|                |                                                                                 | Review of Site-Specific Clea<br>Former Kast Property, Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nup Goal Report<br>rson, California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|----------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Comment<br>No. | Regulatory<br>Comment<br>Page Number and<br>Section                             | Regulatory Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Revised<br>Section(s)   |
|                | -Concerns 3                                                                     | limitations such as soil saturation and<br>some RSLs exceed the "ceiling limit"<br>concentration of $1x10^{+5}$ mg/kg. Soil<br>RSLs that exceed Csat are denoted as<br>"s." Soil RSLs exceeding $1x10^{+5}$ mg/kg<br>are denoted as "m", meaning that the<br>chemical represents more than 10% by<br>weight of the soil sample. At such<br>concentrations, the assumptions for soil<br>contact used to derive the RSLs may no<br>longer be valid. Cases in which the<br>chemicals are present at concentrations<br>exceeding $1x10^{+5}$ mg/kg or Csat need to<br>be identified and addressed in the risk<br>assessment." This was not done. | 1x10 <sup>+5</sup> mg/kg and are noted in the tables as<br>appropriate. For soil leaching to groundwater the<br>value derived for TPH-motor oil was higher than<br>the residential concentration so the SSCG is<br>assumed to be the Cres value and is noted that way<br>in Table 6-3 and 9-2.                                                                                                                                                                                                                                                           |                         |
| Expert-15      | Page 10<br>Consistency and<br>objectivity of<br>screening levels<br>-Concerns 4 | HHRA Note 4 (Page 12) "In general,<br>HERO recommends that all detected<br>compounds be selected as COPCs and<br>be included in the quantitative risk<br>evaluation Potential chemical<br>breakdown products must also be<br>considered, and the rationale should not<br>be based on a "bright line" approach<br>(e.g. preliminary cancer risk < 1E-07,<br>preliminary HQ<0.1). As detailed<br>above, inorganics which are determined<br>to be present at concentrations<br>consistent with background will still<br>need to be included in the total risk and<br>hazard evaluation."                                                        | The screening approach used in the SSCG report to<br>select COCs is considered appropriate for this site<br>and has been used at other large sites in California.<br>Even after the screening, 40 or more chemicals<br>were retained for SSCG derivation. The<br>uncertainty associated with the COC screening<br>approach will be addressed in the forthcoming<br>HHRA along with the uncertainty associated with<br>excluding metals concentrations that are consistent<br>with background.<br>No change has been made in response to this<br>comment. | No changes to<br>report |

Page 49 of 59

|                |                                                                                 | Response to Com<br>Review of Site-Specific Clea<br>Former Kast Property. Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nments<br>anup Goal Report<br>rson. California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
|----------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Comment<br>No. | Regulatory<br>Comment<br>Page Number and<br>Section                             | Regulatory Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Revised<br>Section(s)   |
| Expert-16      | Page 10<br>Consistency and<br>objectivity of<br>screening levels<br>-Concerns 5 | RBSLs do not appear to have been<br>updated from the HHSRE (Geosyntec<br>2009, Table 10) using the more recent<br>Cal-EPA guidance, though small input<br>parameters are indicated (see 1b<br>[Comment Expert-11]) to have been<br>different. Earlier Cal-EPA (2005)<br>guidance for the default sub-slab soil<br>vapor to indoor air attenuation factor<br>as 0.01 mg/m <sup>3</sup> to mg/m <sup>3</sup> ; whereas<br>current guidance Cal-EPA [2011b,<br>Guidance]] recommends the attenuation<br>factor of 0.05 mg/m <sup>3</sup> to mg/ m <sup>3</sup> .<br>Reviewing the COC selection for Soil<br>Vapor and multiply [sic] the screening<br>concentration by 0.2 for the correction,<br>an additional four COC would be<br>selected (styrene and vinyl acetate from<br>non-sub-slab samples and 1,2-<br>dichlorobenzene and cis-l,2-<br>dichlorobenzene and cis-l,2-<br>dichlorothene from sub-slab samples).<br>Additionally bromomethane, already<br>selected from sub-slab samples would<br>be selected in the non-sub-slab samples. | <ul> <li>Based on the vapor intrusion analysis conducted for<br/>the Site, the sub-slab soil vapor RBSLs are<br/>appropriate screening levels. There is no need to<br/>utilize a screening sub-slab attenuation factor of<br/>0.05 when the data indicates a screening attenuation<br/>factor of 0.01 is conservative and that the site-<br/>specific attenuation factor is less than 0.001 as<br/>presented in Section 7 and Appendix B.</li> <li>No changes to the report are proposed in response<br/>to this comment.</li> </ul> | No changes to<br>report |
| Expert-17      | Page 10                                                                         | While the vapor intrusion pathway used [sic] for the derivation of the RBSL for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comment noted. Pursuant to comments received by the LARWQCB, soil vapor SSCGs are presented in                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
|                |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |

Page 50 of 59

|                |                                                                            | Review of Site-Specific Clea<br>Former Kast Property, Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | anup Goal Report<br>rson, California                                                                                                                                                                                                                                                                                                                                                       |                       |
|----------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Comment<br>No. | Regulatory<br>Comment<br>Page Number and<br>Section                        | Regulatory Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Response                                                                                                                                                                                                                                                                                                                                                                                   | Revised<br>Section(s) |
|                | Consistency and<br>objectivity of<br>screening levels<br>-Concerns 5       | soil vapor, these SSCGs for soil vapor<br>were calculated for the Utility Worker<br>scenario for all COCs. If the vapor<br>intrusion into the residential structure is<br>believed to be an incomplete pathway<br>(as per Appendix B of the SSCG<br>Report), the RBSLs for soil vapor could<br>be calculated using an industrial air<br>RSL and the soil vapor attenuation for<br>trench/utility workers in order to<br>possibly reduce the number of soil<br>vapor SSCGs.                                                                                                                                                                                                                                                    | this Revised SSCG Report for the vapor intrusion<br>pathway. Therefore, the use of RBSLs based on<br>the vapor intrusion pathway are considered<br>appropriate for residential land use and<br>conservative for the worker exposure scenario as<br>noted in the comment.                                                                                                                   |                       |
| Expert-18      | Page 10<br>Definition of Surface<br>Soil<br>-First and Second<br>paragraph | <ul> <li>HHRA Note 4 (Page 10) states "For evaluation of future residential land use scenarios, soil samples from the 0 to 10 foot (ft) below ground surface (bgs) interval should be collected. While recommended soil sampling depths may vary based on site-specific conditions; in general, discrete soil samples should be collected from both surface (0 to 0.5 ft bgs) and subsurface soil."</li> <li><u>Concerns:</u></li> <li>While the data collection appears to have following this sampling [sic] the depth of surface soil was extended to 2 feet. This is considered reasonable given the potential for gardening as referenced in the text. However the data were not presented by depth in any of</li> </ul> | Soil data were presented for different depth<br>intervals (0-2 ft and 0-10 ft) in the interim reports.<br>To facilitate review of the Revised SSCG Report,<br>statistical summaries of soil data for depth intervals<br>of 0-2 ft bgs, >2-5 ft bgs, >5-10 ft bgs and > 10 feet<br>bgs are included in Section 4 (Constituents of<br>Concern and Remedial Action Objectives) Table 4-<br>1. | Table 4-1             |

Page 51 of 59

|                |                                                                                    | i villei Nasi Fivperty, va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ISUL, Calli ULLIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
|----------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Comment<br>No. | Regulatory<br>Comment<br>Page Number and<br>Section                                | Regulatory Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Revised<br>Section(s) |
|                |                                                                                    | the documents reviewed, especially in the SSCG document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| Expert-19      | Page 10<br>Multiple SSCGs for<br>subsurface soil<br>-First to Second<br>paragraphs | SSCGs were calculated for both<br>residential and construction/utility<br>worker exposure to subsurface soils<br>(Tables 7 and 8, respectively). However,<br>the SSCGs for construction and utility<br>maintenance worker exposures will<br>be applied to soils from 0-10 feet bgs"<br>(page 48).<br><u>Concerns:</u><br>Due to the exposure calculation using<br>the child exposure factors in the<br>residential exposure factors in the<br>residential exposure scenario, the<br>SSCGs for the subsurface soils are more<br>conservative for the residential<br>subsurface exposure than the<br>construction/utility worker. Why then<br>was the worker-based SSCGs selected<br>for the subsurface soils? | SSCGs for construction and utility maintenance<br>workers were calculated for areas where exposure<br>to residents is not expected (e.g., soils within city<br>streets) as well as for residential properties where<br>utility line repair may be needed. The Site<br>Conceptual Model (Section 2) is revised to clarify<br>that residential properties and that both the infrequent<br>residential SSCGs and construction worker SSCGs<br>should be met for deeper soils on residential<br>properties. | Section 2.3           |
| Expert-20      | Page 10<br>Use of cPAH<br>-First to Second<br>paragraphs                           | In some cases, benzo(a)pyrene (BaP)-<br>equivalent concentrations are<br>calculated and used in screening-level<br>risk evaluations to assess risk from<br>carcinogenic PAHs If the BaP-<br>equivalent concentration is calculated,<br>the OEHHA potency equivalency<br>factors (PEFs) should be used (OEHHA<br>2002). See Table 1." [sic]                                                                                                                                                                                                                                                                                                                                                                   | The calculation methodology for the<br>benzo(a)pyrene equivalents presented in the SSCG<br>report uses the OEHHA potency equivalency<br>factors for PAHs. The calculation of the<br>benzo(a)pyrene equivalents are described in greater<br>detail in Appendix A. The PEFs used and reference<br>to OEHHA guidance are included in Appendix A.                                                                                                                                                           | Appendix A            |

Response to Comments Review of Site-Specific Cleanup Goal Report Former Kast Property, Carson, California

Page 52 of 59

|                |                                                       | Response to Com<br>Review of Site-Specific Clea<br>Former Kast Property, Car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nments<br>anup Goal Report<br>rson, California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |
|----------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Comment<br>No. | Regulatory<br>Comment<br>Page Number and<br>Section   | Regulatory Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Revised<br>Section(s)                             |
| Expert-21      | Pages 11-12<br>Lead<br>-First to Fourth               | <u>Concern:</u><br>Document references use of cPAH,<br>especially for background<br>characterization, but the data tables do<br>not show that the cPAH were calculated<br>and background concentration was used<br>only for BaP. Since the maximum BaP<br>concentration was greater than<br>background cPAH, the point becomes<br>moot but should be considered as it<br>makes the argument weak.<br>Use of the Adult Lead Model (ALM) for<br>the intermittent exposures to subsurface<br>soils is inaccurate due to the lack of<br>steady state scenario                                                                                                                                                                      | In response to this comment, the use of the ALM<br>and the exposure assumptions for the infrequent<br>residential and construction worker exposure<br>scenarios were reviewed. The lead SSCGs have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Section 6, Table<br>6-1, Table 9-2,<br>Appendix A |
| Expert-21      | Pages 11-12<br>Lead<br>-First to Fourth<br>paragraphs | Use of the Adult Lead Model (ALM) for<br>the intermittent exposures to subsurface<br>soils is inaccurate due to the lack of<br>steady state scenario.<br><u>Concern:</u><br>Lead SSCG is not accurate for<br>subsurface soil. USEPA (1994, 2003a,<br>2003b) recommends a minimum<br>frequency of one day per week and<br>duration of three construction/utility<br>worker populations, this assumption is<br>not met within the neighborhood or Site.<br>Given the half-life of lead in blood is 30<br>days, the lead levels in the blood will<br>not reach steady state but will probably<br>be at least partly flushed from the blood<br>prior to the next exposure. The current<br>biokinetic models are not appropriate to | In response to this comment, the use of the ALM<br>and the exposure assumptions for the infrequent<br>residential and construction worker exposure<br>scenarios were reviewed. The lead SSCGs have<br>been revised to incorporate USEPA's 2003b guidance<br>Assessing Intermittent or Variable Exposures at<br>Lead Sites and supporting documentation for the<br>ALM including that a minimum exposure<br>frequency and exposure duration of 1 day per week<br>for 3 months be used to account for the model's<br>steady-state assumption. For the residential<br>exposure scenario it was assumed that an adult<br>resident would be the most likely individual to<br>contact deeper soils while conducting activities<br>such as planting a tree. Therefore the time-<br>weighted average approach was not used. | Section 6, Table<br>6-1, Table 9-2,<br>Appendix A |

Page 53 of 59

| Comment        | <b>Regulatory</b><br>Comment          | Response to Com<br>Review of Site-Specific Clea<br>Former Kast Property, Car  | ments<br>nup Goal Report<br>son, California | Rev |
|----------------|---------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------|-----|
| Comment<br>No. | Comment<br>Page Number and<br>Section | Regulatory Comments                                                           | Response                                    |     |
|                |                                       | evaluate non-steady-state exposures to<br>lead and may underestimate the peak |                                             |     |
|                |                                       | blood concentrations following short-<br>term transient exposure.             |                                             |     |
|                |                                       | USEPA's 2003b guidance ASSESSING                                              |                                             |     |
|                |                                       | INTERMITTENT OR VARIABLE                                                      |                                             |     |
|                |                                       | EXPOSURES AT LEAD SITES                                                       |                                             |     |
|                |                                       | addresses how "to use the IEUBK                                               |                                             |     |
|                |                                       | model and ALM to assess a wider                                               |                                             |     |
|                |                                       | variety of exposure scenarios, including                                      |                                             |     |
|                |                                       | exposure from more than one location,                                         |                                             | _   |
|                |                                       | varying intensities of exposure, track-in                                     |                                             |     |
|                |                                       | intermittant cir exposures "Circa the                                         |                                             |     |
|                |                                       | internation an exposures. Given the                                           |                                             |     |
|                |                                       | Geosyntec as the potential of the                                             |                                             |     |
|                |                                       | resident (child and adult) to come in                                         |                                             |     |
|                |                                       | contact with subsurface soil 4 times per                                      |                                             |     |
|                |                                       | year, the USEPA guidance would                                                |                                             | _   |
|                |                                       | recommend using the time-weighted                                             |                                             | _   |
|                |                                       | average to evaluate the child exposure.                                       |                                             |     |
|                |                                       | USEPA guidance (2003b) considers                                              |                                             |     |
|                |                                       | three $(3)$ months "to be the minimum                                         |                                             |     |
|                |                                       | exposure to produce a quasi-steady-                                           |                                             |     |
|                |                                       | state PbB concentration. The reliability                                      |                                             |     |
|                |                                       | of the models for predicting PbB                                              |                                             |     |
|                |                                       | concentrations for exposure durations                                         |                                             | _   |
|                |                                       | shorter than 3 months has not been                                            |                                             | _   |
|                |                                       | assessed." This document for the ALM                                          |                                             |     |
|                |                                       | recommends using the shortest                                                 |                                             |     |
|                |                                       | averaging time of the exposure, for                                           |                                             | -   |

Page 54 of 59

| Expert-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comment<br>No.                                      |                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|
| Page 12<br>Recap of the<br>technical review<br>-First Paragraph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Regulatory<br>Comment<br>Page Number and<br>Section |                                                                             |
| <ul> <li>example the exposure could be per week<br/>or 90 days.</li> <li>While the utility worker exposure is not<br/>over the full exposure period, the<br/>weighted media concentration will not<br/>be annualized across the year, even<br/>though the models will assume the<br/>exposure occurs over a year. The TRW<br/>recommends not annualizing the<br/>weighted concentrations even though<br/>some of the lead burden accumulated<br/>during the exposure season will be<br/>eliminated during the intervening<br/>months between seasonal exposures.<br/>However, neither the IEUBK nor the<br/>ALM can simulate this loss of lead, so<br/>model predictions correspond to a full<br/>year of exposure to a constant exposure<br/>level regardless of the actual exposure<br/>period. The seasonal exposure can<br/>occur successively over years or for<br/>only one year. Since the model cannot<br/>predict the wash out period (no<br/>exposure), the resulting risk assessment<br/>is probably over-estimating the<br/>resulting risk.</li> <li>If the point of the entire risk assessment<br/>exercise is to provide a clear road map<br/>for regulators, Water Board decision<br/>makers and the public stakeholders [sic]<br/>then there are critical issues that should</li> </ul> | Regulatory Comments                                 | Response to Con<br>Review of Site-Specific Clea<br>Former Kast Property, Ca |
| The SSCG report has been revised to make the approach more transparent and explain a consistent and objective analysis. However, this is a technical report and must transmit and explain technical concepts. The Executive Summary contains a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Response                                            | nments<br>anup Goal Report<br>rson, California                              |
| See Executive<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Revised<br>Section(s)                               |                                                                             |

Page 55 of 59

| epor<br>sed<br>in since the second | Expert-25Page 13At present not all locations indicateComment noted. The benzene plume is likeGW Plume<br>Delineation<br>-First ParagraphStable or decreasing; some are<br>increasing and many had "no trend"<br>which means there is insufficient<br>information to state they are stable or<br>to state they are stable or<br> | Expert-24Pages 12-13In addition, the plume delineation<br>analysis should establish the rate of<br>migrationBenzene is considered the primary COC of<br>concern. A publicly available and widely us<br>oncern. A publicly available and widely us<br>uncertainties regarding distribution and sour<br>upgradient of the source of TCE/PCE in the<br>e sponse to Comment RWQCB-2.Image: Delineation<br>processes that will support the assertion<br>that the plumes are stable and will<br>eventually be decreasing, not just a<br>statistical analysis (MAROS) of benzeneBenzene is considered the primary COC of<br>concern. A publicly available and will<br>exponse to Comment RWQCB-2. | Expert-23Page 12The extent of the plumes (different<br>plumes for different COCs) is not<br>explicitly determined in the information<br>provided.Details of the distribution of key COCs in<br>groundwater have been added to the Revised<br>Benzene, TCE, and PCE in groundwater are<br>included as Appendix E. | be more clearly addressed. Critical<br>stakeholders should be able to more<br>clearly follow a transparent, consistent<br>and objective analysis of the sensitivity of key<br>assumptions and technical decisions.simplified summary of the Revised SSCG R<br>Additional discussion of key assumptions is<br>included in Appendices A and B.analysis of the sensitivity of key<br>assumptions and technical decisions.See also response to Comment RWQCB -1. | Regulatory     Regulatory       Comment     Comment       No.     Page Number and       Section     Regulatory Comments | Response to Comments<br>Review of Site-Specific Cleanup Goal Report<br>Former Kast Property, Carson, California |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <sup>+</sup> Υ <sub>α</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Comment noted. The benzene plume is likely to t stable based not only on modeling, but also on:</li> <li>Continued monitoring showing consistently low concentrations (ND to several ug/L) in the stable based of the several ug/L.</li> </ul>                                                                         | Benzene is considered the primary COC of<br>concern. A publicly available and widely used<br>software, Bioscreen, was utilized to estimate<br>potential attenuation of benzene concentrations in<br>the future. Evaluation of TCE and PCE plume<br>migration was not conducted given the<br>uncertainties regarding distribution and source<br>upgradient of the Site. Please see additional<br>discussion of the source of TCE/PCE in the<br>response to Comment RWQCB-2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Details of the distribution of key COCs in<br>groundwater have been added to the Revised SSC<br>Report. Maps showing the distributions of<br>benzene, TCE, and PCE in groundwater are<br>included as Appendix E.                                                                                                 | simplified summary of the Revised SSCG Report.<br>Additional discussion of key assumptions is<br>included in Appendices A and B.<br>See also response to Comment RWQCB -1.                                                                                                                                                                                                                                                                                   | Response                                                                                                                | ments<br>nup Goal Report<br>son, California                                                                     |

|                | D                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
|----------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Comment<br>No. | Comment<br>Page Number and<br>Section       | Regulatory Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Response                                                                                                                                                                                                                                                                                                                                                                                                            | Revised<br>Section(s) |
|                |                                             | decreasing. Stable could be the norm<br>for decades given the levels of TPH and<br>the presence of LNAPLs. While in most<br>cases the concentrations are not very<br>high, there are a few locations where<br>the concentrations of some COCs is<br>[sic] many times above the MCL. The<br>proposed SSCG of maintaining a stable<br>or decreasing plume would require<br>more monitoring. Given the significant<br>amount of TPH in the overlying soils<br>(Figure 10B in Plume Delineation<br>Report indicates a very thick zone<br>contaminated with petroleum derived<br>compounds, at depth (8-40 ft bgs)), it is<br>likely that the petroleum derived COC<br>plumes will last for decades, with a<br>significant monitoring cost to the PRPs.<br>These can also be a continuous source<br>of soil vapors to the sub-slab region.<br>While there is not sufficient evidence to<br>indicate that there is much migration of<br>COC vapors from sub-slab to indoor air<br>(see below), it will remain a concern<br>that needs to be monitored for decades. | <ul> <li>The age of the source (in excess of ~45 years).</li> <li>Recently completed modeling described in Section 8.3.2 and Appendix C (Bioscreen) indicates that if targeted hotspot remediation is conducted (such as targeted groundwater remediation of hot spots(e.g. &gt;100x MCL), SVE remediation in the vadose zone, and LNAPL remediation), benzene levels may decrease to MCLs in ~100years.</li> </ul> |                       |
| Expert-26      | Page 13<br>CVOC sources<br>-First Paragraph | There are CVOCs (chlorinated VOCs,<br>alledgedly [sic] from off-site activities)<br>at relatively high concentrations in<br>MW-01 which is not downoradient of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | See response to Comment RWQCB-2.                                                                                                                                                                                                                                                                                                                                                                                    | Section 2.1,<br>8.3.1 |
|                |                                             | <i>Turco. May be from former OTC.</i><br><i>However, many CVOCs found in sub-</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |

Page 57 of 59

# Response to Comments Review of Site-Specific Cleanup Goal Report Former Kast Property. Carson. California

|                |                                                     | Response to Com<br>Review of Site-Specific Clea<br>Former Kast Property. Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nments<br>anup Goal Report<br>rson, California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |
|----------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Comment<br>No. | Regulatory<br>Comment<br>Page Number and<br>Section | Regulatory Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Revised<br>Section(s)                                        |
| Expert-27      | Page 13<br>CVOC sources<br>-Second Paragraph        | <ul> <li>slab soil samples at concentrations that appear to be too high for volatilization from groundwater 53 feet below (Bellflower aquifer). Figures 15A &amp; B, 16 A &amp; B (Plume Delineation Report) provide some sense of PCE &amp; TCE contamination at shallow depths, which is difficult to explain as a result of GW transport from Turco or OTC. If these vapors are in equilibrium (or near equilibrium) with the soils in the soils are significant. As indicated by the SSCG report, one would not expect transport from off-site to on-site to be significant due to adsorption, dilution, biodegradation and other fate and transport processes. It is possible that cleaning of machinery and other fate and these CVOCs on-site. This cannot be ruled out.</li> <li>Lack of maps for CVOCs hinder ability to better understand their distribution and their distribution and risks. There is an emphasis on only considering petroleum-based COCs, even though</li> </ul> | See response to Comment RWQCB-2.<br>See response to Consecutive and the state of the security of | Section 2.1.2<br>Section 8.3.1<br>Appendix E.<br>Section 9.4 |
| Expert-27      | Page 13<br>CVOC sources<br>-Second Paragraph        | Lack of maps for CVOCs hinder ability<br>to better understand their distribution<br>and thus sources and risks. There is an<br>emphasis on only considering<br>petroleum-based COCs, even though<br>data is available for many other COCs.<br>Most of the CVOC data is only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See response to Comment RWQCB-2.<br>SSCGs are presented for all COCs regardless of<br>whether they are Site-related or not. CVOCs will<br>be addressed in the RAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section 2.1.2<br>Section 8.3.1<br>Appendix E.<br>Section 9.4 |
|                |                                                     | presented in tables and not considered<br>in some of the analyses, which is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maps illustrating the distribution of PCE and TCE in groundwater have been added to the report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |

Page 58 of 59

| Comment        | Regulatory<br>Comment                                                      | Response to Corr<br>Review of Site-Specific Clea<br>Former Kast Property, Ca<br>Regulatory Comments                                                     | nments<br>anup Goal Report<br>rson, California<br>Response |
|----------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Comment<br>No. | Comment<br>Page Number and<br>Section                                      | Regulatory Comments                                                                                                                                     | Response                                                   |
|                |                                                                            | helpful for determining risk, regardless<br>of PRP. They are considered as part of<br>the SSCGs, and must be considered in<br>the remedial action plan. | (Appendix. E)                                              |
| Expert-28      | Pages 13-14                                                                | State Water Board Resolution 92-49<br>governs the Regional Board in                                                                                     | See response to Comment RWQCB                              |
|                | Cleanup Goals and<br>the "Maximal<br>benefit" Criteria<br>-First Paragraph | requiring responsible parties to<br>remediate the site to levels that will<br>result in meeting all water quality<br>standards and are "consistent with |                                                            |
|                |                                                                            | maximum benefit to the people of the state." The current SSCG remains                                                                                   |                                                            |
|                |                                                                            | consistent with this so long as it seeks to<br>enable unrestricted land use of the                                                                      |                                                            |
|                |                                                                            | parcels and is consistent with, and                                                                                                                     |                                                            |
|                |                                                                            | preserves, the previous level of residential land use and the value                                                                                     |                                                            |
|                |                                                                            | derived there from subject to it being                                                                                                                  |                                                            |
|                |                                                                            | economically and technically feasible.<br>Whether it achieves these standards                                                                           |                                                            |
|                |                                                                            | depends, in part, upon addressing the concerns raised above in the technical                                                                            |                                                            |
|                |                                                                            | review of the SSCG and HHSRE.                                                                                                                           |                                                            |

Geosyntec consultants

# **APPENDIX E**

# DISTRIBUTION OF SELECTED VOLATILE ORGANIC COMPOUNDS IN ON-SITE AND OFF-SITE AREAS (SOIL AND GROUNDWATER)

|         | 301 317 321 327 331 337 341 347 351 357 361 367 373 24402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 24401 ° E 244TH ST ° E 24406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 24513 24512 24513 24513 24513 24513 24513 24513 24513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 24517 0 24516 24519 24519 24519 24519 24518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 24522° 24523° 24523° 24523° 24523° 24523°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 24528° 24528° 24528° μ° 2        |
|         | 24527 24532 24532 24532 24532 24533 24532 24533 24532 24532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | $24533_{\odot}$ $24602$ $24603$ $24603$ $24603$ $24603$ $24603$ $24603$ $24602$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 24617 24616 24619 24619 E 247TH ST 24622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AND WAY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 24633 E 247TH ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 24713° U 24710° 24715° 24723° 24722 24723 ° 24723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 24717 < 24716 24719 24718 24729 24726 24729 24729 24728 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 24723° II 24722° 24722° 24733° 24732° 24733° 24732° 24732° 24733°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| L DF    | $\sum_{24733} \sum_{24732} 24732 24733 24743 24743 24742 24803 24742 24802 24802 24732 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24802 24$ |
|         | 24736 24739 24738 24749 <u>24808</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CAF     | Ê 2481H ST 24813 0 24813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ~       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



|            |                                                                                                                                                           | $\frown$ |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|            | 301 305 311 317 321 327 331 337 341 347 351 357 361 367 373 373 24402 373 305 311 327 331 337 341 347 351 357 361 367 373 373 373 373 373 373 373 373 373 |          |
|            | °24401 °°° E 244TH ST ∞°° € 24406                                                                                                                         |          |
|            |                                                                                                                                                           |          |
|            |                                                                                                                                                           |          |
|            |                                                                                                                                                           |          |
|            |                                                                                                                                                           |          |
|            |                                                                                                                                                           |          |
|            |                                                                                                                                                           |          |
|            |                                                                                                                                                           |          |
|            |                                                                                                                                                           |          |
|            |                                                                                                                                                           |          |
|            | 24513 <u>24512</u> <u>24512</u> <u>24513</u> <u>24513</u> <u>24513</u> <u>24513</u> <u>24513</u>                                                          |          |
|            | 24517 <u>24516</u> <u>24519</u> <u>24518</u> <u>24519</u> <u>24518</u> <u>24518</u>                                                                       |          |
|            | 24523 · 24522 · 24523 · 24523 · 24523 · 24523                                                                                                             |          |
|            | 24527 24526°° 24529 °24528 24529 24529 24528 24529 24528 24529 24528 24529 24528 24529 24528 24528 24528 24528                                            | •        |
|            | 24533 <u>24532</u> 24533 <u>24532</u> 24533 <u>24532</u> 24533                                                                                            |          |
|            | 24603 24603 24603 24603 24603 24603 24603 24603                                                                                                           |          |
|            | 24607 24606 24609 24609 24609 24609 24609 24609                                                                                                           | ШŅ       |
|            | 24613 2461 <sup>2</sup> 2461 <sup>2</sup> 2461 <sup>3</sup> 2461 <sup>2</sup> 2461 <sup>3</sup> 2461 <sup>3</sup> 2461 <sup>3</sup> 2461 <sup>3</sup>     | lg '     |
|            | 24618 24619 24619 24619 24619 24619                                                                                                                       | SLA      |
|            | 24622 24622 24622 24623 E 247TH ST 24622                                                                                                                  |          |
|            | ° 24023<br>° 24628 ° 24628 ° 24628 ° 24628 ° 24703 ° ° 24700° 24703 ° ° 24702 ° ° 24702 ° ° 24702 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °                   |          |
|            | <sup>6</sup> <sup>2</sup>            | •        |
|            |                                                                                                                                                           |          |
|            |                                                                                                                                                           |          |
| •          | <u>24707</u> <u>24706</u> <u>24709</u><br><u>24723</u> <u>24723</u> <u>24723</u> <u>24723</u> <u>24723</u>                                                |          |
|            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                     |          |
|            | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                    |          |
|            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                     |          |
| SR.        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                     | 1        |
|            |                                                                                                                                                           |          |
| <u>ARM</u> | 24737 24736 24739 E 24739 E 24749 24748 24748 24748 24748 24748 24748                                                                                     |          |
|            |                                                                                                                                                           |          |
|            |                                                                                                                                                           | 0        |
|            |                                                                                                                                                           |          |
| •          |                                                                                                                                                           |          |















Document Path: I:\carsonarea\MXD\2013\KAST\_TURCO\_FLETCHER\_MW\MAX\_Trichloroethene\_TCE\_oct18DatedSaved: 10/21/2013 9:13:05 AM



Document Path: I:/carsonarea/MXD\2013/KAST\_TURCO\_FLETCHER\_MW/MAX\_Tetrachloroethene\_PCE\_odDt8enStalved: 10/18/2013 2:54:12 PM

# **EXHIBIT 5**





MATTHEW RODRIGUEZ EGRETARY FOR

Los Angeles Regional Water Quality Control Board

January 23, 2014

Mr. Douglas Weimer Shell Oil Products, United States Environmental Services Company 20945 S. Wilmington Avenue Carson, CA 90810

### SUBJECT: **REVIEW OF REVISED SITE-SPECIFIC CLEANUP GOAL REPORT AND** DIRECTIVE TO SUBMIT REMEDIAL ACTION PLAN, HUMAN HEALTH RISK ANALYSIS, AND ENVIRONMENTAL ANALYSIS FOR CLEANUP OF THE CAROUSEL TRACT PURSUANT TO CALIFORNIA WATER CODE **SECTION 13304**

FORMER KAST PROPERTY TANK FARM LOCATED SOUTHEAST OF THE SITE: INTERSECTION OF MARBELLA AVENUE AND EAST 244TH STREET, CARSON, CALIFORNIA (SCP NO. 1230, SITE ID NO. 2040330, CAO NO. R4-2011-0046)

Dear Mr. Weimer:

The California Regional Water Quality Control Board, Los Angeles Region (Regional Board) is the lead agency overseeing the environmental investigation and cleanup of the Former Kast property (Site) located in Carson, California. The Former Kast property was owned and operated by Shell Oil Company (Shell) as a crude oil storage facility from the 1920s to the 1960s when it was sold to developers and converted into a residential tract with 285 single family homes known as the Carousel Tract. Wastes associated with the tank farm activities, including crude oil in soils, were not fully removed from the site during its development and crude oil wastes remain in soil and groundwater underlying the Site.

The Site was brought to the attention of the Regional Board in 2008 by the California Department of Toxic Substances Control (DTSC). Soon thereafter, the Regional Board issued an investigative order in accordance with California Water Code section 13267 requiring Shell to delineate the nature and extent of wastes throughout the property, including wastes in soil vapor, indoor air within homes, and soil and groundwater beneath the Site. To date, Shell has collected extensive data to define the nature and extent of petroleum hydrocarbons and associated wastes on the Site.

On March 11, 2011, the Regional Board issued Cleanup and Abatement Order No. R4-2011-0046 (CAO), pursuant to California Water Code section 13304. The CAO directed Shell to continue to investigate the Site, continue to conduct groundwater monitoring and reporting, evaluate cleanup methodologies, propose site-specific cleanup goals (SSCGs) for Regional Board approval, submit a proposed remedial action plan (RAP), and upon approval of the RAP conduct remedial actions to cleanup and abate the waste in the soil. soil vapor, and groundwater at the Site. The site investigation under oversight by the Regional Board has been on-going since 2009 and has consisted of horizontal and vertical delineation of wastes beneath the Site, sub-slab and indoor air testing in most of the homes, and pilot remediation tests to determine the efficacy of different remedial technologies.

MARIA MEHRANIAN, CHAIR | SAMUEL UNGER, EXECUTIVE OFFICER

The CAO directed Shell to SSCGs for residential (i.e., unrestricted) land use for the Executive Officer's approval. The CAO required Shell to apply the following guidelines and policies in proposing SSCGs for wastes in soil and groundwater: (i) various state and federal policies and guidance regarding cleanup levels to address human health risks, including guidance specific to petroleum hydrocarbons; (ii) applicable water quality objectives in the Regional Board's Water Quality Control Plan for the Los Angeles Region (Basin Plan), including California's Maximum Contaminant Levels (MCLs) or Action Levels for drinking water as established by the California Department of Public Health, and the state's "anti-degradation policy" in State Water Resources Control Board (State Water Board) Resolution No. 68-16 ("Statement of Policy With Respect to Maintaining High Quality of Waters in California"); and (iii) State Water Board Resolution No. 92-49 ("Policies and Procedures for Investigation and Cleanup and Abatement of Discharges Under Water Code Section 13304") (Resolution 92-49). See CAO Paragraph 3.c.II.

On February 22, 2013, Shell submitted a Site-Specific Cleanup Goal Report (Report) to the Regional Board proposing SSCGs. On August 13, 2013, the Regional Board issued a response to the Report notifying Shell that the proposed SSCGs were not approved and directed Shell to revise the SSCGs in accordance with comments and directives contained in the letter. The Regional Board also provided Shell comments from the Expert Panel (convened to provide input to the Regional Board regarding site cleanup) and the State of California Office of Environmental Health Hazard Assessment (OEHHA) and requested that Shell address those comments. As detailed in the August 21, 2013 letter, the Regional Board concluded that the proposed SSCGs did not meet the CAO requirement that the SSCGs must support residential standards for unrestricted use and that the Report had not taken into account State Water Board Resolution 92-49. The Regional Board also commented that the depth intervals proposed by Shell of zero to two feet below grade surface (bgs) and two feet to ten feet were not appropriate for setting cleanup goals in a residential setting, and that the initially proposed SSCGs for total petroleum hydrocarbons (TPH) would result in leaving significant amounts of waste in the soils beneath some

On October 21, 2013, Shell submitted a revised SSCG Report (Revised Report) that included a screening feasibility study (FS) for the proposed SSCGs and provided a technological and economic feasibility analysis of several remediation scenarios for the Site. The screening FS was included in the Revised Report to address Regional Board comments that the SSCGs must address requirements of State Water Board Resolution 92-49 as required by the CAO. State Water Board Resolution 92-49 requires that SSCGs must be, in part, based on technological and economic feasibility, and the screening FS provides some information to address this requirement.<sup>1</sup> The Revised Report also contained four appendices that provide detailed rationale for development of the revised SSCGs, and responses to Regional Board, OEHHA, and Expert Panel comments in the Regional Board August 21, 2013 letter.

The Revised Report addressed many of the comments in the Regional Board August 21, 2013 letter. In particular, the Revised Report included numeric SSCGs for constituents of concern (COCs) in soil vapor; revised the proposed remedial action objective (RAO) for methane such that methane will not exceed two percent of the lower explosive limit and will be removed to less than two percent of the lower explosive

<sup>&</sup>lt;sup>1</sup> In the Revised Report, Shell commented on the interpretation of Resolution 92-49 in proposing SSCGs. Resolution 92-49 requires the Regional Board to assure that the cleanup promotes attainment of background water quality or the best water quality that is reasonable. In addition, the alternative cleanup level, other than background, must take into account the criteria set forth in Section 2550.4 of Title 23, California Code of Regulations, which includes criteria to protect human health; must address nuisance conditions, and must be consistent with the maximum benefit to the people of the state. In evaluating SSCGs and the remedies to be proposed in the RAP, the Regional Board will consider water quality, human health, and nuisance conditions.

limit and to the greatest extent technologically and economically feasible; revised the RAO for groundwater beneath the Site such that it attains the best quality that is technologically and economically feasible; and developed SSCGs for soil to address COCs leaching to groundwater.

The selected remedy must ensure compliance with the SSCGs for the long term and concludes that a cleanup based on the revised SSCGs proposed in the Revised Report may not fully support unrestricted residential land use, protect human health from exposure to COCs in the long term, and prevent further degradation of groundwater as required by the CAO. As discussed below under "Specific Comments", the Regional Board hereby approves SSCGs as revised to address groundwater and nuisance issues that were not fully addressed in the Revised Report.

### SPECIFIC COMMENTS

For the Carousel Tract, SSCGs must result in:

- protecting residents from health risks due to potential exposure to COCs in soil vapors and direct contact with COCs in soil based on appropriate risk-based standards;
- abating nuisance conditions from COCs in soil and soil vapor; and
- restoring and protecting the beneficial uses of groundwater (i.e., attaining applicable water quality objectives in the groundwater).

The methodologies for deriving SSCGs are based on human health risk assessments, COC partitioning and migration analysis, quantification of COC leaching rates into groundwater, and the assessment of the potential for COC-caused nuisance. The Site investigation has provided site specific studies and extensive data<sup>2</sup> that are available for derivation of numeric SSCGs.

SSCGs for COCs in soil vapor must consider human health risks due to exposure through inhalation. SSCGs for COCs for soil must consider health risks and nuisance odor issues due to direct contact and odors and must consider leaching rates and water quality objectives to protect groundwater quality. The proposed SSCGs for COCs in soil are presented in Table 9-2 of the Revised Report. Proposed SSCGs for COCs in soil vapor are presented in Table 9-3 of the Revised Report. Proposed SSCGs for COCs in groundwater are presented in Table 9-4 of the Revised Report. Some of the proposed SSCGs set forth in Tables 9-2, 9-3, and 9-4 of the Revised Report do not meet all applicable criteria for selecting SSCGs, as described below. To address these comments, the Regional Board has developed Tables 1, 2, and 3 which are attached to this letter. Tables 1, 2, and 3 provide SSCGs for COCs in soil, soil vapor and groundwater and supersede Tables 9-2, 9-3, and 9-4 of the Revised Report. The SSCGs in Tables 1, 2, and 3 are protective of human health and groundwater quality, and will address potential nuisance from COCs at the Site. As set forth below under "Conclusions and Directives", Shell shall develop the RAP, the final Human Health Risk Assessment (HHRA) Report, and the environmental analysis using the SSCGs in Tables 1, 2 and 3.

### Soil Depth Intervals

Shell provided SSCGs for COCs in soil to a depth of ten feet as required by the CAO. Based on the human health risk exposure scenarios for direct contact with COCs in soil in a residential setting, Shell

<sup>&</sup>lt;sup>2</sup> See Attached Reference List.

divided the upper ten feet into two intervals of zero to two feet below grade surface (bgs), and from two feet to ten bgs. Shell based the proposed SSCGs on human health risk assessments from direct contact with soil in the upper two feet on an exposure scenario of 350 days per year over a period of 70 years. For the soil interval of two feet to ten feet Shell calculated risk to human health from direct contact with soil on an exposure scenario of four days per year. These exposure scenarios result in different SSCGs in the two soil intervals.

Regulatory guidance that incorporates a soil interval of zero to ten feet as appropriate for addressing risk in residential land use has been published by DTSC and the San Francisco Bay Regional Board. The Supplemental Guidance For Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities (CalEPA 1996), Human Health Risk Assessment Note 4 (DTSC, 2011) and the San Francisco Bay Regional Water Quality Control Board - Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final (December 2013) (ESL) use the exposure scenario of zero to ten feet for 350 days per year as the default. It is reasonable, for the purpose of protecting residents from direct contact with soil and nuisance associated with odors,<sup>3</sup> to assume that residents will have less frequent exposure to soils in a deeper soil interval than to soils in a shallower interval as suggested by Shell. The depth interval proposed by Shell may not, however, support unrestricted residential use as required by the CAO. Residents can readily dig in soil at depths lower than two feet for gardening or other home improvements, at which point they may be exposed to COCs at a greater exposure frequency than that used in developing the proposed SSCGs. Regional Board staff concludes that defining the uppermost soil interval from zero to five feet is supportive of unrestricted residential use because institutional controls are already in place throughout Los Angeles County, including the City of Carson and Carousel Tract for excavations that are deeper than five feet. These controls require a soils investigation as well as grading and shoring permits in order to excavate at depths below five feet. In the Carousel Tract, the Los Angeles County building code is administered by the City of Carson. Because the City must be notified and approve excavations below five feet (Los Angeles County Building Code Sections 3304.1.2, 3307.1, 1803.5.7, J103, J104) the City could readily inform residents and workers of other appropriate precautions necessary for excavations below five feet through existing administrative processes. Consequently, the Regional Board concludes that soil depth intervals of zero to five and five to ten feet bgs provide unrestricted use for gardening and other activities to a depth that coincides with existing institutional measures (i.e. obtaining excavation permits) that are already in place.<sup>4</sup>

It is noted that the Expert Panel has opined on the issue of separating the shallow soil interval of zero to ten feet bgs with different direct contact exposure frequencies. The Expert Panel agrees with the use of separate shallow and deeper soil intervals proposed by Shell. The Expert Panel agrees with Shell's use of a zero to two feet bgs as acceptable, but also agrees with the Regional Board's approach of setting forth a zero to five feet shallow sub-interval based on the precautionary principle. See attached "Soil depth intervals used to calculate the Site Specific Cleanup Goals" (January 14, 2014) from the Expert Panel.

<sup>&</sup>lt;sup>3</sup> In the course of conducting cleanup that involves excavation, Shell may encounter soils with detectable odors due to the presence of TPH. To assure protection of residents, the RAP will need to include a method to determine if TPH concentration in soil presents a detectable odor in accordance with the ESL and develop odor-based screening levels for indoor air based on 50 percent odor-recognition thresholds as published in the ATSDR Toxicological Profiles. For soil gas, follow the ESL for odor and other nuisance to calculate a ceiling level for residential land use.

<sup>&</sup>lt;sup>4</sup> The Regional Board agrees with the proposed risk-based scenario to address exposure of construction or utility workers in nonresidential areas of the Site for four days per year. As noted above, the City of Carson implements ordinances to address excavation.

### Table 9-2, Site Specific Cleanup Goals, Soil

Shell provided SSCGs for COCs in soil in Table 9-2 of the Revised Report. In response to the Regional Board's August 21, 2013 letter, Shell considered both risk to human health and restoration and protection of groundwater. To derive the most appropriate SSCGs for COCs in soil, the more stringent of the human health-based and groundwater-based SSCGs needs to be selected for each COC in both soil depth intervals to meet both goals of protecting human health and groundwater. As described above, Shell provided SSCGs based on two soil intervals (zero to two feet and from two feet to ten bgs). However, Table 9-2 omits consideration of the groundwater leaching SSCGs in the deeper soil interval. The Revised Report does not provide explanation for omitting the leaching potential analysis from the deeper soil interval. The COCs can leach from any soil depth above the groundwater table and at some Site locations, the groundwater already exceeds applicable water quality objectives. Waste present at deeper intervals is most likely contributing to continuing degradation of groundwater. The SSCGs for COCs in soil must consider leaching to groundwater for both depth intervals. Table 1 includes SSCGs for COCs in soil must consider leaching to groundwater in the entire soil interval of zero to ten feet and identifies the more stringent of the health risk based and leaching potential based SSCGs.

The Regional Board also finds an error in the Revised Report's calculations of the SSCGs for COCs in soil based on leaching potential. Shell calculated the SSCGs to address COC leaching to groundwater based on the *May 1996 Regional Board Interim Site Assessment & Cleanup Guidebook.* The proposed SSCGs in the Revised Report based on COCs leaching to groundwater used a Dilution Attenuation Factor (DAF) of 6.24. This DAF is not appropriate for the Site because groundwater beneath the Site is already polluted by COCs. See attached Regional Board Staff Internal Memorandum dated December 10, 2013.

Table 9-2 does not include two COCs – xylenes and toluene – that have been detected at the Site. The Expert Panel commented in the attached memorandum that the Revised Report describes the COC list as preliminary. With respect to Table 9-2, the Regional Board considers the list of COCs complete with the addition of xylenes and toluene. Table 1 includes xylenes and toluene as COCs in soil.

Finally, the clarity of Table 9-2 is compromised by referring to the shallow soil horizon as "Excavated Area" and the deeper soil horizon as the "Non-Excavated Area." Table 1 defines the soil intervals to be used based on soil depth. The Regional Board stated in the August 21, 2013 letter that the Regional Board does not distinguish between excavated and non-excavated areas in setting SSCGs and directed Shell to develop protective SSCGs for all site soils.

To address these comments, Table 1, attached to this letter, sets forth SSCGs that take into account leaching potential for both soil intervals, and adds xylenes and toluene to the list of COCs with appropriate SSCGs. Table 1 also includes soil intervals for zero to five feet below grade as discussed above under "Soil Depth Intervals."

### Table 9-3, Site Specific Cleanup Goals, Soil Vapor

The proposed SSCGs for COCs in soil vapor are presented in Table 9-3 of the Revised Report. The SSCGs for COCs are intended to protect human health from inhalation of COCs and are based on DTSC guidance for protective concentrations in indoor air. The Revised Report uses an attenuation factor of 0.001 that ties indoor air standards to soil gas COC concentrations in soil vapor. Recent guidance entitled *Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), California Environmental Protection Agency, Department of Toxic Substances Control,* (DTSC. 2011) and U.S. EPA's Vapor Intrusion Database: Preliminary Evaluation of

### Mr. Doug Weimer Shell Oil Products US

Attenuation Factors, Office of Solid Waste (U.S. EPA. 2008.) recommend use of an attenuation factor of 0.002 (see also Section B.3. of the Expert Panel Memorandum dated December 18, 2013). The Regional Board hereby approves the SSCGs for COC in soil vapor based on the attenuation factor of 0.002. The approved SSCGs for COC in soil vapor are provided in Table 2, attached to this letter.

### Table 9-4, Site Specific Cleanup Goals, Groundwater

The proposed SSCGs for groundwater are presented in Table 9-4 of the Revised Report. The groundwater beneath the Site is designated in the Regional Board's Basin Plan as municipal supply<sup>5</sup>, and, therefore, water quality objectives to protect that beneficial use are the appropriate standards. The water quality objectives set forth in the Basin Plan, include primary and secondary MCLs (i.e., drinking water standards) adopted by the California Department of Public Health and incorporated into the Basin Plan and the narrative water quality objective for Chemical Constituents. The proposed SSCGs for groundwater are based on the primary MCLs, the Notification Level, a health based environmental screening level, or zero to represent natural background. Generally, the proposed SSCGs are acceptable with the exception of the SSCGs for TPH. The proposed SSCGs for TPH as gasoline, diesel, and motor oil are based on the ESL. To comply with the Basin Plan water quality objectives, the SSCGs for TPH as gasoline, diesel, and motor oil should be based on the secondary taste and odor threshold of 100 micrograms per liter for TPH as diesel. See State Water Board's "A Compilation of Water Quality Goals", 16<sup>th</sup> Edition (April 2011).<sup>6</sup> The approved SSCGs for COCs in groundwater are provided in Table 3 attached to this letter.

### Methane

In the Revised Report, the revised RAOs proposes prevention of fire/explosion risks in indoor air and/or enclosed spaces due to generation of methane by eliminating methane to the extent technologically and economically feasible. The proposed SSCG for methane is consistent with the DTSC guidance for addressing methane detected at school sites (CalEPA DTSC, 2005) and is applicable to concentrations measured in soil vapor, in vaults, or above ground. The SSCG for methane should be the more stringent of the lower explosive limit or the level that is technically and economically feasible. The "Response" on pages 16 and 78 of the Revised Report include response actions when the SSCG is exceeded. The Regional Board does not approve the response action at this time and will review the response actions that will be contained in the RAP.

### The Screening Feasibility Study

The screening FS presented in the Revised Report sets forth several different cleanup alternatives that are based on excavation to different depths and implementation of soil vapor extraction. Shell developed a screening FS to address comments in the Regional Board's August 21, 2013 letter that information regarding the technological and economic feasibility of remedial alternatives was required in accordance with State Water Board Resolution 92-49 in order to approve SSCGs that are greater (i.e. less stringent) than necessary to attain background water quality.

<sup>&</sup>lt;sup>5</sup> It is important to note that the groundwater at the Site is not currently used for municipal supply. The residents of the Carousel Tract obtain their drinking water from municipal supply provided by California Water Service Company.

<sup>&</sup>lt;sup>6</sup> http://www.waterboards.ca.gov/water\_issues/programs/water\_quality\_goals/

State Water Board Resolution 92-49 defines economic feasibility as follows:

"Economic feasibility is an objective balancing of the incremental benefit of attaining further reductions in the concentrations of constituents of concern as compared with the incremental cost of achieving those reductions. The evaluation of economic feasibility will include consideration of current, planned, or future land use, social, and economic impacts to the surrounding community including property owners other than the discharger.

Economic feasibility, in this Policy, does not refer to the discharger's ability to finance cleanup. Availability of financial resources should be considered in the establishment of reasonable compliance schedules."

The underlying basis for estimating remedial alternative costs is not provided in the Revised Report and cleanup metrics such as mass of wastes removed or risks abated is not provided. As discussed in further detail in the attached Regional Board staff memorandum titled *Comments on the Revised Site-Specific Cleanup Goal Report*, dated December 23, 2013, the range of accuracy is overly broad such that the economic differences between different alternatives may not be discernible. Additionally, the screening FS included statements that certain remedial scenarios might affect the tax basis of the City of Carson but did not provide a basis for this statement.

Resolution No. 92-49 defines technological feasibility as follows:

"Technological feasibility is determined by assessing available technologies, which have shown to be effective under similar hydrogeologic conditions in reducing the concentration of the constituents of concern. Bench scale or pilot-scale studies may be necessary to make this feasibility assessment."<sup>7</sup>

Regional Board notes that Shell undertook bench-scale and pilot scale studies of a number of technologies, including in-situ bioremediation. These technologies have been documented in the pilot test (*Final Pilot Test Summary Report – Part I*, [URS, May 30, 2013]). The pilot test indicated bioremediation is a potential technology to remediate residual petroleum hydrocarbons. However, the technology was not included in the remediation alternatives set forth in the Revised Report. In developing the RAP, Shell must consider all technologies that have demonstrated effectiveness in bench and pilot studies, including bioremediation as a potential remedial alternative.

### Chlorinated Solvents

The Regional Board staff disagree with the Revised Report which suggested that the tetrachloroethylene (PCE) and trichloroethylene (TCE) detected in both on-site soils and soil vapor is from off-site sources exclusively. Although there may be off-site sources of PCE and TCE at the Site, those COCs are often associated with the petroleum industry and on-site sources should not be discounted. The USEPA Toxic Release Inventory for the Petroleum Industry includes the use of chlorinated solvents in large industrial process description. Therefore, the Regional Board cannot exclude PCE and TCE from the list of COCs for the Site. The Expert Panel also recommends that PCE and TCE should not be excluded from the list of COCs. See Expert Panel memorandum dated December 18, 2013.

<sup>&</sup>lt;sup>7</sup> Note that Shell has conducted numerous pilot studies and those can be used to evaluate technical feasibility. The Regional Board is not suggesting that additional pilot studies are necessary.

### CONCLUSIONS AND DIRECTIVES

Upon review of the Revised Report and other relevant documents, the Regional Board approves the following SSCGs as set forth in the attached Tables 1, 2, and 3 with the understanding that the SSCGs may be further revised as necessary to address cumulative risks identified in the forthcoming HHRA that exceed the RAOs.

- 1. SSCGs for COCs in Soil: The approved revised SSCGs for COCs in soil are provided in Table 1. As described above, to address direct contact with soils, Table 1 provides SSCGs that consider a 350-day per year exposure scenario to soil zero to five feet bgs to be appropriate for unrestricted residential land use and a four- day per year exposure scenario to soil five to ten feet bgs to be appropriate for limited direct contact. To address potential leaching to groundwater, Table 1 provides SSCGs for a soil interval of zero to ten feet bgs. The more stringent of the SSCGs for each soil interval are the approved SSCGs. In addition, SSCGs for toluene and xylenes shall be developed in accordance with the comments above and added to the list of COCs.
- 2. SSCGs for COCs in Soil Vapor: The approved revised SSCGs for protection of human health are provided in Table 2. As described above, they have been adjusted to take into account recent guidance. In addition, SSCGs shall be revised if necessary to take into account cumulative risks and the final HHRA Report.
- 3. SSCGs for COCs in Groundwater: The approved revised SSCGs for groundwater are provided in Table 3. As described above, the SSCGs for TPH have been adjusted to address applicable water quality objectives.

The CAO required Shell to submit the RAP to the Executive Officer no later than 60 days after the Executive Officer's approval of the Pilot Test Report. In a letter dated April 25, 2013, the Regional Board revised the due date for the RAP to 45 days following approval of the SSCGs. Therefore, in accordance with the revised due date, Shell is now directed to submit the RAP on March 10, 2014 to the Executive Officer for review and approval. The RAP shall take into account the requirements set forth in the CAO under Paragraph 3, including an evaluation of all available options for remediation, and is based on the comments in this letter and the revised approved SSCGs set forth in Tables 1, 2, and 3 attached to this letter.

To be consistent with the CAO, the RAP shall include, at a minimum:

- A. Remedial Alternatives: The RAP shall consider all technologies that were pilot tested, including bioventing, as alternatives. The RAP shall be developed to address COCs in soils in the soil intervals consistent with these comments. The screening FS alternatives in the Revised Report that address this requirement include Alternatives 3B and 4B. Although other alternatives set forth in the screening FS may also be addressed in the RAP, the RAP and environmental analysis must address Alternatives 3B or 4B to take into account the revised SSCGs set forth in Tables 1, 2, and 3. Consistent with State Water Board Resolution 92-49, the RAP shall evaluate the alternatives with respect to effectiveness, feasibility, and cost and propose a remedy or remedies that have a substantial likelihood to achieve compliance, within a reasonable time frame, with the cleanup goals and objectives.
- B. Relocation Plan: The RAP shall provide a preliminary relocation plan for residents of the Carousel Tract during remedial activities. The relocation plan shall be based on the

environmental analysis to be submitted in the RAP such that residents are not exposed to COCs or other environmental impacts during the cleanup. A final relocation plan shall be submitted following approval of the RAP.

- C. Soil Remediation Boundaries: Shell developed site-wide shallow soil concentration contours for discrete depths of 2, 5, and 10 feet below ground surface in the Site Delineation Report. Shell shall consider the results in the Site Delineation Report, soil concentrations contours and the results of the property-by-property investigations in developing the RAP.
- D. Residual Slabs: The RAP shall consider the removal of residual slabs as discussed in the Regional Board's response to the Assessment of Environmental Impact and Feasibility of Removal of Residual Concrete Reservoir Slabs in a letter dated, January 13, 2014 where necessary to protect human health and water quality and address nuisance concerns.
- E. Soil Management Plan: The RAP shall include a proposed Soil Management Plan for all soils containing COCs. The RAP shall address on-going monitoring requirements and identification of other governmental agencies that may be responsible for implementing the Soil Management Plan.

The Regional Board concurs with the comments provided by OEHHA dated December 16, 2013 and the Expert Panel dated December 18, 2013. The RAP should address the comments by the Expert Panel that are not already addressed in this letter.

