Groundwater Monitoring and Progress Report August 2006 Sampling Event

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

Sierra Pacific Industries

October 2006

Project No. 9329.000, Task 32

October 27, 2006 Project 9329.000

Executive Officer California Regional Water Quality Control Board North Coast Region 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

Attention: Kasey Ashley

Subject: Groundwater Monitoring and Progress Report August 2006 Sampling Event Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Dear Ms. Ashley:

As requested by Sierra Pacific Industries, we have enclosed a copy of the subject report.

Sincerely yours, GEOMATRIX CONSULTANTS, INC.

Mike Klim

Mike Keim Senior Environmental Scientist

Iduard Int

Edward P. Conti, CEG, CHG Principal Geologist

Enclosure

RAS/EPC/jd

cc: Bob Ellery, Sierra Pacific Industries (with enclosure)
 Gordie Amos, Sierra Pacific Industries (with enclosure)
 Fred Evenson, Law Offices of Frederic Evenson (with enclosure)
 Jim Lamport, Ecological Rights Foundation (with enclosure)

I:\Doc_Safe\9000s\9329\32 - Task\Groundwater Report August 2006\Cert & Xmtl\TransmittalLtr.doc

Tel 510.663.4100 Fax 510.663.4141

Groundwater Monitoring and Progress Report August 2006 Sampling Event

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

Sierra Pacific Industries

Prepared by:

Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4100

October 2006

Project No. 9329.000, Task 32

PROFESSIONAL CERTIFICATION

GROUNDWATER MONITORING AND PROGRESS REPORT AUGUST 2006 SAMPLING EVENT Sierra Pacific Industries Arcata Division Sawmill Arcata, California

October 27, 2006 Project No. 9329.000, Task 23/32

This report was prepared by Geomatrix Consultants, Inc., under the professional supervision of Edward P. Conti. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional hydrogeologic practice, and within the scope of the project. There is no other warranty, either express or implied.

10	SIONAL GE	\sim
	EDWARD P. CONTI	ies .
	No. 214	
\• \	CERTIFIED	[]
(C)	GEOLOGIST	TIT
X	E OF CALIFO	

may . and

Edward P. Conti, CEG, CHG Principal Geologist

TABLE OF CONTENTS

Page

1.0	INTE	RODUCTION	1
2.0	SITE 2.1	BACKGROUND	1 1
	2.2	LITHOLOGY	3
	2.3	HYDROGEOLOGY	4
3.0	AUC	JUST 2006 GROUNDWATER MONITORING	4
	3.1	Field Methods	4
	3.2	LABORATORY METHODS	6
	3.3	LABORATORY DATA QUALITY REVIEW	6
	3.4	RESULTS OF GROUNDWATER MONITORING	6
		3.4.1 Occurrence and Movement of Groundwater	6
		3.4.2 Groundwater Analytical Results	7
4.0	WAS	STEWATER DISPOSAL	8
5.0	FUT	URE MONITORING AND SAMPLING SCHEDULE	8
6.0	REF	ERENCES	9

TABLE OF CONTENTS (Continued)

TABLES

- Table 1
 Monitoring Well Construction Details
- Table 2Summary of Water Level Measurements
- Table 3Summary of Water Quality Parameters
- Table 4Laboratory Analytical Results for Chlorinated Phenols (Canadian Pulp Method)
- Table 5Field Measurements and Laboratory Analytical Results for Natural Attenuation
Parameters
- Table 6Laboratory Analytical Results for Chlorinated Phenols and Phenol (8270 SIM
Method)
- Table 7Laboratory Analytical Results for Dioxins and Furans
- Table 8
 Laboratory Analytical Results for Truck Shop Monitoring Wells

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Former Green Chain Area Plan
- Figure 4 Truck Shop Area Plan
- Figure 5 Potentiometric Surface Map of Shallow Groundwater, Sawmill Area, August 30, 2006
- Figure 6 Potentiometric Surface Map of Deep Groundwater, Sawmill Area, August 30, 2006
- Figure 7 Potentiometric Surface Map, Truck Shop Area, August 30, 2006
- Figure 8 Pentachlorophenol in Shallow Groundwater August 2006

APPENDIXES

- Appendix A Field Documentation
- Appendix B Laboratory Reports and Chain-of-Custody Records for Groundwater Samples
- Appendix C Laboratory Data Quality Review

GROUNDWATER MONITORING AND PROGRESS REPORT AUGUST 2006 SAMPLING EVENT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

1.0 INTRODUCTION

This report presents the methods and results of the August 2006 groundwater monitoring event at the Sierra Pacific Industries (SPI) Arcata Division Sawmill located in Arcata, California (the site, Figure 1). Groundwater monitoring in the area of the sawmill was performed in accordance with Monitoring and Reporting Program (MRP) No. R1-2003-0127, which was revised and reissued by the California Regional Water Quality Control Board, North Coast Region (RWQCB) on March 4, 2005. Groundwater monitoring in the area of the truck shop was performed in accordance with the *Work Plan for Installation of Monitoring Wells and Piezometer* (Work Plan; Geomatrix, 2005), which was approved by the RWQCB on July 14, 2005. This report was prepared by Geomatrix Consultants, Inc. (Geomatrix), on behalf of SPI.

This report is organized as follows: Site Background, including a discussion of site history, subsurface lithology, and hydrogeology (Section 2.0); August 2006 Groundwater Monitoring (Section 3.0); Wastewater Disposal (Section 4.0); Future Monitoring and Sampling Schedule (Section 5.0); and References (Section 6.0).

2.0 SITE BACKGROUND

This section provides background information regarding the site setting and history and discusses subsurface conditions at the site, including lithology and hydrogeology. Subsurface lithologic and hydrogeologic conditions at the site were previously investigated and described by EnviroNet Consulting (EnviroNet, 2002a).

2.1 HISTORY

The approximately 68-acre site is located on the Samoa Peninsula, along the northern shoreline of Humboldt Bay and approximately 4 miles west of the town of Arcata, California. The site is bounded to the east by the Mad River Slough, to the northwest by an old railroad grade, and to the south by New Navy Base Road and mud flats of Humboldt Bay (Figure 1).

The site is currently an active sawmill; features are shown on Figure 2. The sawmill has operated at the site since approximately 1950. Prior to construction of the mill facilities, the site consisted of undeveloped sand dunes and mud flats. During construction of mill facilities in the 1950s and 1960s, portions of the Mad River Slough on the eastern, northern, and southern sides of the site were filled. The current mill facility consists of an administrative building, a main sawmill building, numerous wood-processing buildings, log storage areas, milled lumber storage areas, and loading/unloading areas. A 140-foot-deep water supply well (Feature 48 on Figure 2) provides water for log sprinkling. An older, shallow water supply well is located adjacent to the 140-foot well, but has not been used since it began to produce sand.

Wood surface protection activities historically conducted at the site included the use of an antistain solution containing chlorinated phenols, including pentachlorophenol (PCP) and tetrachlorophenol, to control sap stain and mold on a small amount of milled lumber. The antistain solution was applied in an aboveground dip tank located in the middle of the former green chain, which was located immediately south of the eastern end of the current sorter building (Feature 49 on Figure 2). Use of the solution containing chlorinated phenols in the former green chain area of the site reportedly commenced in the early to mid-1960s and was discontinued in 1985 (EnviroNet, 2002b). At the direction of the RWQCB, SPI stopped purchasing anti-stain solution containing chlorinated phenols in 1985 and commenced a process of relocating the remaining solution containing chlorinated phenols to a new dip tank facility for recycling (MFG, 2003a). Due to the difficulty of disposing of the old solution containing chlorinated phenols, the remaining solution from the old dip tank was mixed with a new anti-stain solution that did not contain chlorinated phenols at the new dip tank facility (Feature 21 on Figure 2). Recycling of the solution containing chlorinated phenols in the new dip tank continued until 1987, at which time the drip basin adjacent to the old dip tank was cleaned out, filled with sand, and capped with 3 to 4 inches of concrete (MFG, 2003a). The new dip tank has been cleaned three times since 1987.

The potential effects of wood surface protection activities on soil and groundwater have been investigated to depths of approximately 20 feet below ground surface (bgs). In 2002, investigation activities included the installation of 19 monitoring wells at the site: 15 monitoring wells (MW-1 through MW-12, MW-14, MW-17, and MW-18) were constructed to monitor shallow groundwater between depths of approximately 2 and 8 feet bgs, and four monitoring wells (MW-13D, MW-15D, MW-16D, and MW-19D) were constructed to monitor deeper groundwater between depths of approximately 15 and 20 feet bgs (EnviroNet, 2003).

Two additional monitoring wells (MW-20 and MW-21) were installed in January and February 2004 to monitor shallow groundwater (Geomatrix, 2004). Monitoring well locations are illustrated on Figure 3. Monitoring well construction details are included in Table 1.

For an unknown period of time ending in the 1970s, an underground storage tank (UST) was used to store waste oil from vehicle maintenance activities (MFG, 2003b). The UST was located behind (north of) the truck shop building (Figure 4) and buried at a depth such that the waste oil would flow by gravity from drip pans inside the truck shop. Based on the personal accounts of employees from that period, use of the tank was discontinued during the 1970s, but the employees were not certain as to whether the UST had been removed. In April 2003, the UST was located and removed. In 2005, two monitoring wells (MW-22 and MW-23) and two piezometers (P-24 and P-25) were installed to monitor shallow groundwater in the truck shop area (Geomatrix, 2006). The monitoring well and piezometer locations are illustrated on Figure 4. Monitoring well and piezometer construction details are included in Table 1.

2.2 LITHOLOGY

The site is located adjacent to the Mad River Slough near the northern shoreline of Humboldt Bay. The eastern, northern, and southern portions of the site were filled in the 1950s and 1960s.

In the sawmill area, subsurface lithology within the shallow zone (less than 8 feet bgs) is predominantly fine- to medium-grained sand of apparent sand dune origin. Wood and fill material was locally observed in this shallow zone during activities such as the installation of monitoring wells MW-13D and MW-15D. Soil beneath the fine- to medium-grained sand consisted of more sand and locally of fine-grained material, classified as "Bay Mud." The fine-grained material was encountered during the installation of monitoring wells MW-3, MW-10, MW-15D, MW-16D, and MW-17 at depths of approximately 6 to 8 feet bgs and during the installation of monitoring well MW-15 at a depth of approximately 15 feet bgs. Soil described during the installation of a water supply well at the site (Feature 48 on Figure 2) suggests that subsurface soil between the ground surface and 140 feet bgs is predominately composed of sand (EnviroNet, 2001).

In the truck shop area, the subsurface lithology to 6 to 7.5 feet bgs consists generally of fine- to medium-grained sand that has been characterized as being of sand dune origin with varying amounts of clay, silt, and gravel (MFG, 2003b and Geomatrix, 2004). In general, silt was encountered beneath the sand layer. In two borings, WO-1 and WO-7, the sand extended to the total depth of exploration, 12 feet bgs. In four borings (WO-4, -5, -6 and -8), up to 1.0 foot of

peat was present beneath the sand and above the silt. In the boring for MW-22, a 1.5-foot-thick clay layer was present from depths of 6 to 7.5 feet bgs. Non-native materials (aggregate base beneath asphalt, wood debris, and/or other non-native fill soils) were encountered in the borings for MW-22, MW-23, P-24, and P-25 (Geomatrix, 2006). The non-native materials were encountered in these borings from the ground surface to depths of 1.0 feet bgs (MW-23) to 9.0 feet bgs (P-25).

2.3 HYDROGEOLOGY

The groundwater surface measured in 23 monitoring wells and two piezometers has ranged between approximately 0.5 and 5.5 feet bgs in the 21 shallow wells and piezometers (i.e., screened from 2 to 8 feet bgs, 2.5 to 9 feet bgs, or 3.5 to 9 feet bgs) and between approximately 4 and 6 feet bgs in the four deeper wells (i.e., screened from 15 to 20 feet bgs). In the eastern (sawmill) portion of the site, groundwater flow generally is to the east, toward the Mad River Slough (MFG and Geomatrix, 2003). In the southwestern (truck shop) portion of the site, groundwater flows to the south-southeast, toward Humboldt Bay (Geomatrix, 2006).

Tidal fluctuations in the Mad River Slough and nearby Humboldt Bay influence groundwater levels at the site in the vicinity of the slough. A 2002 tidal influence study conducted at the site suggested that tidal effects become negligible at distances greater than 100 feet from the slough shore (EnviroNet, 2003).

3.0 AUGUST 2006 GROUNDWATER MONITORING

This section presents field and laboratory methods and results of groundwater monitoring activities conducted during this period in accordance with the MRP and the Work Plan.

3.1 FIELD METHODS

On August 30, 2006, depth to water was measured in all site monitoring wells and piezometers (MW-1 through MW-23, P-24 and P-25; Figures 3 and 4) and at a monitoring point in the Mad River Slough using an electronic sounder (Table 2). Water levels were measured in the wells on the first day of sampling, before conducting groundwater sampling activities. Monitoring wells were gauged in sequence from lowest expected concentrations of constituents of concern (first) to highest expected concentrations (last), based on laboratory analytical results from the previous sampling event. Field personnel cleaned the meter used to measure the groundwater surface before use at each location. The equipment was washed in an Alconox® detergent solution and then rinsed with distilled water.

Nine monitoring wells (MW-2, MW-6 through MW-9, MW-20, MW-21, MW-22, and MW-23) were purged and sampled on August 30 and 31, 2006, in accordance with the site MRP and truck shop monitoring well installation work plan. Field personnel used dedicated, disposable Teflon[®] bailers to remove standing water in the well casings, except MW-21, where field personnel used a peristaltic pump and dedicated tubing and low-flow purging/sampling techniques. Field personnel measured and recorded temperature, pH, specific conductance, and total dissolved solids (TDS, for sawmill-area wells only) on field sampling records during groundwater purging using a bailer. Purging activities were ceased when a minimum of three well casing volumes of water had been removed and water quality parameters had stabilized to within 10 percent of specific conductance, 0.05 pH units for pH, and 1 degree Celsius for temperature. Copies of the field records for groundwater monitoring and sampling activities are included in Appendix A.

After purging, groundwater samples were collected using the dedicated Teflon® bailers or a peristaltic pump and dedicated tubing. A field sample of groundwater was monitored for temperature, pH, specific conductance, and TDS (for sawmill-area wells only) just prior to collecting the groundwater sample to record the water quality parameters of the groundwater being sampled. These field parameters are summarized in Table 3. Historical laboratory analytical results for TDS also are shown in this table.

Groundwater collected from each of the seven sawmill-area monitoring wells was placed in two 125-milliliter (ml) glass vials that were sealed with Teflon®-lined screw caps. Groundwater collected from each of the two truck shop-area monitoring wells was placed in a 1-liter amber bottle and three 40-ml vials preserved with hydrochloric acid and sealed with screw caps with Teflon®-lined septa. After filling, the vials and bottles were labeled and placed in an ice-cooled, insulated chest for transport to the laboratory for analysis. Chain-of-custody records were completed for the samples and accompanied the samples until received by the laboratory. Copies of the chain-of-custody records for the groundwater samples are included in Appendix B.

An additional groundwater sample was collected from monitoring well MW-21 and submitted to the laboratory as a blind duplicate sample, labeled BD-01-200803. This sample was placed in two additional 125-ml glass vials sealed with Teflon®-lined screw caps and sent to the laboratory as described above.

3.2 LABORATORY METHODS

Groundwater samples collected from monitoring wells MW-2, MW-6 through MW-9, MW-20, and MW-21 located in the sawmill area were analyzed at Alpha Analytical Laboratories, Inc. (Alpha), of Ukiah, California, a California Department of Health Services-certified analytical laboratory. These samples were analyzed for chlorinated phenols (including PCP; 2,3,5,6-tetrachlorophenol; 2,3,4,6-tetrachlorophenol; 2,3,4,5-tetrachlorophenol; and 2,4,6-trichlorophenol) in accordance with the Canadian Pulp method.

Groundwater samples collected from monitoring wells MW-22 and MW-23, located in the truck shop area, were analyzed by Friedman & Bruya, Inc. (Friedman & Bruya) of Seattle, Washington, a California Department of Health Services-certified analytical laboratory. These samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline, TPH as diesel, and TPH as motor oil by modified EPA Method 8015 and for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B. A silica gel preparation procedure, based on EPA Method 3630B, was performed on the sample extracts prior to the TPH as diesel and TPH as motor oil analyses.

3.3 LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed the quality of laboratory data generated for the groundwater sampling as discussed in Appendix C. Based on the procedures and data quality review, the analytical data quality is satisfactory and the sample results appear to be representative.

3.4 **RESULTS OF GROUNDWATER MONITORING**

Monitoring and sampling results from site wells and piezometers include groundwater elevation measurements, field measurements of water quality parameters, and laboratory analysis of groundwater samples. Groundwater elevation data provide information on subsurface hydraulic conditions, discussed below as occurrence and movement of groundwater. Groundwater quality is evaluated based on the laboratory analysis of chlorinated phenols, TPH as gasoline, TPH as diesel, TPH as motor oil, and BTEX. The results are presented below.

3.4.1 Occurrence and Movement of Groundwater

The groundwater surface measured in the sawmill-area shallow monitoring wells (i.e., screened from approximately 2 to 8 feet bgs) ranged from 0.91 to 5.33 feet below the well measuring points, and groundwater elevations ranged from 4.28 to 9.62 feet above mean sea level relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the direction of shallow groundwater flow is generally to the east

(Figure 5). The magnitude of the lateral hydraulic gradient ranges from approximately 0.007 foot/foot in the former green chain vicinity to approximately 0.03 foot/foot beneath the sawmill and maintenance buildings. Groundwater elevations within 100 feet of the Mad River Slough shoreline are subject to tidal fluctuations (EnviroNet, 2003); consequently, the water level elevation in well MW-1 was not used to evaluate the lateral hydraulic gradient of shallow groundwater.

The groundwater surface measured in deep monitoring wells at the site (i.e., screened from approximately 15 to 20 feet bgs) ranged from 4.08 to 5.58 feet below the well measuring points, and groundwater elevations ranged from 5.61 to 6.53 feet above mean sea level, relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the direction of deep groundwater flow is generally to the east (Figure 6). The magnitude of the lateral hydraulic gradient is approximately 0.006 foot/foot.

The groundwater surface measured in the truck shop-area shallow monitoring wells and piezometers ranged from 4.52 to 5.56 feet below the measuring points, and groundwater elevations ranged from 9.56 to 10.81 feet above mean sea level, relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the direction of shallow groundwater flow is generally to the southeast (Figure 7). The magnitude of the lateral hydraulic gradient is approximately 0.02 foot/foot.

3.4.2 Groundwater Analytical Results

Seven sawmill-area groundwater monitoring wells were sampled during this period in accordance with the MRP (MW-2, MW-6 through MW-9, MW-20, and MW-21). Copies of the laboratory analytical report and sample chain-of-custody record are included in Appendix B. The results for the chlorinated phenol analyses are summarized in Table 4. These results also are illustrated on Figure 8 (shallow groundwater).

