

April 30, 2003

Project Number: M154.1

Ms. Susan A. Warner, Executive Officer North Coast Regional Water Quality Control Board 5550 Skylane Blvd., Suite A Santa Rosa, CA 95403

Re: Report on the Priority Pollutant Study and Dioxin Study for Sierra-Pacific Industries, Arcata

Division Sawmill (Case No. 1NHU526)

Dear Ms. Warner:

EnviroNet Consulting is pleased to submit the Report on the Priority Pollutant Study and Dioxin Study for the subject site. The Sierra-Pacific Industries (SPI), Arcata Division Sawmill site is located at 2593 New Navy Base Road, Arcata, California as shown on the Site Location Map, Plate 1. General site features are presented on the Site Sampling Plan, Plate 2.

The NCRWQCB is requiring all NPDES permittees to undertake two effluent studies to comply with the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.

The two effluent studies consist of a priority pollutant study so the NCRWQCB staff can make a determination as to whether effluent limits need to be established for any of the 126 priority pollutants and a dioxin study to assess the presence and amounts of the dioxin congeners being discharged to Waters of the State and for the development of a strategy to control these chemicals.

Two representative effluent samples were to be collected and analyzed for the priority pollutants listed in the NCRWQCB's Attachment "A", Minimum Levels for Priority Toxic Pollutants. The effluent sample location is identified as ESL-1 on Plate 2. ESL-1 is proposed where the log deck sprinkler water discharges over a spillway at the northwest corner of the log deck water pond. The log deck water pond has not been constructed as of April 30, 2003. Currently, log deck sprinkler water is retained in a drainage ditch with an earthen dam which effectively prevents a discharge to the vegetated pond.

Samples of the effluent water were not collected and analytical results are not included in this report because there was not a discharge of log deck sprinkler water to the vegetated pond. The current log deck sprinkler operations, in addition to the earthen dam in the drainage ditch that receives the log deck sprinkler water, has effectively prevented any discharge to the vegetated pond.

Two representative receiving water samples were to be collected and analyzed for the priority pollutants listed in the NCRWQCB's Attachment "A", Minimum Levels for Priority Toxic Pollutants. The receiving water sample location is identified as RWSL-1. The sampling location for the receiving water at the vegetated pond is shown on Plate 2. RWSL-1 was proposed in the center of the open water in the vegetated pond, north of the log deck water pond. There is no upstream location out of the influence of the effluent discharge. One sample was to be collected during wet weather and one sample was to be collected during dry weather when the effluent flow is not influenced by a rain event and when there is a discharge to surface water.

The receiving waters sample at the vegetated pond was collected during wet weather on March 13, 2003 when there was not an effluent discharge. No receiving water sample was collected during dry weather, due to no occurrence of an effluent discharge. The proposed sample location RWSL-1 of the receiving water at the vegetated pond was located in the center of the vegetated pond, however, this location was too difficult to access. Therefore, the receiving water sample was collected at the southeast corner of the vegetated pond before water flowed into a drainage ditch and through a culvert prior to discharging into the Mad River Slough (Plate 2). There is no significant difference in water quality or water chemistry between the modified sample location RWSL-1 and the initially proposed sample location RWSL-1.

The receiving water sample was collected in sample containers appropriate for analysis and suppled by Alpha Analytical Laboratories, Inc. (Alpha). The samples were labeled, stored under refrigerated conditions, and transported under Chain-of-Custody to Alpha in Ukiah, California. Alpha is a California Department of Health Services certified laboratory for analyses requested. All samples were collected following EnviroNet's Standard Soil and Water Sampling Procedures and QA/QC Protocol (Appendix D).

Analytical results for the samples collected on March 13, 2003 are presented in tables required by the NCRWQCB in Appendix A. A copy of the analytical reports are included in Appendix B.

REPORT CERTIFICATION

I am duly authorized to sign reports required by the Monitoring and Reporting Program (MRP) Order No. R1-2002-0042 for Sierra Pacific Industries - Arcata Division Sawmill. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Printed Name: Gordie U Amos	
Signature: Lordin Wi	
Title: Plant Manager	Date: 4/29/03

APPENDICES

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

Appendix A: Analytical Tables

NCRWQCB, Attachment "B"

NCRWQCB, Attachment "C"

Appendix B: Analytical Laboratory Reports

Alpha Analytical Laboratories, Inc., Analytical Report, dated March 24, 2003. Basic Laboratory, Analytical Report, dated March 24, 2003

Alpha Analytical Laboratories, Inc., Analytical Report, dated April 1, 2003.

Appendix C: Plates

Plate 1: Site Location Map

Plate 2: Site Sampling Plan-Priority Pollutants and Dioxin Congeners

Appendix D: EnviroNet's Standard Soil and Water Sampling Procedures and QA/QC Protocol

DISTRIBUTION LIST

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

U.S. EPA, Region 9 Attn: WTR-7 NPDES/DMR 75 Hawthorne Street San Francisco, CA 94105

Mr. Gordie Amos Sierra Pacific Industries Arcata Division Sawmill P.O. Box 1189 Arcata, CA 95521

Mr. Bob Ellery Sierra Pacific Industries P.O. Box 496011 Redding, CA 96049-6011

> Mr. David Dun Dun & Martinek 2313 I Street Eureka, CA 95501

Mr. Scott Steever
Lanahan & Reilley
3558 Round Barn Boulevard, Suite 300
Santa Rosa, CA 95403

APPENDIX A

ANALYTICAL TABLES

California Regional Water Quality Control Board **North Coast Region**

ATTACHMENT "B"

Permittee: Sierra Pacific, Inc., Arcata

Name of Laboratory: Alpha Analytical Labs

WDID No.: 1B830650HUM

ELAP No.: 1551

Contact Name: Linda Mackey, EnviroNet Consulting

Laboratory Contact: Karen Daly

Phone Number: 707-546-9461

Lab Phone Number: 707-468-0401

Type of Sample (Receiving Water vs. Effluent): Receiving

Report Number: A303329-1

*IF RECEIVING WATER SAMPLE, FILL IN THE FOLLOWING INFORMATION:

Water Body: SPI's Vegetated Pond

pH: 6.1

Temp: 49.6 F

Hardness: 136 mg/l

Sample Location: RWSL-1 @ SE Corner

Salinity: <10 g/kg

Flow Rate: N/A

	(if a discharge is to a river or creek)										
*	·	Date	Sample	Date	USEPA	Analytical		_			
Control #		Sample	Collection	Sample	Method	Results	ML ¹	MDL ²	RDL ³		
ß	Constituent	Collected	Method	Analyzed	Used	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Comments	
1	Antimony	3/13/2003	Grab	3/31/2003	200.9	ND	6	1.2	1.2		
2	Arsenic	3/13/2003	Grab	3/27/2003	200.9	19	2	0.56	0.56		
3	Beryllium	3/13/2003	Grab	3/20/2003	200.7	ND	1	0.1	0.1		
4	Cadmium	3/13/2003	Grab	3/20/2003	200.7	ND	1	0.2	0.2		
5a	Chromium (total)	3/13/2003	Grab	3/20/2003	200.7	DNQ 5.5	10	1.2	1.2	Est. Conc.	
5b	Chromium (VI)	3/13/2003	Grab	3/14/2003	7196	ND	10	5	5		
6	Copper	3/13/2003	Grab	3/20/2003	200.7	ND	9	1	1		
7	Lead	3/13/2003	Grab	3/29/2003	200.9	DNQ 0.69	2		0.34	Est. Conc.	
8	Mercury	3/14/2003	Grab	3/23/2003	1631	0.00421	0.0005	0.0002	0.0002	Analyzed by Basic #1677	
9	Nickel	3/13/2003	Grab	3/20/2003	200.7	DNQ 2.8	10			Est. Conc.	
10	Selenium	3/13/2003	Grab	3/28/2003	200.9	ND	5		0.51		
11	Silver	3/13/2003	Grab	3/20/2003	200.7	ND	10		1.6		
12	Thallium	3/13/2003	Grab	3/31/2003	200.9	ND	1	0.36	0.36		
13	Zinc	3/13/2003	Grab	3/20/2003	200.7	DNQ 2.4	20	1.3	1.3	Est. Conc.	
14	Cyanide	3/13/2003	Grab	4/1/2003	335.2	ND	3	2	2		
15	Asbestos	3/13/2003	Grab	3/24/2003	100.2	ND	0.021mf/l	0.021mf/l	0.085mf/l	Analyzed by R.J.Lee #2229	
16	2,3,7,8-TCDD (Dioxin)	3/13/2003	Grab	3/27/2003	1613	ND	5.OE-06	1.40E-06	1.80E-06	Analyzed by Frontier #2493	
17	Acrolein	3/13/2003	Grab	3/18/2003	624	ND	2	0.36			
18	Acrylonitrile	3/13/2003	Grab	3/18/2003	624	ND	2	0.14	1.4		
19	Benzene	3/13/2003	Grab	3/18/2003	624	ND	0.3				
20	Bromoform	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.099	0.99		
21	Carbon Tetrachloride	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.19	1.9		

*		Date.*	Sample	Date	USEPA	Analytical				
1 \$		Sample	Collection	Sample	Method	Results	ML ¹	MDL ²	RDL ³	
Control #	Constituent	Collected	Method	Analyzed	Used	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Comments
22	Chlorobenzene	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.075	0.75	
23	Chlorodibromomethane	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.11	1.1	
24	Chloroethane	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.29	2.9	
25	2-Chloroethylvinyl Ether				19					
26	Chloroform	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.084	0.84	
27	Dichlorobromomethane	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.1	1	
28	1,1-Dichloroethane	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.14	1.4	
29	1,2-Dichloroethane	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.21	2.1	
30	1,1-Dichloroethylene	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.19	1.9	
31	1,2-Dichloropropane	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.13	1.3	
32	1,3-Dichloropropylene	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.12	1.2	
33	Ethylbenzene	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.11	1.1	
34	Methyl Bromide	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.2	2	
35	Methyl Chloride	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.14	1.4	
36	Methylene Chloride	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.16	1.6	
	1,1,2,2-Tetrachloroethane	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.057	0.57	
38	Tetrachloroethylene	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.21	2.1	
	Toluene	3/13/2003	Grab	3/18/2003	624	ND	0.3	0.11	1.1	
40	1,2-Trans-Dichloroethylene	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.16	1.6	
	1,1,1-Trichloroethane	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.13	1.3	
42	1,1,2-Trichloroethane	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.12	1.2	
43	Trichloroethylene	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.13	1.3	
44	Vinyl Chloride	3/13/2003	Grab	3/18/2003	624	ND	0.5	0.17	1.7	
45	2-Chlorophenol	3/13/2003	Grab	3/25/2003	625	ND	5	5	50	Analyzed by McCampbell #1644
46	2,4-Dichlorophenol	3/13/2003	Grab	3/25/2003	625	ND	5	5	50	Analyzed by McCampbell #1644
47	2,4-Dimethylphenol	3/13/2003	Grab	3/25/2003	625	ND	2	2		Analyzed by McCampbell #1644
48	2-Methyl-4,6-Dinitrophenol	3/13/2003	Grab	3/25/2003	625	ND	5	5	50	Analyzed by McCampbell #1644
49	2,4-Dinitrophenol	3/13/2003	Grab	3/25/2003	625	ND	5	5	50	Analyzed by McCampbell #1644
50	2-Nitrophenol	3/13/2003	Grab	3/25/2003	625	ND	10	10	100	Analyzed by McCampbell #1644
51	4-Nitrophenol	3/13/2003	Grab	3/25/2003	625	ND	10	10	100	Analyzed by McCampbell #1644
52	3-Methyl-4-Chlorophenol	3/13/2003	Grab	3/25/2003	625	ND	1	1	10	Analyzed by McCampbell #1644
53	Pentachlorophenol	3/13/2003	Grab	3/25/2003	625	ND	5	5	50	Analyzed by McCampbell #1644
54	Phenol	3/13/2003	Grab	3/25/2003	625	ND	1	1	10	Analyzed by McCampbell #1644
55	2,4,6-Trichlorophenol	3/13/2003	Grab	3/25/2003	625	ND	10	10		Analyzed by McCampbell #1644
	Acenaphthene	3/13/2003	Grab	3/25/2003	625	ND	1	1		Analyzed by McCampbell #1644
	Acenaphthylene	3/13/2003	Grab	3/25/2003	625	ND	10	10		Analyzed by McCampbell #1644
	Anthracene	3/13/2003	Grab	3/25/2003	625	ND	10	10		Analyzed by McCampbell #1644
	Benzidine	3/13/2003	Grab	3/25/2003	625	ND	5	5		Analyzed by McCampbell #1644
	Benzo(a)Anthracene	3/13/2003	Grab	3/25/2003	625	ND	10	10		Analyzed by McCampbell #1644
	Benzo(a)Pyrene	3/13/2003	Grab	3/25/2003	625	ND	10	10		Analyzed by McCampbell #1644

*		Date •	Sample	Date	USEPA	Analytical			,	
ट्ट	1	Sample	Collection	Sample	Method	Results	ML ¹	MDL ²	RDL ³	1
Control #	Constituent	Collected	Method	Analyzed	Used	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Comments
	Benzo(b)Fluoranthene	3/13/2003	Grab	3/25/2003	625	ND	10			Analyzed by McCampbell #1644
	Benzo(ghi)Perylene	3/13/2003	Grab	3/25/2003	625		5	1		Analyzed by McCampbell #1644
	Benzo(k)Fluoranthene	3/13/2003	Grab	3/25/2003	625		10			Analyzed by McCampbell #1644
	Bis(2-Chloroethoxy) Methane	3/13/2003	Grab	3/25/2003	625		5			Analyzed by McCampbell #1644
	Bis(2-Chloroethyl) Ether	3/13/2003	Grab	3/25/2003	625		1	1		Analyzed by McCampbell #1644
	Bis(2-Chloroisopropyl) Ether	3/13/2003	Grab	3/25/2003			2			Analyzed by McCampbell #1644
68	Bis (2-Ethylhexyl) Phthalate	3/13/2003	Grab	3/25/2003			5			O Analyzed by McCampbell #1644
	4-Bromophenyl Phenyl Ether	3/13/2003	Grab	3/25/2003			5			O Analyzed by McCampbell #1644
	Butylbenzyl Phthalate	3/13/2003	Grab	3/25/2003			10			O Analyzed by McCampbell #1644
	2-Chloronaphthalene	3/13/2003	Grab	3/25/2003	625		10			O Analyzed by McCampbell #1644
	4-Chlorophenyl Phenyl Ether	3/13/2003	Grab	3/25/2003			5			Analyzed by McCampbell #1644
	Chrysene	3/13/2003	Grab	3/25/2003			10			Analyzed by McCampbell #1644
	Dibenzo(a,h) Anthracene	3/13/2003	Grab	3/25/2003	625		10			Analyzed by McCampbell #1644
	1,2 Dichlorobenzene	3/13/2003	Grab	3/18/2003	624		0.5		1.1	
	1,3 Dichlorobenzene	3/13/2003	Grab	3/18/2003			0.5		1.1	
	1,4 Dichlorobenzene	3/13/2003	Grab	3/18/2003	624		0.5		0.81	
	3,3'-Dichlorobenzidine	3/13/2003	Grab	3/25/2003			5			O Analyzed by McCampbell #1644
	Diethyl Phthalate	3/13/2003	Grab	3/25/2003			2			O Analyzed by McCampbell #1644
	Dimethyl Phthalate	3/13/2003	Grab	3/25/2003			2			O Analyzed by McCampbell #1644
	Di-n-Butyl Phthalate	3/13/2003	Grab	3/25/2003			10			O Analyzed by McCampbell #1644
	2,4-Dinitrotoluene	3/13/2003	Grab	3/25/2003			5		<u> </u>	O Analyzed by McCampbell #1644
	2,6-Dinitrotoluene	3/13/2003	Grab	3/25/2003			5		1	O Analyzed by McCampbell #1644
	Di-n-Octyl Phthalate	3/13/2003	Grab	3/25/2003			10			O Analyzed by McCampbell #1644
	1,2-Diphenylhydrazine	3/13/2003	Grab	3/25/2003			1			0 Analyzed by McCampbell #1644
	Fluoranthene	3/13/2003	Grab	3/25/2003			1			0 Analyzed by McCampbell #1644
	Fluorene	3/13/2003	Grab	3/25/2003			10			0 Analyzed by McCampbell #1644
88	Hexachlorobenzene	3/13/2003	Grab	3/25/2003			1	1	<u> </u>	O Analyzed by McCampbell #1644
89	Hexachlorobutadiene	3/13/2003	Grab	3/25/2003			1			0 Analyzed by McCampbell #1644
90	Hexachlorocyclopentadiene	3/13/2003	Grab	3/25/2003	625		5			O Analyzed by McCampbell #1644
91	Hexachloroethane	3/13/2003	Grab	3/25/2003			1	1		0 Analyzed by McCampbell #1644
92	Indeno(1,2,3-cd)Pyrene	3/13/2003		3/25/2003	625	ND ND	10			O Analyzed by McCampbell #1644
		3/13/2003	Grab	3/25/2003	625		1			O Analyzed by McCampbell #1644
	Naphthalene	3/13/2003		3/25/2003			1			O Analyzed by McCampbell #1644
	Nitrobenzene	3/13/2003		3/25/2003	625	ND .	1			O Analyzed by McCampbell #1644
	N-Nitrosodimethylamine	3/13/2003		3/25/2003	625		5		4	O Analyzed by McCampbell #1644
	N-Nitrosodi-n-Propylamine	3/13/2003		3/25/2003	625		5			O Analyzed by McCampbell #1644
	N-Nitrosodiphenylamine	3/13/2003		3/25/2003	625		1			O Analyzed by McCampbell #1644
	Phenanthrene	3/13/2003		3/25/2003	625		5			O Analyzed by McCampbell #1644
	Pyrene	3/13/2003		3/25/2003		ND ND	10		A CONTRACTOR OF THE PARTY OF TH	O Analyzed by McCampbell #1644
	1,2,4-Trichlorobenzene	3/13/2003		3/25/2003		ND ND	5	5	50	O Analyzed by McCampbell #1644

