wells and direct push work.

	FOR OFFICE USE ONLY
Permit Approval:	Norman Crunford Date: 6/30/2003
Fee: \$3959	Date: 630 2003 Receipt: 219512
Initial Inspection:	Date:
Final Inspection:	Date:

2

onti, Ed -- MFG, Inc.

From:Dean Prat [PratD@rb1.swrcb.ca.gov]Sent:Friday, June 13, 2003 3:38 PMTo:Ed.Conti@mfgenv.comCc:Tuck Vath; bellery@spi-ind.comSubject:Retention Pond, Ditches 6 and 7 and Truck Scale Sump Discharge Point Investigation

Dear Mr. Conti, I have reviewed the Retention Pond, Ditches 6 and 7, and Truck Scale Sump Discharge Point Investigation (workplan) for the Sierra-Pacific Industries-Arcata Division Sawmill dated May 28, 2003. I concur with implementation of the workplan.

Sincerely, Dean Prat 707-576-2801 **APPENDIX B**

California Department of Transportation Encroachment Permit

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION ENCROACHMENT PERMIT

TR-0120 (REV. 5/92)		Permit No. 0103-6-SV-0350					
		Dist/Co/Rte/PM					
In compliance with (Check one):		1-HUM-255-R4.83/R4.92					
		Date					
Your application of JUNE 18, 2003		JULY 11, 2003					
		Fee Paid	Deposit				
Utility Notice No.	of	\$	\$ 320.00				
		Performance Bond Amount (1)	Performance Bond Amount (2)				
Agreement No.	of	\$	\$				
		Bond Company	A				
R/W Contract No.	of						
R/W Contract No.		Bond Number (1)	Bond Number (2)				
		PERMIT EXPIRES	·				
то:		JANUARY 31, 2	004				
MFG, INC.		,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,					
1165 "G" STREET, SUITE	E						
ARCATA, CA, 95521							
ATTN: Matt Hillyard, EIT							
PHONE: (707) 826-843	0						
		, PERMITTEE					
And subject to the following, PERMISSI	ON IS HEREBY GRANTED to:						

Enter the State highway right of way at Post Mile R4.83 and R4.92 of State Route 1-HUM-255 (New Navy Base Road) to perform soil and ground water sampling of borings as outlined in the attached Permittee-submitted sketch (Figures 1 & 2) received by the Caltrans Encroachment Permits Office on January 18, 2003.

<u>VERNON J. CALLAHAN, ASSISTANT PERMIT ENGINEER AT EUREKA (TELEPHONE 707-445-6679) SHALL BE</u> NOTIFIED 5 DAYS BEFORE WORK IS STARTED.

THE CALTRANS ELECTRICAL SUPERVISOR, RICK MCDANIEL AT SAMOA, (707)-441-2039 SHALL BE NOTIFIED 3 WORKING DAYS BEFORE WORK IS TO BEGIN SO ANY CALTRANS ELECTRICAL FACILITIES MAY BE LOCATED.

USA-N (Underground Service Alert - North) shall be notified at 1-800-642-2444 2 working days before work begins.

In addition to the attached Encroachment General Provisions, Form TR-0045 (Rev. 6/2000) the following special provisions are also applicable:

The following attachments are a (Check applicable):	lso included as part of this perr	nit	In addition to be billed actuation	fee, the permittee will al costs for:
Yes	General Provisions		Yes	No Review
🗌 Yes 🛛 No	Utility Maintenance Provision	ns	🛛 🖾 Yes	No Inspection
🗌 Yes 🛛 No	Special Provisions .		🛛 🖾 Yes	No Field Work
🖾 Yes* 🗌 No	A Cal-OSHA permit required	I prior to beginning wor	·κ;	
* If work is d	one in trenches deeper than 1.			rans effort expended)
🗌 Yes 🛛 No		nmental documentation	n has been reviev	ved and is considered prior to
	approval of this permit.			
This permit is void unless the w	ork is complete before J	ANUARY 31, 2004		
This permit is to be strictly const	trued and no other work other t	han specifically mentio	ned is hereby aut	horized.
No project work shall be comme	enced until all other necessary	permits and environme	ntal clearances h	ave been obtained.
SP WOODMAN	TL LIBOLT	APPROVED:		
VJ CALLAHAN	ANN JONES			
		RICK KNAPP, Distric	t Director	
		BY:	A C	
RBM	FILE	Sim (d'	
Permit Writer: James A. Pena	FOR	ROYAL B. MCCAR	THY, P.E., Distri	ct Permit Engineer
FM 91 1436				
		•		

I. TEST BORING PERFORMANCE & ABANDONMENT

- 1. Vernon J. Callahan, Assistant Permit Engineer at Eureka, shall approve the actual location of the test borings in advance of the work.
- 2. The Permittee shall provide and maintain through the work area at all times a safe walk way for pedestrians and bicycles which shall be a minimum of 1.2 m (4') wide. At no time shall pedestrians be diverted onto a portion of the street used for vehicular traffic. If adjacent alternate walkways cannot be provided, appropriate signs and barricades shall be installed at the limits of the work area and in advance of the closure at the nearest cross walk or intersection to divert pedestrians across the street. All signs must be orange or white with black lettering at least 100 mm (4") tall. The signs, barricades detour plan shall be approved by Vernon Callahan, Assistant Permit Engineer at Eureka, (707- 445-6679) before work begins.
- 3. The Permittee shall take whatever measures necessary to protect the existing highway storm drainage system from sediment and debris infiltration during the work.
- 4. All water generated by work operations shall be contained, filtered, or removed to a proper disposal site. Slurry from saw cutting or drilling operations shall be vacuumed immediately behind the saw cutting operation or prior to drying on drilling operations. Saw-cutting slurry shall be disposed of at a legal disposal site. Only clean water shall be allowed to enter drainage inlets or waterways. All soil exposed by work operations shall be protected from erosion and sediment migration.
- 5. Excavations shall be backfilled prior to the end of the shift, protected by signs and flaggers.
- 6. When monitoring is completed the wells shall be abandoned by back filling with a suitable material approved by Vernon J. Callhan, Assistant Permits Engineer, at Eureka and by removing the top portion of the existing wells, no less than 0.3 m (1') below finished grade. The top 200 mm (8") shall consist of topsoil that shall support plant growth and shall be seeded to match the surrounding area.
- 7. All drill cuttings shall be removed from the work site for disposal appropriate to lab test results.

8. J<u>ON HEDLUND OF THE CALTRANS NORTH REGION HAZARDOUS WASTE OFFICE AT (707) 445-6325</u> SHALL BE PROVIDED WITH A COPY OF THE SITE INVESTIGATION REPORT. The report shall be mailed to the following address:

Caltrans North Region Hazardous Waste Office ATTN: Jon D. Headland 1656 Union Street Eureka, CA 95501

9. All personnel performing work under this permit shall wear personal protective equipment, including hard hats, orange vests, gloves, and safety glasses while on State highway right of way.

II. TRAFFIC CONTROL

1. By Noon Monday, the Permittee/Contractor shall fax to Adolpho Gonzales, Caltrans Traffic Operations (fax #707 441-3914) and to Vernon J. Callahan, Assistant Permit Engineer (fax #707 445-6317) a written schedule of planned closures for the following week period, defined as Friday Noon through the following Friday Noon. The term closure, as used herein, is defined as the closure of a traffic lane or lanes, including ramp or connector lanes, within a single traffic control system. The Closure Schedule shall take the form of the attached *District 1 Lane Closure Request Form* furnished by the Engineer and shall show the locations and times when the proposed closures are to be in effect. Closure Request Forms submitted to the Engineer and Traffic Operations with incomplete, unintelligible or inaccurate information will be returned for correction and resubmittal. The Contractor/Permittee will be notified of disapproved closures or closures that require coordination with other parties as a condition of approval. Restrictions on hours and days that a lane can be closed are found on the attached *Traffic Control Restrictions*.

- All traffic control shall conform to the State of California, Department of Transportation; "<u>MANUAL OF TRAFFIC</u> <u>CONTROLS FOR CONSTRUCTION & MAINTENANCE WORK ZONES-REVISION 2</u>" dated 1996 (Chapter 5 of the current Caltrans Traffic Manual) EXCEPT FOR THE FOLLOWING MODIFICATIONS:
 - a.) Except for installing, maintaining and removing traffic control devices, whenever work is performed or equipment is operated in the following work areas the Permittee shall close the adjacent traffic lane only after approval by Vernon J. Callahan, Assistant Permit Engineer at Eureka:

Approach speed of public traffic (Posted Limit) (Miles per Hour)	Work Area
Over 45	Within 1.8 m (6') of a traffic lane but not on a traffic lane.
35 to 45	Within 0.6 m (3') of a traffic lane but not on a traffic lane.

- b.) Traffic control, which requires a lane closure, shall be in accordance with the attached, <u>Caltrans Standard Plan</u> <u>T-13</u>, "TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE ON TWO-LANE CONVENTIONAL HIGHWAYS". Advance & Backup flaggers in each direction shall be required.
- c.) Lane closures are prohibited weekdays from 0700-0900 hours and from 1500 -1800 hours.
- d.) For work performed outside the distances described in 2(a) above the shoulder shall be closed in accordance with the attached <u>Caltrans Standard Plan T-10, "SHOULDER CLOSURE</u>" illustration.
- e.) When flaggers are not present trucks shall not back on to /off the highway.
- f.) When flaggers are present the full complement of signs as required by the "MANUAL OF TRAFFIC CONTROLS FOR CONSTRUCTION AND MAINTENANCE WORK ZONES-REVISION 1" DATED 1996 shall be in place.
- g.) All work that requires flaggers shall be completed in one workday.
- h.) All flaggers shall be provided the opportunity to read the attached Caltrans; "Flagging Instruction Handbook" dated April 1999. Additional copies are available through the Caltrans Publications Distribution Unit, 1900 Royal Oaks Drive, Sacramento, CA 95815-Telephone (916) 445-3520 Fax # (916) 324-8997.
- i.) When the work area encroaches upon a sidewalk, walkway or crosswalk area, special consideration must be given to pedestrian safety. Protective barricades, fencing, handrails and bridges, together with warning and guidance devices and signs must be utilized so that the passageway for pedestrians, especially blind and other physically handicapped, is safe and well defined. A PLAN SHOWING HOW PEDESTRIANS WILL BE HANDLED SHALL BE SUBMITTED TO AND APPROVED BY VERNON CALLAHAN PRIOR TO BEGINNING WORK.
- j.) Bicyles shall be accommodated through the work zone.
- k.) Project work shall not restrict commerce or access to businesses. If it becomes necessary to restrict access to any local businesses to accomplish work the work shall scheduled to occur outside of normal business hours.
- 1.) The Permittee shall provide signing to notify the public of any planned parking prohibition at least one-week prior to any planned work.
- m.) A minimum of one paved lane not less than 3.6 m (12') and an associated 1.2 m (4') shoulder in each direction of travel shall remain available at all times.

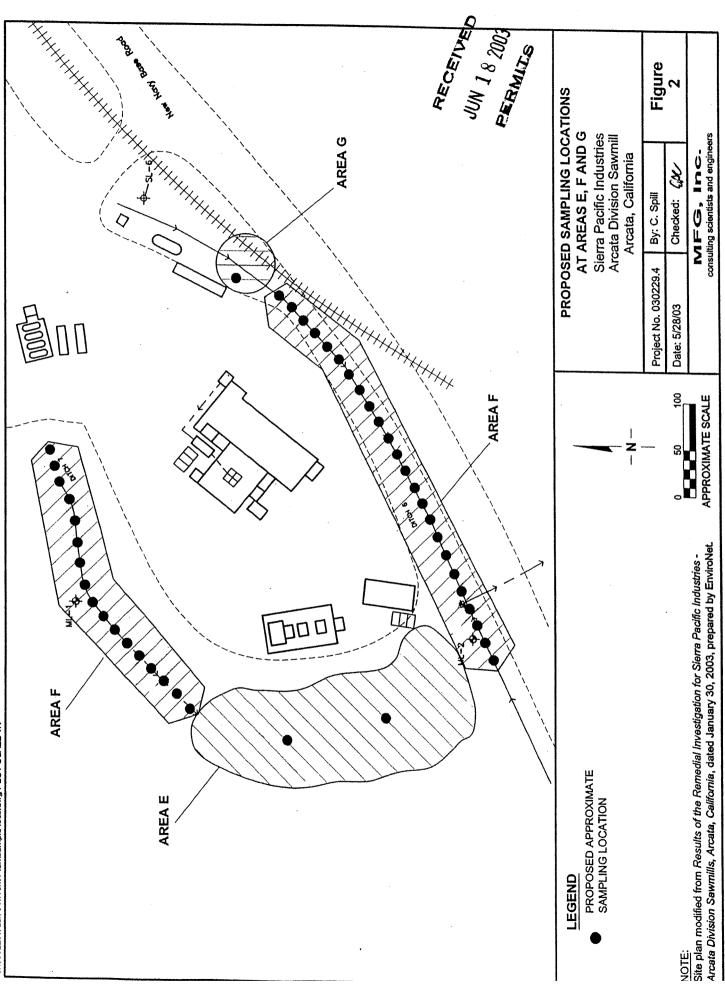
- n.) Any emergency service agency whose ability to respond to incidents may be hampered by a lane closure caused by the construction shall be notified prior to that closure.
- o.) A minimum of one PCMS in advance of either end of the construction site (2 PCMS per location) shall be required in order to notify the public of the closures related to this project.
- p.) Access to side roads and residences shall be maintained at all times. When work or traffic queues extend through an intersection additional traffic control shall be required at the intersection.
- q.) If congestion or delays exceed original estimates due to unforeseen events such as work zone collisions, higher than predicted traffic demand, or closures of extended duration, the Permittee shall utilize all appropriate resources to restore or minimize effects on public traffic. These resources shall contain (but are not limited to) the following contingencies:
 - 1) Calling for CHP or other emergency personnel in the event of a work-zone collision.
 - 2) Removal of the lane closure as soon as it is safe to do so to mitigate significant delay.
 - 3) Assigning personnel to work end-of-queue protection.

III. EROSION CONTROL

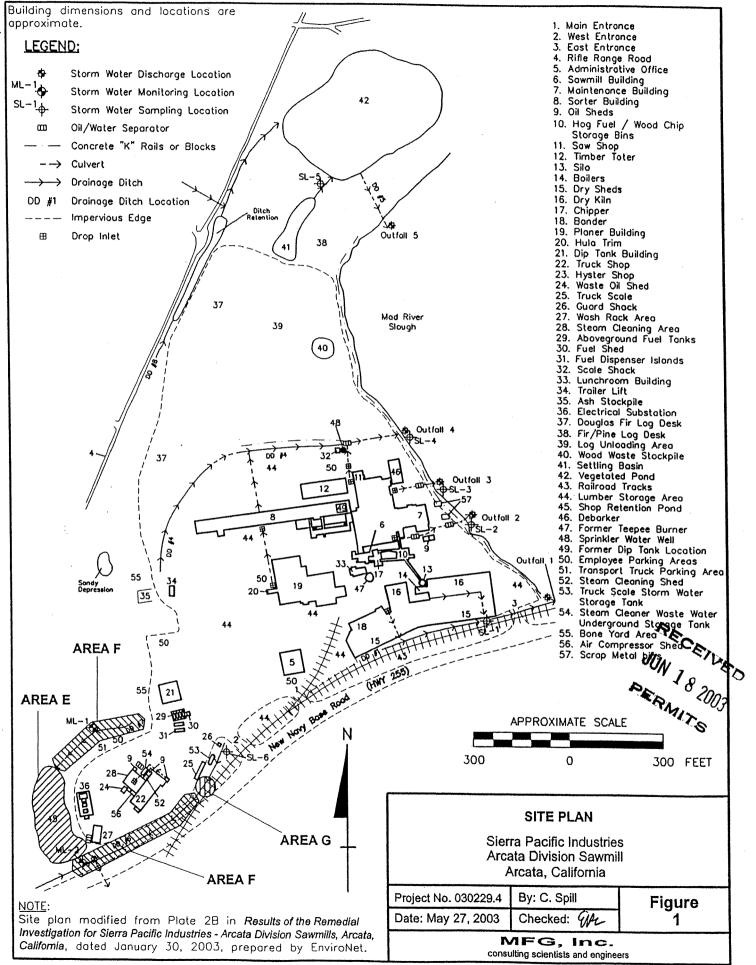
- 1. In accordance with Caltrans Standard Specifications Section 7-1-01G "Water Pollution". The Permittee's Contractor shall submit a "Water Pollution Control Program" (WPCP) to Vernon Callahan, Assistant Permit Engineer at Eureka prior to the start of work. Caltrans must approve the "Water Pollution Control Program" prior to the start of work within the Caltrans right of way. A template WPCP may be found at the Caltrans Website at the following location http://www.dot.ca.gov/hq/construc/.
- 2. All disturbed original ground shall be treated with a seed, fertilizer and mulch erosion control mixture approved by Vernon J. Callahan, Assistant Permit Engineer at Eureka. The Permittee may also be required to provide silt fences, straw waddles, or other siltation barriers as directed by Vernon J. Callahan, Assistant Permit Engineer at Eureka to prevent siltation in ditches and waterways.
- 3. The Permittee shall be responsible for obtaining all permits in accordance with section IV (2) below. This includes but is not limited to the requirements of the Regional Water Control Board (Region 1) which shall be contacted by the Permittee at the following location :

5550 Skylane Blvd. Suite A Santa Rosa, CA 95403 Phone 707-576-2220 Fax 707-523-0135

http://www.swrcb.ca.gov/rwqcb1/index.html


IV. GENERAL

- 1. The work area, including drainage ditches, shall be restored to a neat, clean condition and all debris shall be removed from the State Highway Right-of-way.
- The Permittee's attention is directed to Section 12, "PERMITS FROM OTHER AGENCIES" and Section 26 "ARCHAEOLOGICAL/HISTORICAL:" of the Encroachment Permit General Provisions. The State's Representative for Archaeological Resource discoveries in the Caltrans right of way is Sara Atchley at (707) 441-3983.


3. FEES FOR THIS PERMIT ARE BASED ON ACTUAL REVIEW HOURS AND ACTUAL INSPECTION HOURS. AS OF THE ISSUE DATE OF THIS PERMIT AN ESTIMATED FEE DEPOSIT OF \$320.00 HAS BEEN COLLECTED. THE ACTUAL REVIEW FEE ACCRUED AT THIS TIME IS \$160.00 (2.0 HOURS TIMES THE STANDARD HOURLY RATE OF \$80.00 PER HOUR). THE ACTUAL INSPECTION FEE WILL BE CALCULATED UPON EXPIRATION OF THIS ENCROACHMENT PERMIT WORK AND WILL BE CALCULATED USING THE ACTUAL INSPECTION HOURS TIMES THE STANDARD HOURLY RATE IN EFFECT AT THAT TIME. THE ACTUAL REVIEW AND INSPECTION CHARGES WILL BE TOTALED AND ANY REMAINING BALANCE DUE THAT EXCEEDS THE INITIAL \$320.00 DEPOSIT WILL BE BILLED AND ANY UNUSED SURPLUS WILL BE REFUNDED.

4. UPON COMPLETION OF THE WORK, PLEASE FILL IN THE ATTACHED POST CARD AND MAIL AT ONCE.

NOTE: IF THE WORK COVERED BY THIS PERMIT IS NOT COMPLETED BY THE COMPLETION DATE SHOWN, AN ENCROACHMENT PERMIT RIDER FEE WILL BE REQUIRED FOR A TIME EXTENSION. THE FEE WILL BE CHARGED AT THE CURRENT HOURLY RATE.

J:1030229\Task 04\Work Plan\sample locs.dwg PLOT SCALE 1:1

STATE OF CALIFORNIA. DEPARTMENT OF TRANSPORTATION ENCROACHMENT PERMIT GENERAL PROVISIONS TR-0045 (REV. 6/2000)

- 1. AUTHORITY: The Department's authority to issue encroachment permits is provided under, Div. 1, Chpt. 3, Art. 1, Sect. 660 to 734 of the Streets and Highways Code.
- 2. **REVOCATION:** Encroachment permits are revocable on five days notice unless otherwise stated on the permit and except as provided by law for public corporations, franchise holders, and utilities. These General Provisions and the Encroachment Permit Utility Provisions are subject to modification or abrogation at any time. Permittees' joint use agreements, franchise rights, reserved rights or any other agreements for operating purposes in State highway right of way are exceptions to this revocation.
- DENIAL FOR NONPAYMENT OF FEES: Failure to pay permit fees when due can result in rejection of future applications and denial of permits.
- 4. ASSIGNMENT: No party other than the permittee or permittee's authorized agent is allowed to work under this permit.
- ACCEPTANCE OF PROVISIONS: Permittee understands and agrees to accept these General Provisions and all attachments to this permit, for any work to be performed under this permit.
- 6. BEGINNING OF WORK: When traffic is not impacted (see Number 35), the permittee shall notify the Department's representative, two (2) days before the intent to start permitted work. Permittee shall notify the Department's Representative if the work is to be interrupted for a period of five (5) days or more, unless otherwise agreed upon. All work shall be performed on weekdays during regular work hours, excluding holidays, unless otherwise specified in this permit.
- 7. STANDARDS OF CONSTRUCTION: All work performed within highway right of way shall conform to recognized construction standards and current Department Standard Specifications, Department Standard Plans High and Low Risk Facility Specifications, and Utility Special Provisions. Where reference is made to "Contractor and Engineer," these are amended to be read as "Permittee and Department representative."
- 8. PLAN CHANGES: Changes to plans, specifications, and permit provisions are not allowed without prior approval from the State representative.
- 9. INSPECTION AND APPROVAL: All work is subject to monitoring and inspection. Upon completion of work, permittee shall request a final inspection for acceptance and approval by the Department. The local agency permittee shall not give final construction approval to its contractor until final acceptance and approval by the Department is obtained.
- 10. PERMIT AT WORKSITE: Permittee shall keep the permit package or a copy thereof, at the work site and show it upon request to any Department representative or law enforcement officer. If the permit package is not kept and made available at the work site, the work shall be suspended.
- 11. CONFLICTING ENCROACHMENTS: Permittee shall yield start of work to ongoing, prior authorized, work adjacent to or within the limits of the project site. When existing encroachments conflict with new work, the permittee shall bear all cost for rearrangements, (e.g., relocation, alteration, removal, etc.).

- 12. PERMITS FROM OTHER AGENCIES: This permit is invalidated if the permittee has not obtained all permits necessary and required by law, from the Public Utilities Commission of the State of California (PUC), California Occupational Safety and Health Administration (Cal-OSHA), or any other public agency having jurisdiction.
- 13. PEDESTRIAN AND BICYCLIST SAFETY: A safe minimum passageway of 4' (1.21 meter) shall be maintained through the work area at existing pedestrian or bicycle facilities. At no time shall pedestrians be diverted onto a portion of the street used for vehicular traffic. At locations where safe alternate passageways cannot be provided, appropriate signs and barricades shall be installed at the limits of construction and in advance of the limits of construction at the nearest crosswalk or intersection to detour pedestrians to facilities across the street.
- 14. PUBLIC TRAFFIC CONTROL: As required by law, the permittee shall provide traffic control protection warning signs, lights, safety devices, etc., and take all other measures necessary for traveling public's safety. Day and night time lane closures shall comply with the Manuals of Traffic Controls, Standard Plans, and Standard Specifications for traffic control systems. These General Provisions are not intended to impose upon the permittee, by third parties, any duty or standard of care, greater than or different from, as required by law.
- 15. MINIMUM INTERFERENCE WITH TRAFFIC: Permittee shall plan and conduct work so as to create the least possible inconvenience to the traveling public; traffic shall not be unreasonably delayed. On conventional highways, permittee shall place properly attired flagger(s) to stop or warn the traveling public in compliance with the Manual of Traffic Controls and Instructions to Flaggers Pamphlet.
- 16. STORAGE OF EQUIPMENT AND MATERIALS: Equipment and material storage in State right of way shall comply with Standard Specifications, Standard Plans, and Special Provisions. Whenever the permittee places an obstacle within 12' (3.63 m) of the traveled way, the permittee shall place temporary railing (Type K).
- 17. CARE OF DRAINAGE: Permittee shall provide alternate drainage for any work interfering with an existing drainage facility in compliance with the Standard Specifications, Standard Plans and/or as directed by the Department's representative.
- 18. RESTORATION AND REPAIRS IN RIGHT OF WAY: Permittee is responsible for restoration and repair of State highway right of way resulting from permitted work (State Streets and Highways Code, Sections 670 et. seq.).
- 19. RIGHT OF WAY CLEAN UP: Upon completion of work, permittee shall remove and dispose of all scraps, brush, timber, materials, etc. off the right of way. The aesthetics of the highway shall be as it was before work started.
- 20. COST OF WORK: Unless stated in the permit, or a separate written agreement, the permittee shall bear all costs incurred for work within the State right of way and waives all claims for indemnification or contribution from the State.
- 21. ACTUAL COST BILLING: When specified in the permit, the Department will bill the permittee actual costs at the currently set hourly rate for encroachment permits.

- 22 AS-BUILT PLANS: When required, permittee shall submit one (1) set of as-built plans within thirty (30) days after completion and approval of work in compliance with requirements listed as follows:
 - 1. Upon completion of the work provided herein, the permittee shall send one vellum or paper set of As-Built plans, to the State representative. Mylar or paper sepia plans are not acceptable.
 - 2. All changes in the work will be shown on the plans, as issued with the permit, including changes approved by Encroachment Permit Rider.
 - 3. The plans are to be stamped or otherwise noted AS-BUILT by the permittee's representative who was responsible for overseeing the work. Any original plan that was approved with a State stamp, or Caltrans representative signature, shall be used for producing the As-Built plans.
 - 4. If As-Built plans include signing or striping, the dates of signing or striping removal, relocation, or installation shall be shown on the plans when required as a condition of the permit. When the construction plans show signing and striping for staged construction on separate sheets, the sheet for each stage shall show the removal, relocation or installation dates of the appropriate staged striping and signing.
 - 5. As-Built plans shall contain the Permit Number, County, Route, Post Mile, and Kilometer Position on each sheet.
 - 6. Disclaimer statement of any kind that differ from the obligations and protections provided by Sections 6735 through 6735.6 of the California Business and Professions Code, shall not be included on the As-Built plans. Such statements constitute non-compliance with Encroachment Permit requirements, and may result in the Department of Transportation retaining Performance Bonds or deposits until proper plans are submitted. Failure to comply may also result in denial of future permits, or a provision requiring a public agency to supply additional bonding.
- 23. PERMITS FOR RECORD PURPOSES ONLY: When work in the right of way is within an area under a Joint Use Agreement (JUA) or a Consent to Common Use Agreement (CCUA), a fee exempt permit is issued to the permittee for the purpose of providing a notice and record of work. The Permittee's prior rights shall be preserved without the intention of creating new or different rights or obligations. "Notice and Record Purposes Only" shall be stamped across the face of the permit.
- 24. BONDING: The permittee shall file bond(s), in advance, in the amount set by the Department. Failure to maintain bond(s) in full force and effect will result in the Department stopping of all work and revoking permit(s). Bonds are not required of public corporations or privately owned utilities, unless permittee failed to comply with the provision and conditions under a prior permit. The surety company is responsible for any latent defects as provided in California Code of Civil Procedures, Section 337.15. Local agency permittee shall comply with requirements established as follows: In recognition that project construction work done on State property will not be directly funded and paid by State, for the purpose of protecting stop notice claimants and the interests of State relative to successful project completion, the local agency permittee agrees to require the construction contractor furnish both a payment and performance bond in the local agency's name with both bonds complying with the requirements set forth in Section 3-1.02 of State's current Standard Specifications before performing any project construction work. The local agency permittee shall defend, indemnify, and hold harmless the State, its officers and employees from all project construction related claims by contractors and all

stop notice or mechanic's lien claimants. The local agency also agrees to remedy, in a timely manner and to State's satisfaction, any latent defects occurring as a result of the project construction work.

- 25. FUTURE MOVING OF INSTALLATIONS: Permittee understands and agrees to rearrange a permitted installation upon request by the Department, for State construction, reconstruction, or maintenance work on the highway. The permittee at his sole expense, unless under a prior agreement, JUA, or a CCUA, shall comply with said request.
- 26. ARCHAEOLOGICAL/HISTORICAL: If any archaeological or historical resources are revealed in the work vicinity, the permittee shall immediately stop work, notify the Department's representative, retain a qualified archaeologist who shall evaluate the site, and make recommendations to the Department representative regarding the continuance of work.
- 27. PREVAILING WAGES: Work performed by or under a permit may require permittee's contractors and subcontractors to pay appropriate prevailing wages as set by the Department of Industrial Relations. Inquiries or requests for interpretations relative to enforcement of prevailing wage requirements are directed to State of California Department of Industrial Relations, 525 Golden Gate Avenue, San Francisco, California 94102.
- 28. **RESPONSIBILITY FOR DAMAGE:** The State of California and all officers and employees thereof, including but not limited to the Director of Transportation and the Deputy Director, shall not be answerable or accountable in any manner for injury to or death of any person, including but not limited to the permittee, persons employed by the permittee, persons acting in behalf of the permittee, or for damage to property from any cause. The permittee shall be responsible for any liability imposed by law and for injuries to or death of any person, including but not limited to the permittee, persons employed by the permittee, persons acting in behalf of the permittee, or for damage to property arising out of work, or other activity permitted and done by the permittee under a permit, or arising out of the failure on the permittee's part to perform his obligations under any permit in respect to maintenance or any other obligations, or resulting from defects or obstructions, or from any cause whatsoever during the progress of the work, or other activity or at any subsequent time, work or other activity is being performed under the obligations provided by and contemplated by the permit.

The permittee shall indemnify and save harmless the State of California, all officers, employees, and State's contractors, thereof, including but not limited to the Director of Transportation and the Deputy Director, from all claims, suits or actions of every name, kind and description brought for or on account of injuries to or death of any person, including but not limited to the permittee, persons employed by the permittee, persons acting in behalf of the permittee and the public, or damage to property resulting from the performance of work or other activity under the permit, or arising out of the failure on the permittee's part to perform his obligations under any permit in respect to maintenance or any other obligations, or resulting from defects or obstructions, or from any cause whatsoever during the progress of the work, or other activity or at any subsequent time, work or other activity is being performed under the obligations provided by and contemplated by the permit, except as otherwise provided by statute.

The duty of the permittee to indemnify and save harmless includes the duties to defend as set forth in Section 2778 of the Civil Code. The permittee waives any and all rights to any type of expressed or implied indemnity against the State, its officers, employees, and State contractors. It is the intent of the parties that the permittee will indemnify and hold harmless the State, its officers, employees, and State's contractors, from any and all claims, suits or actions as set forth above regardless of the existence or degree of fault or negligence, whether active or passive, primary or secondary, on the part of the State, the permittee, persons employed by the permittee, or acting on behalf of the permittee.

For the purpose of this section, "State's contractors" shall include contractors and their subcontractors under contract to the State of California performing work within the limits of this permit.

- 29. NO PRECEDENT ESTABLISHED: This permit is issued with the understanding that it does not establish a precedent.
- 30. FEDERAL CIVIL RIGHTS REQUIREMENTS FOR PUBLIC ACCOMMODATION:

A. The permittee, for himself, his personal representative, successors in interest, and assigns as part of the consideration hereof, does hereby covenant and agree that:

1. No person on the grounds of race, color, or national origin shall be excluded from participation in, be denied the benefits of, or be otherwise subjected to discrimination in the use of said facilities.

2. That in connection with the construction of any improvements on said lands and the furnishings of services thereon, no discrimination shall be practiced in the selection and retention of first-tier subcontractors in the selection of second-tier subcontractors.

3. That such discrimination shall not be practiced against the public in their access to and use of the facilities and services provided for public accommodations (such as eating, sleeping, rest, recreation), and operation on, over, or under the space of the right of way.

4. That the permittee shall use the premises in compliance with all other requirements imposed pursuant to Title 15, Code of Federal Regulations, Commerce and Foreign Trade, Subtitle A. Office of the Secretary of Commerce, Part 8 (15 C.F.R. Part 8) and as said Regulations may be amended.

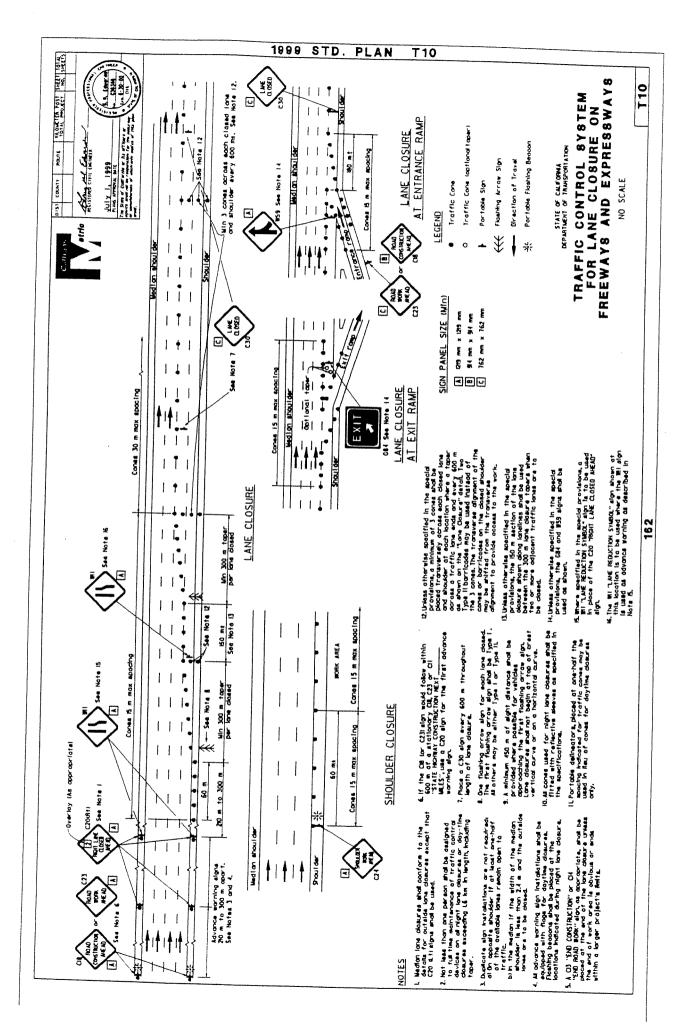
5.That in the event of breach of any of the above nondiscrimination covenants, the State shall have the right to terminate the permit and to re-enter and repossess said land and the land and the facilities thereon, and hold the same as if said permit had never been made or issued.

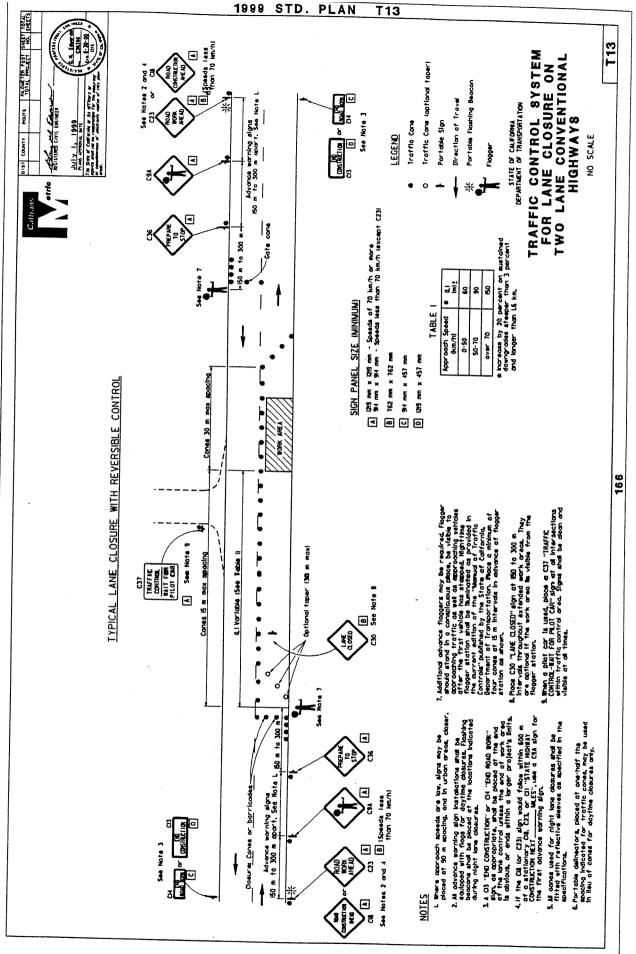
- **31. MAINTENANCE OF HIGHWAYS:** The permittee agrees, by acceptance of a permit, to properly maintain any encroachment. This assurance requires the permittee to provide inspection and repair any damage, at permittee's expense, to State facilities resulting from the encroachment.
- 32. SPECIAL EVENTS: In accordance with subdivision (a) of Streets and Highways Code Section 682.5, the Department of Transportation shall not be responsible for the conduct or operation of the permitted activity, and the applicant agrees to defend, indemnify, and hold harmless the State and the city or county against any and all claims arising out of any activity for which the permit is issued.

Permittee understands and agrees that it will comply with the obligations of Titles II and III of the Americans with Disabilities Act of 1990 in the conduct of the event, and further agrees to indemnify and save harmless the State of California, all officers and employees thereof, including but not limited to the Director of Transportation, from any claims or liability arising out of or by virtue of said Act.

33. PRIVATE USE OF RIGHT OF WAY: Highway right of way shall not be used for private purposes without compensation to the

State. The gifting of public property use and therefore public funds is prohibited under the California Constitution, Article 16.


- 34. FIELD WORK REIMBURSEMENT: Permittee shall reimburse State for field work performed on permittee's behalf to correct or remedy hazards or damaged facilities, or clear debris not attended to by the permittee.
- 35. NOTIFICATION OF DEPARTMENT AND TMC: The permittee shall notify the Department's representative and the Transportation Management Center (TMC) at least 7 days before initiating a lane closure or conducting an activity that may cause a traffic impact. A confirmation notification should occur 3 days before closure or other potential traffic impacts. In emergency situations when the corrective work or the emergency itself may affect traffic, TMC and the Department's representative shall be notified as soon as possible.
- 36. SUSPENSION OF TRAFFIC CONTROL OPERATION: The permittee, upon notification by the Department's representative, shall immediately suspend all lane closure operations and any operation that impedes the flow of traffic. All costs associated with this suspension shall be borne by the permittee.
- 37. UNDERGROUND SERVICE ALERT (USA) NOTIFICATION: Any excavation requires compliance with the provisions of Government Code Section 4216 et. seq., including, but not limited to notice to a regional notification center, such as Underground Service Alert (USA). The permittee shall provide notification at least 48 hours before performing any excavation work within the right of way.


Fax to:

1) Adolpho Gonzales @ 707-441-3914

2) for Humboldt and Del Norte Counties; Vernon Callahan @ 707-445-6317
3) for Mendocino and Lak Counties; Jerry Sheldon @ 707-463-4736

Carboaris			Permi		Time		
District 1			Phone	÷#			
Lane Closure Red	quest Forr	п					
Location & Date of (. .	For the	e week of			
County	Route	PM:	KP	Reporti	ng Week begins on F	riday	
From			- 64E	Lescap	tiveLocation	. Time-	
To.							
	Saturday	Sunday	. Monday	/ Tuesday	Wednesday	I. Thursday	
Direction:	# Existing			Lanes Closed:	••••	ich Lane(s):	
Types of Closure, Cl One-way Detour info available Cosure conforms with stimated Delay leason for estriction:	Established Tr	No E	(check all o plete Closure Detour Availab				
ermit #:				P	Cell Office ager FAX		
etails (Detour Informa TMS Equipmen	ation, CHP E	Break, Flagg	jers, Tempo	orary Signals F	stimated re-onen	data	

APPENDIX C

Boring Logs

ABBREVIATIONS / SYMBOLS USED IN BORING LOGS

GENERAL

- PID Photoionization Detector
- OVM Organic Vapor Meter
- ppm parts per million in air
- sfc csg surface casing USCS Unitied Soil Classification System
- NGVD National Geodetic Vertical Datum of 1929
- NAVD North American Vertical Datum of 1988
 - NA Not Analyzed

COLORS

v - very

- It light
- dk dark
- yel yellow/yellowish
- brn brown/brownish
- red-brn reddish brown
 - a.a. as above
- (10YR 4/6) Munsell notation (hue value/chroma)

DENSITY / STIFFNESS

Med - Medium

V - Very

GEOTECHNICAL

- L.L. Liquid Limit in percent
- P.I. Plasticity Index in percent
 - K Vertical Hydraulic Conductivity (permeability) in cm/sec

NOTE:

Field soil logging procedures were performed in accordance with ASTM D-2488-93 (Visual-Manual Procedure).

- slt slight or slightly
- bgl below ground level
- DTW depth to water

VF - Very Fine

SAND GRAIN SIZE

- F Fine
- Med Medium
- Crs Coarse

GEOLOGICAL CONTACTS

- - Observed Contact
- ---- Inferred Contact

MOISTURE CONTENT

✓ - Observed top of saturated soil interval

EXPLANATION FOR BORING LOGS

MFG, Inc. consulting scientists and engineers

G	MFG, Inc. consulting scientists and engineers						(Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California MFG Project No. 030229.4	Drilling Agency Drilling Method Sampler Type Sampling Metho Ground Elevatio	: : : bd	Stainle Brass I	ss stee ss Stee	Logged By I hand auger Reviewed I Drive Sampler and Slide Han	By : Christopher Spill, R.G.
epth in ⁻ eet	DESCRIPTION		USCS	Samples	Recovery (inches)	REMARKS	Date Started: July 8, 2003 Date Finished: July 8, 2003
0 - -	SILT: v dk grey: (10YR 3/1); some clay, organics and rootlets, moist.	few		1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample RP-1-0.0-0.5' at 0.0 to 0.5 ft bgl.	-Native Material
-	- black (10YR 2/1)			2	6	PID = 0 ppmv (0.5 - 1.0 feet bgl). Collected soil sample RP-1-0.5-1.0' at 0.5 to 1.0 ft bgl.	
1			ML	3	6	PID = 2.2 ppmv (1.0 - 1.5 feet bgl). Collected soil sample RP-1-1.0-1.5' at 1.0 to 1.5 ft bgl.	
-	- wet			4	6	PID = 2.2 ppmv (1.5 - 2.0 feet bgl). Collected soil sample RP-1-1.5-2.0' at 1.5 to 2.0 ft bgl.	
2	CLAYEY SAND: black (10YR 2/1); F sar clay, few organics and rootlets.	nd, some		5	6	PID =3.4 ppmv (2.0 - 2.5 feet bgl). Collected soil sample RP-1-2.0-2.5' at 2.0 to 2.5 ft bgl.	-Neat Cement
			SC				
-							

	5				(Page 1 of 1)		
Arcata Division Sawmill Drill Arcata, California Sam		Drilling Agency Drilling Method Sampler Type Sampling Metho	Sampler Type : Stainless Steel Drive Sampler and Slide Ha				By : Christopher Spill, R.G.
	MFG Project No. 030229.4	Ground Elevation	on	: Not Su	rveyed		
Depth in Feet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS	Date Started: July 8, 2003 Date Finished: July 8, 2003
-0 - - -	SAND WITH SILT: v dk greyish brn (10Y sand, few organics and rootlets, moist - wet	'R 3/2); F		1	6	$\label{eq:PID} \begin{array}{l} \text{PID} = 1.1 \text{ ppmv} \ (0.0 - 0.5 \\ \text{feet bgl}). \ \text{Collected soil} \\ \text{sample RP-1-0.0-0.5' at } 0.0 \\ \text{to } 0.5 \ \text{ft bgl}. \end{array}$	■ Native Material
-				2	6	PID = 1.1 ppmv (0.5 - 1.0 feet bgl). Collected soil sample RP-2-0.5-1.0' at 0.5 to 1.0 ft bgl.	
- 1- - -			SP- SM	3	6	PID = 1.1 ppmv (1.0 - 1.5 feet bgl). Collected soil sample RP-2-1.0-1.5' at 1.0 to 1.5 ft bgl.	
-				4	6	PID = 1.1 ppmv (1.5 - 2.0 feet bgl). Collected soil sample RP-2-1.5-2.0' at 1.5 to 2.0 ft bgl.	-Neat Cement
- 2 - -				5	6	PID = 1.1 ppmv (2.0 - 2.5 feet bgl). Collected soil sample RP-2-2.0-2.5' at 2.0 to 2.5 ft bgl.	
- - - - - - - - - - - - - - - - - - -	NOTES: 1. PID calibrated using 96 ppmv isobuty Background ambient air=0.0-0.6 ppmv. 2. Boring augered to a depth of 2.5 ft bg 3. Collected groundwater sample RP-2- peristaltic pump and polyethylene tubing 4. Boring was backfilled with neat cements below the same set of the same	l. GW using a	<u> </u>		<u> </u>		

	MFG, Inc.				LO	g of Boring D	
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California MFG Project No. 030229.4	Drilling Agency Drilling Method Sampler Type Sampling Metho Ground Elevatio	i : i nod :		ss stee ss Stee Liners	Logged By I hand auger Reviewed E I Drive Sampler and Slide Ham	3y : Christopher Spill, R.G.
Depth in Feet	DESCRIPTION		USCS	Samples	Recovery (inches)	REMARKS	Date Started: July 22, 2003 Date Finished: July 22, 2003
0	SILTY SAND: v dk grey (10YR 3/1); F sa gravel, some organics, moist.	Ind, little F	SM		6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-1-0.0-0.5' at 0.0 to 0.5 ft bgl.	Baserock
2	SANDY SILT: dk grey (10YR 4/1); some wet.	F sand,	ML	-			Bentonite
- - - 3 - - - - - - - -	NOTES: 1. PID calibrated using 96 ppmv isobutyl Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 2.5 ft bgl 3. Collected groundwater sample D6-1-C peristaltic pump and polyethylene tubing 4. Boring was backfilled with bentonite cl 3/4-inch baserock.	l. GW using a _{I.}					
- - - 4-							

	MFG, Inc.				LO	g of Boring De	6-2 (Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California MFG Project No. 030229.4	Drilling Agency Drilling Method Sampler Type Sampling Metho Ground Elevatio	l : i nod :		ess stee ess Stee Liners	Logged By I hand auger Reviewed B I Drive Sampler and Slide Hami	3y : Christopher Spill, R.G.
Depth in Feet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS	Date Started: July 22, 2003 Date Finished: July 22, 2003
0	SANDY SILT: v dk grey (10YR 3/1); F sa organics, moist.	Ind, some	ML		6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-2-0.0-0.5' at 0.0 to 0.5 ft bgl.	Baserock
2	SILTY SAND: dk grey (10YR 4/1); F sar wet.	าd, some silt,	SM				Bentonite
	NOTES: 1. PID calibrated using 96 ppmv isobutyl Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 2.5 ft bgl 3. Collected groundwater sample D6-2-C peristaltic pump and polyethylene tubing 4. Boring was backfilled with bentonite cl 3/4-inch baserock.	l. GW using a J.					
 4							

C	consulting scientists and engineers							(Page 1 of 1)
Sierra Pacific Industries Drilling Ager Arcata Division Sawmill Drilling Meth Arcata, California Sampler Typ Sampling Meth MFG Project No. 030229.4 Ground Elev			: : od :	ged By riewed By de Hammer				
Pepth in Feet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS	C	Date Started: July 22, 2003 Date Finished: July 22, 200
0 - - - - - - - - - - - - - - - - -	SANDY SILT: v dk grey (10YR 3/1); F sa organics, moist.	and, some	ML	1	6	PID = 0 ppmv (0.0 - 0.1 feet bgl). Collected so sample D6-3-0.0-0.5' a 0.0 to 0.5 ft bgl.	il	Baserock
	SILTY SAND: dk grey (10YR 4/1); F sar wet.	nd, some silt,	SM	-			.	
2	SAND: dk grey (10YR 4/1); F sand.		SP	-				Bentonite

3-

4-

NOTES:
1. PID calibrated using 96 ppmv isobutylene.
Background ambient air = 0.0 ppmv.
2. Boring augered to a depth of 2.5 ft bgl.
3. Collected groundwater sample D6-3-GW using a peristaltic pump and polyethylene tubing.
4. Boring was backfilled with bentonite chips and 3/4-inch baserock.

C	consulting scientists and engineers							(Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California MFG Project No. 030229.4	Drilling Agency Drilling Method Sampler Type Sampling Meth Ground Elevati	i od		ss stee ss Stee Liners	-	gged By viewed By ide Hammer	: Julie Mills : Christopher Spill, R.G
epth in eet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS		Date Started: July 22, 2003 Date Finished: July 22, 200
0	SANDY SILT: v dk grey (10YR 3/1); F sa organics, moist.	and, some	ML	1	6	PID = 0 ppmv (0.0 - 0. feet bgl). Collected sc sample D6-4-0.0-0.5' a 0.0 to 0.5 ft bgl.	pil at	Baserock
	SILTY SAND: dk grey (10YR 4/1); F sar wet.	nd, some silt,	SM	-			_	
2	SAND: dk grey (10YR 4/1); F sand.		SP					Bentonite

NOTES:
1. PID calibrated using 96 ppmv isobutylene.
Background ambient air = 0.0 ppmv.
2. Boring augered to a depth of 2.5 ft bgl.
3. Collected groundwater sample D6-4-GW using a peristaltic pump and polyethylene tubing.
4. Boring was backfilled with bentonite chips and 3/4-inch baserock.

3-

0	consulting scientists and engineers						(Page 1 of 1)
Arcata Division Sawmill E Arcata, California		Drilling Agency Drilling Method Sampler Type Sampling Meth Ground Elevati	l : iod :	: Julie Mills By : Christopher Spill, R.G. nmer			
epth in eet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS	Date Started: July 22, 2003 Date Finished: July 22, 200
0-	SILT: v dk grey (10YR 3/1); some organi	cs, moist.	ML			PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil	
-	SILTY SAND: v dk grey (10YR 3/1); F sand, so silt, moist.	and, some	SM	1	6	sample D6-5-0.0-0.5' at 0.0 to 0.5 ft bgl.	
- - - 1 - - - -	SANDY SILT: v dk grey (10YR 3/1); F sa organics, moist.	and, some	ML				Baserock
	SILTY SAND: dk grey (10YR 4/1); F san wet.	d, some silt,	SM	-			
2	SAND: dk grey (10YR 4/1); F sand.		SP				Bentonite

2. Boring augered to a depth of 2.5 ft bgl.
3. Collected groundwater sample D6-5-GW using a peristaltic pump and polyethylene tubing.
4. Boring was backfilled with bentonite chips and 3/4-inch baserock.

3-

0	consulting scientists and engineers						(Page 1 of 1)
Sierra Pacific Industries Drilling Ager Arcata Division Sawmill Drilling Mett Arcata, California Sampler Typ Sampling M MFG Project No. 030229.4 Ground Elev			I : iod :		ss stee ss Stee Liners	Logged By I hand auger Reviewed I I Drive Sampler and Slide Ham	By : Christopher Spill, R.G.
Depth in Feet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS	Date Started: July 22, 2003 Date Finished: July 22, 2003
0 	SILT: v dk grey (10YR 3/1); some organi SILTY SAND: v dk grey (10YR 3/1); F sa silt, moist.		ML SM	1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-6-0.0-0.5' at 0.0 to 0.5 ft bgl.	
- - - 1- - - -	SANDY SILT: v dk grey (10YR 3/1); F sa organics, moist.	ind, some	ML				Baserock
-	SILTY SAND: dk grey (10YR 4/1); F san wet.	d, some silt,	SM				
2	SAND: dk grey (10YR 4/1); F sand.		SP				Bentonite

2. Boring augeled to a depth of 2.5 it bg.
3. Collected groundwater sample D6-6-GW using a peristaltic pump and polyethylene tubing.
4. Boring was backfilled with bentonite chips and 3/4-inch baserock.

3-

C	consulting scientists and engineers						(Page 1 of 1)	
Arcata Division Sawmill Dr Arcata, California Sa Sa		Drilling Agency : MFG, Inc. Drilling Method : Stainless steel hand auger Sampler Type : Stainless Steel Drive Sampler and Sampling Method : Brass Liners Ground Elevation : Not Surveyed				I hand auger Reviewed	Logged By : Julie Mills Reviewed By : Christopher Spill, R.G I Slide Hammer	
pth n eet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS	Date Started: July 22, 2003 Date Finished: July 22, 200	
0-	SILT: v dk grey (10YR 3/1); some organi	cs, moist.	ML			PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil		
-	SILTY SAND: v dk grey (10YR 3/1); F sa silt, moist.	ind, some	SM	1	6	sample D6-7-0.0-0.5' at 0.0 to 0.5 ft bgl.		
- - - 1 - - - -	SANDY SILT: v dk grey (10YR 3/1); F sa organics, moist.	ind, some	ML				Baserock	
	SILTY SAND: dk grey (10YR 4/1); F san wet.	d, some silt,	SM					
2	SAND: dk grey (10YR 4/1); F sand.		SP	-			Bentonite	

2. Boring augered to a depth of 2.5 ft bgl.
3. Collected groundwater sample D6-7-GW using a peristaltic pump and polyethylene tubing.
4. Boring was backfilled with bentonite chips and 3/4-inch baserock.

3-

(consulting scientists and engineers						(Page 1 of 1)
	Sierra Pacific Industries Drilli Arcata Division Sawmill Drilli Arcata, California Sam Sam		i : iod :	Stainle Brass I	ess stee ess Stee Liners	Logged By I hand auger Reviewed I I Drive Sampler and Slide Harr	By : Christopher Spill, R.G.
	MFG Project No. 030229.4	Ground Elevati	on :	Not Su	irveyed		
Depth in Feet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS	Date Started: July 23, 2003 Date Finished: July 23, 200
0- - -	SILT: v dk grey (10YR 3/1); some organi	cs, moist.	ML	1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-8-0.0-0.5' at	
-	SILTY SAND: v dk grey (10YR 3/1); F sand, some silt, moist.				0	0.0 to 0.5 ft bgl.	
- - - 1- - - -	SANDY SILT: v dk grey (10YR 3/1); F sa organics, moist.	ind, some	ML				Baserock
-	SILTY SAND: dk grey (10YR 4/1); F san wet.	d, some silt,	SM				
2	SAND: dk grey (10YR 4/1); F sand.		SP				Bentonite

2. Boring augeled to a depth of 2.5 it bg.
3. Collected groundwater sample D6-8-GW using a peristaltic pump and polyethylene tubing.
4. Boring was backfilled with bentonite chips and 3/4-inch baserock.

3-

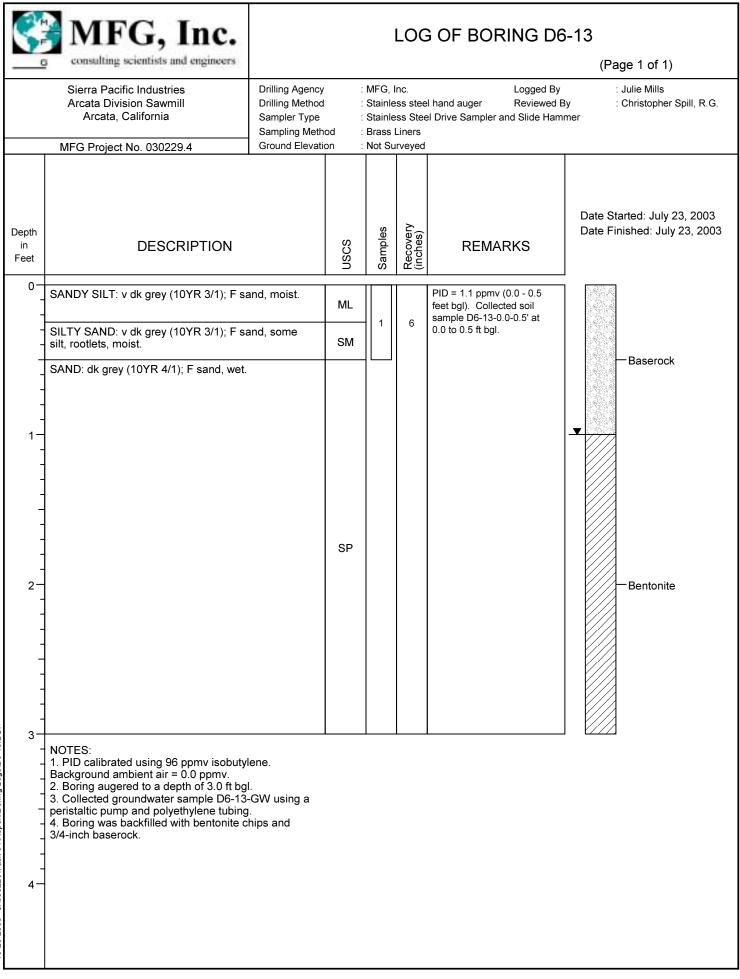
(MFG, Inc.						(Page 1 of 1)
Sierra Pacific Industries Drilling A Arcata Division Sawmill Drilling M Arcata, California Sampler Sampling MFG Project No. 030229.4 Ground			: od :		ess stee ess Stee Liners	Logged By I hand auger Reviewed I I Drive Sampler and Slide Harr	3y : Christopher Spill, R.G.
Depth in Feet	DESCRIPTION		NSCS	Samples	Recovery (inches)	REMARKS	Date Started: July 23, 2003 Date Finished: July 23, 2003
0-+	SILT: v dk grey (10YR 3/1); some organics, moist. SILTY SAND: v dk grey (10YR 3/1); F sand, some silt, moist.			- 1	6	PID = 0 ppmv (0.0 - 0.5) feet bgl). Collected soil sample D6-9-0.0-0.5' at 0.0 to 0.5 ft bgl.	
- - - 1- - - -	SANDY SILT: v dk grey (10YR 3/1); F sa organics, moist.	ind, some	ML				Baserock
- - -	SILTY SAND: dk grey (10YR 4/1); F san wet.	d, some silt,	SM				
2	SAND: dk grey (10YR 4/1); F sand.		SP				Bentonite

2. Boring augeled to a depth of 2.5 it bg.
3. Collected groundwater sample D6-9-GW using a peristaltic pump and polyethylene tubing.
4. Boring was backfilled with bentonite chips and 3/4-inch baserock.

3-

0	consulting scientists and engineers							(Page 1 of 1)
Arcata Division Sawmill Drilling M Arcata, California Sampler T Sampling		Drilling Agency Drilling Method Sampler Type Sampling Meth Ground Elevati	: : od :	Stainle Brass I	ss stee ss Stee Liners	l hand auger el Drive Sampler a	Logged By Reviewed By and Slide Hamm	
	MFG Project No. 030229.4	Ground Elevati	on :	Not Su	rveyed			Data Startadi July 22, 2002
epth in eet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMA	RKS	Date Started: July 23, 2003 Date Finished: July 23, 200
0	SILT: v dk grey (10YR 3/1); few F sand, organics, moist.		ML	1	6	PID = 0 ppmv (0 feet bgl). Collect sample D6-10-0 0.0 to 0.5 ft bgl.	cted soil 0.0-0.5' at	Baserock
- - 2-	SAND W/ SILT: dk grey (10YR 4/1); F sa wet.	and, few silt,	SP- SM					Bentonite
_	SAND: dk grey (10YR 4/1); F sand.		SP	-				

3-


4-

NOTES: 1. PID calibrated using 96 ppmv isobutylene. Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 2.5 ft bgl. 3. Collected groundwater sample D6-10-GW using a peristaltic pump and polyethylene tubing. 4. Boring was backfilled with bentonite chips and 3/4-inch baserock.