PCP, tetrachlorophenols, and 2,4,6-trichlorophenol were detected in groundwater samples from 2 of the 12 monitoring wells (MW-7 and MW-21; Table 4). The detected concentrations of PCP were 19,000 micrograms per liter (μ g/L) in the sample from MW-7 and 6,000 μ g/L and 2,500 μ g/L in the samples collected from monitoring well MW-21 (primary and blind duplicate samples, respectively). Chlorinated phenols were not detected at or above the laboratory reporting limits in the samples collected from monitoring wells MW-2, MW-6, MW-8, MW-9, and MW-20.

Historical results for the analysis of natural attenuation parameters, chlorinated phenols and phenol, and dioxins and furans in sawmill-area groundwater monitoring wells are presented in Tables 5, 6, and 7, respectively.

Two truck shop-area groundwater monitoring wells (MW-22 and MW-23) were sampled during this period. Copies of the laboratory analytical report and sample chain-of-custody record are included in Appendix B. The results for the TPH as gasoline, TPH as diesel, TPH as motor oil, and BTEX analyses are summarized in Table 8.

In the samples collected from monitoring wells MW-22 and MW-23, TPH as gasoline, TPH as diesel, TPH as motor oil, and BTEX were not detected at or above laboratory reporting limits.

4.0 WASTEWATER DISPOSAL

The purge water and equipment wash water generated by the environmental activities conducted during August 2006 and discussed herein were placed in three steel, 55-gallon drums and labeled. The drums, which were partially filled, are being temporarily stored at the site and will be disposed of by SPI in accordance with applicable regulations.

5.0 FUTURE MONITORING AND SAMPLING SCHEDULE

For both the sawmill area and truck shop area, the next semi-annual groundwater monitoring event will be performed in February or March 2007.

6.0 **REFERENCES**

- EnviroNet Consulting (EnviroNet), 2001, Report on Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill, Arcata, California, October 23.
- EnviroNet, 2002a, *Report on Recent Hydrogeologic Investigation at Sierra-Pacific Industries*, Arcata Division Sawmill, Arcata, California, April 19.
- EnviroNet, 2002b, Interim Feasibility Study to Remediate Chlorophenols in Soil and Groundwater, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, May 1.
- EnviroNet, 2003, *Results of the Remedial Investigation for Sierra Pacific Industries*, Arcata Division Sawmills, Arcata, California, May 1.
- Geomatrix, 2004, Monitoring Wells MW-20 and MW-21 Installation and Soil Sampling Report, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, April 7.
- Geomatrix, 2005, *Work Plan for Installation of Monitoring Wells and Piezometer*, Sierra Pacific Industries, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, May 20.
- Geomatrix, 2006, *Truck Shop Area Monitoring Wells and Piezometers Installation and Sampling Report*, Sierra Pacific Industries, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, January 27.
- Geomatrix, 2006, *Results of Pilot Study of Proposed Remedial Action Report*, Sierra Pacific Industries, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, July 27.
- MFG, Inc. (MFG), 2003a, *Interim Remedial Measures Report*, Sierra Pacific Industries Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, June 10.
- MFG, 2003b, *Waste Oil Underground Storage Tank Investigation and Closure Report*, Sierra Pacific Industries Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, June 10.
- MFG and Geomatrix, 2003, *Third Quarter 2003 Groundwater Monitoring Report*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, November 3.
- U.S. Environmental Protection Agency (US EPA), 1999, *Contract Laboratory Program National Functional Guidelines for Organic Data Review*, Office of Emergency and Remedial Response, October.

MONITORING WELL CONSTRUCTION DETAILS¹

Sierra Pacific Industries

Arcata Division Sawmill

Arcata, California

Well	Date	Total Boring Depth	Total Well Depth	Well Diameter			Ground Level Elevation ²	Top of Casing Elevation ²	Screened Interval	Screen Slot Size	Filter Pack Interval	Bentonite Seal Interval	Surface Seal Interval ³
No.	Installed	(ft bgs)	(ft bgs)	(inches)	Latitude ²	Longitude ²	(ft msl)	(ft msl)	(ft bgs)	(inches)	(ft bgs)	(ft bgs)	(ft bgs)
Shallow We	ells						1	1				n	
MW-1	5-Mar-02	8	8	2	40.8661595	124.1521395	10.12	9.69	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0-1.0
MW-2	5-Mar-02	9	8	2	40.8661024	124.1525276	10.41	9.61	2.0 - 8.0	0.01	1.5 - 9.0	1.0 - 1.5	0-1.0
MW-3	5-Mar-02	8.5	8	2	40.8662689	124.1530739	11.67	11.22	2.0 - 8.0	0.01	1.5 - 8.5	1.0 - 1.5	0-1.0
MW-4	5-Mar-02	8	8	2	40.8662303	124.1533599	11.17	10.74	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0-1.0
MW-5	7-Mar-02	8	8	2	40.8660945	124.1536734	11.26	10.74	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-6	7-Mar-02	8	8	2	40.8660710	124.1531061	10.13	9.83	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-7	7-Mar-02	8	8	2	40.8659980	124.1531187	10.09	9.74	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-8	8-Mar-02	8	8	2	40.8657492	124.1535343	10.55	10.33	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-9	8-Mar-02	8	8	2	40.8657520	124.1532218	10.36	9.91	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-10	11-Nov-02	9.5	8	2	40.8656910	124.1530670	10.08	9.85	2.0 - 8.0	0.01	1.5 – 9.5	1.0 - 1.5	0 - 1.0
MW-11	12-Nov-02	8.5	8	2	40.8655740	124.1533817	10.51	10.28	2.0 - 8.0	0.01	1.5 - 8.5	1.0 - 1.5	0 - 1.0
MW-12	12-Nov-02	9.5	8	2	40.8656625	124.1537231	11.01	10.76	2.0 - 8.0	0.01	1.5 – 9.5	1.0 - 1.5	0 - 1.0
MW-14	13-Nov-02	8	8	2	40.8657622	124.1523580	9.60	9.15	2.0 - 8.0	0.01	1.5 - 8.0	1.0 - 1.5	0 - 1.0
MW-17	14-Nov-02	9	8	2	40.8656690	124.1526420	9.46	9.16	2.0 - 8.0	0.01	1.5 - 9.0	1.0 - 1.5	0 - 1.0
MW-18	13-Nov-02	9.5	8	4	40.8657448	124.1531649	10.12	9.92	2.0 - 8.0	0.01	1.5 - 9.5	1.0 - 1.5	0 - 1.0
MW-20 ⁴	23-Jan-04	8	7	4	40.8658416	124.1532563	10.92	11.87	3.2 - 6.8	0.01	2.0 - 7.0	1.0 - 2.0	0-1.0
MW-21	12-Feb-04	8.3	8.3	0.75	40.8660161	124.1530089	10.11	12.89	2.1 - 8.1	0.01	1.5 - 8.3	1.0 - 1.5	0-1.0
MW-22	1-Aug-05	10	9.5	2	40.8631428	124.1555472	15.37	15.12	3.5 - 9.0	0.02	3.0 - 10	2.5 - 3.0	0-2.5
MW-23	1-Aug-05	10	9.5	2	40.8632724	124.1553765	15.34	15.11	2.5 - 9.0	0.02	2.0 - 10	1.5 - 2.0	0-1.5
P-24	1-Aug-05	10	9.5	2	40.8634773	124.1557306	15.56	15.33	3.5 - 9.0	0.02	3.0 - 10	2.5 - 3.0	0 - 2.5
P-25	1-Aug-05	10	9.5	2	40.8632884	124.1556166	16.04	15.75	3.5 - 9.0	0.02	3.0 - 10	2.5 - 3.0	0-2.5
Deep Wells													
MW-13D	12-Nov-02	21	20	2	40.8660809	124.1525231	10.26	9.96	15.0 - 20.0	0.01	13.5 - 21.0	12.0 - 13.5	0 - 12.0
MW-15D	13-Nov-02	21	20	2	40.8662658	124.1528255	11.59	11.19	15.0 - 20.0	0.01	14.0 - 21.0	12.0 - 14.0	0 - 12.0
MW-16D	14-Nov-02	21.5	20	2	40.8655571	124.1530363	10.13	9.83	15.0 - 20.0	0.01	14.0 - 21.5	12.0 - 14.0	0 - 12.0
MW-19D	14-Nov-02	21.5	20	2	40.8662419	124.1532744	11.21	11.06	15.0 - 20.0	0.01	14.0 - 21.0	12.0 - 14.0	0 - 12.0

Notes:

Construction details for wells MW-1 through MW-9 were obtained from Report on Recent Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill, dated April 19, 2002 prepared by Environet Consulting. Construction details for wells MW-10 through MW-19D were obtained from Results of the Remedial Investigation for Sierra Pacific Industries – Arcata Division Sawmills, Arcata, California, dated January 30, 2003, prepared by EnviroNet Consulting. Construction details for wells MW-20 and MW-21 were obtained from the Monitoring Wells MW-20 and MW-21 Installation and Sampling Report dated April 7, 2004 prepared by Geomatrix, and details for wells and piezometers MW-22 through P-25 were obtained from the Truck Shop Area Monitoring Wells and Piezometers Installation and Sampling Report dated January 27, 2006 prepared by Geomatrix.

2. Monitoring wells MW-1 through MW-21 were resurveyed by Omsberg and Company of Eureka, California on February 13, 2004, and monitoring wells and piezometers MW-22 through P-25 were surveyed by Omsberg and Preston on August 11, 2005; latitude and longitude were surveyed relative to North American Datum (NAD) of 1983 and elevations were surveyed relative to North American Vertical Datum (NAVD) of 1988.

3. Surface seal interval consists of the concrete surface completion and a neat cement sanitary seal, if applicable.

4. Well installed on a raised concrete pad of the former green chain. Depth measurements (ft bgs) are relative to the local ground surface of the concrete pad, which is approximately 1 foot above the grade of the surrounding ground surface.

Abbreviations:

 $ft \ bgs = \ feet \ below \ ground \ surface$

ft msl = feet mean sea level

SUMMARY OF WATER LEVEL MEASUREMENTS

	NG 1			Water Level
	Measurement -	MP Elevation	Depth to Water	Elevation
Well No.	Date	(ft NAVD 88)	(ft bMP)	(ft NAVD 88)
Shallow Wells		1		
MW-1	14-Mar-02	9.56	5.31	4.25
	18-Jul-02	9.56	4.52	5.04
	16-Sep-02	9.56	4.37	5.19
	02-Dec-02	9.56	4.18	5.38
	18-Mar-03	9.56	4.09	5.47
	31-Mar-03	9.56	4.48	5.08
	21-May-03	9.56	4.66	4.90
	27-Aug-03	9.56	4.55	5.01
	03-Nov-03	9.56	4.20	5.36
	23-Mar-04	9.69	4.47	5.22
	17-May-04	9.69	4.57	5.12
	30-Aug-04	9.69	4.55	5.14
	14-Dec-04	9.69	4.30	5.39
	09-Mar-05	9.69	4.13	5.56
	07-Sep-05	9.69	4.58	5.11
	22-Mar-06	9.69	4.17	5.52
	30-Aug-06	9.69	4.35	5.34
MW-2	14-Mar-02	9.49	4.52	4.97
	18-Jul-02	9.49	5.43	4.06
	16-Sep-02	9.49	5.28	4.21
	02-Dec-02	9.49	5.17	4.32
	18-Mar-03	9.49	5.16	4.33
	31-Mar-03	9.49	5.43	4.06
	21-May-03	9.49	5.45	4.04
	27-Aug-03	9.49	5.09	4.40
	03-Nov-03	9.49	5.17	4.32
	23-Mar-04	9.61	5.31	4.30
	17-May-04	9.61	5.43	4.18
	30-Aug-04	9.61	5.07	4.54
	14-Dec-04	9.61	5.10	4.51
	09-Mar-05	9.61	5.22	4.39
	07-Sep-05	9.61	5.36	4.25
	22-Mar-06	9.61	5.27	4.34
	30-Aug-06	9.61	5.33	4.28
MW-3	14-Mar-02	11.14	2.19	8.95
	18-Jul-02	11.14	2.79	8.35
	16-Sep-02	11.14	2.96	8.18
	02-Dec-02	11.14	2.75	8.39
	18-Mar-03	11.14	2.30	8.84
	31-Mar-03	11.14	1.96	9.18
	21-May-03	11.14	2.19	8.95
	27-Aug-03	11.14	2.08	9.06
	03-Nov-03	11.14	2.35	8.79
	23-Mar-04	11.22	2.24	8.98
	17-May-04	11.22	2.25	8.97
	30-Aug-04	11.22	2.42	8.80
	14-Dec-04	11.22	2.79	8.43
	09-Mar-05	11.22	2.77	8.45
	07-Sep-05	11.22	2.98	8.24
	22-Mar-06	11.22	2.13	9.09
11	30-Aug-06	11.22	2.33	8 89

SUMMARY OF WATER LEVEL MEASUREMENTS

	1	2		Water Level
XX7 11 X1	Measurement ¹	MP Elevation ²	Depth to Water	Elevation
Well No.	Date	(ft NAVD 88)	(ft bMP)	(ft NAVD 88)
MW-4	14-Mar-02	10.71	1.52	9.19
	18-Jul-02	10.71	1.84	8.87
	16-Sep-02	10.71	2.04	8.67
	02-Dec-02	10.71	1.80	8.91
	18-Mar-03	10.71	1.52	9.19
	31-Mar-03	10.71	0.93	9.78
	21-May-03	10.71	1.18	9.53
	27-Aug-03	10.71	1.36	9.35
	03-Nov-03	10.71	1.64	9.07
	23-Mar-04	10.74	1.17	9.57
	17-May-04	10.74	1.17	9.57
	30-Aug-04	10.74	1.37	9.37
	14-Dec-04	10.74	2.21	8.53
	09-Mar-05	10.74	1.95	8.79
	07-Sep-05	10.74	2.08	8.66
	22-Mar-06	10.74	1.55	9.19
	30-Aug-06	10.74	1.80	8.94
MW-5	14-Mar-02	10.69	0.95	9.74
	18-Jul-02	10.69	1.26	9.43
	16-Sep-02	10.69	1.35	9.34
	02-Dec-02	10.69	1.23	9.46
	18-Mar-03	10.69	0.87	9.82
	31-Mar-03	10.69	0.63	10.06
	21-May-03	10.69	0.69	10.00
	27-Aug-03	10.69	0.84	9.85
	03-Nov-03	10.69	0.92	9.77
	23-Mar-04	10.74	0.62	10.12
	17-May-04	10.74	0.78	9.96
	30-Aug-04	10.74	0.71	10.03
	14-Dec-04	10.74	1.50	9.24
	09-Mar-05	10.74	1.40	9.34
	07-Sep-05	10.74	1.43	9.31
	22-Mar-06	10.74	0.95	9.79
	30-Aug-06	10.74	1.12	9.62
MW-6	14-Mar-02	9.77	0.85	8.92
	18-Jul-02	9.77	1.27	8.50
	16-Sep-02	9.77	1.51	8.26
	02-Dec-02	9.77	1.30	8.47
	18-Mar-03	9.77	0.89	8.88
	31-Mar-03	9.77	0.37	9.40
	21-May-03	9.77	0.60	9.17
	27-Aug-03	9.77	0.70	9.07
	03-Nov-03	9.77	1.21	8.56
	23-Mar-04	9.83	0.69	9.14
	17-May-04	9.83	0.78	9.05
	30-Aug-04	9.83	0.99	8.84
	14-Dec-04	9.83	1.25	8.58
	09-Mar-05	9.83	1.17	8.66
	07-Sep-05	9.83	1.47	8.36
	22-Mar-06	9.83	0.56	9.27
	30-Aug-06	9.83	0.98	8.85

SUMMARY OF WATER LEVEL MEASUREMENTS

				Water Level
	Measurement ¹	MP Elevation ²	Depth to Water	Elevation
Well No.	Date	(ft NAVD 88)	(ft bMP)	(ft NAVD 88)
MW-7	14-Mar-02	9.68	0.73	8.95
	18-Jul-02	9.68	1.15	8.53
	16-Sep-02	9.68	1.37	8.31
	02-Dec-02	9.68	1.19	8.49
	18-Mar-03	9.68	0.75	8.93
	31-Mar-03	9.68	0.26	9.42
	21-May-03	9.68	0.45	9.23
	27-Aug-03	9.68	0.61	9.07
	03-Nov-03	9.68	1.13	8.55
	23-Mar-04	9.74	0.44	9.30
	17-May-04	9.74	0.50	9.24
	30-Aug-04	9.74	0.84	8.90
	14-Dec-04	9.74	1.04	8.70
	09-Mar-05	9.74	0.96	8.78
	07-Sep-05	9.74	1.32	8.42
	22-Mar-06	9.74	0.42	9.32
	30-Aug-06	9.74	0.91	8.83
MW-8	14-Mar-02	10.30	0.92	9.38
	18-Jul-02	10.30	1.24	9.06
	16-Sep-02	10.30	1.52	8.78
	02-Dec-02	10.30	1.34	8.96
	18-Mar-03	10.30	0.95	9.35
	31-Mar-03	10.30	0.29	10.01
	21-May-03	10.30	0.49	9.81
	27-Aug-03	10.30	0.91	9.39
	03-Nov-03	10.30	1.36	8.94
	23-Mar-04	10.33	0.57	9.76
	17-May-04	10.33	0.54	9.79
	30-Aug-04	10.33	0.94	9.39
	14-Dec-04	10.33	1.29	9.04
	09-Mar-05	10.33	1.07	9.26
	07-Sep-05	10.33	1.41	8.92
	22-Mar-06	10.33	0.70	9.63
	30-Aug-06	10.33	1.29	9.04
MW-9	14-Mar-02	9.86	0.71	9.15
	18-Jul-02	9.86	1.13	8.73
	16-Sep-02	9.86	1.40	8.46
	02-Dec-02	9.86	1.18	8.68
	18-Mar-03	9.86	0.79	9.07
	31-Mar-03	9.86	0.11	9.75
	21-May-03	9.86	0.30	9.56
	27-Aug-03	9.86	0.81	9.05
	03-Nov-03	9.86	1.19	8.67
	23-Mar-04	9.91	0.40	9.51
	17-May-04	9.91	0.38	9.53
	30-Aug-04	9.91	0.89	9.02
	14-Dec-04	9.91	1.05	8.86
	09-Mar-05	9.91	0.85	9.06
	07-Sep-05	9.91	1.27	8.64
	22-Mar-06	9.91	0.45	9.46
	30-Aug-06	9.91	1.13	8.78