In addition, Shell is directed to concurrently submit with the RAP (1) the final HHRA Report and (2) draft environmental documents consistent with the California Environmental Quality Act (CEQA) analyzing the potential environmental impacts associated with remediation alternatives considered in the RAP.

The RAP shall address any areas that the HHRA Report identifies that will not meet the remedial action objectives (RAOs) of a cancer risk of  $1 \times 10^6$  and non-cancer risk of 1. The RAP shall ensure that these areas shall be remediated to meet the RAOs.

In summary, the RAP, HHRA Report, and environmental documents are due to the Regional Board by 5:00 pm on March 10, 2014.

Following receipt of the required documents, the Regional Board will provide an opportunity for Expert Panel, OEHHA, other agencies, and public review and comment. Following its review of the documents and comments, the Regional Board will consider certification of the environmental documents and approval of RAP.

The due date for the above required documents constitutes an amendment to the requirements of Cleanup and Abatement Order No. R4-2011-0046 originally dated March 11, 2011. All other aspects of Order No. R4-2011-0046 originally dated March 11, 2011 and amendments thereto, remain in full force and effect. Pursuant to section 13350 of the California Water Code, failure to comply with the requirements of Order No. R4-2011-0046 by the specified due date, including the due date for the RAP, HHRA Report and CEQA documents set forth in this letter, may result in civil liability administratively imposed by the Regional Board in an amount up to five thousand dollars (\$5000) for each day of failure to comply.

The State Water Board adopted regulations requiring the electronic submittals of information over the Internet using the State Water Board GeoTracker database. You are required not only to submit hard

copy reports required in this Order but also to comply by uploading all reports and correspondence prepared to date and additional required data formats to the GeoTracker system. Information about GeoTracker submittals, including links to text of the governing regulations, can be found on the Internet at the following link:

http://www.waterboards.ca.gov/water\_issues/programs/ust/electronic submittal

Please note that, the Regional Board requires you to include a perjury statement in all reports submitted under the CAO. The perjury statement shall be signed by a senior authorized Shell representative (and not by a consultant). The statement shall be in the following format:

" I, [NAME], do hereby declare, under penalty of perjury under the laws of State of California, that I am [JOB TITLE] for Shell Oil Company that I am authorized to attest to the veracity of the information contained in [NAME AND DATE OF REPORT] is true and correct, and that this declaration was executed at [PLACE], [STATE], on DATE]."

If you have any questions, please contact the project manager, Dr. Teklewold Ayalew at (213) 576-6739 (tayalew@waterboards.ca.gov) or Ms. Thizar Tintut-Williams, Site Cleanup Unit III Chief, at (213) 576-6723 (twilliams@waterboards.ca.gov).

Sincerely,

Samuel Unger Samuel Unger, PE

Executive Officer

Attachments:

Table 1: Site Specific Cleanup Goals, Soil (revised Table 9-2)Table 2: Site Specific Cleanup Goals, Soil Vapor (revised Table 9-3)Table 3: Site Specific Cleanup Goals, Groundwater (revised Table 9-4)SSCGs Development Support Documents ReferencesComments from the Expert Panel dated January 14, 2014Regional Board Staff Internal Memorandum 1 dated December 10, 2013Comments from the Expert Panel dated December 18, 2013Regional Board Staff Internal Memorandum 2 dated December 23, 2013OEHHA Memorandum dated November 21, 2013

cc:

List

### <u>List</u>

Janice Hahn, Honorable Congresswoman, US House of Representatives, California's 44th District

Isadore Hall, III, Assembly member, 64th Assembly District

Mark Ridley-Thomas, Supervisor, Second District County of Los Angeles Jim Dear, Mayor of Carson

Michael Lauffer, Office of Chief Counsel, State Water Resources Control Board Frances McChesney, Office of Chief Counsel, State Water Resources Control Board James Carlisle, Office of Environmental Health Hazard Assessment Robert Romero, Department of Toxic Substances Control Alfonso Medina, Los Angeles County Department of Health Angelo Bellomo, Los Angeles County Department of Health

Bill Jones, Los Angeles County Fire Department

Barry Nugent, Los Angeles County Fire Department

Shahin Nourishad, Los Angeles County Fire Department

Miguel Garcia, Los Angeles County Fire Department

Jackie Acosta, Carson Acting City Manager

Sheri Repp-Loadsman, City of Carson

Ky Truong, City of Carson

Karen A. Lyons, Shell Oil Products US

Alison Abbott Chassin, Shell Oil Products US

Roy Patterson, URS Corporation

Chris Osterberg, URS Corporation

Michelle Vega, Edelman

Robert Ettinger, Geosyntec

Mark Grivetti, Geosyntec

Thomas V. Girardi, Girardi and Keese Lawyers

Robert W. Bowcock, Integrated Resource Management, LLC

Deanne L. Miller, Morgan, Lewis & Bockius LLP

Patrick Dennis, Gibson Dunn

## Table 1: Site Specific Cleanup Goals, Soil (revised Table 9-2)

| Constituents of Concern     | Soil Cleanup Goals (mg/kg) |                                     |  |  |
|-----------------------------|----------------------------|-------------------------------------|--|--|
| Inorganits                  | 0-5 feet                   | 5-10 feet                           |  |  |
| Antimony                    | 0.272                      | 0.272                               |  |  |
| Arsenic                     | 12                         | 12                                  |  |  |
| Cadmium                     | 70                         | 6,100                               |  |  |
| Chromium VI                 | 1.2                        | 110                                 |  |  |
| Cobalt                      | 23                         | 2,100                               |  |  |
| Coopper                     | 3,100                      | 270,000                             |  |  |
| Lead                        | 80                         | 800                                 |  |  |
| Thallium                    | 0.143                      | 0.143                               |  |  |
| Vanadium                    | 390                        | 34,000                              |  |  |
| Zinc                        | 23,000                     | 2,100,000                           |  |  |
| PAHs                        |                            | and the second second second second |  |  |
| Benz[a]anthracene           | 1.6                        | 140                                 |  |  |
| Benzo[a]pyrene              | 0.9                        | 14                                  |  |  |
| Benzo[b]fluoranthene        | 1.6                        | 140                                 |  |  |
| Benzo[k]fluoranthene        | 1.6                        | 140                                 |  |  |
| Chrysene                    | 16                         | 1,400                               |  |  |
| Dibenz[a,h]anthracene       | 0.11                       | 9.7                                 |  |  |
| Indeno[1,2,3-cd]pyrene      | 1.6                        | 140                                 |  |  |
| Methylnaphthalene, 1-       | 16                         | 1,400                               |  |  |
| Methylnaphthalene, 2-       | 230                        | 20,000                              |  |  |
| Naphthalene                 | 4                          | 14.1                                |  |  |
| Pyrene                      | 1,700                      | 150,000                             |  |  |
| ТРН                         |                            |                                     |  |  |
| TPH-Gasoline                | 117                        | 117                                 |  |  |
| TPH-Diesel                  | 625                        | 625                                 |  |  |
| TPH-Motor oil               | 3,300                      | 8500                                |  |  |
| SV/OCs                      |                            |                                     |  |  |
| 2,4-Dinitrotoluene          | · <u>1.6</u>               | 140                                 |  |  |
| Bis(2-Ethylhexyl) Phthalate | 35                         | 3,000                               |  |  |
| VOCs                        |                            |                                     |  |  |
| 1,1,2,2-Tetrachloroethane   | 0.47                       | 41                                  |  |  |
| Cis-1,2-Dichloroethene      | 0.00385                    | 0.00385                             |  |  |
| 1,2-Dichloroethane          | 0.000321                   | 0.000321                            |  |  |
| 1,2,3-Trichloropropane      | 0.00000417                 | 0.00000417                          |  |  |
| 1,2,4-Trimethylbenzene      | 83                         | 7,200                               |  |  |
| 1,2-Dichloropropane         | 0.83                       | 72                                  |  |  |
| 1,3,5-Trimethylbenzene      | 85                         | 7400                                |  |  |
| 1,4-Dichlorobenzene         | 0.0123                     | 0.0123                              |  |  |
| Benzene                     | 0.0208                     | 0.208                               |  |  |
| Bromodichloromethane        | 0.49                       | 42                                  |  |  |
| Bromomethane                | 8.8                        | 770                                 |  |  |
| Ethylbenzene                | 4.8                        | 420                                 |  |  |
| Methylene chloride          | 5.3                        | 470                                 |  |  |
| tert-Butyl Alcohol          | 0.00785                    | 0.00785                             |  |  |
| Tetrachloroethene           | 0.00577                    | 0.00577                             |  |  |
| Trichloroethene             | 0.00321                    | 0.00321                             |  |  |
| Vinyl Chloride              | 0.000321                   | 0.000321                            |  |  |
| Toluene                     | To be provided by Shell    | To be provided by Shell             |  |  |
| Xylenes                     | To be provided by Shell    | To be provided by Shell             |  |  |

| Constituents of Concern     | Soil Vapor Cleanup<br>Goals (µg/m³) |   | Constituents of Concern          | Soil Vapor Cleanup<br>Goals (ug/m <sup>3</sup> ) |
|-----------------------------|-------------------------------------|---|----------------------------------|--------------------------------------------------|
| VOCs                        |                                     |   | VOCs                             |                                                  |
| 1,1,1-Trichloroethane       | 2.60E+06                            |   | Ethanol                          | 2.10E+06                                         |
| 1,1,2,2-Tetrachloroethane   | 2.10E+01                            |   | Ethylbenzene                     | 4.85E+02                                         |
| 1,1,2-Trichloroethane       | 7.50E+01                            |   | Heptane                          | 3.65E+05                                         |
| 1,1-Dichloroethane          | 7.50E+02                            |   | Hexachloro-1,3-butadiene         | 5.50E+01                                         |
| 1,2,4-Trichlorobenzene      | 1.05E+03                            |   | Hexane                           | 3.65E+05                                         |
| 1,2,4-Trimethylbenzene      | 3.65E+03                            |   | Isopropanol                      | 3.65E+06                                         |
| 1,2-Dichloroethane          | 6.00E+01                            |   | lsopropylbenzene (cumene)        | 2.10E+05                                         |
| 1,2-Dichloropropane         | 1.20E+02                            |   | Methyl ethyl ketone (2-butanone) | 2.60E+06                                         |
| 1,3,5-Trimethylbenzene      | 3.65E+03                            |   | Methylene chloride               | 1.20E+03                                         |
| 1,3-Butadiene               | 7.00E+00                            |   | Methyl-tert-butyl-ether          | 4.70E+04                                         |
| 1,4-Dichlorobenzene         | 1.10E+02                            |   | Naphthalene                      | 3.60E+01                                         |
| 1,4-Dioxane                 | 1.60E+02                            |   | Propylbenzene                    | 5.00E+05                                         |
| 2,2,4-Trimethylpentane      | 5.00E+05                            |   | tert-Butyl Alcohol (TBA)         | 5.50E+05                                         |
| 2-Hexanone                  | 1.55E+04                            |   | Tetrachloroethene                | 2.05E+02                                         |
| Ethyltoluene                | 5.00E+04                            |   | Tetrahydrofuran                  | 1.05E+06                                         |
| Benzene                     | 4.20E+01                            |   | Toluene                          | 2.60E+06                                         |
| Bromodichloromethane        | 3.30E+01                            |   | Trichloroethene                  | 2.95E+02                                         |
| Bromomethane                | 2.60E+03                            |   | Vinyl chloride                   | 1.55E+01                                         |
| Carbon disulfide            | 3.65E+05                            |   | Xylene, m-                       | 5.00E+04                                         |
| Carbon tetrachloride        | 2.90E+01                            | _ | Xylene, o-                       | 5.00E+04                                         |
| Chloroform                  | 2.30E+02                            |   | Xylene, p-                       | 5.00E+04                                         |
| Chloromethane               | 4.70E+04                            | - |                                  |                                                  |
| Cyclohexane                 | 3.15E+06                            |   | трң                              |                                                  |
| Dibromochloromethane        | 4.50E+01                            |   | Aliphatic: C5-C8                 | 3.65E+05                                         |
| Dichloroethene, cis-1,2-    | 3.65E+03                            |   | Aliphatic: C9-C18                | 1.55E+05                                         |
| Dichloroethene, trans-1,2-  | 3.15E+04                            |   | Aromatic: C9-C16                 | 2.60E+04                                         |
| Dichloropropene, trans-1,3- | 7.50E+01                            |   | TPH (Nuisance)                   | 5.00E+01                                         |

| Constituents of Concern  | Groundwater Cleanup Goals<br>(µg/L) |  |
|--------------------------|-------------------------------------|--|
| Benzene                  | 1                                   |  |
| Naphthalene              | 17                                  |  |
| tert-Butyl Alcohol (TBA) | 12                                  |  |
| TPH-Gasoline             | 100                                 |  |
| TPH-Diesel               | 100                                 |  |
| TPH-Motor Oil            | 100                                 |  |
| 1,1-Dichloroethane       | 5                                   |  |
| 1,1-Dichloroethene       | 6                                   |  |
| 1,2,3-Trichloropropane   | 0.005                               |  |
| 1,2-Dichloroethane       | 0.5                                 |  |
| cis-1,2-Dichloroethene   | 6                                   |  |
| Tetrachloroethene        | 5                                   |  |
| trans-1,2-Dichloroethene | 10                                  |  |
| Trichloroethene          | 5                                   |  |
| Vinyl Chloride           | 0.5                                 |  |
| 1,4-Dichlorobenzene      | 5                                   |  |
| Antimony                 | background                          |  |
| Thallium                 | background                          |  |
| Arsenic                  | background                          |  |

 Table 3: Site Specific Cleanup Goals, Groundwater (revised Table 9-4)

### SSCGs Development Support Documents References

- 1) Plume Delineation Report, Former Kast Property, Carson, California. (URS, September 25, 2010).
- 2) Human Health Screening Evaluation Work Plan, Former Kast Property, Carson, California. (Geosyntec, October 30, 2009).
- 3) Soil Vapor Extraction Pilot Test Report. Former Kast Property, Carson, California. (URS, September 30, 2010).
- 4) Soil Background Evaluation Report. Former Kast Property, Carson, California. (URS, September 14, 2010).
- 5) Community Outdoor Air Sampling and Analysis Report, Former Kast Property, Carson, California. (Geosyntec, November 5, 2010).
- 6) Pilot Test Work Plan for Remedial Excavation and In-situ Treatment Pilot Testing, Former Kast Property, Carson, California. (URS & Geosyntec, May 10, 2011).
- 7) Gage Aquifer Investigation, Former Kast Property, Carson, California. (URS, October 10, 2011).
- 8) Bioventing Pilot Test Summary Report. Former Kast Property, Carson, California. (Geosyntec, December 6, 2012).
- 9) Excavation Pilot Test, 24612 Neptune Avenue, Former Kast Property, Carson, California. (URS, January 4, 2013).
- 10) Phase II ISCO Bench-Scale Test Report. Former Kast Property, Carson, California. (Geosyntec, August 30, 2013).
- 11) A Human Health Screening Risk Evaluation (HHSRE) was conducted to evaluate the analytical results of the indoor air, soil, and sub-slab soil vapor samples collected at 268 total homes to date and over 600 Residential Sampling Reports prepared (2009 to present).

1



730 17<sup>th</sup> Street Suite 925 Denver, CO 80202

T: 303.294.0950 F: 303.294.9220

www.NewFields.com

TO: Los Angeles Regional Water Quality Control Board

FROM: UCLA Expert Panel, Gary Krieger

PROJECT: Former Kast Property in Carson, California

SUBJECT: Soil depth intervals used to calculate the Site Specific Cleanup Goals

DATE: January 14, 2014

The Revised Site Specific Cleanup Goals Report (Revised Report) submitted by Shell to the Regional Board on Oct. 21, 2013 divides the upper 10-foot soil horizon into two intervals: 0-2 feet, and 2-10 feet. Shell used different exposure frequency to constituents of concern in the soil intervals based on the rationale that residents have more frequent exposures to shallower soils (0-2 feet) than to deeper soils (2-10 feet). On January 14, 2014, the Regional Board requested the UCLA Expert Panel comment on the appropriateness of this rationale of using different exposure frequencies for different soil depths within a 10-foot soil horizon.

The UCLA Expert Panel agrees that this methodology is appropriate to assess human health exposure. The USEPA (1993) has defined that the top 2 centimeters of soil is where direct contact for the residential receptor predominantly occurs. In the guidance for soil screening the USEPA states "the decision to sample soils below 2 centimeters depends on the likelihood of deeper soils being disturbed and brought to the surface (e.g., from gardening, landscaping or construction activities)" (USEPA 1996, page 12). In their supplemental guidance, the USEPA states that "residential activities (e.g., gardening) or commercial/industrial (e.g., outdoor maintenance or landscaping) or construction activities that may disturb soils to a depth of up to two feet, potentially exposing receptors to contaminants in subsurface soil via direct contact pathways such as ingestion and dermal absorption" (USEPA 2002, page 2-8). In USEPA's (2003) Superfund Lead-Contaminated Residential Site Handbook, the agency states that sampling "does not need to exceed 24 inches to define the vertical extent of contamination for clean-up purposes" as the remediation is being conducted to eliminate the potential for direct exposure in the residential setting. The Handbook (USEPA 2003) goes on to recommend for remediation that "Based on Agency experience, it is strongly recommended that a minimum of twelve (12) inches of clean soil be used to establish an adequate barrier from contaminated soil in a residential yard for the protection of human health. ... With the exception of gardening, the typical activities of children and adults in residential properties do not extend below a 12-inch depth." and "Twenty-four (24) inches of clean soil cover is generally considered to be adequate for gardening areas ..."
We agree that the 0-2 feet interval is appropriate for the typical residential exposure and expect, given the established nature of the neighborhood, the assumption that the resident is exposed 4 times per year to soils at depths greater than 2 feet to be highly conservative. It is our opinion that only if soil concentrations exist below 2 feet that may pose a unacceptable exposure to vapor intrusion should residential exposure be the driver for Site Specific Cleanup Goals for subsurface soil (2 to 10 feet) rather than the utility worker. This opinion is consistent with the Revised Site Specific Cleanup Goals Report submitted by Shell.

#### **References Cited**

- USEPA 1993, *The Urban Soil Lead Abatement Demonstration Project*. Vol I: Integrated Report Review Draft. National Center for Environmental Publications and Information. EPA 600/AP93001/A. NTIS PB93-222-651. as cited in USEPA 1996.
- USEPA 1996, Soil Screening Guidance: User's Guide, Second Edition, Office of Solid Waste and Emergency Response, Washington DC Publication 9355.4-23, July 1996.
- USEPA 2002, Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response, Washington DC OSWER 9355.4-24, December 2002.
- USEPA 2003, Superfund Lead-Contaminated Residential Sites Handbook. Office of Emergency and Remedial Response, Washington DC OSWER 9285.7-50, August 2003.





LATHEW RODBIDDER FOR ITAL PROJECTS

#### Los Angeles Regional Water Quality Control Board

| TO:      | Samuel Unger, P.E., Executive Officer<br>California Regional Water Quality Control Board – Los Angeles Reg                                                            |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| FROM:    | Yue Rong, Ph.D.,<br>Section Chief, Underground Storage Tank Section<br>Weixing Tong, Ph.D., PG, CHG<br>Unit Chief, Underground Storage Tank, Los Angeles Coastal Unit |  |  |  |  |
| DATE:    | December 10, 2013                                                                                                                                                     |  |  |  |  |
| SUBJECT: | COMMENTS ON PROJECT PROPOSAL                                                                                                                                          |  |  |  |  |

We went through the attachment documents presented to us (Revised Site-Specific Cleanup Goal Report. by Geosyntec, dated October 21, 2013, APPENDIX A), particularly to review the calculations for benzene and TPH for groundwater protection (not including vapor intrusion or risk assessment part). The following are our comments as we discussed in the meeting.

- 1. Soil screening levels calculated in the document did not contain all components in our 1996 Guidebook method, which contains a modification factor due to soil type (a different coefficient for gravel, sand, silt, and clay, respectively). This modification factor was not used in the calculation.
- 2. In page A-28, it states that the Attenuation Factor method in 1996 Guidebook Step 3 is not conducted in order to "avoid double-counting" the soil type. We disagree with the approach to skip Step 3. The 1st Step using soil type parameter is to calculate VOC partitioning based on soil physical material and contaminant chemical properties. Steps 2 and 3 are to obtain "safety factors" for the attenuation factor, but are not used to count for VOC partitioning. Step 3 is a factor based on leachability. Therefore, Step 1 and Step 3 are different in nature.
- 3. Based on the 1996 Guidebook method referenced above, the soil cleanup level should be calculated for benzene as follows:

 $C_{(cleanup)} = MCL \times AF(T) / pb = (1 \mu g/L \times 33/10) / 1.54 kg/L = 2.1 \mu g/kg$ 

(Please compare with results in page A-31)

4. In page A-31, the report used a dilution factor (DAF=6.24) in the calculation for soil cleanup goals. Note that the same DAF has been used for all other VOCs in table A-17. In Appendix A (Section 5.3.3), it used the Soil Attenuation Model (SAM) to quantify the dilution of dissolved constituents of concern (COCs) when soil leachate mixes with lateral groundwater flow. This method assumes when leachate vertically migrates to the water-bearing unit through infiltration, a contaminant will be diluted by the lateral groundwater flow in the mixing zone. We believe that the use of SAM is

MARIA MEHRANIAN, CHAIR | SAMUEL UNGER, EXECUTIVE OFFICER

320 West 4th St., Bulle 200, Los Angeles, CA 90013 | www.waterboards.cs.gowlosangeles

not appropriate in this case because the groundwater underneath the subject site has been impacted by the various COCs (i.e., TPHg, benzene, etc.) and groundwater contamination plumes with concentrations above their respective MCLs or NLs already exist. Any contaminants brought into the water-bearing unit through infiltration will be considered as an addition to the existing plume. Furthermore, the proposed dilution concept is against the State Anti-degradation Policy. The discharge compliance point should be at the groundwater table where the infiltrated water enters the water-bearing unit.

- 5. Not clear how the TPH cleanup goal is calculated in terms of groundwater protection. TPH cleanup levels calculated in the report seem all based on human health risk factors. If we use Table 4-1 in the 1996 Guidebook, the cleanup levels should be: TPH(gasoline range C4-C12) = 500 mg/Kg, TPH(diesel range C13-C22) = 1000 mg/Kg, and TPH(motor oil range C23-C32) = 10000 mg/kg, respectively. By contrast, Table A-17 presented in the report proposed soil cleanup goals for TPH as gasoline of 730 mg/Kg, TPH as diesel of 3900 mg/Kg, and TPH as motor oil of 50000 mg/Kg.
- 6 Use of the Attenuation Factor method specified in our 1996 Guidebook can also be considered for determining the TPH cleanup levels. In that case, individual compounds representing each carbon range should be used for calculation. For example, hexane, naphthalene, trimethylbenzene, etc.
- 7. Specific comments on the document and Appendix A:
  - a) Need to number all equations in the report for reference.

b) The bottom two equations in page A-31 are incorrect. The DAF equation should use 11.3m as input instead of 21.4m, and C(cleanup) equation should have result in unit of  $\mu g/lcg$ , not mg/kg.

c) Vertical dispersivity αv value seems too high. Need justifications for choosing this value (although it did not really impact the result in this case).

### Comments from the Expert Panel on the Revised Site-Specific Cleanup Goal Report Submitted: December 18, 2013

#### A. Introduction

As requested by the Los Angeles Regional Water Quality Control Board (Regional Board), the Expert Panel has reviewed the Revised Site-specific Cleanup Goal Report (Revised SSCG Report) prepared for the former Kast Property in Carson, California by Geosyntec Consultants for Shell Oil Products US. This builds upon the Panel's review of the previously submitted Site-specific Cleanup Goal Report (SSCG Report), and precedes the release of the Remedial Action Plan.

The Panel's overall charge is to provide its recommendations for the Regional Board to consider in determining whether cleanup goals and remedial actions proposed by the responsible parties named in the Cleanup Order are consistent with applicable legal authorities.

In general, Geosyntec did not make many changes to the overall approach taken in the Revised SSGC Report compared to the original SSCG Report. Text and figures were added to help explain reasoning and inconsistencies while improving transparency. Yet we have concerns with the following issues.

#### **B.** Concerns and Recommendations

- 1. Cumulative risk and/or hazard taken into account in the SSCG calculations
- 2. Finalizing the COC list
- 3. Attenuation factor for sub-slab vapor concentrations
- 4. Chlorinated volatile organic compounds (CVOCs) potentially from onsite sources
- 5. Remediation options
- 6. Interpretation of State Board Resolution No. 92-49

# B.1. Cumulative risk and/or hazards taken into account in the SSCG calculations

One of the Expert Panel's most significant concerns, still not addressed in the Revised SSCG Report, is with the calculation of the SSCGs. Each COC has a calculated SSCG that is based on a cancer risk of one in a million (10<sup>-6</sup>) or a hazard index of 1. "The final SSCG values were not adjusted by number of chemicals included in the SSCG derivation process therefore there is no impact on the value calculated." (Response to Expert-3 comment regarding the number of COCs selected) We advise the Regional Board to explicitly task Geosyntec to clearly demonstrate how cumulative risk is assessed and calculated for all of the chemicals of concern (COCs).

In response to OEHHA commenting, "The implication of cumulative risks and/or hazards that exceed target levels needs to be considered." Geosyntec replied, "Agreed. This is consistent

with the approach described in the SSCG report." (Response to OEHHA-32) However, the Panel still does not see how this is consistent with the approach. In general, Geosyntec states,

"... we believe dividing the SSCGs by the number of COCs to calculate a lower value to address cumulative risk issues is overly conservative and assumes that the chemicals are equally distributed. For most sites there are a subset of chemicals that contribute the majority to risk and hazard. Rather than assume a certain distribution of risk and hazard among chemicais ahead of time, the site data will be evaluated in the HHRA to identify the finai COCs. In addition as presented in the RAOs section, the forthcoming HHRA [Human Health Risk Assessment] will address cumulative risk." (Responses [whole or in part] to Expert-4, Expert-5, RWQCB-15 and Expert-8)

This comment pushes things to the forthcoming full Human Health Risk Assessment (HHRA), which the Panel believes should logically have been done already. As stated in our Interim Report on the SSCG Report, "the utility of developing this document after the execution and release of the SSCG is potentially problematic for key decision makers at the Water Board. Typically, a human risk assessment should inform cleanup goals rather than be released after the cleanup goals are determined."

The only step where we see cumulative risk assessed is in the selection of the COCs where the risk-based screening level (RBSL) has been divided by 10. Geosyntec's primary argument for not taking cumulative risk into account in the SSCG report appears to be two-fold: 1) chemicals are not necessarily equally distributed and 2) the upcoming HHRA will do it.

"When the forthcoming HHRA is conducted cumulative risks and hazards will be calculated and corrective actions will be based on the SSCGs presented in this report and the cumulative HHRA results." (Response to Expert-3)

While not discussed explicitly, we have to wonder if the way this will be conducted is similar to the HHSRE where the risk index is calculated using the SSCGs rather than the RBSLs and that a risk index greater than 1 would require remedial action rather than an exceedance of SSCG ("bright line" method). That is how the following text could be interpreted.

"The chemical-specific SSCGs will be used in the HHRA along with the exposure point concentration for each property and depth interval being evaluated to estimate chemical-specific risks and noncancer hazards. ... Cumulative estimates of cancer risk and noncancer hazard will be calculated by summing the chemical-specific estimates presented in the HHRA." (Pages 44-45 of the SSCG Report)

If SSCGs will be used to calculate a "risk index" that will trigger action rather than using the SSCGs as "bright line" remediation cleanup values for determining whether an action is required, then our concern with cumulative risk/hazard has probably been addressed, and we

can see how the Site's RAOs for soil<sup>1</sup>, in particular, can be met/addressed. However, if the SSCGs are actually used as "bright line" cleanup concentrations, we are concerned that once the board approves of this report, there is no modification possible. Geosyntec uses the "they have approved it so it is good" argument several times in their comment responses. Therefore, the Board should be very clear about how these SSCGs are going to be used for making decisions in the RAP.

We would advise the Water Board to clearly and explicitly hold Geosyntec to a work plan that explicitly addresses the key issues and lays out methodology; otherwise this will recycle. And again, we are concerned with how key decisions are continuously pushed forward onto the HHRA, when it is unclear that Geosyntec will perform the calculations in a total manner that is reflected in the cleanup that the Water Board will find acceptable.

#### **B.2.** Finalizing the COC list

Geosyntec indicates that the SSGCs are final, but they describe the COC list as preliminary. The Panel agrees with the OEHHA and recommends that the COC list should be presented as the final list; otherwise it will be difficult to argue that the SSCG list is final.

While we did previously point out that HERO HHRA Note 4 (Expert-15 comment) is inconsistent with the COC approach in the SSGC report, we will agree with Geosyntec that "[T]he screening approach used in the SSCG report to select COCs is considered appropriate for this site ..." (Response to Expert-15). However Geosyntec appears to indicate that this COC list is not considered "final" by stating, "The Revised SSCG Report presents the **preliminary** [emphasis added] list of COCs for evaluation in the RAP. The forthcoming HHRA will provide the **final** [emphasis added] analysis following the approached presented in Appendix A" (Response to OEHHA-23). It is unclear why then the COC list is preliminary if it follows the same approach. However, note the COC selection process is in the SSCG report and only summarized in Appendix A. Appendix A states, "Tables 4.5 and 4.6 of the main report present the COCs that have been identified for each media to be carried forward into the RAP" (page A-2).

We recommend that the COC list should be presented as the final list.

#### B.3. Attenuation factor for sub-slab vapor concentrations

The Revised SSCG Report proposes an attenuation factor (AF) of 0.001 when sub-slab vapor concentrations are greater than  $100 \text{ ug/m}^3$  (a high concentration for this site). However, this AF is very low. We recommend using a home-specific attenuation factor rather than a generic AF, to ensure that each individual home is protected.

<sup>&</sup>lt;sup>1</sup> "The RAOs for soil are to prevent human exposures to concentrations of COCs in soil such that total (i.e., cumulative) lifetime incremental carcinogenic risks are within the NCP risk range of  $1 \times 10^{-6}$  to  $1 \times 10^{-4}$  and noncancer hazard indices are less than 1 or concentrations are below background, whichever is higher." (page 39)

In the analysis presented by Geosyntec (Appendix B), the argument is made that a generic attenuation factor of 0.01 for consideration the pathway from sub-slab to indoor air is in fact conservative. While this may be valid for a large number of the homes, Figures B-10 and B-11 suggest that this is NOT the case for a number of individual homes, when paired data for specific compounds is evaluated. The empirical data does not support using a "generic" attenuation factor for determining the risk, which is consistent with the notion that conditions may be different in each home, and that for a given home owner it is important to reduce her/his individual risk, not the generic risk. In fact, Figure B-10 suggests that the number of cases where the empirical attenuation factor is > 0.01 is large, although mostly at low sub-slab concentrations. Nevertheless, there are a significant number of cases where the empirical attenuation factor is > 0.01 and sub-slab concentrations are > 100 ug/m3.

The recommendation is to not use a generic attenuation factor, but rather a home-specific attenuation factor, to ensure that each individual home is protected.

In addition, it would have been useful for Geosyntec to have provided the spatial distribution of the CVOCs in the sub-slab vapor as it would have likely followed the CVOC groundwater distribution and not the CVOC soil distribution, providing more evidence of a trespassing CVOC plume. This would provide a link between the risk assessment and subsurface evaluation.

#### B.4. Chlorinated volatile organic compounds potentially from onsite sources

Geosyntec provided in Appendix E the distribution maps of PCE and TCE in both shallow soil and in groundwater. These maps make the best case for the conclusion that the CVOCs in both shallow soil and groundwater are from neighboring source, but the evidence could be presented more clearly and transparently. The "evidence" of "[T]he lack of detections of PCE and TCE in Site soils between 10 feet below ground surface and groundwater (>400 samples)" [Response to comment RSQCB-2] does not "rule out" that CVOCs in shallow soil are sourced from the Site rather only rules out that the Site probably did not source the groundwater plume under the site. We advise the Regional Board to focus attention on this area.

#### **B.5. Remediation options**

We recommend not eliminating remediation options at this point in the analysis. Section 9 of the Revised SSCG includes a preliminary evaluation of remedial alternatives, also called a Screening Feasibility Study, and then based on this preliminary evaluation excludes certain technologies and remedial alternatives while prioritizing only certain remaining ones for further evaluation. Geosyntec envisions that later a "detailed evaluation of the recommended remedial alternative will be conducted and presented in the forthcoming Remedial Action Plan." The Expert Panel is concerned that it may be premature to eliminate many remediation technologies and alternatives now and thus exclude these options from further evaluation in the forthcoming RAP.

For instance, Geosyntec indicates that bioventing "would not be technologically and economically feasible to implement and is therefore eliminated from consideration for inclusion

in remedial alternatives". This is based on the presumption that "based on the average rate of biodegradation (of petroleum hydrocarbons), the systems would have to be in place for several decades," as well as the significant number (15 to 20) of extraction points that would have to be installed on each property.

While the pilot scale studies did reflect low biodegradation rates, this technology should be kept in consideration, since it may be a cost-effective approach for significantly reducing the risk in those areas where there are elevated concentrations of hydrocarbons within the first 5-20 feet below ground surface. Naturally, the recommended approach would be to first apply soil vapor extraction (which will be considered further in the next phase) to remove the more volatile compounds. But as pointed out by Geosyntec, diesel components and other heavy hydrocarbons will not be removed significantly by soil vapor extraction. The bioventing pilot test results indicated that relatively low flow rates were necessary to deliver sufficient oxygen to the subsurface to meet the bioventing oxygen demand. Geosyntec calculated that "the time frame for bioventing system operations ranged from approximately 1 to 4 years, assuming the higher initial biodegradation rate, to several decades assuming the average biodegradation rate." Thus, for some locations it may be possible to remove a significant mass in a few years. The extraction wells used for soil vapor extraction (SVE) could be used for subsequent bioventing as needed. Key is to determine the conditions that result in the higher biodegradation rate at the site.

Although this technology will not be applicable for all hot spots, it seems premature to dismiss it, without a real economic feasibility analysis. It will certainly be technologically feasible if done correctly, as was done in some of the pilot scale studies. Bioventing would be additive to Alternative 7, and would be considered on a hot spot by hot spot basis. The marginal costs are small (given that SVE would be used first), and there could be considerable savings over the project life, as well as faster risk reduction, if a significant mass of hydrocarbons is removed.

#### **B.6.** Interpretation of Resolution No. 92-49

٤.

Geosyntec proposes a narrow interpretation of State Water Board Resolution No. 92-49. The Revised SSCG asserts that Resolution No. 92-49 applies only to groundwater quality and excludes soil and soil vapor. We are concerned that the Board's approval of the Revised SSCG would be taken as approval of this narrow interpretation of Resolution in a way that would affect actions for relevant non-water media. We recommend that the Board clarify their scope of authority and respond to the assertion that:

Waste in non-water media (such as soil) should be addressed through remediation to promote the attainment of background water quality (not, for example, background levels in soil) or the best water quality that is reasonable feasible given the considerations listed." (Revised SSCG Report, page 78)

# C. Relatively Minor, Miscellaneous Comments Relevant to Application of the Technical Review Principles

- The table of Potentially Complete Exposure Pathways in the report and in Appendix A does not match (e.g., Indoor Air is missing from the version in Appendix A, as well as just matching modifiers). This has to do basically with consistency.
- Table A-3a, second half appears to be missing naphthalene (the volatile PAH).
- Table A-3b appears to be missing VF<sub>soil-OA</sub> values for some of the selected COPCs in soil.
- Concentration units should be included on the on the soil figures in Appendix E.
- The use of light pink/pink to represent the >25<sup>th</sup> to 50<sup>th</sup> percentile in the indoor vapor figures is unfortunate as it tends to "blend" with the purple used to represent the >90<sup>th</sup> Percentile and thus upon first glance this reviewer had the "pink houses" with much higher indoor air concentrations than the legend indicates. This reviewer would recommend using a gradual color scheme so colors intensify to the higher concentrations or go from the cool colors to the warm (blue, green, yellow, orange, red). We make this recommendation in the belief that at some point these figures will be presented in a public forum and we have found that the use of this color scheme strategy allows the reader/viewer to make first glance conclusions that match the map interpretation.





Los Angeles Regional Water Quality Control Board

| TO:   | Samuel Unger, Executive Officer<br>California Regional Water Quality Control Board, Los Angeles Region |
|-------|--------------------------------------------------------------------------------------------------------|
| FROM: | Cris Morris <i>CRM</i><br>Water Resource Control Engineer<br>Site Cleanup Program, Unit III            |
| DATE: | December 23, 2013                                                                                      |

SUBJECT: COMMENTS ON REVISED SITE-SPECIFIC CLEANUP GOAL REPORT

To address the comments in the Soil/Water/Air Protection Enterprise (SWAPE) letter dated November 27, 2013 pertaining to the KAST Screening Feasibility Study in the Revised Site-Specific Cleanup Goal Report (Report), it is necessary to identify the proper approach to a feasibility study of this complexity. If we use the Superfund Remedial Investigation/ Feasibility Study (RI/FS) process as a guideline, the development and screening of alternatives includes:

- 1. Develop remedial action objectives (RAOs), specifying the contaminants and media of interest, exposure pathways, and preliminary remediation goals.
- 2. Develop general response actions for each medium of interest (containment, treatment, excavation, pumping etc.) that may be taken either individually, or in combination, to satisfy the RAOs.
- 3. Identify volumes or areas of media to which general response actions might be applied.
- 4. Identify and screen the technologies applicable to each response action to eliminate those that cannot be implemented technically at the site. Further define each response action.
- 5. Identify and evaluate technology process options to select a representative process for each technology type.
- 6. Assemble the selected representative technologies into alternatives representing a range of treatment and containment options as appropriate.
- 7. The alternatives are evaluated with respect to effectiveness, implementability and cost. Only the most promising alternatives are included in the detailed alternative analysis.

The abbreviated versions of the RAOs presented in the Report for the Former Kast Property are

• Prevent human exposures to constituents of concern (COC) concentrations in soil, soil vapor, and indoor air such that the cumulative lifetime incremental carcinogenic risks is within 1x10<sup>-6</sup> and 10<sup>-4</sup> and the noncancer hazard index is less than 1 or concentrations are below background, whichever is higher. The receptors are onsite residents, and construction and utility maintenance workers. The point of departure for onsite residents is 1x10<sup>-6</sup>.

Мала Менельк, сили — Влишен Омлен, глероска на прист.

327, Wess diff St., Shate 200, Los Angeles, CA 90013, Linkwik Autoroparan colorer romanor es

- Prevent fire/explosion risk in indoor air and enclosed spaces and eliminate methane in the subsurface to the extent technologically and economically feasible.
- Remove or treat LNAPL to the extent technologically and economically feasible AND where a significant reduction in current and future risk to groundwater will result.
- Reduce COCs in groundwater to the extent technologically and economically feasible to achieve the water quality objectives in the Basin Plan.

Rather than utilizing the formalized alternative screening process developed for Superfund RI/FS, this document just identifies technologies that fit into two categories. The categories and the technologies are:

- Interrupt the Human Health Exposure Pathway
  - o Sub-slab vapor mitigation
  - o Capping portions of the site
  - o Institutional Controls
- Remove COC Mass and Interrupt the Human Health Exposure Pathway
  - o Excavation
  - Soil vapor extraction
  - o Bioventing
  - o In-situ chemical oxidation
  - o LNAPL/source removal
  - o Other removal or remediation of groundwater
  - o Monitored natural attenuation

To effectively manage the determination of Site Specific Cleanup Goals (SSCGs), the Report classifies the exposure medium by splitting the soil into a shallow surface soil and a shallow subsurface soil. The justification for this step is that the human exposure frequency varies between the surface soil (0 to 2 feet deep) and the subsurface soil (2 to 10 feet deep) (Refer to Appendix A). By imposing the assumption that the subsurface soil is encountered only infrequently and that any excavated subsurface soil is not distributed onto the surface, a Soil Management Plan and a deed restriction are required for each property. As a result, there are no alternatives without the imposition of Institutional Controls. In addition, the assumption is also made that the Soil Management Plan would be utilized to limit the risk of the construction /worker so there are no technologies necessary to protect the construction worker except for the Institutional Controls

Using the technically feasible technologies, seven alternatives, with some sub-alternatives, were prepared and presented. (Only Alternatives 1 through 6 focus on the soil medium). For an initial screening in a Superfund RI/FS, these alternatives would have only been evaluated with respect to effectiveness, implementability and cost and the cost estimate range would have been +100 / -50 %. The evaluation criteria included in the Report include: Cleanup Goal Achieved; Implementability; Environmental Considerations; Reduction of Toxicity, Mobility and Volume; Social Considerations, Other Issues and Cost. The cost estimate range presented in the Report is +50 / -30 %.

#### Samuel Unger Executive Officer

The alternatives for the soil medium included in the analysis and the ones that are not retained for the next phase are indicated below:

- Removal of all site features and excavation of impacted soil. *Not retained:* not technologically and economically feasible and very high social, environmental and economic costs.
- Removal of all site features and excavation down to 10 feet.
   Not retained: not technologically and economically feasible and very high social, environmental and economic costs.
- 3) Excavation to 2 feet bgs in open areas and beneath residential hardscape as required by SSCG.

#### Retained

3A) Excavation to 5 feet bgs in open areas and beneath residential hardscape as required by SSCG.

#### Retained

3B)Excavation to 10 feet bgs in open areas and beneath residential hardscape as required by SSCG.

*Not retained:* not technologically and economically feasible and very high social, environmental and economic costs.

4) Excavation to2 feet bgs in open and landscaped areas as required by SSCG.

#### Retained

4A)Excavation to 5 feet bgs in open and landscaped areas as required by SSCG. **Retained** 

4B)Excavation to 10 feet bgs in open and landscaped areas as required by SSCG. *Not retained:* not technologically and economically feasible and very high social, environmental and economic costs.

- Removal of all site features and cap site.
   Not retained: not technologically and economically feasible and very high social, environmental and economic costs.
- 6) Capping of exposed soils and landscaped areas.

#### Retained

At the conclusion of this screening step, the retained alternatives include

- Alternative3: Excavation to 2 or 5 feet bgs in open areas and beneath residential hardscape
- Alternative 4: Excavation to 2 or 5 feet bgs in open and landscaped areas
- Alternative 6: Capping of exposed soils and landscaped areas

Although this screening included more criteria than the three criteria used for a RI/FS preliminary screening of alternatives (effectiveness, implementability and cost), the issues are whether alternatives have not been retained which should have been and whether valid justification is provided. The evaluation of whether or not each alternative meets the RAOs is the critical issue. If the RAOs are satisfied for each alternative and the screening process retains a representative alternative from each response action, then the screening process is valid. Since the decision making process focuses around the soil medium, the discussion below only addresses the soil.

Samuel Unger Executive Officer

The premise that a Soil Management Plan (and thus a deed restriction) is required for each residence to disrupt the pathway from the subsurface soil to human receptors is not a valid assumption and has invalidated the RAO review process. Once this restriction is removed, the alternatives need to be reevaluated with respect to whether they satisfy the RAOs. The response actions that need to be addressed by a retained alternative are:

- No Action,
- Institutional Controls (including the Soil Management Plan and deed restriction)
- Collection/Discharge (excavation and disposal)
- Containment (cap)

Once the alternative screening process has been repeated with retained alternatives representing each of the response actions listed above, the alternatives are further developed and the nine National Contingency Plan (NCP) criteria are evaluated. These criteria include: overall protection of human health and the environment, compliance with Applicable or Relevant and Appropriate Requirements (ARARs), long term effectiveness and permanence, reductions in toxicity, mobility and volume through treatment, short term effectiveness, implementability, cost, state acceptance and community acceptance.

The SWAPE comment letter dated November 27, 2013 raised a number of issues including the validity of the screening analysis and the lack of retaining alternatives that relocated the residents and redeveloped the site for non-residential options. The most notable comments are listed below:

- 1. Pg 1 Alternatives are rejected without any detailed explanation
- 2. Pg 1-2 Request "to conduct a detailed evaluation of remedial alternatives and present those evaluations in a 'proper' Feasibility Study"
- 3. Pg 2 Expectation that all feasible alternatives are evaluated in a manner that is "transparent, subject to public participation and that conforms with standard practices and policies"
- 4. Pg 2 Does not include any alternatives with the relocation of residents and redeveloping the site for non-residential options.
- 5. Pg 3 Detailed FS required before a proposed RAP can be prepared
- 6. Pg 3 Understated economic and social impact to residents
- 7. Pg 5 Difficulties associated with some alternatives are overstated

Depending upon the outcome of the RAO analysis after the Soil Management Plan/deed restriction constraint is removed, the option of relocating and redeveloping the site would need to be reevaluated. However, as long as the RAO can be satisfied with another alternative within a response action that is easier to implement and less expensive, then not retaining that option is valid.

The SWAPE expectation that the screening process and the detailed evaluation of alternatives be transparent is a valid concern but the comments presented in the text and Table 9-5 appear to provide the necessary information to screen the alternatives. This step only requires the evaluation of effectiveness, implementability and cost. During the detailed analysis of alternatives phase, however, the community acceptance criteria will need to be addressed for

Samuel Unger Executive Officer

each alternative individually and in comparison to the others. This analysis will be limited to only the alternatives that are retained from the screening step and will probably not include the option of redeveloping the site. The preparation and review process of the detailed analysis needs to be made prior to the Remedial Action Plan, but can be combined into one document.

In summary, the SSCG report needs to be revised to limit the Soil Management Plan/deed restriction requirement to the Institutional Controls alternative. Once the alternatives are reevaluated with respect to the RAOs and the SSCG report has been resubmitted for review, the detailed analysis of the alternatives should be submitted with the individual and comparative evaluation of each of the retained alternatives to the 9 NCP criteria. If this process is completed per the RI/FS guidance, then the comments presented by the SWAPE letter should be addressed.

# Office of Environmental Health Hazard Assessment



Environmental Protection

Secretary for

George V. Alexeeff, Ph.D., D.A.B.T., Director Headquarters • 1001 | Street • Sacramento, California 95814 Mailing Address: P.O. Box 4010 • Sacramento, California 95812-4010 Oakland Office • Mailing Address: 1515 Clay Street, 16<sup>th</sup> Floor • Oakland, California 94612



Edmund G. Brown Jr. Governor

#### MEMORANDUM

# TO: Teklewold Ayalew, Ph.D., P.G. Engineering Geologist Regional Water Quality Control Board 320 West 4<sup>th</sup> Street, Suite 200 Los Angeles, CA 90013 FROM: James C. Carlisle, D.V.M., M.Sc., O

Staff Toxicologist Air, Community, and Environmental Research Branch

DATE: November 21, 2013

SUBJECT: REVISED SITE-SPECIFIC CLEANUP GOAL REPORT, FORMER KAST PROPERTY, CARSON, CALIFORNIA SWRCB#R4-09-17 OEHHA #880212-01

#### Document reviewed

 Revised Site-Specific Cleanup Goal Report, Former Kast Property, Carson, California, dated October 21, 2010 by Geosyntec Consultants, Inc.

#### Scope of review

 OEHHA's review is limited to risk assessment issues and does not include evaluation of explosion hazards or leaching/groundwater protection.

#### Response to previous comments

- OEHHA's April 23, 2013 comments on the first draft SSCG report are summarized below followed by OEHHA's evaluation of Shell's responses to these comments:
  - 1. Please consider whether major renovation projects such as pool installation or underground utility work are possible and whether residents could be exposed to deeper soils redistributed to the surface during and after such renovation.
    - a. SHELL RESPONSE: subsurface soils (e.g. >2-10 feet bgs) are considered for infrequent contact; the likelihood of a resident contacting soils at deeper depths is extremely low given the developed nature of the Site and typical residential activities where exposure to soil could occur (e.g., recreational activities, lawn care, landscaping). In addition, it is unlikely that soils from a deeper excavation (such as during a major renovation or utility repair work) would be placed at the surface due to the lack of area to place excavated soils. It is assumed for the infrequent contact scenario that institutional controls (e.g., a notification trigger added to the existing excavation permitting process, a soil management plan) to prevent redistribution of deep soils at the surface would be required.

#### California Environmental Protection Agency

The energy challenge facing California is real. Every Californian needs to take immediate action to reduce energy consumption.

Teklewold Ayalew November 21, 2013 Page2

> OEHHA's RESPONSE: Typically, residential exposure scenarios include soil down to 10 feet depth in the standard exposure scenario (i.e. 350 days per year). The rationale is that soils at this depth may be excavated and re-distributed to the surface. Shell's response calls for institutional controls that would prevent this re-distribution and presumably achieve the low exposure goals. The appropriateness of institutional controls is a risk management decision.

- 2. A Table showing final SSCGs and whether each is health-based or backgroundbased would be very helpful.
  - a. OEHHA's RESPONSE: Shell's Table 9-2 complies with this request (although it is unclear why "C" or "NC" were not included in the "Basis" column).
- 3. OEHHA questions the appropriateness of comparing background-based SSCGs to the 95 percent upper confidence limit (UCL<sub>95</sub>) for each property.
  - a. Shell's RESPONSE: For chemicals that are present at concentrations above the BTV, a one-sample proportion test will be used to compare the Site data with the BTVs.
  - b. OEHHA's RESPONSE: Shell's methodology is adequate.
- 4. In order to fully evaluate background arsenic and PAHs, reviewers need to see site-wide arsenic & PAH data.
  - a. OEHHA's RESPONSE: Sell indicates that hese data will be supplied as part of the HHRA.
- 5. Please consider evaluating the outdoor vapor inhalation pathway for residents or explain the exclusion of this pathway.
  - a. OEHHA's RESPONSE: Appendix D includes the statement "soil vapor to outdoor air screening levels were developed for the soil vapor to outdoor air pathway for residential exposures. However, this does not seem to be the case. The soil to outdoor air pathway was evaluated for residential exposures and the community air study and the outdoor air monitoring address outdoor air.
- 6. OEHHA supports assessing exposure and risk over the area to which individuals are likely to be exposed. This is typically the UCL<sub>95</sub> for each property, but if there are not enough samples from a given parcel to calculate a UCL, the exposure and risk calculations should be based on the maximum detected concentration in a particular medium on that parcel. OEHHA supports the summation of chemical-specific risks and hazards to estimate cumulative risks and hazards. The implication of cumulative risks and/or hazards that exceed target levels needs to be considered.
  - a. OEHHA's RESPONSE: This approach (described on page 44-45) was included in the original SSCG report.

California Environmental Protection Agency

#### SSCGs

- OEHHA was able to verify selected soil and soil vapor SSCGs by using the SSCG as the exposure concentration in a forward calculation.
- The assumed exposure of 4 days per year for soils from 2 to 10 feet bgs has been commented on previously. This assumption results in very high SSCGs for some contaminants in soils from 2 to 10 feet bgs.

## Regression analysis of indoor VOCs and their possible sources

- The use of detection limits as the explanatory variables for 1,2-DCA, benzene, carbon tetrachloride, ethylbenzene, m,p-xylene, and o-xylene may distort the relationship making it more difficult to discern any actual relationship (Table B-14 and Attachment A). Using benzene as an example:
  - In Figure 2 the indoor benzene concentrations corresponding to the nondetects in the sub-slab vary over about 3 orders of magnitude. Since there is no corresponding measured variation in sub-slab benzene it is difficult to tell how much of this variation in indoor benzene could be explained by variation in sub-slab benzene.
  - If sub-slab benzene is contributing to indoor benzene, one would expect the 13 or so data-points where benzene was detected in sub-slab vapors to have indoor values that are higher than those associated with nondetects. No such a difference is apparent in the graphic.
  - Unfortunately, there is no separate analysis of the 13 data points.
- The graphics in Attachment B clearly show that as apparent attenuation factor (AAF) values decline, the correlation between IA-OA and sub-slab VOCs increases.
- The table on page B-18 shows values for the correlation coefficient, usually designated as r. The graphs in Attachment B show similar values for r<sup>2</sup>. Please clarify whether these are r or r<sup>2</sup> values. (Presumably these are r values since r<sup>2</sup> [in most cases] cannot have a negative value.) Also, the graphic depicts, a negative r with positive beta, which seems unusual at best.
- Plots of AAF versus sub-slab VOCs (Figures B-10 & B-11) are more instructive in this regard. For chlorinated compounds, the AAF appears to flatten out at around 0.001. For petroleum compounds, the AAF also appears to flatten out at around 0.001, but the trend is less clear. For non-chlorinated solvents, the AAF does not appear to have reached a point of flattening out.
  - o The trend-line in B-11 is not labeled and it is unclear what it represents.

#### Community air

 Section 7.1 states that "all statistical tests (ANOVA, t-test, and Mann-Whitney) show that air concentrations within the Site boundary are not significantly different from concentrations from areas to the east (generally downwind) and west (generally upwind) of the Site." While not disputing the veracity of that statement, OEHHA cautions that failure to reject the null hypothesis does not

#### California Environmental Protection Agency

The energy challenge facing California is real. Every Californian needs to take immediate action to reduce energy consumption.

Teklewold Ayalew November 21, 2013 Page4

mean that the alternative hypothesis is proven, i.e. that the VOC concentrations in the different air masses are the same.

- However, alternative methods of data analysis, e.g. binomial distribution, as noted in our August 19, 2013 memorandum, raise the possibility that there are small increases in VOCs other than naphthalene that are below the detection thresholds of the statistical tests employed in the study report.
- OEHHA concurs with the conclusion that VOCs in the outdoor air at the Carousel Tract are within the reported range of VOCs in regional outdoor air, with the possible exception of naphthalene.

#### Editorial comments

- The factors labeled ECSS-SV-IA and ECSV-OA Section 5.1 of Appendix A would seem to be attenuation factors based on their units, but they are labeled as exposure concentrations.
- The last paragraph on ES-6 seems misplaced.
- The word "receptor" is not only unnecessary jargon but also, offensive to any
  resident of Carousel Tract who happens to read this document. In most, if not all,
  cases, "residential receptor" can be replaced with "resident" without loss of
  meaning.
- Appendix A section 3.1.2.2 presents equations for soil vapor to outdoor air then goes on to show how soil vapor concentrations are estimated from soil concentrations, which begs the question: "If soil vapor concentrations are estimated, why not use standard soil to outdoor air equations?" Based on a recent conference call, it is OEHHS's understanding that the more direct calculation will be used depending on the medium being analyzed.
- In some cases "VF" (meaning "volatilization factor") represents the ratio of VOC concentrations in outdoor air to soil vapor. This is dilution, not volatilization.
- Appendix A section 3.1.2.2, VF<sub>soil-OA</sub> is identified as the ratio of the outdoor air exposure point concentration (EPC<sub>soil-OA</sub>) to the soil exposure point concentration (EPC<sub>soil</sub>) in the text, but in the following equation, it is the inverse.
- Also in Table A-2 Soil vapor-to-outdoor air volatilization factor VF<sub>SV-OA</sub> (μg/m<sup>3</sup> per μg/m<sup>3</sup>) is identified as the ratio of chemical concentration in outdoor air (μg/m<sup>3</sup>) to chemical concentration in soil vapor (μg/m<sup>3</sup>). In Table A-3b, the units for VF<sub>SV-OA</sub> are given as "μg/m<sup>3</sup> per μg/m<sup>3</sup>" without specifying what media are represented by these units, but it is clear from the spreadsheets that VF<sub>SV-OA</sub> must be the ratio of chemical concentration in soil vapor to that in outdoor air.
- Similarly, in Table A-6 EC<sub>SV-OA</sub> (the exposure concentration for outdoor inhalation of chemicals from soil vapor is given as mg/m<sup>3</sup> per mg/m<sup>3</sup>, and VF<sub>SV-OA</sub> (the volatilization factor is given as µg/m<sup>3</sup> per µg/m<sup>3</sup>. One might think these are the same. But they are apparently inverted. Because the media represented by these units are not specified this inversion is not obvious.
- In Table A-3a (first 3 lines) "-"indicates division, contrary to common usage.

