

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Dance Hall (0508538-02) Water	Sampled: 08/25/05 12	2:05 Receive	ed: 08/25	/05 12:30					
Silver	ND	4.0	μg/L	2	B5H2907	08/29/05	08/30/05 19:27	EPA 200.8	•
Aluminum	ND	4.0	n	u	Ħ	**	u	H	
Arsenic	7.6	4.0	11	u u	11	**	tt .	н	
Boron	0.49	0.066	mg/L	1	B5H3016	08/30/05	08/31/05 15:56	EPA 200.7	
Barium	70	2.0	μg/L	2	B5H2907	08/29/05	08/30/05 19:27	EPA 200.8	
Beryllium	ND	4.0	11	11	n n	n	я ,	u .	
Calcium	280	0.53	mg/L	1	B5H3016	08/30/05	08/31/05 15:54	EPA 200.7	
Cadmium	ND	4.0	μg/L	2	B5H2907	08/29/05	08/30/05 19:27	EPA 200.8	
Cobalt	ND	4.0	п	u	11	11	, н	"	
Chromium	ND	10	**	u	. "	41	н	۳.	
Copper	ND	10	11	n n	u	"	11	18	
Iron	2.2	0.040	mg/L	н	o o	u	11	11	
Mercury	ND	0.00073	11	1	B5I0113	09/01/05	09/01/05 12:43	EPA 245.1	
Potassium	5.7	0.90	11	If	B5H3016	08/30/05	08/31/05 15:54	EPA 200.7	
Magnesium	. 79	0.41	18"	11	It	u	и	"	
Molybdenum	17	4.0	μg/L	2	B5H2907	08/29/05	08/30/05 19:27	EPA 200.8	
Sodium	250	0.71	mg/L	1	B5H3016	08/30/05	08/31/05 15:54	EPA 200.7	
Nickel	6.4	4.0	μg/L	2	B5H2907	08/29/05	08/30/05 19:27	EPA 200.8	
Lead	ND	4.0	19	n	11	. #	rt .	17	
Antimony	ND	4.0		11	n	а	tt	. ii	
Selenium	ND	4.0	ır	. #	#	u	. 11	II .	
Thallium	ND	4.0	H	n	п	n	n n	n .	
Vanadium	ND	4.0	Ħ	u u	я	n	ú	"	
Zinc	ND	20	н	u	u	tt ·	. #	. "	

ECO Resources Inc.
32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Kinoshita (0508538-03) Water	Sampled: 08/25/05 11:25	Receive	d: 08/25/0	5 12:30					
Silver	ND	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 19:53	EPA 200.8	
Aluminum	35	4.0	11	н	п	n	· "	et .	
Arsenic	ND	4.0	It	, 11	n '	ü	n	II.	
Boron	0.19	0.066	mg/L	1.	B5H3016	08/30/05	08/31/05 16:38	EPA 200.7	
Barium	86	2.0	μg/L	2	B5H2909	08/29/05	08/30/05 19:53	EPA 200.8	
Beryllium	ND	4.0	**		11	II .	"	**	
Calcium	300	0.53	mg/L	Ţ	B5H3016	08/30/05	08/31/05 16:36	EPA 200.7	
Cadmium	ND	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 19:53	EPA 200.8	
Cobalt	ND	4.0		II.	11	11	"	"	
Chromium	ND	10	, 11	п	н	· ·	. "	"	
Copper	ND	10	#	"	II .	н	'n	tt	
Iron	0.81	0.040	mg/L	**	**	**	u	II .	
Mercury	ND	0.00073	H .	1	B5I0113	09/01/05	09/01/05 12:45	EPA 245.1	
Potassium	4.4	0.90	U	u	B5H3016	08/30/05	08/31/05 16:36	EPA 200.7	
Magnesium	. 60	0.41	Ħ	II .	11	"	n .	n	
Molybdenum	10	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 19:53	EPA 200.8	
Sodium	150	0.71	mg/L	ì	B5H3016	08/30/05	08/31/05 16:36	EPA 200.7	
Nickel	5.1	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 19:53	EPA 200.8	
Lead	ND	4.0	"	n	n	17	18	n	
Antimony	ND	4.0	11	n	11	. 11		н	
Selenium	ND	4.0	11	n	11	и	н	11	
Thallium	ND	4.0	n .	n.	n	11	: н	н	
Vanadium	ND	4.0	н	11	Ħ	tr	II .		
Zinc	ND	20	**	11	**	. "	n	0	

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SJBA #4 (0508538-04) Water	Sampled: 08/25/05 11:40	Received	08/25/05	5 12:30					
Silver	ND	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 20:09	EPA 200.8	
Aluminum	ND	4.0	19	"	n	ц	n	u	
Arsenic	ND	4.0		п	n	. п	11	II .	
Boron	0.30	0.066	mg/L	1	B5H3016	08/30/05	08/31/05 17:08	EPA 200.7	•
Barium	53	2.0	μg/L	2	B5H2909	08/29/05	08/30/05 20:09	EPA 200.8	
Beryllium	ND	4.0	н	11	и .	Ħ	II	11 .	
Calcium	190	0.53	mg/L	· 1	B5H3016	08/30/05	08/31/05 17:05	EPA 200.7	
Cadmium	ND	4.0	μg/L	2 -	B5H2909	08/29/05	08/30/05 20:09	EPA 200.8	
Cobalt	ND	4.0	11	u u	"	"	11	н	
Chromium	ND	10	."	**	tt.	n	11	14	
Copper	ND ·	10	II	н	11	11	. "	u	
Iron	0.31	0.040	mg/L	11	tt	11	11	ıı	
Mercury	ND	0.00073	11	1 ,	B5I0113	09/01/05	09/01/05 12:47	EPA 245.1	
Potassium	5.0	0.90	. 11	u '	B5H3016	08/30/05	08/31/05 17:05	EPA 200.7	
Magnesium	47	0.41	19	II .	19	"	и .	. "	
Molybdenum	17	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 20:09	EPA 200.8	
Sodium	170	0.71	mg/L	1	B5H3016	08/30/05	08/31/05 17:05	EPA 200.7	
Nickel	5.1	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 20:09	EPA 200.8	
Lead .	ND	4.0	11	tt.	II .	u	. "	u	
Antimony	ND	4.0	11	u	11	н	n n	0 .	
Selenium	ND	4.0	11	и	Ħ .	. "	"	n	
Thallium	ND	4.0	If	n	TF .	11	u	17	
Vanadium	ND	4.0	II	n	11	u	u		
Zinc	ND	20	11		u	II.	н	"	

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SJBA #2 (0508538-06) Water	Sampled: 08/25/05 11:50	Received	: 08/25/0	5 12:30					
Silver	ND	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 20:20	EPA 200.8	
Aluminum	ND	4.0	n	п	11	11	11	n	
Arsenic	ND	4.0	n	II	11		n	17	
Boron	0.31	0.066	mg/L	ī	B5H3016	08/30/05	08/31/05 17:19	EPA 200.7	
Barium	55	2.0	μg/L	2	B5H2909	08/29/05	08/30/05 20:20	EPA 200.8	
Beryllium	ND	4.0	11	н	11	n	11	u.	
Calcium	200	0.53	mg/L	1	B5H3016	08/30/05	08/31/05 17:17	EPA 200.7	
Cadmium	ND	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 20:20	EPA 200.8	
Cobalt	ND	4.0	11	. #	II	11	и	u .	
Chromium	ND	10	11	11	11	11	n .	"	
Copper	ND	10	11	"	"	ır	, n	"	
Iron	0.24	0.040	mg/L	**	**	11	(t	11 .	
Mercury	ND	0.00073	. "	. 1	B5I0113	09/01/05	09/01/05 13:00	EPA 245.1	
Potassium	4.3	0.90	n		B5H3016	08/30/05	08/31/05 17:17	EPA 200.7	
Magnesium	46	0.41	'n		**	"	n	"	
Molybdenum	13	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 20:20	EPA 200.8	
Sodium	170	0.71	mg/L	1	B5H3016	08/30/05	08/31/05 17:16	EPA 200.7	
Nickel	4.8	4.0	μg/L	2	B5H2909	08/29/05	08/30/05 20:20	EPA 200.8	
Lead	ND	4.0	н	n	II .	u	"	u	
Antimony	ND	4.0	n	"	н	It		Ù	
Selenium	ND	4.0	17	. "	11	н	и	n	
Thallium	ND	4.0	n	"	11	и	u ·	n	,
Vanadium	ND	4.0	**	11	n ·	н		m .	
Zinc	ND	20	11	tr	**	н	11	и	

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Trihalomethanes by EPA Method 502.2

Sierra Analytical Labs, Inc.

		CIIA AII	aiytica	Laus, I	ш.	<u> </u>			·
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
CVWD #1 (0508538-01) Water	Sampled: 08/25/05 11:55	Receive	d: 08/25/0	05 12:30					
Bromodichloromethane	ND	0.500	μg/L	1	B5H3106	08/31/05	08/31/05 08:42	EPA 502.2	
Bromoform	ND	0.500	"	11	ır .	n n	n	II .	
Chloroform	ND	0.500	tt.	"	II .	n	11	"	
Dibromochloromethane	, ND	0.500			n	n	ti .	. "	
Total Trihalomethanes	ND	0.500	u	ıı	н	11	H	n	
Surrogate: 1-Chloro-2-fluorobenz	rene	97.0 %	60-	135	"	"	"	"	
Dance Hall (0508538-02) Water	Sampled: 08/25/05 12:05	Receive	ed: 08/25	05 12:30					
Bromodichloromethane	ND	0.500	μg/L	1	B5H3106	08/31/05	08/31/05 08:42	EPA 502.2	
Bromoform	ND	0.500	н	. 11	II .	"	n	"	
Chloroform	ND	0.500	п	и.	U	H		II	
Dibromochloromethane	ND	0.500	н	11	"	# .	. "	II .	
Total Trihalomethanes	ND	0.500	. "	tt.	11	11	II.	n	
Surrogate: 1-Chloro-2-fluorobenz	ene	93.5 %	60-	135	"	n	n ·	"	
Kinoshita (0508538-03) Water	Sampled: 08/25/05 11:25	Received	1: 08/25/0	5 12:30					
Bromodichloromethane	ND	0.500	μg/L	1	B5H3106	08/31/05	08/31/05 08:42	EPA 502.2	
Bromoform	ND	0.500	и .	. 11		II .	II .	H	
Chloroform	ND	0.500	n	11	"	18	II.	n	
Dibromochloromethane	ND	0.500	n	11	11	11	н	11	
Total Trihalomethanes	ND	0.500	11	u	11	II	"	п	, .
Surrogate: 1-Chloro-2-fluorobenz	ene	87.0 %	60-	135	"	"	"	"	*
SJBA #4 (0508538-04) Water	Sampled: 08/25/05 11:40	Received:	08/25/05	12:30					
Bromodichloromethane	ND	0.500	μg/L	1	B5H3106	08/31/05	08/31/05 08:42	EPA 502.2	
Bromoform	. ND	0.500	tr	H	н .	II .	It	"	
Chloroform	ND	0.500		11	н	11	II	11	
Dibromochloromethane	ND	0.500	н	11	19	n	. "	ır	
Total Trihalomethanes	ND	0.500	n	11	n ·	. "	11	m .	
Surrogate: 1-Chloro-2-fluorobenz	ene	80.0 %	60-	135	"	"	ıı .	. "	

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Trihalomethanes by EPA Method 502.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Tirador (0508538-05) Water	Sampled: 08/25/05 11:15	Received:	08/25/05	12:30					
Bromodichloromethane	ND	0.500	μg/L	I	B5H3106	08/31/05	08/31/05 08:42	EPA 502.2	<u>.</u> .
Bromoform	ND	0.500		ır	,,	n		н	
Chloroform	ND	0.500	11	**	"	H		n	
Dibromochloromethane	ND	0.500	' п	. 11	R	Ħ	II .	11	
Total Trihalomethanes	ND	0.500	n .	ır		11	п	n	
Surrogate: 1-Chloro-2-fluorobe	enzene	78.5 %	60-	135	"	"	ıi .	"	
SJBA #2 (0508538-06) Water	Sampled: 08/25/05 11:50	Received:	08/25/05	12:30					
Bromodichloromethane	ND	0.500	μg/L	1	B5H3106	08/31/05	08/31/05 08:42	EPA 502.2	
Bromoform	ND	0.500	n	n	n	11	tt.	u	
Chloroform	ND	0.500	11	**	11	, n	n	11	
Dibromochloromethane	ND	0.500	**	n	. "		II .	u	
Total Trihalomethanes	ND	0.500	11	**		"	н	, n	•
Surrogate: 1-Chloro-2-fluorobe	n70n0	67.0 %	60-	135	"	"	"	"	

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

EDB and DBCP by EPA Method 504.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method .	Notes
CVWD #1 (0508538-01) Water	Sampled: 08/25/05 11:5	5 Receive	ed: 08/25/	05 12:30					
1,2-Dibromoethane (EDB) Dibromochloropropane	ND ND	0.0200 0.0100	μg/L "	1	B5H3117	08/30/05	08/31/05 13:37	EPA 504.1	
Dance Hall (0508538-02) Water	Sampled: 08/25/05 12:	05 Receiv	ed: 08/25	/05 12:30					
1,2-Dibromoethane (EDB) Dibromochloropropane	ND ND	0.0200 0.0100	μg/L "	1	B5H3117	08/30/05	08/31/05 13:37	EPA 504.1	
Kinoshita (0508538-03) Water	Sampled: 08/25/05 11:25	Receive	d: 08/25/0	5 12:30					
1,2-Dibromoethane (EDB) Dibromochloropropane	, ND ND	0.0200 0.0100	μg/L "	1	B5H3117	08/30/05	08/31/05 13:37	EPA 504.1	
SJBA #4 (0508538-04) Water	Sampled: 08/25/05 11:40	Received	: 08/25/05	12:30					
1,2-Dibromoethane (EDB) Dibromochloropropane	ND ND	0.0200 0.0100	μg/L "	1	B5H3117	08/30/05	08/31/05 13:37	EPA 504.1	
Tirador (0508538-05) Water S	ampled: 08/25/05 11:15	Received:	08/25/05	12:30					
1,2-Dibromoethane (EDB) Dibromochloropropane	ND ND	0.0200 0.0100	μg/L "	1	B5H3117	08/30/05	08/31/05 13:37	EPA 504.1	
SJBA #2 (0508538-06) Water	Sampled: 08/25/05 11:50	Received	: 08/25/05	12:30	· ·				
1,2-Dibromoethane (EDB) Dibromochloropropane	ND ND	0.0200 0.0100	μg/L "	1	B5H3117	08/30/05	08/31/05 13:37	EPA 504.1	

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Chlorinated Pesticides and PCBs by EPA Method 505

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
CVWD #1 (0508538-01) Water	Sampled: 08/25/05 11	:55 Received	1: 08/25/0	05 12:30					
Alachlor	ND	1.00	μg/L	1	B5H3119	08/30/05	08/31/05 14:05	EPA 505	
Aldrin	ND	0.0750	11	n	11	"	**	u	
Atrazine	ND	0.500	11	"	u	н	10	n	•
Chlordane	ND	0.100	"	11	II	"	ut.	n	
Chlordane-alpha	ND	0.200		"	n	ıı	"	if	
Chlordane-gamma	ND	0.200	и.	II .	n .	0	n	10	
Dieldrin	ND	0.0200	11	11	#	"			
Endrin	ND	0.100	n	11	R	'n	11		
Heptachlor	ND	0.0100	H	*	н	19	II .	H	
Heptachlor epoxide	ND	0.0100	11	11	11	11	11	11	
Hexachlorobenzene	ND	0.500	11	u	н	, n	n	11	
Hexachlorocyclopentadiene	ND	1.00	n	II .	17	11	. 1*	u	
gamma-BHC (Lindane)	ND	0.200	n .	II .	u u	11	it.	11	
Methoxychlor	ND	10.0	*	n	II .	H	и	Ħ	
cis-Nonachlor	. ND	0.0200	11	. "	**	**	n	11	
trans-Nonachlor	ND	0.0200	11	и	Ħ	u	n	ni	
Simazine	ND	1.00	a	11	"	u	"	n	•
Toxaphene	ND	1.00		а	"	и	u .	Ħ	
PCB-1016	ND	0.500	n	и .	ır	**	II .	lt .	
PCB-1221	ND	0.500	н	H.	n	II.	"	· n	
PCB-1232	ND	0.500		m	u	II .	"	n	•
PCB-1242	ND	0.500	"	11	11	n	ır	. "	
PCB-1248	ND	0.500	п	0 .	. 11	11	n	u	
PCB-1254	ND	0.500	"	u	W .	и.	11	ıı .	
PCB-1260	ND	0.500	"	11	n	u	œ	ıı	

 $The \ results \ in \ this \ report \ apply \ to \ the \ samples \ analyzed \ in \ accordance \ with \ the \ chain \ of \ custody \ document. \ This \ analytical \ report \ must \ be \ reproduced \ in \ its \ entirety.$

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Chlorinated Pesticides and PCBs by EPA Method 505

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
					Dateil	Trepared	- Allalyzou	Method	TVOICS
Dance Hall (0508538-02) Water	Sampled: 08/25/05 12	2:05 Receive	ea: 08/25/	/05 12:30		٠			
Alachlor	ND	1.00	μg/L	1	B5H3119	08/30/05	08/31/05 14:05	EPA 505	
Aldrin	ND	0.0750	"	17	"	Ħ	11	. 4	
Atrazine	ND	0.500	**	' 11	U	III	11	# -	
Chlordane	ND	0.100	"	II .	и,	"	"	11	
Chlordane-alpha	ND	0.200	tt.	II .	11	"	u		
Chlordane-gamma	ND	0.200	tt.	n	н	11	u	a	
Dieldrin	ND	0.0200		n	и.	n	11	II .	
Endrin	ND	0.100	н	н `	."	**	н	11	
Heptachlor	ND	0.0100	н	. "	. 11	**	"	. #	
Heptachlor epoxide	ND	0.0100	. "	n	II.	"	**	"	
Hexachlorobenzene	ND	0.500		*		**	11	er '	
Hexachlorocyclopentadiene	ND	1.00	n.	"	n n		II .	II .	
gamma-BHC (Lindane)	ND	0.200	п	. 17	n	11	"	u u	
Methoxychlor	ND	10.0	n	"	. · · · · · · · · · · · · · · · · · · ·	н	n	11	
cis-Nonachlor	ND	0.0200	11		n	н	n	17	
trans-Nonachlor	ND	0.0200	n	п	n	n	#	If	
Simazine	ND	1.00	"	· "		11	1f	ır	
Toxaphene	ND	1.00	19	n	11		ú	ıı	
PCB-1016	ND	0.500	11	11	11	IF	ш	11	
PCB-1221	ND	0.500	lf .	н		II	H	, "	
PCB-1232	ND	0.500	It	"	'n	11	11	н	
PCB-1242	ND	0.500	If	11	u	ii	н	11	
PCB-1248	ND	0.500	II .	11		11	18	11	
PCB-1254	ND	0.500	и	u	Ħ	*	10	a	
PCB-1260	ND	0.500	`II	11	**	11	u	"	

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells

Reported: Project Manager: Pierre Dreher 01/21/08 10:04

Chlorinated Pesticides and PCBs by EPA Method 505

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Kinoshita (0508538-03) Water	Sampled: 08/25/05 11:25	Received	1: 08/25/0	5 12:30					
Alachlor	ND	1.00	μg/L	1	B5H3119	08/30/05	08/31/05 14:05	EPA 505	
Aldrin	ND	0.0750	"	ti	ti .	n	n	n	
Atrazine	ND	0.500	11	"	11 .	"	Ħ	IF.	
Chlordane	ND	0.100	tr.	**	10	н	n	"	
Chlordane-alpha	ND	0.200	п	n	w,		**	11	
Chlordane-gamma	ND	0.200	11	11	II	*	u		
Dieldrin	ND	0.0200	n	11	II .	11	, "	H	
Endrin	ND	0.100	н	n	n	• 0	n	и .	
Heptachlor	ND	0.0100	n	n n	. н	ń	11	· #	
Heptachlor epoxide	, ND	0.0100	11	н	Ħ	n	**	. #	
Hexachlorobenzene	ND	0.500	17	11	18	n	11	н	
Hexachlorocyclopentadiene	ND	1.00	11	16	a	11	· u	п	
gamma-BHC (Lindane)	ND	0.200	u	11	ш	11	, п	н	
Methoxychlor	ND	10.0	11	It	11	a	Ħ	#	
cis-Nonachlor	ND	0.0200	u	ır	11	u	H	11	
trans-Nonachlor	ND	0.0200	. "	II .	,	ır	1t	и	
Simazine	ND	1.00	. "	ti	н	H	u	11	
Toxaphene	ND	1.00	tt	11	11	10	u ,	н	
PCB-1016	ND	0.500	It	. 11	u	11	11	19	
PCB-1221	ND	0.500	11	11	II .	II .	It	· n	
PCB-1232	ND	0.500	11	If	11	"	11	п	
PCB-1242	ND	0.500	**	II	n	"	n .	11	
PCB-1248	ND	0.500		11	n .	-n	II.	H	
PCB-1254	ND	0.500		. "	11	17	11	11	
PCB-1260	ND	0.500	"	"	и .	**	"		

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Chlorinated Pesticides and PCBs by EPA Method 505

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SJBA #4 (0508538-04) Water	Sampled: 08/25/05 11:40	Received:	08/25/05	12:30					
Alachlor	ND	1.00	μg/L	Ī	B5H3119	08/30/05	08/31/05 14:05	EPA 505	
Aldrin	ND	0.0750	н	II .	. "	11	н	U	
Atrazine	ND	0.500	n	11	"	lt	u	n	
Chlordane	ND	0.100	tt .	lf .	"	n	H	II .	
Chlordane-alpha	. ND	0.200	н	**	tr	lt.		II .	
Chlordane-gamma	ND	0.200	11	"	It	II	11	If	
Dieldrin	ND	0.0200	It	II.	Ħ		N	u	
Endrin	ND	0.100	н	n	lt .	п	"	n	
Heptachlor	ND	0.0100	**	u u	II .	11	, п	n	
Heptachlor epoxide	ND	0.0100	u .	n	10	u	19	II .	
Hexachlorobenzene	ND	0.500	п	11	n	'n	U	и .	
Hexachlorocyclopentadiene	ND	1.00	".	и	. #	19	If	U	
gamma-BHC (Lindane)	ND	0.200	u	19	u	11	1f	H	
Methoxychlor	. ND	10.0	и.	If	II	"	If	u	
cis-Nonachlor	ND	0.0200	n	. н	Ħ	u		H	
trans-Nonachlor	. ND	0.0200	II	19	n	11	ii	u	
Simazine	ND	1.00	и	H .	· n	u	tt.	n	
Toxaphene	ND	1.00	IF	**	п	н	H	11	
PCB-1016	ND	0.500	H	H.	. н	4	, if	n	
PCB-1221	ND	0.500	æ	Ħ	10	n	. "	,"	
PCB-1232	ND	0.500	ır	It	n	17	. н	u	
PCB-1242	· ND	0.500	н.	n	n n		n	н .	
PCB-1248	ND	0.500	17	11	n	**	'n	u .	
PCB-1254	ND ·	0.500	н	11	n	u u	r r	11	
PCB-1260	ND	0.500	Ħ,	n	Ħ	"	n	Œ	

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Chlorinated Pesticides and PCBs by EPA Method 505

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method		Notes
SJBA #2 (0508538-06) Water	Sampled: 08/25/05 11:50	Received:	08/25/05	12:30			•			
Alachlor	ND	1.00	μg/L	1	B5H3119	08/30/05	08/31/05 14:05	EPA 505		
Aldrin	. ND	0.0750	II .	**	11	11	#	Ħ		
Atrazine	ND	0.500	It	17	a a	11	u	**		
Chlordane	ND ·	0.100	n	17	11		u	11		
Chlordane-alpha	ND	0.200	11	11	. 11	lt.	н	u		
Chlordane-gamma	, ND	0.200	Ħ		H	. "	n .	н		
Dieldrin	ND	0.0200	"	11	**	n	н	. "		
Endrin	ND	0.100	II.		11	Ħ	11	n		
Heptachlor	ND	0.0100		H	II	11	u ,	11		•
Heptachlor epoxide	ND	0.0100	n .	n	u		u .	n		
Hexachlorobenzene	ND	0.500	11	Ħ	n	н	II	н		
Hexachlorocyclopentadiene	ND	1.00	11	tt	11	11	H .	n		
gamma-BHC (Lindane)	ND	0.200	Ħ	11	. 11	19	17	**		
Methoxychlor	ND	10.0	**	n		. 11	II .	н	•	
cis-Nonachlor	ND	0.0200	u	. n	11	11		II .		
trans-Nonachlor	ND	0.0200	ır	n	H	и .	11	n		
Simazine	ND	1.00	п	#	11	н	**	".		
Toxaphene	ND	1.00	н	u .	11		11	и		
PCB-1016	ND	0.500	**		* u	it		н		
PCB-1221	ND	0.500	11		n2	11	Ħ	19		
PCB-1232	ND	0.500	u .	"	"	'n	11	u		
PCB-1242	ND	0.500	u	11	n	19	u u	и.		
PCB-1248	ND	0.500	н.	11	11	ır				
PCB-1254	ND	0.500	"		11	11	· н	11		
PCB-1260	ND	0.500	11	".	н	Ħ	u .			