SUMMARY OF WATER LEVEL MEASUREMENTS

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-10	02-Dec-02	9.80	1.35	8.45
	18-Mar-03	9.80	0.95	8.85
	31-Mar-03	9.80	0.30	9.50
	21-May-03	9.80	0.52	9.28
	27-Aug-03	9.80	1.02	8.78
	03-Nov-03	9.80	1.43	8.37
	23-Mar-04	9.85	0.70	9.15
	17-May-04	9.85	0.61	9.24
	30-Aug-04	9.85	1.13	8.72
	14-Dec-04	9.85	1.24	8.61
	09-Mar-05	9.85	1.05	8.80
	07-Sep-05	9.85	1.43	8.42
	22-Mar-06	9.85	0.90	8.95
	30-Aug-06	9.85	1.35	8.50
MW-11	02-Dec-02	10.26	1.55	8.71
	18-Mar-03	10.26	1.12	9.14
	31-Mar-03	10.26	0.40	9.86
	21-May-03	10.26	0.64	9.62
	27-Aug-03	10.26	1.19	9.07
	03-Nov-03	10.26	1.56	8.70
	23-Mar-04	10.28	0.75	9.53
	17-May-04	10.28	0.69	9.59
	30-Aug-04	10.28	1.20	9.08
	14-Dec-04	10.28	1.44	8.84
	09-Mar-05	10.28	1.14	9.14
	07-Sep-05	10.28	1.57	8.71
	22-Mar-06	10.28	0.79	9.49
	30-Aug-06	10.28	1.52	8.76
MW-12	02-Dec-02	10.73	1.56	9.17
	18-Mar-03	10.73	1.15	9.58
	31-Mar-03	10.73	0.55	10.18
	21-May-03	10.73	0.70	10.03
	27-Aug-03	10.73	1.12	9.61
	03-Nov-03	10.73	1.68	9.05
	23-Mar-04	10.76	0.87	9.89
	17-May-04	10.76	0.76	10.00
	30-Aug-04	10.76	1.13	9.63
	14-Dec-04	10.76	1.55	9.21
	09-Mar-05	10.76	1.27	9.49
	07-Sep-05	10.76	1.57	9.19
	22-Mar-06	10.76	0.98	9.78
	30-Aug-06	10.76	1.44	9.32

SUMMARY OF WATER LEVEL MEASUREMENTS

	Measurement ¹	MP Elevation ²	Depth to Water	Water Level Elevation
Well No.	Date	(ft NAVD 88)	(ft bMP)	(ft NAVD 88)
MW-14	02-Dec-02	9.02	2.40	6.62
	18-Mar-03	9.02	2.21	6.81
	31-Mar-03	9.02	1.77	7.25
	21-May-03	9.02	1.69	7.33
	27-Aug-03	9.02	2.27	6.75
	03-Nov-03	9.02	2.52	6.50
	23-Mar-04	9.15	2.08	7.07
	17-May-04	9.15	2.15	7.00
	30-Aug-04	9.15	2.48	6.67
	14-Dec-04	9.15	2.30	6.85
	09-Mar-05	9.15	2.10	7.05
	07-Sep-05	9.15	2.37	6.78
	22-Mar-06	9.15	2.38	6.77
	30-Aug-06	9.15	2.56	6.59
MW-17	02-Dec-02	8.98	1.27	7.71
	18-Mar-03	8.98	0.94	8.04
	31-Mar-03	8.98	0.32	8.66
	21-May-03	8.98	0.58	8.40
	27-Aug-03	8.98	1.06	7.92
	03-Nov-03	8.98	1.30	7.68
	23-Mar-04	9.16	0.83	8.33
	17-May-04	9.16	0.74	8.42
	30-Aug-04	9.16	1.21	7.95
	14-Dec-04	9.16	1.17	7.99
	09-Mar-05	9.16	1.00	8.16
	07-Sep-05	9.16	1.35	7.81
	22-Mar-06	9.16	0.79	8.37
	30-Aug-06	9.16	1.31	7.85
MW-18	02-Dec-02	9.53	0.94	8.59
	18-Mar-03	9.53	0.52	9.01
	31-Mar-03	9.53	3	NC
	21-May-03	9.53	0.05	9.48
	27-Aug-03	9.53	0.55	8.98
	03-Nov-03	9.53	0.95	8.58
	23-Mar-04	9.92	0.52	9.40
	17-May-04	9.92	0.47	9.45
	30-Aug-04	9.92	0.98	8.94
	14-Dec-04	9.92	1.13	8.79
	09-Mar-05	9.92	0.94	8.98
	07-Sep-05	9.92	1.36	8.56
	22-Mar-06	9.92	0.59	9.33
	30-Aug-06	9.92	1.22	8.70
MW-20	23-Mar-04	11.87	2.36	9.51
	17-May-04	11.87	2.35	9.52
	30-Aug-04	11.87	2.70	9.17
	14-Dec-04	11.87	2.80	9.07
	09-Mar-05	11.87	2.72	9.15
	07-Sep-05	11.87	3.06	8.81
	22-Mar-06	11.87	2.22	9.65
	30-Aug-06	11.87	2.94	8.93

SUMMARY OF WATER LEVEL MEASUREMENTS

	Measurement ¹	MP Elevation ²	Depth to Water	Water Level Elevation
Well No.	Date	(ft NAVD 88)	(ft bMP)	(ft NAVD 88)
MW-21	23-Mar-04	12.89	3.97	8.92
	17-May-04	12.89	3.99	8.90
	30-Aug-04	12.89	4.23	8.66
	14-Dec-04	12.89	4.36	8.53
	09-Mar-05	12.89	4.35	8.54
	07-Sep-05	12.89	4.65	8.24
	22-Mar-06	12.89	3.79	9.10
	30-Aug-06	12.89	4.02	8.87
MW-22	08-Sep-05	15.12	5.76	9.36
	23-Mar-06	15.12	4.38	10.74
	30-Aug-06	15.12	5.56	9.56
MW-23	08-Sep-05	15.11	5.44	9.67
	23-Mar-06	15.11	3.99	11.12
	30-Aug-06	15.11	5.19	9.92
P-24	08-Sep-05	15.33	4.84	10.49
	23-Mar-06	15.33	2.69	12.64
	30-Aug-06	15.33	4.52	10.81
P-25	08-Sep-05	15.75	5.47	10.28
	23-Mar-06	15.75	3.40	12.35
	30-Aug-06	15.75	5.29	10.46
Deep Wells				
MW-13D	02-Dec-02	9.84	4.18	5.66
	18-Mar-03	9.84	4.21	5.63
	31-Mar-03	9.84	4.26	5.58
	21-May-03	9.84	4.52	5.32
	27-Aug-03	9.84	4.45	5.39
	03-Nov-03	9.84	4.30	5.54
	23-Mar-04	9.96	4.42	5.54
	17-May-04	9.96	4.54	5.42
	30-Aug-04	9.96	4.57	5.39
	14-Dec-04	9.96	4.56	5.40
	09-Mar-05	9.96	4.26	5.70
	07-Sep-05	9.96	4.55	5.41
	22-Mar-06	9.96	3.98	5.98
	30-Aug-06	9.96	4.33	5.63
MW-15D	02-Dec-02	11.08	5.31	5.77
	18-Mar-03	11.08	5.44	5.64
	31-Mar-03	11.08	5.46	5.62
	21-May-03	11.08	5.74	5.34
	27-Aug-03	11.08	5.71	5.37
	03-Nov-03	11.08	5.51	5.57
	23-Mar-04	11.19	5.66	5.53
	17-May-04	11.19	5.77	5.42
	30-Aug-04	11.19	5.83	5.36
	14-Dec-04	11.19	5.75	5.44
	09-Mar-05	11.19	5.48	5.71
	07-Sep-05	11.19	5.83	5.36
	22-Mar-06	11.19	5.18	6.01
	30-Aug-06	11.19	5.58	5.61

SUMMARY OF WATER LEVEL MEASUREMENTS

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-16D	02-Dec-02	9.80	3.99	5.81
	18-Mar-03	9.80	4.17	5.63
	31-Mar-03	9.80	3.91	5.89
	21-May-03	9.80	4.11	5.69
	27-Aug-03	9.80	3.95	5.85
	03-Nov-03	9.80	4.26	5.54
	23-Mar-04	9.83	4.01	5.82
	17-May-04	9.83	4.13	5.70
	30-Aug-04	9.83	4.13	5.70
	14-Dec-04	9.83	4.38	5.45
	09-Mar-05	9.83	4.22	5.61
	07-Sep-05	9.83	4.23	5.60
	22-Mar-06	9.83	3.76	6.07
	30-Aug-06	9.83	4.08	5.75
MW-19D	02-Dec-02	11.00	4.31	6.69
	18-Mar-03	11.00	4.23	6.77
	31-Mar-03	11.00	4.02	6.98
	21-May-03	11.00	4.22	6.78
	27-Aug-03	11.00	4.26	6.74
	03-Nov-03	11.00	4.61	6.39
	23-Mar-04	11.06	4.13	6.93
	17-May-04	11.06	4.63	6.43
	30-Aug-04	11.06	4.60	6.46
	14-Dec-04	11.06	4.82	6.24
	09-Mar-05	11.06	4.46	6.60
	07-Sep-05	11.06	4.59	6.47
	22-Mar-06	11.06	4.26	6.80
	30-Aug-06	11.06	4.53	6.53

SUMMARY OF WATER LEVEL MEASUREMENTS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
Mad River Slough ⁴	31-Mar-03	15.70	15.15	0.55
	31-Mar-03	15.70	15.84	-0.14
	21-May-03	15.70	17.23	-1.53
	21-May-03	15.70	16.75	-1.05
	27-Aug-03	15.70	16.20	-0.50
	27-Aug-03	15.70	12.60	3.10
	03-Nov-03	15.70	9.63	6.07
	03-Nov-03	15.70	10.53	5.17
	23-Mar-04	15.70	15.00	0.70
	23-Mar-04	15.70	12.16	3.54
	17-May-04	15.70	14.48	1.22
	17-May-04	15.70	12.50	3.20
	30-Aug-04	15.70	15.17	0.53
	30-Aug-04	15.70	12.20	3.50
	14-Dec-04	15.70	12.05	3.65
	14-Dec-04	15.70	9.90	5.80
	09-Mar-05	15.70	9.31	6.39
	09-Mar-05	15.70	8.43	7.27
	07-Sep-05	15.70	16.35	-0.65
	07-Sep-05	15.70	12.95	2.75
	22-Mar-06	15.70	12.55	3.15
	22-Mar-06	15.70	15.80	-0.10
	30-Aug-06	15.70	13.51	2.19
	30-Aug-06	15.70	13.12	2.58

Notes:

- Data prior to March 18, 2003 were obtained from Results of the Remedial Investigation for Sierra Pacific Industries - Arcata Division Sawmill, Arcata, California, dated January 30, 2003, prepared by Environet Consulting.
- Monitoring wells surveyed by Omsberg & Company of Eureka, California. Wells MW-1 through MW-21 were resurveyed on February 13, 2004, wells MW-22 through P-25 were surveyed on August 11, 2005; elevations shown are relative to the Northern American Vertical Datum of 1988.
- 3. Water level was above the top of casing measuring point.
- Mad River Slough measuring point on railroad bridge. Water level measurements are obtained before and after the water level measurements in monitoring wells MW-1 through MW-21.

Abbreviations:

ft NAVD 88 = feet above North American Vertical Datum of 1988

ft bMP = feet below measuring point

-- = not measured or sample not collected for analysis

NC = not calculated

SUMMARY OF WATER QUALITY PARAMETERS

			Laboratory Measurement ²			
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
Shallow Wells					1	
	20-Mar-03	14	2,600	6.5		
	22-May-03	14	2,700	6.7		1,400
	27-Aug-03	18	2,500	6.7	1,800	1,400
	04-Nov-03	17	2,400	6.6	1,800	1,300
MW-1	17-May-04	15	2,600	6.3	1,900	1,400
	15-Dec-04	15	3,800	6.6	2,500	
	11-Mar-05	14	2,100	6.5	1,400	
	07-Sep-05	18	2,400	6.5	1,700	
	23-Mar-06	13	2,700	6.5	1,700	
	20-Mar-03	13	2,100	6.2		
	22-May-03	14	1,700	6.4	1,100	860
	27-Aug-03	18	1,500	6.6	1,100	760
	03-Nov-03	16	1,590	6.3	1,100	760
	24-Mar-04	13	1,390	6.3	970	740
	17-May-04	15	1,400	6.2	980	730
IVI VV -2	30-Aug-04	19	1,200	3	850	680
	15-Dec-04	14	1,100	6.4	740	
	11-Mar-05	13	1,200	6.2	790	
	07-Sep-05	18	1,300	6.4	900	
	23-Mar-06	13	1,300	6.4	860	
	31-Aug-06	18	1,200	6.4	820	
	20-Mar-03	13	1,100	6.4		
	22-May-03	15	1,000	6.4	630	510
	27-Aug-03	20	1,000	6.5	720	470
	03-Nov-03	16	980	6.6		410
MW-3	17-May-04	16	1,100	6.2	750	510
	15-Dec-04	13	700	6.4	460	
	10-Mar-05	13	600	6.4	390	
	07-Sep-05	19	810	6.4	810	
	23-Mar-06	12	540	6.7	350	
	20-Mar-03	14	830	6.5		
	22-May-03	16	730	6.4	440	420
	27-Aug-03	21	730	6.5	500	340
M W -4	03-Nov-03	18	760	6.6	520	310
	17-May-04	18	880	6.2	590	360
	15-Dec-04	14	640	6.4	410	

SUMMARY OF WATER QUALITY PARAMETERS

			Laboratory Measurement ²			
			Specific			
		Temperature	Conductance	pН	TDS	TDS
Well No.	Date Sampled	(°C)	(µmohs/cm)	(pH Units)	(mg/L)	(mg/L)
	20-Mar-03	14	670	6.6		
	22-May-03	14	690	6.6	410	360
	27-Aug-03	18	670	6.7	450	360
	03-Nov-03	17	660	6.6	450	380
MW-5	17-May-04	15	660	6.3	440	360
	15-Dec-04	15	470	6.4	310	
	10-Mar-05	14	570	6.3	390	
	07-Sep-05	18	660	6.5	450	
	24-Mar-06	11	190	6.6	130	
	20-Mar-03	11	950	6.6		
	22-May-03	14	1,000	6.3	620	430
	27-Aug-03	17	890	6.4	620	410
MW-6	04-Nov-03	13	920	6.6	630	430
	24-Mar-04	11	920	6.5	640	410
	17-May-04	14	930	6.3	640	420
WI W-0	30-Aug-04	17	880	3	610	430
	15-Dec-04	11	700	6.4	460	
	11-Mar-05	11	900	6.7	620	
	07-Sep-05	16	900	6.4	610	
	22-Mar-06	9	990	6.6	650	
	31-Aug-06	16	1,000	6.6	700	
	20-Mar-03	11	910	6.6		
	22-May-03	11	960	6.5		460
	27-Aug-03	14	840	6.6	580	400
	03-Nov-03	12	870	6.6	600	460
	24-Mar-04	11	960	6.4		440
MW-7	18-May-04	12	730	6.6	490	370
141 44 - 7	30-Aug-04	14	840	3	580	410
	15-Dec-04	11	700	6.4	460	
	09-Mar-05	11	850	6.3	580	
	07-Sep-05	13	920	6.4	630	
	24-Mar-06	10	120	6.7	85	
	31-Aug-06	13	970	6.6	670	
	18-Mar-03	14	730	6.4		
	21-May-03	16	740	6.3	460	390
	27-Aug-03	21	730	6.2	500	370
	04-Nov-03	17	740	6.4	510	380
	24-Mar-04	14	780	6.2	530	400
MW-8	17-May-04	18	800	6.1	530	390
141 44 -0	30-Aug-04	21	760	3	520	390
	14-Dec-04	14	650	6.3	420	
	11-Mar-05	13	800	6.5	550	
	07-Sep-05	20	810	6.4	540	
	22-Mar-06	12	860	6.5	560	
	31-Aug-06	20	820	6.5	560	

SUMMARY OF WATER QUALITY PARAMETERS

			Laboratory Measurement ²			
Well No	Date Sampled	Temperature (°C)	Specific Conductance (umobs/cm)	pH (nH Units)	TDS	TDS (mg/L)
wen no.	18-Mar-03	14	(µmons/cm) 820	64	(IIIg/L)	(IIIg/L)
	23-May-03	16	870	6.1	550	400
	27-Aug-03	20	830	6.0	570	350
	04-Nov-03	17	820	6.5	560	350
	24-Mar-04	14	880	6.0	600	380
	17-May-04	16	930	6.1	620	380
MW-9	30-Aug-04	20	860	3	550	440
	14-Dec-04	13	800	6.4	520	
	11-Mar-05	13	900	67	620	
	07-Sep-05	19	920	6.4	620	
	22-Mar-06	12	930	6.1	600	
	31-Aug-06	19	900	6.6	620	
	18-Mar-03	14	920	6.0		
	23-May-03	17	970	67		460
	27-Aug-03	22	860	63	600	400
MW-10	04-Nov-03	18	880	6.5	600	430
	17-May-04	19	920	6.0	610	420
	14-Dec-04	14	700	6.4	450	
	20-Mar-03	14	870	6.4		
-	21-May-03	17	890	6.4	560	460
	27-Aug-03	23	870	6.2	600	440
MW-11	04-Nov-03	19	880	6.6	600	450
	17-May-04	18	880	6.2	590	430
	14-Dec-04	15	740	6.4	480	
	18-Mar-03	15	830	6.3		
	21-May-03	18	840	6.1		460
NOV 10	27-Aug-03	23	870	6.2	600	480
MW-12	04-Nov-03	18	920	6.5	630	480
	17-May-04	20	900	6.0	600	490
	14-Dec-04	14	710	6.4	460	
	20-Mar-03	14	3,200	6.7		
	22-May-03	15	3,400	6.6		2,100
	27-Aug-03	20	3,600	6.6	2,300	1,900
	04-Nov-03	16	3,300	6.6	2,500	2,100
MW-14	17-May-04	17	2,800	6.4	2,000	1,800
	15-Dec-04	14	2,500	6.6	1,300	
	09-Mar-05	13	2,400	6.6	1,600	
	07-Sep-05	20	2,700	6.4	2,000	
	23-Mar-06	13	2,900	6.7	1,900	
	20-Mar-03	13	980	6.4		
	22-May-03	15	1,000	6.5		450
MW 17	27-Aug-03	19	860	7.0	600	420
101 00 - 1 /	04-Nov-03	15	920	6.6	640	450
	17-May-04	15	940	6.5	620	440
	14-Dec-04	12	830	6.4	540	