California Environmental Protection Agency

- In Table A-5, EC<sub>SS-SV-IA</sub> is defined as an exposure concentration. But the units are mg/m<sup>3</sup> per mg/kg. This is not a concentration, but a ratio, specifically the inverse of the VF, adjusted for exposure parameters.
- In Table A-7, EC<sub>inh,soil</sub> is defined as an exposure concentration. But the units are mg/m<sup>3</sup> per mg/m<sup>3</sup>. Clearly it is not a concentration; since the units in the equation cancel out, it must be some kind of a ratio. I might guess that it was intended to have an attenuation factor on the right side of the equation, in which case EC<sub>inh,soll</sub> could be an attenuation factor, adjusted for exposure parameters.
- The concerns reflected in the above comments refer to communication issues only. Since OEHHA was supplied with spreadsheets, we were able to verify the actual calculations. Not all readers will have that ability.

#### Conclusions and next steps

- OEHHA has verified the residential and occupational SSCGs for soil and soil vapor, but questions the exposure assumptions for soils from 2 to 10 feet bgs.
- The graphics in Attachment B and Tables B-10 and B-11, support an upper bound on alpha around 0.001. However, please identify the trend-line in B-11 and explain the correlation coefficients in Appendix B, as noted above.
- A univariate regression of sub-slab versus indoor minus outdoor benzene using only detected benzene data would help to dispel controversy concerning this relationship.
- Notwithstanding the conclusion that VOCs in the outdoor air at the Carousel Tract are generally within the reported range of VOCs in regional outdoor air, OEHHA considers the equivalence of upwind, on-site, and downwind VOC concentrations to be an open question.
- Please consider the editorial comments.

Peer reviewed by

H.H.

Hristo Hristov, MD, PhD

#### California Environmental Protection Agency

The energy challenge facing California is real. Every Californian needs to take immediate action to reduce energy consumption.

# **EXHIBIT 6**

| 1<br>2                                | CALDWELL LESLIE & PROCTOR, PC<br>MICHAEL R. LESLIE, State Bar No. 126820<br>leslie@caldwell-leslie.com             |                                                                                        |  |  |  |  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 3                                     | Zaft@caldwell-leslie.com                                                                                           |                                                                                        |  |  |  |  |  |  |  |
| 4                                     | Los Angeles, California 90017                                                                                      |                                                                                        |  |  |  |  |  |  |  |
| 5                                     | Facsimile: (213) 629-9040<br>Facsimile: (213) 629-9022                                                             |                                                                                        |  |  |  |  |  |  |  |
| 6                                     | Attorneys for Petitioners EQUILON ENTERPRISES                                                                      |                                                                                        |  |  |  |  |  |  |  |
| 7                                     | SHELL OIL COMPANY                                                                                                  |                                                                                        |  |  |  |  |  |  |  |
| 8                                     |                                                                                                                    |                                                                                        |  |  |  |  |  |  |  |
| 9                                     | STATE WATER RESOURCES CONTROL BOARD                                                                                |                                                                                        |  |  |  |  |  |  |  |
| 10                                    | FOR THE STATE OF CALIFORNIA                                                                                        |                                                                                        |  |  |  |  |  |  |  |
| 11                                    | In the Matter of the Detition of                                                                                   | Core No                                                                                |  |  |  |  |  |  |  |
| 12                                    |                                                                                                                    | Case No.                                                                               |  |  |  |  |  |  |  |
| 13                                    | OIL PRODUCTS US and SHELL OIL<br>COMPANY                                                                           | PETITION FOR REVIEW AND<br>REQUEST FOR HEARING                                         |  |  |  |  |  |  |  |
| 14<br>15                              | Cleanup and Abatement Order R4-2011-0046<br>California Regional Water Quality Control<br>Board, Los Angeles Region |                                                                                        |  |  |  |  |  |  |  |
| 16<br>17                              | California Water Code § 13304                                                                                      |                                                                                        |  |  |  |  |  |  |  |
| 18                                    | Equilon Enterprises LLC dba Shell Oil Pr                                                                           | roducts US and Shell Oil Company (collectively                                         |  |  |  |  |  |  |  |
| 19                                    | "Shell") hereby file this Petition for Review ("Pe                                                                 | tition"), along with the supporting Declarations                                       |  |  |  |  |  |  |  |
| 20                                    | of Douglas J. Weimer and exhibits (attached here                                                                   | eto and referred to hereafter as "Weimer Decl.")                                       |  |  |  |  |  |  |  |
| 21                                    | and David Marx. Shell also requests that an orde                                                                   | er be issued staving certain requirements in the                                       |  |  |  |  |  |  |  |
| 22                                    | subject Directive and that a hearing regarding this Petition be granted. Sad Water Code & 13300                    |                                                                                        |  |  |  |  |  |  |  |
| 23                                    | 23 Cal Code Reg 8 2053 Notwithstanding the technical issues raised in this protective Petition                     |                                                                                        |  |  |  |  |  |  |  |
| 24                                    | which are the subject of ongoing discussions between Shell and the California Regional Water                       |                                                                                        |  |  |  |  |  |  |  |
| 25                                    | Quality Control Board, Los Angeles Region (the "Regional Board"). Shell intends to submit the                      |                                                                                        |  |  |  |  |  |  |  |
| 26                                    | Remedial Action Plan and the Human Health Ris                                                                      | Remedial Action Plan and the Human Health Risk Assessment Report, along with drafts of |  |  |  |  |  |  |  |
| 27                                    | preliminary environmental documents, to the Regional Board by the March 10, 2014 deadline.                         |                                                                                        |  |  |  |  |  |  |  |
| 28<br>CALDWELL<br>LESLIE &<br>PROCTOR | 1 EXHIBIT 6                                                                                                        |                                                                                        |  |  |  |  |  |  |  |

PETITION FOR REVIEW AND REQUEST FOR HEARING

Shell alleges as follows:

1. Shell's mailing address is 20945 South Wilmington Avenue, Carson, California 2 90810. (Weimer Decl.,  $\P 2$ .) Shell requests that copies of all communications relating to this 3 Petition should be sent to Mr. Weimer at the foregoing address with copies sent to the above-4 captioned counsel. 5

2. Since 2008, Shell has been conducting an environmental investigation of the 6 former Kast Property located southeast of the intersection of Marbella Avenue and E. 244th 7 Street in Carson, California ("Site"). (Weimer Decl., ¶ 3.) On March 11, 2011, the Regional 8 Board issued Cleanup and Abatement Order No. R4-2011-0046 (the "CAO") which, inter alia, 9 directed Shell to "submit site-specific cleanup goals for residential (i.e., unrestricted) land use" 10 that "shall include detailed technical rationale and assumptions underlying each goal." (Exh. 1, 11 p. 13.)<sup>1</sup> On February 22, 2013, Shell timely submitted its initial Site-Specific Cleanup Goal 12 Report ("Initial SSCG Report"). On August 21, 2013, the Regional Board issued a response to 13 the Initial SSCG Report and directed Shell to revise the Site-Specific Cleanup Goals ("SSCGs") 14 for the Site in accordance with certain comments and directives. On October 21, 2013, Shell 15 timely submitted a Revised Site-Specific Cleanup Goal Report ("Revised SSCG Report") that 16 addressed and incorporated the Regional Board's comments and directives.<sup>2</sup> 17

On January 23, 2014, the Regional Board issued its Review of Revised Site-3. 18 Specific Cleanup Goal Report and Directive to Submit the Remedial Action Plan, Human Health 19 Risk Analysis, and Environmental Analysis for Cleanup of the Carousel Tract Pursuant to 20California Water Code Section 13304 ("Directive").<sup>3</sup> In the Directive, the Regional Board 21

22

27

28 CALDWELL

LESLIE & PROCTOR

1

23

<sup>1</sup> All exhibits referenced herein are attached to the Weimer Declaration.

24 <sup>2</sup> Copies of Shell's Initial SSCG Report, the Regional Board's August 21, 2013 response, and Shell's Revised SSCG Report are submitted as Exhibits 2 to 4, respectively. The text, tables and figures for the Initial and Revised SSCG Reports are attached to the Weimer Declaration, and 25 copies of the full reports (with the appendices) are included on CDs that are included with the 26 hard copy of the Petition.

<sup>3</sup> A copy of the Regional Board's Directive is submitted as Exhibit 5.

approved the SSCGs proposed in the Revised SSCG Report with certain modifications, and
 required Shell to submit a Remedial Action Plan for the Site ("RAP") by March 10, 2014, along
 with a Human Health Risk Assessment Report ("HHRA Report"), and "draft environmental
 documents consistent with the California Environmental Quality Act (CEQA) analyzing the
 potential environmental impacts associated with remediation alternatives considered in the
 RAP." (Exh. 5, p. 9.)

4. Shell submits this Petition for Review to request review by the State Water 7 Resources Control Board ("State Board") of certain requirements in the Regional Board's 8 Directive. Shell is diligently working to prepare and finalize the RAP, HHRA Report, and a draft 9 CEOA Initial Study and proposed Notice of Preparation ("NOP"), and intends to submit these 10 documents by March 10, 2014, the date specified in the Directive. However, Shell believes that 11 certain requirements and statements in the Directive lack evidentiary, legal and/or technical 12 support and should be revised as described below. Shell therefore files this protective Petition in 13 order to protect its rights and requests that the Petition be held in abeyance while Shell and the 14 Regional Board discuss these issues. If Shell and the Regional Board are unable to resolve the 15 issues raised herein, Shell will request that the State Board proceed with its review of Shell's 16 Petition and the relevant requirements in the Regional Board's Directive. 17

18

5.

This Petition for Review is made on the following grounds:

*First*, in its Directive, the Regional Board erroneously states that the a. 19 remedial action objective ("RAO") for methane in the Revised SSCG Report provides that 20 methane will not exceed two percent of the lower explosive limit ("LEL") and "will be removed 21 to less than two percent of the LEL and to the greatest extent technologically and economically 22 feasible." (Exh. 5, pp. 2-3.) This is inaccurate. The actual RAO for methane proposed in the 23 Revised SSCG Report is to "[p]revent fire/explosion risks in indoor air and/or enclosed spaces" 24 due to methane accumulation caused by degradation of petroleum hydrocarbons in the soil, and 25 to "[e]liminate methane in the subsurface to the extent technologically and economically 26 feasible." (Exh. 4, p. 34.) Shell assumes that the language on pages 2 and 3 is a clerical error. 27 However, to avoid any confusion regarding the RAO for methane, the relevant language in the 28 3

CALDWELL LESLIE & PROCTOR

PETITION FOR REVIEW AND REQUEST FOR HEARING

Directive should be rescinded and revised to reflect the actual RAO for methane contained in the 1 Revised SSCG Report. The Directive also states that "[t]he SSCG for methane should be the 2 more stringent of the lower explosive limit or the level that is technically and economically 3 feasible." (Exh. 5, p. 6.) This statement misapplies State Water Board Resolution No. 92-49 and 4 23 Code of Regulations § 2550.4, which authorize the establishment of a cleanup goal that is 5 greater than background and that is technologically and economically achievable. Thus, the 6 SSCG for methane should be Shell's stated RAO or the level that is technicologically and 7 economically feasible to achieve, and not whichever is "the more stringent" of the two. 8

Second, while the Regional Board has approved the application of depthb. 9 based soil cleanup levels, the Regional Board selected intervals of 0-5 feet below ground surface 10("bgs") for increased exposures and 5-10 feet bgs for less frequent exposures. (Exh. 5, p. 4.) In 11 selecting these intervals, the Regional Board concluded that "institutional controls are already in 12 place throughout Los Angeles County" because the Los Angeles County Building Code requires 13 that residents obtain an excavation permit before excavating below five feet. (Id.) Shell agrees 14 with this principle, but the actual ordinance applicable to the Site, the City of Carson Building 15 Code § 8105, requires that residents obtain a permit for excavations deeper than 3 feet bgs. In 16 addition, guidance from the Environmental Protection Agency ("US EPA") regarding exposure 17 assumptions and soil cleanup depths, and comments by the independent Expert Panel that is 18 advising the Regional Board, all support the use of depth intervals for risk-based soil cleanup 19 goals of 0-2 feet bgs and greater than 2-10 feet bgs. Given this, and in order to align the depth 20intervals with the applicable ordinance, Shell requests that the risk-based soil cleanup goals in 21 the Directive be revised to incorporate and reflect depth intervals of 0-3 feet bgs and 3-10 feet 22 bgs, which is more conservative than what US EPA guidance and Expert Panel comments 23 support. 24

*c. Third*, in its Directive, the Regional Board directs Shell to "develop odorbased screening levels for indoor air based on 50 percent odor-recognition thresholds as
published in the ATSDR Toxicological Profiles. For soil gas, follow the ESL for odor and other
nuisance to calculate a ceiling level for residential land use." (Exh. 5, p. 4, fn. 3.) In fact, Shell

proposed screening values for soil gas in the Revised SSCG Report that followed the ESL, but
the Regional Board reduced the TPH nuisance value by half without any explanation. Shell
believes the Regional Board's revised screening value is not supported and, in fact, contradicts
the Regional Board's express direction in footnote 3 of the Directive to "follow the ESL."
Accordingly, Shell requests that the TPH nuisance screening value in the Directive be rescinded
and revised to include the value submitted by Shell, which is consistent with the Regional
Board's direction in footnote 3 of the Directive.

Fourth, the Regional Board revised the soil cleanup levels based on d. 8 leaching to groundwater proposed by Shell in its Revised SSCG Report, but in so doing it relied 9 on improper assumptions and an inapplicable regulation, and its methodology generated 10 erroneous values, especially with respect to the revised value for total petroleum hydrocarbons as 11 motor oil ("TPH motor oil"). In particular, the Regional Board failed to apply a dilution 12 attenuation factor when it derived its soil cleanup levels based on leaching to groundwater. (Exh. 13 5, p. 5.) Accordingly, Shell requests that the leaching to groundwater soil cleanup levels in the 14 Directive be rescinded and replaced with those proposed in the Revised SSCG Report. 15

d. *Fifth*, while the Revised SSCG Report proposed an attenuation factor of 16 0.001 to apply to sub-slab soil vapor concentrations based on analysis of actual Site data, the 17 Regional Board directs Shell to use an attenuation factor of 0.002 to calculate SSCGs for soil 18 vapor that it bases on default numbers it states are recommended in recent agency guidance 19 documents. (Exh. 5, pp. 5-6.) However, these default attenuation factor values are provided to 20calculate soil vapor cleanup values in the absence of Site data, and in this instance, the Regional 21 Board has correctly described the Site data collected by Shell as "reliable, comprehensive, and 22 high-quality." (Exh. 3, p. 2.) Given the existence of such a robust and comprehensive data set 23 for the Site, the use of default values is not warranted. The requirement in the Directive to use an 24 attenuation factor of 0.002 should therefore be rescinded and revised to approve the attenuation 25factor proposed by Shell based on Site data, which is 0.001. 26

e. Sixth, while the Regional Board appears to agree that chlorinated
 hydrocarbons detected at the Site are not related to Shell's historical use of the Site for storage of

LESLIE & PROCTOR

crude oil and bunker oil, and therefore most such compounds are not Site-related Chemicals of 1 Concern ("COCs"), the Regional Board states in the Directive that tetrachloroethylene ("PCE") 2 and trichloroethylene ("TCE") in soil and soil vapor cannot be excluded from the list of COCs 3 for the Site. (Exh. 5, p. 7.) In making this determination, the Regional Board concedes the 4 existence of off-Site sources for these compounds, and it does not point to any evidence that 5 Shell in fact used PCE or TCE at the Site (and Shell has been unable to find any such evidence). 6 Instead, the only "evidence" the Regional Board identifies is the inclusion of chlorinated solvents 7 in a description for large industrial processes in the EPA's Toxic Release Inventory for the 8 Petroleum Industry. (Id.) Shell does not believe this general agency inventory is a proper or 9 sufficient basis for inclusion of PCE and TCE in the list of COCs for this specific Site, especially 10in light of the documented off-site sources for these compounds and the absence of evidence that 11 such compounds were used during Shell's ownership of the Site. For these reasons, Shell 12 requests that the inclusion of PCE and TCE as Site-related COCs be rescinded and the Directive 13 be revised to include only petroleum-related hydrocarbons as Site-related COCs. In addition, to 14 the extent that the Directive requires Shell to include other chlorinated compounds, such as 15 trihalomethanes ("THMs"), as Site-related COCs-despite the absence of evidence connecting 16 the presence of these compounds with Shell's historical use of the Site and the fact that such 17 chemicals are recognized to result from the use of municipal water in and around the home-18 Shell further requests that the State Board confirm that such compounds should not be listed as 19 Site-related COCs. 20

f. *Seventh*, the Directive includes a requirement that Shell submit by March 21 10, 2014 "draft environmental documents consistent with the California Environmental Quality 22 Act (CEQA) analyzing the potential environmental impacts associated with remediation 23 alternatives considered in the RAP." (Exh. 5, p. 9.) This requirement is vague and could be 24 construed to require submission of a Draft Environmental Impact Report along with the RAP, 25 which would not comply with the sequencing of environmental review actions required by 26 CEQA and its implementing regulations. Preparation of the Draft Environmental Impact Report 27 by March 10, 2014 would also be infeasible. It also fails to recognize that the Regional Board is 28

6

CALDWELL LESLIE & PROCTOR

the lead agency for both the RAP and CEQA process, not Shell. Shell is supporting the Regional 1 Board's environmental review process by, e.g., paying for an experienced and qualified 2 contractor to assist the Regional Board in complying with CEQA, and preparing to submit 3 preliminary environmental documents with the RAP and HHRA Report, including a draft Initial 4 Study, a draft Notice of Preparation, and a draft timeline for the environmental review process. 5 Shell will continue to support the Regional Board's environmental review process as the agency 6 and the CEQA consultant move forward. For all of the above reasons, however, the above-7 guoted requirement in the Directive is erroneous, infeasible and improper and should be clarified 8 or rescinded. 9

6. This Petition is filed pursuant to Section 13320, which authorizes any aggrieved
person to petition the State Board to review any action (or failure to act) by a regional board. *See*Water Code § 13223 (actions of the regional board shall include actions by its executive officer
pursuant to powers and duties delegated to him by the regional board). Shell is an aggrieved
party in this instance because the requirements and statements in the Directive that are the subject
of this Petition are vague and/or lack evidentiary, legal and/or technical support, or are otherwise
erroneous, and should be revised as described below.

7. Shell respectfully requests that the State Board grant the relief set forth in the
Request for Relief. Shell herewith submits a Request for Stay and asks the State Board to order
that the challenged portions of the Directive be stayed pending review of this Petition.

8. Shell requests a hearing regarding this Petition. The arguments that Shell wishes
to make at the hearing are summarized in this Petition, as is the testimony and evidence that Shell
would introduce at the hearing, which also are contained in the administrative record for this
matter. Shell reserves its right to supplement the testimony and evidence both prior to, and at,
the hearing on this Petition.

9. Shell's Statement of Points and Authorities in support of the issues raised by this
Petition commences below. Shell previously raised the issues discussed herein with the Regional
Board. (Weimer Decl., ¶ 26.)

28 CALDWELL LESLIE & PROCTOR

PETITION FOR REVIEW AND REQUEST FOR HEARING

|              |                                                                                                  |                                                                                                                       | · . | •     |             |              |              |      |  |
|--------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|-------|-------------|--------------|--------------|------|--|
| . 1          | 10. Shell reserves the right to modify and supplement this Petition, and also requests           |                                                                                                                       |     |       |             |              |              |      |  |
| 2            | an opportunity to present additional evidence, including any evidence that comes to light        |                                                                                                                       |     |       |             |              |              |      |  |
| 3            | following the filing of this Petition. See 23 Cal. Code Regs. § 2050.6.                          |                                                                                                                       |     |       |             |              |              |      |  |
| 4            | 11. Copies of this Petition and Shell's Request for Stay are being sent on this day by           |                                                                                                                       |     |       |             |              |              |      |  |
| 5            | personal delivery to the Regional Board to the attention of Mr. Samuel Unger, Executive Officer. |                                                                                                                       |     |       |             |              |              |      |  |
| 6            |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 7            |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 8            |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 9            |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 10           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 11           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 12           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 13           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 14           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 15           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 16           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| ´ 1 <b>7</b> |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 18           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 19           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 20           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 21           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 22           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 23           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 24           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 25           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 26           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| 27           |                                                                                                  |                                                                                                                       |     |       |             |              |              |      |  |
| CALDWELL     |                                                                                                  |                                                                                                                       |     | 8     |             |              | ·            | ĺ    |  |
| PROCTOR .    | и жили на ан-                                                                                    | <u>1959-50 – 1860 – 19-50 – 19-50 – 19-50 – 19-50 – 19-50 – 19-50 – 19-50 – 19-50 – 19-50 – 19-50 – 19-50 – 19-50</u> |     | PETIT | ION FOR REV | IEW AND REQU | JEST FOR HEA | RING |  |
| l            | 1                                                                                                |                                                                                                                       |     |       |             |              |              |      |  |

#### STATEMENT OF POINTS AND AUTHORITIES

#### 2 I. BACKGROUND

1

3

#### Shell's Investigation of the Site

The Site is an approximately 44-acre residential housing tract located southeast of 12. 4 Marbella Avenue and E. 244th Street in Carson, California. (Weimer Decl., ¶ 3.) Historical 5 records have established the following background regarding the Site. In 1923, Shell Company 6 of California, a corporation, purchased the Site for use as an oil storage facility at a time when 7 the surrounding area was largely undeveloped. (Id.,  $\P$  8.) It then constructed three large 8 reservoirs on the property, which were lined with concrete and surrounded by 15-foot high 9 levees. (Id.) The reservoirs were covered by frame roofs on wood posts. (Id.) The reservoirs 10 were primarily used to store crude oil. (Id.) 11

Active use of the reservoirs generally ceased by the early 1960s. (Id.,  $\P$  9.) In 13. 12 1965, after removing most of the oil from the concrete reservoirs, Shell Oil Company sold the 13 property to Richard Barclay of Barclay Hollander Curci and Lomita Development Company (the 14 "Developers"). (Id.) Shell is informed and believes that Barclay Hollander Curci became 15 Barclay Hollander Corporation, which is now an affiliate of Dole Food Company, Inc. (Id.) The 16 Developers bought the property from Shell with knowledge of the property's former use and 17 agreed to perform the site-clearing work, including removal of the remaining liquids, demolition 18 of the reservoirs, and permitting and grading. (Id.) The Developers secured a zoning change for 19 the property, decommissioned the reservoirs, graded the property, and constructed and sold the 20285 homes which now form the residential tract in Carson, California known as the Carousel 21 neighborhood. (Id.) However, to date, the Developers have not participated in the 22 environmental investigation or agreed to participate in any future cleanup. (Id.) 23

14. In 2008, Turco Products, Inc. ("Turco"), which was investigating contamination
(primarily chlorinated compound impacts) at its facility adjacent to the northwest portion of the
Site, performed step-out sampling which revealed petroleum hydrocarbon contamination at the
Site. (*Id.*, ¶ 10.) The Department of Toxic Substances Control ("DTSC") notified the Regional
Board regarding the petroleum contamination, which in turn notified Shell. (*Id.*) Based on

CALDWELL LESLIE & PROCTOR review of historical aerial maps of the area, the former oil storage reservoirs were identified as a
potential source of contamination at the Site. (*Id.*)

Following notification from the Regional Board, Shell began an extensive and 15. 3 thorough investigation of the soil, soil vapor, groundwater, and indoor and outdoor air at and 4 beneath the Site and adjacent areas, including both public and residential areas. (Id., ¶11.) The 5 sampling protocol proposed by Shell and approved by the Regional Board for the 285 residences 6 at the Site requires the collection and analysis of the following samples: (1) soil at multiple 7 locations and depths in the front- and backyards at each residence where exposed; (2) sub-slab 8 soil vapor at three locations from beneath the slab of each resident at the Site where feasible; and 9 (3) the indoor and outdoor air at the residence on two occasions at least 90 days apart. (Id.) In 10addition, an indoor air methane screening program is utilized early in the process to assess 11 whether methane is an issue in any of the residences. (Id.) The results of the tests are submitted 12 to the Regional Board, posted on the State Board's publicly accessible Geotracker website, and 13 also are forwarded to the Carousel residents or their designated legal representatives. (Id.) 14

15 16. The testing program is ongoing as access is granted by the residents. (*Id.*, ¶ 12.)
16 As of January 17, 2014, Shell has collected samples at 94% of the homes in the Carousel
17 neighborhood, and has completed all required testing at 78% of the homes. (*Id.*) Shell has been
18 conducting outreach to schedule the remaining houses and complete all residential testing. (*Id.*)

19 17. Shell has also conducted an extensive testing program in the public rights-of-way
20 (e.g., below the streets and sidewalks) in the Carousel neighborhood and surrounding
21 communities that has included soil, soil vapor and groundwater sampling, and methane
22 monitoring in utility vaults, stormwater drains and the like. (Id., ¶ 13.) Shell continues to
23 regularly conduct groundwater and sub-surface soil vapor sampling, and conduct methane
24 monitoring on an ongoing basis. (Id.) All sampling results are submitted to the Regional Board
25 and posted to the Geotracker website. (Id.)

18. The Regional Board has described Shell's investigation of the Site as "thorough"
and "extensive" and stated that Shell's site investigation has "provided reliable, comprehensive,
and high-quality data." (Exh. 3, p. 2.) As of December 31, 2013, Shell had collected 11,031 soil

CALDWELL

LESLIE & PROCTOR

1 samples, 2,695 soil vapor samples, and over 2,457 indoor and outdoor air samples, and the
2 testing program is ongoing. (Weimer Decl., ¶ 14.)

#### 3

28 CALDWELL

> LESLIE & PROCTOR

## <u>The Results of the Sampling at the Site</u>

While Shell is continuing to seek access to the remaining residences to complete
its investigation of the Site, the investigation is nearly completed. (Weimer Decl., ¶ 15.) Based
on the data obtained thus far (all of which has been submitted to the Regional Board and posted
on the State Board's Geotracker website), the results can be summarized as follows.

20. First, the Regional Board and the Los Angeles County Department of Public 8 Health have concluded that, while environmental impacts exist at the Site related to Shell's 9 former use of the Site and the subsequent development of the Site by the Developers, the 10 environmental conditions at the Site do not pose an imminent threat to the health and safety of 11 the Carousel residents. (Id., ¶ 16.) Shell has performed regular methane monitoring using field 12 instruments at 69 locations in the public rights-of-way such as utility vaults, stormwater drains 13 and similar locations, and methane has never been detected at levels of concern. (Id.) The Los 14 Angeles County Fire Department has also performed methane monitoring in the public areas of 15 the Site and has not detected methane at levels of concern. (Id.) 16

Methane has not been detected in laboratory analysis of any of the more than 21. 17 1,400 indoor air samples that have been collected from Carousel residences.  $(Id, \P 17.)$  The 18 residential methane screening program, which is conducted prior to indoor air sampling, has 19 detected only isolated instances of elevated methane due to natural gas leaks from utility lines or 20 appliances, and in those instances Shell has advised the residents to repair those leaks. (Id.) 21 Subsequent testing, when performed, has not revealed any methane hazards. (Id.) In the single 22 instance where elevated methane related to petroleum hydrocarbon degradation was detected in 23 the sub-slab soil gas beneath a garage, Shell installed a methane mitigation system according to 24 an engineering design and work plan approved by the Regional Board and Los Angeles County 25Department of Public Works Environmental Programs Division. (Id.) Multiple rounds of 26 follow-up testing have not shown any methane hazard at that home. (Id.) 27

22. While elevated levels of methane presumably related to anaerobic biodegradation 1 of petroleum hydrocarbons have been detected at depth, the lack of oxygen and any significant 2 vapor pressure at depth mitigates any risk related to explosion or fire. (Id., ¶ 18.) Site data 3 indicate that methane generated by degradation of petroleum hydrocarbons at depth under 4 anaerobic conditions is naturally controlled through biodegradation as it migrates through aerobic 5 surface soil. (Id.) 6

23. Second, analysis of the indoor air, outdoor air and sub-slab soil vapor samples 7 collected from the residences at the Site generally have shown indoor air concentrations to be 8 consistent with background values and to be correlated with garage and outdoor air.  $(Id, \P 19.)$ 9 As the Regional Board has recognized, this data does not indicate that vapor intrusion is an issue 10 at the Site. (Id.) 11

12

*Third*, there are widespread but uneven soil impacts at the Site that appear to be 24. related to the grading of the Site. (Id., ¶ 20.) The spatial distribution of the soil impacts is 13 somewhat stochastic and does not appear as a plume. (Id.) 14

Fourth, the groundwater beneath the Site is impacted by a plume that is stable 25. 15 with downgradient concentrations quickly dropping to levels below analytical reporting limits. 16 (Id., ¶21.) There exist multiple documented upgradient impacts that likely contribute to the 17 groundwater conditions beneath the Site. (Id.) Petroleum hydrocarbons in the form of light non-18 aqueous phase liquid ("LNAPL") have been detected in two monitoring wells located in the 19 western portion of the Site, and LNAPL removal from these wells is performed on a regular 20basis. (Id.) The groundwater at the Site is not used for municipal supply. (Id.) Carousel 21 residents obtain their drinking water from municipal supply provided by California Water 22 Service Company, which has confirmed that the Site's water supply meets quality standards for 23 drinking water. (Id.) 24

25

LESLIE & PROCTOR

#### Shell's Actions in Response to the CAO

On March 11, 2011, the Regional Board issued the CAO for the Site. (Exh. 1.) 26. 26 The CAO directed Shell to (1) complete delineation of on- and off-Site impacts in soil, soil vapor 27 and groundwater related to Shell's historical use of the Site; (2) continue groundwater monitoring 28 CALDWELL

and reporting: (3) develop and conduct a pilot testing work plan to evaluate remedial options for 1 the Site: and (4) conduct an assessment of any potential environmental impacts of residual 2 concrete slabs that were left at the Site by the developers, and evaluate whether removal of the 3 concrete is necessary and feasible. (Exh. 1, pp. 9-11.) Shell has completed (or, in the case of the 4 residential sampling, nearly completed) the above actions and has submitted reports to the 5 Regional Board that include analysis of the data. (Weimer Decl., ¶ 22.) The pilot test work 6 conducted by Shell included pilot testing of different excavation methods, soil vapor extraction, 7 bioventing, and chemical oxidation technologies. (Id.) Shell continues to perform quarterly 8 groundwater monitoring. (Id.) 9

1027.Per the Directive, the RAP required by the CAO and the HHRA Report are due on11March 10, 2014. (Exh. 1, pp. 11-12; Exh. 5, p. 9.)

12

27

28 CALDWELL

> LESLIE & PROCTOR

#### The Regional Board's Directive

The CAO also required Shell to prepare and "submit site-specific cleanup goals 28. 13 for residential (i.e., unrestricted) land use" that "shall include detailed technical rationale and 14 assumptions underlying each goal." (Exh. 1, p. 13.) On February 22, 2013, Shell timely 15 submitted its Initial SSCG Report. (Exh. 2.) On August 21, 2013, the Regional Board issued a 16 response to the Initial SSCG Report and directed Shell to revise the SSCGs for the Site in 17 accordance with certain comments and directives. (Exh. 3.) On October 21, 2013, Shell timely 18 submitted a Revised SSCG Report that addressed and incorporated the Regional Board's 19 comments and directives. (Exh. 4.) 20

21 29. On January 23, 2014, the Regional Board issued its Directive, which is the subject
22 of this Petition. (Exh. 5.) In the Directive, the Regional Board approved the SSCGs proposed in
23 the Revised SSCG Report with certain modifications, and required Shell to submit the RAP,
24 HHRA Report, and "draft environmental documents consistent with the California
25 Environmental Quality Act (CEQA) analyzing the potential environmental impacts associated
26 with remediation alternatives considered in the RAP." (Exh. 5, p. 9.)

30. Shell is in the process of preparing the RAP, HHRA Report and certain draft environmental documents. Notwithstanding the issues raised in this Petition, Shell intends to

submit the RAP and the HHRA Report, along with drafts of preliminary environmental 1 documents, to the Regional Board by the March 10, 2014 deadline specified in the Directive. 2 (Weimer Decl., ¶ 25.) 3

However, the Directive contains certain requirements and statements that are 31. 4 vague and/or lack evidentiary, legal and/or technical support or are otherwise erroneous, and 5 should be revised as described below. To protect its rights in this regard, Shell files this 6 protective Petition and seeks State Board review of these specific requirements and statements in 7 the event it is not able to resolve these issues with the Regional Board. 8

#### THE CHALLENGED SECTIONS OF THE DIRECTIVE SHOULD BE П. **RESCINDED AND REVISED** 10

11

20

21

22

23

9

#### The Statement in the Directive Regarding the RAO for Methane Is Inaccurate A.

In the Directive, the Regional Board acknowledges that Shell's "Revised Report 32. 12 addressed many of the comments in the Regional Board August 21, 2013 letter." (Exh. 5, p. 2.) 13 However, the Regional Board then erroneously states that the Revised SSCG Report "revised the 14 proposed remedial action objective (RAO) for methane such that methane will not exceed two 15 percent of the lower explosive limit and will be removed to less than two percent of the lower 16 explosive limit and to the greatest extent technologically and economically feasible." (Id., pp. 2-17 3.) This is not an accurate statement. The actual RAO proposed for methane states as follows: 18 Prevent fire/explosion risks in indoor air and/or enclosed spaces 19

(e.g., utility vaults) due to the accumulation of methane generated from the anaerobic biodegradation of petroleum hydrocarbons in soils. Eliminate methane in the subsurface to the extent technologically and economically feasible.

(Exh. 4, p. 34.) 24

33. Thus, the proposed RAO does not require the removal of methane to less than two 25 percent of the LEL, but instead prioritizes the prevention of fire and explosion risks in homes and 26 enclosed spaces, and also proposes to eliminate subsurface methane to the extent technologically 27 and economically feasible. Elsewhere in the Directive, the Regional Board characterizes the 28

14

PETITION FOR REVIEW AND REQUEST FOR HEARING

RAO for methane proposed in the Revised SSCG Report differently. (See Exh. 5, p. 6 ("In the 1 Revised Report, the revised RAOs proposes prevention of fire/explosion risks in indoor air 2 and/or enclosed spaces due to generation of methane by eliminating methane to the extent 3 technologically and economically feasible.").)<sup>4</sup> Thus, it appears that the statement regarding the 4 RAO for methane on page 2 of the Directive is a clerical error. However, to avoid any confusion. 5 Shell requests that this language be rescinded and revised to properly reflect the RAO proposed 6 in the Revised SSCG Report and quoted above. 7

34. The Directive also states that "[t]he SSCG for methane should be the more 8 stringent of the lower explosive limit or the level that is technically and economically feasible." 9 (Exh. 5, p. 6.) This statement misapplies State Water Board Resolution No. 92-49 and 23 Code 10 of Regulations § 2550.4, which authorize the establishment of a cleanup goal that is greater than 11 background and that is technologically and economically achievable. Thus, the SSCG for 12 methane should be Shell's stated RAO or the level that is technicologically and economically 13 feasible to achieve, and not whichever is "the more stringent" of the two. 14

15

16

**B**.

# The Risk Exposure Assumptions in the Directive Rely on an Inapplicable Municipal Code and Disregard Applicable US EPA Guidance

35. The Revised SSCG Report proposed risk-based soil cleanup levels for 0-2 feet bgs 17 based on more frequent typical residential exposures, and a second set of values for 2-10 feet bgs 18 based on the very low likelihood of residents contacting soils at such depths. (Exh. 4, pp. 42, 19 44.) In its Directive, the Regional Board approved the application of depth-based exposure 20 scenarios in setting risk-based soil cleanup levels, but it selected depths of 0-5 feet bgs and 5-10 21

PROCT'OR

<sup>22</sup> 

<sup>&</sup>lt;sup>4</sup> Notably, the SSCGs for methane in the Revised SSCG Report propose certain responses based 23 on the detection of specified methane levels (which are the same responses that the Regional Board approved in the Data Evaluation and Decision Matrix for the Site for deciding when 24 interim measures are necessary). (Exh. 4, p. 58.) These SSCGs provide that when methane is detected between two and ten percent of the LEL and soil vapor pressure is above 2.8 in water, 25 the response is to perform follow-up sampling and evaluate engineering controls. (Id.) Thus, the proposed SSCGs, which are consistent with DTSC's guidance for addressing methane at school sites, do not require the removal of methane to less than two percent of the LEL. The Directive 26 states that the Regional Board will review the response actions contained in the RAP. (Exh. 5, p. 27 6.) 28 CALDWELL 15 LESLIE &

feet bgs. (Exh. 5, p. 4.) The Regional Board based these intervals on its conclusion that
 "institutional controls are already in place throughout Los Angeles County" because the Los
 Angeles County Building Code requires that residents obtain an excavation permit before
 excavating below five feet. (*Id.*)

36. Shell agrees that local permitting ordinances serve as an institutional control that 5 help minimize residential contact with soils at depths where excavation to such depths trigger the 6 need for obtaining an excavation and/or grading permits. However, the specific ordinance 7 applicable to the Site requires that any excavation at the Site may only be conducted after 8 obtaining a grading permit unless the excavation "(a) is less than three (3) feet in depth below 9 natural grade, or (b) does not create a cut slope greater than three (3) feet in height and steeper 10than one and one-half (1-1/2) horizontal to one (1) vertical." City of Carson Building Code § 11 8105 (amending Los Angeles Cty. Building Code § 7003.1). Thus, application of the approach 12 used in the Directive and the specific permitting ordinance applicable to the Site results in depth 13 intervals for risk-based soil cleanup levels of 0-3 feet bgs and 3-10 bgs. Shell requests that this 14 portion of the Directive be rescinded and revised to reflect these depth intervals. 15

1637. The use of these risk-based soil depth intervals is consistent with comments from17the independent advisory Expert Panel, which stated in a memorandum dated January 14, 201418that "[w]e agree that the 0-2 feet interval is appropriate for the typical residential exposure and19expect, given the established nature of the neighborhood, the assumption that the resident is20exposed 4 times per year to soils at depths greater than 2 feet to be highly conservative." (Exh. 5,21Memo. from UCLA Expert Panel, Gary Krieger, to Los Angeles Regional Water Quality Control22Board, dated January 14, 2014, p. 2 (emphasis added).)

38. In reaching this conclusion, the Expert Panel cited US EPA guidance including
Soil Screening Guidance: User's Guide, Second Edition, Office of Solid Waste and Emergency
Response (July 1996), and Supplemental Guidance for Developing Soil Screening Levels for
Superfund Sites, Office of Solid Waste and Emergency Response (December 2002). The 1996
US EPA guidance states that "the decision to sample soils below 2 centimeters depends on the
likelihood of deeper soils being disturbed and brought to the surface (e.g., from gardening,

#### CALDWELL LESLIE & PROCTOR

PETITION FOR REVIEW AND REQUEST FOR HEARING
landscaping or construction activities." (USEPA, 1996, p. 12.) In the 2002 supplemental 1 guidance, the US EPA states that "residential activities (e.g., gardening) or commercial/industrial 2 (e.g., outdoor maintenance or landscaping) or construction activities that may disturb soils to a 3 depth of up to two feet, potentially exposing receptors to contaminants in a subsurface soil via 4 direct contact pathways such as ingestion and dermal absorption." (USEPA, 2002, pp. 2-8.) The 5 Expert Panel also cited Superfund Lead-Contaminated Residential Sites Handbook, Office of 6 Emergency and Remedial Response (August 2003), which recommends for remediation that "it 7 is strongly recommended that a minimum of twelve (12) inches of clean soil be used to establish 8 an adequate barrier from contaminated soil in a residential yard for the protection of human 9 health. ... With the exception of gardening the typical activities of children and adults in 10 residential properties do not extend below a 12-inch depth." (USEPA, 2003, p. 37.) Moreover, 11 "[t]wenty-four (24) inches of clean soil cover is generally considered to be adequate for 12 gardening areas . . . ." (Id.) 13

Given the depths set forth in these guidance documents, and the Expert Panel 39. 14 memorandum supporting the proposal in the Directive to use risk-based soil depth intervals of 0-15 2 feet bgs and 2-10 feet bgs, the Regional Board's reference to the precautionary principle to 16 support the depth intervals included in the Directive is inapposite here. The precautionary 17 principle provides that in the face of uncertainty or a lack of scientific consensus, regulatory 18 controls should incorporate a margin of safety. (Stewart, R.B., "Environmental Regulatory 19 Decision Making Under Uncertainty," Research in Law and Economics, 20: 76 (2002).) Here, 20 the US EPA guidance documents state that 1 foot of clean soil provides "an adequate barrier" for 21 adults and children, and, in areas where gardening may take place, 2 feet of cover is adequate. 22 Moreover, these guidance documents and the SSCGs for the site are conservative and already 23 build in a margin of safety. The Regional Board has not provided any basis or evidence to 24 support a conclusion that there is a lack of scientific consensus regarding the US EPA's 25 guidelines. Absent such uncertainty or scientific consensus, the precautionary principle does not 26 operate, and there should not be a requirement to apply more stringent cleanup levels to soil 27 depths (such as 4 and 5 feet), with which residents are highly unlikely to ever come into contact, 28 CALDWELL 17

LESLIE & PROCTOR

PETITION FOR REVIEW AND REQUEST FOR HEARING

according to agency guidance. This conclusion is further bolstered by consideration of the
 permitting rules in the City of Carson Building Code, which, applying the Regional Board's
 principle, act as an institutional control for excavations greater than 3 feet bgs.

4 40. Thus, while Shell continues to believe that depth intervals of 0-2 feet bgs and
5 greater than 2-10 feet bgs as proposed in the Revised SSCG Report are sufficient to protect
6 residents against any potential risks from long term exposure to soil, Shell requests that the
7 relevant portion of the Directive be rescinded and revised to require depth intervals for risk-based
8 soil cleanup goals of 0-3 feet bgs and greater than 3-10 feet bgs to align with the applicable
9 permitting ordinance.

10

С.

11

25

26

27

28 CALDWELL

> LESLIE & PROCTOR

## The Regional Board's Reduction of the TPH Nuisance Value for Soil Vapor Is Arbitrary and Contradicts Its Own Direction

In the Revised SSCG Report, Shell developed screening levels for soil vapor 41. 12 based on the ESL to address potential odor and other nuisance concerns. (See San Francisco Bay 13 Regional Water Quality Control Board (SFRWQCB), May 2013 ("SFRWQCB, 2013").) In its 14 Directive, the Regional Board cut the TPH nuisance value by 50% without explanation or 15 justification. (Exh. 5, Table 2 (listing TPH nuisance value of 50 ug/m3 instead of the 16 SFRWQCB ESL value for nuisance of 100 ug/m3).) The Regional Board's revision of this 17 value is not supported by reference to guidance and, in fact, its revision contradicts its own 18 direction to Shell elsewhere in the Directive to "follow the ESL for odor and other nuisance to 19 calculate a ceiling for residential land use" when calculating screening levels for soil gas. (Exh. 20 5, p. 4, fn. 3.) Shell believes the Regional Board's TPH nuisance value in Table 2 of the 21 Directive is not supported. Accordingly, Shell requests that the odor-based screening values in 22 the Directive be rescinded and revised to include the values included in the Revised SSCG 23 Report, which are consistent with the Regional Board's direction in footnote 3. 24

18

## D. The Soil Cleanup Levels Based on Leaching to Groundwater in the Directive Are Erroneous and Should Be Revised to Incorporate Use of an Attenuation Factor

42. In its Revised SSCG Report, Shell calculated a second set of soil cleanup goals 4 for the top 10 feet of soil based on the potential for Site-related COCs to leach to groundwater as 5 a result of infiltration of rainwater in exposed areas of the Site. (Exh. 4, pp. 46-49, Table 6-2.) 6 The methodology used in the Revised SSCG Report accounted for three transport components: 7 (1) leaching between soil and soil moisture, (2) attenuation due to distance above the 8 groundwater, and (3) a dilution-attenuation factor ("DAF") that accounts for the infiltration rate 9 of leachate through Site soils and mixing with groundwater flow. Consideration of the leaching 10 and DAF in the calculation of soil cleanup goals is consistent with guidance documents that Shell 11 was directed to apply in the development of Site cleanup goals. (Exh. 1, pp. 11-12; see also 12 USEPA Regional Screening Levels Users Guide, November 2013 ("USEPA, 2013"); USEPA 13 Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December 14 2002 ("USEPA, 2002"); SFRWQCB, 2013; and Commonwealth of Massachusetts Department 15 of Environmental Protection, Characterizing Risks Posed by Petroleum Contaminated Sites: 16 Implementation of the MADEP VPH/EPH Approach, Policy #WSC-02-411 17Background/Support Documentation for the Development of Publication Guidelines & Rule of 18 Thumb, October 2002 ("Commonwealth of Massachussetts DEP, 2002").) Additionally, the 19 1996 California Regional Water Quality Control Board's Interim Site Assessment & Cleanup 20Guidebook (LARWQCB, 1996) ("LARWQCB Guidebook") includes the following three 21 transport components for the calculation of soil screening levels: (1) leaching between soil and 22 soil moisture, (2) attenuation due to distance above the groundwater, and (3) attenuation due to 23soil type. The attenuation factors for soil types in the LARWQCB Guidebook account for 24 varying infiltration rates of leachate for different soil types. 25

43. In the Revised SSCG Report, the leaching step was modeled using the
LARWQCB Guidebook for organic chemicals and the US EPA Regional Screening
Methodology for metals. (Exh. 4, p. 47.) The leachate-groundwater mixing step was modeled

28 CALDWELL LESLIE & PROCTOR

1

2

3

PETITION FOR REVIEW AND REQUEST FOR HEARING

19

using the Soil Attenuation Model developed by J. A. Connor, et al. (Id., pp. 47-48.) The cleanup 1 values were then calculated using regulatory groundwater quality standards and the application of 2 a DAF, as recommended in the Soil Attenuation Model. (Id., p. 48.) 3

In its Directive, the Regional Board rejected the application of a DAF based on 44. 4 the fact that groundwater beneath the Site is already impacted. (Exh. 5, p. 5 and Memo. from 5 Yue Rong, Ph.D., and Weixong Tong, Ph.D., PG, CHG to Samuel Unger, P.E., Executive 6 Officer, dated December 10, 2013 ("Staff Memo").) Instead, the Regional Board proposed soil 7 SSCGs for the leaching pathway that neglect to apply the DAF, and then divided the values 8 presented in the Revised SSCG Report by a factor of 6.24. (Exh. 5, Table 1.) By incorporating 9 this modification, the Regional Board has neglected to account for the effect of infiltration rate 10 on the calculations. It is inappropriate to neglect this component of the conceptual model in 11 calculating soil cleanup goals. To the contrary, the infiltration rate is included in the LARWOCB 12 Guidebook as well as other guidance documents that describe methodologies to calculate soil 13 cleanup goals for the leaching pathway and that the Regional Board has directed Shell to consider 14 in the development of cleanup goals, such as USEPA, 2013; USEPA, 2002; SFRWQCB, 2013; 15 and Commonwealth of Massachusetts DEP, 2002. (See Exh. 1, pp. 11-12). 16

17

45. Additionally, the Regional Board erroneously applied a modification factor of 6.24 for the soil SSCG for TPH motor oil. (Exh. 5, Table 1.) The SSCG for TPH motor oil in 18 the Revised SSCG Report was based on the residual saturation concentration. (See Exh. 4, Table 19 9.2.) The DAF was not used in the calculation of this cleanup goal and consequently it is 20inappropriate to include the modification proposed by the Regional Board. 21

22

27

28 CALDWELL

> LESLIE & PROCTOR

46. Further, the statement by Regional Board staff that the use of a DAF "is against the State Anti-degradation Policy" is mistaken. (Exh. 5, Staff Memo, p. 2.) This policy, which is 23 documented in State Water Board Resolution No. 68-16, was passed to regulate "the granting of 24 permits and licenses for unappropriated waters and the disposal of wastes into the waters of the 25 State." Section 1 of Resolution 68-16 states: 26

> Whenever the existing quality of water is better than the quality established in policies as of the date on which such policies

<sup>20</sup> 

| 1                  | become effective, such existing high quality will be maintained                                             |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2                  | until it has been demonstrated to the State that any change will be                                         |  |  |  |  |  |
| 3                  | consistent with maximum benefit to the people of the State, will                                            |  |  |  |  |  |
| 4                  | not unreasonably affect present and anticipated beneficial use of                                           |  |  |  |  |  |
| 5                  | such water and will not result in water quality less than that                                              |  |  |  |  |  |
| 6                  | prescribed in the policies.                                                                                 |  |  |  |  |  |
| 7                  | (Emphasis added.) Section 2 of Resolution No. 68-16 states:                                                 |  |  |  |  |  |
| 8                  | Any activity which produces or may produce a waste or increased                                             |  |  |  |  |  |
| 9                  | volume or concentration of waste and which discharges or                                                    |  |  |  |  |  |
| 10                 | proposes to discharge to existing high quality waters will be                                               |  |  |  |  |  |
| 11                 | required to meet waste discharge requirements which will result in                                          |  |  |  |  |  |
| 12                 | the best practicable treatment or control of the discharge necessary                                        |  |  |  |  |  |
| 13                 | to assure that (a) a pollution or nuisance will not occur and (b) the                                       |  |  |  |  |  |
| 14                 | highest water quality consistent with maximum benefit to the                                                |  |  |  |  |  |
| 15                 | people of the State will be maintained.                                                                     |  |  |  |  |  |
| 16                 | (Emphasis added.)                                                                                           |  |  |  |  |  |
| 17                 | 47. Resolution No. 68-16 does not apply in this case for two reasons. <i>First</i> , nothing                |  |  |  |  |  |
| 18                 | in the Revised SSCG Report proposes a <i>new</i> activity that would result in discharges to existing       |  |  |  |  |  |
| 19                 | high quality waters, or requests the issuance of waste discharge permits. Instead, the Revised              |  |  |  |  |  |
| 20                 | SSCG Report proposes cleanup levels for existing historical impacts.                                        |  |  |  |  |  |
| 21                 | 48. <i>Second</i> , it is highly unlikely that the water quality levels for the relevant                    |  |  |  |  |  |
| 22                 | constituents beneath the Site were <i>better</i> than the water quality levels set in the Basin Plan at the |  |  |  |  |  |
| 23                 | time the Basin Plan was adopted in 1994. By 1994, the environmental conditions at the Site had              |  |  |  |  |  |
| 24                 | existed for at least twenty-five years and included impacts from upgradient sources including the           |  |  |  |  |  |
| 25                 | Turco facility and the former Fletcher Oil Refinery. Thus, it is highly likely that the groundwater         |  |  |  |  |  |
| 26                 | was already impacted in 1994. Indeed, groundwater sampling data indicates that the groundwater              |  |  |  |  |  |
| 27                 | plume is stable or decreasing, which suggests that impacts have been present in the groundwater             |  |  |  |  |  |
| 28<br>/ELL<br>JE & | for a substantial period of time. Given this, Resolution No. 68-16—which, again, is aimed at 21             |  |  |  |  |  |

CALDWELL LESLIE & PROCTOR

ł

PETITION FOR REVIEW AND REQUEST FOR HEARING

1 preserving better-than-established water quality levels—is inapplicable here. As one court
2 explained:

| 3          | When undertaking an antidegradation analysis, the Regional Board                                     |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 4          | must compare the baseline water quality to the water quality                                         |  |  |  |  |  |
| 5          | objectives. If the baseline water quality is equal to or less than the                               |  |  |  |  |  |
| 6          | objectives, the objectives set forth the water quality that must be                                  |  |  |  |  |  |
| 7          | maintained or achieved. In that case the antidegradation policy is                                   |  |  |  |  |  |
| 8          | not triggered. However, if the baseline water quality is better than                                 |  |  |  |  |  |
| 9          | the water quality objectives, the baseline water quality must be                                     |  |  |  |  |  |
| 10         | maintained in the absence of findings required by the                                                |  |  |  |  |  |
| 11         | antidegradation policy.                                                                              |  |  |  |  |  |
| 12         | Asociacion de Gente Unida por el Agua v. Cent. Valley Reg'l Water Quality Control Bd., 210           |  |  |  |  |  |
| 13         | Cal.App.4th 1255, 1270 (2012) (emphasis added).                                                      |  |  |  |  |  |
| 14         | 49. For the reasons stated above, Shell requests that the soil cleanup levels in the                 |  |  |  |  |  |
| 15         | Directive based on leaching to groundwater be rescinded and revised to conform with the values       |  |  |  |  |  |
| 16         | proposed in the Revised SSCG Report.                                                                 |  |  |  |  |  |
| 17         | E. The Regional Board's Doubling of the Soil Vapor Attenuation Factor Proposed                       |  |  |  |  |  |
| 18         | in the Revised SSCG Report Is Erroneous and Unsupported                                              |  |  |  |  |  |
| 1 <b>9</b> | 50. In the Revised SSCG Report, Shell analyzed soil vapor and indoor air data for the                |  |  |  |  |  |
| 20         | Site and calculated an attenuation factor for soil vapor of 0.001. (Exh. 4, App. B, pp. B-17 and     |  |  |  |  |  |
| 21         | B-18.) In its Directive, the Regional Board does not criticize Shell's analysis or methodology,      |  |  |  |  |  |
| 22         | but nevertheless directs Shell to use an attenuation factor of 0.002 to calculate SSCGs for soil     |  |  |  |  |  |
| 23         | vapor that the Regional Board based on default numbers it states are recommended in DTSC and         |  |  |  |  |  |
| 24         | US EPA agency guidance documents. (Exh. 5, pp. 5-6.) However, the <i>default</i> attenuation factor  |  |  |  |  |  |
| 25         | values in these guidance documents are intended to be used for preliminary screening                 |  |  |  |  |  |
| 26         | evaluations. (DTSC Vapor Intrusion Guidance Document, October 2011, p. 16.) Here, extensive          |  |  |  |  |  |
| 27         | Site data have already been collected and analyzed, and the Regional Board has described this        |  |  |  |  |  |
| 28<br>ELL  | data set as "reliable, comprehensive, and high-quality." (Exh. 3, p. 2.) Given this, the Regional 22 |  |  |  |  |  |

CALDWELL LESLIE & PROCTOR Board's reliance on, and use of, default values is unnecessary and misplaced, and the requirement
in the Directive to use an attenuation factor of 0.002 should be rescinded and revised to
incorporate the attenuation factor of 0.001 presented in the Revised SSCG Report.

4

5

24

28 CALDWELL

LESLIE & PROCTOR

F.

## The Directive's Inclusion of PCE and TCE as Site-Related COCs Lacks Evidentiary Support and Should Be Rescinded

6 51. In the Revised SSCG Report, Shell explained that although chlorinated
7 compounds have been detected at the Site, they are not considered Site-related COCs because no
8 historical evidence exists that chlorinated solvents were used at the Site, and because off-Site
9 sources for these compounds exist. (Exh. 4, pp. 10-13.) This includes PCE and TCE, as well as
10 THMs such as bromomethane, chloroform and others.<sup>5</sup>

52. While the Regional Board has previously stated that Shell is not responsible for 11 addressing compounds that are not associated with its historical use of the Site, the Regional 12 Board states in the Directive that PCE and TCE in soil and soil vapor cannot be excluded from 13 the list of COCs for the Site. (Exh. 5, p. 7.) In making this determination, the Regional Board 14 concedes the existence of off-site sources for these compounds (which are well documented and 15 described in detail in the Revised SSCG Report, see Exh. 4, pp. 11-12), and it does not point to 16 any evidence that Shell in fact used PCE or TCE at the Site (and Shell has been unable to find 17 any such evidence). Instead, the only "evidence" the Regional Board identifies is the inclusion of 18 chlorinated solvents in a description for large industrial processes in the EPA's Toxic Release 19 Inventory for the Petroleum Industry. Such a generalized industry "inventory" is not a proper or 20sufficient basis for inclusion of PCE and TCE in the list of COCs for this specific Site, especially 21 in light of the absence of evidence that such compounds were used during Shell's ownership of 22 the Site and the presence of documented off-Site sources for these compounds. It is well-23

<sup>&</sup>lt;sup>5</sup> The presence of THMs at the Site are most likely connected to the use of municipal water supply to irrigate yards and landscaping or leaking water lines and other household water use.
(Exh. 4, p. 13.) THMs are byproducts of water treatment by chlorine or chloramines and have been found in the domestic water supplied to the Carousel by California Water Service
(Id.) Other chlorinated compounds detected at the Site are associated with common household products. (Id., p. 14.)

established that a party can only be required to address the effects of the discharge it caused. In 1 re HR Texton, Inc., WQ 94-2, 1994 WL 86342, at \*3-4 (Cal.St.Wat.Res.Bd.) (substantial 2 evidence must show both that the named party caused or permitted the discharge in question and 3 that the discharge caused the contamination that is the subject of the order). Accordingly, Shell 4 requests that the inclusion of PCE and TCE as Site-related COCs be rescinded and the Directive 5 be revised to include only petroleum-related hydrocarbons as Site-related COCs. 6

Shell has previously explained why other chlorinated compounds, such as THMs, 53. 7 should not be included as Site-related COCs. To the extent that the Directive requires Shell to 8 include other chlorinated compounds, including trihalomethanes THMs, as Site-related COCs 9 despite the absence of evidence connecting the presence of these compounds with Shell's 10 historical use of the Site, Shell further requests that the State Board confirm that such compounds 11 should not be listed as Site-related COCs. 12

13

*G*.