Project: NA

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Organo-Chlorine Herbicides by EPA Method 515.2

Sierra Analytical Labs. Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
						Troparou	Anaryzou		
CVWD #1 (0508538-01) Water	Sampled: 08/25/05 11:55			J5 12:30					
2,4,5-T	ND	0.200	μg/L	1	B5I0917	09/02/05	09/07/05 05:37	EPA 515.2	
2,4,5-TP (Silvex)	ND	1.00		H	11	"	ij	11	
2,4-D	ND	10.0	IT	11	"	u u	"	11	
2,4-DB	ND	0.200	11	ır	. "	11	"	"	
3,5-Dichlorobenzoic acid	ND	0.200	. 11	"	Ħ	"	It	"	
Acifluorfen	ND	0.200	11	11	11		11	**	
Bentazon	ND	2.00	н	n	11	"	н -	u	
Dalapon	ND	0.200	10	17	н		u u	II	
Dacthal Acid Metabolites	ND	0.200	It	11	11	"	n.	n	
Dicamba	ND	1.50	H	11	11	er er	11	u	
Dichlorprop	ND	0.200	п	11	u .	B	"	II .	
Dinoseb	. ND	2.00	"	11	ш	"	II .	n	
Pentachlorophenol	ND	0.200	"	**	11	11	II .	ĸ	
Picloram	ND	1.00	H	Ħ	11	11	н	u	
Surrogate: 2,4-Dichlorophenylace	etic Acid	79.5 %	35-	150	"	"	"	"	**
Dance Hall (0508538-02) Water	Sampled: 08/25/05 12:05	Receive	ed: 08/25/	05 12:30			,		
2,4,5-T	ND	0.200	μg/L	1	B5I0917	09/02/05	09/07/05 06:23	EPA 515.2	
						11			
2,4,5-TP (Silvex)	ND	1.00	IP		u u	.,	lt .	Ħ	
The state of the s	ND ND		n n	"	H	"	u u	11	
2,4,5-TP (Silvex) 2,4-D 2,4-DB	ND	10.0						# #	
2,4-D 2,4-DB	ND ND	10.0 0.200		"	н	n		# # #	
2,4-D 2,4-DB 3,5-Dichlorobenzoic acid	ND ND ND	10.0 0.200 0.200	n ·	11	11	n	11 11	n u u	
2,4-D 2,4-DB 3,5-Dichlorobenzoic acid Acifluorfen	ND ND ND ND	10.0 0.200 0.200 0.200	17 11	# # #	11 11	11 12	11 11	# 11 11 11	
2,4-D 2,4-DB 3,5-Dichlorobenzoic acid Acifluorfen Bentazon	ND ND ND ND ND	10.0 0.200 0.200 0.200 2.00	# #	н н	11 15	1) E! E!	11 71 01	11 11 11 11	
2,4-D 2,4-DB 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dalapon	ND ND ND ND ND ND	10.0 0.200 0.200 0.200 2.00 0.200	17 11 11 11	n n n	11 11	11 12 17 18	11 11 11 11	# " " " " " " " "	
2,4-D 2,4-DB 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dalapon Dacthal Acid Metabolites	ND ND ND ND ND ND ND	10.0 0.200 0.200 0.200 2.00 0.200 0.200	# # # # # #	n n n	11 15 16 18	11 11 11 11	11 11 11 11	# # # # # # # # # # # # # # # # # # #	
2,4-D 2,4-DB 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dalapon Dacthal Acid Metabolites Dicamba	ND ND ND ND ND ND ND	10.0 0.200 0.200 0.200 2.00 0.200 0.200 0.200	# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #	n n n n	n a a a a	11 11 11 11 11	11 11 11 11	
2,4-D 2,4-DB 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dalapon Dacthal Acid Metabolites Dicamba Dichlorprop	ND ND ND ND ND ND ND ND	10.0 0.200 0.200 0.200 2.00 0.200 0.200 1.50 0.200	# # # # # # # # # # # # # # # # # # #	11 12 11 11 11	11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11	11 11 11 11	. •
2,4-D 2,4-DB 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dalapon Dacthal Acid Metabolites Dicamba Dichlorprop Dinoseb	ND ND ND ND ND ND ND ND ND	10.0 0.200 0.200 0.200 2.00 0.200 0.200 1.50 0.200 2.00	# # # # # # # # # # # # # # # # # # #	11 11 11 11 11 11 11 11 11 11 11 11 11	11 15 16 16 16 17 18	17 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17	11 17 10 11 11 11	11 11 11 11	
2,4-D 2,4-DB 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dalapon Dacthal Acid Metabolites Dicamba Dichlorprop	ND ND ND ND ND ND ND ND	10.0 0.200 0.200 0.200 2.00 0.200 0.200 1.50 0.200	# # # # # # # # # # # # # # # # # # #	11 12 13 14 14 14 14 14	11 10 10 10 10 10 10 10 10 10 10 10 10 1	n a n n u u	11 12 13 14 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher Reported: 01/21/08 10:04

Organo-Chlorine Herbicides by EPA Method 515.2

Sierra Analytical Labs, Inc.

Chinoshita (0508538-03) Water Sampled: 08/25/05 11:25 Received: 08/25/05 12:30	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
2,4.5-TP (Silvex)	Kinoshita (0508538-03) Water	Sampled: 08/25/05 11:25	Received	l: 08/25/0	5 12:30					
2,4-DB	2,4,5-T	ND						09/07/05 07:10	EPA 515.2	
2,4-DB	2,4,5-TP (Silvex)							11	"	
3,5-Dichlorobenzoic acid ND 0.200 " " " " " " " " " " " " Aciduorfen ND 0.200 " " " " " " " " " " " " " " " " " "	2,4-D			n	И	"	"	и.,	"	
Acifluorfen ND 0.200 " " " " " " " " " " " " " " " " " "	2,4-DB			н	"	t 7	n	, п	II.	
ND 2.00 " " " " " " " " "	3,5-Dichlorobenzoic acid	ND	0.200	11			H	u.	, II	
Dalapon	Acifluorfen	ND	0.200	**	".	а	"	n	н	
Dacthal Acid Metabolites	Bentazon	ND	2.00	"	11	**	tr	Ħ	. и	
Dicamba ND 1.50 "	Dalapon	ND	0.200	"	II	n		11	"	
Dickhlorprop ND	Dacthal Acid Metabolites	ND	. 0.200	**		н	II .	11	"	
Dicinospo ND 0.200 " " " " " " " " " " " "	Dicamba	. ND	1.50	"	- н		"	•		
ND 2.00	Dichlorprop	ND	0.200	и .	H	11	н ′	. "	II .	
Prelocation of the prelocation o	Dinoseb	ND	2.00	н	. 11	u	. " ,	n		
Pictoram ND 1.00 " <	Pentachlorophenol	ND	0.200	n .	. "	II .	. 11	11	п	
SJBA #4 (0508538-04) Water		· ND	1.00	**		n	tt	Ħ	. 4	
2,4,5-T ND 0.200 μg/L 1 B510917 09/02/05 09/07/05 07:56 EPA 515.2 2,4,5-TP (Silvex) ND 1.00 " " " " " " " " " " " " 2,4-D ND 10.0 " " " " " " " " " " " " " " " " " "	Surrogate: 2,4-Dichlorophenylac	etic Acid	62.8 %	35-	150	"	"	· "	"	
2,4,5-TP (Silvex) ND 1.00 " " " " " " " " " " " " " " " " " " "	SJBA #4 (0508538-04) Water	Sampled: 08/25/05 11:40	Received:	08/25/05	3 12:30		•			
2,4-D 2,4-D ND 10.0 " " " " " " " " " " " " " " " " " "	2,4,5-T	ND	0.200	μg/L	1	B5I0917	09/02/05	09/07/05 07:56	EPA 515.2	
ND	2,4,5-TP (Silvex)	ND	1.00	н	Ħ	11	11 .	**	19	
ND 0.200 "	2,4-D	ND	10.0	"	11	"	u	e e		
Acifluorfen ND 0.200 "	2,4-DB	ND	0.200	n	11		11	II .	, 11	
Actinorien ND 0.200 Bentazon ND 2.00 " " " " " " " " " " " " " " " " " "	3,5-Dichlorobenzoic acid	ND	0.200	#	. 11		II .	"	п	
Dalapon ND 0.200 " <t< td=""><td>Acifluorfen</td><td>ND</td><td>0.200</td><td>17</td><td>u</td><td>н</td><td>17</td><td>n .</td><td>'n</td><td></td></t<>	Acifluorfen	ND	0.200	17	u	н	17	n .	'n	
Dacthal Acid Metabolites ND 0.200 "	Bentazon	ND	2.00	11	. "	. "	Ħ	rt .	п	
Dicamba ND 1.50 " <th< td=""><td>Dalapon</td><td>ND</td><td>0.200</td><td>**</td><td>II .</td><td>**</td><td>11</td><td>tr.</td><td>11</td><td></td></th<>	Dalapon	ND	0.200	**	II .	**	11	tr.	11	
Dicamba ND 1.50 " <th< td=""><td>Dacthal Acid Metabolites</td><td>ND</td><td>0.200</td><td></td><td>n</td><td>II</td><td>11</td><td>II</td><td>II .</td><td></td></th<>	Dacthal Acid Metabolites	ND	0.200		n	II	11	II	II .	
Dichlorprop ND 0.200 " " " " " " " " " " " " " " " " " " "	Dicamba				11		n	. "	11	
Dinoseb ND 2.00 " " " " " " " " " " " " " " " " " " "			0.200	n	**	H	11	11	. "	
Pentachlorophenol ND 0.200 " " " " " " " " " " " " " " " " " " "				н	u	**	H	11	, u	
Picloram ND 1.00 " " " " " "				11 .	II .	n	Ħ	n.	и,	
	="		,	**	"	**	**			
MITTOGOTE: / 4=LICTIOTOTOTOTOTOTOLCETIC ACIO DILLYA 11=LIU """"""""""""""""""""""""""""""""""""	Surrogate: 2,4-Dichlorophenylac		60.1 %	35_	150	"	"	"	<i>"</i>	

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Organo-Chlorine Herbicides by EPA Method 515.2

Sierra Analytical Labs, Inc.

		Sierra Ai	latytica	II Labs, I	nc.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Tirador (0508538-05) Water	Sampled: 08/25/05 11:15	Received:	08/25/05	12:30					
2,4,5-T	ND	0.200	μg/L	1	B5I0917	09/02/05	09/07/05 08:43	EPA 515.2	
2,4,5-TP (Silvex)	ND	1.00	17	**	17	. "	11	u u	
2,4-D	ND	10.0	"	н	11	н	H	п	
2,4-DB	ND	0.200		н		н	11	n	
3,5-Dichlorobenzoic acid	ND	0.200	"	19	u	11	11	11	
Acifluorfen	ND	0.200	"	11	"	II .	II	rr rr	
Bentazon	ND	2.00	ır	n	"	n	n	н	
Dalapon	ND	0.200	tr	n	II .	17	11	11	
Dacthal Acid Metabolites	ND	0.200	Ħ	H	11	#1	II .	11	
Dicamba	ND	1.50	11	11	11	u .	н	n	
Dichlorprop	ND	0.200	п	II	ıı	n	17	. "	
Dinoseb	. ND	2.00	и	n	tt	19	ir ·	11	•
Pentachlorophenol	ND	0.200	19	If	11	ц	H .	н	
Picloram	, ND	1.00	11	n	W.	n	. "	u	
Surrogate: 2,4-Dichlorophenyl	acetic Acid	75.1 %	35-	-150	"	"	"	"	
SJBA #2 (0508538-06) Water	Sampled: 08/25/05 11:50	Received:	08/25/05	5 12:30					
2,4,5-T	ND	0.200	μg/L	1	B510917	09/02/05	09/07/05 09:29	EPA 515.2	,
2,4,5-TP (Silvex)	ND	1.00		. "	11		11	10	
2,4-D	ND	10.0	n	*	17	н,		u .	•
2,4-DB	ND	0.200		#	п	11	n	n	
3,5-Dichlorobenzoic acid	ND	0.200	It	n n	н	u	n ·	,,	
Acifluorfen	ND	0.200	. н	#	19	n	u	, 11	
Bentazon	ND	2.00	п			11	u u	**	
Dalapon	. ND	0.200		п	н	ır	**	.,	
Dacthal Acid Metabolites	ND	0.200	**	#	11	11	. и.	н	
Dicamba	ND	1.50	n	11	. "	Ħ	n		
Dichlorprop	ND	0.200	19	11	11	If		"	
Dinoseb	ND	2.00	ıı		11	н	и .	n	
Pentachlorophenol	ND	0.200	u	н		. "	17	II.	
Picloram	ND	1.00	11	11		II .	и.	n	
Surrogate: 2,4-Dichlorophenyle	acetic Acid	62.8 %	35-	150	"	"	"	"	

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Volatile Organic Compounds by EPA Method 524.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
CVWD #1 (0508538-01) Water	Sampled: 08/25/05 11:	55 Received	d: 08/25/	05 12:30					
1,2,3-Trichloropropane	0.00700	0.00500	μg/L	1	B5I0204	09/01/05	09/01/05 19:53	SRL PT-GC/MS	
Surrogate: 1,4-Dichlorobenzene-c	d4	106 %		120	"	"	"	"	
Benzene	ND	0.500	"	"	B5H3015	08/29/05	08/29/05 16:00	EPA 524.2	
Bromobenzene	ND	0.500	"	,,	"	"	'n	н	
Bromochloromethane	ND	0.500	**	"	**	**	n	**	
Bromodichloromethane	ND	0.500	н	a	u u	**	11	"	
Bromoform	ND	0.500	17	a	н	It	u	"	
Bromomethane	ND	0.500	u .		n	ıı	" .	"	
Methyl ethyl ketone	ND	5.00	11	.""		н	Ħ	**	
n-Butylbenzene	ND	0.500	19	19	u ,		11	tt.	
sec-Butylbenzene	ND	0.500	19	tr.	u	. 11	II	n	
tert-Butylbenzene	ND	0.500	11	II .	II.	II	. "		•
Carbon tetrachloride	ND	0.500	II .	n	11	"	'n	, "	
Chlorobenzene	ND	0.500		H	11		II	n	
Chloroethane	ND	0.500	"	11		ш	II .		
2-Chloroethylvinyl ether	ND	1.00	H	#	" '	II	**	u	
Chloroform	ND	0.500	17	"	II.	н	II .	n .	
Chloromethane	ND	0.500	u	"	11	и	II.	t†	
2-Chlorotoluene	ND	0.500	п	H :	, a	11		ir	
4-Chlorotoluene	ND	0.500	n	. 11	II .	11	18	ii ii	
Dibromochloromethane	ND	0.500	17	п	11	n	u	Ħ	•
Dibromomethane	ND	0.500	**	ņ	, H	#	"	н	
1,2-Dichlorobenzene	ND	0.500	11	, ,	n	u	11	ш	
1,3-Dichlorobenzene	. ND	0.500		10	"	п	u	**	
1,4-Dichlorobenzene	ND	0.500	11	11	н	n	11	m .	
Dichlorodifluoromethane	ND	0.500	11		tt.	**	٠.	,n	
1,1-Dichloroethane	ND	0.500	e ·	н	н	u	u u	**	
1,2-Dichloroethane	ND	0.500	н	11	ıı .	и .	н		
1.1-Dichloroethene	ND	0.500	ņ	ıı	Ħ	n	11	e	
cis-1,2-Dichloroethene	ND	0.500	17	ıı	18	ч	ıt	11	
trans-1,2-Dichloroethene	ND	0.500	17	н	IF	п	н	u	
1,2-Dichloropropane	ND	0.500	IP	17	n	u u	11	. и	
1,3-Dichloropropane	ND	0.500	н	ıı	11	n	n	11	
2,2-Dichloropropane	ND	0.500	n	ш	11	11		u ·	
1,1-Dichloropropene	ND	0.500	n		11	19	19	n	
cis-1,3-Dichloropropene	ND	0.500	**	11	n .	п -	11	и	
trans-1,3-Dichloropropene	ND	0.500	u .	n	"	и	п	II	
Di-isopropyl ether	ND ND	3.00		11	it		н	n	
Ethyl tert-butyl ether	ND ND	3.00		11	11	,,	**	**	
Ethylbenzene	ND ND	0.500	n	u					
Eutytoenzene	אט	0.500							

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells

Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Volatile Organic Compounds by EPA Method 524.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
CVWD #1 (0508538-01) Water	Sampled: 08/25/05 11:55	Receive	d: 08/25/	05 12:30					
Hexachlorobutadiene	ND	0.500	μg/L	1	B5H3015	08/29/05	08/29/05 16:00	EPA 524.2	
Isopropylbenzene	ND	0.500	Ħ	н	"	"	п	n	
p-Isopropyltoluene	ND	0.500	11	Ħ	II .	"	п	17	
Methylene chloride	ND	0.500	n	н .	H .	и	п		
Methyl isobutyl ketone	ND	5.00	11	19	н	n	n	11	
Methyl tert-butyl ether	ND	3.00	11		n	n	n	It	
Naphthalene	ND	0.500	11	it.	tt	#	n	н	
n-Propylbenzene	ND	0.500	17	u.	11	**	11	11	
Styrene	ND	0.500	11		17	. "	11	11	
Tert-amyl methyl ether	ND	3.00			19	"		**	
Tert-butyl alcohol	ND	2.00	If	tt	ur .	II	,u	19	
1,1,1,2-Tetrachloroethane	ND	0.500	ш	11	ır	II			
1,1,2,2-Tetrachloroethane	ND	0.500	и	н	11	II	и	ш	
Tetrachloroethene	ND	0.500	п	11	н	. 11	ij	н	
Toluene	ND	0.500	11	11	n'	11	tt '	Ħ	
1,2,3-Trichlorobenzene	ND	0.500	11	H.	n .	n	e e	**	
1,2,4-Trichlorobenzene	ND	0.500		**	10	и		11	
1,1,1-Trichloroethane	ND	0.500	**	H	e	п	н	II .	
1,1,2-Trichloroethane	ND	0.500	**	ti	II .	u	11	n .	
Trichloroethene	ND	0.500	H.	"		n	tr	н	
Trichlorofluoromethane	ND	5.00	11	n	n .	n	tr.	н	
1,1,2-Trichlorotrifluoroethane	ND	10.0	· If	. #	n .	19		10	•
1,2,3-Trichloropropane	ND	0.500	**	11	11	19	н .	ıı	
1,2,4-Trimethylbenzene	ND	0.500		11	"	**	n	a	
1,3,5-Trimethylbenzene	ND ·	0.500		11	ıı.	u	n	n	
Vinyl chloride	ND ·	0.500	. 11	. "	m .		19	**	
m,p-Xylene	ND	0.500	n	II	н		. 11	11	•
o-Xylene	ND	0.500	n	· n	11	IT	ıı	n	•
Surrogate: Dibromofluoromethan		108 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8	-	92.8 %		110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	,	96.0 %		115	"	· "	"	. ,,	
Juli office. 4-Di olitojinoi obelizelie	•	70.0 70	50-			•			