SUMMARY OF WATER QUALITY PARAMETERS

			Laboratory Measurement ²			
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
	18-Mar-03	14	1,000	6.5		
	23-May-03	17	980	6.6	610	640
MW 19	27-Aug-03	23	1,100	6.3	780	520
IVI VV - 1 0	04-Nov-03	17	1,100	6.6	760	490
	17-May-04	19	1,000	6.3	670	430
	14-Dec-04	13	860	6.5	560	
	24-Mar-04	14	420	6.9	280	250
	18-May-04	18	470	6.7	310	280
	30-Aug-04	21	500	3	330	300
MW-20	15-Dec-04	12	370	6.5	240	
	09-Mar-05	13	320	6.6	220	
	07-Sep-05	19	510	6.6	340	
	24-Mar-06	11	310	6.8	200	
	31-Aug-06	18	420	6.8	280	
	24-Mar-04	12	990	6.3	680	460
-	18-May-04	14	1,000	6.3	660	420
	30-Aug-04	16	960	3	660	450
MUV 01	15-Dec-04	11	760	6.2	500	
MW-21	10-Mar-05	11	930	6.3	640	
	07-Sep-05	15	1,000	6.4	690	
	24-Mar-06	10	1,000	6.6	670	
	31-Aug-06	15	1,000	6.6	690	
	08-Sep-05	19	740	6.6		
MW-22	23-Mar-06	14	720	6.0		
	30-Aug-06	19	900	6.1		
	08-Sep-05	18	4,400	6.7		
MW-23	23-Mar-06	14	4,100	6.6		
	30-Aug-06	19	4,000	6.8		
P-24	08-Sep-05	21	1,500	6.2		
P-25	08-Sep-05	18	410	6.1		
Deep Wells					•	
	20-Mar-03	14	1,200	6.2		
	22-May-03	14	1,100	6.2		
	27-Aug-03	15	1,100	6.1	750	690
MW 12D	04-Nov-03	15	1,000	6.1		580
MW-13D	17-May-04	14	1,000	5.8	700	610
	15-Dec-04	14	620	6.1	400	
	11-Mar-05	14	900	6.2	620	
	22-Mar-06	14	1,200	6.2	770	

SUMMARY OF WATER QUALITY PARAMETERS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

			Laboratory Measurement ²			
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
	20-Mar-03	13	1,300	6.8		
	22-May-03	13	1,300	6.8		800
MW-15D	27-Aug-03	14	1,300	6.3	900	810
	04-Nov-03	14	1,300	6.8		790
	17-May-04	13	1,400	6.3	930	800
	15-Dec-04	14	1,000	6.7	650	
	11-Mar-05	13	1,300	6.8	880	
	22-Mar-06	13	1,300	6.6	840	
	18-Mar-03	14	5,200	7.7		
	23-May-03	14	5,200	7.6		3,200
	27-Aug-03	16	5,000	7.4	3,400	3,000
MW 16D	04-Nov-03	16	4,800	7.6	3,700	2,800
WI W-10D	17-May-04	15	4,600	7.3	3,500	2,800
	14-Dec-04	16	3,700	7.7	2,400	
	11-Mar-05	15	4,400	7.8	3,400	
	22-Mar-06	14	4,400	7.7	2,900	
	20-Mar-03	16	810	6.7		
	22-May-03	16	860	6.6	520	480
MW 10D	27-Aug-03	17	810	6.5	560	410
1v1 vv -19D	03-Nov-03	17	760	6.7	520	370
	17-May-04	16	840	6.5	560	430
	15-Dec-04	17	490	6.5	320	

Notes:

1. Water quality parameters measured in the field using an Ultrameter instrument or a YSI Model 556 instrument; reported measurements recorded towards end of purge after parameters stabilized or from the last purge volume if a well was repeatedly purged dry.

- 2. Water quality parameter analyzed in the laboratory; EPA Method 160.1. Laboratory analysis of TDS was discontinued during the fourth quarter 2004.
- 3. pH meter inoperable.

Abbreviations:

°C = degrees Celsius

mmhos/cm = micromhos per centimeter at 25 °C

mg/L = milligrams per liter

-- = not measured or sample not collected for analysis

TDS = total dissolved solids

EPA = U.S. Environmental Protection Agency

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

		Concen				,	
Martin	Data	Dente	2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	Commonts
Monitoring		Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
	Sampled	chlorophenol	pnenoi	phenoi	pnenoi	pnenoi	
Shallow wells	14 Mar 02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Mar-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	1.8	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Oct-02 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	02-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-1	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	04-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	23-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	14-Mar-02	7.4	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	2.5	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
IVI W -2	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	23-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	31-Aug-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1
	14-Mar-02	1.2	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	5.0	< 1.0	<1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-3	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	<1.0	<1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-3	30-Aug-04 15-Dec-04 11-Mar-05 07-Sep-05 23-Mar-06 31-Aug-06 14-Mar-02 18-Jul-02 16-Sep-02 03-Dec-02 20-Mar-03 22-May-03 27-Aug-03 4-Nov-03 17-May-04 15-Dec-04						low flow sample low flow sample low flow sample

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

			2.4.6-	2.3.5.6-	2.3.4.6-	2,3,4,5-	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled ¹	chlorophenol	phenol	phenol	phenol	phenol	
	14-Mar-02	8.6	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	5.7	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-4	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
101 00 -4	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Mar-02	4.3	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	9.1	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	25	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-5	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	duplicate sample
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Mar-02	4.5	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	6.3	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-6	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	31-Aug-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

		<u>т т</u>	2.1.6	2250	2246	2245	,
	Dete		2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	C arriente
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled *	chlorophenol	phenol	phenol	phenol	phenol	ļ/
	14-Mar-02	31,000	< 1.0	41	650	24	
	18-Jul-02	33,000	< 1.0	< 1.0	990	56	
	16-Sep-02	44,000	< 1.0	< 1.0	920	64	
	03-Dec-02	46,000	< 1.3	76	1,300	52	
	14-Jan-03 ³	51,000	2.4	< 1.0	970	52	
	20-Mar-03	19,000	< 1.0	36	460	22	
	22-May-03	19,000	< 1.0	< 1.0	470	< 100	
	22-May-03	16,000	< 1.0	< 1.0	400	< 100	duplicate sample
	22-May-03	14,000	< 1.0	< 1.0	400	< 100	filtered
	27-Aug-03	31,000	< 1.5	41	710	39	
	27-Aug-03	18,000	< 1.0	28	450	26	duplicate sample
	2 Nov 03	28 000	< 5.0	36	580	35	bailer sample /
	3-INOV-03	28,000	< 5.0	30	380	33	unfiltered
	3-Nov-03	31,000	< 5.0	47	740	43	bailer sample /
MW-7	5 1107 05	51,000		.,	/ 10	15	filtered
	3-Nov-03	20,000	< 5.0	28	450	24	low flow sample /
				!			low flow sample /
	3-Nov-03	14,000	< 5.0	19	300	17	filtered
	24-Mar-04	19.000	< 1.5	19	450	19	
	24-Mar-04	7 400	< 1.0	87	150	99	duplicate sample
	18-May-04	25 000	< 2.5	86	480	41	dupnoute sumple
	30-4119-04	13 000	< 1.0	54	200	17	
	15-Dec-04	22 000	17	57	310	42	
	00 Mar_05	22,000	< 1.0	39	420	32	low flow sample
	07 Sep 05	16,000	< 1.0	10	280	16	
	07-Sep-05	12,000	< 1.0	17	230	14	durali anto comple
	07-Sep-05	13,000	< 1.0	0.7	41	2.7	auplicate sample
	24-Mar-06	1,900	< 1.0	<u> </u>	41	3./	
	31-Aug-06	19,000	2.1	08	390	30	
	14-Mar-02	22	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	31	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	4.8	< 1.0	< 1.0	< 1.0	< 1.0	<u> </u>
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	21-May-03	1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-8	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
141 44 0	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	31-Aug-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

			2.4.6-	2.3.5.6-	2.3.4.6-	2.3.4.5-	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled ¹	chlorophenol	phenol	phenol	phenol	phenol	
	14-Mar-02	94	3.1	21	130	5.5	
	18-Jul-02	2.1	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	3.1	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MWO	04-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
M w -9	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	31-Aug-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-10	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	21-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-11	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	21-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-12	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

			2.4.6-	2.3.5.6-	2.3.4.6-	2.3.4.5-	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled ¹	chlorophenol	phenol	phenol	phenol	phenol	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-14	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	09-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	23-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-17	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-18	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	24-Mar-04	35	< 1.0	< 1.0	5.1	3.8	
	18-May-04	3.6	< 1.0	< 1.0	1.1	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-20	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
101 00 -2.0	09-Mar-05	71	3.4	27	< 1.0	4.6	low flow sample
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample
	31-Aug-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

r		0011001		nerograms p		/	
	_		2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	~
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled ¹	chlorophenol	phenol	phenol	phenol	phenol	
	24-Mar-04	800	< 1.0	6.3	17	12	
	18-May-04	1,900	< 1.0	11	36	11	
	18-May-04	670	< 1.0	3.5	16	4.4	duplicate sample
	30-Aug-04	2,700	< 1.0	6.4	66	5.4	
	30-Aug-04	2,800	< 1.0	6.9	68	5.5	duplicate sample
	15-Dec-04	3,200	< 1.0	34	50	5.5	
	15-Dec-04	8,100	2.1	64	120	8.3	duplicate sample
MW 21	10-Mar-05	4,700	< 1.0	8.1	31	< 1.5	low flow sample
IVI W -2 I	10-Mar-05	4,600	2.7	26	86	6.5	low flow sample / duplicate
	07-Sep-05	4,900	< 1.0	11	170	4.8	*
	24-Mar-06	13,000	1.5	41	180	8.9	low flow sample
	24-Mar-06	14,000	1.4	41	190	8.8	low flow sample / duplicate
	31-Aug-06	6,000	1.7	31	140	14	•
	31-Aug-06	2,500	<1.0	23	86	11	duplicate sample
Deep Wells				I.	L	1	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-13D	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	$03_{-}Dec_{-}02$	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-101ay-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW 15D	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
101 00 -15D	17 May 04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-Way-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	1.3	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-16D	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Monitoring Well Number	Date Sampled ¹	Penta- chlorophenol	2,4,6- trichloro- phenol	2,3,5,6- tetrachloro- phenol	2,3,4,6- tetrachloro- phenol	2,3,4,5- tetrachloro- phenol	Comments
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-19D	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Concentrations in micrograms per liter (μ g/L)

Notes:

 Data prior to March 18, 2003 were obtained from Results of the Remedial Investigation for Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California, dated January 30, 2003, prepared by EnviroNet Consulting.

2. Confirmation sample collected due to detection of pentachlorophenol on September 16, 2002.

3. Sample also contained 280 mg/L of 2,3,4-trichlorophenol and 190 mg/L of 2,4,5-trichlorophenol. Abbreviation:

< = target analyte was not detected at or above the laboratory reporting limit shown.

-- = not measured or sample not collected for analysis.

FIELD MEASUREMENTS AND LABORATORY ANALYTICAL RESULTS FOR NATURAL ATTENUATION PARAMETERS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

				Field Measuremen	ts ¹]	Laboratory An	alysis ²				
Sample Location	Sample Date	Eh ³	DO	Specific Conductance	Temperature	рН	Nitrate (N)	Manganese	Iron	Sulfate (SO ₄)	Carbon Dioxide	Methane	тос	Chloride	Total Alkalinity as CaCO ₃	Calcium	Magnesium
		(mV)	(mg/L)	(µS/cm)	(°C)	(pH Units)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Shallow Monitor	ing Wells																
	11/04/03	222	0.2	2,400	17	6.4											
MW-1	03/24/04	173	0.1	2,400	15	6.5	0.42	1.8	42	0.71	255	6.9	36.6	320	830	41	63
101 00 - 1	03/11/05	138	0.1	2,100	14	6.5	< 0.20	1.6	50	< 0.50	258	8.0	14.1	260	860	36	57
	03/23/06	94	1.2	2,700	13	6.5	< 0.20	4.3	61	0.99	260	2.4	38.0	330	830	40	64
	11/03/03	226	0.4	1,600	16	6.2	2.8	6	30	< 0.50	314	3.8	33.9	240	520	66	40
MW-2	03/24/04	219	0.2	1,400	13	6.2	< 0.20	4	61	< 0.50	232	4.5	35.7	160	550	65	39
101 00 -2	03/11/05	182	0.1	1,200	13	6.2	< 0.20	4.6	53	< 0.50	289	5.3	15.8	100	520	62	37
	03/23/06	132	0.5	1,300	13	6.4	< 0.20	5.2	58	< 0.50	272	2.0	31.7	100	480	77	39
	11/03/03	201	0.3	920	17	6.3	4.6	3.9	9.1	< 0.50	174	5.4	18	37	460	55	36
MW-3	03/24/04	183	0.1	1,000	13	6.4	< 0.20	5.3	66	< 0.50	179	9.1	36.3	35	450	62	46
101 00 -5	03/10/05	169	0.1	600	13	6.4	< 0.20	2.5	33	< 0.50	116	5.7	16.5	33	280	31	28
	03/23/06	103	0.4	540	12	6.7	< 0.20	1.9	25	2.2	84.5	2.8	12.3	25	210	24	18
MW-4	11/03/03	207	0.1	670	18	6.3											
	11/03/03	255	0.3	660	17	6.3	<1.0	0.42	0.97	< 0.50	125	9.2	9.36	25	350	28	45
MW 5	03/24/04	293	0.2	650	14	6.3	< 0.20	0.48	4	< 0.50	122	6.3	11.4	21	310	29	50
101 00 -5	03/10/05	232	0.1	570	14	6.3	< 0.20	0.67	4.7	< 0.50	136	6.4	7.34	18	320	29	48
	03/24/06	136	1.1	190	11	6.6	< 0.20	0.29	2.2	< 0.50	24.9	0.93	5.54	8.6	71	9.3	14
MW-6	11/04/03	236	0.2	890	13	6.3											
	11/03/03	197	0.1	860	13	6.4	<1.0	13	2.3	< 0.50	152	8.8	28.1	45	420	26	42
MW 7	03/24/04	189	0.2	880	11	6.4	< 0.20	3	55	< 0.50	147	10.6	20.8	46	410	31	47
IVI VV - /	03/09/05	130	0.1	850	11	6.3	< 0.20	3.5	56	< 0.50	157	10.5	18.2	60	400	35	52
	03/24/06	197	3.4	120	10	6.7	< 0.20	0.23	0.91	4.0	15	1.4	43.7	21	15	4.3	2.2
MW-8	11/04/03	237	0.3	740	17	6.2											
MW-9	11/04/03	211	0.2	810	17	6.4											
MW-10	11/04/03	215	0.1	880	18	6.4											
MW-11	11/04/03	196	0.2	870	19	6.4											
MW-12	11/04/03	251	0.4	810	18	6.2											
	11/04/03	234	0.2	2,700	16	6.3											
MW 14	03/24/04	212	0.1	2,400	14	6.4	< 0.20	1.5	41	< 0.50	290	5.2	106	460	1,100	23	50
IVI VV - 14	03/09/05	109	0.1	2,400	13	6.6	< 0.20	0.73	18	< 0.50	270	0.16	60.9	390	1,100	25	55
	03/23/06	98	0.4	2,900	13	6.7	< 0.20	0.98	38	< 0.50	310	2.6	71.3	410	1,000	29	56
MW-17	11/04/03	240	0.2	970	15	6.4											
MW-18	11/04/03	198	0.2	950	17	6.4											
	03/24/04	252	0.1	440	13	6.8	< 0.20	1	0.2	1.6	30.5	< 0.00158	9.48	21	210	32	32
MW-20	03/09/05	182	0.2	320	13	6.6	< 0.20	1.5	2.2	1.2	41.4	0.015	7.25	17	180	23	23
	03/24/06	164	0.6	310	11	6.8	< 0.20	0.92	0.62	2.6	25.1	< 0.00158	5.11	8.6	140	27	15
	03/24/04	162	0.3	990	11	6.4	< 0.20	2.7	67	< 0.50	135	0.0043	21.4	54	380	30	50
	03/10/05	146	0.1	020	11	62	< 0.20	2.7	69	< 0.50	179	7.4	18.6	62	430	29	50
MW-21	03/10/05 4	140	0.1	930	11	0.3	< 0.20	2.7	69	< 0.50	165	7.8	16.4	62	420	29	49
	03/24/06	05	0.5	1.000	10	6.6	< 0.20	2.7	70	< 0.50	156	5.1	17.7	84	360	28	47
	03/24/06 4	90	0.5	1,000	10	0.0	< 0.20	2.7	70	< 0.50	150	5.8	18.1	84	360	27	47
Deep Monitoring	Wells																
MW-13D	11/04/03	253	0.1	670	16	5.9											
MW-15D	11/04/03	255	0.3	1.200	14	6.5											
MW-16D	11/04/03	246	0.1	4,600	16	7.5											
MW-19D	11/03/03	197	0.3	730	18	6.5											

Notes:

1. Water quality parameters measured in the field with a YSI model 556 in a flow-through cell.

2. Samples collected by Geomatrix and analyzed by EPA Method 415.1 (total organic carbon), EPA Method 200.7 (calcium and magnesium),

EPA Method 300 (chloride, nitrate and sulfate), EPA Method 6010B (Iron (II) and Manganese (II)), Standard Methods 2320B (total alkalinity), RSK 175 (carbon dioxide and methane).

3. Reduction-oxidation potential standardized to hydrogen electrode for silver/silver-chloride electrode (199 millivolts was added to the field measurement).

4. Duplicate sample.

Abbreviations: Eh = reduction-oxidation potential DO = dissolved oxygen TOC = total organic carbon

 $CaCO_3 = calcium carbonate$ mV = millivolts mg/L = milligrams per liter

 $\mu S/cm = microSiemens \; per \; centimeter$ °C = degrees Celsius < = target analyte was not detected at or above the laboratory reporting limit shown.

-- = not measured or sample not collected for analysis.

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS AND PHENOL (8270 SIM METHOD)¹

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations in micrograms per liter (µg/L)

Monitoring Wells	Date Sampled	РСР	3,4,5- TCP	2,3,5,6- TeCP	2,3,4,5- TeCP	2,3,4,6- TeCP	3,4- DCP	2,3,6- TCP	3,5- DCP	2,3,4- TCP	2,4,5- TCP	2,4,6- TCP	2,3,5- TCP	2,5- DCP	$3-CP + 4-CP^2$	2,6- DCP	2,3- DCP	2,4- DCP	2- CP	Phenol
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	3	<1	<1	<1	<1	<1
	11-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-1	07-Sep-05 ³	<1																		
	07-Sep-05 ^{3,4}	<1																		
	23-Mar-06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-2	11-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
101 00 -2	07-Sep-05 ³	<1																		
	23-Mar-06	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-3	10-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
	07-Sep-05 ³	<1																		
	23-Mar-06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
-	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-5	10-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
	07-Sep-05 ³	<1																		
	24-Mar-06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
	24-Mar-04	15,000	92	320	17	23	390	<1	18	1	56	<1	2	<1	460	<1	<1	4	<1	2
MW-7	09-Mar-05	12,000	290	490	37	17	610	1	28	2	75	1	2	<1	890	<1	1	5	<1	3
	24-Mar-06	1,200	15	24	4 J	8.9	41	<1	1.2	<1	4.5	<1	<1	<1	37	<1	<1	<1	<2	<1
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-14	09-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
	07-Sep-05 ³	<1																		
	23-Mar-06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
-	24-Mar-04	9	2	2	2	<1	8	<1	<1	<1	1	<1	<1	<1	2	<1	<1	<1	<1	<1
MW-20	09-Mar-05	100	4	2	4	12	15	<1	9	<1	<1	4	5	<1	9	<1	<1	1	<1	<1
	23-Mar-06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
-	24-Mar-04	520	52 ve	16	16	7	130	<1	9	<1	3	<1	<1	<1	200	<1	<1	<1	<1	<1
-	24-Mar-04 ⁴	570	50 ve	17	14	6	120	<1	9	<1	3	<1	<1	<1	200	<1	<1	<1	<1	<1
MW-21	10-Mar-05	5,500	250	109	4	27	310	<1	19	<1	5	<1	<1	<1	270	<1	<1	2	<1	<1
	10-Mar-05 ⁴	5,500	250	110	4	27	310	<1	20	<1	5	<1	<1	<1	270	<1	<1	2	<1	<1
-	24-Mar-06	7,700	260	170	17	39	420	<1	17	<1	9.3 ve	1.1	<1	<1	650	<1	2.1	<1	<2	1.8
	24-Mar-06 ⁴	8,000	270	180	20	44	450	<1	19	<1	9.0 ve	1.2	<1	<1	700	<1	2.2	<1	<2	1.9

Notes:

1. Groundwater samples analyzed by EPA Method 8270 SIM.

2. Results shown are for both 3-CP and 4-CP (the sum of) since these compounds could not be separated for individual analysis in the laboratory.

