

June 15, 2015

State Water Resources Control Board Office of Chief Counsel Adriana Crowl, Staff Services Analyst PO Box 100 Sacramento, CA 95812-0100

Subject: Petition for review of the Executive Order 5-01-233 Upper Sacramento, McCloud, and Lower Pit River Regional Water Management Group (USR RWMG) resolution for review of Executive Order 5-01-233

Dear Ms.Crowl:

Thank you for considering this appeal to the State Water Resources Control Board. Our appeal is focused on the review and amendment of Executive Order number 5-01-233.

- Petitioner: Trout Unlimited, Inc. c/o 1345 E. Broadway Long Beach, CA 90802 Robert Blankenship, South Coast Chapter President 562.355.2876 Bob@HREMCleanup.com
- 2) The inaction being appealed is the CVRWQCB refusal to appropriately review and amend the Waste Discharge Requirements (WDR's) contained in Executive Order 5-01-233 (hereafter, the EO). This petition holds that that EO may have been transferred inappropriately, requires no treatment of the industrial waste before it is discharged to a drinking water aquifer, and apparently violates the anti-degradation provisions of SWRCB Resolution 68-16. Further this petition holds that State water code section 13267 authorizes the CVRWQCB to investigate the evidence of DEHP impact in groundwater beneath the site and no action has been taken in this regard to date.
- 3) The date the CVRWQCB was requested to act by the petitioner was May 20, 2015. On April 24, 2015, a request for review was submitted by the Upper Sacramento, McCloud, and Lower Pit River Regional Water Management Group (USR RWMG) and is included as an attachment. This petition is submitted by Trout Unlimited, Inc., as a member in good standing of the USR RWMG. In correspondence dated May 28, 2015, the CVRWQCB detailed their response to our request and the rationale behind those responses. We respectfully disagree with those conclusions and detail our considerations herein.
- 4) The CVRWQCB refusal to review and update the EO is inappropriate because an unauthorized release of DEHP, or Bis (2-ethylhexyl) phthalate, has occurred at the site. DEHP is a plasticizer specific to plastic production and is not commonly available to the general public. Its presence in a well beneath the discharging facility strongly suggests the untreated waste discharge as the source. DEHP was detected at a concentration of 250 ug/l in November of 2012, and continues to be present in concentrations near the MCL in more recent analyses.
- 5) The petitioner is aggrieved by the absence of review and amendment of the EO after both administrative and technical violations. The untreated waste discharge provides no protection from discharge impacts to the local drinking water aquifer and is not subject to regular review as an NPDES permit would be.

6) The petitioner requests that the SWRCB take the following actions:

**Review the transfer of the EO to ensure that it was an appropriate action.** The EO was originally issued to Danone Waters North America (DWNA) in 2001 and was transferred to Crystal Geyser in 2013. The invoice for SWRCB fees dated April 13, 2010 notes that "... the transfer of ownership ... requires a new Waste Discharge Permit". TU requests that the SWRCB determine if the transfer of this permit was appropriate, or if a new waste discharge permit should be required due to the transfer of ownership stated in the SWRCB invoice.

If the EO transfer was valid, require appropriate treatment of the waste discharge. The waste discharge authorized in the EO is spread into a leach field (a land discharge) that drains directly into a drinking water aquifer. That aquifer has been shown, by the contract monitoring of DWNA, to have been impacted with DEHP, or Bis (2-ethylhexyl) phthalate. DEHP has a drinking water MCL of 6 ppb as established by the USEPA; a concentration of 250 ppb was observed in a monitoring well beneath the site. Appropriate treatment of the waste discharge could be accomplished through an in line carbon treatment system that would not require large wastewater treatment ponds.

The CVRWQCB asserts that the discharge to the leachfield is relatively pollutant free, which is entirely true. Our concern is that the discharge must be >99.999999% pollutant free to meet the maximum contaminant level (MCL) for DEHP in drinking water. The CVRWQCB response of May 28, 2015 repeated earlier speculation on what may have been the source of that contamination but did not consider the production of plastic bottles and the untreated discharge of the rinse of those bottles. Further, we could not ascertain a direct line of reasoning from the CVRWQCB for allowing the discharge to continue entirely untreated.

If the waste discharge is treatable, reconsider the volume of waste discharge appropriate for site. The current WDR's allow for 108,000 gallons of 'bottle rinse' water and 'floor water' to be discharged daily. The original Mitigated Negative Declaration (MND) compiled by CH2M Hill in 2001 addressed only the bottle rinse water, and the WDR's for this facility note that "A very small volume of spillage and floor wash is also mixed with the bottle rinse wastewater". The current holder of the WDR's, Crystal Geyser, stated in a recent article in the *Los Angeles Times:* 

"... the plant will rinse its plastic bottles with air, not water, and use a type of plastic softener that does not break down into phthalates, which have been shown to cause health problems, the company said ".