5	MFG, Inc.				LOC	GF BORING DE	5-11 (Page 1 of 1)		
	Sierra Pacific Industries Drilling Agency Arcata Division Sawmill Drilling Method Arcata, California Sampler Type Sampling Method		Method : Stainless steel hand auger Reviewed By : Christopher Spill, r Type : Stainless Steel Drive Sampler and Slide Hammer						
	MFG Project No. 030229.4	Ground Elevation	on :	Not Su	rveyed				
Depth in Feet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS	Date Started: July 23, 2003 Date Finished: July 23, 2003		
0 	SANDY SILT: v dk grey (10YR 3/1); F sa organics, moist.	and, some		1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-11-0.0-0.5' at 0.0 to 0.5 ft bgl.			
- - - - - - - - - -	- v dk grey (5Y 3/1). - black (10YR 2/1), rootlets.		ML				Baserock		
2 - - -	SILTY SAND: dk grey (10YR 4/1); F san	d, wet.	SM	_			Bentonite		
- - - 3 - - - - - -	NOTES: 1. PID calibrated using 96 ppmv isobuty Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 2.5 ft bg 3. Collected groundwater sample D6-11. peristaltic pump and polyethylene tubing 4. Boring was backfilled with bentonite c 3/4-inch baserock.	-GW using a					1 2 2 2 2 3		
- - 4-									

0	consulting scientists and engineers						(Page 1 of 1)	
Arcata Division Sawmill Drilling Met Arcata, California Sampler Ty		Drilling Agency Drilling Method Sampler Type Sampling Meth	rilling Method : Stainless steel hand auger Reviewed By : Christopher S ampler Type : Stainless Steel Drive Sampler and Slide Hammer					
	MFG Project No. 030229.4	Ground Elevati	on :	Not Su	irveyed			
oth 1 et	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS	Date Started: July 23, 2003 Date Finished: July 23, 200	
0-+	SILT: v dk grey (10YR 3/1); some organics, moist.					PID = 0.7 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-12-0.0-0.5' at		
-	SILTY SAND: v dk grey (10YR 3/1); F sand, some silt, moist.			1	6	0.0 to 0.5 ft bgl.		
- - - 1 - - - - -	SANDY SILT: v dk grey (10YR 3/1); F sa organics, moist.	ind, some	ML				Baserock	
-	SILTY SAND: dk grey (10YR 4/1); F san wet.	d, some silt,	SM					
2	SAND: dk grey (10YR 4/1); F sand.		SP				Bentonite	

 4. Boring was backfilled with bentonite chips and 3/4-inch baserock.

10-20-2003 J:\030229\Task 04\Report\Boring Logs\D6-13.BOR

ę	MFG, Inc.			LOG OF BORING D6-14 (Page 1 of 1)						
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California Drilling Agency Drilling Method Sampler Type Sampling Meth		Agency : MFG, Inc. Logged By : Julie Mills Method : Stainless steel hand auger Reviewed By : Christopher Spill r Type : Stainless Steel Drive Sampler and Slide Hammer							
	MFG Project No. 030229.4	Ground Elevation	on :	Not Su	rveyed					
Dept in Fee	DESCRIPTION		NSCS	Samples	Recovery (inches)	REMARKS	Date Started: July 23, 2003 Date Finished: July 23, 2003			
	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	and, some	SM	1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-14-0.0-0.5' at 0.0 to 0.5 ft bgl.	Bentonite			
gs\D6-14.BOR	- 4. Boring was backfilled with bentonite c	l. -GW using a ı.								
10-20-2003 J:\030229\Task 04\ReportBoring Logs\D6-14.BOR										

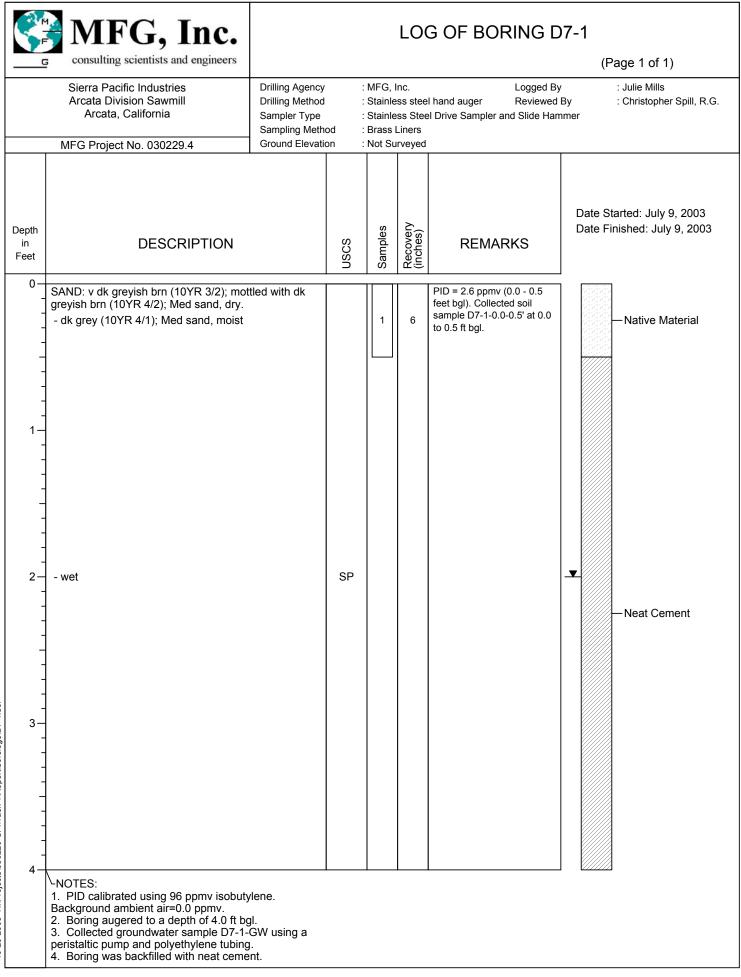
	MFG, Inc.	LOG OF BORING D6-15 (Page 1 of 1)							
	Sierra Pacific Industries Drilling Agency Arcata Division Sawmill Drilling Method Arcata, California Sampler Type Sampling Method		cy : MFG, Inc. Logged By : Julie Mills od : Stainless steel hand auger Reviewed By : Christopher Spill, R.G. e : Stainless Steel Drive Sampler and Slide Hammer						
	MFG Project No. 030229.4	Ground Elevation	on :	Not Su	irveyed				
Depth in Feet	DESCRIPTION		USCS	Samples	Recovery (inches)	REMARKS	Date Started: July 23, 2003 Date Finished: July 23, 2003		
0- - - - - - - - - - - - - - - - - - -	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	and, some	SM	1	6	PID = 1.1 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-15-0.0-0.5' at 0.0 to 0.5 ft bgl.	-Bentonite		
2	NOTES: 1. PID calibrated using 96 ppmv isobutylene. Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 1.5 ft bgl. 3. Collected groundwater sample D6-15-GW using a peristaltic pump and polyethylene tubing. 4. Boring was backfilled with bentonite chips.								
10-20-2003 J:030229\Task 04\ReportBoring Logs\D6-15.BOR									
10-20-2003 J:									

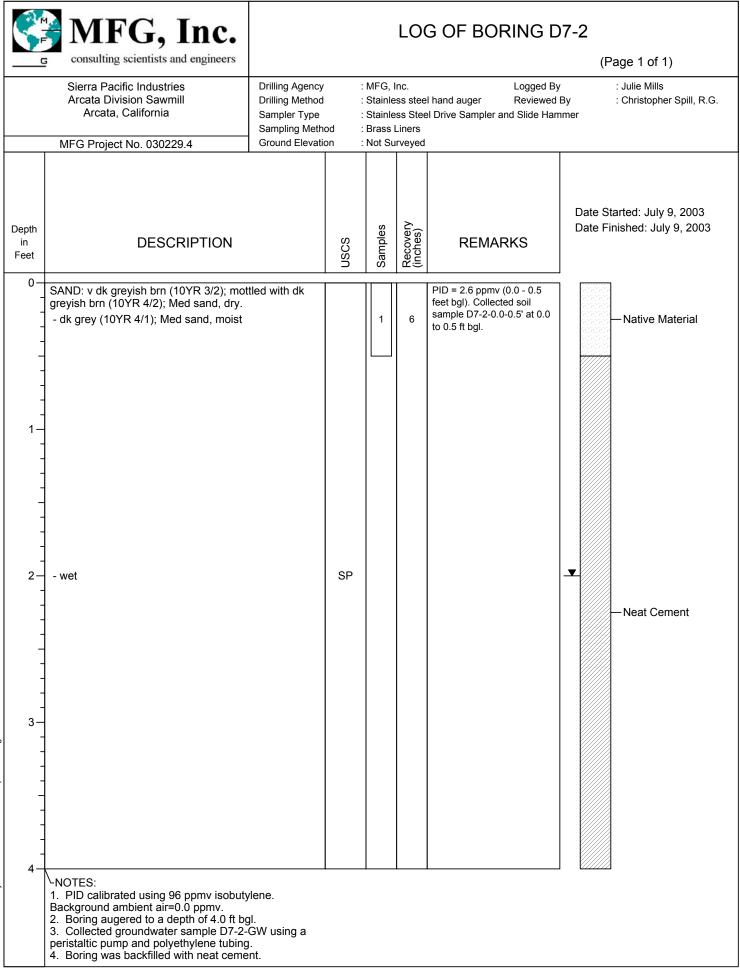
	MFG, Inc.				LOC	G OF BORING D6	-16 (Page 1 of 1)	
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: : od :	Stainle Brass	ess stee ess Stee Liners	Logged By I hand auger Reviewed B I Drive Sampler and Slide Hamr		
	MFG Project No. 030229.4	Ground Elevation	on :	Not Su	irveyed			
Depth in Feet	DESCRIPTION		USCS	Samples	Recovery (inches)	REMARKS	Date Started: July 23, 2003 Date Finished: July 23, 2003	
0	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	and, some	SM	1	6	PID = 0.2 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-16-0.0-0.5' at 0.0 to 0.5 ft bgl.	-Bentonite	
	NOTES: 1. PID calibrated using 96 ppmv isobuty Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 1.5 ft bg 3. Collected groundwater sample D6-16 peristaltic pump and polyethylene tubing 4. Boring was backfilled with bentonite c	l. -GW using a						
ring Logs/D6-16.BOR								
10-20-2003 J:030229/Task 04/ReportBoring Logs/D6-16.BOR								

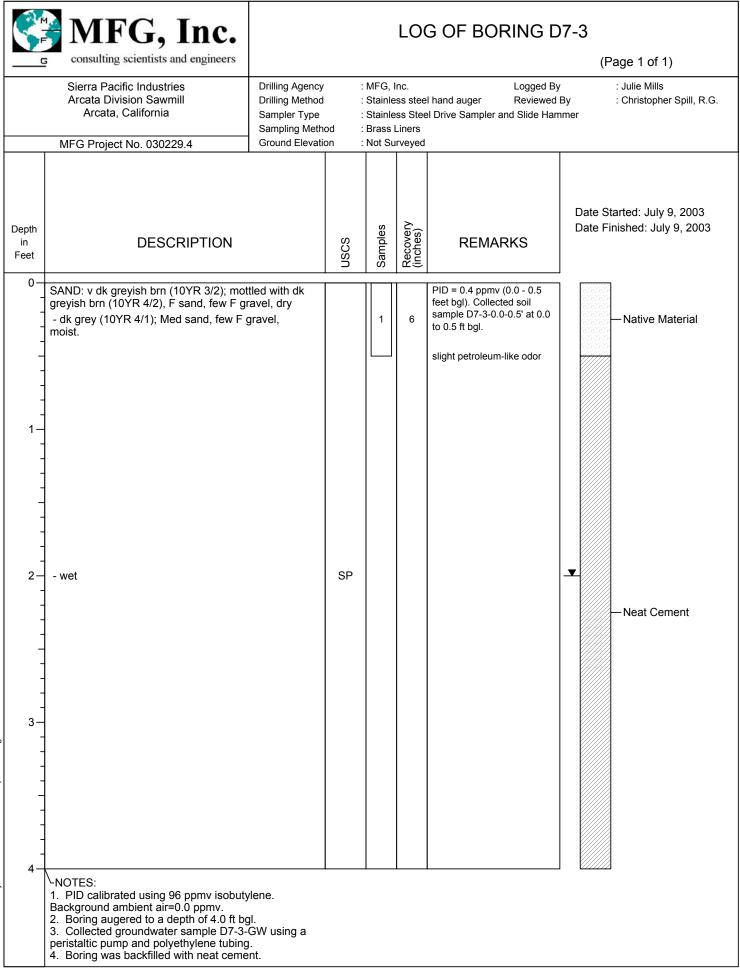
Ś	MFG, Inc.				LOC	G OF BORING D6	-17 (Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	:		ss stee ss Stee	Logged By I hand auger Reviewed B I Drive Sampler and Slide Hamr	: Julie Mills y : Christopher Spill, R.G.
	MFG Project No. 030229.4	Ground Elevation	on :	Not Su	rveyed	I I	
Depth in Feet	DESCRIPTION		nscs		Recovery (inches)	REMARKS	Date Started: July 23, 2003 Date Finished: July 23, 2003
0- - - - - - - - - - - - - - - - - - -	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	and, some	SM	1	6	PID = 0.2 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-17-0.0-0.5' at 0.0 to 0.5 ft bgl.	Bentonite
eport(Boring Logs(D6-17.BOR	NOTES: 1. PID calibrated using 96 ppmv isobuty Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 1.5 ft bg 3. Collected groundwater sample D6-17 peristaltic pump and polyethylene tubing 4. Boring was backfilled with bentonite c	l. -GW using a					
10-20-2003 J:\030229\Task 04\ReportBoring Logs\D6-17.BOR							

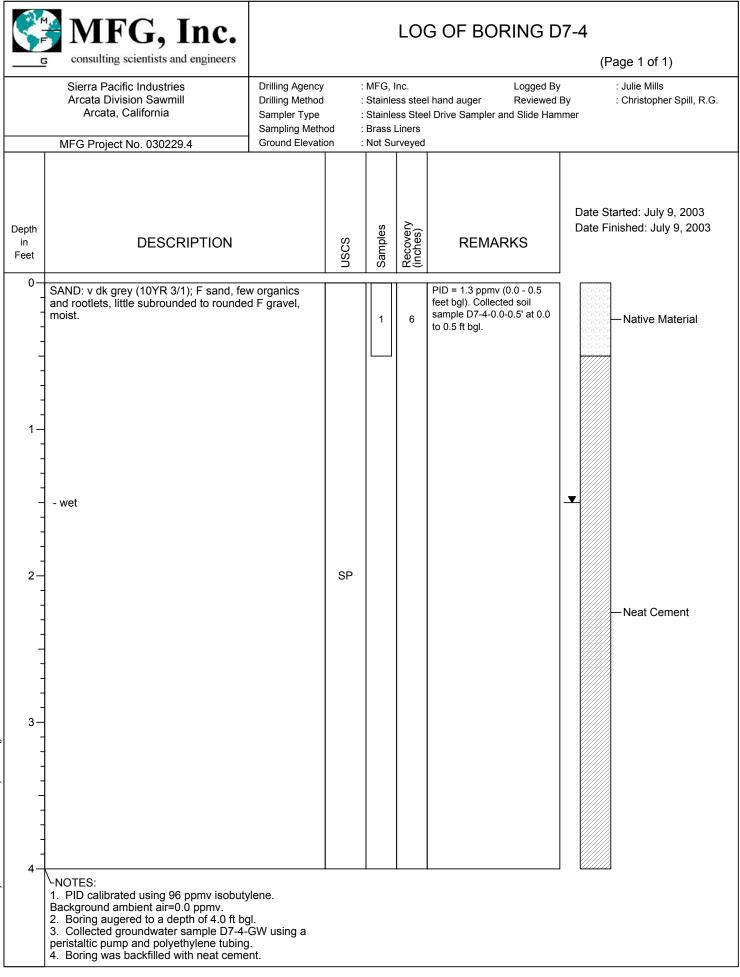
	MFG, Inc.				LOC	G OF BORING D6	-18 (Page 1 of 1)	
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: : od :	Stainle Brass	ess stee ess Stee Liners	Logged By I hand auger Reviewed By I Drive Sampler and Slide Hamn		
	MFG Project No. 030229.4	Ground Elevation	on :	Not Su	irveyed			
Depth in Feet	DESCRIPTION		USCS	Samples	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003	
0	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	and, some	SM	1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-18-0.0-0.5' at 0.0 to 0.5 ft bgl.	-Bentonite	
	NOTES: 1. PID calibrated using 96 ppmv isobutyl Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 1.5 ft bg 3. Collected groundwater sample D6-18. peristaltic pump and polyethylene tubing 4. Boring was backfilled with bentonite c	-GW using a						
gs/D6-18.BOR 								
10-20-2003 J:\030229\Task 04\ReportBoring Logs\D6-18.BOR								

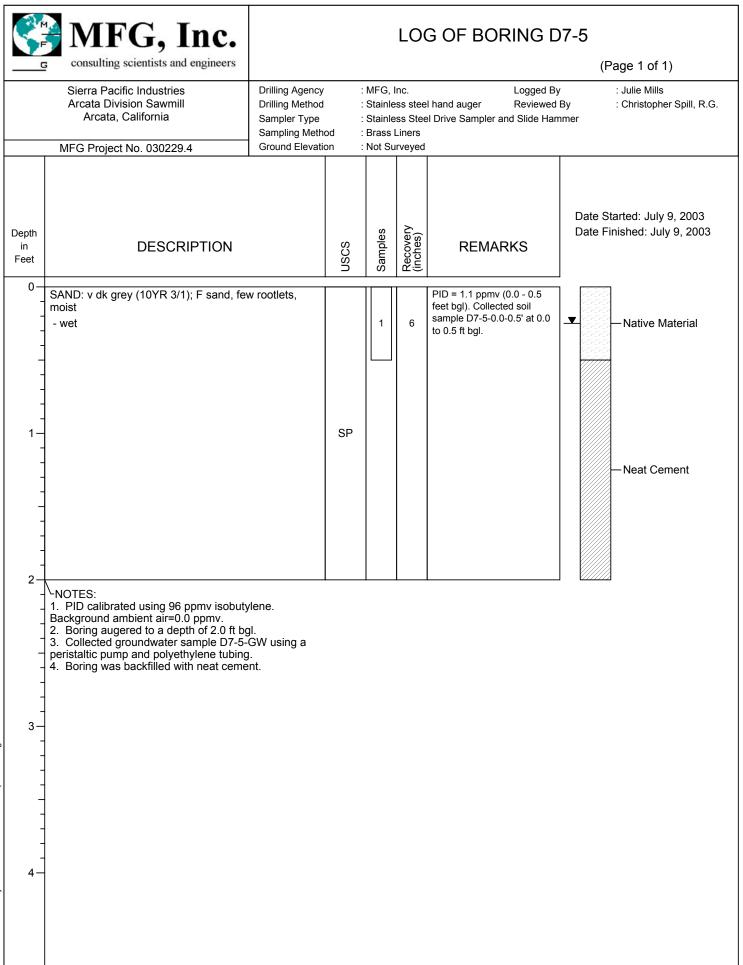
	MFG, Inc.				LOC	G OF BORING D6	-19 (Page 1 of 1)	
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: : od :	Stainle Brass	ess stee ess Stee Liners	Logged By I hand auger Reviewed By I Drive Sampler and Slide Hamn		
	MFG Project No. 030229.4	Ground Elevation	on :	Not Su	irveyed			
Depth in Feet	DESCRIPTION		USCS	Samples	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003	
0	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	and, some	SM	1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-19-0.0-0.5' at 0.0 to 0.5 ft bgl.	▼ - Bentonite	
	NOTES: 1. PID calibrated using 96 ppmv isobuty Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 1.5 ft bg 3. Collected groundwater sample D6-19	-GW using a						
2- - - - - - - - - - - - - - - - - - -	peristaltic pump and polyethylene tubing 4. Boring was backfilled with bentonite c	hips.						
10-20-2003 J:\030229\Task 04\ReportBoring Logs\D6-19.BOR								
- 4								

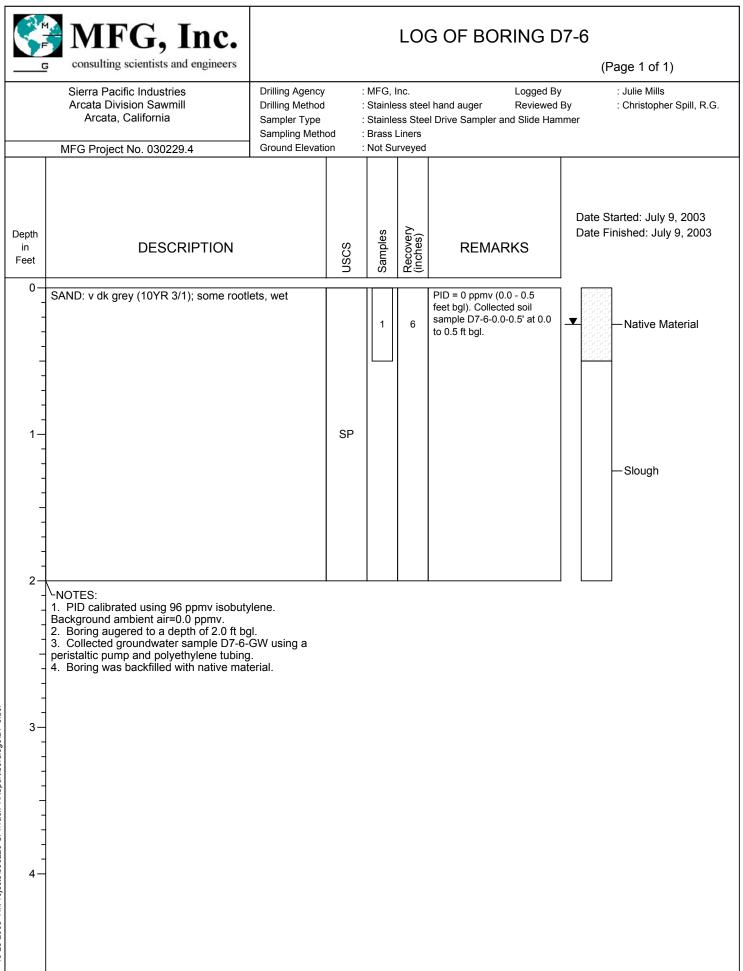

	MFG, Inc.				LOC	G OF BORING D6	-20 (Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Method		Stainle Brass I	ss stee ss Stee Liners	Logged By I hand auger Reviewed B I Drive Sampler and Slide Hamr	
	MFG Project No. 030229.4	Ground Elevation	on :	Not Su	rveyed		
Depth in Feet	DESCRIPTION		nscs	Samples	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003
-0 - - - - - - - - -	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	ind, some	SM	1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-20-0.0-0.5' at 0.0 to 0.5 ft bgl.	Bentonite
- 1- - - - -	NOTES:						
- - 2- - -	 PID calibrated using 96 ppmv isobutyl Background ambient air = 0.0 ppmv. Boring augered to a depth of 1.5 ft bgl Collected groundwater sample D6-20- peristaltic pump and polyethylene tubing Boring was backfilled with bentonite cl 	GW using a					
- - - - 3-							
- - - - - - -							
4-							

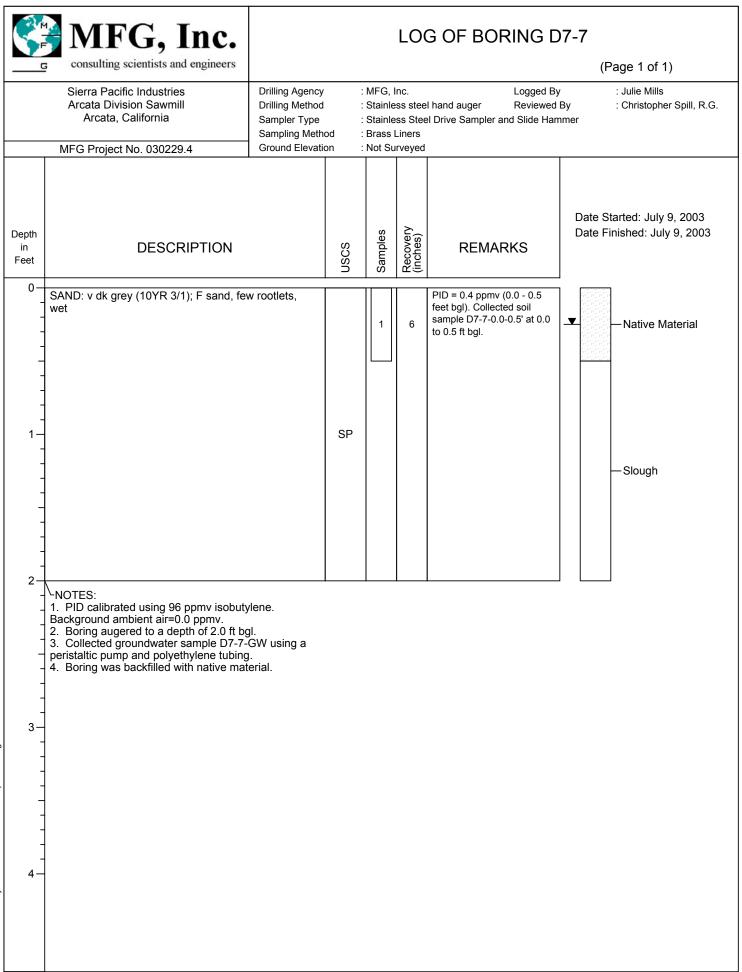

	MFG, Inc.				LOC	G OF BORING D6	-21 (Page 1 of 1)	
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: : od :	Stainle Brass	ess stee ess Stee Liners	Logged By I hand auger Reviewed By I Drive Sampler and Slide Hamn		
	MFG Project No. 030229.4	Ground Elevation	on :	Not Su	irveyed	Г Г Г		
Depth in Feet	DESCRIPTION		NSCS	Samples	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003	
0	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	and, some	SM	1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-21-0.0-0.5' at 0.0 to 0.5 ft bgl.	-Bentonite	
1- - - - - - - - - - - - - - - - - - -	NOTES: 1. PID calibrated using 96 ppmv isobuty Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 1.5 ft bg 3. Collected groundwater sample D6-21	Ι.						
2-	4. Boring was backfilled with bentonite c							
ng Logs/D6-21.BOR								
10-20-2003 J:\030229\Task 04\ReportBoring Logs\D6-21.BOR								
10-20-2003 J:\05								

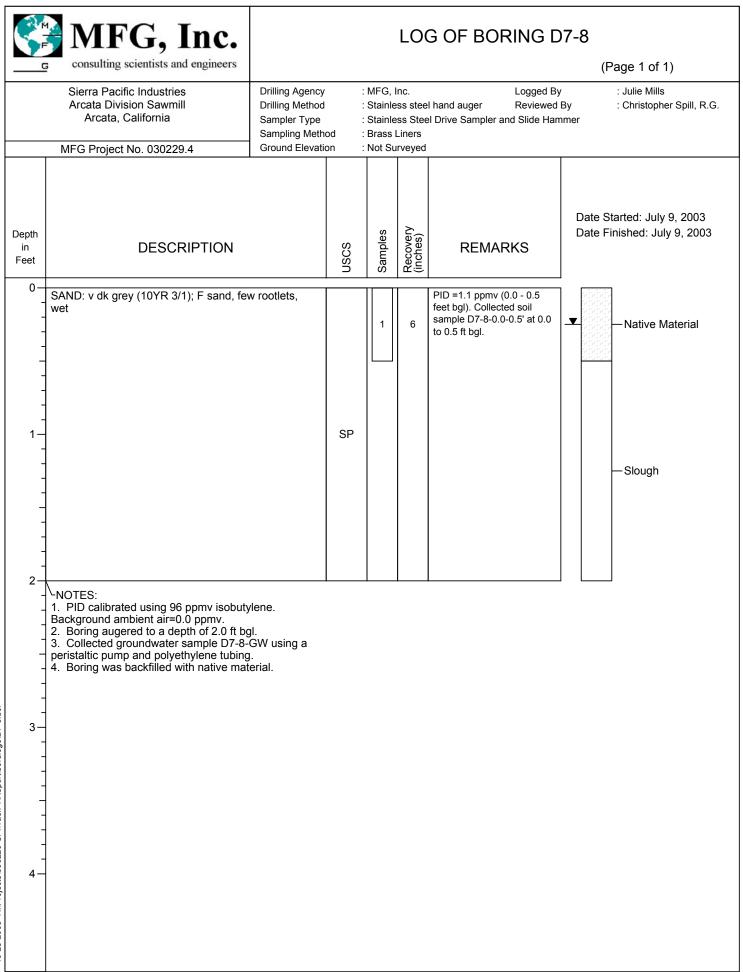

	MFG, Inc.				LOC	G OF BORING D6	-22 (Page 1 of 1)	
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Meth	: : od :	Stainle Brass	ess stee ess Stee Liners	Logged By I hand auger Reviewed By I Drive Sampler and Slide Hamm		
	MFG Project No. 030229.4	Ground Elevati	on :	Not Su	irveyed			
Depth in Feet	DESCRIPTION		USCS	Samples	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003	
0	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	and, some	SM	1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-22-0.0-0.5' at 0.0 to 0.5 ft bgl.	-Bentonite	
1- - - - - -	NOTES: 1. PID calibrated using 96 ppmv isobuty	lene.						
2-	Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 1.5 ft bg 3. Collected groundwater sample D6-22 peristaltic pump and polyethylene tubing 4. Boring was backfilled with bentonite c	-GW using a						
-								
10-20-2003 J:030229/Task 04/Report/Boring Logs/D6-22 BOR								
10-20-2003 J:\030229\Ta 								

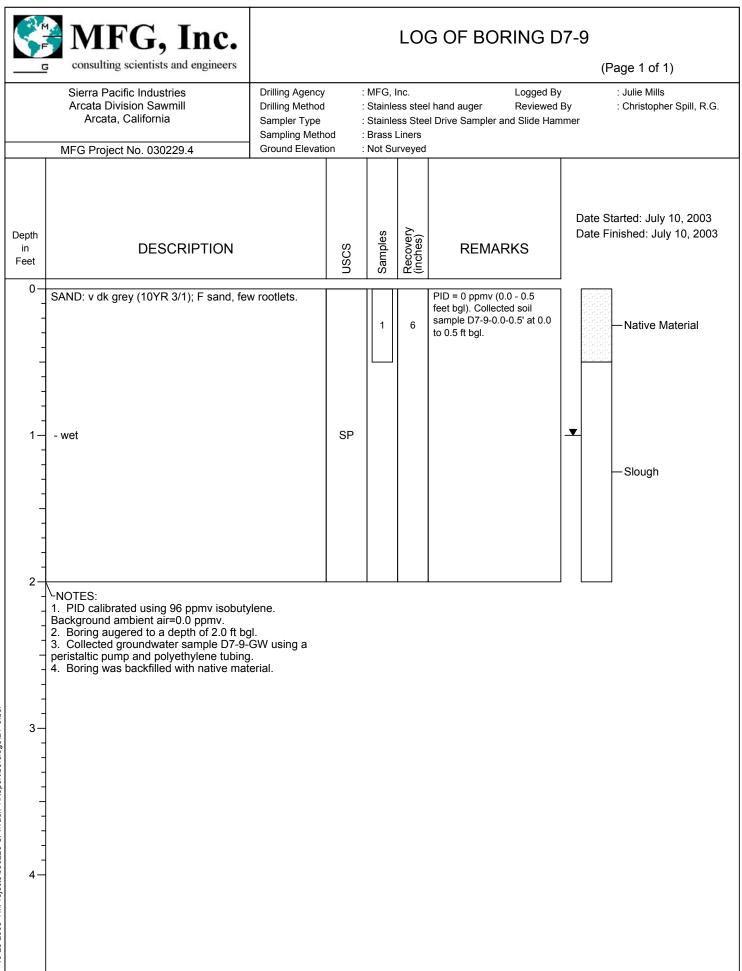

	MFG, Inc.				LOC	G OF BORING D6	-23 (Page 1 of 1)	
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Meth	: : od :	Stainle Brass	ess stee ess Stee Liners	Logged By I hand auger Reviewed By I Drive Sampler and Slide Hamn		
	MFG Project No. 030229.4	Ground Elevati	on :	Not Su	rveyed			
Depth in Feet	DESCRIPTION		USCS	Samples	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003	
0	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	and, some	SM	1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-23-0.0-0.5' at 0.0 to 0.5 ft bgl.	Bentonite	
1- - - - - - -	NOTES: 1. PID calibrated using 96 ppmv isobuty	ene.						
2-	Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 1.5 ft bg 3. Collected groundwater sample D6-23 peristaltic pump and polyethylene tubing 4. Boring was backfilled with bentonite c	-GW using a						
-								
g Logs\D6-23.BOR								
NTask 04\Report\Borin _t								
10-20-2003 J:030229\Task 04\ReportBoring Logs\D6-23.BOR								

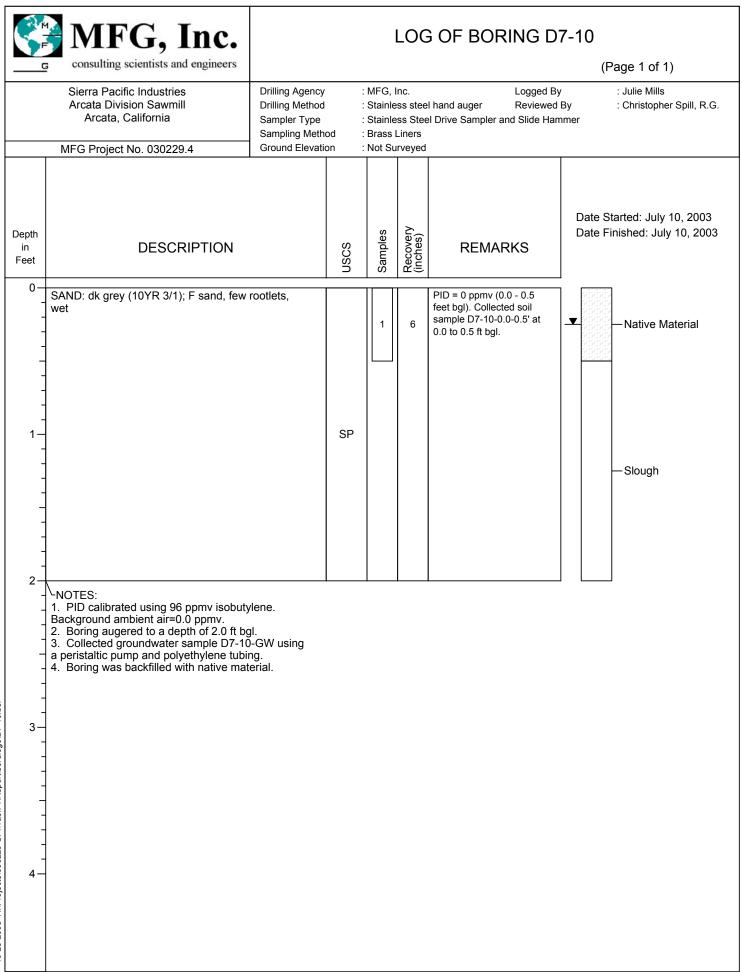

	MFG, Inc.				LOC	G OF BORING D6	-24 (Page 1 of 1)	
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: : od :	Stainle Brass	ess stee ess Stee Liners	Logged By I hand auger Reviewed By I Drive Sampler and Slide Hamn		
	MFG Project No. 030229.4	Ground Elevation	on :	Not Su	rveyed	Г Г Г		
Depth in Feet	DESCRIPTION		USCS	Samples	Recovery (inches)	REMARKS	Date Started: July 24, 2003 Date Finished: July 24, 2003	
0- - - - - - - - - - - - - - - - - - -	SILTY SAND: v dk grey (10YR 3/1); F sa silt, few rootlets, wet.	and, some	SM	1	6	PID = 0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D6-24-0.0-0.5' at 0.0 to 0.5 ft bgl.	-Bentonite	
	NOTES: 1. PID calibrated using 96 ppmv isobutyl Background ambient air = 0.0 ppmv. 2. Boring augered to a depth of 1.5 ft bg 3. Collected groundwater sample D6-24 peristaltic pump and polyethylene tubing 4. Derise une bedefilled with herterite	-GW using a						
	4. Boring was backfilled with bentonite c	inps.						
4/Report/Boring Logs/D6-24.B								
10-20-2003 J:030229\Task 04\ReportBoring Logs\D6-24.BOR								

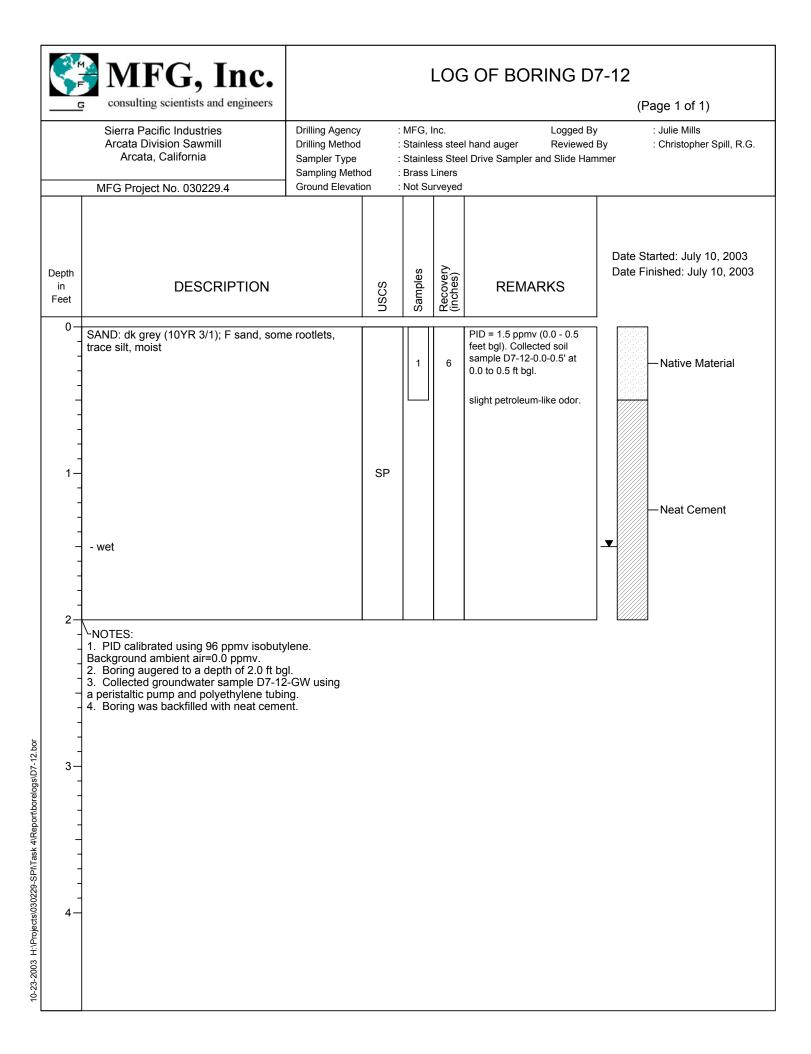


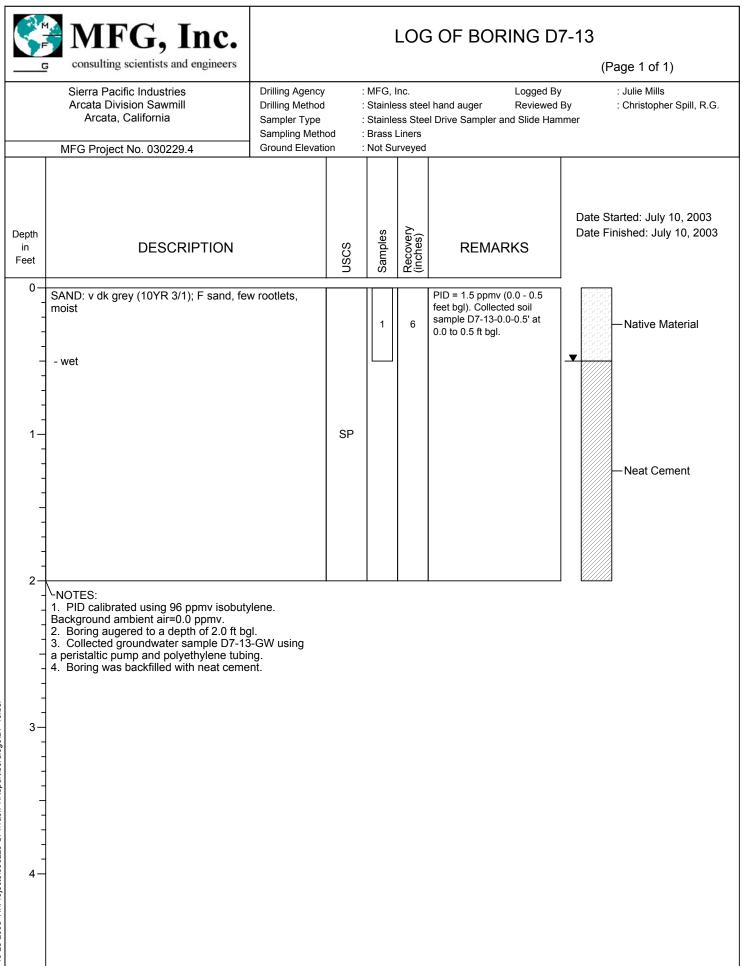


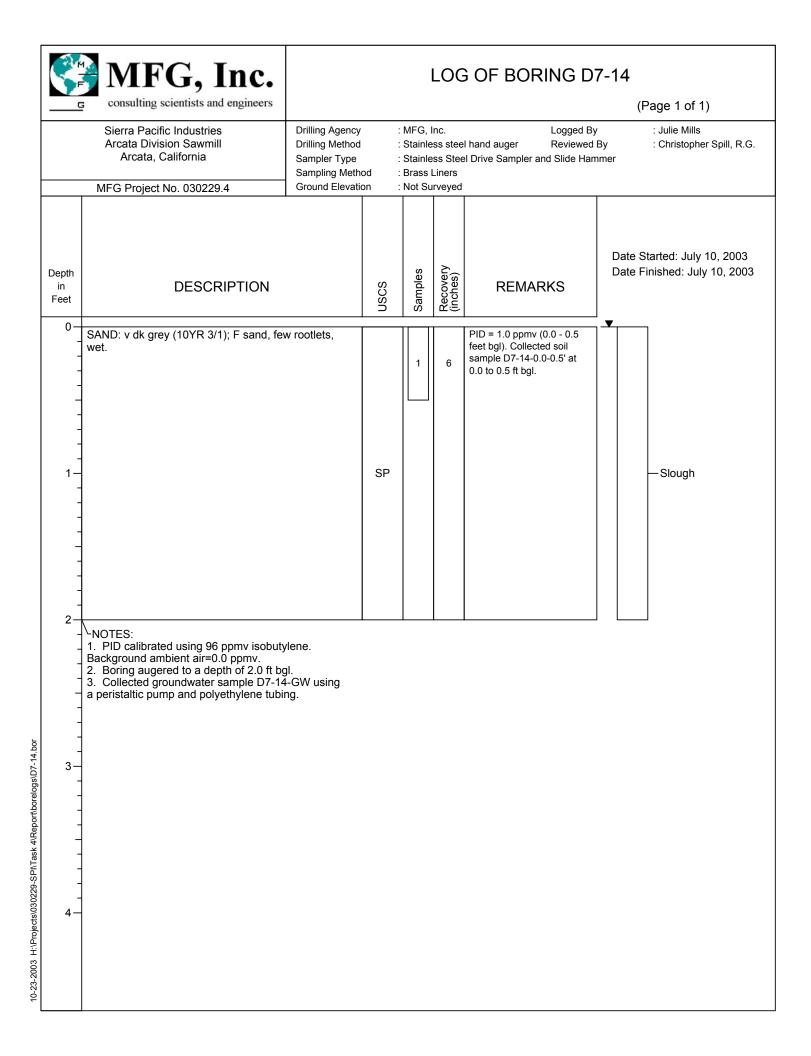


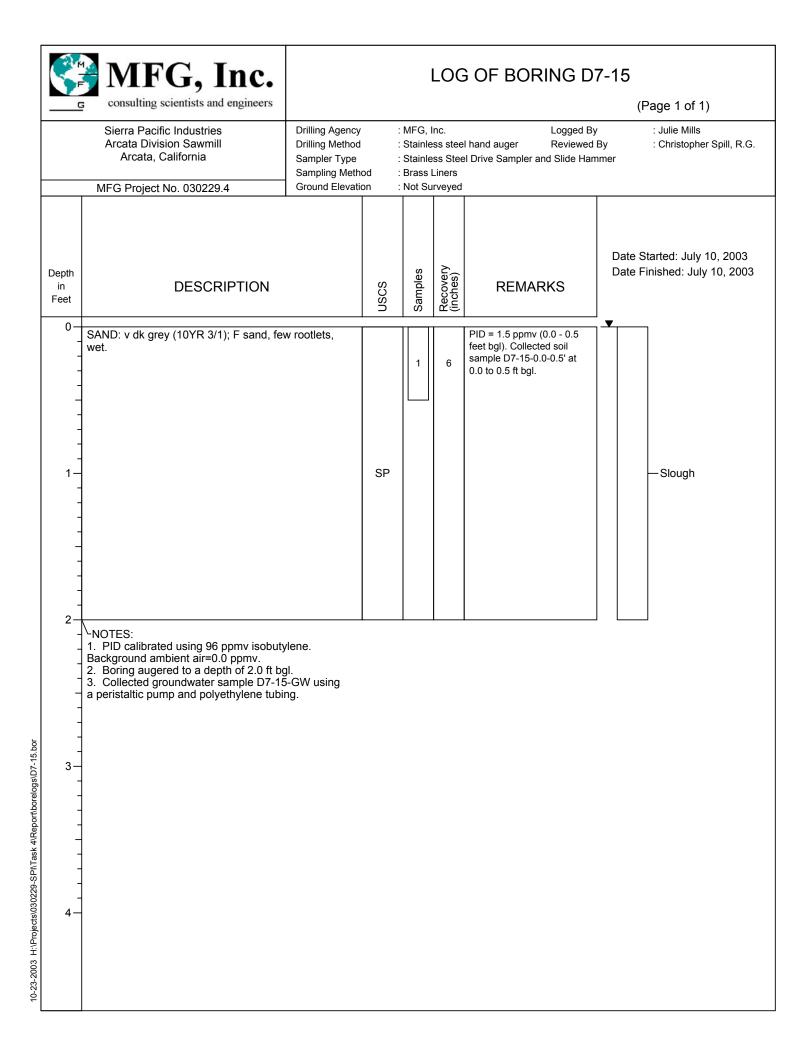


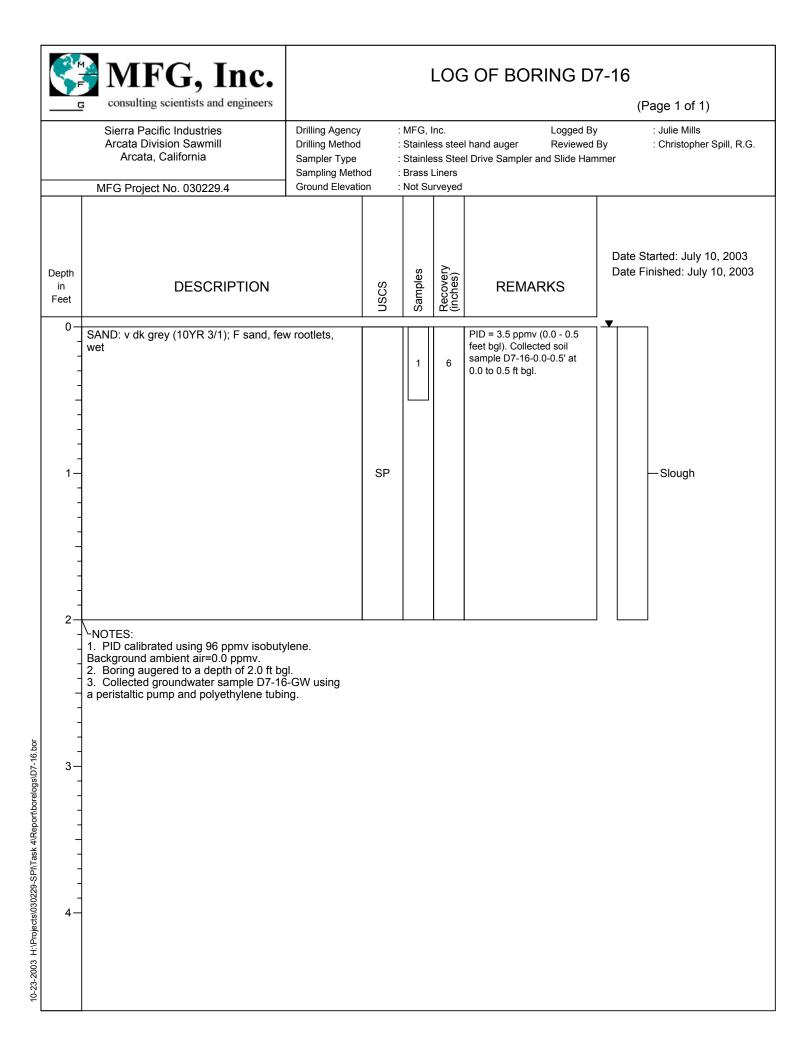


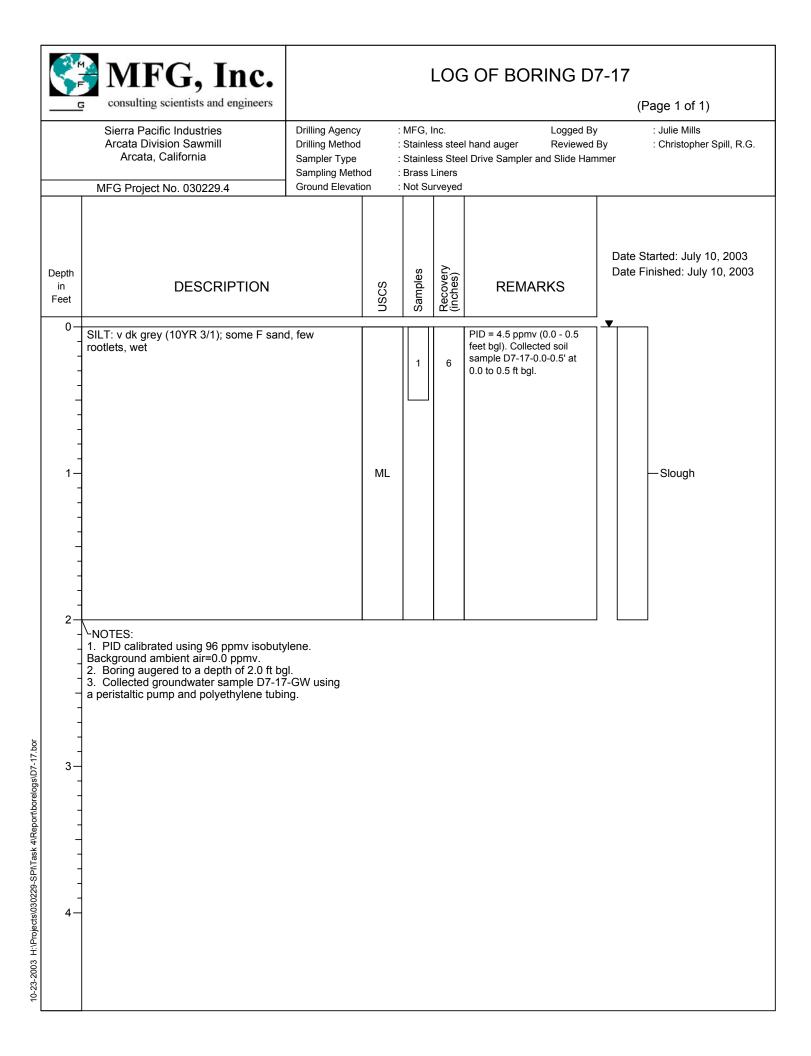


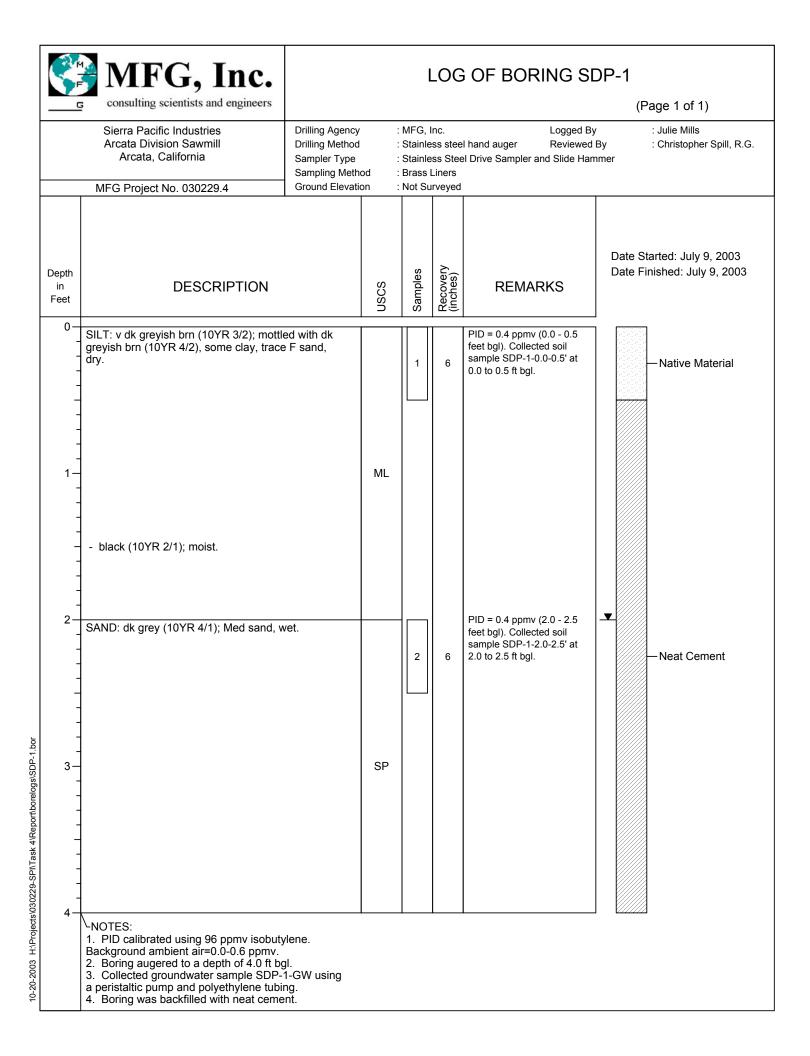







	MFG, Inc.				_00	G OF BORING D	7-11 (Page 1 of 1)			
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Agency Drilling Method Sampler Type Sampling Metho	: : od :	: MFG, Inc. Logged By : Julie Mills : Stainless steel hand auger Reviewed By : Christopher Spill, F : Stainless Steel Drive Sampler and Slide Hammer : Brass Liners						
	MFG Project No. 030229.4	Ground Elevation	on : I	Not Su	rveyed					
Depth in Feet	DESCRIPTION		USCS	Samples	Recovery (inches)	REMARKS	Date Started: July 10, 2003 Date Finished: July 10, 2003			
0	SAND: v dk grey (10YR 3/1); F sand, so trace silt, moist	me rootlets,		1	6	PID = 2.0 ppmv (0.0 - 0.5 feet bgl). Collected soil sample D7-11-0.0-0.5' at 0.0 to 0.5 ft bgl.	- Native Material			
- - - - - -	- wet		SP				Neat Cement			
	NOTES: 1. PID calibrated using 96 ppmv isobuty Background ambient air=0.0 ppmv. 2. Boring augered to a depth of 2.5 ft bg 3. Collected groundwater sample D7-11 a peristaltic pump and polyethylene tubin 4. Boring was backfilled with neat ceme	ıl. -GW using ıg.								
- 										
4-										





APPENDIX D

Laboratory Reports and Chain-of-Custody Records for Soil Samples

Alpha V Analytical Laboratories Inc. 208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

26 July 2003

Ed Conti MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 RE: SPI-Arcata/Task #4

Enclosed are the results of analyses for samples received by the laboratory on 07/10/03 17:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nena M. Burgess For Sheri L. Speaks Project Manager

AUG - 1 2003 MFG, Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

ANALYTICAL REPORT FOR SAMPLES

RP.1-0.5-1.0 A307292-02 Soil 0708/03 12:22 07/10/03 17:45 RP.1-10-1.5 A307292-03 Soil 0708/03 12:27 07/10/03 17:45 RP.1-1.5-2.0 A307292-04 Soil 0708/03 12:31 07/10/03 17:45 RP.1-2.0-2.5 A307292-05 Soil 07/08/03 12:37 07/10/03 17:45 RP-2.0-0.5 A307292-06 Soil 07/08/03 15:23 07/10/03 17:45 RP-2.0-5.1.0 A307292-07 Soil 07/08/03 15:26 07/10/03 17:45 RP-2.1-5.2.0 A307292-08 Soil 07/08/03 15:31 07/10/03 17:45 RP-2.2-0.2.5 A307292-10 Soil 07/08/03 15:41 07/10/03 17:45 D7.1-0.0.5 A307292-11 Soil 07/09/03 10:20 07/10/03 17:45 D7.3-0.0.5 A307292-13 Soil 07/09/03 10:20 07/10/03 17:45 D7.4-0.0.5 A307292-14 Soil 07/09/03 10:20 07/10/03 17:45 D7.4-0.0.5 A307292-15 Soil 07/09/03 10:20 07/10/03 17:45 D7.4-0.0.5 A307292-16 Soil 07/	Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
RP-1-10-1.5 A307292-03 Soil 07/08/03 12:27 07/10/03 17:45 RP-1-1.5-2.0 A307292-04 Soil 07/08/03 12:31 07/10/03 17:45 RP-1-2.0-2.5 A307292-05 Soil 07/08/03 12:37 07/10/03 17:45 RP-2-0.0-0.5 A307292-06 Soil 07/08/03 15:23 07/10/03 17:45 RP-2-0.5-1.0 A307292-07 Soil 07/08/03 15:23 07/10/03 17:45 RP-2-1.5-2.0 A307292-07 Soil 07/08/03 15:31 07/10/03 17:45 RP-2-2.0-2.5 A307292-09 Soil 07/08/03 15:31 07/10/03 17:45 RP-2-2.0-2.5 A307292-10 Soil 07/08/03 15:31 07/10/03 17:45 D7-1-0.0-0.5 A307292-11 Soil 07/09/03 10:20 07/10/03 17:45 D7-4-0.0-0.5 A307292-12 Soil 07/09/03 10:20 07/10/03 17:45 D7-4-0.0-0.5 A307292-13 Soil 07/09/03 10:31 07/10/03 17:45 D7-	RP-1-0.0-0.5	A307292-01	Soil	07/08/03 12:16	07/10/03 17:45
RP-1-1.5-2.0 A307292-04 Soil 07/08/03 12:31 07/10/03 17:45 RP-1-2.0-2.5 A307292-05 Soil 07/08/03 12:37 07/10/03 17:45 RP-2-0.0-0.5 A307292-06 Soil 07/08/03 15:23 07/10/03 17:45 RP-2-0.5-1.0 A307292-07 Soil 07/08/03 15:26 07/10/03 17:45 RP-2-1.0-1.5 A307292-07 Soil 07/08/03 15:31 07/10/03 17:45 RP-2-1.0-1.5 A307292-09 Soil 07/08/03 15:31 07/10/03 17:45 RP-2-1.5-2.0 A307292-09 Soil 07/08/03 15:31 07/10/03 17:45 RP-2-2.0-2.5 A307292-10 Soil 07/08/03 15:41 07/10/03 17:45 D7-1-0.0-0.5 A307292-11 Soil 07/09/03 10:20 07/10/03 17:45 D7-2-0.0-0.5 A307292-12 Soil 07/09/03 10:20 07/10/03 17:45 D7-4-0.0-0.5 A307292-13 Soil 07/09/03 10:20 07/10/03 17:45 D7-4-0.0-0.5 A307292-14 Soil 07/09/03 10:32 07/10/03 17:45 D7-4-0.0-0.5 A307292-17 Soil 07/09/03 16:25 07/10/03 17:45 D7-4-0.0-0.5 <t< td=""><td>RP-1-0.5-1.0</td><td>A307292-02</td><td>Soil</td><td>07/08/03 12:22</td><td>07/10/03 17:45</td></t<>	RP-1-0.5-1.0	A307292-02	Soil	07/08/03 12:22	07/10/03 17:45
RP-1-2.0-2.5 A307292-05 Soil 07/08/03 12:37 07/10/03 17:45 RP-2.0.0-0.5 A307292-06 Soil 07/08/03 15:26 07/10/03 17:45 RP-2.0.5.1.0 A307292-07 Soil 07/08/03 15:26 07/10/03 17:45 RP-2.1.5.1 A307292-07 Soil 07/08/03 15:31 07/10/03 17:45 RP-2.1.5.2.0 A307292-09 Soil 07/08/03 15:36 07/10/03 17:45 RP-2.2.5.2.5 A307292-10 Soil 07/08/03 15:36 07/10/03 17:45 D7.1-0.0.5 A307292-11 Soil 07/09/03 10:20 07/10/03 17:45 D7.2-0.0.5 A307292-12 Soil 07/09/03 10:20 07/10/03 17:45 D7.4-0.0.5 A307292-13 Soil 07/09/03 10:20 07/10/03 17:45 D7.4-0.0.5 A307292-14 Soil 07/09/03 10:20 07/10/03 17:45 D7.4-0.0.5 A307292-15 Soil 07/09/03 10:20 07/10/03 17:45 D7.4-0.0.5 A307292-16 Soil 07/09/03 10:20 07/10/03 17:45 D7.4-0.0.5 A307292-17 Soil 07/09/03 16:25 07/10/03 17:45 D7.4-0.0.5 A307292-17	RP-1-1.0-1.5	A307292-03	Soil	07/08/03 12:27	07/10/03 17:45
RP-2-0.0-5 Soil 07/08/03 15:23 07/10/03 17:45 RP-2-0.5-1.0 A307292-07 Soil 07/08/03 15:26 07/10/03 17:45 RP-2-1.5-1.5 A307292-08 Soil 07/08/03 15:31 07/10/03 17:45 RP-2-1.5-2.0 A307292-09 Soil 07/08/03 15:36 07/10/03 17:45 RP-2-2.5 A307292-10 Soil 07/08/03 15:31 07/10/03 17:45 D7-1-0.0-5 A307292-10 Soil 07/09/03 10:20 07/10/03 17:45 D7-2-0.0-5 A307292-12 Soil 07/09/03 10:20 07/10/03 17:45 D7-3-0.0-5 A307292-13 Soil 07/09/03 10:20 07/10/03 17:45 D7-4-0.0-5 A307292-13 Soil 07/09/03 11:40 07/10/03 17:45 D7-4-0.0-5 A307292-14 Soil 07/09/03 11:40 07/10/03 17:45 D7-6-0.0-5 A307292-15 Soil 07/10/03 17:45 07/10/03 17:45 D7-6-0.0-5 A307292-16	RP-1-1.5-2.0	A307292-04	Soil	07/08/03 12:31	07/10/03 17:45
RP-2-0.5-1.0A307292-07Soil07/08/03 15:2607/10/03 17:45RP-2-1.0-1.5A307292-08Soil07/08/03 15:3107/10/03 17:45RP-2-1.5-2.0A307292-09Soil07/08/03 15:3607/10/03 17:45RP-2-2.0-2.5A307292-10Soil07/08/03 15:4107/10/03 17:45D7-1-0.0-0.5A307292-11Soil07/09/03 10:2007/10/03 17:45D7-2-0.0-0.5A307292-12Soil07/09/03 10:5207/10/03 17:45D7-3-0.0-0.5A307292-13Soil07/09/03 10:5207/10/03 17:45D7-4-0.0-0.5A307292-14Soil07/09/03 12:3007/10/03 17:45D7-5-0.0-0.5A307292-15Soil07/09/03 12:3007/10/03 17:45D7-6-0.0-0.5A307292-16Soil07/09/03 15:3707/10/03 17:45D7-6-0.0-0.5A307292-17Soil07/09/03 15:3707/10/03 17:45D7-6-0.0-0.5A307292-18Soil07/09/03 16:2507/10/03 17:45D7-9-0.0-0.5A307292-19Soil07/10/03 09:1007/10/03 17:45D7-10-0-0.5A307292-20Soil07/10/03 09:3607/10/03 17:45D7-10-0-0.5A307292-21Soil07/10/03 09:3607/10/03 17:45D7-10-0-0.5A307292-22Soil07/10/03 10:4507/10/03 17:45D7-10-0-0.5A307292-23Soil07/10/03 10:4507/10/03 17:45D7-12-0-0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-13-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:	RP-1-2.0-2.5	A307292-05	Soil	07/08/03 12:37	07/10/03 17:45
RP-2-1.0-1.5A307292-08Soil07/08/03 15:3107/10/03 17:45RP-2-1.5-2.0A307292-09Soil07/08/03 15:3607/10/03 17:45RP-2-2.0-2.5A307292-10Soil07/08/03 15:3607/10/03 17:45D7-1-0.0-0.5A307292-11Soil07/09/03 10:2007/10/03 17:45D7-2-0.0-0.5A307292-12Soil07/09/03 10:5207/10/03 17:45D7-3-0.0-0.5A307292-13Soil07/09/03 11:4007/10/03 17:45D7-4-0.0-0.5A307292-14Soil07/09/03 12:3007/10/03 17:45D7-5-0.0-0.5A307292-15Soil07/09/03 12:3007/10/03 17:45D7-5-0.0-0.5A307292-16Soil07/09/03 15:3707/10/03 17:45D7-6-0.0-0.5A307292-17Soil07/09/03 15:3707/10/03 17:45D7-6-0.0-0.5A307292-18Soil07/09/03 17:2007/10/03 17:45D7-8-0.0-0.5A307292-19Soil07/10/03 09:3607/10/03 17:45D7-10-0.0-0.5A307292-20Soil07/10/03 09:3607/10/03 17:45D7-10-0.0-0.5A307292-21Soil07/10/03 09:3607/10/03 17:45D7-11-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-12-0.0-0.5A307292-23Soil07/10/03 10:0007/10/03 17:45D7-13-0.0-0.5A307292-24Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-25Soil07/10/03 10:4507/	RP-2-0.0-0.5	A307292-06	Soil	07/08/03 15:23	07/10/03 17:45
RP-2-1.5-2.0A307292-09Soil07/08/03 15:3607/10/03 17:45RP-2-2.0-2.5A307292-10Soil07/08/03 15:4107/10/03 17:45D7-1-0.0-0.5A307292-11Soil07/09/03 10:2007/10/03 17:45D7-2-0.0-0.5A307292-12Soil07/09/03 10:5207/10/03 17:45D7-3-0.0-0.5A307292-13Soil07/09/03 10:5207/10/03 17:45D7-4-0.0-0.5A307292-14Soil07/09/03 12:3007/10/03 17:45D7-4-0.0-0.5A307292-15Soil07/09/03 00:0007/10/03 17:45D7-5-0.0-0.5A307292-16Soil07/09/03 15:3707/10/03 17:45D7-6-0.0-0.5A307292-17Soil07/09/03 16:2507/10/03 17:45D7-6-0.0-0.5A307292-18Soil07/09/03 16:2507/10/03 17:45D7-8-0.0-0.5A307292-19Soil07/10/03 09:1007/10/03 17:45D7-9-0.0-0.5A307292-20Soil07/10/03 09:1007/10/03 17:45D7-10-0.0-0.5A307292-21Soil07/10/03 09:1007/10/03 17:45D7-10-0.0-0.5A307292-21Soil07/10/03 09:1007/10/03 17:45D7-11-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-12-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-13-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-14-0.0-0.5A307292-25Soil07/10/03 10:4507/10/03 17:45D7-14-0.0-0.5A307292-25Soil07/10/03 10:4507/	RP-2-0.5-1.0	A307292-07	Soil	07/08/03 15:26	07/10/03 17:45
RP-2-2.0-2.5 A307292-10 Soil 07/08/03 15:41 07/10/03 17:45 D7-1-0.0-0.5 A307292-11 Soil 07/09/03 10:20 07/10/03 17:45 D7-2-0.0-0.5 A307292-12 Soil 07/09/03 10:20 07/10/03 17:45 D7-3-0.0-0.5 A307292-12 Soil 07/09/03 10:52 07/10/03 17:45 D7-4-0.0-0.5 A307292-13 Soil 07/09/03 11:40 07/10/03 17:45 D7-4-0.0-0.5 A307292-14 Soil 07/09/03 12:30 07/10/03 17:45 D7-5-0.0-0.5 A307292-15 Soil 07/09/03 00:00 07/10/03 17:45 D7-6-0.0-0.5 A307292-16 Soil 07/09/03 16:25 07/10/03 17:45 D7-8-0.0-0.5 A307292-17 Soil 07/09/03 16:25 07/10/03 17:45 D7-8-0.0-0.5 A307292-18 Soil 07/09/03 16:25 07/10/03 17:45 D7-10-0.0-0.5 A307292-20 Soil 07/10/03 09:10 07/10/03 17:45 D7-10-0.0-0.5 A307292-21 Soil 07/10/03 09:36 07/10/03 17:45 D7-11-0.0-0.5 A307292-22 Soil 07/10/03 10:00 07/10/03 17:45 D7-12-0.0-0.5	RP-2-1.0-1.5	A307292-08	Soil	07/08/03 15:31	07/10/03 17:45
D7-1-0.0-0.5 A307292-11 Soil 07/09/03 10:20 07/10/03 17:45 D7-2-0.0-0.5 A307292-12 Soil 07/09/03 10:52 07/10/03 17:45 D7-3-0.0-0.5 A307292-13 Soil 07/09/03 11:40 07/10/03 17:45 D7-4-0.0-0.5 A307292-14 Soil 07/09/03 12:30 07/10/03 17:45 D7-5-0.0-0.5 A307292-15 Soil 07/09/03 0:00 07/10/03 17:45 D7-6-0.0-0.5 A307292-16 Soil 07/09/03 16:25 07/10/03 17:45 D7-7-0.0-0.5 A307292-17 Soil 07/09/03 16:25 07/10/03 17:45 D7-8-0.0-0.5 A307292-18 Soil 07/09/03 16:25 07/10/03 17:45 D7-9-0.0-0.5 A307292-18 Soil 07/09/03 16:25 07/10/03 17:45 D7-10-0.0-0.5 A307292-19 Soil 07/10/03 08:40 07/10/03 17:45 D7-10-0.0-0.5 A307292-20 Soil 07/10/03 09:10 07/10/03 17:45 D	RP-2-1.5-2.0	A307292-09	Soil	07/08/03 15:36	07/10/03 17:45
D7-2-0.0-0.5 A307292-12 Soil 07/09/03 10:52 07/10/03 17:45 D7-3-0.0-0.5 A307292-13 Soil 07/09/03 11:40 07/10/03 17:45 D7-4-0.0-0.5 A307292-14 Soil 07/09/03 12:30 07/10/03 17:45 D7-5-0.0-0.5 A307292-15 Soil 07/09/03 00:00 07/10/03 17:45 D7-6-0.0-0.5 A307292-16 Soil 07/09/03 15:37 07/10/03 17:45 D7-6-0.0-0.5 A307292-17 Soil 07/09/03 16:25 07/10/03 17:45 D7-8-0.0-0.5 A307292-18 Soil 07/09/03 16:25 07/10/03 17:45 D7-9-0.0-0.5 A307292-19 Soil 07/10/03 08:40 07/10/03 17:45 D7-10-0.0-0.5 A307292-20 Soil 07/10/03 09:10 07/10/03 17:45 D7-11-0.0-0.5 A307292-21 Soil 07/10/03 09:36 07/10/03 17:45 D7-12-0.0-0.5 A307292-22 Soil 07/10/03 09:36 07/10/03 17:45 D7-12-0.0-0.5 A307292-23 Soil 07/10/03 10:00 07/10/03 17:45 D7-13-0.0-0.5 A307292-24 Soil 07/10/03 10:45 07/10/03 17:45 D7-14-0.0-0.5	RP-2-2.0-2.5	A307292-10	Soil	07/08/03 15:41	07/10/03 17:45
D7-3-0.0-0.5A307292-13Soil07/09/03 11:4007/10/03 17:45D7-4-0.0-0.5A307292-14Soil07/09/03 12:3007/10/03 17:45D7-5-0.0-0.5A307292-15Soil07/09/03 00:0007/10/03 17:45D7-6-0.0-0.5A307292-16Soil07/09/03 15:3707/10/03 17:45D7-7-0.0-0.5A307292-17Soil07/09/03 16:2507/10/03 17:45D7-8-0.0-0.5A307292-18Soil07/09/03 16:2507/10/03 17:45D7-9-0.0-0.5A307292-19Soil07/10/03 08:4007/10/03 17:45D7-9-0.0-0.5A307292-20Soil07/10/03 09:1007/10/03 17:45D7-10-0.0-0.5A307292-21Soil07/10/03 09:1007/10/03 17:45D7-11-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-12-0.0-0.5A307292-23Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 10:4507/10/03 17:45	D7-1-0.0-0.5	A307292-11	Soil	07/09/03 10:20	07/10/03 17:45
D7-4-0.0-0.5A307292-14Soil07/09/03 12:3007/10/03 17:45D7-5-0.0-0.5A307292-15Soil07/09/03 00:0007/10/03 17:45D7-6-0.0-0.5A307292-16Soil07/09/03 16:2507/10/03 17:45D7-7-0.0-0.5A307292-17Soil07/09/03 16:2507/10/03 17:45D7-8-0.0-0.5A307292-18Soil07/09/03 16:2507/10/03 17:45D7-9-0.0-0.5A307292-19Soil07/10/03 08:4007/10/03 17:45D7-10-0.0-0.5A307292-20Soil07/10/03 09:1007/10/03 17:45D7-11-0.0-0.5A307292-21Soil07/10/03 09:3607/10/03 17:45D7-11-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:1507/10/03 17:45D7-12-0.0-0.5A307292-23Soil07/10/03 10:1507/10/03 17:45D7-13-0.0-0.5A307292-24Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-25Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 10:4507/10/03 17:45	D7-2-0.0-0.5	A307292-12	Soil	07/09/03 10:52	07/10/03 17:45
D7-5-0.0-0.5A307292-15Soil07/09/03 00:0007/10/03 17:45D7-6-0.0-0.5A307292-16Soil07/09/03 15:3707/10/03 17:45D7-7-0.0-0.5A307292-17Soil07/09/03 16:2507/10/03 17:45D7-8-0.0-0.5A307292-18Soil07/09/03 17:2007/10/03 17:45D7-9-0.0-0.5A307292-19Soil07/10/03 08:4007/10/03 17:45D7-10-0.0-0.5A307292-20Soil07/10/03 09:1007/10/03 17:45D7-11-0.0-0.5A307292-21Soil07/10/03 09:3607/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-12-0.0-0.5A307292-23Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 11:0507/10/03 17:45	D7-3-0.0-0.5	A307292-13	Soil	07/09/03 11:40	07/10/03 17:45
D7-6-0.0-0.5A307292-16Soil07/09/03 15:3707/10/03 17:45D7-7-0.0-0.5A307292-17Soil07/09/03 16:2507/10/03 17:45D7-8-0.0-0.5A307292-18Soil07/09/03 17:2007/10/03 17:45D7-90.0-0.5A307292-19Soil07/10/03 08:4007/10/03 17:45D7-10-0.0-0.5A307292-20Soil07/10/03 09:1007/10/03 17:45D7-11-0.0-0.5A307292-21Soil07/10/03 09:3607/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-13-0.0-0.5A307292-23Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 10:4507/10/03 17:45	D7-4-0.0-0.5	A307292-14	Soil	07/09/03 12:30	07/10/03 17:45
D7-7-0.0-0.5A307292-17Soil07/09/03 16:2507/10/03 17:45D7-8-0.0-0.5A307292-18Soil07/09/03 17:2007/10/03 17:45D7-90.0-0.5A307292-19Soil07/10/03 08:4007/10/03 17:45D7-10-0.0-0.5A307292-20Soil07/10/03 09:1007/10/03 17:45D7-11-0.0-0.5A307292-21Soil07/10/03 09:3607/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-13-0.0-0.5A307292-23Soil07/10/03 10:1507/10/03 17:45D7-13-0.0-0.5A307292-24Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 10:4507/10/03 17:45	D7-5-0.0-0.5	A307292-15	Soil	07/09/03 00:00	07/10/03 17:45
D7-8-0.0-0.5A307292-18Soil07/09/03 17:2007/10/03 17:45D7-9-0.0-0.5A307292-19Soil07/10/03 08:4007/10/03 17:45D7-10-0.0-0.5A307292-20Soil07/10/03 09:1007/10/03 17:45D7-11-0.0-0.5A307292-21Soil07/10/03 09:3607/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-13-0.0-0.5A307292-23Soil07/10/03 10:0007/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 10:4507/10/03 17:45	D7-6-0.0-0.5	A307292-16	Soil	07/09/03 15:37	07/10/03 17:45
D7-9-0.0-0.5A307292-19Soil07/10/03 08:4007/10/03 17:45D7-10-0.0-0.5A307292-20Soil07/10/03 09:1007/10/03 17:45D7-11-0.0-0.5A307292-21Soil07/10/03 09:3607/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-13-0.0-0.5A307292-23Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:1507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 11:0507/10/03 17:45	D7-7-0.0-0.5	A307292-17	Soil	07/09/03 16:25	07/10/03 17:45
D7-10-0.0-0.5A307292-20Soil07/10/03 09:1007/10/03 17:45D7-11-0.0-0.5A307292-21Soil07/10/03 09:3607/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-13-0.0-0.5A307292-23Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 10:4507/10/03 17:45	D7-8-0.0-0.5	A307292-18	Soil	07/09/03 17:20	07/10/03 17:45
D7-11-0.0-0.5A307292-21Soil07/10/03 09:3607/10/03 17:45D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-13-0.0-0.5A307292-23Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 11:0507/10/03 17:45	D7-9-0.0-0.5	A307292-19	Soil	07/10/03 08:40	07/10/03 17:45
D7-12-0.0-0.5A307292-22Soil07/10/03 10:0007/10/03 17:45D7-13-0.0-0.5A307292-23Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 11:0507/10/03 17:45	D7-10-0.0-0.5	A307292-20	Soil	07/10/03 09:10	07/10/03 17:45
D7-13-0.0-0.5A307292-23Soil07/10/03 10:1507/10/03 17:45D7-14-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 11:0507/10/03 17:45	D7-11-0.0-0.5	A307292-21	Soil	07/10/03 09:36	07/10/03 17:45
D7-14-0.0-0.5A307292-24Soil07/10/03 10:4507/10/03 17:45D7-15-0.0-0.5A307292-25Soil07/10/03 11:0507/10/03 17:45	D7-12-0.0-0.5	A307292-22	Soil	07/10/03 10:00	07/10/03 17:45
D7-15-0.0-0.5 A307292-25 Soil 07/10/03 11:05 07/10/03 17:45	D7-13-0.0-0.5	A307292-23	Soil	07/10/03 10:15	07/10/03 17:45
	D7-14-0.0-0.5	A307292-24	Soil	07/10/03 10:45	07/10/03 17:45
D7-16-0.0-0.5 A307292-26 Soil 07/10/03 11:25 07/10/03 17:45	D7-15-0.0-0.5	A307292-25	Soil	07/10/03 11:05	07/10/03 17:45
	D7-16-0.0-0.5	A307292-26	Soil	07/10/03 11:25	07/10/03 17:45

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. RECEIVED

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-Arc	ata/Task #4
180 Howard St. Suite 200	Project Number: 030229	4 Reported:
San Francisco CA, 94105-2941	Project Manager: Ed Con	i 07/26/03 09:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	
D7-17-0.0-0.5	A307292-27	Soil	07/10/03 11:45	07/10/03 17:45	
SDP-1-0.0-05	A307292-28	Soil	07/09/03 09:12	07/10/03 17:45	
SDP-1-2.0-2.5	A307292-29	Soil	07/09/03 09:25	07/10/03 17:45	

Alpha Analytical Laboratories, Inc.