3. Confirmation sample collected due to detection of pentachlorophenol on March 10 or 11, 2005.

4. Duplicate sample.

Abbreviations:

PCP = pentachlorophenol

TeCP = tetrachlorophenol

TCP = trichlorophenol

DCP = dichlorophenol

CP = chlorophenol EPA = U.S. Environmental Protection Agency

SIM = select ion monitoring

-- = not measured or sample not collected for analysis.

< = target analyte was not detected at or above the laboratory reporting limit shown.</p>

J = the result is below the reporting limit and represents an estimated value.

ve = value exceeded the calibration range established for the instrument and is therefore considered an estimate; result upon dilution and re-analysis was not detected at or above the laboratory reporting limit.

LABORATORY ANALYTICAL RESULTS FOR DIOXINS AND FURANS¹

Sierra Pacific Industries

Arcata Division Sawmill

Arcata, California

										Concentra	tions in pic	ograms pei	r liter (pg/L	.)									
Monitoring Well Number	Date Sampled	2, 3, 7, 8- TCDD	1, 2, 3, 7, 8- PeCDD	1, 2, 3, 4, 7, 8- HxCDD	1, 2, 3, 6, 7, 8- HxCDD	1, 2, 3, 7, 8, 9- HxCDD	1, 2, 3, 4, 6, 7, 8- HpCDD	OCDD	Total Dioxins	2, 3, 7, 8- TCDF	1, 2, 3, 7, 8- PeCDF	2, 3, 4, 7, 8- PeCDF	1, 2, 3, 4, 7, 8- HxCDF	1, 2, 3, 6, 7, 8- HxCDF	2, 3, 4, 6, 7, 8- HxCDF	1, 2, 3, 7, 8, 9- HxCDF	1, 2, 3, 4, 6, 7, 8- HpCDF	1, 2, 3, 4, 7, 8, 9- HpCDF	OCDF	Total Furans	Total Dioxins & Furans	TOTAL TEQ ^{2, 3}	Comments
Shallow Wells																							
	24-Mar-04	<1.69	<2.85	<5.19	< 6.00	<5.29	<4.87	87.0	100.5	<1.10	<3.21	<2.84	<1.20	<1.61	<1.47	<1.91	<2.21	<2.57	<7.41	<16.20	100.5	0.00870	
MW-1	11-Mar-05	<1.77	<2.88	<3.27	<4.25	<3.70	6.39 J	136	157.3	<1.33	<3.57	<3.70	<1.42	<1.26	<1.13	<1.73	<1.74	<2.36	<4.44	<13.62	157.3	0.0775	
	23-Mar-06	<1.75	<1.66	<3.92	<4.06	<5.06	<3.64	11.7 J	11.7 J	<1.48	<2.48	<2.48	<1.15	<1.29	<1.35	<1.50	<1.28	<2.20	<5.58	<13.26	11.7 J	0.00117	
	24-Mar-04	<1.63	<2.60	<4.86	<5.67	<4.89	<7.48	61.1	61.1	<1.37	<3.65	<3.00	<1.30	<1.79	<1.73	<2.42	<3.01	<3.67	<7.05	9.62	70.72	0.00611	
MW-2	11-Mar-05	<1.61	<2.85	<2.75	<3.59	<3.03	<4.61	18.8 J	18.8 J	<1.39	<3.37	<3.02	<1.46	<1.30	<1.29	<1.88	<1.71	<2.32	<3.16	<12.12	18.8 J	0.00188	
	23-Mar-06	<0.891	<1.80	<3.57	<3.69	<4.70	<4.99	<7.44	<19.821	<1.52	<2.05	<2.05	<1.10	<1.17	<1.30	<1.38	< 0.729	<1.21	<4.62	<10.80	<30.621	0	
	24-Mar-04	<1.90	<2.46	<4.74	<6.23	<4.81	74.6	976	1,195.14 J	<1.46	<3.76	<2.88	<1.15	<1.53	<1.44	<1.99	21.6 J	<2.22	33.9 J	142.93 J	1,338.07 J	1.06	_
MW-3	10-Mar-05	<1.85	<4.50	<4.51	<5.56	<4.59	<5.31	31.6 J	31.6 J	<1.72	<2.91	<2.77	<1.65	<1.51	<1.52	<1.92	<1.88	<2.40	<6.19	<15.14	31.6 J	0.00316	_
	23-Mar-06	<1.56	<2.23	<4.45	<4.39	<5.37	<3.77	23.5 J	23.5 J	<1.41	<1.99	<1.95	<1.08	<1.18	<1.28	<1.51	<2.14	<4.14	<8.13	<17.18	23.5 J	0.00235	
	24-Mar-04	<1.45	<2.24	<3.67	<4.31	<3.72	19.5 J	121	157.9	<1.29	<3.17	<2.80	< 0.747	<1.02	<1.05	<1.38	7.60 J	<2.45	20.2 J	48.96 J	206.86 J	0.286	
MW-5	10-Mar-05	<1.65	<4.20	<3.50	<4.31	<3.47	<6.54	59.7	59.7	<1.48	<3.04	<3.01	<1.92	<1.80	<1.74	<2.36	<2.26	<2.60	<6.19	8.02 J	67.72 J	0.00597	_
	24-Mar-06	<1.33	<2.64	<4.30	<4.52	<5.65	51.9	553	685.7 J	<1.69	<4.19	<4.01	<2.05	<2.19	<2.47	<3.01	36.3	<3.89	124	298.5	984.2 J	0.950	
	16-Sep-02	<3.12	<3.45	< 5.82	<6.31	<5.32	32.4	144	194.0	<3.36	<4.21	<4.59	<2.38	<2.81	<2.86	<2.99	6.59	<6.67	22.2	103.63 J	297.63 J	0.407	
	22-May-03	<1.62	<4.05	22.6 J	<3.83	<3.10	30.2	449	550.5	<1.26	<2.04	<2.02	<1.02	<1.17	<1.19	<1.15	4.97 J	< 0.807	20.7 J	69.14 J	619.64 J	2.66	
	22-May-03	<1.27	<2.00	7.89 J	<2.47	<1.97	16.3	231	281.0	<1.01	<1.66	<1.64	<1.09	<1.28	<1.4	<1.67	2.09 J	<1.19	7.05 J	39.68 J	320.68 J	0.997	filtered
MW-7	03-Nov-03	<2.22	<4.82	<9.48	<10.4	<9.25	<9.54	41.1 J	41.1 J	<2.29	<7.96	<5.93	<2.11	<2.51	<2.63	<3.12	<3.03	<4.42	<10.6	<33.64	41.1 J	0.00411	filtered
	24-Mar-04	<1.76	46.5	56.4	<5.29	<4.61	71.4	1,370	1,659.3 M	<1.41	<3.57	<2.67	<1.13	<1.57	<1.28	<1.95	8.00 J	<3.17	31.3 J	188.6 J	1,847.9 J,M	53.0	
	09-Mar-05	<3.21	<4.66	<11.7	<9.57	<7.78	42.4	1,600	1,688.6	<4.83	<4.92	<4.87	<5.41	<4.70	<5.00	<4.88	<5.91	<6.93	32.1 J	113.6 J	1,802.2 J	0.587	
	24-Mar-06	<1.32	<2.23	<3.69	<3.84	<4.70	35.9	347	447.2 J	<1.00	<1.87	<1.79	<1.57	<1.79	<1.94	<2.20	15.0 J	<2.41	47.3 J	142.96 J	590.16 J	0.548	
	24-Mar-04	<1.74	<3.36	<5.32	< 5.84	<5.15	10.2 J	70.4	90.3 J	<1.31	<3.96	<3.01	<1.13	<1.64	<1.33	<1.97	<2.42	<2.97	<8.53	<18.74	90.3 J	0.109	
MW-14	09-Mar-05	<2.18	<4.31	<4.54	<5.51	<4.31	<7.26	46.2 J	46.2 J	<2.05	<2.89	<2.59	<2.29	<2.12	<2.09	<2.78	<2.57	<3.13	<8.18	<19.03	46.2 J	0.00462	
	23-Mar-06	<1.56	<2.04	<3.38	<3.43	<4.30	<2.98	<9.73	<20.61	<1.06	<1.72	<1.80	< 0.841	< 0.942	<1.00	<1.07	<1.38	<2.30	<5.03	<11.26	<31.87	0	
	24-Mar-04	4.05 J	22.7 J	60.2	2,060	466	93,600	1,240,000	1,450,367.2	6.50 F	19.5 J	15.3 J	52.6	226 D,M	57.6	11.4 J	3,220 D,M	251	13,600	39,840 D,M	1,490,207.2 D,M	1430	
MW-20	09-Mar-05	<2.05	<4.69	<8.75	111	17.8 J	3,850	50,500	59,727	<4.81	<7.00	<6.29	14.8 J	22.2 J	16.5 J	4.42	832	57.9	3,000	9,192 D,M	68,919 D,M	71.0	
	24-Mar-06	<1.47	4.83 J	<9.85	138	20.1 J	3,770	45,300	53,652.1	<1.33	<4.70	<4.57	20.4 J	<3.93	16.9 J	<4.95	1,090	105	4,910	11,782.5	65,434.6	79.0	-
	24-Mar-04	<1.82	<2.92	8.76 J	56.1	9.46 J	1,050	12,800	15,342.8	<1.39	<7.15	<3.28	6.89 J	20.9 J	10.3 J	<2.55	605	32.6	1,960	5,407.1 D,M	20,749.9 D,M	29.6	
	10-Mar-05	<3.78	<14.7	64.6	<9.98	<9.90	79.4	223	497.5 M	<6.15 F	<6.27	<7.06	1,640	<9.63	<8.08	26.0 J	<8.57	177	<24.7	2,687.4	3,184.9 M	176	
MW-21	10-Mar-05	<1.19	<4.39	<4.13	<5.51	<4.29	20.4 J	522	560.0	<1.15	<2.10	<2.20	<1.40	<1.27	<1.25	<1.58	9.20 J	<1.72	23.4 J	58.41 J	618.41 J	0.351	duplicate
	24-Mar-06	<1.45	<3.70	<5.73	<5.40	<6.54	24.1 J	314	359.2	<1.35	<1.97	<2.05	<1.09	<1.11	<1.16	<1.27	7.84 J	<1.94	23.0 J	60.96 J	420.16 J	0.353	
	24-Mar-06	<1.68	<3.45	<6.38	<6.11	<7.43	16.8 J	326	353.9	<1.14	<4.02	<4.17	<1.57	<1.77	<1.87	<1.98	3.24 J	<2.27	15.7 J	42.9 J	396.8 J	0.235	duplicate
	TEF ⁴ :	1	1	0.1	0.1	0.1	0.01	0.0001		0.1	0.05	0.5	0.1	0.1	0.1	0.1	0.01	0.01	0.0001				

Notes:

1. Groundwater samples analyzed by EPA Method 1613.

2. Calculated as the sum of congener concentrations after each has been multiplied by its TEF.

3. Concentrations not detected above the laboratory reporting limit were assigned a concentration of 0 pg/g to calculate TEQ.

4. Toxicity equivalency factor (unitless) from the World Health Organization, 1997 (WHO-97), adopted from F.X.R. van Leeuwen, 1997.

Abbreviations:

TCDD = tetrachlorodibenzo-p-dioxin PeCDD = pentachlorodibenzo-p-dioxin HxCDD = hexachlorodibenzo-p-dioxin HpCDD = heptachlorodibenzo-p-dioxin OCDD = octachlorodibenzo-p-dioxin TCDF = tetrachlorodibenzofuran PeCDF = pentachlorodibenzofuran HxCDF = hexachlorodibenzofuran HpCDF = heptachlorodibenzofuran TEQ = toxicity equivalence

TEF = toxicity equivalency factor (unitless)

EPA = U.S. Environmental Protection Agency

-- = not measured or sample not collected for analysis.

< = target analyte was not detected at or above the laboratory reporting limit shown.

 $J=\mbox{concentration}$ detected was below the calibration range, as flagged by the laboratory.

 $M=\mbox{maximum}$ possible concentration, as flagged by the laboratory.

 $F=\mbox{analyte}$ confirmation on secondary column, as flagged by laboratory.

D = presence of diphenyl ethers detected, as flagged by laboratory.

LABORATORY ANALYTICAL RESULTS FOR TRUCK SHOP MONITORING WELLS¹

Monitoring Well Number	Date Sampled	TPH as Gasoline (μg/L)	TPH as Diesel ² (μg/L)	TPH as Motor Oil ² (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	VOCs ³ (µg/L)	Phenol (µg/L)	PAHs (µg/L)
	9/8/2005	<100	<50	<250					acetone 28 toluene 23	<10	ND^4
MW-22	9/8/2005 ⁵	<100	<50	<250					acetone 36 toluene 29	<10	ND
	3/23/2006	66	<50	<175	<1	16	<1	<3			
	8/30/2006	<50	<25	<125	<1	<1	<1	<3			
	9/8/2005	<100	<50	280					ND	<10	ND
MW-23	3/23/2006	<50	<50	<175	<1	<1	<1	<3			
	8/30/2006	<50	<25	<125	<1	<1	<1	<3			
P-24	9/8/2005	<100	76	350					ND	<10	ND
P-25	9/8/2005	330	80	750					toluene 130	<10	ND

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Notes:

 Samples analyzed by Friedman & Bruya, Inc., in Seattle, Washington, for total petroleum hydrocarbons (TPH) as gasoline, TPH as diesel, and TPH as motor oil by EPA Method 8015 Modified; for benzene, toluene, ethylbenzene, and xylenes by EPA Method 8021B; for volatile organic compounds (VOCs) by EPA Method 8260B; for phenol by EPA Method 8270C; and for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C SIM.

- 2. Sample extracts passed through a silica gel column prior to analysis.
- 3. Only detected compounds are presented.

4. ND = not detected at or above the analytical laboratory reporting limit. Reporting limits vary for each compound; see the analytical laboratory reports (Appendix F) for compound-specific reporting limits.

5. Duplicate sample.

Abbreviations:

- $\mu g/L$ = micrograms per liter; parts per billion
- <= target analyte was not detected at or above the laboratory reporting limit shown
- EPA = U.S. Environmental Protection Agency
- -- = sample not collected for analysis

FIGURES

32\06_1009_sa06_fig_02.ai 9300\9329\task

\9300\9329\

APPENDIX A Field Documentation

Date: <u>8</u> Note: For	me: <u>SPI Arc</u>	cata				
Date: <u>8</u> Note: For	12mm la	0		Project	and Task N	umber: 9329.000.0 32
Note: For	ROU	Measured b	oy: <u>MAH</u>	3	Instrumen	t Used: ES # Z
	you conveni	ence, the fol	lowing abbre	eviations ma	y be used.	1
P – Pun	ping	I = Inacces	ssible	D = Dedica	ated Pump	
ST = Stee	el Tape E	ES = Electric	Sounder	MP = Measu	iring Point	WL = Water Level
Well No.	Time	MP ∉Elevation (feet)	Water Level Below MP (feet)	Water Level Elevation (feet)	Previous Water Level Below MP	Remarks
RR	953	15.70	1351	• •	•	
MW-12	957	10.76	1.44			Qn
MW-8 🗸	959	10.33	1.29			
MW-11	1003	10.28	9.52		. •	5
MW-9 🖌	1007	9.91 * °	1.13			A.
MW-18	10 09	9.92	1.22	• 5	e	
MW-10°	1018	9.85	1.35	0	•	
MW-16D	2501	9.83	4.05			
MW-17	1034	9.16	1.31		1. 2	
MW-14	1037	9.15	2.56			
MW-1	1050	9.69	4.35.			
MW-2	1056	9.61	5.33	Ŵ		
MW-13D	1098	9.96	4.33			
W -15D	109	11.19	5.58	•		and the second se
MW-3	1124	11.22	2.33	-		
MW-19D	130	11.06	4.53	P • ()	Con Star	•
MW-4	132	10.74	1.80	1		
MW-5	1149	a 10.74	1.12	100		
MW-6 🖌	11.7 5	9.83 🧆	0.48	100		the second se
MW-20	(158	11.87	6.94	100		La Carlo Car
MVV-21	1202	12.89	4.02	· ·		
MW-/ ***	1212	9.74	0.71	R. R.	14	
RR	12.1C	15.70	211		*	
			C	-		
M\A/ 22	10.71		E-I	K.J.	93	
MIN/_22	1751		7,76			
P-24	131	· · · · · · · · · · · · · · · · · · ·	2-17	5	A DATE OF	
D. 25	1 1 15	•	1-7	devi -	35	63
F-20	1221		2.01	14.2	A State of the second second	NAME OF THE OWNER OF