14

15

LESLIE & PROCTOR

## The Directive's Requirement that Shell Submit Draft Environmental Documents Consistent with CEQA Is Vague, Unrealistic and Inconsistent with the Mandated Order of Actions Under CEQA and Its Regulations

In the Directive, the Regional Board directs Shell to submit, with the RAP and the 54. 16 HHRA Report, "draft environmental documents consistent with the California Environmental 17 Quality Act (CEQA) analyzing the potential environmental impacts associated with remediation 18 alternatives considered in the RAP." (Exh. 5, p. 9.) For numerous reasons, Shell believes this 19 requirement should be rescinded. 20

First, the requirement is vague in that it does not specify which "draft 55. 21 environmental documents" are required to be submitted on March 10, 2014 with the RAP and the 22 HHRA Report. For this reason, Shell cannot know what specifically is required of it and what it 23 must do to comply. 24

Second, to the extent this is meant to require the submission of the Draft 56. 25 Environmental Impact Report ("EIR") or a similar document, such a requirement would not 26 comply with CEQA. A Draft EIR cannot be prepared until after the project has been defined and 27 the lead agency has sent a Notice of Preparation to the State clearinghouse and each responsible 28 CALDWELL

24

agency. 14 Cal. Code Regs. § 15082(a). The Notice of Preparation must include "sufficient 1 information describing the project and the potential environmental effects to enable the 2 responsible agencies to make a meaningful response." 14 Cal. Code Regs. § 15082(a)(1). While 3 work on the draft EIR may begin immediately after the submission of the Notice of Preparation, 4 the "lead agency shall not circulate a draft EIR for public review before the time period for 5 responses to the notice of preparation has expired." 14 Cal.Code Regs. § 15082(a)(4). Here, the 6 Notice of Preparation had to await the Board's approval of the SSCGs for the Site, which only 7 occurred on January 23, 2014, as well as the development of the RAP, which is currently under 8 way. Thus, the only "draft environmental documents" that could be submitted with the RAP and 9 the HHRA Report on March 10, 2014 in compliance with CEQA would be a draft Initial Study 10 and a draft Notice of Preparation. Anything further would not comply with CEQA's 11 implementing regulations. 12

57. Third, in addition to being premature, any requirement to submit a Draft EIR by 13 March 10, 2014 would also be infeasible. For a project of this complexity, the preparation of a 14 Draft EIR, including the identification of a range or reasonable alternatives to the project which 15 would feasibly attain most of the basic objectives of the project but would avoid or substantially 16 lessen any of the significant effects of the project (see 14 Cal. Code Reg. § 15126.6), typically 17requires at least 12 weeks after the project has been defined. (Declaration of David Marx, ¶ 3.) 18 Prior to the Regional Board's approval of the SSCGs for the Site on January 23, 2014, Shell 19 lacked critical information that is directly relevant to the potential remedy for the Site. It is 20important to note here that the Regional Board did not approve the Initial SSCG Report and 21 instead directed Shell to revise the SSCGs, and when the Regional Board ultimately approved 22 SSCGs it directed Shell to include alternatives that had previously been screened out as part of 23 the preliminary feasibility analysis that was included in the Revised SSCG Report. Thus, 24 preparation of a Draft EIR was unquestionably premature prior to the approval of the SSCGs. 25Even assuming that the preparation of the Draft EIR could have commenced on the date the 26 Regional Board approved the SSCGs, it would have been logistically infeasible to complete the 27 preparation of the Draft EIR in six weeks. (Id.) Moreover, given that the RAP is currently being 28 25

prepared, Shell does not believe that it is feasible or legally permissible to begin to prepare the
 Draft EIR until the remedy has been proposed in the RAP; accordingly, it is even more infeasible
 that a Draft EIR could be submitted at the same time that the RAP is due.

*Fourth*, the requirement in the Directive for Shell to submit "draft environmental 58. 4 documents" is misplaced. Under CEQA, it is the Regional Board, as the lead agency, that is 5 required to perform the environmental review, not Shell. See Public Res. Code § 21080.1 ("[t]he 6 lead agency shall be responsible for determining whether an environmental impact report, a 7 negative declaration, or a mitigated negative declaration shall be required for any project"); 8 Public Res. Code § 21080.4 ("[i]f a lead agency determines that an environmental impact report 9 is required for a project, the lead agency shall immediately send notice of that determination by 10certified mail or an equivalent procedure to each responsible agency, the Office of Planning and 11 Research, and those public agencies having jurisdiction by law over natural resources affected by 12 the project ...."); 14 Cal. Code Regs. § 15082(a) ("the lead agency shall send ... a notice of 13 preparation"); 14 Cal. Code Regs. § 15082(a)(4) ("[t]he lead agency may begin work on the draft 14 EIR"); Planning and Conservation League v. Department of Water Resources, 83 Cal.App.4th 15 892, 903 (2000) (under CEQA lead agency is responsible "for preparing the EIR and including it 16 in any report of the project"). Nothing in the Water Code authorizes the Regional Board to shift 17 the CEQA requirements onto Shell, and indeed such a delegation is proscribed. Planning and 18 Conservation League, 83 Cal.App.4th at 907 ("So significant is the role of the lead agency that 19 CEQA proscribes delegation"). Nevertheless, it is not unusual for a responsible party to support 20the agency's environmental review process, and Shell is doing this by, e.g., paying for an 21 experienced and qualified contractor to assist the Regional Board in complying with CEQA, and 22preparing to submit preliminary environmental documents with the RAP and HHRA Report, 23 including a draft Initial Study, and a draft Notice of Preparation. Shell will continue to support 24 the Regional Board's environmental review process as the agency and the CEQA consultant 25 move forward. 26

27 28

CALDWELL

LESLIE & PROCTOR 26

| 1                               | REQUEST FOR RELIEF                                                                              |  |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2                               | For the reasons set forth above, Shell respectfully requests that the State Board grant         |  |  |  |  |  |
| 3                               | Shell the following relief:                                                                     |  |  |  |  |  |
| 4                               | 1. That the State Board grant Equilon's Request for Stay, filed concurrently                    |  |  |  |  |  |
| 5                               | herewith, and stay those requirements in the Regional Board's Directive that are the subject of |  |  |  |  |  |
| 6                               | this Petition pending the State Board's decision.                                               |  |  |  |  |  |
| 7                               | 2. That the State Board hold a hearing on the CAO, and Shell be permitted to present            |  |  |  |  |  |
| 8                               | evidence and testimony supporting the arguments contained herein.                               |  |  |  |  |  |
| 9                               | 3. That the challenged portions of the Directive be rescinded by the State Board and            |  |  |  |  |  |
| 10                              | that the State Board direct the Regional Board to revise those portions as described above.     |  |  |  |  |  |
| 11                              | 4. In the alternative, that the State Board grant Shell's Request for Stay and hold this        |  |  |  |  |  |
| 12                              | Petition in abeyance pursuant to California Code of Regulations, Title 23 § 2020.5(d) to permit |  |  |  |  |  |
| 13                              | the Regional Board and Shell to engage in discussions in an attempt to informally resolve this  |  |  |  |  |  |
| 14                              | matter.                                                                                         |  |  |  |  |  |
| 15                              | 5. Such other relief as the State Board may deem just and proper.                               |  |  |  |  |  |
| 16                              | CALDWELL LESUE & PROCTOR PC                                                                     |  |  |  |  |  |
| 17                              | DATED: February 24, 2014<br>MICHAEL R. LESLIE<br>DAVID 7 AFT                                    |  |  |  |  |  |
| 18                              |                                                                                                 |  |  |  |  |  |
| 19                              | By DAVID ZAFT                                                                                   |  |  |  |  |  |
| 20                              | Attorneys for Petitioners EQUILON ENTERPRISES                                                   |  |  |  |  |  |
| 21                              | SHELL OIL COMPANY                                                                               |  |  |  |  |  |
| 22                              |                                                                                                 |  |  |  |  |  |
| 23                              |                                                                                                 |  |  |  |  |  |
| 24                              |                                                                                                 |  |  |  |  |  |
| 25                              |                                                                                                 |  |  |  |  |  |
| 26                              |                                                                                                 |  |  |  |  |  |
| 27                              |                                                                                                 |  |  |  |  |  |
| 28                              |                                                                                                 |  |  |  |  |  |
| CALDWELL<br>LESLIE &<br>PROCTOR | 27                                                                                              |  |  |  |  |  |
|                                 | PETITION FOR KEVIEW AND REQUEST FOR HEARING                                                     |  |  |  |  |  |

## **DECLARATION OF DOUGLAS J. WEIMER**

I, Douglas J. Weimer, declare and state:

1

2

7

8

1. I am a Senior Principal Program Manager employed by Equilon Enterprises LLC 3 dba Shell Oil Products US ("Equilon"). My duties include directing and managing 4 environmental investigations and remediation projects. Based on my involvement in Equilon's 5 activities relating to the former Kast Property, I have personal knowledge of the facts stated 6 herein, or I have been informed of and believe such facts, and could and would testify competently thereto if called as a witness in this matter.

Equilon's mailing address is 20945 South Wilmington Avenue, Carson, 2. 9 California 90810. 10

3. Since 2008, Equilon, on behalf of Shell Oil Company, has been conducting an 11 environmental investigation of the former Kast Property, which is approximately 44 acres in size 12 and is located southeast of the intersection of Marbella Avenue and E. 244th Street in Carson, 13 California ("Site"). (Equilon and Shell Oil Company are referred to collectively as "Shell.") On 14 March 11, 2011, the California Regional Water Quality Control Board, Los Angeles Region (the 15 "Regional Board") issued Cleanup and Abatement Order No. R4-2011-0046 (the "CAO"). A 16 true and correct copy of the CAO is attached hereto as Exhibit 1. The CAO directed Shell to, 17inter alia, "submit site-specific cleanup goals for residential (i.e., unrestricted) land use" that 18 "shall include detailed technical rationale and assumptions underlying each goal." (Exh. 1 19 (CAO), p. 13.) 20

On February 22, 2013, Shell timely submitted its initial Site-Specific Cleanup 4. 21 Goal Report ("Initial SSCG Report"). A true and correct copy of the Initial SSCG Report is 22 submitted herewith as Exhibit 2. 23

5. On August 21, 2013, the Regional Board issued a response to the Initial SSCG 24 Report and directed Shell to revise the Site-Specific Cleanup Goals ("SSCGs") for the Site in 25 accordance with certain comments and directives. A true and correct copy of the Regional 26 Board's August 21, 2013 response letter is attached hereot as Exhibit 3. 27

CALDWELL LESLIE & PROCTOR

28

**DECLARATION OF DOUGLAS J. WEIMER** 

6. On October 21, 2013, Shell timely submitted a Revised Site-Specific Cleanup
 Goal Report ("Revised SSCG Report") that addressed and incorporated the Regional Board's
 comments and directives. A true and correct copy of the Revised SSCG Report is submitted
 herewith as Exhibit 4.

7. On January 23, 2014, the Regional Board issued its Review of Revised SiteSpecific Cleanup Goal Report and Directive to Submit the Remedial Action Plan, Human Health
Risk Analysis, and Environmental Analysis for Cleanup of the Carousel Tract Pursuant to
California Water Code Section 13304 (the "Directive"), which is the subject of this Petition. A
true and correct copy of the Directive is attached hereto as Exhibit 5.

10

#### Shell's Investigation of the Site

8. Historical records have established the following background regarding the Site.
In 1923, Shell Company of California, a corporation, purchased the Site for use as an oil storage
facility at a time when the surrounding area was largely undeveloped. It then constructed three
large reservoirs on the property, which were lined with concrete and surrounded by 15-foot high
levees. The reservoirs were covered by frame roofs on wood posts. The reservoirs were
primarily used to store crude oil.

Active use of the reservoirs generally ceased by the early 1960s. In 1965, after 9. 17 removing most of the oil from the concrete reservoirs, Shell Oil Company sold the property to 18 Richard Barclay of Barclay Hollander Curci and Lomita Development Company (the 19 "Developers"). Shell is informed and believes that Barclay Hollander Curci became Barclay 20 Hollander Corporation, which is now an affiliate of Dole Food Company, Inc. The Developers. 21bought the property from Shell with knowledge of the property's former use and agreed to 22 perform the site-clearing work, including removal of the remaining liquids, demolition of the 23 reservoirs, and permitting and grading. The Developers secured a zoning change for the 24 property, decommissioned the reservoirs, graded the property, and constructed and sold the 285 25 homes which now form a residential tract in Carson, California known as the Carousel 26neighborhood. However, to date, the Developers have not participated in the environmental 27 investigation or agreed to participate in any future cleanup. 28

CALDWELL LESLIE & PROCTOR

-2-

In 2008, Turco Products, Inc. ("Turco"), which was investigating contamination
 (primarily chlorinated compound impacts) at its facility adjacent to the northwest portion of the
 Site, performed step-out sampling which revealed petroleum hydrocarbon contamination at the
 Site. The Department of Toxic Substances Control ("DTSC") notified the Regional Board
 regarding the petroleum contamination, which in turn notified Shell. Based on review of
 historical aerial maps of the area, the former oil storage reservoirs were identified as a potential
 source of contamination at the Site.

11. Following notification from the Regional Board, Shell began an extensive and 8 9 thorough investigation of the soil, soil vapor, groundwater, and indoor and outdoor air at and beneath the Site and adjacent areas, including both public and residential areas. The sampling 10 protocol proposed by Shell and approved by the Regional Board for the 285 residences at the Site 11 requires the collection and analysis of the following samples: (1) soil at multiple locations and 12 depths in the front- and backyards at each residence where exposed; (2) sub-slab soil vapor at 13 three locations from beneath the slabs of each residence at the Site where feasible; and (3) the 14 indoor and outdoor air at the residence on two occasions at least 90 days apart. In addition, an 15 indoor air methane screening program is utilized early in the process to assess whether methane 16 is an issue in any of the residences. The results of the tests are submitted to the Regional Board, 17posted on the State Board's publicly accessible Geotracker website, and also are forwarded to the 18 Carousel residents or their designated legal representatives. 19

12. The testing program is ongoing as access is granted by the residents. As of
January 17, 2014, Shell has collected samples at 94% of the homes in the Carousel
neighborhood, and has completed all required testing at 78% of the homes. Shell has been
conducting outreach to schedule the remaining houses and complete all residential testing.

Shell has also conducted an extensive testing program in the public rights-of-way
(e.g., below the streets and sidewalks) in the Carousel neighborhood and surrounding
communities that has included soil, soil vapor and groundwater sampling, and methane
monitoring in utility vaults, stormwater drains and the like. Shell continues to regularly conduct
groundwater and sub-surface soil vapor sampling, and conduct methane monitoring on an

-3-

ongoing basis. All sampling results are submitted to the Regional Board and posted to the
 Geotracker website.

14. The Regional Board has described Shell's investigation of the Site as "thorough"
and "extensive" and stated that Shell's site investigation has "provided reliable, comprehensive,
and high-quality data." (Exh. 3, p. 2.) As of December 31, 2013, Shell had collected 11,031 soil
samples, 2,695 soil vapor samples, and over 2,457 indoor and outdoor air samples. The testing
program is ongoing.

## 8

## The Results of the Sampling at the Site

9 15. While Shell is continuing to seek access to the remaining residences to complete
10 its investigation of the Site, the investigation is nearly completed. Based on the data obtained
11 thus far (all of which has been submitted to the Regional Board and posted on the State Board's
12 Geotracker website), the results can be summarized as follows.

16. First, the Regional Board and the Los Angeles County Department of Public 13 Health have concluded that, while environmental impacts exist at the Site related to Shell's 14 former use of the Site and the subsequent development of the Site by the Developers, the 15 environmental conditions at the Site do not pose an imminent threat to the health and safety of 16 the Carousel residents. Shell has performed regular methane monitoring using field instruments 17 at 69 locations in the public rights-of-way such as utility vaults, stormwater drains and similar 18 locations, and methane has never been detected at levels of concern. The Los Angeles County 19 Fire Department has also performed methane monitoring in the public areas of the Site and has 20 not detected methane at levels of concern. 21

17. Methane has not been detected in laboratory analysis of any of the more than
1,400 indoor air samples that have been collected from Carousel residences. The residential
methane screening program, which is conducted prior to indoor air sampling, has detected only
isolated instances of elevated methane due to natural gas leaks from utility lines or appliances,
and in those instances Shell has advised the residents to repair those leaks. Subsequent testing,
when performed, has not revealed any methane hazards. In the single instance where elevated
methane related to petroleum hydrocarbon degradation was detected in the sub-slab soil gas

-4-

#### CALDWELL LESLIE & PROCTOR

DECLARATION OF DOUGLAS J. WEIMER

beneath a garage, Shell installed a methane mitigation system according to an engineering design
 and work plan approved by the Regional Board and Los Angeles County Department of Public
 Works Environmental Programs Division. Multiple rounds of follow-up testing have not shown
 any methane hazard at that home.

5 18. While elevated levels of methane presumably related to anaerobic biodegradation
6 of petroleum hydrocarbons have been detected at depth, the lack of oxygen and any significant
7 vapor pressure at depth mitigate any risk related to explosion or fire. Site data indicate that
8 methane generated by degradation of petroleum hydrocarbons at depth under anaerobic
9 conditions is naturally controlled through biodegradation as it migrates through aerobic surface
10 soil.

11 19. Second, analysis of the indoor air, outdoor air and sub-slab soil vapor samples
12 collected from the residences at the Site generally have shown indoor air concentrations to be
13 consistent with background values and to be correlated with garage and outdoor air. As the
14 Regional Board has recognized, this data does not indicate that vapor intrusion is an issue at the
15 Site.

16 20. *Third*, there are widespread but uneven soil impacts at the Site that appear to be
17 related to the grading of the Site. The spatial distribution of the soil impacts is somewhat
18 stochastic and does not appear as a plume.

19 21. *Fourth*, the groundwater beneath the Site is impacted by a plume that is stable with downgradient concentrations quickly dropping to levels below analytical reporting limits. 20There exist multiple documented upgradient impacts that likely contribute to the groundwater 21 conditions beneath the Site. Petroleum hydrocarbons in the form of light non-aqueous phase 22 liquid ("LNAPL") has been detected in two monitoring wells located in the western portion of 23 the Site, and LNAPL removal from these wells is performed on a regular basis. The groundwater 24 at the Site is not used for municipal supply. Carousel residents obtain their drinking water from 25 municipal supply provided by California Water Service Company, which has confirmed that the 26 Site's water supply meets quality standards for drinking water. 27

-5-

28 CALDWELL LESLIE & PROCTOR

## Shell's Actions in Response to the CAO

22. On March 11, 2011, the Regional Board issued the CAO for the Site. (Exh. 1.) 2 The CAO directed Shell to (1) complete delineation of on- and off-Site impacts in soil, soil vapor 3 and groundwater related to Shell's historical use of the Site; (2) continue groundwater monitoring 4 and reporting; (3) develop and conduct a pilot testing work plan to evaluate remedial options for 5 the Site; and (4) conduct an assessment of any potential environmental impacts of residual 6 concrete slabs that were left at the Site by the developers, and evaluate whether removal of the 7 concrete is necessary and feasible. (Exh. 1, pp. 9-11.) Shell has completed (or, in the case of the 8 residential sampling, nearly completed) the above actions and has submitted reports to the 9 Regional Board that include analysis of the data. The pilot test work conducted by Shell 10 included pilot testing of different excavation methods, soil vapor extraction, bioventing, and 11 chemical oxidation technologies. Shell continues to perform quarterly groundwater monitoring. 12

1323.Per the Directive, the RAP required by the CAO and the HHRA Report are due on14March 10, 2014. (Exh. 1, pp. 11-12; Exh. 5, p. 9.)

15

1

### The Regional Board's Directive

16 24. On January 23, 2014, the Regional Board issued the Directive, which is the
17 subject of this Petition. (Exh. 5.) In the Directive, the Regional Board approved the SSCGs
18 proposed in the Revised SSCG Report with certain modifications, and required Shell to submit
19 the RAP, HHRA Report, and "draft environmental documents consistent with the California
20 Environmental Quality Act (CEQA) analyzing the potential environmental impacts associated
21 with remediation alternatives considered in the RAP." (Exh. 5, p. 9.)

22 25. Shell is in the process of preparing the RAP, HHRA Report and certain draft
23 environmental documents. Notwithstanding the issues raised in this Petition, Shell intends to
24 submit the RAP and the HHRA Report, along with drafts of preliminary environmental
25 documents, to the Regional Board by the March 10, 2014 deadline specified in the Directive.

26 26. However, the Directive contains certain requirements and statements that are
27 vague, arbitrary, erroneous, unsupported by the evidence and the relevant guidance, do not
28 comply with the applicable laws and regulations and accepted guidance documents, and/or rely

-6-

on inapplicable laws and regulations. Shell previously raised these issues with the Regional
 Board, and Shell and the Regional Board have engaged in discussions to resolve these issues.
 However, to protect its rights in this regard, Shell files this protective Petition and seeks State
 Board review of these specific requirements and statements in the event it is not able to resolve
 these issues with the Regional Board.

I declare under penalty of perjury under the laws of the State of California that the
foregoing is true and correct, and that this Declaration was executed on February 24, 2014 in Los
Angeles, California.

-7-

**DECLARATION OF DOUGLAS J. WEIMER** 

CALDWELL LESLIE &

PROCTOR

Daug literine

DOUGLAS J. WEIMER

### **DECLARATION OF DAVID MARX**

I, David Marx, declare and state:

1

2

26

27

28 CALDWELL LESLIE &

PROCTOR

I am a Principle at Geosyntec Consultants. Based on my experience, I have
 personal knowledge of the facts stated herein, or I have been informed of and believe such facts,
 and could and would testify competently thereto if called as a witness in this matter.

I have over thirty years of experience in environmental resource management, 2. 6 permitting, and regulatory compliance for clients in the solid waste, natural gas, power, 7 petroleum, transportation, and aerospace sectors. I have contributed to and performed 8 environmental reviews pursuant to the California Environmental Quality Act ("CEQA") for over 9 twenty years. I have been involved in over 200 environmental reviews, and have personally 10 prepared and drafted, or assisted in the preparation and drafting of, various documents required 11 under CEQA relating to numerous projects, including initial studies, notices of preparation, 12 technical studies, negative declarations, mitigated negative declarations, Draft Environmental 13 Impact Reports ("EIRs") and Final EIRs. Among other projects, I led the environmental analysis 14 and preliminary design process for a major landfill expansion in southern California, two 15 composting facilities and a 200-mile section of the California High Speed Rail project. 16

I am familiar with the environmental investigation at the former Kast Property.
Based on my experience and my knowledge about the former Kast Property project and the
remedies being considered, I believe that it would typically take 12 weeks or more to prepare a
Draft EIR for a project of this size and complexity. Before the preparation of a Draft EIR could
begin, the project would have to be adequately defined, and a Notice of Preparation must be filed
with the State by the lead agency.

I declare under penalty of perjury under the laws of the State of California that the
foregoing is true and correct, and that this Declaration was executed on February 24, 2014 in San
Diego, California.

-1-

E Many

|                                       | PROOF OF SERVICE                                                                                                                                                                                                                                                          |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                     | STATE OF CALIFORNIA, COUNTY OF LOS ANGELES                                                                                                                                                                                                                                |
| 2                                     |                                                                                                                                                                                                                                                                           |
| 3                                     | At the time of service, I was over 18 years of age and <b>not a party to this action</b> . I am employed in the County of Los Angeles, State of California. My business address is 725 South Figueroa Street, 31 <sup>st</sup> Floor, Los Angeles, California 90017-5524. |
| 5                                     | On February 24, 2014, I served true copies of the following document(s) described as<br>PETITION FOR REVIEW AND REQUEST FOR HEARING on the interested parties in this                                                                                                     |
| 6                                     | action as follows:                                                                                                                                                                                                                                                        |
| 7                                     | State Water Resources Control Board<br>Office of Chief Counsel<br>Jeannette L. Bashaw, Legal Analyst                                                                                                                                                                      |
| . ð                                   | 1001 "I" Street, 22 <sup>nd</sup> Floor<br>Sacramento, CA 95814                                                                                                                                                                                                           |
| 9<br>10                               | Telephone: (916) 341-5155<br>Facsimile: (916) 341-5199                                                                                                                                                                                                                    |
| 11:                                   | E-Mail: jbashaw@waterboards.ca.gov                                                                                                                                                                                                                                        |
| 12                                    | <b>BY E-MAIL OR ELECTRONIC TRANSMISSION:</b> I caused a copy of the document(s) to be sent from e-mail address odanaka@caldwell-leslie.com to the persons at the e-mail addresses                                                                                         |
| 13                                    | listed in the Service List. I did not receive, within a reasonable time after the transmission, any electronic message or other indication that the transmission was unsuccessful.                                                                                        |
| 14                                    | BY OVERNIGHT DELIVERY: I enclosed said document(s) in an envelope or package                                                                                                                                                                                              |
| 15                                    | provided by the overnight service carrier and addressed to the persons at the addresses listed in<br>the Service List. I placed the envelope or package for collection and overnight delivery at an                                                                       |
| 16                                    | office or a regularly utilized drop box of the overnight service carrier or delivered such document(s) to a courier or driver authorized by the overnight service carrier to receive documents                                                                            |
| 17                                    |                                                                                                                                                                                                                                                                           |
| 18                                    | foregoing is true and correct.                                                                                                                                                                                                                                            |
| 19                                    | Executed on February 24, 2014, at Los Angeles, California.                                                                                                                                                                                                                |
| 20                                    |                                                                                                                                                                                                                                                                           |
| 21                                    | Jarge Damab                                                                                                                                                                                                                                                               |
| 22                                    | Margie Odanaka                                                                                                                                                                                                                                                            |
| 23                                    |                                                                                                                                                                                                                                                                           |
| 24                                    |                                                                                                                                                                                                                                                                           |
| 25                                    |                                                                                                                                                                                                                                                                           |
| 26                                    |                                                                                                                                                                                                                                                                           |
| 2/                                    |                                                                                                                                                                                                                                                                           |
| 28<br>CALDWELL<br>LESLIE &<br>PROCTOR |                                                                                                                                                                                                                                                                           |

| ·                     | 1                         | PROOF OF SERVICE                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|-----------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                       | 2                         | STATE OF CALIFORNIA, COUNTY OF LOS ANGELES                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                       | 3                         | At the time of service, I was over 18 years of age and not a party to this action. I am                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                       | 4                         | employed in the County of Los Angeles, State of California. My business address is Apex<br>Attorney Services, 1055 West Seventh Street, Suite 250, Los Angeles, CA 90017.                                                                                                                                                                                                                                          |  |  |  |  |  |
|                       | 5                         | On February 24, 2014, I served true copies of the following document(s) described as<br><b>PETITION FOR REVIEW AND REOUEST FOR HEARING</b> on the interested parties in this                                                                                                                                                                                                                                       |  |  |  |  |  |
|                       | 6                         | action as follows:                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                       | 7                         | Samuel Unger                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                       | 8                         | Board - Los Angeles Region                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                       | 9                         | Los Angeles, CA 90013                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                       | 10                        | Tel.: (213) 576-6600<br>E-Mail: sunger@waterboards.ca.gov                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                       | 11                        | <b>BY PERSONAL SERVICE:</b> I personally delivered the document(s) to the person being at the                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                       | 12                        | addresses listed in the Service List. (1) For a party represented by an attorney, delivery was made<br>to the attorney or at the attorney's office by leaving the documents in an envelope or package<br>clearly labeled to identify the attorney being served with a receptionist or an individual in charge<br>of the office. (2) For a party, delivery was made to the party or by leaving the documents at the |  |  |  |  |  |
|                       | 13<br>14                  |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                       | 15                        | party's residence with some person not less than 18 years of age between the hours of eight in the morning and six in the evening.                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                       | 16                        | I declare under penalty of perjury under the laws of the State of California that the foregoing is true and correct.                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                       | 17                        | Executed on February 24, 2014, at Los Angeles, California.                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                       | 18                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                       | 19                        | Alela                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                       | 20                        | Apex Attorney Services                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                       | 21                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                       | 22                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                       | 23                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| ,                     | 24                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                       | 25                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                       | 26                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                       | 27                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| CALDW<br>LESL<br>PROC | 28<br>VELL<br>JE &<br>TOR |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

# **EXHIBIT 7**



Edmund G. Brown Jr. governor

MATTHEW RODRIQUEZ SECRETARY FOR ENVIRONMENTAL PROTECTION

**State Water Resources Control Board** 

MAY 1 4 2014

[via U.S. Mail and email] Michael R. Leslie, Esq. David Zaft, Esq. Caldwell Leslie & Proctor, PC 725 S. Figueroa Street, 31st Floor Los Angeles, CA 90017 <u>leslie@caldwell-leslie.com</u> <u>zaft@caldwell-leslie.com</u>

Dear Messrs. Leslie and Zaft:

PETITION OF EQUILON ENTERPRISES LLC DBA SHELL OIL PRODUCTS US AND SHELL OIL COMPANY (DIRECTIVE TO SUBMIT REMEDIAL ACTION PLAN FOR FORMER KAST PROPERTY TANK FARM LOCATED SOUTHEAST OF THE INTERSECTION OF MARBELLA AVENUE AND EAST 244TH STREET, CARSON, LOS ANGELES COUNTY), LOS ANGELES WATER BOARD: ACKNOWLEDGMENT OF PETITION RECEIVED AND APPROVAL OF REQUEST TO BE HELD IN ABEYANCE **SWRCB/OCC FILE A-2294** 

This will acknowledge receipt of the above petition on February 24, 2014. You have asked that the State Water Resources Control Board (State Water Board) hold the matter in abeyance for an unspecified period of time. We are happy to do so in hopes that the matter may be worked out between you and the Regional Water Quality Control Board (Regional Water Board). We will hold the matter in abeyance for two years from the date the petition was filed. If, by that time, no resolution of the matter has taken place or the matter has not become the subject of an active dispute, you may either request that the abeyance period be extended for another two-year period, or the petition will be dismissed.

If you have any questions, please call me at (916) 341-5178.

IN ALL FUTURE CORRESPONDENCE, PLEASE REFER TO SWRCB/OCC FILE A-2294

Sincerely,

Philip G. Wyels Assistant Chief Counsel

cc: See next page

FELICIA MARCUS, CHAIR | THOMAS HOWARD, EXECUTIVE DIRECTOR

1001 / Street, Sacramento, CA 95814 | Mailing Address: P.O. Box 100. Sacramento, Ca 95812-0100 | www.waterboards.ca.gov

S RECYCLED PAPER

L

CC:

[via U.S. Mail only] Mr. Douglas J. Weimer Shell Oil Products, United States Environmental Services Company 20945 S. Wilmington Avenue Carson, CA 90810

Mr. Samuel Unger **[via email only]** Executive Officer Los Angeles Regional Water Quality Control Board 320 West 4th Street, Suite 200 Los Angeles, CA 90013 samuel.unger@waterboards.ca.gov

Ms. Deborah Smith **[via email only]** Assistant Executive Officer Los Angeles Regional Water Quality Control Board 320 West 4th Street, Suite 200 Los Angeles, CA 90013 <u>deborah.smith@waterboards.ca.gov</u>

Ms. Paula Rasmussen **[via email only]** Assistant Executive Officer Los Angeles Regional Water Quality Control Board 320 West 4th Street, Suite 200 Los Angeles, CA 90013 paula.rasmussen@waterboards.ca.gov

Dr. Teklewold Ayalew **[via email only]** Engineering Geologist Los Angeles Regional Water Quality Control Board 320 West 4th Street, Suite 200 Los Angeles, CA 90013 teklewold.ayalew@waterboards.ca.gov Ms. Thizar Tintut-Williams **[via email** only] Senior Environmental Scientist Los Angeles Regional Water Quality Control Board 320 West 4th Street, Suite 200 Los Angeles, CA 90013 thizar.williams@waterboards.ca.gov

Lori T. Okun, Esq. **[via email only]** Office of Chief Counsel State Water Resources Control Board 1001 I Street, 22<sup>nd</sup> Floor [95814] P.O. Box 100 Sacramento, CA 95812-0100 <u>lori.okun@waterboards.ca.gov</u>

Frances L. McChesney, Esq. **[via email only]** Office of Chief Counsel State Water Resources Control Board 1001 | Street, 22<sup>nd</sup> Floor [95814] P.O. Box 100 Sacramento, CA 95812-0100 <u>frances.mcchesney@waterboards.ca.gov</u>

Jennifer L. Fordyce, Esq. **[via email only]** Office of Chief Counsel State Water Resources Control Board 1001 I Street, 22<sup>nd</sup> Floor [95814] P.O. Box 100 Sacramento, CA 95812-0100 jennifer.fordyce@waterboards.ca.gov

Nicole L. Kuenzi, Esq. **[via email only]** Office of Chief Counsel State Water Resources Control Board 1001 I Street, 22<sup>nd</sup> Floor [95814] P.O. Box 100 Sacramento, CA 95812-0100 <u>nicole kuenzi@waterboards.ca.gov</u>

Philip G. Wyels, Esq. **[via email only]** Office of Chief Counsel State Water Resources Control Board 1001 I Street, 22<sup>nd</sup> Floor [95814] P.O. Box 100 Sacramento, CA 95812-0100 philip.wyels@waterboards.ca.gov

# **EXHIBIT 8**



Shell Oil Products US Soil & Groundwater FDG 20945 S. Wilmington Avenue Carson, CA 90810 Tel +1 703 403-6790 Email: douglas.weimer@sheil.com

#### Via Email and Overnight Service

March 10, 2014

Samuel Unger
Executive Officer
California Regional Water Quality Control Board – Los Angeles Region
320 W. Fourth Street, Suite 200
Los Angeles, California 90013

Re: Former Kast Property, Case No. SCP 1230 – Submission of Remedial Action Plan and Associated Documents

Dear Executive Officer Unger:

On behalf of Shell Oil Company and Shell Oil Products US (collectively "Shell"), the Remedial Action Plan, Human Health Risk Assessment ("HHRA") Report, Feasibility Study, and certain draft environmental documents are being submitted to the Regional Water Quality Control Board – Los Angeles Region ("Regional Board") today. Taken together, these documents represent a significant step toward implementing a remedial strategy that fully addresses the environmental conditions in the Carousel neighborhood.

These documents were prepared using well-accepted and established scientific guidance and protocols, including the guidance documents specified by the Regional Board in the Cleanup and Abatement Order for this site. The analyses contained in these documents are based on the extensive testing data from the residential properties and public rights-of-way in and adjacent to the Carousel neighborhood (including over 10,700 soil samples, 2,700 soil vapor samples, and 2,400 indoor and outdoor air samples). Testing has been performed at 95% of the Carousel homes and has been completed at nearly 80% of the homes. While Shell continues to conduct outreach to schedule testing at the remaining homes, the extensive and robust data obtained so far provide a solid foundation upon which to base the selected remedial approach.

EXHIBIT\_8

Samuel Unger Executive Officer, Regional Water Quality Control Board March 10, 2014 Page 2

To summarize the findings from Shell's investigation of the conditions in the Carousel neighborhood:

- Based on the testing data, the Los Angeles County Health Department and the Regional Board have concluded that there is no exposure in the neighborhood that poses an imminent health risk or explosion hazard.
- Results from sampling of indoor and outdoor air and sub-slab soil vapor have shown that vapor intrusion from sub-slab soil vapor to indoor air is not occurring to any measurable extent in homes.
- Groundwater monitoring has revealed the presence of groundwater impacts beneath the site that are generally limited to the shallow zone. The groundwater plume is stable and/or decreasing and has not migrated offsite to any significant extent. The drinking water in the Carousel neighborhood, which does not come from groundwater in the shallow zone, is safe. California Water Service Company regularly tests community drinking water, and has confirmed that the water meets the applicable drinking water quality standards.
- Soil impacts exist at many of the properties in the Carousel neighborhood. These impacts do not pose an imminent health risk. Using very conservative, health-protective standards, the remedial approach proposed in the Remedial Action Plan fully addresses the potential for exposure to impacted shallow soils at residential properties.

In light of these findings and based on the data and the applicable scientific guidance and protocols, the **Remedial Action Plan** ("RAP") proposes the following steps:

- Excavation of shallow soils from the yards at residential properties will be conducted at properties based on findings from the HHRA, including consideration of potential for leaching of constituents of concern (COCs) to groundwater. Excavation will be conducted in both landscaped and hardscaped areas of residential yards, excluding beneath City sidewalks, to a depth of 3 feet below ground surface ("bgs"). The excavation will also remove residual concrete reservoir slabs if encountered within the depth and lateral limits excavated.
- Because residents may not excavate below 3 feet without obtaining a permit from the City of Carson, the possibility of exposure to soils remaining below 3 feet bgs is currently controlled by existing ordinances. Therefore, impacted soils below 3 feet and also beneath City streets and sidewalks will be addressed through other cleanup measures (described below) and the Surface Containment and Soil Management Plan that is submitted as part of the RAP. This document explains how notifications, management, and handling of residual soils that are impacted by COCs will limit exposures to deeper soils.

Samuel Unger Executive Officer, Regional Water Quality Control Board March 10, 2014 Page 3

- Soil vapor extraction ("SVE") and bioventing will be used to address petroleum hydrocarbons and VOCs in residual soils and soil vapor below homes, soils and soil vapor at greater depths, and methane in soil vapor, by extraction and treatment of volatile components and by promoting degradation of residual hydrocarbon concentrations. SVE wells will be installed in City streets and on certain residential properties, as appropriate to ensure adequate coverage.
- Bioventing will be conducted via cyclical operation of SVE wells to increase oxygen levels in subsurface soils and promote microbial activity and degradation of longer-chain petroleum hydrocarbons.
- Although vapor intrusion does not appear to be impacting indoor air, as an additional protective measure, sub-slab mitigation will be implemented at some properties based on sub-slab soil vapor data.
- LNAPL will continue to be recovered where it has accumulated in monitoring wells to the extent technologically and economically feasible, and where a significant reduction in current and future risk to groundwater will result.
- Compounds in groundwater will be reduced to the extent technologically and economically feasible via source reduction and monitored natural attenuation. Groundwater monitoring will continue as part of remedial actions. If, based on a 5-year review following initiation of SVE system operation, groundwater plumes are not stable or declining and Site COCs in groundwater do not show a reduction in concentration, an evaluation of additional groundwater treatment technologies will be conducted and implemented as needed.

Shell believes that this approach best accomplishes the remedial objectives set forth in the Revised Site-Specific Cleanup Goals Report, protects the health and safety of the Carousel residents, minimizes the inconvenience to the residents, sets in place a long-term groundwater protection plan, and, importantly, preserves the integrity of the neighborhood.

Along with the RAP, Shell is submitting a Feasibility Study and an HHRA Report. The **Feasibility Study** analyzes and compares in detail the selected approach along with a number of possible alternative approaches, and weighs each alternative against the goals of reducing potential exposures by residents, protecting groundwater quality, preserving the neighborhood and the other factors set forth in the Cleanup and Abatement Order for the Carousel neighborhood, State Water Board Resolution No. 92-49, and other applicable regulations.

The **HHRA Report** applies the site-specific cleanup goals to the extensive testing data that Shell has obtained from the Carousel residences, and the results of this analysis will be used to determine what specific work needs to be done at each of the Carousel residences.

In addition, drafts of a Notice of Preparation and an Initial Study in connection with the environmental review for the project are being submitted to the Regional Board and also are Samuel Unger Executive Officer, Regional Water Quality Control Board March 10, 2014 Page 4

included in an appendix to the RAP. Shell previously provided a draft schedule for the environmental review, which is currently under review and discussion.

The next step is for the Regional Board and the other involved agencies to review the Remedial Action Plan and make it available for public comment. At the same time, an environmental review will be conducted, as required by the California Environmental Quality Act, and Shell will continue to support that process. Once the Remedial Action Plan is approved by the Regional Board, a Final Environmental Impact Report is issued, the necessary permits for the work have been issued, and access is granted, the remedial work in the Carousel neighborhood will begin. Shell plans to meet with the homeowners and residents at individual properties (and their legal representative) where work will be performed to explain the property-specific remedial plan, answer questions, gather information that will be used in arranging alternative accommodations during the work, and schedule the work.

Shell looks forward to continuing to work with the Regional Board and is committed to moving forward with implementing this Remedial Action Plan as soon as possible.

Sincerely,

Daug Weiner

Douglas Weimer Sr. Principle Program Manager Shell Oil Products US

Enclosures

## REMEDIAL ACTION PLAN

## **REMEDIAL ACTION PLAN**

## FORMER KAST PROPERTY CARSON, CALIFORNIA

Prepared for

Shell Oil Products US 20945 S. Wilmington Avenue Carson, California 90810

March 10, 2014

Prepared by

## URS

URS Corporation 2020 East First Street, Suite 400 Santa Ana, CA 92705 (714) 835-6886 Fax: (714) 433-7701

and

## Geosyntec<sup>D</sup>

engineers | scientists | innovators **Geosyntec Consultants** 924 Anacapa Street, Suite 4A Santa Barbara, California 93101



i

## **REMEDIAL ACTION PLAN**

## FORMER KAST PROPERTY CARSON, CALIFORNIA Site Cleanup No. 1230 Site ID 2040330 Cleanup and Abatement Order No. R4-2011-0046

This Remedial Action Plan (RAP) for the former Kast Property was prepared on behalf of Equilon Enterprises LLC, doing business as Shell Oil Products US (Shell or SOPUS), by URS Corporation (URS) and Geosyntec Consultants, Inc. (Geosyntec). URS prepared the majority of this document, including Sections 1 through 5, most of Section 8 and Sections 9 and 10; Geosyntec prepared Sections 6 and 7 and the sub-slab mitigation, bioventing, and groundwater portions of Section 8. This RAP is being submitted in response to Cleanup and Abatement Order No. R4-2011-0046 issued by the California Regional Water Quality Control Board, Los Angeles Region (RWQCB or Regional Board) on March 11, 2011 and the RWQCB's letter dated January 23, 2014 directing Shell to submit a Remedial Action Plan and Human Health Risk Assessment pursuant to California Water Code Section 13304.

The scope of services performed in preparation of this RAP may not be appropriate to satisfy the needs of other users, and any use or reuse of his document or the information contained herein is at the sole risk of said user. No express or implied representation or warranty is included or intended in this Remedial Action Plan or in the Human Health Risk Assessment except that the work was performed within the limits prescribed by the client with the customary thoroughness and competence of professionals working in the same are on similar projects. This report was prepared under the technical direction of the undersigned.

#### **URS** Corporation

Roy H. Patterson, P.G Vice President and Prin March 10, 2014 C 76159

NAL GEO

EXP 6.30-14

Nancy E. Meilahn Fowler, PE Senior Project Engineer

Glen T. Davis, PE Senior Project Engineer

Geosyntec Consultants

Mul Aur

Mark Grivetti, P.G., C.Hg. Principal Hydrogeologist March 10, 2014

Robert Ettinger

Robert Ettinger Principal

Rith Custonce

Ruth Custance Principal

### CERTIFICATION REMEDIAL ACTION PLAN

## FORMER KAST PROPERTY CARSON, CALIFORNIA

I am the Senior Project Manager for Equilon Enterprises LLC, doing business as Shell Oil Products US, for this project. I am informed and believe that the matters stated in the this Remedial Action Plan for the former Kast Property, Carson, California are true, and on that ground I declare, under penalty of perjury in accordance with Water Code section 13267, that the statements contained therein are true and correct.

Daughtimer

Douglas Weimer Sr. Principle Program Manager Shell Oil Products US March 10, 2014



Ţ

ì

## TABLE OF CONTENTS

| <u>Sectio</u> | n            | Page                                                      |  |
|---------------|--------------|-----------------------------------------------------------|--|
| EXEC          | UTIVE S      | SUMMARY ES-1                                              |  |
| 1.0           | INTRODUCTION |                                                           |  |
|               | 1.1          | REGULATORY BASIS                                          |  |
|               | 1.2          | Objectives                                                |  |
|               | 1.3          | PUBLIC REVIEW PROCESS                                     |  |
|               | 1.4          | ORGANIZATION OF THE RAP1-4                                |  |
| 2.0           | SITE E       | BACKGROUND                                                |  |
|               | 2.1          | SITE HISTORY                                              |  |
|               | 2.2          | REGULATORY INVOLVEMENT                                    |  |
|               | 2.3          | SUMMARY OF SITE CONDITIONS AND STATEMENT OF THE ISSUE     |  |
|               | 2.4          | SITE SETTING, GEOLOGY AND HYDROGEOLOGY2-3                 |  |
|               | 2.5          | BACKGROUND INFORMATION ON SURROUNDING PROPERTIES          |  |
|               |              | 2.5.1 Former Turco Products/Purex Facility                |  |
|               |              | 2.5.2 Former Fletcher Oil and Refining Company            |  |
|               |              | 2.5.5 Off Transport Company Inc                           |  |
|               |              | 2.5.5 Dry Cleaners                                        |  |
|               |              | 2.5.6 Pipelines                                           |  |
| 3.0           | PREV         | IOUS INVESTIGATIONS                                       |  |
|               | 3.1          | ASSESSMENTS IN NON-RESIDENTIAL AREAS, PUBLIC STREETS, AND |  |
|               |              | RAILROAD RIGHT-OF-WAY                                     |  |
|               | 3.2          | ASSESSMENT AT INDIVIDUAL RESIDENTIAL PROPERTIES           |  |
|               |              | 3.2.1 Methane Screening                                   |  |
|               |              | 3.2.2 Soil Sampling                                       |  |
|               |              | 3.2.4 Indoor Air Sampling                                 |  |
|               |              | 3.2.5 Human Health Screening Risk Evaluation (HHSRE)      |  |
|               | 3.3          | FINDINGS OF ASSESSMENT WORK                               |  |
|               |              | 3.3.1 Impacts in Soil                                     |  |
|               |              | 3.3.2 Impacts in Soil Vapor                               |  |
|               |              | 3.3.3 Impacts in Indoor and Outdoor Air                   |  |
|               | 3.4          | RESIDUAL CONCRETE RESERVOIR SLAB ASSESSMENT               |  |
| 4.0           | SUMM         | IARY OF INTERIM ACTIONS COMPLETED AND PILOT TESTING       |  |
|               | 4.1          | EVALUATIONS OF NEED FOR INTERIM ACTIONS                   |  |
|               |              | 4.1.1 Summary of Interim Actions Completed 4-1            |  |
|               | 4.2          | SUPPORT TO UTILITY EXCAVATIONS AND HOMEOWNERS' ACTIVITIES |  |

|                                             | 4.3  | SUMMARY OF PILOT TESTING                                           |  |  |  |
|---------------------------------------------|------|--------------------------------------------------------------------|--|--|--|
|                                             |      | 4.3.1 SVE Pilot Testing                                            |  |  |  |
|                                             |      | 4.3.2 Bioventing Pilot Testing                                     |  |  |  |
|                                             |      | 4.3.3 Excavation Pilot Testing                                     |  |  |  |
|                                             |      | 4.3.4 In-Situ Chemical Oxidation (ISCO) Pilot Testing              |  |  |  |
| 5.0                                         | REMI | EDIAL ACTION OBJECTIVES AND SITE-SPECIFIC CLEANUP GOALS            |  |  |  |
|                                             | 5.1  | REMEDIAL ACTION OBJECTIVES                                         |  |  |  |
|                                             | 5.2  | SITE-SPECIFIC CLEANUP GOALS                                        |  |  |  |
|                                             |      | 5.2.1 Soil                                                         |  |  |  |
|                                             |      | 5.2.2 SSCGs for Soil Vapor                                         |  |  |  |
|                                             |      | 5.2.3 SSCGs for Groundwater                                        |  |  |  |
| 6.0 SUMMARY OF HUMAN HEALTH RISK ASSESSMENT |      |                                                                    |  |  |  |
|                                             | 6.1  | HHRA OVERVIEW                                                      |  |  |  |
|                                             | 6.2  | POTENTIAL RESIDENTIAL EXPOSURES                                    |  |  |  |
|                                             | 6.3  | POTENTIAL CONSTRUCTION AND UTILITY MAINTENANCE WORKER<br>EXPOSURES |  |  |  |
|                                             | 6.4  | POTENTIAL SOIL LEACHING TO GROUNDWATER                             |  |  |  |
|                                             | 6.5  | HHRA SUMMARY                                                       |  |  |  |
| 7.0                                         | SUM  | MMARY OF FEASIBILITY STUDY                                         |  |  |  |
| 8.0                                         | PROF | POSED REMEDIAL ACTIONS                                             |  |  |  |
|                                             | 8.1  | APPROACH FOR EXCAVATION OF SHALLOW SOILS                           |  |  |  |
|                                             |      | 8.1.1 Identification of Properties for Remedial Excavation         |  |  |  |
|                                             |      | 8.1.2 Planning for Excavation Design                               |  |  |  |
|                                             |      | 8.1.3 General Excavation Approach                                  |  |  |  |
|                                             |      | 8.1.4 Monitoring During Excavation Activities                      |  |  |  |
|                                             | 81   | $0.1.3  \text{SITE RESTORATION} \qquad 8.9$                        |  |  |  |
|                                             | 0.2  | 9.2.1 SVE/Dioventing Concentral Design                             |  |  |  |
|                                             |      | 8.2.1 SVE/Bioventing Equipment 8-10                                |  |  |  |
|                                             |      | 8.2.3 SVE/Bioventing Well Installation                             |  |  |  |
|                                             |      | 8.2.4 SVE/Bioventing System Operation                              |  |  |  |
|                                             | 8.3  | SUB-SLAB VAPOR MITIGATION                                          |  |  |  |
|                                             |      | 8.3.1 Diagnostic testing                                           |  |  |  |
|                                             |      | 8.3.2 Permitting                                                   |  |  |  |
|                                             | 0.4  | 8.3.3 Monitoring                                                   |  |  |  |
|                                             | 8.4  | GROUNDWATER                                                        |  |  |  |
|                                             |      | 8.4.1 Description of Groundwater Occurrence, Quality and Potential |  |  |  |
|                                             |      | Sources                                                            |  |  |  |
|                                             | 85   | LIGHT NON-AQUEQUS PHASE LIQUIDS (LNAPL)                            |  |  |  |
|                                             | 8.6  | CONSTRUCTION PHASE A CTIVITIES 8-18                                |  |  |  |
|                                             | 0.0  |                                                                    |  |  |  |

)

v

|      | 8.7                                                       | POST-CONSTRUCTION O&M ACTIVITIES                          |       |  |  |  |
|------|-----------------------------------------------------------|-----------------------------------------------------------|-------|--|--|--|
| 9.0  | PLANN                                                     | ED REMEDIAL DESIGN AND IMPLEMENTATION PLAN (RDIP) PROCESS | 9-1   |  |  |  |
|      | 9.1                                                       | OVERALL RDIP PROCESS                                      |       |  |  |  |
|      | 9.2                                                       | SITE-WIDE RDIP                                            | . 9-1 |  |  |  |
|      | 9.3                                                       | PROPERTY-SPECIFIC REMEDIATION PLANS (PSRPS)               | . 9-2 |  |  |  |
|      |                                                           | 9.3.1 Permitting                                          | . 9-3 |  |  |  |
|      |                                                           | 9.3.2 Notifications                                       | . 9-6 |  |  |  |
|      | 9.4                                                       | HEALTH AND SAFETY                                         | . 9-6 |  |  |  |
|      |                                                           | 9.4.1 Health and Safety Plan (HSP)                        | . 9-6 |  |  |  |
|      |                                                           | 9.4.2 Emergency Response Plan                             | . 9-6 |  |  |  |
|      | 9.5                                                       | TENTATIVE SCHEDULE OF ACTIONS TO IMPLEMENT THE RAP        | . 9-7 |  |  |  |
| 10.0 | SUMMARY                                                   |                                                           |       |  |  |  |
|      | 10.1                                                      | INTRODUCTION                                              | 10-1  |  |  |  |
|      | 10.2 CONSTITUENTS OF CONCERN (COCS) AND HUMAN HEALTH RISK |                                                           |       |  |  |  |
|      |                                                           | ASSESSMENT                                                | 10-2  |  |  |  |
|      | 10.3                                                      | REMEDIAL ACTION OBJECTIVES                                | 10-3  |  |  |  |
|      | 10.4                                                      | FEASIBILITY STUDY                                         | 10-3  |  |  |  |
|      | 10.5 RECOMMENDED REMEDIAL ACTION                          |                                                           |       |  |  |  |
| 11.0 | REFER                                                     | ENCES                                                     | 11-1  |  |  |  |

## TABLES

| Table 5-1 | Site-Specific Cleanup Levels for Soil                     |
|-----------|-----------------------------------------------------------|
| Table 5-2 | Site-Specific Cleanup Levels for Soil Vapor               |
| Table 5-3 | Site-Specific Cleanup Levels for Groundwater              |
| Table 6-1 | Property Addresses for Consideration in Remedial Planning |

#### FIGURES

| Figure 2-1 | Site | Vicinity Map |
|------------|------|--------------|
| -          |      |              |

- Figure 2-2 Location Map Showing Site and Surrounding Properties and Features
- Figure 3-1 Locations of Borings and Soil Vapor Probes
- Figure 3-2 Locations of Groundwater Monitoring Wells
- Figure 3-3 Distribution of TPH-Gasoline in Site Soils
- Figure 3-4 Distribution of TPH-Diesel in Site Soils
- Figure 3-5 Distribution of TPH-Motor Oil in Site Soils
- Figure 3-6 Distribution of Benzene in Site Soils
- Figure 3-7 Distribution of Naphthalene in Site Soils
- Figure 3-8 Distribution of Benzo(a)Pyrene-Equivalents in Site Soils
- Figure 3-9 Methane Concentrations Detected in Sub-slab Soil Vapor and in Soil Vapor at 5 and 15 feet bgs
- Figure 3-10 Benzene Concentrations in Sub-slab Soil Vapor and in Soil Vapor at 5 and 15 feet bgs

Figure 3-11 Naphthalene Concentrations in Sub-slab Soil vapor in in Soil Vapor at 5 and 15 feet bgs

- Figure 3-12 Benzene Concentrations in Groundwater 4Q 2013, Shallow Zone Wells
- Figure 3-13 Benzene Concentrations in Groundwater 4Q 2013, Shallow Gage Aquifer
- Figure 3-14 Benzene Concentrations in Groundwater 4Q 2013, Deep Gage Aquifer
- Figure 3-15 Estimated Extent of Residual Concrete Reservoir Slabs Showing Boring Refusal in Soil Borings, Monitoring Wells and Soil Vapor Probes Installed in Streets
- Figure 6-1 Properties Exceeding Human Health and/or Leaching to Groundwater Criteria, ≤ 5 Feet Below Ground Surface
- Figure 6-2 Properties Exceeding Human Health and/or Leaching to Groundwater Criteria, > 5 Feet and ≤10 Feet Below Ground Surface
- Figure 6-3 Properties Exceeding Human Health Criteria for Sub-Slab Soil Vapor to Indoor Air
- Figure 8-1 Conceptual Vapor Extraction Coverage for the Shallow Zone
- Figure 8-2 Conceptual Vapor Extraction Coverage for the Intermediate Zone
- Figure 8-3 Conceptual Vapor Extraction Coverage for the Deep Zone
- Figure 8-4 Typical Nested Well Construction Detail
- Figure 8-5 Typical Shallow Well Construction Detail

#### APPENDICES

- Appendix A Cross-Reference Table of Regional Board Requirements Addressed in the HHRA, FS, and RAP
- Appendix B Contour Plots of Analytes in Soil
- Appendix C Fourth Quarter 2013 Groundwater Monitoring Results
- Appendix D Surface Containment and Soil Management Plan
- Appendix E Preliminary Relocation Plan
- Appendix FLetter to Samuel Unger dated January 17, 2014 Re: Information on Residential<br/>Property Remediation Projects and Supporting Documentation
- Appendix G Draft CEQA Notice of Preparation (NOP) and Initial Study (IS)
ļ

j

## LIST OF ACRONYMS AND ABBREVIATIONS

| 1:1 H:V         | One horizontal to one vertical                                        |
|-----------------|-----------------------------------------------------------------------|
| ARARs           | Applicable or relevant and appropriate requirements                   |
| ASP             | Activated sodium persulfate                                           |
| ASTM            | American Society for Testing and Materials                            |
| ASTs            | Aboveground storage tanks                                             |
| Bbls            | Barrels of oil (= 42 US gallons)                                      |
| bgs             | Below ground surface                                                  |
| BHC             | Barclay Hollander Corporation                                         |
| BNPs            | Best management practices                                             |
| BTEX            | Benzene, toluene, ethylbenzene, xylenes                               |
| Cal-EPA         | California Environmental Protection Agency                            |
| Cal/OSHA        | State of California – Division of Occupational Safety and Health      |
| Cal-Water       | California Water Services Company                                     |
| CAO             | Cleanup and Abatement Order                                           |
| CCR             | California Code of Regulations                                        |
| CDOGGR          | California Division of Oil, Gas and Geothermal Resources              |
| CDWR            | California Department of Water Resources                              |
| CERCLA          | Comprehensive Environmental Response, Compensation, and Liability Act |
| CEOA            | California Environmental Quality Act                                  |
| CFR             | Code of Federal Regulations                                           |
| cm ·            | Centimeters                                                           |
| CO <sub>2</sub> | Carbon dioxide                                                        |
| COCs            | Constituents of Concern                                               |
| COPCs           | Constituents of Potential Concern                                     |
| CWS             | California Water Services Company                                     |
| cV              | Cubic vard                                                            |
| dB              | Decihel                                                               |
| DBS             | Department of Building and Safety                                     |
| DIPE            | Dijsopropyl ether                                                     |
| Dole            | Dole Foods Company                                                    |
| DPW             | Department of Public Works                                            |
| DTSC            | Department of Toxic Substances Control                                |
| EHS             | Environmental. Health and Safety                                      |
| EIR             | Environmental Impact Report                                           |
| EPCs            | Exposure point concentrations                                         |
| ESLs            | Environmental Screening Levels                                        |
| FEMA            | Federal Emergency Management Agency                                   |
| FID             | Flame ionization detector                                             |
| FORCO           | Fletcher Oil and Refining Company                                     |
| FS              | Feasibility Study                                                     |
| ff              | Foot or feet                                                          |
| Ω.              | Grams                                                                 |
| GAC             | Granular activated carbon                                             |
| Geosyntee       | Geosyntec Consultants. Inc.                                           |
| HAZWOPER        | 40-Hour hazardous waste operations                                    |
|                 | Human Health Risk Assessment                                          |
|                 | Human Health Kuba i isbeblanent                                       |

į.