Given that the discharger has stated publicly it will not use water to rinse its site-produced plastic bottles, and that bottle rinse water constituted the overwhelming volume of the historical waste discharge, a permit revision to allow a very small volume of the current wastewater discharge would be evidently acceptable to the discharger. A link to the article that contains the discharger's statement is presented here.

### http://www.latimes.com/local/california/la-me-shasta-bottled-water-20150510-story.html#page=1

Revise the monitoring and sampling requirements contained in the Monitoring and Reporting Program (MRP) contained in the WDR's. The current MRP requires laboratory analysis of wastewater samples for metals and organics annually. Other land discharges in the area (e.g., the City of Mt. Shasta) require those analyses on a quarterly basis. Given the allowable discharge of over 3,000,000 gallons per month from the leachfield it would seem prudent to follow the City of Mt. Shasta precedent and impose a more thorough MRP equivalent to the City's.

The MRP currently requires quarterly groundwater monitoring, but the laboratory analyses required on a quarterly basis are for pH, temperature, electrical conductivity, etc. Quarterly analysis of the water samples by EPA methods 624 and 625 (volatile and semi-volatile organic compounds) is not currently required; those analyses are prudent for early detection of any discharge issues and would impose only a tiny financial burden on the discharger. Indeed, the CVRWQCB uses the logic of additional sampling to dismiss the concern of DEHP presence on page 2 of it's response; one can only infer that the CVRWQCB views this as an effective waste discharge evaluation tool.

The CVRWQCB also states that comparing the discharge of municipal sewage and bottle rinse and floor drain water is inappropriate because municipal wastewater has a far greater potential to impact groundwater quality than the water bottling facility. We would prefer the CVRWQCB utilize science as opposed to hypothetical speculation. Evidence shows that the aquifer beneath the Crystal Geyser facility has been contaminated with phthalates and that issue, in and of itself, warrants the greater protection offered by a complete suite of analyses on a quarterly interval.

Initiate site assessment work to determine the vertical and lateral extent of DEHP contamination in the area of the impacted well. After the presence of DEHP was detected in 2013, no investigative or remedial action was directed by the CVRWQCB. State water code section 13267, and precedent with other local dischargers, would dictate that, at a minimum, investigation into the extent of that release is completed. Upon completion of that investigative work a course of action for site remediation should be identified.

- 7) This petition holds that the untreated industrial waste discharge allowed under the EO inherently violates the anti-degradation provisions of SWRCB resolution 68-16. The primary legal reference for investigation of the unauthorized release of DEHP is State water code section 13267.
- 8) Copies of this petition have been sent to the Central Valley Regional Water Quality Control Board and Crystal Geyser, the current holder of the waste discharge permit.
- 9) The issues raised in this petition have been presented to the Central Valley Regional Water Quality Control Board and no action has been taken.

Sincerely,

B

Robert Blankenship, B.A. President South Coast Chapter – Trout Unlimited

Cc: Ms. Pamela Creedon, Executive Officer, CVRWQCB Mr. Richard Weklych, Crystal Geyser Water Company

# CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CENTRAL VALLEY REGION

## ORDER NO. 5-01-233

# WASTE DISCHARGE REQUIREMENTS FOR DANONE WATERS OF NORTH AMERICA DANNON NATURAL SPRING WATER BOTTLING FACILITY SISKIYOU COUNTY

The California Regional Water Quality Control Board, Central Valley Region, (hereafter Board) finds that:

- Danone Waters of North America, hereafter Discharger, submitted a Report of Waste Discharge dated 16 April 2001 and two supplementary characterization/design reports dated 12 June 2001 and 3 July 2001. The Discharger requested waste discharge requirements to discharge up to 72,000 gallons per day (gpd) of bottle rinse water from an existing water bottling facility, and an additional 36,000 gpd from a proposed expansion, to a subsurface leachfield.
- 2. The Discharger owns and operates a water bottling facility, Dannon Natural Spring Water Bottling Facility, (Assessor's Parcel No. 037-140-010), immediately to the north of the city limits of the City of Mt. Shasta in Siskiyou County in Section 9, T40 N, R4W, MDB&M, as shown on Attachment A, a part of this Order. The water bottling facility lies within the Upper Sacramento Hydrologic Unit (No. 525), Spring Creek Hydrologic Subarea (No. 525.24), as depicted on the interagency hydrologic maps prepared by the California Department of Water Resources in August 1986. Surface water drainage is to Cold Creek, a tributary of the Sacramento River.
- The Discharger operates an existing natural spring water bottling facility that involves 3. groundwater extraction, water bottling, and equipment cleaning. The facility's water supply is pumped from a well approximately 2,000 feet north of the bottling facility. Water is also hauled to the bottling facility by truck from Mosbrae Springs in Dunsmuir. Water bottling operations consist of water processing, blow molding of plastic bottles, washing bottles, and filling bottles with processed water. Water processing includes proprietary micro-filtration, ozonation, and ultraviolet treatment. Approximately 12 percent of individual bottle volume of ozonated water is flushed through the bottle to wash the bottles clean of any residue left from the blow molding process. A very small volume of spillage and floor wash is also mixed with the bottle rinse wastewater. The Discharger presently operates two bottling lines that discharge an average of 20,000 gpd with peak discharges up to 36,000 gpd of bottle rinse/floor wash wastewater per bottling line. The Discharger is currently discharging the bottle rinse/floor wash wastewater to the City of Mt. Shasta (City) wastewater treatment system. The City has determined that it cannot accept long term discharge of bottle rinse/floor wash wastewater because of concerns with the collection system and treatment plant capacity. The Discharger has stated that over the next 5 years the operations could be expanded by one additional bottling line. The proposed third line is estimated to have an average discharge of 20,000 gpd with a maximum peak discharge of

-2-

# WASTE DISCHARGE REQUIREMENTS ORDER NO. 5-01-233 DANONE WATERS OF NORTH AMERICA DANNON NATURAL SPRING WATER BOTTLING FACILITY SISKIYOU COUNTY

36,000 gpd. The expansion would result in a total average flow of 60,000 gpd and a total maximum flow of 108,000 gpd for the three lines. The Report of Waste Discharge describes the discharge as follows:

| <u>Constituent</u><br>Specific Conductance<br>Total Dissolved Solids | Bottle Rinse Water<br>95 μmhos/cm | <u>Floor Water</u><br>113 µmhos/cm |
|----------------------------------------------------------------------|-----------------------------------|------------------------------------|
|                                                                      | 100 mg/l                          | 140 mg/l                           |
| pH                                                                   | 7.2                               | 6.9                                |
| COD                                                                  |                                   | 64 mg/l                            |
| Acetone                                                              |                                   | 109 μg/l                           |
| Arsenic, Total                                                       | 1.2 μg/l                          |                                    |
| 2-Butanone                                                           | ·                                 | 11 μg/l                            |
| Zinc, Total                                                          |                                   | 29 µg/l                            |

Analyses of the bottle rinse water and floor water for priority pollutant metals and organics indicated no other constituents were detected.

- The proposed leachfield is located immediately to the south of the existing bottling facility 4. as shown on Attachment B, a part of this order. The leachfield will initially consist of 1,683 lineal feet (9 lengths of 187 ft) of 4-inch diameter perforated polyethylene leachline about 16 inches below ground surface. The initial leachfield area is approximately 0.55 acres and will be designed to handle the maximum 72,000 gpd discharge. The Discharger has made provision in the leachfield design to accommodate the additional 36,000 gpd maximum discharge for a total maximum flow of 108,000 gpd. If the third bottling line were installed, the leachfield would expand to 14 lengths of leachline (2,520 lineal feet) and comprise approximately 0.83 acres. Flow to the leachfield would be by gravity and will be measured by a turbine type flow meter immediately upstream from the leachfield. From October through March, discharge to the leachfield will average 50 % below capacity. The system will have the capacity for one portion of the leachfield to be shut off for a "rest period". The flow to each system area can be changed at the splitter box located at the head of the system. Specific leach line flow can be controlled at each distribution box.
- 5. Soils in the leachfield area consist of compact loams over extremely cobbly moderately hard sandy loam to loamy sand. The percentage of cobbles, stones and boulders increases with depth. No restrictive layers have been encountered. Percolation rates in the area of the leachfield range from 6-14 minutes per inch. The level of groundwater in the vicinity of the leachfield is approximately 40 ft below ground surface (bgs).
- 6. Four piezometers (shallow groundwater monitoring wells) will be installed within the leachfield to monitor groundwater levels resulting from leachfield operations. The Discharger is proposing to install two down gradient monitoring wells, screened at a depth to monitor the quality of the groundwater resulting from leachfield operations. An existing

well located up gradient from the leachfield will be used to monitor background water quality. The locations of the monitoring wells designated MW-1, MW-2, and MW-3 are shown on Attachment B.