ontrol #		Date '	Sample	Date	USEPA	Analytical				
[불		Sample	Collection	Sample	Method	Results	ML ¹	MDL ²	RDL ³	
ပြီ	Constituent	Collected	Method	Analyzed	Used	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Comments
102	Aldrin	3/13/2003	Grab	3/20/2003	608	ND	0.005	0.0038	0.0038	
103	alpha-BHC	3/13/2003	Grab	3/20/2003	608	ND	0.01	0.0043	0.0043	
104	beta-BHC	3/13/2003	Grab	3/20/2003	608		0.005	0.0027	0.015	
105	gamma-BHC	3/13/2003	Grab	3/20/2003	608	ND	0.01	0.0041	0.0041	
106	Delta-BHC	3/13/2003	Grab	3/20/2003	608	ND	0.005	0.0021	0.0021	
107	Chlordane	3/13/2003	Grab	3/20/2003	608	ND	0.05	0.035	0.035	
108	4,4'-DDT	3/13/2003	Grab	3/20/2003	608		0.01	0.0045	0.0045	
109	4,4'-DDE	3/13/2003	Grab	3/20/2003	608	ND	0.02	0.0033	0,0033	
110	4,4'-DDD	3/13/2003	Grab	3/20/2003	608	ND	0.02	0.0048	0.0048	
111	Dieldrin	3/13/2003	Grab	3/20/2003	608	ND	0.01	0.0033	0.0033	
112	alpha-Endosulfan	3/13/2003	Grab	3/20/2003	608	ND	0.01	0.0042	0.0042	
113	beta-Endosulfan	3/13/2003	Grab	3/20/2003	608	ND	0.01	0.0033	0.0033	
114	Endosulfan Sulfate	3/13/2003	Grab	3/20/2003	608	ND	0.05	0.007	0.007	•
115	Endrin	3/13/2003	Grab	3/20/2003	608	ND	0.01	0.0047	0.0047	
116	Endrin Aldehyde	3/13/2003	Grab	3/20/2003	608	ND	0.01	0.0095	0.0095	
117	Heptachlor	3/13/2003	Grab	3/20/2003	608	ND	0.01	0.003	0.003	-
118	Heptachlor Epoxide	3/13/2003	Grab	3/20/2003	608	ND	0.01	0.003	0.003	
Poly	rchlorinated biphenyls (PCBs)									
119	PCB Arochlor 1016	3/13/2003	Grab	3/20/2003	608	ND	0.5	0.19	0.19	
120	PCB Arochlor 1221	3/13/2003	Grab	3/20/2003	608	ND	0.5	0.19	0.19	
121	PCB Arochlor 1232	3/13/2003	Grab	3/20/2003	608	ND	0.5	0.19	0.19	
122	PCB Arochlor 1242	3/13/2003	Grab	3/20/2003	608		0.5	0.19	0.19	
123	PCB Arochlor 1248	3/13/2003	Grab	3/20/2003	608	ND	0.5	0.19	0.19	
124	PCB Arochlor 1254	3/13/2003	Grab	3/20/2003	608	ND	0.5	0.19	0.19	
125	PCB Arochlor 1260	3/13/2003	Grab	3/20/2003	608	ND	0.5	0.19	0.19	
126	Toxaphene	3/13/2003	Grab	3/20/2003	608	ND	0.5	0.21	0.21	

California Regional Water Quality Control Board **North Coast Region**

ATTACHMENT 'C'

Permittee: Sierra Pacific, Inc., Arcata

Name of Laboratory: Alpha Analytical Labs

Report No.: A303329-01

WDID No.: 1B830650HUM

ELAP No.: 1551

Period (Wet or Dry): Wet

Contact Name: Linda Mackey, EnviroNet Consulting

Laboratory Contact: Karen Daly

Phone Number: 707-546-9461

Lab Phone Number: 707-468-0401

Type of Sample: Receiving Waters

(1) Receiv	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11) Measured or	(12)
1	1	1	1	1	1	1	1 '	1	1	Estimated	
	1	1	1	1		1	1	Measured or	1	Congener	1
	Date	Sample	Date	USEPA	Analytical	1	1 '	Estimated	1	Concentration	.1
ļ ,	Sample	Collection	Sample	Method	Results	ML	MDL	Congener	1	Multiplied by	1
Name of Congener	Collected	Method	Analyzed	Used	(pg/L)	(pg/L)	(pg/L)	Concentration	TEF	TEF	Comments
2,3,7,8-TCDD	3/13/2003	Grab	3/27/2003		ND	10		0	1		Frontier #2493
1,2,3,7,8-PentaCDD	3/13/2003	Grab	3/27/2003		ND	50		0	1.0		Frontier #2493
1,2,3,4,7,8-HexaCDD	3/13/2003	Grab	3/27/2003	1613	ND	50		0	0.1		Frontier #2493
1,2,3,6,7,8-HexaCDD	3/13/2003	Grab	3/27/2003	1613	ND	50		0	0.1		Frontier #2493
1,2,3,7,8,9-HexaCDD	3/13/2003	Grab	3/27/2003		ND	50		0	0.1		Frontier #2493
1,2,3,4,6,7,8-HeptaCDD	3/13/2003	Grab	3/27/2003	_1	ND	50		0	0.01		Frontier #2493
OctaCDD	3/13/2003	Grab	3/27/2003		ND	100		0	0.0001		Frontier #2493
2,3,7,8-TetraCDF	3/13/2003	Grab	3/27/2003		ND	10		0	0.1		Frontier #2493
1,2,3,7,8-PentaCDF	3/13/2003	Grab	3/27/2003		ND	50		0	0.05		Frontier #2493
2,3,4,7,8-PentaCDF	3/13/2003	Grab	3/27/2003		ND	50		0	0.5		Frontier #2493
1,2,3,4,7,8-HexaCDF	3/13/2003	Grab	3/27/2003	1613	ND	50		0	0.1		Frontier #2493
1,2,3,6,7,8-HexaCDF	3/13/2003	Grab	3/27/2003	1613	ND	50		0	0.1	. 0'	Frontier #2493
1,2,3,7,8,9-HexaCDF	3/13/2003	Grab	3/27/2003		ND	50		0	0.1		Frontier #2493
2,3,4,6,7,8-HexaCDF	3/13/2003	Grab	3/27/2003	1613	ND	50		0	0.1		Frontier #2493
1,2,3,4,6,7,8-HeptaCDF	3/13/2003	Grab	3/27/2003	1613	ND	50		0	0.01	0′	Frontier #2493
1,2,3,4,7,8,9-HeptaCDF	3/13/2003	Grab	3/27/2003		ND	50		0	0.01		Frontier #2493
OctaCDF	3/13/2003	Grab	3/27/2003	1613	ND	100	4.4	0	0.0001	0'	Frontier #2493
	1	,	<u> </u>	<u>'</u>	<u></u>		'	1		<u>'</u>	
Sum Total	1			<u>'</u>		<u> </u>	1	<u> </u>	'	0	4

APPENDIX B

ANALYTICAL LABORATORY REPORTS

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

24 March 2003

Dun & Martinek

Attn: Dun & Martinek

P.O. Box 1266

Eureka, CA 95502

RE: Weekly Monitoring

Work Order: A303322

Enclosed are the results of analyses for samples received by the laboratory on 03/13/03 16:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Melanie B. Neece For Sheri L. Speaks

Pelanie B. Frece

Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 4

Dun & Martinek P.O. Box 1266

Eureka, CA 95502

Attn: Dun & Martinek

Report Date: 03/24/03 12:31

Project No: M154.1

Project ID: Weekly Monitoring

Order Number A303322

Receipt Date/Time

Client Code **ENVDMAR** 03/13/2003 16:15

Client PO/Reference

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received .
Receiving Waters	A303322-01	Water	03/13/03 10:45	03/13/03 16:15

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 4

Dun & Martinek P.O. Box 1266 Eureka, CA 95502 Attn: Dun & Martinek

Report Date: 03/24/03 12:31

Project No: M154.1

Project ID: Weekly Monitoring

Order Number A303322

Receipt Date/Time 03/13/2003 16:15

Client Code **ENVDMAR** Client PO/Reference

				Laborato				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
Receiving Waters (A303322-01)			Sample Typ	pe: Water		Sampled: 03/13/03 10:45		
Conventional Chemistry Parameters	by APHA/EPA M	1ethods						
Color	EPA 110.2	AC31201	03/14/03	03/14/03	1 .	200 Color Units	3.0	
Dissolved Oxygen	EPA 360.1	AC31405	03/13/03	03/13/03	. н	0.13 mg/l	0.10	
рН	EPA 150.1	AC31824	03/14/03	03/14/03	*	6.5 pH Units	3.0	
Turbidity	EPA 180.1	**	•		#	3.5 NTU	0.10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 4

Dun & Martinek P.O. Box 1266 Eureka, CA 95502

Attn: Dun & Martinek

Report Date:

03/24/03 12:31

Project No: M154.1

Project ID: Weekly Monitoring

Order Number A303322

Receipt Date/Time

03/13/2003 16:15

Client Code **ENVDMAR** Client PO/Reference

%REC RPD Spike Source Flag %REC Limits **RPD** Limit Result **PQL** Units Level Result Analyte(s)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Medanie B. Theres

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 4

Dun & Martinek P.O. Box 1266 Eureka, CA 95502

Attn: Dun & Martinek

Report Date: 03/24/03 12:31

Project No: M154.1

Project ID: Weekly Monitoring

rder Number 303322

Receipt Date/Time 03/13/2003 16:15

Client Code **ENVDMAR** Client PO/Reference

Notes and Definitions

Analyte DETECTED DET

ďľ Analyte NOT DETECTED at or above the reporting limit

Not Reported NR

Sample results reported on a dry weight basis 1ry

Relative Percent Difference RPD **PQL** Practical Quantitation Limit

Salpha_

WORK ORDER CHAIN OF CUSTODY RECORD

Olpha Analytical Laboratories Inc. • 860 Waugh Lane, H-1, Ukiah, CA 95482 • (707) 468-0401 • FAX (707) 468-5267

DATE 3-13-03 PAGE / OF 1/2

Alpha 'Allalytical Laborat	ories inc. •	OUU Wai	ugn Lane					.,			· · ·				
CLIENT'S NAME DUN + MARZIEN	CEN.	,-		1	PROJECT N L/WD	1	トノル	1ac	KA	l					ANALYSES SAMPLE CONDITION ON RECEIPT:
STREET ADDRESS	CITY	STA	ATE	ZIP I	PHONE NUI		54F	1-9	46	7				//	cold/ICED? 4eS
PROJECT NAME STI- ARE					FAX NUMBE	27)	54	14-	-5	16	9	/	//		
CONTRACT/PURCHASE ORDER/QUOTE NUMBE	M154-	-1			SITÈ CONTI		Am	05				//			WERE SAMPLES PRESERVED?
SIGNATURE OF PERSON AUTHORIZING WORK UNDER TERMS STATED ON REVERSE SIDE OF THIS FORM.	Julia.	you -		SAMPL	ED BY ARRALE	ي لا	WE	ME)	-			* ()	75/i	y	
SAMPLE NUMBER/IDENTIFICATION	DATE	TIME	LAB S	SAMPLE	NUMBER	110	SAMPLE AIR SOL	E TYPE	RAB C	O. OF ONTS.	7 /	Y /	/*/		EXPLAIN IRREGULARITIES BELOW
RECEVING WATERS	3/13/03	16:45	+A30	33	aa-1	×		}	4	2	74	人	X		
Aprilla Communication of the C															Sample collected o
Y 2															regulated ponel.
				٠ .											weakly monitoring
														-	FER Darren 3-14-03
Service Burgotter warren bat- gan Basan Burgotter warren bat-		(1.15 N. A. (1.15)													\$\$
*														-	
			Elithia is Hijiria		Kirjonak (1897) Pagasak Pagas		-								
													_		
	yt .	(RECEIVED SIGNATURI	E)		Ma	uth	w)	u=			DATE 3/	13	TIME TIME	TURN AROUND TIME REQUESTED
RELINQUISHED BY (SIGNATURE)	us	1	RECEIVED SIGNATURI		<u>Sh</u>	<u>ớr</u>	<u> </u>	\mathfrak{D}	Q5	X	1	DATE 3/,	13	4:	
RELINQUISHED BY (SIGNATURE)			RECEIVED LABORATO					(SAMI	PLE CO	ONTRO	OL OFFICER
METHOD OF SHIPMENT		1	AUTHORIZE	D BY:								1	CTODA	CE T	DITION: IME REQUESTED D/
SPECIAL INSTRUCTIONS		L										2.	THERE SAMPL	AFTE	WILL BE STORED FOR 30 DAYS WITHOUT ADDITIONAL CHARG R STORAGE CHARGES WILL BE BILLED AT THE PUBLISHED RATI BE RETURNED TO CLIENT? ☐ YES ☐ NO
DRIVING TIME	SITE TIME				ТОТ	AL TIME						HAZ	ZARDO	US M	ATERIALS ARE THE PROPERTY OF THE CLIENT. THE CLIENT FOR PROPER DISPOSAL OF HAZARDOUS WASTES. CLIENTS N ZARDOUS WASTES MAY BE ASSESSED AN APPROPRIATE F

www.basiclab.com

voice **530.243.7234**

2218 Railroad Avenue

fax **530.243.7494**

Redding, California 96001

WATER CODE SECTION 13267 (CTR) - INORGANICS

Report To:

ALPHA ANALYTICAL LABORATORIES, INC.

Lab Number:

0303543

P.O. BOX 1508 UKIAH, CA 95482

SHERI L. SPEAKS

Date:

03/24/03

Phone:

707-468-0401

Date Sampled:

03/14/03

Date Received:

03/17/03

Project No.:

A303366

Page 1 of 1 - Inorganics

Description:

Attention:

A303366-01 VPD RECEIVING WATER

CTR No.	<u>Method</u>	<u>Test</u>	<u>Units</u>	<u>Results</u>	<u>Qualifier</u>	<u>CQL</u>	<u>MDL</u>	<u>RL</u>	Date <u>Analyzed</u>
8 8	1631 1631	Mercury Mercury-Field Blank	ng/l ng/l	4.21 0.39	DNQ - Est. Conc.	0.5 0.5	0.20 0.20	0.50 0.50	03/23/03 03/23/03

Comments:

California D.O.H.S. Cert. #1677.

ND - Not detected. RL - Minimum Level of Quantitation.

MDL- Method Detection Limit. DNQ Est. Conc. - Detected, but not Quantified. ng/l - Nanogram/liter. ug/l - Microgram/liter. CQL - Criterion Quantitation Limit.