Lar.

| HI             | Hazard Index                                                          |
|----------------|-----------------------------------------------------------------------|
| HQ             | Hazard quotient                                                       |
| HSC            | Health and Safety Code                                                |
| HSP            | Health and Safety Plan                                                |
| HSAA           | Hazardous Substances Account Act                                      |
| ID             | Inner diameter                                                        |
| ILCR           | Incremental lifetime cancer risk                                      |
| in/sec         | Inches per second                                                     |
| in-Hg          | Inches of mercury                                                     |
| in-WC          | Inches water column                                                   |
| IRAP           | Interim Remedial Action Plan                                          |
| ISCO           | In-situ chemical oxidation                                            |
| JSAs           | Job Safety Analyses                                                   |
| L              | Liter                                                                 |
| LA             | Los Angeles                                                           |
| LACDPW         | Los Angeles County Department of Public Works                         |
| Landtec        | Landtec GEM 2000                                                      |
| 1b             | Pound                                                                 |
| LEL            | Lower explosive limit                                                 |
| LNAPL          | Light non-aqueous phase liquid                                        |
| m              | Meter                                                                 |
| MCLs           | Maximum Contaminant Levels                                            |
| met station    | Meteorological station                                                |
| mg/kg          | Milligrams per kilogram                                               |
| mph            | Miles per hour                                                        |
| msl            | Mean sea level                                                        |
| MTA            | Los Angeles County Metropolitan Transportation Authority              |
| NAAQS          | National Ambient Air Quality Standard                                 |
| NAPL           | Non-aqueous phase liquid                                              |
| NCP            | National Oil and Hazardous Substances Pollution Contingency Plan      |
| NELAP          | National Environmental Laboratory Accreditation Program               |
| NIOSH          | National Institute for Occupational Safety and Health                 |
| NLs            | Notification Levels                                                   |
| O <sub>3</sub> | Ozone                                                                 |
| O&M            | Operations and maintenance                                            |
| OD             | Outer Diameter                                                        |
| OEHHA          | Office of Environmental Health Hazard Assessment                      |
| OES            | State of California Governor's Office of Emergency Services           |
| OSHA           | Occupational Safety and Health Administration                         |
| OTC            | Oil Transportation Company                                            |
| OVA            | Organic vapor analyzer                                                |
| PAHs           | Polycyclic aromatic hydrocarbons                                      |
| PCE            | Tetrachloroethene                                                     |
| PEL            | Permissible Exposure Limit                                            |
| PID            | Photoionization detector                                              |
| PM10           | Particulate matter with an aerodynamic diameter of 10 microns or less |
| PPE            | Personnel protection equipment                                        |
| ppm            | Parts per million                                                     |

URS Geosyntec<sup>D</sup> consultants

| PPP            | Public Participation Plan                                                            |
|----------------|--------------------------------------------------------------------------------------|
| PSE            | Pacific Soils Engineering, Inc.                                                      |
| PSI            | Pounds per square inch                                                               |
| PSIG           | Pound-force per square inch gauge                                                    |
| PSRP           | Property-specific Remediation Plan                                                   |
| PVC            | Polyvinyl chloride                                                                   |
| RAP            | Remedial Action Plan                                                                 |
| RAOs           | Remedial Action Objectives                                                           |
| RDIP           | Remedial Design and Implementation Plan                                              |
| Regional Board | Regional Water Quality Control Board                                                 |
| RI             | Risk Index                                                                           |
| ROVI           | Radius of vacuum influence                                                           |
| ROs            | Reportable Quantities                                                                |
| RWOCB          | Regional Water Quality Control Board                                                 |
| SCAOMD         | South Coast Air Quality Management District                                          |
| sefm           | Standard cubic feet per minute                                                       |
| SFBRWOCB       | San Francisco Bay Regional Water Ouality Control Board                               |
| SIM            | Selected Ion Monitoring                                                              |
| Site           | Former Kast Property, Carson, California                                             |
| SOD            | Soil oxidant demand                                                                  |
| SOPUS          | Shell Oil Products United States                                                     |
| SP             | Sodium persulfate                                                                    |
| SSCGs          | Site-specific cleanup goals                                                          |
| SSD            | Sub-slah depressurization                                                            |
| SSO            | Site Safety Officer                                                                  |
| SVE            | Soil vapor extraction                                                                |
| SVOCs          | Semi-volatile organic compounds                                                      |
| SWPPP          | Stormwater Pollution Prevention Plan                                                 |
| SWRCB          | State Water Resources Control Board                                                  |
| TRA            | Tert-hutyl alcohol                                                                   |
| TCF            | Trichloroethene                                                                      |
| THMs           | Trihalomethanes                                                                      |
| ТРН            | Total petroleum hydrocarbons                                                         |
| трна           | Total petroleum hydrocarbons as diesel                                               |
| TPHa           | Total petroleum hydrocarbons as gasoline                                             |
| TPHmo          | Total petroleum hydrocarbons as motor oil                                            |
| UFI.           | Upper explosive limit                                                                |
| URS            | URS Corporation                                                                      |
|                | Underground Service Alert                                                            |
|                | United States Environmental Protection Agency                                        |
| USEIA          | United States Geological Survey                                                      |
|                | Underground storage tanks                                                            |
| VAD            | Boot mean square velocity in decibels                                                |
|                | Vonor extraction well                                                                |
|                | Valatile organic compounds                                                           |
|                | Volatile patroleum hydrocarbons                                                      |
|                | volame perioreum ny movarouns<br>Water Deplanishment District of Southarn California |
| WKD            | Water Reptensinnen District of Southern Cantonna<br>Mierograms per kilogram          |
| µg/Kg          | Micrograms per knogram                                                               |
| μg/L           | witcrograms per liter                                                                |

\_ 1

\_

**URS** Geosyntec<sup>D</sup> consultants

÷

J

| $\mu g/m^3$ |  |
|-------------|--|
| %           |  |

ł

Micrograms per cubic meter Percent

# EXECUTIVE SUMMARY

This Remedial Action Plan (RAP) for the former Kast Property (Site) in Carson, California was prepared by URS Corporation (URS) and Geosyntec Consultants, Inc. (Geosyntec) on behalf of Equilon Enterprises LLC, doing business as Shell Oil Products US (Shell or SOPUS) in accordance with Cleanup and Abatement Order (CAO) No. R4-2011-0046 issued to Shell by the California Regional Water Quality Control Board – Los Angeles Region (RWQCB or Regional Board) on March 11, 2011 and the RWQCB's letter dated January 23, 2014 directing Shell to submit a RAP and Human Health Risk Assessment pursuant to California Water Code Section 13304.

The RAP, and companion Human Health Risk Assessment (HHRA, Geosyntec, 2014a) and Feasibility Study (FS, Geosyntec, 2014b) are being submitted concurrently as separate documents. This RAP summarizes the remedial alternative evaluation process and identifies and describes the selected full-scale remedial actions for impacted shallow soil and other media at the Site in accordance with requirements of the CAO and directives in the Regional Board's January 23, 2014 letter. The RAP and the selected remedy comply with applicable provisions of the California Health and Safety Code, California Water Code, and State Water Resources Control Board (SWRCB) Resolution 92-49.

This **RAP** and the companion HHRA and FS were prepared following extensive multimedia investigations at the Site from 2008 to present. Key assessment work completed at the Site includes:

- Assessment in public rights-of-way, the adjacent railroad right-of-way, and other nonresidential areas including soil, soil vapor, groundwater, and outdoor air media;
- Assessment at 95% of the individual residential properties, including soil, sub-slab soil vapor, and indoor air testing;
- Assessment of environmental impact and feasibility of removal of residual concrete reservoir slabs;
- Pilot testing to evaluate different potential remedies for Site impacts, and
- Development of Site-Specific Cleanup Goals.

The Site has been impacted with petroleum hydrocarbons associated with crude oil storage during the period prior to residential redevelopment. Total petroleum hydrocarbon (TPH) impacts occur in shallow and deep soils together with volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), including polycyclic aromatic hydrocarbons (PAHs); VOCs, including benzene, and methane resulting from degradation of petroleum hydrocarbons are present in soil vapor; dissolved-phase VOC and TPH impacts are present in groundwater, and LNAPL consisting of crude oil is locally present in groundwater. In addition to hydrocarbon-related impacts, the Site is also locally impacted by chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE), and from a class of chlorinated compounds associated with potable water treatment referred to as trihalomethanes (THMs). Because THMs are related to drinking water, they are not considered COCs at the Site.



Some of these compounds, referred to as constituents of concern (COCs), are present at concentrations that may pose a human health hazard or cancer risk greater than the *de minimus* risk level of one-in-a-million or Hazard Index greater than 1. Although it does not present a human health risk based on exposure, methane can potentially pose an explosion hazard where present in an enclosed space at a concentration between 5 and 15% in air and there is a source of ignition. In addition, concentrations for some COCs may exceed criteria for the potential leaching to groundwater pathway.

A set of final Site-Specific Cleanup Goals (SSCGs) was developed in the HHRA. SSCGs were developed for constituents of concern (COCs) in soil, soil vapor, and groundwater and are provided in Tables 5-1, 5-2 and 5-3 of this RAP.

Medium-specific (i.e. soil, soil vapor, and groundwater) Remedial Action Objectives (RAOs) were developed. These RAOs include:

- Prevent human exposures to concentrations of COCs in soil, soil vapor, and indoor air such that total (i.e., cumulative) lifetime incremental cancer risks are within the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) risk range of  $1 \times 10^{-6}$  to  $1 \times 10^{-4}$  and noncancer hazard indices are less than 1 or concentrations are below background, whichever is higher. Potential human exposures include onsite residents and construction and utility maintenance workers. For onsite residents, the lower end of the NCP risk range (i.e.,  $1 \times 10^{-6}$ ) and a noncancer hazard index less than 1 have been used.
- Prevent fire/explosion risks in indoor air and/or enclosed spaces (e.g., utility vaults) due to the accumulation of methane generated from the anaerobic biodegradation of petroleum hydrocarbons in soils. Eliminate methane in the subsurface to the extent technologically and economically feasible.
- Remove or treat LNAPL to the extent technologically and economically feasible, and where a significant reduction in current and future risk to groundwater will result.
- Reduce COCs in groundwater to the extent technologically and economically feasible to achieve, at a minimum, the water quality objectives in the Basin Plan to protect the designated beneficial uses, including municipal supply.

A further consideration is to maintain residential land-use of the Site and avoid displacing residents from their homes or physically divide the established Carousel community.

The FS identified and screened a range of remedial technologies potentially applicable to site cleanup. Remediation technologies were screened and then assembled into remedial alternatives that were subjected to initial screening and detailed evaluation for cleanup of the Site. The detailed evaluation of alternatives led to selection of the preferred alternative and recommended multi-media remedial action approach, as follows:

• Excavation of shallow soils from both landscaped and hardscaped areas of residential yards at impacted residential properties where RAOs are not met. Excavation will be conducted to

a depth of 3 feet below ground surface (bgs). The excavation will also remove residual concrete slabs if encountered within the depth excavated.

- The possibility of exposure to soils remaining below 3 feet bgs and impacted soils beneath City streets and sidewalk is addressed through a Surface Containment and Soil Management Plan to address notifications, management, and handling of residual soils that are impacted by COCs at concentrations greater than risk-based levels. This plan is submitted for Regional Board review as Appendix D to this RAP.
- Soil vapor extraction (SVE)/bioventing will be used to address petroleum hydrocarbons and VOCs in residual soils, soils at greater depths and soil vapor, and to address methane in soil vapor, by promoting degradation of residual hydrocarbon concentrations where RAOs are not met following shallow soil excavation. SVE wells will be installed in City streets and on residential properties, as appropriate.
- Bioventing will be conducted via cyclical operation of SVE wells to increase oxygen levels in subsurface soils and promote microbial activity and degradation of longer-chain petroleum hydrocarbons.
- Sub-slab mitigation will be implemented at properties where RAOs are not met based on SSCGs calculated using a generic attenuation factor of 0.002 or methane concentrations in sub-slab soil vapor exceed the upper RAO for methane of 0.5%.
- LNAPL will be recovered where LNAPL has accumulated in monitoring wells (MW-3 and MW-12 and in additional wells if it accumulates at a thickness of greater than 0.5 foot) to the extent technologically and economically feasible, and where a significant reduction in current and future risk to groundwater will result.
- COCs in groundwater will be reduced to the extent technologically and economically feasible via source reduction and monitored natural attenuation (MNA). As directed in the CAO, groundwater monitoring will continue as part of remedial actions. If, based on a 5-year review following initiation of SVE system operation, groundwater plumes are not stable or declining and Site COCs in groundwater do not show a reduction in concentration, an evaluation of additional groundwater treatment technologies will be conducted and implemented as needed.

For shallow soils (less than 3 feet bgs) and sub-slab soil vapor, potential exposures will be addressed in the short term. Deeper soil, soil vapor, and groundwater risk reduction will be implemented over a longer period of time through SVE/bioventing and MNA. These remedial actions are intended to achieve the RAOs and the SSCGs for soil, soil vapor, and groundwater as directed in the Regional Board's Review of the Revised SSCG Report and Directive dated January 23, 2014 and the proposed modifications of some SSCGs addressed in the HHRA (Geosyntec, 2014a).

Although there is no indication that there are any long-term health risks, water quality, or nuisance concerns caused by COCs associated with residual concrete slabs, residual concrete slabs will be removed where encountered during excavation. SVE/bioventing would address any concerns at the Site related to impacted media that may be associated with the residual reservoir slabs left in place.

#### **Remedial Action Plan**

Following approval of the RAP, a Site-wide Remedial Design and Implementation Plan (RDIP) will be prepared. The Site-wide RDIP will provide details on the design and implementation of the planned remedy, including excavation, SVE/bioventing, and sub-slab vapor mitigation activities. It will include detailed plans for installation of the site-wide components of the SVE/bioventing system. In addition, Property-Specific Remediation Plans (PSRPs) will be prepared for each property where remedial work will occur that will present detailed plans for remedial activities on a property-by-property basis, including site restoration.

A tentative schedule of actions to implement the RAP has been developed and is discussed in Section 9. Certain items, including agency review of the RDIP and PSRPs, review of grading plans and permit applications by the City of Carson, LA County Department of Public Works (DPW) and South Coast Air Quality Management District (SCAQMD), and obtaining access at the individual properties, may take longer than estimated and are outside the control of Shell and its consultants. Following agency approval of the RDIP and PSRPs, issuance of Grading Permits and the Permit to Operate/Construct for the SVE/bioventing treatment system, and granting of access, the construction phase of Site remediation, including installation of the SVE/bioventing system is expected to take approximately 2.5 years. Following the active construction phase, operations and maintenance of the SVE/bioventing system and other monitoring activities, as required, will continue for an estimated 30 years.

# **1.0 INTRODUCTION**

# 1.1 **REGULATORY BASIS**

URS Corporation (URS) and Geosyntec Consultants, Inc. (Geosyntec) prepared this Remedial Action Plan (RAP) for the former Kast Property (Site) in Carson, California on behalf of Equilon Enterprises LLC, doing business as Shell Oil Products US (Shell or SOPUS) in accordance with Cleanup and Abatement Order (CAO) No. R4-2011-0046 issued to Shell by the California Regional Water Quality Control Board – Los Angeles Region (RWQCB or Regional Board) on March 11, 2011 and the RWQCB's letter dated January 23, 2014 directing Shell to submit a RAP and Human Health Risk Assessment pursuant to California Water Code Section 13304 by March 10, 2014.

The RAP, and companion Human Health Risk Assessment (HHRA, Geosyntec, 2014a) and Feasibility Study (FS, Geosyntec, 2014b) are being submitted concurrently as separate documents. Preparation of these documents follows a series of environmental investigations performed by URS and Geosyntec on Shell's behalf in response to Section 13267 letters issued to SOPUS by the Regional Board on May 8 and October 1, 2008 and November 18, 2009, Section 13304 letter dated October 15, 2009, and CAO R4-2011-0046 dated March 11, 2011. This RAP is generally consistent with:

- California Health and Safety Code (HSC) Section 25356.1;
- California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC) *Remedial Action Plan (RAP) Policy*, Guidance Document No. EO-95-007-PP;
- State Water Resources Control Board (SWRCB) Resolution 92-49, Policies and Procedures for Investigation and Cleanup and Abatement of Discharges under Water Code Section 13304;
- CAO No. R4-2011-0046; and
- The Regional Board's directives in its January 23, 2014 letter to Shell.

Shell submitted a Revised Site-Specific Cleanup Goal Report (Revised SSCG Report) on October 21, 2013 (Geosyntec, 2013c) in response to the Regional Board's directive in its letter of August 21, 2013. The Regional Board reviewed the Revised SSCG Report, provided comments on the report on January 23, 2014, and directed Shell to use RWQCB-revised SSCGs for soil, soil vapor, and groundwater provided in Tables 1, 2, and 3 of the January 23 letter, respectively, in preparing the RAP and HHRA. In the HHRA, Shell has proposed modifications to certain of the soil SSCGs to protect groundwater based on the Regional Board's 1996 *Interim Site Assessment & Cleanup* Guidebook (RWQCB, 1996a). The directed and modified SSCGs are presented in Tables 5-1 (Soil), 5-2 (Soil Vapor), and 5-3 (Groundwater) of this RAP and support continued unrestricted residential land use for the Site.

The remedial actions described herein will be analyzed as the preferred alternative in the Environmental Impact Report (EIR) for the project, which is under preparation in accordance with

the draft environmental documents (developed consistent with the California Environmental Quality Act [CEQA]) analyzing the potential environmental impacts associated with the selected remediation alternative presented in Appendix G, as required by the RWQCB (RWQCB, 2014b). If the scope of the Site remedy changes, some aspects of EIR analysis will need to be revised or potentially started over, which will affect the timeline for EIR completion. In addition, elements of the selected remedy will require separate approvals and permits from various agencies, including the South Coast Air Quality Management District (SCAQMD), City of Carson, and Los Angeles County Department of Public Works (DPW; multiple divisions).

# 1.2 **OBJECTIVES**

The objectives of this RAP are to summarize the remedial alternative evaluation process and identify and describe the selected full-scale remedial actions for impacted shallow soil and other media at the Site in accordance with Section 3.c of the CAO and directives in the Regional Board's January 23, 2014 letter. The RAP, the companion FS and the selected remedy comply with applicable provisions of the California HSC, California Water Code (CWC), and SWRCB Resolution 92-49.

Specifically, Section 3.c of the CAO requires:

- A detailed plan for remediation of wastes in shallow soil that will incorporate the results from the soil vapor extraction (SVE) pilot test;
- A plan to address any impacted area beneath any existing paved areas and concrete foundations of the homes, if warranted;
- A detailed Surface Containment and Soil Management Plan;
- An evaluation of all available options including proposed selected methods for remediation of shallow soil and soil vapor;
- Continuation of interim measures for mitigation according to the Regional Board approved Interim Remediation Action Plan; and
- A schedule of actions to implement the RAP.

A cross-reference table, included as Appendix A, summarizes where in the RAP and companion HHRA and FS the CAO requirements, directives from the Regional Board's January 23, 2014 letter, and other directives are addressed.

The CAO also requires that a number of listed guidelines and policies be followed in preparing the RAP. These guidelines and policies were used in developing the SSCGs presented in the Revised SSCG Report (Geosyntec, 2013c). In particular, the CAO and subsequent Regional Board directives require that setting of site cleanup goals and evaluation and selection of remedial alternatives be based on technological and economic feasibility as prescribed in SWRCB Resolution 92-49, *Policies and Procedures for Investigation and Cleanup and Abatement of Discharges Under Water Code Section 13304.* The FS, presented under separate cover and summarized in Section 7 below, addresses this directive. Per the Regional Board's directive dated January 23, 2014, the RAP and companion FS include:

- An evaluation of remedial alternatives, including all technologies that were pilot tested. These alternatives, including Alternatives 3B and 4B identified in the Revised SSCG Report, were evaluated with respect to effectiveness, feasibility and cost.
- A Preliminary Relocation Plan for residents in the Carousel Tract during implementation of remedial actions at individual properties.
- Soil remediation boundaries that are identified based on findings from the HHRA, SSCGs for protection of groundwater, and overall findings from comprehensive investigations completed at the Site.
- Addressing the residual concrete reservoir slabs consistent with the Regional Board's clarification letter dated February 10, 2014.
- A proposed Surface Containment and Soil Management Plan to address residual constituents of concern (COCs) that will be left in place following soil excavation.

## **1.3 PUBLIC REVIEW PROCESS**

In accordance with the CAO, Shell prepared and submitted a draft Public Participation Plan (PPP) dated September 17, 2013 (SOPUS, 2013). As described in the CAO and in the PPP, "the RAP will be made available for public review for a minimum 30-day period to allow for public comment on proposed remedies." The Regional Board will hold a public meeting to advise the public regarding planned remedial actions as part of this review process. It is intended that the public comment period and public meeting for the RAP will be concurrent with the public comment period and public meeting to be conducted for the California Environmental Quality Act (CEQA) Environmental Impact Report (EIR) to be prepared for the project.

## 1.4 ORGANIZATION OF THE RAP

The remainder of this RAP is organized as follows:

- Section 2 provides Site background information;
- Section 3 briefly summarizes previous investigations and their findings;
- Section 4 provides a summary of pilot tests conducted and interim actions implemented at the Site;
- Section 5 outlines Remedial Action Objectives (RAOs);
- Section 6 provides a summary of the HHRA;
- Section 7 summarizes the Feasibility Study conducted to evaluate remedial alternatives and recommend a preferred alternative;
- Section 8 presents the proposed remedial actions for the Site;
- Section 9 describes the planned Remedial Design and Implementation Plan (RDIP) process and provides an estimated schedule for implementation of the RAP;
- Section 10 provides an overall summary of the RAP; and
- Section 11 lists references cited.

# 2.0 SITE BACKGROUND

## 2.1 SITE HISTORY

i

The Kast Property is a former petroleum storage facility that was operated by a Shell Oil Company predecessor from the mid-1920s to the mid-1960s. The property was sold to real estate developers who redeveloped it into the Carousel Community residential housing tract by others in the late 1960s and early 1970s. Today the Site consists of approximately 44 acres occupied by 285 single-family residential properties and City streets collectively referred to as the Carousel Tract. The Site is located in the City of Carson in the area inclusive of Marbella Avenue on the west, Panama Avenue on the east, E. 244th Street on the north, and E. 249th Street on the south (Figure 2-1). The Site is bordered by the Los Angeles County Metropolitan Transportation Authority (MTA) railroad tracks to the north (formerly owned by the BNSF Railway Company), Lomita Boulevard to the south, residential properties of the Monterey Pines Community and industrial property of the former Turco Products Facility to the west, and residential properties to the east (Figure 2-2).

Detailed Site background information, including information on historical Site operations, onsite structures formerly present, Site demolition, and development was provided in the Plume Delineation Report (URS, 2010a) and the Site Conceptual Model (SCM, Geosyntec, 2010b), included as Appendix A to the Plume Delineation Report. The Site was not developed until 1923 when Shell Company of California purchased the 44-acre property from Mary Kast and constructed three oil storage reservoirs on the Site. Two of the reservoirs (the central and southern Reservoirs No. 5 and 6) had capacities of 750,000 barrels each, and the third reservoir (northern Reservoir No. 7) had a capacity of 2 million barrels. The reservoirs were partially in-ground and partially aboveground with earthen berms constructed using soils excavated from the belowground portions of the reservoirs. The reservoirs had wire-mesh reinforced concrete-lined floors and side walls, and were covered with wood frame roofs supported by wooden posts on concrete pedestals (URS, 2010a). The outer berms were 15 to 20 feet above surrounding grade, and the outer walls of the berms are believed to have been covered with asphalt. The oil storage reservoirs were primarily used to store crude oil. Historical records cited in the Plume Delineation Report (URS, 2010a) indicate that bunker oil or heavier intermediate refinery streams may also have been stored in the reservoirs at one time, but the time and quantity of bunker oil storage is unknown. There is no indication that the reservoirs were used to store any other chemicals or compounds (SOPUS, 2010).

Site use remained as an active oil storage facility until the 1950s, when the Site was kept on a standby reserve basis. In October of 1965, Shell Oil Company entered into a Purchase Option Agreement to sell the Site, with the oil storage reservoirs intact, to Richard Barclay or his nominee. Richard Barclay was a principal in Barclay Hollander Curci, later renamed Barclay Hollander Corporation (BHC), and Lomita Development Company (Lomita Development). Lomita Development was subsequently merged into BHC. BHC is now a wholly-owned subsidiary of Dole Food Company, Inc. (Dole).

In December 1965, Richard Barclay designated Lomita Development as his nominee for purchase of the Site. The property was evaluated for BHC and Lomita Development by Pacific Soils Engineering, which performed soil borings and developed engineering studies and grading plans for

the Site. In 1966, BHC and its contractors conducted these studies, removed the remaining residual oil and water from the reservoirs, demolished the reservoirs and graded the Site. Lomita Development's request to rezone the Site from industrial to residential was approved by Los Angeles County in October 1966, and in the same month, title was transferred to Lomita Development under the Purchase Option Agreement. Construction of homes began in 1967 and was apparently completed by the early 1970s. The Site has remained residential since that time. More detailed information on the Site background is included in Appendix A (Geosyntec, 2010b) of the Plume Delineation Report (URS, 2010a).

## 2.2 REGULATORY INVOLVEMENT

The Site came under the attention of the Regional Board in 2008 when environmental investigations for the neighboring former Turco Products Facility, located directly west of the Site, discovered contamination by petroleum hydrocarbons at sample locations within the former Kast Property. The Department of Toxic Substances Control (DTSC) communicated these findings to the Regional Board in March 2008, and in April 2008 the Regional Board sent an inquiry to Shell regarding the status of any environmental investigations at the Site. This inquiry was followed by the Regional Board's CWC Section 13267 Order to Conduct an Environmental Investigations, pilot studies, and other environmental evaluations of the Site in response to that Order and subsequent 13267 Orders issued on October 1, 2008 and November 18, 2009, Section 13304 Order dated October 15, 2009, and CAO R4-2011-0046 dated March 11, 2011, as amended.

This RAP is being submitted in response to the CAO and subsequent RWQCB comments and directives issued as modifications to the CAO, particularly the RWQCB's letter dated January 23, 2014 directing Shell to submit this Remedial Action Plan and Human Health Risk Assessment, pursuant to CWC Section 13304.

## 2.3 SUMMARY OF SITE CONDITIONS AND STATEMENT OF THE ISSUE

As described below in Section 3, the Site has been impacted with petroleum hydrocarbons associated with crude oil storage during the period prior to residential redevelopment. The distribution of hydrocarbons was significantly affected by reservoir demolition and Site grading activities by the developer.

Crude oil is a complex mixture of various petroleum hydrocarbon compounds. Total petroleum hydrocarbon (TPH) impacts, reported in general hydrocarbon chain ranges corresponding to gasoline (TPHg), diesel (TPHd), and motor oil (TPHmo), occur in shallow and deep soils together with volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), including polycyclic aromatic hydrocarbons (PAHs); VOCs, including benzene, and methane resulting from degradation of petroleum hydrocarbons are present in soil vapor (also referred to as soil gas); dissolved-phase VOC and TPH impacts quantified as TPHg, TPHd, and TPHmo-range hydrocarbons are present in groundwater, and LNAPL consisting of crude oil is locally present on groundwater. In addition to hydrocarbon-related impacts, the Site is also locally impacted by chlorinated solvents,

Ì

such as tetrachloroethene (PCE) and trichloroethene (TCE), and from a class of chlorinated compounds referred to as trihalomethanes (THMs).

As summarized in Section 6 and discussed in detail in the HHRA (Geosyntec, 2014a), some of these chemical constituents, referred to as constituents of concern (COCs), are present at concentrations that may pose a human health hazard or cancer risk greater than the *de minimus* risk level of one-ina- million or Hazard Index (HI) greater than 1. Although it does not present a human health risk based on exposure, methane can potentially pose an explosion hazard where present in an enclosed space at a concentration between 5 and 15% in air and there is a source of ignition. In addition, concentrations for some COCs exceed criteria for the potential leaching to groundwater pathway.

Medium-specific (i.e. soil, soil vapor, and groundwater) Remedial Action Objectives (RAOs) have been developed based on Site characterization investigations completed at the Site. Numerical SSCGs for the COCs, where applicable, have been developed to achieve the medium-specific RAOs. The SSCGs are presented in Tables 5-1 (Soil), 5-2 (Soil Vapor), and 5-3 (Groundwater) of this RAP and support continued unrestricted residential land use for the Site. These medium-specific RAOs and SSCGs were used in conducting the FS (Geosyntec 2014b). The FS includes an analysis of technological and economic feasibility in accordance with SWRCB Resolution 92-49 and other Applicable or Relevant and Appropriate Requirements (ARARs). Based on the analysis in the FS, the response actions described in this RAP were developed.

# 2.4 SITE SETTING, GEOLOGY AND HYDROGEOLOGY

The Site is located within the West Coast Basin of the Los Angeles Coastal Plain, approximately 3 miles northwest of Long Beach Harbor. The Site is relatively flat, with a gradual slope to the northwest. The elevation across the Site ranges from approximately 30 to 40 feet above mean sea level (msl). The Site is not located within a 100- or a 500-year Federal Emergency Management Agency (FEMA) designated flood zone (URS, 2008). Historically, the Site area has been an oil production area, and active oil production wells are still present to the west and northwest of the Site. Due to historical oil production, the area directly south of the Site across Lomita Boulevard is designated as within the City of Los Angeles methane mitigation zone.

Geologically, the Basin consists of a very thick sequence of unconsolidated marine and continental sediments overlying consolidated sedimentary rocks that range in age from a few thousand years to tens of million years. Based on Site investigations, the upper 10 feet of soil beneath the Site is dominantly fine grained and consists of silt with layers or lenses of silty fine sand. Soils between 10 and 15 feet bgs consist primarily of silt and silty fine sand. From 15 to 85 feet bgs Site soils consist of fine sands to silty fine sand. Soils encountered between 85 and approximately 180 feet bgs consist of silt, silty sand, and fine to medium sand.

The shallowest groundwater encountered beneath the Site occurs within the Bellflower aquitard, an overall fine-grained unit that locally has sandy intervals. First groundwater occurs at a depth of approximately 53 feet beneath the Site, with a groundwater flow direction to the northeast (URS, 2014a).

The Gage aquifer occurs beneath the Bellflower aquitard and extends from approximately 90 to 170 feet bgs. Groundwater flow direction in the Gage aquifer is to the east-northeast. The Lynwood aquifer, also known as the "400-foot Gravel," and the deeper Silverado aquifer are located below the Gage aquifer and may be merged in the Site vicinity (CDWR, 1961). The Lynwood aquifer is dominated by coarse sand and gravel in the Site vicinity (Equilon, 2001). These two aquifers extend from approximately 200 feet bgs to at least 550 feet bgs in the Site vicinity. The Lynwood and Silverado aquifers are major sources of groundwater for municipal drinking water wells in the Los Angeles Basin (Equilon, 2001). However, neither the Gage aquifer, nor the shallow Bellflower aquitard (in which the first regional unconfined groundwater was encountered at the Site) is a known source for drinking water in the Site area and future use is unlikely due to high total dissolved solids and other water quality issues.

The nearest drinking water well, CWS Well 275, is located 435 feet west of the western Site boundary, upgradient of the Site and downgradient of the Former Fletcher Oil Refinery (Figure 2-2). CWS Well 275 produces water from the Lynwood and Silverado aquifers which are below 200 feet bgs in this area. Drinking water is supplied to the Carousel neighborhood and surrounding communities by California Water Services Company (Cal-Water), which regularly tests the drinking water to ensure that it meets state and federal drinking water standards. Information on the quality of water provided by Cal-Water is available from https://www.calwater.com/docs/ccr/2012/rd-dom-2012.pdf.

# 2.5 BACKGROUND INFORMATION ON SURROUNDING PROPERTIES

Summarized below is information regarding surrounding impacted properties that have documented releases and are potential contributors to impacts at the Site. These former facilities are being investigated under the direction of either the DTSC or the RWQCB. Their location is shown on Figure 2-2. Additional information regarding these sites is provided in the SCM (Geosyntec, 2010b), included as Appendix A to the Plume Delineation Report (URS, 2010a) and the Revised SSCG Report (Geosyntec, 2013c).

## 2.5.1 Former Turco Products/Purex Facility

The former Turco Products/Purex Facility (Turco) is located directly west of the northern half of the Site. From 1960 to 1989, Turco processed industrial and janitorial chemicals and conducted chemical milling operations at the facility. Activities associated with Turco's operations resulted in the contamination of soil and groundwater with VOCs. In addition, Turco had an underground gasoline storage tank. Remediation of the property is being conducted by the current property owner, Pedro First Ltd., under DTSC oversight.

Investigations at the former Turco Facility detected volatile compounds, including benzene, toluene and chlorinated VOCs (e.g. PCE and TCE), in the groundwater (DTSC letter to Regional Board, March 2008). According to data contained in the second semi-annual groundwater monitoring report (Leymaster, 2013), both diisopropyl ether (DIPE) and tert-butyl alcohol (TBA) have been detected in Turco wells in the past; however, the data indicate that oxygenated solvents are infrequently analyzed in groundwater samples. The groundwater flow direction on the Turco property is generally to the



northeast, thus the Turco property is upgradient from the Site, and it is possible that some contaminants have migrated from the former Turco facility property onto the Former Kast Site.

## 2.5.2 Former Fletcher Oil and Refining Company

Fletcher Oil and Refining Company (FORCO) operated an oil refinery from approximately 1939 to 1992 on a property currently owned by the Los Angeles County Sanitation District about one-third mile west and upgradient of the Site. FORCO also owned an approximately nine-acre parcel of property known as the Fletcher Oil Storage Yard on the east side of Main Street from 1976 to 1989.

FORCO conducted refining and storage of petroleum products, including crude oil, light distillates (gasoline, naphtha), heavier distillates (diesel fuel, heavy fuel oils and asphalt), and jet fuel. During Fletcher's use of the land east of Main Street as a storage yard, a cluster of nine directional oil production wells, drilled from the same platform, was located on the western edge of the parcel. Aerial photographs indicate the presence of what appeared to be sumps or ponds, as well as several aboveground storage tanks (ASTs) on the property in the past.

The FORCO site is being investigated and remediated under RWQCB oversight under a CWC Section 13267 Order (Site Cleanup No. 0451A, Site ID No. 2040074). Soil and groundwater at the Fletcher Oil site are impacted by petroleum hydrocarbons with impacted groundwater extending offsite to the east of the FORCO property. Two draft cross sections recently prepared by Regional Board staff show contoured benzene concentrations in groundwater emanating from the former FORCO refinery extending beneath the former Turco property, and further extending beneath the former Kast Property (Figures 4 and 5 attached to draft letter to Sanitation District No. 8 from Greg Bishop, P.G., RWQCB project manager for the former Fletcher refinery site dated January 14, 2014; RWQCB, 2014a).

#### 2.5.3 Oil Transport Company Inc.

From 1953 through approximately 1995, Oil Transport Company Inc. (OTC) occupied the property adjacent and to the southwest of the former Kast Property. The OTC site was originally two properties with different uses. The smaller area (approximately 0.93 acres) was developed with several structures, including a chicken processing plant. On the larger portion of the property (approximately 8.2 acres), OTC operated a trucking firm that specialized in the transportation of crude oil and asphalt and also conducted truck washing operations on the property. OTC's reported operations included seven single-walled USTs for fuel and waste oil in four areas on the property, an oil well, several ASTs for crude oil storage and the associated conveyance piping. At least one clarifier is known to have existed on the property.

In about 1995 the property was acquired by Blue Jay Housing Partners for redevelopment as the Monterey Pines community of single-family homes. The USTs were removed, along with one of the clarifiers, in September 1995. Three of the seven USTs had corrosion holes and contamination was evident in the soils surrounding the tanks (PIC Environmental Services, 1995a). Impacted soils were subsequently excavated and stockpiled onsite and treated through vapor extraction or used onsite as base material for asphalt (PIC Environmental Services, 1995b). OTC was issued a closure letter in 1996 (RWQCB, 1996b).

More recently, the U.S. Environmental Protection Agency (USEPA) conducted an investigation of the Monterey Pines community in response to a request from DTSC. US EPA's report (Ecology & Environment, 2013) states that the former OTC facility included use of chlorinated solvents in a three-stage clarifier, which resulted in PCE-impacted soils at the Site. Ecology & Environment's field investigation documented the presence of PCE and its breakdown products in soil and soil vapor beneath the Monterey Pines and Carousel communities.

#### 2.5.4 Oil Wells

A number of oil wells are shown in the Site vicinity on California Department of Conservation Division of Oil, Gas and Geothermal Resources maps (CDOGGR Map No. 128, 1998). The CDOGGR records did not identify wells on the former Kast Property. However, six wells were identified west of the Site between the western Site boundary and South Main Street, and three wells were identified east of the Site. One of the wells located west of the Site is located at the current location of the Monterey Pines Community directly west of the southern portion of the Site. That well has been abandoned, and a vent pipe for the well is visible near the intersection of Monterey Drive and Petaluma Lane. Two of the wells located east of the Site, referred to as Morton & Dolley Nos. 45 and 46, were located in close proximity to the current location of Island Avenue. Note that Los Angeles County Code requires evaluation of methane hazards for any new construction located within 300 feet and additions or alterations to existing buildings or structures located within 200 feet of active, abandoned or idle oil or gas well(s).

#### 2.5.5 Dry Cleaners

City of Carson documents indicate that several dry cleaner/laundry facilities were present along E. Lomita Blvd at different times from 1971 and 1997 and along S. Main St between 1998 and 2002. Chemicals typically used at dry cleaner and laundry facilities are known to contain PCE.

Because of their proximity to the Site, it is possible the facility operations have impacted the Site through groundwater flow in a northeasterly direction from Lomita, and the area immediately north of the Site from the Main Street locations.

#### 2.5.6 Pipelines

Based on a Los Angeles County Road Department pipeline map (LAC Sheet W-312, undated), there are 10 petroleum lines within the right-of-way in Lomita Avenue, directly south of the Site. Four of these are shown as abandoned on the map. Most are located in the northern half of Lomita Avenue, adjacent to the Site. Three petroleum pipelines are shown in the railroad right-of-way directly north of the Site running parallel to the railroad tracks. Two are located north of the railroad lines and one is located south of the railroad line, adjacent to the Site (LAC Sheet W-301, undated).

# 3.0 PREVIOUS INVESTIGATIONS

URS and Geosyntec have conducted extensive multimedia sampling at the Site during multiple investigations from 2008 to present. All of Shell's work at the Site has been conducted with RWQCB approval and oversight following work plans reviewed and approved by the RWQCB. All of these work plans and reports documenting findings of the work conducted are available to the public on the SWRC GeoTracker website at <u>http://geotracker.waterboards.ca.gov/</u> profile report.asp?global id=T1000000228.

Investigations at the Site included:

- Assessment in public rights-of-way, the adjacent railroad right-of-way, and other non-residential areas consisting of:
  - Shallow and deep soil sampling;
  - Shallow and deep soil vapor sampling;
  - Groundwater monitoring well installation and sampling;
  - Background outdoor air sampling; and
  - Background soil sampling;
- Assessment at individual residential properties consisting of:
  - Methane screening;
  - Sub-slab soil vapor probe installation and sampling;
  - Shallow soil sampling, and
  - Indoor and outdoor air sampling.
- Assessment of environmental impact and feasibility of removal of residual concrete reservoir slabs.
- Pilot testing to evaluate different potential remedies for Site impacts (discussed in Section 4).

# 3.1 ASSESSMENTS IN NON-RESIDENTIAL AREAS, PUBLIC STREETS, AND RAILROAD RIGHT-OF-WAY

Assessments in the public streets and railroad right-of-way were conducted in multiple events starting in 2008 and extending into 2014, although the bulk of this assessment work was conducted between 2009 and 2012. Boring and soil vapor probe locations are shown on Figure 3-1, and groundwater monitoring well locations are shown on Figure 3-2.

The initial assessment work was designed to investigate soil, soil vapor, and groundwater conditions onsite and was then expanded to include assessment work directly offsite. Additional soil vapor probes were also installed to better delineate some areas with higher impacts.

As of January 30, 2014, 550 soil samples were collected from 95 locations in public streets and in the railroad right-of-way at depths ranging from 1 to 80 feet bgs. In addition, 286 soil vapor samples have been collected from 229 soil vapor probe locations in public streets and the railroad right-of-



## **Remedial Action Plan**

way. Soil vapor sample depths range from 1 to 60 feet bgs although most sample depths are in the upper 5 feet bgs. Soil vapor continues to be sampled quarterly from 5 feet bgs in 10 soil vapor probes. Additionally, as permitted by Site conditions, samples are collected at eight paired 1-foot probes and four paired 1.5-foot probes. These probes are paired with 5-foot probes for shallow, sub-slab equivalent assessment. In addition, URS conducted monthly methane monitoring of 69 utility vault locations onsite from January through June 2012, quarterly for the second half of 2012, and twice in 2013. The vaults are currently monitored on a quarterly basis.

Groundwater monitoring wells screened in the shallow zone (water table) aquifer were installed onsite in the initial assessment work. Additional water table wells were installed on and offsite and four onsite dual-completion (two wells in one borehole) Gage aquifer wells were installed to better define the lateral and vertical extent of hydrocarbon related impacts. Depth to first water (shallow zone aquifer) onsite ranges from approximately 51 to 65 feet bgs. As mentioned in Section 2.4, the Gage aquifer extends from approximately 90 to 170 feet bgs. The dual-completion Gage aquifer wells were installed so that one well is screened in the lower Gage and the other in the upper Gage aquifer (URS, 2011).

There are currently 25 groundwater monitoring wells that have been installed and are monitored quarterly. Quarterly groundwater monitoring started in August 2009 after the first set of wells was installed. Groundwater flow direction in the water table aquifer is to the northeast and is east-northeast in the Gage aquifer.

Street assessment work and the results were documented in reports that were submitted to the RWQCB. The primary assessment reports for this work are:

- Final Phase I Site Characterization Report (URS, 2009);
- IRAP Further Site Characterization Report (URS, 2010);
- Plume Delineation Report (URS, 2010);
- Supplemental Site Delineation Report (URS, 2011); and
- Gage Aquifer Investigation Report (URS, 2011).

Additionally, individual reports have been submitted for the periodic monitoring of soil vapor in the streets, for monitoring of utility vaults, and for groundwater monitoring.

# 3.2 ASSESSMENT AT INDIVIDUAL RESIDENTIAL PROPERTIES

Residential Site characterization activities, referred to as the Phase II Site Characterization, focus on assessing conditions at individual residential properties and include screening of indoor air for methane, sampling and analysis of soils to a depth of 10 feet bgs, and installation, sampling and analysis of exterior and interior sub-slab soil vapor probes. These investigations are being conducted in accordance with the RWQCB-approved *Work Plan for Phase II Site Characterization* (URS, 2009). Indoor air sampling was subsequently added to the residential investigation program and is being conducted in accordance with the *Indoor Air Sampling and Analysis Work Plan* (Geosyntec, 2009a). URS has and continues to sample residential properties as access becomes available. Data

for each sampling event at each property are documented and evaluated in an interim residential sampling report and submitted to the RWQCB within 45 days of the receipt of all data from the laboratory.

To date, 95% of the residences have had some sampling and 79% have completed the required sampling. Over 800 residential sampling reports have been submitted to the RWQCB. A copy of the residential sampling report is also sent to the homeowner or the homeowner's representative.

## 3.2.1 Methane Screening

Methane can occur from the natural breakdown of organic materials, including petroleum hydrocarbons. Methane is also the primary component of natural gas used for heating and cooking. URS conducted methane screening inside each house, as access was granted, using a hand held methane meter and a flame ionization detector (FID). Methane screening is conducted throughout each room of the house, inside closets and cabinets and other enclosed spaces where methane could potentially accumulate, at utility connections, wall sockets, drains and around toilets. Most houses have been screened multiple times. This method offers a real-time evaluation of whether methane concentrations in the explosive/combustible ranges are present in the home.

As of January 30, 2014, 269 of the 285 homes onsite have been screened for methane. Methane due to the presence of petroleum hydrocarbons in the subsurface was not detected in any of the homes screened. Fire and explosion hazards have not been identified at any residence due to methane concentrations from degradation of hydrocarbons in soil vapor.

Since 2009, URS has identified natural gas leaks at over 100 utility connections that range from small to significant. The fire department has been called six times to report leaking gas lines in homes where concentrations exceeded 2 to 10% of the lower explosive limit (LEL). None of these were related to soil or soil vapor conditions. The Gas Company was contacted over 50 times to check and repair leaks after URS recommended to the homeowner or the homeowner's representative that they call the Gas Company to have them check a leak.

#### 3.2.2 Soil Sampling

Soil samples generally were collected from multiple locations at each property sampled at depths of 0.5, 2, 5 and 10 feet bgs, where feasible. Samples were also collected at other depths when field observations or field instrument readings indicated possible impacts. The number of locations at each property targeted a sampling density of one boring per approximately 200 square feet of area of exposed soil or vegetation in the front and back yards of residential properties in accordance with the *Addendum Work Plan for Phase II Site Characterization* dated April 19, 2010 (URS, 2010d). As of January 30, 2014, 10,240 soil samples have been collected at 268 of the 285 properties.

## 3.2.3 Sub-Slab Soil Vapor Sampling

Sub-slab soil vapor probes have been installed through concrete hardscape near the house in the front and back yard and through the floor slab of the home when access was granted. Sub-slab soil vapor sampling is being done to assist in evaluating VOC and methane impacts and the potential for vapor migration to indoor air. Sub-slab vapor samples have been obtained from nearly every property tested, with many homes having three or four rounds of sample collection. As of January 30, 2014, 2,432 sub-slab soil vapor samples have been collected and analyzed from 268 of the 285 properties. Most sub-slab probes have been sampled at least once, and sub-slab soil vapor at most of these properties has been sampled more than once.

#### 3.2.4 Indoor Air Sampling

Shell agreed to sample indoor air at every residence onsite regardless of whether indoor air sampling was indicated by sub-slab soil vapor results. Prior to sampling, a chemical inventory of the residence is conducted at least two days before indoor air sampling begins. Household items with the potential to influence sampling results are removed from inside the house and either stored in the garage or in a storage pod outside the house. Indoor air samples are collected at two locations inside the house and one location in the garage, and outdoor air samples are collected in the front yard and back yard at the same time. The air samples are each collected over a 24-hour period.

Two rounds of indoor air sampling are recommended for each residence to evaluate potential temporal variation. As of January 30, 2014, indoor air sampling has been conducted at least once at 246 properties and has been conducted twice at 223 properties. Through January 30, 2014, 1,409 indoor air samples and 936 outdoor air samples have been collected from the 246 properties tested for indoor air.

## 3.2.5 Human Health Screening Risk Evaluation (HHSRE)

A Human Health Screening Risk Evaluation (HHSRE) was conducted after each sampling event at each property. The HHSRE is a preliminary conservative evaluation, not to be confused with the HHRA, which has been prepared as a part of the remedial planning for the Site and is summarized in Section 6 and concurrently submitted as a separate document (Geosyntec, 2014a). Both the HHSRE and the HHRA use very conservative, health-protective criteria for purposes of determining whether any further actions are warranted; an exceedance in either of these analyses does not necessarily mean that a health risk will occur. Each HHSRE evaluates available analytical results of the indoor air, soil, and sub-slab soil vapor samples collected at an individual property. The purpose of the HHSRE is to provide a preliminary evaluation of potential human health risks associated with detected constituents of potential concern (COPCs) at the property to identify if interim actions are warranted. The results for the HHSRE are summarized in residential sampling reports for individual properties. Copies of residential sampling reports are provided to the Regional Board and to the residents or to the residents' legal representative. Results of the HHSRE are presented in terms of a Risk Index (RI) for potential exposure to cancer-causing chemicals and a Hazard Index (HI) for exposure to non-cancer-causing chemicals based on chronic effects. A RI or HI value of greater than 1 has been used to identify if further action (e.g., additional investigation, data analysis, or interim measures) may be warranted at the property.

As presented in the *Data Evaluation and Decision* Matrix (Geosyntec, 2010a), as a precautionary measure in advance of the results of the full HHRA, if surface (0 to 2 feet bgs) or subsurface (2 to 10 feet bgs) soil concentrations of COPCs at a property exceeded screening levels such that the RI was greater than 1 and less than 100 or cumulative HI or TPH HI was greater than 1 and less than 10, residents were advised to minimize contact with and disturbance of soils. If the RI was equal to or

greater than 100 or the HI or TPH HI was greater than or equal to 10, residents were advised to avoid contact with surface soils and that interim institutional and/or engineering controls be implemented. For subsurface soils, since contact can only occur through bringing the subsurface soil to the surface, residents were advised to avoid disturbance of subsurface soil and that interim institutional and/or engineering controls be evaluated. If sub-slab soil vapor concentrations resulted in a RI or HI of 1 or greater, collection of indoor air samples was recommended to evaluate the potential for vapor intrusion. (As noted above, Shell agreed to perform indoor air sampling at each residence regardless of whether it was indicated by soil vapor sampling results.)

A multiple lines of evidence evaluation was conducted to assess whether constituents detected in indoor air were a result of background sources or subsurface vapor intrusion. Detected indoor air concentrations were compared to: (1) outdoor air and garage air concentrations, (2) individual constituents detected in sub-slab soil vapor; and, (3) the typical range of concentrations found in homes due to common household sources. As of January 30, 2014, Geosyntec and URS have concluded that constituents detected in indoor air are due to background sources. The Regional Board and the Cal-EPA Office of Environmental Health Hazard Assessment (OEHHA) generally have agreed with these findings.

## 3.3 FINDINGS OF ASSESSMENT WORK

Sampling completed during Site characterization confirms that there were petroleum releases at the Site. In addition, there appears to be evidence of offsite sources for chlorinated compounds detected in all Site media and for certain groundwater impacts (e.g., fuel oxygenates). Petroleum hydrocarbon and related VOC and SVOC impacts occur in shallow and deep soils; VOCs and methane resulting from degradation of petroleum hydrocarbons are present in subsurface soil vapor; dissolved-phase VOC and TPH impacts are present in groundwater, and LNAPL is locally present floating on the groundwater table.

In addition to hydrocarbon-related impacts, impacts are also locally present from chlorinated solvents, such as PCE and TCE, and from THMs. Although, the chlorinated solvents TCE and PCE are found sporadically around the Site in shallow soils, their presence in groundwater is related to offsite sources. THMs are commonly found in drinking water that has been treated with chlorine or chloramines and form when chlorine reacts with organic matter in the water (California Water Service Company; <u>https://www.calwater.com/help/water-quality/</u>). THMs have all been detected in Site soils, soil vapor, and groundwater. Because of their source in drinking water delivered to the Site, THMs are not considered a Site-related COC.

Although petroleum hydrocarbons in the subsurface have likely fermented to produce methane at depth, such methane is generally not present in the shallow subsurface and has not been detected in residences or enclosed areas of the Site at levels that pose a hazard. Methane generated at depth typically migrates very slowly through soils because it is not under significant pressure. Transport is primarily through diffusion, and methane moving upward from depth is typically biologically degraded and/or significantly attenuated in the aerobic shallow soils before it reaches the surface. This bio-attenuation in the vadose zone is evident in the soil vapor data collected at the Site that has been reported in the Interim Residential Reports and the Street Soil Vapor Monitoring Reports.

These natural mechanisms explain the lack of elevated methane levels in the sub-slab soil vapor samples and in indoor air within the residences that have been tested.

As summarized in Section 6 and discussed in detail in the HHRA (Geosyntec 2014a), some COCs detected at the Site are present at concentrations that result in estimates of incremental lifetime cancer risk (ILCR) and noncancer hazard that are above regulatory thresholds or may pose a concern for the potential leaching to groundwater pathway. Although exposure to methane does not, by itself, pose a risk to human health, where there is a source of ignition, methane may pose an explosion hazard when present in an enclosed space at a concentration between approximately 5% or 50,000 parts per million by volume (ppmv, termed the lower explosive limit, LEL) and 15% or 150,000 ppmv (termed the upper explosive limit, UEL).

The discussion below is intended to highlight predominant risk driving compounds and is not intended to be exhaustive. More detailed discussions are included in the individual site assessment and monitoring reports for the different sets of data.

#### 3.3.1 Impacts in Soil

Elevated TPH and other VOCs and SVOCs related to petroleum releases were found in soils: (1) beneath the footprint of the former reservoirs; (2) within the fill material above the base level of the former reservoirs (the source of these impacts appears to be from the developer's reuse of petroleum-impacted fill from other portions of the Site, such as berm areas), and (3) in areas outside the footprints of the former reservoirs. The impacts outside the former reservoirs are potentially from a combination of sources, including possible former onsite or offsite pipelines or spills during operation of the storage facility, the developer's grading activities, offsite sources, and shallow soil sources associated with residential activities. The specific analytes TPHg, TPHd, TPHmo, benzene, naphthalene, and other PAHs (shown as benzo(a)pyrene (BAP)-equivalents<sup>1</sup>), are representative of Site COCs with elevated concentrations in soil. The overall distribution of these analytes at 2, 5 and 10 feet bgs is shown on Figures 3-3 through 3-8. As can be seen on these figures, detections at 2 feet are much less frequent and lower in concentration than detections at 5 and 10 feet bgs. Additionally, to assist in remedial action planning, contour plots of analytes in soil have been created and are provided in Appendix B<sup>2</sup>. These contour plots have been provided in response to a directive from the RWOCB. Due to the interpolation inherent in the software used to extrapolate between data points to generate the contours, these maps are not necessarily representative of the actual distribution of impacts.