Nena M. Burgess For Sheri L. Speaks, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 32

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-	Arcata/Task #4	
180 Howard St. Suite 200	Project Number: 0302	29.4	Reported:
San Francisco CA, 94105-2941	Project Manager: Ed C	Conti	07/26/03 09:17

Metals by EPA 6000/7000 Series Methods

Alpha Analytical Laboratories, Inc.

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
RP-1-0.0-0.5 (A307292-01) Soil	Sampled: 07/08/03 12:16	Receive	d: 07/10/	03 17:45			· · · · ·	-	
Cadmium	1.3	1.0	mg/kg	1	AG31004	07/15/03	07/16/03	EPA 6010	
Chromium	48	5.0	н		tt.	Ħ	н	"	
Nickel	58	10		**	**	н	**	"	
Lead	17	5.0	**			**		"	
Zinc	150	10	**	11	"	*	**	**	
RP-1-0.5-1.0 (A307292-02) Soil	Sampled: 07/08/03 12:22	Receive	d: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31004	07/15/03	07/16/03	EPA 6010	
Chromium	110	5.0	"	"	. н		68	Ħ	
Nickel	210	10	"		*	*	**	"	
Lead	17	5.0	Ħ	"	**	"	**	"	
Zinc	140	10	"	"	••	"	"	57	
RP-1-1.0-1.5 (A307292-03) Soil	Sampled: 07/08/03 12:27	Receive	ed: 07/10/	03 17:45					
Cadmium	1.2	1.0	mg/kg	1	AG31004	07/15/03	07/16/03	EPA 6010	
Chromium	49	5.0	**	H	H	"	••	"	
Nickel	86	10		"	**	"	11	**	
Lead	22	5.0	*	"	н	11	*	n	
Zinc	140	10	**	"	"	**	11	**	
RP-1-1.5-2.0 (A307292-04) Soil	Sampled: 07/08/03 12:31	Receive	ed: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31004	07/15/03	07/16/03	EPA 6010	
Chromium	50	5.0	**	**	"	H	**	"	
Nickel	72	10		**	0	n	"	"	
Lead	27	5.0	"	*		11	*	**	
Zinc	100	10	**	**	"	н	Ħ	м	

Alpha Analytical Laboratories, Inc.

Reg-

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

MFG, Inc.

Page 3 of 32

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

son St. Okian, Camornia 93482

MFG, Inc	Project:	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Metals by EPA 6000/7000 Series Methods

Alpha Analytical Laboratories, Inc.

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
RP-1-2.0-2.5 (A307292-05) Soil	Sampled: 07/08/03 12:37	Receive	d: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31004	07/15/03	07/16/03	EPA 6010	
Chromium	43	5.0	"	"	**	H		**	
Nickel	68	10	"	11	**	"	**	**	
Lead	14	5.0	"	11	11	"	**	*	
Zinc	63	10	**	н	11	"		"	
RP-2-0.0-0.5 (A307292-06) Soil	Sampled: 07/08/03 15:23	Receive	d: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31004	07/15/03	07/16/03	EPA 6010	
Chromium	ND	5.0		**	**	н	"	"	
Nickel	ND	10	11	11	"	н	"	**	
Lead	28	5.0		н	**	н	"	11	
Zinc	61	10	"	"		"	**	17	
RP-2-0.5-1.0 (A307292-07) Soil	Sampled: 07/08/03 15:26	Receive	ed: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31004	07/15/03	07/18/03	EPA 6010	
Chromium	25	5.0	**	"	**	н	H	"	
Nickel	22	10	"	**	"		ti	"	
Lead	8.8	5.0	"	"	*1	"	"	"	
Zinc	55	10	**	**	H		"	"	
RP-2-1.0-1.5 (A307292-08) Soil	Sampled: 07/08/03 15:31	Receive	ed: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31004	07/15/03	07/18/03	EPA 6010	
Chromium	18	5.0	*	н	*	н	n	"	
Nickel	18	10	"		*	*	**	"	
Lead	12	5.0	"	н	н	**	"	"	
Zinc	53	10		11	н	**	"	"	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG - 1 2003

Page 4 of 32

Nena M. Burgess For Sheri L. Speaks, Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: S	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number: (030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager: 1	Ed Conti	07/26/03 09:17

Metals by EPA 6000/7000 Series Methods

Alpha Analytical Laboratories, Inc.

	^				-				
Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
RP-2-1.5-2.0 (A307292-09) Soil	Sampled: 07/08/03 15:36	Receive	ed: 07/10/	/03 17:45					· · · · · · · · · · · · · · · · · · ·
Cadmium	ND	1.0	mg/kg	1	AG31004	07/15/03	07/18/03	EPA 6010	
Chromium	19	5.0	**	"		**	**	**	
Nickel	16	10	++	"	"	"	н	"	
Lead	ND	5.0	"		**	Ħ	**	**	
Zinc	18	10	"	"	**	н	"	н	
RP-2-2.0-2.5 (A307292-10) Soil	Sampled: 07/08/03 15:41	Receive	ed: 07/10/	/03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31004	07/15/03	07/18/03	EPA 6010	
Chromium	18	5.0	"		"	**	"	"	
Nickel	16	10		11	"	н	**	"	
Lead	ND	5.0		*	"	**	"	"	
Zinc	19	10	"	••	H		11	"	
D7-1-0.0-0.5 (A307292-11) Soil	Sampled: 07/09/03 10:20	Receive	d: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31004	07/15/03	07/18/03	EPA 6010	
Chromium	18	5.0	"	н	tt	*1	**	11	
Nickel	23	10	**	"	"	**	"	H	
Lead	12	5.0	"	*1	"	#	11	н	
Zinc	170	10	**	"	"	Ħ	11	н	
D7-2-0.0-0.5 (A307292-12) Soil	Sampled: 07/09/03 10:52	Receive	ed: 07/10/	/03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/22/03	EPA 6010	
Chromium	44	5.0	"	n	"	**	"	11	
Nickel	42	10	**	н	"	н	"	"	
Lead	18	5.0	*	"	н	н	"	"	
Zinc	140	10	**	"	"	"	"	"	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks, Project Manager

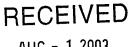
Page 5 of 32

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SI	PI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number: 03	30229.4	Reported:
San Francisco CA, 94105-2941	Project Manager: E	d Conti	07/26/03 09:17

Metals by EPA 6000/7000 Series Methods


Alpha Analytical Laboratories, Inc.

	^								
Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D7-3-0.0-0.5 (A307292-13) Soil									
				0517145			<u></u>		
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/22/03	EPA 6010	
Chromium	16	5.0	11	"	*	"	**	16	
Nickel	21	10	**	"	"	11	**	"	
Lead	13	5.0	11	**	"	**	"	"	
Zinc	60	10	н	"	H	"	"	"	
D7-4-0.0-0.5 (A307292-14) Soil	Sampled: 07/09/03 12:30	Receive	d: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/22/03	EPA 6010	
Chromium	13	5.0	11	**	**	**	**	"	
Nickel	18	10	н	**	н		"	"	
Lead	14	5.0	н	**	"	"	н	11	
Zinc	150	10	**	"		H	**	"	
D7-5-0.0-0.5 (A307292-15) Soil	Sampled: 07/09/03 00:00	Receive	d: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/22/03	EPA 6010	
Chromium	11	5.0	**	"	"	"	**	Ħ	
Nickel	11	10	*	n	"	*1	**	"	
Lead	12	5.0		"	**	"	**	"	
Zinc	39	10	н	"	"	**	**	**	
D7-6-0.0-0.5 (A307292-16) Soil	Sampled: 07/09/03 15:37	Receive	d: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/22/03	EPA 6010	
Chromium	44	5.0	"	"	"	"	"	"	
Nickel	35	10	**		"	"		**	
Lead	ND	5.0	"	"	и	*	"	*	
Zinc	23	10	+1	"	**	н	"	**	

Alpha Analytical Laboratories, Inc.

Reg-

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Nena M. Burgess For Sheri L. Speaks, Project Manager

AUG - 1 2003

Page 6 of 32

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Metals by EPA 6000/7000 Series Methods

Alpha Analytical Laboratories, Inc.

T									
Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D7-7-0.0-0.5 (A307292-17) Soil	Sampled: 07/09/03 16:25	Receive	d: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/22/03	EPA 6010	
Chromium	46	5.0	**	"	"		**	"	
Nickel	35	10	"	11	н	"	**	"	
Lead	ND	5.0	"	H	"		"	**	
Zinc	27	10	**	**	**	"	11	11	
D7-8-0.0-0.5 (A307292-18) Soil	Sampled: 07/09/03 17:20	Receive	d: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/22/03	EPA 6010	
Chromium	36	5.0	"	н	"	11	Ħ	**	
Nickel	29	10	n	H	"		"	11	
Lead	5.8	5.0	**	"	**		77	**	
Zinc	34	10	"	**	11	**	"	**	
D7-9-0.0-0.5 (A307292-19) Soil	Sampled: 07/10/03 08:40	Receive	d: 07/10/	03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	40	5.0	11	"	"	"	"	"	
Nickel	41	10	· •	11	"	"	**	**	
Lead	20	5.0		н	"	11	*	11	
Zinc	140	10	n		"	**	"	**	
D7-10-0.0-0.5 (A307292-20) Soil	Sampled: 07/10/03 09:10) Receiv	ved: 07/1	0/03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	20	5.0	**	*		"	н	**	
Nickel	46	10	**	H	**	11		"	
Lead	23	5.0		11	"		**	H	
Zinc	370	10	**	н	**	"	"	**	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical pepert must be real RECEIVED oduced in its entirety.

AUG - 1 2003

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
 180 Howard St. Suite 200	Project Number:	030229.4	Reported:
 San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Metals by EPA 6000/7000 Series Methods

Alpha Analytical Laboratories, Inc.

	A	~			,				
Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D7-11-0.0-0.5 (A307292-21) Soil	Sampled: 07/10/03 09:36	Receiv	ed: 07/10	0/03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	38	5.0	**	"	**	"	**	"	
Nickel	38	10	"	**	**	n	**	*	
Lead	35	5.0	**	**	н	н		**	
Zinc	120	10		"	"	"	"	**	
D7-12-0.0-0.5 (A307292-22) Soil	Sampled: 07/10/03 10:00	Receiv	ed: 07/10)/03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	44	5.0	*	"	**	**	**	"	
Nickel	38	10	"	11	**	**	*1	"	
Lead	13	5.0	**	**	11	"	"	**	
Zinc	75	10	"	"	"	"	**	"	
D7-13-0.0-0.5 (A307292-23) Soil	Sampled: 07/10/03 10:15	Receiv	ed: 07/10	0/03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	10	5.0	11	"	"	"	**	**	
Nickel	17	10	**	"	**	**	**	"	
Lead	6.2	5.0	"	**	"	**		"	
Zinc	70	10	"	"	n	"	**	**	
D7-14-0.0-0.5 (A307292-24) Soil	Sampled: 07/10/03 10:45	Receiv	ved: 07/1	0/03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	16	5.0	**	**	"		**	**	
Nickel	24	10	**	**	**	"	"	**	
Lead	7.6	5.0		"	"	"	**	**	
Zinc	110	10	"	"	**	**	11	**	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be report for the chain of the custody document. This analytical report must be report for the custody document.

AUG - 1 2003

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number: 030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager: Ed Conti	07/26/03 09:17

Metals by EPA 6000/7000 Series Methods

Alpha Analytical Laboratories, Inc.

		porting			.				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D7-15-0.0-0.5 (A307292-25) Soil	Sampled: 07/10/03 11:05	Receiv	ed: 07/10	/03 17:45				·	
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	27	5.0	"	"	**	*1	••	н	
Nickel	36	10	"	**	"	"	**	11	
Lead	12	5.0	"	"	"	11	17	"	
Zinc	100	10	"	11	"	n	••	"	
D7-16-0.0-0.5 (A307292-26) Soil	Sampled: 07/10/03 11:25	Receiv	red: 07/10)/03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	32	5.0	"	11		"		н	
Nickel	39	10	"	11	••	"	"	14	
Lead	25	5.0	**	"	11	*	**	84	
Zinc	210	10		**	**	**	n	"	
D7-17-0.0-0.5 (A307292-27) Soil	Sampled: 07/10/03 11:45	Receiv	ed: 07/10	0/03 17:45					
Cadmium	5.1	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	31	5.0	"	"	"	н	**	"	
Nickel	35	10	н	**	11	"		"	
Lead	27	5.0	"	**	"	"	"	"	
Zinc	460	10	н	"	"	"	"	**	
SDP-1-0.0-05 (A307292-28) Soil	Sampled: 07/09/03 09:12	Receiv	ed: 07/10	0/03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	44	5.0	**		**	"	11	**	
Nickel	61	10	"	"	"		"	**	
Lead	31	5.0	**	"	"	**	**	**	
Zinc	160	10	11	"	"	11	"	11	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc Project: SPI-A	-cata/Task #4
180 Howard St. Suite 200Project Number: 03022San Francisco CA, 94105-2941Project Manager: Ed Control	05/06/00 00 17

Metals by EPA 6000/7000 Series Methods

Alpha Analytical Laboratories, Inc.

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SDP-1-2.0-2.5 (A307292-29) Soil	Sampled: 07/09/03 09:25	Receiv	ed: 07/1	0/03 17:45					
Cadmium	ND	1.0	mg/kg	1	AG31502	07/15/03	07/23/03	EPA 6010	
Chromium	21	5.0	"	"	**	**	"	**	
Nickel	49	10	"	"	**	"	**	11	
Lead	ND	5.0	"	"	**	**	11	11	
Zinc	37	10	*	11	"	**	"	**	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

Nena M. Burgess For Sheri L. Speaks, Project Manager

AUG - 1 2003

Page 10 of 32

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
 180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method

Alpha Analytical Laboratories, Inc.

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
RP-1-0.0-0.5 (A307292-01) Soil	Sampled: 07/08/03 12:16	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32117	07/16/03	07/18/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	11	**	11	**	**	
2,3,4,6-Tetrachlorophenol	ND	1.0	**	н	"	"	**	**	
2,3,4,5-Tetrachlorophenol	ND	1.0	"	"	*	**	11	"	
Pentachlorophenol	ND	1.0	Ħ	11	"	"	#	**	
Surrogate: Tribromophenol		33.1 %	23-	140	"	"	"	"	
RP-1-0.5-1.0 (A307292-02) Soil	Sampled: 07/08/03 12:22	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32117	07/16/03	07/18/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	11	11	"	11	**	11	
2,3,4,6-Tetrachlorophenol	ND	1.0	**	"	**	19	"	**	
2,3,4,5-Tetrachlorophenol	ND	1.0		11	"	"	"	"	
Pentachlorophenol	ND	1.0	**	"	"	H	"	**	
Surrogate: Tribromophenol		49.2 %	23-	140	"	` <i>Ħ</i>	"	"	
RP-1-1.0-1.5 (A307292-03) Soil	Sampled: 07/08/03 12:27	Receive	ed: 07/10	/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32117	07/16/03	07/18/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	11	"	11	17	**	
2,3,4,6-Tetrachlorophenol	ND	1.0	н	н	**	11		"	
2,3,4,5-Tetrachlorophenol	ND	1.0	"	**	н	**	**	"	
Pentachlorophenol	ND	1.0	"	"	ŧt	**	11	"	
Surrogate: Tribromophenol		29.0 %	23	-140	"	"	"	"	
RP-1-1.5-2.0 (A307292-04) Soil	Sampled: 07/08/03 12:31	Receiv	ed: 07/10	/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32117	07/16/03	07/18/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	11	**	"	"	**	"	
2,3,4,6-Tetrachlorophenol	ND	1.0	Ħ	"	**	"	"	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	н	18	"	11	**	"	
Pentachlorophenol	ND	1.0	Ħ	"	11	11	11	H	
Surrogate: Tribromophenol		44.4 %	23	-140	"	"	H	H	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

Page 11 of 32

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method

Alpha Analytical Laboratories, Inc.

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
RP-1-2.0-2.5 (A307292-05) Soil									
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	11	**	11	**	**	
2,3,4,6-Tetrachlorophenol	ND	1.0	11	**	"	**		"	
2,3,4,5-Tetrachlorophenol	ND	1.0	"	н	"	11	"	**	
Pentachlorophenol	ND	1.0	н	"	**	"	**	"	
Surrogate: Tribromophenol		35.5 %	23-	140	"	"	"	"	
RP-2-0.0-0.5 (A307292-06) Soil	Sampled: 07/08/03 15:23	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	**	"	н	**	"	
2,3,4,6-Tetrachlorophenol	ND	1.0	**	**	"	"	**		
2,3,4,5-Tetrachlorophenol	ND	1.0		"	"	"	"	"	
Pentachlorophenol	ND	1.0	"	"	"	"	**	n	
Surrogate: Tribromophenol		48.4 %	23-	-140	Ħ	"	n	"	
RP-2-0.5-1.0 (A307292-07) Soil	Sampled: 07/08/03 15:26	Receive	ed: 07/10	/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	11	**	**	"		**	
2,3,4,6-Tetrachlorophenol	ND	1.0	"	**	Ħ	"	**	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	"	"	**	"	**	**	
Pentachlorophenol	ND	1.0	"	11	11	11	**	**	
Surrogate: Tribromophenol		76.6 %	23	-140	"	"	"	"	
RP-2-1.0-1.5 (A307292-08) Soil	Sampled: 07/08/03 15:31	Receive	ed: 07/10	/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	н	н	**		"	
2,3,4,6-Tetrachlorophenol	ND	1.0	11	"	"	**	"	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	"	н	*	"	"	"	
Pentachlorophenol	ND	1.0	**	"	"	"	n	11	
Surrogate: Tribromophenol		78.2 %	23	-140	"	"	n	п	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG - 1 2003

Page 12 of 32

Nena M. Burgess For Sheri L. Speaks, Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method

Alpha Analytical Laboratories, Inc.

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
RP-2-1.5-2.0 (A307292-09) Soil	Sampled: 07/08/03 15:36	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	11	н	"	19	**	
2,3,4,6-Tetrachlorophenol	ND	1.0	н	11	"		**	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	"	11	"	"	"	**	
Pentachlorophenol	ND	1.0	Ħ	Ħ	**	**	"	11	
Surrogate: Tribromophenol		71.0 %	23-	140	"	"	"	"	
RP-2-2.0-2.5 (A307292-10) Soil	Sampled: 07/08/03 15:41	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	11	"	**	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	1.0	**		"	**	**	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	H	"	11	**	**	**	
Pentachlorophenol	ND	1.0	"	"	"	**	**	"	
Surrogate: Tribromophenol		82.3 %	23-	140	"	"	"	"	
D7-1-0.0-0.5 (A307292-11) Soil	Sampled: 07/09/03 10:20	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	**	**	"	"	n	11	
2,3,4,6-Tetrachlorophenol	ND	1.0		"	"	"	н	**	
2,3,4,5-Tetrachlorophenol	ND	1.0	"	H	"	#	"	н	
Pentachlorophenol	ND	1.0	"	"	n	**	M	n	
Surrogate: Tribromophenol		79.0 %	23-	140	"	11	"	"	
D7-2-0.0-0.5 (A307292-12) Soil	Sampled: 07/09/03 10:52	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	11	"	11	**	**	"	
2,3,4,6-Tetrachlorophenol	ND	1.0	n	**	**	"	**		
2,3,4,5-Tetrachlorophenol	ND	1.0	"	"	"	"	**	**	
Pentachlorophenol	ND	1.0	"	**	11	**	**	"	
Surrogate: Tribromophenol		68.5 %	23-	-140	"	"	"	"	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be epoduced in its entirety.

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

MFG, Inc.

Page 13 of 32

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-Arcata/Task #4	
 180 Howard St. Suite 200	Project Number: 030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager: Ed Conti	07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method

Alpha Analytical Laboratories, Inc.

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D7-3-0.0-0.5 (A307292-13) Soil	Sampled: 07/09/03 11:40	Receive	d: 07/10/0	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	"		**	"	"	
2,3,4,6-Tetrachlorophenol	ND	1.0	**	"	"	"	**	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	11	**	**	n	**	**	
Pentachlorophenol	ND	1.0	N	"	"	11	#	"	
Surrogate: Tribromophenol		66.1 %	23-	140	"	"	"	"	
D7-4-0.0-0.5 (A307292-14) Soil	Sampled: 07/09/03 12:30	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	11	11	**	**			
2,3,4,6-Tetrachlorophenol	ND	1.0	**	н	**	**	**	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	11	**	"	"	**	**	
Pentachlorophenol	ND	1.0	**	**	n	**	"	11	
Surrogate: Tribromophenol		65.3 %	23-	140	"	"	"	"	
D7-5-0.0-0.5 (A307292-15) Soil	Sampled: 07/09/03 00:00	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	**	"	н	**	"	н	
2,3,4,6-Tetrachlorophenol	ND	1.0	н	"	**	н		"	
2,3,4,5-Tetrachlorophenol	ND	1.0	**	**	"	**	н	**	
Pentachlorophenol	ND	1.0	**	Ħ	"	11	**	"	
Surrogate: Tribromophenol		56.5 %	23-	-140	"	#	"	"	
D7-6-0.0-0.5 (A307292-16) Soil	Sampled: 07/09/03 15:37	Receive	ed: 07/10/	/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32119	07/17/03	07/19/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	**	н	**	"	"	
2,3,4,6-Tetrachlorophenol	ND	1.0	"	**	11	"	**	**	
2,3,4,5-Tetrachlorophenol	ND	1.0	"	"	"	11	**	**	
Pentachlorophenol	ND	1.0	n	**	11	**	н	n	
Surrogate: Tribromophenol		85.5 %	23	-140	"	"	n	"	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

MFG, Inc.

Page 14 of 32

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Project: SPI-Arcata/Task #4

MFG, Inc 180 Howard St. Suite 200 San Francisco CA, 94105-2941

Project Number: 030229.4 Project Manager: Ed Conti

Reported: 07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method

Alpha Analytical Laboratories, Inc.

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D7-7-0.0-0.5 (A307292-17) Soil	Sampled: 07/09/03 16:25	Receive	d: 07/10/0	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32121	07/18/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	**	"	11	"	17	11	
2,3,4,6-Tetrachlorophenol	ND	1.0	"	11	**	n	"	**	
2,3,4,5-Tetrachlorophenol	ND	1.0	"	"	"	"	**	"	
Pentachlorophenol	ND	1.0	**	11	Ħ	#	"	**	
Surrogate: Tribromophenol		67.7 %	23-	140	"	"	"	"	
D7-8-0.0-0.5 (A307292-18) Soil	Sampled: 07/09/03 17:20	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32121	07/18/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	11	"	"	11	11	**	
2,3,4,6-Tetrachlorophenol	ND	1.0	**	**	"	"	н	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	**	11	17	"	**	**	
Pentachlorophenol	ND	1.0	"	**	"	H	Ħ	"	
Surrogate: Tribromophenol		86.3 %	23-	140	"	"	"	"	
D7-9-0.0-0.5 (A307292-19) Soil	Sampled: 07/10/03 08:40	Receive	d: 07/10/	03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32121	07/18/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	**		"	"	"	47	
2,3,4,6-Tetrachlorophenol	ND	1.0	"	**	"	*	**	**	
2,3,4,5-Tetrachlorophenol	ND	1.0	"		**	"	11	п	
Pentachlorophenol	ND	1.0	H	"	**	n	**	**	
Surrogate: Tribromophenol		82.3 %	23-	-140	"	"	"	"	
D7-10-0.0-0.5 (A307292-20) Soi	l Sampled: 07/10/03 09:1	0 Receiv	ved: 07/1	0/03 17:45	5				
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32121	07/18/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	**	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	1.0	15	"	**	n	11	**	
2,3,4,5-Tetrachlorophenol	ND	1.0	*	**	"	"	"	"	
Pentachlorophenol	ND	1.0	н	"	"	H	n	"	
Surrogate: Tribromophenol		44.4 %	23	-140	"	"	"	11	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

MFG, Inc.

Page 15 of 32

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number: 030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager: Ed Conti	07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method

Alpha Analytical Laboratories, Inc.

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D7-11-0.0-0.5 (A307292-21) Soil	Sampled: 07/10/03 09:36	Receiv	ed: 07/10	/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32121	07/18/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	11	Ħ	11	n	"	"	
2,3,4,6-Tetrachlorophenol	ND	1.0	Ħ	11	**	**	"	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	**	**	п	"	н	"	
Pentachlorophenol	ND	1.0	H	Ħ	**	H	11	**	
Surrogate: Tribromophenol		41.1 %	23-	140	"	11	"	"	
D7-12-0.0-0.5 (A307292-22) Soil	Sampled: 07/10/03 10:00	Receiv	ed: 07/10	/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32121	07/18/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	**	સ	"	**	**	**	
2,3,4,6-Tetrachlorophenol	ND	1.0	11	**	n	"	"	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	n	"	н	**		"	
Pentachlorophenol	ND	1.0	**	47	"	H	"	"	
Surrogate: Tribromophenol		67.7 %	23-	140	"	n	"	"	
D7-13-0.0-0.5 (A307292-23) Soil	Sampled: 07/10/03 10:15	Receiv	ed: 07/10)/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32121	07/18/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	11	"		11	**	
2,3,4,6-Tetrachlorophenol	ND	1.0	**	н	**	"	"	"	
2,3,4,5-Tetrachlorophenol	ND	1.0		11	**		"	**	
Pentachlorophenol	ND	1.0		"	"	"	"	"	
Surrogate: Tribromophenol		65.3 %	23-	140	"	"	H	"	
D7-14-0.0-0.5 (A307292-24) Soil	Sampled: 07/10/03 10:45	5 Receiv	ved: 07/10)/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32121	07/18/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	**	"	11	**	••	"	
2,3,4,6-Tetrachlorophenol	ND	1.0	**	61	"	**		"	
2,3,4,5-Tetrachlorophenol	ND	1.0	**	"	"	и	**	"	
Pentachlorophenol	ND	1.0	**	"	*	**	*	*	
Surrogate: Tribromophenol		60.5 %	23-	-140	"	"	"	n	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED AUG - 1 2003

Page 16 of 32

Nena M. Burgess For Sheri L. Speaks, Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number: 030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager: Ed Conti	07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method

Alpha Analytical Laboratories, Inc.

Analyte	H Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D7-15-0.0-0.5 (A307292-25) Soil	Sampled: 07/10/03 11:0	5 Receiv	ed: 07/10	/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32121	07/18/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0		**	**	**	"	"	
2,3,4,6-Tetrachlorophenol	ND	1.0		**	"	"	"	**	
2,3,4,5-Tetrachlorophenol	ND	1.0	**		**	*1	*1	**	
Pentachlorophenol	ND	1.0	#	"	t1	11	**	"	
Surrogate: Tribromophenol		72.6 %	23-	140	"	"	"	"	
D7-16-0.0-0.5 (A307292-26) Soil	Sampled: 07/10/03 11:2	5 Receiv	ed: 07/10	/03 17:45				······	
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32307	07/20/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	"	**	"	11	"	
2,3,4,6-Tetrachlorophenol	ND	1.0	**	**	. 11	"	**	"	
2,3,4,5-Tetrachlorophenol	ND	1.0	11	n	"	"	99	"	
Pentachlorophenol	ND	1.0	"	*1	н	n	11	n	
Surrogate: Tribromophenol		75.8 %	23-	140	n	"	n	"	
D7-17-0.0-0.5 (A307292-27) Soil	Sampled: 07/10/03 11:4	15 Receiv	ed: 07/10	0/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32307	07/20/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	н	"	"	*1	**	*	
2,3,4,6-Tetrachlorophenol	ND	1.0	"	**	**	"	**	11	
2,3,4,5-Tetrachlorophenol	ND	1.0	**	11	Ħ	"	**	н	
Pentachlorophenol	ND	1.0	n	11	"	**	"	17	
Surrogate: Tribromophenol		53.2 %	23	-140	"	"	"	"	
SDP-1-0.0-05 (A307292-28) Soil	Sampled: 07/09/03 09:1	2 Receiv	ed: 07/1	0/03 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32307	07/20/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	"	"	м	"	**	**	
2,3,4,6-Tetrachlorophenol	ND	1.0	"	"	"	"		"	
2,3,4,5-Tetrachlorophenol	ND	1.0	17	**	**	н	**	"	
Pentachlorophenol	ND	1.0	"	**	"	"	"	"	
Surrogate: Tribromophenol		69.4 %	23	-140	"	"	"	"	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This and pidat report in the chain of custody document.

AUG - 1 2003

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number: 030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager: Ed Conti	07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method

Alpha Analytical Laboratories, Inc.

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SDP-1-2.0-2.5 (A307292-29) Soil	Sampled: 07/09/03 09:25	Receiv	/ed: 07/10/0	3 17:45					
2,4,6-Trichlorophenol	ND	1.0	mg/kg	1	AG32307	07/20/03	07/22/03	EnvCan	
2,3,5,6-Tetrachlorophenol	ND	1.0	**	"	11	0	"	11	
2,3,4,6-Tetrachlorophenol	ND	1.0	*1	11	**	"	"	n	
2,3,4,5-Tetrachlorophenol	ND	1.0	**	17		"	"	N .	
Pentachlorophenol	ND	1.0	łt	ti	**	"	Ħ	**	
Surrogate: Tribromophenol		65.3 %	23-14	40	"	"	"	"	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED AUG - 1 2003

Page 18 of 32

Nena M. Burgess For Sheri L. Speaks, Project Manager

Alpha Analytical Laboratories Inc. 208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Conventional Chemistry Parameters by APHA/EPA Methods

Alpha Analytical Laboratories, Inc.

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
RP-1-0.0-0.5 (A307292-01) Soil	Sampled: 07/08/03 12:16	Receive	ed: 07/10/0	3 17:45					
Oil & Grease (HEM)	12000	50	mg/kg	1	AG31708	07/15/03	07/18/03	EPA 9071B	
pH	5.1	1.0	pH Units	"	AG31806	07/17/03	07/17/03	EPA 9045B	
RP-1-0.5-1.0 (A307292-02) Soil	Sampled: 07/08/03 12:22	Receive	ed: 07/10/0	3 17:45					
Oil & Grease (HEM)	16000	50	mg/kg	1	AG31708	07/15/03	07/18/03	EPA 9071B	
рН	5.2	1.0	pH Units	**	AG31806	07/17/03	07/17/03	EPA 9045B	
RP-1-1.0-1.5 (A307292-03) Soil	Sampled: 07/08/03 12:27	Receive	ed: 07/10/0	3 17:45					, , , , , , , , , , , , , , , , ,
Oil & Grease (HEM)	40000	50	mg/kg	1	AG31708	07/15/03	07/18/03	EPA 9071B	
pH	5.1	1.0	pH Units	**	AG31806	07/17/03	07/17/03	EPA 9045B	
RP-1-1.5-2.0 (A307292-04) Soil	Sampled: 07/08/03 12:31	Receive	ed: 07/10/0	03 17:45					
Oil & Grease (HEM)	11000	50	mg/kg	1	AG31708	07/15/03	07/18/03	EPA 9071B	
рН	5.1	1.0	pH Units	"	AG31806	07/17/03	07/17/03	EPA 9045B	
RP-1-2.0-2.5 (A307292-05) Soil	Sampled: 07/08/03 12:37	Receiv	ed: 07/10/	03 17:45					
Oil & Grease (HEM)	6200	50	mg/kg	1	AG31708	07/15/03	07/18/03	EPA 9071B	
рН	5.8	1.0	pH Units	"	AG31806	07/17/03	07/17/03	EPA 9045B	
RP-2-0.0-0.5 (A307292-06) Soil	Sampled: 07/08/03 15:23	Receiv	ed: 07/10/	03 17:45					
Oil & Grease (HEM)	1400	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
рН	5.2	1.0	pH Units	"	AG31806	07/17/03	07/17/03	EPA 9045B	
RP-2-0.5-1.0 (A307292-07) Soil	Sampled: 07/08/03 15:26	Receiv	ed: 07/10/	03 17:45					
Oil & Grease (HEM)	120	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
рН	5.7	1.0	pH Units		AG31806	07/17/03	07/17/03	EPA 9045B	

Alpha Analytical Laboratories, Inc.

Nena M. Burgess For Sheri L. Speaks, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG - 1 2003

Page 19 of 32

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-Arcata/7	Fask #4
180 Howard St. Suite 200	Project Number: 030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager: Ed Conti	07/26/03 09:17

Conventional Chemistry Parameters by APHA/EPA Methods

Alpha Analytical Laboratories, Inc.

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
RP-2-1.0-1.5 (A307292-08) Soil	Sampled: 07/08/03 15:31	Receive	ed: 07/10/0	3 17:45					
Oil & Grease (HEM)	300	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
pH	6.1	1.0	pH Units	"	AG31806	07/17/03	07/17/03	EPA 9045B	
RP-2-1.5-2.0 (A307292-09) Soil	Sampled: 07/08/03 15:36	Receive	ed: 07/10/0	3 17:45					
Oil & Grease (HEM)	260	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
рН	6.0	1.0	pH Units		AG31806	07/17/03	07/17/03	EPA 9045B	
RP-2-2.0-2.5 (A307292-10) Soil	Sampled: 07/08/03 15:41	Receive	ed: 07/10/(3 17:45					
Oil & Grease (HEM)	260	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
рН	5.8	1.0	pH Units	"	AG31806	07/17/03	07/17/03	EPA 9045B	
D7-1-0.0-0.5 (A307292-11) Soil	Sampled: 07/09/03 10:20	Receive	ed: 07/10/0	3 17:45					
Oil & Grease (HEM)	1900	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
pH	6.3	1.0	pH Units	"	AG31806	07/17/03	07/17/03	EPA 9045B	
D7-2-0.0-0.5 (A307292-12) Soil	Sampled: 07/09/03 10:52	Receive	ed: 07/10/(3 17:45					
Oil & Grease (HEM)	3100	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
рН	6.1	1.0	pH Units	"	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-3-0.0-0.5 (A307292-13) Soil	Sampled: 07/09/03 11:40	Receiv	ed: 07/10/0	03 17:45					
Oil & Grease (HEM)	1900	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
pH	6.2	1.0	pH Units	**	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-4-0.0-0.5 (A307292-14) Soil	Sampled: 07/09/03 12:30	Receiv	ed: 07/10/	03 17:45					
Oil & Grease (HEM)	4100	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
рН	6.3	1.0	pH Units	"	AG31806	07/18/03	07/18/03	EPA 9045B	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. RECEIVED

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-Arcata/Task	#4
180 Howard St. Suite 200	Project Number: 030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager: Ed Conti	07/26/03 09:17

Conventional Chemistry Parameters by APHA/EPA Methods

Alpha Analytical Laboratories, Inc.

	R	eporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D7-5-0.0-0.5 (A307292-15) Soil	Sampled: 07/09/03 00:00	Receive	ed: 07/10/0	3 17:45					
Oil & Grease (HEM)	8800	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
pH	5.1	1.0	pH Units	••	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-6-0.0-0.5 (A307292-16) Soil	Sampled: 07/09/03 15:37	Receive	ed: 07/10/0	3 17:45					
Oil & Grease (HEM)	160	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
pH	5.2	1.0	pH Units	**	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-7-0.0-0.5 (A307292-17) Soil	Sampled: 07/09/03 16:25	Receive	ed: 07/10/0	3 17:45					
Oil & Grease (HEM)	130	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
pH	5.4	1.0	pH Units	**	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-8-0.0-0.5 (A307292-18) Soil	Sampled: 07/09/03 17:20	Receiv	ed: 07/10/0	03 17:45					
Oil & Grease (HEM)	1800	50	mg/kg	1	AG31708	07/16/03	07/18/03	EPA 9071B	
pH	5.7	1.0	pH Units	**	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-9-0.0-0.5 (A307292-19) Soil	Sampled: 07/10/03 08:40	Receiv	ed: 07/10/	03 17:45					
Oil & Grease (HEM)	2300	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
pH	6.0	1.0	pH Units	"	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-10-0.0-0.5 (A307292-20) Soil	Sampled: 07/10/03 09:10) Recei	ved: 07/10	/03 17:45					
Oil & Grease (HEM)	1400	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
рН	6.0	1.0	pH Units	••	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-11-0.0-0.5 (A307292-21) Soil	Sampled: 07/10/03 09:30	5 Recei	ved: 07/10	/03 17:45					
Oil & Grease (HEM)	17000	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
рН	5.9	1.0	pH Units	**	AG31806	07/18/03	07/18/03	EPA 9045B	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report nult performance of the produced in its entirety.

AUG - 1 2003

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Conventional Chemistry Parameters by APHA/EPA Methods

Alpha Analytical Laboratories, Inc.

	Re	oorting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D7-12-0.0-0.5 (A307292-22) Soil	Sampled: 07/10/03 10:00	Receiv	ed: 07/10/	03 17:45					
Oil & Grease (HEM)	1100	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
pH	6.0	1.0	pH Units	"	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-13-0.0-0.5 (A307292-23) Soil	Sampled: 07/10/03 10:15	Receiv	/ed: 07/10/	/03 17:45					
Oil & Grease (HEM)	4100	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
pH	6.1	1.0	pH Units	"	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-14-0.0-0.5 (A307292-24) Soil	Sampled: 07/10/03 10:45	Receiv	ved: 07/10/	/03 17:45					
Oil & Grease (HEM)	2800	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
pH	5.7	1.0	pH Units	**	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-15-0.0-0.5 (A307292-25) Soil	Sampled: 07/10/03 11:05	Receiv	ved: 07/10	/03 17:45					
Oil & Grease (HEM)	3100	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
pH	6.0	1.0	pH Units	"	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-16-0.0-0.5 (A307292-26) Soil	Sampled: 07/10/03 11:25	Recei	ved: 07/10	/03 17:45					
Oil & Grease (HEM)	8000	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
pH	6.3	1.0	pH Units	**	AG31806	07/18/03	07/18/03	EPA 9045B	
D7-17-0.0-0.5 (A307292-27) Soil	Sampled: 07/10/03 11:45	Recei	ved: 07/10	/03 17:45					
Oil & Grease (HEM)	26000	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
pH	5.6	1.0	pH Units	н	AG31806	07/18/03	07/18/03	EPA 9045B	
SDP-1-0.0-05 (A307292-28) Soil	Sampled: 07/09/03 09:12	Recei	ved: 07/10	/03 17:45					
Oil & Grease (HEM)	8100	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
рН	6.7	1.0	pH Units	"	AG31806	07/18/03	07/18/03	EPA 9045B	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. **FECEIVED**

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Conventional Chemistry Parameters by APHA/EPA Methods

Alpha Analytical Laboratories, Inc.

Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SDP-1-2.0-2.5 (A307292-29) Soil	Sampled: 07/09/03 09:25	Recei	ved: 07/10	/03 17:45					
Oil & Grease (HEM)	460	50	mg/kg	1	AG32506	07/22/03	07/24/03	EPA 9071B	
рН	6.0	1.0	pH Units	н	AG31806	07/18/03	07/18/03	EPA 9045B	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. RECEIVED

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

AlphaAnalytical Laboratories Inc.208 Mason St. Ukiah, California 95482e-mail: clientservices@alpha-labs.com• Phone: (707) 468-0401• Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Metals by EPA 6000/7000 Series Methods - Quality Control

Alpha Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Kesuit		Onits	Level	Kesun	70KEC	Linits			INDICS
Batch AG31004 - EPA 3051 Microwa	ve							_		
Blank (AG31004-BLK1)				Prepared	& Analyze	ed: 07/10/	03			
Cadmium	ND	1.0	mg/kg							
Chromium	ND	5.0	**							
Lead	ND	5.0	"							
Nickel	ND	10	"							
Zinc	ND	10	11							
LCS (AG31004-BS1)				Prepared	& Analyz	ed: 07/10/	03			
Cadmium	20.7	1.0	mg/kg	20.0		104	85-115			
Chromium	21.2	5.0	11	20.0		106	85-115			
Lead	20.1	5.0	n	20.0		100	85-115			
Nickel	21.2	10	"	20.0		106	85-115			
Zinc	22.0	10	11	20.0		110	87.1-126			
LCS Dup (AG31004-BSD1)				Prepared	& Analyz	ed: 07/10/	/03			
Cadmium	21.3	1.0	mg/kg	20.0		106	85-115	2.86	20	
Chromium	21.6	5.0		20.0		108	85-115	1.87	20	
Lead	20.7	5.0	**	20.0		104	85-115	2.94	20	
Nickel	21.5	10	н	20.0		108	85-115	1.41	20	
Zinc	22.1	10	н	20.0		110	87.1-126	0.454	20	
Duplicate (AG31004-DUP1)	So	urce: A30719	97-01	Prepared	& Analyz	ed: 07/10	/03			
Cadmium	ND	1.0	mg/kg		ND				20	
Chromium	33.7	5.0	"		46			30.9	20	QM-0
Lead	8.90	5.0	11		11			21.1	20	QM-0
Nickel	43.2	10	**		53			20.4	20	QM-0
Zinc	31.5	10	"		33			4.65	20	
Matrix Spike (AG31004-MS1)	So	urce: A30719	97-01	Prepared	& Analyz	ed: 07/10	/03			
Cadmium	19.0	1.0	mg/kg	20.0	ND	95.0	70-130			
Chromium	54.8	5.0	**	20.0	46	44.0	70-130			QM-0
Lead	28.2	5.0	"	20.0	11	86.0	70-130			
Nickel	64.2	10		20.0	53	56.0	70-130			QM-0
Zinc	53.7	10	"	20.0	33	104	70-130			

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

FECEL VED

AUG - 1 2003

Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc		Project:	SPI-Arcata/Task #4	
180 Howar	d St. Suite 200	Project Number:	030229.4	Reported:
San Franci	sco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Metals by EPA 6000/7000 Series Methods - Quality Control

Alpha Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AG31004 - EPA 3051 Microwa	ive									
Matrix Spike Dup (AG31004-MSD1)	So	urce: A30719	7-01	Prepared	& Analyze	ed: 07/10/	03			
Cadmium	18.2	1.0	mg/kg	20.0	ND	91.0	70-130	4.30	20	
Chromium	59.5	5.0	**	20.0	46	67.5	70-130	8.22	20	QM-04
Lead	29.2	5.0	**	20.0	11	91.0	70-130	3.48	20	
Nickel	68.3	10	н	20.0	53	76.5	70-130	6.19	20	QM-04
Zinc	54.9	10	"	20.0	33	110	70-130	2.21	20	
Batch AG31502 - EPA 3051 Microwa	ave									
Blank (AG31502-BLK1)				Prepared	: 07/15/03	Analyzed	1: 07/22/03			
Cadmium	ND	1.0	mg/kg							
Chromium	ND	5.0	"							
Lead	ND	5.0	"							
Nickel	ND	10	"							
Zinc	ND	10	"							
LCS (AG31502-BS1)				Prepared	: 07/15/03	Analyze	d: 07/22/03			
Cadmium	19.9	1.0	mg/kg	20.0		99.5	85-115			
Chromium	19.6	5.0	99	20.0		98.0	85-115			
Lead	20.1	5.0	н	20.0		100	85-115			
Nickel	20.0	10	11	20.0		100	85-115			
Zinc	21.3	10	'n	20.0		106	87.1-126			
LCS Dup (AG31502-BSD1)				Prepared	: 07/15/03	Analyze	d: 07/22/03	i		
Cadmium	20.6	1.0	mg/kg	20.0		103	85-115	3.46	20	
Chromium	20.4	5.0	u	20.0		102	85-115	4.00	20	
Lead	20.8	5.0		20.0		104	85-115	3.42	20	
Nickel	20.5	10	"	20.0		102	85-115	2.47	20	
Zinc	22.4	10	**	20.0		112	87.1-126	5.03	20	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. RECEIVED

AUG - 1 2003

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-Arca	ta/Task #4
180 Howard St. Suite 200	Project Number: 030229.4	Reported:
 San Francisco CA, 94105-2941	Project Manager: Ed Conti	07/26/03 09:17

Metals by EPA 6000/7000 Series Methods - Quality Control

Alpha Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AG31502 - EPA 3051 Microway	e									
Duplicate (AG31502-DUP1)	So	urce: A30729	2-12	Prepared:	07/15/03	Analyzed	l: 07/22/03			
Cadmium	ND	1.0	mg/kg		ND				20	
Chromium	49.7	5.0	**		44			12.2	20	
Lead	13.9	5.0	**		18			25.7	20	QM-04
Nickel	41.1	10	n		42			2.17	20	
Zinc	130	10	"		140			7.41	20	
Matrix Spike (AG31502-MS1)	So	urce: A30729	92-12	Prepared:	07/15/03	Analyzed	1: 07/22/03			
Cadmium	17.8	1.0	mg/kg	20.0	ND	89.0	70-130			
Chromium	76.2	5.0	"	20.0	44	161	70-130			QM-04
Lead	38.4	5.0	"	20.0	18	102	70-130			
Nickel	59.8	10	"	20.0	42	89.0	70-130			
Zinc	164	10	**	20.0	140	120	70-130			
Matrix Spike Dup (AG31502-MSD1)	So	urce: A3072	92-12	Prepared	: 07/15/03	Analyzed	d: 07/22/03			
Cadmium	16.2	1.0	mg/kg	20.0	ND	81.0	70-130	9.41	20	
Chromium	50.6	5.0	"	20.0	44	33.0	70-130	40.4	20	QM-04
Lead	30.8	5.0	"	20.0	18	64.0	70-130	22.0	20	QM-04
Nickel	54.8	10	**	20.0	42	64.0	70-130	8.73	20	QM-04
Zinc	137	10	11	20.0	140	NR	70-130	17.9	20	QM-4X

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. **RECEIVED**

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (70)7)	46
--	-----	----

8-0401 • Fax: (707) 468-5267

MFG, Inc	Project:	SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number:	030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager:	Ed Conti	07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Alpha Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AG32117 - Solvent Extraction										
Blank (AG32117-BLK1)				Prepared:	07/16/03	Analyzed	l: 07/18/03			
2,4,6-Trichlorophenol	ND	1.0	mg/kg							
2,3,5,6-Tetrachlorophenol	ND	1.0	n							
2,3,4,6-Tetrachlorophenol	ND	1.0	**							
2,3,4,5-Tetrachlorophenol	ND	1.0	"							
Pentachlorophenol	ND	1.0	"		-					
Surrogate: Tribromophenol	0.111		"	0.124		89.5	23-140			
LCS (AG32117-BS1)				Prepared:	07/16/03	Analyzed	1: 07/18/03			
2,4,6-Trichlorophenol	0.0186	1.0	mg/kg	0.0250		74.4	32-116			
2,3,5,6-Tetrachlorophenol	0.0139	1.0	"	0.0250		55.6	18-80			
2,3,4,6-Tetrachlorophenol	0.0170	1.0	**	0.0250		68.0	28-89			
2,3,4,5-Tetrachlorophenol	0.0182	1.0	**	0.0250		72.8	54-85			
Pentachlorophenol	0.0159	1.0	**	0.0250		63.6	17-85			
Surrogate: Tribromophenol	0.115		"	0.124		<i>92</i> .7	23-140			
LCS Dup (AG32117-BSD1)				Prepared:	07/16/03	Analyze	d: 07/18/03			
2,4,6-Trichlorophenol	0.0224	1.0	mg/kg	0.0250		89.6	32-116	18.5	50	
2,3,5,6-Tetrachlorophenol	0.0115	1.0	"	0.0250		46.0	18-80	18.9	50	
2,3,4,6-Tetrachlorophenol	0.0182	1.0	"	0.0250		72.8	28-89	6.82	50	
2,3,4,5-Tetrachlorophenol	0.0173	1.0	"	0.0250		69.2	54-85	5.07	50	
Pentachlorophenol	0.0154	1.0	**	0.0250		61.6	17-85	3.19	50	
Surrogate: Tribromophenol	0.112		n	0.124		90.3	23-140			
Batch AG32119 - Solvent Extraction										
Blank (AG32119-BLK1)				Prepared	: 07/17/03	Analyze	d: 07/19/03			
2,4,6-Trichlorophenol	ND	1.0	mg/kg							
2,3,5,6-Tetrachlorophenol	ND	1.0	**							
2,3,4,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,5-Tetrachlorophenol	ND	1.0	11							

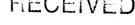
1.0

"

0.124

ND

0.0760


Surrogate: Tribromophenol

Pentachlorophenol

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This and uced in its entirety.

23-140

61.3

AUG - 1 2003

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

o Mason St. Okian, Camornia 95462

MFG, IncProject:SPI-Arcata/Task #4180 Howard St. Suite 200Project Number:030229.4Reported:San Francisco CA, 94105-2941Project Manager:Ed Conti07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Alpha Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AG32119 - Solvent Extraction										
LCS (AG32119-BS1)				Prenared	07/17/03	Analyzed	l: 07/19/03			
2,4,6-Trichlorophenol	0.0157	1.0	mg/kg	0.0250		62.8	32-116			
2,3,5,6-Tetrachlorophenol	0.0112	1.0	"	0.0250		44.8	18-80			
2,3,4,6-Tetrachlorophenol	0.0131	1.0	н	0.0250		52.4	28-89			
2,3,4,5-Tetrachlorophenol	0.0144	1.0	"	0.0250		57.6	54-85			
Pentachlorophenol	0.0123	1.0	"	0.0250		49.2	17-85			
Surrogate: Tribromophenol	0.0660		"	0.124		53.2	23-140			
LCS Dup (AG32119-BSD1)				Prepared:	07/17/03	Analyzed	1: 07/19/03			
2,4,6-Trichlorophenol	0.0158	1.0	mg/kg	0.0250		63.2	32-116	0.635	50	
2,3,5,6-Tetrachlorophenol	0.0114	1.0	"	0.0250		45.6	18-80	1.77	50	
2,3,4,6-Tetrachlorophenol	0.0139	1.0	"	0.0250		55.6	28-89	5.93	50	
2,3,4,5-Tetrachlorophenol	0.0141	1.0	"	0.0250		56.4	54-85	2.11	50	
Pentachlorophenol	0.0123	1.0		0.0250		49.2	17-85	0.00	50	
Surrogate: Tribromophenol	0.0610		"	0.124		49.2	23-140			
Batch AG32121 - Solvent Extraction										
Blank (AG32121-BLK1)				Prepared:	07/18/03	Analyze	d: 07/21/03	5		
2,4,6-Trichlorophenol	ND	1.0	mg/kg							
2,3,5,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,6-Tetrachlorophenol	ND	1.0	**							
2,3,4,5-Tetrachlorophenol	ND	1.0	"							
Pentachlorophenol	ND	1.0	**							
Surrogate: Tribromophenol	0.0990		"	0.124		79.8	23-140			
LCS (AG32121-BS1)				Prepared	: 07/18/03	Analyze	d: 07/21/03	3		
2,4,6-Trichlorophenol	0.0164	1.0	mg/kg	0.0250		65.6	32-116			
2,3,5,6-Tetrachlorophenol	0.00870	1.0	"	0.0250		34.8	18-80			
2,3,4,6-Tetrachlorophenol	0.0151	1.0	"	0.0250		60.4	28-89			

.

"

,,

0.0250

0.0250

0.124

1.0

1.0

0.0144

0.0103

0.0770

Surrogate: Tribromophenol

2,3,4,5-Tetrachlorophenol

Pentachlorophenol

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

54-85

17-85

23-140

57.6

41.2

62.1

RECEIVED

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	Project: SPI-Arcata/Task #4	
180 Howard St. Suite 200	Project Number: 030229.4	Reported:
San Francisco CA, 94105-2941	Project Manager: Ed Conti	07/26/03 09:17

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Alpha Analytical Laboratories, Inc.

Г										
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AG32121 - Solvent Extraction										
LCS Dup (AG32121-BSD1)				Prepared:	07/18/03	Analyzed	: 07/21/03			
2,4,6-Trichlorophenol	0.0180	1.0	mg/kg	0.0250		72.0	32-116	9.30	50	
2,3,5,6-Tetrachlorophenol	0.0113	1.0	**	0.0250		45.2	18-80	26.0	50	
2,3,4,6-Tetrachlorophenol	0.0155	1.0	"	0.0250		62.0	28-89	2.61	50	
2,3,4,5-Tetrachlorophenol	0.0153	1.0		0.0250		61.2	54-85	6.06	50	
Pentachlorophenol	0.0107	1.0	**	0.0250		42.8	17-85	3.81	50	
Surrogate: Tribromophenol	0.0870		"	0.124		70.2	23-140			
Batch AG32307 - Solvent Extraction										
Blank (AG32307-BLK1)				Prepared:	07/20/03	Analyzed	I: 07/22/03			
2,4,6-Trichlorophenol	ND	1.0	mg/kg	·····						
2,3,5,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,5-Tetrachlorophenol	ND	1.0	"							
Pentachlorophenol	ND	1.0	"							
Surrogate: Tribromophenol	0.0990		"	0.124		79.8	23-140			
LCS (AG32307-BS1)				Prepared:	07/20/03	Analyzed	1: 07/22/03			
2,4,6-Trichlorophenol	0.0231	1.0	mg/kg	0.0250		92.4	32-116			
2,3,5,6-Tetrachlorophenol	0.0136	1.0	**	0.0250		54.4	18-80			
2,3,4,6-Tetrachlorophenol	0.0187	1.0	"	0.0250		74.8	28-89			
2,3,4,5-Tetrachlorophenol	0.0183	1.0	"	0.0250		73.2	54-85			
Pentachlorophenol	0.0137	1.0	n	0.0250		54.8	17-85			
Surrogate: Tribromophenol	0.0940		n	0.124		75.8	23-140			
LCS Dup (AG32307-BSD1)				Prepared:	: 07/20/03	Analyzed	d: 07/22/03			
2,4,6-Trichlorophenol	0.0291	1.0	mg/kg	0.0250		116	32-116	23.0	50	
2,3,5,6-Tetrachlorophenol	0.0109	1.0	"	0.0250		43.6	18-80	22.0	50	
2,3,4,6-Tetrachlorophenol	0.0169	1.0	"	0.0250		67.6	28-89	10.1	50	
2,3,4,5-Tetrachlorophenol	0.0152	1.0		0.0250		60.8	54-85	18.5	50	
Pentachlorophenol	0.0110	1.0		0.0250		44.0	17-85	21.9	50	
Surrogate: Tribromophenol	0.0750		"	0.124		60.5	23-140			

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG - 1 2003

MFG, Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, IncProject:SPI-Arcata/Task #4180 Howard St. Suite 200Project Number:030229.4Reported:San Francisco CA, 94105-2941Project Manager:Ed Conti07/26/03 09:17

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Alpha Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AG31708 - General Preparatio	- **		01110							110105
Blank (AG31708-BLK1)				Prepared:	07/15/03	Analyzed	: 07/18/03			
Oil & Grease (HEM)	ND	50	mg/kg	*						
LCS (AG31708-BS1)				Prepared:	07/15/03	Analyzed	: 07/18/03			
Oil & Grease (HEM)	3490	50	mg/kg	3500		99.7	80-120			
LCS Dup (AG31708-BSD1)				Prepared:	07/15/03	Analyzed	: 07/18/03			
Oil & Grease (HEM)	3490	50	mg/kg	3500		99.7	80-120	0.00	20	
Duplicate (AG31708-DUP1)	Sou	rce: A30729	92-05	Prepared:	07/15/03	Analyzed	: 07/18/03			
Oil & Grease (HEM)	5840	50	mg/kg		6200			5.98	200	
Matrix Spike (AG31708-MS1)	Sou	rce: A30729	92-05	Prepared:	07/15/03	Analyzed	l: 07/18/03			
Oil & Grease (HEM)	9020	50	mg/kg	3000	6200	94.0	80-120			
Matrix Spike Dup (AG31708-MSD1)	Sou	rce: A30729	92-05	Prepared:	: 07/15/03	Analyzed	1: 07/18/03			
Oil & Grease (HEM)	9500	50	mg/kg	3000	6200	110	80-120	5.18	20	
Batch AG32506 - General Preparatio	n									
Blank (AG32506-BLK1)				Prepared	: 07/23/03	Analyzed	l: 07/24/03			
Oil & Grease (HEM)	ND	50	mg/kg							
LCS (AG32506-BS1)				Prepared	: 07/23/03	Analyzed	1: 07/24/03			
Oil & Grease (HEM)	3490	50	mg/kg	3500		99.7	80-120			
LCS Dup (AG32506-BSD1)				Prepared	: 07/23/03	Analyzed	1: 07/24/03			
Oil & Grease (HEM)	3500	50	mg/kg	3500		100	80-120	0.286	20	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

Page 30 of 32

الحدد وجدانية

Alpha Analytical Laboratories Inc. 208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267 MFG, Inc Project: SPI-Arcata/Task #4 180 Howard St. Suite 200 Project Number: 030229.4 Reported: San Francisco CA, 94105-2941 Project Manager: Ed Conti 07/26/03 09:17

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Alpha Analytic	al Laboratories, Inc.
----------------	-----------------------

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AG32506 - General Preparation										
Duplicate (AG32506-DUP1)	Sou	irce: A30729	02-19	Prepared:	07/23/03	Analyzed	l: 07/24/03			
Oil & Grease (HEM)	3340	50	mg/kg		2300			36.9	200	
Matrix Spike (AG32506-MS1)	Sou	irce: A30729	92-19	Prepared:	07/23/03	Analyzed	l: 07/24/03			
Oil & Grease (HEM)	4420	50	mg/kg	2500	2300	84.8	80-120			•
Matrix Spike Dup (AG32506-MSD1)	Soi	irce: A30729	92-19	Prepared:	07/23/03	Analyzed	1: 07/24/03			
Oil & Grease (HEM)	3720	50	mg/kg	2500	2300	56.8	80-120	17.2	20	QM-0:

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

MFG, Inc.

Page 31 of 32

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

-	MFG, Inc	Project: SPI-Arcata/Task #4	
	180 Howard St. Suite 200	Project Number: 030229.4	Reported:
	San Francisco CA, 94105-2941	Project Manager: Ed Conti	07/26/03 09:17

Notes and Definitions

QM-04 High RPD and/or poor percent recovery may reflect sample non-homogeneity.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

- QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUG - 1 2003

Nena M. Burgess For Sheri L. Speaks, Project Manager

MrG, Inc.