7. Cleaning operations are performed on the bottle filling water lines within the facility using clean-in-place (CIP) procedures. The CIP process consists of a 300-gallon tank to which a cleaning powder called "oxonia" is mixed into solution. The resulting solution is 1-percent peroxide and 1.5-percent peracetic acid. The cleaning solution is circulated separately through the water pipelines, filler unit, and storage tanks. The CIP is used approximately once per week with an estimated discharge from the cleaning operations of approximately 2,000 gallons per week. The CIP wastewater is currently discharged to the City's sanitary sewer and will continue to be discharged to the City's sanitary sewer. The City required installation of a flow meter to measure the volume discharged to the sewer system. The Discharger submitted the following analyses for the CIP wastewater:

| <u>Constituent</u>     | CIP Wastewater |
|------------------------|----------------|
| Specific Conductance   | 115 μmhos/cm   |
| Total Dissolved Solids | 140 mg/l       |
| pH                     | 4.1            |
| COD                    | 750 mg/l       |
| Arsenic, Total         | 1.3 μg/l       |
| Benzoic Acid           | 62 μg/l        |
| Methyl Chloride        | 4.5µg/l        |

- 8. When the pipeline from the production well to the facility was first brought online it was filled with chlorinated water to disinfect the pipeline. The concentration of residual chlorine was approximately 50 milligrams per liter (mg/L). The total quantity of water held in the pipeline is approximately 25,000 gallons. The Discharger disposed of this water to the City's sanitary sewer after adding sodium sulfite to neutralize the chlorine. The Discharger indicates that treatment of the pipeline with chlorine should not be necessary in the future. However, should this cleaning procedure be needed again the wastewater would be discharged to the City's sanitary sewer.
- 9. Hazardous materials stored onsite are limited to small quantities of paint, thinners, gearbox oil, synthetic condenser oil, and solid lubricants. All such materials are stored and handled within the maintenance shop within a designated storage area. The shop has no floor drains and all minor spills would be cleaned up using dry cleaning methods.
- 10. Domestic wastewater from the facility is currently discharged to the City's sanitary sewer and will continue to discharge to the City's collection and treatment system. Domestic wastewater will not discharge to the proposed leachfield.

- 11. The average annual rainfall is 36 inches; evaporation is approximately 50 inches per year.
- 12. The United States Environmental Protection Agency (USEPA), on 16 November 1990, promulgated storm water regulations (40 CFR Parts 122, 123, and 124) which require specific categories of industries which discharge storm water to obtain NPDES permits and to implement Best Available Technology Economically Achievable (BAT) and Best Conventional Pollutant Control Technology (BCT) to reduce or eliminate industrial storm water pollution. The regulations provide that discharges of storm water to surface waters from construction projects and specific categories of industrial facilities are prohibited unless the discharge is in compliance with an NPDES Permit.
- 13. The State Water Resources Control Board (SWRCB) adopted Order No. 97-03-DWQ (General Permit No. CAS000001), on 17 April 1997, specifying waste discharge requirements for discharge of storm water associated with industrial activities, excluding construction activities, and requiring submittal of a Notice of Intent (NOI) by industries covered under the permit. The Discharger submitted a NOI dated 23 February 2001 and has obtained coverage under General Permit No. CAS000001, (ID# 5R47S016440). Storm water flows are collected and held in two retention basins as shown on Attachment B. The larger retention basin drains through a 5-inch pipe to the City's storm drain system, which drains into North Fork Cold Creek.
- 14. The SWRCB adopted Order No. 98-08-DWQ (General Permit No. CAS000002), on 19 August 1999, specifying waste discharge requirements for discharge of storm water associated with construction projects and requiring submittal of a NOI to obtain coverage under the permit for construction activity that disturbs five acres or more. The Discharger submitted a NOI dated 4 April 2000 and obtained coverage under General Permit No. CAS000002 for construction of the water bottling facility (ID# 5R47S313145). This permit is still active and the Discharger will be required to update the Storm Water Pollution Prevention Plan (SWPPP) to include best management practices (BMP) for construction of the leachfield.
- 15. The beneficial uses of the underlying groundwater are agricultural, domestic and industrial supply.
- 16. The Board adopted a Water Quality Control Plan, Fourth Edition, for the Sacramento River Basin and the San Joaquin River Basin, (hereafter Basin Plan) which designates beneficial uses, establishes water quality objectives, and describes an implementation program and policies to achieve those objectives for all waters of the Basin. The Basin Plan includes plans and policies adopted by the SWRCB and incorporated by reference, such as Resolution 68-16 Statement of Policy with respect to Maintaining High Quality Of Waters in California (Antidegradation Policy). These requirements implement the Basin Plan.