Reported by:

alpha_

WORK ORDER CHAIN OF CUSTODY RECORD

Alpha Analytical Laboratories Inc. • 860 Waugh Lane, H-1, Ukiah, CA 95482 • (707) 468-0401 • FAX (707) 468-5267

DATE 3-14-03 PAGE / OF /

Aipna 'Analytical Laborate	ories inc. •	860 Waugh	Lane, H-I, Ukiah	i, CA 9548	12 • (707) 40	58-040	1 • FA	X (70	7) 468	5267	
LIENT'S NAME & Martine K			PROJ	JECT MANAG	ER /	ind	4 1	Mer	· k -c	~ <i>)</i> £		ANALYSES SAMPLE CONDITION ON RECEIPT:
TREET ADDRESS Street E	erebe	\mathcal{C}_{q} STATE		NE NUMBER	70	7-5	546	94	61	/		COLD/ICED? LES
ROJECT NAME SPI Arca	ty				v^-	-54	4-5	76	ç	_\ __\	1//	BUBBLES OR AIR SPACE?
ONTRACT/PURCHASE ORDER/QUOTE NUMBER	h,	154.1	SITE	CONTACT					/	73%/	//,	WERE SAMPLES PRESERVED?
IGNATURE OF PERSON AUTHORIZING WORK NDER TERMS STATED ON REVERSE SIDE OF HIS FORM.	a.E.F.	ak	SAMPLEDB	rnold		inks			1.4		//,	
SAMPLE NUMBER/IDENTIFICATION	DATE	TIME	LAB SAMPLE NU	MBER		PLE TYPE Solid comp	GRAB CC	O. OF ONTS.	2	//	//	EXPLAIN IRREGULARITIES BELOW
VPD received Water C	TR 3403	10:10 A	303366	_ }				2 7	X			Low Level Mercury
4												
	·											·
:												
	'											
				/								
ELINQUISHED BY: IGNATURE) A : () () () () () () () () () (AURE)	uly	00		5	7-/4	1-2	DATE 2	DE 4	TURN AROUND TIME REQUESTED
ELINQUISHED BY:	43)	1 (IVED BY:		76) oc	X	(A)	3	1403	TIME	30
ELINGUISHED BY:		RECE	IVED FOR RATORY BY:							SAMPLE	CONTRO	OL OFFICER
ETHOD OF SHIPMENT		AUTH	ORIZED BY:							1 STO	RAGE TIN	DSITION: ME REQUESTED DAYS
PECIAL INSTRUCTIONS										THE	REAFTER	WILL BE STORED FOR 30 DAYS WITHOUT ADDITIONAL CHARGES: R STORAGE CHARGES WILL BE BILLED AT THE PUBLISHED RATES.) BE RETURNED TO CLIENT? ☐ YES ☐ NO
RIVING TIME	SITE TIME			TOTAL TIME						HAZARE RESPON	OUS MA	ATERIALS ARE THE PROPERTY OF THE CLIENT. THE CLIENT IS FOR PROPER DISPOSAL OF HAZARDOUS W. CLIENTS NOT ZARDOUS WASTES MAY BE ASSESSED A. OPRIATE FEE.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

01 April 2003

Dun & Martinek Dun & Martinek P.O. Box 1266 Eureka, CA 95502

RE: CTR - SPI, Arcata

Work Order: A303329

Enclosed are the results of analyses for samples received by the laboratory on 03/13/03 16:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Shari Speaks

Sheri L. Speaks Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek

P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Receiving Waters	A303329-01	Water	03/13/03 10:45	03/13/03 16:15

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Shari Speaker

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Metals by EPA 6000/7000 Series Methods Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Receiving Waters (A303329-01) Water	Sampl	ed: 03/13/0	3 10:45 Re	ceived:	03/13/03 16	:15				
Chromium, hexavalent	ND	0.0050	0.010	mg/l	1	AC31402	03/14/03	03/14/03	EPA 7196	A-01

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaker

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Metals by EPA 200 Series Methods Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Receiving Waters (A303329-01) V	Water Samp	led: 03/13/0	3 10:45 Re	ceived:	03/13/03 16	5:15				
Silver	ND	0.0016	0.010	mg/l	1	AC31710	03/17/03	03/20/03	EPA 200.7	
Arsenic	0.019	0.00056	0.0020	**	**	**	ŧ1	03/27/03	EPA 200.9	
Beryllium	ND	0.00010	0.0010	**	**	"	**	03/20/03	EPA 200.7	
Cadmium	ND	0.00020	0.0010	,,	*	**	**	**	**	
Chromium	0.0055	0.0012	0.010	"	"	**	11	**	"	J
Copper	ND	0.0010	0.0090	**	**	11	n	"	n	
Nickel	0.0028	0.0013	0.010	11	"	"	11	"	U	J
Lead	0.00069	0.00034	0.0020	**	**	**	**	03/29/03	EPA 200.9	J
Antimony	ND	0.0012	0.0060	"	11	11	11	03/31/03	11	
Selenium	ND	0.00051	0.0050	*	**	"	**	03/28/03	**	
Thallium	ND	0.00036	0.0010	**	**	11	"	03/31/03	**	
Zinc	0.0024	0.0013	0.020	n	11	**	"	03/20/03	EPA 200.7	J

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaker

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Organochlorine Pesticides and PCBs by EPA Method 608 Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Receiving Waters (A303329-01) W	ater Sampl	ed: 03/13/03	3 10:45 Re	ceived: (03/13/03 16	:15				
Aldrin	ND	0.0038	0.0050	ug/l	1	AC32014	03/20/03	03/20/03	EPA 608	
HCH-alpha	ND	0.0043	0.010	n	**	**	**	n	n	
HCH-beta	0.012	0.012	0.012	"	**	*	11	**	**	R-01
HCH-gamma (Lindane)	ND	0.0041	0.010	H	11	11	11	**	**	
HCH-delta	ND	0.0021	0.0050	"	**	"	**	**	**	
Chlordane (tech)	ND	0.035	0.050	**	**	n	**	**	••	
4,4'-DDT	ND	0.0045	0.010	**	**	H	**	H	**	
4,4'-DDE	ND	0.0033	0.020	"	**	11	ti .	ti	**	
4,4´-DDD	ND	0.0048	0.020	**	**	**	11	**	**	
Dieldrin	ND	0.0033	0.010	**	**	**	"	11	10	
Endosulfan I	ND	0.0042	0.010	"	**	"	n	"	н	
Endosulfan II	ND	0.0033	0.010	**	"	H	**	**	"	
Endosulfan sulfate	ND	0.0070	0.050	**	"	"	"	11	H	
Endrin	ND	0.0047	0.010	н	**	11	**	**	"	
Endrin aldehyde	ND	0.0095	0.010	**	11	11	"	**	11	
Heptachlor	ND	0.0030	0.010	**	11	11	**	**	**	
Heptachlor epoxide	ND	0.0030	0.010	**	**	Ħ	11	11	**	
PCB-1016	ND	0.19	0.50	"	**	**	H	17	**	
PCB-1221	ND	0.19	0.50	11	**	**	**	**	11	
PCB-1232	ND	0.19	0.50	11	"	**	"	**	"	•
PCB-1242	ND	0.19	0.50	11	11	**	**	11	"	
PCB-1248	ND	0.19	0.50	"	"	"	**	***	**	
PCB-1254	ND	0.19	0.50	**	"	"	**	"	19	
PCB-1260	ND	0.19	0.50	**	"	"	Ħ	**	**	
Toxaphene	ND	0.21	0.50	n	11	11	**	**	H	
Surrogate: Dibutylchlorendate		86.9 %	39-1	50		#	"	"	"	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speake

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Purgeables by EPA Method 624 Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Receiving Waters (A303329-01) Water	Sample	d: 03/13/03	3 10:45 Re	ceived: 0	3/13/03 16	:15				R-04
Acrolein	ND	3.6	20	ug/l	10	AC31913	03/16/03	03/18/03	EPA 624	
Acrylonitrile	ND	1.4	20	**	"	**	"	H	**	
Benzene	ND	0.80	3.0	н	H	**	11	11	**	
Bromoform	ND	0.99	5.0	"	11	11	11	H	"	
Carbon tetrachloride	ND	1.9	5.0	"	11	"	н	11	**	
Chlorobenzene	ND	0.75	5.0	"	**	11	11	**	"	
Dibromochloromethane	ND	1.1	5.0	"	n	**	n	**	**	
Chloroethane	ND	2.9	5.0	11	,,	- **	**	11	**	
Chloroform	ND	0.84	5.0	58	"	**	**	"	**	
Bromodichloromethane	ND	1.0	5.0	**	**	"	**	19	**	
1,1-Dichloroethane	ND	1.4	5.0	51	"	**	"	11	"	
1,2-Dichloroethane	ND	2.1	5.0	11	"	**	11	**	**	
1,1-Dichloroethene	ND	1.9	5.0	**	n	**	н	11	"	
1,2-Dichloropropane	ND	1.3	5.0	H	"	H	**	**	U	
cis-1,3-Dichloropropene	ND	0.76	5.0	**	11	**	**	11	**	
trans-1,3-Dichloropropene	ND	0.47	5.0	11	11	Ħ	**	19	**	
Ethylbenzene	ND	1.1	5.0	**		**	19	**	**	
Bromomethane	ND	2.0	5.0	**	**	**	**	11	**	
Chloromethane	ND	1.4	5.0	**	"	"	"	**	**	
Methylene chloride	ND	1.6	5.0	**	**	"	11	н	11	
1,1,2,2-Tetrachloroethane	ND	0.57	5.0	**	**	n	**	"	11	
Tetrachloroethene	ND	2.1	5.0	**	11	11	11	**	"	
Toluene	ND	1.1	3.0	**	"	11		**	**	
trans-1,2-Dichloroethene	ND	1.6	5.0	"	ŧŧ	н	11	"	Ħ	
1,1,4-Trichloroethane	ND	1.3	5.0	**	**	**	**	#	11	
1,1,2-Trichloroethane	ND	1.2	5.0	н	11	**		**	"	
Trichloroethene	ND	1.3	5.0	**	**	**	**	**	10	
Vinyl chloride	ND	1.7	5.0	**	H	**	**	11	"	
1,2-Dichlorobenzene	ND.	1.1	5.0	**	17	"	**	11	**	
1,3-Dichlorobenzene	ND	1.1	5.0	11	"	н	**	11		
1,4-Dichlorobenzene	ND	0.81	5.0	,,	11	**	"	H	n	
Surrogate: Dibromofluoromethane		91.8 %	70-1	30		"	"	"	"	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaks

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported:

04/01/03 16:04

Purgeables by EPA Method 624 Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Receiving Waters (A303329-01) Water	Sample	d: 03/13/0	3 10:45 Re	ceived:	03/13/03 16	:15				R-04
Surrogate: Toluene-d8 Surrogate: Bromofluorobenzene		99.4 % 82.2 %	70-13 70-13			AC31913 "	03/16/03	03/18/03	EPA 624 "	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaks

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Conventional Chemistry Parameters by APHA/EPA Methods Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Receiving Waters (A303329-01) Water	Sample	d: 03/13/0	3 10:45 R	eceived: 0	3/13/03 16	:15				
Cyanide (total) pH Salinity	ND 6.1 ND	0.0020	0.0030 3.0 10	mg/l pH Units g/kg	1	AD30108 AC31824 AC31909	03/25/03 03/14/03 03/19/03	04/01/03 03/14/03 03/31/03	EPA 335.2 EPA 150.1 SM 2520	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaker

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Physical Parameters by APHA/ASTM/EPA Methods Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Receiving Waters (A303329-01) Water	Sample	d: 03/13/03	10:45 Re	ceived: (03/13/03 16	:15				
Hardness, Total	136		5	mg/l	1	AC31710	03/17/03	03/20/03	SM2340B	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaks

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported:

04/01/03 16:04

Metals by EPA 6000/7000 Series Methods - Quality Control Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AC31402 - EPA 7196A (Cr6 Water										
Blank (AC31402-BLK1)					Prepared	& Analyz	ed: 03/14/0)3			
Chromium, hexavalent	ND	0.0050	0.010	mg/l							
LCS (AC31402-BS1)					Prepared	& Analyz	ed: 03/14/	03			
Chromium, hexavalent	0.101	0.0050	0.010	mg/l	0.100		101	80-120			
LCS Dup (AC31402-BSD1)					Prepared	& Analyz	ed: 03/14/	03			
Chromium, hexavalent	0.0990	0.0050	0.010	mg/l	0.100		99.0	80-120	2.00	20	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaker

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek

Project: CTR - SPI, Arcata

P.O. Box 1266 Eureka CA, 95502 Project Number: M154.1

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Metals by EPA 200 Series Methods - Quality Control Alpha Analytical Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch AC31710 - EPA 200.2	Hot Plate										
Blank (AC31710-BLK1)					Prepared:	03/17/03	Analyzed	: 03/31/03			
Antimony	ND	0.0012	0.0060	mg/l							
Arsenic	ND	0.00056	0.0020	н							
Beryllium	0.000175	0.00010	0.0010	11							
Cadmium	ND	0.00020	0.0010	**							
Chromium	ND	0.0012	0.010	11							
Copper	ND	0.0010	0.0090	**							
Lead	ND	0.00034	0.0020	**							
Nickel	ND	0.0013	0.010	"							
Selenium	ND	0.00051	0.0050	"							
Silver	ND	0.0016	0.010	**							
Thallium	ND	0.00036	0.0010	**							
Zinc	0.00210	0.0013	0.020	"							
LCS (AC31710-BS1)					Prepared:	: 03/17/03	8 Analyze	1: 03/31/03			
Antimony	0.105	0.012	0.060	mg/l	0.100		105	85-115			
Arsenic	0.00999	0.00056	0.0020	"	0.0100		99.9	85-115			
Beryllium	0.106	0.00010	0.0010	"	0.100		106	85-115			
Cadmium	0.106	0.00020	0.0010	**	0.100		106	85-115			
Chromium	0.104	0.0012	0.010	**	0.100		104	85-115			
Copper	0.106	0.0010	0.0090	**	0.100		106	85-115			
Lead	0.0960	0.0034	0.020	**	0.100		96.0	85-115			
Nickel	0.107	0.0013	0.010	п	0.100		107	85-115			
Selenium	0.00941	0.00051	0.0050	n	0.0100		94.1	73.8-126			
Silver	0.0920	0.0016	0.010	**	0.100		92.0	85-115			
Thallium	0.0959	0.0036	0.010	**	0.100		95.9	56.5-124			
Zinc	0.111	0.0013	0.020	11	0.100		111	89.4-128			
LCS Dup (AC31710-BSD1)					Prepared	1: 03/17/0	3 Analyze	d: 03/31/03	3		
Antimony	0.103	0.012	0.060	mg/l	0.100		103	85-115	1.92	20	
Arsenic	0.00971	0.00056	0.0020	-	0.0100		97.1	85-115	2.84	20	
Beryllium	0.109	0.00010	0.0010		0.100		109	85-115	2.79	20	
Cadmium	0.107	0.00020	0.0010	**	0.100		107	85-115	0.939	20	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speake

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Metals by EPA 200 Series Methods - Quality Control Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AC31710 - EPA 200.2 H	ot Plate										
LCS Dup (AC31710-BSD1)					Prepared:	03/17/03	Analyzed	: 03/20/03			
Chromium	0.107	0.0012	0.010	mg/l	0.100		107	85-115	2.84	20	
Соррег	0.107	0.0010	0.0090	**	0.100		107	85-115	0.939	20	
Lead	0.0970	0.0034	0.020	11	0.100		97.0	85-115	1.04	20	
Nickel	0.108	0.0013	0.010	n	0.100		108	85-115	0.930	20	
Selenium	0.00924	0.00051	0.0050	**	0.0100		92.4	73.8-126	1.82	20	
Silver	0.0935	0.0016	0.010	11	0.100		93.5	85-115	1.62	20	
Thallium	0.0918	0.0036	0.010	**	0.100		91.8	56.5-124	4.37	20	
Zinc	0.113	0.0013	0.020	**	0.100		113	89.4-128	1.79	20	
Duplicate (AC31710-DUP1)		Sourc	e: A303329-	01	Prepared:	03/17/03	Analyze	d: 03/31/03			
Antimony	ND	0.0012	0.0060	mg/l		ND				20	
Arsenic	0.0193	0.00056	0.0020	**		0.019			1.57	20	
Beryllium	ND	0.00010	0.0010	11		ND				20	
Cadmium	ND	0.00020	0.0010	**		ND				20	
Chromium	0.00565	0.0012	0.010	**		0.0055			2.69	20	
Copper	ND	0.0010	0.0090	"		ND				20	
Lead	0.000835	0.00034	0.0020	**		0.00069			19.0	20	
Nickel	0.00525	0.0013	0.010	н		0.0028			60.9	20	
Selenium	ND	0.00051	0.0050	n		ND				20	
Silver	ND	0.0016	0.010	*1		ND				20	
Thallium	ND	0.00036	0.0010	11		ND				20	
Zinc	0.00550	0.0013	0.020	**		0.0024			78.5	20	
Matrix Spike (AC31710-MS1)		Sour	e: A303329	-01	Prepared	1: 03/17/03	Analyze	ed: 03/31/0	3		
Antimony	0.0960	0.012	0.060	mg/l	0.100	ND	96.0	70-130			
Arsenic	0.0274	0.00056	0.0020	**	0.0100	0.019	84.0	70-130			
Beryllium	0.112	0.00010	0.0010	н	0.100	ND	112	70-130			
Cadmium	0.109	0.00020	0.0010	n	0.100	ND	109	70-130			
Chromium	0.114	0.0012	0.010	"	0.100	0.0055	108	70-130			
Copper	0.109	0.0010	0.0090	**	0.100	ND	109	70-130			
Lead	0.0973	0.0034	0.020	**	0.100	0.00069	96.6	70-130			
Nickel	0.114	0.0013	0.010	**	0.100	0.0028	111	70-130			

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri Speaks

208 Mason St. Ukiah, California 95482

%REC

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Source

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Spike

Project Number: M154.1

Reporting

Project Manager: Dun & Martinek

Reported:

RPD

04/01/03 16:04

Metals by EPA 200 Series Methods - Quality Control Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch AC31710 - EPA 200.2 I	Iot Plate										
Matrix Spike (AC31710-MS1)		Source:	A303329-	01	Prepared:	03/17/03	Analyzed	1: 03/28/03			···
Selenium	0.00818	0.00051	0.0050	mg/l	0.0100	ND	81.8	20.7-155			
Silver	0.0986	0.0016	0.010	**	0.100	ND	98.6	70-130			
Thallium	0.101	0.0036	0.010	**	0.100	ND	101	47-123			
Zinc	0.116	0.0013	0.020	н	0.100	0.0024	114	70-130			
Matrix Spike Dup (AC31710-MS	D1)	Source:	A303329-	-01	Prepared:	03/17/03	Analyze	d: 03/31/03			
Antimony	0.107	0.012	0.060	mg/l	0.100	ND	107	70-130	10.8	20	
Arsenic	0.0279	0.00056	0.0020	**	0.0100	0.019	89.0	70-130	1.81	20	
Beryllium	0.113	0.00010	0.0010	н	0.100	ND	113	70-130	0.889	20	
Cadmium	0.107	0.00020	0.0010	"	0.100	ND	107	70-130	1.85	20	
Chromium	0.115	0.0012	0.010	**	0.100	0.0055	110	70-130	0.873	20	
Copper	0.107	0.0010	0.0090	**	0.100	ND	107	70-130	1.85	20	
Lead	0.0997	0.0034	0.020	11	0.100	0.00069	99.0	70-130	2.44	20	
Nickel	0.114	0.0013	0.010	•	0.100	0.0028	111	70-130	0.00	20	
Selenium	0.00840	0.00051	0.0050	11	0.0100	ND	84.0	20.7-155	2.65	20	
Silver	0.0983	0.0016	0.010	**	0.100	ND	98.3	70-130	0.305	20	
Thallium	0.103	0.0036	0.010	**	0.100	ND	103	47-123	1.96	20	
Zinc	0.116	0.0013	0.020	"	0.100	0.0024	114	70-130	0.00	20	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaks

208 Mason St. Ukiah, California 95482

%REC

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Source

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Spike

Project Number: M154.1

Reporting

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

RPD

Organochlorine Pesticides and PCBs by EPA Method 608 - Quality Control Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch AC32014 - EPA 3510B	Water										
Blank (AC32014-BLK1)					Prepared a	& Analyz	ed: 03/20/0)3			
Aldrin	ND	0.0038	0.0050	ug/l							
HCH-alpha	ND	0.0043	0.010	11							
HCH-beta	ND	0.0027	0.0050	"							
HCH-gamma (Lindane)	ND	0.0041	0.010	**							
HCH-delta	ND	0.0021	0.0050	11							
Chlordane (tech)	ND	0.035	0.050	**							
4,4'-DDT	ND	0.0045	0.010	"							
4,4′-DDE	ND	0.0033	0.020	**							
4,4′-DDD	0.00600	0.0048	0.020	11	·						
Dieldrin	ND	0.0033	0.010	н							
Endosulfan I	ND	0.0042	0.010	н							
Endosulfan II	ND	0.0033	0.010	*							
Endosulfan sulfate	0.0350	0.0070	0.050	"							
Endrin	ND	0.0047	0.010	**							
Endrin aldehyde	ND	0.0095	0.010	n							
Heptachlor	ND	0.0030	0.010	**							
Heptachlor epoxide	ND	0.0030	0.010	**							
PCB-1016	ND	0.19	0.50	**							
PCB-1221	ND	0.19	0.50	11							
PCB-1232	ND	0.19	0.50	11							
PCB-1242	ND	0.19	0.50	**							
PCB-1248	ND	0.19	0.50	**							
PCB-1254	ND	0.19	0.50	**							
PCB-1260	ND	0.19	0.50	**							
Toxaphene	ND	0.21	0.50	11							
Surrogate: Dibutylchlorendate	0.808			"	0.799		101	39-150			
LCS (AC32014-BS1)						l & Analy	zed: 03/20				
Aldrin	0.0860	0.0038	0.0050	ug/l	0.200		43.0	0-121			
HCH-alpha	0.168	0.0043	0.010	11	0.200		84.0	64-113			
HCH-beta	0.216	0.0027	0.0050	**	0.200		108	72-139			

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaker

208 Mason St. Ukiah, California 95482

%REC

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Source

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Spike

Project Number: M154.1

Reporting

Project Manager: Dun & Martinek

Reported:

RPD

04/01/03 16:04

Organochlorine Pesticides and PCBs by EPA Method 608 - Quality Control Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch AC32014 - EPA 3510B V	Vater										
LCS (AC32014-BS1)					Prepared of	& Analyz	ed: 03/20/	03			
HCH-gamma (Lindane)	0.172	0.0041	0.010	ug/l	0.200		86.0	66-118			
HCH-delta	0.164	0.0021	0.0050	**	0.200		82.0	46-165			
4,4'-DDT	0.182	0.0045	0.010	n	0.200		91.0	68-128			
4,4'-DDE	0.169	0.0033	0.020	**	0.200		84.5	50-124			
1,4'-DDD	0.186	0.0048	0.020	**	0.200		93.0	65-147			
Dieldrin	0.181	0.0033	0.010	**	0.200		90.5	71-119			
Endosulfan I	0.186	0.0042	0.010	**	0.200		93.0	71-121			
Endosulfan II	0.177	0.0033	0.010	"	0.200		88.5	53-136			
Endosulfan sulfate	0.195	0.0070	0.050	**	0.200		97.5	77-145			
Endrin	0.186	0.0047	0.010	"	0.200		93.0	76-132			
Endrin aldehyde	0.205	0.0095	0.010	**	0.200		102	69-155			
Heptachlor	0.132	0.0030	0.010	**	0.200		66.0	9-126			
Heptachlor epoxide	0.174	0.0030	0.010	11	0.200		87.0	69-120			
Surrogate: Dibutylchlorendate	0.932			"	0.799		117	39-150			
Matrix Spike (AC32014-MS1)		Source: A303329-01			Prepared & Analyzed: 03/20/03						QM
Aldrin	0.0580	0.0038	0.0050	ug/l	0.200	ND	29.0	0-121			
HCH-alpha	0.0770	0.0043	0.010	**	0.200	ND	38.5	64-113			
HCH-beta	0.121	0.0027	0.0050	**	0.200	0.012	54.5	72-139			
HCH-gamma (Lindane)	0.0840	0.0041	0.010	"	0.200	ND	42.0	66-118			
HCH-delta	0.0840	0.0021	0.0050	**	0.200	ND	42.0	46-165			
4,4′-DDT	0.111	0.0045	0.010	11	0.200	ND	55.5	68-128			
4,4'-DDE	0.0780	0.0033	0.020	,,	0.200	ND	39.0	50-124			
4,4'-DDD	0.0860	0.0048	0.020	**	0.200	ND	43.0	65-147			
Dieldrin	0.0860	0.0033	0.010		0.200	ND	43.0	71-119			
Endosulfan I	0.0850	0.0042	0.010	**	0.200	ND	42.5	71-121			
Endosulfan II	0.0820	0.0033	0.010	"	0.200	ND	41.0	53-136			
Endosulfan sulfate	0.111	0.0070	0.050	**	0.200	ND	55.5	77-145			
Endrin	0.0880	0.0047	0.010	"	0.200	ND	44.0	76-132			
Endrin aldehyde	0.139	0.0095	0.010	**	0.200	ND	69.5	69-155			
Heptachlor	0.0680	0.0030	0.010	11	0.200	ND	34.0	9-126			

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaker

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Organochlorine Pesticides and PCBs by EPA Method 608 - Quality Control Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AC32014 - EPA 3510B	Water										
Matrix Spike (AC32014-MS1)		Source: A303329-01			Prepared & Analyzed: 03/20/03						QM-05
Heptachlor epoxide	0.0860	0.0030	0.010	ug/l	0.200	ND	43.0	69-120			
Surrogate: Dibutylchlorendate	0.718			"	0.799		89.9	39-150			
Matrix Spike Dup (AC32014-MS	SD1)	Source: A303329-01			Prepared & Analyzed: 03/20/03						QM-05
Aldrin	0.0800	0.0038	0.0050	ug/l	0.200	ND	40.0	0-121	31.9	44	
HCH-alpha	0.105	0.0043	0.010	**	0.200	ND	52.5	64-113	30.8	21	
HCH-beta	0.164	0.0027	0.0050	11	0.200	0.012	76.0	72-139	30.2	18	
HCH-gamma (Lindane)	0.112	0.0041	0.010	"	0.200	ND	56.0	66-118	28.6	25	
HCH-delta	0.118	0.0021	0.0050	11	0.200	ND	59.0	46-165	33.7	16	
4,4'-DDT	0.119	0.0045	0.010	н	0.200	ND	59.5	68-128	6.96	24	
4,4'-DDE	0.106	0.0033	0.020	11	0.200	ND	53.0	50-124	30.4	22	
4,4'-DDD	0.122	0.0048	0.020	**	0.200	ND	61.0	65-147	34.6	21	
Dieldrin	0.116	0.0033	0.010	**	0.200	ND	58.0	71-119	29.7	18	
Endosulfan I	0.113	0.0042	0.010	H	0.200	ND	56.5	71-121	28.3	21	
Endosulfan II	0.103	0.0033	0.010	11	0.200	ND	51.5	53-136	22.7	19	
Endosulfan sulfate	0.132	0.0070	0.050	+1	0.200	ND	66.0	77-145	17.3	21	
Endrin	0.123	0.0047	0.010	"	0.200	ND	61.5	76-132	33.2	24	
Endrin aldehyde	0.143	0.0095	0.010	"	0.200	ND	71.5	69-155	2.84	18	
Heptachlor	0.0920	0.0030	0.010	"	0.200	ND	46.0	9-126	30.0	43	
Heptachlor epoxide	0.116	0.0030	0.010	,,	0.200	ND	58.0	69-120	29.7	19	
Surrogate: Dibutylchlorendate	1.03			"	0.799		129	39-150			

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri Speaks

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266

Eureka CA, 95502

Project: CTR - SPI, Arcata

Project Number: M154.1

Project Manager: Dun & Martinek

Reported:

04/01/03 16:04

Purgeables by EPA Method 624 - Quality Control Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AC31913 - EPA 5030 V											
Batch AC31913 - EFA 5030 V	vater Mis				<u></u>						
Blank (AC31913-BLK1)					Prepared:	03/16/03	Analyzed	: 03/17/03			
Acrolein	ND	0.36	2.0	ug/l							
Acrylonitrile	ND	0.14	2.0	**							
Benzene	ND	0.080	0.30	11							
Bromoform	ND	0.099	0.50	**							
Carbon tetrachloride	ND	0.19	0.50	**							
Chlorobenzene	ND	0.075	0.50	н							
Dibromochloromethane	ND	0.11	0.50	"							
Chloroethane	ND	0.29	0.50	**							
Chloroform	ND	0.084	0.50	"							
Bromodichloromethane	ND	0.10	0.50	**							
1,1-Dichloroethane	ND	0.14	0.50	H							
1,2-Dichloroethane	ND	0.21	0.50	**							
1,1-Dichloroethene	ND	0.19	0.50	11							
1,2-Dichloropropane	ND	0.13	0.50	**							
cis-1,3-Dichloropropene	ND	0.076	0.50	**							
trans-1,3-Dichloropropene	ND	0.047	0.50	**							
Ethylbenzene	ND	0.11	0.50	**							
Bromomethane	ND	0.20	0.50	H							
Chloromethane	ND	0.14	0.50	**							
Methylene chloride	ND	0.16	0.50	11							
1,1,2,2-Tetrachloroethane	ND	0.057	0.50	,,							
Tetrachloroethene	ND	0.21	0.50	Ħ							
Toluene	ND	0.11	0.30	**							
trans-1,2-Dichloroethene	ND	0.16	0.50	**							
1,1,1-Trichloroethane	ND	0.13	0.50	**							
1,1,2-Trichloroethane	ND	0.12	0.50	"							
Trichloroethene	ND	0.13	0.50	**							
Vinyl chloride	ND	0.17	0.50	**							
1,2-Dichlorobenzene	ND	0.11	0.50	11							
1,3-Dichlorobenzene	ND	0.11	0.50								
1,4-Dichlorobenzene	ND	0.081	0.50	11							

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaker

208 Mason St. Ukiah, California 95482

%REC

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Spike

Source

Dun & Martinek

Project: CTR - SPI, Arcata

P.O. Box 1266 Eureka CA, 95502 Project Number: M154.1

Reporting

Reported:

Project Manager: Dun & Martinek

04/01/03 16:04

RPD

Purgeables by EPA Method 624 - Quality Control Alpha Analytical Laboratories, Inc.

			Reporting		Spike	Source		70KEC		KrD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch AC31913 - EPA 5030 W	ater MS										
Blank (AC31913-BLK1)				***************************************	Prepared:	: 03/16/03	Analyzed	1: 03/17/03		····	
Surrogate: Dibromofluoromethane	4.10			ug/l	5.00		82.0	70-130			-
Surrogate: Toluene-d8	4.70			#	5.00		94.0	70-130			
Surrogate: Bromofluorobenzene	4.17			"	5.00		83.4	70-130			
LCS (AC31913-BS1)					Prepared	: 03/16/03	Analyzed	1: 03/17/03	······································		
Acrolein	2.58	0.36	2.0	ug/l	2.62		98.5	70-130			
Acrylonitrile	1.15	0.14	2.0	**	1.25		92.0	70-130			
Benzene	1.10	0.080	0.30	11	1.25		88.0	77-127			
Bromoform	1.05	0.099	0.50	H	1.25		84.0	84-121			
Carbon tetrachloride	1.05	0.19	0.50	11	1.25		84.0	76-131			
Chlorobenzene	1.13	0.075	0.50	11	1.25		90.4	83-126			
Dibromochloromethane	1.06	0.11	0.50	**	1.25		84.8	80-126			
Chloroethane	1.20	0.29	0.50	11	1.25		96.0	54-152			
Chloroform	1.06	0.084	0.50	"	1.25		84.8	79-135			
Bromodichloromethane	1.08	0.10	0.50	**	1.25		86.4	81-132			
1,1-Dichloroethane	1.20	0.14	0.50	**	1.25		96.0	82-140			
1,2-Dichloroethane	0.940	0.21	0.50	**	1.25		75.2	79-129			
1,1-Dichloroethene	1.04	0.19	0.50	11	1.25		83.2	84-121			
1,2-Dichloropropane	1.06	0.13	0.50	**	1.25		84.8	80-126			
cis-1,3-Dichloropropene	1.05	0.076	0.50	19	1.25		84.0	84-123			
trans-1,3-Dichloropropene	0.980	0.047	0.50	**	1.25		78.4	84-122			
Ethylbenzene	1.12	0.11	0.50	**	1.25		89.6	86-124			
Bromomethane	1.34	0.20	0.50	"	1.25		107	60-145			
Chloromethane	1.11	0.14	0.50	**	1.25		88.8	62-130			
Methylene chloride	1.03	0.16	0.50	**	1.25		82.4	79-121			
1,1,2,2-Tetrachloroethane	1.09	0.057	0.50	H	1.25		87.2	83-115			
Tetrachloroethene	1.14	0.21	0.50	"	1.25		91.2	75-135			
Toluene	1.21	0.11	0.30	"	1.25		96.8	85-127			
trans-1,2-Dichloroethene	1.07	0.16	0.50	"	1.25		85.6	81-128			
1,1,1-Trichloroethane	1.08	0.13	0.50	"	1.25		86.4	76-130			
1,1,2-Trichloroethane	1.11	0.12	0.50	**	1.25		88.8	70-130			

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speake

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266

Eureka CA, 95502

Project: CTR - SPI, Arcata

Project Number: M154.1 Project Manager: Dun & Martinek Reported:

04/01/03 16:04

Purgeables by EPA Method 624 - Quality Control Alpha Analytical Laboratories, Inc.