Page 32 of 32

3																					
COC No. 43263	PAGE: <u>1</u> OF: <u>3</u> ΔΙρλα	YSIS REQUEST	dling / Remarks	R 201 Ohier Spill- R R. Miler Spill- R. Mun Of C wath B 36 Ollawry 1 th	X A 307 292 - 1	× ~	Ý ,3	X X	x - S	۹- ×	t- X	× 100	2- - X	(X	of samples Cooler Temp:	RECIEVED BY:	PRINTED NAME COMPANY	Atthews	Decku Alpha	- LABORATORY	ι- unfiltered
ANALYSIS Seattle Office Seattle Office Suite 10203 36th Avenue W. Suite 10203 36th Avenue W. Lymnwood, WA 98036-5707 Tel: (425) 921-4040 Fax: (425) 921-4040	DESTINATION:	ANALYSIS	ethod Handling	ногь ногь сурх - буллях	X		×	×		×			×		MENTS/CONDITION	RECI	PRINT	N. W.	N. V.		Filtration: F - filtered U - unfiltered
	Contin DES		S Constituents/Method	10 14(1) H J H J H B J H	1 X X X	X X X I	X X X -	1 X X X	XXX	XXX	XXX	××××	XXX	$X \times X$	LABORATORY COMMENTS/CONDITION OF SAMPLES		SIGNATURE	-m/bulun	S.Specks	-	T - tellon B - brass 0T - other to Originator
G, INC. D AND REQUEST FOF C AND REQUEST FOF San Francisco Office San Francisco. CA 94105-1617 San Francisco. CA 94105-1617 Phone (415) 495-7110 - Fax (415) 495-7107	ER: Ed		Containers	FILTRATION* VOLUME (mi/oz) TYPE*	U 6"51 B	U 6"51 B	U 6"51 B	U 6°51 B	U 6"s1 B		11 6"51 8	W 6"51 B	U 6"51 B	U 6"51 B	CONTAINERS (29))	TIME	1:25	18:45	17:4538	-other Containers: P - plastic G - glass T - tetion B - brass YELLOW: Laboratory Copy WHITE: Return to Originator
	<u>Sierra</u> OJECT M/ R/WAYBIL		Preservation	COΓD H ⁵ 2O [⊄] HNO ³	X	X	Х	X	X	×	×	X	X	X	TOTAL NUMBER OF C		DATE	50/01/L	7110/03	•	etroleum A - air OT PINK: Field Copy
CHAIN-OF-CUSTODY Irvine Office Irvine Office Suite 500 Tei: (948) 253-2954 Tei: (948) 253-2954 Tei: (948) 253-2954 Tei: (948) 253-2954	PROJECT NAME:	SAMPLES	Sample	H ه Matrix* HCI	12:16 SO	2:22	tz:21	12:31	J 75:21	15:23 SD	15:26	15:31	15:36				COMPANY	156-5F	THRHO	>	ieous SO - soil SL - sludge P - p DISTRIBUTION:
	4 courrier	SAM	<u>о</u>	DATE	20/8/L				->	7/8/03				^		HED BY:	NAME	Seil Seil	ius		Matrix: AO - aqueous NA - nonaqueous
Boulder Office 400 Peat East Circle Suite 300W Boulder, CO 80301-6118 Tel: (303) 447-1823 Fax: (303) 447-1836	e l	VEIVED	AUG - 1 2003	MiF.G, Inc. Field Sample Identification	0.5	1. 0	1.5	2. D	- 2.5	- 0, 5	- 1.0	- [, 5	- 2.0	0-2.5		RELINQUISHED BY:	PRINTED NAME	- Christieher	J. WHITHINS		• <u>KEY</u> Mat
☐ Arcata Office CA 9551-5815 Arcata. CA 9551-5817 Tel: (707) 826-8437 Fax: (707) 826-8437	PROJECT NO: 0 3022 SAMPLER (Signature): METHOD OF SHIPMENT:	J.	- AUG -	NiFG Si – G	RP-1-0.0-	RP-1- 0.5-	RP-1-1.0-	RP-1-1.5.	RP-1 - 2.0.	RP-2 -0.0.	RP-2- 6.5	RP-2-1.0.	RP-2-1.5.	RP-2-2.1			SIGNATURE		(and the face)		

ر (8

-

COC No. 43131	PAGE: <u>3</u> OF: <u>3</u> DATE: <u>7/10/03</u> A1phn	REQUEST	Remarks		(A30729a-21	<u>aa</u>							b7.	MPLES Cooler Temp:) BY:	VAME COMPANY		R	LABORATORY	ad
SIS venue W. 1-4000 1-4040	DESTINATION:	ANALYSIS REQUEST	d Handling	UOLD HSUA GRADNATS	×	× 	×			× 	×			S/CONDITION OF SA	RECIEVED BY:	PRINTED NAME		S Doea	>	Filtration: F - filtered U - untiltered
ST FOR ANALYSIS St FOR ANALYSIS Satta Office 19203 36th Avenue W. Lynnwood, WA 98036-5707 Lynnwood, WA 98036-5707 161: (425) 921-4040 Fax: (425) 921-4040 Fax: (425) 921-4040	Conti		Constituents/Method	Lear Metrals Total Ot G PH	XXXX	XXXX	XXXX	X X X X	XXXX	XXXX	\times \times \times \times	× × × ×	XXXX	LABORATORY COMMENTS/CONDITION OF SAMPLES		SIGNATURE	Matting	S. Speako	-	B - brass 0T - other
MFG, INC. RECORD AND REQUEST FOR In Office and 10 and 10 an 10 an 10 an 10 an 10 an 10 an 10 an 10 a	AGER: Ed		Containers	FILTRATION* VOLUME (ml/oz) TYPE*	N 6"51 B 1	V ("SI &)	V 6"51 B 1	N 6"51 B 1	N 6"51 B 1	U 6'51 8 1	N 6"51 D 1	W 6"51 B 1	W 6"s) & 1	CONTAINERS		TIME	1:25	15:45 R	17: YS	other Containers: P - plastic G - glass T - teflon B - brass YELLOW: Laboratory Copy WHITE: Return to Originator
	- NAME: Sierra Pro- PROJECT MANAGER: CARRIER/WAYBILL NO:		Preservation	COLD H₂SO₄ HNO₃	×	×.	×	*	×,	×.	×	X	×	TOTAL NUMBER OF CONTAINERS		DATE	20/01/2	1/1/1/03	-	etroleum A - air OT PINK: Field Copy
CHAIN-OF-CUSTODY	PROJECT NAME PF	SAMPLES	Sample	Щ НСI Matrix* HCI	103 9:36 50	10:00	10:15	sh:01	11:05	11:25	V 11:45 V	7/9/03 9:12 50	9:25 J			COMPANY	MFG-SF	HIDHO		ia SD - soli SL
CHA Boulder Office Circle CHA 4900 Pearl East Circle Circle Suite Boulder CO 80301-6118 Invine Tel: (303) 447-1823 Fax: (303) 447-1836	030229. 4 ature):	S		Field Sample Identification	0.5 7/10/03	0.5	- 0,5	- 0.5	- 0,5	- 0.5	- 0.5	- 0.5	1 1			PRINTED NAME	- Christianter Sill	1 MATheuse		•KEY Matrix: A0 - aqueous NA - nonaqueous
□ Arcata Office 1165 G Street, Suite E Arcata, CA 9521-5917 Arcata, CA 9521-5917 Fai: (707) 826-8437 Fai: (707) 826-8437	PROJECT NO: 0302 SAMPLER (Signature): METHOD OF SHIPMENT			iden S. –	0-0.0-11-20	- U.Q - CI - LU	7-13-0.0	7-14-0	01-15 - 0,0	07-16-0,0	07-17-0.6	509-1-002	508-1-2.0			SIGNATI IRF				

a ...

COC No. 43130	: 2 OF: 3 7/1./03	ST	Remarks	9/03 -0920 Uluri Spill mur 08 6 will	A307292-11	اھ	3	١٢	S ا	٩	4	20	5-	20	Cooler Temp:		COMPANY		HIPHA LABORATORY	
۰. 5-5707	PAGE: DATE: ATION: Alpha	ANALYSIS REQUEST	Handling	алон нгил аяадиатг	X A3	×	×	×	×.	×	×	×	×	×	COMMENTS/CONDITION OF SAMPLES	RECIEVED BY:	PRINTED NAME		JiSpeaks	on: F- filtered U - unfiltered
MFG, INC. Seattle Office RECORD AND REQUEST FOR ANALYSIS Office noffice X San Francisco Office x 30 San Francisco Office x 30 San Francisco Office x 30 San Francisco Sec. 811	Contr: DESTINATION:		Constituents/Method	Wear Medals Wear Medals THAI Of G Chlor. Phenols	XXXX	XXXX	XXXX	XXXX	X X X X X	XXXX	XXXX	XXXX	XXXXX	X X X	LABORATORY COMMENTS		SIGNATURE	. Watten	D. Specks	T - teflon B - brass OT - other Filtration:
G, INC. D AND REQUEST F & San Francisco Office 180 Francisco Office 1810 Francisco Sca Suite 200 1810 F	NO: NA		Containers	FILTRATION* VOLUME (mi/oz) TYPE*	N 6's B	W 6"s1 B	N 6"s1 B	U 6"51 B	W 6"s B 1	U 6"51 B 1	u 6"51 B	N 6 1/2 N	N 65/ B 1	W 651 B 1	CONTAIN)	TIME	1:25		Dlastic G - gt
	'NAME: Sierra Par PROJECT MANAGER CARRIER/WAYBILL NO:		Preservation	COFD H ⁵ SO [⊄] HNO ³ HCI	X	X	×	×	×	×	×	×	X	×	TOTAL NUMBER OF		DATE	7/10/+3	7/10/03	P - petroleum A - air OT - other Containers: P -
CHAIN-OF-CUSTODY Invine Office 17770 Cartwright Road 17770 Cartwr	PROJECT NAM	SAMPLES	Sample	DATE DATE DATE	7/9/03/10:20 50	10:52	0 h-11	h:30		15:37	16:25	1 oz: El 1	7/10/03 8:40 50	1 01:6 1			COMPANY	M FC-5F	Klpha	Matrix: AQ - aqueous NA - nonaqueous SO - soli SL - sludge P -
□ Boulder Office 4900 Pear East Circle 2016 300W Boulder, CO 80301-6118 Fax: (303) 447-1823 Fax: (303) 447-1836	030 229. ط ature):			Field Sample Identification	0.5	ځو	0.5	- 0.5	- 6, 5	. 0.5	, 0, 5 - 0, 5	ر م. ح ا	· 0.5	•		RELINQUISHED BY:	PRINTED NAME	- Churstapher Spill	J-W/HIThows	• KEY Matrix: AQ - aqueous N
□ Arcata Office 1165 G Streets Sute E Arcata, CA 95521-5817 Tet: (707) 826-8437 Fax: (707) 826-8437	PROJECT NO: 030 SAMPLER (Signature): C METHOD OF SHIPMENT:			G S _	-0.0 - 1 - 20	1	- 3- 0.0-	D7-4 - 6.0 -	01-5-0.0-	01-6-00-	° 0.0	01- 8- 0.0.	D7-9-0.0	07-10-0.0			SIGNATURE	Q		

AlphaAnalytical Laboratories Inc.208 Mason St. Ukiah, California 95482e-mail: clientservices@alpha-labs.com• Phone: (707) 468-0401• Fax: (707) 468-5267

07 August 2003

MFG, Inc Attn: Ed Conti 180 Howard St. Suite 200 San Francisco, CA 94105-2941 RE: SPI-Arcata/Task #4 Work Order: A307477

Enclosed are the results of analyses for samples received by the laboratory on 07/21/03 11:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Juny M

Cheryl Watson For Karen A. Daly Project Manager

AUG 1 1 2003 MFG, Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/07/03 10:21 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number A307477

Receipt Date/Time 07/21/2003 11:00

Client Code MFGINC

Client PO/Reference

Page 1 of 9

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
RP-1 - 0.0-0.5 (ref. A307292-1)	A307477-01	Soil	07/08/03 12:16	07/21/03 11:00
RP-1 - 0.5-1.0 (ref. A307292-02)	A307477-02	Soil	07/08/03 12:22	07/21/03 11:00
RP-1 - 1.0-1.5 (ref. A307292-03)	A307477-03	Soil	07/08/03 12:27	07/21/03 11:00
RP-1 - 1.5-2.0 (ref. A307292-04)	A307477-04	Soil	07/08/03 12:31	07/21/03 11:00
RP-1 - 2.0-2.5 (ref. A307292-05)	A307477-05	Soil	07/08/03 12:37	07/21/03 11:00
RP-2 - 0.0-0.5 (ref. A307292-06)	A307477-06	Soil	07/08/03 15:23	07/21/03 11:00
RP-2 - 0.5-1.0 (ref. A307292-07)	A307477-07	Soil	07/08/03 15:26	07/21/03 11:00
RP-2 - 1.0-1.5 (ref. A307292-08)	A307477-08	Soil	07/08/03 15:31	07/21/03 11:00
RP-2 - 1.5-2.0 (ref. A307292-09)	A307477-09	Soil	07/08/03 15:36	07/21/03 11:00
RP-2 - 2.0-2.5 (ref. A307292-10)	A307477-10	Soil	07/08/03 15:41	07/21/03 11:00
D7-1 - 0.0-0.5 (ref. A307292-11)	A307477-11	Soil	07/09/03 10:20	07/21/03 11:00
D7-2 - 0.0-0.5 (ref. A307292-12)	A307477-12	Soil	07/09/03 10:52	07/21/03 11:00
D7-3 - 0.0-0.5 (ref. A307292-13)	A307477-13	Soil	07/09/03 11:40	07/21/03 11:00
D7-4 - 0.0-0.5 (ref. A307292-14)	A307477-14	Soil	07/09/03 12:30	07/21/03 11:00
D7-5 - 0.0-0.5 (ref. A307292-15)	A307477-15	Soil	07/09/03 00:00	07/21/03 11:00
D7-6 - 0.0-0.5 (ref. A307292-16)	A307477-16	Soil	07/09/03 15:37	07/21/03 11:00
D7-7 - 0.0-0.5 (ref. A307292-17)	A307477-17	Soil	07/09/03 16:25	07/21/03 11:00
D7-8 - 0.0-0.5 (ref. A307292-18)	A307477-18	Soil	07/09/03 17:20	07/21/03 11:00
D7-9 - 0.0-0.5 (ref. A307292-19)	A307477-19	Soil	07/10/03 08:40	07/21/03 11:00
D7-10 - 0.0-0.5 (ref. A307292-20)	A307477-20	Soil	07/10/03 09:10	07/21/03 11:00
D7-11 - 0.0-0.5 (ref. A307292-21)	A307477-21	Soil	07/10/03 09:36	07/21/03 11:00
D7-12 - 0.0-0.5 (ref. A307292-22)	A307477-22	Soil	07/10/03 10:00	07/21/03 11:00
D7-13 - 0.0-0.5 (ref. A307292-23)	A307477-23	Soil	07/10/03 10:15	07/21/03 11:00
D7-14 - 0.0-0.5 (ref. A307292-24)	A307477-24	Soil	07/10/03 10:45	07/21/03 11:00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Karen A. Daly Project Manager

8/7/03

MFG, Inc.

RECEIVED

AUG 1 1 2003

RECEIVED

AUG 1 1 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

> Report Date: 08/07/03 10:21 Project No: 030229.4

CHEMICAL EXAMINATION REPORT

Page 2 of 9

MFG, Inc	
180 Howard St. Suite 200	
San Francisco, CA 94105-2941	
Attn: Ed Conti	

Attn: Ed	l Conti		Project ID: SPI-Arcata/Task #4										
Order Number A307477	<u>Receipt Date/Time</u> 07/21/2003 11:00	<u>Client Code</u> MFGINC		Client PO/Refe	rence								
D7-15 - 0.0-0.5 (ref. A	307292-25)	A307477-25	Soil	07/10/03 11:05	07/21/03 11:00								
D7-16 - 0.0-0.5 (ref. A	307292-26)	A307477-26	Soil	07/10/03 11:25	07/21/03 11:00								
D7-17 - 0.0-0.5 (ref. A	307292-27)	A307477-27	Soil	07/10/03 11:45	07/21/03 11:00								
SDP-1 - 0.0-0.5 (ref. A	.307292-28)	A307477-28	Soil	07/09/03 09:12	07/21/03 11:00								
SDP-1 - 2.0-2.5 (ref. A	.307292-29)	A307477-29	Soil	07/09/03 09:25	07/21/03 11:00								

Receive date indicates date additional analysis requested. Actual receive date was 7/10/03 17:45.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung

Cheryl Watson For Karen A. Daly Project Manager

8/7/03

RECEIVED

AUG 1 1 2003

an' 0, 1110.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT Page 3 of 9 MFG, Inc 180 Howard St. Suite 200 Report Date: 08/07/03 10:21 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Order Number Receipt Date/Time Client Code Client PO/Reference A307477 07/21/2003 11:00 MFGINC Alpha Analytical Laboratories, Inc. BATCH PREPARED ANALYZED DILUTION METHOD RESULT PQL NOTE RP-1 - 0.0-0.5 (ref. A307292-1) (A307477-01) Sample Type: Soil Sampled: 07/08/03 12:16 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) AH30412 07/25/03 EPA 9071B 07/30/03 1 6400 mg/kg 50 RP-1 - 0.5-1.0 (ref. A307292-02) (A307477-02) Sample Type: Soil Sampled: 07/08/03 12:22 **Conventional Chemistry Parameters by APHA/EPA Methods** Oil & Grease (HEM-SG) EPA 9071B AH30412 07/25/03 07/30/03 1 13000 mg/kg 50 RP-1 - 1.0-1.5 (ref. A307292-03) (A307477-03) Sample Type: Soil Sampled: 07/08/03 12:27 **Conventional Chemistry Parameters by APHA/EPA Methods** Oil & Grease (HEM-SG) EPA 9071B AH30412 07/25/03 07/30/03 1 25000 mg/kg 50 RP-1 - 1.5-2.0 (ref. A307292-04) (A307477-04) Sampled: 07/08/03 12:31 Sample Type: Soil Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30412 07/25/03 07/30/03 1 5000 mg/kg 50 RP-1 - 2.0-2.5 (ref. A307292-05) (A307477-05) Sample Type: Soil Sampled: 07/08/03 12:37 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30412 07/25/03 07/30/03 1 7100 mg/kg 50 RP-2 - 0.0-0.5 (ref. A307292-06) (A307477-06) Sample Type: Soil Sampled: 07/08/03 15:23 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30412 07/25/03 07/30/03 1 75 mg/kg 50 RP-2 - 0.5-1.0 (ref. A307292-07) (A307477-07) Sample Type: Soil Sampled: 07/08/03 15:26 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30412 07/25/03 07/30/03 1 130 mg/kg 50 RP-2 - 1.0-1.5 (ref. A307292-08) (A307477-08) Sample Type: Soil Sampled: 07/08/03 15:31 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30412 07/25/03 07/30/03 1 160 mg/kg 50 RP-2 - 1.5-2.0 (ref. A307292-09) (A307477-09) Sample Type: Soil Sampled: 07/08/03 15:36

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cheryl Watson For Karen A. Daly Project Manager

AUG 1 1 2003

MFG, Inc.

Page 4 of 9

MFG. Inc

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

180 Howard St. Suite 200 Report Date: 08/07/03 10:21 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Order Number Receipt Date/Time Client Code **Client PO/Reference** A307477 07/21/2003 11:00 MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT POL NOTE RP-2 - 1.5-2.0 (ref. A307292-09) (A307477-09) Sample Type: Soil Sampled: 07/08/03 15:36 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30412 07/25/03 07/30/03 1 50 mg/kg 50 RP-2 - 2.0-2.5 (ref. A307292-10) (A307477-10) Sampled: 07/08/03 15:41 Sample Type: Soil Conventional Chemistry Parameters by APHA/EPA Methods AH30412 07/25/03 Oil & Grease (HEM-SG) EPA 9071B 07/30/03 1 70 mg/kg 50 D7-1 - 0.0-0.5 (ref. A307292-11) (A307477-11) Sample Type: Soil Sampled: 07/09/03 10:20 **Conventional Chemistry Parameters by APHA/EPA Methods** Oil & Grease (HEM-SG) EPA 9071B AH30412 07/25/03 07/30/03 1 400 mg/kg 50 D7-2 - 0.0-0.5 (ref. A307292-12) (A307477-12) Sample Type: Soil Sampled: 07/09/03 10:52 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30412 07/25/03 07/30/03 1 780 mg/kg 50 D7-3 - 0.0-0.5 (ref. A307292-13) (A307477-13) Sampled: 07/09/03 11:40 Sample Type: Soil Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30412 07/29/03 07/30/03 1 1100 mg/kg 50 D7-4 - 0.0-0.5 (ref. A307292-14) (A307477-14) Sample Type: Soil Sampled: 07/09/03 12:30 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30412 07/29/03 07/30/03 1 1500 mg/kg 50 D7-5 - 0.0-0.5 (ref. A307292-15) (A307477-15) Sample Type: Soil Sampled: 07/09/03 00:00 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30412 07/29/03 07/30/03 1 3200 mg/kg 50 D7-6 - 0.0-0.5 (ref. A307292-16) (A307477-16) Sample Type: Soil Sampled: 07/09/03 15:37 Conventional Chemistry Parameters by APHA/EPA Methods

CHEMICAL EXAMINATION REPORT

Sampled: 07/09/03 16:25

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

EPA 9071B

AH30412

07/29/03

Sample Type: Soil

07/30/03

1

Oil & Grease (HEM-SG)

D7-7 - 0.0-0.5 (ref. A307292-17) (A307477-17)

100 mg/kg

Cheryl Watson For Karen A. Daly Project Manager

8/7/03

50

RECEIVED

AUG 1 1 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Page 5 of 9

	MFG, Inc	C	HEMIC	AL EXAN	AINATIO	N REPOF	RT			Page 5 of 9
	180 Howard St.	. Suite 200 CA 94105-2941				Project	No:	08/07/03 10:21 030229.4 SPI-Arcata/Task #4		
<u>Order Numbe</u> A307477	<u>er</u>	Receipt Date/Time 07/21/2003 11:00			<u>ent Code</u> FGINC			Client PO/Reference		
	<u></u>		Alpha A	Analytical	Laborato	ries, Inc.		· · · · · · · · · · · · · · · · · · ·		
		METHOD	BATCH	PREPARED	ANALYZED	DILUTION		RESULT	PQL	NOTE
	(ref. A307292-17)	. ,		Sample Typ	oe: Soil	:	Sampl	ed: 07/09/03 16:25		
	Chemistry Paramete ase (HEM-SG)	ers by APHA/EPA Me EPA 9071B		07/29/03	07/30/03	1		160 mg/kg	50	
	(ref. A307292-18) Chemistry Paramete	(A307477-18) ers by APHA/EPA Me	thods	Sample Tyj	oe: Soil	;	Sampl	led: 07/09/03 17:20		
	ase (HEM-SG)	EPA 9071B		07/29/03	07/30/03	1		1200 mg/kg	50	
	(ref. A307292-19) Chemistry Paramete	(A307477-19) ers by APHA/EPA Me		Sample Typ	pe: Soil	:	Samp	led: 07/10/03 08:40		
Oil & Grea	ase (HEM-SG)	EPA 9071B	AH30412	07/29/03	07/30/03	1		320 mg/kg	50	
	.5 (ref. A307292-20 Chemistry Paramete)) (A307477-20) ers by APHA/EPA Me	thods	Sample Ty	pe: Soil	;	Samp	led: 07/10/03 09:10		
Oil & Grea	ase (HEM-SG)	EPA 9071B	AH30606	07/31/03	08/01/03	1		630 mg/kg	50	
	.5 (ref. A307292-21 Chemistry Paramete	.) (A307477-21) ers by APHA/EPA Me	thods	Sample Ty	pe: Soil		Samp	led: 07/10/03 09:36		
	ase (HEM-SG)	EPA 9071B	AH30606	07/31/03	08/01/03	1		6100 mg/kg	50	
	.5 (ref. A307292-22 Chemistry Paramete	2) (A307477-22) ers by APHA/EPA Me	thods	Sample Ty	pe: Soil		Samp	led: 07/10/03 10:00		
	ase (HEM-SG)	EPA 9071B	AH30606	07/31/03	08/01/03	1		120 mg/kg	50	
	.5 (ref. A307292-23 Chemistry Paramete	6) (A307477-23) ers by APHA/EPA Me	thods	Sample Ty	pe: Soil		Samp	led: 07/10/03 10:15		
Oil & Gre	ase (HEM-SG)	EPA 9071B	AH30606	07/31/03	08/01/03	1		960 mg/kg	50	
	.5 (ref. A307292-24 Chemistry Paramete	i) (A307477-24) ers by APHA/EPA Me	thods	Sample Ty	pe: Soil		Samp	led: 07/10/03 10:45		
	ase (HEM-SG)	EPA 9071B	AH30606	07/31/03	08/01/03	1		840 mg/kg	50	
D7-15 - 0.0-0	.5 (ref. A307292-25	5) (A307477-25)		Sample Ty	pe: Soil		Samp	led: 07/10/03 11:05		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Juny W.V.

Cheryl Watson For Karen A. Daly Project Manager

AUG 1 1 2003

MFG, Inc.

Alpha 🛛 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc 180 Howard St. Suite 200 Report Date: 08/07/03 10:21 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Order Number Receipt Date/Time Client Code Client PO/Reference A307477 MFGINC 07/21/2003 11:00 Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT POL NOTE D7-15 - 0.0-0.5 (ref. A307292-25) (A307477-25) Sample Type: Soil Sampled: 07/10/03 11:05 **Conventional Chemistry Parameters by APHA/EPA Methods** Oil & Grease (HEM-SG) EPA 9071B AH30606 07/31/03 08/01/03 1 1100 mg/kg 50 D7-16 - 0.0-0.5 (ref. A307292-26) (A307477-26) Sample Type: Soil Sampled: 07/10/03 11:25 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30606 07/31/03 08/01/03 1 7200 mg/kg 50 D7-17 - 0.0-0.5 (ref. A307292-27) (A307477-27) Sample Type: Soil Sampled: 07/10/03 11:45 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30606 07/31/03 08/01/03 1 11000 mg/kg 50 SDP-1 - 0.0-0.5 (ref. A307292-28) (A307477-28) Sample Type: Soil Sampled: 07/09/03 09:12 Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30606 07/31/03 08/01/03 1 3600 mg/kg 50 SDP-1 - 2.0-2.5 (ref. A307292-29) (A307477-29) Sampled: 07/09/03 09:25 Sample Type: Soil Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30606 07/31/03 08/01/03 1 150 mg/kg 50

CHEMICAL EXAMINATION REPORT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung Mr

Cheryl Watson For Karen A. Daly Project Manager

8/7/03

Page 6 of 9

AUG 1 1 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Client Code

MFGINC

Page 7 of 9

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

A307477

Report Date: 08/07/03 10:21 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time 07/21/2003 11:00

SourceResult

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30412 - General Preparatio	n									
Blank (AH30412-BLK1)				Prepared:	07/25/03	Analyzed	: 07/30/03			
Oil & Grease (HEM-SG)	ND	50	mg/kg						····	
LCS (AH30412-BS1)				Prepared:	07/25/03	Analyzed	: 07/30/03			
Oil & Grease (HEM-SG)	2940	50	mg/kg	3000		98.0	80-120			
LCS Dup (AH30412-BSD1)				Prepared:	07/29/03	Analyzed	: 07/30/03			
Oil & Grease (HEM-SG)	2920	50	mg/kg	3000		97.3	80-120	0.683	20	
Matrix Spike (AH30412-MS1)	Sou	rce: A307	477-17	Prepared:	07/25/03	Analyzed	: 07/30/03			
Oil & Grease (HEM-SG)	1550	50	mg/kg	1500	160	92.7	70-130			
Matrix Spike Dup (AH30412-MSD1)	Sou	rce: A307	477-17	Prepared:	: 07/25/03	Analyzed	: 07/30/03			
Oil & Grease (HEM-SG)	1560	50	mg/kg	1500	160	93.3	70-130	0.643	20	
Batch AH30606 - General Preparatio	n									
Blank (AH30606-BLK1)				Prepared	: 08/04/03	Analyzed	: 08/05/03			
Oil & Grease (HEM-SG)	ND	50	mg/kg							
LCS (AH30606-BS1)				Prepared	: 08/04/03	Analyzed	: 08/05/03			
Oil & Grease (HEM-SG)	2720	50	mg/kg	3000		90.7	80-120			
LCS Dup (AH30606-BSD1)				Prepared	: 08/04/03	Analyzed	: 08/05/03			
Oil & Grease (HEM-SG)	2900	50	mg/kg	3000		96.7	80-120	6.41	20	
Duplicate (AH30606-DUP1)	Sou	rce: A307	477-21	Prepared	: 08/04/03	Analyzed	: 08/05/03			
Oil & Grease (HEM-SG)	7880	50	mg/kg	paroa	6100			25.5	200	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Karen A. Daly Project Manager

8/7/03

AUG 1 1 2003

MFG, Inc.

Alpha 🛿 Analytical Laboratories Inc.

Receipt Date/Time

07/21/2003 11:00

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/07/03 10:21 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number A307477

Client Code MFGINC

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30606 - General Preparation										
Duplicate (AH30606-DUP2)	Sourc	e: A307	477-29	Prepared:	08/04/03	Analyzed	: 08/05/03			
Oil & Grease (HEM-SG)	130	50	mg/kg		150			14.3	200	
Matrix Spike (AH30606-MS1)	Sourc	e: A307	477-29	Prepared:	08/04/03	Analyzed	: 08/05/03			
Oil & Grease (HEM-SG)	1560	50	mg/kg	1500	150	94.0	70-120			
Matrix Spike Dup (AH30606-MSD1)	Sourc	e: A307	477-29	Prepared:	08/04/03	Analyzed	: 08/05/03			
Oil & Grease (HEM-SG)	1610	50	mg/kg	1500	150	97.3	70-120	3.15	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lung M

Cheryl Watson For Karen A. Daly Project Manager

Page 8 of 9

8/7/03

h_-AUG 1 1 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 9 of 9

18 Sa	IFG, Inc 80 Howard St. Suite 200 an Francisco, CA 94105-2941 ttn: Ed Conti	Project No:	08/07/03 10:21 030229.4 SPI-Arcata/Task #4
<u>Order Number</u>	<u>Receipt Date/Time</u>	<u>Client Code</u>	Client PO/Reference
A307477	07/21/2003 11:00	MFGINC	

Notes and Definitions

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- Sample results reported on a dry weight basis dry
- RPD **Relative Percent Difference**
- PQL Practical Quantitation Limit

Arcata Office 1165 G Street Suite E Arcata, CA 95521-5817 Ref. (707) 826-8437 Fax: (707) 826-8437	□ Boulder Office 4900 Pearl East Circle Suite 3000 80301-6118 Beil (303) 447-1825 Fax: (303) 447-1835	CHAIN-OF-CUSTOD) Tivine Office OS 17770 Cartwright Road Val Suite 500 2814-580 838 Tel: (943) 253-2954 Fax: Tex: (949) 253-2954 Fax:	STODY RE Cashun office PO Box 30 Wallace, ID 88873-0030 Text (208) 555 Fax: (208) 555	11 07	G, INC. D AND REQUEST FOF C San Francisco Office Ted Howard Steet, Suite 200 San Francisco, CA 94105-1617 San Francisco, CA 94105-1617 Phone (415) 495-7110 - Fax (415) 495-7107		ANALYSIS ANALYSIS 19203 setth Avenue W. Sutte 101 W. WA 98036-5707 Ter: (425) 921-4040 Fax: (425) 921-4040		coc No. 43263
PROJECT NO: 0 3022 SAMPLER (Signatur e): METHOD OF SHIPMENT:	0 30229.4 nature): SHIPMENT: <u>courrie</u>		PROJECT NAME: <u>Sityra ในเกิ</u> ่น PROJECT MANAGER: CARRIER/WAYBILL NO:	<u>ra ใละเคิร</u> F MANAGER 'BILL NO:	fic SER: Ed Control		DESTINATION:	PAGE: DATE: Alpha	<u>Ξ 1 OF: 3</u> Ξ 7/10/03
		SAMPLES					ANA	ANALYSIS REQUEST	ET A367477
		Sample	Preservation	ion	Containers	Constituents/Method		Handling	Remarks
Ide	Field Sample Identification	DATE TIME	H ₂ SO ₄ HO3 HCI		NOLUME VOLUME VOLUME VOLUME	1941 01 491 01 4921 H J MEOR NATOR	ногь מיזיאי לאיזאוא	HSUR GRAGNATS	1/03 - 11 00 Oliver Spill- oun 046 with
RP-1-0.0-	- D.S	2 71:21 20/8/L	So	X	U 6"31 8 1		X	X A3	307292-1
RP-1- 0.5-	- 1.0	2:22		X	1 6 1/2 1	× × ×		.×	ŕ
RP-1-1.0-	1.5	F2:21			U 6"s1 B 1	X X X		X	Ľ,
RP-1-1.5	. 2.D	12:31		$\overline{\mathbf{x}}$	U 6 SI B 1	^ × × ×	×	×	Ŕ
RP-1 - 2.0	-2.5	72:37	۔ ب ب	 >	U 6"51 B 1	××× ×× ××	××	MFG	S S C E J G 1
- v - v	<u>(</u>	10/07 15:26						ind X	VIE
2 - 1.		15:31		X	U C"51 B 1	XXX			₀₀ É 03
RP-2-1.5	5 - 2.0	15:36				XXX X		×	2-9
RP-2-2.	0 - 2.5	IP:21 V		$ X = X = U c^{-3}$	U 6"51 B				0
					(29)				Cooler temp:
	RELINQUISHED BY:	3Y:)		REC	RECIEVED BY:	
SIGNATURE	PRINTED NAME	E COMPANY		DATE	TIME	SIGNATURE	PRI	PRINTED NAME	COMPANY
N.		1 166-55	/0//L	20/	1:25	M Bukun	1. M	WHANUS	
Morteus	1.3	Idloha	01/L_	105	Ŧ,	.Speck	N)	peaker	Alpha Laboratory
1				=	11.4086				

			ACTOLIC TO MAN	L L L		MFG,	С, С	lvc.							
 Arcata Office 1156 G Streets Suite E Arcata, CA 95521-5817 Tel: (707) 856-8437 Fax: (707) 826-8437 	Boulder Office 4900 Pearl East Circle 8400 Boulder, CO 80301-6118 Boulder, CO 80301-6118 Fax: (303) 447-1836 Fax: (303) 447-1836	□ Irvine Offi 17770 Ca Suite 500 trvine, CA Tel: (949) Fax: (949)	□ Irvine Office 17770 Cartwright Road 2016 500 Irvine, CA 92614-5850 Teil: (949) 253-2951 Teil: (949) 253-2954 Fax: (949) 253-2954			OUL AFCOA Osbur Office Cob Box 30 Wallace, ID 88873-0030 Tel: (208) 556-6811 Fax: (208) 556-7271	U AN X San] 180 Howar San Francis Phone (415	X AND REQUEST F X San Francisco Office 180 Howard Street, Suite 200 San Francisco, CA 94105-1617 Phome (415) 495-7110-Fax (415) 495-7107	00000000000000000000000000000000000000	51 FC	L AL	Arcord And And Request FOR ANALYSIS n Office N San Francisco Office 18203 36th Avenue W. 0x 30 X San Francisco Office 18203 36th Avenue W. 0x 10 180 Howard Street Suite 200 Unite 101 0x 30 180 Howard Street Suite 200 Unite 101 0x 30 556-5611 San Francisco CA 34105-1617 Unite 101 0x 30 556-7271 Phone (415) 495-7110-Fac (415) 495-7107 Tel: (425) 921-4040 0x 30 556-7271 Phone (415) 495-7110-Fac (415) 921-4040 Fax: (425) 921-4040	Le W. 1036-5707 00 140		COC No. 4313U
PROJECT NO: 030 SAMPLER (Signature): C METHOD OF SHIPMENT:	030229,4 lature):		PROJECT NAME:	T NAME PI CARRII	ME: PROJ RIERA	ME: SILLY PAGER: PROJECT MANAGER: RIER/WAYBILL NO:	NAGE NO:	EH:	P P P	Cont	· ·	DESTINATION:	ION:	PA DA Alph	PAGE: 2. OF: DATE: 7/1.03
		SAM	SAMPLES										ANALY	ANALYSIS REQUEST	UEST
		S	Sample		Prese	reservation		Cont	Containers	Cons	Constituents/Method	Method	Handling	ling	Remarks
S Iden	Field Sample Identification	DATE	E E E	HCI Matrix*		COLD H₂SO₄	*NOITAATJI=	(zo/jɯ) סרחשב/	ИО [.] LAbE*	dear Metals	471 0+C H	sloval . 2014	ногы Ногы	QAAQNATS	A 307477
-0.0 - 1 - 70	0. 5	7/9/03 10:20	1	8		+	1 3	5	+	1 ×	<u></u>	2 ×		N N N	11-2P2CME
07-2-0.0-	٥.5		10:52			×	3		8	×	X			X	
,	دن ۲	₽₽	11-40			×	Ч	١، ۲	B 1	X	X	×		X	E E
27-4 - 6.0-	0.5 W	=6	h:30			×	М	6"5 6	9	X	X	X			h
-0.0- 2-10	11 FG S 0	E				×	Μ	6"s	4	X	X			×	5
07.6-00-	, 20 , 1n 5 0	V	15:37			×	Л	6"5	B 1	XXX	X	X	<u> </u>	×	N'D 16
- 0.0 - 1 - 10		E	16:25			×	Л	6 5 8	- 4	X	(X	X		×	t min
01-8-0.0-	, 0, G)	02:FI			X	Υ	6"5 6	1 4		X	الم الح		×	N. R. a. 15
07-9-0.0	· 0.5	7/10/03	8:40 50	0		X	М	6 5/ 6	B 1	X	X	X		X	2 10 10 10
07-10- 0.0	- 0.5	·	9:10			×	3	6 18 0		\times	X	×		D ×	n 11-a 20
			a a contra contra da contra da Esta da contra da contr		TOTAL	TOTAL NUMBER OF CONTAINERS	CONTAIN	ERS 29	C	LABORA	TORY CON	LABORATORY COMMENTS/CONDITION OF SAMPLES	VDITION O	SAMPLES	CoolePTemp:
	RELINQUISHED BY:							P					RECIE	RECIEVED BY:	
SIGNATURE	PRINTED NAME		COMPANY	17		DATE		TIME		SIGNATURE	TURE		PRINTE	PRINTED NAME	COMPANY
2	- Churchopher Spill		M FC-5F		7	110/03	-	:25		Wat	thui t				
	1-W/HTThows		Alpha		.~	140/03	Ϋ́	÷÷	6)	S	Seck	3	SiSQ	Deaks	Alpha
	~		•		_		-	/	1	-					LABORATORY

		CHAIN-OF-CUS	DF-CUS	TOD		MFG	MFG, INC. TODY RECORD AND REQUEST FOR ANALYSIS	3EQU	EST	FOR	ANAL	YSIS			COC No.	o. 4313	131
C Arcata Office Arcata Office 5 street, Suite E Arcata, CA 95521-5817 Tel: (707) 826-9437 Fax: (707) 826-9437	□ Boulder Office 4900 Pearl East Circle Suite 300W Boulder, CO 80301-6118 Teit. (303) 447-1823 Fax: (303) 447-1836	□ Irvine Office Suite 500 Cartwright Road Suite 500 20514-5550 Irvine, CA 92614-5550 Telt. (949) 253-2951 Fax: (949) 253-2955	right Road 14-5850 13-2951	P.O.St P.O.St 838a 168: 838a Fax	□Osburn Office P.O. Box 30 Wallaco, 10 83873-0030 Tel: (208) 556-6811 Fax: (208) 556-7271	-6811 Sar -7271 Phr	X San Francisco Office 186 Howad Street, Suite 200 187 Francisco, CA est 1015-1617 Phone (415) 495-7110 - Fax (415) 495-7107	cisco Offi 4, Suite 200 4, 94105-161 7110 - Fax (ice 17 415) 495-71	07	Seattle Office 19203 36th Avenue W. Suita 101 Lymnwood, WA 98036-5707 Tel: (425) 921-4000 Fex: (425) 921-4040 Fex: (425) 921-4040	fice h Avenue \ WA 9803I 921-4000 921-4040	ч. 5-5707				
PROJECT NO: 0302 SAMPLER (Signature): METHOD OF SHIPMENT	030229. 4 Jre): MENT:		PROJECT	NAME: PR CARRIE	RAUEC	NAME: Sierra Par PROJECT MANAGER: CARRIER/WAYBILL NO:		Reific ER:	P	- Joan	DEST	DESTINATION:	:NO	DAT DAT		3 OF: 7/10/03	Μ
		SAMPLES	LES									┛	ANALYSIS	SIS REC	REQUEST		
		Sa	Sample		Preservation	ation		Containers		Constitu	Constituents/Method	poq	Handling	bu		Remarks	S
Field Sample Identification	ld ple cation	DATE	⊒ ™ Matrix*	нсі	[⊅] OS ⁷ H 800	согр	FILTRATION* 3MUJOV	LλbE∗ (ωl/oz)	ON	New Metrols PH	10101 Prends		нз∩ы Ногр	QAADNAT2	A	.ex	A 367477-
07-11-0.0-0.	S	7/10/03	9:36 50			X	N 6"	s l S	× 1	\times \times	X			X	500	1292	- 21
0.0.0 - CI - LU	S		10:00			X	V 6"51	s b	$\langle $	XX	X X			×			aa
07-13-0.0-	0.5		10:15			X	N 6"	"s B	× -	X	×			×			33
- 0.0 - H - CQ	0.5		10:45			×	V 6"	"s1 B	. ^ -	X	X			X		ł	he
07-15 -0.0-	0.5		11:05			×	V 6"2	"5/ B	× -	×	$\times \overset{\times}{}$			X		A	1 92 1
07-16-0.0-	0.5		N:25			X	W 6'5	5 8	× -	X	X X			×	M	JG 1	96 C
07-17 -0.6-	0.5	\rightarrow	11:45			\times	W 6"51	9 3	× -	×	××			X	FG	11	tell
509-1-00-0	0.5	2/6/03	9.12 50			X	وڑ ک	2 15	× _	7	\times			×	Inc	200	22 F
501-1-2.0-	2.5	->	9.25			×	N 6"	510	× -	×	\times			X	;.		E D
					TOTAL NI	UMBER OF	TOTAL NUMBER OF CONTAINERS	5 7a		BORATO	LABORATORY COMMENTS/CONDITION OF	NTS/CONI	DITION OF	SAMPLES		Cooler Temp	:du
	DELINOLISHED RV.												RECIEV	RECIEVED BY:			
SIGNATURE	PRINTED NAME		COMPANY	≥		DATE	T	TIME		SIGNATURE	JRE		PRINTE	PRINTED NAME		COMPANY	PANY
$\sum_{i=1}^{n}$	Christopher Spill		MFG-SF	.	7	10/01	1:2	52	N.	NINE	ting						
	A. MATThew S	د د	HIDH	9	, <u>,</u> ,	10/03		ن ک : دا ک		Spec	2 Kr	Ś	20	Park	2		
			\	•	•		Shirl	S		-			>			LABOHATORY	АТОНҮ
	• KEY Matrix: AO - aqueo	Matrix: AQ-aqueous NA-nonaqueous SO-soil SL-sludge P-petroleum A-air OT-other DISTRIBUTION: PRIVE Field Copy YELLO	us SO-soil SL- DIST.	SL - sludge P - petroleum A - air 01 DISTRIBUTION: PINK: Field Copy	roleum A - ai PINK: Field C	ir OT-other opy YELLOW:	- other Containers: P - YELLOW: Laboratory Copy	~	olastic G - glass T - teflon WHITE: Return to Originator	n B - brass N		Filtration: F - filtered U - unfiltered	littered U - u	tiltered			

 \neq

Alpha Analytical Laboratories Inc. 208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

11 August 2003

MFG, Inc Attn: Ed Conti 180 Howard St. Suite 200 San Francisco, CA 94105-2941 RE: SPI-Arcata/Task #4 Work Order: A307606

Enclosed are the results of analyses for samples received by the laboratory on 07/25/03 15:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sheri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, Inc.

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number A307606

Receipt Date/Time 07/25/2003 15:40

Client Code MFGINC

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
D6-1-0.0-0.5	A307606-01	Soil	07/22/03 09:35	07/25/03 15:40
D6-2-0.0-0.5	A307606-02	Soil	07/22/03 10:25	07/25/03 15:40
D6-3-0.0-0.5	A307606-03	Soil	07/22/03 11:10	07/25/03 15:40
D6-4-0.0-0.5	A307606-04	Soil	07/22/03 11:45	07/25/03 15:40
D6-5-0.0-0.5	A307606-05	Soil	07/22/03 15:00	07/25/03 15:40
D6-6-0.0-0.5	A307606-06	Soil	07/22/03 15:30	07/25/03 15:40
D6-7-0.0-0.5	A307606-07	Soil	07/22/03 16:05	07/25/03 15:40
D6-8-0.0-0.5	A307606-08	Soil	07/23/03 09:00	07/25/03 15:40
D6-9-0.0-0.5	A307606-09	Soil	07/23/03 09:50	07/25/03 15:40
D6-10-0.0-0.5	A307606-10	Soil	07/23/03 10:20	07/25/03 15:40
D6-11-0.0-0.5	A307606-11	Soil	07/23/03 10:50	07/25/03 15:40
D6-12-0.0-0.5	A307606-12	Soil	07/23/03 11:10	07/25/03 15:40
06-13-0.0-0.5	A307606-13	Soil	07/23/03 13:50	07/25/03 15:40
D6-14-0.0-0.5	A307606-14	Soil	07/23/03 14:30	07/25/03 15:40
D6-15-0.0-0.5	A307606-15	Soil	07/23/03 15:00	07/25/03 15:40
D6-16-0.0-0.5	A307606-16	Soil	07/23/03 15:30	07/25/03 15:40
D6-17-0.0-0.5	A307606-17	Soil	07/23/03 16:10	07/25/03 15:40
D6-18-0.0-0.5	A307606-18	Soil	07/24/03 09:15	07/25/03 15:40
D6-19-0.0-0.5	A307606-19	Soil	07/24/03 09:35	07/25/03 15:40
D6-20-0.0-0.5	A307606-20	Soil	07/24/03 09:40	07/25/03 15:40
D6-21-0.0-0.5	A307606-21	Soil	07/24/03 10:00	07/25/03 15:40
06-22-0.0-0.5	A307606-22	Soil	07/24/03 10:20	07/25/03 15:40
06-23-0.0-0.5	A307606-23	Soil	07/24/03 10:35	07/25/03 15:40
D6-24-0.0-0.5	A307606-24	Soil	07/24/03 10:50	07/25/03 15:40

sheri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482 one: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number A307606 Client Code MFGINC

e

Client PO/Reference

Sheri Speake

Sheri L. Speaks Project Manager

MFG, Inc

RECEIVED

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com •

208 Mason St. Ukiah, California 95482

Phone: (7	07) 468-0401	٠	Fax:	(707)	468-5267
-----------	--------------	---	------	-------	----------

CHEMICAL EXAMINATION REPORT

Page 3 of 29

	ward St. Suite 200 ncisco, CA 94105-2941 l Conti		Project No:	08/11/03 07:56 030229.4 SPI-Arcata/Task #4
Order Number A307606	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC		Client PO/Reference
		Analytical Laborate	-	

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-1-0.0-0.5 (A307606-01)			Sample Ty	pe: Soil		Sampled: 07/22/03 09:35		
Metals by EPA 6000/7000 Series N	fethods		-					
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	**	"	**	**		42 "	5.0	
Nickel	"	н	"	**	"	5 6 "		
Lead	н	**		**	"	31 "	10	
Zinc	**	"	н	••	"	110 "	5.0	
						110 "	10	
Chlorinated Phenols by Canadian	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	"	"	17		"	ND "		
2,3,4,6-Tetrachlorophenol	"		**	"	н	ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	"		**	н	ND "	1.0	
Pentachlorophenol	**	**	"	"		ND "	1.0 1.0	
Surrogate: Tribromophenol	"	"	"	11		66.1 % 23-140	1.0	
Conventional Chemistry Parameter	rs by APHA/EPA N	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/05/03	08/08/03	1			
Oil & Grease (HEM)	"	AH30717	08/05/03		1	1600 mg/kg	50	
рН	EPA 9045B	AH30614	08/03/03	08/07/03		3700 "	50	
F	LI A 9049D	AH30014	07/28/03	07/28/03	"	6.2 pH Units	1.0	
D6-2-0.0-0.5 (A307606-02)			Sample Ty	oe: Soil		Sampled: 07/22/03 10:25		
Metals by EPA 6000/7000 Series M	ethods					Sampled: 07/22/03 10:23		
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND modes	1.0	
Chromium	"	"	"	"	1	ND mg/kg	1.0	
Nickel	"	"		н	**	48 "	5.0	
Lead	"					63 "	10	

"

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lead

Zinc

sheri Speake

59 "

190 "

**

5.0

10

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Client PO/Reference

CHEMICAL EXAMINATION REPORT

Perpert Data: 08/11/02 07.56

Page 4 of 29

NOTE

PQL

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Report Date.	00/11/05 07.50
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

RESULT

Client Code MFGINC

		Alpha Analytical Laborato	ries, Inc.
	METHOD	BATCH PREPARED ANALYZED	DILUTION
D6-2-0.0-0.5 (A307606-02)		Sample Type: Soil	S

D6-2-0.0-0.5 (A307606-02)			Sample Ty	pe: Soil	:	Sampled: 07/22/03 10:	25
Chlorinated Phenols by Canadian P	ulp Method					•	
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0
2,3,5,6-Tetrachlorophenol	"	"	"	"	17	ND "	1.0
2,3,4,6-Tetrachlorophenol	"	"	11	"	**	ND "	1.0
2,3,4,5-Tetrachlorophenol			**	"	"	ND "	1.0
Pentachlorophenol		**	н	**	11	ND "	1.0
Surrogate: Tribromophenol	"	"	"	"		75.0%	23-140

Conventional Chemistry Parameters by APHA/EPA Methods

Order Number

A307606

Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/05/03	08/08/03	1	6000 mg/kg	50
Oil & Grease (HEM)	**	AH30717	08/05/03	08/07/03	"	12000 "	50
pH	EPA 9045B	AH30614	07/28/03	07/28/03	11	6.4 pH Units	1.0

)6-3-0.0-0.5 (A307606-03) Metals by EPA 6000/7000 Series Mo	othads	-	Sample Ty	pe: Soil	S	Sampled: 07/22/03 11:1	10
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0
Chromium		"	"	"	"	44 "	5.0
Nickel	**	"	**	**		58 "	10
Lead	**	"	"		"	37 "	5.0
Zinc	"	**	"	**	**	280 "	10
Chlorinated Phenols by Canadian F	ulp Method						
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0
2,3,5,6-Tetrachlorophenol	"	н	"	**	"	ND "	1.0
2,3,4,6-Tetrachlorophenol	"	н	"		*	ND "	1.0
2,3,4,5-Tetrachlorophenol	**	н	"	"	н	ND "	1.0
Pentachlorophenol	"	n	"	"	"	ND "	1.0
Surrogate: Tribromophenol	"	"	"	"		64.5 %	23-140

sheri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307606	07/25/2003 15:40	MFGINC	

		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-3-0.0-0.5 (A307606-03)			Sample Typ	oe: Soil		Sampled: 07/22/03 11:10		
Conventional Chemistry Paramete	rs by APHA/EPA M	lethods				-		
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/05/03	08/08/03	1	4000 mg/kg	50	
Oil & Grease (HEM)	"	AH30717	08/05/03	08/07/03	"	10000 "	50	
рН	EPA 9045B	AH30614	07/28/03	07/28/03	"	6.4 pH Units	1.0	
D6-4-0.0-0.5 (A307606-04)			Sample Typ	oe: Soil		Sampled: 07/22/03 11:45		
Metals by EPA 6000/7000 Series M	lethods							
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	**	"	**		**	40 "	5.0	
Nickel	**	"	n	"	"	49 ''	10	
Lead	н	"	м	"	н	29 "	5.0	
Zinc	**	"	"	**	"	160 "	10	
Chlorinated Phenols by Canadian	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	"	"	"	н	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol		"	"	**	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**	"	**	**	"	ND "	1.0	
Pentachlorophenol	**	"	"	**	11	ND "	1.0	
Surrogate: Tribromophenol	n	"	"	11		64.5 % 23-140		
Conventional Chemistry Paramete	rs by APHA/EPA N	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/05/03	08/08/03	1	1600 mg/kg	50	
Oil & Grease (HEM)	**	AH30717	08/05/03	08/07/03	"	5800 "	50	
рН	EPA 9045B	AH30614	07/28/03	07/28/03	"	6.4 pH Units	1.0	
D6-5-0.0-0.5 (A307606-05)			Sample Ty	pe: Soil		Sampled: 07/22/03 15:00		
Metals by EPA 6000/7000 Series M	lethods					-		
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	**	"	**	**	**	37 "	5.0	
Nickel	"	**	**	**	"	44 "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

EPA 6010

н

e-mail: clientservices@alpha-labs.com •

208 Mason St. Ukiah, California 95482

Phone:	(707) 468-0401	•	Fax:	(707) 468-5267
--------	----------------	---	------	----------------

24 "

76 "

	С	HEMIC	AL EXAMINATIO	N REPORT	
MFG, In					
	ard St. Suite 200			Report Date:	08/11/03 07:56
	cisco, CA 94105-2941			Project No:	030229.4
Attn: Ed	Conti			Project ID:	SPI-Arcata/Task #4
Order Number	Receipt Date/Time	;	Client Code		Client PO/Reference
A307606	07/25/2003 15:40		MFGINC		
		Alpha A	Analytical Laborato	ries, Inc.	
	METHOD	BATCH	PREPARED ANALYZED	DILUTION	RESULT
D6-5-0.0-0.5 (A307606-05	5)		Sample Type: Soil	Samp	led: 07/22/03 15:00
Metals by EPA 6000/7000	Series Methods (cont'd)				

**

••

Lead

Zinc

Lead

Zinc

hlorinated Phenols by Canadian P	ulp Method						
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0
2,3,5,6-Tetrachlorophenol	17	n	**	**		ND "	1.0
2,3,4,6-Tetrachlorophenol	**	"	**	**	**	ND "	1.0
2,3,4,5-Tetrachlorophenol	н	"	"	"		ND "	1.0
Pentachlorophenol	Ħ	"	n	"	"	ND "	1.0
Surrogate: Tribromophenol	11	"	"	"		81.5 %	23-140

08/01/03

...

Conventional Chemistry Parameters by APHA/EPA Methods

2	•							
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/05/03	08/08/03	1	1900 mg/kg	50	
Oil & Grease (HEM)		AH30717	08/05/03	08/07/03		3800 "	50	
pH	EPA 9045B	AH30614	07/28/03	07/28/03	"	6.6 pH Units	1.0	
D6-6-0.0-0.5 (A307606-06)		Sample Type: Soil				Sampled: 07/22/03 15:30		
Metals by EPA 6000/7000 Series N	lethods					-		
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	**	n	**	**	**	34 "	5.0	
Nickel	**	"	**	**	"	41 "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

heri Speake

23 "

120 "

Sheri L. Speaks Project Manager

Page 6 of 29

NOTE

PQL

5.0

10

5.0

10

AUG 1 3 2003

MFG, Inc.

Page 7 of 29

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307606	07/25/2003 15:40	MFGINC	

		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-6-0.0-0.5 (A307606-06)			Sample Ty	pe: Soil	S	ampled: 07/22/03 15:30		
Chlorinated Phenols by Canadian	Pulp Method					•		
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	"	"	**	**	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	Ħ	**	"	*	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**	n	"	"	"	ND "	1.0	
Pentachlorophenol	**	**	"	"	**	ND "	1.0	
Surrogate: Tribromophenol	11	"	"	"		71.0 % 23-14	0	
Conventional Chemistry Parameter	rs by APHA/EPA N	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/05/03	08/08/03	1	1500 mg/kg	50	
Oil & Grease (HEM)	н	AH30717	08/05/03	08/07/03	11	3700 "	50	
рН	EPA 9045B	AH30614	07/28/03	07/28/03	*	6.4 pH Units	1.0	
D6-7-0.0-0.5 (A307606-07)			Sample Ty	pe: Soil	s	ampled: 07/22/03 16:05		
Metals by EPA 6000/7000 Series M	lethods			-		•		
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	n	"	**	**	**	25 "	5.0	
Nickel		"	"	**	**	30 "	10	
Lead		"	*	11	**	8.6 "	5.0	
Zinc	"	*	**	"	"	39 "	10	
Chlorinated Phenols by Canadian I	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	"	n	n	н	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	*	н	"	n	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**	**	"	••	"	ND "	1.0	
Pentachlorophenol	**	"	11	"	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	n	n		50.8% 23-14		

shari Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, Inc.

alpho Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

Page 8 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

CHEMICAL EXAMINATION REPORT

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Client Code Receipt Date/Time A307606 07/25/2003 15:40 MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED		RESULT	PQL	NOTE
D6-7-0.0-0.5 (A307606-07)	METHOD		Sample Ty			Sampled: 07/22/03 16:05	1.45	
Conventional Chemistry Paramete	rs by APHA/EPA N		Gample Ty	pe. 3011	I	Sampicu: 0//22/03 10:03		
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/05/03	08/08/03	1	540 mg/kg	50	
Oil & Grease (HEM)	LIA 9071B	AH30717	08/05/03	08/07/03	1	1200 "	50	
pH	EPA 9045B	AH30614	08/05/03	08/05/03	11	6.5 pH Units	1.0	
P11	LI A 9049D	A1150014	00/05/05	00/05/05		0.5 pri Onto	1.0	
D6-8-0.0-0.5 (A307606-08)			Sample Ty	pe: Soil		Sampled: 07/23/03 09:00		
Metals by EPA 6000/7000 Series M	lethods					-		
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	17	н	11	"	**	23 "	5.0	
Nickel	H	11	*1	**	**	31 "	10	
Lead	**		n	"	"	18 "	5.0	
Zinc	• • •		"	**	"	58 "	10	
Chlorinated Phenols by Canadian	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	"	11	n	**	н	ND "	1.0	
2,3,4,6-Tetrachlorophenol	*	н	n	н	H	ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	Ħ	H	**	"	ND "	1.0	
Pentachlorophenol	••	"	"		**	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"	•	86.3 % 23-140		
Conventional Chemistry Paramete	ers by APHA/EPA N	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/06/03	08/08/03	1	580 mg/kg	50	
Oil & Grease (HEM)	n	AH30717	08/05/03	08/07/03	"	1200 "	50	
pН	EPA 9045B	AH30614	08/05/03	08/05/03	"	6.4 pH Units	1.0	
D6-9-0.0-0.5 (A307606-09)			Sample Ty	pe: Soil		Sampled: 07/23/03 09:50		
Metals by EPA 6000/7000 Series N	lethods							
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	"		"	н	"	22 "	5.0	
Nickel	11	"	"	"	"	22 "	10	

shari Speake

Sheri L. Speaks Project Manager

Alpha Analytical Laboratories Inc.

AUG 1 3 2003

RECEIVED

MFG, Inc.

Analytical Laboratories Inc.208 Mason St. Ukiah, California 95482e-mail: clientservices@alpha-labs.com• Phone: (707) 468-0401• Fax: (707) 468-5267

Report Date: 08/11/03 07:56

Project ID: SPI-Arcata/Task #4

Project No: 030229.4

CHEMICAL EXAMINATION REPORT

Page 9 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order Number A307606	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC			Client PO/Reference			
		Alpha A	nalytical	Laborato	ries, Inc.			<u> </u>
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-9-0.0-0.5 (A307606-09)			Sample Ty	pe: Soil		Sampled: 07/23/03 09:50		
Metals by EPA 6000/7000 Serie	s Methods (cont'd)							
Lead	EPA 6010	"	**	08/01/03	"	7.9 "	5.0	
Zinc	11	n	**	"	**	46 "	10	
Chlorinated Phenols by Canadi	an Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	"	**	**	**	**	ND "	1.0	
2,3,4,6-Tetrachlorophenol	**	н	"	"	17	ND "	1.0	
2,3,4,5-Tetrachlorophenol		**	"	81	11	ND "	1.0	
Pentachlorophenol	"	н	"	**	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		75.0 % 23-140		
Conventional Chemistry Paran	neters by APHA/EPA Me	ethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/06/03	08/08/03	1	180 mg/kg	50	
Oil & Grease (HEM)	**	AH30717	08/05/03	08/07/03	11	660 "	50	
рН	EPA 9045B	AH30614	08/05/03	08/05/03	"	6.4 pH Units	1.0	
D6-10-0.0-0.5 (A307606-10)			Sample Ty	pe: Soil		Sampled: 07/23/03 10:20		
Metals by EPA 6000/7000 Serie	es Methods							
Cadmium	EPA 6010	AG33003	07/30/03	08/01/03	1	ND mg/kg	1.0	
Chromium	"	"	"	11	н	33 "	5.0	
Nickel	"	**	**	н	Ħ	35 "	10	
Lead	"	**	"	"	"	13 "	5.0	
Zinc	**	**	••	"	"	51 "	10	

Sheri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

RECEIVED

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 10 of 29

MFG, Inc			L LAP					
-								
180 Howard S						08/11/03 07:56		
	, CA 94105-2941				Project No: 030229.4			
Attn: Ed Cont	zi -				Project ID:	SPI-Arcata/Task	#4	
Order Number	Receipt Date/Time		Clie	ent Code		Client PO/Refere	ence	
A307606	07/25/2003 15:40			FGINC				
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-10-0.0-0.5 (A307606-10)			Sample Ty	oe: Soil	Samu	led: 07/23/03 10:20	<u>`</u>	
Chlorinated Phenols by Canadia	an Pulp Method				•			
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	**	**	"	**	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	"	"	**	11	ND "	1.0	
2,3,4,5-Tetrachlorophenol	и	"	"	"	*1	ND "	1.0	
Pentachlorophenol	н	н	"	"	*	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		87.9 % 23-1	40	
Conventional Chemistry Param	eters by APHA/EPA Me	ethods						
Conventional Chemistry Param Oil & Grease (HEM-SG)	eters by APHA/EPA Me EPA 9071B	ethods AH30822	08/06/03	08/08/03	1	340 mg/kg	50	
			08/06/03 08/05/03	08/08/03 08/07/03	1	340 mg/kg 1100 "	50 50	
Oil & Grease (HEM-SG)	EPA 9071B	AH30822				00		
Oil & Grease (HEM-SG) Oil & Grease (HEM)	EPA 9071B "	AH30822 AH30717 AH30614	08/05/03	08/07/03 08/05/03	"	1100 " 6.6 pH Units	50	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH	EPA 9071B " EPA 9045B	AH30822 AH30717 AH30614	08/05/03 08/05/03	08/07/03 08/05/03	"	1100 "	50	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11)	EPA 9071B " EPA 9045B	AH30822 AH30717 AH30614	08/05/03 08/05/03	08/07/03 08/05/03	"	1100 " 6.6 pH Units bled: 07/23/03 10:50	50 1.0	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11) Metals by EPA 6000/7000 Serie:	EPA 9071B " EPA 9045B s Methods	AH30822 AH30717 AH30614	08/05/03 08/05/03 Sample Ty	08/07/03 08/05/03 pe: Soil	" " Samı	1100 " 6.6 pH Units	50 1.0 1.0	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11) Metals by EPA 6000/7000 Series Cadmium	EPA 9071B " EPA 9045B s Methods EPA 6010	AH30822 AH30717 AH30614 AG33004	08/05/03 08/05/03 Sample Ty 07/30/03	08/07/03 08/05/03 pe: Soil 07/31/03	" " Samp 1	1100 " 6.6 pH Units bled: 07/23/03 10:50 ND mg/kg 51 "	50 1.0 1.0 5.0	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11) Metals by EPA 6000/7000 Series Cadmium Chromium	EPA 9071B " EPA 9045B s Methods EPA 6010 "	AH30822 AH30717 AH30614 AG33004 "	08/05/03 08/05/03 Sample Tyj 07/30/03 "	08/07/03 08/05/03 pe: Soil 07/31/03	" " Samp 1 "	1100 " 6.6 pH Units oled: 07/23/03 10:50 ND mg/kg 51 " 61 "	50 1.0 1.0 5.0 10	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11) Metals by EPA 6000/7000 Series Cadmium Chromium Nickel	EPA 9071B " EPA 9045B s Methods EPA 6010 "	AH30822 AH30717 AH30614 AG33004 "	08/05/03 08/05/03 Sample Typ 07/30/03 "	08/07/03 08/05/03 pe: Soil 07/31/03 "	" " Samp 1 "	1100 " 6.6 pH Units bled: 07/23/03 10:50 ND mg/kg 51 "	50 1.0 1.0 5.0	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11) Metals by EPA 6000/7000 Series Cadmium Chromium Nickel Lead Zinc	EPA 9071B " EPA 9045B s Methods EPA 6010 " " "	AH30822 AH30717 AH30614 AG33004 " "	08/05/03 08/05/03 Sample Typ 07/30/03 " "	08/07/03 08/05/03 pe: Soil 07/31/03 " "	" " 1 " "	1100 " 6.6 pH Units bled: 07/23/03 10:50 ND mg/kg 51 " 61 " 12 "	50 1.0 1.0 5.0 10 5.0	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11) Metals by EPA 6000/7000 Series Cadmium Chromium Nickel Lead	EPA 9071B " EPA 9045B s Methods EPA 6010 " " "	AH30822 AH30717 AH30614 AG33004 " "	08/05/03 08/05/03 Sample Typ 07/30/03 " "	08/07/03 08/05/03 pe: Soil 07/31/03 " " "	" " 1 " "	1100 " 6.6 pH Units bled: 07/23/03 10:50 ND mg/kg 51 " 61 " 12 " 56 "	50 1.0 1.0 5.0 10 5.0 10	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11) Metals by EPA 6000/7000 Series Cadmium Chromium Nickel Lead Zinc Chlorinated Phenols by Canadia	EPA 9071B " EPA 9045B s Methods EPA 6010 " " " "	AH30822 AH30717 AH30614 AG33004 " " "	08/05/03 08/05/03 Sample Ty 07/30/03 " " "	08/07/03 08/05/03 pe: Soil 07/31/03 " "	" " 1 " "	1100 " 6.6 pH Units oled: 07/23/03 10:50 ND mg/kg 51 " 61 " 12 " 56 " ND mg/kg	50 1.0 1.0 5.0 10 5.0 10	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11) Metals by EPA 6000/7000 Series Cadmium Chromium Nickel Lead Zinc Chlorinated Phenols by Canadis 2,4,6-Trichlorophenol	EPA 9071B " EPA 9045B s Methods EPA 6010 " " " " an Pulp Method EnvCan	AH30822 AH30717 AH30614 AG33004 " " " " AG33102	08/05/03 08/05/03 Sample Ty 07/30/03 " " " " "	08/07/03 08/05/03 pe: Soil 07/31/03 " " " "	" " 1 " " " 1	1100 " 6.6 pH Units bled: 07/23/03 10:50 ND mg/kg 51 " 61 " 12 " 56 " ND mg/kg ND "	50 1.0 1.0 5.0 10 5.0 10 1.0 1.0	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11) Metals by EPA 6000/7000 Series Cadmium Chromium Nickel Lead Zinc Chlorinated Phenols by Canadia 2,4,6-Trichlorophenol 2,3,5,6-Tetrachlorophenol 2,3,4,6-Tetrachlorophenol	EPA 9071B " EPA 9045B s Methods EPA 6010 " " " " an Pulp Method EnvCan "	AH30822 AH30717 AH30614 AG33004 " " " " " " " " " "	08/05/03 08/05/03 Sample Typ 07/30/03 " " " " " " " " "	08/07/03 08/05/03 pe: Soil 07/31/03 " " " " " "	" " " " " " "	1100 " 6.6 pH Units bled: 07/23/03 10:50 ND mg/kg 51 " 61 " 12 " 56 " ND mg/kg ND " ND "	50 1.0 1.0 5.0 10 5.0 10 1.0 1.0 1.0	
Oil & Grease (HEM-SG) Oil & Grease (HEM) pH D6-11-0.0-0.5 (A307606-11) Metals by EPA 6000/7000 Series Cadmium Chromium Nickel Lead Zinc Chlorinated Phenols by Canadia 2,4,6-Trichlorophenol 2,3,5,6-Tetrachlorophenol	EPA 9071B " EPA 9045B s Methods EPA 6010 " " " an Pulp Method EnvCan "	AH30822 AH30717 AH30614 AG33004 " " " AG33102 " "	08/05/03 08/05/03 Sample Typ 07/30/03 " " " " 07/28/03 " "	08/07/03 08/05/03 pe: Soil 07/31/03 " " " " " " " " " " " " " "	" " " " " " "	1100 " 6.6 pH Units bled: 07/23/03 10:50 ND mg/kg 51 " 61 " 12 " 56 " ND mg/kg ND "	50 1.0 1.0 5.0 10 5.0 10 1.0 1.0	

shari Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, Inc.

alpha Analytica Alpha ♥Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307606	07/25/2003 15:40	MFGINC	

		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-11-0.0-0.5 (A307606-11)			Sample Typ	oe: Soil		Sampled: 07/23/03 10:50		
Conventional Chemistry Parameter	rs by APHA/EPA M	ethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/06/03	08/08/03	1	1000 mg/kg	50	
Oil & Grease (HEM)	н	AH30717	08/05/03	08/07/03	۳	2400 "	50	
рН	EPA 9045B	AH30614	08/05/03	08/05/03	**	5.4 pH Units	1.0	
D6-12-0.0-0.5 (A307606-12)			Sample Typ	pe: Soil		Sampled: 07/23/03 11:10		
Metals by EPA 6000/7000 Series M	lethods							
Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0	
Chromium	"	"	n	"	**	37 "	5.0	
Nickel	"	"	"	"	"	42 "	10	
Lead	**	н	11	"	"	31 "	5.0	
Zinc	**	**	11	n	"	240 "	10	
Chlorinated Phenols by Canadian	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AG33102	07/28/03	07/29/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	**	"	11	**	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	**	"	"	**	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	99	Ħ	"	"	"	ND "	1.0	
Pentachlorophenol	**	"		"	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		37.9 % 23-140		
Conventional Chemistry Paramete	rs by APHA/EPA M	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/06/03	08/08/03	1	4300 mg/kg	50	
Oil & Grease (HEM)	*	AH30717	08/05/03	08/07/03	**	9800 "	50	
pH	EPA 9045B	AH30614	08/05/03	08/05/03		5.0 pH Units	1.0	
D6-13-0.0-0.5 (A307606-13)			Sample Ty	pe: Soil		Sampled: 07/23/03 13:50		
Metals by EPA 6000/7000 Series M	lethods							
Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0	
Chromium	"	**	"	"	"	29 "	5.0	
Nickel	"	"	**	"	"	32 "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri Speake