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Volatile Organic Compounds by EPA Method 524.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Dance Hall (0508538-02) Water	Sampled: 08/25/05 12	2:05 Receive	ed: 08/25	/05 12:30					
1,2,3-Trichloropropane	ND	0.00500	μg/L	1 .	B5I0204	09/01/05	09/01/05 20:55	SRL PT-GC/MS	
Surrogate: 1,4-Dichlorobenzene-d4	#	105 %	80-	120	"	"	"	"	
Benzene	ND	0.500	**	II	B5H3015	08/29/05	08/29/05 17:10	EPA 524.2	
Bromobenzene	ND	0.500	11	"	tt	11		tt.	
Bromochloromethane	ND	0.500	н	<u>,"</u>	11	11	n .	н	
Bromodichloromethane	ND	0.500	"	п	н	17	н	н	
Bromoform	ND	0.500	11	u	11	**	11	u	
Bromomethane	ND	0.500	11	н	н	11	11	n .	
Methyl ethyl ketone	ND	5.00	"	н	n	rr	"	11	
n-Butylbenzene	ND	0.500	n	11	n	lt.	n	U	
sec-Butylbenzene	ND	0.500	н	11	n	11 '	II .	н	
tert-Butylbenzene	ND	0.500	н	n	n	u	H	"	
Carbon tetrachloride	ND	0.500	"	"	n	u	u	н	
Chlorobenzene	ND	0.500	н	n	11	II .	н .	*	
Chloroethane	ND	0.500	н	n	11	п	n	"	
2-Chloroethylvinyl ether	ND	1.00	n n	n	11	u	#	10	
Chloroform	ND	0.500	n	"	и	н	**	u	
Chloromethane	ND	0.500	"	11	lt.	. "	10	п	
2-Chlorotoluene	ND	0.500	Ħ	Ħ	If	n	tt.	II .	
4-Chlorotoluene	ND	0.500	**	11	11	**	u	II .	
Dibromochloromethane	ND	0.500	n	11		. #	и	n	
Dibromomethane	ND	0.500	17	H	11	**	n .	н	
1,2-Dichlorobenzene	ND	0.500	11	**	If	11	u	H	
1,3-Dichlorobenzene	ND	0.500	н	11	H .	11	, и	11	
1,4-Dichlorobenzene	ND	0.500	**	P		11	n	. 11	
Dichlorodifluoromethane	ND	0.500			11	ıı .	11		
1.1-Dichloroethane	ND	0.500	17	n	. 11	"		II .	
1,2-Dichloroethane	ND	0.500	17	n n	11	n	• •	u	
1,1-Dichloroethene	ND	0.500	17	ш	11	11	u	n	
cis-1,2-Dichloroethene	ND	0.500	. 44	II .	n	n ,	n .	н	
trans-1,2-Dichloroethene	ND	0.500	17		n	n	II.	**	
1,2-Dichloropropane	ND	0.500	11	п	H	11	и .	If .	
1,3-Dichloropropane	ND	0.500	**	"		H	n	n	
2,2-Dichloropropane	ND	0.500	"	11	H.	n	. н	п	1
1,1-Dichloropropene	ND	0.500	"	11	11	"	17	н	
cis-1,3-Dichloropropene	ND	0.500	tr.	. 0	10	11	rr ·	n .	
trans-1,3-Dichloropropene	ND	0.500	11	11	II	11	#	n	
Di-isopropyl ether	ND	3.00	11	**	u	11	**	n	
Ethyl tert-butyl ether	ND ND	3.00	1f	n		**		**	4
Ethylbenzene	ND ND	0.500	er .	Ħ		11	. "	. "	

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells

Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Volatile Organic Compounds by EPA Method 524.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Dance Hall (0508538-02) Water	Sampled: 08/25/05 12:05	Receive	ed: 08/25/0	5 12:30					
Hexachlorobutadiene	ND	0.500	μg/L	1	B5H3015	08/29/05	08/29/05 17:10	EPA 524.2	
Isopropylbenzene	ND	0.500	It	" .	"	11	n	n	
p-Isopropyltoluene	ND	0.500	ır	н	II .	37	. #	**	
Methylene chloride	ND	0.500	II .	н	"	tt.	. #	п	
Methyl isobutyl ketone	ND	5.00	u	11	"	11	. "		
Methyl tert-butyl ether	3.06	3.00	u	И	"	n	11	**	
Naphthalene	ND	0.500	и	1 1	II .	II	"		
n-Propylbenzene	ND	0.500	u	н	n	H	"	"	
Styrene	ND	0.500	"	11	И		"	n .	
Tert-amyl methyl ether	ND	3.00	u	11	H	11	II .	п	
Tert-butyl alcohol	ND	2.00		71	11	**	II .	11	
1,1,1,2-Tetrachloroethane	ND	0.500	u .	11	n	. "	n,	11	
1,1,2,2-Tetrachloroethane	ND	0.500	u	11	n	**	n	11	
Tetrachloroethene	ND	0.500	ıı .	. 4	11	"	Ħ	u	
Toluene	ND	0.500	н	*1	19	Ħ	• .	tt.	
1,2,3-Trichlorobenzene	ND	0.500	u .	11	. 11	u	17	II.	
1,2,4-Trichlorobenzene	ND	0.500		**	H	**	· u	n	
1,1,1-Trichloroethane	ND	0.500	II .	**	ıt	tr.	If	n	
1,1,2-Trichloroethane	ND	0.500	H .		e	"	II .	Ħ	
Trichloroethene	ND	0.500	п	n	II .	и	u	17	
Trichlorofluoromethane	. ND	5.00	II .	"	U	. "	u u	17	
1,1,2-Trichlorotrifluoroethane	ND	10.0	II .	17	ıı .	н	n	lt .	
1,2,3-Trichloropropane	ND	0.500	п	IT		".	. н	If	
1,2,4-Trimethylbenzene	ND	0.500	II .	"	11		**	n	•
1,3,5-Trimethylbenzene	ND	0.500	H	ıı	n	n	H.	#	
Vinyl chloride	, · ND	0.500	n.	11	н	a .	11	**	
m,p-Xylene	ND	0.500	n	н	n	17	u ,	11	
o-Xylene	ND	0.500	11	*1	11	n	n	п	
Surrogate: Dibromofluoromethane		116%	86-11	'8	"	"	"	n .	
Surrogate: Toluene-d8	•	93.8 %	88-11	0	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		96.8 %	86-11	' <i>5</i>	"	"	"	"	

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher Reported: 01/21/08 10:04

Volatile Organic Compounds by EPA Method 524.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SJBA #4 (0508538-04) Water	Sampled: 08/25/05 11:40	Received	: 08/25/05	5 12:30					
1,2,3-Trichloropropane	ND	0.00500	μg/L	I	B5I0204	09/01/05	09/01/05 21:55	SRL PT-GC/MS	
Surrogate: 1,4-Dichlorobenzene	?-d4	105 %	80-	-120	"	"	. "	. 11	
Benzene	ND	0.500	**	Ħ	B5H3015	08/29/05	08/29/05 18:19	EPA 524.2	
Bromobenzene	ND	0.500	п	и .	11	a	n,	11	
Bromochloromethane	ND	0.500	II .	,n	,,	11	н	. 0	•
Bromodichloromethane	ND	0.500	n	II .	n	Ħ	. 4	t?	
Bromoform	ND	0.500	17	н	ui.	It		И	,
Bromomethane	ND	0.500	. 11	Ħ	11	u		. "	
Methyl ethyl ketone	ND	5.00	п	.11	11	n,	rr ·	u u	
n-Butylbenzene	ND	0.500	11	II	**	H	и .	' H	
sec-Butylbenzene	ND	0.500	n	11	II .	#	n	. 11	
tert-Butylbenzene	ND	0.500	11	"	"H		н .	II .	
Carbon tetrachloride	ND	0.500	10	11	н		11	п	
Chlorobenzene	ND	0.500	н		11	11	. 11	"	
Chloroethane	ND	0.500	"	"	. "	u u	н .	U	
2-Chloroethylvinyl ether	ND	1.00	**	11	н	II .	N	n	
Chloroform	ND	0.500	IF	11	r r	"	**	11	•
Chloromethane	ND	0.500	11		17	. "	"		
2-Chlorotoluene	ND	0.500	17	11	. "	ш	н	n	
4-Chlorotoluene	ND	0.500	17	**		n	11	11	
Dibromochloromethane	ND	0.500		"	11	19	n	n	
Dibromomethane	ND	0.500	н	, "	n ·	**		"	
1,2-Dichlorobenzene	ND	0.500	n	н	n ,	u	a a	#	
1,3-Dichlorobenzene	ND	0.500	. 11	If	n	n .	'н	n	
1,4-Dichlorobenzene	ND	0.500	` II		tr	. 11	H	p	•
Dichlorodifluoromethane	ND	0.500	п		a .		u '	11	•
1.1-Dichloroethane	ND	0.500	11	"	. "	и,	"		
1,2-Dichloroethane	ND	0.500	11	. "	*	n	н	17	
1.1-Dichloroethene	ND	0.500	It	u		lt.	11	ш	
cis-1,2-Dichloroethene	. ND	0.500	и.	n e	н	II .	, п	H	
trans-1,2-Dichloroethene	ND	0.500	11	**	n	n	н	. "	
1,2-Dichloropropane	ND	0.500	w	19	ç. H	"	11	II .	
1,3-Dichloropropane	ND	0.500		Ħ	п	ır	n	n .	
2,2-Dichloropropane	ND	0.500	п.	u	п	ır	n	H .	
1,1-Dichloropropene	ND	0.500	11	u	"	11	41	11	
cis-1,3-Dichloropropene	ND	0.500	0	n	#		п	u	
trans-1,3-Dichloropropene	ND	0.500		**	11	ır	н	n	
Di-isopropyl ether	ND	3.00	11	u	и	11	п	11	
Ethyl tert-butyl ether	ND	3.00	н		11	n		11	
			11	"	**	11	ır	H	
Ethylbenzene	ND	0.500	n	н	"	"	H	"	

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher Reported: 01/21/08 10:04

Volatile Organic Compounds by EPA Method 524.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SJBA #4 (0508538-04) Water	Sampled: 08/25/05 11:40	Received:	08/25/05 1	2:30					
Hexachlorobutadiene	ND ·	0.500	μg/L	1	B5H3015	08/29/05	08/29/05 18:19	EPA 524.2	
Isopropylbenzene	ND	0.500	п	II	11	n	"	17	
p-Isopropyltoluene	ND .	0.500	II .	п	u	n	"	u	
Methylene chloride	ŊD	0.500	" ,	u	U	. "	"	. "	
Methyl isobutyl ketone	ND	5.00	11	n	II	11	(tr	Ħ	
Methyl tert-butyl ether	ND	3.00	11	11	n	n	lt	н	
Naphthalene	ND	0.500	19	· n	н	. "	. н	Ħ	
n-Propylbenzene	ND	0.500	**	н	Ħ	11	n ,	11	
Styrene	ND	0.500	19	17	11	н	11	11	
Tert-amyl methyl ether	ND	3.00		11	11	17	tt.	"	
Tert-butyl alcohol	ND	2.00	H :	17	11	σ.	18	ш	
1,1,1,2-Tetrachloroethane	ND	0.500	u	• и	. u	ч	H	"	
1,1,2,2-Tetrachloroethane	ND	0.500	i n	. 11	II .	H.	п	"	
Tetrachloroethene	ND .	0.500	n	11	n	п	н	11	
Toluene	ND	0.500	n	n	. "	n ·	. 11	11	
1,2,3-Trichlorobenzene	ND	0.500	Ħ	**		II.	11	п	
1,2,4-Trichlorobenzene	ND ·	0.500	н .	19	11	11	II .	11	
1,1,1-Trichloroethane	ND	0.500	**	**	u	**	, 11	n	
1,1,2-Trichloroethane	ND	0.500	19	**		u u	H	11	
Trichloroethene	ND	0.500	11	u	11	н	11	ü	
Trichloro fluoromethane	ND	5.00	и .	ıı		. "	n	11	
1,1,2-Trichlorotrifluoroethane	ND	10.0	11	"	Ħ	H	11	H	
1,2,3-Trichloropropane	ND	0.500		н .	. "	**	u	Ħ	
1,2,4-Trimethylbenzene	. ND	0.500	"	11	Œ	"	n	u	
1,3,5-Trimethylbenzene	ND	0.500	"	19	и .	n n	. "	II .	
Vinyl chloride	ND	0.500	n	u :	II .	н	"	и	
m,p-Xylene	ND	0.500	11	IF	т н	H	u u	11	
o-Xylene	ND	0.500	u ·	н	Ħ	n	и	α	
Surrogate: Dibromofluoromethan	1e	113 %	86-11	8	"	"	"	. "	
Surrogate: Toluene-d8		93.8 %	88-11	0	. "	n	"	rt .	
Surrogate: 4-Bromofluorobenzen	e	94.6 %	86-11	5	u,	<i>"</i> '	"	"	

Project: NA

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project Number: Quarterly Wells Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Volatile Organic Compounds by EPA Method 524.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SJBA #2 (0508538-06) Water	Sampled: 08/25/05 11:50	Received	08/25/05	5 12:30					
1,2,3-Trichloropropane	ND	0.00500	μg/L	1.	B5I0204	09/01/05	09/01/05 22:55	SRL PT-GC/MS	
Surrogate: 1,4-Dichlorobenzene	2-d4	104 %	80-	120	"	"	"	"	
Benzene	ND	0.500	11	#	B5H3015	08/29/05	08/29/05 19:28	EPA 524.2	
Bromobenzene	ND	0.500	II .	. #	11	я	11	t!	
Bromochloromethane	ND	0.500	н	#	n		11	ır	•
Bromodichloromethane	ND	0.500	"	n	11	11	19	Ħ	
Bromoform	ND	0.500		**	н	11	11	*	
Bromomethane	ND	0.500	н	**	**	a a	17	If	
Methyl ethyl ketone	ND	5.00	н	**	11 .	u	**	11	
n-Butylbenzene	ND	0.500	11	11	n		·	* n *	
sec-Butylbenzene	ND	0.500	n	11 .	**		11	11	
tert-Butylbenzene	ND	0.500	II	11	rr .		H H	11	
Carbon tetrachloride	ND	0.500	"	Ħ	11		tf .	u	
Chlorobenzene	ND	0.500		11	If	n	ır		
Chloroethane	ND	0.500		II	II*		'n	n.	
2-Chloroethylvinyl ether	ND	1.00	u	u	ır	n	н	H*	
Chloroform	ND	0.500	н -	u	п	n	n	H	
Chloromethane	ND	0.500	"	II	n	17	ti .	н	
2-Chlorotoluene	ND	0.500	u	u	n	19 .	n	н .	
4-Chlorotoluene	ND	0.500	н	u		11	11	11	
Dibromochloromethane	ND	0.500	n	п	n n	"	Ħ	11	
Dibromomethane	ND	0.500	11	11	· H	11	11	0	
1.2-Dichlorobenzene	ND	0.500	п		н	11	er e	ıı	
1,3-Dichlorobenzene	ND	0.500	н	и	**	11.		11	
1,4-Dichlorobenzene	ND	0.500	u	IJ	tr	u	, н	н	
Dichlorodifluoromethane	· ND	0.500	н	U	17	п	n	и,	
1.1-Dichloroethane	ND .	0.500	,,	и	**		n	II.	
1,2-Dichloroethane	ND .	0.500	. ,,	11	"	п	H	u	
1,1-Dichloroethene	ND .	0.500	n	n	**	"	ıı	11	
cis-1,2-Dichloroethene	ND	0.500	"	н	17	**	u .	n	
trans-1,2-Dichloroethene	ND ND	0.500	11	. "		11	и,	II.	
1,2-Dichloropropane	ND ND	0.500	11	,		11-		н	
1,3-Dichloropropane	ND ND	0.500	n	"		**	,	11	
	ND ND	0.500	,,	#1	11			. 11	
2,2-Dichloropropane		0.500		,,				. "	
1,1-Dichloropropene	ND ND		,,						
cis-1,3-Dichloropropene	ND	0.500	,,	,		 Ir		. "	
trans-1,3-Dichloropropene	ND	0.500	"	,,	"		. "	"	
Di-isopropyl ether	ND	3.00	n	,	"	"	"		
Ethyl tert-butyl ether	ND	3.00		"		ur	*		
Ethylbenzene	ND	0.500	н	"	u	ıt		#	

Project: NA

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project Number: Quarterly Wells

Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Volatile Organic Compounds by EPA Method 524.2

Sierra Analytical Labs, Inc.

Analyte .	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SJBA #2 (0508538-06) Water	Sampled: 08/25/05 11:50	Received:	08/25/05	12:30					
Hexachlorobutadiene	ND	0.500	μg/L	1	B5H3015	08/29/05	08/29/05 19:28	EPA 524.2	
Isopropylbenzene	ND	0.500	n	n	11	11		H	
p-Isopropyltoluene	ND	0.500	11	"	n	u	n	m	
Methylene chloride	ND	0.500	II	19	н	n	н .	п	
Methyl isobutyl ketone	ND	5.00	н	u	**	11	Ħ	U	
Methyl tert-butyl ether	. ND	3.00	n	u	n	H	и .	n	
Naphthalene	ND	0.500	n	u	n	н	11	n	
n-Propylbenzene	ND	0.500	n	п	и .	19	11	и,	•
Styrene	ND	0.500	17	u	, п	10	II .	11	
Tert-amyl methyl ether	ND	3.00		**	н	11	U	II .	
Tert-butyl alcohol	ND	2.00	10	11		a	e .	u	
1,1,1,2-Tetrachloroethane	ND	0.500	18	"	"	u		H	
1,1,2,2-Tetrachloroethane	ND	0.500	н	u	u	"	11	"	
Tetrachloroethene	ND	0.500	11	n ·	, #		n.	**	
Toluene	ND	0.500	11		n'	. "	11	u	
1,2,3-Trichlorobenzene	ND	0.500	n	н	н	If	1)	u	
1,2,4-Trichlorobenzene	ND	0.500	* .	H	н	11	н .		
1.1.1-Trichloroethane	ND	0.500	**	19	19	11	Ħ		
1,1,2-Trichloroethane	ND .	0.500	0 .		11	II .	ıı		
Trichloroethene	ND	0.500	er .	u	u .	D	. "		
Trichlorofluoromethane	ND	5.00	II .	п	u	0	n		
1,1,2-Trichlorotrifluoroethane	ND	10.0	#	11	II .	n	n	и,	
1,2,3-Trichloropropane	ND	0.500	11	11	n	n	n	и.	
1,2,4-Trimethylbenzene	ND	0.500	н	n	"	17		11.	
1,3,5-Trimethylbenzene	ND	0.500	. п	11	11	u	σ		
Vinyl chloride	ND	0.500	17	11	11		II .	н	
m,p-Xylene	ND	0.500	11	12	11	н	If	11	
o-Xylene	ND	0.500	. 00	а	п		**	· ·	
Surrogate: Dibromofluorometha	ine	114%	86-1	18	"	"	"	"	
Surrogate: Toluene-d8		93.6 %	88-1	10	,,,	"	"	· <i>n</i>	
Surrogate: 4-Bromofluorobenze	ne	96.4 %	86-1		"		n	"	

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells

Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Metals by EPA-6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
					-				
			Prepared a	& Analyze	ed: 08/25/0	05	•		
ND	0.0030	mg/L							
			Prepared a	& Analyze	ed: 08/25/0	05			
0.00602	0.0030	mg/L	0.00600		100	85-115			
Sou	rce: 050853	8-01	Prepared a	& Analyze	ed: 08/25/0	05			
0.00735	0.0030	mg/L	0.00600	0.00093	107	80-120			
Sou	rce: 050853	8-01	Prepared a	& Analyze	d: 08/25/6	05			
0.00731	0.0030	mg/L	0.00600	0.00093	106	80-120	0.546	20	
	ND 0.00602 Sou 0.00735 Sou	ND 0.0030 0.00602 0.0030 Source: 050853 0.00735 0.0030 Source: 050853	Result Limit Units ND 0.0030 mg/L 0.00602 0.0030 mg/L Source: 0508538-01 0.00735 0.0030 mg/L Source: 0508538-01	Prepared Prepared	Prepared & Analyze	Result Limit Units Level Result %REC Prepared & Analyzed: 08/25/6 ND 0.0030 mg/L Prepared & Analyzed: 08/25/6 0.00602 0.0030 mg/L 0.00600 100 Source: 0508538-01 Prepared & Analyzed: 08/25/6 0.00735 0.0030 mg/L 0.00600 0.00093 107 Source: 0508538-01 Prepared & Analyzed: 08/25/6	Result Limit Units Level Result %REC Limits Prepared & Analyzed: 08/25/05 ND 0.0030 mg/L Prepared & Analyzed: 08/25/05 0.00602 0.0030 mg/L 0.00600 100 85-115 Source: 0508538-01 Prepared & Analyzed: 08/25/05 0.00735 0.0030 mg/L 0.00600 0.0093 107 80-120 Source: 0508538-01 Prepared & Analyzed: 08/25/05	Result Limit Units Level Result %REC Limits RPD Prepared & Analyzed: 08/25/05 ND 0.0030 mg/L Prepared & Analyzed: 08/25/05 0.00602 0.0030 mg/L 0.00600 100 85-115 Source: 0508538-01 Prepared & Analyzed: 08/25/05 0.00735 0.0030 mg/L 0.00600 0.0093 107 80-120 Source: 0508538-01 Prepared & Analyzed: 08/25/05	Result Limit Units Level Result %REC Limits RPD Limit Prepared & Analyzed: 08/25/05 ND 0.0030 mg/L Prepared & Analyzed: 08/25/05 0.00602 0.0030 mg/L 0.00600 100 85-115 Source: 0508538-01 Prepared & Analyzed: 08/25/05 0.00735 0.0030 mg/L 0.00600 0.0093 107 80-120 Source: 0508538-01 Prepared & Analyzed: 08/25/05

32470 Paseo Adelanto

Project: NA

San Juan Capistrano CA, 92675

Project Number: Quarterly Wells Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5H2907 - EPA 200 Series							-			
Blank (B5H2907-BLK1)			•	Prepared:	08/29/05	Analyzed	1: 08/30/05			
Aluminum	ND	4.0	μg/L							
Antimony	ND	4.0	11		•				,	
Arsenic	ЙD	4.0	11							
3arium	ND	2.0	. "							
Beryllium	. ND	4.0	ıı				•			
Cadmium	ND	4.0	n							
Chromium	ND	10	11							
Cobalt	ND	4.0	**							
Copper	ND	10	11							
ron ·	ND	0.040	mg/L			•				
Lead	ND	4.0	μg/L							
Molybdenum	ND	4.0	п							
lickel	ND	4.0	н							
Selenium	ND	4.0	**							
Silver	ND	4.0	н							
'hallium	ND	4.0	u							
/anadium	ND	4.0	и.,							
Zinc	ND	20								
Blank (B5H2907-BLK2)	•			Prepared:	08/29/05	Analyzed	: 08/30/05			
Aluminum	ND	4.0	μg/L	2.101	00:27:00					
Antimony	ND	4.0	"							•
Arsenic	ND	4.0								
Barium	ND	2.0	н							
Beryllium	ND	4.0	п							
Cadmium	ND	4.0	n							
Chromium	ND	10	11							
Cobalt	ND	4.0	11							
Copper	ND	10								
ron	ND	0.040	mg/L							
.ead	ND	4.0	μg/L			•				
√olybdenum	ND	4.0	μg/L							
Vickel	ND	4.0	н							
Nickei Selenium	ND	4.0	н							
Selettuiti			11			. •				
	ND									
Silver Fhallium	ND ND	4.0 4.0	"							