Prepared: 03/16/03 Analyzed: 03/17/03 Trichloroethene 1.14 0.13 0.50 ug/l 1.25 91.2 82-126 Vinyl chloride 1.18 0.17 0.50 " 1.25 94.4 70-130 Vinyl chloride 1.18 0.17 0.50 " 1.25 94.4 70-130 Vinyl chloride 1.18 0.17 0.50 " 1.25 94.4 70-130 Vinyl chloride 1.16 0.11 0.50 " 1.25 94.8 83-129 Vinyl chlorobenzene 1.16 0.11 0.50 " 1.25 92.8 86-132 Vinyl chlorobenzene 1.14 0.081 0.50 " 1.25 91.2 84-123 Vinyl chlorobenzene 1.14 0.081 0.50 " 1.25 91.2 84-123 Vinyl chlorobenzene 0.14 0.081 0.50 " 0.50 81.6 70-130 Vinyl chlorobenzene 0.14 0.081 0.50 " 0.500 92.2 70-130 Vinyl chlorobenzene 0.61 Vinyl chlorobenzene 0.61 Vinyl chlorobenzene 0.61 Vinyl chlorobenzene 0.62 Vinyl chlorobenzene 0.64 Vinyl chlorobenzene 0.65 Vinyl chlorobenzene 0.66 0.080 0.30 " 0.25 Vinyl chlorobenzene 0.06 0.075 Vinyl chlorobenzene 0.075 Vinyl chlorobenzene 0.075 0.50 " 0.25 Vinyl chlorobenzene 0.08 0.099 0.050 " 0.25 Vinyl chlorobenzene 0.08 0.099 0.00 Vinyl chlorobenzene 0.00 0.00 Vinyl chlorobenzene 0.00	Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Trichloroethene 1.14 0.13 0.50 ug/l 1.25 91.2 82-126 Vinyl chloride 1.18 0.17 0.50 " 1.25 94.4 70-130 1,2-Dichlorobenzene 1.16 0.11 0.50 " 1.25 94.8 86-132 1,4-Dichlorobenzene 1.14 0.081 0.50 " 1.25 91.2 84-132 Surrogate: Dibromofluoromethane 4.08 " 5.00 81.6 70-130 Surrogate: Dibromofluorobenzene 4.61 " 5.00 92.2 70-130 Surrogate: Bromofluorobenzene 4.61 " 5.00 92.2 70-130 Corrogate: Bromofluorobenzene 4.61 " 5.00 92.2 70-130 Acrolein 2.59 0.36 2.0 ug/l 2.62 98.9 70-130 0.03 25 Acrolein 2.59 0.36 2.0 ug/l 2.62 98.9 70-130 0.00 2.5 4 Acr	Batch AC31913 - EPA 5030 W	ater MS										
Trichloroethene 1.14 0.13 0.50 ug/l 1.25 91.2 82-126 Vinyl chloride 1.18 0.17 0.50 " 1.25 94.4 70-130 1,2-Dichlorobenzene 1.16 0.11 0.50 " 1.25 94.8 86-132 1,4-Dichlorobenzene 1.14 0.081 0.50 " 1.25 91.2 84-132 Surrogate: Dibromofluoromethane 4.08 " 5.00 81.6 70-130 Surrogate: Dibromofluorobenzene 4.61 " 5.00 92.2 70-130 Surrogate: Bromofluorobenzene 4.61 " 5.00 92.2 70-130 Corrogate: Bromofluorobenzene 4.61 " 5.00 92.2 70-130 Acrolein 2.59 0.36 2.0 ug/l 2.62 98.9 70-130 0.03 25 Acrolein 2.59 0.36 2.0 ug/l 2.62 98.9 70-130 0.00 2.5 4 Acr	LCS (AC31913-BS1)					Prepared:	03/16/03	Analyzed	1: 03/17/03			
Ninyl chloride		1.14	0.13	0.50	ug/l							
1,3-Dichlorobenzene 1.16 0.11 0.50 " 1.25 92.8 86-132 1,4-Dichlorobenzene 1.14 0.081 0.50 " 1.25 91.2 84-123 Surrogate: Dibromofluoromethane 4.08 " 5.00 81.6 70-130 Surrogate: Toluene-d8 4.81 " 5.00 96.2 70-130 Surrogate: Bromofluorobenzene 4.61 " 5.00 92.2 70-130 CES Dup (AC31913-BSD1) Prepared: 03/16/03 Analyzed: 03/17/03 LCS Dup (AC31913-BSD1) Prepared: 03/16/03 Analyzed: 03/17/03 CAC710111 0.14 2.0 ugl 1.25 98.9 70-130 0.00 25 Acrylonitrile 1.15 0.14 2.0 " 1.25 98.9 70-130 0.00 25 Benzene 1.06 0.080 0.30 " 1.25 84.8 77-127 3.70 25 Bromoform 1.08 0.99 <td>Vinyl chloride</td> <td>1.18</td> <td>0.17</td> <td>0.50</td> <td></td> <td>1.25</td> <td></td> <td>94.4</td> <td>70-130</td> <td></td> <td></td> <td></td>	Vinyl chloride	1.18	0.17	0.50		1.25		94.4	70-130			
1.4 0.081 0.50 1.25 91.2 84-123 1.25 1.25 1.25	1,2-Dichlorobenzene	1.12	0.11	0.50	"	1.25		89.6	83-129			
Surrogate: Dibromofluoromethane 4.08 " 5.00 81.6 70-130 500 50.2 70-130 500 50.2 70-130 500 50.2 70-130 500 50.2 70-130 500 50.2 70-130 500 50.2 70-130 50.00 50.2 70-130 50.00 50.2 70-130 50.00 50.2 70-130 50.00 50.2 70-130 50.00 50.2 70-130 50.0	1,3-Dichlorobenzene	1.16	0.11	0.50	**	1.25		92.8	86-132			
Surrogate: Toluene-d8 Surrogate: Bromofluorobenzene 4.81 " 5.00 96.2 70-130 ECS Dup (AC31913-BSD1) Prepared: 03/16/03 Analyzed: 03/17/03 Acrolein 2.59 0.36 0.00 ug/l 2.62 98.9 70-130 0.387 25 Acrylonitrile 1.15 0.14 2.0 " 1.25 92.0 70-130 0.00 25 Benzene 1.06 0.080 0.30 " 1.25 84.8 77-127 3.70 25 Bromoform 1.08 0.099 0.50 " 1.25 86.4 84-121 2.82 25 Carbon tetrachloride 1.00 0.19 0.50 " 1.25 86.0 83-126 0.889 25 Chlorobenzene 1.12 0.075 0.50 " 1.25 89.0 76-131 4.88 25 Chlorobenzene 1.12 0.075 0.50 " 1.25 89.0 76-131 4.88 25 Chlorobenzene 1.12 0.075 0.50 " 1.25 89.0 83-126 0.889 25 Dibromochloromethane 1.05 0.11 0.50 " 1.25 89.0 83-126 0.889 25 Chlorobethane 1.01 0.50 0.11 0.50 " 1.25 89.0 83-126 0.948 25 Chloroform 1.02 0.084 0.50 " 1.25 89.0 83-126 0.948 25 Bromodichloromethane 1.02 0.084 0.50 " 1.25 89.0 83-126 0.948 25 Bromodichloromethane 1.02 0.094 0.50 " 1.25 81.6 81.6 79-135 3.85 25 I,1-Dichloroethane 1.01 0.13 0.50 " 1.25 81.6 81.6 81-132 5.71 25 I,2-Dichloroethane 1.01 0.13 0.50 " 1.25 80.8 80.0 84-121 3.92 25 I,2-Dichloroethane 1.01 0.13 0.50 " 1.25 80.8 80.126 4.83 2	1,4-Dichlorobenzene	1.14	0.081	0.50	н	1.25		91.2	84-123			
Surrogate: Toluene-d8 Surrogate: Bromofluorobenzene 4.61 " 5.00 96.2 70-130 70-130<	Surrogate: Dibromofluoromethane	4.08			"	5.00		81.6	70-130			
DCS Dup (AC31913-BSD1)	-	4.81			"	5.00		96.2	70-130			
Acrolein 2.59 0.36 2.0 ug/l 2.62 98.9 70-130 0.387 25 Acrylonitrile 1.15 0.14 2.0 " 1.25 92.0 70-130 0.00 25 Benzene 1.06 0.080 0.30 " 1.25 84.8 77-127 3.70 25 Bromoform 1.08 0.099 0.50 " 1.25 84.8 77-127 3.70 25 Carbon tetrachloride 1.00 0.19 0.50 " 1.25 80.0 76-131 4.88 25 Chlorobenzene 1.12 0.075 0.50 " 1.25 89.6 83-126 0.889 25 Dibromochloromethane 1.05 0.11 0.50 " 1.25 89.6 83-126 0.948 25 Chloroform 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Bromodichloromethane 1.02 <th< td=""><td>Surrogate: Bromofluorobenzene</td><td>4.61</td><td></td><td></td><td>"</td><td>5.00</td><td></td><td>92.2</td><td>70-130</td><td></td><td></td><td></td></th<>	Surrogate: Bromofluorobenzene	4.61			"	5.00		92.2	70-130			
Acrylonitrile 1.15 0.14 2.0 " 1.25 92.0 70-130 0.00 25 Benzene 1.06 0.080 0.30 " 1.25 84.8 77-127 3.70 25 Bromoform 1.08 0.099 0.50 " 1.25 86.4 84-121 2.82 25 Carbon tetrachloride 1.00 0.19 0.50 " 1.25 89.6 83-126 0.889 25 Chlorobenzene 1.12 0.075 0.50 " 1.25 89.6 83-126 0.889 25 Dibromochloromethane 1.05 0.11 0.50 " 1.25 89.6 83-126 0.948 25 Chloroethane 1.13 0.29 0.50 " 1.25 84.0 80-126 0.948 25 Chloroform 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Bromodichloromethane 1.05 0.10 0.50 " 1.25 81.6 81-132 5.71 25 I,1-Dichloroethane 1.15 0.14 0.50 " 1.25 81.6 81-132 5.71 25 I,1-Dichloroethane 1.00 0.19 0.50 " 1.25 82.0 82-140 4.26 25 I,2-Dichloroethane 1.00 0.19 0.50 " 1.25 80.0 84-121 3.92 25 I,2-Dichloroptopane 1.01 0.13 0.50 " 1.25 80.0 84-121 3.92 25 I,2-Dichloropropane 1.01 0.13 0.50 " 1.25 80.0 84-121 3.92 25 I,2-Dichloropropane 1.01 0.13 0.50 " 1.25 80.0 84-121 3.92 25 Itans-1,3-Dichloropropene 0.990 0.076 0.50 " 1.25 80.8 80-126 4.83 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 79.2 84-123 5.88 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 88.8 86-124 0.897 25 Chloromethane 1.08 0.14 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 76.8 84.122 2.06 25 Ethylbenzene 1.01 0.01 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.08 0.14 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.08 0.14 0.50 " 1.25 88.6 62-130 2.74 25 Bromomethane 1.08 0.19 0.50 " 1.25 88.6 62-130 2.74 25	LCS Dup (AC31913-BSD1)					Prepared	: 03/16/03	Analyze	d: 03/17/03			
Benzene 1.06 0.080 0.30 " 1.25 84.8 77-127 3.70 25 Bromoform 1.08 0.099 0.50 " 1.25 86.4 84-121 2.82 25 Carbon tetrachloride 1.00 0.19 0.50 " 1.25 80.0 76-131 4.88 25 Chlorobenzene 1.12 0.075 0.50 " 1.25 89.6 83-126 0.889 25 Dibromochloromethane 1.05 0.11 0.50 " 1.25 84.0 80-126 0.948 25 Chloroform 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Bromodichloromethane 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Bromodichloromethane 1.02 0.10 0.50 " 1.25 81.6 81-132 5.71 25 1,1-Dichloroethane 1.15<	Acrolein	2.59	0.36	2.0	ug/l	2.62		98.9	70-130	0.387	25	
Bromoform 1.08 0.099 0.50 " 1.25 86.4 84-121 2.82 25 Carbon tetrachloride 1.00 0.19 0.50 " 1.25 80.0 76-131 4.88 25 Chlorobenzene 1.12 0.075 0.50 " 1.25 89.6 83-126 0.889 25 Dibromochloromethane 1.05 0.11 0.50 " 1.25 84.0 80-126 0.948 25 Chloroform 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Chloroform 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Bromodichloromethane 1.02 0.01 0.50 " 1.25 81.6 81-132 5.71 25 1,1-Dichloroethane 1.05 0.14 0.50 " 1.25 92.0 82-140 4.26 25 1,2-Dichloroethane 1.00<	Acrylonitrile	1.15	0.14	2.0	"	1.25		92.0	70-130	0.00	25	
Carbon tetrachloride 1.00 0.19 0.50 " 1.25 80.0 76-131 4.88 25 Chlorobenzene 1.12 0.075 0.50 " 1.25 89.6 83-126 0.889 25 Dibromochloromethane 1.05 0.11 0.50 " 1.25 84.0 80-126 0.948 25 Chloroform 1.02 0.084 0.50 " 1.25 90.4 54-152 6.01 25 Chloroform 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Bromodichloromethane 1.02 0.10 0.50 " 1.25 81.6 81-132 5.71 25 1,1-Dichloroethane 1.15 0.14 0.50 " 1.25 92.0 82-140 4.26 25 1,2-Dichloroethane 1.00 0.19 0.50 " 1.25 80.0 84-121 3.92 25 1,1-Dichloroethane <	Benzene	1.06	0.080	0.30	11	1.25		84.8	77-127	3.70	25	
Chlorobenzene 1.12 0.075 0.50 " 1.25 89.6 83-126 0.889 25 Dibromochloromethane 1.05 0.11 0.50 " 1.25 84.0 80-126 0.948 25 Chloroethane 1.13 0.29 0.50 " 1.25 90.4 54-152 6.01 25 Chloroform 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Bromodichloromethane 1.02 0.10 0.50 " 1.25 81.6 81-132 5.71 25 1,1-Dichloroethane 1.15 0.14 0.50 " 1.25 92.0 82-140 4.26 25 1,2-Dichloroethane 0.940 0.21 0.50 " 1.25 80.0 84-121 3.92 25 1,1-Dichloroethane 1.00 0.19 0.50 " 1.25 80.0 84-121 3.92 25 1,2-Dichloroptopropene	Bromoform	1.08	0.099	0.50	**	1.25		86.4	84-121	2.82	25	
Dibromochloromethane 1.05 0.11 0.50 " 1.25 84.0 80-126 0.948 25 Chloroethane 1.13 0.29 0.50 " 1.25 90.4 54-152 6.01 25 Chloroform 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Bromodichloromethane 1.02 0.10 0.50 " 1.25 81.6 81-132 5.71 25 1,1-Dichloroethane 1.15 0.14 0.50 " 1.25 92.0 82-140 4.26 25 1,2-Dichloroethane 0.940 0.21 0.50 " 1.25 75.2 79-129 0.00 25 1,1-Dichloroethane 1.00 0.19 0.50 " 1.25 80.0 84-121 3.92 25 1,1-Dichloroptopane 1.01 0.13 0.50 " 1.25 80.8 80-126 4.83 25 cis-1,3-Dichloropropene	Carbon tetrachloride	1.00	0.19	0.50	11	1.25		80.0	76-131	4.88	25	
Chloroethane 1.13 0.29 0.50 " 1.25 90.4 54-152 6.01 25 Chloroform 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Bromodichloromethane 1.02 0.10 0.50 " 1.25 81.6 81-132 5.71 25 1,1-Dichloroethane 1.15 0.14 0.50 " 1.25 92.0 82-140 4.26 25 1,2-Dichloroethane 0.940 0.21 0.50 " 1.25 80.0 84-121 3.92 25 1,1-Dichloropropane 1.00 0.19 0.50 " 1.25 80.0 84-121 3.92 25 1,2-Dichloropropane 1.01 0.13 0.50 " 1.25 80.8 80-126 4.83 25 cis-1,3-Dichloropropene 0.990 0.076 0.50 " 1.25 79.2 84-123 5.88 25 trans-1,3-Dichloropropene 0.960 0.047 0.50 " 1.25 76.8 84-122 2.06 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	Chlorobenzene	1.12	0.075	0.50	**	1.25		89.6	83-126	0.889	25	
Chloroform 1.02 0.084 0.50 " 1.25 81.6 79-135 3.85 25 Bromodichloromethane 1.02 0.10 0.50 " 1.25 81.6 81-132 5.71 25 1,1-Dichloroethane 1.15 0.14 0.50 " 1.25 92.0 82-140 4.26 25 1,2-Dichloroethane 0.940 0.21 0.50 " 1.25 75.2 79-129 0.00 25 1,1-Dichloroethene 1.00 0.19 0.50 " 1.25 80.0 84-121 3.92 25 1,2-Dichloropropane 1.01 0.13 0.50 " 1.25 80.8 80-126 4.83 25 cis-1,3-Dichloropropene 0.990 0.076 0.50 " 1.25 79.2 84-123 5.88 25 trans-1,3-Dichloropropene 0.960 0.047 0.50 " 1.25 76.8 84-122 2.06 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 88.8 86-124 0.897 25 Chloromethane 1.08 0.14 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	Dibromochloromethane	1.05	0.11	0.50	н	1.25		84.0	80-126	0.948	25	
Bromodichloromethane 1.02 0.10 0.50 " 1.25 81.6 81-132 5.71 25 1,1-Dichloroethane 1.15 0.14 0.50 " 1.25 92.0 82-140 4.26 25 1,2-Dichloroethane 0.940 0.21 0.50 " 1.25 75.2 79-129 0.00 25 1,1-Dichloroethene 1.00 0.19 0.50 " 1.25 80.0 84-121 3.92 25 1,2-Dichloropropane 1.01 0.13 0.50 " 1.25 80.8 80-126 4.83 25 cis-1,3-Dichloropropene 0.990 0.076 0.50 " 1.25 79.2 84-123 5.88 25 trans-1,3-Dichloropropene 0.960 0.047 0.50 " 1.25 76.8 84-122 2.06 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomet	Chloroethane	1.13	0.29	0.50	**	1.25		90.4	54-152	6.01		
1,1-Dichloroethane 1.15 0.14 0.50 " 1.25 92.0 82-140 4.26 25 1,2-Dichloroethane 0.940 0.21 0.50 " 1.25 75.2 79-129 0.00 25 1,1-Dichloroethane 1.00 0.19 0.50 " 1.25 80.0 84-121 3.92 25 1,2-Dichloropropane 1.01 0.13 0.50 " 1.25 80.8 80-126 4.83 25 cis-1,3-Dichloropropene 0.990 0.076 0.50 " 1.25 79.2 84-123 5.88 25 trans-1,3-Dichloropropene 0.960 0.047 0.50 " 1.25 76.8 84-122 2.06 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121	Chloroform	1.02	0.084	0.50	H	1.25		81.6	79-135	3.85	25	
1,2-Dichloroethane 0.940 0.21 0.50 " 1.25 75.2 79-129 0.00 25 1,1-Dichloroethane 1.00 0.19 0.50 " 1.25 80.0 84-121 3.92 25 1,2-Dichloropropane 1.01 0.13 0.50 " 1.25 80.8 80-126 4.83 25 cis-1,3-Dichloropropene 0.990 0.076 0.50 " 1.25 79.2 84-123 5.88 25 trans-1,3-Dichloropropene 0.960 0.047 0.50 " 1.25 76.8 84-122 2.06 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	Bromodichloromethane	1.02	0.10	0.50	**	1.25		81.6	81-132	5.71	25	
1,1-Dichloroethene 1.00 0.19 0.50 " 1.25 80.0 84-121 3.92 25 1,2-Dichloropropane 1.01 0.13 0.50 " 1.25 80.8 80-126 4.83 25 cis-1,3-Dichloropropene 0.990 0.076 0.50 " 1.25 79.2 84-123 5.88 25 trans-1,3-Dichloropropene 0.960 0.047 0.50 " 1.25 76.8 84-122 2.06 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 102 60-145 4.58 25 Chloromethane 1.08 0.14 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	1,1-Dichloroethane	1.15	0.14	0.50	11	1.25		92.0	82-140	4.26	25	
1,2-Dichloropropane 1.01 0.13 0.50 " 1.25 80.8 80-126 4.83 25 cis-1,3-Dichloropropene 0.990 0.076 0.50 " 1.25 79.2 84-123 5.88 25 trans-1,3-Dichloropropene 0.960 0.047 0.50 " 1.25 76.8 84-122 2.06 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 102 60-145 4.58 25 Chloromethane 1.08 0.14 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	1,2-Dichloroethane	0.940	0.21	0.50	"	1.25		75.2	79-129	0.00		
cis-1,3-Dichloropropene 0.990 0.076 0.50 " 1.25 79.2 84-123 5.88 25 trans-1,3-Dichloropropene 0.960 0.047 0.50 " 1.25 76.8 84-122 2.06 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 102 60-145 4.58 25 Chloromethane 1.08 0.14 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	1,1-Dichloroethene	1.00	0.19	0.50	н	1.25		80.0	84-121	3.92	25	
trans-1,3-Dichloropropene 0.960 0.047 0.50 " 1.25 76.8 84-122 2.06 25 Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 102 60-145 4.58 25 Chloromethane 1.08 0.14 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	1,2-Dichloropropane	1.01	0.13	0.50	. **	1.25		80.8	80-126	4.83	25	
Ethylbenzene 1.11 0.11 0.50 " 1.25 88.8 86-124 0.897 25 Bromomethane 1.28 0.20 0.50 " 1.25 102 60-145 4.58 25 Chloromethane 1.08 0.14 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	cis-1,3-Dichloropropene	0.990	0.076	0.50	**	1.25		79.2	84-123			
Bromomethane 1.28 0.20 0.50 " 1.25 102 60-145 4.58 25 Chloromethane 1.08 0.14 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	trans-1,3-Dichloropropene	0.960	0.047	0.50	**	1.25		76.8	84-122	2.06	25	
Chloromethane 1.08 0.14 0.50 " 1.25 86.4 62-130 2.74 25 Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	Ethylbenzene	1.11	0.11	0.50	"	1.25		88.8	86-124	0.897	25	
Methylene chloride 0.990 0.16 0.50 " 1.25 79.2 79-121 3.96 25	Bromomethane	1.28	0.20	0.50	n	1.25		102	60-145	4.58		
The state of the s	Chloromethane	1.08	0.14	0.50	н	1.25		86.4	62-130	2.74	25	
1,1,2,2-Tetrachloroethane 1.11 0.057 0.50 " 1.25 88.8 83-115 1.82 25	Methylene chloride	0.990	0.16	0.50	**	1.25		79.2	79-121	3.96	25	
	1,1,2,2-Tetrachloroethane	1.11	0.057	0.50	"	1.25		88.8	83-115	1.82	25	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaker

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek

P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1 Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Purgeables by EPA Method 624 - Quality Control

Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AC31913 - EPA 5030 Wa	ter MS					***************************************					
LCS Dup (AC31913-BSD1)	1110			·····	Prepared:	03/16/03	Analyzed	: 03/17/03			
Tetrachloroethene	1.09	0.21	0.50	ug/l	1.25	00/10/00	87.2	75-135	4.48	25	
Toluene	1.16	0.11	0.30	"	1.25		92.8	85-127	4.22	25	
trans-1,2-Dichloroethene	0.980	0.16	0.50	н	1.25		78.4	81-128	8.78	25	
1,1,1-Trichloroethane	1.03	0.13	0.50	ŧ	1.25		82.4	76-130	4.74	25	
1,1,2-Trichloroethane	1.17	0.12	0.50	11	1.25		93.6	70-130	5.26	25	
Trichloroethene	1.07	0.13	0.50	"	1.25		85.6	82-126	6.33	25	
Vinyl chloride	1.11	0.17	0.50	**	1.25		88.8	70-130	6.11	25	
1,2-Dichlorobenzene	1.12	0.11	0.50	"	1.25		89.6	83-129	0.00	25	
1,3-Dichlorobenzene	1.17	0.11	0.50	н	1.25		93.6	86-132	0.858	25	
1,4-Dichlorobenzene	1.13	0.081	0.50	"	1.25		90.4	84-123	0.881	25	
Surrogate: Dibromofluoromethane	3.71			"	5.00		74.2	70-130			
Surrogate: Toluene-d8	4.88			"	5.00		97.6	70-130			
Surrogate: Bromofluorobenzene	4.61			"	5.00		92.2	70-130			
Matrix Spike (AC31913-MS1)		Source:	A303285-	-01	Prepared	: 03/16/03	Analyzed	d: 03/17/03			
Acrolein	2.53	0.36	2.0	ug/l	2.62	ND	96.6	70-130			
Acrylonitrile	1.14	0.14	2.0	**	1.25	ND	91.2	70-130			
Benzene	1.13	0.080	0.30	11	1.25	ND	90.4	77-127			
Bromoform	1.05	0.099	0.50	11	1.25	ND	84.0	84-121			
Carbon tetrachloride	1.17	0.19	0.50	"	1.25	ND	93.6	76-131			
Chlorobenzene	1.14	0.075	0.50	**	1.25	ND	91.2	83-126			
Dibromochloromethane	1.10	0.11	0.50	н	1.25	ND	88.0	80-126			•
Chloroethane	1.21	0.29	0.50	H	1.25	ND	96.8	54-152			
Chloroform	1.17	0.084	0.50	"	1.25	ND	93.6	79-135			
Bromodichloromethane	1.14	0.10	0.50	**	1.25	ND	91.2	81-132			
1,1-Dichloroethane	1.22	0.14	0.50	**	1.25	ND	97.6	82-140			
1,2-Dichloroethane	0.990	0.21	0.50	**	1.25	ND	79.2	79-129			
							00.6	04 101			
1,1-Dichloroethene	1.12	0.19	0.50	**	1.25	ND	89.6	84-121			
1,1-Dichloroethene 1,2-Dichloropropane		0.19 0.13	0.50 0.50	"	1.25 1.25	ND ND	89.6 89.6	84-121 80-126			
•	1.12										

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speake

4.65

208 Mason St. Ukiah, California 95482

%REC

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Spike

5.00

Source

Dun & Martinek

Project: CTR - SPI, Arcata

P.O. Box 1266 Eureka CA, 95502

Project Number: M154.1 Project Manager: Dun & Martinek

Reporting

Reported:

04/01/03 16:04

RPD

Purgeables by EPA Method 624 - Quality Control Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch AC31913 - EPA 5030 Wa	ater MS										
Matrix Spike (AC31913-MS1)		Source:	A303285	-01	Prepared:	03/16/03	Analyzed	1: 03/17/03			
Ethylbenzene	1.18	0.11	0.50	ug/l	1.25	ND	94.4	86-124			
Bromomethane	1.38	0.20	0.50	**	1.25	ND	110	60-145			
Chloromethane	1.17	0.14	0.50	**	1.25	ND	93.6	62-130			
Methylene chloride	1.04	0.16	0.50	**	1.25	ND	83.2	79-121			
1,1,2,2-Tetrachloroethane	1.15	0.057	0.50		1.25	ND	92.0	83-115			
Tetrachloroethene	1.20	0.21	0.50	**	1.25	ND	96.0	75-135			
Toluene	1.26	0.11	0.30	**	1.25	ND	101	85-127			
trans-1,2-Dichloroethene	1.07	0.16	0.50	"	1.25	ND	85.6	81-128			
1,1,1-Trichloroethane	1.14	0.13	0.50	**	1.25	ND	91.2	76-130			
1,1,2-Trichloroethane	1.17	0.12	0.50	***	1.25	ND	93.6	70-130			
Trichloroethene	1.11	0.13	0.50	11	1.25	ND	88.8	82-126			
Vinyl chloride	1.28	0.17	0.50	H	1.25	ND	102	70-130			
1,2-Dichlorobenzene	1.15	0.11	0.50	**	1.25	ND	92.0	83-129			
1,3-Dichlorobenzene	1.20	0.11	0.50	11	1.25	ND	96.0	86-132			
1,4-Dichlorobenzene	1.18	0.081	0.50	17	1.25	ND	94.4	84-123			
Surrogate: Dibromofluoromethane	4.03			"	5.00		80.6	70-130			
Surrogate: Toluene-d8	4.85			n	5.00		97.0	70-130			

Alpha Analytical Laboratories, Inc.

Surrogate: Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

93.0

70-130

Speaker

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek P.O. Box 1266 Eureka CA, 95502 Project: CTR - SPI, Arcata

Project Number: M154.1

Reported: 04/01/03 16:04

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Alpha Analytical Laboratories, Inc.

Project Manager: Dun & Martinek

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AD30108 - General Prep	aration										
Blank (AD30108-BLK1)					Prepared:	03/30/03	Analyzed	: 04/01/03			
Cyanide (total)	ND	0.0020	0.0030	mg/l							
LCS (AD30108-BS1)					Prepared:	03/30/03	Analyzed	: 04/01/03			
Cyanide (total)	0.0400	0.0020	0.0030	mg/l	0.0400		100	85-115			
LCS Dup (AD30108-BSD1)					Prepared:	03/30/03	Analyzed	: 04/01/03			
Cyanide (total)	0.0391	0.0020	0.0030	mg/l	0.0400		97.8	85-115	2.28	10	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaks

208 Mason St. Ukiah, California 95482

%REC

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Source

Dun & Martinek

Eureka CA, 95502

Project: CTR - SPI, Arcata

Spike

P.O. Box 1266

Project Number: M154.1 Project Manager: Dun & Martinek

Reporting

Reported:

04/01/03 16:04

RPD

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control Alpha Analytical Laboratories, Inc.

Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch AC31710 - EPA 200.2 H	ot Plate										
Blank (AC31710-BLK1)					Prepared:	03/17/03	Analyzed	: 03/20/03			
Hardness, Total	0.00		5	mg/l							
Duplicate (AC31710-DUP1)		Source: A	\ 303329-	01	Prepared:	03/17/03	Analyzed	: 03/20/03			
Hardness, Total	134		5	mg/l		136			1.48	200	

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speaker

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Dun & Martinek

Project: CTR - SPI, Arcata

P.O. Box 1266 Eureka CA, 95502

Project Number: M154.1 Project Manager: Dun & Martinek

Reported: 04/01/03 16:04

Notes and Definitions

A-01 Result based on Total Chromium analysis

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

OM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

R-04 The Reporting Limits for this analysis are elevated due to sample foaming.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Alpha Analytical Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sheri Speake

Frontier Analytical Laboratory

Project-Sample Tracking Log

FAL Project ID:

1656

	Received on:	3/18/03	Project Due:	04/02/03	Storage:	<u>R-1</u>	
FAL Sample ID	Client Project ID	Client Sample ID	Requested Method/s	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
1656-01-SA	A303329	A303329-01 Receiving	1613	Aqueous	3/13/03	10:45 AM	03/12/04

Qualifier Reference Guide

A	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
В	Analyte is present in Method Blank
C	Chemical Interference
D	Presence of Diphenyl Ethers
Е	Analyte concentration is above calibration range
F	Analyte confirmation on secondary column
J [‡]	Analyte concentration is below calibration range
M	Maximum possible concentration
S	Sample acceptance criteria not met
X	Matrix interferences
*	Result taken from dilution or reinjection

Analyte Not Detected

[‡] "J" values are equivalent to DNQ (detected but not qualified) for California Toxics Rule (CTR)/National Pollutant Discharge Elimination System (NPDES) samples

Analyte	ML	MDL
2,3,7,8-TCDD	5.00	1.36
1,2,3,7,8-PeCDD	25.0	2.08
1,2,3,4,7,8-HxCDD	25.0	2.97
1,2,3,6,7,8-HxCDD	25.0	3.23
1,2,3,7,8,9-HxCDD	25.0	2.90
1,2,3,4,6,7,8-HpCDD	25.0	1.74
OCDD	50.0	6.49
2,3,7,8-TCDF	5.00	1.23
1,2,3,7,8-PeCDF	25.0	1.79
2,3,4,7,8-PeCDF	25.0	1.72
1,2,3,4,7,8-HxCDF	25.0	1.04
1,2,3,6,7,8-HxCDF	25.0	1.26
1,2,3,7,8,9-HxCDF	25.0	1.34
2,3,4,6,7,8-HxCDF	25.0	1.51
1,2,3,4,6,7,8-HpCDF	25.0	1.18
1,2,3,4,7,8,9-HpCDF	25.0	1.34
OCDF	50.0	3.98

Project 1475, extracted 1/6/03; analyzed 1/14/03. Based on a 1.0 Liter sample, pg/L.