Sheri L. Speaks Project Manager

Page 11 of 29

AUG 1 3 2003

MFG, Inc.

alpha Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.com • F

208 Mason St. Ukiah, California 95482

Phone: ((707)	468-0401	٠	Fax:	(707)	468-5267
----------	-------	----------	---	------	-------	----------

CHEMICAL EXAMINATION REPORT

Page 12 of 29

A307606 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT D6-13-0.0-0.5 (A307606-13) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods (cont'd) EPA 6010 " 07/31/03 " 15 " Lead EPA 6010 " " 07/31/03 " 15 " Zinc " " " " 58 " Chlorinated Phenols by Canadian Pulp Method 2,4,6-Trichlorophenol EnvCan AH30513 07/29/03 07/31/03 1 ND rng 2,3,4,6-Tetrachlorophenol " " " " ND " 2,3,4,5-Tetrachlorophenol " " " ND " Surrogate: Tribromophenol " " " T ND " Sur			1 age 12 01 27
A307606 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT D6-13-0.0-0.5 (A307606-13) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods (cont'd) Ead EPA 6010 " " Sil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods (cont'd) " " Tof-13-0.0-0.5 (A307606-13) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods (cont'd) " " Sample Type: Soil Sampled: 07/23/0 Chlorinated Phenols by Canadian Pulp Method " " Site Site 2,3,4,6-Tetrachlorophenol " " " " ND " Sample Type: ND " Sample Type: ND " Satrogate: To " ND " Satrogate: To " " ND " Satrogate: To ND " Satrogate:	4		
METHOD BATCH PREPARED ANALYZED DILUTION RESULT D6-13-0.0-0.5 (A307606-13) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods (cont'd) Itead EPA 6010 " 07/31/03 " 15 " Zine " " " 07/31/03 " 15 " Zine " " " 07/31/03 1 ND rng 2,4,6-Trichlorophenol EnvCan AH30513 07/29/03 07/31/03 1 ND rng 2,3,4,6-Tetrachlorophenol " " " " ND " 2,3,4,5-Tetrachlorophenol " " " ND " 2,3,4,5-Tetrachlorophenol " " " ND " Surrogate: Tribromophenol " " " ND " Surrogate: Tribromophenol " " " ND " Oil & Grease (HEM-SC) EPA 9071B AH30822 08/06/03 08/08/03 1 650 mg Oil & Grease (HEM) " <th>t PO/Reference</th> <th></th> <th></th>	t PO/Reference		
D6-13-0.0-0.5 (A307606-13) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods (cont'd) EPA 6010 " 07/31/03 " 15 " Zinc " " " 07/31/03 " 15 " Chlorinated Phenols by Canadian Pulp Method " " " " " S8 " Chlorinated Phenols by Canadian Pulp Method EnvCan AH30513 07/29/03 07/31/03 1 ND mg 2,3,5,6-Tetrachlorophenol " " " " ND " 2,3,4,6-Tetrachlorophenol " " " ND " 2,3,4,5-Tetrachlorophenol " " ND " 2,3,4,5-Tetrachlorophenol " " " " ND " Pentachlorophenol " " " " ND " Surrogate: Tribromophenol " " " 75.8 % Conventional Chemistry Parameters by APHA/EPA Methods 650 mg Oil & Grease (HEM) FPA 9045B AH30614 08/05/03			
Metals by EPA 6000/7000 Series Methods (cont'd) " " " 07/31/03 " 15 " Lead EPA 6010 " " 07/31/03 " 15 " Zinc " " " " " 58 " Chlorinated Phenols by Canadian Pulp Method 2,4,6-Trichlorophenol EnvCan AH30513 07/29/03 07/31/03 1 ND mg 2,3,5,6-Tetrachlorophenol " " " " ND " 2,3,4,6-Tetrachlorophenol " " " " ND " 2,3,4,5-Tetrachlorophenol " " " ND " Pentachlorophenol " " " ND " Surrogate: Tribromophenol " " " 75.8 % Conventional Chemistry Parameters by APHA/EPA	?	PQL	NOTE
Lead EPA 6010 " " 07/31/03 " 15 " Zinc " " " " 07/31/03 " 15 " Chlorinated Phenols by Canadian Pulp Method " " " " " " 58 " Chlorinated Phenols by Canadian Pulp Method EnvCan AH30513 07/29/03 07/31/03 1 ND mg 2,3,5,6-Tetrachlorophenol " " " " ND " 2,3,4,6-Tetrachlorophenol " " " " ND " 2,3,4,5-Tetrachlorophenol " " " ND " 2,3,4,5-Tetrachlorophenol " " " ND " 2,3,4,5-Tetrachlorophenol " " " ND " Pentachlorophenol " " " ND " Sturrogate: Tribromophenol " " " ND " Oil & Grease (HEM-SG) EPA 9071B AH30822 08/06/03 08/07/03 1 650 mg	03 13:50		
Lead If A 0010 07/31/03 13 Zinc " " " " 58<"			
Zhic 36 " Chlorinated Phenols by Canadian Pulp Method 2,4,6-Trichlorophenol EnvCan AH30513 07/29/03 07/31/03 1 ND mg 2,3,5,6-Tetrachlorophenol " " " " ND " 2,3,4,6-Tetrachlorophenol " " " " ND " 2,3,4,6-Tetrachlorophenol " " " " ND " 2,3,4,5-Tetrachlorophenol " " " " ND " 2,3,4,5-Tetrachlorophenol " " " " ND " Pentachlorophenol " " " " ND " <i>Surrogate: Tribromophenol</i> " " " ND " <i>Surrogate: Tribromophenol</i> " " " 75.8 % Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30822 08/06/03 08/07/03 1 650 mg Oil & Grease (HEM) " AH30614 08/05/03 08/05/03 " 5.8 pH D6-14-0.0-0.5 (A307606-14)		5.0	
2,4,6-Trichlorophenol EnvCan AH30513 07/29/03 07/31/03 1 ND mg 2,3,5,6-Tetrachlorophenol " " " " " ND " 2,3,4,6-Tetrachlorophenol " " " " " ND " 2,3,4,6-Tetrachlorophenol " " " " ND " 2,3,4,5-Tetrachlorophenol " " " " ND " 2,3,4,5-Tetrachlorophenol " " " " ND " 2,3,4,5-Tetrachlorophenol " " " " ND " Pentachlorophenol " " " " ND " Surrogate: Tribromophenol " " " " ND " Surrogate: Tribromophenol " " " " 75.8 % Conventional Chemistry Parameters by APHA/EPA Methods 08/06/03 08/08/03 1 650 mg Oil & Grease (HEM) " AH30614 08/05/03 08/05/03 " 5.8 pH D6-14-0.0-0.5 (A307606-14) EPA 6010 AG33004 07/30/03		10	
2,3,5,6-Tetrachlorophenol """""""ND" 2,3,5,6-Tetrachlorophenol """"""""ND" 2,3,4,6-Tetrachlorophenol """"""""ND" 2,3,4,5-Tetrachlorophenol """"""""""ND" 2,3,4,5-Tetrachlorophenol """""""""""ND" 2,3,4,5-Tetrachlorophenol """"""""""""""ND" 2,3,4,5-Tetrachlorophenol """"""""""""""""""ND" 2,3,4,5-Tetrachlorophenol """""""""""""""""""""""""ND" 2,3,4,5-Tetrachlorophenol """"""""""""""""""""""""""""""""""""			
2,3,3,0-Tetrachlorophenol " " " " ND " 2,3,4,6-Tetrachlorophenol " " " " ND " 2,3,4,5-Tetrachlorophenol " " " " ND " Pentachlorophenol " " " " ND " Pentachlorophenol " " " " ND " Surrogate: Tribromophenol " " " " ND " Surrogate: Tribromophenol " " " " ND " Oil & Grease (HEM-SG) EPA 9071B AH30822 08/06/03 08/08/03 1 650 mg Oil & Grease (HEM) " AH30717 08/05/03 08/07/03 " 1500 " pH EPA 9045B AH30614 08/05/03 08/05/03 " 5.8 pE D6-14-0.0-0.5 (A307606-14) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods Sampled: 07/23/0 Cadmium EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Chromium " " "	g/kg	1.0	
2,3,4,0-Tetrachlorophenol " " " ND " 2,3,4,5-Tetrachlorophenol " " " " ND " Pentachlorophenol " " " " ND " Surrogate: Tribromophenol " " " " ND " Surrogate: Tribromophenol " " " " ND " Conventional Chemistry Parameters by APHA/EPA Methods " " " 75.8 % Oil & Grease (HEM-SG) EPA 9071B AH30822 08/06/03 08/08/03 1 650 mg Oil & Grease (HEM) " AH30717 08/05/03 08/07/03 " 1500 " pH EPA 9045B AH30614 08/05/03 08/05/03 " 5.8 pE D6-14-0.0-0.5 (A307606-14) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods Sampled: 07/23/0 Cadmium EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Chromium " " " " " " 22 " D6/00 " "		1.0	
2,3,4,5-1erachlorophenol " " " ND Pentachlorophenol " " " " ND " Surrogate: Tribromophenol " " " " ND " Conventional Chemistry Parameters by APHA/EPA Methods " " " 75.8 % Oil & Grease (HEM-SG) EPA 9071B AH30822 08/06/03 08/08/03 1 650 mg Oil & Grease (HEM) " AH30717 08/05/03 08/07/03 " 1500 " pH EPA 9045B AH30614 08/05/03 08/05/03 " 5.8 pE D6-14-0.0-0.5 (A307606-14) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Chromium " " " " " 22 "		1.0	
Pentachtorophenol ND Surrogate: Tribromophenol " " " 75.8 % Conventional Chemistry Parameters by APHA/EPA Methods Oil & Grease (HEM-SG) EPA 9071B AH30822 08/06/03 08/08/03 1 650 mg Oil & Grease (HEM) " AH30717 08/05/03 08/07/03 " 1500 " pH EPA 9045B AH30614 08/05/03 08/05/03 " 5.8 pE D6-14-0.0-0.5 (A307606-14) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods Cadmium EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Chromium " " " " " " 22 "		1.0	
Surrogate: Tribromophenol 73.8 % Conventional Chemistry Parameters by APHA/EPA Methods 650 mg Oil & Grease (HEM-SG) EPA 9071B AH30822 08/06/03 08/08/03 1 650 mg Oil & Grease (HEM) " AH30717 08/05/03 08/07/03 " 1500 " pH EPA 9045B AH30614 08/05/03 08/05/03 " 5.8 pF D6-14-0.0-0.5 (A307606-14) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Cadmium EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Chromium " " " " 22 "		1.0	
Oil & Grease (HEM-SG) EPA 9071B AH30822 08/06/03 08/08/03 1 650 mg Oil & Grease (HEM) " AH30717 08/05/03 08/07/03 " 1500 " pH EPA 9045B AH30614 08/05/03 08/05/03 08/05/03 " 5.8 pE D6-14-0.0-0.5 (A307606-14) Sampled to 100 (AG33004) O7/30/03 07/31/03 1 ND mg Metals by EPA 6000/7000 Series Methods EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Cadmium " " " " " " 22 "	23-140		
Oil & Grease (HEM) " AH30717 08/05/03 08/07/03 " 1500 " pH EPA 9045B AH30614 08/05/03 08/05/03 " 5.8 pE D6-14-0.0-0.5 (A307606-14) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Cadmium EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Chromium " " " " 22 "			
pH EPA 9045B AH30614 08/05/03 08/07/03 1300 D6-14-0.0-0.5 (A307606-14) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Chromium " " " " 22 "	ıg/kg	50	
D6-14-0.0-0.5 (A307606-14) Sample Type: Soil Sampled: 07/23/0 Metals by EPA 6000/7000 Series Methods EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Cadmium EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Chromium " " " " " 22 "		50	
Metals by EPA 6000/7000 Series Methods EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Chromium " " " " 22 "	H Units	1.0	
Cadmium EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg Chromium " " " " 22 "	/03 14:30		
Chromium " " " " 22 "			
	ng/kg	1.0	
Nickel " " " " 22 "		5.0	
		10	
Lead " " " " 18 "		5.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Zinc

shari Speake

110 "

Sheri L. Speaks Project Manager

**

10

RECLIVED

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

07/25/2003 15:40

e-mail: clientservices@alpha-labs.com •

Phone: (707) 468-0401 •	Fax:	(707)	468-5267
-------------------------	------	-------	----------

CHEMICAL EXAMINATION REPORT

MFGINC

Page 13 of 29

MFG, It	nc			
180 How	vard St. Suite 200		Report Date:	08/11/03 07:56
San Fran	cisco, CA 94105-2941		Project No:	030229.4
Attn: Ed	Conti		Project ID:	SPI-Arcata/Task #4
Order Number	Receipt Date/Time	Client Code		Client PO/Reference
A307606	07/25/2003 15:40	MFGINC		

		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTI
D6-14-0.0-0.5 (A307606-14)		Ś	Sample Typ	oe: Soil		Sampled: 07/23/03 14:30		
Chlorinated Phenols by Canadian I	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AH30513	07/29/03	07/31/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	"		н	"	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	**		Ħ	11	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**	"	*	**	"	ND "	1.0	
Pentachlorophenol	"	н	H	**	"	ND "	1.0	
Surrogate: Tribromophenol	#	"	"	n		70.2 % 23-1	40	
Conventional Chemistry Parameter	rs by APHA/EPA M	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/06/03	08/08/03	1	1800 mg/kg	50	
Oil & Grease (HEM)	**	AH30717	08/05/03	08/07/03	"	4800 "	50	
рН	EPA 9045B	AH30614	08/05/03	08/05/03	"	6.2 pH Units	1.0	
D6-15-0.0-0.5 (A307606-15)		:	Sample Ty	pe: Soil		Sampled: 07/23/03 15:00		
Metals by EPA 6000/7000 Series M	lethods							
Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0	
Chromium	"	**	н	"	**	17 "	5.0	
Nickel	**	"	"	"	"	18 "	10	
Lead	"	н	"	"		11 "	5.0	
Zinc	**	"	"	**	"	110 "	10	
Chlorinated Phenols by Canadian	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AH30513	07/29/03	07/31/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	**	11	"	H	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	н	**	"	*	ND "	1.0	
2,3,4,5-Tetrachlorophenol	19	"	"	"	"	ND "	1.0	
Pentachlorophenol	н	"	**	"	**	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		69.4 % 23-1	40	

Speake shari

Sheri L. Speaks Project Manager

RECEIVED AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number	Receipt Date/Time
A307606	07/25/2003 15:40

Alpha Analytical Laboratories, Inc.

		Агрпа А	naryucar	Laborato	ries, inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-15-0.0-0.5 (A307606-15)		5	Sample Typ	oe: Soil		Sampled: 07/23/03 15:00		
Conventional Chemistry Parameter	rs by APHA/EPA M	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/06/03	08/08/03	1	2000 mg/kg	50	
Oil & Grease (HEM)	**	AH30717	08/05/03	08/07/03	"	4300 "	50	
рН	EPA 9045B	AH30614	08/05/03	08/05/03	**	5.8 pH Units	1.0	
06-16-0.0-0.5 (A307606-16)		:	Sample Typ	oe: Soil		Sampled: 07/23/03 15:30		
Metals by EPA 6000/7000 Series M	ethods							
Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0	
Chromium	n	"	**	**	**	20 "	5.0	
Nickel	"	"	"	"	n	24 ''	10	
Lead	*	**	"	"	"	9.5 "	5.0	
Zinc	f1	"	•	**	"	78 ''	10	
Chlorinated Phenols by Canadian	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AH30513	07/29/03	07/31/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	11	11	n	**	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	••	**	"	"	**	ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	"	"	**	"	ND "	1.0	
Pentachlorophenol	11	n	"	**		ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		61.3 % 23-140	ł	
Conventional Chemistry Paramete	rs by APHA/EPA M	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30822	08/06/03	08/08/03	1	2400 mg/kg	50	
Oil & Grease (HEM)	"	AH30717	08/05/03	08/07/03	"	4900 "	50	
рН	EPA 9045B	AH30614	08/05/03	08/05/03		6.0 pH Units	1.0	
D6-17-0.0-0.5 (A307606-17)			Sample Ty	pe: Soil		Sampled: 07/23/03 16:10		
Metals by EPA 6000/7000 Series M	lethods							
Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0	
Chromium	11	n	"		л	34 "	5.0	
Nickel	"	"	"	"	11	23 "	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri Speake

Sheri L. Speaks Project Manager

Page 14 of 29

Client Code MFGINC

AUG 1 3 2003 MFG, Inc.

Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.co

CHEMICAL EXAMINATION REPORT

Page 15 of 29

Order Number Receipt Date/Time Client Code Client PO/Reference A307606 07/25/2003 15:40 MFGINC MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT	PQL 5.0	NOTE
		NOTE
METHOD BATCH PREPARED ANALYZED DILUTION RESULT		NOTE
	5.0	
D6-17-0.0-0.5 (A307606-17) Sample Type: Soil Sampled: 07/23/03 16:10	5.0	
Metals by EPA 6000/7000 Series Methods (cont'd)	5.0	
Lead EPA 6010 " " 07/31/03 " 12 "	5.0	
Zinc """" 19"	10	
Chlorinated Phenols by Canadian Pulp Method		
2,4,6-Trichlorophenol EnvCan AH30513 07/29/03 07/31/03 1 ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol " " " " ND "	1.0	
2,3,4,6-Tetrachlorophenol " " " " ND "	1.0	
2,3,4,5-Tetrachlorophenol " " " " ND "	1.0	
Pentachlorophenol " " " " ND "	1.0	
Surrogate: Tribromophenol """" 72.6 % 23-140		
Conventional Chemistry Parameters by APHA/EPA Methods		
Oil & Grease (HEM-SG) EPA 9071B AH30822 08/06/03 08/08/03 1 320 mg/kg	50	
Oil & Grease (HEM) " AH30717 08/05/03 08/07/03 " 1200 "	50	
pH EPA 9045B AH30614 08/05/03 08/05/03 " 5.9 pH Units	1.0	
D6-18-0.0-0.5 (A307606-18) Sample Type: Soil Sampled: 07/24/03 09:15		
Metals by EPA 6000/7000 Series Methods		
Cadmium EPA 6010 AG33004 07/30/03 07/31/03 1 ND mg/kg	1.0	
Chromium " " " " 25 "	5.0	
Nickel """ ND "	10	
Lead " " " " 5.2 "	5.0	
Zinc " " " " 30 "	10	

Shari Speake

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 16 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	08/11/03 07:56
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

.

Order Number A307606	Receipt Date/Time 07/25/2003 15:40			nt Code FGINC		Client PO/Reference	ce	
		Alpha A	Analytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-18-0.0-0.5 (A307606-18)			Sample Typ	e: Soil		Sampled: 07/24/03 09:15		
Chlorinated Phenols by Canadi	ian Pulp Method							
2.4.6-Trichlorophenol	EnvCan	AH30513	07/29/03	07/31/03	1	ND mg/kg	1.0	

Surrogate: Tribromophenol	"	"	n	n		78.2 %	23-140
Pentachlorophenol	Ħ	"	11	11	"	ND "	1.0
2,3,4,5-Tetrachlorophenol	"	**	"	11		ND "	1.0
2,3,4,6-Tetrachlorophenol	"			**	11	ND "	1.0
2,3,5,6-Tetrachlorophenol	"		. "	"	"	ND "	1.0
2,4,0-111010000000	LiivCan	AIDUJID	01129105	0//51/05	1	ND IIIg/Kg	1.0

Conventional Chemistry Parameters by APHA/EPA Methods

Oil & Grease (HEM-SG) Oil & Grease (HEM)	EPA 9071B "	AH30822 AH30717	08/06/03 08/05/03	08/08/03 08/07/03	1 "	130 mg/kg 1400 "	50 50
рН	EPA 9045B	AH30614	08/05/03	08/05/03	н	6.2 pH Units	1.0
D6-19-0.0-0.5 (A307606-19) Metals by EPA 6000/7000 Series Met	hods	ł	Sample Ty	pe: Soil	i	Sampled: 07/24/03 09:35	

Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0
Chromium	**	"	**	н .	"	19 "	5.0
Nickel		n	"	"		17 "	10
Lead	"	"	**	н	11	8.1 "	5.0
Zinc	"	**	13	"	**	49 "	10
Chlorinated Phenols by Canadian I	Pulp Method						
2,4,6-Trichlorophenol	EnvCan	AH30513	07/29/03	07/31/03	1	ND mg/kg	1.0
2,3,5,6-Tetrachlorophenol	"	**	11	**	11	ND "	1.0
2,3,4,6-Tetrachlorophenol	"	"		**	**	ND "	1.0
2,3,4,5-Tetrachlorophenol	"	11	**	**	"	ND "	1.0
Pentachlorophenol	¥ .	41	*	"	**	ND "	1.0
Surrogate: Tribromophenol	"	tt	"	"		71.0 %	23-140

sheri Speake

AUG 1 3 2003

MFG, Inc.

alpha

Alpha Analytical Laboratories Inc.

CHEMICAL EXAMINATION REPORT

Page 17 of 29

	MFG, Inc 180 Howard St. San Francisco, G Attn: Ed Conti			Project No:	08/11/03 07:56 030229.4 SPI-Arcata/Task #4
Order Numbe A307606	r	Receipt Date/Time 07/25/2003 15:40	Client Code MFGINC		Client PO/Reference

		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
)6-19-0.0-0.5 (A307606-19)			Sample Typ	oe: Soil		Sampled: 07/24/03 09:35		
Conventional Chemistry Parameter	s by APHA/EPA M	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30823	08/06/03	08/08/03	1	1400 mg/kg	50	
Oil & Grease (HEM)	"	AH30718	08/06/03	08/07/03	**	2600 "	50	
рН	EPA 9045B	AH30614	08/06/03	08/06/03	"	6.7 pH Units	1.0	
06-20-0.0-0.5 (A307606-20)			Sample Typ	oe: Soil		Sampled: 07/24/03 09:40		
Metals by EPA 6000/7000 Series M	ethods							
Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0	
Chromium	н	"	H	**	n	28 "	5.0	
Nickel	"		"	n	"	27 "	10	
Lead	"	"	н		**	9.8 "	5.0	
Zinc	н	**	"	"	"	37 "	10	
Chlorinated Phenols by Canadian H	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AH30513	07/29/03	07/31/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol		"	**	*1	**	ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	**		**	**	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**	**	"	t+	**	ND "	1.0	
Pentachlorophenol	**	'n	**	**	11	ND "	1.0	
Surrogate: Tribromophenol	11	"	n	n		76.6 % 23-140		
Conventional Chemistry Parameter	rs by APHA/EPA N	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30823	08/06/03	08/08/03	1	890 mg/kg	50	
Oil & Grease (HEM)	**	AH30718	08/06/03	08/07/03	"	2100 "	50	
рН	EPA 9045B	AH30614	08/06/03	08/06/03	*	6.1 pH Units	1.0	
D6-21-0.0-0.5 (A307606-21)			Sample Ty	pe: Soil		Sampled: 07/24/03 10:00		
Metals by EPA 6000/7000 Series M	ethods							
Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0	
Chromium	**	**	**	"	n	29 "	5.0	
Nickel	n	"		н		10 "	10	

Sheri Speake

AUG 1 3 2003

WHE & States

alpha

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	CI	HEMICA	AL EXAN	MINATIO	N REPORT			Page 18 of 29
MFG, Inc 180 Howard S San Francisco Attn: Ed Cont	, CA 94105-2941				Report Date: Project No: Project ID:			
Order Number A307606	Receipt Date/Time 07/25/2003 15:40			ent Code FGINC		Client PO/Reference		
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-21-0.0-0.5 (A307606-21)		:	Sample Ty	pe: Soil	Samp	oled: 07/24/03 10:00		
Metals by EPA 6000/7000 Series	s Methods (cont'd)				-			
Lead	EPA 6010	"	**	07/31/03	н	ND "	5.0	
Zinc	n	11	"	n	11	14 "	10	
Chlorinated Phenols by Canadia	an Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AH30513	07/29/03	07/31/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	"	**	"	"		ND "	1.0	
2,3,4,6-Tetrachlorophenol	**	"	**	"	**	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**		н	"	*	ND "	1.0	
Pentachlorophenol	**	"	"	"	11	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		67.7 % 23-140		
Conventional Chemistry Param	eters by APHA/EPA Me	ethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30823	08/06/03	08/08/03	1	180 mg/kg	50	
Oil & Grease (HEM)	11	AH30718	08/06/03	08/07/03	"	530 "	50	
рН	EPA 9045B	AH30614	08/06/03	08/06/03	n	5.3 pH Units	1.0	
D6-22-0.0-0.5 (A307606-22)			Sample Ty	pe: Soil	Sam	pled: 07/24/03 10:20		
Metals by EPA 6000/7000 Serie	s Methods							
Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0	
Chromium	"	"	н	8		31 "	5.0	
Nickel	"	**	н		**	28 "	10	
Lead	**	"		**	**	ND "	5.0	
Zinc	**	"	**		**	21 "	10	

Sheri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

Analytical Laboratories Inc.208 Mason St. Ukiah, California 95482e-mail: clientservices@alpha-labs.com• Phone: (707) 468-0401• Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 19 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	08/11/03 07:56
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Order NumberReceipt Date/TimeClient CodeClient PO/ReferenceA30760607/25/2003 15:40MFGINC

		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-22-0.0-0.5 (A307606-22)			Sample Typ	oe: Soil	S	Sampled: 07/24/03 10:20		
Chlorinated Phenols by Canadian I	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AH30513	07/29/03	07/31/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	11	**	11	**	**	ND "	1.0	
2,3,4,6-Tetrachlorophenol	н	"	"	**	**	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**	"	*1		**	ND "	1.0	
Pentachlorophenol	*1	"	"	11	**	ND "	1.0	
Surrogate: Tribromophenol	11	"	"	"		72.6 % 23-140		
Conventional Chemistry Parameter	rs by APHA/EPA M	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30823	08/06/03	08/08/03	1	ND mg/kg	50	
Oil & Grease (HEM)	**	AH30718	08/06/03	08/07/03	11	380 "	50	
рН	EPA 9045B	AH30614	08/06/03	08/06/03	"	6.3 pH Units	1.0	
D6-23-0.0-0.5 (A307606-23)			Sample Ty	pe: Soil	:	Sampled: 07/24/03 10:35		
Metals by EPA 6000/7000 Series M	ethods							
Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0	
Chromium	**	"	"	**	"	32 "	5.0	
Nickel	**	"	"	"	"	29 "	10	
Lead	*1	"	"	"	**	ND "	5.0	
Zinc	"	**	"	"	"	17 "	10	
Chlorinated Phenols by Canadian	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AH30513	07/29/03	07/31/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	11	"	"	**	**	ND "	1.0	
2,3,4,6-Tetrachlorophenol	tt	**	*	"	11	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**	**	**	11	"	ND "	1.0	
Pentachlorophenol	**	.,	"	"	"	ND "	1.0	
Surrogate: Tribromophenol	n	"	"	n		55.6 % 23-140		

Sheri Speake

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

Analytical Laboratories Inc.208 Mason St. Ukiah, California 95482e-mail: clientservices@alpha-labs.com• Phone: (707) 468-0401• Fax: (707) 468-5267

Report Date: 08/11/03 07:56

Project ID: SPI-Arcata/Task #4

Project No: 030229.4

CHEMICAL EXAMINATION REPORT

Page 20 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Order NumberReceipt Date/TimeClient CodeClient PO/ReferenceA30760607/25/2003 15:40MFGINC

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-23-0.0-0.5 (A307606-23)		1	Sample Typ	oe: Soil		Sampled: 07/24/03 10:35		
Conventional Chemistry Parameter	s by APHA/EPA M	ethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30823	08/06/03	08/08/03	1	170 mg/kg	50	
Oil & Grease (HEM)	"	AH30718	08/06/03	08/07/03	"	280 "	50	
рН	EPA 9045B	AH30614	08/06/03	08/06/03	"	5.3 pH Units	1.0	
D6-24-0.0-0.5 (A307606-24)			Sample Typ	pe: Soil		Sampled: 07/24/03 10:50		
Metals by EPA 6000/7000 Series M	ethods							
Cadmium	EPA 6010	AG33004	07/30/03	07/31/03	1	ND mg/kg	1.0	
Chromium	"	*1	"	**	**	35 "	5.0	
Nickel	"	*1	"	"	**	25 "	10	
Lead	**	"	**	**	**	8.8 "	5.0	
Zinc	**		"	**	••	48 "	10	
Chlorinated Phenols by Canadian I	Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AH30513	07/29/03	07/31/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	**	"	**	**	.,	ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	"	"	"	**	ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	"		"	**	ND "	1.0	
Pentachlorophenol	11	n	"	17	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		48.4 % 23-140		
Conventional Chemistry Paramete	rs by APHA/EPA M	lethods						
Oil & Grease (HEM-SG)	EPA 9071B	AH30823	08/06/03	08/08/03	1	110 mg/kg	50	
Oil & Grease (HEM)	**	AH30718	08/06/03	08/07/03	**	140 "	50	
pH	EPA 9045B	AH30614	08/06/03	08/06/03	"	5.2 pH Units	1.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, Inc.

AUG 1 3 2003

Page 21 of 29

RECEIVED

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

alpha

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code Client PO/Reference Receipt Date/Time Order Number A307606 07/25/2003 15:40 MFGINC

SourceResult

Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG33003 - EPA 3051 Micro	wave									
Blank (AG33003-BLK1)				Prepared:	07/30/03	Analyzed	l: 08/01/03			
Cadmium	ND	1.0	mg/kg							
Chromium	ND	5.0	**							
Lead	ND	5.0	н							
Nickel	ND	10	"							
Zinc	ND	10	*							
LCS (AG33003-BS1)				Prepared	: 07/30/03	Analyzed	1: 07/31/03			
Cadmium	19.7	1.0	mg/kg	20.0		98.5	85-115			
Chromium	19.8	5.0	**	20.0		99.0	85-115			
Lead	20.6	5.0	*	20.0		103	85-115			
Nickel	19.5	10	11	20.0		97.5	85-115			
Zinc	20.8	10	*	20.0		104	87.1-126			
LCS Dup (AG33003-BSD1)				Prepared	: 07/30/03	Analyzed	d: 07/31/03			
Cadmium	20.0	1.0	mg/kg	20.0		100	85-115	1.51	20	
Chromium	20.2	5.0	"	20.0		101	85-115	2.00	20	
Lead	19.8	5.0	· ••	20.0		99.0	85-115	3.96	20	
Nickel	19.9	10	"	20.0		99.5	85-115	2.03	20	
Zinc	21.1	10	**	20.0		106	87.1-126	1.43	20	
Duplicate (AG33003-DUP1)	Sou	rce: A307	601-17	Prepared	: 07/30/03	Analyze	d: 08/01/03			
Cadmium	ND	1.0	mg/kg		ND				20	
Chromium	52.4	5.0	"		53			1.14	20	
Lead	ND	5.0	Ħ		ND				20	
Nickel	40.1	10	**		38			5.38	20	
Zinc	26.0	10	"		24			8.00	20	
Matrix Spike (AG33003-MS1)	Sou	rce: A307	601-17	Prepared	l: 07/30/03	Analyze	d: 08/01/03	5		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 22 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number Receipt Date/Time A307606 07/25/2003 15:40

Client Code MFGINC

Metals by EPA 6000/7000 Series Methods - Quality Control

				Spike	Source		%REC		RPD	
Analyte(s)	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AG33003 - EPA 3051 Microwave

Matrix Spike (AG33003-MS1)	Sour	ce: A30760)1-17	Prepared:	07/30/03	Analyzed	l: 08/01/03			
Cadmium	18.9	1.0 m	ng/kg	20.0	ND	94.5	70-130			
Chromium	73.7	5.0	**	20.0	53	104	70-130			
Lead	24.3	5.0	**	20.0	ND	100	70-130			
Nickel	60.5	10	11	20.0	38	112	70-130			
Zinc	47.7	10	"	20.0	24	118	70-130			
Matrix Spike Dup (AG33003-MSD1)	Sour	ce: A30760	01-17	Prepared:	07/30/03	Analyzed	1: 08/01/03			
Cadmium	18.6	1.0 n	ng/kg	20.0	ND	93.0	70-130	1.60	20	
Cadmium Chromium	18.6 65.8	1.0 n 5.0	ng/kg "	20.0 20.0	ND 53	93.0 64.0	70-130 70-130	1.60 11.3	20 20	QM-04
			•••							QM-04
Chromium	65.8	5.0	"	20.0	53	64.0	70-130	11.3	20	QM-04

Batch AG33004 - EPA 3051 Microwave

Blank (AG33004-BLK1)				Prepared: 07/30/03	Analyze	d: 07/31/03
Cadmium	ND	1.0	mg/kg			
Chromium	ND	5.0	**			
Lead	ND	5.0	"			
Nickel	ND	10	**			
Zinc	ND	10	"			
LCS (AG33004-BS1)				Prepared: 07/30/03	Analyze	d: 07/31/03
LCS (AG33004-BS1) Cadmium	19.6	1.0	mg/kg	Prepared: 07/30/03 20.0	Analyze 98.0	d: 07/31/03 85-115
	19.6 19.6	1.0 5.0	mg/kg "			
Cadmium				20.0	98.0	85-115
Cadmium Chromium	19.6	5.0	"	20.0 20.0	98.0 98.0	85-115 85-115

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

heri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG. Inc

alpho Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 23 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Receipt Date/Time Client Code **Client PO/Reference** Order Number A307606 07/25/2003 15:40 MFGINC

Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG33004 - EPA 3051 Microwa	ve									
LCS Dup (AG33004-BSD1)				Prepared:	07/30/03	Analyzed	1: 07/31/03			
Cadmium	19.8	1.0	mg/kg	20.0		99.0	85-115	1.02	20	
Chromium	20.0	5.0	**	20.0		100	85-115	2.02	20	
Lead	19.9	5.0	"	20.0		99.5	85-115	1.01	20	
Nickel	20.2	10	"	20.0		101	85-115	2.00	20	
Zinc	21.6	10		20.0		108	87.1-126	1.40	20	
Duplicate (AG33004-DUP1)	Sou	rce: A307	674-01	Prepared	: 07/30/03	Analyzed	1: 07/31/03			
Cadmium	ND	1.0	mg/kg		ND				20	
Chromium	ND	5.0	"		ND				20	
Lead	ND	5.0	"		ND				20	
Nickel	ND	10	17		ND				20	
Zinc	ND	10	Ħ		ND				20	
Matrix Spike (AG33004-MS1)	Sou	rce: A307	674-01	Prepared	: 07/30/03	Analyzed	d: 07/31/03			
Cadmium	20.6	1.0	mg/kg	20.0	ND	103	70-130			
Chromium	21.1	5.0	"	20.0	ND	100	70-130			
Lead	22.2	5.0	11	20.0	ND	107	70-130			
Nickel	21.3	10	n	20.0	ND	104	70-130			
Zinc	26.1	10	"	20.0	ND	103	70-130			
Matrix Spike Dup (AG33004-MSD1)	Sou	rce: A307	674-01	Prepared	: 07/30/03	Analyzed	d: 07/31/03			
Cadmium	19.8	1.0	mg/kg	20.0	ND	99.0	70-130	3.96	20	
Chromium	20.1	5.0	"	20.0	ND	95.0	70-130	4.85	20	
Lead	21.0	5.0	"	20.0	ND	101	70-130	5.56	20	
Nickel	20.6	10	"	20.0	ND	100	70-130	3.34	20	
Zinc	28.3	10	18	20.0	ND	114	70-130	8.09	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

Sheri L. Speaks Project Manager

NEVEIVED

AUG 1 3 2003

MFG, Inc.

Alpha ♥Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 24 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number Receipt Date/Time Client Code Client PO/Reference A307606 07/25/2003 15:40 MFGINC

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG33102 - Solvent Extraction										
Blank (AG33102-BLK1)				Prepared	: 07/28/03	Analyzad	07/20/02			
2,4,6-Trichlorophenol	ND	1.0	mg/kg		01120105	Analyzeu	. 07/29/03			
2,3,5,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,6-Tetrachlorophenol	ND	1.0								
2,3,4,5-Tetrachlorophenol	ND	1.0	**							
Pentachlorophenol	ND	1.0	**							
Surrogate: Tribromophenol	0.0870		n	0.124		70.2	23-140			
LCS (AG33102-BS1)				Prepared:	07/28/03	Analyzed	· 07/29/03			
2,4,6-Trichlorophenol	0.0183	1.0	mg/kg	0.0250		73.2	32-116			
2,3,5,6-Tetrachlorophenol	0.0153	1.0	"	0.0250		61.2	18-80			
2,3,4,6-Tetrachlorophenol	0.0162	1.0	**	0.0250		64.8	28-89			
2,3,4,5-Tetrachlorophenol	0.0174	1.0	"	0.0250		69.6	28-89 54-85			
Pentachlorophenol	0.0179	1.0	"	0.0250		71.6	17-85			
Surrogate: Tribromophenol	0.0940		"	0.124		75.8	23-140			
LCS Dup (AG33102-BSD1)				Prepared:	07/28/03	Analyzed	· 07/20/03			
2,4,6-Trichlorophenol	0.0198	1.0	mg/kg	0.0250	01120105	79.2	32-116	7.87	50	
2,3,5,6-Tetrachlorophenol	0.0140	1.0	"	0.0250		56.0	18-80	8.87	50	
2,3,4,6-Tetrachlorophenol	0.0162	1.0	"	0.0250		64.8	28-89	0.00	50 50	
2,3,4,5-Tetrachlorophenol	0.0184	1.0	"	0.0250		73.6	20-09 54-85	5.59	50 50	
Pentachlorophenol	0.0180	1.0	**	0.0250		72.0	17-85	0.557	30 50	
Surrogate: Tribromophenol	0.104		H	0.124		83.9	23-140			
atch AH30513 - Solvent Extraction										
Blank (AH30513-BLK1)				Prepared	07/29/03	Analyzed	07/31/03			
2,4,6-Trichlorophenol	ND	1.0	mg/kg			1 Mai y 200	01121103			
2,3,5,6-Tetrachlorophenol	ND	1.0	"							

sheri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, inc.

Alpha VAnalytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 25 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number Receipt Date/Time Client Code Client PO/Reference A307606 07/25/2003 15:40 MFGINC

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30513 - Solvent Extraction										
Blank (AH30513-BLK1)				Prepared	07/29/03	Analyzed	: 07/31/03			
2,3,4,6-Tetrachlorophenol	ND	1.0	11		01120100	1 mary2cu	. 07/51/05			
2,3,4,5-Tetrachlorophenol	ND	1.0	**							
Pentachlorophenol	ND	1.0	**							
Surrogate: Tribromophenol	0.0870		n	0.124		70.2	23-140			
LCS (AH30513-BS1)				Prepared:	08/01/03	Analyzed	: 08/05/03			
2,4,6-Trichlorophenol	0.0164	1.0	mg/kg	0.0250	00101100	65.6	32-116			
2,3,5,6-Tetrachlorophenol	0.0141	1.0	"	0.0250		56.4	18-80			
2,3,4,6-Tetrachlorophenol	0.0161	1.0	"	0.0250		64.4	28-89			
2,3,4,5-Tetrachlorophenol	0.0151	1.0	11	0.0250		60.4	20-89 54-85			
Pentachlorophenol	0.0137	1.0	"	0.0250		54.8	17-85			
Surrogate: Tribromophenol	0.0710		#	0.124		57.3	23-140			
LCS Dup (AH30513-BSD1)				Prepared:	08/01/03	Analyzed	: 08/05/03			
2,4,6-Trichlorophenol	0.0137	1.0	mg/kg	0.0250		54.8	32-116	17.9	50	·
2,3,5,6-Tetrachlorophenol	0.0121	1.0	"	0.0250		48.4	18-80	17.3	30 50	
2,3,4,6-Tetrachlorophenol	0.0160	1.0	"	0.0250		64.0	28-89	0.623		
2,3,4,5-Tetrachlorophenol	0.0153	1.0	"	0.0250		61.2	28-89 54-85		50	
Pentachlorophenol	0.0139	1.0	"	0.0250		55.6	54-85 17-85	1.32 1.45	50 50	
Surrogate: Tribromophenol	0.0730		Ħ	0.124		58.9	23-140	1.75		

sheri Speake

Sheri L. Speaks Project Manager

alpha

AUG 1 3 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 26 of 29

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order NumberReceipt Date/TimeClient CodeA30760607/25/2003 15:40MFGINC	Client PO/Reference
---	---------------------

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30717 - General Preparation										
Blank (AH30717-BLK1)				Prepared:	08/05/03	Analyzed	: 08/07/03			
Oil & Grease (HEM)	ND	50	mg/kg	^						
LCS (AH30717-BS1)				Prepared:	08/05/03	Analyzed	: 08/07/03			
Oil & Grease (HEM)	3970	50	mg/kg	4000		99.2	80-120			
LCS Dup (AH30717-BSD1)				Prepared:	08/05/03	Analyzed	: 08/07/03			
Oil & Grease (HEM)	3700	50	mg/kg	4000		92.5	80-120	7.04	20	
Duplicate (AH30717-DUP1)	Sou	rce: A307	606-04	Prepared:	08/05/03	Analyzed	: 08/07/03			
Oil & Grease (HEM)	4670	50	mg/kg	<u> </u>	5800			21.6	200	
Matrix Spike (AH30717-MS1)	Sou	rce: A307	606-04	Prepared:	08/05/03	Analyzed	: 08/07/03			
Oil & Grease (HEM)	7820	50	mg/kg	2000	5800	101	80-120			
Matrix Spike Dup (AH30717-MSD1)	Sou	rce: A307	606-04	Prepared:	08/05/03	Analyzed	: 08/07/03			
Oil & Grease (HEM)	7660	50	mg/kg	2000	5800	93.0	80-120	2.07	20	
Batch AH30718 - General Preparation										
Blank (AH30718-BLK1)				Prepared:	08/06/03	Analyzed	· 08/07/03			
Oil & Grease (HEM)	ND	50	mg/kg							
LCS (AH30718-BS1)				Prepared:	08/06/03	Analyzed	· 08/07/03			
Oil & Grease (HEM)	3560	50	mg/kg	4000	00,00,00	89.0	80-120			
LCS Dup (AH30718-BSD1)				Prepared:	08/06/03	Analyzed	· 08/07/03			
Oil & Grease (HEM)	3440	50	mg/kg	4000		86.0	80-120	3.43	20	

sheri Speake

Sheri L. Speaks Project Manager

AUG 1 3 2003

MFG, Inc.

alpha Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307606	07/25/2003 15:40	MFGINC	

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH30718 - General Preparation	1									
Duplicate (AH30718-DUP1)	Sou	rce: A307	606-21	Prepared:	08/06/03	Analyzed	: 08/07/03			
Oil & Grease (HEM)	455	50	mg/kg	*	530	ž		15.2	200	
Matrix Spike (AH30718-MS1)	Sou	rce: A307	606-21	Prepared:	08/06/03	Analyzed	: 08/07/03			
Oil & Grease (HEM)	3020	50	mg/kg	2500	530	99.6	80-120			
Matrix Spike Dup (AH30718-MSD1)	Sou	rce: A307	606-21	Prepared:	08/06/03	Analyzed	: 08/07/03			
Oil & Grease (HEM)	3180	50	mg/kg	2500	530	106	80-120	5.16	20	
Batch AH30822 - General Preparation	n									
Blank (AH30822-BLK1)				Prepared:	08/05/03	Analyzed	: 08/08/03			
Oil & Grease (HEM-SG)	ND	50	mg/kg	·····						
LCS (AH30822-BS1)				Prepared:	08/05/03	Analyzed	: 08/08/03			
Oil & Grease (HEM-SG)	3520	50	mg/kg	4000		88.0	80-120		-	
LCS Dup (AH30822-BSD1)				Prepared:	: 08/06/03	Analyzed	: 08/08/03			
Oil & Grease (HEM-SG)	3840	50	mg/kg	4000		96.0	80-120	8.70	20	
Duplicate (AH30822-DUP1)	Sou	rce: A307	606-04	Prepared:	08/05/03	Analyzed	: 08/08/03			
Oil & Grease (HEM-SG)	1920	50	mg/kg		1600	· · · · ·		18.2	200	
Matrix Spike (AH30822-MS1)	Sou	rce: A307	606-04	Prepared:	: 08/05/03	Analyzed	: 08/08/03			
Oil & Grease (HEM-SG)	3590	50	mg/kg	2000	1600	99.5	80-120			
Matrix Spike Dup (AH30822-MSD1)	Sou	rce: A307	606-04	Prepared:	: 08/05/03	Analyzed	: 08/08/03			
Oil & Grease (HEM-SG)	3500	50	mg/kg	2000	1600	95.0	80-120	2.54	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

Sheri L. Speaks Project Manager

Page 27 of 29

AUG 1 3 2003

MFG, Inc.

alpha Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 08/11/03 07:56 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307606	07/25/2003 15:40	MFGINC	

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

RPD Limit	Flag
5.71 20	
2.74 200	
3.82 20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

Page 28 of 29

HECEIVED

AUG 1 3 2003

MFG, Inc.

alpha

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 29 of 29

13 Si	IFG, Inc 80 Howard St. Suite 200 an Francisco, CA 94105-2941 .ttn: Ed Conti	Project No:	08/11/03 07:56 030229.4 SPI-Arcata/Task #4
Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307606	07/25/2003 15:40	MFGINC	

Notes and Definitions

- QM-04 High RPD and/or poor percent recovery may reflect sample non-homogeneity.
- DET Analyte DETECTED
- Analyte NOT DETECTED at or above the reporting limit ND
- NR Not Reported
- Sample results reported on a dry weight basis dry
- RPD Relative Percent Difference
- Practical Quantitation Limit PQL

*1				36) m 03															•••••			
coc No. 42860	1/25/03	ST	Remarks	A SET HEM (0 all Simples Curris (1) 50	307600- 1	୯ [,]	- 6	h-	ې RE AL	ĒĊ	E	00 IV 201	É	0 D	Cooler Temp:		COMPANY		#Jaha	ABOHATOHY		
	PAGE: DATE: ATION: 40	ANALYSIS REQUEST	Handling	алон неия вталиате В С С	X A3	×	×	×	×		G, ×	Inc.	X	X	SCONDITION OF SAMPLES	RECIEVED BY:	PRINTED NAME		J. MATTARES	8. Spark	tion: F-filtered U-untilitered	
ST FOR ANALYSIS ST FOR ANALYSIS Seattle Office 195-7107 195-7107 105 105 105 105 105 105 105 105	Ont DESTINATION:		Constituents/Method	CHR 5040 2949 048 6H Mar Webr NO		I X X X X	$ X \times X \times X $	XXX	IXXXX	IXXXX	1 X X X X	IXXXX	I X X X X I	X X X X	LABORATORY COMMENTS/CONDITION OF		SIGNATURE	. 0 .	-Albuhur	S-Spock	T - tetton B - b b s o T - other Filtration: to Originator $b'' S = b'' S + b''$	
G, INC. B, AND REQUEST F Wan Francisco Office Michoward Street, Suite 200 San Francisco, CA 94105-1017 San Francisco, CA 94105-1017 Phone (415) 495-7110- FAX (415) 495-7107	IC #1		Containers	FILTRATION* VOLUME (mi/oz) TYPE*	U 12"3 DA	U 6-5 B	N 10"0 B	u 6.51 B	u 6'5' 8	8 15.19 N	1 8 12" 1 H	U 6.51 B	u 6"51 B	W 6"61 B 1	TOTAL NUMBER OF CONTAINERS		TIME	UE11 EQ	3 11:35	15:40	- other Containers: P - plastic G - glass T - tefton YELLOW: Laboratory Copy WHITE: Return to Onginator	
RECOR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<u>Serra</u> OJECT M. RWAYBIL		Preservation	сог <u>р</u> н ⁵ го [¢] ниО ³ нСі				χ		X			Χ	X	TOTAL NUMBER	-	VY DATE	7/25/1	1/25/0		petroleum A - air OT : PINK: Field Copy	Y TIME.
CHAIN-OF-CUSTODY	PROJECT	SAMPLES	Sample	DATE TIME Matrix*	225 09355	1025 Sp	05 0111 J	2 Shill	1500 50	_	J 1605 So	7123 0900 50					COMPANY	AUR MPS		đ	NA - nonaqueous SO - soil	O.S WENT by T
□ Boulder Office 4900 Pearl East Circle 8016s, CO 80301-6118 Tel: (303) 447-1835 Fax: (303) 447-1836	030229.4 nature): Carlie Nullo HIPMENT: COURNOC			Field Sample Identification	-0.5	`0.5	2,0 - 2,0 -	<u> </u>	い 0	0-0.5	1.	0	Ċ			RELINQUISHED BY:	PRINTED NAME	B TWIE MULK		2	• <u>KEY</u> Matrix: AD - aqueous	Shin Du-3-0.0-0
Arcata Office □ Arcata Office 1165 G Street, Suite E 1167 0 S5521-5617 Tel: (707) 826-9437 Fax: (707) 826-9437	PROJECT NO: 030229 SAMPLER (Signature): 100 METHOD OF SHIPMENT: 0			<u>de</u> ,	01-1-0.0	D6-2-0.0	ų,	- 1-	06-5-00-	ف	1- V	0 - 8	6				SIGNATURE	ALAN NAVLS	Γ	. Whathere	v. (* Label St

м

те 1 теас систе 20 20 20 20 1 1 1 2 20 20 20 20 20 20 20 20 20 20 20 20 20 2	MFG, INC. MFG, INC. N-OF-CUSTODY RECORD AND REQUEST FOR ANALYSIS COC No. 42862 Mile Cartwright Road Cob Box 30 Mile Costum Office Seattle Office Cartwright Road Cost No. 30 Mallace, ID Mallace, ID Mallace, ID Markenue W. Markenue W. Substanter Markenue W. Markenue W. Substanter Markenue W. Markenue W.<	PROJECT NAME: <u>Signya Pacific</u> PROJECT MANAGER: <u>Ed Confi</u> CARRIER/WAYBILL NO: <u>NA</u> DESTINATION: <u>Alpha</u>	ANALYSIS REQUEST ANALYSIS REQUEST	Sample Preservation Containers Constituents/Method Handling Remarks	щ щ щ щ щ щ щ щ щ щ щ щ щ щ	1000 Su	0 X X 1 8 1 8 1 X X	x x x x x x x x x x	X W S B W X X X X X X X X			AUG 1 3 2003 A 2003 A 2003		¹⁴ 1 1 1 1 3 3	TOTAL NUMBER OF CONTAINERS	RECIEVED BY:	COMPANY DATE TIME SIGNATURE PRINTED NAME COMPANY	MPG 7/25/03 1130 1 2	7/2503 11.35 1 Marthur & Anthrux Roh.	ALDHA 7/85/03 15.210 B. SUPORS S. SOPORS 1000000000000000000000000000000000000
A47-1836 A47-1836 A47-1836 A47-1836 A47-1836 AMA M. M. M. L COM YI & INOUISHED B INOUISHED B INOUISHED B	208) 555 2083 556	- NAN CARI	SAMPLES		HNO ₃ HCI HOI	1000 Su			3						TOTAL NI		٨		2	DNA S0-Soli SL-
Arcata Office 166 Street, Suite F Arcata, CA 95521-817 Fax: (707) 826-9439 Fax: (707) 826-9439 Fax: (707) 826-9439 SAMPLER (Sig METHOD OF S METHOD OF S METHOD OF S METHOD OF S METHOD OF S METHOD OF S MAN Temp Blan Temp Blan Temp Blan	□ Boulder Office 4900 Pearl East Circle Sulte 300W Boulder CO 80301-6118 Tel: (303) 447-1835 Fax: (303) 447-1836	- m			5		0.0-0.5	<u>A.D. D.</u>	0.0.0	S)	Runt 4		Rlank D			RELINQUISHED BY:		(Tului)	<u>}</u>	Ithin (OKH MANNEL AL

APPENDIX E

Laboratory Reports, including Chromatograms, and Chain of Custody Records for Groundwater Samples and the Surface Water Sample from the Retention Pond

1

1

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

15 October 2003

RECEIVED OCT 2 2 2003

MFG, Inc.

MFG, Inc Attn: Ed Conti 180 Howard St. Suite 200 San Francisco, CA 94105-2941 RE: SPI-Arcata/Task #4 Work Order: A307306

Enclosed are the results of analyses for samples received by the laboratory on 07/10/03 17:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sheri Speaks

Sheri L. Speaks Project Manager

This represents an amended copy of the original report

OCT 2 2 2003

RECEIVED

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 17

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 10/15/03 07:58 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number A307306

Receipt Date/Time 07/10/2003 17:45

Client Code MFGINC

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
RP-1-GW	A307306-01	Water	07/08/03 13:15	07/10/03 17:45
RP-2-GW	A307306-02	Water	07/08/03 16:13	07/10/03 17:45
SDP-1-GW	A307306-03	Water	07/09/03 09:45	07/10/03 17:45
D7-1-GW	A307306-04	Water	07/09/03 10:50	07/10/03 17:45
D7-2-GW	A307306-05	Water	07/09/03 11:15	07/10/03 17:45
D7-3-GW	A307306-06	Water	07/09/03 13:00	07/10/03 17:45
D7-4-GW	A307306-07	Water	07/09/03 15:00	07/10/03 17:45
D7-5-GW	A307306-08	Water	07/09/03 15:25	07/10/03 17:45
D7-6-GW	A307306-09	Water	07/09/03 15:50	07/10/03 17:45
D7-7-GW	A307306-10	Water	07/09/03 17:00	07/10/03 17:45
D7-8-GW	A307306-11	Water	07/09/03 17:45	07/10/03 17:45
D7-9-GW	A307306-12	Water	07/10/03 08:55	07/10/03 17:45
D7-10-GW	A307306-13	Water	07/10/03 09:25	07/10/03 17:45
D7-11-GW	A307306-14	Water	07/10/03 09:45	07/10/03 17:45
D7-12-GW	A307306-15	Water	07/10/03 10:10	07/10/03 17:45
D7-13-GW	A307306-16	Water	07/10/03 10:25	07/10/03 17:45
D7-14-GW	A307306-17	Water	07/10/03 11:00	07/10/03 17:45
D7-15-GW	A307306-18	Water	07/10/03 11:20	07/10/03 17:45
D7-16-GW	A307306-19	Water	07/10/03 11:45	07/10/03 17:45
D7-17-GW	A307306-20	Water	07/10/03 12:00	07/10/03 17:45

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri Speake

Sheri L. Speaks Project Manager

'.

١,

Order Number

A307306

RECEIVED

OCT 2 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 17

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time 07/10/2003 17:45

Client Code MFGINC

Project No: 030229.4 Project ID: SPI-Arcata/Task #4 Client PO/Reference

Report Date: 10/15/03 07:58

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri Speake

Sheri L. Speaks Project Manager

OCT 2 2 2003

MFG, Inc.

'.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT Page 3 of 17 MFG, Inc 180 Howard St. Suite 200 Report Date: 10/15/03 07:58 Project No: 030229.4 San Francisco, CA 94105-2941 Project ID: SPI-Arcata/Task #4 Attn: Ed Conti Client Code Client PO/Reference Order Number Receipt Date/Time A307306 07/10/2003 17:45 MFGINC Alpha Analytical Laboratories, Inc. BATCH PREPARED ANALYZED DILUTION RESULT PQL NOTE METHOD RP-1-GW (A307306-01) Sample Type: Water Sampled: 07/08/03 13:15 Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved EPA 6010 AG31513 07/15/03 07/23/03 1 ND mg/l 0.010 Chromium, dissolved 11 ** ND " 0.050 ,, н ., Nickel, dissolved . ND " 0.10 •• ** Lead, dissolved ND " 0.050 Zinc, dissolved ND " 0.10 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG31619 07/16/03 07/17/03 1.0417 170 ug/l 52 D-09 1100 " 100 **TPH as Motor Oil** Surrogate: 1,4-Bromofluorobenzene " 60.0 % 14-116 RP-2-GW (A307306-02) Sample Type: Water Sampled: 07/08/03 16:13 Metals (Dissolved) by EPA 6000/7000 Series Methods EPA 6010 0.010 Cadmium, dissolved AG31513 07/15/03 07/23/03 1 ND mg/l H ND " 0.050 Chromium, dissolved ., Nickel, dissolved ... ND " 0.10 ** ND " 0.050 Lead, dissolved ND " 0.10 Zinc, dissolved TPH as Diesel and Motor Oil by EPA Method 8015 Modified 8015DRO 50 TPH as Diesel AG31619 07/16/03 07/17/03 1 ND ug/l TPH as Motor Oil ND " 100 46.6 % Surrogate: 1,4-Bromofluorobenzene 14-116 SDP-1-GW (A307306-03) Sample Type: Water Sampled: 07/09/03 09:45 Metals (Dissolved) by EPA 6000/7000 Series Methods 0.010 EPA 6010 AG31513 07/15/03 07/23/03 ND mg/l Cadmium, dissolved 1 ND " 0.050 Chromium, dissolved ND " Nickel, dissolved 0.10 n ,, •• ND " Lead, dissolved 0.050

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Zinc, dissolved

...

hari Speake

ND "

0.10

OCT 2 2 2003

Willie, i

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	C	HEMICA	AL EXAN	MINATIO	N REPORT				Page 4 of 17
180 Howard St. San Francisco, C Attn: Ed Conti					Project No:	10/15/03 07 030229.4 SPI-Arcata/			
1000000	Receipt Date/Time 07/10/2003 17:45			ent Code FGINC		Client PO	Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
SDP-1-GW (A307306-03)		:	Sample Ty	pe: Water	Sam	pled: 07/09/03 0	9:45		
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AG31619	07/16/03	07/17/03	1.1299	300 ug/l		56	D-09
TPH as Motor Oil	"	n	**	**		890 "		110	2 07
Surrogate: 1,4-Bromofluorobenzer	ne "	"	"	"	*******	62.4 %	14-116		
D7-1-GW (A307306-04)			Sample Ty	ne: Water	Sam	pled: 07/09/03 1	0.50		
Metals (Dissolved) by EPA 6000/70	00 Series Methods						0100		
Cadmium, dissolved	EPA 6010	AG31513	07/15/03	07/23/03	1	ND mg/l	(0.010	
Chromium, dissolved	**	"	"	**	**	ND "	(0.050	
Nickel, dissolved	**	*	"	"	**	ND "		0.10	
Lead, dissolved	**	"	"	н	"	ND "	(0.050	
Zinc, dissolved	"	"	"	"	**	ND "		0.10	
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AG31619	07/16/03	07/17/03	1.087	ND ug/l		54	
TPH as Motor Oil	**	"	"	н		170 "		110	
Surrogate: 1,4-Bromofluorobenze	ne "	17	"	"		69.8 %	14-116		
D7-2-GW (A307306-05)			Sample Ty	pe: Water	Sam	pled: 07/09/03 1	1:15		
Metals (Dissolved) by EPA 6000/70	00 Series Methods								
Cadmium, dissolved	EPA 6010	AG31513	07/15/03	07/23/03	1	ND mg/l		0.010	
Chromium, dissolved	11	**	"	"	"	ND "	(0.050	
Nickel, dissolved	11	**	"	"	**	ND "		0.10	
Lead, dissolved	"	**	н	"	**	ND "	(0.050	
Zinc, dissolved	**	**	"	"	**	ND "		0.10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

Sheri L. Speaks Project Manager

OCT 2 2 2003

MFG, Inc.

٠.

	C	HEMICA	AL EXAN	AINATIO	N REPORT				Page 5 of 17
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Project No:	10/15/03 07 030229.4 SPI-Arcata/			
	Receipt Date/Time 07/10/2003 17:45			ent Code FGINC		Client PO	/Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	P	QL	NOTE
D7-2-GW (A307306-05)			Sample Typ	oe: Water	Sam	pled: 07/09/03 1	1:15		
TPH as Diesel and Motor Oil by El	A Method 8015 Mo					-			
TPH as Diesel	8015DRO	AG31619	07/16/03	07/17/03	1.1299	85 ug/l		56	D-09
TPH as Motor Oil	**	**	**	"	"	240 "	1	10	
Surrogate: 1,4-Bromofluorobenzer	ne "	"	11	"		68.1 %	14-116		
D7-3-GW (A307306-06)			Sample Ty	pe: Water	Sam	pled: 07/09/03 1	3:00		
Metals (Dissolved) by EPA 6000/70	00 Series Methods					-			
Cadmium, dissolved	EPA 6010	AG31513	07/15/03	07/23/03	1	ND mg/l	0.0	010	
Chromium, dissolved	11	u	"	*1	**	ND "	0.0	050	
Nickel, dissolved	**	"	11	"	**	ND "	0	0.10	
Lead, dissolved	11	"	"	"	**	ND "	0.0	050	
Zinc, dissolved	"	"	"	"	"	ND "	C).10	
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AG31619	07/16/03	07/17/03	1	ND ug/l		50	
TPH as Motor Oil	н		**	н	**	ND "		100	
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		69.2 %	14-116		
D7-4-GW (A307306-07)			Sample Ty	pe: Water	San	npled: 07/09/03 1	5:00		
Metals (Dissolved) by EPA 6000/70	00 Series Methods			-		-			
Cadmium, dissolved	EPA 6010	AG31513	07/15/03	07/23/03	1	ND mg/l	0.	010	
Chromium, dissolved	**	89		0	"	ND "	0.	050	
Nickel, dissolved	"	"	"		**	ND "	(0.10	
Lead, dissolved	"	**	"	"	"	ND "	0.	050	
Zinc, dissolved	"	н	"	"	"	ND "	(0.10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

Sheri L. Speaks Project Manager

OCT 2 2 2003

MFG. Inc.

alph

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

r none:	(101)	400-0401	•	rax.	(101) 400-52	.0

MFG. Inc Report Date: 10/15/03 07:58 180 Howard St. Suite 200 Project No: 030229.4 San Francisco, CA 94105-2941 Project ID: SPI-Arcata/Task #4 Attn: Ed Conti Client Code Client PO/Reference Receipt Date/Time A307306 MFGINC 07/10/2003 17:45 Alpha Analytical Laboratories, Inc. RESULT PQL NOTE BATCH PREPARED ANALYZED DILUTION METHOD Sample Type: Water Sampled: 07/09/03 15:00 D7-4-GW (A307306-07) TPH as Diesel and Motor Oil by EPA Method 8015 Modified D-09 AG31724 07/17/03 07/18/03 1.111 67 ug/l 56 8015DRO **TPH** as Diesel 280 " 110 **TPH as Motor Oil** 62.4 % 14-116 Surrogate: 1,4-Bromofluorobenzene Sampled: 07/09/03 15:25 Sample Type: Water D7-5-GW (A307306-08) Metals (Dissolved) by EPA 6000/7000 Series Methods 0.010 Cadmium, dissolved EPA 6010 AG31513 07/15/03 07/23/03 1 ND mg/l 11 ND " 0.050 Chromium, dissolved ND " 0.10 Nickel, dissolved ** ND " 0.050 Lead, dissolved ... ND " 0.10 Zinc, dissolved TPH as Diesel and Motor Oil by EPA Method 8015 Modified 57 D-09 8015DRO AG31724 07/17/03 07/18/03 1.149 560 ug/l **TPH** as Diesel 4100 " ** 110 **TPH as Motor Oil** 60.2 % 14-116 Surrogate: 1,4-Bromofluorobenzene Sample Type: Water Sampled: 07/09/03 15:50 D7-6-GW (A307306-09) Metals (Dissolved) by EPA 6000/7000 Series Methods 07/23/03 ND mg/l 0.010 EPA 6010 AG31513 07/15/03 1 Cadmium, dissolved

11 ND " 0.050 Chromium, dissolved 11 ... ND " 0.10 Nickel, dissolved н ND " 0.050 Lead, dissolved ND " 0.10 Zinc, dissolved

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

neri Speake

Sheri L. Speaks Project Manager

10/15/03

Order Number

Page 6 of 17

CHEMICAL EXAMINATION REPORT

OCT 2 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	C	HEMIC	AL EXA	MINATIO	N REPORT			Page 7 of
180 Howard St. San Francisco, C Attn: Ed Conti					Report Date: Project No: Project ID:			
1207202	Receipt Date/Time 07/10/2003 17:45			ent Code FGINC		Client PO	/Reference	
		Alpha A	Analytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D7-6-GW (A307306-09)			Sample Ty	pe: Water	Samp	led: 07/09/03 1		
TPH as Diesel and Motor Oil by EF	PA Method 8015 Mo	dified			•			
TPH as Diesel	8015DRO	AG31724	07/17/03	07/18/03	1.0309	70 ug/l	52	D-09
TPH as Motor Oil	tt	**	"	11	**	380 "	100	
Surrogate: 1,4-Bromofluorobenzer	ne "	H	n	11		53.1 %	14-116	
D7-7-GW (A307306-10)			Sample Ty	pe: Water	Samp	led: 07/09/03 1	7:00	
Metals (Dissolved) by EPA 6000/70	00 Series Methods				-			
Cadmium, dissolved	EPA 6010	AG31513	07/15/03	07/23/03	1	ND mg/l	0.010	
Chromium, dissolved	"	**	"	**	18	ND "	0.050	
Nickel, dissolved	"	**	*	**	"	ND "	0.10	
Lead, dissolved		11	**	**	"	ND "	0.050	
Zinc, dissolved	"	"	"	**	"	ND "	0.10	
TPH as Diesel and Motor Oil by EF	A Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AG31724	07/17/03	07/18/03	1.124	ND ug/l	56	R-02
TPH as Motor Oil	"	**	"		**	ND "	110	102
Surrogate: 1,4-Bromofluorobenzer	ne "	"	"	"		75.6 %	14-116	
D7-8-GW (A307306-11)			Sample Ty	pe: Water	Sam	oled: 07/09/03 1	7:45	
Metals (Dissolved) by EPA 6000/70	00 Series Methods			-	•			
Cadmium, dissolved	EPA 6010	AG31513	07/15/03	07/23/03	1	ND mg/l	0.010	
Chromium, dissolved	**	"		**	**	ND "	0.050	
Nickel, dissolved	"	"	"	"	"	ND "	0.10	
Lead, dissolved	н	"	"	"	**	ND "	0.050	
Zinc, dissolved	"	"		**	"	ND "	0.10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

Sheri L. Speaks Project Manager

MEC L

RECEIVED

OCT 2 2 2003

MFG, Inc.