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Blank (BSH2907-EPA 200 Series Prepared: 08/29/05 Analyzed: 08/30/05	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Prepared: 08/29/05 Analyzed: 08/30/05		· .									
LCS (BSH2907-BS1)					Prepared:	08/29/05	Analyzeo	1: 08/30/05	-		
Aluminum 108 4.0 µg/L 100 108 85-115 Antimony 108 4.0 " 100 108 85-115 Antimony 108 4.0 " 100 101 85-115 Barium 108 2.0 " 100 108 85-115 Beryllium 110 4.0 " 100 106 85-115 Cadmium 106 4.0 " 100 107 85-115 Chromium 107 10 " 100 107 85-115 Chobalt 104 4.0 " 100 104 85-115 Cobalt 104 4.0 " 100 104 85-115 Iron 1.03 0.04 mg/L 1.00 104 85-115 Iron 1.03 0.04 mg/L 1.00 103 85-115 Iron 1.03 4.0 " 100 100 85-115 Molybdenum 100 4.0 " 100 103		ND	20	μg/L							
Aluminum 108 4.0 µg/L 100 108 85-115 Antimony 108 4.0 " 100 108 85-115 Antimony 108 4.0 " 100 101 85-115 Bartium 108 2.0 " 100 108 85-115 Beryllium 110 4.0 " 100 107 78-115 Cadmium 106 4.0 " 100 107 85-115 Chromium 107 10 " 100 104 85-115 Chobal 104 4.0 " 100 104 85-115 Cobal 104 4.0 " 100 104 85-115 Iron 1.03 0.04 mg/L 1.00 103 85-115 Iron 1.03 0.04 mg/L 1.00 103 85-115 Iron 1.03 4.0 " 100 103 85-115 Iron 1.0 4.0 " 100 103 85-115<	LCS (R5H2907-RS1)	· * .			Prenared	08/29/05	Analyza	1. 08/30/05			
Antimony 108 4.0 " 100 108 85-115 Arsenic 101 4.0 " 100 101 85-115 Barrium 108 2.0 " 100 108 85-115 Beryllium 110 4.0 " 100 110 78-115 Cadmium 106 4.0 " 100 106 85-115 Chomium 107 10 " 100 104 85-115 Chobalt 104 4.0 " 100 104 85-115 Copper 104 4.0 " 100 104 85-115 Iron 1,03 0.04 mg/L 1,00 103 85-115 Iron 1,03 0.04 mg/L 1,00 103 85-115 Kron 1,03 0.04 " 100 103 85-115 Molybdenum 100 4.0 " 100 103 85-115 Silver 112 4.0 " 100 103 85-115		. 108	4.0	. цу/Г.		. 00,27,03	<u>-</u>				· · · · · · · · · · · · · · · · · · ·
Arsenice 101 4.0 " 100 101 85-115 Barium 108 2.0 " 100 108 85-115 Beryllium 110 4.0 " 100 110 78-115 Chromium 106 4.0 " 100 106 85-115 Chromium 107 10 " 100 104 85-115 Cobalt 104 4.0 " 100 104 85-115 Copper 104 10 " 100 104 85-115 Iron 1.03 0.040 mg/L 1.00 103 85-115 Lead 1.21 4.0 mg/L 1.00 103 85-115 Lead 1.21 4.0 " 100 106 85-115 Nickel 106 4.0 " 100 103 85-115 Selenium 103 4.0 " 100 103 85-115 Thallium 108 4.0 " 100 103 85-115								,			
Barium 108 2.0 " 100 108 85-115 Beryllium 110 4.0 " 100 110 78-115 Cadmium 106 4.0 " 100 106 85-115 Chromium 107 10 " 100 104 85-115 Cobalt 104 4.0 " 100 104 85-115 Copper 104 4.0 " 100 104 85-115 Iron 1.03 0.040 mg/L 1.00 103 85-115 Lead 121 4.0 mg/L 100 100 85-115 Nickel 106 4.0 " 100 100 85-115 Selenium 103 4.0 " 100 103 85-115 Silver 112 4.0 " 100 108 85-115 Thallium 102 4.0 " 100 108 85-12 Zinc 107 85-12 10 10 85-115	•										
Beryllium				"							
Cadminim 106 4.0 " 100 106 85-115 Chromium 107 10 " 100 107 85-115 Cobalt 104 4.0 " 100 104 85-115 Copper 104 10 " 100 104 85-115 Iron 1.03 0.040 mg/L 1.00 103 85-115 Lead 121 4.0 mg/L 100 101 85-115 Molybdenum 100 4.0 " 100 106 85-115 Nickel 106 4.0 " 100 103 85-115 Selenium 103 4.0 " 100 103 85-115 Silver 112 4.0 " 100 103 85-115 Vanadium 108 4.0 " 100 102 85-115 VEC (BSH2907-BS2) *** **Prepared: 08/29/05 ** **Analyzed: 08/30/05* **Analyzed: 08/30/05* Aluminum 101 4.0 " 100 101 85-115 <				"							
Chromium 107 10 " 100 107 85-115 Cobalt 104 4.0 " 100 104 85-115 Copper 104 10 " 100 104 85-115 Iron 1.03 0.04 mg/L 1.00 103 85-115 Lead 121 4.0 µg/L 100 103 85-115 Molybdenum 100 4.0 " 100 100 85-115 Nickel 106 4.0 " 100 103 85-115 Selenium 103 4.0 " 100 103 85-115 Silver 112 4.0 " 100 103 85-115 Silver 112 4.0 " 100 108 85-115 Vanadium 108 4.0 " 100 108 85-115 Aluminum 101 4.0 " 100 107 85-115 Atsenic 101 4.0 " 100 101 85-115 <	•			н							
Cobalt 104 4.0 " 100 104 85-115 Copper 104 10 " 100 104 85-115 Iron 1.03 0.040 mg/L 1.00 103 85-115 Iron 1.03 0.040 mg/L 100 121 85-115 Molybdenum 100 4.0 " 100 106 85-115 Nickel 106 4.0 " 100 106 85-115 Silver 112 4.0 " 100 112 85-115 Thallium 108 4.0 " 100 112 85-115 Vanadium 102 4.0 " 100 102 85-121 Zinc 107 20 " 100 102 85-115 LCS (BSH2907-BS2) Prepared: 08/29/05 Analyzed: 08/30/05 National 85-115 Aluminum 101 4.0 " 100 101 85-115 Arsenic 101 4.0 " 100 101 85-115	· ·	,		11					•	•	•
Copper 104 10 " 100 104 85-115 Iron 1.03 0.040 mg/L 1.00 103 85-115 Lead 121 4.0 µg/L 100 103 85-115 Molybdenum 100 4.0 " 100 106 85-115 Nickel 106 4.0 " 100 103 85-115 Selenium 103 4.0 " 100 103 85-115 Silver 112 4.0 " 100 103 85-115 Vanadium 108 4.0 " 100 108 85-115 Vanadium 107 20 " 100 102 85-121 Zinc 107 20 " 100 107 85-115 Vanadium 101 4.0 " 100 107 85-115 Aluminum 101 4.0 " 100 101 85-115 Arsenic 101 4.0 " 100 101 85-115 <				и							
Iron 1.03 0.040 mg/L 1.00 103 85-115 Lead 121 4.0 µg/L 100 121 85-115 Molybdenum 100 4.0 " 100 100 85-115 Nickel 106 4.0 " 100 106 85-115 Selenium 103 4.0 " 100 103 85-115 Silver 112 4.0 " 100 103 85-115 Thallium 108 4.0 " 100 108 85-115 Vanadium 102 4.0 " 100 108 85-115 Zinc 107 20 " 100 107 85-121 Zinc 107 4.0 " 100 107 85-115 LCS (BSH2907-BS2) Prepared: 08/29/05 Analyzet: 08/30/05 Aluminum 101 4.0 µg/L 100 101 85-115 Arsenic 101 4.0 µg/L 100 101 85-115		104	10	"	100		104				
Lead 121 4.0 µg/L 100 121 85-115 Molybdenum 100 4.0 " 100 100 85-115 Nickel 106 4.0 " 100 106 85-115 Selenium 103 4.0 " 100 103 85-115 Silver 112 4.0 " 100 108 85-115 Thallium 108 4.0 " 100 108 85-115 Vanadium 102 4.0 " 100 102 85-121 Zinc 107 20 " 100 102 85-115 LCS (BSH2907-BS2) Prepared: 08/29/05 Analyzed: 08/30/05 Aluminum 101 4.0 µg/L 100 101 85-115 Assenic 101 4.0 µg/L 100 101 85-115 Barium 109 2.0 " 100 101 85-115 Beryllium 90.9 4.0 " 100 105 85-115	• •	1.03		mg/L			103				
Molybdenum 100 4.0 " 100 100 85-115 Nickel 106 4.0 " 100 105 85-115 Selenium 103 4.0 " 100 103 85-115 Silver 112 4.0 " 100 112 85-115 Thallium 108 4.0 " 100 108 85-115 Vanadium 102 4.0 " 100 102 85-121 Zinc 107 20 " 100 107 85-115 LCS (BSH2907-BS2) Prepared: 08/29/05 Analyzed: 08/30/05 Aluminum 101 4.0 µg/L 100 101 85-115 Arsenic 101 4.0 " 100 101 85-115 Barium 109 2.0 " 100 109 85-115 Beryllium 90.9 4.0 " 100 109 85-115 Chromium 113 10 " 100 105 85-115 Copper 107 <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>121</td> <td></td> <td></td> <td></td> <td>·</td>				_			121				·
Selentum 103 4.0 100 103 85-115 15	Molybdenum	100	. 4.0		100		100	85-115			
Scilver 112 4.0 " 100 112 85-115 Thallium 108 4.0 " 100 108 85-115 Vanadium 102 4.0 " 100 102 85-121 Zinc 107 20 " 100 107 85-115 LCS (B5H2907-BS2)	Nickel	106	4.0	11	100		106	85-115			
The content of the	Selenium	103	4.0		100		103	85-115			
Vanadium 102 4.0 " 100 102 85-121 Zinc 107 20 " 100 107 85-115 LCS (B5H2907-BS2) Prepared: 08/29/05 Analyzed: 08/30/05 Aluminum 101 4.0 µg/L 100 101 85-115 Antimony 111 4.0 µg/L 100 111 85-115 Arsenic 101 4.0 " 100 101 85-115 Barium 109 2.0 " 100 109 85-115 Beryllium 90.9 4.0 " 100 109 85-115 Cadmium 105 4.0 " 100 105 85-115 Chromium 113 10 " 100 105 85-115 Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 107 85-115 Lead 118 4.0 µg/L 100 118 85-115 <th< td=""><td>Silver</td><td>112</td><td>4.0</td><td>ti</td><td>100</td><td></td><td>112</td><td>85-115</td><td></td><td></td><td></td></th<>	Silver	112	4.0	ti	100		112	85-115			
Zinc 107 20 " 100 107 85-115 LCS (B5H2907-BS2) Prepared: 08/29/05 Analyzed: 08/30/05 Aluminum 101 4.0 µg/L 100 101 85-115 Antimony 111 4.0 " 100 111 85-115 Arsenic 101 4.0 " 100 101 85-115 Barium 109 2.0 " 100 109 85-115 Beryllium 90.9 4.0 " 100 90.9 78-115 Cadmium 105 4.0 " 100 105 85-115 Chromium 113 10 " 100 113 85-115 Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 107 85-115 Icad 118 4.0 µg/L 100 113 85-115 Lead 118 4.0 µg/L 100 118 85-115 Mo	Thallium	108	4.0	tt	100		108	85-115			
LCS (B5H2907-BS2) Prepared: 08/29/05 Analyzed: 08/30/05 Aluminum 101 4.0 μg/L 100 101 85-115 Antimony 111 4.0 " 100 111 85-115 Arsenic 101 4.0 " 100 101 85-115 Barium 109 2.0 " 100 109 85-115 Beryllium 90.9 4.0 " 100 90.9 78-115 Cadmium 105 4.0 " 100 105 85-115 Chromium 113 10 " 100 113 85-115 Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 107 85-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 μg/L 100 118 85-115 Molybdenum 102 4.0 " 100 102 85-115 Se	Vanadium	102	4.0	37	100		102	85-121			
Aluminum 101 4.0 μg/L 100 101 85-115 Antimony 111 4.0 " 100 111 85-115 Arsenic 101 4.0 " 100 101 85-115 Barium 109 2.0 " 100 109 85-115 Beryllium 90.9 4.0 " 100 90.9 78-115 Cadmium 105 4.0 " 100 105 85-115 Chromium 113 10 " 100 113 85-115 Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 107 85-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 μg/L 100 118 85-115 Molybdenum 102 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 111 8	Zinc	107	20	II	100		107	85-115			
Antimony 111 4.0 " 100 111 85-115 Arsenic 101 4.0 " 100 101 85-115 Barium 109 2.0 " 100 109 85-115 Beryllium 90.9 4.0 " 100 90.9 78-115 Cadmium 105 4.0 " 100 105 85-115 Chromium 113 10 " 100 113 85-115 Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 107 85-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 μg/L 100 118 85-115 Molybdenum 102 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 110 85-115	LCS (B5H2907-BS2)				Prepared:	08/29/05	Analyzed	l: 08/30/05			
Arsenic 101 4.0 " 100 101 85-115 Barium 109 2.0 " 100 109 85-115 Beryllium 90.9 4.0 " 100 90.9 78-115 Cadmium 105 4.0 " 100 105 85-115 Chromium 113 10 " 100 113 85-115 Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 109 85-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 µg/L 100 118 85-115 Molybdenum 102 4.0 " 100 102 85-115 Nickel 110 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 110 85-115		101	4.0	μg/L	100		101	85-115			,
Residence 101 4.0 100 109 85-115 Barium 90.9 4.0 " 100 90.9 78-115 Cadmium 105 4.0 " 100 105 85-115 Chromium 113 10 " 100 113 85-115 Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 107 85-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 μg/L 100 118 85-115 Molybdenum 102 4.0 " 100 102 85-115 Nickel 110 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 111 85-115	Antimony	111	4.0	"	100		111	85-115			
Beryllium 90.9 4.0 " 100 90.9 78-115 Cadmium 105 4.0 " 100 105 85-115 Chromium 113 10 " 100 113 85-115 Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 107 85-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 μg/L 100 118 85-115 Molybdenum 102 4.0 " 100 102 85-115 Nickel 110 4.0 " 100 111 85-115 Selenium 111 4.0 " 100 111 85-115	Arsenic	101	4.0	II	100		101	85-115			
Cadmium 105 4.0 " 100 105 85-115 Chromium 113 10 " 100 113 85-115 Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 107 85-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 μg/L 100 118 85-115 Molybdenum 102 4.0 " 100 110 85-115 Nickel 110 4.0 " 100 111 85-115 Selenium 111 4.0 " 100 111 85-115	Barium	109	2.0	H	100		109	85-115			
Chromium 113 10 " 100 113 85-115 Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 107 85-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 μg/L 100 118 85-115 Molybdenum 102 4.0 " 100 102 85-115 Nickel 110 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 111 85-115	Beryllium .	90.9	4.0	Ħ	100		90.9	78-115			
Cobalt 109 4.0 " 100 109 85-115 Copper 107 10 " 100 107 85-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 μg/L 100 118 85-115 Molybdenum 102 4.0 " 100 102 85-115 Nickel 110 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 111 85-115	Cadmium	105	4.0	11	100		105	85-115			
Copper 107 10 " 100 107 85-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 μg/L 100 118 85-115 Molybdenum 102 4.0 " 100 102 85-115 Nickel 110 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 111 85-115	Chromium	113	10	10	100		113	85-115			
Copper 107 10 10 10 10 65-115 Iron 1.13 0.040 mg/L 1.00 113 85-115 Lead 118 4.0 µg/L 100 118 85-115 Molybdenum 102 4.0 " 100 102 85-115 Nickel 110 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 111 85-115	Cobalt	109	4.0	n.	. 100		109	85-115	•		
Lead 118 4.0 μg/L 100 118 85-115 Molybdenum 102 4.0 " 100 102 85-115 Nickel 110 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 111 85-115	Copper	107	10	ır	100		107	85-115			
Molybdenum 102 4.0 " 100 102 85-115 Nickel 110 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 111 85-115	Iron	1.13	0.040	mg/L	1.00	•	113	85-115			
Nickel 110 4.0 " 100 110 85-115 Selenium 111 4.0 " 100 111 85-115	Lead	118	4.0	μg/L	100		118	85-115			
Selenium 111 4.0 " 100 111 85-115	Molybdenum	102	4.0	17	100		102	85-115			
	Nickel	110	4.0	19	100		110	85-115			
Silver 110 4.0 " 100 110 85-115	Selenium	111	4.0	11*	100		111	85-115			
	Silver	110	4.0	n n	100		110	85-115			

ECO Resources Inc. 32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H2907 - EPA 200 Series		•								
LCS (B5H2907-BS2)	,			Prepared:	08/29/05	Analyzed	l: 08/30/05			
Thallium	106	4.0	μg/L	100	_	. 106	85-115			
Vanadium	97.5	4.0	n	100		97.5	85-121			
Zinc	107	20	19	100		107	85-115			
Matrix Spike (B5H2907-MS1)	Sot	ırce: 050850	8-01	Prepared:	08/29/05	Analyzed	l: 08/30/0 5			
Aluminum	93.7	4.0	μg/L	100	ND	93.7	70-130			
Antimony	108	4.0	11	100	0,75	107	70-130			
Arsenic	. 108	4.0	ır	. 100	7.4	101	70-130			
Barium	182	2.0	11	100	75	107	70-130			
Beryllium	95.8	4.0	n	100	ND	95.8	70-130			
Cadmium	104	4.0	n	100	ND	104	70-130			
Chromium	114	10	н	100	10	104	75-130			
Cobalt	98.6	4.0	Ħ	100	ND	98.6	70-130			•
Copper	102	10	H	100	2.3	99.7	70-130			
Iron	0.866	0.040	mg/L	1.00	ND	86.6	70-130			
Lead	- 119	4.0	μg/L	100	ND	119	70-130			
Molybdenum	103	4.0	11	- 100	2.3	101	70-130			
Nickel	99.0	4.0	и .	100	0.62	98.4	70-130			
Selenium	102	4.0	"	100	ND	102	70-130			
Silver	. 110	4.0	11	100	ND	110	70-130			
Thallium	106	4.0	1.00	100	ND	106	70-130			
Vanadium .	130	4.0	n	100	31	99.0	70-130	4		
Zinc	111	20		100	12	99.0	70-130			
Matrix Spike (B5H2907-MS2)	Sou	rce: 050851	2-10	Prepared:	08/29/05	Analyzed	: 08/30/05			
Aluminum	91.7	, 4.0	μg/L	100	ND	91.7	70-130			
Antimony	113	4.0	"	100	0.34	113	70-130			
Arsenic	119	4.0	11	100	17	102	70-130			
Barium	367	2.0	н	. 100	260	107	70-130			
Beryllium	64.0	4.0	"	100	ND	64.0	70-130	-		QM-0
Cadmium	104	4.0	ıı,	100	ND	104	70-130			
Chromium	107	10	ft	100	4.7	102	75-130			
Cobalt	102	4.0	n	100	ND	102	70-130	·		
Copper	108	10	"	100	6.7	101	70-130			
Iron	1.01	0.040	mg/L	1.00	ND	101	70-130			
Lead	113	4.0	μg/L	100	ND	113	70-130			
Molybdenum	106	4.0	"	100	2.3	104	70-130			
Nickel	104	4.0	11	100	1.3	103	70-130			
										·

Project: NA

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		- Dillit				, v.C.C	Danies	10°D	Lillit	140162
Batch B5H2907 - EPA 200 Series										
Matrix Spike (B5H2907-MS2)	Sou	arce: 050851		Prepared:	08/29/05	Analyzed	l: 08/30/05			
Selenium	108	4.0	μg/L	100	ND	108	70-130			
Silver	108	4.0	и.	100	ND	108	70-130			
Thallium	100	4.0	15	100	ND	100	70-130			
Vanadium	93.6	4.0	. "	100	ND	93.6	70-130			
Zinc	114	20	"	100	15	99.0	70-130			
Matrix Spike Dup (B5H2907-MSD1)	Sou	ırce: 050850	8-01	Prepared:	08/29/05	Analyzed	1: 08/30/05			
Aluminum	120	4.0	μg/L	100	ND	120	70-130	24.6	20	QM-07
Antimony	. 109	4.0	II .	100	0.75	108	70-130	0.922	20	
Arsenic	107	4.0	u u	100	7.4	99.6	70-130	0.930	20	
Barium	179	2.0	II .	100	75	104	70-130	1.66	20	
Beryllium	94.6	4.0	н	100	ND	94.6	70-130	1.26	20	
Cadmium	105	4.0	"	100	ND	105	70-130	0.957	20	
Chromium	116	10	u	100	10	106	75-130	1.74	20	
Cobalt	98.9	4.0	н .	100	ND	98.9	70-130	0.304	20	
Copper	100	10	n	100	2.3	97.7	70-130	1.98	20	
Iron	0.876	0.040	mg/L	1.00	ND	87.6	70-130	1.15	20	
Lead	121	4.0	μg/L	100	ND	121	70-130	1.67	20	
Molybdenum	102	4.0	11	100	2.3	99.7	70-130	0.976	20	
Nickel	98.6	4.0	н	100	0.62	98.0	70-130	0.405	20	
Selenium	103	4.0	17	100	ND	103	70-130	0.976	20	
Silver	110	4.0	ir	100	ND	110	70-130	0.00	20	
Thallium	106	4.0	п	100	ND	106	70-130	0.00	20	
Vanadium	128	4.0	· n	100	31	97.0	70-130	1.55	20	
Zinc	110	20	· n	100	12	98.0	70-130	0.905	20	
Matrix Spike Dup (B5H2907-MSD2)	Sou	rce: 0508512	2-10	Prepared:	08/29/05	Analyzed	: 08/30/05		į	
Aluminum	87.7	4.0	μg/L	100	ND	87.7	70-130	4.46	20	
Antimony	113	4.0	"	100	0.34	113	70-130	0.00	20	
Arsenic	118	4.0	"	100	17	101	70-130	0.844	20	
Barium	362	2.0	"	100	260	102	70-130	1.37	20	
Beryllium	63.8	4.0		100	ND	63.8	70-130	0.313	20	QM-07
Cadmium	104	4.0	"	100	ND	104	70-130	0.00	20	•
Chromium	106	10	н	100	4.7	101	75-130	0.939	20	
Cobalt	103	4.0	n	100	ND	103	70-130	0.976	20	
Copper	109	10	11	100	6.7	102	70-130	0.922	20	
Iron ·	0.998	0.040	mg/L	1.00	ND	99.8	70-130	1.20	20	
Lead	112	4.0	μg/L	100	ND	112	70-130	0.889	20	
·			r- <i>a</i> -			-				•