EPA Method 1613 PCDD/F

ICal: pcddfal1-3-8 Acquired: 27-MAR-03 Date Extracted: 3/25/03 FAL ID: 1656-01-MB NATO 1989 TEQ: 0.00 GC Column: db5 Date Received: NA Client ID: Method Blank WHO 1998 TEQ: 0.00 Amount: 1.000 L Units: pg/L Matrix: Aqueous Batch No.: 1638 #Hom DL Qual WHO Tox Compound Conc DL Qual Conc Compound 1.81 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 4.51 3.45 1,2,3,4,7,8-HxCDD 1.81 0 Total Tetra-Dioxins 4.07 1,2,3,6,7,8-HxCDD 4.51 0 Total Penta-Dioxins 3.20 1,2,3,7,8,9-HxCDD 4.07 n Total Hexa-Dioxins 1,2,3,4,6,7,8-HpCDD 4.17 4.17 O Total Hepta-Dioxins 6.07 2,3,7,8-TCDF 1.52 1,2,3,7,8-PeCDF 1.84 1.97 2,3,4,7,8-PeCDF 1.03 1,2,3,4,7,8-HxCDF 1.38 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1.44 0 Total Tetra-Furans 1.52 1.69 1,2,3,7,8,9-HxCDF Total Penta-Furans 1.97 0 1.54 1,2,3,4,6,7,8-HpCDF 1.69 0 Total Hexa-Furans 2.33 1,2,3,4,7,8,9-HpCDF 0 2.33 Total Hepta-Furans 5.29 OCDF QC Limits Qual % Rec Internal Standards 25.0 - 164 86.5 13C-2,3,7,8-TCDD 25.0 - 181 13C-1,2,3,7,8-PeCDD 86.4 94.8 32.0 - 141 13C-1,2,3,4,7,8-HxCDD 90.0 28.0 - 130 13C-1,2,3,6,7,8-HXCDD 23.0 - 140 13C-1,2,3,4,6,7,8-HpCDD 88.0 17.0 - 157 13C-OCDD 76.7 24.0 - 169 13C-2,3,7,8-TCDF 84.1 24.0 - 185 94.5 13C-1,2,3,7,8-PeCDF 21.0 - 178 13C-2,3,4,7,8-PeCDF 89.4 26.0 - 152 93.7 13C-1,2,3,4,7,8-HxCDF 89.9 26.0 - 123 13C-1,2,3,6,7,8-HxCDF 29.0 - 147 91.5 13C-2,3,4,6,7,8-HxCDF 28.0 - 136 84.0 13C-1,2,3,7,8,9-HxCDF 13c-1,2,3,4,6,7,8-HpCDF 28.0 - 143 92.7 13C-1,2,3,4,7,8,9-HpCDF 26.0 - 138 81.2 17.0 - 157 13C-OCDF 82.9 Cleanup Surrogate 35.0 - 197 37cl-2,3,7,8-TCDD 119

Analyst: \(\frac{1}{2} \)

EPA Method 1613 PCDD/F

Acquired: 27-MAR-03

NATO 1989 TEQ: NA

WHO 1998 TEQ: NA

ICal: pcddfal1-3-8 Date Extracted: 3/25/03 FAL ID: 1656-01-OPR GC Column: db5 Date Received: NA Client ID: OPR Units: ng/mL Amount: 1.000 L Matrix: Aqueous Batch No.: 1638 QC Limits Compound Conc 2,3,7,8-TCDD 6.70 - 15.8 12.3 35.0 - 71.0 55.1 1,2,3,7,8-PeCDD 35.0 - 82.0 52.8 1,2,3,4,7,8-HxCDD 38.0 - 67.0 1,2,3,6,7,8-HxCDD 54.1 32.0 - 81.0 1,2,3,7,8,9-HxCDD 56.4 35.0 - 70.0 54.4 1,2,3,4,6,7,8-HpCDD 110 78.0 - 144 OCDD 2,3,7,8-TCDF 11.4 7.50 - 15.8 1,2,3,7,8-PeCDF 49.6 40.0 - 67.0 34.0 - 80.0 50.7 2,3,4,7,8-PeCDF 36.0 - 67.0 51.0 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 42.0 - 65.0 52.2 53.8 39.0 - 65.0 2,3,4,6,7,8-HxCDF 35.0 - 78.0 53.9 1,2,3,7,8,9-HxCDF 50.1 41.0 - 61.0 1,2,3,4,6,7,8-HpCDF 51.2 39.0 - 69.0 1,2,3,4,7,8,9-HpCDF OCDF 108 63.0 - 170 QC Limits Internal Standards % Rec 20.0 - 175 13C-2,3,7,8-TCDD 84.1 81.9 21.0 - 227 13C-1,2,3,7,8-PeCDD 21.0 - 193 66.3 13C-1,2,3,4,7,8-HxCDD 64.4 25.0 - 163 13C-1,2,3,6,7,8-HxCDD 26.0 - 166 51.9 13c-1,2,3,4,6,7,8-HpCDD 13C-OCDD 45.4 13.0 - 198 22.0 - 152 89.5 13C-2,3,7,8-TCDF 21.0 - 192 77.6 13C-1,2,3,7,8-PeCDF 13.0 - 328 13C-2,3,4,7,8-PeCDF 79.2 69.1 19.0 - 202 13C-1,2,3,4,7,8-HxCDF 21.0 - 159 13C-1,2,3,6,7,8-HxCDF 67.7 17.0 - 205 65.1 13C-2,3,4,6,7,8-HxCDF 22.0 - 176 13C-1,2,3,7,8,9-HxCDF 58.4 50.8 21.0 - 158 13C-1,2,3,4,6,7,8-HpCDF 20.0 - 186 13C-1,2,3,4,7,8,9-HpCDF 55.1 13.0 - 198 53.5 13C-OCDF Cleanup Surrogate 37cl-2,3,7,8-TCDD 116 31.0 - 191

Reviewed by: The Date: 3/28/03

EPA Method 1613 PCDD/F

FAL ID: 1656-01-SA Client ID: A303329-01 Rec. Matrix: Aqueous Batch No.: 1638	Ď	Date Extracted: 3/25/03 Date Received: 3/18/03 Amount: 0.956 L		ICal: pcddfal1-3-8 GC Column: db5 Units: pg/L	NATO	ired: 2 1989 1998 TE	TEQ: 0	.0491	
Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual	#Hom
2,3,7,8-TCDD	-	2.39		-					
1,2,3,7,8-PeCDD	-	5.03		-					
1,2,3,4,7,8-HxCDD	-	5.60		_					
1,2,3,6,7,8-HxCDD	-	6.42		-	Total Tetra-Dioxins	-	2.39		0
1,2,3,7,8,9-HxCDD	-	5.31		-	Total Penta-Dioxins	-	5.03		0
1,2,3,4,6,7,8-HpCDD	-	7.90		-	Total Hexa-Dioxins	-	6.42		0
OCDD	49.1	-	J	0.00491	Total Hepta-Dioxins	-	9.85		0
2,3,7,8-TCDF	-	1.90		-					
1,2,3,7,8-PeCDF	-	4.41		-					
2,3,4,7,8-PeCDF	-	4.37		-					
1,2,3,4,7,8-HxCDF	-	1.61		-					
1,2,3,6,7,8-HxCDF	-	1.87		-					
2,3,4,6,7,8-HxCDF	-	2.13		-	Tabal Tabas Susans		1.90		0
1,2,3,7,8,9-HxCDF	-	2.38		•	Total Tetra-Furans	-	4.41		0
1,2,3,4,6,7,8-HpCDF	-	2.38		-	Total Penta-Furans Total Hexa-Furans	-	2.38		0
1,2,3,4,7,8,9-HpCDF	-	3.41 7.13		· -	Total Hepta-Furans	-	3.41		0
OCDF	-	7.13			Total nepta Turans		3.41		Ü
Internal Standards	% Rec	QC Limit	s Qı	ual					
13C-2,3,7,8-TCDD	78.5	25.0 - 1	64						
13C-1,2,3,7,8-PeCDD	76.3	25.0 - 1							
13C-1,2,3,4,7,8-HxCDD	80.9	32.0 - 1	41						
13C-1,2,3,6,7,8-HxCDD	83.9	28.0 - 1	30						
13C-1,2,3,4,6,7,8-HpCDD	72.2	23.0 - 1	40						
13C-OCDD	73.4	17.0 - 1	57						
13C-2,3,7,8-TCDF	76.7	24.0 - 1							
13C-1,2,3,7,8-PeCDF	76.3	24.0 - 1							
13C-2,3,4,7,8-PeCDF	76.0	21.0 - 1							
13C-1,2,3,4,7,8-HxCDF	84.9	26.0 - 1							
13C-1,2,3,6,7,8-HxCDF	86.9	26.0 - 1							
13C-2,3,4,6,7,8-HxCDF	80.6	29.0 - 1							
13C-1,2,3,7,8,9-HxCDF	80.8	28.0 - 1							
13C-1,2,3,4,6,7,8-HpCDF	87.6	28.0 - 1							
13C-1,2,3,4,7,8,9-HpCDF	82.4	26.0 - 1							
13C-OCDF	79.0	17.0 - 1	157						
Cleanup Surrogate		٠							
37cl-2,3,7,8-TCDD	104	35.0 - 1	197						

Analyst: 1 Date: 3/28/03

Date: Shelos

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.necampbell.com/E-mail: main@mecampbell.com

Alpha Analytical Laboratories	Client Project ID: #A303329	Date Sampled: 03/13/03
208 Mason Street		Date Received: 03/18/03
	Client Contact: Sheri Speaks	Date Extracted: 03/18/03
Ukiah, CA 95482	Client P.O.:	Date Analyzed: 03/25/03

Semivolatiles Organics by GC/MS (625 Basic Target List)*

Work Order: 0303279 Analytical Method: SW8270D Extraction Method: SW3535A 0303279-001A Lab ID A303329091 Client ID

Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Accnaphthene	ND<10	10	1	Acenaphthylene	ND<100	10	10
Anthracene	ND<100	10	10	Benzidine	ND<50	10	5
Benz(a)anthracene	ND<100	10	10	Benzo(h)fluoranthene	ND<100	10	10
Benzo(k)fluoranthene	ND<100	10	10	Benzo(g,h,i)perylene	ND<50	10	5
Benzo(a)pyrene	ND<100	10	10	Bis (2-chloroethoxy) Methane	ND<50	10	5
Bis (2-chloroethyl) Ether	ND<10	10	1	Bis (2-chloroisopropyl) Ether	ND<20	10	2
Bis (2-ethylhexyl) Phthalate	ND<50	10	5	4-Bromophenyl Phonyl Ether	ND<50	10	5
Butylbenzyl Phthalate	ND<100	10	10	4-Chloro-3-methylphenol	ND<10	10	1
2-Chloronaphthalene	ND<100	10	10	2-Chlorophenol	ND<50	10	5
4-Chlorophenyl Phenyl Ether	ND<50	10	5	Chrysene	ND<100	10	10
Dibenzo(a,h)anthracene	ND<100	10	10	Di-n-butyl Phthalate	ND<100	10	10
1.2-Dichlorobenzene	ND<20	10	2	1,3-Dichlorobenzene	ND<10	10	1
1.4-Dichlorobenzene	ND<10	10	1 1	3,3'-Dimethylbenzidine	ND<50	10	5
2,4-Dichlorophenol	ND<50	10	. 5	Diethyl Phthalate	ND<20	10	2
2,4-Dimethylphenol	ND<20	10	2	Dimethyl Phthalate	ND<20	10	2
4,6-Dinitro-2-methylphenol	ND<50	10	5	2,4-Dinitrophenol	ND<50	10	5
2,4-Dinitrotoluene	ND<50	10	5	2,6-Dinitrotoluene	ND<50	10	5
	ND<100	10	10	Fluoranthene	ND<10	10	. 1
Di-n-octyl Phthalate Fluorene	ND<100	10	10	Hexachlorobenzene	ND<10	10	1
Hexachlorobutadiene	ND<10	10	1	Hexachlorocyclopentadiene	ND<50	10	5
Commence of Commen	ND<100	10	10	Isophorone	ND<10	10	1
Indeno (1,2,3-cd) pyrene	ND<10	10	1	Nitrobenzene	ND<10	10	1
Naphthalene	ND<100	10	10	4-Nitrophenal	ND<100	10	10
2-Nitrophenol	ND<50	10	. 5	N-Nitrosodiphenylamine	ND<10	10	¹ _ 1 _
N-Nitrosodimethylamine	ND<50	10	5	Pentachlorophenol	ND<50	10	5
N-Nitrosodi-n-propylamine	ND<50	10	5	Phenol	ND<10	10	1
Phenanthrene	ND<100	10	10	1,2,4-Trichlorobenzene	ND<50	10	5
Pyrene	ND<100	10	10	The second secon			
2,4,6-Trichlorophenol	110 -100			Rucoveries (%)			
		#		%SS:		93.3	
%SS:	Appellon - Applement - Applement -	**		%\$\$:	A STATE OF THE STA	#	
%SS:	Commence of the Commence of th	12.9	***************************************	trade : 1 197-198-15	grand market and a state of	#	****
%SS:	(55.8		%SS:			

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

Comments: j * water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coclutes with another peak.

RI Lee Group, Inc.

530 McCormick St. • San Leandro, CA 94577 (510) 567-0480 • FAX (510) 567-0488

March 25, 2003

Ms. Sheri Speaks Alpha Analytical Laboratories Inc. 208 Mason Street P.O. Box 1508 Ukiah. CA 95482

RE:

TEM Asbestos Analysis Results for Samples as Shown on Test Report & Table II

RJ Lee Group Job No.: ATC303205 Customer Project No.: A303329

Dear Ms. Speaks.

Enclosed are the results from the transmission electron microscopy (TEM) asbestos analysis for your above referenced project using EPA-600/R-94/134 (100.2) Determination of Asbestos Structures over 10 µm in length in Drinking Water.

As per California ELAP accreditation requirements, we are required to inform you that the name of the person that collected the water sample was not written on the chain of custody form submitted with the sample.

Test Report lists each RJ Lee Group sample identification number, client sample number, filter area, sample volume, area analyzed, structure count for chrysotile and amphibole, analytical sensitivity, and the concentration of asbestos. Table II lists the same information for structures equal to or larger than 10 µm.

Copies of count sheets are enclosed as Appendix A. Each count sheet contains sample information pertaining to structure identification, dimensions, magnification, filter size and type.

These results are submitted pursuant to RJ Lee Group's current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions and no responsibility or liability is assumed for the manner in which the results are used or interpreted.

If you have any questions, feel free to call me.

Sincerely,

Sean Fitzgerald

Project Manager

SF/sjb Enclosures

Monroeville, PA • San Leandro, CA • Washington, D.C.

Test Report

Total Asbestos Structure Concentration TEM Water Analysis

Project ATC303205

RJ Lee Group Sample Number	Sample Number	Filter Area (sq mm)	Volume (ml) 50.00	Area Analyzed (sq mm)	Dilution -	Strue Chr	ctures Amp	Analytical S (S/sq. mm)	Sensitivity † (S/L 10^6) 0.085	Concentration (S/L 10 ⁶) <0.085*	Analysis Date 3/24/03
1832576CT	A303329-01	383	30.00	0.071		_					

†Analytical sensitivity is the calculated concentration based on one structure in the area analyzed. Samples received on: Tuesday, March 18, 2003

Chr - Chrysotile, Amp - Amphibole

* Results Less Than Analytical Sensitivity. N/A - Sample not analyzed.

> RJ Lee Group, Inc. Bay Area Lab

530 McCormick Street San Leandro, CA 94577 Test Report Page: 1 of 1

Authorized Signature

Sean Fitzgerald, Eaboratory Manager Monday, March 24, 2003

Date Monday, March 24, 2

Phone (510) 567-0480 Fax (510) 567-0488

Table II

Asbestos Concentration for Structures $\geq 10~\mu m$ in Length TEM Water Analysis

Project ATC303205

†Analytical sensitivity is the calculated concentration based on one structure in the area analyzed. Samples received on: Tuesday, March 18, 2003

Chr - Chrysotile, Amp · Amphibole

* Results Less Than Analytical Sensitivity.

N/A - Sample not analyzed.

Authorized Signature

Sean Fitzgerald Laboratory Manager Monday, March 24, 2003

Date

RJ Lee Group, Inc. Bay Area Lab

530 McCormick Street San Leandro, CA 94577 Table II Page: 1 of 1

Phone Fax

(510) 567-0480 (510) 567-0488

Table VI

Poisson Asbestos Concentrations for Structures \geq 10 μm in Length TEM Water Analysis

Project ATC303205

			* 0199012 2		Lower Concentral	tion Bounds ‡ S/cc	Upper Concentration Bounds \$ S/sq mm S/cc		Analysis Date
Sample Number	Client Sample Number	Actual Counts	Lower	Upper	S/sq mm	<84.6154*	43.96	338,4615	3/24/03
1832576CT	A303329-01	0	0	4	<10.99*	<84.01347	43.70		

‡ Volumes provided by Alpha Analytical Laboratories Inc. for Project A303329 were used to calculate analytical results and sensitivities.

†Analytical sensitivity is the calculated concentration based on one structure in the area analyzed.

Samples received on: Tuesday, March 18, 2003

Chr - Chrysotile, Amp - Amphibole

* Results Less Than Analytical Sensitivity.

N/A - Sample not analyzed.

Authorized Signature

Sean Fitzgerald, Kaboratory Manager

Date

Monday, March 24, 2003

RJ Lee Group, Inc. Bay Area Lab

530 McCormick Street San Leandro, CA 94577 Table VI Page: 1 of 1

Phone Fax

(510) 567-0480 (510) 567-0488

WORK ORDER CHAIN OF CUSTODY RECORD

DATE	3-1	7-05	PAGE	 OF.	Ĺ
				/	r –

Alpha Analytical Laboratories Inc. • 860 Waugh Lane, H-1, Ukiah, CA 95482 • (707) 468-0401 • FAX (707) 468-5267 CLIENT'S NAME SAMPLE CONDITION ON **ANALYSES** RECEIPT: STATE PHONE NUMBER COLD/ICED? PROJECT NAME BUBBLES OR AIR SPACE? WERE SAMPLES PRESERVED? SIGNATURE OF PERSON AUTHORIZING WORLD SAMPLED BY UNDER TERMS STATED ON REVERSE SIDE THIS FORM. NO. OF **EXPLAIN IRREGULARITIES BELOW** LAB SAMPLE NUMBER SAMPLE NUMBER/IDENTIFICATION CONTS. TO STREET HER THE PARTY OF THE P. Alter the second and second ALD SAND S Whi TURN AROUND TIME REQUESTED DATE TIME RELINQUISHED BY: RECEIVED BY: (SIGNATURE) (SIGNATURE) TIME RELINQUISHED BY: RECEIVED BY (SIGNATURE) (SIGNATURE) SAMPLE CONTROL OFFICER RELINQUISHED BY: RECEIVED FOR LABORATORY BY: (SIGNATURE) METHOD OF SHIPMENT AUTHORIZED BY: SAMPLE DESPOSITION: DAYS 1. STORAGE TIME REQUESTED . (SAMPLES WILL BE STORED FOR 30 DAYS WITHOUT ADDITIONAL CHARGES: SPECIAL INSTRUCTIONS THEREAFTER STORAGE CHARGES WILL BE BILLED AT THE PUBLISHED RATES.) 2. SAMPLE TO BE RETURNED TO CLIENT? ☐ YES ☐ NO HAZARDOUS MATERIALS ARE THE PROPERTY OF THE CLIENT. THE CLIENT IS DRIVING TIME TOTAL TIME SITE TIME RESPONSIBLE FOR PROPER DISPOSAL OF HAZARDOUS WASTES, CLIENTS NOT PICKING UP HAZARDOUS WASTES MAY BE ASSESSED AN APPROPRIATE FEE.