Page 8 of 17

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Alpha Analytical Laboratories Inc.

MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Project No:	: 10/15/03 07 : 030229.4 : SPI-Arcata/			
	Receipt Date/Time 07/10/2003 17:45			ent Code FGINC		Client PO	Reference		
		Alpha A	nalytical	Laborato	ries, Inc.	*************************************			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
D7-8-GW (A307306-11)			Sample Ty	pe: Water	Sam	pled: 07/09/03 1	7:45		
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AG31724	07/17/03	07/18/03	1.149	240 ug/l		57	D-09
TPH as Motor Oil	**	я	**	"	"	1500 "		110	
Surrogate: 1,4-Bromofluorobenzei	ne "	"	11	"		14.5 %	14-116		
D7-9-GW (A307306-12)			Sample Ty	pe: Water	Sam	pled: 07/10/03 0	8:55		
Metals (Dissolved) by EPA 6000/70	00 Series Methods					-			
Cadmium, dissolved	EPA 6010	AG31513	07/15/03	07/23/03	1	ND mg/l		0.010	
Chromium, dissolved	"	Ħ	n	11	**	ND "		0.050	
Nickel, dissolved	"	н	"	"	**	ND "		0.10	
Lead, dissolved	"		**	"	"	ND "		0.050	
Zinc, dissolved	te	"	"	**	H	ND "		0.10	
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AG31724	07/17/03	07/18/03	1.149	300 ug/l		57	D-09
TPH as Motor Oil	"	n	"	"	"	1600 "		110	
Surrogate: 1,4-Bromofluorobenze	ne "	Н	"	"		35.2 %	14-116		
D7-10-GW (A307306-13)			Sample Ty	pe: Water	San	npled: 07/10/03 (9:25		
Metals (Dissolved) by EPA 6000/70	000 Series Methods		-						
Cadmium, dissolved	EPA 6010	AG31513	07/15/03	07/23/03	1	ND mg/l		0.010	
Chromium, dissolved	**	н			**	ND "		0.050	
Nickel, dissolved	**	**		**		ND "		0.10	
Lead, dissolved	**			"	**	ND "		0.050	
Zinc, dissolved	"	**		**		0.20 "		0.10	

CHEMICAL EXAMINATION REPORT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

Sheri L. Speaks Project Manager

OCT 2 2 2003

MFG, Inc.

alpha Alpha Analytical Laboratories Inc.

;

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MEC In-	C	HEMIC	AL EXAN	MINATIO	N REPOR	Т		Page 9 of 17
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Project 1	ate: 10/15/03 07:: No: 030229.4 ID: SPI-Arcata/T		
	Receipt Date/Time 07/10/2003 17:45			ent Code FGINC		Client PO/I	Reference	
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D7-10-GW (A307306-13)		hilida	Sample Ty	pe: Water	S	Sampled: 07/10/03 09	:25	*
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo			-		•		
TPH as Diesel	8015DRO	AG31808	07/18/03	07/18/03	1.117	220 ug/l	56	D-09
TPH as Motor Oil	11	17	*	**	**	1500 "	110	
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		56.9 %	14-116	
D7-11-GW (A307306-14)			Sample Ty	pe: Water	S	Sampled: 07/10/03 09	:45	
Metals (Dissolved) by EPA 6000/70	00 Series Methods			•		•		
Cadmium, dissolved	EPA 6010	AG31513	07/15/03	07/23/03	1	ND mg/l	0.010	
Chromium, dissolved	"	**	"	**	"	ND "	0.050	
Nickel, dissolved	"	"	"	**	"	ND "	0.10	
Lead, dissolved	11	**	n	"	"	ND "	0.050	
Zinc, dissolved	**	"	"	"	"	ND "	0.10	
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AG31808	07/18/03	07/18/03	1.111	190 ug/l	56	D-09
TPH as Motor Oil	"	н		11	**	1500 "	110	
Surrogate: 1,4-Bromofluorobenze	ne "	11	"	"		57.4 %	14-116	
D7-12-GW (A307306-15)			Sample Ty	pe: Water	S	Sampled: 07/10/03 10	:10	
Metals (Dissolved) by EPA 6000/70	000 Series Methods							
Cadmium, dissolved	EPA 6010	AG31513	07/15/03	07/24/03	1	ND mg/l	0.010	
Chromium, dissolved	**	**	"	**	11	ND "	0.050	
Nickel, dissolved	"	"	"	**	**	ND "	0.10	
Lead, dissolved	"	**		"	"	ND "	0.050	
Zinc, dissolved	11	"	"	"	**	ND "	0.10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

sheri Speake

CEIVED OCT 2 2 2003

MFG, Inc.

alpha Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT Page 10 of 17 MFG, Inc 180 Howard St. Suite 200 Report Date: 10/15/03 07:58 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Order Number Receipt Date/Time Client Code Client PO/Reference A307306 07/10/2003 17:45 MFGINC Alpha Analytical Laboratories, Inc. BATCH PREPARED ANALYZED DILUTION RESULT NOTE METHOD POL D7-12-GW (A307306-15) Sample Type: Water Sampled: 07/10/03 10:10 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG31808 07/18/03 07/18/03 1.075 140 ug/l 54 D-09 **TPH as Motor Oil** ., н 810 " 110 Surrogate: 1,4-Bromofluorobenzene 67.6 % 14-116 D7-13-GW (A307306-16) Sample Type: Water Sampled: 07/10/03 10:25 Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved ND mg/l EPA 6010 AG31513 07/15/03 07/24/03 1 0.010 Chromium, dissolved ** ... ND " 0.050 ,, 11 " Nickel, dissolved ND " 0.10 ., ... Lead, dissolved ND " 0.050 .. Zinc, dissolved ND " 0.10 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG31808 07/18/03 07/18/03 1 1 2 4 310 ug/l 56 D-09 **TPH as Motor Oil** ,, ** 1700 " 110 Surrogate: 1,4-Bromofluorobenzene 56.9 % 14-116 D7-14-GW (A307306-17) Sampled: 07/10/03 11:00 Sample Type: Water Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved EPA 6010 AG31513 07/15/03 07/24/03 1 ND mg/l 0.010 Chromium, dissolved = 51 ** ... ND " 0.050 ** ,, " Nickel, dissolved ND " 0.10 ** ŧ1 Lead, dissolved ND " 0.050 Zinc, dissolved ND " 0.10

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

heri Speake

OCT 2 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT Page 11 of 17 MFG. Inc 180 Howard St. Suite 200 Report Date: 10/15/03 07:58 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Order Number Receipt Date/Time Client Code Client PO/Reference A307306 07/10/2003 17:45 MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL NOTE D7-14-GW (A307306-17) Sample Type: Water Sampled: 07/10/03 11:00 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG31808 07/18/03 07/18/03 1.136 180 ug/l 57 D-09 **TPH as Motor Oil** ., 1300 " 110 Surrogate: 1,4-Bromofluorobenzene n " 56.0 % 14-116 D7-15-GW (A307306-18) Sample Type: Water Sampled: 07/10/03 11:20 Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved EPA 6010 AG31513 07/15/03 07/24/03 1 ND mg/l 0.010 Chromium, dissolved ** ** ** ** ND " 0.050 ** Nickel, dissolved ** " ND " 0.10 •• ** Lead, dissolved ND " 0.050 Zinc, dissolved ND " 0.10 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH as Diesel** 8015DRO AG31808 07/18/03 07/19/03 1.124 310 ug/l 56 D-09 **TPH as Motor Oil** n 2600 " 110 Surrogate: 1,4-Bromofluorobenzene ,, 46.6 % 14-116 D7-16-GW (A307306-19) Sample Type: Water Sampled: 07/10/03 11:45 Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved EPA 6010 AG31513 07/15/03 07/24/03 1 ND mg/l 0.010 Chromium, dissolved 11 ** ND " 0.050 Nickel, dissolved ** " ND " 0.10 Lead, dissolved " ND " 0.050 Zinc, dissolved ND " 0.10

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

heri Speake

Sheri L. Speaks Project Manager

OCT 2 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT Page 12 of 17 MFG, Inc Report Date: 10/15/03 07:58 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Order Number Receipt Date/Time Client Code **Client PO/Reference** A307306 07/10/2003 17:45 MFGINC Alpha Analytical Laboratories, Inc. BATCH PREPARED ANALYZED DILUTION METHOD RESULT POL NOTE D7-16-GW (A307306-19) Sample Type: Water Sampled: 07/10/03 11:45 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH as Diesel** 8015DRO AG31808 07/18/03 880 ug/l 07/19/03 1.149 57 D-09 ** **TPH as Motor Oil** ** 4400 " 110 " Surrogate: 1,4-Bromofluorobenzene . 44.2 % 14-116 D7-17-GW (A307306-20) Sample Type: Water Sampled: 07/10/03 12:00 Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved EPA 6010 AG31513 07/15/03 07/24/03 1 ND mg/l 0.010 Chromium, dissolved ,, ,, ND " 0.050 Nickel, dissolved ,, ... •1 ,, ,1 ND " 0.10 н Lead, dissolved ND " 0.050 . . Zinc, dissolved ND " 0.10 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG31808 07/18/03 07/19/03 380 ug/l 1.124 56 D-09 **TPH as Motor Oil** ... 2100 " 110 Surrogate: 1,4-Bromofluorobenzene " # 14-116 46.5 %

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

shari Speake

Sheri L. Speaks Project Manager

OCT 2 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 13 of 17

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 10/15/03 07:58 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307306	07/10/2003 17:45	MFGINC	

SourceResult

Metals (Dissolved) by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG31513 - EPA 200 Series										
Blank (AG31513-BLK1)				Prepared:	07/15/03	Analyzed	: 07/23/03			
Cadmium, dissolved	ND	0.010	mg/l							
Chromium, dissolved	ND	0.050	**							
Lead, dissolved	ND	0.050	**							
Nickel, dissolved	ND	0.10	11							
Zinc, dissolved	ND	0.10	н							
LCS (AG31513-BS1)				Prepared:	07/15/03	Analyzed	1: 07/23/03			
Cadmium, dissolved	0.222	0.010	mg/l	0.200		111	85-115			
Chromium, dissolved	0.217	0.050	11	0.200		108	85-115			
Lead, dissolved	0.221	0.050	н	0.200		110	85-115			
Nickel, dissolved	0.219	0.10	"	0.200		110	85-115			
Zinc, dissolved	0.223	0.10	"	0.200		112	85-115			
LCS Dup (AG31513-BSD1)				Prepared:	07/15/03	Analyzed	l: 07/23/03			
Cadmium, dissolved	0.220	0.010	mg/l	0.200		110	85-115	0.905	20	
Chromium, dissolved	0.214	0.050	**	0.200		107	85-115	1.39	20	
Lead, dissolved	0.223	0.050	н	0.200		112	85-115	0.901	20	
Nickel, dissolved	0.217	0.10	**	0.200		108	85-115	0.917	20	
Zinc, dissolved	0.224	0.10		0.200		112	85-115	0.447	20	
Duplicate (AG31513-DUP1)	Sou	rce: A307	306-01	Prepared:	: 07/15/03	Analyzed	1: 07/23/03			
Cadmium, dissolved	ND	0.010	mg/l		ND				20	
Chromium, dissolved	ND	0.050			ND				20	
Lead, dissolved	ND	0.050	••		ND				20	
Nickel, dissolved	ND	0.10	**		ND				20	
Zinc, dissolved	ND	0.10	11		ND				20	
Matrix Spike (AG31513-MS1)	Sou	rce: A307	306-01	Prepared	: 07/15/03	Analyze	d: 07/23/03			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

shari Speake

Sheri L. Speaks Project Manager

OCT 2 2 2003

MFG, Inc.

Alpha Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason St. Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 14 of 17

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

A307306

Report Date: 10/15/03 07:58 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client Code Client PO/Reference Receipt Date/Time Order Number 07/10/2003 17:45 MFGINC

Metals (Dissolved) by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG31513 - EPA 200 Series										
Matrix Spike (AG31513-MS1)	Sou	rce: A307:	306-01	Prepared:	07/15/03	Analyzed	: 07/23/03			
Cadmium, dissolved	0.210	0.010	mg/l	0.200	ND	105	70-130			
Chromium, dissolved	0.215	0.050	**	0.200	ND	108	70-130			
Lead, dissolved	0.212	0.050	n	0.200	ND	106	70-130			
Nickel, dissolved	0.239	0.10	"	0.200	ND	104	70-130			
Zinc, dissolved	0.234	0.10	**	0.200	ND	108	70-130			
Matrix Spike Dup (AG31513-MSD1)	Sou	rce: A307	306-01	Prepared	: 07/15/03	Analyzed	l: 07/23/03			
Cadmium, dissolved	0.208	0.010	mg/l	0.200	ND	104	70-130	0.957	20	
Chromium, dissolved	0.215	0.050		0.200	ND	108	70-130	0.00	20	
Lead, dissolved	0.208	0.050	"	0.200	ND	104	70-130	1.90	20	
Nickel, dissolved	0.239	0.10	"	0.200	ND	104	70-130	0.00	20	
Zinc, dissolved	0.238	0.10	**	0.200	ND	110	70-130	1.69	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

shari Speake

Sheri L. Speaks Project Manager

OCT 2 2 2003

MFG, Inc.

Alpha Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com •

208 Mason St. Ukiah, California 95482 1707 400 50

Phone: ((707)	468-0401	•	Fax:	(707)	468-5267
----------	-------	----------	---	------	-------	----------

CHEMICAL EXAMINATION REPORT

Page 15 of 17

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

÷

ŝ

A307306

Report Date: 10/15/03 07:58 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Receipt Date/Time Client Code Client PO/Reference Order Number MFGINC 07/10/2003 17:45

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG31619 - EPA 3510B Water										
Blank (AG31619-BLK1)				Prepared:	07/16/03	Analyzed	: 07/17/03			
TPH as Diesel	ND	50	ug/l							
TPH as Motor Oil	ND	100	"							
Surrogate: 1,4-Bromofluorobenzene	420		H	620		67.7	14-116			
LCS (AG31619-BS1)				Prepared:	07/16/03	Analyzed	l: 07/17/03			
TPH as Diesel	1660	50	ug/l	2090		79.4	57-136			
TPH as Motor Oil	2100	100	н	2090		100	58-138			
Surrogate: 1,4-Bromofluorobenzene	358		H	620		57.7	14-116			
LCS Dup (AG31619-BSD1)				Prepared	: 07/16/03	Analyzed	l: 07/17/03			
TPH as Diesel	1540	50	ug/l	2090		73.7	57-136	7.50	25	
TPH as Motor Oil	1970	100	"	2090		94.3	58-138	6.39	25	
Surrogate: 1,4-Bromofluorobenzene	304		rı	620		49.0	14-116			
Batch AG31724 - EPA 3510B Water										
Blank (AG31724-BLK1)				Prepared	& Analyz	ed: 07/17/	03			
TPH as Diesel	ND	50	ug/l							
TPH as Motor Oil	ND	100	н							
Surrogate: 1,4-Bromofluorobenzene	439		π	620		70.8	14-116			
LCS (AG31724-BS1)				Prepared	& Analyz	ed: 07/17	/03			
TPH as Diesel	1890	50	ug/l	2090		90.4	57-136			
TPH as Motor Oil	2080	100	n	2090		99.5	58-138			
Surrogate: 1,4-Bromofluorobenzene	477		tt	620		76.9	14-116			
LCS Dup (AG31724-BSD1)				Prepared	l & Analyz	zed: 07/17	/03			
TPH as Diesel	1930	50	ug/l	2090		92.3	57-136	2.09	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

shari Speake

Sheri L. Speaks Project Manager

;

1

Order Number A307306 RECEIVED

OCT 2 2 2003

الماردة وت المالك

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

RECEIVED

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 16 of 17

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 10/15/03 07:58 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Receipt Date/TimeClient CodeClient PO/Reference07/10/200317:45MFGINC

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG31724 - EPA 3510B Water										
LCS Dup (AG31724-BSD1)				Prepared	& Analyze	ed: 07/17/	03			
TPH as Motor Oil	2270	100	**	2090		109	58-138	8.74	25	
Surrogate: 1,4-Bromofluorobenzene	444		Ħ	620		71.6	14-116			
Batch AG31808 - EPA 3510B Water										
Blank (AG31808-BLK1)				Prepared	& Analyz	ed: 07/18/	03			
TPH as Diesel	ND	50	ug/l							
TPH as Motor Oil	ND	100	**							
Surrogate: 1,4-Bromofluorobenzene	342		"	620		55.2	14-116			
LCS (AG31808-BS1)				Prepared	& Analyz	ed: 07/18/	03			
TPH as Diesel	1650	50	ug/l	2090		78.9	57-136			
TPH as Motor Oil	2050	100	n	2090		98.1	58-138			
Surrogate: 1,4-Bromofluorobenzene	39 8		"	620		64.2	14-116		2	
LCS Dup (AG31808-BSD1)				Prepared	l & Analyz	ed: 07/18/	/03			
TPH as Diesel	1610	50	ug/l	2090		77.0	57-136	2.45	25	
TPH as Motor Oil	1940	100	11	2090		92.8	58-138	5.51	25	
Surrogate: 1,4-Bromofluorobenzene	389		H	620		62.7	14-116			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

neri Speake

Sheri L. Speaks Project Manager

OCT 2 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 17 of 17

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 10/15/03 07:58 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference Client Code Receipt Date/Time Order Number A307306 07/10/2003 17:45 MFGINC

Notes and Definitions

- Results in the diesel organics range are primarily due to overlap from a heavy oil range product. D-09
- Elevated Reporting Limits due to limited sample volume. R-02
- Analyte DETECTED DET
- Analyte NOT DETECTED at or above the reporting limit ND
- NR Not Reported
- Sample results reported on a dry weight basis dry
- **Relative Percent Difference** RPD
- Practical Quantitation Limit PQL

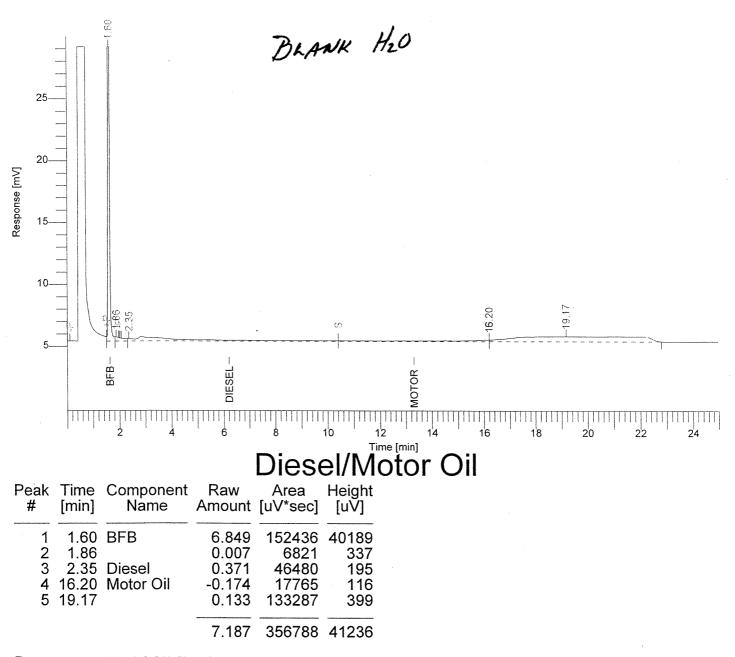
	□ Boulder Office 4900 Pearl East Circle Suite 300W Boulder, Co 80301-6118 Tel: (303) 447-1825 Fax: (303) 447-1825	CHAIN-OF-CUSTODY Irvine Office Cosbu 17770 Cartwright Road Pro, E Naile 500 Rvine 50	ODY RECOF Cosbun Office P.O. Box 30 Wallace, 10 8873-3030 Tel: (208) 556-6811 Fax: (208) 556-7271		RECORD AND REQUEST FOR m Office ox 30 -0030 -0030 -0030 San Francisco Office -010	EQUE co Office atrice 200 4105-1617 0 - Fax (415	ST F	OR ANALYSIS Seattle Office 19203 36th Avenue W. Suite 101 Lymmwood, WA 98036-5707 Tel: (425) 921-4000 Fax: (425) 921-4040	YSIS fice h Avenue W. 921-4000 921-4040	2202	COC No.	43132
PROJECT NO:	N2020.4	PROJECT N	NAME:	Ś	イン	Reific	J				PAGE: 1	لم Reference
SAMPLER (Signature): C	tture): Court		PROJECT MANAGER CARRIER/WAYBILL NO:	r mana BILL N		NA	ں ب	DES	DESTINATION:		DATE: 7 Alpha	1-103
		SAMPLES							A	IALYSIS	ANALYSIS REQUEST	
		Sample	Preservation	ion	Ŝ	Containers		Constituents/Method		Handling		Remarks
Sa T	Field Sample		RO [⊄] 10 ³ HCI		LTRATION* JUUNC (Solir	kbE∗	out lose P Hd	boulder		HSU	DRADNAT.	
-	Identification	DATE TIME 2	^z H IH		<u>- N</u>	ى 1		m		4	A307	306 - 1
		2:01	×	×	1 4	ى ا		×			×	
- 10		1		X	ר א	उ	X					3
2,		· ·	×	×	1 4	ৎ		×				R
ġ		7/0/07 7:45 AQ		×	ו <u>ר</u> א	ى	Х				X JU	E E
		9:45	×	X	F IL			×			_ 3 NF X	汇
· · ·				X	۲ ۲	ى	X					-, ΙΛ
D7-1-6W			×	X	ן- ד	उ		×			103 nc. X	E
M9 - 2 - LO		11:15 40		X	ת ור	ى	×				×	ר כי
		V 11:15 A3	×	X	F 11	ى		×				
5		1000	TOTAL NUN	TOTAL NUMBER OF CONTAINERS		(ef)	LAB	ABORATORY COMM	COMMENTS/CONDITION OF SAMPLES	ITION OF S		Cooler Temp:
	RELINQUISHED BY:									RECIEVED BY:	D BY:	
SIGNATURE	PRINTED NAME	COMPANY		DATE	TIME	L	S S	SIGNATURE	·	PRINTED NAME	NAME	COMPANY
L.K	Cherrenter Soil	MFG-SF	7/10	110/03	2:1	Ń	N. W.	artius	·Þ	MAt	Atthews	
Wait a	J. MATTAUS	X/3 40	101/2	50/03	i.s.	ts 1	P S	Decks	<u>0</u>	.S	Decks A	LONA
h ut there are a -	· · · · · · · · · · · · · · · · · · ·				hill	<i>\</i> \	-					1101000

. .

FROUECT NO. OS 02.2.4.1.4 FROUECT NAME: Size A c. d. i Decision SAMPLER (Signature): METHOD OF SHIPMENT: Contrainer Decision Decision METHOD OF SHIPMENT: Contrainer Contrainer E. d. c. d.i Decision METHOD OF SHIPMENT: Contrainer Contrainer Contrainer Decision Alpha Sample Fredu Sample Preservation Containers C	□ Arcata Office 1165 G Street, Suite E 1165 G Street, Saite Arcata, CA Fac, (707) 826-9437 Fax: (707) 826-9437	Boulder Office 4900 Pearl East Circle 801der, CO 80301-6118 Boulder, (303) 447-1823 Fax: (303) 447-1836	CHAIN-OF-CUS Irvine Office 17770 Cartwright Road 17770 Cartwright Road 17770 Cartwright Road 17770 253-2954 Fax: (949) 253-2954	DF-CU right Road 53-2951 53-2954	D _	E 2 0 2 0 0	DY RECOF Obburn Office P.0 Box 30 Wallace. ID 83873-0030 Tex. (208) 556-6811 Tex. (208) 556-6811	CORD AI CORD AI 20040 18040 18040 18040 18040 18040 18040 18040 18040 18040	MICG, INC. RECORD AND REQUEST FOR Office X San Francisco Office N San Francisco Office 1000000000000000000000000000000000000	EQU isco Offi suite 200 94105-161 110 - Fax (EST ice 17 415) 495-	FOR A	ANALYSIS Seattle Office 159203 38th Avenue W. Suite 101 Lymnwood, WA 98036-5707 Tel: (425) 921-4040 Fax: (425) 921-4040	SIS enue W. 4000 -4040		COC No	43	134	
SAMPLES SAMPLES SAMPLE SAMPLE <th colspa<="" td=""><td>PROJECT NO: SAMPLER (Sign METHOD OF SI</td><td>229.</td><td></td><td>ROJEC</td><td>' NAN CARI</td><td>he: Proj Rer/</td><td>IECT N WAYB</td><td>MANA MANA</td><td></td><td>NAR</td><td></td><td></td><td>DESTIN</td><td>ATION</td><td>A</td><td>PAGE: DATE: Poha</td><td>2</td><td></td></th>	<td>PROJECT NO: SAMPLER (Sign METHOD OF SI</td> <td>229.</td> <td></td> <td>ROJEC</td> <td>' NAN CARI</td> <td>he: Proj Rer/</td> <td>IECT N WAYB</td> <td>MANA MANA</td> <td></td> <td>NAR</td> <td></td> <td></td> <td>DESTIN</td> <td>ATION</td> <td>A</td> <td>PAGE: DATE: Poha</td> <td>2</td> <td></td>	PROJECT NO: SAMPLER (Sign METHOD OF SI	229.		ROJEC	' NAN CARI	he: Proj Rer/	IECT N WAYB	MANA MANA		NAR			DESTIN	ATION	A	PAGE: DATE: Poha	2	
Field Sample Freevration Containers Containers Containers Containers Containers Handling			SAMP	LES										AN/	ALYSIS F	EQUES	L		
Field assertion Field Fie			Sa	mple		Prese	ervatior		Ŭ	ontaine	S	Constituen	ts/Methoc		andling		Remark	S	
Resumment Result 71910 First All All <td></td> <td>Field Sample</td> <td>DATE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>VOLUME</td> <td></td> <td><u> </u></td> <td>0.4</td> <td></td> <td>ногр</td> <td></td> <td></td> <td></td> <td></td>		Field Sample	DATE						VOLUME		<u> </u>	0.4		ногр					
· B. G.W. V I 7:15 40 X K IL G X K IL K K K K - 9 - G.W. 11(a)51 9:55 AQ X X K IL G X K	19-8-6		9 03		8		-		1	5					\times	0	M	۲	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· 2		· >	+		×				S	-	×			\times				
L. q GW I. a. c. lo. c. d. lo. c. lo. d. lo. c. lo. c. lo. c. d. lo. c. d. lo. c. lo. c. d. l	- 6 - 6				r c	ļ	$\langle \times \rangle$			ک ز	-				×			10	
- 10- GW 9:15 A0 ×	- 6 -			t	9	X	X		F LL	ى	_	X			\times		H		
- ID - GW 1 = 10 - GW	- 10,-				8		\mathbf{X}			٥	-	~			×		<u> </u>	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 01 -				â	X	X			ى		×			×	MF			
- II- & W F:u A X X K IL C I X Z Z M 1- 12 - & W 10:10 A X X K H L C I X Z Z M I 1- 12 - & W 10:10 A X X K H L C I X X Z Z M I Z Z M I Z Z M X Z Z M Z	- 11 -				Ø	`	X			ى	_				×	G, I	= 0	키	
7-12-GW 10:10					ها	X	\prec					×			×	nc.	·Τ		
D7- D2- CM D0: D0: <thd0:< th=""> <thd0:< th=""> D0: <thd0:< th=""></thd0:<></thd0:<></thd0:<>	7. 12-				ଷ		×				_	×			\times			-	
Interinduction of the second	17- 12-	M	->	1000	છ	X			F L			ABORATORY			ON OF SAM	PLES			
RELINOUISHED BY: RELINOUISHED BY: PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME Christleplus Vinter Name Signature PRINTED NAME PRINTED NAME Christleplus Ninter Math Ninter Signature PRINTED NAME Vinter Ninter Ninter Ninter Printed PRINTED NAME Vinter Ninter Ninter Ninter Printed Printed Vinter Ninter Ninter Printed Printed Printed						2				~									
PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME Christeebus Spill MFG-SF 7/10/03 1:25 1. Markture PRINTED NAME V. WORTH.U.S MFG-SF 7/10/03 1:25 1. Markture S. Speculo Min V. MORTH.U.S 11:45 5. Speculo 5. Speculo Min Math. A0-ageous MA-moraqueous S0-soli S1 (01-other Cataleter. P-plastic 6-gass 7. tation 8. tation. F. attend. Minered		RELINQUISHED B	Y:											R	CIEVED	3 Υ :			
M.R 3F 7/10/03 1:25 1. Mautuus M.R 3F 7/10/03 1:25 5. Mautuus M.R 3F 7/10/03 1:25 5. Speculo M. maqueous 80. solid SL - studge P- petroleum A - air OT-other 0.17 : 45 S. M. mmaqueous 80. solid SL - studge P- petroleum A - air OT-other 0.17 : 45 S. M. mmaqueous 80. solid SL - studge P- petroleum A - air OT-other 0.17 : 45	SIGNATURE	PRINTED NAME		COMPA	ΝΥ		DATI	ш	TIM	ш		SIGNATUF	Щ	РР	INTED N/	ME	CON	PANY	
Mp4 7/10/03 18-49 B-60 B-60 B-60 B-60 B-60 B-60 B-60 B-60		Christhoohu S.	1:	M FG - S	L		7/10/	50). <i>n</i>	Mant	ius						
s MA- nonaqueous SO-soil SL-studge P-petroleum A-air OT-other Containers. P-plastic G-glass T-tetlion B-brass OT-other Filtration. Distributions: PINK.Field Covy YELLOW: Laboratory Coop, WHTE: Return to Onginator		V. Mathew	مر	<				63	λ.·	45	Ŕ	€De		Ś	Sec	A	ACIA	A	
Matrix: A0- aqueous NA- nonaqueous S0-soil SL-sludge P-petroleum A-air OT-other Containers: P-plasfic 6-glass T-terlion B-brass OT-other Filtration: Distribution: Distribution: PINK: Field Copy YELLOM: Laboratory Copy WHTTE: Return to Onginator					-		-			5		*			-		LABU	AIOHY	
General Company of the second s		Matrix:	queous NA - nonaqueo	us SO-soil SL	- sludge P	 petroleum N: PINK: 	A - air OT - Field Copy	1.34	ntainers: P - p oratory Copy	lastic G - gli WHITF: Retri	ass T - tefli			ion: F - filten	d U - unfiltered				

•

ROJECT NO: 032011.4 PROJECT NAME: Signature). PAGE: AMPLER (Signature). Ed. A.L.: DATE: DATE: DATE: REHOD OF SHIPMENT: Courtie: Containers Ed. A.L.: DATE: REHOD OF SHIPMENT: Court in Containers Containers DATE: Sample Field Sample Preservation Containers Containers Sample Freid DATE AMAYES AMAYES AMAYES Sample Freid Containers Containers Containers Containers Sample Freid DATE The Signature AMAYES AMAYES T- 13 - 6W Nizo Nizo AM X X X T- 13 - 6W Nizo Nizo AM X X X T- 13 - 6W Nizo Nizo AM X X X T- 13 - 6W Nizo Nizo AM X X X T- 13 - 6W Nizo Nizo AM X X X T- 13 - 6W Nizo Nizo AM X X Y T- 10 - 6W Nizo Nizo Nizo AM X Y <th> Arcata Office Arcata Office 166 S Street, Suite E Arcata, CA 95521-5817 Tel: (707) 826-8437 Fax: (707) 826-8437 </th> <th>Boulder Office 4900 Pearl East Circle Suite 300W Boulder, CO 80301-6118 Tei: (303) 447-1825 Fax: (303) 447-1836</th> <th>CHAIN-OF-CUS1 Irvine Office 17770 Catwright Road Suite 500 Irvine, CA 92614-5850 Tei: (949) 253-2954 Fax: (949) 253-2954</th> <th>TODY RECOF Cosburn Office P.O. Box 30 Wallers, ID 28373-0030 28373-0030 Tel: (208) 556-8811 Fax: (208) 556-7271</th> <th>~~</th> <th>RECORD AND REQUEST F Office 2.30 0.00 0</th> <th>DUES Office ²⁰⁰ 5-1617 Fax (415) 45</th> <th>FOF</th> <th>ANALYSIS Seattle Office 19203 36th Avenue W. Sumwood, WA 98036-5707 Tel: (425) 921-4000 Fax: (425) 921-4040</th> <th>۲</th> <th>COC No. 43</th> <th>135</th>	 Arcata Office Arcata Office 166 S Street, Suite E Arcata, CA 95521-5817 Tel: (707) 826-8437 Fax: (707) 826-8437 	Boulder Office 4900 Pearl East Circle Suite 300W Boulder, CO 80301-6118 Tei: (303) 447-1825 Fax: (303) 447-1836	CHAIN-OF-CUS1 Irvine Office 17770 Catwright Road Suite 500 Irvine, CA 92614-5850 Tei: (949) 253-2954 Fax: (949) 253-2954	TODY RECOF Cosburn Office P.O. Box 30 Wallers, ID 28373-0030 28373-0030 Tel: (208) 556-8811 Fax: (208) 556-7271	~~	RECORD AND REQUEST F Office 2.30 0.00 0	DUES Office ²⁰⁰ 5-1617 Fax (415) 45	FOF	ANALYSIS Seattle Office 19203 36th Avenue W. Sumwood, WA 98036-5707 Tel: (425) 921-4000 Fax: (425) 921-4040	۲	COC No. 43	135
NT. Courte CAPRIERWAYBIL NO: MALYSIS REQUEST Sample Preservation Containers Constituents Method Handling Sample Preservation Containers Constituents Method Handling Sample Preservation Constituents Method Handling ANLYSIS REQUEST No Place ANLY ANLY ANLYSIS REQUEST ANLYSIS REQUEST No Place ANLY ANLY ANLY ANLY ANLY No Place ANLY ANLY ANLY ANLY ANLY No Place ANLY ANLY ANLY ANLY ANLY No No No No ANLY ANLY ANLY No No	PROJECT NO:	030229.	I. 1	VAME: PROJEC	Sier T MANA	A Preif		لمما				л Ш М
SAMPLES AMALYSIS REQUEST SAMPLES AMALYSIS REQUEST SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLE SAMPLE AMALYSIS REQUEST Constituents/Method MALYSIS REQUEST Constituents/Method MALYSIS REQUEST Constituents/Method MALK To Colspan="2">Constituents/Method MALK To Colspan="2" <th< td=""><td>METHOD OF SHI</td><td>NT: Couri</td><td></td><td>ARRIER/WA)</td><td>YBILL N</td><td></td><td><</td><td>DÊ</td><td>STINATIC</td><td>41</td><td>2</td><td></td></th<>	METHOD OF SHI	NT: Couri		ARRIER/WA)	YBILL N		<	DÊ	STINATIC	41	2	
Freedman Freedman Preservation Preservation Constituents Constituents Handling Field Image Time Field Constituents Constituents Handling Handling T1-13-6W Image Time Field Field Field Field Field Handling T1-13-6W Image T1 Hous K			SAMPLES						A		QUEST	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Sample	Preservat	tion	Cont	ainers	Constituents/N	lethod	Handling	Remarks	S
Field sample demitication Fred Date 1 Time Field Sample Fred Field Field Fred Field Fred F								1.0.M		ישם		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F Sa. Identi	ield mple fifcation	TIME	[€] ONH	согр			•		HSUA		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)		10:25		\succ		6 1	×		X		- 97
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7- 13-		10:25	×	X		ر ا	×		× -		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7 - 14 -				Ϋ́			X		×,	R	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7. 14 -			\mathbf{X}	Ϋ́	F IL	6 ا	\times		×,		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7-15.6		<u> </u>		X		6 1	X		×		$\sim d$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. 15			×	X	1	5 1	X		×		:11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7-16-				Х		2	×		×	003	
7. 17. 6 1 1 6 1 1 7. 17. 6W 12:00 AQ X X H IL G I X 7. 17. 6W 12:00 AQ X X H IL G I X 7. 17. 6W 12:00 AQ X X IL K 7. 17. 6W 12:00 AQ X K IL K K 7. A A A I I I A II K 8. A A I I I I I K I 8. A I I I I I K I I 8. A I I I I I I I 8. A I I I I I I I				X	X	1	۔ ی	X		×,		n
7-17-6W 12:00 AQ X X F V G X X TOTAL NUMBER OF CONTINERS RELINOUSHED BY: RELINOUSHED BY: SIGNATURE PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME C CLslubur S.II MFG-3F 7/10/05 1; 25 M/dubur S C U. Madhow C DATE 1; 25 M/dubur S PRINTED NAME					X	1	<u>ر</u> ک	×		×		20
TOTAL NUMBER OF CONTAINERS RELINGUISHED BY: RELINGUISHED BY: RELINGUISHED BY: RECIEVED BY: PRINTED NAME COMPANY DATE TIME SIGNATURE PRINTED NAME CLshyluc S.'ll MFX-3F 71/o1/or 1; 75 Mature PRINTED NAME V. Mathlew c Mathlew c 71/o1/or 1; 75 Mathlew c PRINTED NAME	1 1			X	X	F 1	2-	×				
RELINQUISHED BY: RELINQUISHED BY: COMPANY DATE TIME SIGNATURE PRINTED NAME COMPANY DATE TIME SIGNATURE CLshybuc S: II MEC-SF 7/10/03 1:25 M/2000000 J. Mathcur C 14/04 7/10/03 15:45 5.000000				TOTAL NUI	MBER OF CO	ONTAINERS	(f	LABORATORY COM	MENTS/CON		s Cooler Temp:	:d
PRINTED NAME COMPANY DATE TIME SIGNATURE SIGNATURE CL., shyluc Sill MEC-SF 7/10/03 1:25 M/allings		RELINQUISHED BY:)			RECIEVED BY		
shyhe Sill MER.SF 7/10/03 15:45 D. Speaks S. Spe Mathem r 12/10/03 15:45 D. Speaks S. Speaks	SIGNATURE	PRINTED NAME	COMPANY		ATE	TIME		SIGNATURE		PRINTED NAN		COMPANY
Mathem 5 121 pg 7/10/03 15:45 8. Spea to S. Spe	X	hh		1/4		3	5	. M/allo	4			
		Mathen	1. The	1/2		17		Speak.	نې م	Speal	2 DIPhe	-
			• • •	. /	1	sh.LI	\ \			-	- LABOH	AIOHY

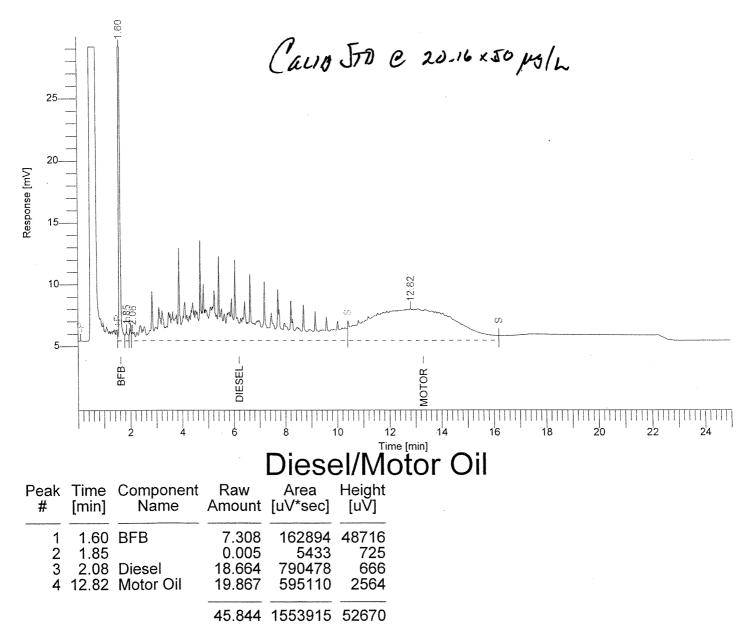

4 %

Software Version	:	6.1.2.0.1:D19
Sample Name		AG31808-BLK1
Instrument Name	:	DsMo
Rack/Vial	•	0/0
Sample Amount	:	1.000000
Cycle	:	3

Ð

Date Data Acquisition Time Channel	:	7/18/03 7:14:11 PM 7/18/03 6:48:53 PM A
Operator Dilution Factor	:	marvin 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT387.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071803_2.seq

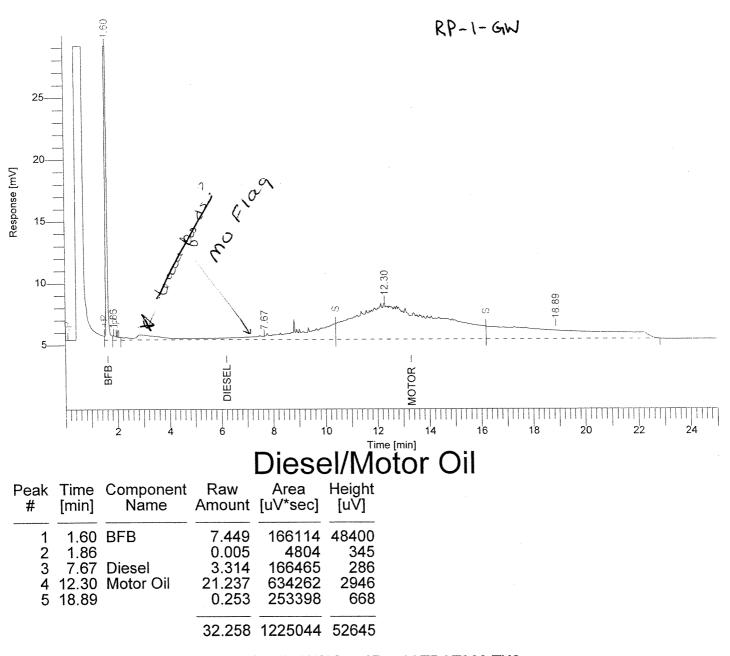

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT387.TX0

AUG 1 1 2003 MFG, Inc.

Software Version	:	6.1.2.0.1:D19
Sample Name	:	DM 20.16
	:	DsMo
Rack/Vial	•	0/0
Sample Amount	:	1.000000
Cycle	:	2

Date	: 7/18/03 6:33:41 PM
Data Acquisition Time	: 7/18/03 6:08:22 PM
Channel	: A
Operator	: marvin
Dilution Factor	: 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT386.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071803_2.seq

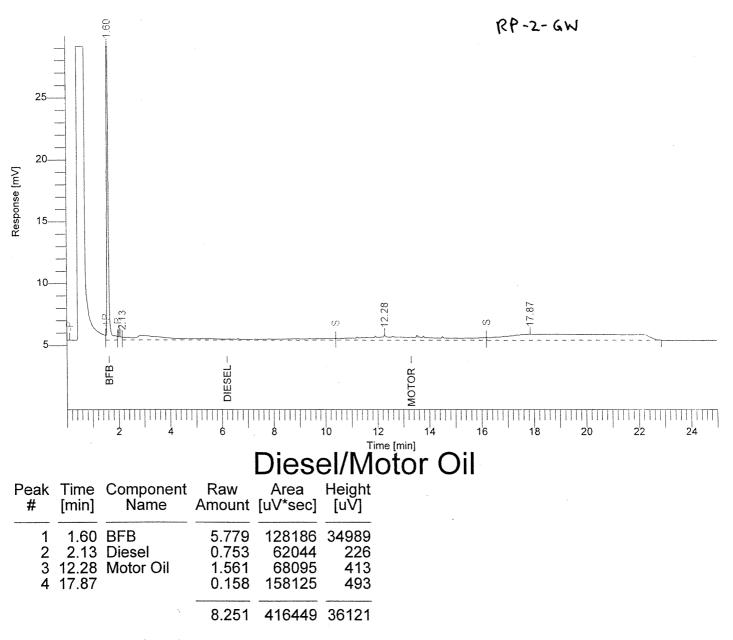


Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT386.TX0

RECEIVED AUG 1 1 2003 MFG, Inc.

غر

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT360.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_2.seq

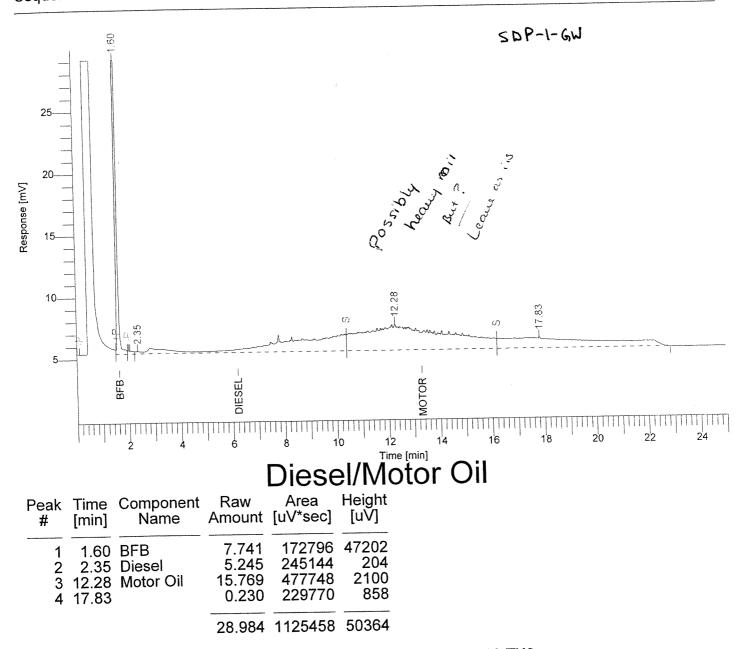

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT360.TX0

RECEIVED AUG 1 1 2003

MFG, Inc.

Software Version Sample Name Instrument Name Rack/Vial	: A307306-02 : DsMo : 0/0	Data Acquisition Time Channel Operator	A marvin
Sample Amount	: 1.000000	Dilution Factor	1.000000
Cycle	: 7		

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT361.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_2.seq

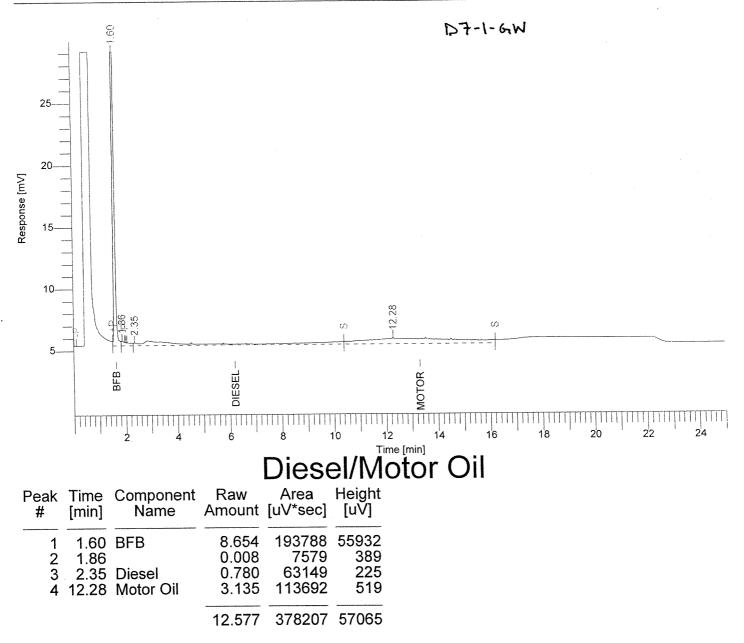


Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT361.TX0

RECEIVED AUG 1 1 2003 MFG, Inc.

Software Version:6.1.2.0.1:D19Sample Name:A307306-03Instrument Name:DsMoRack/Vial:0/0Sample Amount:1.000000Cycle:8	Data Acquisition Time Channel Operator	: 7/17/03 1:31:38 PM : 7/17/03 1:06:28 PM : A : marvin : 1.000000
--	--	---

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT362.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_2.seq


Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT362.TX0

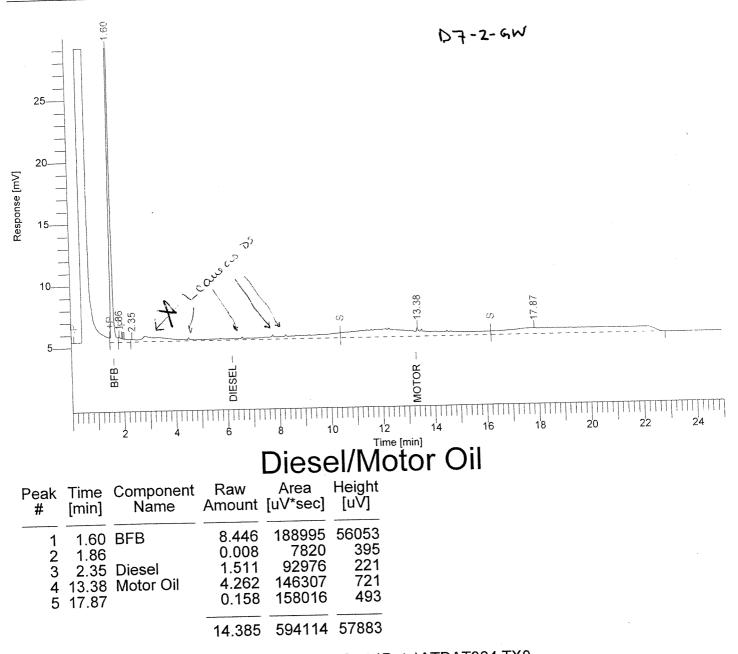
RECEIVED

AUG 1 1 2003

MFG, Inc.

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT363.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_2.seq

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT363.TX0


RECEIVED

AUG 1 1 2003

MFG, Inc.

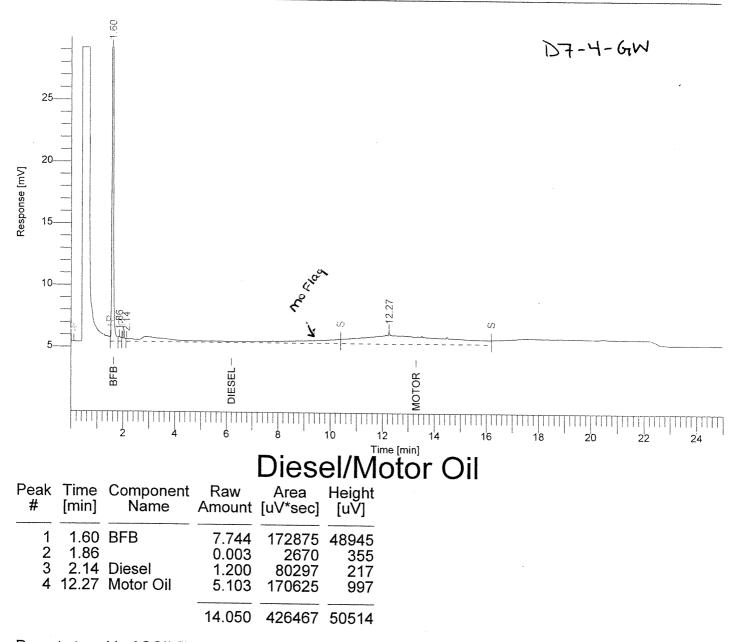
Instrument Name : DsMo	Data Acquisition Time : Channel	7/17/03 2:52:52 PM 7/17/03 2:27:31 PM A marvin 1.000000
------------------------	------------------------------------	---

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT364.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_2.seq

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT364.TX0

AUG 1 1 2003 MFG, Inc.

Software Version : 6.1.2.0.1:I Sample Name : A307306- Instrument Name : DsMo Rack/Vial : 0/0 Sample Amount : 1.000000 Cycle : 11		Date Data Acquisition Time Channel Operator Dilution Factor	: 7/17/03 3:33:34 PM : 7/17/03 3:08:05 PM : A : marvin : 1.000000
Result File : C:\PenExe\TcWS Sequence File : C:\PenExe\Tc	NStats\Data\ATDA WS\Stats\Sequen	Ces\Seq_DsMo_071703_	_2.seq
99		D7-3	
		ν 1 28	18.77
	DIESEL	MOTOR -	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 20 22 24
-	Diese	el/Motor Oil	
Peak Time Component # [min] Name	Raw Area Amount [uV*sec]	Height [uV]	
1 1.60 BFB 2 1.86 3 2.35 Diesel 4 12.28 Motor Oil 5 18.77	8.5811921130.00326710.680590691.471654800.144144419	55655 393 216 300 435	
	10.879 463751	56999 S\Stats\Data\ATDAT365.	

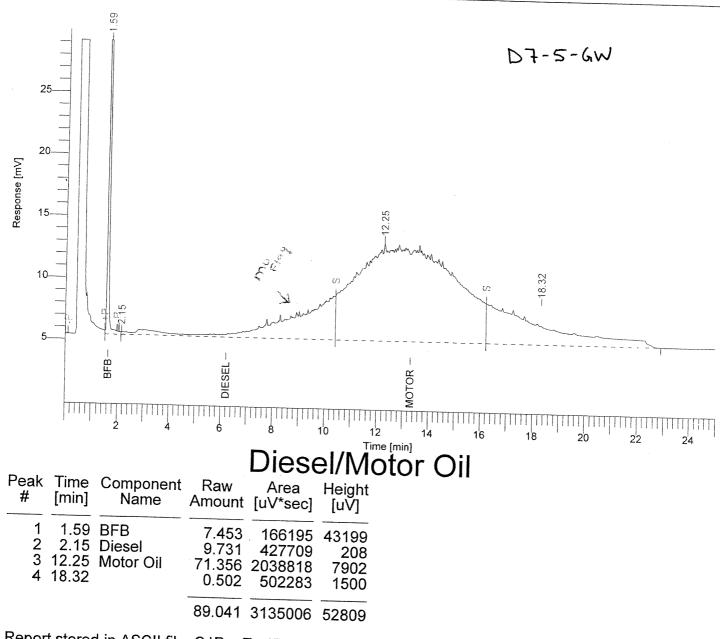

• • •

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT365.TX0

RECEIVED AUG 1 1 2003 MFG, Inc.

Software Version : 6.1.2.0.1:D19 Date 7/18/03 2:01:49 AM Sample Name A307306-07 Data Acquisition Time 7/18/03 1:36:39 AM Instrument Name : DsMo Channel Α Rack/Vial 0/0 Operator marvin Sample Amount 1.000000 Dilution Factor 1.000000 Cycle 7

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT374.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_3.seq



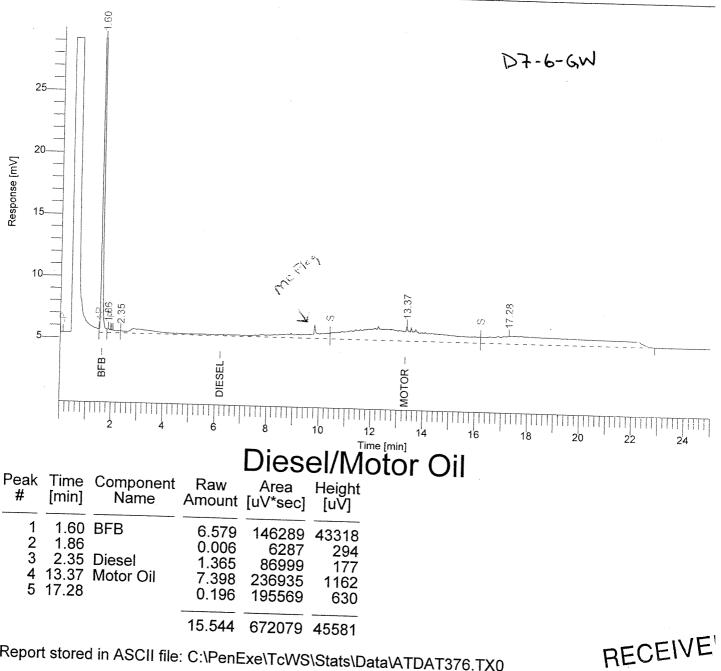
Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT374.TX0

AUG 1 1 2003 MFG, Inc.

0.0			0
Software Version Sample Name Instrument Name Rack/Vial Sample Amount Cycle	: A307306-08 : DsMo : 0/0	Data Acquisition Time Channel Operator	: 7/18/03 2:42:19 AM : 7/18/03 2:17:11 AM : A : marvin : 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT375.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_3.seq

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT375.TX0

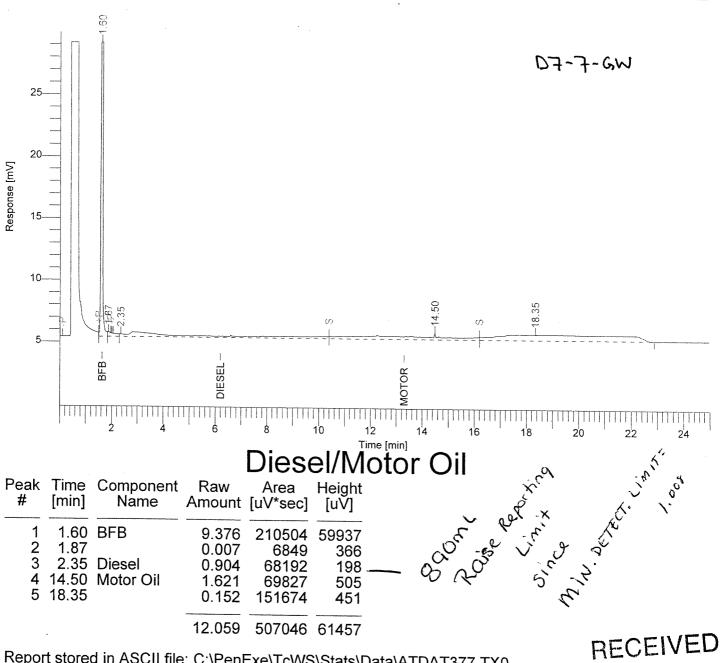

RECEIVED

AUG 1 1 2003

MFG, Inc.

Instrument Name	: A307306-09 : DsMo	Date Data Acquisition Time Channel	: 7/18/03 3:22:43 AM : 7/18/03 2:57:34 AM - A
Sample Name Instrument Name Rack/Vial Sample Amount	: A307306-09	Data Acquisition Time	: 7/18/03 3:22:43 AM : 7/18/03 2:57:34 AM : A : marvin : 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT376.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_3.seq

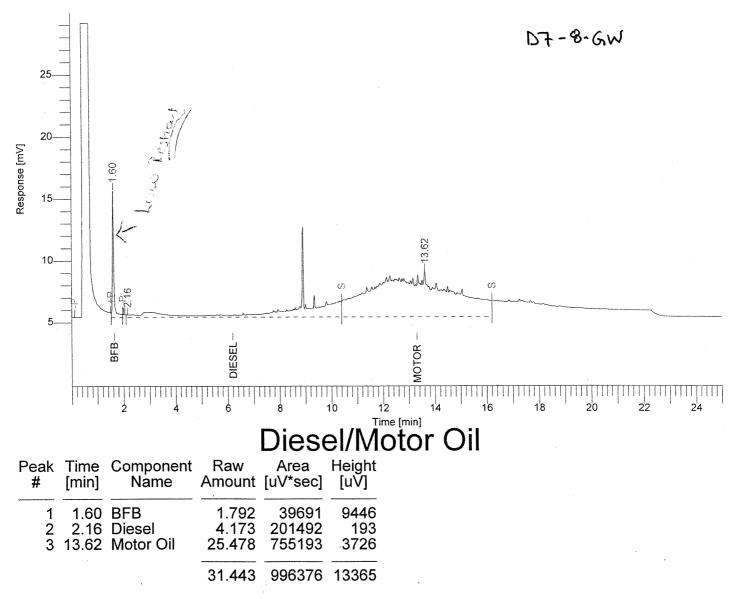


Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT376.TX0

AUG 1 1 2003 MFG, Inc.

Software Version : 6.1.2.0.1:D19	Date : 7/18/03 4:03:07 AM
Sample Name A007000 40	
Sample Name : A307306-10	Data Acquisition Time : 7/18/03 3:37:58 AM
Instrument Name : DsMo	
	Channel
Rack/Vial : 0/0	Onerster
	Operator : marvin
Sample Amount : 1.000000	Dilution Factor : 1.000000
Cycle : 10	

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT377.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_3.seq

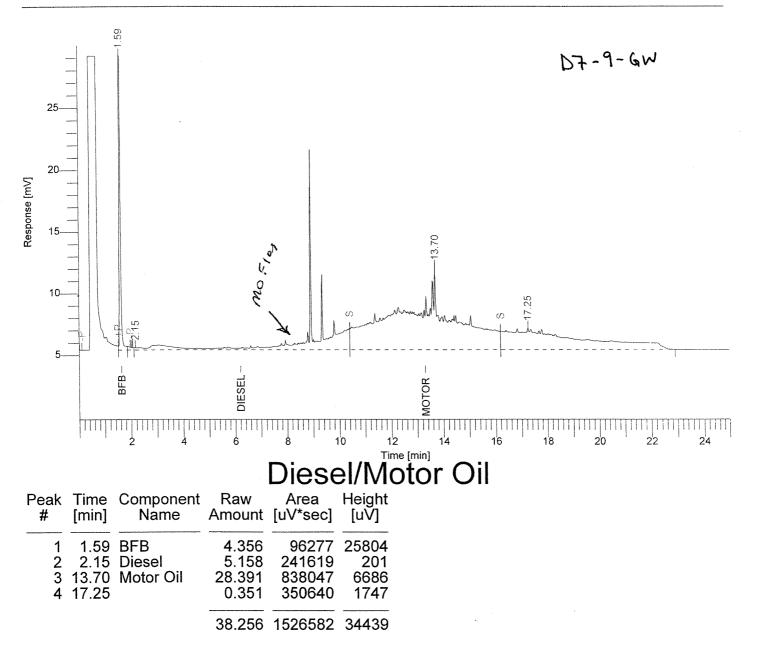

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT377.TX0

AUG 1 1 2003

MFG, Inc.

Sample Amount	: A307306-11 : DsMo : 0/0	Data Acquisition Time Channel Operator	: 7/18/03 4:43:31 AM : 7/18/03 4:18:21 AM : A : marvin : 1.000000
Cycle	: 11	•	

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT378.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_3.seq

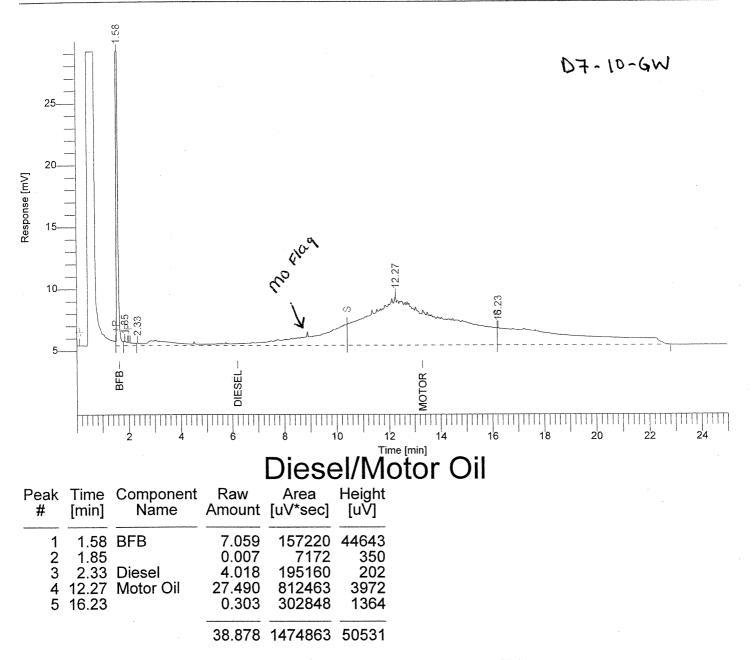


Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT378.TX0

RECEIVED AUG 1 1 2003 MFG, Inc.

Sample Amount	: A307306-12 : DsMo : 0/0 : 1.000000	Data Acquisition Time Channel Operator	: 7/18/03 5:23:56 AM : 7/18/03 4:58:48 AM : A : marvin : 1.000000
Cycle	: 12		

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT379.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071703_3.seq

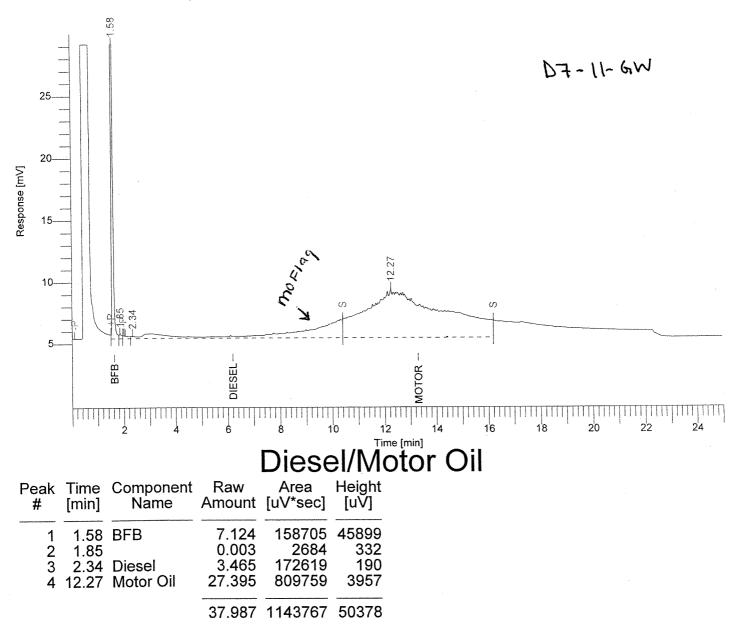


Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT379.TX0

RECEIVED AUG 1 1 2003 MFG, Inc.

Software Version Sample Name Instrument Name Rack/Vial Sample Amount	: A307306-13 : DsMo : 0/0 : 1.000000	Data Acquisition Time Channel Operator	: 7/18/03 9:15:41 PM : 7/18/03 8:50:13 PM : A : marvin : 1.000000
Cycle	: 6		

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT390.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071803_2.seq

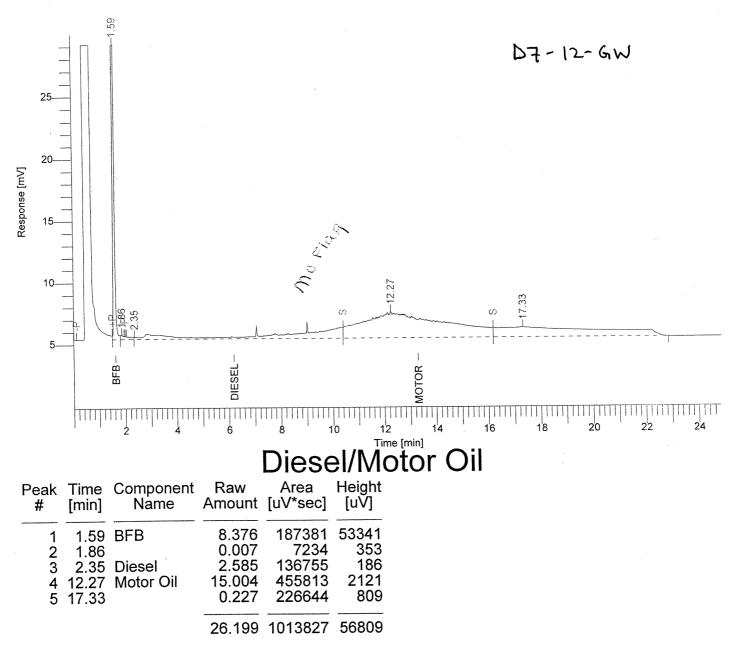

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT390.TX0

AUG 1 1 2003 MFG, Inc.