32470 Paseo Adelanto

Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher Reported: 01/21/08 10:04

San Juan Capistrano CA, 92675

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Analyse	· ·	ъ •	Reporting	***	Spike	Source	0/252	%REC	B.D.C	RPD	,
Matrix Spike Dup (B5H2907-MSD2) Source: 0508512-10 Prepared: 08/29/05 Analyzed: 08/30/05	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Molybdenum 106	Batch B5H2907 - EPA 200 Series					_					
Molybdenum 106	Matrix Spike Dup (B5H2907-MSD2)	Sou	rce: 050851	2-10	Prepared:	08/29/05	Analyzed	: 08/30/05	 _		
Nickel 104 4.0 " 100 1.3 103 70-130 0.00 20 Selenium 107 4.0 " 100 ND 107 70-130 0.39 20 10 Selenium 108 4.0 " 100 ND 107 70-130 0.39 20 130 141 100 ND 108 70-130 0.00 20 141 14 14 14 15 ND 15		106	4.0	μg/L	100 .	2.3	104	70-130	0.00	20	
Silver 108 4.0 " 100 ND 108 70-130 0.00 20 Thallium 100 4.0 " 100 ND 108 70-130 0.00 20 Vanadium 92.4 4.0 " 100 ND 92.4 70-130 1.29 20 Zinc 114 20 " 100 ND 92.4 70-130 1.29 20 Zinc 114 20 " 100 ND 92.4 70-130 0.00 20 Batch BSH2909 - EPA 200 Series Blank (BSH2909-BLK1)	Nickel	104	4.0		100	1.3	103	70-130	0.00	20	
108	Selenium	107	4.0	и	100	ND	107	70-130	0.930	20	
Vanadium 92.4 4.0 " 100 ND 92.4 70-130 1.29 20 20 20 20 20 20 20	Silver	108	4.0	п	100	ND		70-130	0.00	20	
The color of the	Thallium	100	4.0	н	100	ND	100	70-130	0.00	20	
Batch B5H2909 - EPA 200 Series Blank (B5H2909-BLK1) Prepared: 08/29/05 Analyzed: 08/30/05 Aluminum ND 4.0 μg/L Antimony ND 4.0 " Arsenic ND 4.0 " Barium ND 2.0 " Beryllium ND 4.0 " Cadmium ND 4.0 " Chromium ND 4.0 " Cobalt ND 4.0 " Copper ND 10 " Iron ND 4.0 mg/L Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Vanadium			**				70-130	1.29	20	
Blank (B5H2909-BLK1) Prepared: 08/29/05 Analyzed: 08/30/05 Aluminum ND 4.0 μg/L Antimony ND 4.0 " Arsenic ND 4.0 " Barium ND 2.0 " Beryllium ND 4.0 " Cadmium ND 4.0 " Chromium ND 10 " Cobalt ND 4.0 " Copper ND 10 " Iron ND 0.040 mg/L Lead ND 4.0 " Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Zinc	114	20	"	100	15	99.0	70-130	0.00	20	
Blank (B5H2909-BLK1) Prepared: 08/29/05 Analyzed: 08/30/05 Aluminum ND 4.0 μg/L Antimony ND 4.0 " Arsenic ND 4.0 " Barium ND 2.0 " Beryllium ND 4.0 " Cadmium ND 4.0 " Chromium ND 10 " Cobalt ND 4.0 " Copper ND 10 " Iron ND 0.040 mg/L Lead ND 4.0 " Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Batch B5H2909 - EPA 200 Series										
Aluminum ND 4.0 µg/L Antimony ND 4.0 " Arsenic ND 4.0 " Barium ND 2.0 " Beryllium ND 4.0 " Cadmium ND 4.0 " Chromium ND 10 " Cobalt ND 4.0 " Copper ND 10 " Iron ND 0.040 mg/L Lead ND 4.0 " Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "					Prepared:	08/29/05	Analyzed	: 08/30/05			
Antimony ND 4.0 " Arsenic ND 4.0 " Barium ND 2.0 " Beryllium ND 4.0 " Cadmium ND 4.0 " Chromium ND 10 " Cobalt ND 4.0 " Copper ND 10 " Iron ND 0.040 mg/L Lead ND 4.0 " Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "		ND	4.0	μg/L	•						
Arsenic ND 4.0 Barium ND 4.0 " Cadmium ND 4.0 " Chromium ND 10 " Cobalt ND 4.0 " Copper ND 10 " Iron ND 0.040 mg/L Lead ND 4.0 " Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Antimony	ND	4.0								
Bartillium ND 4.0 " Cadmium ND 4.0 " Chromium ND 10 " Cobalt ND 4.0 " Copper ND 10 " Iron ND 0.040 mg/L Lead ND 4.0 " Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Arsenic	ND	4.0	н		•					
Cadmium ND 4.0 " Chromium ND 10 " Cobalt ND 4.0 " Copper ND 10 " Iron ND 0.040 mg/L Lead ND 4.0 " Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Barium	ND	2.0	11			•				
Cadmium ND 4.0 " Chromium ND 10 " Cobalt ND 4.0 " Copper ND 10 " Iron ND 0.040 mg/L Lead ND 4.0 µg/L Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Beryllium	ND	4.0	11							
Cholumn ND 10 Cobalt ND 4.0 " Copper ND 10 " Iron ND 0.040 mg/L Lead ND 4.0 " Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	-	ND	4.0	tr.							
Copper ND 10 " Iron ND 0.040 mg/L Lead ND 4.0 µg/L Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Chromium	ND	10	u							
Tron	Cobalt	ND	4.0	н					•		
Iron ND 0.040 mg/L Lead ND 4.0 μg/L Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Copper	ND	10	n							٠
Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "		ND	0.040	mg/L				•	•		
Molybdenum ND 4.0 " Nickel ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Lead	ND	4.0	μg/L		\ \					
ND 4.0 " Selenium ND 4.0 " Silver ND 4.0 " Thallium ND 4.0 " Vanadium ND 4.0 "	Molybdenum	ND	4.0			1		•			•
ND	Nickel	ND	4.0	n							
Thallium ND 4.0 " Vanadium ND 4.0 "	Selenium	ND	4.0	# -							
Vanadium ND 4.0 "	Silver	ND	4.0	m .							
vanadium ND 4.0	Thallium	ND	4.0	n,							
Zinc ND 20 "	Vanadium	ND	4.0	н							
	Zinc	ND	20	**							

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H2909 - EPA 200 Series										
LCS (B5H2909-BS1)				Prepared:	08/29/05	Analyzed	: 08/30/05			
Aluminum	104	4.0	μg/L	100		104	85-115			
Antimony	109	4.0	н	100 .		109	85-115			
Arsenic	98.6	4.0	17	100		98.6	85-115			
Barium	109	2.0	. "	100		109	85-115			
Beryllium	92.5	4.0	н	100		92.5	78-115			*
Cadmium	101	4.0	11	100		101	85-115			
Chromium	104	10	11	100		104	85-115			
Cobalt	104	4.0	H	100		104	85-115			
Copper	109 .	10	Ħ	100		109	85-115			
Iron	1,11	0.040	mg/L	1.00		111	85-115	•		
Lead	114	4.0	μg/L	100		114	. 85-115			
Molybdenum	101	4.0	n	100		101	85-115			
Nickel	109	4.0	17	100		109	85-115			
Selenium	107	4.0	u	100		107	85-115			
Silver	108	4.0	11	100		108	85-115			
Thallium	101	4.0	a	100		101	85-115			
Vanadium	89.9	4.0	n	100		89.9	85-121			
Zinc	. 105	20	II	100		105	85-115		ř	
Matrix Spike (B5H2909-MS1)	Sou	ırce: 050853	8-03	Prepared:	08/29/05	Analyzed	: 08/30/05			
Aluminum	153	4.0	μg/L	100	35	118	70-130			
Antimony	115	4.0	• и	100	0.56	114	70-130			
Arsenic	102	4.0	n	100	ND	102	70-130			
Barium	194	2.0	11	100	86	108	70-130	•		
Beryllium	69.2	4.0		. 100	ND	69.2	70-130			QM-0
Cadmium	101	4.0	11	100	ND	101	70-130			
Chromium	101	10		100	4.0	97.0	75-130			
Cobalt	102	4.0		. 100	0.34	102	70-130			
Соррег	103	10	n	100	2.6	100	70-130			
Iron	2.06	0.040	mg/L	1.00	0.81	125	70-130			
Lead	107	4.0	μg/L	100	ND	107	70-130			
Molybdenum	116	4.0	n	100	10	106	70-130		*	
Nickel	107	4.0	17	100	5.1	102	70-130			
Selenium	112	4.0		100	3.4	109	70-130			
Silver	107	4.0	н	100	ND	107	70-130			
Thallium	95.8	4.0	t†	100	ND	95.8	70-130			
Inamun										

Analyte

Zinc

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

RPD

Limit

Notes

RPD

0.00

20

70-130

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Units

Spike

Level

Source

Result

%REC

Limits

%REC

Reporting

Limit

Result

103

Matrix Spike (B5H2909-MS1)	Soui	ce: 050853	8-03	Prepared:	08/29/05	Analyze	d: 08/30/05			
Zinc	103	20	μg/L	100	5.3	97.7	70-130			
Matrix Spike Dup (B5H2909-MSD1)	Sour	ce: 050853	8-03	Prepared:	08/29/05	Analyze	d: 08/30/05			
Aluminum	160	4.0	μg/L	100	35	125	70-130	4.47	20	
Antimony	113	4.0	11	100	0.56	112	70-130	1.75	20	
Arsenic	103	4.0	n	100	ND	103	70-130	0.976	20	
Barium	191	2.0	, "	100	86	105	70-130	1.56	20	
Beryllium	68.0	4.0	**	100	ND -	68.0	70-130	1.75	20	QM-07
Cadmium	100	4.0	. "	100	ND	100	70-130	0.995	20	
Chromium	102	. 10	ıı	100	4.0	98.0	75-130	0.985	20	
Cobalt	101	4.0	**	100	0.34	101	70-130	0.985	20	
Copper	104	10	II	100	2.6	101	70-130	0.966	20	
Iron	2.15	0.040	mg/L	1.00	0.81	134	70-130	4.28	20	QM-07
Lead	107	4.0	μg/L	100	ND	107	70-130	0.00	20	
Molybdenum	114	4.0	н,	100	10	104	70-130	1.74	20	•
Nickel	106	4.0	н	100	5.1	101	70-130	0.939	20	
Selenium	. 116	4.0	H	100	3.4	113	70-130	3.51	20	
Silver	105	4.0	H	100	ND	105	70-130	1.89	20	
Thallium	95.7	4.0	19	100	ND	95.7	70-130	0.104	20	
Vanadium	88.2	4.0	10	. 100	ND	88.2	70-130	0.452	20	

Batch B5H3016 - EPA 200 Series

Blank (B5H3016-BLK1)		•		Prepared: 08/30/05 Analyzed: 08/31/05	
Boron	ND	0.066	mg/L		
Calcium	ND .	0.53	n		•
Magnesium	ND	0.41	n		
Potassium	ND	0.90	"		
Sodium	ND	0.71	11		

20

100

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H3016 - EPA 20	00 Series										
Blank (B5H3016-BLK2)					Prepared:	08/30/05	Analyzed	1: 08/31/05			
Boron		ND	0.066	mg/L							
Calcium		. ND	0.53	II.							
Magnesium	*	ND	0.41	11							
Potassium		ND	0.90	н							
Sodium		ND	0.71	. "		•					•
LCS (B5H3016-BS1)					Prepared:	08/30/05	Analyzed	1: 08/31/05			
Boron		0.206	0.066	mg/L	0.200		103	80-121			
Calcium		10.4	0.53	**	10.2		102	80-120			
Magnesium		10.8	0.41	п	10.2		106	80-120			
Potassium		11.1	0.90	и.	10.2	•	109	80-120			
Sodium		10.8	0.71	11	10.2		106	80-120			
LCS (B5H3016-BS2)					Prepared:	08/30/05	Analyzed	i: 08/31/05			
Boron		0.214	0.066	mg/L	0.200		107	80-121			
Calcium		10.7	0.53	II .	10.2		105	80-120	*		
Magnesium		10.5	0.41	n n	10.2		103	80-120			
Potassium		10.9	0.90	**	10.2		107	80-120			
Sodium		10.7	0.71	n	10.2		105	80-120			
Matrix Spike (B5H3016-MS	S1)	Sou	ırce: 050852	5-01	Prepared:	08/30/05	Analyzed	1: 08/31/05			
Boron		0.476	0.066	mg/L	0.200	0.25	113	70-130			
Calcium		229	0.53	н	10.2	230	NR	70-130			QM-07
Magnesium		58.5	0.41	11	10.2	51	73.5	70-130			
Potassium		15.8	0.90	u u	10.2	4.6	110	70-130			
Sodium	·	177	0.71	II.	10.2	170	68.6	70-130			QM-07
Matrix Spike (B5H3016-MS	S2)	Sou	rce: 050853	8-03	Prepared:	08/30/05	Analyzed	: 08/31/05			
Boron		0.407	0.066	mg/L	0.200	0.19	108	70-130		***	
Calcium		315	0.53	н .	10.2	300	147	70-130			QM-07
Magnesium		71.5	0.41	**	10.2	60	113	70-130			•
Potassium		16.1	0.90	. 11	10.2	4.4	115	70-130			
Sodium		169	0.71	11	10.2	150	186	70-130			OM-07
			_								-

Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5H3016 - EPA 200 Series										
Matrix Spike Dup (B5H3016-MSD1)	Sou	rce: 050852	5-01	Prepared:	08/30/05	Analyzed	1: 08/31/05			
Boron	0.481	0.066	mg/L	0.200	0.25	116	70-130	1.04	20	
Calcium	244	0.53	н	10.2	230	137	70-130	6.34	20	QM-07
Magnesium	60.0	0.41		10.2	51	88.2	70-130	2.53	20	
Potassium	15.8	0.90	**	10.2	4.6	110	70-130	0.00	20	
Sodium	181	0.71	ır	10.2	170	108	70-130	2.23	20	
Matrix Spike Dup (B5H3016-MSD2)	Sou	rce: 050853	8-03	Prepared:	08/30/05	Analyzed	l: 08/31/05			,
Boron	0.430	0.066	mg/L	0.200	0.19	120	70-130	5.50	20	
Calcium	304	0.53	II.	10.2	300	39.2	70-130	3.55	20	QM-07
Magnesium	69.3	0.41	# .	10.2	60	91.2	70-130	3.12	20	
Potassium	15.3	0.90	W ₁	10.2	4.4	107	70-130	5.10	20	
Sodium	165	0.71	" .	10.2	150	147	70-130	2.40	20	QM-07
Batch B5I0113 - EPA 200 Series		٠.								
Blank (B5I0113-BLK1)			_	Prepared a	& Analyze	ed: 09/01/	05			
Mercury	ND	0.00073	mg/L							
Blank (B5I0113-BLK2)				Prepared a	& Analyze	ed: 09/01/	05			
Mercury	ND	0.00073	mg/L						_	
LCS (B5I0113-BS1)			•	Prepared a	& Analyze	ed: 09/01/	05			•
Mercury	0.00093	0.00073	mg/L	0.00100		93.0	75-125			
LCS (B5I0113-BS2)				Prepared a	& Analyze	ed: 09/01/	05			
Mercury	0.00094	0.00073	mg/L	0.00100		94.0	75-125			

Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0113 - EPA 200 Series			-							
Matrix Spike (B5I0113-MS1)	Sou	rce: 050852	5-01	Prepared &	& Analyze	d: 09/01/	05			
Mercury	0.00099	0.00073	mg/L	0.00100	ND	99.0	75-125			
Matrix Spike (B5I0113-MS2)	Sou	rce: 050853	8-05	Prepared &	& Analyze	d: 09/01/	05			
Mercury	0.00093	0.00073	mg/L	0.00100	ND	93.0	75-125			
Matrix Spike Dup (B5I0113-MSD1)	Sou	rce: 050852	5-01	Prepared &	& Analyze	d: 09/01/0	05			
Mercury	0.00099	0.00073	mg/L	0.00100	ND	99.0	75-125	0.00	20	
Matrix Spike Dup (B5I0113-MSD2)	Sou	rce: 050853	8-05	Prepared &	k Analyze	d: 09/01/0	05			
Mercury	0.00099	0.00073	mg/L	0.00100	ND	99.0	75-125	6.25	20 ·	

Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Trihalomethanes by EPA Method 502.2 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		,								
Batch B5H3106 - EPA 500 Series										
Blank (B5H3106-BLK1)				Prepared	& Analyze	ed: 08/31/	05			
Bromodichloromethane	ND	0.500	μg/L							
Bromoform	ND	0.500	11							
Chloroform	ND	0.500	11							
Dibromochloromethane	ND	0.500	ır							
Total Trihalomethanes	ND	0.500	u							
Surrogate: 1-Chloro-2-fluorobenzene	26.3		"	20.0		132	60-135			ű.
LCS (B5H3106-BS1)				Prepared	& Analyz	ed: 08/31/	05			
Bromodichloromethane	46.2	0.500	μg/L	40.0		116	80-120			
Chloroform	41.1	0.500	п	40.0		103	80-120			
Dibromochloromethane	45.0	0.500	u	40.0		112	80-120			
Duplicate (B5H3106-DUP1)	Sou	rce: 050858	8-01	Prepared	& Analyze	ed: 08/31/	05			
Bromodichloromethane	7.53	0.500	μg/L		9.28			20.8	30	
Chloroform	5.78	0.500	"	_	6.26			7.97	30	
Dibromochloromethane	6.16	0.500	u		6.61			7.05	30	
Matrix Spike (B5H3106-MS1)	Sou	rce: 050858	8-01	Prepared	& Analyze	ed: 08/31/	05			
Bromodichloromethane	52.9	0.500	μg/L	40.0	9.28	109	47-124			
Chloroform	51.1	0.500	**	40.0	6.26	112	22-148			
Dibromochloromethane	44.2	0.500	II	40.0	6.61	94.0	38-127			
Matrix Spike Dup (B5H3106-MSD1)	Sou	rce: 050858	8-01	Prepared	& Analyze	ed: 08/31/	05		•	
Bromodichloromethane	54.5	0.500	μg/L	40.0	9.28	113	47-124	2.98	30	
Chloroform	56.8	0.500	Iŧ	40.0	6.26	126	22-148	10.6	30	
Dibromochloromethane	46.6	0.500	10	40.0	6.61	100	38-127	5.29	30	

Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher Reported: 01/21/08 10:04

EDB and DBCP by EPA Method 504.1 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H3117 - EPA 500 Series		<u> </u>		-			F		<u></u>	
Blank (B5H3117-BLK1)	<u> </u>			Prepared: 08/30/05 Analyzed: 08/31/05						
1,2-Dibromoethane (EDB)	ND	0.0200	μg/L						•	
Dibromochloropropane	ND	0.0100	tt .	•						
LCS (B5H3117-BS1)		Prepared: 08/30/05 Analyzed: 08/31/05								
1,2-Dibromoethane (EDB)	0.143	0,0200	μg/L	0.149		96.0	70-110			
Dibromochloropropane	0.135	0.0100	11	0.149		90.6	70-110			
LCS (B5H3117-BS2)		Prepared: 08/30/05 Analyzed: 08/31/05						ŝ		
1,2-Dibromoethane (EDB)	0.221	0.0200	μg/L	0.200		110	70-110			
Dibromochloropropane	0.174	0.0100	II	0.200		87.0	70-110			
LCS Dup (B5H3117-BSD1)		Prepared: 08/30/05 Analyzed: 08/31/05								
1,2-Dibromoethane (EDB)	0.148	0.0200	μg/L	0.149		99.3	70-110	3.44	30	
Dibromochloropropane	0.152	0.0100	11	0.149		102	70-110	11.8	30	
Duplicate (B5H3117-DUP1)	Source: 0508511-01			Prepared: 08/30/05 Analyzed: 08/31/05						
1,2-Dibromoethane (EDB)	ND	0.0200	μg/L		ND				30	
Dibromochloropropane	ND	0.0100	н .		ND				30	

ECO Resources Inc.

Analyte

PCB-1242

PCB-1248

PCB-1254

32470 Paseo Adelanto San Juan Capistrano CA, 92675 Project: NA

Project Number: Quarterly Wells
Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

RPD.

Limit

Notes

Chlorinated Pesticides and PCBs by EPA Method 505 - Quality Control

Sierra Analytical Labs, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Reporting

Limit

Result

ND

ND

ND

Blank (B5H3119-BLK1)				Prepared: 08/30/	05 Analy	zed: 08/31/05	5
Alachlor	ND	1.00	μg/L				
Aldrin	ND	0.0750	u				
Atrazine	ND	0.500	и .				
Chlordane	ND	0.100	n	•			
Chlordane-alpha	ND	0.200	17				
Chlordane-gamma	ND	0.200	11				
Dieldrin	ND	0.0200	"				
Endrin	ND	0.100	н				and the second second
Heptachlor	ND	0.0100	If .	·			
Heptachlor epoxide	ND	0.0100	tt.				
Hexachlorobenzene	ND	0.500					•
Hexachlorocyclopentadiene	ND	1.00	н				
gamma-BHC (Lindane)	ND	0.200	rr	•			
Methoxychlor	ND	10.0	If				
cis-Nonachlor	ND	0.0200	11				•
trans-Nonachlor	ND ND	0.0200					
Simazine	ND	1.00	n				
Toxaphene	ND	1.00	11				
PCB-1016	ND	0.500	и .				
PCB-1221	ND	0.500	II .				
PCB-1232	ND	0.500	**				

PCB-1260	ND	0.500	**		•			
LCS (B5H3119-BS1)				Prepared: 08/3	0/05 Analyzed	I: 08/31/05		
Aldrin	0.582	0.0750	μg/L	0.714	81.5	80-120		
Dieldrin	0.627	0.0200	н	0.714	87.8	80-120		
Endrin	0.752	0.100	17	0.714	105	80-120		•

0.500

0.500

0.500

ECO Resources Inc. 32470 Paseo Adelanto

Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

San Juan Capistrano CA, 92675

Chlorinated Pesticides and PCBs by EPA Method 505 - Quality Control

Sierra Analytical Labs, Inc.

	·								 	
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5H3119 - EPA 500 Series

Duplicate (B5H3119-DUP1)	Source: 0508538-01		8-01	Prepared: 08/30/05 Analyzed: 08/31/05	
Aldrin	ND	0.0750	μg/L	ND	30
Dieldrin	ND	0.0200	n	ND	30
Endrin	ND	0.100	**	ND	30

ECO Resources Inc.