<sup>&</sup>lt;sup>1</sup> Benzo(a)pyrene equivalents are concentrations estimated by summing the detected carcinogenic PAH concentration multiplied by a toxicity equivalency factor that relates the toxicity of individual carcinogenic PAHs to that of benzo(a)pyrene. See HHRA Report (Geosyntec, 2014a) for additional details.

 $<sup>^2</sup>$  The concentration contours were prepared using Mining Visualization System (MVS) Premier software (version 9.52, C Tech Development Corporation). MVS is an analysis and visualization software package, commonly used by environmental practitioners to assist in the interpolation and visualization of spatial information.

Higher concentrations of petroleum hydrocarbons tend to be located inside and closer to the edges of the former reservoir footprints. The distribution of TPHd at 2 feet bgs correlates with the reservoir footprints but is also detected outside the reservoir footprints, particularly in the southern and eastern portion of the Site (Figure 3-4). At 5 and 10 feet bgs, TPHd detections are more common with higher concentrations inside the footprints of the former reservoirs. There are also detections outside the reservoir boundaries and a number that are located in the area where the former oil sump was located in the eastern part of the Site.

Concrete slabs, interpreted to be reservoir bottoms, were encountered in some of the borings at depths ranging from approximately 8 to 10 feet bgs. Soil just above the concrete was generally moist to wet but there was no evidence of significant ponding on top of the slabs. Where cored for deeper borings, the concrete was in good condition with staining on the top and, on some cores, bottom surfaces. The interpreted distribution of residual concrete reservoir slabs is shown on Figure 3-15.

#### 3.3.2 Impacts in Soil Vapor

A number of constituents have been detected in soil vapor at the Site. Methane, benzene, and naphthalene are representative of Site-related COCs detected in soil vapor.

Methane has been detected in subsurface soil vapor samples, particularly deeper soil vapor samples, collected at the Site. Methane screening conducted in indoor structures at the Site and utility vaults, storm drains, and sewer manholes at and surrounding the Site has not identified methane concentrations in enclosed spaces that indicate a potential safety risk.

Very few instances of methane detection above 1% (i.e., 20% of the LEL) have been found in subslab soil vapor, and in all but one location, the results of methane speciation indicate the source was either a natural gas pipeline leak or sewer leak. Methane resulting from biodegradation of residual petroleum hydrocarbons has been identified in one sub-slab garage probe at one property<sup>3</sup>; however, methane was either not detected or at very low (less than 0.01%) in the two other sub-slab soil vapor probes at this property. Furthermore, no methane exceedances were found at this property during the indoor air screening, and methane has not been detected in indoor air samples analyzed by the laboratory. Engineering controls have been installed to mitigate potential risks due to methane detected at this location.

Through January 30, 2014, methane concentrations slightly above the interim action levels of 0.1% and 0.5% were detected in one sub-slab probe during one sampling event at five different properties. At four of these properties, methane concentrations were above the lower methane SSCG of 0.1% but were not above the upper methane SSCG of 0.5%. In all four cases, the methane detections were not reproducible in subsequent sampling events. At one location, a methane concentration of 0.5%, slightly above the upper methane SSCG, was detected in a single sampling event. That sub-slab

<sup>&</sup>lt;sup>3</sup> Sub-slab soil vapor methane concentrations exceeding interim action levels have been identified as a result of leaking natural gas utility lines, which were found at several of the residential properties, and a leaking sewer line at two residential properties.



probe has only been sampled once. This location is considered for sub-slab mitigation as part of the recommended Site remedy discussed in Section 8.

Methane concentrations detected in sub-slab soil vapor and in soil vapor at depths of 5 and 15 feet bgs are shown on Figure 3-9.

Benzene concentrations in sub-slab soil vapor and soil vapor at depths and at 5 and 15 feet bgs are shown on Figure 3-10. Benzene detections in sub-slab soil vapor are scattered and generally much lower than soil vapor detections at 5 feet bgs and deeper. As with methane, transport is primarily through diffusion, and benzene moving upward from depth is typically biologically degraded and/or significantly attenuated in the aerobic shallow soils before it reaches the surface. Elevated benzene concentrations at 5 and 15 feet bgs are present inside the footprint of the former reservoirs as well as outside.

Naphthalene concentrations in sub-slab soil vapor and in soil vapor at depths of 5 and 15 feet bgs are shown on Figure 3-11. Elevated naphthalene concentrations in sub-slab soil vapor samples are few and scattered. Elevated naphthalene concentrations at 5 feet bgs appear to be concentrated along 244<sup>th</sup> Street and scattered along Marbella Avenue. Naphthalene was not detected in soil vapor samples from 15 feet bgs.

#### 3.3.3 Impacts in Indoor and Outdoor Air

As discussed above, constituents detected in indoor air were evaluated based on multiple lines of evidence. They were compared to outdoor air and garage air concentrations, to individual COCs detected in sub-slab soil vapor during the sampling event or during previous sub-slab soil vapor sampling events, and to the typical range of concentrations found in homes due to common household sources. As of January 30, 2014, based upon a multiple lines of evidence evaluation, Geosyntec and URS have concluded that constituents detected in indoor air are due to background sources. The Regional Board and OEHHA generally have agreed with these findings.

An outdoor air background study was conducted that included upwind, downwind, and onsite sampling during four separate 24-hour events between July 31 and September 17, 2010 (Geosyntec and URS, 2010a; Geosyntec, 2013d). The outdoor air samples were collected at four locations west of the Site boundary, four locations east of the Site boundary, and four locations within the interior of the Site for each of the four separate events. The data collected were used to assess whether outdoor air contaminant concentrations within the Site boundary are statistically similar to upwind and downwind locations. Based on the statistical evaluation, all tests show that there is no evidence that the Site or downwind concentrations are different from the upwind concentrations.

#### 3.3.4 Impacts in Groundwater

Groundwater monitoring wells have been sampled quarterly since installation. Groundwater results from the fourth quarter 2013 are included in Appendix C. Most of the groundwater monitoring wells are screened in the water table aquifer, the top of which ranges from approximately 51 to 65 feet bgs onsite. The remaining wells are screened in the Upper and Lower Gage aquifer onsite. The Gage aquifer extends from approximately 90 to 170 feet bgs. Groundwater results from the fourth quarter 2013 are generally consistent with previously reported results. Groundwater is impacted with Site



## **Remedial Action Plan**

COCs as well as with those attributed to upgradient sources; COCs attributed to offsite sources are discussed in detail in the Revised SSCG Report (Geosyntec, 2013c). These non-Site related COCs include tert-butyl alcohol (TBA), chlorinated compounds (including TCE and PCE), and certain metals (antimony and thallium). Again, detailed rationale for these COCs originating from offsite sources or being present as background is presented in Geosyntec (2013c).

Site-related COCs in groundwater exceeding California drinking water standards (Maximum Contaminant Levels [MCLs] or Department of Human Health Notification Levels [NLs]) are benzene, naphthalene, and arsenic. TPH also exceeds the Regional Water Quality Control Board, San Francisco Region (SFRWQCB) December 2013 Environmental Screening Levels (ESLs). These compounds and LNAPL are discussed below.

It should be noted that the drinking water supplied to the Carousel community by the water provider is screened in a lower aquifer than the impacted groundwater at the Site and is tested according to state standards and is safe to drink (California Water Service Company, 2013). No current or future use of the shallow zone and Gage aquifer at or near the Site is anticipated due to high total dissolved solids and other water quality issues.

#### 3.3.4.1 LNAPL

If the petroleum hydrocarbons from crude are present at sufficiently high concentration it will occur as a non-aqueous phase liquid (NAPL), which typically has lower density than water and is often referred to as "light NAPL" or LNAPL. LNAPL has been detected on groundwater at the Site in two wells. An LNAPL sample collected and analyzed from Site monitoring well MW-3 was characterized as a relatively unweathered crude oil. Water table wells MW-3 and MW-12, located approximately 43 feet from each other in Marbella Avenue, have measurable thicknesses of LNAPL floating on the water table in the wells. URS currently removes LNAPL from these wells monthly. LNAPL has not been detected in any of the other groundwater monitoring wells at the Site.

#### 3.3.4.2 Benzene

The distribution of benzene in Site groundwater is depicted on Figures 3-12, 3-13 and 3-14; these figures are based on data in the Fourth Quarter 2013 Groundwater Monitoring Report (URS, 2014). As shown on Figure 3-12, benzene is present beneath much of the Site in the shallow groundwater zone. Benzene in Site groundwater is attributed to one or more of the following: leaching of benzene from hydrocarbon-impacted Site soils; leaching of benzene from LNAPL locally present at or near the water table beneath the Site; and/or migration onto the Site from upgradient sources, including the former Turco Products Facility and former FORCO refinery property (RWQCB, 2014a).

The highest concentrations of benzene detected in the shallow zone during the 4<sup>th</sup> quarter 2013 were in wells MW-13 and MW-6 (480  $\mu$ g/L and 130  $\mu$ g/L, respectively). Both monitoring wells are located in the northeastern portion of the Site. Offsite to the northeast (downgradient), benzene was detected in one downgradient well, MW-10, at a concentration of 6.2  $\mu$ g/L (URS, 2014).

Concentrations of benzene attenuate markedly in the underlying Gage aquifer as shown on Figures 3-13 and 3-14. The benzene concentration in MW-G04S, located directly downgradient of Turco, is anomalously high in the Upper Gage and likely is due to impacts related to former operations at the Turco or FORCO sites as indicated by the presence of TBA, which is a fuel oxygenate historically added to refined gasoline and a breakdown product of methyl tert-butyl ether, which is also a gasoline additive, and is not a component of crude oil. As discussed in Section 2.5.2, two draft cross sections recently prepared by Regional Board staff show benzene concentrations in groundwater emanating from the former FORCO refinery and extending beneath the former Kast Property (RWQCB, 2014a).

Benzene was not detected in samples collected in the deeper portion of the Gage aquifer during recent monitoring events (Figure 3-14). As shown on Figures 3-12 through 3-14, the lateral and vertical distributions of benzene at the Site are well defined. The Gage aquifer wells define the vertical benzene distribution, with the exception of the anomalously high benzene detection in shallow Gage well MW-G04S which, as discussed above, is attributed to an offsite source.

As discussed in the Revised SSCG Report (Geosyntec, 2013c), Geosyntec used public domain Monitoring and Remediation Optimization System (MAROS) software to model and evaluate the stability of the benzene groundwater plume at the Site. The MAROS analysis indicated it is likely that the benzene in Site groundwater is being attenuated through natural biodegradation processes and is a stable or decreasing plume. Model simulations predict a reduction of benzene concentrations to MCLs in 70 to several hundred years depending on the level of source removal. This conclusion is supported by the current observed distribution of benzene in the plume, which shows significant attenuation (to non-detect or near non-detect concentrations) at the downgradient plume edge near the property boundary. The conclusion is also supported by the significant age of the plume source (~45 years or more).

#### 3.3.4.3 Naphthalene

Naphthalene has been detected in groundwater from the majority of Site wells. However, concentrations that exceed the NL of 17  $\mu$ g/L have been detected in only two wells, MW-13, located in the northern portion of the Site, at a maximum concentration of 82  $\mu$ g/L and MW-14 (detected below the NL at 3.6j  $\mu$ g/L during the 4<sup>th</sup> Quarter 2013). Concentrations of naphthalene historically exceeding the NL are limited to these two areas. MW-13 is the monitoring well with the highest detected concentration of benzene and other hydrocarbon-related VOCs at the Site.

#### 3.3.4.4 Total Petroleum Hydrocarbons (TPH)

MCLs and NLs have not been established for TPH in groundwater. The SFRWQCB has established ESLs for TPHg, TPHd, and TPHmo in groundwater of 100  $\mu$ g/L (latest update December 2013). TPH has been detected in Site monitoring wells at concentrations exceeding SFRWQCB groundwater ESLs. Based on 4<sup>th</sup> quarter 2013 data, the TPHg ESL was exceeded in nine wells, the TPHd ESL was exceeded in seven wells, and TPHmo ESL was exceeded in four wells (URS, 2014). Monitoring well MW-13, located in 244<sup>th</sup> Street near Ravenna Avenue, consistently has had the highest TPH and VOC concentrations.



3-10

#### 3.3.4.5 Arsenic

Arsenic has been detected in most of the Site monitoring wells. During the most recent groundwater monitoring event in which arsenic was sampled (4<sup>th</sup> quarter 2013), arsenic concentrations exceeding the MCL of 10  $\mu$ g/L were detected in six wells. Overall, arsenic concentrations have been declining in most wells with historic arsenic concentrations above MCLs. Arsenic was not detected above the MCL in the three offsite shallow zone downgradient wells. Dissolved arsenic concentrations in the deeper Gage wells are significantly lower and the concentration in only one well, MW-G04S was above the MCL at a concentration of 16.8  $\mu$ g/L.

Although arsenic is identified as a Site COC, it is likely that a portion, if not all, of the arsenic present in groundwater is derived from native Site soils. Arsenic is a natural trace element that occurs in soils. Because arsenic is naturally soluble, dissolved arsenic is a common contaminant in southern California groundwater. Out of all wells sampled by the Water Replenishment District of Southern California (WRD) in the West and Central Groundwater Basins in the Los Angeles area, arsenic exceeds its MCL more than any other constituent (WRD, 2008). WRD (2008) reports that arsenic concentrations as high as  $205 \mu g/L$  were detected in the wells they monitor.

In summary, it is known that arsenic is a regional contaminant in southern California. It is likely that at least a portion, if not all, of the dissolved arsenic beneath the Site is derived from natural sediments beneath the Site. Petroleum hydrocarbon impacts at the Site may enhance the solubility of arsenic by lowering oxygen levels in the subsurface, thus increasing the mobility of arsenic in soils beneath the Site. Once petroleum hydrocarbons are depleted, elevated arsenic would be expected to return to background concentrations. Based on groundwater monitoring well data, relatively elevated arsenic concentrations are localized in the central western portion of the Site and are attenuated significantly in the downgradient direction.

## 3.4 RESIDUAL CONCRETE RESERVOIR SLAB ASSESSMENT

Per requirements in the CAO, URS and Geosyntec prepared an assessment of the environmental impact and the feasibility of removal of residual concrete reservoir slabs (URS, 2013e). This assessment summarized historical information regarding activities of the developer during demolition of the residual concrete slabs and reservoir sidewalls, and findings from investigations that provide information on the location, depth and condition of the slabs. A map showing the interpreted lateral extent of the former reservoir slabs is provided as Figure 3-15.

The concrete reservoir slab assessment concluded that there is nothing unique about the former reservoir slabs that would indicate a specific need for their removal. During one of the excavation pilot tests, portions of the concrete reservoir slab beneath the front yard of a property were excavated, broken up and removed. The report concluded that removal of slabs beneath paved areas or homes would require the demolition of City streets and homes, which would have significant social, economic and environmental impacts on the residents of the Carousel tract and the local community. It was URS and Geosyntec's conclusion that the concrete reservoir slabs do not require removal from an environmental or human health perspective and the impacts associated with their removal far outweigh the benefits of removal.

1

)

The Regional Board commented on the reservoir slab assessment report in its letter dated January 8, 2014. The Regional Board clarified its position and revised its comments on the reservoir slab assessment in its letter of February 10, 2014. The reservoir slabs are addressed in this RAP based on the Regional Board's clarification letter.

ì

# 4.0 SUMMARY OF INTERIM ACTIONS COMPLETED AND PILOT TESTING

Based upon findings of HHSREs conducted as part of Phase II Site Investigations of residential properties, evaluations of interim actions were conducted if RI or HI estimates exceeded criteria identified in the Decision Matrix (Geosyntec, 2010a). These evaluations are described in Section 4.1 below.

Multiple bench-scale and field pilot tests were completed to evaluate the effectiveness of using a number of technologies to treat COCs and methane in Site soils and soil vapor. These pilot tests were performed in accordance with the RWQCB-approved work plans Addendum to the IRAP Further Site Characterization Report and SVE Pilot Test Work Plan dated April 30, 2010 (URS, 2010d), Pilot Test Work Plan for Remedial Excavation and In-situ Treatment Pilot Testing, Former Kast Property, Carson, California dated May 10, 2011 (Work Plan, URS and Geosyntec, 2011) and Phase II ISCO Bench-scale Test Work Plan dated March 15, 2013 (Phase II Work Plan, Geosyntec, 2013a).

## 4.1 EVALUATIONS OF NEED FOR INTERIM ACTIONS

Based on HHSRE findings presented in residential sampling reports, as a precautionary measure in advance of the preparation of the full HHRA, if shallow soil (0 to 2 feet bgs) concentrations of COCs exceeded screening levels such that the RI was greater than 1 and less than 100 or cumulative HI or TPH HI was greater than 1 and less than 10, residents were advised to minimize contact with and disturbance of soils. If the RI was equal to or greater than 100 or the HI or TPH HI was greater than or equal to 10, residents were advised to avoid contact with surface soils and that interim institutional and/or engineering controls be implemented. For subsurface soils, since contact can only occur through bringing the subsurface soil to the surface, residents were advised to avoid disturbance of subsurface soil and that interim institutional and/or engineering controls be evaluated. If sub-slab soil vapor concentrations resulted in a RI or HI that exceeded 100, an evaluation of the need for interim engineering controls was conducted and collection of indoor air samples within 30 days was recommended to evaluate the potential for vapor intrusion. Based upon these recommendations and Regional Board review comments on individual Phase II Interim Reports, interim response actions for COCs exceeding screening levels in soils were further evaluated at 21 properties and reported in the Evaluation of Interim Institutional and/or Engineering Control Letters submitted to the Regional Board. For two residences, additional interim controls were recommended and implemented.

## 4.1.1 Summary of Interim Actions Completed

At 378 E. 249<sup>th</sup> Street, where elevated methane related to petroleum hydrocarbon degradation was detected in soil vapor under the attached garage, interim actions, namely institutional and/or engineering controls, were evaluated. Because the methane in the sub-slab vapor probes was of limited extent, not under pressure, and methane was not detected during screening of the ambient air in either the home or garage, or in indoor air samples collected from both the garage and home and analyzed by an independent laboratory, the methane observed in the garage sub-slab soil vapor probe does not pose a safety concern. As a precautionary measure, SOPUS proposed to implement a

methane mitigation system at this property. The methane mitigation system was installed in December 2012 in accordance with a work plan and engineering design approved by the RWQCB and L.A. County Department of Public Works Environmental Programs Division. Monitoring of the system has been performed upon installation, monthly for the first three months, and quarterly for the remainder of the first year. Testing has shown no methane hazard at that residence.

At 24533 Ravenna Avenue, due to the isolated location and depths of samples with detected concentrations of COCs exceeding screening levels, engineering controls consisting of providing a barrier through alternative landscaping was proposed for this residence. Subsequently surgical excavation of the elevated risk area was recommended to be included in the excavation pilot test program, which is discussed below in Section 4.3.3. Following completion of the excavation pilot test, a follow up HHSRE of the remaining soils data indicated no significant risks to human health at this property.

# 4.2 SUPPORT TO UTILITY EXCAVATIONS AND HOMEOWNERS' ACTIVITIES

As part of interim institutional controls, on behalf of SOPUS URS is a member of Underground Service Alert (USA) and receives dig alerts for the Site when USA is notified by parties conducting subsurface work at the Site. URS calls the contact person to discuss the upcoming work and to notify him or her that impacted soil at the Site may be encountered. URS provides field monitoring during the work, if requested, and arranges for soil disposal as needed. URS has provided field monitoring when AT&T has conducted underground line repairs within the Carousel Community. Additionally, field support has been provided to individual homeowners and their contractors when they have notified Shell of planned activities on their properties, such as plumbing repairs, driveway replacement, and landscaping improvements. Field support activities include monitoring for organic vapors, collection and analysis of soil samples when potential impacts are identified in excavations, and coordination with appropriate contractors for proper disposal of the excavated soils. These activities will continue as discussed in the Surface Containment and Soil Management Plan (Appendix D).

## 4.3 SUMMARY OF PILOT TESTING

Pilot tests have been completed in accordance with RWQCB-approved work plans to evaluate potential remedial actions for the Site. Several remedial technologies have been pilot tested to evaluate the effectiveness of each technology in addressing Site-related compounds, including:

- Soil vapor extraction (SVE) pilot testing at three locations;
- Bioventing pilot testing at six locations;
- Excavation pilot testing at two locations; and
- In-situ chemical oxidation (ISCO) bench testing using persulfate and ozone in two phases.

Detailed pilot testing procedures and results were provided in individual pilot test reports prepared by URS and Geosyntec and are summarized in the *Final Pilot Test Summary Report – Part 1* dated May

)

methane mitigation system at this property. The methane mitigation system was installed in December 2012 in accordance with a work plan and engineering design approved by the RWQCB and L.A. County Department of Public Works Environmental Programs Division. Monitoring of the system has been performed upon installation, monthly for the first three months, and quarterly for the remainder of the first year. Testing has shown no methane hazard at that residence.

At 24533 Ravenna Avenue, due to the isolated location and depths of samples with detected concentrations of COCs exceeding screening levels, engineering controls consisting of providing a barrier through alternative landscaping was proposed for this residence. Subsequently surgical excavation of the elevated risk area was recommended to be included in the excavation pilot test program, which is discussed below in Section 4.3.3. Following completion of the excavation pilot test, a follow up HHSRE of the remaining soils data indicated no significant risks to human health at this property.

# 4.2 SUPPORT TO UTILITY EXCAVATIONS AND HOMEOWNERS' ACTIVITIES

As part of interim institutional controls, on behalf of SOPUS URS is a member of Underground Service Alert (USA) and receives dig alerts for the Site when USA is notified by parties conducting subsurface work at the Site. URS calls the contact person to discuss the upcoming work and to notify him or her that impacted soil at the Site may be encountered. URS provides field monitoring during the work, if requested, and arranges for soil disposal as needed. URS has provided field monitoring when AT&T has conducted underground line repairs within the Carousel Community. Additionally, field support has been provided to individual homeowners and their contractors when they have notified Shell of planned activities on their properties, such as plumbing repairs, driveway replacement, and landscaping improvements. Field support activities include monitoring for organic vapors, collection and analysis of soil samples when potential impacts are identified in excavations, and coordination with appropriate contractors for proper disposal of the excavated soils. These activities will continue as discussed in the Surface Containment and Soil Management Plan (Appendix D).

# 4.3 SUMMARY OF PILOT TESTING

Pilot tests have been completed in accordance with RWQCB-approved work plans to evaluate potential remedial actions for the Site. Several remedial technologies have been pilot tested to evaluate the effectiveness of each technology in addressing Site-related compounds, including:

- Soil vapor extraction (SVE) pilot testing at three locations;
- Bioventing pilot testing at six locations;
- Excavation pilot testing at two locations; and
- In-situ chemical oxidation (ISCO) bench testing using persulfate and ozone in two phases.

Detailed pilot testing procedures and results were provided in individual pilot test reports prepared by URS and Geosyntec and are summarized in the *Final Pilot Test Summary Report – Part 1* dated May

"surgical" excavations. The excavation pilot tests were conducted in accordance with the *Pilot Test Work Plan* (URS and Geosyntec, 2011).

A slot-trench excavation was completed to approximately 10 feet bgs, including removal of the concrete reservoir slab, in the front yard of a property, and a surgical excavation was done to approximately 6 feet bgs in the back yard of a property to evaluate the ability to conduct hot spot removal. The scope of excavations at these two locations was expanded to include excavation of the remaining portions of the front and back yards, respectively, to a depth of 2 feet throughout the entire non-hardscape covered portions of the yards. Landscape restoration to the satisfaction of the homeowners was completed following completion of the pilot tests. Details are provided in the individual excavation pilot test reports (URS, 2013a and 2013b).

Overall excavation pilot test findings include the following:

- Soil excavation using slot-trenching and surgical excavation methods are technically feasible, subject to sufficient working space and observance of setback distances established based on location-specific geotechnical conditions.
- Excavation of yard areas to 2 feet bgs is readily implementable using a combination of mechanized equipment and hand tools.
- Noise impacts to the community can be managed to below maximum allowable levels per the City noise ordinance for the majority of excavation activities when conditions allow use of sound attenuation panels. Noise levels may be exceeded when it is not feasible to use sound attenuation panels. Although exceeding the percentile noise levels<sup>4</sup> during most of the excavation activities, both with and without the attenuation panels, maximum noise levels from the excavation pilot test operations are well within the range of noise levels common to urban environments including pre-existing noise levels recorded at these locations prior to the start of the excavation, and are unlikely to interrupt typical activities in nearby residences.
- Effective odor and vapor control can be achieved during excavation activities by using longacting vapor suppressant foam when odorous soils are encountered.
- It is technologically feasible to remove most of the exposed concrete reservoir base within areas excavated using the slot-trenching method; however, some concrete around the margins of the trenches cannot effectively be removed due to logistical constraints. The concrete base was removed over approximately 75 to 80% of the excavated area (front yard), which represents approximately 5.3% of the total area of the lot at this property.
- Although the concrete reservoir floor had some surficial staining, standing fluids (hydrocarbons or water) were not encountered above the reservoir base. Where encountered

<sup>&</sup>lt;sup>4</sup> The percentile noise level ( $L_n$ ) denotes the sound level that is exceeded for "n" percentage of time during the measurement period. The  $L_{10}$ , or the sound level exceeded 10% of the time, is typically used as a measure of event noise because it represents the loudest noise sources. The  $L_{50}$  is the median sound level, and  $L_{90}$  represents the ambient or background sound level.



in the slot-trench excavation, the concrete reservoir slab was intact and in good condition without indications of weathering or degradation, and evidence was not observed in this excavation that the concrete slab beneath this property had been ripped or broken by the grading contractor during Site development. It does not appear that the concrete reservoir base is a continuing source of impacts at the slot-trench excavation location.

# 4.3.4 In-Situ Chemical Oxidation (ISCO) Pilot Testing

The use of ISCO at this Site would involve injecting chemical oxidants into the shallow soils to oxidize organic compounds. A preliminary feasibility evaluation for ISCO was conducted at the time the *Pilot Test Work Plan* was prepared (URS and Geosyntec, 2011). The preliminary feasibility evaluation concluded that sodium persulfate and ozone had greater potential for treatment of COCs than other oxidants considered. Based on this evaluation, ISCO bench-scale testing was conducted in two phases. The first phase is documented in the Technical Memorandum prepared by Geosyntec dated July 16, 2012 (Geosyntec, 2012a). The second expanded bench-testing phase is documented in the Phase II Bench-Scale Report (Geosyntec, 2013b).

The Phase I laboratory bench-scale testing was conducted using sodium persulfate and ozone. Soil samples were recovered from a representative location onsite that had TPH-impacts based on previous soil sampling data. The samples were sent to a feasibility testing laboratory to test the ability of that sodium persulfate and ozone to react with the TPH impacts in the soil.

Sodium persulfate was found not to be effective for treatment of TPH and PAHs. Geosyntec concluded that hydrocarbon treatment using high doses of sodium persulfate would not be effective for Site soils, and field-scale tests were therefore not conducted using this chemical oxidant.

The Phase I studies indicated that ozone treatment could be effective on Site soils (at the bench-scale level); however, the dose required for achieving greater than 90% treatment was very high and an excessive quantity of ozone would be required for field application. Additionally, ozone consumption rates were slow, presenting the potential for fugitive ozone emissions. As a result, field-scale pilot testing was not recommended based on feasibility analysis and modeling that was reported the Technical Memorandum summarizing Phase I results (Geosyntec, 2012a).

In response to the Regional Board's correspondence dated February 14, 2013, Geosyntec submitted a Phase II ISCO Bench-scale Test Work Plan on March 15, 2013 (Phase II Work Plan, Geosyntec, 2013a), and conducted a second expanded phase if ISCO pilot testing solely using ozone as an oxidant. Phase II ozone treatment bench-scale soil column tests evaluated the impact of varying ozone concentrations and flow rates, and thus doses, on the treatment of TPH in Site soils, to provide additional insight into the feasibility of in-situ chemical oxidation using ozone. The results indicated less than approximately 50% reduction in TPH concentrations was observed in the Phase II tests using lower flow rates and applied ozone doses.

As with the Phase I findings, Geosyntec concluded that effective field applications would require an excessive quantity of ozone to treat a single injection location, and that full-scale treatment would require an excessive quantity of ozone to achieve greater than 50% reduction in hydrocarbon mass.

Therefore, field pilot testing of ISCO using ozone was not recommended based on both Phase I and Phase II findings, and will not be considered as a possible remedial alternative.
# 5.0 REMEDIAL ACTION OBJECTIVES AND SITE-SPECIFIC CLEANUP GOALS

Media-specific (i.e. soil, soil vapor, and groundwater) Remedial Action Objectives (RAOs) have been developed for the Site, and numerical SSCGs for the COCs have been developed to achieve the medium-specific RAOs. These medium-specific RAOs and SSCGs, along with the FS, including an analysis of economic and technological feasibility in accordance with SWRCB Resolution 92-49 and other ARARs, were used to identify the recommended response actions for each impacted medium that are proposed in this RAP.

Various demarcations of acceptable risk have been established by regulatory agencies. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP, 40 CFR 300) indicates that lifetime incremental cancer risks (ICRLs) posed by a site should not exceed a range of one in one million  $(1 \times 10^{-6})$  to one hundred in one million  $(1 \times 10^{-4})$  and that noncarcinogenic chemicals should not be present at levels expected to cause adverse health effects (i.e., a Hazard Ouotient [HO] greater than 1). In addition, other relevant guidance (USEPA, 1991c) states that sites posing a cumulative cancer risk of less than  $1 \times 10^{-4}$  and hazard indices less than unity (1) for noncancer endpoints are generally not considered to pose a significant risk warranting remediation. The California Hazardous Substances Account Act (HSAA) incorporates the NCP by reference, and thus also incorporates the acceptable risk range set forth in the NCP. In California, the Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65) regulates chemical exposures to the general population and is based on an acceptable risk level of  $1 \times 10^{-5}$ . The DTSC considers the  $1 \times 10^{-6}$  risk level as the generally accepted point of departure for risk management decisions for unrestricted land use. Cumulative cancer risks in the range of  $1 \times 10^{-6}$  to  $1 \times 10^{-4}$  may therefore be considered to be acceptable, with cancer risks less than  $1 \times 10^{-6}$  considered *de minimis*. The risk range and target hazard index has been considered in developing RAOs and SSCGs based on human health exposures to soil and soil vapor. For groundwater and the soil leaching to groundwater pathway, water quality objectives in the Basin Plan to protect the designated beneficial uses, including municipal supply, have been considered.

# 5.1 REMEDIAL ACTION OBJECTIVES

The following RAOs are proposed for the Site based on the above and site-specific considerations:

- Prevent human exposures to concentrations of COCs in soil, soil vapor, and indoor air such that total (i.e., cumulative) lifetime incremental carcinogenic risks are within the NCP risk range of 1×10<sup>-6</sup> to 1×10<sup>-4</sup> and noncancer hazard indices are less than 1 or concentrations are below background, whichever is higher. Potential human exposures include onsite residents and construction and utility maintenance workers. For onsite residents, the lower end of the NCP risk range (i.e., 1×10<sup>-6</sup>) and a noncancer hazard index less than 1 have been used.
- Prevent fire/explosion risks in indoor air and/or enclosed spaces (e.g., utility vaults) due to the accumulation of methane generated from the anaerobic biodegradation of petroleum



hydrocarbons in soils. Eliminate methane in the subsurface to the extent technologically and economically feasible.

- Remove or treat LNAPL to the extent technologically and economically feasible, and where a significant reduction in current and future risk to groundwater will result.
- Reduce COCs in groundwater to the extent technologically and economically feasible to achieve, at a minimum, the water quality objectives in the Basin Plan to protect the designated beneficial uses, including municipal supply.

A further consideration is to maintain residential land-use of the Site and avoid displacing residents from their homes or physically divide the established Carousel community.

# 5.2 SITE-SPECIFIC CLEANUP GOALS

Medium-specific SSCGs for soil, soil vapor, and groundwater have been designed to achieve these RAOs. The SSCGs were developed using the guidance documents and agency policies identified by the Regional Board, as well as other applicable resources. The SSCGs for each medium are summarized below.

#### 5.2.1 Soil

SSCGs for soil were calculated considering human health exposure pathways (i.e., risk-based SSCGs), and the leaching to groundwater pathway. Risk-based SSCGs were developed using a methodology and approach similar to that used to conduct the property-specific HHRSEs. Risk-based SSCGs for the residential scenario are based on: (1) frequent exposure assumptions (350 days per year) for shallow soil (e.g., from 0 to 5 feet bgs), and (2) infrequent exposure assumptions (4 days per year) for soils at depth that residents are unlikely to contact more than a few times per year (e.g., from 5 to 10 feet bgs). Risk-based SSCGs for the construction and utility maintenance worker scenario are developed assuming exposures can occur to soil at depths from 0 to 10 feet below ground surface (bgs). Soil SSCGs for the leaching to groundwater pathway are calculated following methods recommended in Regional Board (RWQCB, 1996a).

- The Soil SSCGs for residential exposures are chemical-specific numerical values for COCs assuming a target incremental cancer risk of  $1 \times 10^{-6}$  and a hazard quotient of 1. These numerical SSCGs are calculated for both frequent and infrequent exposure assumptions.
- The Soil SSCGs for construction and utility maintenance worker exposures are chemicalspecific numerical values for COCs assuming a target incremental cancer risk of 1×10<sup>-5</sup> and a hazard quotient of 1.
- The Soil SSCGs for the leaching to groundwater pathway are chemical-specific numerical values for COCs based on protection of groundwater to California MCL, NLs, or risk-based values for COCs with no published MCL or NL.

As described in the HHRA, the soil SSCGs for the leaching to groundwater pathway used in this RAP are different than those listed in Table 1 of the January 23, 2014 RWQCB letter directing Shell to submit this RAP. While the values proposed by the Regional Board did consider some site-



#### **Remedial Action Plan**

specific factors, the SSCGs included in the letter were not consistent with Regional Board guidance (RWQCB, 1996a), other guidance documents that were considered in the development of SSCGs as directed in the March 11, 2011 CAO for the Site, or comments on the Revised SSCG report included in the RWQCB letter. To address this discrepancy in recommended approaches to calculate SSCGs for the leaching to groundwater pathway, SSCGS following the methods detailed in the Regional Board's 1996 *Interim Site Assessment & Cleanup* Guidebook (RWQCB, 1996a) were used. Details of these soil SSCG calculations are provided in the HHRA (Geosyntec, 2014a) and the results are presented in Table 5-1.

For TPH constituents, default values recommended in the Guidebook were used based on the depth to groundwater at the Site. These values for TPHg, TPHd and TPHmo are 500 mg/kg, 1,000 mg/kg and 10,000 mg/kg respectively. According to the Guidebook these values are for potential leaching to groundwater as well as are "intended to protect people from exposure when they come in contact with the chemicals through such means as direct contact with the soil, dust particles or gaseous compounds in air" (RWQCB, 1996a). Therefore these values are considered appropriate for the Site where both potential human exposures and potential leaching to groundwater are considered.

#### 5.2.2 SSCGs for Soil Vapor

As directed in the January 23, 2014 RWQCB letter directing Shell to submit this RAP,

- Soil vapor SSCGs for the residential exposures have been calculated assuming a vapor intrusion attenuation factor of 0.002.
- Odor-based screening levels also have been developed and were considered in the preparation of this RAP. The odor-based screening levels for soil vapor published in the SFBRWQCB ESL documentation (SFRWQCB, 2013) are used in this RAP. Note that the risk-based SSCGs are lower than the odor-based screening levels for all COCs. Consequently, corrective action planning to address risk-based SSCGs will also address odor concerns.
- The SSCGs for construction and utility maintenance worker exposures are chemical-specific numerical values for COCs assuming a target incremental cancer risk of 1×10<sup>-5</sup> and a hazard quotient of 1. These numerical SSCGs will be applied to soil vapor from 0 to 10 feet bgs. These numerical values are listed in the report.
- THMs are not considered with respect to soil vapor exposures because they are components of drinking water and are not Site-related COCs.

Details of the soil vapor SSCG calculations are provided in the HHRA (Geosyntec, 2014a) and the results are presented in Table 5-2.

The SSCGs for methane are the same as those presented in the Data Evaluation and Decision Matrix (Geosyntec, 2010a) previously prepared for the Site. These SSCGs are consistent with Cal-EPA DTSC (DTSC, 2005) guidance for addressing methane detected at school sites.

| Methane Level                                                                    | Response                                                     |
|----------------------------------------------------------------------------------|--------------------------------------------------------------|
| >10%LEL (> 5,000 ppmv or 0.5%)<br>Soil vapor pressure > 13.9 in H <sub>2</sub> O | Evaluate engineering controls                                |
| > 2% - 10%LEL (> 1,000 - 5,000 ppmv or 0.1 - 0.5%)                               | Perform follow-up sampling and evaluate engineering controls |
| Soil vapor pressure $> 2.8$ in H <sub>2</sub> O                                  |                                                              |

This RAP describes the proposed response actions for areas where the methane RAOs are not met.

#### 5.2.3 SSCGs for Groundwater

Because no current or future use of the shallow zone and Gage aquifers at or near the Site is anticipated due to high total dissolved solids and other water quality issues, as well as the restrictive controls on groundwater production associated with the adjudication of the West Basin, the following groundwater SSCGs are proposed for the Site (consistent with the RAOs):

- Remove or treat LNAPL to the extent technologically and economically feasible, and where a significant reduction in current and future risk to groundwater will result, and
- Reduce concentrations of COCs in groundwater to the extent technologically and economically feasible to achieve, at a minimum, the water quality objectives in the Basin Plan to protect the designated beneficial uses, including municipal supply.

The groundwater SSCGs are presented in Table 5-3.

# 6.0 SUMMARY OF HUMAN HEALTH RISK ASSESSMENT

# 6.1 HHRA OVERVIEW

Geosyntec conducted a HHRA to estimate potential human health risks associated with COCs detected in soil, sub-slab soil vapor, and soil vapor at the Site (Geosyntec, 2014a). The objective of the HHRA was to evaluate potential human health impacts to onsite residents and onsite construction and utility maintenance workers prior to any remediation efforts at the Site (baseline condition). In addition, an evaluation of potential COC leaching from soil to groundwater was conducted.

The methodology used in the HHRA was consistent with current USEPA, RWQCB, and DTSC guidance and incorporated the SSCGs presented in the Revised SSCG Report (Geosyntec, 2013c) as revised to address Regional Board comments. The HHRA used the SSCGs with the Site concentration data to develop a cumulative risk characterization for the Site addressing both potential human health risks and potential leaching to groundwater concerns. The HHRA is a predictive tool and is used in the remedial decision-making process to determine if further action is warranted for areas of the Site.

The HHRA addressed potential onsite exposures to residents and construction and utility maintenance workers. Potential exposures to COCs detected in shallow soils were evaluated for the direct contact pathways, as well as inhalation of volatile COCs in outdoor air and nonvolatile COCs in fugitive dust. Additionally, the potential for volatile COCs to migrate from the subsurface (using sub-slab soil vapor data) into residential structures present above ground was evaluated for a resident. Potential exposures to COCs in soil vapor were also evaluated for inhalation of vapors in outdoor air.

An initial step in the HHRA process is an evaluation of available data to identify media-specific COCs. A variety of samples have been collected as a part of the Site investigation process. Detected compounds include TPH, VOCs, SVOCs, PAHs and metals. These compounds, if they were detected in at least one sample in a given media (soil or soil vapor), were included in the COC selection process. A risk-based toxicity-concentration screen was then used to focus the list of COCs to those chemicals that have the potential to contribute significantly to potential risk at the Site (Geosyntec, 2013b). For the selection of soil COCs to address the leaching to groundwater pathway, chemicals that were detected in groundwater above their respective MCL or NL were carried forward into the HHRA. The COCs evaluated in the HHRA are consistent with the COCs presented in the Revised SSCG Report with the addition of toluene and xylenes as directed by the Regional Board. Although there is no evidence that PCE and TCE are site-related COCs, PCE and TCE were included in the HHRA as directed by the Regional Board. Additionally, THMs that are likely associated with municipal water use have been included.

Metals and carcinogenic PAHs (cPAHs) may be associated with petroleum hydrocarbons, but are also naturally occurring in the environment. According to the DTSC (Cal-EPA DTSC 1997, 2009a, 2009c, 2009d) for naturally occurring materials such as metals and cPAHs, an evaluation of background concentrations is important to evaluate whether the metals concentrations at the Site are



#### **Remedial Action Plan**

consistent with naturally occurring levels in the area, and whether they should be included in the HHRA. If concentrations of a metal or cPAHs are within background, these constituents are not considered a COC in the HHRA and are not evaluated further. The background analysis for the Site is summarized in the HHRA and presented in more detail in the Background Analysis Report (Appendix A to Geosyntec, 2014a). Metals and cPAHs were retained as COCs in the HHRA as appropriate based on the results of Site-wide toxicity-concentration screen and property-specific background analysis.

To evaluate potential human health risk or potential for leaching to groundwater, SSCGs presented in the Revised SSCG Report, as modified in the HHRA, were used. The SSCGs are presented in Tables 5-1, 5-2 and 5-3. These values were used to calculate cumulative ILCR and noncancer Hazard Indices estimates for each property and the streets for the exposure pathways and media presented above. For potential leaching to groundwater, the SSCGs were compared to the property-specific and streets soil data as well. The results of the cumulative human health risk and noncancer evaluation as well as the evaluation of potential leaching to groundwater were combined to form an overall risk characterization of each property. Properties that did not meet the RAOs were identified for further evaluation in the FS and RAP.

As discussed in Section 5, various demarcations of acceptable risk have been established by regulatory agencies. Under most situations, cancer risks in the range of  $10^{-6}$  to  $10^{-4}$  may be considered to be acceptable with cancer risks less than  $10^{-6}$  considered *de minimus*. The NCP (40 CFR 300) indicates that lifetime incremental cancer risks posed by a site should not exceed a range of one in one million  $(1 \times 10^{-6})$  to one hundred in one million  $(1 \times 10^{-4})$  and noncarcinogenic chemicals should not be present at levels that have the potential to cause adverse health effects (i.e., a hazard index greater than 1). If the HI exceeds 1, there may be concern for potential noncarcinogenic health effects. However, an HI above 1 does not indicate an effect will definitely occur due to the margin of safety associated with the exposure assumptions and chemical toxicity criteria used in health risk assessments. Also it should be noted that the scientific methods used in health risk assessments are used as a predictive tool to evaluate theoretical risks for remedial decision making.

### 6.2 POTENTIAL RESIDENTIAL EXPOSURES

For soils at a depth of less than or equal to 2 feet bgs, a total of 86 properties were identified as having an exceedance of the lower bound of the risk range of  $1 \times 10^{-6}$  or an HI of 1. Seventeen properties had an exceedance of the ILCR of  $1 \times 10^{-6}$ . The ILCR estimates ranged from  $2 \times 10^{-6}$  to  $2 \times 10^{-5}$ , well within the risk management range of  $10^{-6}$  to  $10^{-4}$ . The primary COCs that contributed to the ILCR estimates were benzene, benzo(a)pyrene, ethylbenzene, 1-methylnaphthalene, naphthalene, and PCE (one property). Eighty-six (86) properties were identified as having an exceedance of an HI of 1, ranging from 2 to 10, with two properties having values of 20 and 30. Thirty-four (34) of those properties had an HI of 2, marginally above the threshold of 1, and with no individual COC-specific HQ above 1. Another 32 properties had a value ranging from 3 to 5. The primary COCs that contributed to the HI estimates were TPHd and TPHmo.



For shallow surface soils ( $\leq 5$  feet bgs), 174 properties were identified as having an exceedance of the lower bound of the risk range of  $1 \times 10^{-6}$  or a hazard index of 1. (These include the 86 properties discussed in the previous paragraph.) Fifty-three (53) properties had an exceedance of the ILCR of  $1 \times 10^{-6}$ . The ILCR estimates ranged from  $2 \times 10^{-6}$  to  $3 \times 10^{-5}$ , well within the risk management range of  $10^{-6}$  to  $10^{-4}$ . Two ILCR estimates were at or above a risk level of  $1 \times 10^{-5}$ ; the remaining 51 values were at or below  $5 \times 10^{-6}$ . The primary COCs that contributed to the ILCR estimates were benzene, cPAHs, ethylbenzene, 1-methylnaphthalene, naphthalene, PCE (one property) and vinyl chloride (one property). One hundred and seventy (170) properties were identified as having an exceedance of an HI of 1, ranging from 2 to 10, with seven properties having a value of 20 and one property having a value of 40. Thirty-one (31) properties have a value of 2, marginally above the threshold of 1, and 26 properties with no individual COC-specific HQ above 1. Another 104 properties had a value ranging from 3 to 5. The primary COCs that contributed to the HI estimates were TPHd and TPHmo, with TPHd being the primary COC for 55 properties.

For subsurface soils (>5 to  $\leq 10$  ft bgs), no properties were identified as having an exceedance of the lower bound of the risk range of  $1 \times 10^{-6}$  or an HI of 1 for the infrequent contact residential exposure scenario.

In addition to the evaluation of incremental cancer risk and noncancer hazard, a property-specific background analysis was conducted for the Site COCs to determine if metals or cPAHs were present in soils above background levels. Metals and cPAHs considered above background were included in the estimates of risk and hazard summarized above with the exception of arsenic. For an additional five properties, arsenic was the only COC identified due to being above background. These properties should be considered further during remedial planning.

For sub-slab soil vapor, 26 properties were identified as having an exceedance of the lower bound of the risk range of  $1 \times 10^{-6}$  or a hazard index of 1, not including the background risks associated with THMs. Trihalomethanes are not considered in the final risk characterization for soil vapor due to their presence as a result of municipal water use at the Site. The ILCR estimates for 24 properties ranged from  $2 \times 10^{-6}$  to  $3 \times 10^{-5}$ , well within the risk management range of  $10^{-6}$  to  $10^{-4}$ . Two ILCR estimates were at  $1 \times 10^{-4}$  and  $3 \times 10^{-3}$ , at and above the upper-bound of the risk management range of  $1 \times 10^4$ . The property with the highest ILCR estimate is 378 E. 249<sup>th</sup> Street where elevated benzene concentrations were observed underneath the garage, and a sub-slab mitigation system was installed as an interim measure. The property with the second highest ILCR estimate is 24603 Marbella Avenue where elevated benzene concentrations were observed in one sample in the backyard during the first round of soil vapor sampling for that property. The result was not confirmed in the subsequent two sampling events in which benzene was not detected in any sub-slab soil vapor sample from the property. The primary COCs that contributed to the ILCR estimates were benzene, carbon tetrachloride, chloroform, ethylbenzene, methylene chloride, naphthalene, PCE, TCE and vinyl chloride (one property). Of the 26 properties that were identified, five properties had no individual ILCR estimate above  $1 \times 10^{-6}$ . Two properties were identified as having an exceedance of a hazard index of 1, with values of 2 and 5. These two properties were also identified as having an ICLR exceedance of greater than  $1 \times 10^{-6}$ .



# 6.3 POTENTIAL CONSTRUCTION AND UTILITY MAINTENANCE WORKER EXPOSURES

Construction and utility maintenance worker exposures were evaluated for both soil and soil vapor in two areas within the Kast Site: (1) within the individual property boundaries, and (2) within the Streets.

For soil, nine residential properties were identified as having an exceedance of the target risk of  $1 \times 10^{-5}$  or an HI of 1 when the data was analyzed using the construction and utility worker exposure scenario. The ILCR estimates ranged from  $2 \times 10^{-5}$  to  $3 \times 10^{-5}$ , well within the risk management range of  $10^{-6}$  to  $10^{-4}$ . The primary COC that contributed to the ILCR estimates was benzene. One hundred and thirty-eight (138) properties were identified as having an exceedance of an HI of 1, ranging from 2 to 10. Ninety (90) of those properties have a value of 2, marginally above the threshold of 1. The primary COCs that contributed to the HI estimates were TPHd and TPHg, with TPHd the primary contributor at 118 properties.

For soil data collected in the streets, the ILCR was  $2 \times 10^{-5}$  with no individual COC having a risk greater than  $1 \times 10^{-5}$ . The noncancer HI estimate was 6 with TPHd and TPHg as the primary contributors to the HI estimate. The lead hazard quotient was less than 1.

For soil vapor, no property had an ILCR greater than  $1 \times 10^{-5}$  or a noncancer HI greater than 1. For data collected in the streets the ILCR was  $2 \times 10^{-5}$  and the noncancer HI estimate was 0.04.

# 6.4 POTENTIAL SOIL LEACHING TO GROUNDWATER

An evaluation was conducted for the potential for COCs to migrate from the soil to underlying groundwater at the Site. For soil  $\leq 5$  ft bgs within the properties, 179 properties exceed the soil-leaching-to-groundwater SSCGs. TPHd, naphthalene, and benzene are the compounds with the most frequent exceedances in this depth interval. For soil  $\geq 5$  to  $\leq 10$  ft bgs, 172 properties exceed the soil-leaching-to-groundwater SSCGs. TPH-diesel, naphthalene, benzene, TPHg, and TPHmo are the chemicals with the most frequent exceedances in this depth interval.

For soil data collected in the Streets from  $\leq 10$  ft bgs, concentrations were compared to the soilleaching-to-groundwater SSCGs. Nine COC concentrations exceeded their respective soil leaching to groundwater SSCGs (1,2,3-trichloropropane, antimony, arsenic, benzene, naphthalene, thallium, TPHg, TPHd and TPHmo).

# 6.5 HHRA SUMMARY

The results of the HHRA are presented graphically on Figures 6-1, 6-2 and 6-3. Table 6-1 presents the property addresses that exceeded the lower bound of the risk management range for ILCR and a noncancer hazard index of 1 for soil and sub-slab soil vapor, respectively. In addition, soil leaching to groundwater and metals present above background are considered. For sub-slab soil vapor, concentrations of methane were also considered. These properties along with impacts in the Streets



are identified as not meeting the RAOs established for the Site and are considered further in the RAP.

The number of properties identified for consideration in the RAP are as follows:

| Media      | Depth                                               | Number of Properties<br>Considered in RAP |
|------------|-----------------------------------------------------|-------------------------------------------|
| Soil       | $\leq$ 5 ft bgs                                     | 183                                       |
| Soil       | $\leq$ 5 ft bgs and >5 to $\leq$ 10 ft bgs combined | 214                                       |
| Soil Vapor | Sub-slab                                            | 27                                        |

# 7.0 SUMMARY OF FEASIBILITY STUDY

The remedial action set forth in this RAP emerged as the recommendation made in the Feasibility Study Report for the Site (Geosyntec, 2014b). The FS, which is a companion document to the RAP, includes identification and screening of a range of technologies, each of which can address a specific Site cleanup issue. Screening of technologies is followed in the FS by identification, screening and detailed evaluation of a range of remedial alternatives for the Site. This section of the RAP provides an overview of the FS process.

Each technology identified in the FS is appropriate to address a specific Site cleanup issue. Technologies are identified in two categories: (1) Technologies that interrupt the human health exposure pathway, and (2) technologies that remove COC mass in addition to interrupting the human health exposure pathway. In the first category, the following technologies are identified:

- Potential sub-slab vapor intrusion mitigation, which may include the installation of passive barriers, passive venting, or active sub-slab depressurization;
- Capping portions of the Site, which involves the placement of cover over impacted media; and
- Institutional controls, which restrict access to impacted media.

Technologies that remove COC mass in addition to interrupting the human health exposure pathway include the following:

- Excavation;
- Soil vapor extraction (SVE);
- Bioventing;
- In-situ chemical oxidation (ISCO);
- LNAPL/source removal;
- Monitored natural attenuation (MNA);
- Lifting and cribbing houses to allow excavation beneath houses;
- Temporarily moving houses to allow excavation beneath houses; and
- Removal of residual concrete reservoir slabs.

After screening, three technologies were eliminated from further consideration: In-situ chemical oxidation, lifting and cribbing houses to allow excavation beneath houses, and temporarily moving houses to allow excavation beneath houses. None of the remaining technologies alone constitutes a complete approach to Site cleanup. It is necessary to combine groups of technologies to develop a complete cleanup approach. Remedial alternatives, which are defined in the FS, represent such combinations of technologies. After preliminary remedial alternatives are defined in the FS Report, these alternatives are screened to assess those which represent realistic approaches to Site cleanup.

Remedial alternatives which remain after screening, and the specific technologies employed as part of those alternatives, are summarized below:

- Alternative 1 No Action.
- Alternative 4 Excavation of Site soils from both landscaped areas and beneath residential hardscape; existing institutional controls; sub-slab mitigation; groundwater MNA and potentially supplemental remediation (e.g., in areas exceeding 100x MCLs); removal of LNAPL; and SVE/bioventing. Three separate excavation alternatives in this category are evaluated in the FS Report:
  - Alternative 4B Excavation to 3 feet bgs
  - $\circ$  Alternative 4C Excavation to 5 feet bgs
  - Alternative 4D Excavation to 10 feet bgs.
- Alternative 5 Excavation of Site soils from landscaped areas only; existing institutional controls; sub-slab mitigation; groundwater MNA and potentially supplemental remediation; removal of LNAPL; and SVE/bioventing. Three separate excavation alternatives in this category are evaluated:
  - Alternative 5B Excavation to 3 feet bgs
  - Alternative 5C Excavation to 5 feet bgs
  - Alternative 5D Excavation to 10 feet bgs.
- Alternative 7 Capping the landscaped areas of the Site; existing institutional controls; subslab mitigation; groundwater MNA and potentially supplemental remediation; removal of LNAPL; and SVE/bioventing.

These remaining alternatives then are evaluated against a set of criteria that include the following:

- Overall protection of human health and the environment;
- Compliance with applicable or relevant and appropriate requirements;
- Long-term effectiveness and permanence;
- Reduction of toxicity, mobility, and volume through treatment;
- Short-term effectiveness;
- Implementability;
- Cost;
- Consistency with State Water Resources Control Board Resolution 92-49,
- Social considerations,
- Sustainability.



The RWQCB letter of January 23, 2014 makes clear that the FS must meet the provisions of SWRCB Resolution 92-49. With respect to remedial activity, Resolution No. 92-49 focuses on water quality and not on all media. Waste in non-water media (such as soil) should be addressed through remediation to promote the attainment of background water quality (not, for example, background levels in soil) or the best water quality that is reasonably feasible given the considerations listed. Resolution 92-49 also includes the concept of technical and economic feasibility, in a manner that is distinct from the criteria of implementability or cost. Technological feasibility is determined by assessing available technologies which have shown to be effective under similar hydrogeologic conditions in reducing the concentration of the constituents of concern. Economic feasibility is an objective balancing of the incremental benefit of attaining further reductions in the concentrations of constituents of concern as compared with the incremental cost of achieving those reductions.

Two additional criteria, State Acceptance and Community Acceptance, will be considered following comment on the FS and on the RAP.

The recommended alternative is the alternative that meets the two threshold criteria (overall protection of human health and the environment and compliance with ARARs), and that best balances the remaining criteria. After detailed evaluation, the alternative that was recommended for further development in the RAP was the following:

 Alternative 4B – Excavation of Site soils to 3 feet bgs from both landscaped areas and beneath residential hardscape; existing institutional controls; sub-slab mitigation; groundwater MNA and potentially supplemental remediation; removal of LNAPL; and SVE/bioventing.

A more detailed description of this alternative follows in Section 8 below.



# 8.0 PROPOSED REMEDIAL ACTIONS

With full consideration of the information summarized above, RAOs for the Site, results of the HHRA (Geosyntec, 2014a) and FS (Geosyntec, 2014b), the following multi-media remedial actions were selected as the preferred remedy for the Site.