Page	1	of	1
------	---	----	---

Software Version	: 6.1.2.0.1:D19	Date	: 7/18/03 9:55:58 PM
Sample Name	: A307306-14	Data Acquisition Time	: 7/18/03 9:30:38 PM
Instrument Name	: DsMo	Channel	: A
Rack/Vial		Operator	: marvin
Sample Amount	: 1.000000	Dilution Factor	: 1.000000
Cycle	· 7		

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT391.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071803_2.seq



Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT391.TX0

RECEIVED AUG 1 1 2003 MFG, Inc.

Software Version: 6.1.2.0.1:D19Sample Name: A307306-15Instrument Name: DsMoRack/Vial: 0/0Sample Amount: 1.000000Cycle: 8	Date : //10/03 10:02 Data Acquisition Time : 7/18/03 10:11:08 PM Channel : A Operator : marvin Dilution Factor : 1.000000
--	---

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT392.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071803_2.seq

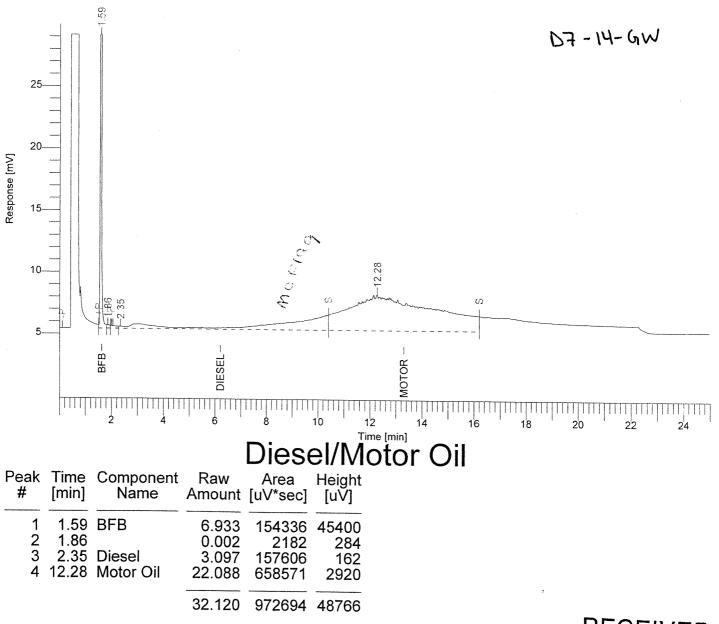
Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT392.TX0

AUG 1 1 2003 MFG, Inc.

Sample I	nt Name: DsMo Il : 0/0	06-16	Date Data Acquisition Time Channel Operator Dilution Factor	 7/18/03 11:16:53 PM 7/18/03 10:51:37 PM A marvin 1.000000
Result Fi Sequence	ile : C:\PenExe\Tc\ ce File : C:\PenExe	WS\Stats\Data\ATD \TcWS\Stats\Seque	AT393.rst ences\Seq_DsMo_071803_ 	_2.seq
25 20 20 15 10 5	BFB	DIESEL -	AOTOR - S	D7-13-6W

						Ĕ						
										ΠΠΠΠ		
		2 4	6	8 1	0 1		' 1'ë	5 ' 1	18	20	22	24
Diesel/Motor Oil												
				Diese	ei/ivio	otor	OII					
Peak	Time	Component	Raw	Area	Height							
#	[min]	Name	Amount	[uV*sec]	[uV]							
	4 50		7 052	157066	42240							
1		BFB	7.053	157066	42240							
2	1.86		0.008	7829	385							
3	2.34	Diesel	5.448	253421	218							
4	12.28	Motor Oil	30.008	883960	3879							

42.516 1302276 46722

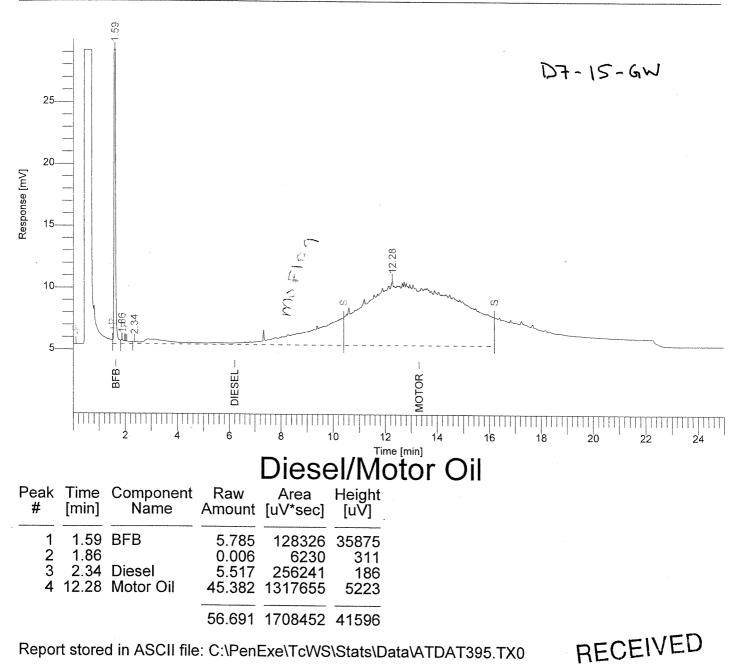

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT393.TX0

RECEIVED AUG 1 1 2003 MFG, Inc.

Page	1	of	1	
------	---	----	---	--

Software Version:6.1.2.0.1:D19Sample Name:A307306-17Instrument Name:DsMoRack/Vial:0/0Sample Amount:1.000000Cycle:10	Date7/18/03 11:57:21 PMData Acquisition Time7/18/03 11:32:03 PMChannelAOperatormarvinDilution Factor1.000000
---	--

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT394.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071803_2.seq

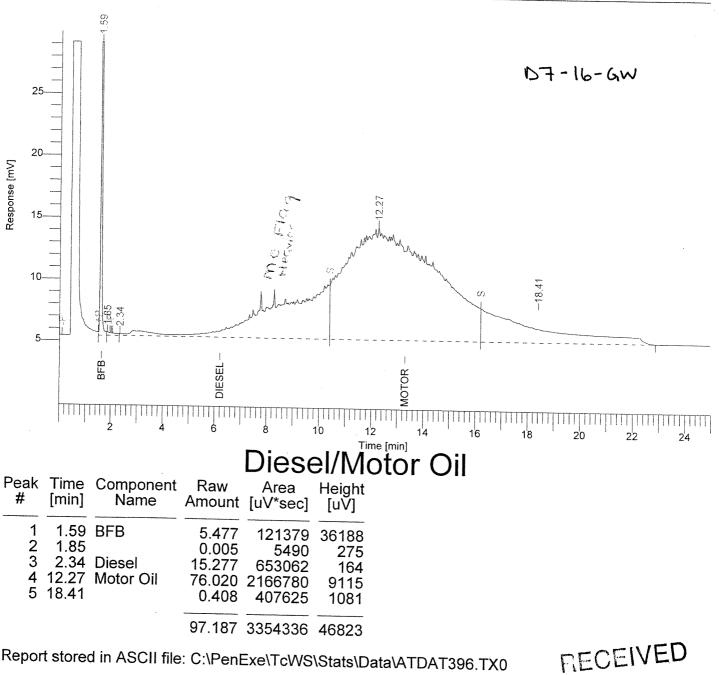


Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT394.TX0

RECEIVED AUG 1 1 2003 MFG, Inc.

Software Version	: 6.1.2.0.1:D19 : A307306-18		: 7/19/03 12:37:51 AM : 7/19/03 12:12:33 AM
Instrument Name	: DsMo : 0/0	Channel Operator	: A : marvin : 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT395.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071803_2.seq

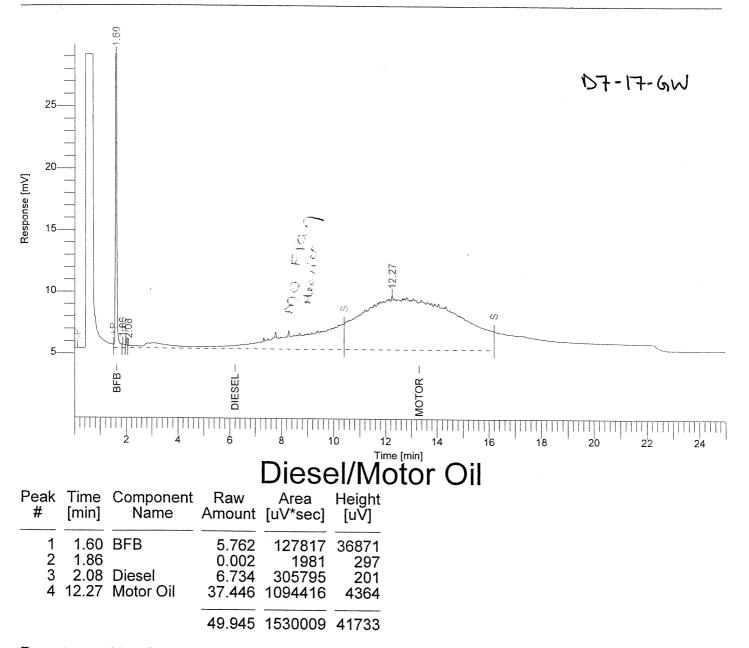

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT395.TX0

AUG 1 1 2003

MFG, Inc.

Software Version : 6.1.2.0.1:D19 Date : 7/19/03 1:18:18 AM Sample Name A307306-19 Data Acquisition Time : 7/19/03 12:53:05 AM Instrument Name : DsMo Channel А Rack/Vial 0/0 Operator marvin Sample Amount : 1.000000 **Dilution Factor** : 1.000000 Cycle 12

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT396.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071803_2.seq



Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT396.TX0

AUG 1 1 2003 MFG, Inc.

- 22	And a second			
	Sample Amount	: A307306-20 : DsMo : 0/0	Date Data Acquisition Time Channel Operator Dilution Factor	 7/19/03 1:58:48 AM 7/19/03 1:33:31 AM A marvin 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT397.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_071803_2.seq

Report stored in ASCII file: C:\PenExe\TcWS\Stats\Data\ATDAT397.TX0

AUG 1 1 2003 MFG, Inc.

alpho

SEP 1 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

10 September 2003

MFG, Inc Attn: Ed Conti 180 Howard St. Suite 200 San Francisco, CA 94105-2941 RE: SPI-Arcata/Task #4 Work Order: A307607

Enclosed are the results of analyses for samples received by the laboratory on 07/25/03 15:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karen A. Daly For Sheri L. Speaks **Project Manager**

HEUEIVED

SEP 1 2 2003

MFG, Inc.

alpha Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Report Date: 09/10/03 08:37 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Order Number A307607

MFG. Inc

Client Code MFGINC

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
RP-3-SW	A307607-01	Water	07/24/03 11:20	07/25/03 15:40
D6-1-GW	A307607-02	Water	07/22/03 10:00	07/25/03 15:40
D6-2-GW	A307607-03	Water	07/22/03 10:50	07/25/03 15:40
D6-3-GW	A307607-04	Water	07/22/03 11:25	07/25/03 15:40
D6-4-GW	A307607-05	Water	07/22/03 12:00	07/25/03 15:40
D6-5-GW	A307607-06	Water	07/22/03 15:15	07/25/03 15:40
D6-6-GW	A307607-07	Water	07/22/03 15:45	07/25/03 15:40
D6-7-GW	A307607-08	Water	07/22/03 16:25	07/25/03 15:40
D6-8-GW	A307607-09	Water	07/23/03 09:30	07/25/03 15:40
D6-9-GW	A307607-10	Water	07/23/03 10:15	07/25/03 15:40
D6-10-GW	A307607-11	Water	07/23/03 10:45	07/25/03 15:40
D6-11-GW	A307607-12	Water	07/23/03 11:05	07/25/03 15:40
D6-12-GW	A307607-13	Water	07/23/03 11:30	07/25/03 15:40
D6-13-GW	A307607-14	Water	07/23/03 14:10	07/25/03 15:40
D6-14-GW	A307607-15	Water	07/23/03 14:45	07/25/03 15:40
D6-15-GW	A307607-16	Water	07/23/03 15:25	07/25/03 15:40
D6-16-GW	A307607-17	Water	07/23/03 15:50	07/25/03 15:40
D6-17-GW	A307607-18	Water	07/23/03 16:30	07/25/03 15:40
D6-18-GW	A307607-19	Water	07/24/03 09:30	07/25/03 15:40
D6-19-GW	A307607-20	Water	07/24/03 09:45	07/25/03 15:40
[•] D6-20-GW	A307607-21	Water	07/24/03 09:50	07/25/03 15:40
D6-21-GW	A307607-22	Water	07/24/03 10:10	07/25/03 15:40
D6-22-GW	A307607-23	Water	07/24/03 10:30	07/25/03 15:40
D6-23-GW	A307607-24	Water	07/24/03 10:40	07/25/03 15:40

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren dly

Karen A. Daly For Sheri L. Speaks Project Manager

Page 1 of 21

SEP 1 2 2003

MEG Inc

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 21

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti			Project No:	09/10/03 08:37 030229.4 SPI-Arcata/Task		;c 2 0
Order Number A307607	Receipt Date/Time 07/25/2003 15:40	<u>Client Code</u> MFGINC		Client PO/Refe	rence	
D6-24-GW		A307607-25	Water	07/24/03 11:00	07/25/03 15:40	

This represents an amended copy of the original report.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

arendly

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

Alpha 🕻 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT MFG. Inc Page 3 of 21 180 Howard St. Suite 200 Report Date: 09/10/03 08:37 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Order Number Receipt Date/Time Client Code Client PO/Reference A307607 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL NOTE RP-3-SW (A307607-01) Sample Type: Water Sampled: 07/24/03 11:20 Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved EPA 6010 AG33110 07/31/03 08/04/03 ł ND mg/l 0.010 Chromium, dissolved . ND " 0.050 Nickel, dissolved . 11 ... ND " 0.10 Lead, dissolved ND " 0.050 Zinc, dissolved ND " 0.10 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG32826 07/28/03 07/29/03 1.058 60 ug/l 53 **TPH as Motor Oil** D-06 H 120 " 110 Surrogate: 1,4-Bromofluorobenzene " " 18.2 % 14-116 D6-1-GW (A307607-02) Sample Type: Water Sampled: 07/22/03 10:00 Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved EPA 6010 AG33110 07/31/03 08/01/03 1 ND mg/l 0.010 Chromium, dissolved 11 ND " 0.050 Nickel, dissolved . ** ND " 0.10 Lead, dissolved . ND " 0.050 Zinc, dissolved . ND " 0.10 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG32826 07/28/03 07/29/03 1.176 190 ug/l 59 D-09 **TPH as Motor Oil** " 1000 " 120 Surrogate: 1,4-Bromofluorobenzene 6.81 % 14-116 5-04 D6-2-GW (A307607-03) Sample Type: Water Sampled: 07/22/03 10:50 Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved EPA 6010 AG33110 07/31/03 08/01/03 1 ND mg/l 0.010 Chromium, dissolved . ND " 0.050 Nickel, dissolved •• ** ND " 0.10 Lead, dissolved ND " 0.050

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Zinc, dissolved

ares

ND "

Karen A. Daly For Sheri L. Speaks Project Manager

9/10/03

0.10

SEP 1 2 2003

MFG, Inc.

Analytical Laboratories Inc.208 Mason St. Ukiah, California 95482e-mail: clientservices@alpha-labs.com• Phone: (707) 468-0401• Fax: (707) 468-5267

	C	HEMICA	AL EXAN	MINATIO	N REPORT			Page 4 of 21
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Report Date: Project No: Project ID:			
<u>Order Number</u> A307607	Receipt Date/Time 07/25/2003 15:40			<u>ent Code</u> FGINC		Client PO/	(Reference	
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	ВАТСН	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-2-GW (A307607-03)		1	Sample Ty	pe: Water	Samp	oled: 07/22/03 10	0:50	
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo	dified						
TPH as Diesel TPH as Motor Oil	8015DRO "	AG32826 "	07/28/03	07/29/03	1.124	440 ug/l 2000 ''	56 110	
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		8.68 %	14-116	S-04
D6-3-GW (A307607-04) Metals (Dissolved) by EPA 6000/70	00 Series Methods		Sample Ty	pe: Water	Samj	oled: 07/22/03 1	1:25	
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/01/03	1	ND mg/l	0.010)
Chromium, dissolved	**	"	"	"	"	ND "	0.050)
Nickel, dissolved	"	'n	"	"	u	ND "	0.10)
Lead, dissolved	"	"	**		11	ND "	0.050)
Zinc, dissolved	"	"	"	**	"	ND "	0.10)
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AG33002	07/29/03	07/30/03	1.0753	250 ug/l	54	t D-09
TPH as Motor Oil	**		17	"	"	930 "	11)
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	H	annan an a	34.4 %	14-116	
D6-4-GW (A307607-05)			Sample Ty	pe: Water	Sam	pled: 07/22/03 1	2:00	
Metals (Dissolved) by EPA 6000/70	000 Series Methods							
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/01/03	1	ND mg/l	0.01)
Chromium, dissolved	n	**	**	"	**	ND "	0.05	C
Nickel, dissolved	"	**	*	R.	n	ND "	0.1	0
Lead, dissolved	"	"	н			ND "	0.05	
Zinc, dissolved	*1	н	11	"	"	ND "	0.1	0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.

arenaly

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	CH	IEMICA	L EXAN	(INATIO	N REPORT				Page 5 of 21
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Report Date: Project No: Project ID:	030229.4			
Order Number A307607	Receipt Date/Time 07/25/2003 15:40			ent <u>Code</u> FGINC		Client PO/	Reference		
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
D6-4-GW (A307607-05)		5	Sample Typ	oe: Water	Sam	pled: 07/22/03 12	2:00		
TPH as Diesel and Motor Oil by E	PA Method 8015 Mod	dified							
TPH as Diesel	8015DRO	AG33002	07/29/03	07/30/03	1.22	670 ug/l		61	D-09
TPH as Motor Oil		"	"	*1	"	2500 "		120	
Surrogate: 1,4-Bromofluorobenze	ne "	n	"	"		32.6 %	14-116		
D6-5-GW (A307607-06)		5	Sample Ty	pe: Water	Sam	pled: 07/22/03 1	5:15		
Metals (Dissolved) by EPA 6000/70	000 Series Methods								
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/01/03	1	ND mg/l		0.010	
Chromium, dissolved	н	**	**	"	**	ND "		0.050	
Nickel, dissolved	"	**	"	**	**	ND "		0.10	
Lead, dissolved	61	**	#	"	**	ND "		0.050	
Zinc, dissolved	**	"	"	**	**	ND "		0.10	
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AG33002	07/29/03	07/30/03	1.429	ND ug/l		71	R-01
TPH as Motor Oil	*1	Ħ	"	**	11	380 "		140	
Surrogate: 1,4-Bromofluorobenzo	ene "	n	"	"		45.8 %	14-116		
D6-6-GW (A307607-07)			Sample Ty	pe: Water	Sar	npled: 07/22/03 1	5:45		
Metals (Dissolved) by EPA 6000/7	000 Series Methods								
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/01/03	1	ND mg/l		0.010	
Chromium, dissolved	"	"	*	н		ND "		0.050	
Nickel, dissolved	11	**	**		**	ND "		0.10	
Lead, dissolved	"	"	"	"	ŧr	ND "		0.050	
Zinc, dissolved		"	"	*1	"	ND "		0.10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

Alpha 🕻 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT Page 6 of 21 MFG. Inc 180 Howard St. Suite 200 Report Date: 09/10/03 08:37 San Francisco, CA 94105-2941 Project No: 030229.4 Attn: Ed Conti Project ID: SPI-Arcata/Task #4 Order Number Receipt Date/Time Client Code Client PO/Reference A307607 07/25/2003 15:40 MFGINC Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT PQL NOTE D6-6-GW (A307607-07) Sample Type: Water Sampled: 07/22/03 15:45 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG33002 07/29/03 07/30/03 1.205 380 ug/l 60 D-09 **TPH as Motor Oil** 11 1400 " 120 Surrogate: 1,4-Bromofluorobenzene ,, 57.1% 14-116 D6-7-GW (A307607-08) Sample Type: Water Sampled: 07/22/03 16:25 Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved EPA 6010 AG33110 07/31/03 08/01/03 1 ND mg/l 0.010 Chromium, dissolved ., , н ** ND " 0.050 ** Nickel, dissolved " .. ND " 0.10 ... Lead, dissolved ... ND " 0.050 Zinc, dissolved ND " 0.10 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG33002 07/29/03 07/30/03 1.176 290 ug/l 59 D-09 **TPH as Motor Oil** 0 н 1200 " 120 Surrogate: 1,4-Bromofluorobenzene 48.2 % 14-116 D6-8-GW (A307607-09) Sample Type: Water Sampled: 07/23/03 09:30 Metals (Dissolved) by EPA 6000/7000 Series Methods Cadmium, dissolved EPA 6010 AG33110 07/31/03 08/01/03 1 ND mg/l 0.010 Chromium, dissolved ,, 11 ** ND " 0.050 Nickel, dissolved ... н ND " 0.10 Lead, dissolved . ND " 0.050 Zinc, dissolved ND " 0.10

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267

e-mail:	clientservices@alpha-labs.com	

CHEMICAL EXAMINATION REPORT

Page 7 of 21

	Suite 200 CA 94105-2941 <u>Receipt Date/Time</u>	III AMIC.	<u>Cli</u>	ent Code	Project N	te: 09/10/03 08 No: 030229.4 D: SPI-Arcata/ ⁷ <u>Client PO/</u>	Fask #4	
A307607	07/25/2003 15:40		М	IFGINC				
		Alpha A	Analytical	l Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQ	L NOTE
D6-8-GW (A307607-09)			Sample Ty	pe: Water	Sa	ampled: 07/23/03 09	:30	
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AG33002	07/29/03	07/30/03	1.105	220 ug/i	5	5 D-09
TPH as Motor Oil	••	"	"		н	830 "	11	0
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		24.7 %	14-116	
D6-9-GW (A307607-10)			Sample Ty	pe: Water	S	ampled: 07/23/03 10	:15	
Metals (Dissolved) by EPA 6000/70	00 Series Methods							
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/01/03	1	ND mg/i	0.01	0
Chromium, dissolved	11	11	*1	**	41	ND "	0.05	0
Nickel, dissolved	"	*	**	"	11	ND "	0.1	0
Lead, dissolved	"		**	n		ND "	0.05	0
Zinc, dissolved		"	11	н	"	ND "	0.1	0
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AG33002	07/29/03	07/30/03	1.064	59 ug/l	5	3 D-09
TPH as Motor Oil	"		n	**	. •	250 "	11	0
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		22.9 %	14-116	• · ·
D6-10-GW (A307607-11)			Sample Ty	pe: Water	S	ampled: 07/23/03 10):45	
Metals (Dissolved) by EPA 6000/70	000 Series Methods							
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/01/03	1	ND mg/l	0.01	0
Chromium, dissolved	11	"	*1		и	ND "	0.05	50
Nickel, dissolved		н	**			ND "	0.1	0
Lead, dissolved	н	"	н	"	"	ND "	0.05	50
Zinc, dissolved	"	11	"	**	"	ND "	0.1	0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren dly

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	C	HEMIC	AL EXAN	AINATIO	N REPORT			Page 8 of 21
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Project No:	09/10/03 08 030229.4 SPI-Arcata/		
	Receipt Date/Time 07/25/2003 15:40			<u>ent Code</u> FGINC		Client PO/	/ <u>Reference</u>	
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-10-GW (A307607-11)			Sample Ty	pe: Water	Samj	pled: 07/23/03 10	0:45	
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AG33002	07/29/03	07/30/03	1.22	ND ug/l	61	R-01
TPH as Motor Oil	11	"	"	"	n	ND "	120	
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		23.9 %	14-116	
D6-11-GW (A307607-12)			Sample Ty	pe: Water	Sam	pled: 07/23/03 1	1:05	
Metals (Dissolved) by EPA 6000/70	00 Series Methods							
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/01/03	1	ND mg/l	0.010	
Chromium, dissolved	11	**	**	ŧf	"	ND "	0.050	
Nickel, dissolved		"	*1		"	ND "	0.10	
Lead, dissolved	u	"	n	**	**	ND "	0.050	
Zinc, dissolved	11	11		"	"	ND "	0.10	I
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AG33002	07/29/03	07/30/03	1.099	ND ug/l	55	
TPH as Motor Oil	u		"	**	**	ND "	110)
Surrogate: 1,4-Bromofluorobenze	ene "	"	н	"		23.4 %	14-116	
D6-12-GW (A307607-13)			Sample Ty	pe: Water	Sam	pled: 07/23/03 1	1:30	
Metals (Dissolved) by EPA 6000/70	000 Series Methods							
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/01/03	1	ND mg/l	0.010)
Chromium, dissolved	"	"	**		**	ND "	0.050)
Nickel, dissolved	"	"	**	н	11	ND "	0.10)
Lead, dissolved	11	11	"	"	**	ND "	0.050)
Zinc, dissolved	U	**	*1	"	"	ND "	0.10)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

arenaly

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

	C	HEMIC	AL EXA	MINATIO	N REPORT			Page 9 of 21
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Report Date: Project No: Project ID:			
120505	Receipt Date/Time 07/25/2003 15:40			<u>ent Code</u> IFGINC		Client PO	/Reference	
		Alpha A	Analytical	l Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQI	. NOTE
D6-12-GW (A307607-13)			Sample Ty	pe: Water	Samp	oled: 07/23/03 1	1:30	
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified		•	•			
TPH as Diesel TPH as Motor Oil	8015DRO "	AG33002 "	07/29/03	07/30/03	1.047	74 ug/l 170 ''	52 100	
Surrogate: 1,4-Bromofluorobenzer	ne "	u.	"	"		25.2 %	14-116	
D6-13-GW (A307607-14) Metals (Dissolved) by EPA 6000/70	00 Series Methods		Sample Ty	pe: Water	Samp	oled: 07/23/03 1	4:10	
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/04/03	1	ND mg/l	0.010)
Chromium, dissolved	**	**	"	u –	11	ND "	0.050)
Nickel, dissolved			11	11	"	ND "	0.10)
Lead, dissolved	н	11	н	. "	н	ND "	0.05)
Zinc, dissolved	"	H	"	"	u	ND "	0.1)
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified						
TPH as Diesel	8015DRO	AG33002	07/29/03	07/30/03	1.163	58 ug/l	5	B D-09
TPH as Motor Oil	**	"	"	"	"	170 "	12)
Surrogate: 1,4-Bromofluorobenzei	ne "	"	"	"		14.7 %	14-116	
D6-14-GW (A307607-15)			Sample Ty	pe: Water	Sam	oled: 07/23/03 1	4:45	
Metals (Dissolved) by EPA 6000/70	00 Series Methods							
Cadmium, dissolved	EPA 6010	AG33110		08/04/03	1	ND mg/l	0.01)
Chromium, dissolved	"	"	"	"		ND "	0.05	
Nickel, dissolved	**	**	**	11		ND "	0.1	
Lead, dissolved	"	Pt .	**		11	ND "	0.05	
Zinc, dissolved	**	**	"	**	**	ND "	0.1)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly For Sheri L. Speaks Project Manager

9/10/03

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

SEP 1 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	С	HEMIC	AL EXA	MINATIO	N REPORT				Page 10 of 21
180 Howard St	. Suite 200 CA 94105-2941				Project No	: 09/10/03 08 : 030229.4 : SPI-Arcata/			
<u>Order Number</u> A307607	Receipt Date/Time 07/25/2003 15:40	•		<u>ient Code</u> 1FGINC		Client PC	VReference		
		Alpha A	Analytica	l Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		PQL	NOTE
D6-14-GW (A307607-15)			Sample Ty			pled: 07/23/03 1	A.A.5	1.45	HOTE
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo		Sample 13	per mater	541	ipieu. 07/23/03 1	4:43		
TPH as Diesel TPH as Motor Oil	8015DRO "	AG33002 "	07/29/03 "	07/30/03	1.36 "	500 ug/l 2500 ''		68 140	D-09
Surrogate: 1,4-Bromofluorobenze	ene "	11	"	"		12.5 %	14-116		S-04
D6-15-GW (A307607-16) Metals (Dissolved) by EPA 6000/7/	000 Series Methods		Sample Ty	pe: Water	Sam	pled: 07/23/03 1	5:25		
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/04/03	1	ND mg/l		0.010	
Chromium, dissolved	"	11	**	"	"	ND "		0.010	
Nickel, dissolved	"	н	11	"	n	ND "		0.10	
Lead, dissolved	Ħ	ч	н	*	**	ND "		0.050	
Zinc, dissolved	н	"	"	"	*	ND "		0.10	
TPH as Diesel and Motor Oil by E	PA Method 8015 Mo	dified			`				
TPH as Diesel	8015DRO	AG33002	07/29/03	07/30/03	13.245	1000			
TPH as Motor Oil	"	"	"	07/30/03	13.243	1000 ug/l 4400 ''		660	D-09
Surrogate: 1,4-Bromofluorobenze	ene "	"		 <i>1</i>		4400 ^m 0.968 %	14-116	1300	S-04
D6-16-GW (A307607-17)			G 1 m		-				5-04
Metals (Dissolved) by EPA 6000/7(00 Sovies Methods		Sample Ty	pe: water	Sam	pled: 07/23/03 1	5:50		
Cadmium, dissolved		1022110	05/01/00						
Chromium, dissolved	EPA 6010	AG33110	07/31/03	08/04/03	1	ND mg/l		0.010	
Nickel, dissolved				"	"	ND "	(0.050	
Lead, dissolved	**	"		"		ND "		0.10	
Zinc, dissolved	**			"	"	ND "	(0.050	
				.,	"	ND "		0.10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

dly aren

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT Page 11 of 21 MFG, Inc 180 Howard St. Suite 200 Report Date: 09/10/03 08:37 Project No: 030229.4 San Francisco, CA 94105-2941 Project ID: SPI-Arcata/Task #4 Attn: Ed Conti Order Number Receipt Date/Time Client Code Client PO/Reference A307607 MFGINC 07/25/2003 15:40 Alpha Analytical Laboratories, Inc. METHOD BATCH PREPARED ANALYZED DILUTION RESULT POL NOTE D6-16-GW (A307607-17) Sample Type: Water Sampled: 07/23/03 15:50 TPH as Diesel and Motor Oil by EPA Method 8015 Modified **TPH** as Diesel 8015DRO AG33002 07/29/03 07/30/03 1.242 440 ug/l 62 D-09 -.... ,, .. 2100 " **TPH as Motor Oil** 120 " " ,, Surrogate: 1,4-Bromofluorobenzene 13.3 % 14-116 S-04 D6-17-GW (A307607-18) Sample Type: Water Sampled: 07/23/03 16:30 Metals (Dissolved) by EPA 6000/7000 Series Methods EPA 6010 AG33110 07/31/03 08/04/03 0.010 Cadmium, dissolved 1 ND mg/l ... 51 ** . ND " Chromium, dissolved 0.050 ,, ND " Nickel, dissolved 0.10 ,, Lead, dissolved ND " 0.050 Zinc, dissolved ND " 0.10

TPH as Diesel and Motor Oil by EPA Method 8015 Modified

TPH as Diesel	8015DRO	AG33007	07/30/03	07/31/03	1.099	310 ug/l	55	D-09
TPH as Motor Oil	и	"	"	"	"	1300 "	110	
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		37.1 %	14-116	

D6-18-GW (A307607-19)		Sample Type: Water			S		
Metals (Dissolved) by EPA 6000/	7000 Series Methods						
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/04/03	1	ND mg/l	0.010
Chromium, dissolved	"	**		"	"	ND "	0.050
Nickel, dissolved	*1	**	**	"	"	ND "	0.10
Lead, dissolved	"	"	"	н	н	ND "	0.050
Zinc, dissolved	н			**	84	ND "	0.10

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly For Sheri L. Speaks Project Manager

9/10/03

alpha

Alpha 🕻 Analytical Laboratories Inc.

SEP 1 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT								Page 12 of	
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti					Report Date: Project No: Project ID:				
	Receipt Date/Time 07/25/2003 15:40			<u>ent Code</u> FGINC		Client PO	/Reference		
·····		Alpha A	nalvtical	Laborato	ries. Inc.				
	METHOD	-	•	ANALYZED		RESULT		PQL	NOTE
D6-18-GW (A307607-19)			Sample Ty	pe: Water	Sam	pled: 07/24/03 0	9:30		······································
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo								
TPH as Diesel	8015DRO	AG33007	07/30/03	07/31/03	1.205	320 ug/l		60	D-09
TPH as Motor Oil	11	H	u	*1	н	1300 "		120	
Surrogate: 1,4-Bromofluorobenzei	ne "	"	"	"		58.4 %	14-116		
D6-19-GW (A307607-20)			Sample Typ	pe: Water	Sam	pled: 07/24/03 0	9:45		
Metals (Dissolved) by EPA 6000/70	00 Series Methods								
Cadmium, dissolved	EPA 6010	AG33110	07/31/03	08/04/03	1	ND mg/l	0	0.010	
Chromium, dissolved	**	"	"	"	м	ND "	0	0.050	
Nickel, dissolved	"	"	**	"		ND "		0.10	
Lead, dissolved	u	11	н	"		ND "	C	0.050	
Zinc, dissolved	. "	"	и	"	U	ND "		0.10	
TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified							
TPH as Diesel	8015DRO	AG33007	07/30/03	07/31/03	1.136	80 ug/l		57	D-09
TPH as Motor Oil	п	"	"	"	**	320 "		110	.•
Surrogate: 1,4-Bromofluorobenze	ne "	"	"	"		45.3 %	14-116		
D6-20-GW (A307607-21)			Sample Ty	pe: Water	Sam	pled: 07/24/03 0	9:50		
Metals (Dissolved) by EPA 6000/70	00 Series Methods								
Cadmium, dissolved	EPA 6010	AG33111	07/31/03	08/04/03	1	ND mg/l	(0.010	
Chromium, dissolved	н	"	**		"	ND "	(0.050	
Nickel, dissolved	"	н	**	11	u	ND "		0.10	
Lead, dissolved	"	"	**	"	"	ND "	(0.050	
Zinc, dissolved	н	u	ti	"		ND "		0.10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aly een

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

MFG, Inc	C	HEMIC	AL EXAI	MINATIO	N REPORT	Г		Page 13 of 21
180 Howard St. San Francisco, (Attn: Ed Conti						te: 09/10/03 08 lo: 030229.4 D: SPI-Arcata/		
<u>Order Number</u> A307607	Receipt Date/Time 07/25/2003 15:40			<u>ent Code</u> IFGINC		Client PO	/Reference	
		Alpha A	Analytical	Laborato	ries, Inc.			······································
	METHOD		-	ANALYZED	· · · · · · · · · · · · · · · · · · ·	RESULT	PQI	. NOTE
D6-20-GW (A307607-21) TPH as Diesel and Motor Oil by El	PA Method 8015 Mo	dified	Sample Ty	pe: Water	Sa	ampled: 07/24/03 0		· · · · · · · · · · · · · · · · · · ·
TPH as Diesel TPH as Motor Oil	8015DRO	AG33007	07/30/03	07/31/03	1.1905	63 ug/l 190 "	60 120	
Surrogate: 1,4-Bromofluorobenze	ie "	n	"	"		37.6 %	14-116	
D6-21-GW (A307607-22) Metals (Dissolved) by EPA 6000/70	00 Series Methods		Sample Ty	pe: Water	Sa	impled: 07/24/03 1	0:10	
Cadmium, dissolved	EPA 6010	AG33111	07/31/03	08/04/03	1	ND mg/l	0.010)
Chromium, dissolved	11	11	11		"	ND "	0.050)
Nickel, dissolved	11	11	н	"	**	ND "	0.10)
Lead, dissolved	**	**	н	"	"	ND "	0.050)
Zinc, dissolved	"	11	н	**	"	ND "	0.10)
TPH as Diesel and Motor Oil by El	PA Method 8015 Mod	dified						
TPH as Diesel	8015DRO	AG33007	07/30/03	07/31/03	1.143	130 ug/l	51	D-09
TPH as Motor Oil	**	11	**	"	"	430 "	110)
Surrogate: 1,4-Bromofluorobenzer	1e "	"	"	"		41.0 %	14-116	
D6-22-GW (A307607-23)			Sample Tyj	pe: Water	Sa	impled: 07/24/03 1	0:30	
Metals (Dissolved) by EPA 6000/70								
Cadmium, dissolved	EPA 6010	AG33111	07/31/03	08/04/03	1	ND mg/l	0.010)
Chromium, dissolved	н		"	**	**	ND "	0.050)
Nickel, dissolved	11	"	"	**	**	ND "	0.10)
Lead, dissolved	11	"	11	H	**	ND "	0.050)
Zinc, dissolved		"	**	n	11	ND "	0.10)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc. e-mail: clientservices@alpha-labs.com •

208 Mason St. Ukiah, California 95482 (707) 468-5267 (707) 460 0401 Б.

	Phone:	(707)	468-0401	•	Fax:	(707)	468-526
--	--------	-------	----------	---	------	-------	---------

	CI	HEMICA	L EXAN	1INATIO	N REPORT			I	Page 14 of 2
MFG, Inc 180 Howard St. San Francisco, C Attn: Ed Conti	Suite 200				Report Date: Project No:	09/10/03 08 030229.4 SPI-Arcata/			
	Receipt Date/Time 07/25/2003 15:40		what's	ent <u>Code</u> FGINC		Client PO	/Reference		
		Alnha A	nalvtical	Laborato	ries, Inc.				
	METHOD	4	•	ANALYZED		RESULT		PQL	NOTE
	METHOD		Sample Typ			pled: 07/24/03 1	0:30		
D6-22-GW (A307607-23)	NA Mathed 9016 Ma		sample Typ	Je. Water	<u>Dani</u>	preset • <i>t</i> / <i>t</i> = 0 = 0 = 0			
TPH as Diesel and Motor Oil by El			07/30/03	07/31/03	1.1236	ND ug/l		56	
TPH as Diesel	8015DRO	AG33007	07/30/03	"	"	ND "		110	
TPH as Motor Oil			"	"		35.8 %	14-116		
Surrogate: 1,4-Bromofluorobenzei	ne "	'n	"	"		33.0 70	14-110		
D6-23-GW (A307607-24)			Sample Typ	pe: Water	Sam	pled: 07/24/03 1	0:40		
Metals (Dissolved) by EPA 6000/70	00 Series Methods								
Cadmium, dissolved	EPA 6010	AG33111	07/31/03	08/04/03	1	ND mg/l		0.010	
Chromium, dissolved	u	"	"	"	*	ND "		0.050	
Nickel, dissolved	"	11	"	"	Ħ	ND "		0.10	
Lead, dissolved	"	**	и	*1	11	ND "		0.050	
Zinc, dissolved	u .	"	11	H	**	ND "		0.10	
TPH as Diesel and Motor Oil by E	PA Mathad 8015 Ma	dified							
	8015DRO	AG33007	07/30/03	07/31/03	1.1696	ND ug/l		58	
TPH as Diesel	8015010	HU55007	"	"	**	ND "		120	
TPH as Motor Oil Surrogate: 1,4-Bromofluorobenze	ene "	"	"	"		32.9 %	14-116		
			о	was Weter	Sam	pled: 07/24/03 1	1.00		
D6-24-GW (A307607-25)			Sample Ty	pe: water	Sali	ipica. 0//24/03 1	1.00		
Metals (Dissolved) by EPA 6000/7			07/21/02	00/04/02	1	ND mg/l		0.010	
Cadmium, dissolved	EPA 6010	AG33111	07/31/03	08/04/03	1	ND mg/I ND "		0.010	
Chromium, dissolved		"	"	"		ND "		0.050	
Nickel, dissolved	"			"				0.050	
Lead, dissolved	**	"	"	"		ND "		0.030	
Zinc, dissolved	"	"	**	11		ND "		0.10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ly a

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

Analutica Alpha Analytical Laboratories Inc.

MFG, Inc

Attn: Ed Conti

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

180 Howard St. Suite 200 San Francisco, CA 94105-2941

MUCAL	EXAMI	NATION	REPORT	

Page 15 of 21

Report Date: 09/10/03 08:37 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

· · · ·	Alnha	Analytical Laboratories, Inc		
A307607	07/25/2003 15:40	MFGINC		
Order Number	Receipt Date/Time	Client Code	Client PO/Reference	

			v		,			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
D6-24-GW (A307607-25)			Sample Ty	pe: Water		Sampled: 07/24/03 11:0	0	
TPH as Diesel and Motor Oil by EPA M	Aethod 8015 M	odified						
TPH as Diesel	8015DRO	AG33007	07/30/03	07/31/03	1.099	ND ug/l	55	
TPH as Motor Oil	"	**	**	"	"	ND "	110	
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		33.5 %	4-116	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, its.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 16 of 21

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Receipt Date/Time

07/25/2003 15:40

Order Number

A307607

Report Date: 09/10/03 08:37 Project No: 030229.4 Project ID: SPI-Arcata/Task #4

Client PO/Reference

Client Code MFGINC

SourceResult

Metals (Dissolved) by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG33110 - EPA 200 Series										
Blank (AG33110-BLK1)				Prepared:	07/31/03	Analyzed	· 08/04/03			
Cadmium, dissolved	ND	0.010	mg/l	<u> </u>					· · · · · · ·	
Chromium, dissolved	ND	0.050	"							
Lead, dissolved	ND	0.050	н							
Nickel, dissolved	ND	0.10	п							
Zinc, dissolved	ND	0.10	**							
LCS (AG33110-BS1)				Prepared:	07/31/03	Analyzed	: 08/04/03			
Cadmium, dissolved	0.205	0.010	mg/l	0.200		102	85-115			
Chromium, dissolved	0.207	0.050		0.200		104	85-115			
Lead, dissolved	0.195	0.050	**	0.200		97.5	85-115			
Nickel, dissolved	0.192	0.10	"	0.200		96.0	85-115			
Zinc, dissolved	0.225	0.10	н	0.200		112	85-115			
LCS Dup (AG33110-BSD1)				Prepared:	07/31/03	Analyzed	: 08/04/03			
Cadmium, dissolved	0.203	0.010	mg/l	0.200		102	85-115	0.980	20	
Chromium, dissolved	0.209	0.050	"	0.200		104	85-115	0.962	20	
Lead, dissolved	0.201	0.050	"	0.200		100	85-115	3.03	20	
Nickel, dissolved	0.192	0.10	"	0.200		96.0	85-115	0.00	20	
Zinc, dissolved	0.221	0.10	"	0.200		110	85-115	1.79	20	
Duplicate (AG33110-DUP1)	Sou	rce: A307	607-01	Prepared:	07/31/03	Analyzed	: 08/04/03			
Cadmium, dissolved	ND	0.010	mg/l	••••••	ND	_		•	20	
Chromium, dissolved	ND	0.050	"		ND				20	
Lead, dissolved	ND	0.050	11		ND				20	
Nickel, dissolved	ND	0.10	"		ND				20	
Zinc, dissolved	ND	0.10	n		ND				20	
Matrix Spike (AG33110-MS1)	Sou	rce: A3070	607-01	Prepared:	07/31/03	Analyzed	08/04/03			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

Wir G. Inc.

Alpha 🛛 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 17 of 21

MFG. Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date: 09/10/03 08:37 Project No: 030229.4 Project ID: SPI-Arcata/Task #4 /Reference

Order Number	Receipt Date/Time	Client Code	Client PO
A307607	07/25/2003 15:40	MFGINC	

Metals (Dissolved) by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG33110 - EPA 200 Series										
Matrix Spike (AG33110-MS1)	Sou	rce: A307	607-01	Prepared:	07/31/03	Analyzed	1: 08/04/03			
Cadmium, dissolved	0.198	0.010	mg/l	0.200	ND	99.0	70-130			
Chromium, dissolved	0.212	0.050	**	0.200	ND	105	70-130			
Lead, dissolved	0.208	0.050	**	0.200	ND	96.5	70-130			
Nickel, dissolved	0.194	0.10	"	0.200	ND	97.0	70-130			
Zinc, dissolved	0.234	0.10	"	0.200	ND	112	70-130			
Matrix Spike Dup (AG33110-MSD1)	Sou	ırce: A307	607-01	Prepared	: 07/31/03	Analyzed	d: 08/04/03			
Cadmium, dissolved	0.198	0.010	mg/l	0.200	ND	99.0	70-130	0.00	20	
Chromium, dissolved	0.208	0.050	••	0.200	ND	103	70-130	1.90	20	
Lead, dissolved	0.205	0.050	"	0.200	ND	95.0	70-130	1.45	20	
Nickel, dissolved	0.194	0.10	"	0.200	ND	97.0	70-130	0.00	20	
Zinc, dissolved	0.231	0.10	"	0.200	ND	110	70-130	1.29	20	
Batch AG33111 - EPA 200 Series										
Blank (AG33111-BLK1)				Prepared	: 07/31/03	Analyze	d: 08/04/03			
Cadmium, dissolved	ND	0.010	mg/l							
Chromium, dissolved	ND	0.050	"							
Lead, dissolved	ND	0.050	11							
Nickel, dissolved	ND	0.10	".							
Zinc, dissolved	ND	0.10	"							
LCS (AG33111-BS1)				Prepared	: 07/31/03	Analyze	d: 08/04/03	3		
Cadmium, dissolved	0.204	0.010	mg/l	0.200		102	85-115			
Chromium, dissolved	0.208	0.050	н	0.200		104	85-115			
Lead, dissolved	0.197	0.050	"	0.200		98.5	85-115			
Nickel, dissolved	0.194	0.10	"	0.200		97.0	85-115			
Zinc, dissolved	0.222	0.10	"	0.200		111	85-115			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly For Sheri L. Speaks Project Manager

SEP 1 2 2003

MFG, Inc.

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 18 of 21

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	09/10/03 08:37
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Order Number	Receipt Date/Time	Client Code	Client PO/Reference
A307607	07/25/2003 15:40	MFGINC	

Metals (Dissolved) by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG33111 - EPA 200 Series										
LCS Dup (AG33111-BSD1)				Prepared:	07/31/03	Analyzed	: 08/04/03			
Cadmium, dissolved	0.204	0.010	mg/l	0.200		102	85-115	0.00	20	
Chromium, dissolved	0.207	0.050	**	0.200		104	85-115	0.482	20	
Lead, dissolved	0.201	0.050	11	0.200		100	85-115	2.01	20	
Nickel, dissolved	0.194	0.10	n	0.200		97.0	85-115	0.00	20	
Zinc, dissolved	0.218	0.10	"	0.200		109	85-115	1.82	20	
Duplicate (AG33111-DUP1)	Sou	rce: A307	607-21	Prepared:	07/31/03	Analyzed	l: 08/04/03			
Cadmium, dissolved	ND	0.010	mg/l		ND				20	
Chromium, dissolved	ND	0.050	"		ND				20	
Lead, dissolved	ND	0.050	"		ND				20	
Nickel, dissolved	ND	0.10	u		ND				20	
Zinc, dissolved	ND	0.10			ND				20	
Matrix Spike (AG33111-MS1)	Sou	rce: A307	607-21	Prepared	: 07/31/03	Analyzed	i: 08/04/03			
Cadmium, dissolved	0.192	0.010	mg/l	0.200	ND	96.0	70-130			
Chromium, dissolved	0.211	0.050	"	0.200	ND	101	70-130			
Lead, dissolved	0.194	0.050	**	0.200	ND	90.5	70-130			
Nickel, dissolved	0.196	0.10		0.200	ND	96.3	70-130			
Zinc, dissolved	0.224	0.10	"	0.200	ND	109	70-130			
Matrix Spike Dup (AG33111-MSD1)	Sou	ırce: A307	607-21	Prepared	: 07/31/03	Analyzed	1: 08/04/03	,		
Cadmium, dissolved	0.194	0.010	mg/l	0.200	ND	97.0	70-130	1.04	20	
Chromium, dissolved	0.215	0.050	"	0.200	ND	103	70-130	1.88	20	
Lead, dissolved	0.197	0.050	"	0.200	ND	92.0	70-130	1.53	20	
Nickel, dissolved	0.193	0.10	н	0.200	ND	94.8	70-130	1.54	20	
Zinc, dissolved	0.225	0.10	"	0.200	ND	109	70-130	0.445	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly For Sheri L. Speaks Project Manager

HEUEIVED

SEP 1 2 2003

MFG, Inc.

Analytica Alpha Analytical Laboratories Inc.

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	09/10/03 08:37
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

<u>Order Number</u>	Receipt Date/Time	Client Code	Client PO/Reference
A307607	07/25/2003 15:40	MFGINC	

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG32826 - EPA 3510B Wate	r									
Blank (AG32826-BLK1)				Prepared:	07/28/03	Analyzed	: 07/29/03			
TPH as Diesel	ND	50	ug/l	· · · · · · · · · · · · · · · · · · ·	/· · · · · · · · · · · · · · · · · · ·					
TPH as Motor Oil	ND	100	0							
Surrogate: 1,4-Bromofluorobenzene	439		"	620		70.8	14-116			
LCS (AG32826-BS1)				Prepared:	07/28/03	Analyzed	: 07/29/03			
TPH as Diesel	2060	50	ug/l	2090		98.6	57-136			
TPH as Motor Oil	2260	100	"	2090		108	58-138			
Surrogate: 1,4-Bromofluorobenzene	474			620		76.5	14-116			
LCS Dup (AG32826-BSD1)				Prepared:	07/28/03	Analyzed	l: 07/29/03			QM-1
TPH as Diesel	2080	50	ug/l	2090		99.5	57-136	0.966	25	
TPH as Motor Oil	2300	100		2090		110	58-138	1.75	25	
Surrogate: 1,4-Bromofluorobenzene	483		n	620		77.9	14-116			
Batch AG33002 - EPA 3510B Wate	r									
Blank (AG33002-BLK1)				Prepared:	07/29/03	Analyzed	I: 08/01/03			
TPH as Diesel	ND	50	ug/l							
TPH as Motor Oil	ND	100	11				r			
Surrogate: 1,4-Bromofluorobenzene	356		<i>n</i>	620		57.4	14-116			
LCS (AG33002-BS1)				Prepared	07/29/03	Analyzed	l: 08/01/03			
TPH as Diesel	1540	50	ug/l	2090		73.7	57-136			
TPH as Motor Oil	2020	100	"	2090		96.7	58-138			
Surrogate: 1,4-Bromofluorobenzene	299		"	620		48.2	14-116			
LCS Dup (AG33002-BSD1)				Prepared	07/29/03	Analyzed	1: 08/01/03			QM-1
TPH as Diesel	1600	50	ug/l	2090		76.6	57-136	3.82	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren dly

Karen A. Daly For Sheri L. Speaks Project Manager

9/10/03

Page 19 of 21

RECEIVED

SEP 1 2 2003

MFG, Inc.

Analytica Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

MFG, Inc 180 Howard St. Suite 200 San Francisco, CA 94105-2941 Attn: Ed Conti

Report Date:	09/10/03 08:37
Project No:	030229.4
Project ID:	SPI-Arcata/Task #4

Order Number	Receipt Date/Time
A307607	07/25/2003 15:40

Client Code MFGINC

Client PO/Reference

Page 20 of 21

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG33002 - EPA 3510B Water										
LCS Dup (AG33002-BSD1)				Prepared	07/29/03	Analyzed	: 08/01/03			QM-10
TPH as Motor Oil	2290	100	n	2090		110	58-138	12.5	25	
Surrogate: 1,4-Bromofluorobenzene	292		"	620		47.1	14-116			
Batch AG33007 - EPA 3510B Water										
Blank (AG33007-BLK1)				Prepared	: 07/30/03	Analyzed	I: 07/31/03			
TPH as Diesel	ND	50	ug/l							
TPH as Motor Oil	ND	100	**							
Surrogate: 1,4-Bromofluorobenzene	463		#	620		74.7	14-116			
LCS (AG33007-BS1)				Prepared	: 07/30/03	Analyzed	1: 07/31/03			
TPH as Diesel	1990	50	ug/l	2090		95.2	57-136			
TPH as Motor Oil	2190	100	11	2090		105	58-138			
Surrogate: 1,4-Bromofluorobenzene	503		"	620		81.1	14-116			
LCS Dup (AG33007-BSD1)				Prepared	: 07/30/03	Analyzed	d: 07/31/03			QM-10
TPH as Diesel	1910	50	ug/l	2090		91.4	57-136	4.10	25	
TPH as Motor Oil	2130	100	**	2090		102	58-138	2.78	25	
Surrogate: 1,4-Bromofluorobenzene	460		11	620		74.2	14-116			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aren aly

Karen A. Daly For Sheri L. Speaks Project Manager

9/10/03

RECEIVED

SEP 1 2 2003

MFG, Inc.

208 Mason St. Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 21 of 21

	vard St. Suite 200 icisco, CA 94105-2941	Project 1	ate: 09/10/03 08:37 No: 030229.4 ID: SPI-Arcata/Task #4
Order Number	Receipt Date/Time	<u>Client Code</u>	Client PO/Reference
A307607	07/25/2003 15:40	MFGINC	

Notes and Definitions

MEG Inc

- The sample chromatographic pattern does not resemble the fuel standard used for quantitation. D-06
- Results in the diesel organics range are primarily due to overlap from a heavy oil range product. D-09
- LCSD prepared with analytical batch due to insufficient sample for MS/MSD. QM-10
- The Reporting Limit for this analyte has been raised to account for matrix interference. R-01
- The surrogate recovery for this sample is outside of established control limits possibly due to a sample matrix S-04 effect.
- Analyte DETECTED DET
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- Sample results reported on a dry weight basis dry
- RPD **Relative Percent Difference**
- PQL Practical Quantitation Limit

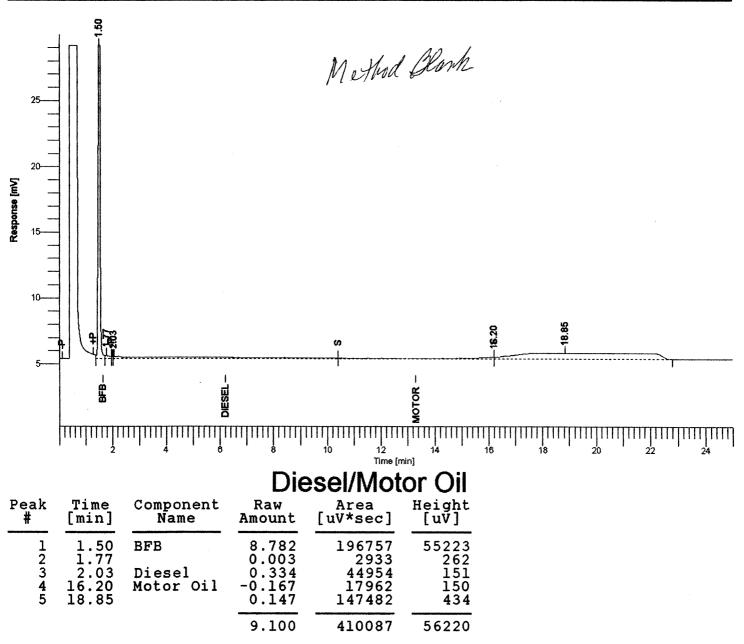
	COC No. 2005	PAGE: <u> </u> OF: 5 DATE: <u>125/b3</u>	ANALYSIS REQUEST	Handling Remarks	H2UA GRAGNAT2	1- FUNTURAX	X	() X	₹ S≣	P:	E 2 G. ×	200	EI 03	× ر	X	N OF SAMPLES COOLER TEMP:	RECIEVED BY:	PRINTED NAME COMPANY		Athouc Allaha	SPEAKS LABOHAIDHY	i V - unfitered	
	ANALYSIS aattle Office 2203 36th Avenue W. Uite 101 vintwood, WA 98036-5707 di: (425) 921-4040 ax: (425) 921-4040	DESTINATION:	ANA	Constituents/Method Har	НОГБ											COMMENTS/CONDITION OF	REC			W 3. M	Ko S.	- other Filtration: F - filtered U - unfiltered	
		Cadi I			100. 1000000000000000000000000000000000	XI	X	i X I		X	X	ΙX		ΙX	X			SIGNATURE		-n/mile	B. Spea	lastic G - glass T - tellon B - brass OT - other WHITE: Return to Originator	-
1. Sec. 1. Sec	3, INC. AND REQUEST FOF a San Francisco Office Is0 Howard Street, Sinte 200 San Francisco, CA 94105-1617 Phone (415) 495-7110- FAX (415) 495-7107	Pacific NAGER: Ed NO: NH		Containers	TYPE* VOLUME VOLUME	N 12 6	15 1 L 6	W 166	F 11 6	W IL 6	E 11 6	W 11 6	5 TH 2	M 17 0	9712	F CONTAINERS	2	TIME	5 1130	2 11:38	15:010	other Containers: P - plastic G - glass T - tellon YELLOW: Laboratory Copy WHITE: Return to Originator	
		- NAME: Sterra Pacif PROJECT MANAGER: CARRIER/WAYBILL NO:		Preservation	COFD H ⁵ 2O⁵ HNO ³		X Χ		XX		X X	×	XX	X	XXX	TOTAL NUMBER OF CONTAINERS		DATE	SU15211-	7/2010	7/25/02	etroleum A - air 'OT PINK: Field Copy	
æ.	ST	PROJECT NAM	SAMPLES	Sample	HCI Matrix*	1)20 AR	1170 AW	NO MA	11P 00 1 18	Ine or All	1050 AR	M SCII	III SEIT	(NH age 1	1300 AD		÷.	COMPANY	NFK		I phy	NA - nonaqueous SO - soil SL - sludge P - p DISTHIBUTION:	I
		4 Nille 1 aurier	SAM	S	DATE	124 NI	V 7/24	7123							\uparrow		HED BY:	NAME			MH/Maws A	eous	
,	☐ Boulder Office 4900 Pearl East Circle Soulder, CO 80301-6118 Tel: (303) 447-1836 Fax: (303) 447-1836	STA I	s	1- 1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	Field Sample Identification	ب م الر	5000										RELINQUISHED BY:	PRINTED NAME			CARK MAT	KEY Mat	
₽.,	 Arcata Office Arcata Office 1165 G Street, Suite E Arcata, CA 95251-5617 Tel: (707) 826-9437 Fax: (707) 826-9437 	PROJECT NO: () 30.2 SAMPLER (Signature): (METHOD OF SHIPMENT			Fi	RP-3-610	RD-3- CW	D6-1-6W	DF 1-6W	DE-2- 6W	01, 2 6W	DIE 3 6W	01 3- GW	DE24- 610	DU 4 CW			SIGNATURE	C HALL MULLA		Jax M Hill mer	12	

i e g

	000	PAGE: 2 OF: 5	717	REQUEST	Remarks		പ്ര പ്രചന്ദ്		+ RI s		₀○ 〉E 1 2 FG,	IM		5	91	Reservent-1	Cooler Temp:		COMPANY		Hlphy	N LABORATORY	thread
	nue W. 10400 10400				Handling	ДОН Нгия Дяадиатг		,λ	X	X	×	×	×	×	×	X	CONDITION OF SAMPLES	RECIEVED BY:	PRINTED NAME		1. Alt Hhus	Dea	Filtration: F - filtered U - untiltered
ECD ANALVEIS	ב		DESTINATION:		Constituents/Method	10000 100000 100000 1000000		×	X	X	×	×	×	X	X	X	LABORATORY COMMENTS/CONDITION OF	X	SIGNATURE		N Parkus	Dea W	B - brass 0T - other
, INC.	AND REQUENT FC Dan Francisco Office 10 Howad Street, Suite 200 San Francisco, CA 94105-1617 Phone (415) 495-7110- FAX (415) 495-7107	HC L	NA		Containers	NO. VOLUME (mi/oz) TYPE*	N 16 1	K 11 6 1	W W 6 1	161161	U 1 6 1	E 11-6 1	11 12 0 1	F 1L 6 1	u 1 6 1	6 11 6	CONTAINERS (5U)		TIME	1 30 1	11:35 1	15:40 8	 - other Containers: P - plastic G - glass T - telfon YELLOW: Laboratory Copy WHITE: Return to Originator
MFG	MECCAU m Office box 30 co. 10 co. 10	E: Serva	RRIER/WAYBILL NO:		Preservation	COГD H ⁵ 20 [⊄] HNO ³	× -	X X	X	X	X	XXX	×	XXX	X	XX	TOTAL NUMBER OF C		DATE	7125/D	7/25/12	7/05/07	etroleum A - air 07 PINK: Field Conv
	CHAIN-OF-CUSIOUT Irvine Office Obu Irvine Office Obu Suite 500 Irvine, CA 92614-5650 83877 Fax: (949) 253-2954 Fax: (949) 253-2954	PROJECT NAME:	CARR	SAMPLES	Sample	HCI Matrix* DATE	(22 15) RU	1 (5)5 AU		1 1545 Ab	11.25 AV	V 1635 AU	123 CA30 AW	0930 10	Incis AU	I and shall T			COMPANY	MfZ		AHC	SO - soil SL - sludge Distraint
	□ Boulder Office Circle □ Irvi 4900 Pearl East Circle □ 177 Suite 300W Boulder, CO 80301-6118 Suite Tei: (303) 447-1823 Tei: Fax: (303) 447-1836 Fax	622	Cont			Ι	31L					-						RELINQUISHED BY:	PRINTED NAME	TWW WWW	J	W-HV	• KEY Matrix: AD - aqueous NA - nonaqueous
€a	☐ Arcata Office 1165 G Street, Suite E Arcata, CA 9527-5817 Tei: (707) 826-8437 Fax: (707) 826-8437	PROJECT NO: 0	METHOD OF SHIPMENT:			Field Sample Identification	DE-5-6W	DI 5-AW		$D_{k} \cdot b = CW$	$-\widetilde{D}_{k}$ - 7 - 6 W	Who T- 6W	Ok 8 6W	DL R. GW	Nr. 9- 610	N- 9- 6W			AIGNATURE	ALL WILL		desix Anthen	

0 **, v_a

Result CHAIN-OF-CUSTODY RECORD AND REACHER			Sam Date of the contract of th		<u>o</u>		ECOR 		D RI		Lug		NALYSI	S		COC No. 42657	
DECT NO: 630229.4 PROJECT NAME: S_{MEVR} PROJECT NAME: S_{MEVR} PROJECT NAME: F_{CONT} DESTINATION: A Destination the follow of the f	DJECT NO: 63022 MPLER (Signature): THOD OF SHIPMENT Field Sample Identification ID - GW	9. 4 Mi Millo Churvier	SAM DATE		:	allace, ID 873-0030 I: (208) 5 x: (208) 5	566-6811	Phone Phone	שונו סעצום שריי ancisco, CA (415) 495-ז (415) . ייאר: ייאר: ייאר: ייאר:	Suite 20 94105-16 110- FAX 495-7107	17 (415) 49		ttle Unice 03 36th Avenu te 101 nwood, WA 98 (425) 921-406 : (425) 921-40	e W. 036-5707 00 40			
MPLER (Signature): $\int_{AM} f_{M} I_{M} I_{M}$ PROJECT MANAGER: $\mathcal{E}d$ Conditions THOD OF SHIPMENT: $\mathcal{L}_{D111} Y_{M} I_{M}$ DESTINATION: \mathcal{A}_{M} Sample PROJECT MANAGER: $\mathcal{E}d$ Conditions Destination Sample Preservation Containers Containers In $\mathcal{C}(v)$ In $\mathcal{C}(v)$ In $\mathcal{L}(v)$ In $\mathcal{L}(v)$ In $\mathcal{L}(v)$ In $\mathcal{C}(v)$ In $\mathcal{L}(v)$ In $\mathcal{L}(v)$ In $\mathcal{L}(v)$ In $\mathcal{L}(v)$ In $\mathcal{C}(v)$ In $\mathcal{L}(v)$ In $\mathcal{L}(v)$ In $\mathcal{L}(v)$ V V In $\mathcal{C}(v)$ In $\mathcal{L}(v)$ In $\mathcal{L}(v)$ V V V In $\mathcal{C}(v)$ In $\mathcal{L}(v)$ V V V V In $\mathcal{L}(v)$ In $\mathcal{L}(v)$ V V V V In $\mathcal{L}(v)$ V V V V V V In $\mathcal{L}(v)$ V V V V V V In $\mathcal{L}(v)$ V V	MPLER (Signature): 人 THOD OF SHIPMENT: Field Sample Identification ID - GN	alm mh	Samp DATE DATE		NAM		Serva		a.fr						PAG	3E: -3 OF: <u>-</u> 5	
Sample Freedration Containers Constituents Method Handling Sample Sample Preservation Constituents Method Handling Sample Date Time Preservation Constituents Method Handling In U C/V Preservation Constituents Method Handling In U C/V Preservation Constituents Method Handling In U C/V Preservation Preservation Preservation Handling In Li Li H X K U Environment Handling In Li Li H X K U H X X In Li Li Li Li Li K X	Field Sample Identification		SAMP ATE ATE	LES mple	CARR	'ROJE IERV	ECT M. VAYBIL	ANAG L NO	сці і	PA	LEW _		ESTINAT	NOL	PAT Alpha	E: 7125/43	
SamplePreservationContainersFieldSampleContainersIn Colspan="6">In Colspan="6" SampleContainersIn Colspan="6">DATETIMEPreservationContainersContainersIn Colspan="6" SampleContainersIn Colspan="6">TIMEPreservationONEContainersIn Colspan="6">Colspan="6">ContainersIn Colspan="6">Colspan="6">ContainersIn Colspan="6" SampleDATETIMEMatrixID Colspan="6" SampleID Colspan="6" Sample <t< td=""><td>- 10 - 6 10 - 6</td><td></td><td>Sai</td><td>mple</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ANALY</td><td>'SIS REQI</td><td>JEST</td><td></td></t<>	- 10 - 6 10 - 6		Sai	mple										ANALY	'SIS REQI	JEST	
Field sample Field Sample Field Field Field 10< CuV	- 10 - 6 10 - 6		ATE	•		Preser	rvation		ပိ 	ntaine	S	Constituents	s/Method	Hand	lling	Remarks	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 10 - 0 - 11 - 0		7								1	Distoria					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· 01 ·		22	1			\times			9	Ê				XR	- FOOLOG	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 11 -	×.		1	ব	~	×	<u> </u>		9		X		\	×		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					~		\geq	2		0		X			X	F	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	يا سيبر سيبر					X	\times			9	_	×			X	02	
X X X X K IL 6 13 6U 113b NO X X L L 6 13 6U 141b NO X X L L 6 13 6U 1445 N X X L L 6 14 6U 1445 N X X L L 6 14 6U 1445 N X X K L 6 14 6U N X X X K L 6 14 6U N N X X K L 6 14 6U N N X X K L 6 14 6U N N X X K L 6 14 6U N N X X K L 6 14 6U N N N N N 6 14 6U N N N N N 6 14 6U N N N N 0 <td></td> <td></td> <td></td> <td>M 9211</td> <td></td> <td></td> <td>×</td> <td>\rightarrow</td> <td>-</td> <td>5</td> <td></td> <td>X</td> <td></td> <td></td> <td>X</td> <td>CE P 1 MF</td> <td>13</td>				M 9211			×	$ \rightarrow $	-	5		X			X	CE P 1 MF	13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1200 - C		1130 A	Z	Х	X	A	11	6	-	X			X	2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M			1410 A			X	2		C		X			· · ·	/E 2003 nc.	エ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-13-6	2000 - 100 2000 - 100 2000 2000 - 100 2000 - 1000 2000 - 1000 2000 2000 - 1000 2000 2000 2000 2000 2000 2000 2000	*******		Δ	X	X	5	: 11	5		X			×		
$ t - f_{(L)}$ $ J - f_{(L)}$ <t< td=""><td>- 14 -</td><td></td><td></td><td></td><td></td><td></td><td>\times</td><td>) U</td><td>111</td><td>0</td><td>-</td><td>X</td><td></td><td></td><td>×</td><td></td><td>5</td></t<>	- 14 -						\times) U	111	0	-	X			×		5
RELINQUISHED BY: TOTAL NUMBER OF CONTAINERS RELINQUISHED BY: RELINQUISHED BY: IGNATURE PRINTED NAME III TMU	- 17 -			MUSM		×	\times	<u></u>	-	9		X			X		
RELINQUISHED BY: RELINQUISHED BY: PRINTED NAME COMPANY DATE TIME SIGNATURE SIGNATURE IL TIMU MM/I M M						TOTAL	NUMBER	OF CON	TAINERS	6		ABORATORY C	OMMENTS/CC	NDITION	OF SAMPLES	Cooler Temp:	
IL TWU MULL MARE COMPANY DATE TIME SIGNATURE SIGNATURE		IQUISHED BY:								ļ				RECI	EVED BY:		
Mille Judu Mille WRG 7/25/03 11:35 1 M/25/00		NTED NAME		COMPAN	Σ		DATE		TIME			SIGNATURE		PRINT	ED NAME	COMPANY	
7/25/07 11:35 M/200100		Au Mull		<u>R</u>		12	1551	5	75.11			4.					
						1	510	6		1	X	1 hStohu		- N/ K	When	A1014	
1. (Mallin - Mathing - Anna - 7/35/07 15: 40 B. SOPE KO S. SPEaks	Parlano: 100	Manhusc	D.	ANC		Je -	20126		15:4	~	ċ	2000	3	5 C	Pak		