ő

C:\Documents and Settings\mhillyard\My Documents\9329 SPI Arcata\MRP semi-annual\3Q06\Field Prep\Water Level Record 09-05.doc

de la

Page <u>1</u> of <u>1</u>

Well ID: MW-2 Initial Depth to Water: 5-33 Sample ID: MW-02-200608 Duplicate ID: Depth to Water after Sampling:	G		ATRIX			AND/0	WELL OR DEVE	SAMPI LOPME	LING INT RECORE	
Sample ID: <u>MW-02-200608</u> Duplicate ID:	Well ID:	MW-2		l			Initial Depth te	o Water:	5.33	
Sample Depth:	Sample I	D: <u>MW-02-</u>	<u>200608</u> [Duplicate	ID:		Depth to Wate	er after Sam	npling:	
Project and Task No.: <u>9329.000.0_32</u> Well Diameter: <u>2"</u> Project Name: <u>SPI ARCATA</u> 1 Casing/Borehole Volume: <u>1.2.1</u> Date: <u>08/2/106</u> Sampled By: <u>MAH</u> Sampled By: <u>MAH</u> Scaling/Borehole Volumes: <u>1.2.1</u> Method of Purging: <u>Disposable Teflon Bailer</u> Total Casing/Borehole Volumes: <u>1.2.1</u> Time Intake (gpm) Cum. Vol. (gal.) Vol. (gal.) Cum. Vol. (gal.) Temp. pH Vol. (gal.) Cum. Vol. (gal.) Temp. QH Vol. (gal.) O 17.8' G-11 V(U 0.5' 7.8' G-4'7 116O VI 0.5' 7.	Sample [epth:					Total Depth to	Well: <u>'</u>	7.80	-0-
Project Name: SPI ARCATA I CasingBorehole Volumes: 47 x 0.163 gal/ft = -40 (Circle one) Sampled By: MAH GasingBorehole Volumes: 1, 2, 1 Method of Purging: Disposable Teflon Bailer Sampled By: MAH Method of Sampling: Disposable Teflon Bailer Total Casing/Borehole Volumes: 1, 2, 1 Time Intake Rate (gpm) Cum. Temp. pH (ggl.) PH (units) Specific Electrical Conductance (color, turbidity, and sediment) 101 3 O 17.8' 6.51 1170 Clear TBS = SPI (Color, turbidity, and sediment) 101 3 O 17.8' 6.51 1180 11 Status 101 4 O.5 17.8' 6.45 1180 11 Status 101 7 (.5 17.8' 6.45 1180 11 Status 117 9 (.5 17.8'	Project a	nd Task N	o.: <u>9329.0</u>	00.0 32			Well Diameter	:_2"		
Date: 08/2/106 I. 2.1 Sampled By: MAH I. 2.1 Method of Purging: Disposable Teflon Bailer Total Casing/Borehole Volumes: I. 2.1 Method of Sampling: Disposable Teflon Bailer Total Casing/Borehole Volumes: I. 2.1 Time Intake Rate Depth (gpm) Cum. Temp. (%C) pH Specific Electrical Conductance (color, turbidity, and sediment) 101 3 O 17.8' 6.51 1170 Clear TDS-SPI 10(4 O.5 17.8' 6.51 1170 Clear TDS-SPI 10(17 I.0 17.8' 6.51 1180 II Sectific Electrical Conductance (color, turbidity, and sediment) 10(17 I.0 17.8' 6.51 1180 II Sec 10(17 I.0 17.8' 6.4'5 1180 II Sec Sec 10(17 I.0 17.8' 6.4'5 1180 II Sec	Project N	ame: <u>SP</u>	I ARCATA	۱			1 Casing Bore	hole Volun	ne: <u>-47 x 0.163 ga</u>	1/ft = -90
Sampled By: MAH (3 Casing/Dereloie volumes:	Date: 08	3/106		17			(Circle one)	L	1.21	
Method of Purging: Disposable Teflon Bailer Total Casing/Borehole 3,75 Time Intake Depth Rate (gpm) Curn. Vol. (gal.) Temp. (C) pH (units) Specific Electrical Conductance (uS/cm) Remarks (color, turbidity, and sediment) 1013 0 17.8 6.51 1170 Clear TDS=S/l 1014 0.5 17.8 6.44 (180	Sampled	By: <u>MAH</u>	<u> </u>	0.4 0.1			3 Casing Bore (Circle one)	hole Volun	nes:	
Time Intake Depth Rate (gpm) Cum. (gal.) Temp. ('C) pH (units) Specific Electrical Conductance (µS/cm) Remarks (color, turbidity, and sediment) 10\7 0 17.8' 6.51 1170 Clevr TBS-SI 10\7 0.5' 17.8' 6.51 1170 Clevr TBS-SI 10\7 1.0 17.8' 6.54' 1160 11 Stell 10\7 1.0 17.8' 6.45' 1160 11 Stell 10\7 1.5' 17.8' 6.45' 1180 11 Stell 10\7 1.5' 17.8' 6.45' 184' 1''''''''''''''''''''''''''''''''''''	Method o Method o	of Purging: of Samplin	: <u>Disposa</u> g: <u>Dispos</u>	able Teflor able Teflo	n Bailer on Bailer		Total Casing/I Volumes Rem	Borehole oved:	3,75	
1013 0 17.8 6.51 1170 clear 7.05-81 1014 0.5 17.8 6.44 1180 1 82 1017 1.0 17.8 6.45 1180 1 82 1017 1.5 17.8 6.45 1180 1 82 1017 1.5 17.8 6.45 1180 1 82 1017 1.5 17.8 6.45 1180 1 82 1017 1.5 17.8 6.45 1180 1 82 1017 1.5 17.8 6.45 1180 1 82 1017 1.5 17.8 6.45 1180 1 82 1017 1.5 17.8 6.45 1184 1 92 92 1017 1.5 17.8 6.45 1184 1 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 9	Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (μS/cm)	(col	Remarks lor, turbidity, and se	ediment)
IO(4 0.5 17.8 0.44 1180 82 IO17 I.0 17.8 6.45 1160 11 82 IO17 I.5 17.8 6.45 1180 11 92 94 IO17 I.5 17.8 6.45 1180 11 92 94 III III 92 IIII 92 94 </td <td>1013</td> <td>S</td> <td>162 1</td> <td>0</td> <td>17.8</td> <td>6.51</td> <td>1170</td> <td>cleur</td> <td></td> <td>TDS=81</td>	1013	S	162 1	0	17.8	6.51	1170	cleur		TDS=81
[0]7 1.0 [7.8 6.45 1160 11 State [9]7 1.5 17.8 6.45 [844] 11 gaughte State [9] 1.5 1.7.8 6.45 [844] 11 gaughte State [9] 1.5 1.7.8 6.45 [844] 11 gaughte State [9] 1.5 1.5 1.5 1.5 1.5 1.5 1.5 [9] 1.5	1014			0.5	17.8	6.44	1180	- ú		82
Image:	1019			1.0	17.8	6.45	1150	A1		82
pH CALIBRATION (choose two) Model or Unit No.: Ultrameter 6P Buffer Solution pH 4.0 pH 7.0 pH 10.0 Temperature C SEC MWG Sec MWG Instrument Reading Model or Unit No.: Ultrameter 6P KCL Solution (µS/cm=µmhos/cm) Model or Unit No.: Ultrameter 6P KCL Solution (µS/cm=µmhos/cm) Model or Unit No.: Ultrameter 6P Netor: Instrument Reading	1017			1.5	17.8	6-45	1184	- ((gauple	8.
Image:					16 ·		/	e -		
Image: Image				80			0	10.00		
pH CALIBRATION (choose two) Model or Unit No.: Ultrameter 6P Buffer Solution pH 4.0 pH 7.0 pH 10.0 Temperature C See Model See Model Instrument Reading Model or Unit No.: Ultrameter 6P KCL Solution (µS/cm=µmhos/cm) Model or Unit No.: Ultrameter 6P Instrument Reading Model or Unit No.: Ultrameter 6P KCL Solution (µS/cm=µmhos/cm) Model or Unit No.: Ultrameter 6P Instrument Reading Instrument Reading				1283) 	· 8	-		П.,		
pH CALIBRATION (choose two) Model or Unit No.: Ultrameter 6P pH CALIBRATION (choose two) Model or Unit No.: Ultrameter 6P Buffer Solution pH 4.0 pH 7.0 pH 10.0 Temperature C See MWG Instrument Reading Model or Unit No.: Ultrameter 6P SPECIFIC ELECTRICAL CONDUCTANCE - CALIBRATION Model or Unit No.: Ultrameter 6P KCL Solution (µS/cm=µmhos/cm) Model or Unit No.: Ultrameter 6P Instrument Reading Instrument Reading Instrument Reading Instrument Reading		#			5	tit.				
pH CALIBRATION (choose two) Model or Unit No.: Ultrameter 6P Buffer Solution pH 4.0. pH 7.0 pH 10.0 Temperature C						105				
pH CALIBRATION (choose two) Model or Unit No.: Ultrameter 6P Buffer Solution pH 4.0 pH 7.0 pH 10.0 Temperature C Instrument Reading See Model SPECIFIC ELECTRICAL CONDUCTANCE – CALIBRATION Model or Unit No.: Ultrameter 6P KCL Solution (µS/cm=µmhos/cm) Model or Unit No.: Ultrameter 6P Instrument Reading Instrument Reading Nates: Instrument Reading			al.		- 3-15	1.5			19	
pH CALIBRATION (choose two) Model or Unit No.: Ultrameter 6P Buffer Solution pH 4.0 pH 7.0 pH 10.0 See MS Temperature C Image: Colspan="2">See MS Instrument Reading Image: Colspan="2">Model or Unit No.: Ultrameter 6P SPECIFIC ELECTRICAL CONDUCTANCE – CALIBRATION Model or Unit No.: Ultrameter 6P KCL Solution (µS/cm=µmhos/cm) Image: Colspan="2">Model or Unit No.: Ultrameter 6P Instrument Reading Image: Colspan="2">Model or Unit No.: Ultrameter 6P		-			e i ji i iş i			-		
pH CALIBRATION (choose two) Model or Unit No.: Ultrameter 6P Buffer Solution pH 4.0 pH 7.0 pH 10.0 See MW-S Temperature C Instrument Reading Model or Unit No.: Ultrameter 6P See MW-S SPECIFIC ELECTRICAL CONDUCTANCE - CALIBRATION Model or Unit No.: Ultrameter 6P Model or Unit No.: Ultrameter 6P KCL Solution (µS/cm=µmhos/cm) Instrument Reading Model or Unit No.: Ultrameter 6P Instrument Reading Instrument Reading Model or Unit No.: Ultrameter 6P										
Burner Solution pH 4.0 pH 7.0 pH 10.0 Temperature C Instrument Reading See MW-S Instrument Reading Model or Unit No.: Ultrameter 6P KCL Solution (μS/cm=μmhos/cm) Instrument Reading Instrument Reading Instrument Reading	Duffer Cr	pH 0				0.0	Model or			
Instrument Reading Instrument Reading SPECIFIC ELECTRICAL CONDUCTANCE – CALIBRATION Model or Unit No.: Ultrameter 6P KCL Solution (μS/cm=μmhos/cm) Instrument Reading Instrument Reading Instrument Reading	Tompora		pn 4	.0 рн /	.о рп і	0.0	See	mu~	5	
SPECIFIC ELECTRICAL CONDUCTANCE – CALIBRATION Model or Unit No.: Ultrameter 6P KCL Solution (μS/cm=μmhos/cm) Image: Comparison of the second sec	Instrumo	nt Reading							U	
KCL Solution (μS/cm=μmhos/cm) Instrument Reading	SPECI						Model or	Unit No.: U	litrameter 6P	1
Temperature C Instrument Reading Netos:	KCL Solu	ution (uS/cu	m=umhos/c	:m)						
Instrument Reading	Tempera	ture C								
Notos:	Instrume	nt Reading						1		
INDOMS.	Notes		<u> </u>	l	I					
						12		_		
3							94. B			
				6.8						

d.

v	335							
Well ID:	MW-6					Initial Depth to	o Water: 🥝 - 9 <i>8</i>	
Sample I	D: <u>MW-06-</u>	<u>200608</u> [Duplicate I	D:		Depth to Wate	er after Sampling:	
Sample I	Depth:					Total Depth to	o Well: <u>7.98</u>	
Project a	nd Task N	o.: <u>9329.0</u>	00.0 32			Well Diameter	r: <u>2"</u>	
Project N	lame: <u>SP</u>	I ARCATA	<u> </u>			1 Casing/Bore	ehole Volume: <u>(, / (</u>	t
Date: <u>08</u>	3/3//06	_				(Circle one)	3_	47
Sampled	By: <u>MAH</u>					3 Casing/Bore (Circle one)	ehole Volumes:	
Method o	of Purging:	DISPOS	ABLE TEF	LON BAIL	<u>_ER</u>	Total Casing/I	Borehole 3	37
Method o	of Samplin	g: <u>DISPO</u>	SABLE TE	FLON BA	ILER	Volumes Rem	loved:	/
Time	intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (μS/cm)	Re (color, turbidi	marks ty, and sediment)
1052	= · · · · · · · · · · · · · · · · · · ·	丸	0	16.0	6.80	956	Clear	TDS = 660 pg
1055			1.0	16.0	6.68	1005	U	695
1057			2.0	16.1	666	1015	÷l –	705
1058			3.0	16.1	6.64	1008	EL.	698
059			3.5	16-1	6.65	1006	11 Sam	Me 697
						-		
	5				1			
				5	2		14 y 1	
			lim n			· ·	đ	
						Service and a		
I	pH C	ALIBRAT	ION (choo	se two)	4	Model or L	Jnit No.: Ultrameter 6	3P
Buffer Sc	olution	pH 4	.0 pH 7	.0 pH 10	0.0		-7	
Tempera	ture C					See	~ MW-8	
Instrume	nt Reading	,						
SPECIF	IC ELECT		NDUCTAN	NCE – CAL	IBRATION	Model or L	Jnit No.: Ultrameter 6	3P
KCL Solu	ition (μS/cn	n=µmhos/c	m)					
Tempera	ture C	· ·,						
Instrume	nt Reading	j						
Notes:			J ,					
						······································	-	
				····				
-		-		12		(C
		7						
<i></i>					-			

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

Well ID:	MW-7					Initial Depth t	o Water: Ø. ٩/	
Sample I	D: <u>MW-07</u>	200608 D	uplicate I	D:		Depth to Wate	er after Sampling:	
Sample I	Depth:					Total Depth to	o Well: <u>7.97</u>	
Project a	und Task N	o.: <u>9329.00</u>	0.0 32		30	Well Diameter	r: <u>2"</u>	
Project N	lame: <u>SF</u>	I ARCATA				1 Casing/Bore	ehole Volume: <u>1.15</u>	
Date: 08	3/3/106				·	(Circle one)	3.45	*
Sampled	By: <u>MAH</u>					3 Casing/Bore (Circle one)	ehole Volumes:	
Method o	of Purging:		BLE TEF	LON BAI	LER	Total Casing/	Borehole 7 no 4	25
Method o	of Samplin	g: <u>DISPOS</u>	ABLE TE	FLON BA		Volumes Rem	noved:	
Time	intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sed	liment)
1236			0	14.7	6.03	943-	clear of orange partici	les TOS:65700
1238			1	13-6	6.63	975	Clean	675
1240	34		2	124	6.62	978	At 12	680
1241			S	13.3	6.61	871	<u> </u>	674
1242			3.5	13.2	6.60	967	11 Sample	670
								13 (A. 1967)
	<i></i>			and the		E.M.		
			(8) 		-	10		
	D.				100			
				2			6.8	
	pH (CALIBRATI	ON (choo	se two)		Model or	Unit No.: Ultrameter 6P	E 🦉
Buffer So	olution	pH 4.0) pH 7	.0 pH 1	0.0			
Tempera	ture C					Se	e MW-8	
Instrume	nt Reading	3						
SPECII	FIC ELECT	RICAL CON	NDUCTAN	ICE – CA	LIBRATION	Model or	Unit No.: Ultrameter 6P	
KCL Solu	ution (µS/cr	n=µmhos/cm	1)					
Tempera	ture C							
Instrume	nt Reading	9						
Notes:		· · · · · · · · · · · · · · · · · · ·		•				
40								
0		•		·····				
					·			
	4							7

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

00	\sim
114	
GEOM	ATRIX

Well ID:	MW-8			5		Initial Depth to	o Water: 1.29	
Sample I	D: <u>MW-08</u>	- <u>200608</u> [Duplicate I	D:		Depth to Wate	er after Sampling:	
Sample I	Depth:		-			Total Depth to	Well: <u>815</u>	
Project a	und Task N	lo.: <u>9329.00</u>	00.0 32			Well Diameter	r: <u>2"</u>	<u></u>
Project N	Name: <u>SF</u>					Casing/Bore	ahole Volume: 1,17	· · · · · · · · · · · · · · · · · · ·
Date: 0	BI 106					(Circle one)	-7 -7	5
Sampled	By: MAH	1			×	Casing/Bore	ehole Volumes:	>/
Method o	of Purging	: <u>DISPOS</u>	ABLE TER	LON BAIL	ER	Total Casing/	Boroholo Orac	2
Method o	of Samplin	g: <u>DISPO</u>	SABLE TE	FLON BA	LER	Volumes Rem	noved:	
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (μS/cm)	Rema (color, turbidity,	rks and sediment)
908			0	19.7	6.44	840	Clean	TDS = 574pp
911			1	201	6.44	620	11	558
913			2	20.4	6.46	818	slightly cloudy	556
914	1		3	20.4	6.45	818	r 1 4	5 56
915			35	20.3	6-46	817	((₄ =	554
						•••		Sample
		L. L						
		30 ²				<u>80</u>		
	1							
2		100	-			<u> </u>		4
	7							
i.	pН	CALIBRAT	ION (cho	ose two)		Model or	Unit No.: Ultrameter 6P	
Buffer S	olution	pH 4	.0 pH 7	7.0 pH 1	0.0			
Tempera	ature C	11.6	11.5					
Instrume	ent Readin	g 4.0	0 7.0	0 10.	00	6	a . 24	
SPECI	FIC ELECT		NDUCTA	NCE – CA	LIBRATION	Model or	Unit No.: Ultrameter 6P	
KCL Sol	ution (µS/c	m=µmhos/c	m) 44	- 201	60	(ylibo	the support	03
Tempera	ature C		18.0	7 12.	4		1500 ppm7	-05
Instrume	ent Readin	g	440	4 206	0			
Notes:		2*	201					
	· · ·					1		
			0					·
						·····		
\\sf3\ppingre	e\$\FORMATS	WELL SAMPI	.ING Record.d	oc				

Sample I Sample I	D: <u>MW-09-</u> Depth:	200608 Dup	olicate ID	•		Depth to Wate Total Depth to	er after \$ o Well: _	Sampling:	7	<u>*</u>
Project a	nd Task N	o.: <u>9329.000.</u>	0 32			Well Diameter	r: <u>2"</u>			
Project N	lame: <u>SP</u>				(1 Casing/Bore	ehole Vo	olume:	1	
Date: <u>08</u>	3/3/106			•		(Circle one)			5 2 4	
Sampled	By: <u>MAH</u>					8 Casing Bore	ehole Vo	olumes:		
Method o	of Purging:	DISPOSAB	LE TEFL	ON BAIL	ER	Total Casing/	Borehol	. 31	5	
Method o	of Sampling	: DISPOSA	BLE TEF	LON BAI	LER	Volumes Rem	noved: _			
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)		F (color, turbi	Remarks dity, and sed	liment)
933			0	191	6.70	804	Clea	ar you	cage park	uly TDS: 6
935			1	9.4	6.62	896	Ņ	<u> </u>	11	614
976			2	121	6.63	894	K	ц	9	612
938			3	120	6.63	895	11	, te	T(613
939.			35	19.0	6.63	899	5/091	ity clou	dy	616
								F.C.	16.5	Sample
							11		als at	(f
	A							12	NR .	
1				-		1	A			
		·				芦				
			8	1	100	-				
	pH C	CALIBRATIO	N (choos	e two)		Model or	Unit No.	: Ultramete	r 6P	· week and
Buffer So	olution	pH 4.0	pH 7.0) pH 10	1.0	- 5.	ee,	mu-	8	allel and
lempera	ture C						1	19		al and the
Instrume						Madalar	Unit No.	. Illitramata	- 6D	
							offic NO.	. Onramete		1
Tommore		n=μmnos/cm)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-				-
Tempera	ture C					<u>></u>				
Neteer	nt Keading									
NOLES:			*							
							6			
							i			