- Excavation of shallow soils at impacted residential properties where RAOs are not met under existing conditions. Excavation will be conducted in both landscaped and hardscaped areas of residential yards, excluding beneath City sidewalks, to a depth of 3 feet bgs. The excavation will also remove residual concrete slabs if encountered in excavations.
- The shallow soil remedy includes a Surface Containment and Soil Management Plan to address notifications, management, and handling of residual soils below the depth of excavation and that are impacted by COCs at concentrations greater than risk-based levels. Soils remaining below 3 feet bgs and impacted soils beneath City streets and sidewalks will be addressed through the Surface Containment and Soil Management Plan (Appendix D).
- SVE/bioventing will be used to address petroleum hydrocarbons, VOCs, and methane in soil vapor to promote degradation of residual hydrocarbon concentrations where RAOs are not met following shallow soil excavation. A robust SVE system with SVE wells in City streets and on residential properties will be installed and operated.
- Bioventing in concert with SVE will be used to increase oxygen levels in subsurface soils and promote microbial activity and degradation of longer-chain petroleum hydrocarbons. Bioventing will be integral with SVE via cyclical operation of SVE wells.
- Sub-slab mitigation will be implemented at properties where RAOs are not met based on SSCGs calculated using a generic attenuation factor of 0.002 as directed in the Regional Board's Review of the Revised Site-specific Cleanup Goal Report and Directive dated January 23, 2014.
- LNAPL will be recovered where LNAPL has accumulated in monitoring wells (MW-3 and MW-12) to the extent technologically and economically feasible, and where a significant reduction in current and future risk to groundwater will result.
- COCs in groundwater will be reduced to the extent technologically and economically feasible via source reduction and MNA. As directed in the CAO, groundwater monitoring will continue as part of remedial actions. If, based on a 5-year review following initiation of SVE system operation, groundwater plumes are not stable or declining and Site COCs in groundwater do not show a reduction in concentration, an evaluation of additional groundwater treatment technologies will be conducted and implemented as needed.

For shallow soils (less than 3 feet bgs) and sub-slab soil vapor, potential exposures will be addressed in the short term. Deeper soil, soil vapor, and groundwater risk reduction will be implemented over a longer period of time through SVE/bioventing and MNA. These remedial actions are intended to achieve the RAOs and the revised SSCGs for soil, soil vapor, and groundwater as directed in the Regional Board's Review of the Revised SSCG Report and Directive dated January 23, 2014 and the proposed modifications of some SSCGs addressed in the HHRA (Geosyntec, 2014a).

Although there is no indication that there are any long-term health risks, water quality, or nuisance concerns caused by COCs associated with residual concrete slabs, the recommended remedy for the Site, as summarized above and described in detail in subsequent sections of this RAP, would remove residual concrete slabs where encountered during excavation. Operation of the SVE/bioventing system would address any concerns at the Site related to COCs that may be associated with the residual reservoir slabs left in place.

These remedial actions will be analyzed as the preferred alternative in the Environmental Impact Report (EIR) for the project. If the scope of the Site remedy changes, some aspects of EIR analysis will need to be revised or started over, which will affect the timeline for EIR completion.

There remain approximately 15 properties for which access has not been granted and sampling has not been completed. As access is granted to these properties, where sampling will be conducted, and the results will be analyzed consistent with the approach described above to determine what remedial measures, if any, will be taken.

### 8.1 APPROACH FOR EXCAVATION OF SHALLOW SOILS

Shallow soils will be excavated from 183 residential properties where results of the HHRA indicate that RAOs are not met under existing conditions. Shell will excavate shallow soils to a depth of 3 feet below existing grade in landscaped and hardscaped areas at identified properties. The excavation will also remove residual concrete slabs where encountered in excavations. Based on HHRA findings and evaluation of potential for COCs leaching to groundwater, 183 properties have been identified for remedial excavation (see Section 8.1.1).

Soils will be excavated from both landscaped areas and areas currently covered by hardscape. including walkways, driveways, patio areas, and hardscape associated with landscaping. Residents will be provided temporary living assistance while active excavation, backfill, and hardscape restoration work are being implemented (see Preliminary Relocation Plan, Appendix E). Hardscape and landscaping will be removed during the initial stage of excavation and restored to like conditions following completion of excavation in consultation with the homeowner. Shell also anticipates that it may be necessary to remove fences and block walls between yards and ornamental or partitioning walls on individual properties, as the depth of excavation likely will exceed fencepost and footing As with other hardscape, fences and walls will be restored following completion of depths. excavation prior to restoration of landscaping. Exceptions to excavation beneath hardscape include patios covered by structures and roofs, swimming pools and pool decking surrounding swimming pools. These hardscape areas will not be excavated to avoid structural demolition and potential damage to swimming pools and appurtenant equipment. No excavation will occur beneath City streets and sidewalks or beneath houses. In addition to treatment by the SVE/bioventing system discussed below, remaining soils in these non-excavated areas are addressed in the Surface Containment and Soil Management Plan (Appendix D) and by existing institutional controls.

The 3-foot depth of excavation is consistent with the approach described in the Regional Board's Review of the Revised SSCG Report and Directive dated January 23, 2014, that relies upon existing institutional controls to protect against exposures to soils below the depth of excavation. Although the Regional Board references L.A. County building codes on page 4 of the RWQCB's January 23 letter regarding notification, permitting and approval requirements for excavations deeper than 5 feet, the City of Carson Building Code Section 8105 (amending the L.A. County Building Code) states that:

A Grading Permit shall not be required for:

1. An excavation which (a) is less than three (3) feet in depth below natural grade, or (b) does not create a cut slope greater than three (3) feet in height and steeper than one and one-half (1-1/2) horizontal to one (1) vertical.

2. A fill not intended to support structures and which does not obstruct a drainage course if such fill is placed on natural grade that has a slope not steeper than three (3) horizontal to one (1) vertical and (a) is less than one (1) foot in depth at its deepest point, measured vertically upward from natural grade to the surface of the fill, or (b) does not exceed twenty (20) cubic yards on any one (1) lot.

Thus, the City of Carson has amended L.A. County building code Section 7003.1 to require a Grading Permit for excavations deeper than 3 feet, and the City must be notified and a permit obtained to excavate to depths greater than 3 feet. These existing institutional controls support the proposed 3-foot soil excavation remedy. This remedy is further supported by the Expert Panel's comments supporting use of a shallow soil depth of 0 to 2 feet, as cited on page 4 of the RWQCB January 23 letter and precedents for risk-based remedial excavations to a depth of 3 feet with institutional controls to address exposure to soils at depths greater than 3 feet bgs at other residential sites, as summarized in the letter from Geosyntec to the Regional Board dated January 17, 2014. A copy of the January 17 letter and its attachments is included as Appendix F.

Excavation to 3 feet will also reduce the significant technical difficulties associated with excavating below the depth of the existing transite pipe water supply utility lines that are present at a depth of 3 to 3.5 feet in the front and side yards of approximately half of the properties in the Carousel tract. The planned installation and operation of a robust SVE/bioventing system, as discussed in Section 8.2, will reduce the remaining COC concentrations below 3 feet bgs with the goal of achieving SSCGs over time.

A total of 10 properties were identified as having metals present above background due to the presence of arsenic, antimony, or thallium. A review of the data with respect to depth interval was conducted to evaluate whether the presence of these metals concentrations above background would be addressed through shallow excavation or remain at depths from > 5 to 10 feet bgs and pose a potential for leaching to groundwater.

Antimony was present above background levels at one property, but detections above background concentrations are present in surface shallow soil and can be addressed by excavation.



Arsenic was present above background levels at five properties and thallium was present above background levels at four properties that were not identified for remedial excavation. The detections of arsenic and thallium above background are localized and do not represent a significant mass for leaching to groundwater. Leaching of arsenic and thallium to groundwater is not expected to be above what would occur for background soils. However, groundwater will be monitored to assess whether an increase in arsenic or thallium concentrations due to the leaching pathway is occurring.

Additional information regarding the proposed shallow excavation remedy is provided in the following sections.

### 8.1.1 Identification of Properties for Remedial Excavation

Findings of the HHRA with respect to potential impacts to human health and potential for COCs to leach to groundwater were used to identify properties that will require remedial excavation. Because soil samples were not collected uniformly across the Site at 3 feet bgs<sup>5</sup>, data from  $\leq$ 5 feet bgs samples were used to identify properties for excavation. This is a conservative approach, as some properties may have been identified for excavation that would meet RAOs without excavation for depths shallower than 5 feet. In total, 183 properties were identified for remedial excavation as summarized in Table 6-1.

For properties that would meet RAOs based on data collected at 0.5 and 2 feet bgs but are identified for excavation based on 5-foot bgs data, and with homeowner concurrence, additional samples may be collected at 3 feet bgs as part of Remedial Design and Implementation Plan development to identify whether remedial excavation of these properties is needed.

### 8.1.2 Planning for Excavation Design

Following approval of the RAP, a Remedial Design and Implementation Plan (RDIP) will be prepared, as discussed in Section 9. As part of the RDIP, an individual Property-Specific Remediation Plan (PSRP) will be prepared for each property. A property survey will be conducted by a California-licensed Professional Land Surveyor to document existing conditions at each parcel, including property boundaries, Site elevations and grade, building location(s), existing hardscape and landscaping, and underground and overhead utilities that encroach into that parcel. The survey will be referenced to the California State Plane Coordinate System horizontal (North American Datum of 1983 [NAD83]) and vertical (North American Vertical Datum of 1988, 2005 Adjustment [NAVD88]). Existing conditions will also be documented in field notes and photographically.

The PSRP will define areas to be excavated, features to be removed and those that will be protected in place, and locations of underground utilities that need to be either protected in place or removed and restored. Based upon a geotechnical evaluation, the PSRP will also include planned excavation

<sup>&</sup>lt;sup>5</sup>Soil samples were generally collected from residential properties at 0.5, 2, 5 and 10 feet bgs or the depth of refusal if shallower than 10 feet. Additional samples were collected at 3 feet bgs only if field observations indicated the presence of staining or odors.



#### **Remedial Action Plan**

slopes and/or setbacks from existing structures or other features, such as around building foundations, in accordance with City and County requirements.

Utilities present in the Carousel community that may need to be avoided or temporarily interrupted are summarized below. These utilities will be identified and provisions made to protect them in place or remove and reinstall as part of the RDIP and PSRP processes.

• Water service to the neighborhood is provided by California Water Service Company (Cal-Water). Water mains are located on residential properties approximately 3.5 feet in from the inner edge of the sidewalk on the west side of named streets and 3.5 feet in from the inner edge of the sidewalk on the south side of numbered streets at approximately 3 to 3.5 feet bgs. The water mains are of asbestos-cement (transite) pipe construction, and according to Cal-Water, these water mains will need to be avoided and not exposed in excavations. This will limit excavation in the immediate area of the water mains to allow for vertical and lateral setbacks of approximately 1 to 2 feet from the pipelines. Setbacks from the water mains will be established in consultation with Cal-Water during preparation of the RDIP.

Water service laterals to houses where excavations are conducted in front yards will be protected in place in a manner similar to what was done during pilot test excavations.

- Based on the 3-foot depth of excavation, sewer laterals should not be affected.
- Gas mains located in City streets will not be affected by excavation work. Gas service laterals to houses where excavations occur in front yards will be protected in place or will be capped, removed, and replaced when excavation is completed and excavations have been backfilled. Gas lateral line work will be conducted by a licensed plumbing contractor in accordance with City of Carson and Southern California Gas Company requirements.
- Telecommunications service trunk lines are located in a common trench with gas mains in the street or beneath the sidewalks and will not be affected by the work. Telecommunications lines to houses where excavation occurs in front yards may need to be removed and replaced. Shell has assumed that replacement of telecommunications lines will be done by an AT&T contractor that routinely does telephone cable work in the neighborhood.

As part of RDIP and PSRP preparation, Shell contractors will meet with homeowners, and their legal representatives as appropriate, to obtain necessary information for relocation during remedial implementation and to discuss hardscape and landscape restoration. During this meeting, existing landscape irrigation systems will be documented so that they can be restored as part of landscape restoration. In some cases, Shell may provide alternative landscape restoration from existing conditions if desired by the homeowner. If during this meeting the homeowners express a desire that existing hardscape not be removed from their property, an option will be discussed of leaving hardscape in place with the homeowners agreeing to enter into a Land Use Covenant (deed restriction) that would be recorded with the County Recorder's Office advising of the potential presence of impacted soil beneath hardscape are exposed, they would be managed in accordance with the Surface Containment and Soil Management Plan (Appendix D).

### 8.1.3 General Excavation Approach

#### 8.1.3.1 Utilities

Prior to starting demolition of existing landscaping and hardscape and initiation of excavation, a subcontracted private utility-locating geophysical contractor will locate and identify potential subsurface obstructions. Utility lines will be clearly marked in the field for removal or avoidance.

Hand excavation will be utilized to locate and confirm the location and depth of the transite pipe water mains located in the front yards of approximately one-half of the properties. Shell anticipates working closely with Cal-Water on this aspect of the utility location work. Other utilities will be located, as deemed necessary, by hand excavation "potholing."

#### 8.1.3.2 Proposed Excavation Methods and Equipment

Excavation will be conducted using rubber track-mounted excavators or rubber-tired backhoes. Contractors will utilize the smallest, quietest equipment capable of effectively and safely completing planned excavation tasks. Based on performance during the excavation pilot tests, an approximately 18,000 pound medium-sized excavator would be effective for work in front yards and back yards where sufficient access is available, and a small approximately 3,500-pound rubber track-mounted mini-excavator was shown to be effective for work in back yards with narrow access via side yards. Side yard access may be significantly improved if work can be done sequentially on adjacent properties and the fence between the side and back yards of the properties can be removed, allowing larger equipment access to back yards. Excavation and soil management will also be conducted using a front-end loader and/or Bobcat skid-steer mini-loader to move soil from back yards to front yards and *vice versa* to bring in clean fill soil.

In areas where access to equipment is severely limited, hand tools and wheelbarrows will be used to conduct excavations. Hand excavation will likely be required on side yards where there is insufficient room for equipment to operate.

Other equipment that likely will be used during excavation and backfill operations includes:

- A water truck or water buffalo for dust control;
- Electrical generator(s);
- Mechanical and/or vibratory soil compaction equipment;
- Odor suppressant foam system (tank, compressor, foam generator and pump);
- Meteorological station;
- Organic vapor and dust monitoring equipment; and
- Employee comfort stations.

Excavations will be made with side slopes at the horizontal to vertical ratio recommended by the Geotechnical Engineer and approved by the LA County Department of Public Works (LACDPW)



and City of Carson in the Grading Permit for the particular property being excavated. The basic excavation protocols will be altered as needed as excavations are conducted and to address any previously unknown utilities, concrete debris or foundations unearthed. If possible and approved by the LACDPW and City, excavations will have vertical sidewalls to maximize removal of impacted soils to the full depth of excavation. We anticipate that excavation sidewalls will be sloped below foundation footings of structures and block wall footings. However, it is possible that the LACDPW and City will require setbacks from structures in accordance with appropriate elements of Sections J101, J104, J106, and J108 of the County Grading Code as amended by the City of Carson.

If remnants of the former reservoir concrete sidewalls and bases are encountered in remedial excavations, the concrete will be removed where encountered in the upper 3 feet of the excavations. If encountered concrete extends laterally beneath a structure or beneath the sidewalk, it will be cut at the edge of the structure or inner edge of the sidewalk and the remaining concrete will be left in place.

As currently envisioned, excavation will proceed in phases, with each phase of work including approximately eight contiguous properties, if access can be obtained. Where possible, each phase will include homes on both sides of a city block (e.g., the east side of Marbella and west side of Neptune Avenues). This approach will be used so that if it is necessary to remove back fences or block walls, the fences can be removed one time and excavation conducted in both yards before the fences are restored. For properties on the perimeter of the tract, work will proceed at a smaller number of properties for each phase.

Each phase will include approximately eight properties with work occurring on properties in sequence with an approximately two to three day lag in specific activities from one property to the next. Preliminarily, based on working five days per week, it is estimated that excavation and backfill will take approximately three weeks per property and site restoration will take an additional approximately three to 4 weeks; approximately six to seven weeks needed to complete a phase of eight properties. Work on the second phase of properties (i.e., the next eight properties working down the block), will begin approximately at the end of week three of work on the first phase. As described in the Preliminary Relocation Plan (Appendix E), residents of properties where remedial excavation, backfill, and hardscape restoration operations. Following backfill and utility and hardscape restoration, residents would move back into their homes during landscape restoration and fence/block wall construction, or, at their option, wait to return until after the landscape restoration work is completed. For properties on the perimeter of the tract where excavation work is being conducted, residents of adjacent properties and will be offered relocation as necessary.

This phased excavation approach will require that access can be obtained and Grading Permits for the properties are available for all eight properties in a phase before work commences. In the event that a property does not require excavation, that property will be skipped in the sequencing of work; however, side yard and back property fences may still have to be removed to allow excavation of the adjacent properties. The efficacy of this phased approach also depends upon residents of the affected properties providing access to allow the work to proceed.

Following excavation and backfill but prior to site restoration, SVE/bioventing wells will be installed at each property where required. Additionally, for those properties where a sub-slab mitigation system is required, the system will be installed concurrent with or following the excavation activities.

#### 8.1.3.3 Materials Handling

As soon as feasible, excavated soils will be loaded directly into an awaiting transport vehicle (i.e., end-dump truck, dump truck, or covered soil bin) using the excavator, front-end loader or skid-steer mini-loader. To the extent possible, impacted soil will be direct loaded into approved waste haulers using the excavator for transport to the appropriate recycling or disposal facility. Care will be taken to ensure that all loose soil is brushed off the transporter and properly managed prior to covering with a tarp.

In the unlikely event that it is necessary to temporarily stockpile soil onsite before loading, soils either will be placed upon Visqueen plastic sheeting and covered with plastic, or they will be temporarily placed in a covered bin.

Waste haulers will follow prescribed transportation routes that will be specified in a Transportation Plan that will be included in the RDIP. Haul trucks will not be permitted to stage within the Carousel community while waiting to be loaded.

Excavated impacted soil will be transported offsite to appropriately licensed recycling/disposal facilities by a state-licensed waste hauler for appropriate recycling or disposal. Soils will be preprofiled during the RDIP process, and approval will be obtained from the recycling/disposal facilities before excavation activities begin. All documentation pertaining to waste disposal profiles and waste disposal acceptance will be in place prior to any offsite shipments of waste.

#### 8.1.3.4 Dust, Vapor and Odor Control

Dust suppression using water mist will be performed as required during excavation activities. Water mist will also provide the first level of vapor and odor control. Care will be taken to ensure that the soil is not over-saturated which could generate runoff that would need to be managed and increase the weight of soil to be disposed. The focus of this effort will be to assure that particulate matter with an aerodynamic diameter of 10 microns or less ( $PM_{10}$ ) levels to exceed 50 micrograms per cubic meter ( $\mu g/m^3$ ). Excavation and loading operations will cease if the wind speed is greater than 15 miles per hour (mph) averaged over a 15-minute period or instantaneous wind speeds exceed 25 mph.

Based on monitoring data or odor perception, vapor and odor control will be implemented on an as needed basis. Based on experience from the excavation pilot test, Rusmar AC-565 Long Duration Foam was found to be most effective at controlling vapors and odors. This type of foam, or equivalent, and necessary support equipment will be staged and ready for application at locations where remedial excavations are conducted and there is the potential for odor releases.

### 8.1.4 Monitoring During Excavation Activities

A number of types of monitoring will be performed during Site remediation activities. These include:

- Worker health and safety in accordance with the HSP;
- Monitoring and reporting to comply with SCAQMD Rule 1166 Mitigation Plan requirements;
- Dust monitoring for SCAQMD Rule 403 Compliance;
- Meteorological monitoring of atmospheric conditions, including wind direction and speed using a portable meteorological station; and
- Monitoring for odors,

### 8.1.5 Site Restoration

As described above, hardscape and landscaping will be removed during the initial stage of excavation and restored to like conditions following completion of excavation. If it is necessary to remove fences and block walls between yards and ornamental or partitioning walls on individual properties, these hardscape features will be restored to like conditions or as agreed to with the homeowner.

During homeowner meetings that will be part of the RDIP process, hardscape and landscape restoration will be discussed and agreed to with the owner. In some cases, alternative hardscape and landscaping will be considered if requested by the owner and it does not result in significant schedule or cost impacts.

Backfill will begin upon completion of excavation and installation of other remedial elements, described in Sections 8.2 and 8.4 below, are completed. Hardscape will be restored soon thereafter, after which the residents will be able to return to their homes while landscape restoration and reconstruction of fences and walls continues.

Shell anticipates that it will be necessary to apply an asphalt top coat to City streets within the Carousel tract following completion of excavation of residential yards and installation of SVE wells and piping.

# 8.2 SOIL VAPOR EXTRACTION (SVE)/BIOVENTING

SVE and bioventing are the selected remedial technologies to address petroleum hydrocarbons, VOCs, and methane in soil vapor and to promote degradation of residual hydrocarbon concentrations that do not meet RAOs. Use of SVE/bioventing will address impacted areas beneath existing paved areas, City sidewalks, and concrete foundations of the homes, in addition to addressing reduction of COC concentrations in excavated areas below 3 feet bgs with the goal of achieving SSCGs over time. Operation of the SVE/bioventing system will also address impacted media that may be associated with residual concrete reservoir slabs left in place below the depth of excavation.

SVE is a recognized and effective technology for removal and treatment of VOCs from impacted soils. The process involves inducing airflow in the subsurface with an applied vacuum, enhancing in-situ volatilization of VOCs, and effecting movement of the VOCs to vapor extraction wells for removal from the subsurface. The SVE technology is also effective at removing methane from subsurface soils and has been used for this application at other hydrocarbon-impacted sites and at landfills. The SVE technology would effectively remediate the lighter volatile-range petroleum hydrocarbons, VOCs, and methane.

SVE pilot tests were conducted to evaluate the potential effectiveness of using SVE to remove vaporphase VOCs from subsurface soils at three onsite locations in areas with soil conditions ranging from likely favorable to potentially unfavorable for SVE. The SVE pilot test activities and results are provided in the Soil Vapor Extraction Pilot Test Report (URS, 2010f) and summarized in Section 4. The SVE well configuration at the Site will be based on the average effective ROVI from the pilot test results.

Bioventing is an in-situ technology generally applicable to the remediation of petroleum hydrocarbons in shallow soils. In this process, air is introduced into the subsurface to provide oxygen to enhance biodegradation of petroleum compounds. As summarized in Section 4 and in more detail in the final *Bioventing Pilot Test Summary Report* (Geosyntec, 2012b), bioventing was found to be effective at reducing hydrocarbon concentrations in Site soils over time. SVE working in concert with bioventing will promote microbial degradation of longer-chain petroleum hydrocarbons and, over the long term, reduce concentrations of these less-volatile compounds in the subsurface.

#### 8.2.1 SVE/Bioventing Conceptual Design

SVE/bioventing will be implemented throughout the Site to remediate volatile petroleum hydrocarbons, VOCs, and methane, and induce increased airflow to promote microbial degradation of longer-chain hydrocarbons (diesel and motor oil-range petroleum hydrocarbons). The SVE/bioventing infrastructure will consist of a system of extraction/inlet wells, belowground conveyance piping, aboveground manifolds treatment compound(s), vapor treatment system(s), and various system controls and instrumentation. SVE will be applied in the shallow zone from approximately 5 to 10 feet bgs, intermediate zone from approximately 15 to 25 feet bgs, and deep zone from approximately 30 to 40 feet bgs, and locally deeper depending on depths of soil impact and depth to groundwater. Nested shallow, intermediate, and deep zone wells will be installed in the streets of the Site, which provide ready access for installation. Shallow zone wells will also be installed within the front and back yards of select residences. Locations of these shallow-zone wells in the front and back vards will be based on the distribution of constituents exceeding SSCGs in the 5 to 10 foot bgs depth interval. Well and piping components for SVE/bioventing wells installed on residential properties will be entirely below grade (see Figure 8-5). These shallow wells will be screened from 5 to 10 feet bgs and will be connected to the SVE system via conveyance piping, which will be installed in the streets. Due to potential short-circuiting from surface landscaping, the shallow zone ROVI for the residential wells is estimated to be 25 feet.

The SVE system will be operated in a cyclic manner, with active extraction in different portions of the Site at different times. During periods of vapor extraction from a sub-set of wells, the SVE



system will not only remove hydrocarbon vapors, but will also draw oxygen into the subsurface to enhance the biodegradation of residual petroleum hydrocarbons in soil. During periods when no extraction is occurring for this set of wells, remediation will be achieved through biodegradation alone (i.e., bioventing). The system will be designed to use the same infrastructure (i.e., extraction wells) for both SVE and bioventing, and the cyclic operating conditions will be used to implement both remedial actions. The SVE/bioventing system will be operated in manner to achieve the soil oxygen demand estimated from the bioventing pilot tests (Geosyntec, 2012b).

Based on the SVE pilot test ROVI results for the intermediate zone, a total of 63 nested well clusters (shallow, intermediate, and deep zone) will be installed in the streets with an average spacing of approximately 125 feet. The estimated vapor extraction coverage for the shallow, intermediate, and deep zones is shown on Figures 8-1, 8-2, and 8-3, respectively. Based on the estimated ROVI of 50 feet, additional shallow zone wells may be installed between the nested wells in the streets in select areas of the Site to provide increased vapor extraction coverage within the shallow zone. Additionally, shallow zone wells will be installed in the front and back yards of residences requiring remediation of the shallow zone soil by SVE/bioventing.

Upon approval of the RAP, a RDIP providing the well field layout, SVE system(s) location(s) and specifications, and conveyance piping layout will be submitted for RWQCB approval.

### 8.2.2 SVE/Bioventing Equipment

Based on the estimated quantity of extraction wells (63 nested wells), it is impractical to construct an SVE system to extract simultaneously from all of the proposed wells. As a result, a system or systems rated for a combined 3,000 standard cubic feet per minute (scfm) at up to 12 inches of mercury (in-Hg) vacuum is planned. Shell is currently evaluating both onsite and offsite locations for the installation of the remediation equipment, as well as the potential use of multiple smaller SVE systems to allow for more flexibility of vapor treatment. For offsite locations, this evaluation will consider conveyance piping corridors from the treatment system to the neighborhood.

The SVE/bioventing system(s) will be operated cyclically (pulsed) to extract impacted soil vapor and introduce oxygen to the subsurface to stimulate degradation of the diesel and motor oil-range hydrocarbons in a bioventing operational mode. Pulsing of the SVE/bioventing system will consist of extracting from select well sets for a pre-determined duration and time interval. The duration, time intervals, and well sets will be determined based on data collected during start-up activities.

As observed during the pilot test, granular activated carbon (GAC) effectively removed the lighter volatile-range petroleum hydrocarbons and VOC mass from the extracted soil vapor. However, with lighter volatile-range petroleum hydrocarbons representing the majority of the total contaminant mass removed and the expected concentrations, alternative treatment technologies such as thermal and/or catalytic oxidation are likely to be initially more effective. In addition, GAC will not remove methane from the recovered vapors, which will require an alternate treatment technologies in a staged approach, depending on inlet concentrations. The remediation equipment will provide the flexibility

to transition from thermal oxidation to catalytic oxidation followed by GAC treatment, when the concentrations have decreased sufficiently.

Due to the localized presence of chlorinated compounds in soil vapor, thermal oxidation would generate acid gas as a by-product of the combustion process. The use of thermal or catalytic treatment would need to be evaluated in the RDIP prior to implementing this technology. However, methane is effectively treated using thermal technologies. A thorough evaluation of the use of thermal treatment and GAC will be performed and presented in the RDIP to determine the appropriate technology to treat the various contaminants detected at the Site. The off-gas treatment system will be permitted by SCAQMD. The permit application will be submitted to SCAQMD after the RDIP is approved by the Regional Board.

The SVE/bioventing treatment system(s) will be installed in an enclosed structure constructed with sound attenuation insulation to reduce operating noise levels to decibel (dB) levels at our below the City of Carson Noise Ordinance. The system will have an effluent discharge stack of sufficient height for dispersion of treated off gases, consistent with modeling results and requirements in the SCAQMD permit to Construct/Operate. As described in Section 9, the detailed design of the SVE/bioventing system will be presented in the RDIP.

#### 8.2.3 SVE/Bioventing Well Installation

The SVE/bioventing extraction wells in the streets will be constructed as triple-nested vertical wells in the same borehole, separated by cement/bentonite seals similar to those used during the SVE pilot test. The wells will have screen intervals of 5 to 10 feet bgs, 15 to 25 feet bgs, and 30 to 40 feet bgs for the shallow, intermediate, and deep zones, respectively. However, the actual screen length/depth intervals may be revised based on subsurface stratigraphy encountered during well installation. A minimum separation of 5 feet will be maintained between each screen interval. Each nested well will be completed within a flush-mount traffic-rated well vault surrounded by a concrete skirt. A typical nested well construction detail is shown of Figure 8-4.

Findings of the HHRA regarding properties where concentrations of COCs would not meet RAOs were used to identify properties that will require SVE/bioventing. In total, 214 properties were identified for treatment with SVE/bioventing. The actual locations for installation of residential SVE/bioventing wells will be established during system design based on COC and methane distribution in the subsurface (as depicted on Figures 3-3 through 3-11 and Appendix B). Shallow SVE/bioventing wells will be installed at individual residences, where required, and will be screened from approximately 5 to 10 feet bgs or to the depth of the former reservoir concrete slabs if present at less than 10 feet bgs. The shallow wells will be constructed similar to the wells installed in the streets. The SVE/bioventing wells and conveyance piping within the residences will be covered with backfill soil. A typical shallow well construction detail is shown on Figure 8-5. At residential properties where remedial soil excavation will be performed, wells will be installed following backfill placement either by hand or using a small Bobcat skid-steer or similar equipment with a power auger attachment. Conveyance piping will be laid prior to backfill and will be brought to the back of sidewalks for later connection to piping in the streets. At residential properties that will not have excavation performed but that will have SVE/bioventing wells, well and piping installation will



be done in the same general timeframe as nearby properties that are being excavated and SVE/bioventing wells and piping are installed. At non-excavated properties, the wells will be installed by hand and piping will be laid in hand excavated trenches. Hardscape and landscaping that is affected by well and/or piping installation will be restored to like conditions following installation.

### 8.2.3.1 Trenching

Conveyance piping will be installed in trenches within the City streets. Trenching will require the same monitoring and vapor and odor mitigation as residential excavations. Odors will be controlled using long-acting vapor suppressing foam, as necessary. Shell anticipates that it will be necessary to apply an asphalt top coat to City streets within the Carousel tract following completion of excavation of residential yards and installation of SVE/bioventing wells and piping.

### 8.2.4 SVE/Bioventing System Operation

The SVE/bioventing system will be operated until SSCGs are reached, by cycling the extraction from the well field in sets of wells. The extraction "well sets" to be operated concurrently will be determined during the two to three month startup phase of SVE/bioventing operation and adjusted and optimized periodically throughout the duration of SVE/bioventing operations at the Site. Cycling of the system will promote oxygenation of the subsurface which will enhance the biodegradation of residual petroleum hydrocarbons. It is expected that recovered vapors from SVE system operation will decline through time and SVE operation can be discontinued in some wells and shifted to other parts of the Site. In this case, the wells would still need to be operated periodically to introduce oxygen to the subsurface in a bioventing mode of operation.

Field activities associated with the system operation will include periodic Site visits to record operating parameters; monitor VOC and methane concentrations in the influent, effluent, and extraction wells using field instrumentation, and for performance of routine system preventive maintenance and troubleshooting. The recorded operating parameters, and influent, effluent, and well concentrations will be used to fine tune and adjust the system and to optimize influent VOC and methane concentrations to sustain removal rates to achieve remediation with the shortest possible time frame, and to maintain compliance with the SCAQMD permit. As part of the operations and maintenance (O&M) activities, it is expected that field personnel will periodically need to access well boxes in the streets. The frequency of accessing well boxes will be established during system startup. Field personnel will not need to access wells installed on residential properties for O&M purposes.

It is anticipated that the SVE/bioventing system(s) will be operated on a continuous basis and shut down only during performance of routine maintenance. After installation and startup, daily monitoring will likely be required, followed by periodic monitoring as specified in the RDIP. The regular monitoring will also include, at a minimum, collection of system influent and effluent vapor samples for laboratory analyses as required in the SCAQMD permit. Results of the analyses, in conjunction with measured flow rates, field readings and time of operation, will be used to estimate the mass of VOCs removed from the subsurface, and as a basis for optimizing and eventual shutdown of SVE operations. Mass removal estimates will be provided to the RWQCB on an annual basis. The potential operating time for the SVE/bioventing system has been estimated based on data collected during the SVE and bioventing pilot tests (URS, 2010f; Geosyntec, 2012b).

- <u>SVE</u>: The average vapor extraction rate of the shallow wells in the SVE pilot test ranged from approximately 20 to more than 100 scfm. Assuming a ROVI of 50 feet, 10-foot treatment zone thickness, soil air-filled porosity of 0.3, and 10% operating cycle, a pore volume will be extracted every 30 days. Assuming 100 pore volumes of vapor extraction will be sufficient to meet the SVE remedial goals, the estimated SVE operating time is approximately 5 years. Note, however, that areas of the site with higher VOC concentrations may require longer SVE system operation than areas of average or lower concentrations.
- <u>Bioventing</u>: The bioventing pilot test found that relatively low air flow rates (i.e., less than 1 scfm) are necessary to deliver sufficient oxygen to meet the bioventing oxygen demand. This oxygen demand will be met by implementation of the combined SVE/bioventing system described above. Using a stoichiometric evaluation for the amount of oxygen necessary to biodegrade residual hydrocarbons, sufficient oxygen to remediate soils with TPHd concentrations of 10,000 mg/kg will be delivered by the SVE/bioventing system within approximately 30 years.

These operating periods should be considered preliminary. Operation of the SVE/bioventing system will be optimized during the remedial action as monitoring data are collected (e.g., increase cycle time for areas with higher concentrations). Improved estimates of the potential operating time for the SVE/bioventing system can be made after analysis of these monitoring data.

### 8.3 SUB-SLAB VAPOR MITIGATION

Sub-slab vapor mitigation systems will be installed at residential properties where RAOs for soil vapor would not be met based on potential exposure due to vapor intrusion of petroleum hydrocarbons or chlorinated ethenes (e.g. PCE and TCE) from soil vapor to indoor air, and at the two locations where detected methane concentrations in sub-slab soil vapor probe samples exceed the methane SSCG of 0.5%. One of these properties has already had an interim mitigation system installed, and the other only slightly exceeds the methane SSCG of 0.5% methane in a single measurement from a single sub-slab probe. Sub-slab vapor mitigation systems will not be installed at residential properties where the vapor intrusion risk estimates are driven by trihalomethanes (i.e., chloroform, bromodichloromethane, or dibromochloromethane), because the presence of these constituents in soil vapor is believed to be due to off-gassing from municipal water (either leaking water lines or sewer lines or applied irrigation) and not a result of historical Site operations. Based on the HHRA results and methane detected in sub-slab soil vapor, 27 properties have been identified for sub-slab vapor mitigation as summarized in Table 6-1.

Sub-slab depressurization (SSD) systems will be used to mitigate the potential vapor intrusion pathway at the Site. The SSD system creates a negative pressure below the slab of the residence using a fan to remove air from below the slab and exhausting it above the building. This process keeps vapors emanating from the soil below from entering the building.

SSD design, installation, and operation will be in general accordance with the DTSC Vapor Intrusion Mitigation Advisory (DTSC, 2011). The system consists of creating holes in the slab or footing, removing a quantity of soil from beneath the slab to create suction pit and placing suction pipes into the holes. The suction pipes are directed to above the roof and a fan connected to the system to create a sub-slab vacuum.

### 8.3.1 Diagnostic testing

After installation of the SSD system, diagnostic testing will be conducted to assess the vacuum distribution beneath the building foundation and whether modifications to the system design (e.g., larger fan or additional suction pits) is warranted. The PVC riser pipe joints will not be glued until the initial system diagnostic tests are complete. The diagnostic testing consists of the following activities:

- A fan will be temporarily installed on the vent pipe from the suction point(s).
- Quarter-inch diameter hole(s) will be drilled through the floor and slightly into the sub-slab soils across the slab away from the suction point(s). These test holes will be used to monitor the differential air pressures across the slab (above and below the slab). The floor will be repaired and restored following the diagnostic testing.
- Initial pressure differentials will be recorded with the fan off. The fan will then be turned on (exhausting the gases outside the home) and the static vacuum in the riser pipe(s) and differential pressure at the test hole(s) measured using an digital micro-manometer, with a resolution of 0.0001 inches of water column (in-WC) and an accuracy of ± 1% of the reading or ±0.0005.
- Airflow will also be measured with one of the following instruments: a vane anemometer, a hot wire anemometer, or a pitot tube. If measured airflow and vacuum are not within the fan's performance specifications, an alternate fan will be selected.

The SSD system will be considered effective once vacuum conditions are established beneath the slab. Because indoor air concentrations measured during the Phase II investigation are indistinguishable from background levels, effectiveness of the SSD will be assessed only through cross-slab differential pressure measurements. Additional indoor air/sub-slab soil vapor sampling will not be necessary to further assess the vapor intrusion pathway following installation of the sub-slab vapor mitigation system.

#### 8.3.2 Permitting

SCAQMD will require permits for the active operation of the SSD systems. After completion of the diagnostic testing, a permit application will be submitted to SCAQMD.

#### 8.3.3 Monitoring

The SSD system will include a manometer or in-line pressure gauge to provide a simple measure that the system is operating as designed. Clear instructions (including the name and contact information



for the appropriate Shell contractor) will be placed in a visible location to address problems with the SSD system operation.

Additionally, Shell contractors will confirm that homes with a SSD have a carbon monoxide (CO) monitor, as required in all homes by California law.

### 8.4 GROUNDWATER

### 8.4.1 Description of Groundwater Occurrence, Quality and Potential Sources

Groundwater beneath the Site has been extensively investigated and reported to the RWQCB since initial well installation in 2009. A description of groundwater conditions including occurrence, quality, COCs, and COC sources was presented in the Revised SSCG Report (Geosyntec, 2013c) and is summarized in Section 3.1.10 above. The SSCGs for groundwater at the Site are listed in Table 5-3 of this RAP document.

#### 8.4.2 Groundwater Remediation Plan

#### 8.4.2.1 Non Site-Related COCs

It is assumed that groundwater remediation of non-Site-related COCs (e.g. chlorinated compounds, TBA) will be accomplished by the RWQCB directing responsible parties to remediate offsite upgradient sources to MCLs. These compounds have migrated, and likely continue to migrate, onto the Site, from upgradient sources. Therefore, onsite cleanup of these compounds to SSCGs will not be feasible until the upgradient sources are remediated. If appropriate, the responsible parties (for example the Turco, OTC, and FORCO sites) could enact onsite remediation at the former Kast Site once the offsite source areas are remediated.

#### 8.4.2.2 Site-Related COCs

Reduction of Site-related petroleum COCs (benzene, naphthalene, TPH) to meet RAOs will eventually occur due to natural processes, but will be accelerated by the significant accompanying source reduction proposed in Section 8.1, 8.2 and 8.5 of this RAP. Reduction of TPH-related compounds to the SSCGs or even low-level range is expected to cause arsenic to decrease to background levels as aerobic conditions return (Section 3.3.4.5). Without source reduction in the vadose zone or of LNAPL, the length of time needed to meet RAOs is expected to be long (several hundred years). However, assuming the significant source zone reduction proposed in the RAP for soils, soil vapor, and LNAPL, reduction of Site-related COCs to meet RAOs is expected to require much less time. For example, based on modeling, benzene levels will likely meet SSCGs at the Site in approximately 70 years assuming significant vadose zone and LNAPL source zone reduction onsite, as well as source reduction associated with identified upgradient sources (RWQCB, 2014a).

It is proposed that source reduction through excavation, SVE/bioventing in the vadose zone, as well as LNAPL removal as discussed below, will be used in conjunction with MNA as the remedy for Site-related COCs in groundwater. MNA relies on naturally occurring processes to decrease concentrations of chemical constituents in soil and groundwater. Natural processes include a variety of physical, chemical, or biological processes that, under favorable conditions, act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of constituents in media of concern.

MNA is an appropriate remedy for Site-related COCs in groundwater because:

- The benzene plume at the Site is stable or declining due to natural processes.
- Benzene and TPH are well defined and generally limited to the Site (do not extend significantly downgradient of the Site boundary) nor into the underlying Gage aquifer.
- Groundwater at the Site will not be used in the foreseeable future due to high total dissolved solids and other water quality issues unrelated to Site conditions.
- The RAP proposes significant reduction of sources of Site-related COCs in the shallow zone (excavation), vadose zone (SVE and bioventing), and LNAPL reduction.

The post-remediation natural reduction in Site-related COC concentrations in groundwater will be monitored. Semi-annual monitoring of both shallow zone and Gage wells will be conducted for a five-year period. Groundwater samples will be analyzed for the COCs, including select MNA parameters<sup>6</sup>. The annual MNA program will commence during implementation of the RAP, specifically startup of the SVE system. If after five years of semi-annual MNA monitoring the concentrations of Site-related COCs are not stable or decreasing based on statistical analysis, other groundwater remediation will be considered as discussed below. However, if the concentrations of Site-related COCs are stable or decreasing, the MNA program will continue and will be re-assessed after five additional years of annual groundwater monitoring.

It is also proposed that the RWQCB actively pursue upgradient responsible parties who may be contributing to certain COCs (notably benzene) migrating onto the former Kast Site. The potential or actual migration of these COCs onto the former Kast Site was indicated by the RWQCB (2014a).

#### 8.4.2.3 Contingency Plan for Groundwater Remediation

If warranted by the results of the statistical analyses conducted on the initial five years of annual MNA data, supplemental remediation of certain Site-related COCs in localized areas of groundwater (e.g. where COCs exceed 100x MCLs) may be implemented. The purpose of this supplemental remediation would be to further shorten the time over which the concentrations of COCs will return to background or MCL levels if SVE/bioventing and natural processes are insufficient.

There are several technologies that may be used to treat the groundwater contaminants. Many of them involve pumping the groundwater to the surface to treat, which increases the potential for exposure to identified receptors and requires either discharge or reinjection of treated water. To limit exposure and management of treated water, the most likely groundwater treatment remedy for these

<sup>&</sup>lt;sup>6</sup> MNA parameters may include oxidation-reduction potential, dissolved oxygen, pH, nitrate, iron, sulfate, and methane.



targeted source areas will involve in-situ treatment using injection of chemical oxidants into the localized areas. Should such supplemental groundwater treatment be warranted (concentrations of Site-related COCs are not stable or declining), a pilot test of the most appropriate in-situ technology will be conducted and the supplemental groundwater treatment implemented.

# 8.5 LIGHT NON-AQUEOUS PHASE LIQUIDS (LNAPL)

Shell will continue periodic LNAPL recovery where LNAPL has accumulated in monitoring wells (MW-3 and MW-12) to the extent technologically and economically feasible, and where a significant reduction in current and future risk to groundwater will result. If LNAPL accumulates in the future to a thickness of greater than 0.5 foot in other wells, LNAPL will also be periodically recovered from those wells.

LNAPL is currently being recovered from monitoring wells MW-3 and MW-12 on a monthly basis using dedicated pneumatic total fluids pumps installed in the wells. Recovered LNAPL is placed in drums which are immediately transported offsite for proper disposal. Periodic LNAPL recovery from MW-3 began on November 9, 2010, and recovery from MW-12 began on October 28, 2013. An estimated 96.5 and 2.9 gallons of LNAPL have been removed from MW-3 and MW-12, respectively, since LNAPL recovery began.

As part of the remedial actions described in this RAP, LNAPL recovery will continue from wells MW-3 and MW-12 on a monthly basis, and, if LNAPL is detected in other wells in the future, monthly LNAPL recovery will be initiated on these wells if they have an LNAPL thickness of greater than 0.5 foot. Monitoring of LNAPL and water levels, and LNAPL recovery volume monitoring will continue during LNAPL recovery events. The current LNAPL recovery setup in use for MW-3 and MW-12, or equivalent, will be used for LNAPL recovery in other wells if needed. When LNAPL recovery shows a declining trend in wells in which LNAPL occurs, recovery trends will be evaluated, a recommendation may be made to the RWQCB to reduce the frequency of LNAPL recovery, as appropriate.

# 8.6 CONSTRUCTION PHASE ACTIVITIES

During the period of active remedial construction activities for soil excavation, backfill and property restoration, SVE/bioventing well and piping system installation, and installation of sub-slab mitigation, Shell's contractors will have a daily presence in the neighborhood. These activities will include use of excavators, backhoes and loaders, waste-hauling trucks and dump trucks to deliver fill soils, drilling rigs, personal trucks and other vehicles, and various supporting equipment. During the period of active remedy implementation, there will be periods of heavy truck traffic and construction activity.

# 8.7 Post-Construction O&M Activities

Following the period of active remedial construction during which soil excavation and SVE/bioventing system installation will be completed, Shell's contractors will have a less visible presence in the community for monitoring and O&M of the SVE/bioventing system. The frequency



of onsite work for SVE/bioventing system O&M activities will depend on where treatment system(s) and piping manifolds are located. Additional subsequent activities may include monthly or less frequent LNAPL recovery, quarterly or less frequent groundwater monitoring, and monitoring of utility vaults and street soil vapor probes. Shell does not anticipate the need to conduct regular monitoring at residential properties. However, annual inspections to verify that the SSD systems are operating (monitoring of the vacuum and flow rate of the SSD fan) will be conducted.

# 9.0 PLANNED REMEDIAL DESIGN AND IMPLEMENTATION PLAN (RDIP) PROCESS

# 9.1 OVERALL RDIP PROCESS

Following approval of the RAP, a Site-wide Remedial Design and Implementation Plan (RDIP) will be prepared. The Site-wide RDIP will provide details on the design and implementation of the planned remedy outlined in this RAP. The RDIP is expected to include the following elements:

- Details of the non-property specific remedial excavation activities to be conducted on a Sitewide basis including elements of the remedial design, including general excavation methodologies, permitting, and health and safety requirements.
- SVE/bioventing system design including well, piping and treatment system layout, as well as operation, monitoring, and maintenance plans.
- Sub-slab mitigation system design including operation, monitoring and maintenance plans.

Following approval of the RDIP, Property-Specific Remediation Plans (PSRPs) will be prepared for all properties that require excavation, sub-slab mitigation, and/or SVE/bioventing. The PSRPs will define areas to be excavated, features to be removed and those that will be protected in place, and locations of underground utilities that need to be either protected in place or removed and restored, and will fulfill the requirements for municipal permitting. For those approximately 27 properties identified for sub-slab mitigation, PSRPs will include details of the mitigation system design. The PSRPs will identify well piping locations for the 214 properties where SVE/bioventing wells will be installed. The PSRPs will be prepared in groups according to the planned excavation phase of properties, to provide the level of detail needed for individual property permitting and restoration. It is anticipated that these groups of PSRPs will be submitted to the Regional Board for a two-week review period prior to submittal of permit packages to the municipal Building officials.

Additional information on the Site-wide RDIP and the PSRPs is provided below.

# 9.2 SITE-WIDE RDIP

The Site-wide RDIP will be prepared following conceptual approval of the RAP. The RDIP will provide a detailed discussion of the specific tasks necessary to implement the Site-wide remedy, including engineering design of the selected remedial actions, project phasing, and operation/ monitoring/maintenance of different components of the remedy.

The overall sequencing and preliminary schedule will be discussed, including activities necessary to fully implement each of the components of the remedy, how these activities will be coordinated to facilitate construction/implementation, identification of potential major scheduling problems or delays, which may impact the overall schedule.

Excavation methodologies to be included in the RDIP will apply to the property-by-property excavation activities (PSRPs) and to the SVE/bioventing piping system installation. The Site-wide

RDIP will address non-property specific elements of the remedial design, including general excavation methodologies, identification of suitable backfill material, surveying, traffic plans, notifications and site preparation, proposed odor, dust, and noise control measures, etc. It will additionally provide discussion of staging and logistical issues related to the excavation portion of the work.

For the SVE/bioventing system, the RDIP will include the proposed well field layout, SVE system(s) location(s) and specifications, and conveyance piping layout. This will include treatment system design criteria. The RDIP will detail the periodic monitoring, maintenance requirements, and reporting for SVE system operation. SVE/bioventing system recordkeeping requirements, including operating parameters; monitoring of the influent, effluent, and extraction wells using field instrumentation; and the performance of routine system preventive maintenance and troubleshooting will also be addressed in the RDIP.

The general sub-slab mitigation design will be included in the RDIP. Specific elements of the subslab mitigation system for each of the 27 homes identified will be included in the property-specific design and permitting package presented in the PSRPs (see Section 9.3).

The RDIP will also identify anticipated permitting requirements and regulatory compliance activities, including Grading Permits, Stormwater Discharge Permits, dust control requirements, SCAQMD Rule 1166 Mitigation Plan requirements for excavation, SCAQMD Permit to Construct/Operate for SVE operation, Sediment and Erosion Control permits, SCAQMD permits for asbestos removal to install the sub-slab mitigation systems, etc.

Following implementation of the remedy, operations, monitoring, and maintenance activities will continue at the Site, and these planned activities will be detailed in the RDIP. This will include operations, monitoring, and maintenance of active systems, as well as continued groundwater monitoring and LNAPL removal. Additionally, a Five-Year Review Report is anticipated to be completed following five years of full-scale SVE/bioventing system operations. The specific purpose is to review site conditions and monitoring data, evaluate remedy effectiveness and recommend changes in remedy components, if warranted.

# 9.3 **PROPERTY-SPECIFIC REMEDIATION PLANS (PSRPs)**

As part of the RDIP, an individual remediation plan will be prepared for each property. The PSRPs will define areas to be excavated, features to be removed and those that will be protected in place, and locations of underground utilities that need to be either protected in place or removed and restored. The PSRPs will also include landscape restoration plans that will be developed in consultation with the property owners/residents. Based upon a geotechnical evaluation, the PSRPs will also include planned excavation slopes and/or setbacks from existing structures or other features, such as around building foundations and block walls/fences, in accordance with City and County requirements. For properties that would require remedial excavation based on soil data from  $\leq 5$  feet bgs but would not require remediation based on data collected from 0 to 2 feet bgs, additional soil samples may be collected, with homeowner concurrence, at 3 feet bgs to establish whether remedial



excavation is necessary. For properties that will include SVE/bioventing activities, the PSRP will identify extraction well locations and sub-grade piping layout.

For the 27 properties that have been identified for sub-slab mitigation, an individual design package will be developed for each property and included in the PSRP. It is anticipated that, for properties where excavation will also be conducted, the sub-slab mitigation system will be installed concurrent with or soon after completion of excavation activities on that property.

Shell personnel will meet with homeowners/residents and their legal representatives as appropriate, during the PSRP preparation process to obtain necessary information for relocation during remedial implementation and to discuss hardscape and landscape restoration. During this meeting, existing landscape irrigation systems will be documented so that they can be restored as part of landscape restoration. In some cases, Shell may provide alternative landscape restoration from existing conditions if desired by the homeowner. If during this meeting the homeowners express a desire that existing hardscape not be removed from their property, an option will be discussed of leaving hardscape in place with the homeowners agreeing to enter into a Land Use Covenant (deed restriction) that would be recorded with the County Recorder's Office advising of the potential presence of impacted soil beneath hardscape areas.

### 9.3.1 Permitting

The remedial design implementation work will require a number of permits from different agencies before the work can proceed. Subject to RWQCB approval of the RAP, Shell will begin securing necessary permits as part of the RDIP process and as PSRPs are completed. Permits will be required from the City of Carson, Los Angeles County, SCAQMD, and possibly other agencies. A discussion of major permitting activities is included below.

#### 9.3.1.1 City Of Carson Permits

Because the volume of soils to be excavated at individual properties is expected to be greater than 50 cubic yards (cy), Grading Permits will be required for each property where excavation is conducted. Grading Permits will be obtained from the City of Carson Department of Building and Safety (DBS). The City of Carson follows the LACDPW Grading Guidelines and is a contract city, meaning that the LACDPW provides plan check and approval services for the City. Based on these guidelines, a geotechnical soils engineering report and grading plans will be prepared for each affected parcel after access has been obtained. To the extent feasible, existing Site soil boring data will be used to prepare geotechnical reports that are required as part of the Grading Permit submittal.

Early in the RDIP phase following submittal of the RAP, URS will meet with the City of Carson Building Official to discuss grading plan and permit requirements. Alternate approaches to grading permitting will be discussed, such as the potential to issue blanket or blocks of Grading Permits for multiple properties that would be excavated in a phase or even the entirety of the work. The goal will be to streamline the plan check and permitting process to the extent possible to expedite the remediation and return of residents to their homes. Grading plans will be prepared in accordance with applicable provisions of the LA County Grading Code (Los Angeles County Code of Ordinances, Title 26 – Building Code, Appendix J – Grading, as amended by the City of Carson Chapter 1 – Building Code), as modified by the City of Carson.

The City of Carson issues Grading Permits following LACDPW grading plan review and approval. Experience gained during excavation pilot test grading plan preparation, review, and approval will be of benefit; however, the length of time required for LACDPW review is not within Shell's ability to control. The ability to expedite permit review and approval will be discussed with the City and other agencies as appropriate.

Excavation and Encroachment Permits will be required for equipment staging and operations, lane closures in public streets, and for encroachment onto sidewalks and City property/easements. The City Engineering Department will require a Traffic Management Plan as part of the Encroachment Permit Application. Excavation of trenches for installation of SVE system piping will also require an Encroachment and Excavation Permit from the City. Additionally, groundwater monitoring and LNAPL removal activities require Encroachment Permits from the City of Carson. A Trash Bin/Containers Permit will also be needed for roll-off bins if they will be placed on the street along with the Excavation and Encroachment Permit.

#### 9.3.1.2 South Coast Air Quality Management District Permits

#### Rule 1166 Contaminated Soil Mitigation Plan

Excavation of VOC- and TPH-impacted soils within the geographic area encompassed by the SCAQMD must be conducted and managed in accordance with the requirements of SCAQMD Rule 1166, Volatile Organic Compound Emissions from Decontamination Soil. Although the volume of soil to be excavated at individual properties will be less than 2,000 cubic yards, which is the maximum volume of VOC-impacted soil that can be excavated under a Rule 1166 Various Locations Permit, based upon the overall scope of the remedial excavation project at 183 homes, with a total estimated soil volume of approximately 67,000 cubic yards plus an additional approximately 8,100 cubic yards for SVE/bioventing piping installation, Shell anticipates that the SCAQMD will require a Site-specific Rule 1166 Contaminated Soil Mitigation Plan for the excavation work. The Rule 1166 Plan will set strict notification, monitoring and enforcement requirements on the work. The Rule 1166 Mitigation Plan will be obtained by the contractor selected to perform the excavation work.

Written records of monitoring data for Rule 1166 monitoring compliance will be kept on field forms in a format approved by the SCAQMD. Within 30 days of completion of excavation work for each phase of work, written records of monitoring of VOC-contaminated soil, daily inspections of any covered stockpiles of VOC-contaminated soil, and disposal of VOC-contaminated soil will be provided to the SCAQMD in accordance with the Site-specific Rule 1166 Permit.

Additionally, excavation of trenches will be done under a Rule 1166 Plan and Permit from the SCAQMD. Based on the volume of soils that will need to be excavated, a Site-specific 1166 Permit will be required. This trenching work could potentially be done under the same 1166 Permit as the excavations on residential properties.

#### SCAQMD Permit to Construct/Operate

SVE/bioventing equipment will be constructed and operated under a Site-specific SCAQMD Permit to Construct/Operate. The Permit to Construct/Operate will need to be obtained from SCAQMD before the system is constructed and installed. The system will have an effluent discharge stack of sufficient height for dispersion of treated off gases, consistent with modeling results and requirements in the SCAQMD permit to Construct/Operate.

#### SCAQMD Permits for Sub-slab Depressurization Systems

SCAQMD will require permits for the active operation of the SSD systems. After completion of the diagnostic testing, a permit application will be submitted to SCAQMD for each of the systems.

#### Asbestos Notifications/Abatement Permits

Because some of the residential building materials used in construction of the homes included asbestos-containing materials, those homes that require installation of a sub-slab mitigation system will require an asbestos survey, and based on the results of that survey, may require permitting from the SCAQMD for abatement of those asbestos containing elements prior to installation of the system.