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells Project Manager: Pierre Dreher

Reported: 01/21/08 10:04

Organo-Chlorine Herbicides by EPA Method 515.2 - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B510917 - EPA 3510C Sep Fun	nel									
Blank (B510917-BLK1)				Prepared:	09/02/05	Analyzed	1: 09/06/05			
2,4,5-T	ND	0.200	μg/L				· · · · · · · · · · · · · · · · · · ·			
2,4,5-TP (Silvex)	ND	1.00	ш							
2,4-D	ND	10.0	n			•				
2,4-DB	ND	0.200	#			,			,	
3,5-Dichlorobenzoic acid	ND	0.200								
Acifluorfen	ND	0.200	n							
Bentazon	ND	2.00	II							
Dalapon	ND	0.200	n			•				
Dacthal Acid Metabolites	ND	0.200	II.							
Dicamba	ND	1.50	н							
Dichlorprop	ND	0.200	11							
Dinoseb	ND	2.00	п							
Pentachlorophenol	ND	0.200	n							
Picloram	ND	1.00	u			•				
Surrogate: 2,4-Dichlorophenylacetic Acid	8.80	***************************************	и	8.00		110	35-150			
LCS (B510917-BS1)		, , , , , , , , , , , , , , , , , , ,		Prepared:	09/02/05	Analyzed	l: 09/06/05		•	
2,4,5-T	0.725	0.200	μg/L	0.800		90.6	62-170			
2,4,5-TP (Silvex)	0.628	1.00	·n	0.800		78.5	69-123			
Dinoseb	0.839	2.00	н	0.800		105	21-153			
LCS (B5I0917-BS2)				Prepared:	09/02/05	Analyzed	l: 09/06/05			
2,4,5-T	0.628	0.200	μg/L	0.800		78.5	62-170			<u> </u>
2,4,5-TP (Silvex)	0.741	1.00	11	0.800		92.6	69-123			
Dinoseb	0.808	2.00	**	0.800		101	21-153			
LCS Dup (B510917-BSD1)				Prepared:	09/02/05	Analyzed	l: 09/06/05			
2,4,5-T	0.707	0.200	μg/L	0.800		88.4	62-170	2.51	30	
2,4,5-TP (Silvex)	0.813	1.00	11	0.800		102	69-123	25.7	30	
Dinoseb	0.914	2.00	11	0.800		114	21-153	8.56	30	

ECO Resources Inc.

o-Xylene

Surrogate: Dibromofluoromethane

Surrogate: 4-Bromofluorobenzene

Surrogate: Toluene-d8

32470 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: NA

Project Number: Quarterly Wells

Project Manager: Pierre Dreher

Reported:

RPD

Limit

Notes

01/21/08 10:04

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Sierra Analytical Labs, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Reporting

Limit

Blank (B5H3015-BLK1)				Prepar	ed & Analyzed	1: 08/29/05		
Ethylbenzene	ND	0.500	μg/L			ı		
Hexachlorobutadiene	ND	0.500	10					
Isopropylbenzene	ND	0.500	n,					
p-Isopropyltoluene	ND	0.500	41				•	
Methylene chloride	, ND	0.500	II					
Methyl isobutyl ketone	ND	5.00	. 11					
Methyl tert-butyl ether	ND	3.00	"					
Naphthalene	ND	0.500	10					
n-Propylbenzene	ND	0.500	**					
Styrene	ND	0.500	"			•		
Tert-amyl methyl ether	ND	3.00	н					
Tert-butyl alcohol	ND	2.00	"				•	
1,1,1,2-Tetrachloroethane	ND	0.500	**			,		
1,1,2,2-Tetrachloroethane	ND	0.500	"					
Tetrachloroethene	ND	0.500	u					
Toluene	ND	0.500	н				v.*	
1,2,3-Trichlorobenzene	ND	0.500	. 17					•
1,2,4-Trichlorobenzene	ND	0.500	If					
1,1,1-Trichloroethane	ND	0.500	"			•		
1,1,2-Trichloroethane	ND	0.500	If					
Trichloroethene	ND	0.500	ti				ė	
Trichlorofluoromethane	ND	5.00	н				•	
1,1,2-Trichlorotrifluoroethane	ND	10.0	II			•		
1,2,3-Trichloropropane	ND	0.500	17	•			•	
1,2,4-Trimethylbenzene	· ND	0.500	18					
1,3,5-Trimethylbenzene	ND	0.500	н					
Vinyl chloride	ND	0.500	17					
m,p-Xylene	ND	0.500						

ND

54.9

46.1

48.6

0.500

50.0

50.0

50.0

110

92.2

97.2

86-118

88-110

86-115

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

-				
- 1				
i				
- 1				
- 1				
•				
1				
i				
İ				
-				
į				
-:				
į				
İ				
İ				
i				
ł				
-			,	
į				
- 1				
1				
1				
-				
-				
ł				
-				
1				
İ				
1				
İ				
-				
İ				
-				
i				
į				
İ				
i				
-				
İ				
!				
-				
-				
:				
: :				

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported:

01/21/08 13:07

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DHW	0801380-01	Water	01/18/08 09:00	01/18/08 12:30

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA:

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported: 01/21/08 13:07

Fuel Oxygenates by EPA 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0801380-01) Water 5	Sampled: 01/18/08 09:00	Received: 01	/18/08 12:	30					
Methyl tert-butyl ether	1.1	1.0	μg/L	1	B8A2104	01/21/08	01/21/08 10:1	6 EPA 8260B	
Di-isopropyl ether	ND	1.0	11	n	11	11	II .	Ħ	
Ethyl tert-butyl ether	ND	1.0	Ħ	11	u	11	**	и.,	
Tert-amyl methyl ether	ND	1.0	, H	17	11	n	'n	II ,	
Tert-butyl alcohol	ND	5.0	n	Ħ	"	Ħ	"	n .	
Surrogate: Dibromofluorometh	ane	114%	86-1	18	"	"	11	"	
Surrogate: Toluene-d8		96.4 %	88-1	10	"	"	,,	. "	
Surrogate: 4-Bromofluorobenz	ene	96.8 %	86-1	15	"	n	n	n	

Capistrano Valley Water District 32450 Paseo Adelanto San Juan Capistrano CA, 92675 Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/21/08 13:07

Fuel Oxygenates by EPA 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B8A2104 - EPA 5030B P & T										
Blank (B8A2104-BLK1)				Prepared of	& Analyze	ed: 01/21/0	08			
Methyl tert-butyl ether	ND	1.0	μg/L				-			
Di-isopropyl ether	ND	1.0	n							
Ethyl tert-butyl ether	ND	1.0	. 44		•					
Tert-amyl methyl ether	ND	1.0	11							
Tert-butyl alcohol	ND .	5.0	u			•				
Surrogate: Dibromofluoromethane	57.0		"	50.0		114	86-118			
Surrogate: Toluene-d8	48. I		"	50.0		96.2	88-110			
Surrogate: 4-Bromofluorobenzene	48.2		"	50.0	•	96.4	86-115			
LCS (B8A2104-BS1)				Prepared 4	& Analyze	ed: 01/21/0	08			
Methyl tert-butyl ether	41.3	1.0	μg/L	50.0		82.6	80-120			
Matrix Spike (B8A2104-MS1)	Sou	rce: 0801380)-01	Prepared 4	& Analyze	ed: 01/21/0	08		-	
Methyl tert-butyl ether	37.5	1.0	μg/L	50.0	1.1	72.8	37-160			
Matrix Spike Dup (B8A2104-MSD1)	Sou	rce: 0801386)-01	Prepared of	& Analyze	ed: 01/21/0	08			
Methyl tert-butyl ether	39.6	1.0	μg/L	50.0	1.1	77.0	37-160	5.45	30	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported:

01/22/08 11:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DHW	 0801404-01	Water	01/21/08 11:00	01/21/08 13:30

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

 $Samples \ requiring \ preservation \ were \ verified \ prior \ to \ sample \ preparation \ and \ analysis.$

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

All quality objective criteria were met, except as noted in the report with data qualifiers.

QA/QC CRITERIA:

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported:

01/22/08 11:37

Fuel Oxygenates by EPA 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
DHW (0801404-01) Water Samp	led: 01/21/08 11:00	Received: 01	/21/08 13	:30					
Methyl tert-butyl ether	1.4	1.0	μg/L	1.	B8A2122	01/21/08	01/22/08 09:10	0 EPA 8260B	
Di-isopropyl ether	ND	1.0	Ħ	"	11	"	n	H	
Ethyl tert-butyl ether	ND	1.0	11:	11	lf .	. "	n	. 41	
Tert-amyl methyl ether	ND	1.0	11 ,	"	11	"	u	n	
Tert-butyl alcohol	ND	5.0	"	n	11	n	11		
Surrogate: Dibromofluoromethane		109 %	86-1	118	"	"	,,	"	
Surrogate: Toluene-d8		95.4 %	88-1	110	"	n	"	#	
Surrogate: 4-Bromofluorobenzene		97.8 %	86-1	115	#	"	"	"	

		·	
1			
-			
i			
i			
- 1			
!			
i			
ĺ			
1			
Ì			
1			
į			
1			
į			
1			
i			
į			

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported:

01/23/08 16:20

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DHW	0801438-01	Water	01/22/08 10:00	01/22/08 13:30

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION: Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES: All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA: All quality objective criteria were met, except as noted in the report with data qualifiers.

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/23/08 16:20

Fuel Oxygenates by EPA 8260B

Analyte .	Result	` Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0801438-01) Water Sa	mpled: 01/22/08 10:00	Received: 01	/22/08 13	:30					
Methyl tert-butyl ether	1.2	1.0	μg/L	· 1	B8A2308	01/23/08	01/23/08 12:20	5 EPA 8260B	
Di-isopropyl ether	ND	1.0	n	11	17	**	n	W,	
Ethyl tert-butyl ether	ND	1.0	Ħ	. 11	u	11	n	п .	
Tert-amyl methyl ether	ND	1.0	II .	"		U	n ,	n	
Tert-butyl alcohol	ND	5.0	n	"	"	11	п	Ħ	
Surrogate: Dibromofluoromethar	ne	116%	86-	118	"	"	"	"	
Surrogate: Toluene-d8		96.8 %	88-	110	. "	"	"	"	•
Surrogate: 4-Bromofluorobenzen	e	96.4 %	86-	115	n ·	"	"	"	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported:

01/23/08 16:20

Fuel Oxygenates by EPA 8260B - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B8A2308 - EPA 5030B P & T										
Blank (B8A2308-BLK1)		<u> </u>	•	Prepared 6	& Analyze	ed: 01/23/0	28			
Methyl tert-butyl ether	ND	1.0	μg/L							
Di-isopropyl ether	ND	1.0	u							
Ethyl tert-butyl ether	ND	1.0	н		•					
Tert-amyl methyl ether	ND	1.0	n			•				
Tert-butyl alcohol	ND	5.0	ii ii			•				
Surrogate: Dibromofluoromethane	58.3		"	50.0		117	86-118			
Surrogate: Toluene-d8	48.6		"	50.0		97.2	88-110			
Surrogate: 4-Bromofluorobenzene	48.7		"	50.0		97.4	86-115			
LCS (B8A2308-BS1)				Prepared &	& Analyze	ed: 01/23/0)8			
Methyl tert-butyl ether	44.8	1.0	μg/L	50.0		89.6	80-120			
Matrix Spike (B8A2308-MS1)	Sou	ırce: 0801438	3-01	Prepared a	& Analyze	ed: 01/23/0	78			•
Methyl tert-butyl ether	43.4	1.0	μg/L	50.0	. 1.2	84.4	37-160			
Matrix Spike Dup (B8A2308-MSD1)	Sou	ırce: 0801438	3-01	Prepared &	& Analyze	ed: 01/23/0)8			
Methyl tert-butyl ether	45.3	1.0	μg/L	50.0	1.2	88.2	37-160	4.28	30	·····

		v. v. v.	
-			
	,		

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported: 01/24/08 09:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
DHW	•	0801463-01	Water	01/23/08 10:00	01/23/08 14:35

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

 $Samples \ requiring \ preservation \ were \ verified \ prior \ to \ sample \ preparation \ and \ analysis.$

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA:

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/24/08 09:27

Fuel Oxygenates by EPA 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0801463-01) Water	Sampled: 01/23/08 10:00	Received: 01	/23/08 14:3	5		***************************************			
Methyl tert-butyl ether	1.0	1.0	μg/L	1	B8A2419	01/23/08	01/24/08 08:57	7 EPA 8260B	
Di-isopropyl ether	ND	1.0	11	**	11	Ħ	, "	н	
Ethyl tert-butyl ether	, ND	1.0	n	н	11	п	"	U	
Tert-amyl methyl ether	ND	1.0	н	u u	Ħ	11,	rr rr	н	
Tert-butyl alcohol	ND	5.0	u	11	R	. "	"	11	
Surrogate: Dibromofluorome	thane	112%	86-11	8	"	"	"	"	
Surrogate: Toluene-d8		94.8 %	88-11	0	"	# ·	n	n	
Surrogate: 4-Bromofluorober	ızene	97.2 %	86-11	5	"	" .	"	"	

32450 Paseo Adelanto San Juan Capistrano CA, 92675 Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported:

01/24/08 09:27

Fuel Oxygenates by EPA 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B8A2419 - EPA 5030B P & T										
Blank (B8A2419-BLK1)				Prepared:	01/23/08	Analyzed	i: 01/24/08			
Methyl tert-butyl ether	ND	1.0	μg/L							
Di-isopropyl ether	ND	1.0	**							
Ethyl tert-butyl ether	ND	1.0	**				,			
Tert-amyl methyl ether	ND	1.0	".							
Tert-butyl alcohol	ND	5.0	II							
Surrogate: Dibromofluoromethane	54.8		n	50.0		110	86-118		•	
Surrogate: Toluene-d8	47.1		. "	50.0		94.2	88-110			
Surrogate: 4-Bromofluorobenzene	49.0		"	50.0		98.0	<i>86-115</i>		,	
LCS (B8A2419-BS1)	_			Prepared:	01/23/08	Analyzed	i: 01/24/08			
Methyl tert-butyl ether	44.5	1.0	μg/L	50.0		89.0	80-120			-
Matrix Spike (B8A2419-MS1)	Sou	urce: 0801463	1-01	Prepared:	01/23/08	Analyzed	1: 01/24/08			
Methyl tert-butyl ether	43.7	1.0	μg/L	50.0	1.0	85.4	37-160			
Matrix Spike Dup (B8A2419-MSD1)	Sou	urce: 0801463	1-01	Prepared:	01/23/08	Analyzed	1: 01/24/08			•
Methyl tert-butyl ether	44.1	1.0	μg/L	50.0	1.0	86.2	37-160	0.911	30	-

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1				
1				
		•		
İ				
1 				
1				
İ				
!				
:				
:				
•				
i				
İ				
T. Control of the Con				

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/25/08 16:07

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DHW	0801495-01	Water	01/24/08 10:00	01/24/08 15:00

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA:

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported: 01/25/08 16:07

Fuel Oxygenates by EPA 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0801495-01) Water	Sampled: 01/24/08 10:00	Received: 01	/24/08 15:	00					
Methyl tert-butyl ether	ND	1.0	μg/L	1	B8A2510	01/25/08	01/25/08 09:4:	5 EPA 8260B	
Di-isopropyl ether	ND	1.0	n	"	н	u ,		п	
Ethyl tert-butyl ether	ND	1.0	Ħ	п	11	u	m	11	
Tert-amyl methyl ether	ND	1.0	11	II .	n	. 11	п	n	
Tert-butyl alcohol	ND	5.0	H	11	. "	**	11	Ħ	
Surrogate: Dibromofluorometh	ane	110%	86-1	18	"	"	n	"	
Surrogate: Toluene-d8		96.0 %	88-1	10	"	"	"	"	
Surrogate: 4-Bromofluorobenz	ene	97.4 %	86-1	15	n	n	, "	"	

Capistrano Valley Water District 32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/25/08 16:07

Fuel Oxygenates by EPA 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B8A2510 - EPA 5030B P & T			· · · · · · · · · · · · · · · · · · ·							
Blank (B8A2510-BLK1)				Prepared of	& Analyze	ed: 01/25/	08			
Methyl tert-butyl ether	ND	1.0	μg/L							
Di-isopropyl ether	ND-	1.0	10	*						
Ethyl tert-butyl ether	ND	1.0	**							
Tert-amyl methyl ether	ND	1.0	"							
Tert-butyl alcohol	ND	5.0	n					,		
Surrogate: Dibromofluoromethane	53.9		"	50.0		108	86-118			
Surrogate: Toluene-d8	47.6		"	50.0		95.2	88-110			
Surrogate: 4-Bromofluorobenzene	49.1		n	50.0		98.2	86-115			
LCS (B8A2510-BS1)				Prepared a	& Analyze	ed: 01/25/0	08			
Methyl tert-butyl ether	41.1	1.0	μg/L	50.0		82.2	80-120			
Matrix Spike (B8A2510-MS1)	Sou	rce: 080149	5-01	Prepared a	& Analyze	ed: 01/25/0	08			
Methyl tert-butyl ether	37.4	1.0	μg/L	50.0	0.82	73.2	37-160			
Matrix Spike Dup (B8A2510-MSD1)	Sou	rce: 080149	5-01	Prepared a	& Analyze	ed: 01/25/0	08			
Methyl tert-butyl ether	37.9	1.0	μg/L	50.0	0.82	74.2	37-160	1.33	30	

	± .			
]				
ĺ				
ĺ				
i				
i				
i				
j				
!	! 			
		,		
i	i			
i	i e e e e e e e e e e e e e e e e e e e			
	!			
1				
l				
ļ				
	İ			
	:			

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported:

01/28/08 09:18

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DHW	0801522-01	Water	01/25/08 10:00	01/25/08 13:00

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA:

Capistrano Valley Water District 32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

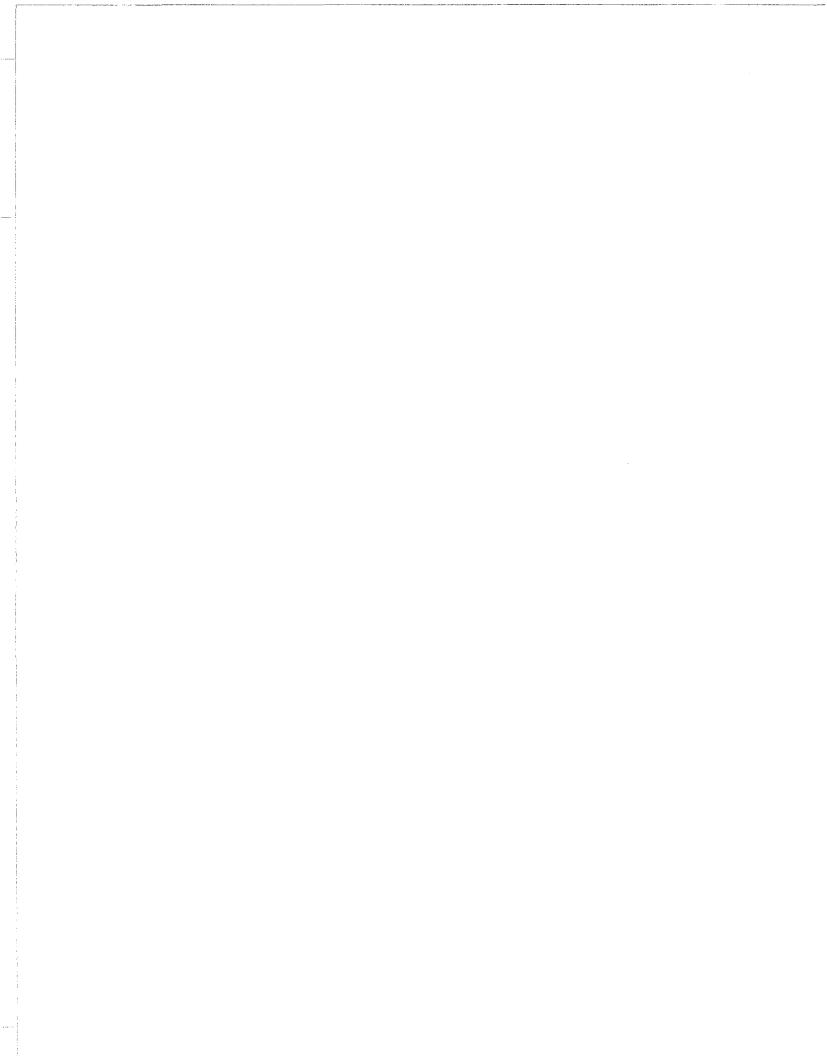
Reported: 01/28/08 09:18

Fuel Oxygenates by EPA 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
DHW (0801522-01) Water Sa	mpled: 01/25/08 10:00	Received: 01	/25/08 13:0	00					
Methyl tert-butyl ether	1.4	1.0	μg/L	1	B8A2510	01/25/08	01/25/08 18:34	1 EPA 8260B	
Di-isopropyl ether	ND	1.0	11	n		11	n	11	
Ethyl tert-butyl ether	ND	1.0	"	"	11	11	. "	lt.	
Tert-amyl methyl ether	ND	1.0	II .	Ħ	"	"	**	Ħ	
Tert-butyl alcohol	ND	5.0	11	. "	n	71		н	
Surrogate: Dibromofluoromethar	пе	110 %	86-11	8	"	"	n	"	-
Surrogate: Toluene-d8		95.2 %	88-11	0	n	"	. "	"	
Surrogate: 4-Bromofluorobenzen	e	97.4 %	86-11	'5	n	"	"	"	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675


Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/28/08 09:18

Fuel Oxygenates by EPA 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B8A2510 - EPA 5030B P & T										
Blank (B8A2510-BLK1)				Prepared 4	& Analyze	d: 01/25/0	78			
Methyl tert-butyl ether	ND	1.0	μg/L							
Di-isopropyl ether	ND	1.0	**							
Ethyl tert-butyl ether	ND	1.0	**							
Tert-amyl methyl ether	ND	1.0	**							
Tert-butyl alcohol	ND	5.0	lt .							
Surrogate: Dibromofluoromethane	53.9		"	50.0		108	86-118			
Surrogate: Toluene-d8	47.6		. "	50.0		95.2	88-110			
Surrogate: 4-Bromofluorobenzene	49.I		n	50.0	-	98.2	86-115			
LCS (B8A2510-BS1)				Prepared &	& Analyze	:d: 01/25/0	78			
Methyl tert-butyl ether	41.1	1.0	μg/L	50.0		82.2	80-120			
Matrix Spike (B8A2510-MS1)	Sou	ırce: 0801495	5-01	Prepared & Analyzed: 01/25/08						
Methyl tert-butyl ether	37.4	1.0	μg/L	50.0	0.82	73.2	37-160			
Matrix Spike Dup (B8A2510-MSD1)	Sou	ırce: 0801495	5-01	Prepared &	& Analyze	d: 01/25/0)8			
Methyl tert-butyl ether	37.9	1.0	μg/L	50.0	0.82	74.2	37-160	1.33	30	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/29/08 11:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received	
DHW		0801559-01	Water	01/28/08 11:00	01/28/08 13:54	
Kinoshita		0801559-02	Water	01/28/08 11:15	01/28/08 13:54	