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

						,		
Well ID:	MW-20			<u>.</u>		Initial Depth t	o Water: 2 -9 4	
Sample I	D: <u>MW-20</u>	<u>-200608</u>	Duplicate	D:		Depth to Wate	er after Sampling:	
Sample I	Depth:					Total Depth to	o Well:6.7_	2
Project a	und Task N	o.: <u>9329.0</u>	00.0 32			Well Diameter	r: <u>4"</u>	
Project N	Name: <u>SF</u>	I ARCATA	۱			1 Casing/Bore	shole Volume: 3.78	<u>x0.653 gal/ft = 2-47</u>
Date: 08	B/31/06					(Circle one)		7.41
Sampled	By: <u>MAH</u>	I			<u> </u>	3 Casing/Bore	ehole Volumes:	
Method o	of Purging	DISPOS	ABLE TE	LON BAI	<u>ER</u>	Total Casing/	Borehole 2	2 V
Method o	of Samplin	g: <u>DISPO</u>	SABLE TE	FLON BA	ILER	Volumes Rem	noved:	- (
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (μS/cm)	R (color, turbic	emarks dity, and sediment)
1157	1		0	19.Z	6.93	395	Clear	TPSC 264pp
1201			20	18.6	6.77	420	slockthy clouits	, 281
1202			3.0	14.5	676	419	11 11	280
1204			4.0	18.5	6.75	423	11 4	284
(209)			5-0	18.6	6-79	421	clear	283
1211			6.0	18.5	6.75	423	4	285
1212	E.		7.0	18.5	6.72	426	11	286
1213			8.0	18.5	6.75	421	In San	Abe 283
					1.5		4	
							100	
· · ·	• ·····		1		1		No. Carlos	4
							100	
	pH (CALIBRAT	ION (choo	ose two)		Model or	Unit No.: Ultrameter	r 6P
Buffer So	olution	pH 4	.0 pH 7	'.0 pH 1	0.0			07
Tempera	iture C	-				<u> </u>	e mi-	X
Instrume	ent Reading	g						
SPECI	FIC ELECT	RICAL CO	NDUCTA	NCE - CA	LIBRATION	I Model or	Unit No.: Ultrameter	r 6P
KCL Solu	ution (µS/cı	m=µmhos/c	m)					
Tempera	ture C	,						
Instrume	ent Reading	g.			,			
Notes: S	Sample vol	ume doub	led for MS	S/MSD.	d·			
		÷.						

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

Well ID:	MW-21					Initial Depth to	Water: 402	
Sample I	D: MW-21	-200608 C	uplicate I	D: BD-01	-200608	Depth to Wate	r after Sampling:	
Sample [Depth:	0				Total Depth to	Well: 10.97	
Project a	nd Task N	lo.: 9329.00	0.0 32		an seiter a	Well Diameter	: 0.75"	· · · · · · · · · · · · · · · · · · ·
Project N	lame: SF		<u> </u>			1 Casing Bore	hole Volume: 6.75 x 0.023	gal/ft = 0.16
Date: 08	3/3/106		W-81 M 94			(Circle one)	00 4	18
Sampled	By: MAH	ni		10 MAR		3 Casing/Bore	hole Volumes:	. 0
Method o	of Purging	: <u>Peristalt</u>	ic Pump			(Circle one)		~
Method o	of Samplin	g: <u>Perista</u>	Itic Pump			Volumes Rem	oved: 6.23	
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Remar (color, turbidity, a	ks nd sediment)
1302		0.125	6	15-7	6-60	938	clear T	05=648 ppm
1304			- 25	15.3	6.56	975	CI	675
1306			- 4	15.2	656	985	(L 🔍	682
1308			-75	15.2	6.56	993	11	689
1310			l	15-1	6-55	997	11 Sample	691
		¥.						
=	72		3				10 A	
							JE.	
	pН	CALIBRAT	ION (choo	se two)		Model or U	Init No.: Ultrameter 6P	
Buffer Sc	olution	pH 4.	0 pH7	.0 pH 1	0.0		e 11-8	
Tempera	ture C				1		c powed	
Instrume	nt Readin	g			1. 4			
SPECI	FIC ELECT		NDUCTAN		IBRATION	Model or U	Init No.: Ultrameter 6P	
KCL Solu	ution (µS/c	m=µmhos/ci	m)					
Tempera	ture C							
Instrume	nt Readin	g						
Notes:	(allec	t d	nolicon	te 5	amply			
			<i>Ø</i>		/ ~			
					·		1.00	
					. <u></u>			
		<u></u>						- 22
\\sf3\ppingree	SIFORMATS!	WELL SAMPL	NG Record do					

	Well ID:	MW-22					_ Initial Depth to Water: 5.56						
	Sample II	D: <u>MW-22</u> -	<u>-200608</u> [Duplicate I	D:		Depth to Water after Sampling:						
	Sample D	Depth:					Total Depth to	Well:	1.31				
	Project a	nd Task N	o.: <u>9329.0</u>	00.0 32			Well Diameter: <u>2</u> " 1 Casing/Borehole Volume: <u>0.6</u>						
	Project N	lame: <u>SF</u>	I ARCATA	۹									
	Date: <u>08</u>	<u>30/06</u>	16			<u> </u>	(Chrele one)		1 9	23			
	Sampled	By: <u>MAH</u>	l				3 Casing/Bore (Circle one)	ehole Volu	mes: <u>''(</u>) /			
	Method o	of Purging	: <u>Disposa</u>	able Teflon	Bailer		Total Casing/	Borehole					
	Method o	of Samplin	g: <u>Dispos</u>	able Teflo	n Bailer		Volumes Rem	oved:		÷			
	Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (μS/cm)	(co	Rema lor, turbidity,	arks and sediment)			
MA	-440			0	19.9	5.95	692	clew,	, It yell	on higt			
8190	1492			0.5	19.6	6.12	803	, (11	((
~	1424			1.0	18.7	612	883	U	/ 1	17			
	1429	107		1.5	18.7	6.13	893	U	- í (c1			
	1427			2.0	18.7	6.14	898	11	81	11 Squeste			
						- (+					
		a.				-0)	Mar Contractor						
								4		S			
			- <u>F</u>										
			2017										
				<u> </u>		-			2 1				
		· · · · · · · ·	1	<u> </u>					1				
		pH	CALIBRAT	ION (choc	se two)	20	Model or	มา Unit No.: โ	Jitrameter 6P				
	Buffer Sc	olution	pH 4	.0 pH 7	.0 pH 10	0.0							
	Tempera	ture C	2	9	-7								
	Instrume	nt Readin	g 4.00	70	0 160)							
	SPECIF			ONDUCTA	NCE - CAL	IBRATION	Model or	Unit No.: l	Jitrameter 6P	i i			
	KCL Solu	ution (μS/c	m=µmhos/c	m) 44	7 2000	1 206	0						
	Tempera	ture C		23.0	7 24 2	- 21."	5						
	Instrume	nt Readin	g	57	5 2000	2 -206	20						
	Notes:			I			1						
								-					
								_					
			4) (4)			 .	·····	···					

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

Well ID:	MW-23					Initial Depth te	o Water: 5-19					
Sample I	D: <u>MW-23</u> -	<u>200608</u> [Duplicate I	D:		Depth to Wate	er after Sampling:					
Sample [Depth:				<u></u>	Total Depth to	o Well:					
Project a	nd Task N	o.: <u>9329.0</u>	<u>00.0 32</u>			Well Diameter	r: <u>2"</u>					
Project N	lame: <u>SP</u>		<u>م</u>			1 Casing/Bore	ehole Volume:60					
Date: 08	3/30/06					(Circle one)	180					
Sampled	Ву: <u>МАН</u>					3(Casing/Borehole Volumes:						
Method o	of Purging:	Disposa	able Teflor	n Bailer		Total Casing/	Porcholo 2 C -					
Method o	of Samplin	g: <u>Dispos</u>	able Teflo	n Bailer		Volumes Rem	noved:					
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (μS/cm)	Remarks (color, turbidity, and sediment)					
1458			0	20.5	6.71	3327	clear, vellowtint					
1459			0.5	17.9	6.7=	3580	cloudy yellowith brow					
1502			1.0	19.4	6.78	3870	alondy 12 brown					
1504			1.5	189	1. 78	3970						
1507			1.75	18.8	6.81	3960						
1509		- ,	20	18.7	6.50	4004	11 11 11 Sample					
				10-1			i supie					
			1	1.00								
ALL .				· · · ·								
Fier												
1985 - E												
	pH (ALIBRAT	l ION (choc	se two)		Model or l	Unit No.: Ultrameter 6P					
Buffer So	olution	pH 4	.0 pH 7	.0 pH 10	0.0	1000	21					
Tempera	ture C					- gee	2 MW-CC					
Instrume	nt Reading	1					all the second					
SPECIF		RICAL CO				Model or l	Unit No.: Ultrameter 6P					
KCL Solu	ution (uS/cr	n=umhos/c	m)									
Tempera	ture C	,										
Instrume	nt Reading	1										
Notes:		, NM	010		I							
	1000	-1-	-10									
					1	2-1 ·						
i sana an antan I			Y.		20.0	10 m						
			ē.									

\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc

A. D.

APPENDIX B

Laboratory Reports and Chain-of-Custody Records for Groundwater Samples

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

14 September 2006

Geomatrix Consultants Attn: Matt Hillyard 513 2nd St. Eureka, CA 95501 RE: SPI - Arcata Work Order: A609015

Enclosed are the results of analyses for samples received by the laboratory on 09/01/06 11:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kelley M thompson

Kelley M. Thompson For Sheri L. Speaks Project Manager

Receipt Date/Time

09/01/2006 11:30

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason Street, Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 1 of 7

Geomatrix Consultants 513 2nd St. Eureka, CA 95501 Attn: Matt Hillyard

Report Date: 09/14/06 13:57 9329 Task 32 Project No: SPI - Arcata Project ID:

Order Number A609015

Client Code GEOMAT

Client PO/Reference

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-08-200608	A609015-01	Water	08/31/06 09:15	09/01/06 11:30
MW-09-200608	A609015-02	Water	08/31/06 09:39	09/01/06 11:30
MW-02-200608	A609015-03	Water	08/31/06 10:17	09/01/06 11:30
MW-06-200608	A609015-04	Water	08/31/06 10:59	09/01/06 11:30
MW-20-200608	A609015-05	Water	08/31/06 12:13	09/01/06 11:30
MW-07-200608	A609015-06	Water	08/31/06 12:42	09/01/06 11:30
MW-21-200608	A609015-07	Water	08/31/06 13:10	09/01/06 11:30
BD-01-200608	A609015-08	Water	08/31/06 00:00	09/01/06 11:30

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bure & fam

Bruce Gove Laboratory Director

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 7

Geomatrix Consultants 513 2nd St. 09/14/06 13:57 Report Date: Eureka, CA 95501 9329 Task 32 Project No: Attn: Matt Hillyard **Project ID:** SPI - Arcata Order Number Receipt Date/Time Client Code Client PO/Reference A609015 09/01/2006 11:30 GEOMAT Alpha Analytical Laboratories, Inc. PREPARED ANALYZED RESULT METHOD BATCH DILUTION PQL NOTE MW-08-200608 (A609015-01) Sample Type: Water Sampled: 08/31/06 09:15 **Chlorinated Phenols by Canadian Pulp Method** 2,4,6-Trichlorophenol EnvCan 09/07/06 AI61220 09/08/06 1 ND ug/l 1.0 2,3,5,6-Tetrachlorophenol ND " 1.0 2.3,4,6-Tetrachlorophenol ND " 1.0 ... 2,3,4,5-Tetrachlorophenol . ND " 1.0 •• Pentachlorophenol .. ND " 1.0 Surrogate: Tribromophenol ,, ... 11 11 102 % 70-124 MW-09-200608 (A609015-02) Sample Type: Water Sampled: 08/31/06 09:39 **Chlorinated Phenols by Canadian Pulp Method** 2,4,6-Trichlorophenol EnvCan AI61220 09/07/06 09/08/06 1 ND ug/l 1.0 2,3,5,6-Tetrachlorophenol ND " 1.0 2,3,4,6-Tetrachlorophenol ND " 1.0 2,3,4,5-Tetrachlorophenol ., ND " 1.0 .. Pentachlorophenol .. ND " 1.0 Surrogate: Tribromophenol 102 % 70-124 MW-02-200608 (A609015-03) Sample Type: Water Sampled: 08/31/06 10:17 **Chlorinated Phenols by Canadian Pulp Method** 2,4,6-Trichlorophenol **EnvCan** A161220 09/07/06 09/08/06 ł ND ug/l 1.0 2,3,5,6-Tetrachlorophenol н ND " 1.0 2,3,4,6-Tetrachlorophenol н ** ND " 1.0 11 •• .. 2,3,4,5-Tetrachlorophenol •• ... ND " 1.0 Pentachlorophenol .. . ,, ND " 1.0 ., Surrogate: Tribromophenol 91.6 % 70-124 MW-06-200608 (A609015-04) Sample Type: Water Sampled: 08/31/06 10:59 Chlorinated Phenols by Canadian Pulp Method 2,4,6-Trichlorophenol EnvCan AI61220 09/07/06 09/08/06 ND ug/l 1.0 1 2,3,5,6-Tetrachlorophenol ... н н ND " .0 1.0 11 ,, .. 2,3,4,6-Tetrachlorophenol ... ND " 1.0 2,3,4,5-Tetrachlorophenol ND " 1.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bure & fame

Bruce Gove Laboratory Director

Geomatrix Consultants

Alpha Analytical Laboratories Inc.

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 7

513 2nd St.					Report Da	ate: 09/14/06 13:5	57	
Eureka, CA 95	501				Project N	lo: 9329 Task 32		
Attn: Matt Hill	lyard				Project I	D: SPI - Arcata		
Order Number	Receipt Date/Time		Cl	ient Code		Client PO	/Reference	
A609015	09/01/2006 11:30		G	EOMAT				
513 2nd St. Eureka, CA 9501 Atm: Matt Hillyard Report Date: '9914/06 13:57 Project N: '9329 Task 32 Project N: '9329 Project N: '9329 Task 32 Project Project N: '9329 Task 32 Project N: '9329 Project N: '9329 Task 32 Project Project N: '9329 Project N: '9329 Task 32 Project Project N: '9329 Project N: '9329 Project N: '9329 Project N: '9329 Project N: '9								
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
MW-06-200608 (A609015-04)			Sample Type	e: Water	Sa	ampled: 08/31/06 10:5	9	
Chlorinated Phenols by Canadian P	'ulp Method (cont'd)							
Pentachlorophenol	EnvCan	н	"	09/08/06		ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		93.2 %	70-124	
MW-20-200608 (A609015-05)			Sample Type	e: Water	Sa	ampled: 08/31/06 12:1	3	
Chlorinated Phenols by Canadian P	ulp Method							
2,4,6-Trichlorophenol	EnvCan	AI61220	09/07/06	09/08/06	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	11	"	18	н	н	ND "	1.0	
2,3,4,6-Tetrachlorophenol	"		n	"	**	ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	н	"	"		ND "	1.0	
Pentachlorophenol		11	11	"		ND "	1.0	
Surrogate: Tribromophenol	"	n	"	"		100 %	70-124	
MW-07-200608 (A609015-06)			Sample Type	e: Water	Sa	mpled: 08/31/06 12:42	2	
Chlorinated Phenols by Canadian P	ulp Method							
2,4,6-Trichlorophenol	EnvCan	AI61220	09/07/06	09/08/06	1	2.1 ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	н		09/11/06	10	68 "	10	
2,3,4,6-Tetrachlorophenol	•	н	н	09/11/06	100	390 "	100	
2,3,4,5-Tetrachlorophenol	*	н		09/11/06	10	30 "	10	
Pentachlorophenol	11	11	"	09/12/06	1000	19000 "	1000	
Surrogate: Tribromophenol	n	n	"	09/08/06		91.2 %	70-124	
MW-21-200608 (A609015-07)			Sample Type	e: Water	Sa	mpled: 08/31/06 13:10)	
Chlorinated Phenols by Canadian P	ulp Method							
2,4,6-Trichlorophenol	EnvCan	AI61220	09/07/06	09/08/06	1	1.7 ug/i	1.0	
2,3,5,6-Tetrachlorophenol	"	н	н	09/11/06	10	31 "	10	
2,3,4,6-Tetrachlorophenol	н		"	*		140 "	10	
2,3,4,5-Tetrachlorophenol	n		н	09/08/06	1	14 "	1.0	
Pentachlorophenol	11	**	н	09/12/06	1000	6000 "	1000	
Surrogate: Tribromophenol	п	"	"	09/08/06		93.6 %	70-124	
BD-01-200608 (A609015-08)			Sample Type	: Water	Sa	mpled: 08/31/06 00:00)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bure & fam

Bruce Gove Laboratory Director

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

9329 Task 32

Report Date: 09/14/06 13:57

Project No:

CHEMICAL EXAMINATION REPORT

Page 4 of 7

Geomatrix Consultants 513 2nd St. Eureka, CA 95501 Attn: Matt Hillvard

Attn: Mat	tt Hillyard	Project ID:	SPI - Arcata	
Order Number A609015	<u>Receipt Date/Time</u> 09/01/2006 11:30	Client Code GEOMAT		Client PO/Reference

		Alpha	Analytical	Laboratori	es, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
BD-01-200608 (A609015-08)		Sample Type: Water			Sam	pled: 08/31/06 00:00		
Chlorinated Phenols by Canadian Pulp	Method							
2,4,6-Trichlorophenol	EnvCan	A161220	09/07/06	09/09/06	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	н	14	09/11/06	10	23 "	10	
2,3,4,6-Tetrachlorophenol		ır	"	11	**	86 "	10	
2,3,4,5-Tetrachlorophenol	п	**	31	09/09/06	1	11 "	1.0	
Pentachiorophenol	"	н	*	09/12/06	1000	2500 "	1000	
Surrogate: Tribromophenol	"	"	"	09/09/06		92.4 %	70-124	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bure & form

Bruce Gove Laboratory Director

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

208 Mason Street, Ukiah, California 95482

CHEMICAL EXAMINATION REPORT

Page 5 of 7

Geomatrix Consultants 513 2nd St. Eureka, CA 95501 Attn: Matt Hillyard

Report Date:	09/14/06 13:57
Project No:	9329 Task 32
Project ID:	SPI - Arcata

Client PO/Reference Order Number Receipt Date/Time Client Code A609015 09/01/2006 11:30 GEOMAT