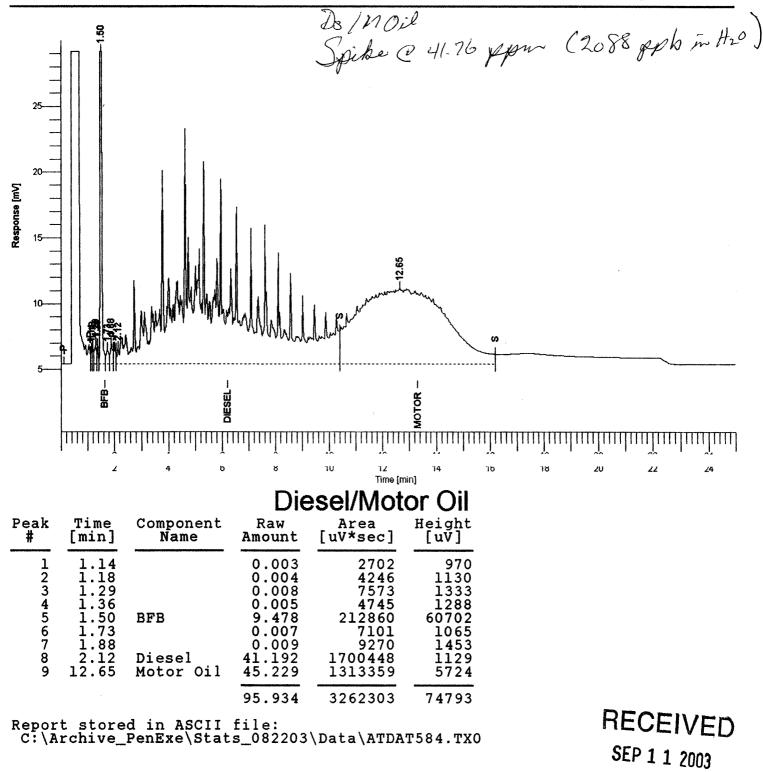

e*, 44

.	•. 67.			-	•	a _n		2								- ¥								2
	COC No. 42555		PAGE: 4 OF: 5	DATE: 7125/U3	REQUEST	Remarks		N307607 - 10		+	RE	o⊃ EC EP	注 1 S	<u>o</u> - IV 2, 20	E 103	C 20		s Cooler Temp:		E COMPANY		12/10/6	KW I HEUMAIUM	
r,		Ja w. 036-5707 00 40	đ	A A	ANALYSIS REC	Handling	HSUF HSUF GRADNATE		X	X	\times	X	X	×	×	×	X	ONDITION OF SAMPLE	RECIEVED BY:	PRINTED NAME		1. MANARUC	·Supa	F - filtered V - unfiltered
	FOR ANALYS	12:03 30m Avenue w. Suite 101 Buite 102 Lymmwood, WA 80036-5707 Tel: (425) 921-4040 Fax: (425) 921-4040		L. DESTINATION:		Constituents/Method	ABEL WITHE		×		X	X	×	×	×	×	X	LABORATORY COMMENTS/CONDITION OF SAMPLES		SIGNATURE	J.	Matthew >	Spec. Kr	ion B - brass 0T - other Filtration: ator
	MFG, INC. ECORD AND REQUEST FOR ANALYSIS	Sun Francisco, CA 94105-1617 Phone (415) 495-7110- FAX (415) 495-7107 Fax: (415) 495-7110- FAX (415) 495-7107	Dacific	NGER: Ed Conti		Containers	الاדת Arriou* OLUME YPE* OL OL OL CO	1 9 71 17 9 1	F 11 12 1	11 1L 6 1	FILGI	UDL BI	F11-61	ULGI	6 11 6 1	4 1L G 1	6 1	(3))	TIME	1130 E	1.1.35- 1		- other Containers: P - plastic G - glass T - teflon YELLOW: Laboratory Copy WHITE: Return to Originator
	W RECORD	P.O. Box 30 Wallace, ID 83373-0030 Tel: (208) 556-6811 Fax: (208) 556-7271	Sierra	PROJECT MANAGER: CARRIER/WAYBILL NO:		Preservation	огם ⁵ 20⊄ иО ³	н	X X	X	$\mathbf{X} = \mathbf{X}$	X	X X	×	XXX	*	XXX	TOTAL NUMBER OF CONTAINERS		DATE	7/25/B	7/25/03	7/25/03	A - air OT Field Copy
4	ST	T/7/0 Cartwright Hoad H/7/0 Cartwright Hoad Suite 500 W Suite 500 W Krine. CA 92614-5850 W Krine. (949) 253-2951 Tri Fax: (949) 253-2954 Fax: (949) 253-2954	PROJECT NAME:	CARF	SAMPLES	Sample	HCI Matrix*	+	25	115 SD AN	1550 Av	1630 AU		M 460	0930 AU	USAUS AN	0945 AU			COMPANY	MPB		Aloha	queous' SO - soil SL - sludge P - petroleum DISTRIBUTION: PINK:
				hi Millo Courrier	SAN			-1/23			***********			124	1800000 Jay				RELINQUISHED BY:	PRINTED NAME	Milli		ATTACWS 1	Matrix: AQ - aqueous NA - nonaqueous
ή,	□ Boulder Office	4900 Peart East Circle Suite 300W Boulder, CO 80301-6118 Tel: (303) 447-1823 Fax: (303) 447-1835	630229.4	<u> </u>			Field Sample	W	N.	0	0	(0	0	0	<u>S</u>		RELINQU	PRINTE	IL TI		4004	.γελ
a.	T Arcata Office	1165 G Streed: Suite E Arcata, CA 95521-5817 Tel: (707) 826-8430 Fax: (707) 826-8437	PROJECT NO.	SAMPLER (Signature):				01-15-6W	Mr. 15-6W	DE-16. EW	019-11-90	DE TT- GW	01-10-6W	DE REEN	$(\mathbf{M}_{0}^{-1}) = (\mathbf{M}_{0}^{-1})$	Ni-19- 610	N 19 CW			SIGNATURE			Var hav ar churce	

	$I_{\rm cl}$		2 ^{1,47}							** • •								1.5				1919 -1919 -1919 1	6 ,,*
	¹ → Arcata Office ¹ → Arcata Office 1165 G Street, Suite E Arcata, CA 9521-5817 Tet: (707) 826-8437 Fax: (707) 826-8437	Boulder Office 4900 Pearl East Circle Suite 300W Boulder, CO 80301-6118 Tel: (303) 447-1823 Fax: (303) 447-1836	CHAIN-OF-CUSTODY Irvine Office Osbur 1rvine Office Osbur Suite 500 Irvine, CA 25614-5850 Irvine, CA 25614-5850 Irvine, CA 25614-5850 Irvine, CA 2551-2951 Tel: (949) 253-2954 Fax: (949) 253-2954	-OF-C DF-C twright Ro 92614-585 253-2954	SUS.		E 6 8 2 8 8		5 g · · · · ·	G, INC. QAND REQUE San Francisco Office 180 Howard Street, Suite 200 San Francisco, CA 94105-1617 Bhone (415) 495-7110- FAX (41	E C Suite C A 94106 F	DUE Office AX (415	G, INC. 2 AND REQUEST F(5 AND REQUEST F(5 an Francisco Office 180 Howard Street, Suite 200 5 an Francisco, CA 94105-1617 5 an Francisco, CA 94105-1	ō	R ANALYSIS □Seattle Office 19203 36th Avenue W. Suite 101 Lyrnnwood, WA 98036-5707 Tel: (425) 921-4040 Fax: (425) 921-4040	SIS <i>Jenue</i> W. A 98036- 1-4040	5707		COC	COC No.	5		
	PROJECT NO: <u>136 22</u> SAMPLER (Signature): <u>(</u> METHOD OF SHIPMENT:	36 2 29. 4 Iure): JANU Millo PMENT: LUANEVEY		PROJECT NAME: PR CARRIE	L L C	NAME:		SILTIO DOL JECT MANAGER: MAYBILL NO:		GER: E	Ether Ether		Prof.		DESTINATION:	IATIO	, i		PAGE: DATE: pha	5712	0F: 5 1/1 3		
			SAM	SAMPLES												A	IALYS	SIS RE	ANALYSIS REQUEST				
			S	Sample			rese	Preservation			Cont	Containers		Constituents/Method	/Metho	┝──	Handling	- bu		Remarks	rks		
	Field Sample Identification	id Iple cation	DATE	TIME	Matrix*	HCI	² OS ^o H	COFD H ⁵ 20⁴		FILTRATION*	(zo/jɯ)	ло LXbE*	LEPH diesel NO.	STUFAN AVOM POALOSSIC	·	НОГБ	HSUA	GRAGNATS					
	06-20-GW		124	<u>v</u>	A.		1		<u> </u>	3		0	\geq					\geq	A 3	307607	3	Γ_	1
	0. 20.0W			0950	2 M/2		×	X	ŀ	1	1r	61		X				X					
4	Db 21-6W			1010				X			11	61	\times					X			3	S S	
	Nr-21-GW			l lo lù) AN		Х	X			1	61		X				X					
	D6-22-6W			UC 30	M			X		U I		6	X					,×	М	EC EP	9	m	
	N-23-6W			05.01	AU		\times	X		J J	د	- 2		X				\times	=G	12			
	Dr-23-6W			1040	AD			\times		7	1	2	\geq					\times	Inc	` "	Ì	he	
,	Dk-23-6W)		UPUL	M		\times	\times		1	-	6		\rightarrow				×	;.	已 03			
	Nb - 24 - GW)		11100	AW			\preceq		n	1	6	\times					$\boldsymbol{\times}$		ן	b)	5	ł
1. 	Nr. 24 CM		1	0011	Aß		X	\times		17	-	0		X				X					
		an an an an Arthur a Arthur an Arthur an A					TOTAL	TOTAL NUMBER OF CONTAINERS	R OF CC	NTAINE		60	LAB	LABORATORY COMMENTS/CONDITION OF	OMMENT	s/condi		- SAMPLES	ES	Cooler Temp:	:due		
		RELINQUISHED BY:					 ,				۳					Ē	IECIE/	RECIEVED BY:	3				
	SIGNATURE	PRINTED NAME		CON	COMPANY		1	DATE	111	F	TIME	L	Š	SIGNATURE		۵.	RINTE	PRINTED NAME	ΛE	CO	COMPANY		
	(LA. Mill	The Mult		NP3				1251	B		30 -			. 4									
							1	135/6	03		35		VD.	bulu	SI	<u>, </u>	1444	HUNC	5.1	+4/4V	4		
	ak Wandane	With Milt hours	D	0 ha	~		- 1 * *	1/2010	3	, X	.4 (0	ر <i>ن</i> . م	NPGG	WAD	j j	50.	Pa	КS	V LAB	ABORATORY		
		• <u>KEY</u> Matrix: AQ - aqueous	ous NA - nonaqueous	ueous SO-soil		SL - sludge P - petroleum A - air 0 DISTRIBUTION: PINK: Field Copy	roleum + PINK: Fie	1	7:M	oratory Cop	P - plastic V WHITE	ilastic G - glass T - tetton WHITE: Return to Originator	Containers: P - plastic G - glass T - tefton B - brass aboratory Copy WHITE: Return to Originator	8 - brass 07 - other	er Filtration:	tion: F - filtered.	lered. U-u	U ¹ - unfiltered					
									,			i. F		1					-				
					3			1									,						

					Page 1 of 1
Software Version Sample Name Instrument Name Rack/Vial		AG32826-BLR19 DSMO 0/0	Date Acquisition Time		7 <i>915/03 4:22:38</i> M
Sample Amount Cycle	:	1.000000 29	Channel Operator Dilution Factor	•	A marvin 1.000000

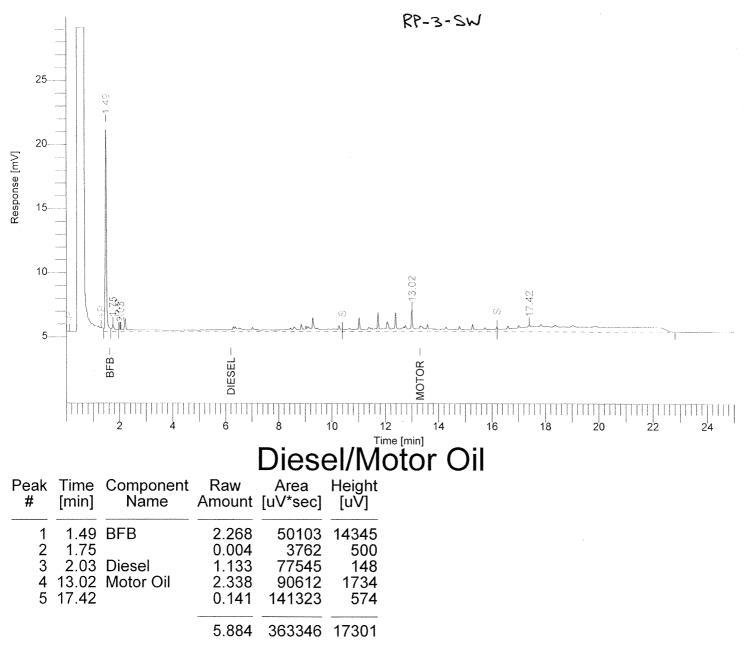
Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\ATDAT583.TX0


RECEIVED SEP 1 1 2003

Page 1 of	T
-----------	---

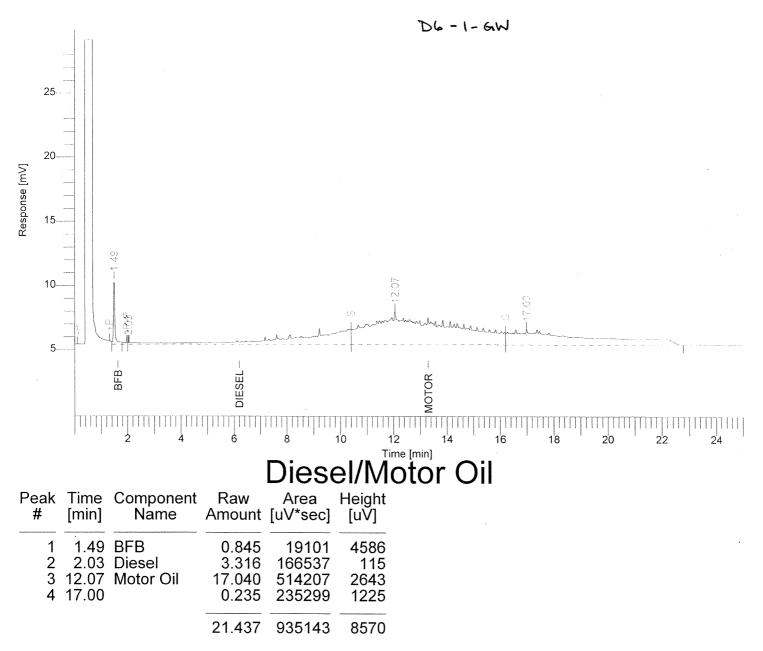
Software Version Sample Name Instrument Name Rack/Vial	: : : : : : : : : : : : : : : : : : : :	6.1.2.0.1:D19 AG32826-BS1 DsMo 0/0	Date Data Acquisition Time		9/5/03 2:24:30 7/29/03 5:03:30 M
Sample Amount Cycle	• • •	1.000000 30	Channel Operator Dilution Factor	::	A marvin 1.000000

Result File : C:\Archive_PenExe\Stats_082203\Data\ATDAT584.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_072803.seq


1

Software Version			9/5/03 2:28:47 PM
Sample Name	: A307607-01	Data Acquisition Time :	7/29/03 10:32:08 PM
Instrument Name	: DsMo	Channel :	A
Rack/Vial	: 0/0	Operator :	marvin
Sample Amount	: 1.00000	Dilution Factor :	1.000000
Cycle	: 11		

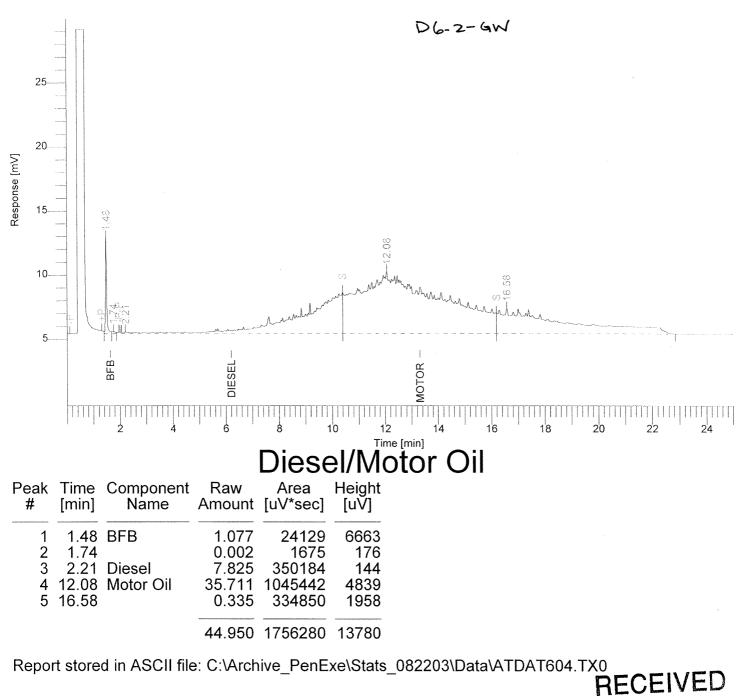
Result File : C:\Archive_PenExe\Stats_082203\Data\ATDAT602.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_072903_3.seq


۱

Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\ATDAT602.TX0

Software Version	: 6.1.2.0.1:D19	Date :	9/5/03 2:28:54 PM
Sample Name	: A307607-02	Data Acquisition Time :	7/29/03 11:12:31 PM
Instrument Name	: DsMo	Channel :	А
Rack/Vial	: 0/0	Operator :	marvin
Sample Amount	: 1.000000	Dilution Factor :	1.000000
Cvcle	: 12		

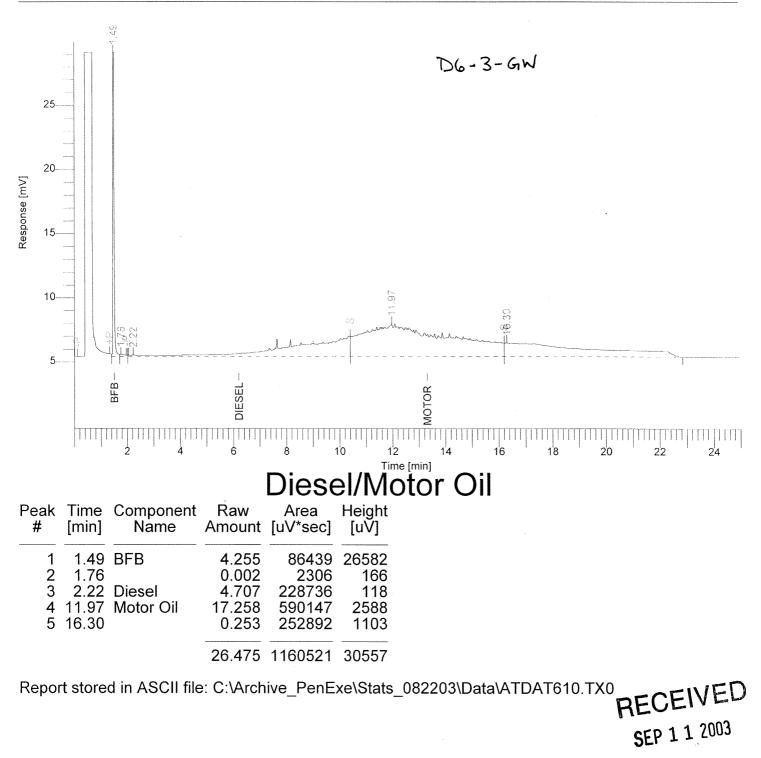
Result File : C:\Archive_PenExe\Stats_082203\Data\ATDAT603.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_072903_3.seq


Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\ATDAT603.TX0

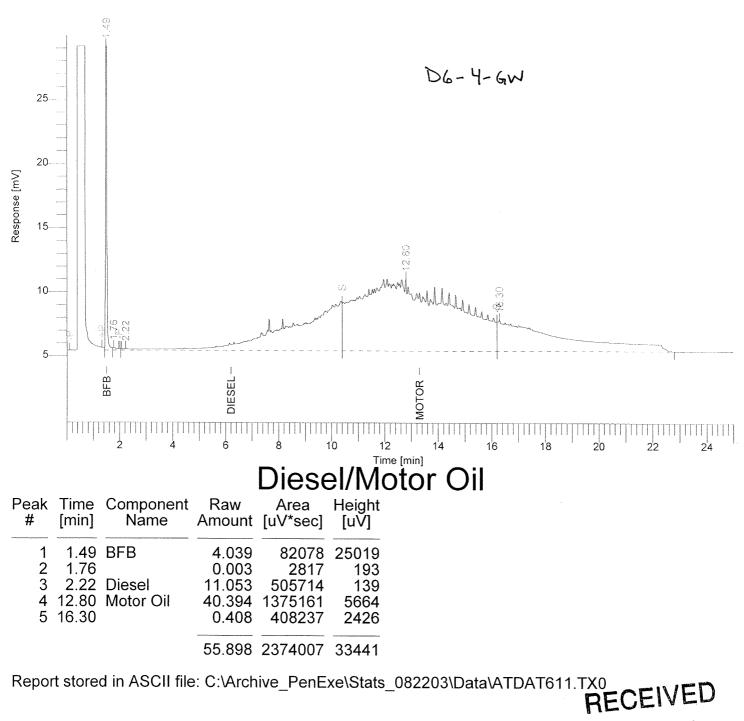
RECEIVED SEP 1 1 2003

MEG Inc.

Software Version Sample Name		Date Data Acquisition Time		9/5/03 2:29:01 PM 7/29/03 11:52:52 PM
Instrument Name		Channel	:	A marvin
Rack/Vial Sample Amount				1.000000
Cvcle	: 13			

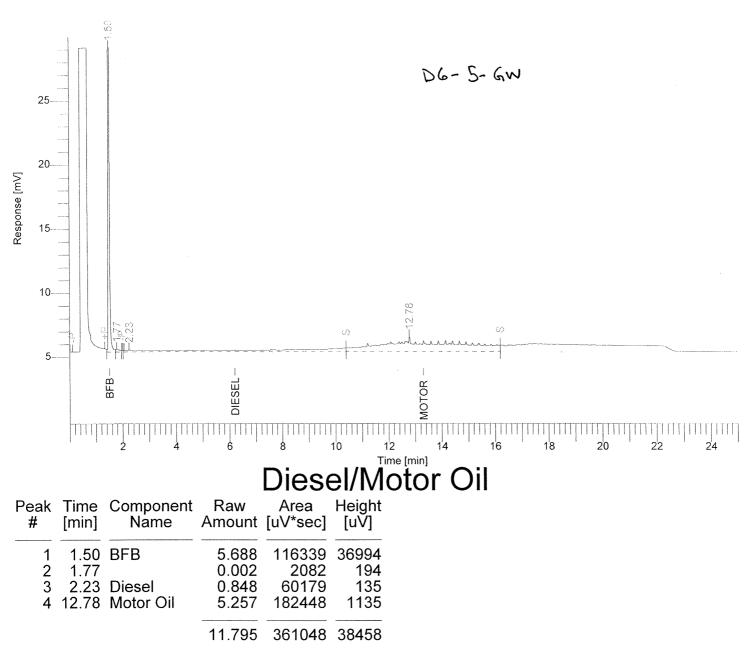

Result File : C:\Archive_PenExe\Stats_082203\Data\ATDAT604.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq DsMo 072903 3.seq

SEP 1 1 2003


Software Version		Date	: 9/5/03 1:41:39 PM
Sample Name	: A307607-04	Data Acquisition Time	: 7/30/03 3:56:03 AM
Instrument Name	: DsMo	Channel	: A
Rack/Vial	: 0/0	Operator	: marvin
Sample Amount	: 1.000000	Dilution Factor	: 1.000000
Cvcle	: 19		

Result File : C:\Archive_PenExe\Stats_082203\Data\ATDAT610.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_072903_3-20030729-153709.idx

Software Version	: 6.1.2.0.1:D19	Date	:	9/5/03 1:41:47 PM
Sample Name	: A307607-05	Data Acquisition Time	:	7/30/03 4:36:41 AM
Instrument Name	: DsMo	Channel	:	А
	: 0/0	Operator	:	marvin
Sample Amount	: 1.000000	Dilution Factor	:	1.000000
Cvcle	: 20			


Result File : C:\Archive_PenExe\Stats_082203\Data\ATDAT611.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_072903_3-20030729-153709.idx

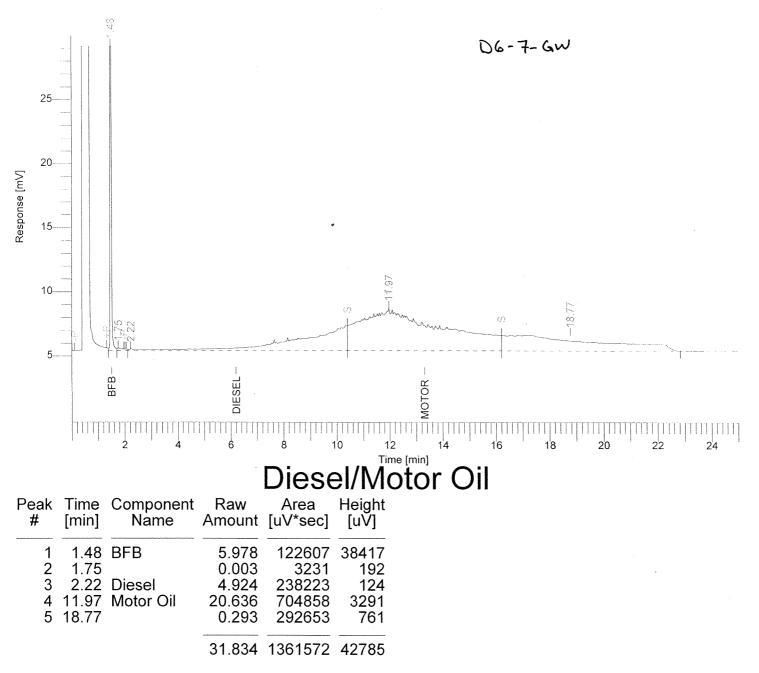
SEP 1 1 2003

Rack/Vial : 0/0 Operator : marvin	Software Version : 6.1.2.0.1:D19 Sample Name : A307607-06 Instrument Name : DsMo
Cvcle : 21	Rack/Vial : 0/0 Sample Amount : 1.000000

Result File : C:\Archive_PenExe\Stats_082203\Data\ATDAT612.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_072903_3-20030729-153709.idx

Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\ATDAT612.TX0

F			Page 1 of 1			
Software Version Sample Name Instrument Name	: 6.1.2.0.1:D19 : A307607-07 : DsMo	Date Data Acquisition Time	: 9/5/03 2:20:41 : 7/30/03 5:57:54 AM			
Rack/Vial Sample Amount Cycle	: 0/0 : 1.000000 : 22	Channel Operator Dilution Factor	: A : marvin : 1.000000			
Seguence File :		s_082203\Data\atdat613. DsMo_072903_3-20030729-				
25		D6-6-GW				
	so I	muntur o				
		MOTOR	777777777777777777777777777777777777777			
	onent Raw Ar					
1 1.48 BFB 2 1.75 3 2.22 Dies	0.002 el 6.306 29	sec] [uV] 6882 45722 2451 215 8556 139 2798 3529				

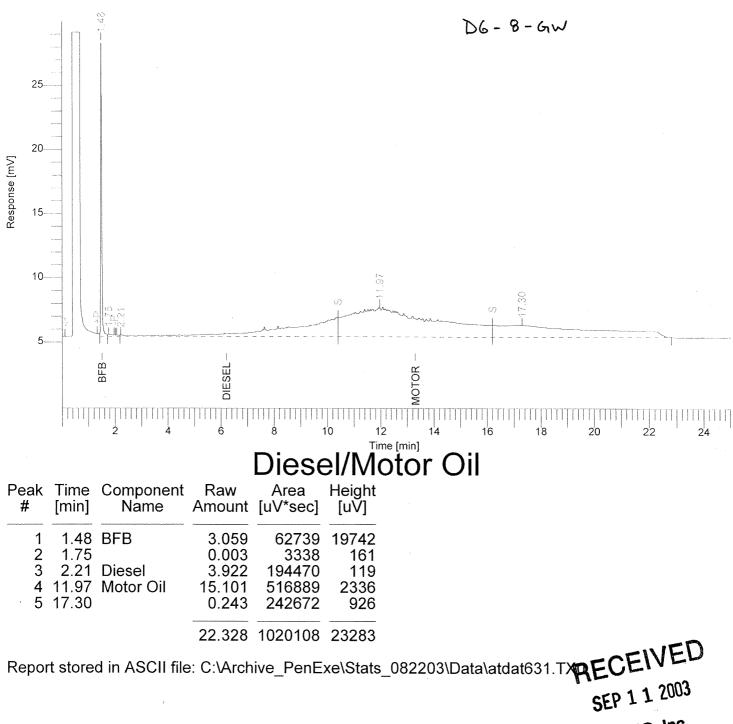

22.932	782798	3529
36.315	1230688	49605

Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\atdat613.TX0

ŧ

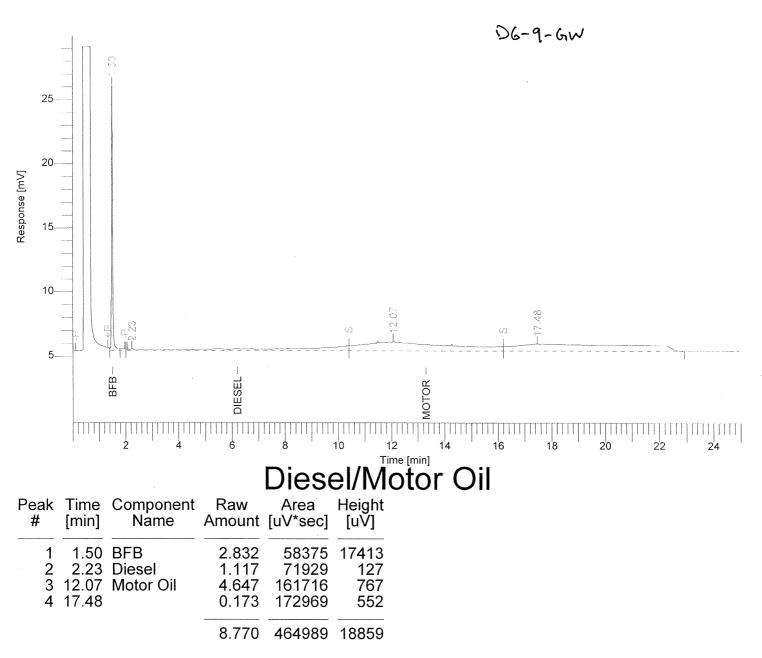
Software Version	: 6.1.2.0.1	:D19	Date	:	9/5/03 1:42:37 PM
Sample Name	: A307607	7-08	Data Acquisition Time	:	7/30/03 6:38:28 AM
Instrument Name			Channel	:	A
Rack/Vial	: 0/0		Operator	:	marvin
Sample Amount	: 1.00000	0	Dilution Factor	:	1.000000
Cycle	· 23				

Result File : C:\Archive_PenExe\Stats_082203\Data\ATDAT614.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_072903_3-20030729-153709.idx



Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\ATDAT614.TX0

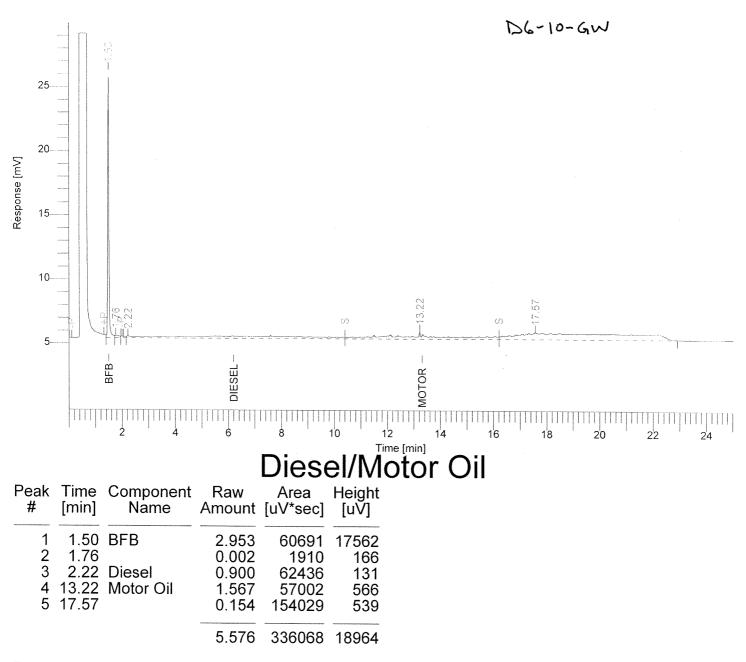
RECEIVED SEP 1 1 2003 MFG, Inc.


Software Version	:	6.1.2.0.1:D19	Date	:	9/5/03 1:55:49 PM
Sample Name	:	A307607-09	Data Acquisition Time	:	7/30/03 6:14:46 PM
Instrument Name	:	DsMo	Channel	:	А
Rack/Vial	:	0/0	Operator	:	marvin
Sample Amount	:	1.000000	Dilution Factor	:	1.000000
Cycle	:	9			

Result File : C:\Archive_PenExe\Stats_082203\Data\atdat631.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq

Software Version		Date	: 9/5/03 1:55:59 PM
Sample Name		Data Acquisition Time	: 7/30/03 6:55:23 PM
Instrument Name	: DsMo	Channel	: A
Rack/Vial	: 0/0	1	: marvin
Sample Amount	: 1.000000		: 1.000000
Cycle	: 10		

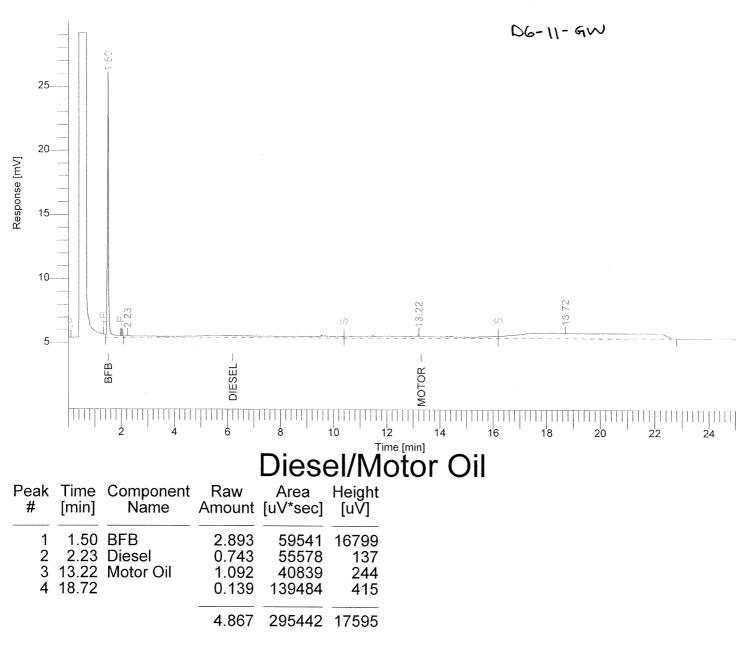
Result File : C:\Archive_PenExe\Stats_082203\Data\atdat632.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq



Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\atdat632.TX0

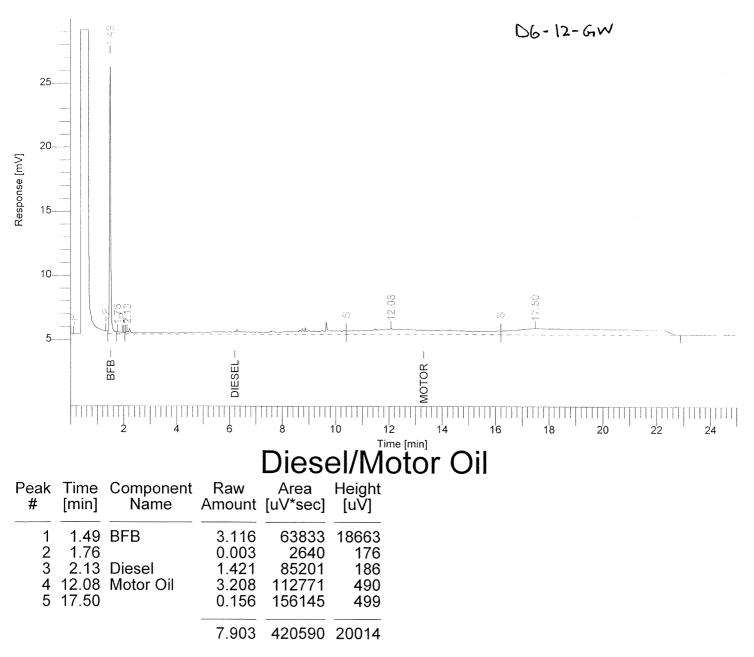
Software Version Sample Name Instrument Name Rack/Vial Sample Amount	: A307607-11 : DsMo : 0/0	Data Acquisition Time Channel Operator	: A : marvin
Sample Amount	: 1.000000	Dilution Factor	: 1.000000
Cycle	: 11		· · · · · · · · · · · · · · · · · · ·

Result File : C:\Archive_PenExe\Stats_082203\Data\atdat633.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq


.

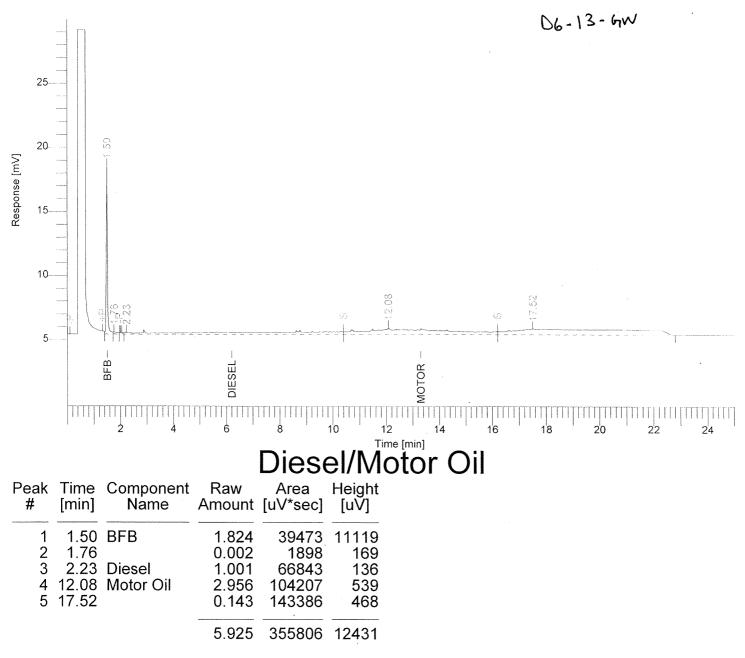
Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\atdat633.TX0

Software Version Sample Name Instrument Name Rack/Vial Sample Amount	: A307607-12 : DsMo : 0/0	Data Acquisition Time Channel Operator	: 9/5/03 1:56:15 PM : 7/30/03 8:16:31 PM : A : marvin : 1.000000
•	: 12	Dilution Factor	. 1.000000


Result File : C:\Archive_PenExe\Stats_082203\Data\atdat634.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq

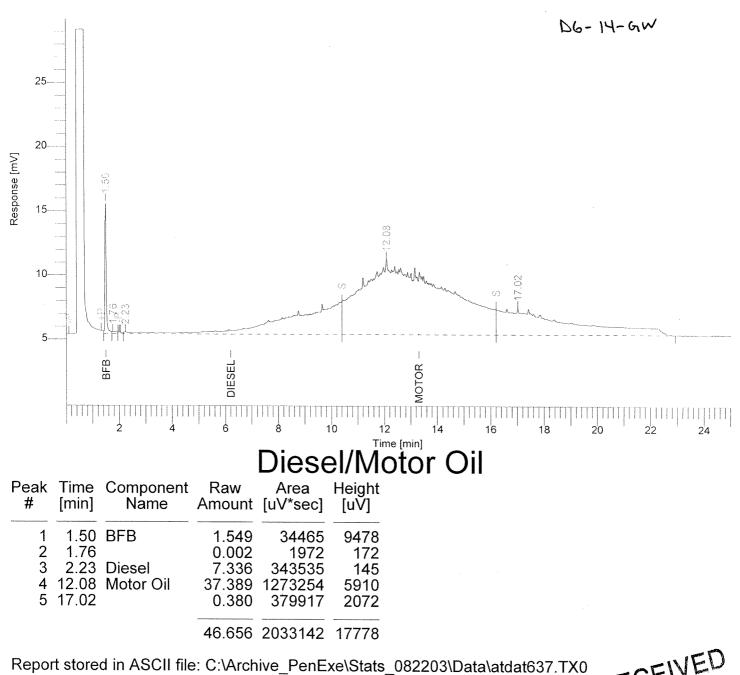
Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\atdat634.TX0

Software Version			03 1:56:23 PM
Sample Name	: A307607-13	Data Acquisition Time : 7/30	//03 8:57:01 PM
Instrument Name	: DsMo	Channel : A	
	: 0/0	Operator : mar	vin
Sample Amount	: 1.000000	Dilution Factor : 1.00	0000
Cvcle	: 13		

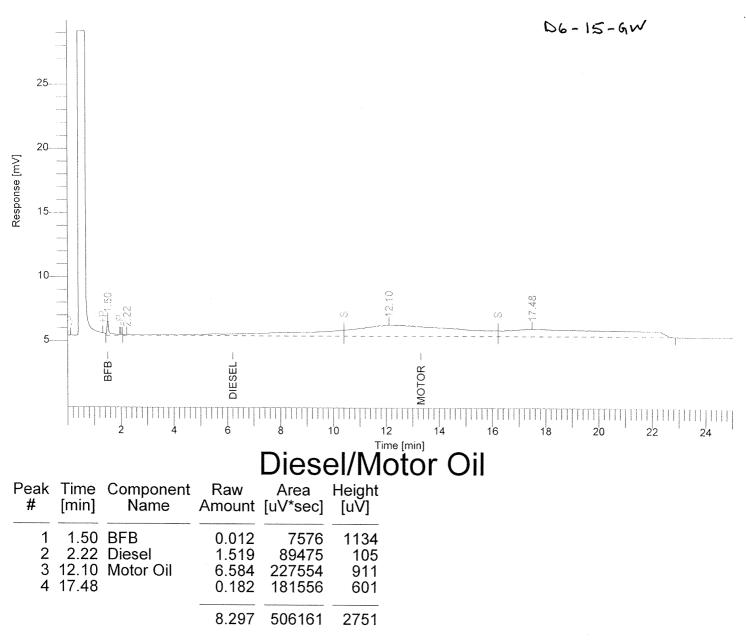

Result File : C:\Archive_PenExe\Stats_082203\Data\atdat635.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq

Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\atdat635.TX0

Software Version Sample Name	: A307607-14	Date Data Acquisition Time	: 9/5/03 1:56:33 PM : 7/30/03 9:37:42 PM
Instrument Name	: DsMo	Channel	: A
Rack/Vial	: 0/0	Operator	: marvin
Sample Amount	: 1.000000	Dilution Factor	: 1.000000
Cycle	: 14		

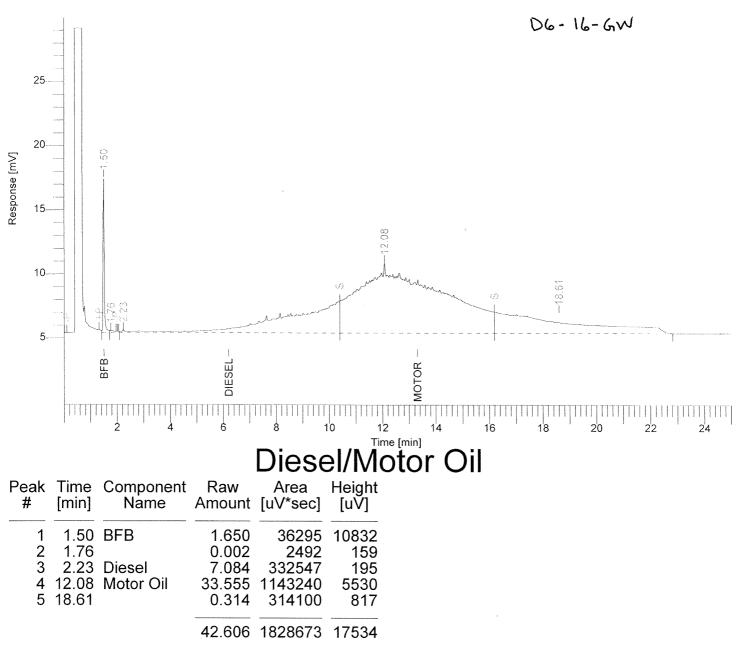

Result File : C:\Archive_PenExe\Stats_082203\Data\atdat636.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq

Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\atdat636.TX0


Software Version : Sample Name :		Date : Data Acquisition Time :	9/5/03 1:56:41 PM 7/30/03 10:18:18 PM
Instrument Name :		Channel :	A marvin
Sample Amount : Cycle :	1.000000 15	1	1.000000

Result File : C:\Archive_PenExe\Stats_082203\Data\atdat637.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq

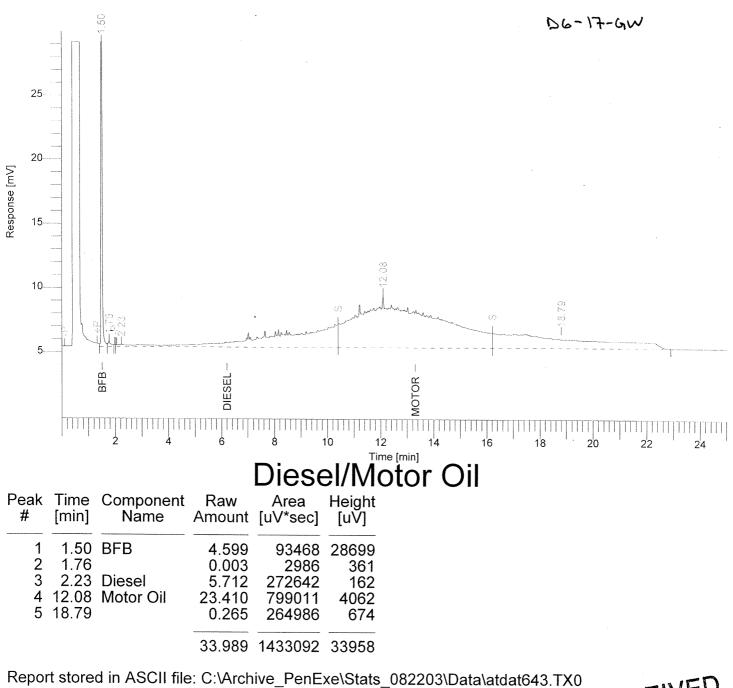
Software Version	: 6.1.2.0.1:D19	Date :	9/5/03 1:56:52 PM
Sample Name	: A307607-16@10X	Data Acquisition Time :	7/30/03 10:58:59 PM
Instrument Name	: DsMo	· · ·	A
Rack/Vial	: 0/0	Operator :	marvin
Sample Amount	: 1.000000		1.000000
Cvcle	: 16		


Result File : C:\Archive_PenExe\Stats_082203\Data\atdat638.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq

Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\atdat638.TX0

Software Version: Sample Name : Instrument Name:	A307607-17	Data Acquisition Time	:	9/5/03 1:57:01 PM 7/30/03 11:39:36 PM A
Rack/Vial : Sample Amount :		Operator		marvin 1.000000
Cycle :	17			

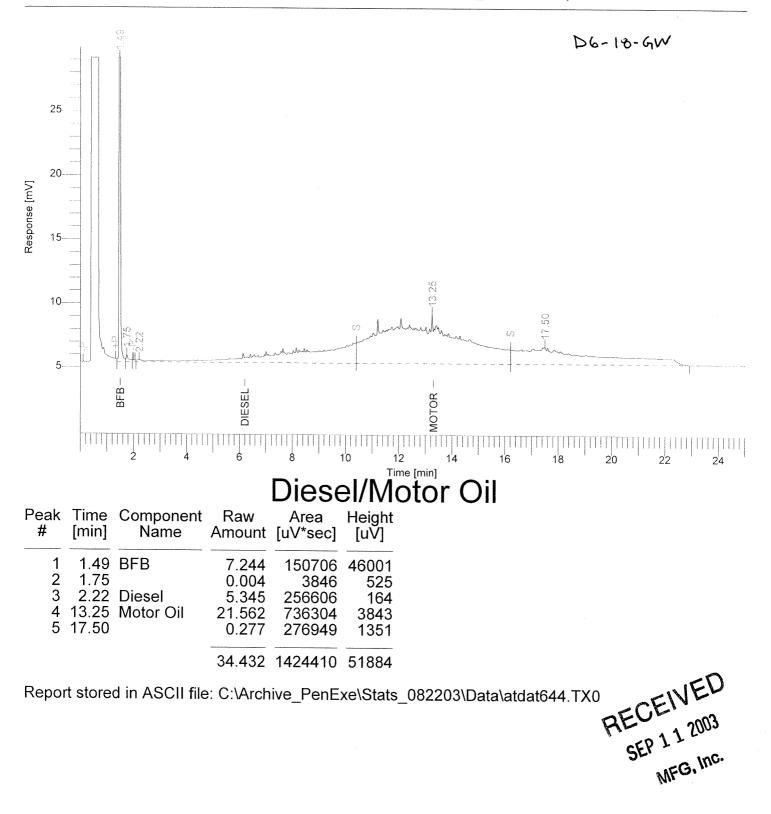
Result File : C:\Archive_PenExe\Stats_082203\Data\atdat639.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq



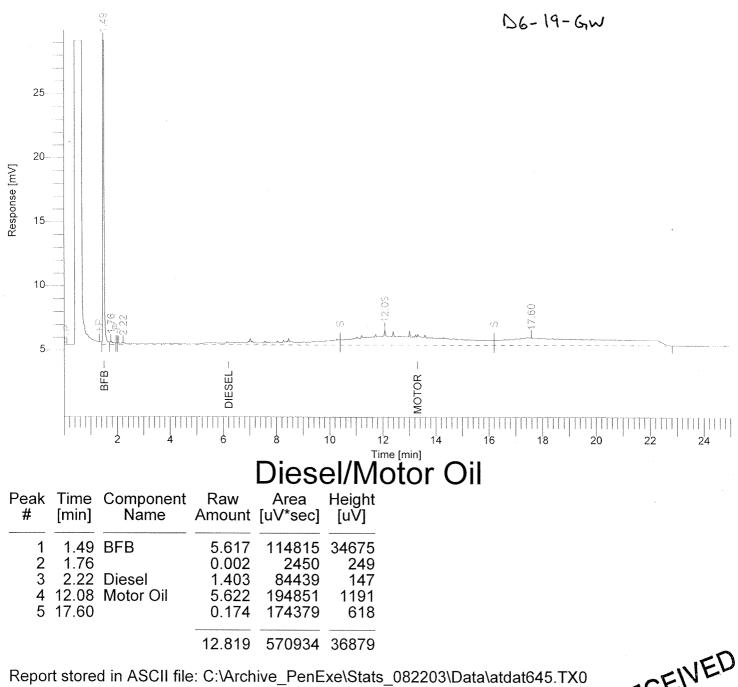
Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\atdat639.TX0

Software Version: 6.1.2.0.1:D19Sample Name: A307607-18Instrument Name: DsMoRack/Vial: 0/0Sample Amount: 1.000000Cycle: 21	Date: 9/5/03 1:57:32 PMData Acquisition Time: 7/31/03 2:22:02 AMChannel: AOperator: marvinDilution Factor: 1.000000
---	---

Result File : C:\Archive_PenExe\Stats_082203\Data\atdat643.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq

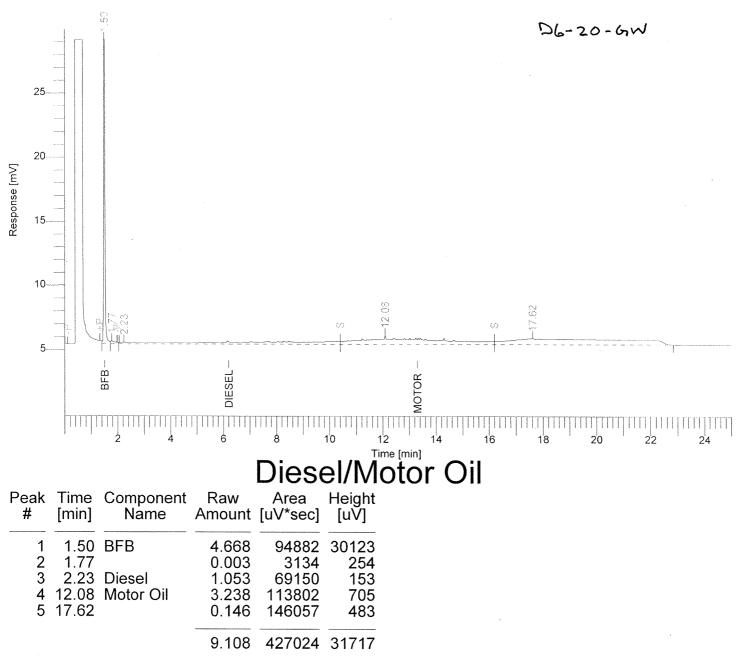

ð

Software Version Sample Name Instrument Name Rack/Vial Sample Amount	: A307607-19 : DsMo : 0/0	Channel Operator	: 9/5/03 1:57:44 PM : 7/31/03 3:02:41 AM : A : marvin : 1.000000
	• 22		. 1.000000


Result File : C:\Archive_PenExe\Stats_082203\Data\atdat644.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq

ſ

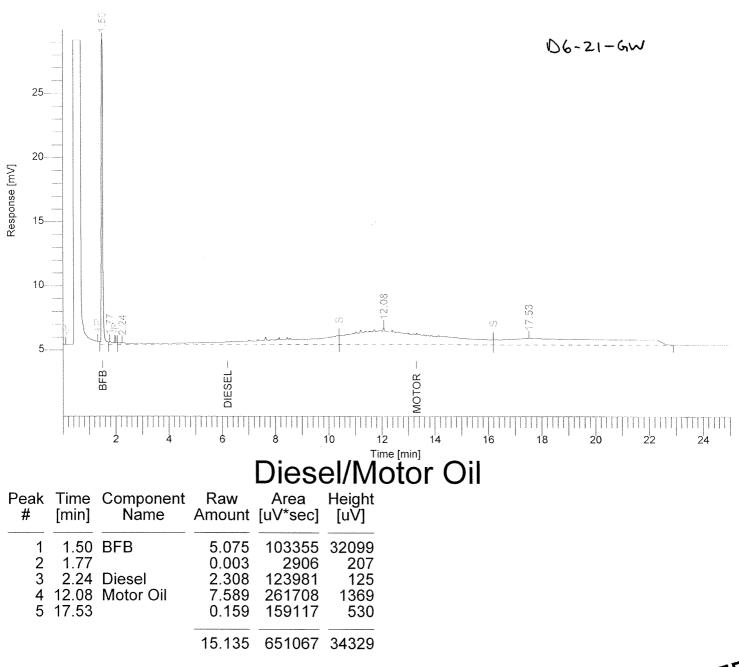
	: A307607-20 : DsMo : 0/0	Data Acquisition Time Channel Operator		A marvin
Sample Amount	: 1.000000	Dilution Factor	:	1.000000
Cycle	: 23			


Result File : C:\Archive_PenExe\Stats_082203\Data\atdat645.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073003.seq

RECEIVED SEP 1 1 2003 MFG, Inc.

Software Version : 6.1.2.	0.1:D19	Date	:	9/5/03 1:58:26 PM
Sample Name : A3076	607-21	Data Acquisition Time	:	7/31/03 12:52:13 PM
Instrument Name : DsMo	•	Channel	:	A
Rack/Vial : 0/0		Operator	:	marvin
Sample Amount : 1.000	000	Dilution Factor	:	1.000000
Cycle : 3				

Result File : C:\Archive_PenExe\Stats_082203\Data\atdat649.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073103.seq

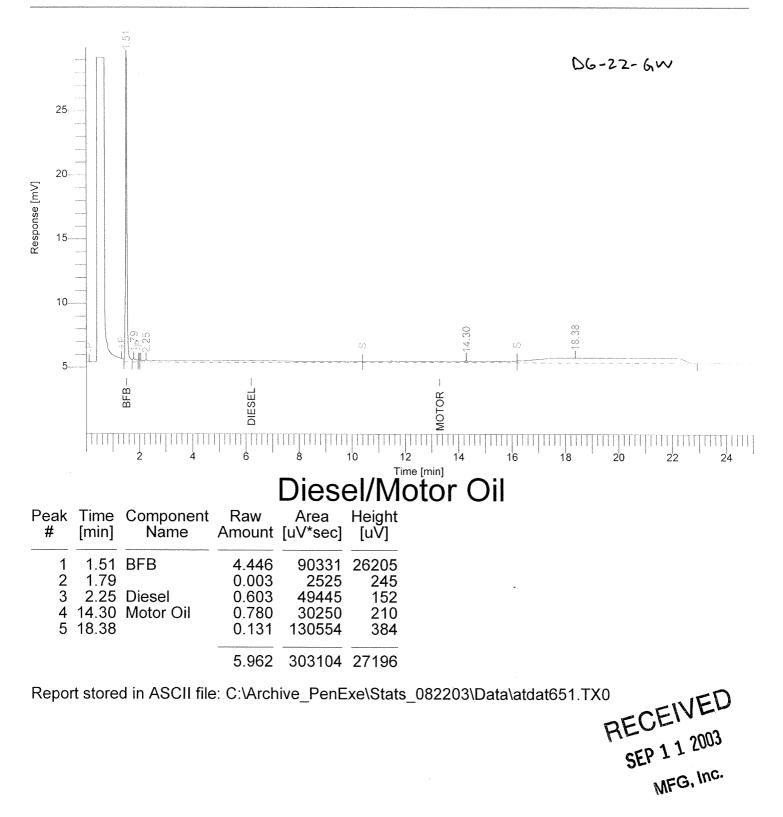


Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\atdat649.TX0

RECEIVED SEP 1 1 2003 MFG, Inc.

Software Version Sample Name		Date Data Acquisition Time	: 9/5/03 1:58:35 PM : 7/31/03 1:32:42 PM
Instrument Name	: DsMo	Channel	: A
	: 0/0	Operator	: marvin
Sample Amount	: 1.000000	Dilution Factor	: 1.000000
Cycle	: 4		

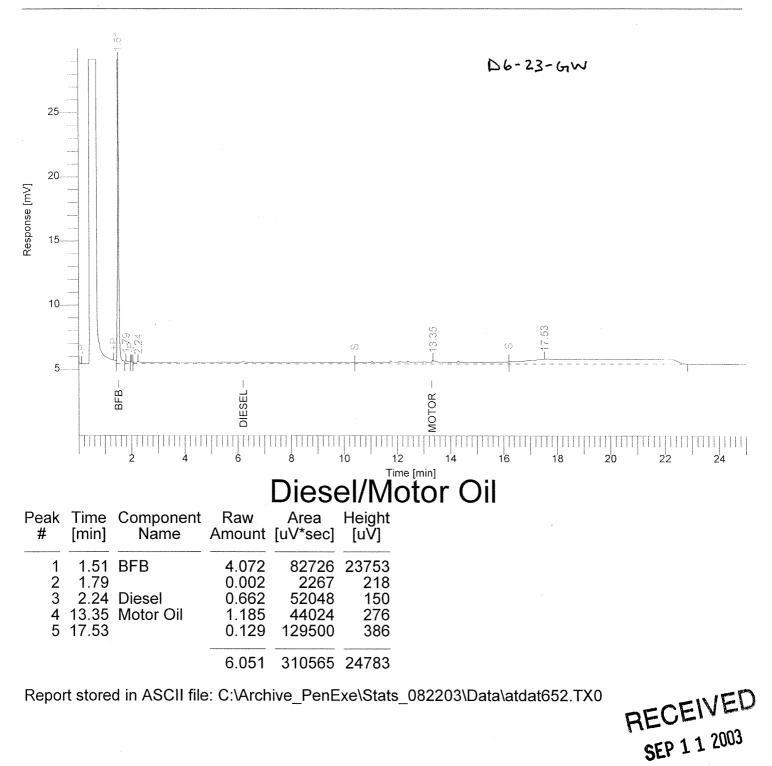
Result File : C:\Archive_PenExe\Stats_082203\Data\atdat650.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073103.seq



Report stored in ASCII file: C:\Archive_PenExe\Stats_082203\Data\atdat650.TX0

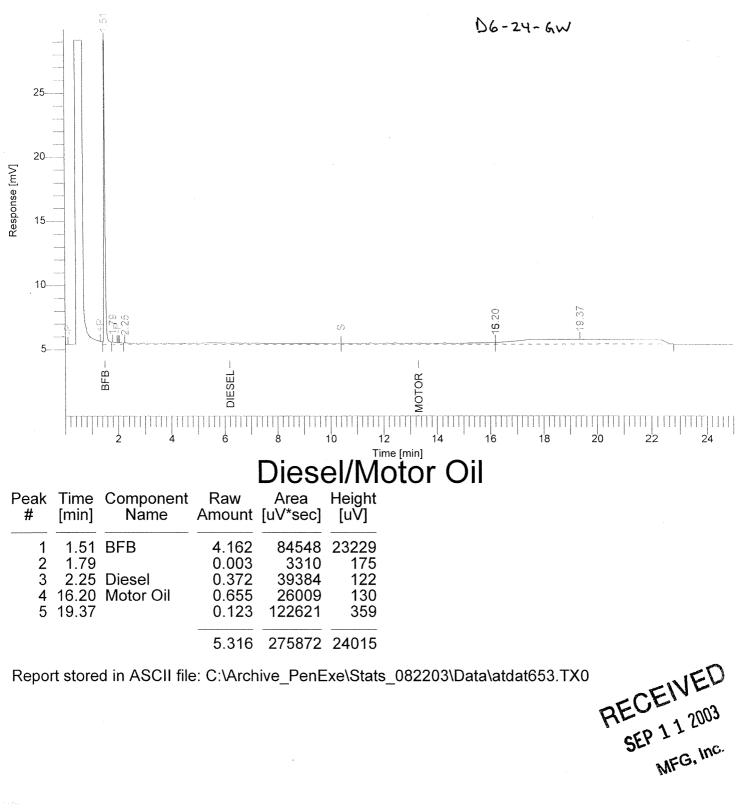
RECEIVED SEP 1 1 2003 MFG, Inc.

Software Version	: 6.1.2.0.1:D19	Date	: 9/5/03 1:58:46 PM
Sample Name	: A307607-23	Data Acquisition Time	: 7/31/03 2:13:11 PM
Instrument Name	: DsMo	Channel	: A
Rack/Vial	: 0/0	Operator	: marvin
Sample Amount	: 1.000000	Dilution Factor	: 1.000000
Cycle	: 5		


Result File : C:\Archive_PenExe\Stats_082203\Data\atdat651.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073103.seq

MFG, Inc.

Software Version	:	6.1.2.0.1:D19	Date	:	9/5/03 1:58:53 PM
Sample Name	:	A307607-24	Data Acquisition Time	:	7/31/03 2:53:51 PM
Instrument Name	:	DsMo	Channel	:	A
Rack/Vial			Operator	:	marvin
Sample Amount	:	1.000000	Dilution Factor	:	1.000000
Cvcle	:	6			


Result File : C:\Archive_PenExe\Stats_082203\Data\atdat652.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073103.seq

Software Version	: 6.1.2.0.1:D19	Date	: 9/5/03 1:58:59 PM
Sample Name	: A307607-25	Data Acquisition Time	: 7/31/03 3:34:29 PM
Instrument Name	: DsMo	Channel	: A
Rack/Vial	: 0/0	Operator	: marvin
Sample Amount	: 1.00000	Dilution Factor	: 1.000000
Cvcle	: 7		

Result File : C:\Archive PenExe\Stats 082203\Data\atdat653.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_073103.seq

N4 5