#### 9.3.1.3 Stormwater Pollution Prevention Plan

Because implementation of Site remedial actions will occur over a period of varying weather conditions, weather will need to be considered during day-to-day activities. Remediation work is expected to continue during the rainy season, and provisions will be included to contain and collect rainwater that may accumulate in work areas and prevent contaminated runoff from exiting work areas and entering the storm drain system.

Prior to the start of excavation work, the excavation contractor will prepare a Stormwater Pollution Prevention Plan (SWPPP) that includes use of best management practices (BMPs) to manage and control stormwater. The SWPPP will be reviewed by URS on behalf of Shell and submitted to the Regional Board for review and approval before beginning work in the rainy season.

#### 9.3.1.4 Other Permits

A number of other permits will need to be obtained to support the remedial excavation aspects of the Site remedy. These permits will be defined as part of the RDIP and PSRP preparation process and obtained from the respective agency prior to the start of physical onsite work at individual properties. These are anticipated to include:

- The contractor retained to perform the excavation work shall have a valid OSHA Trenching Permit per 29 CFR 1926.650, 29 CFR 1926.651, and 29 CFR 1926.652 and Cal/OSHA Trenching Permit CCR Title 8 Section 341.
- Plumbing and Electrical Permits will be needed if plumbing or electrical service is removed and replaced.
- A Masonry Permit may be required for construction of replacement masonry block walls.
- A Landscaping Permit may be required for restoration of property landscaping.
- The SVE system(s) will be installed in an enclosed structure, which may require plumbing, electrical, building, and construction permits from the City of Carson. The SVE system structure will be constructed with sound attenuation insulation to reduce operating noise levels to decibel (dB) levels at our below the City of Carson Noise Ordinance.

### 9.3.2 Notifications

At least 72 hours prior to initiation of excavation activities, notifications will be made to appropriate public agencies, including: the Regional Board, SCAQMD, City of Carson Engineering and Planning Departments, LA County Fire Department, and attorneys representing homeowners/residents for parties engaged in litigation against Shell. Shell will also circulate a Fact Sheet and Work Notice that will be distributed to members of the community, elected officials, and other interested parties at least one week before start of the work. Underground Service Alert (USA) will be notified at least 72 hours prior to subsurface activities, to allow marking of underground utilities that may exist in the area, as required by state law.

### 9.4 HEALTH AND SAFETY

### 9.4.1 Health and Safety Plan (HSP)

Protecting the health and safety of the public and of Site workers during implementation of remedial actions is of paramount importance to Shell and its consultants and contractors. Pursuant to State of California Division of Occupational Safety and Health (Cal/OSHA) Hazardous Waste Operations Standards (Title 8, CCR Section 5192) and Code of Federal Regulations (Title 40 CFR, Section 1910.120), a project-specific Site-specific Health & Safety Plan (HSP) will be prepared for remedial activities to be conducted at the Site.

All work will be done in accordance with the HSP and Job Safety Analyses (JSAs) that will be prepared for specific work tasks and activities that will be conducted. JSAs will be prepared either by URS or by subcontractors performing specific work activities and will be reviewed and approved by URS prior to start of the work. Site field personnel conducting the work will review applicable JSAs at daily tailgate safety meetings.

### 9.4.2 Emergency Response Plan

Shell contractors will prepare an Emergency Response Plan that will update the previously-prepared *Carousel Tract Pilot Testing Emergency Response Plan*. The purpose of the Emergency Response Plan (Plan) will be to provide specific information on potential hazards that may arise from the excavation program and subsequent SVE well and piping installation work that could affect the Carousel community and to describe the risk mitigation and emergency response procedures that will be instituted. The Plan will outline roles, responsibilities, and authorities of SOPUS, URS, and its subcontractors, as well as public agencies who are or may be involved in emergency preparedness, mitigation, and response activities to address potential hazards associated with soil remediation activities at the Carousel Tract. The Plan will outline existing and potential hazards associated with soil, soil vapors, and soil excavation activities, and will describe procedures, communications, and

coordination processes for initiating emergency response to safeguard the community in the event of an emergency. The Plan will also provide information on emergency notification services, based on existing public resources. Finally, the Plan will provide a list of important public agency contacts and emergency preparedness resources.

## 9.5 TENTATIVE SCHEDULE OF ACTIONS TO IMPLEMENT THE RAP

As required by the CAO, provided below is a tentative schedule of actions that will be necessary to implement this RAP. This schedule is conditioned on a number of actions by others that will affect implementation of subsequent activities and therefore must be considered tentative. This tentative schedule does not account for delays due to inclement weather or other acts of God, lack of timely access to properties, extended periods for agency approvals of various plans, and issuance of required permits. Additionally, this assumes that no changes to the remedy set forth in this RAP will be required by the RWQCB or by CEQA review.

As described above in Section 9, following approval of the RAP, a Site-wide RDIP will be prepared. The Site-wide RDIP will provide details on the design and implementation of the planned remedy outlined in this RAP, including excavation, SVE/bioventing, and sub-slab vapor mitigation activities. It will include detailed plans for installation of the site-wide components of the SVE/bioventing system. The Site-wide RDIP will also include an overall site-wide geotechnical evaluation based on existing Site data. A licensed land surveyor will conduct a topographic survey, including comprehensive research of existing utilities, of the public areas of the entire tract. If access can be obtained, property-specific surveys needed for preparation of PSRDs will be conducted at the same time. The Site-wide RDIP is projected to be submitted approximately 12 weeks following approval of the RAP.

In addition to the Site-wide RDIP, PSRPs will be prepared for each property where excavation, SVE/bioventing, or sub-slab vapor mitigation is planned. For properties that will include excavation activities, the PSRP will include a demolition plan, excavation plan and details, fine grading plan and site restoration plan. The PSRP for each parcel will be prepared for submittal to the Regional Board, City of Carson and LA County DPW. For properties that will include SVE/bioventing activities, the PSRP will identify extraction well locations and sub-grade piping layout. For the properties that will receive sub-slab vapor mitigation, the PSRP will provide design information for the SSD system.

Preparation of these PSRPs is contingent on homeowners providing access for surveying and meeting with Shell's contractor personnel to discuss planned activities, relocation needs, current property conditions, and property restoration following excavation, SVE/bioventing well installation, and SSD installation. Preparation of the PSRPs will start upon approval of the RAP and will proceed in phases of eight properties per phase. Approximately six weeks will be needed to complete the PSRPs per phase of eight houses. Preparation of these plans will extend throughout the implementation period over approximately 80 weeks, so that PSRPs are completed and submitted for Regional Board, City, and County review and permit issuance with sufficient lead time prior to field activities at the designated residences. The length of time that LACDPW will take to review and

approve grading plans is unknown. During Pilot Test activities, these review and approval activities took several months.

Mobilization for excavation, mitigation system installation, on-property SVE/bioventing well installation, and/or SSD installation will start upon approval of PSRPs and issuance of Grading Permits, and may take approximately two weeks. It is assumed that the initial mobilization will occur approximately six months after RAP approval. As described in Section 8.1.3, as currently envisioned excavation will proceed in phases. Following excavation, on-property SVE/bioventing piping and sub-slab mitigation systems will be installed, as appropriate, before backfill and site restoration. The SVE/bioventing wells will be installed following the fine grading activities at each property. Preliminarily, it is estimated that excavation and backfill will take approximately three weeks per property and hardscape restoration and landscaping are estimated to take an additional three to four weeks. Work on the next phase of properties is planned to begin approximately at the end of week three of work on the first phase. Based on approximately seven weeks to complete a phase (assuming eight homes per phase for time-to-complete purposes), with overlapping phases as described above, the suite of residential remedial construction activities including excavation, on-property SVE/bioventing well and piping installation, backfill, sub-slab vapor mitigation, and site restoration is estimated to take approximately two years to complete.

The SVE/bioventing system will require a Permit to Operate/Construct from the SCAQMD. Shell's contractors will begin work on the permit application and required air quality modeling as part of the RDIP process, and the application will be submitted approximately four weeks after approval of RDIP. This schedule is dependent on identifying and securing a location for the SVE treatment system compound(s). Shell is currently exploring suitable locations for the SVE compound(s). It is assumed that SCAQMD will complete its review and approval of the SVE system permit application within three months with expedited processing.

SVE/bioventing well installation in the streets will begin upon completion of the first phase of residential excavations, which is projected to begin approximately eight months after RAP approval. Piping installation will begin upon obtaining Permit to Construct/Operate; Shell will seek approval from SCAQMD to begin piping installation prior to Permit issuance, but construction of the treatment system cannot begin until the Permit is issued by SCAQMD. Completion of SVE/bioventing well and piping installation will be tied to completion of excavation work plus approximately eight weeks. It is estimated that SVE/bioventing well and piping installation and treatment system installation will be completed approximately 34 months after RAP approval.

Upon completion of installation of all elements, SVE/bioventing system startup will begin and will occur over an approximately three month period. Based on preliminary estimates of the duration of remediation system operation to achieve cleanup goals, the SVE/bioventing system may operate for a period of approximately 30 years. Improved estimates of the potential operating time for the SVE/bioventing system can be made after system startup and operation and analysis of monitoring data. A Five-Year Review Report is anticipated to be completed following five years of full-scale SVE/bioventing system operations. The specific purpose is to review site conditions and monitoring data, evaluate remedy effectiveness and recommend changes in remedy components, if warranted.



# 10.0 SUMMARY

### **10.1** INTRODUCTION

This Remedial Action Plan (RAP) for the former Kast Property (Site) in Carson, California was prepared by URS Corporation (URS) and Geosyntec Consultants, Inc. (Geosyntec) on behalf of Equilon Enterprises LLC, doing business as Shell Oil Products US (Shell or SOPUS) in accordance with Cleanup and Abatement Order (CAO) No. R4-2011-0046 issued to Shell by the California Regional Water Quality Control Board – Los Angeles Region (RWQCB or Regional Board) on March 11, 2011 and the RWQCB's letter dated January 23, 2014 directing Shell to submit a RAP and Human Health Risk Assessment pursuant to California Water Code Section 13304.

The RAP, and companion Human Health Risk Assessment (HHRA, Geosyntec, 2014a) and Feasibility Study (FS, Geosyntec, 2014b) are being submitted concurrently as separate documents. This RAP summarizes the remedial alternative evaluation process and identifies and describes the selected full-scale remedial actions for impacted shallow soil and other media at the Site in accordance with requirements of the CAO and directives in the Regional Board's January 23, 2014 letter. The RAP and the selected remedy comply with applicable provisions of the California Health and Safety Code, California Water Code, and State Water Resources Control Board (SWRCB) Resolution 92-49.

URS and Geosyntec have conducted extensive multimedia investigations at the Site from 2008 to present. All of Shell's work at the Site has been conducted with RWQCB approval and oversight following work plans reviewed and approved by the RWQCB. Key assessment work completed at the Site includes:

- Assessment in public rights-of-way, the adjacent railroad right-of-way, and other non-residential areas including soil, soil vapor, groundwater, and outdoor air media;
- Assessment at 95% of the individual residential properties, including soil, sub-slab soil vapor, and indoor air testing;
- Assessment of environmental impact and feasibility of removal of residual concrete reservoir slabs;
- Pilot testing to evaluate different potential remedies for Site impacts, and
- Development of Site-Specific Cleanup Goals.

The Site has been impacted with petroleum hydrocarbons associated with crude oil storage during the period prior to residential redevelopment. The distribution of hydrocarbons was significantly affected by reservoir demolition and Site grading activities by the developer; however, deeper soil contamination and light non-aqueous phase liquids (LNAPL) are present and are believed to have resulted from discharges from the reservoirs during the period of oil storage operations.

# 10.2 CONSTITUENTS OF CONCERN (COCS) AND HUMAN HEALTH RISK ASSESSMENT

Crude oil is a complex mixture of petroleum hydrocarbon compounds. Total petroleum hydrocarbon (TPH) impacts occur in shallow and deep soils together with volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), including polycyclic aromatic hydrocarbons (PAHs); VOCs, including benzene, and methane resulting from degradation of petroleum hydrocarbons are present in soil vapor (also referred to as soil gas); dissolved-phase VOC and TPH impacts are present in groundwater, and LNAPL consisting of crude oil is locally present in groundwater. In addition to hydrocarbon-related impacts, the Site is also locally impacted by chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE), and from a class of chlorinated compounds associated with potable water treatment referred to as trihalomethanes (THMs). Because THMs are related to drinking water, they are not considered COCs at the Site.

Some of these compounds, referred to as constituents of concern (COCs), are present at concentrations that may pose a human health hazard or cancer risk greater than the *de minimus* risk level of one-in-a- million or Hazard Index greater than 1. Although it does not present a human health risk based on exposure, methane can potentially pose an explosion hazard where present in an enclosed space at a concentration between 5 and 15% in air and there is a source of ignition. In addition, concentrations for some COCs may exceed criteria for the potential leaching to groundwater pathway.

The HHRA (Geosyntec, 2014a), summarized in Section 6 of this RAP, presents the methodology that was used to derive Site-Specific Cleanup Goals (SSCGs) based on potential exposure pathways to onsite residents and construction and utility maintenance workers who may be present at the Site. Potential residential exposures evaluated for soils include direct contact with soils (incidental ingestion and dermal contact) and outdoor air inhalation of volatile chemicals and fugitive dust. Indoor air inhalation of vapors from potential sub-slab soil vapor intrusion was also evaluated for onsite residents. The analysis of the vapor intrusion pathway presented in the Revised SSCG Report indicates that vapor intrusion is not a significant pathway at this Site and that observed concentrations in indoor air are likely due to background sources. However, as directed by the Regional Board, the vapor intrusion pathway was quantitatively evaluated in the HHRA. Potential worker exposures evaluated for soils include direct contact with soils and outdoor air inhalation of volatile chemicals and/or fugitive dust. In addition to these potential Site receptors and potential exposure pathways, the HHRA addresses the potential for COCs to leach from soil to groundwater. While the groundwater beneath the Site is not currently used for drinking water, COCs in Site soils may migrate to groundwater through leaching and are addressed consistent with the Basin Plan, SWRCB Resolution No. 68-16 and Resolution No. 92-49.

Based upon the potential receptors and pathways, a set of final SSCGs was developed in the HHRA. SSCGs were developed for COCs in soil, soil vapor, and groundwater and are provided in Tables 5-1, 5-2 and 5-3 of this RAP.



## **10.3 REMEDIAL ACTION OBJECTIVES**

Medium-specific (i.e. soil, soil vapor, and groundwater) Remedial Action Objectives (RAOs) have been developed based on Site characterization investigations completed at the Site, and include sitespecific considerations. These RAOs include:

- Prevent human exposures to concentrations of COCs in soil, soil vapor, and indoor air such that total (i.e., cumulative) lifetime incremental cancer risks are within the NCP risk range of 1×10<sup>-6</sup> to 1×10<sup>-4</sup> and noncancer hazard indices are less than 1 or concentrations are below background, whichever is higher. Potential human exposures include onsite residents and construction and utility maintenance workers. For onsite residents, the lower end of the NCP risk range (i.e., 1×10<sup>-6</sup>) and a noncancer hazard index less than 1 have been used.
- Prevent fire/explosion risks in indoor air and/or enclosed spaces (e.g., utility vaults) due to the accumulation of methane generated from the anaerobic biodegradation of petroleum hydrocarbons in soils. Eliminate methane in the subsurface to the extent technologically and economically feasible.
- Remove or treat LNAPL to the extent technologically and economically feasible, and where a significant reduction in current and future risk to groundwater will result.
- Reduce COCs in groundwater to the extent technologically and economically feasible to achieve, at a minimum, the water quality objectives in the Basin Plan to protect the designated beneficial uses, including municipal supply.

A further consideration is to maintain residential land-use of the Site and avoid displacing residents from their homes or physically divide the established Carousel community.

# **10.4 FEASIBILITY STUDY**

The FS Report, which is a companion document to the RAP and is summarized in Section 7 above, identified and screened a range of remedial technologies potentially applicable to site cleanup.

Technologies that remained for consideration following technology screening included:

- Potential sub-slab vapor intrusion mitigation;
- Capping portions of the Site;
- Institutional controls, which restrict access to impacted media;
- Excavation;
- Soil vapor extraction (SVE);
- Bioventing;
- LNAPL/source removal;
- Monitored natural attenuation (MNA); and

• Removal of residual concrete reservoir slabs.

These technologies were then assembled into remedial alternatives that were subjected to initial screening and detailed evaluation for cleanup of the Site. Remedial alternatives that remained after screening, and the specific technologies included in those alternatives, are summarized below:

- Alternative 1 No Action.
- Alternative 4 Excavation of Site soils from both landscaped areas and beneath residential hardscape; existing institutional controls; sub-slab mitigation; removal of LNAPL; groundwater MNA and, potentially, supplemental groundwater remediation (e.g., in areas exceeding 100x MCLs); and SVE/bioventing. Three separate excavation depth alternatives in this category were evaluated in the FS Report, excavation to 3, 5, and 10 feet bgs.
- Alternative 5 Excavation of Site soils from landscaped areas only; existing and new institutional controls; sub-slab mitigation; removal of LNAPL; groundwater MNA and, potentially, supplemental groundwater remediation; and SVE/bioventing. The same three excavation depth alternatives were evaluated for this category.
- Alternative 7 Capping the landscaped areas of the Site; existing and new institutional controls; sub-slab mitigation; groundwater MNA and, potentially, supplemental groundwater remediation; removal of LNAPL; and SVE/bioventing.

For the detailed evaluation, the FS used as guidance the nine criteria that are identified in the Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (USEPA, 1988). In addition, the FS used three criteria that address key Site-specific issues of importance to alternative evaluation: Consistency with Resolution 92-49, Social Considerations, and Sustainability.

### **10.5 RECOMMENDED REMEDIAL ACTION**

After detailed evaluation, with full consideration of RAOs for the Site, results of the HHRA (Geosyntec, 2014a) and Feasibility Study (Geosyntec, 2014b), the following multi-media remedial actions were selected as the preferred remedy for the Site.

- Excavation of shallow soils at impacted residential properties where RAOs are not met. Excavation will be conducted in both landscaped and hardscaped areas of residential yards, excluding beneath City sidewalks, to a depth of 3 feet bgs. The excavation will also remove residual concrete slabs if encountered within the depth excavated.
- The possibility of exposure to soils remaining below 3 feet bgs and impacted soils beneath City streets and sidewalk is addressed through the Surface Containment and Soil Management Plan (Appendix D) to address notifications, management, and handling of residual soils that are impacted by COCs at concentrations greater than risk-based levels.
- SVE/bioventing will be used to address petroleum hydrocarbons and VOCs in residual soils, soils at greater depths and soil vapor, and methane in soil vapor, by promoting degradation of residual hydrocarbon concentrations where RAOs are not met following shallow soil

excavation. SVE wells will be installed in City streets and on residential properties, as appropriate.

- Bioventing will be conducted via cyclical operation of SVE wells to increase oxygen levels in subsurface soils and promote microbial activity and degradation of longer-chain petroleum hydrocarbons.
- Sub-slab mitigation will be implemented at properties where RAOs are not met based on SSCGs calculated using a generic attenuation factor of 0.002.
- LNAPL will be recovered where LNAPL has accumulated in monitoring wells (MW-3 and MW-12 and in additional wells if it accumulates at a thickness of greater than 0.5 foot) to the extent technologically and economically feasible, and where a significant reduction in current and future risk to groundwater will result.
- COCs in groundwater will be reduced to the extent technologically and economically feasible via source reduction and MNA. As directed in the CAO, groundwater monitoring will continue as part of remedial actions. If, based on a 5-year review following initiation of SVE system operation, groundwater plumes are not stable or declining and Site COCs in groundwater do not show a reduction in concentration, an evaluation of additional groundwater treatment technologies will be conducted and implemented as needed.

For shallow soils (less than 3 feet bgs) and sub-slab soil vapor, potential exposures will be addressed in the short term. Deeper soil, soil vapor, and groundwater risk reduction will be implemented over a longer period of time through SVE/bioventing and MNA. These remedial actions are intended to achieve the RAOs and the revised SSCGs for soil, soil vapor, and groundwater as directed in the Regional Board's Review of the Revised SSCG Report and Directive dated January 23, 2014 and the proposed modifications of some SSCGs addressed in the HHRA (Geosyntec, 2014a).

Although there is no indication that there are any long-term health risks, water quality, or nuisance concerns caused by COCs associated with residual concrete slabs, residual concrete slabs will be removed where encountered during excavation. SVE/bioventing would address any concerns at the Site related to impacted media that may be associated with the residual reservoir slabs left in place.

Following approval of the RAP, a Site-wide Remedial Design and Implementation Plan (RDIP) will be prepared. The Site-wide RDIP will provide details on the design and implementation of the planned remedy, including excavation, SVE/bioventing, and sub-slab vapor mitigation activities. It will include detailed plans for installation of the site-wide components of the SVE/bioventing system. In addition, Property-Specific Remediation Plans (PSRPs) will be prepared for each property where remedial work will occur that will present detailed plans for remedial activities on a property-by-property basis, including site restoration.

The tentative schedule of actions to implement the RAP is discussed in Section 9.5. Certain items, including agency review of the RDIP and PSRP, review of grading plans and permit applications by the City of Carson, LA County DPW and SCAQMD, and obtaining access at the individual properties, may take longer than estimated and are outside the control of Shell and its consultants.

Following agency approval of the RDIP and PSRPs, issuance of Grading Permits and the Permit to Operate/Construct for the SVE/bioventing treatment system, and granting of access, the construction phase of Site remediation, including installation of the SVE/bioventing system is expected to take approximately 2.5 years. Following the active construction phase, O&M of the SVE/bioventing system and other monitoring activities, as required, will continue for an estimated 30 years.

# **11.0 REFERENCES**

- California Department of Conservation Division of Oil, Gas and Geothermal Resources (CDOGGR), 1998. CDOGGR Map No. 128.
- California Department of Water Resources (DWR), 1961. Planned Utilization of the Groundwater Basins on the Coastal Plain of Los Angeles County, Bulletin # 104. June 1961.
- California Environmental Protection Agency (Cal-EPA) 2009. Revised California Human Health Screening Levels for Lead. September 2009.
- California Water Service Company, 2013. 2012 Water Quality Report, Rancho Dominguez District. https://www.calwater.com/docs/ccr/2012/rd-dom-2012.pdf
- Department of Toxic Substances Control (DTSC), 1995. Remedial Action Plan (RAP) Policy, Official Policy / Procedure Document No. EO-95-007-PP. November 16, 1995.
- DTSC, 2005. Advisory on Methane Assessment and Common Remedies at School Sites, School Property Evaluation and Cleanup Division, June 16, 2005.
- DTSC, 2008. Letter to RWQCB re: Inquiry on Regulatory Status and Investigation of Former Shell Oil Tank Farm Adjacent to Former Turco Products, Inc., 24700 South Main Street, Carson, California (EPA ID No. CAD096004742), March 11, 2008.
- DTSC, 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). October 2011.
- Ecology and Environment, 2013. Site Assessment Report, Monterey Pines Development Site, Carson, California. Report prepared for U.S. Environmental Protection Agency, Region 9. August 2013.
- Equilon Enterprises, LLC, 2001. Revised Soil and Groundwater Quality Management Program -Equilon Los Angeles Refining Company, Former Texaco Refinery, 2101 Pacific Coast Highway, Wilmington, CA (Cleanup and Abatement Order No. 88-070, SLIC No.230). June 29, 2001.
- Geosyntec Consultants (Geosyntec), 2009a. Indoor Air Sampling and Analysis Work Plan, Former Kast Property, Carson, California. October 21, 2009.
- Geosyntec, 2009b. Human Health Screening Evaluation Work Plan, Former Kast Property, Carson, California. October 30, 2009.
- Geosyntec, 2010a. Data Evaluation and Decision Matrix, Former Kast Property, Carson California, Site Cleanup No. 1230, Site ID. 2040330. April 6, 2010.
- Geosyntec, 2010b. Site Conceptual Model, Former Kast Property, Carson California, Site Cleanup No. 1230, Site ID. 2040330. September 2010.
- Geosyntec, 2010c. Letter re: Addendum to the HHSE Work Plan, Former Kast Property, Carson California, Site Cleanup No. 1230, Site ID. 2040330. December 17, 2010.

- Geosyntec, 2011. Letter re: Risk-Based Screening Levels for Total Petroleum Hydrocarbons, Former Kast Property, Carson California, Site Cleanup No. 1230, Site ID. 2040330. August 15, 2011.
- Geosyntec, 2012a. Technical Memorandum re: Revised In-Situ Chemical Oxidation Pilot Test Bench-scale Evaluation, Former Kast Property, Carson, California. July 16, 2012.
- Geosyntec, 2012b. Bioventing Pilot Test Summary Report. Former Kast Property, Carson, California. December 6, 2012.
- Geosyntec, 2013a. Phase II ISCO Bench-Scale Test Workplan, Former Kast Property, Carson, California. March 15, 2013.
- Geosyntec, 2013b. Phase II ISCO Bench-Scale Test Report, Former Kast Property, Carson, California. August 30, 2013.
- Geosyntec, 2013c. Revised Site Specific Cleanup Goals Report, Former Kast Property, Carson California. October 21, 2013.
- Geosyntec, 2013d. Revised Community Outdoor Air Sampling Report, Former Kast Property, Carson, California, Cleanup No. 1230, Site ID. 2040330. November 27, 2013.
- Geosyntec, 2014a. Human Health Risk Assessment Report, Former Kast Property, Carson, California, Site Cleanup No. 1230, Site ID. 2040330. March 10, 2014.
- Geosyntec, 2014b. Feasibility Study, Former Kast Property, Carson, California. March 10, 2014.
- Leymaster, 2013. Semi Annual Monitoring Report-Second Half 2012, Former Turco Facility, 24700 Main Street, Carson, California, January 31, 2013.
- Los Angeles County Road Department Permit Division (LAC), Undated. Pipeline maps W-301 and W-312.
- PIC Environmental Services, 1995a. Tank Removal Report. November 15.
- PIC Environmental Services, 1995b. Excavation Geologic Report for Blue Jay Project. December 7.
- Regional Water Quality Control Board, Los Angeles Region (RWQCB), 1996a. Interim Site Assessment and Cleanup Guidebook, May 1996.
- RWQCB, 1996b. No Further Action Letter to PIC Environmental Services, September 30,1996b.
- RWQCB, 2009. Letter to Shell re: Approval of Work Plan for Phase II Site Characterization Pursuant to California Water Code Section 13267 Order for Former Shell Oil Company Kast Property Tank Farm Located at South East of the Intersection of Marbella Avenue and East 244<sup>th</sup> Street, Carson, California (Site Cleanup No. 1230, Site ID 2040330. September 24, 2009.
- RWQCB, 2014a. Letter to Sanitation District No. 8 of Los Angeles County re: Regional Board Cross Sections, Former Fletcher Oil Company (FORCO) Site, 24721 S. Main Street, Carson, California (SCP No. 0451A, Site ID No. 2040074). January 14, 2014.

- RWQCB, 2014b. Review of Revised Site-Specific Cleanup Goal Report and Directive to Submit Remedial Acton Plan, Human Health Risk Analyses, and Environmental Analyses for Cleanup of the Carousel Tract Pursuant to California Water Code Section 13304. January 23.
- RWQCB, 2014c. Clarification and Revision of Regional Board's January 13, 2014 Review of Assessment of Environmental Impact and Feasibility of Removal of Residual Concrete Reservoir Slabs Pursuant to Water Code Section 13304, Former Kast Property Tank Farm Located Southeast of the Intersection of Marbella Avenue and East 244<sup>th</sup> Street, Carson, California (SCP No. 1230, Site ID No. 2040330, CAO No. R4-2011-0046). February 10.
- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB), 2013. User's Guide: Derivation and Application of Environmental Screening Levels, Interim Final. December 23, 2013.
- Shell Oil Products US (SOPUS), 2010. Completed RWQCB Chemical Storage and Use Questionnaire. August 31, 2010.

SOPUS, 2013. Draft Public Participation Plan (PPP). September 17, 2013.

- State Water Resources Control Board (SWRCB), 1992. Policies and Procedures for Investigation and Cleanup and Abatement of Discharges under Water Code Section 13304, Resolution 92-49. Amended October 2, 1996.
- United States Environmental Protection Agency (USEPA), 1991. The Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions.
- URS Corporation (URS), 2008a. Phase I Environmental Site Assessment Report, Former Kast Property, Carson, California, July 2008
- URS, 2008b. Addendum to Site Characterization Work Plan, Former Kast Property, Carson, California.
- URS, 2009a. Interim Site Characterization Report, Former Kast Property, Carson, California, August 20, 2009.
- URS, 2009b. Work Plan for Phase II Site Characterization, Former Kast Property, Carson California, September 21, 2009.
- URS, 2009c. Final Phase I Site Characterization Report, Former Kast Property, Carson, California, October 15, 2009.
- URS, 2010a. Plume Delineation Report, Former Kast Property, Carson, California . September 29, 2010.
- URS, 2010b. IRAP Further Site Characterization Report, Former Kast Property, Carson, California, February 2010.
- URS, 2010c. Addendum Work Plan for Phase II Site Characterization, Additional Sampling of Residential Properties, Former Kast Property, Carson, California. April 19, 2010.

- URS, 2010d. Addendum to the IRAP, Further Site Characterization Report and SVE Pilot Test Work Plan, Former Kast Property, Carson California, April 30, 2010.
- URS, 2010e. Soil Background Evaluation Report. Former Kast Property, Carson, California, September 14, 2010.
- URS, 2010f. Soil Vapor Extraction Pilot Test Report, Former Kast Property, Carson, California, Site Cleanup No. 1230, Site ID 2040330. September 30, 2010.
- URS, 2011a. Technical Memorandum Summary of Findings from Gage Pilot Holes and Recommendations for Gage Monitoring Wells, Former Kast Property, Carson, California, May 11, 2011.
- URS, 2011b. Supplemental Site Delineation Report, Former Kast Property, Carson, California, May 27, 2011.
- URS, 2011c. Gage Aquifer Investigation Report, Former Kast Property, Carson, California, October 10, 2011.
- URS, 2012a. Plume Delineation Work Plan, Former Kast Property, Carson, California, January 12, 2010.
- URS, 2012b. Addendum No. 1 to Supplemental Site Delineation Report, Sampling of Existing Soil Vapor Probes, Installation of Step-out Soil Vapor Probes, and Step-Out Soil Borings, Carousel and Monterey Pines Neighborhoods and Island Avenue, Former Kast Property, Carson, California March 1, 2012
- URS, 2013a. Report, Excavation Pilot Test, 24612 Neptune Avenue, Former Kast Property, Carson, California. January 4, 2013.
- URS, 2013b. Report, Excavation Pilot Test, 24533 Ravenna Avenue, Former Kast Property, Carson, California. February 4, 2013.
- URS, 2013c. Delineation of Tar-Like Material in the Vicinity of AT&T Excavations Near the Intersection of 244<sup>th</sup> Street and Marbella Avenue, Former Kast Property, Carson, California, February 27, 2013.
- URS, 2013d. Pilot Test Summary Report Part 2, Former Kast Property, Carson, California, Cleanup No. 1230, Site ID. 2040330, August 30, 2013.
- URS, 2013e. Assessment of Environmental Impact and Feasibility of Removal of Residual Concrete Reservoir Slabs, Former Kast Property, Carson, California. June 28, 2013.
- URS, 2014. Fourth Quarter 2013 Groundwater Monitoring Report, October through December 2013, Former Kast Property, Carson, California, January 15, 2014.
- URS and Geosyntec, 2010a. Community Outdoor Air Sampling and Analysis Report, Former Kast Property, Carson, California, Cleanup No. 1230, Site ID. 2040330. November 5, 2010

- URS and Geosyntec, 2010b. Soil Background Evaluation Report, Former Kast Property, Carson, California, September 15, 2010.
- URS and Geosyntec, 2011. Pilot Test Work Plan, Remedial Excavation and In-Situ Treatment Pilot Testing, Former Kast Property, Carson, California, May 10, 2011.
- URS and Geosyntec, 2013. Final Pilot Test Summary Report Part 1, Former Kast Property, Carson, California, Cleanup No. 1230, Site ID. 2040330, May 30, 2013.
- Water Replenishment District (WRD), 2008. Groundwater Quality in the Central and West Coast Basins.

# TABLES



#### Table 5-1 Site-Specific Cleanup Goals for Soil Former Kast Property

|            |                               |                                      |                   | Soil Site-Specific Cleanup Goals (mg/kg) |       |                      |       |                                                |       |
|------------|-------------------------------|--------------------------------------|-------------------|------------------------------------------|-------|----------------------|-------|------------------------------------------------|-------|
| CAS        | Constituents<br>of<br>Concern | SSCG <sub>soil-Gw</sub> 1<br>(mg/kg) | (BTV)²<br>(mg/kg) | Onsite I                                 |       | Resident             |       | Construction and Utility<br>Maintenance Worker |       |
| Number     |                               |                                      |                   | EF = 350 d/y                             |       | EF = 4 d/y           |       |                                                |       |
|            |                               |                                      |                   | SSCG<br>(mg/kg)                          | Basis | SSCG<br>(mg/kg)      | Basis | SSCG<br>(mg/kg)                                | Basis |
|            | Inorganics                    |                                      |                   |                                          |       |                      |       |                                                |       |
| 7440-36-0  | Antimony                      | 2.7E-01                              | 7.4E-01           | 3.1E+01                                  | nc    | 2.7E+03              | nc    | 3.1E+03                                        | nC    |
| 7440-38-2  | Arsenic                       | 2.9E-01                              | 1.2E+01           | 6.1E-02                                  | c     | 5.4E+00              | с     | 1.5E+01                                        | с     |
| 7440-43-9  | Cadmium                       |                                      | 3.8E+00           | 7.0E+01                                  | nc    | 6.2E+03              | nc    | 2.4E+02                                        | С     |
| 18540-29-9 | Chromium VI                   |                                      |                   | 1.3E+00                                  | с     | 1.1E+02              | С     | 6.7E+00                                        | с     |
| 7440-48-4  | Cobalt                        |                                      | 1.1E+01           | 2.3E+01                                  | nc    | 2.1E+03              | nc    | 1.1E+02                                        | с     |
| 7440-50-8  | Copper                        |                                      | 5.9E+01           | 3.1E+03                                  | nc    | 2.7E+05              | nc*   | 3.1E+05                                        | nc*   |
| 7439-92-1  | Lead                          |                                      | 6.1E+01           | 8.0E+01 <sup>3</sup>                     |       | 8.2E+02 <sup>4</sup> |       | 8.2E+02 <sup>5</sup>                           |       |
| 7440-28-0  | Thallium                      | 1.4E-01                              | 2.3E-01           | 7.8E-01                                  | nc    | 6.8E+01              | nc    | 7.7E+01                                        | nc    |
| 7440-62-2  | Vanadium                      |                                      | 4.6E+01           | 3.9E+02                                  | nc    | 3.4E+04              | nc    | 3.3E+03                                        | nc    |
| 7440-66-6  | Zinc                          |                                      | 2.9E+02           | 2.3E+04                                  | nc    | 2.1E+06              | nc*   | 2.3E+06                                        | nc*   |
|            | PAHs                          |                                      |                   |                                          |       |                      |       |                                                |       |
| 56-55-3    | Benz[a]anthracene             |                                      |                   | 1.6E+00                                  | с     | 1.4E+02              | с     | 2.6E+02                                        | с     |
| 50-32-8    | Benzo[a]pyrene                |                                      | 9.0E-01           | 1.6E-01                                  | с     | 1.4E+01              | с     | 2.6E+01                                        | с     |
| 205-99-2   | Benzo[b]fluoranthene          |                                      |                   | 1.6E+00                                  | c     | 1.4E+02              | C     | 2.6E+02                                        | с     |
| 207-08-9   | Benzo[k]fluoranthene          |                                      |                   | 1.6E+00                                  | с     | 1.4E+02              | с     | 2.6E+02                                        | с     |
| 218-01-9   | Chrysene                      |                                      |                   | 1.6E+01                                  | c     | 1.4E+03              | с     | 2.6E+03                                        | с     |
| 53-70-3    | Dibenz[a,h]anthracene         |                                      |                   | 1.1E-01                                  | c     | 9.7E+00              | с     | 1.9E+01                                        | с     |
| 193-39-5   | Indeno[1,2,3-cd]pyrene        |                                      |                   | 1.6E+00                                  | с     | 1.4E+02              | с     | 2.6E+02                                        | с     |
| 90-12-0    | Methylnaphthalene, 1-         |                                      | 1                 | 1.6E+01                                  | с     | 1.4E+03              | с     | 2.7E+03                                        | с     |
| 91-57-6    | Methylnaphthalene, 2-         |                                      |                   | 2.3E+02                                  | nC    | 2.0E+04              | nc    | 1.1E+04                                        | nc    |
| 91-20-3    | Naphthalene                   | 5.2E-01                              |                   | 4.0E+00                                  | с     | 3.5E+02              | с     | 3.9E+01                                        | с     |
| 129-00-0   | Pyrene                        |                                      |                   | 1.7E+03                                  | nc    | 1.5E+05              | nc*   | 6.7E+04                                        | nc    |
|            | TPH <sup>6</sup>              |                                      |                   |                                          |       |                      |       |                                                |       |
|            | ТРНд                          | 5.0E+02                              |                   | 7.6E+02                                  | nc    | 6.6E+04              | nc*   | 8.6E+02                                        | nc    |
|            | TPHd                          | 1.0E+03                              |                   | 1.3E+03                                  | nc    | 1.1E+05              | nc*   | 1.9E+03                                        | nc    |
|            | TPHmo                         | 1.0E+04                              |                   | 3.3E+03                                  | nc    | 2.9E+05              | nc*   | 1.6E+05                                        | nc*   |
| 1          | SVOCs                         |                                      |                   |                                          |       |                      |       |                                                |       |
| 121-14-2   | 2,4-Dinitrotoluene            |                                      |                   | 1.6E+00                                  | с     | 1.4E+02              | с     | 2.8E+02                                        | с     |
| 117-81-7   | Bis(2-Ethylhexyl) Phthalate   |                                      |                   | 3.5E+01                                  | с     | 3.0E+03              | с     | 6.4E+03                                        | с     |
|            | VOCs                          |                                      |                   |                                          |       |                      |       |                                                |       |
| 79-34-5    | 1,1,2,2-Tetrachloroethane     |                                      |                   | 4.7E-01                                  | с     | 4.1E+01              | с     | 5.7E+00                                        | с     |
| 96-18-4    | 1,2,3-Trichloropropane        | 1.2E-05                              |                   | 2.1E-02                                  | с     | 1.9E+00              | с     | 2.0E+00                                        | nc    |
| 95-63-6    | 1,2,4-Trimethylbenzene        |                                      |                   | 8.3E+01                                  | nc    | 7.2E+03              | nc    | 7.5E+01                                        | nc    |
| 107-06-2   | 1,2-Dichloroethane            | 5.0E-04                              |                   |                                          |       |                      |       |                                                |       |
| 156-59-2   | cis-1,2-Dichloroethene        | 7.3E-03                              |                   |                                          |       |                      |       |                                                |       |
| 78-87-5    | 1,2-Dichloropropane           |                                      |                   | 8.3E-01                                  | Ċ     | 7.2E+01              | с     | 8.5E+00                                        | c     |
| 108-67-8   | 1,3,5-Trimethylbenzene        |                                      |                   | 8.5E+01                                  | nc    | 7.4E+03              | nc    | 7.7E+01                                        | nc    |

#### Table 5-1 Site-Specific Cleanup Goals for Soil Former Kast Property

| CAS<br>Number | Constituents<br>of<br>Concern | SSCG <sub>soil-GW</sub> <sup>1</sup><br>(mg/kg) | (BTV) <sup>2</sup><br>(mg/kg) | Soil Site-Specific Cleanup Goals (mg/kg) |          |                                                |       |                 |       |  |
|---------------|-------------------------------|-------------------------------------------------|-------------------------------|------------------------------------------|----------|------------------------------------------------|-------|-----------------|-------|--|
|               |                               |                                                 |                               |                                          | Onsite F | Construction and Utility<br>Maintenance Worker |       |                 |       |  |
|               |                               |                                                 |                               | EF = 350 d/y                             |          |                                                |       | EF = 4 d/y      |       |  |
|               |                               |                                                 |                               | SSCG<br>(mg/kg)                          | Basis    | SSCG<br>(mg/kg)                                | Basis | SSCG<br>(mg/kg) | Basis |  |
| 106-46-7      | 1,4-Dichlorobenzene           | 3.8E-02                                         |                               | 2.8E+00                                  | с        | 2.4E+02                                        | c     | 2.8E+01         | с     |  |
| 71-43-2       | Benzene                       | 1.5E-02                                         |                               | 2.2E-01                                  | С        | 1.9E+01                                        | c     | 2.2E+00         | С     |  |
| 75-27-4       | Bromodichloromethane          |                                                 |                               | 4.9E-01                                  | с        | 4.2E+01                                        | с     | 5.3E+00         | с     |  |
| 74-83-9       | Bromomethane                  |                                                 |                               | 8.8E+00                                  | nc       | 7.7E+02                                        | nc    | 7.8E+00         | nc    |  |
| 100-41-4      | Ethylbenzene                  |                                                 | -                             | 4.8E+00                                  | с        | 4.2E+02                                        | c     | 5.1E+01         | с     |  |
| 75-09-2       | Methylene chloride            | -                                               | -                             | 5.3E+00                                  | С        | 4.7E+02                                        | с     | 5.9E+01         | с     |  |
| 75-65-0       | tert-Butyl Alcohol            | 1.2E-02                                         |                               |                                          |          |                                                |       |                 |       |  |
| 127-18-4      | Tetrachioroethene             | 6.6E-02                                         |                               | 5.5E-01                                  | с        | 4.9E+01                                        | c     | 1.0E+01         | С     |  |
| 108-88-3      | Toluene                       |                                                 |                               | 4.8E+03                                  | nc       | 4.2E+05                                        | nc*   | 1.6E+04         | nc    |  |
| 79-01-6       | Trichloroethene               | 1.3E-02                                         | -                             | 1.2E+00                                  | с        | 1.0E+02                                        | с     | 5.5E+00         | nc    |  |
| 75-01-4       | Vinyl chloride                | 1.5E-03                                         |                               | 3.2E-02                                  | c        | 2.8E+00                                        | с     | 3.1E-01         | с     |  |
| 1330-20-7     | Xylene, total                 | -                                               |                               | 5.6E+02                                  | nc       | 4.9E+04                                        | nc    | 4.7E+02         | nc    |  |

Notes:

" -- " not applicable or not available

EF = exposure frequency; d/y = days per year

TPHg = Total Petroleum Hydrocarbons- gasoline range

TPHd = Total Petroleum Hydrocarbons- diesel range

TPHmo = Total Petroleum Hydrocarbons- motor oil range

nc = SSCG based on noncancer effects; c = SSCG based on cancer effects

\* Values are above Csat, 1E+05 or Cres

<sup>1</sup> A SSCG<sub>soll-GW</sub> value was only listed for those COCs identified for potential soil leaching to groundwater. These SSCG<sub>soll-GW</sub> were modified from the January 23, 2014 letter from the Regional Board on the Revised SSCG Report (RWQCB, 2014b) to be consistent with the Regional Board's 1996 Interim Site Assessment & Cleanup Guidebook (RWQCB, 1996a).

<sup>2</sup> To evaluate potential human health exposures, the higher value between the health-based SSCG and Background Threshold Value (BTV) will be selected as the cleanup goal. To evaluate potential leaching to groundwater, the higher between SSCG<sub>soil-GW</sub> and BTV will be selected as the cleanup goal.

<sup>3</sup> Cal-EPA 2009. Revised California Human Health Screening Levels for Lead. September 2009.

<sup>4</sup> Based on USEPA adult lead model, similar parameters used for the residential CHHSL, and a lower exposure frequency.

<sup>5</sup> Based on USEPA adult lead model, similar parameters used for the industrial worker CHHSL, and a lower exposure frequency.

<sup>6</sup> The SSCG<sub>sol-GW</sub> for TPH is from the Regional Board's 1996 Interim Site Assessment & Cleanup Guidebook (RWQCB, 1996a).

### Table 5-2 Site-Specific Cleanup Goals for Soil Vapor Former Kast Property

| i i           | Constituents<br>of<br>Concern    |                                 | Sub-Slab Soil   | Vapor <sup>2</sup> | Soil Vapor                                     |       |
|---------------|----------------------------------|---------------------------------|-----------------|--------------------|------------------------------------------------|-------|
| CAS<br>Number |                                  | Odor-Based<br>SSCG <sup>1</sup> | Onsite Res      | ident              | Construction and<br>Utility Maintenance Worker |       |
|               |                                  | (µg/m³)                         | SSCG<br>(µg/m³) | Basis              | SSCG<br>(µg/m³)                                | Basis |
| 79-34-5       | 1,1,2,2-Tetrachloroethane        | 5.2E+06                         | 2.1E+01         | c                  | 1.2E+05                                        | c     |
| 79-00-5       | 1,1,2-Trichloroethane            |                                 | 7.5E+01         | с                  | 1.0E+05                                        | nc    |
| 75-34-3       | 1,1-Dichloroethane               | 6.3E+07                         | 7.6E+02         | с                  | 2.5E+07                                        | с     |
| 120-82-1      | 1,2,4-Trichlorobenzene           | 1.1E+07                         | 1.0E+03         | no                 | 3.9E+05                                        | nc    |
| 95-63-6       | 1,2,4-Trimethylbenzene           |                                 | 3.7E+03         | nc                 | 2.3E+06                                        | nc    |
| 107-06-2      | 1,2-Dichloroethane               | 1.2E+06                         | 5.9E+01         | c                  | 8.5E+05                                        | с     |
| 78-87-5       | 1,2-Dichloropropane              | 6.0E+05                         | 1.2E+02         | с                  | 2.5E+06                                        | с     |
| 108-67-8      | 1,3,5-Trimethylbenzene           |                                 | 3.7E+03         | nc                 | 2.3E+06                                        | nc    |
| 106-99-0      | 1,3-Butadiene                    |                                 | 7.2E+00         | с                  | 3.0E+05                                        | с     |
| 106-46-7      | 1,4-Dichlorobenzene              | 5.5E+05                         | 1.1E+02         | с                  | 7.2E+05                                        | с     |
| 123-91-1      | 1,4-Dioxane                      | 3.1E+08                         | 1.6E+02         | с                  | 1.6E+05                                        | с     |
| 540-84-1      | 2,2,4-Trimethylpentane           |                                 | 5.2E+05         | nc                 | 6.5E+08                                        | nc    |
| 591-78-6      | 2-Hexanone                       |                                 | 1.6E+04         | nc                 | 7.9E+06                                        | nc    |
| 622-96-8      | 4-Ethyltoluene                   |                                 | 5.2E+04         | nc                 | 2.5E+07                                        | nc    |
| 71-43-2       | Benzene                          | 2.4E+06                         | 4.2E+01         | c                  | 1.0E+06                                        | с     |
| 75-27-4       | Bromodichloromethane             | 5.5E+09                         | 3.3E+01         | с                  | 7.8E+05                                        | с     |
| 74-83-9       | Bromomethane                     | 4.0E+07                         | 2.6E+03         | nc                 | 9.5E+06                                        | nc    |
| 75-15-0       | Carbon disulfide                 |                                 | 3.7E+05         | nc                 | 1.4E+09                                        | nc    |
| 56-23-5       | Carbon tetrachloride             | 3.2E+07                         | 2.9E+01         | с                  | 1.1E+06                                        | с     |
| 67-66-3       | Chloroform                       | 2.1E+08                         | 2.3E+02         | С                  | 4.9E+06                                        | с     |
| 110-82-7      | Cyclohexane                      |                                 | 3.1E+06         | nc                 | 1.8E+10                                        | nc    |
| 124-48-1      | Dibromochloromethane             |                                 | 4.5E+01         | с                  | 8.8E+05                                        | с     |
| 156-59-2      | Dichloroethene, cis-1,2-         | 3.4E+07                         | 3.7E+03         | nc                 | 8.3E+06                                        | nc    |
| 156-60-5      | Dichloroethene, trans-1,2-       | 3.4E+07                         | 3.1E+04         | nc                 | 9.3E+07                                        | nc    |
| 10061-02-6    | Dichloropropene, trans-1,3-      | 2.1E+06                         | 7.6E+01         | с                  | 3.9E+06                                        | с     |
| 64-17-5       | Ethanol                          |                                 | 2.1E+06         | nc                 | 1.9E+08                                        | nc    |
| 100-41-4      | Ethylbenzene                     | 1.0E+06                         | 4.9E+02         | с                  | 7.0E+06                                        | c     |
| 142-82-5      | Heptane                          |                                 | 3.7E+05         | nC                 | 2.3E+09                                        | nc    |
| 87-68-3       | Hexachloro-1,3-butadiene         | 6.0E+06                         | 5.5E+01         | с                  | 8.0E+04                                        | с     |
| 110-54-3      | Hexane                           |                                 | 3.7E+05         | nc                 | 1.7E+09                                        | nc    |
| 67-63-0       | Isopropanol                      | -                               | 3.7E+06         | nc                 | 5.7E+08                                        | nc    |
| 98-82-8       | Isopropylbenzene (cumene)        |                                 | 2.1E+05         | nc                 | 1.5E+09                                        | nc    |
| 78-93-3       | Methyl ethyl ketone (2-butanone) | 1.6E+07                         | 2.6E+06         | nc                 | 1.1E+09                                        | nc    |
| 75-09-2       | Methylene chloride               | 2.8E+08                         | 1.2E+03         | c                  | 2.8E+07                                        | С     |
| 1634-04-4     | Methyl-tert-butyl ether          | 2.7E+05                         | 4.7E+03         | с                  | 6.5E+07                                        | с     |
| 91-20-3       | Naphthalene                      | 2.2E+05                         | 3.6E+01         | с                  | 6.3E+04                                        | с     |
| 103-65-1      | Propylbenzene                    |                                 | 5.2E+05         | nc                 | 6.6E+08                                        | nc    |
| 75-65-0       | tert-Butyl Alcohol (TBA)         |                                 | 5.5E+05         | nc                 | 2.6E+08                                        | nc    |
| 127-18-4      | Tetrachloroethene                | 1.6E+07                         | 2.1E+02         | с                  | 6.6E+06                                        | с     |

#### Table 5-2 Site-Specific Cleanup Goals for Soil Vapor Former Kast Property

|               | Constituents<br>of<br>Concern |                                 | Sub-Slab Soil   | Vapor <sup>2</sup> | Soil Vapor                                     |       |
|---------------|-------------------------------|---------------------------------|-----------------|--------------------|------------------------------------------------|-------|
| CAS<br>Number |                               | Odor-Based<br>SSCG <sup>1</sup> | Onsite Resident |                    | Construction and<br>Utility Maintenance Worker |       |
|               |                               | (µg/m³)                         | SSCG<br>(µg/m³) | Basis              | SSCG<br>(µg/m³)                                | Basis |
| 109-99-9      | Tetrahydrofuran               |                                 | 1.0E+06         | nc                 | 4.9E+08                                        | nc    |
| 108-88-3      | Toluene                       | 1.5E+07                         | 2.6E+06         | nc                 | 3.7E+09                                        | nc    |
| 79-01-6       | Trichloroethene               | 6.8E+08                         | 2.2E+02         | с                  | 2.0E+06                                        | nc    |
| 75-01-4       | Vinyl chloride                | 3.9E+08                         | 1.6E+01         | с                  | 8.3E+05                                        | ¢     |
| 1330-20-7     | Xylene, total                 | 2.2E+05                         | 5.2E+04         | nc                 | 5.9E+07                                        | nc    |
|               | ТРН                           |                                 |                 |                    |                                                |       |
|               | Aliphatic: C5-C8              |                                 | 3.7E+05         | nc                 | 1.2E+09                                        | nc    |
|               | Aliphatic: C9-C18             |                                 | 1.6E+05         | nc                 | 1.2E+08                                        | nc    |
|               | Aliphatic: C19-C32            |                                 |                 |                    |                                                |       |
|               | Aromatic: C6-C8               |                                 |                 |                    |                                                |       |
|               | Aromatic: C9-C16              |                                 | 2.6E+04         | nc                 | 6.7E+06                                        | nc    |
|               | Aromatic: C17-C32             |                                 |                 |                    |                                                |       |
|               | ТРНд                          | 5.0E+04                         | 7.2E+04         | nc                 | 2.2E+07                                        | nc    |
|               | ТРН                           | 5.0E+05                         | 8.1E+04         | nc                 | 2.3E+07                                        | nc    |
|               | TPHmo                         |                                 |                 |                    |                                                |       |

Notes:

" -- " not applicable or not available

<sup>1</sup> Odor-based SSCGs for soil vapor based on SFRWCQB 2013 ESL as directed by RWQCB (RWQCB, 2014b)

<sup>2</sup> As directed by the RWQCB (RWQCB, 2014b), a vapor intrusion attenuation factor of 0.002 was used to derive sub-slab soil vapor SSCGs. nc = SSCG based on noncancer effects; c = SSCG based on cancer effects

#### Table 5-3 Site-Specific Cleanup Goals for Groundwater Former Kast Property

| CAS<br>Number     | Constituents<br>of<br>Concern | Primary<br>MCL<br>(µg/L) | Secondary<br>MCL,<br>NL or ESL<br>(µg/L) | Selected<br>Groundwater<br>SSCG <sub>GW</sub> |
|-------------------|-------------------------------|--------------------------|------------------------------------------|-----------------------------------------------|
|                   | Inorganics                    |                          |                                          |                                               |
| 7440-36-0         | Antimony                      | 6.0E+00                  |                                          | Bkgd                                          |
| 7440-38-2         | Arsenic                       | 1.0E+01                  |                                          | Bkgd                                          |
| 7440-28-0         | Thallium                      | 2.0E+00                  |                                          | Bkgd                                          |
|                   | PAHs                          |                          |                                          |                                               |
| 91-2 <b>0-3</b>   | Naphthalene                   |                          | 1.7E+01                                  | 1.7E+01                                       |
|                   | ТРН                           |                          |                                          |                                               |
|                   | ТРНд                          |                          | 4.1E+02                                  | 1.0E+02*                                      |
|                   | TPHd                          |                          | 2.0E+02                                  | 1.0E+02*                                      |
|                   | TPHmo                         |                          | 6.2E+03                                  | 1.0E+02*                                      |
|                   | VOCs                          |                          |                                          |                                               |
| 75-34-3           | 1,1-Dichloroethane            | 5.0E+00                  |                                          | 5.0E+00                                       |
| 75-35-4           | 1,1-Dichloroethene            | 6.0E+00                  | -                                        | 6.0E+00                                       |
| 96-18-4           | 1,2,3-Trichloropropane        |                          | 5.0E-03                                  | 5.0E-03                                       |
| 1 <b>07-06-</b> 2 | 1,2-Dichloroethane            | 5.0E-01                  |                                          | 5.0E-01                                       |
| 1 <b>56-59</b> -2 | cis-1,2-Dichloroethene        | 6.0E+00                  |                                          | 6.0E+00                                       |
| 71 <b>-43-</b> 2  | Benzene                       | 1.0E+00                  |                                          | 1.0E+00                                       |
| 75-65-0           | tert-Butyl Alcohol (TBA)      |                          | 1.2E+01                                  | 1.2E+01                                       |
| 127-18-4          | Tetrachloroethene             | 5.0E+00                  |                                          | 5.0E+00                                       |
| 156-60-5          | trans-1,2-Dichloroethene      | 1.0E+01                  | *                                        | 1.0E+01                                       |
| 79-01-6           | Trichloroethene               | 5.0E+00                  | e-                                       | 5.0E+00                                       |
| 75-01-4           | Vinyl Chloride                | 5.0E-01                  | 2-                                       | 5.0E-01                                       |
| 106-46-7          | 1,4-Dichlorobenzene           | 5.0E+00                  | <i>2</i> -                               | 5.0E+00                                       |

Notes:

" -- " not available

µg/L: micrograms per liter

Bkgd = background

MCL = State of Maximum Contaminant Level for drinking water

NL = Notification Level

ESL = Environmental Screening Levels, San Francisco RWQCB, Region 2

GW = groundwater; SSCG = Site-Specific Cleanup Goal

\* Secondary taste and odor threshold for TPH (A Compilation of Water Quality Goals, 16th Edition, April 2011)