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA:

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported: 01/29/08 11:51

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0801559-01) Water Sampl	ed: 01/28/08 11:00	Received: 01	/28/08 13:5	4					
Trichloroethene Tetrachloroethene	ND ND	1.0 1.0	μg/L "	1	B8A2807	01/28/08	01/28/08 15:41	EPA 8260B	
Surrogate: Dibromofluoromethane Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene		99.0 % 98.6 % 101 %	86-11 88-11 86-11	0	# . #	" "	" "	" " "	
Kinoshita (0801559-02) Water Sa	mpled: 01/28/08 11:	15 Received	l: 01/28/08 1	13:54					
Trichloroethene Tetrachloroethene	ND ND	1.0 1.0	μg/L "	. "	B8A2807	01/28/08	01/28/08 15:41	EPA 8260B	·
Surrogate: Dibromofluoromethane Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene	. ,	101 % 99.8 % 101 %	86-11 88-11 86-11	0	" " "	# #	11 11	" "	

Capistrano Valley Water District 32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/29/08 11:51

Fuel Oxygenates by EPA 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0801559-01) Water Sampled: 0	1/28/08 11:00 F	Received: 01.	/28/08 13	:54					
Methyl tert-butyl ether	1.9	1.0	μg/L	1	B8A2811	01/28/08	01/29/08 07:46	5 EPA 8260B	
Di-isopropyl ether	ND	1.0	tr.	н	Ħ	II	т .	. п '	
Ethyl tert-butyl ether	ND	1.0	11	u	11	n	9	n .	
Tert-amyl methyl ether	ND	1.0	11	"	II	n	u	n	
Tert-butyl alcohol	ND	5.0	19	**	11	11		. 11	
Surrogate: Dibromofluoromethane		113 %	86-1	118	"	n	n	n	
Surrogate: Toluene-d8		96.2 %	88-1	110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	•	96.4 %	86-1	115	"	n	. "	"	
Kinoshita (0801559-02) Water Sample	d: 01/28/08 11:1	5 Received	: 01/28/08	3 13:54					
Methyl tert-butyl ether	4.0	1.0	μg/L	1	B8A2811	01/28/08	01/29/08 07:46	5 EPA 8260B	
Di-isopropyl ether	ND	1.0	"	н	и	n	n	U	
Ethyl tert-butyl ether	ND	1.0		"	D	"	п	n	•
Tert-amyl methyl ether	ND ·	1.0	11	**	. 11	n	и .	n	
Tert-butyl alcohol	ND	5.0	#		#	н .		. "	
Surrogate: Dibromofluoromethane		113 %	86-1	118	<i>"</i> .	, "	п .	11	
Surrogate: Toluene-d8	٠	96.2 %	. 88-1	10	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	86-1	15	"	"	"	"	

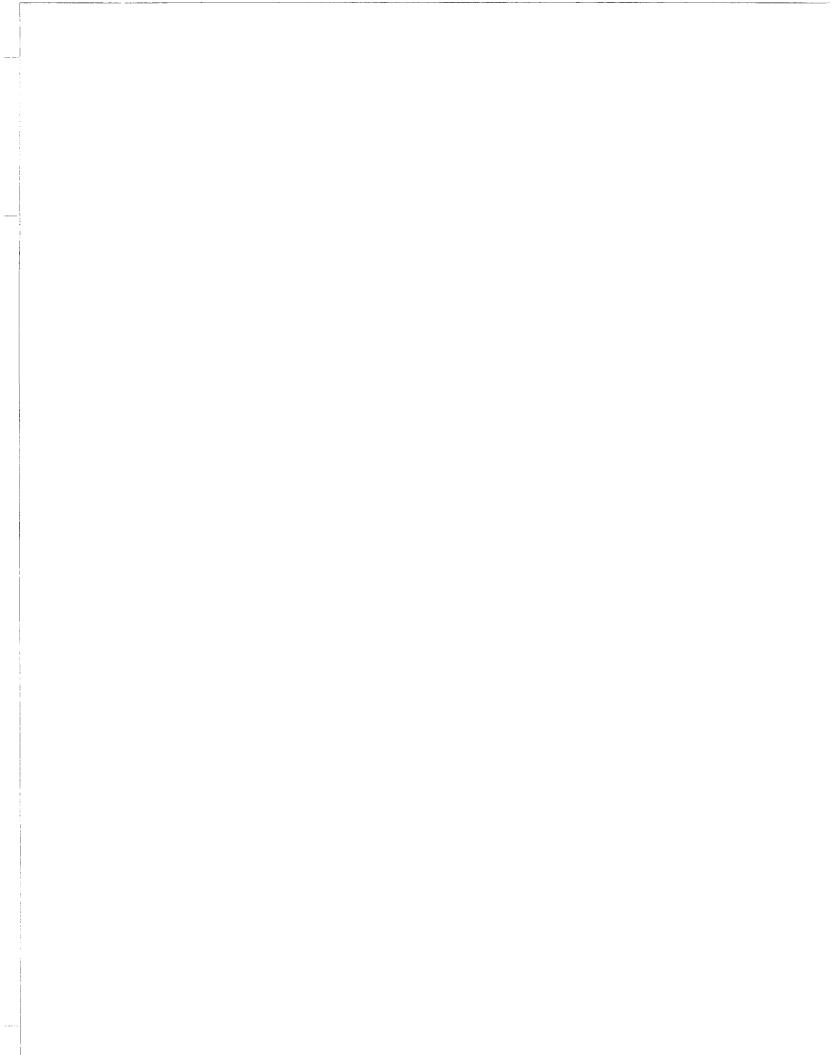
Capistrano Valley Water District 32450 Paseo Adelanto San Juan Capistrano CA, 92675 Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/29/08 11:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting	** .	Spike	Source	0/755	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B8A2807 - EPA 5030B P & T										
Blank (B8A2807-BLK1)				Prepared	& Analyz	ed: 01/28/	08			
Trichloroethene	ND	1.0	μg/L							
Tetrachloroethene	ND	1.0	11							
Surrogate: Dibromofluoromethane	43.7		"	50.0		87.4	86-118			
Surrogate: Toluene-d8	48.6		"	50.0		97.2	88-110	,		
Surrogate: 4-Bromofluorobenzene	52.6		"	50.0		105	86-115			
LCS (B8A2807-BS1)		•		Prepared of	& Analyz	ed: 01/28/	08			,
Trichloroethene	52.0	1.0	μg/L	50.0		104	80-120			
Chlorobenzene	55.2	1.0	н	50.0		110	80-120			
1,1-Dichloroethene	47.7	1.0	11	50.0		95.4	80-120			
Matrix Spike (B8A2807-MS1)	Sou	urce: 080151.	3-02	Prepared of	& Analyz	ed: 01/28/	08			
Trichloroethene	50.9	1.0	μg/L	50.0	ND	102	71-157			
Chlorobenzene	64.8	1.0	u	50.0	ND	130	37-160			
1,I-Dichloroethene	39.2	1.0	11	50.0	ND	78.4	50-150			
Matrix Spike Dup (B8A2807-MSD1)	Sou	arce: 0801513	3-02	Prepared of	& Analyz	ed: 01/28/0	08			
Trichloroethene	55.6	1.0	μg/L	50.0	ND	111	71-157	8.83	30	
Chlorobenzene	69.6	1.0	11	50.0	ND	139	37-160	7.14	30	
1,1-Dichloroethene	43.5	1.0	n	50.0	ND	87.0	50-150	10.4	30	


Capistrano Valley Water District 32450 Paseo Adelanto San Juan Capistrano CA, 92675 Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/29/08 11:51

Fuel Oxygenates by EPA 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD_	RPD Limit	Notes
Batch B8A2811 - EPA 5030B P & T										
Blank (B8A2811-BLK1)				Prepared:	01/28/08	Analyzed	l: 01/29/08			
Methyl tert-butyl ether	ND	1.0	μg/L							
Di-isopropyl ether	ND	1.0	11							
Ethyl tert-butyl ether	ND	1.0	**							
Tert-amyl methyl ether	ND	1.0	n							
Tert-butyl alcohol	ND	5.0	ıı							
Surrogate: Dibromofluoromethane	54.5		. <i>n</i>	50.0		109	86-118			
Surrogate: Toluene-d8	47.9		"	50.0		95.8	88-110			
Surrogate: 4-Bromofluorobenzene	48.5		#	50.0		97.0	86-115			
LCS (B8A2811-BS1)	•			Prepared:	01/28/08	Analyzed	1: 01/29/08			
Methyl tert-butyl ether	46.6	1.0	μg/L	50.0		93.2	80-120			
Matrix Spike (B8A2811-MS1)	Sou	rce: 080155	9-02	Prepared:	01/28/08	Analyzed	l: 01/29/08			
Methyl tert-butyl ether	50.4	1.0	μg/L	50.0	4.0	92.8	37-160	,		
Matrix Spike Dup (B8A2811-MSD1)	Sou	rce: 0801559	9-02	Prepared:	01/28/08	Analyzed	: 01/29/08			
Methyl tert-butyl ether	50.3	1.0	μg/L	50.0	4.0	92.6	37-160	0.199	30	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported: 01/31/08 10:55

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DHW	0801613-01	Water	01/30/08 10:00	01/30/08 14:35

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA:

Capistrano Valley Water District 32450 Paseo Adelanto San Juan Capistrano CA, 92675 Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/31/08 10:55

Fuel Oxygenates by EPA 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
DHW (0801613-01) Water Sampl	ed: 01/30/08 10:00	Received: 01	/30/08 14:3	35	}				
Methyl tert-butyl ether	1.4	1.0	μg/L	1	B8A3014	01/30/08	01/30/08 16:0	8 EPA 8260B	
Di-isopropyl ether	ND	1.0	**	"	11	n	"	a	
Ethyl tert-butyl ether	ND .	1.0	**	II .	Ħ.	н .	**	11	•
Tert-amyl methyl ether	ND	1.0	. #	H	11	11	tt .	u .	
Tert-butyl alcohol	ND	5.0	ii .	11	. #	"	tt.	U	
Surrogate: Dibromofluoromethane		113%	86-11	18	"	"	"	"	
Surrogate: Toluene-d8		96.6 %	88-11	10	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	86-11	15	"	į "	" .	"	

Capistrano Valley Water District 32450 Paseo Adelanto San Juan Capistrano CA, 92675 Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 01/31/08 10:55

Fuel Oxygenates by EPA 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B8A3014 - EPA 5030B P & T										
Blank (B8A3014-BLK1)				Prepared	& Analyze	ed: 01/30/	08	· · ·		
Methyl tert-butyl ether	ND	1.0	μg/L							
Di-isopropyl ether	· ND	1.0	11							
Ethyl tert-butyl ether	ND	1.0	'10							
Tert-amyl methyl ether	ND	1.0	. 11					- 5		
Tert-butyl alcohol	ND	5.0	н							
Surrogate: Dibromofluoromethane	55.1		"	50.0		110	86-118			
Surrogate: Toluene-d8	48.1		"	50.0		96.2	88-110			
Surrogate: 4-Bromofluorobenzene	48.5		n	50.0		97.0	86-115			
LCS (B8A3014-BS1)				Prepared of	& Analyze	ed: 01/30/0	08	4		
Methyl tert-butyl ether	40.4	1.0	μg/L	50.0		80.8	80-120			
Matrix Spike (B8A3014-MS1)	Sou	rce: 0801585	5-01	Prepared of	& Analyze	08				
Methyl tert-butyl ether	39.5	1.0	μg/L	50.0	ND	79.0	37-160			
Matrix Spike Dup (B8A3014-MSD1)	Sou	rce: 0801585	5-01	Prepared a	& Analyze	ed: 01/30/0	08			
Methyl tert-butyl ether	40.8	1.0	μg/L	50.0	ND	81.6	37-160	3.24	30	

;					
į					
	4				
	i				
	i				
	! ! !				
:					

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported:

02/21/08 14:46

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DHW	0802250-01	Water	02/13/08 00:00	02/13/08 13:25
Kinoshita	0802250-02	Water	02/13/08 00:00	02/13/08 13:25

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION: Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES: All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA: All quality objective criteria were met, except as noted in the report with data qualifiers.

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported:

02/21/08 14:46

Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0802250-01) Water Sample	d: 02/13/08	00:00 Re	ceived: 02/13	/08 13:2	25					
Trichloroethene	ND	0.31	1.0	μg/L	1	B8B1413	02/14/08	02/19/08 11:05	EPA 8260B	
Tetrachloroethene	ND	0.49	1.0	u	и	n		. "	11	
Surrogate: Dibromofluoromethane		98.0 %	86-118	3		"	"	"	"	
Surrogate: Toluene-d8		95.8 %	88-11)		"	"	n	n	
Surrogate: 4-Bromofluorobenzene		98.0 %	86-11.	5		"	"	"		
Kinoshita (0802250-02) Water Sam	pled: 02/13	3/08 00:00	Received: 0	2/13/08	13:25			_		
Trichloroethene	ND	0.31	1.0	μg/L	1	B8B1413	02/14/08	02/19/08 11:05	EPA 8260B	
Tetrachloroethene	ND ·	0.49	1.0		n	u	n	u ·	H .	
Surrogate: Dibromofluoromethane		103 %	86-118	3		"	" .	. "	"	
Surrogate: Toluene-d8		94.6 %	88-110)		"	. "	#	" .	
Surrogate: 4-Bromofluorobenzene	•	99.2 %	86-11.	5	•	· #	. "	"	"	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 02/21/08 14:46

Fuel Oxygenates by EPA 8260B

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0802250-01) Water Sample	ed: 02/13/08	00:00 Re	ceived: 02/13/	08 13:2	5					
Methyl tert-butyl ether	1.7	0.42	1.0	μg/L	1	B8B1914	02/19/08	02/19/08 14:17	EPA 8260B	
Di-isopropyl ether	ND	0.24	1.0	н	17	II .	Ħ	11	H.	
Ethyl tert-butyl ether	ND	0.15	1.0	"	11	n	11	n	11	
Tert-amyl methyl ether	ND	0.16	1.0	**	11	11	n .	n	n '	
Tert-butyl alcohol	ND	2.0	5.0	**	**	**	n	u	11	
Surrogate: Dibromofluoromethane		102 %	86-118	}		"	n	"	n	
Surrogate: Toluene-d8		104 %	88-110	٠		n	n	"	<i>n</i> .	
Surrogate: 4-Bromofluorobenzene		93.0 %	86-115			" .	n	<i>"</i>	n	
Kinoshita (0802250-02) Water Sai	mpled: 02/13	3/08 00:00	Received: 02	/13/08	13:25	•				
Methyl tert-butyl ether	1,3	0.42	1.0	μg/L	1	B8B1914	02/19/08	02/19/08 14:17	EPA 8260B	
Di-isopropyl ether	ND	0.24	1.0	11	**	#		n n	11	
Ethyl tert-butyl ether	ND	0.15	1.0	11	11	. "	. "	n	"	
Tert-amyl methyl ether	ND	0.16	1.0	17	II .	Ħ	II .	u .	11	
Tert-butyl alcohol	ND	2.0	5.0	H	"	n	11	. "	"	
Surrogate: Dibromofluoromethane		102 %	86-118			"	, n	"	, , ,	
Surrogate: Toluene-d8		104 %	88-110			. "	n	n	"	
Surrogate: 4-Bromofluorobenzene		93.4 %	86-115			"	"	"	"	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported: 02/21/08 14:46

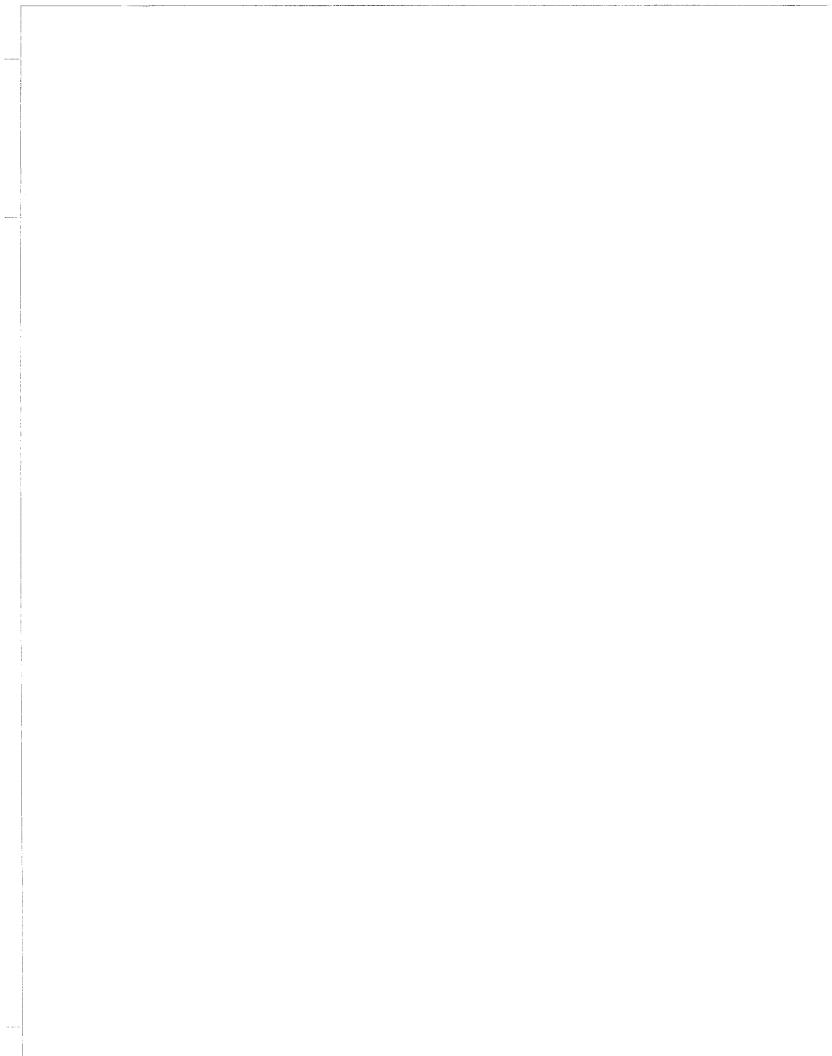
Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B8B1413 - EPA 5030B P & T										
Blank (B8B1413-BLK1)			•	Prepared:	02/14/08	Analyzed	1: 02/19/08			
Trichloroethene	ND	1.0	μg/L							
Tetrachloroethene	ND	1.0	. #							
Surrogate: Dibromofluoromethane	44.8		#	50.0		89.6	86-118			
Surrogate: Toluene-d8	46.9		"	50.0		93.8	88-110			
Surrogate: 4-Bromofluorobenzene	51.6		"	50.0		103	86-115			
LCS (B8B1413-BS1)				Prepared:	02/14/08	Analyzed	i: 02/19/08	•		
Trichloroethene	57.4	1.0	μg/L	50.0		115	80-120			
Chlorobenzene	59.8	1.0	97	50.0		120	80-120			
1,1-Dichloroethene	44.9	1.0	n	50.0		89.8	80-120			
Matrix Spike (B8B1413-MS1)	Sou	rce: 080225	6-01	Prepared:	02/14/08	Analyzed	1: 02/19/08			
Trichloroethene	55.7	1.0	μg/L	50.0	ND	111	71-157			
Chlorobenzene	54.6	1.0	u	50.0	ND	109	37-160			
1,1-Dichloroethene	55.1	1.0	н -	50.0	ND	110	50-150		•	
Matrix Spike Dup (B8B1413-MSD1)	Sou	rce: 080225	6-01	Prepared:	02/14/08	Analyzed	l: 02/19/08			
Trichloroethene	64.3	1.0	μg/L	50.0	ND	129	71-157	14.3	30	
Chlorobenzene	61.0	1.0	n	50.0	ND	122	37-160	11.1	30	
1,1-Dichloroethène	61.1	1.0	n	50.0	ND	122	50-150	10.3	30	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well


Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported:

02/21/08 14:46

Fuel Oxygenates by EPA 8260B - Quality Control

	Danile	Reporting	**	Spike	Source	0/DEC	%REC	P.P.D	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B8B1914 - EPA 5030B P & T										
Blank (B8B1914-BLK1)				Prepared	& Analyze	ed: 02/19/	08			
Methyl tert-butyl ether	ND .	1.0	μg/L							
Di-isopropyl ether	ND	1.0	11							
Ethyl tert-butyl ether	ND	1.0	n							
Tert-amyl methyl ether	ND	1.0	"						,	
Tert-butyl alcohol	ND	5.0	"				,		•	
Surrogate: Dibromofluoromethane	51.4		"	50.0		103	86-118			
Surrogate: Toluene-d8	51.5		"	50.0		103	88-110			
Surrogate: 4-Bromofluorobenzene	46.7		n	50.0		93.4	86-115	•		
LCS (B8B1914-BS1)				Prepared a	& Analyze	ed: 02/19/	08			
Methyl tert-butyl ether	45.5	1.0	μg/L	50.0		91.0	80-120			
Matrix Spike (B8B1914-MS1)	Sou	rce: 0802250)-02	Prepared a	& Analyze	ed: 02/19/	08			
Methyl tert-butyl ether	44.9	1.0	μg/L	50.0	1.3	87.2	37-160			
Matrix Spike Dup (B8B1914-MSD1)	Sou	rce: 0802250)-02	Prepared a	& Analyze	ed: 02/19/	08		•	
Methyl tert-butyl ether	46.1	1.0	μg/L	50.0	1.3	89.6	37-160	2.64	30	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported: 04/16/08 08:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DHW	0804263-01	Water	04/14/08 09:30	04/14/08 12:25

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA:

All quality objective criteria were met, except as noted in the report with data qualifiers.