SourceResult

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AI61220 - Solvent Extraction										
Blank (AI61220-BLK1)				Prepared: (09/07/06 A	nalyzed: 09	/08/06			
2,4,6-Trichlorophenol	ND	1.0	ug/l							
2,3,5,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,6-Tetrachlorophenol	ND	1.0								
2,3,4,5-Tetrachlorophenol	ND	1.0	11							
Pentachlorophenol	ND	1.0	"							
Surrogate: Tribromophenol	21.6		н	25.0		86.4	70-124			
LCS (AI61220-BS1)				Prepared: (09/07/06 A	nalyzed: 09	/08/06			
2,4,6-Trichlorophenol	5.66	1.0	ug/l	5.00		113	81-120			
2,3,5,6-Tetrachlorophenol	5.60	1.0	н	5.00		112	78-112			
2,3,4,6-Tetrachlorophenol	5.55	1.0	"	5.00		111	76-111			
2,3,4,5-Tetrachlorophenol	5.23	1.0	"	5.00		105	80-116			
Pentachlorophenol	5.16	1.0	"	5.00		103	86-109			
Surrogate: Tribromophenol	24.3		-	25.0		97.2	70-124			
Matrix Spike (AI61220-MS1)	Sourc	ce: A60901	5-01	Prepared: 0	9/07/06 Ai	nalyzed: 09	/08/06			
2,4,6-Trichlorophenol	5.55	1.0	ug/l	5.00	ND	111	75-125			
2,3,5,6-Tetrachlorophenol	5.63	1.0	н	5.00	ND	113	69-115			
2,3,4,6-Tetrachlorophenol	5.50	1.0	н	5.00	ND	110	66-117			
2,3,4,5-Tetrachlorophenol	5.37	1.0	11	5.00	ND	107	70-115			
Pentachlorophenol	4.63	1.0	"	5.00	ND	92.6	55-124			
Surrogate: Tribromophenol	24.7		Ħ	25.0		98.8	70-124			
Matrix Spike Dup (AI61220-MSD1)	Sourc	ce: A60901	5-01	Prepared: 0	9/07/06 Ai	nalyzed: 09	/08/06			
2,4,6-Trichlorophenol	5.81	1.0	ug/l	5.00	ND	116	75-125	4.58	20	
2,3,5,6-Tetrachlorophenol	5.90	1.0	"	5.00	ND	118	69-118	4.68	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bure & form

Bruce Gove Laboratory Director

208 Mason Street, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 6 of 7

Geomatrix Consultants 513 2nd St. Eureka, CA 95501 Attn: Matt Hillyard

Order Number

A609015

Report Date:	09/14/06 13:57
Project No:	9329 Task 32
Project ID:	SPI - Arcata

Receipt Date/Time 09/01/2006 11:30

Client Code GEOMAT

Client PO/Reference

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AI61220 - Solvent Extraction										
Matrix Spike Dup (AI61220-MSD1)	Source	e: A60901:	5-01	Prepared: (09/07/06 A	nalyzed: 09	/08/06			
2,3,4,6-Tetrachlorophenol	5.78	1.0	*1	5.00	ND	116	66-117	4.96	20	
2,3,4,5-Tetrachlorophenol	5.65	1.0	"	5.00	ND	113	70-115	5.08	20	
Pentachlorophenol	5.22	1.0	н	5.00	ND	104	55-124	12.0	20	
Surrogate: Tribromophenol	24.5		N	25.0		98.0	70-124			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bure & fam

Bruce Gove Laboratory Director

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 7 of 7

	Geomatrix Consultants		
	513 2nd St.	Report Date:	09/14/06 13:57
	Eureka, CA 95501	Project No:	9329 Task 32
	Attn: Matt Hillyard	Project ID:	SPI - Arcata
Order Number A609015	<u>Receipt Date/Time</u> 09/01/2006 11:30	<u>Client Code</u> GEOMAT	Client PO/Reference

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
PQL	Practical Quantitation Limit

ROJECT	NAME:	SPT.	trat	0 ,								-			<u> </u>			DATE O	121	10				<u></u>	
PROJECT NUMBER: 9379 1 CK 27 LABORATORY NAME							CLIE	CLIENT INFORMATION						REPORTING REQUIREMENTS:											
RESULTS TO: Mart H; // rard				A 1970 LABORATORY ADDRESS: 208 Anson St Laboratory A 95407							SPEArcate							But for 1 1 Dags //							
																		<u>r_</u>	<u></u>	V(au	<u>h</u>	<u><u></u><i>V</i>^{<i>i</i>}</u>	100	<u> </u>	
AMPLE SHIPM	NT METHOD				LABORATORY CONTACT														ع و	0~	19/1	<u>X</u>		~	<u> </u>
Courier				LABORATORY PHONE NUMBER:													GEOTRACKER	GEOTRACKER REQUIRED							
	EDO				7	07-0	(68	-0	401								1	SITE SPECIFIC	GLOBA			260	<u>72</u>	39	>>++
SAMPL	ERS (SIGNA	rupe)	:	4	F 1-					YSE	<u>=S</u>		1		1	-								
7/	1 A	2/1	ale		8												DL	0001E	0						
		wy			A													0400	e the Second		Type			ners	
					24										Ì				Vat O. or		ative			ontai	
DATE	TIME				S												CON		(S)	bered	Serv	belo	ISM/	of	ADDITIONA
8/2 10/0	915	14.00		28	2		_	-			_		- +				IYPE /	AND SIZE	Sol Sol	Ë	ard	8	WS	Ŷ	COMMENTS
26.1.1	020	/10-01	8-2006	<u>06</u>	$\hat{\mathbf{x}}$			<u> </u>			_					_	125 mL	Amber	W			17		2	
12.100	771	10-07	1-2006	08	x			<u> </u>											$\downarrow \downarrow$					2	
21.1.1	1017	MW-02	- 2006	.0¥	8			<u> </u>				_				 			\square					2	· · · · · · · · · · · · · · · · · · ·
21.11	1099	10-06	-2006	08			_	_																2	
5/31/00	121>	MW-20	-2006	08			_							_										2	
7/7/06	1242	MW-07	-2006	80	X																			2	
5/5/00	1510	AW-21.	20060	8	X																			Z	
7/31/06		00-00	-20060	12	1						_								V			V		2	
																						1			
			·													-									
	·										_					-									
																1						1			
RELINQU	ISHED E	3Y:	DATE	TIME	RE	CÉM	Ģ D I	BY:	/	1	D	ATE	TIM	1E	TOTAL	NUM	BER OF CONT	AINERS:					·	16	
IGNATUR:	1 7hi	hard	9/.1.	176	SIG	NATUR	M	V	Ke	2h	6	71	- 10	, ,-	SAMPL	ING C	OMMENTS:								
Matt	F:1110	ki l	11/00	029	PRII	VTERIN	ÁME:	17	VI	Sal	1 1/	16	prz	S											
Geoma	rix /		7		67	PANY.	PX	Th			<u> </u>	ĺ,		ľ							·			· · · · · · · · · · · · · · · · · · ·	
IGNATURE:	- 1800	<u> </u>			90	TUR		T	~		2	1.	.12						·						
DINTED NAM	IF.		1		PPU	VTED N	AME.		~		-[/	/	112	아											
OMPANY:			1		ह्ले	PANY:	D D D							ŀ			- <u></u>								
IGNATURE:			-		sig						-+		+	+			• • •								····
PRINTED NAME:						PRINTED NAME:							1		ちりつ	517 025-Second Street, Outre 203									

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

September 21, 2006

Matt Hillyard, Project Manager Geomatrix Consultants, Inc. 513 2nd Street Eureka, CA 95501-0488

Dear Mr. Hillyard:

Included are the results from the testing of material submitted on August 31, 2006 from the SPI Arcata, F&BI 608338 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

& Color

Michael Erdahl Project Manager

Enclosures GMC0921R
ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 31, 2006 by Friedman & Bruya, Inc. from the Geomatrix Consultants, Inc. SPI Arcata, F&BI 608338 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Geomatrix Consultants, Inc.</u>
608338-01	MW-22-200608
608338-02	MW-23-200608

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/06 Date Received: 08/31/06 Project: SPI Arcata, F&BI 608338 Date Extracted: 08/31/06 Date Analyzed: 08/31/06 and 09/01/06

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE XYLENES AND TPH AS GASOLINE USING EPA METHODS 8021B AND 8015M

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u> (C6-C10)	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-22-200608 608338-01	<1	<1	<1	<3	<50	114
MW-23-200608 608338-02	<1	<1	<1	<3	<50	108
Method Blank	<1	<1	<1	<3	<50	114

Results Reported as µg/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/06 Date Received: 08/31/06 Project: SPI Arcata, F&BI 608338 Date Extracted: 09/01/06 Date Analyzed: 09/05/06

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as µg/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Surrogate <u>(% Recovery)</u> (Limit 52-134)
MW-22-200608 608338-01	<25	99
MW-23-200608 608338-02	<25	94
Method Blank	<25	103

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/06 Date Received: 08/31/06 Project: SPI Arcata, F&BI 608338 Date Extracted: 09/01/06 Date Analyzed: 09/05/06

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as µg/L (ppb)

<u>Sample ID</u> Laboratory ID	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 52-134)
MW-22-200608 608338-01	<125	96
MW-23-200608 608338-02	<125	97
Method Blank	<125	92

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/06 Date Received: 08/31/06 Project: SPI Arcata, F&BI 608338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHODS 8021B AND 8015M

Laboratory Code: 608338-01 (Duplicate)

2	× 1	,		Relative Percent
Analyte	Reporting Units	Sample Result	Duplicate Result	Difference (Limit 20)
Benzene	μg/L (ppb)	<1	<1	nm
Toluene	μg/L (ppb)	<1	<1	nm
Ethylbenzene	μg/L (ppb)	<1	<1	nm
Xylenes	μg/L (ppb) ·	<3	<3	nm
Gasoline	μg/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	μg/L (ppb)	50	88	69-119
Toluene	μg/L (ppb)	50	98	70-123
Ethylbenzene	μg/L (ppb)	50	100	78-112
Xylenes	μg/L (ppb)	150	100	74-112
Gasoline	μg/L (ppb)	1,000	87	63-129

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/06 Date Received: 08/31/06 Project: SPI Arcata, F&BI 608338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING EPA METHOD 8015M

Laboratory Code:	Laboratory Cont	rol Sampi	le–Silica Gel	1		
			Percent	Percent		
	Reporting	\mathbf{Spike}	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel	μg/L (ppb)	2,500	88	90	73-142	2

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/06 Date Received: 08/31/06 Project: SPI Arcata, F&BI 608338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL EXTENDED USING EPA METHOD 8015M

Laboratory Code:	Laboratory Cont	rol Sampl	le Silica Gel			
			Percent	Percent		
	Reporting	Spike	Recovery.	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Motor Oil	μg/L (ppb)	2,500	108	89	73-142	19

PROJECT	NAME:	SPI	Arca	4					,		- 4									L		× z	. /.			<u>11</u>	<u>, T</u>	
PROJECT NUMB	ER: 932	9 +45	12 3'	2	LAB	RATO	RYNA	ME:	R.		6	CLIEN	T INFO	RMATIC	DN:					REP		EQUIRE	MENT) @ s:		'AGE	<u>ا</u> ا	OF \
RESULTS TO:	Matt	Hillya	ncl		LABC	BATP	RY AG	DRES	2.	<u>1 v</u>	-12	1	Par	mart	A											- <u> </u>		
TURNAROUND T	IME: St	1			Ś	00	h	o L	JÁ	99	nia	10	<u> </u>	y en i	~~~				·······	_								
SAMPLE SHIPME	INT METHOD:	<u> </u>			LABO	RATO	RY CC	NTAC	Barle 1	10	<u>// (</u>							·				·····					, 	
teg	147				LABO	5479	RY PH	IONE A	UMBER	7-	27	<u> </u>	<u> </u>						····	GEC	TRACKER	REQUI	RED				(TES	NO
SAMDI		SIGNIA				20	6-	63	5-5	<u>5 (</u>	<u>5</u> <u>AIN</u>				•	· · ·		1	 , ,	SITE	SPECIFIC	GLOBA		<u>p.</u> 70	<u>>6</u> (<u>り2</u>	30	1628
	~~1.1/		IURE)			Т		Т	<u>-</u> -				:S 			- <u>-</u>	<u> </u>	4				ŀ		,				
When	Aug	σ-q S/	AMPLE		OW/Q-H	licagel	1-215	TEX									-		CON	ΤΔΙΝ	ED	s), Water (W), (V). or Other (O)	p	rvative Type		us us	Containers	
DATE	TIME	N	UMBER		τρ,	$\tilde{\mathcal{X}}$	2	2							-			Т	YPE	AND	SIZE	soll (S	Itere	Lese	a c	is/W	o. of	COMMENTS
8/70/06	1427	MW-Z	2-2006	08	x	×					1						\uparrow	1.	1.1	<u></u>	han	<u></u> >	<u>, </u>	<u>⊢</u> ≞	$+\frac{1}{2}$	॒॔॑॑ॕ		
8/ 30/06	1427	MW-Z	2-2001	668			x	শ		2.	1	<u> </u>					1	40	Day 1	10	L	15	+	11/1	+1	⊢+-	5	· · · · · · · · · · · · · · · · · · ·
8/30/06	1509	MW-2	3-200	605	Y	Y	-			2	<u> </u>	1					+ •	1-1	11.	<u> </u>	1010			HC1	-+-	- 	>	<u> </u>
8/20/06	1504	MW-23	4-200	009			2	7										4	2 HC	<u>г ц н</u>	isee v		_	11.01	-+-	+	1	
								-+		+	+	+				1		$\frac{1}{1}$	mL	V ^O	4			[#(]	╨	4	3	
	\backslash							\rightarrow		+		+					-								+			
											<u> </u>	+			-			-							┿	4	+	F
	·							-+	-	+-		+		-+		4	+					4-	\vdash	F				
								\rightarrow									+		_	\sim			· _ ·		\perp			· · · ·
								\Rightarrow	\pm		_				\rightarrow		+	=					<u> </u>		\perp			
			<u> </u>							Ð	≯	\leftarrow		Ŧ		- <u>-</u>	<u>_</u>							ļ		\perp	_	
							-	-+	-	_				\rightarrow	⇒+								<u> </u>	ļ				
					F					_	- ·			3				\rightarrow		_								
	\vdash									. ·		<u> </u>										+						
	F			·								1		<u> </u>										\succ	\square			
DELINIO		L						÷.L								ŀ									T	T	-	
SIGNATURE	TATED E	SY:		TIME	RE	CE	VE	DB	<u>(:</u>		•	D,	ATE	TIN	IE	TOTAL	NUM	IBER C	OF CON	ITAINE	RS:				an an Airpean	<u> </u>	8	7
PRINTED NAL LOTO COMPANY: SIGNATURE:	Mirllya Mirllya	erd c	5730	1600			TA NAM (1) Y:	Fe	ha BI	n	<u>·</u>	_\$ <u>}</u>	34/ /cc.	10	'a	5AMPL)	JNG	СОММ	IENTS:			 						• • • • • • • • • • • • • • • • • • •
PRINTED NA	ME:	•					int:	•														San	pla	a rec	cei	hav	at	4 or
COMPANY			_		PRI		NAN	4E:							Γ												au	<u> </u>
SIGNATI IPE						MPAN	IY:								Γ											······		
PRINTED MA					SIG	NATL	IRE:							<u> </u>		রা২	-525	-Sec	ond S	treet	Suito	202		1	<u>.</u>			
					PRI	NTED	NAN	Æ:						1		22											\sim	

2

APPENDIX C Laboratory Data Quality Review

APPENDIX C

LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed quality assurance and quality control (QA/QC) procedures to assess the quality of the analytical results with respect to precision, accuracy, and completeness. Data quality was reviewed using U.S. Environmental Protection Agency *National Functional Guidelines for Organic Data Review* (U.S. EPA, 1999).

PRECISION

Geomatrix evaluated data precision by comparing analytical results for the following:

- primary and duplicate field samples
- matrix spikes (MS) and matrix spike duplicates (MSD)
- laboratory control samples (LCS) and laboratory control sample duplicates (LCSD)

We compared the concentrations detected in the primary or spiked samples with the respective concentrations in the duplicate or duplicate spiked samples. We then calculated relative percent differences (RPDs) using the following equation:

$$RPD = \frac{[S-D]}{(S+D)/2} \times 100$$

Where,

- S = Sample concentration
- D = Duplicate sample concentration

RPDs for primary and duplicate field samples are included in Table C-1. The RPDs for MS/MSD and LCS/LCSD analyses are reported in the laboratory analytical reports, included in Appendix B.

RPDs for the groundwater monitoring program data were acceptable even though the RPD between the primary (MW-21) and the duplicate (BD-01) field samples was relatively large. This situation has been observed from field duplicates collected at this and other locations previously.

ACCURACY

Geomatrix assessed data accuracy by evaluating holding times required by analytical methods, sample preservation, laboratory method blank results, recovery of laboratory surrogates, MS/MSD results, and LCS/LCSD results. The results of our evaluation are summarized below.

- **Holding times.** Samples were analyzed within the holding time for each analytical method.
- **Preservation.** Samples were collected in laboratory-supplied containers with preservatives, if applicable. Samples were stored and transported to analytical laboratories in chilled coolers.
- **Method blanks.** No detections were observed in any of the method blanks analyzed by the laboratory.
- **Surrogate recoveries.** Laboratory surrogates were recovered at concentrations within acceptable ranges.
- MS/MSD analysis. Percent recoveries were acceptable.
- LCS/LCSD analysis. Percent recoveries were acceptable.

COMPLETENESS

Laboratory completeness is a measure of the percent of valid measurements obtained from all the measurements taken in the project. Based on our laboratory data quality review, the data contained in this report are considered complete.

TABLE C-1

RELATIVE PERCENT DIFFERENCES BETWEEN DUPLICATE SAMPLES

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Samples collected on August 31, 2006

Constituent	Reporting Limit	Sample Concentration MW-21	Duplicate Sample Concentration BD-01	Relative Percent Difference ¹
Chlorinated Phenols by Canadia				
PCP	1,000	6,000	2,500	82.4%
2,3,4,5-TeCP	1.0	14	11	24.0%
2,3,4,6-TeCP	10	140	86	47.8%
2,3,5,6-TeCP	10	31	23	29.6%
2,4,6-TCP	1.0	1.7	<1.0	

Notes:

1. RPD calculated as ([2(S-D)]/[S+D]) x 100 where S is the sample concentration and D is the duplicate sample concentration. No RPD is calculated if either S or D are not detected above the laboratory reporting limit.

2. Analyzed by Alpha Analytical Laboratory, of Ukiah, California.

Abbreviations:

PCP = pentachlorophenol

TeCP = tetrachlorophenol

TCP = trichlorophenol

-- = Not calculated

< = target analyte was not detected at or above the laboratory reporting limit shown.