APPENDIX C

PLATES

File Name:

Sierra Pacific Industries - Arcata Division Sawmill
2293 Samoa Boulevard
Arcata, California

Job Number:

Drawn by: MRO

M154.1 SamplePlan

M154.1

April 26, 2002

PLATE

APPENDIX D

ENVIRONET'S STANDARD SOIL AND WATER SAMPLING PROCEDURES AND QA/QC PROTOCOL

STANDARD SOIL SAMPLING PROCEDURES

The following outline describes the standard equipment and procedures used by EnviroNet personnel for the collection of soil samples for laboratory analysis.

Equipment

Modified California split-spoon drive sampler, standard penetration sampler, or direct push core barrel (Drill rig sampling)

Drive sampler (hand auger samples)

Typical 1.5-inch to 2.0-inch diameter by 6.0 inch long brass or stainless steel liners and plastic endcaps. Teflon sheets or aluminum foil will also be used for samples suspected of containing volatile compounds (gasoline, aromatic hydrocarbons, solvents, etc.)

Appropriate sample holders will be used for samples suspected of containing volatile compounds (gasoline, aromatic hydrocarbons, solvents, etc.) when EPA Method 5035 sampling is required by the regulatory agency. Standard sample containers will be used when field preservation occurs for EPA Method 5035 compliance.

Typical 1.5-inch to 2.5-inch diameter by 6.0 inch long plastic or metal liners for direct push core barrel.

PID organic vapor analyzer (OVA) or equivalent Field Detector

Sampler and Sample Container Cleaning Equipment:

Stiff-bristle brushes
Buckets
Detergent (Non-phosphate detergent recommended)
Deionized/potable water

Insulated sample storage and shipping containers (ice chests) and blue ice Insulated sample storage and shipping containers (ice chests) and dry ice for EPA Method 5035 sample holders which cannot be delivered to the laboratory within 48 hours for preservation Personal protective equipment (generally level D protection).

General Sampling Procedures

Soil samples are collected in accordance with regulatory guidance. Soil sampling procedures are updated as new guidance is provided by regulatory agencies.

Sampling equipment (i.e., sample liners, auger bits, sampling devices) are pre-washed as necessary with a brush in a detergent solution, followed by double rinsing with distilled or deionized water prior to each sampling event. All new sample liners will have been pre-washed prior to use. All samples are collected in such a manner as to minimize the volatilization or oxidation due to agitation and/or mixing upon handling.

Soil samples collected by hand augering for lithologic logging, and for chemical and physical analyses are typically obtained by pounding the sample tube into the soil being tested. If an auger hole is drilled, samples are either collected of the auger cuttings or a drive sampler is driven approximately 8 inches below the depth of the auger bit. The sampling methodology is determined

on a case-by-case basis, depending on the suspected contaminant(s). Where required, EPA Method 5035 sample holders will be filled as rapidly as possible to prevent volatilization from either a sample sleeve or directly from the formation where feasible.

Soil samples collected from a backhoe bucket or from an accessible pit or excavation (ramped or shored) are collected by removing excess material to expose as fresh as possible soil. The sample liner is then pushed into the soil until the liner is full. Where required, EPA Method 5035 sample holders will be filled as rapidly as possible to prevent volatilization directly from the formation or from the backhoe bucket after a small amount of material is removed to expose a fresh surface where feasible.

Standard metal liners will be submitted for analysis in those circumstances where EPA Method 5035 sample holders are deemed to be unusable (gravel or extremely dense material). EPA Method 5035 preservation times will still be required of the laboratory.

When utilizing the split spoon sampler with a drill rig, the portions of the soil sample recovered in additional liners are also examined and noted for any contamination and/or changes in lithology. The soils, when required, are classified in accordance with the Unified Soil Classification System (USCS). Sample liner ends selected for analysis are covered with aluminum foil or teflon sheets and sealed with plastic end caps, stored in a cooler (4° C), and transported to a California Department of Health Services Certified Analytical Laboratory for the requested analyses (except where there is no State certification for the analysis being conducted). If storage is required prior to delivery to the laboratory or laboratory courier, the samples are stored in a secure refrigerator prior to delivery.

EPA Method 5035 sample holders used to comply with EPA Method 5035 sample collection procedures will be collected and stored in a cooler (4° C), and transported to a California Department of Health Services Certified Analytical Laboratory for preservation within 48 hours of sample collection. In the event the samples cannot be delivered to the Laboratory to meet the 48 hour preservation requirement, the samples will be placed in an ice chest with dry ice and kept frozen either in the ice chest with adequate dry ice or in a secure freezer until they can be delivered to the Laboratory for proper preservation. The Laboratory may receive the samples at the job site for field preservation, in which case standard sample tubes will be used.

All sample containers are labeled in the field. The sample labels will typically contain the following information:

Sample identification number (including depth and stratigraphic position where applicable)
Project name
Project address
Sampler initials
Date of collection
Other pertinent information

Chain-of-Custody documents are completed in the field and accompany the samples to the laboratory. The Chain-of-Custody document will typically contain the following information:

Sample identification number (including depth and stratigraphic position where applicable)

Project name

Project address

Project number

Sampler (printed and signed)

Date and time of collection (for each sample)

Matrix type (soil, water, etc.)

Analyses and turn-around-time requested

Billing Information

Other pertinent information

Stockpile Sampling

Discrete samples from thin stockpiles are collected in brass or stainless steel liners, by removing 6 inches to 1 foot of soil and driving the brass or stainless steel liner into the stockpile. Soil samples are collected from thick stockpiles containing volatile contaminants by either augering or otherwise excavating approximately one third to one half way into the pile and then driving the sample liner into the soil in the hole, or collecting a sample from the backhoe bucket. Surface or near surface samples will be collected from homogenized stockpiles containing non-volatile contaminants such as metals, motor oil, or oil and grease.

For final verification characterization, discrete soil samples will be collected at intervals required by regulation, or by the lead regulator for the disposal or treatment option selected.

EPA Method 5035 sampling procedures, as indicated above, will be followed for discrete and/or verification sampling when directed by the regulatory agency and/or the receiving facility. EPA Method 5035 sampling procedures, as described above, will not be followed for composite sampling for disposal unless directed by the landfill(s) in order to profile the soil for disposal.

STANDARD GROUNDWATER SAMPLING PROCEDURES

The following outline describes the standard equipment and procedures which are used by EnviroNet personnel for the collection of groundwater samples for laboratory analysis.

Monitoring Well Development

After monitoring wells are installed and prior to initial sampling of the wells, well development is conducted. Well development is conducted to create an effective filter pack around the well screen, to optimize hydraulic communication between the formation and the well screen, and to assist in restoring the natural water quality near the well. Well development is also conducted to remove fines and to remove any foreign materials introduced during drilling.

Well development will be conducted as follows:

- 1. Record the static water level and total well depth.
- 2. Set the pump and record the pumping rate. Pump until the turbidity reaches the desired level, typically measured using a turbidity meter.
- 3. Discontinue pumping and begin surging using a properly designed surge block and proper surging technique.
- 4. Measure and record well depth to determine the amount of fines and repeat Step 2.
- 5. Repeat surging and pumping until the well yields water of acceptable turbidity at the beginning of a pumping cycle.

Depending on the depth of the water, the hydraulic conductivity of the aquifer, and the diameter of the well, pumping may effectively achieve well development. Wells completed in very silty geologic units also may produce consistently turbid samples. Wells of this type will normally be considered to have been properly installed and developed and turbid water samples will be considered representative of mobile constituents in the aquifer.

Monitoring Well Sampling

Groundwater sampling and evaluation of monitoring wells begins by removal of the well caps and measuring water levels in all monitoring wells at a site with a water level indicator. The fluid in the well is then monitored for the presence of free floating material. If free product is present in the well, its thickness is measured using an oil-water interface probe. A program of free product removal may be initiated. A groundwater sample is typically not collected from any well with confirmed free floating product unless a directive to do so is received from the regulatory agency. All monitoring wells are typically checked for free product until authorization has been received from the lead regulatory agency that checking for free product is no longer necessary. Water levels will continue to be checked until field measurements indicate that equilibrium has been achieved from which to compute the groundwater flow direction and gradient.

If free product is not present in the well being monitored, the well is purged, with groundwater parameters such as pH, conductivity, and temperature measured after each well volume removed. This process continues until parameters being measured such as pH, conductivity, and temperature, have generally stabilized (reproducible within 10%) and a minimum of 3 well casing volumes or 5 gallons of water have been removed, whichever is greater. Wells will be purged from least to most contaminated after the initial round of sampling. The purge pump will be placed near the top of the measured water table to assure that fresh water from the formation will move upward in the screen. Water will be purged from the well at a rate that does not cause recharge water to be excessively agitated. The purge pump will be lowered into the well as necessary to achieve the desired removal of groundwater.

Once a well has been adequately purged, a groundwater sample is collected using a disposable or pre-cleaned bailer. The groundwater sample is collected from the well in containers appropriate to the analyses being conducted. As examples, 1 liter amber bottles are used for diesel/motor

oil/kerosene and oil and grease analyses, 40 milliliter volatile organic analysis vials are used for gasoline BTEX, 8010, 8240, and 8260 analyses, and plastic containers are used for total and/or dissolved metals. Volatile organic analysis vials will be immediately capped after collection and placed on ice to minimize loss of volatiles. All other groundwater sample containers collected will be capped and placed in a storage container in a timely manner and as appropriate for the analysis being conducted. Proper containers, sampling collection procedures, and storage requirements will be verified with the analytical laboratory prior to sample collection. Monitoring wells at a site are purged prior to collection of samples, unless the regulatory agency has approved non-purge samples.

After the wells have been adequately purged, they will be allowed to recover to 80% of their original volume prior to sampling. Any well purged to dryness will be sampled after a sufficient volume of groundwater has entered the well to enable the collection of the necessary groundwater samples.

All collected groundwater samples are stored in an ice chest on blue ice and transported under Chain-of-Custody documentation. The samples are either transported directly to the analytical laboratory on the day of collection, delivered to the laboratory courier on the day of collection, or are returned to EnviroNet's office where they are stored in a secure refrigerator and then delivered to a California Department of Health Services Certified Analytical Laboratory or a laboratory courier for the requested analyses (except where there is no State certification for the analysis being conducted). Every effort will be made to assure that sample storage will not exceed 72 hours before delivery of the samples to either the laboratory or the laboratory courier. Samples being analyzed for constituents with a longer holding time, such as metals, may be stored for a longer period of time, provided the holding time is not exceeded, before delivery to the laboratory.

Where more than one site is sampled on the same day by the sampler, samples from each site will be stored in separate ice chests. If feasible, samples suspected of being highly impacted will be stored separately from samples which are presumed to be clean. To the extent feasible, samples will be separated based on site and suspected degree of impact while awaiting delivery to or pick up by the analytical laboratory.

All purged fluid is stored on-site in DOT 55-gallon drums pending analysis. The drums and the fluid in the drums are the exclusive property and responsibility of the responsible party. EnviroNet typically samples the drums and arranges for disposal at the appropriate time.

Grab Water Samples

Grab water samples may be collected from the pits, borings, discrete sampler borings, creeks, ponds, and any other bodies or vessels containing water. If the water sample can be safely collected by hand, it will be, otherwise, a disposable bailer will typically be used to collect the sample.

All collected grab water samples will be stored on ice and transported under Chain-of-Custody documentation. The samples will either be delivered directly to the analytical laboratory or to the analytical laboratory courier on the day of the collection, or they will be returned to EnviroNet's office where they will stored in a secure refrigerator a maximum of 72 hours, and then delivered to a California Department of Health Services Certified Analytical Laboratory for the requested analyses (except where there is no State certification for the analysis being conducted) or the

laboratory courier. Again, samples being analyzed for constituents with a longer holding time, such as metals, may be stored for a longer period of time before delivery to the laboratory.

Typically, no purge water will be generated during grab water sampling. Should purging occur, the purge water will be stored on-site in either a DOT 55-gallon drum, or other appropriate vessel, pending analysis. Industry standards are that drums and all produced water are the exclusive property and responsibility of the responsible party. EnviroNet will typically sample such containers and arrange for disposal at the appropriate time.

Sample Handling-QA/QC Elements

Sample Handling

The elapsed time between sample collection and delivery to the laboratory or the laboratory courier will typically not exceed 72 hours. Again, samples being analyzed for constituents with a longer holding time, such as metals, may be stored for a longer period of time before delivery to the laboratory, providing the holding time is not exceeded.

Sealed sample containers will only be opened by laboratory personnel during the specified sample extraction process.

Chain-of-Custody

In order to document and trace sample possession from time of collection, a Chain-of-Custody record will be filled out on the Chain-of-Custody document by the sampler for each sample collected. The Chain-of-Custody document will accompany the sample(s) through laboratory analysis. The completed Chain-of-Custody record for each sample will be included in the analytical report from the laboratory.

Blanks

Blanks will be used or collected as part of the sampling program at the discretion of the project manager and/or the lead regulatory agency. Trip and/or field blanks will be supplied and analyzed along with the samples, at the discretion of the project manager and/or the lead regulatory agency.

Modifications

Any modification to the standard sampling procedures and QA/QC protocol outlined in this document for either soil or water samples will be noted and fully explained in the sampling report.

PERSONAL PROTECTION

Sampling at environmental sites increases the chance of exposure of the sampling technician to chemicals which pose a threat to the environment and may pose a threat to the sampler's short-term and/or long-term health at the concentrations present. Each site will be evaluated prior to conducting any field work to ascertain the chemicals detected in the past, the chemicals likely to be detected in the future, and the likely concentrations of those chemicals to be detected. The chemicals will be evaluated for possible routes of exposure at the concentrations likely to be

encountered. Appropriate personal protective equipment to prevent contact with contaminants shall be used. Appropriate chemical-specific gloves shall be worn and changed between sampling events.

In the event the sampler observes or detects activities occurring on or around the site which could cross contaminate collected samples, the sampler will suspend sampling until the activities which may lead to cross contamination cease. If necessary, the sampler will abort the sampling event. Any aborted sampling event will be rescheduled after the suspicious activities are indicated to have ceased, or the activities can be halted during the sampling event. Any suspension or aborting of sampling will be immediately reported to the appropriate registered professional.

Site-specific protection measures are outlined in the Site Health and Safety Plan, where active investigation and/or remediation is occurring.

<u>Active Investigation and/or Remediation</u> (Refer to Site Specific Health and Safety Plan)

Required personal protective equipment:

Hardhats Steel toed boots

Recommended personnel protective equipment:

Eye protection
Hearing protection
Gloves to protect against dermal contact with contaminants
Skin protection from sunlight
Photoionization detector/Gas Tech

Respirator (NIOSH approved with appropriate filters for contaminants detected or expected)

Detergent wash and rinse water

First aid kit

Fire extinguisher

Route map to and phone number of nearest hospital

As indicated above, each site must be evaluated on a case-by-case basis to determine the appropriate personal protection materials to use and personal protection activities to implement in the field. As an example, several sun tan lotions contain chemicals which are detected in the diesel range. Care must be taken to prevent cross contamination by sun tan lotion at diesel impacted sites.

Passive Investigation

Recommended personnel protective equipment:

Skin protection
Eye protection
Gloves to protect against dermal contact with contaminants
Detergent wash and rinse water
First aid kit
Fire extinguisher
Route map to and phone number of nearest hospital

As indicated above, each site must be evaluated on a case-by-case basis to determine the appropriate personal protection materials to use and personal protection activities to implement in the field. If a site is known to be heavily impacted, wells should be sampled from the cleanest to most impacted to minimize the potential for cross contamination. The potential for cross contamination can be further minimized by wearing disposable gloves and disposing of gloves after each sample is collected. As an alternative, hands can be washed and rinsed between each sampling event. Where contaminants are non-volatile and do not migrate readily, such as metals, personal protection can be modified to match the primary routes of exposure, which are inhalation and ingestion. In this case it may be appropriate to wear a dust mask if excessive dust is created during sampling. Washing of hands and face before eating or drinking is highly recommended. Protection of clothing by wearing Tyveks is also to be considered, along with washing clothing after each use in conditions where significant dust is created.

Personal protection is designed to prevent or minimize the exposure to the sampler of chemicals or substances which may adversely impact either the short-term or long-term health of the sampler. It is the sampler's responsibility to adequately protect themselves from exposure. All samplers are encouraged to protect themselves and their health to the extent feasible while in the field. All materials necessary to provide adequate protection are available and should be utilized as appropriate.

Cross contamination is to be minimized at all times while sampling. In some instances, proper use and implementation of personal protection will also aid in minimizing cross contamination. The sampler is very highly encouraged to implement proper personal protection, especially where it further minimizes the risk of cross contamination of samples.