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported:

04/16/08 08:23

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0804263-01) Water S	Sampled: 04/14/08 09:30	Received: 04	/14/08 12:2	25					MF
Trichloroethene	. ND	1.0	μg/L	1	B8D1514	04/15/08	04/15/08 14:03	EPA 8260B	
Tetrachloroethene	ND	1.0	u	11		н	n	n	
Surrogate: Dibromofluorometh	ane	95.4 %	86-11	'8	"	"	"	. n	
Surrogate: Toluene-d8		90.4 %	88-11	0	"	."	"	, <i>n</i>	
Surrogate: 4-Bromofluorobenze	ene	102 %	86-11	5	"	. "	n .	"	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 04/16/08 08:23

Fuel Oxygenates by EPA 8260B (SIM - Selective Ion Mode)

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	· Note
DHW (0804263-01) Water	Sampled: 04/14/08 09:30	Received: 04	/14/08 12:2	5				- <u>-</u>	M
Methyl tert-butyl ether	2.0	0.50	μg/L	1 -	B8D1414	04/14/08	04/14/08 16:23	7 EPA 8260B	
Di-isopropyl ether	ND	1.0	u	"	11	11	n	H	
Ethanol	. ND	50	n	11	11		"	u	
Ethyl tert-butyl ether	ND	1.0	11		11	lt .	n	n ·	
Tert-amyl methyl ether	ND	1.0	11	n	н	II	н	"	
Tert-butyl alcohol	ND _	1.0	u	n	11	11	#	"	
Surrogate: Dibromofluorometh	hane	98.6 %	86-11	8	"	"	"	· n	
Surrogate: Toluene-d8		94.0 %	88-11	0	"	"	"	"	•
Surrogate: 4-Bromofluorobenz	ene	105 %	86-11	5	n	"	"	n	

Capistrano Valley Water District 32450 Paseo Adelanto San Juan Capistrano CA, 92675 Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 04/16/08 08:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B8D1514 - EPA 5030B P & T										
Blank (B8D1514-BLK1)				Prepared	& Analyzo	ed: 04/15/	08			
Trichloroethene	ND .	1.0	μg/L							
Tetrachloroethene	ND	. 1.0	"							
Surrogate: Dibromofluoromethane	48.2		"	50.0		96.4	86-118			
Surrogate: Toluene-d8	46.2		"	50.0		92.4	88-110			
Surrogate: 4-Bromofluorobenzene	51.3		"	50.0		103	86-115			
LCS (B8D1514-BS1)		•		Prepared	& Analyze	ed: 04/15/	08			
Trichloroethene .	48.2	1.0	μg/L	50.0		96.4	80-120			
Chlorobenzene	46.6	1.0	11	50.0		93.2	80-120			
1,1-Dichloroethene	48.1	1.0	11	50.0		96.2	80-120			
Matrix Spike (B8D1514-MS1)	So	urce: 0804263	3-01	Prepared	& Analyze	ed: 04/15/	08			
Trichloroethene	56.8	1.0	μg/L	50.0	ND	114	71-157			
Chlorobenzene	42.2	1.0	11	50.0	ND	84.4	37-160			
1,1-Dichloroethene	57.5 <u>.</u>	1.0.	"	50.0	ND	115	50-150			
Matrix Spike Dup (B8D1514-MSD1)	So	urce: 0804263	3-01	Prepared a	ed: 04/15/0					
Trichloroethene	61.6	1.0	μg/L	50.0	ND	123	71-157	8.11	30	
Chlorobenzene	45.0	1.0	n	50.0	ND	90.0	37-160	6.42	30	
1,1-Dichloroethene	63.9	1.0	"	50.0	ND	128	50-150	10.5	30	

32450 Paseo Adelanto San Juan Capistrano CA, 92675 Project: Dance Hall Well

Project Number: MTBE Testing Project Manager: Eric Bauman

Reported: 04/16/08 08:23

Fuel Oxygenates by EPA 8260B (SIM - Selective Ion Mode) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B8D1414 - EPA 5030B P & T										
Blank (B8D1414-BLK1)				Prepared	& Analyze	ed: 04/14/	08	•		
Methyl tert-butyl ether	ND	0.50	μg/L							
Di-isopropyl ether	.ND	1.0	11							
Ethanol	ND	50	. "				٠.			
Ethyl tert-butyl ether	ND	1.0	ú							
Tert-amyl methyl ether	· ND	1.0	ır							
Tert-butyl alcohol	ND	1.0	п							
Surrogate: Dibromofluoromethane	48.8		"	50.0		97.6	86-118			
Surrogate: Toluene-d8	46.8		"	50.0		93.6	88-110		•	
Surrogate: 4-Bromofluorobenzene	52.7		n	50.0		105	86-115			
LCS (B8D1414-BS1)	•		•	Prepared	& Analyze	ed: 04/14/	08		•	
Methyl tert-butyl ether	52.5	0.50	μg/L	50.0		105	80-120			-
Matrix Spike (B8D1414-MS1)	Sou	ırce: 080425.	Prepared	& Analyze	ed: 04/14/	08				
Methyl tert-butyl ether	59.0	0.50	μg/L	50.0	ND	118	37-160			
Matrix Spike Dup (B8D1414-MSD1)	Sou	ırce: 080425.	3-02	Prepared	& Analyze	ed: 04/14/	08			
Methyl tert-butyl ether	55.9	0.50	μg/L	50.0	ND	112	37-160	5.40	30	

	[· · · · · · · · · · · · · · · · · · ·	 	an organization of the second	 	
	i				
	1				
	İ				
_	1 1				
	Total Control of the				
i	İ				
	8 8 8				
,	İ				
	r.				
	E		•		
	1				
	1				
	i I				
	İ				
	i				
	Î				
	1				
	!				
	!				
	1				
	i :				
	1				
	İ				
	1				
	1				
	1				
	ļ				

San Juan Capistrano CA, 92675

32450 Paseo Adelanto

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported:

04/17/08 09:15

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DHW	0804289-01	Water	04/15/08 09:00	04/15/08 13:50

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

 $Samples \ requiring \ preservation \ were \ verified \ prior \ to \ sample \ preparation \ and \ analysis.$

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA:

All quality objective criteria were met, except as noted in the report with data qualifiers.

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported: 04/17/08 09:15

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0804289-01) Water	Sampled: 04/15/08 09:00	Received: 04	/15/08 13:5	0					MF
Trichloroethene	ND	1.0	μg/L	1	B8D1630	04/16/08	04/16/08 13:4	4 EPA 8260B	
Tetrachloroethene	ND	1.0		"	11	. "	**		
Surrogate: Dibromofluorome	thane	91.8%	. 86-11	8	"	"	"	. "	
Surrogate: Toluene-d8		89.6 %	88-11	0	"	n	"	"	
Surrogate: 4-Bromofluorober	ızene	107 %	86-11	5	"	,,	<i>"</i>	"	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 04/17/08 09:15

Fuel Oxygenates by EPA 8260B (SIM - Selective Ion Mode)

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note		
DHW (0804289-01) Water	Sampled: 04/15/08 09:00	Received: 04	/15/08 13:5	50	-	::	·		M		
Methyl tert-butyl ether	1.6	0.50	μg/L	1	B8D1609	04/16/08	04/16/08 11:4:	3 EPA 8260B			
Di-isopropyl ether	ND	1.0	**	11	и	H	**	n			
Ethanol	ND	50	н	11	**		т т	n			
Ethyl tert-butyl ether	· ND	1.0	n .	"		11	п	**			
Tert-amyl methyl ether	ND	1.0	**	11	"	n -	11				
Tert-butyl alcohol	ND	1.0	u	11		II.	**	II .			
Surrogate: Dibromofluoromet	hane	95.2 %	86-11	18	"	"	"	"			
Surrogate: Toluene-d8		93.6 %	88-11	10	"	n	"	"			
Surrogate: 4-Bromofluoroben	zene	104 %	86-11	15	n	"	"	n			

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

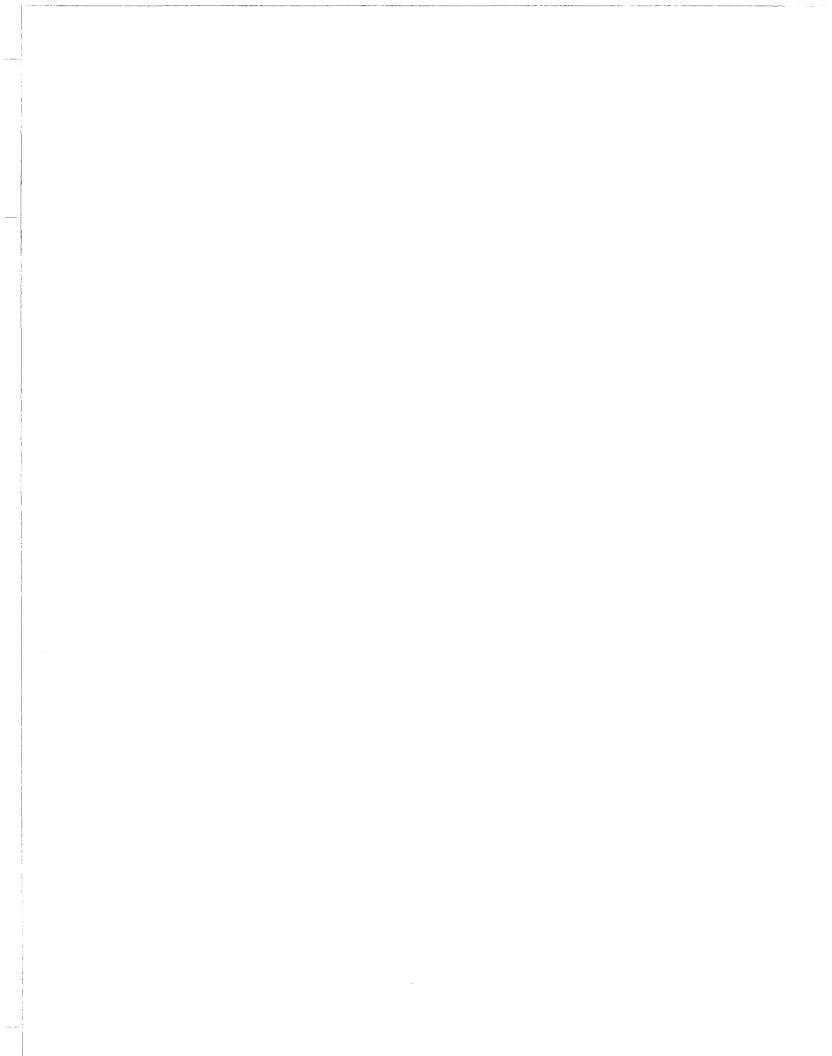
Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 04/17/08 09:15

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B8D1630 - EPA 5030B P & T										
Blank (B8D1630-BLK1)				Prepared	& Analyzo	ed: 04/16/	08			
Trichloroethene	ND	1.0	μg/L							
Tetrachloroethene	ND	1.0	H							
Surrogate: Dibromofluoromethane	45.4		"	50.0		90.8	86-118			
Surrogate: Toluene-d8	44.4		"	50.0	1	88.8	88-110			
Surrogate: 4-Bromofluorobenzene	51.8		"	50.0		104	86-115			
LCS (B8D1630-BS1)		•		Prepared	& Analyzo	ed: 04/16/	08			
Trichloroethene	53.9	1.0	μg/L	50.0		108	80-120			
Chlorobenzene	59.8	1.0	11	50.0		120	80-120			
1,1-Dichloroethene	51.8	1.0	11	50.0		104	80-120			
Matrix Spike (B8D1630-MS1)	Sou	rce: 080427	2-04	Prepared	& Analyze	ed: 04/16/	08			
Trichloroethene	51.4	1.0	μg/L	50.0	ND	103	71-157			
Chlorobenzene	45.1	1.0	"	50.0	ND	90.2	37-160			
1,1-Dichloroethene	44.0	1.0	н	50.0	ND	88.0	50-150			
Matrix Spike Dup (B8D1630-MSD1)	Soui	rce: 0804272	2-04	Prepared	& Analyze	ed: 04/16/	08	•		
Trichloroethene	52.7	1.0	μg/L	50.0	ND	105	71-157	2.50	30	
Chlorobenzene	46.0	1.0		50.0	ND	92.0	37-160	1.98	30	
1,1-Dichloroethene	46.5	1.0	n	50.0	ND	93.0	50-150	5.52	30	
							•			


32450 Paseo Adelanto San Juan Capistrano CA, 92675 Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 04/17/08 09:15

Fuel Oxygenates by EPA 8260B (SIM - Selective Ion Mode) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD ·	RPD Limit	Notes
Batch B8D1609 - EPA 5030B P & T								· _		
Blank (B8D1609-BLK1)		· — · — · — · — · — · · · · · · · · · ·		Prepared &	& Analyze	:d: 04/16/	08			· - ·
Methyl tert-butyl ether	ND	0.50	μg/L						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Di-isopropyl ether	ND	1.0	11							
Ethanol	ND	50	m .							
Ethyl tert-butyl ether	ND	1.0	11							
Tert-amyl methyl ether	ND	1.0	**	•						
Tert-butyl alcohol	ND	1.0	Ħ							
Surrogate: Dibromofluoromethane	48.1		"	50.0		96.2	86-118			
Surrogate: Toluene-d8	47.1		"	50.0		94.2	88-110			
Surrogate: 4-Bromofluorobenzene	52.3		"	50.0		105	86-115			
LCS (B8D1609-BS1)				Prepared &	ዩ Analyze	:d: 04/16/0	08			•
Methyl tert-butyl ether	53.2	0.50	μg/L	50.0		106	80-120			
Matrix Spike (B8D1609-MS1)	Sou	ırce: 0804289	1-01	Prepared &	& Analyze	:d: 04/16/0	08			
Methyl tert-butyl ether	46.5	0.50	μg/L	50.0	1.6	89.8	37-160			
Matrix Spike Dup (B8D1609-MSD1)	Sou	ırce: 0804289	·-01	Prepared &	& Analyze	d: 04/16/0)8			
Methyl tert-butyl ether	45.3	0.50	μg/L	50.0	1.6	87.4	37-160	2.61	30	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported:

04/17/08 08:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received]
DHW	0804329-01	Water	04/16/08 09:00	04/16/08 12:30	•

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA:

All quality objective criteria were met, except as noted in the report with data qualifiers.

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 04/17/08 08:58

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0804329-01) Water San	npled: 04/16/08 09:00	Received: 04	/16/08 12	::30					MF
Trichloroethene	ND	1.0	μg/L	1	B8D1630	04/16/08	04/16/08 19:50	EPA 8260B	
Tetrachloroethene	ND	1.0	. 11	11	"	ú	* 11	п	
Surrogate: Dibromofluoromethan	e .	94.6 %	86-	118	"	"	,,	"	
Surrogate: Toluene-d8		89.8 %	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	?	104 %	86-	<i>115</i> .	"	"	,	,"	

32450 Paseo Adelanto San Juan Capistrano CA, 92675 Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman

Reported: 04/17/08 08:58

Fuel Oxygenates by EPA 8260B (SIM - Selective Ion Mode)

Sierra Analytical Labs, Inc.

Storie Thinly from Labor 1100											
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note		
DHW (0804329-01) Water Sample	d: 04/16/08 09:00	Received: 04	/16/08 12:	30					M		
Methyl tert-butyl ether	1.8	0.50	μg/L	1	B8D1609	04/16/08	04/16/08 21:3	0 EPA 8260B			
Di-isopropyl ether	ND	1.0	II .	11	11	II.	ıı	n			
Ethanol	ND	50	и.	n	. "	11	II .	u			
Ethyl tert-butyl ether	ND	1.0	**	11	11	*	Ħ	θ.			
Tert-amyl methyl ether	. ND	1.0	п	n	**	It	." #	n			
Tert-butyl alcohol	ND	1.0		11	"	"	11	н			
Surrogate: Dibromofluoromethane		97.6 %	86-1	18	"	"	и,	n			
Surrogate: Toluene-d8		94.0 %	88-1	10	. "	"	"	n			
Surrogate: 4-Bromofluorobenzene		102 %	86-1	15	"	. "	"	"			

Capistrano Valley Water District 32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing Project Manager: Eric Bauman

Reported: 04/17/08 08:58

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

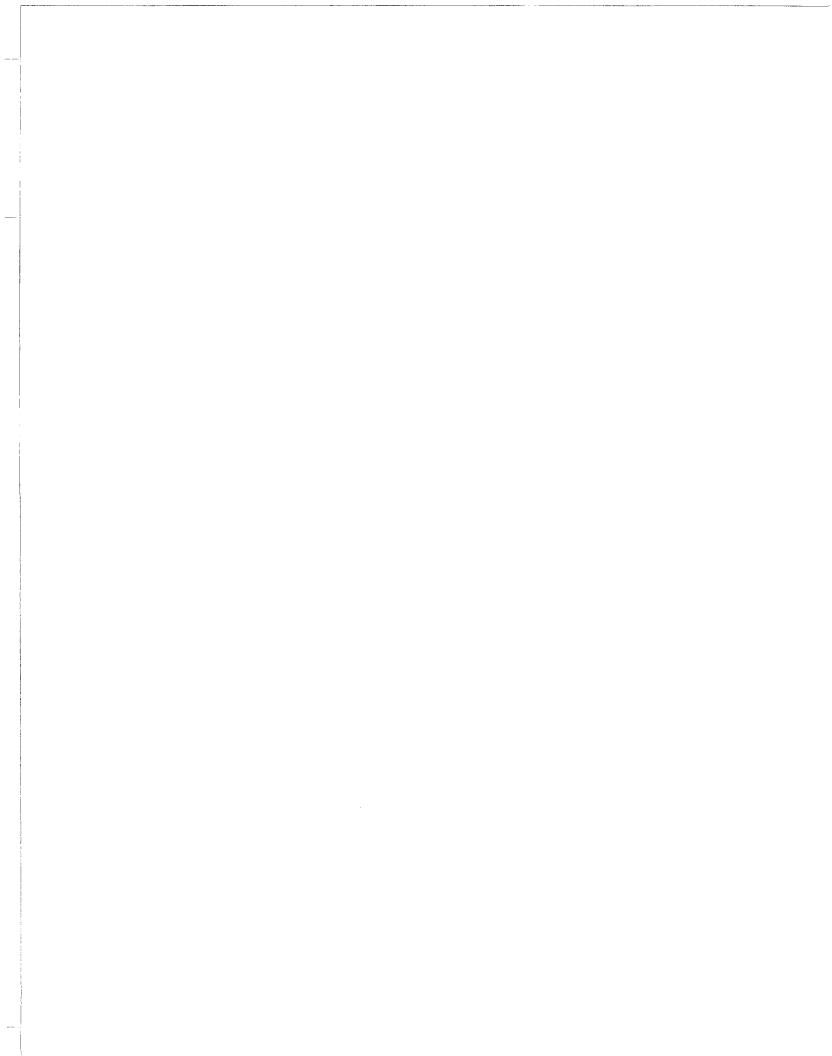
Analyta	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Analyte	ivesuit	, Limit	Oilles	PEAGE	resuit	/oiCEC	Tunns	KrD	Lillit	HOIES
Batch B8D1630 - EPA 5030B P & T										
Blank (B8D1630-BLK1)				Prepared	& Analyze	:d: 04/16/0	0880			
Trichloroethene	ND	1.0	μg/L							
Tetrachloroethene	ND	1.0								
Surrogate: Dibromofluoromethane	45.4	-,,	"	50.0		90.8	86-118			
Surrogate: Toluene-d8	44.4		"	50.0		88.8	88-110			
Surrogate: 4-Bromofluorobenzene	51.8		n	50.0		104	86-115			
LCS (B8D1630-BS1)				Prepared 6	& Analyze	:d: 04/16/0	08			
Trichloroethene	53.9	1.0	μg/L	50.0		108	80-120			
Chlorobenzene	59.8	1.0	" .	50.0		120	80-120	2		
1,1-Dichloroethene	51.8	1.0	11	50.0		104	80-120			
Matrix Spike (B8D1630-MS1)	Sou	ırce: 0804272	2-04	Prepared of	& Analyze	:d: 04/16/0)8 _			
Trichloroethene	51.4	1.0	μg/L	50.0	ND	103	71-157		•	
Chlorobenzene	45.1	1.0	11	50.0	ND	90.2	37-160			
1,1-Dichloroethene	44.0	1.0	n	50.0	ND	88.0 .	50-150			
Matrix Spike Dup (B8D1630-MSD1)	Sou	ırce: 0804272	2-04	Prepared 4	& Analyze	:d: 04/16/0)8		•	
Trichloroethene	52.7	1.0	μg/L	50.0	ND	105	71-157	2.50	30	
Chlorobenzene	46.0	1.0	n	50.0	ND	92.0	37-160	1.98	30	
1,1-Dichloroethene	46.5	1.0	11	50.0	ND .	93.0	50-150	5.52	30	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing
Project Manager: Eric Bauman


Reported:

04/17/08 08:58

Fuel Oxygenates by EPA 8260B (SIM - Selective Ion Mode) - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B8D1609 - EPA 5030B P & T										
Blank (B8D1609-BLK1)		•		Prepared	& Analyze	ed: 04/16/	08			
Methyl tert-butyl ether	ND	0.50	μg/L	· · · · · · · · · · · · · · · · · · ·						
Di-isopropyl ether	ND	1.0	н							
Ethanol	ND	50	"						•	
Ethyl tert-butyl ether	ND	1.0	#							
Tert-amyl methyl ether	ND	1.0	. 0							•
Tert-butyl alcohol	ND	1.0	n					٠		
Surrogate: Dibromofluoromethane	48.1		"	50.0		96.2	86-118			
Surrogate: Toluene-d8	47.1		n	50.0		94.2	88-110			
Surrogate: 4-Bromofluorobenzene	52.3		"	50.0		105	86-115			
LCS (B8D1609-BS1)				Prepared	& Analyze	ed: 04/16/0	08			
Methyl tert-butyl ether	53,2	0.50	μg/L	50.0		106	80-120			
Matrix Spike (B8D1609-MS1)	Sou	rce: 0804289	9-01	Prepared	& Analyze	d: 04/16/	08			
Methyl tert-butyl ether	46.5	0.50	μg/L	50.0	1.6	89.8	37-160			
Matrix Spike Dup (B8D1609-MSD1)	Sou	rce: 0804289	9-01	Prepared & Analyzed: 04/16/08						
Methyl tert-butyl ether	45.3	0.50	μg/L	50.0	1.6	87.4	37-160	2.61	30	

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Project Manager: Eric Bauman

Reported: 04/18/08 16:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DHW	0804338-01	Water	04/17/08 08:30	04/17/08 15:00

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION:

Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES:

All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA:

All quality objective criteria were met, except as noted in the report with data qualifiers.

32450 Paseo Adelanto

San Juan Capistrano CA, 92675

Project: Dance Hall Well

Project Number: MTBE Testing

Reported: Project Manager: Eric Bauman 04/18/08 16:04

Volatile Organic Compounds by EPA Method 8260B

· · · · · · · · · · · · · · · · · · ·									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DHW (0804338-01) Water Sampled: 04/17/08 08:30 Received: 04/17/08 15:00								MF	
Trichloroethene	ND	1.0	μg/L	1	B8D1711	04/17/08	04/17/08 19:27	EPA 8260B	
Tetrachloroethene	ND	1.0	11	11		11	11	11	
Surrogate: Dibromofluoromethane		94.4 %	86-118		. 11	n	"	".	
Surrogate: Toluene-d8		91.2 %	88-	110	"	"	. "	n	
Surrogate: 4-Bromofluoroben:	zene	104 %	86-	115	"	n	"	<i>n</i>	