-4-

- 17. The discharge of bottle rinse and floor wash at this facility is consistent with the antidegradation provisions of State Water Resources Control Board Resolution No. 68-16. The project as proposed will not result in degradation of groundwater quality. The bottle rinse water/floor wash discharge contains negligible concentrations of contaminants. Further, these waste discharge requirements do not allow degradation of groundwater beneath the leachfield. Groundwater monitoring is proposed to ensure that the discharge of waste does not cause groundwater to contain waste constituents in concentrations statistically greater than background water quality.
- 18. On 7 September 2001 the Board, aeting as lead agency, adopted a Mitigated Negative Declaration and Mitigation Monitoring and Reporting Program for the Discharger's existing water bottling facility, and the proposed increase from two to three bottling lines, in accordance with the California Environmental Quality Act, (Pub. Resources Code, section 21000 et seq.) (CEQA). The Board determined that the project, particularly the discharge of bottle rinse/floor wash to the leachfield, would not have a significant effect on the environment. The Board determined that the potentially significant short-term water quality impact from construction of the leachfield would be mitigated by compliance with the general construction stormwater permit (General Order 99-08-DWQ) so long as the Discharger submits an updated stormwater pollution prevention plan (SWPPP) that includes best management practices for construction of the leachfield.
- 19. The Basin Plan encourages reclamation and requires that each Report of Waste Discharge for land disposal operation justify why reclamation is not practiced or proposed. The bottle wash generated at the facility is surplus to any requirements for irrigation and is serving as a source of recharge to the Big Springs Creek aquifer. If in the future additional irrigation water were required the Discharger would consider the use of bottle wash for this purpose.
- 20. This discharge is exempt from the requirements of *Consolidated Regulations for Treatment Storage, Processing, or Disposal of Solid Waste*, as set forth in Title 27, CCR, Division 2, Subdivision 1, Section 20005, et seq., (hereafter Title 27). The exemption, pursuant to Section 20090(b), is based on the following:
  - a. The Board is issuing waste discharge requirements,
  - b. The Discharge complies with the Basin Plan,
  - c. The wastewater does not need to be managed according to 22 CCR, Division 4.5, Chapter 11, as a hazardous waste.
- 21. The Board has considered the information in the attached Information Sheet in developing the Findings of this Order. The attached Information Sheet is part of this Order.

-5-

- 22. The Board has notified the Discharger and interested agencies and persons of its intent to prescribe waste discharge requirements for this discharge and has provided them with an opportunity for a public hearing and an opportunity to submit their written views and recommendations.
- 23. The Board, in a public meeting, heard and considered all comments pertaining to the discharge.

IT IS HEREBY ORDERED that Danone Waters of North America, it's agents, successors, and assigns, in order to meet the provisions contained in Division 7 of the California Water Code and regulations adopted thereunder, shall comply with the following:

# A. Discharge Prohibitions:

- 1. The discharge of bottle rinse water, floor wash water, CIP wastewater, pipeline disinfection water, and domestic wastewater to surface waters or surface water drainage courses is prohibited.
- 2. The discharge of CIP wastewater, pipeline disinfection water, and domestic wastewater to the on-site leachfield is prohibited.
- 3. The discharge of hazardous or toxic substances including solvents, oil, grease, or other petroleum products, is prohibited.
- 4. Discharge of waste classified as 'hazardous,' as defined in Section 2521(a) of Title 23, CCR, Section 2510, et seq., (hereafter Chapter 15), or 'designated,' as defined in Section 13173 of the California Water Code, is prohibited.

# **B.** Discharge Specifications:

- 1. Neither the treatment nor the discharge shall cause a nuisance or condition of pollution as defined by the California Water Code, Section 13050.
- 2. The discharge shall not cause degradation of any water supply.
- 3. The discharge shall remain within the designated disposal area at all times.
- 4. The discharge shall remain underground at all times.
- 5. The daily maximum flow to the leachfield from the two existing bottling lines shall not exceed 72,000 gpd.

-6-

- 6. The daily maximum flow to the leachfield after expansion for a third bottling line shall not exceed 108,000 gpd.
- 7. The treatment facilities shall be designed, constructed, operated, and maintained to prevent inundation or washout due to floods with a 100-year return frequency.

# C. Sludge Disposal:

Collected screenings, sludges, and other solids removed from liquid wastes shall be disposed of in a manner that is consistent with Title 27 and approved by the Executive Officer.

# D. Groundwater Quality Limitations:

The discharge, in combination with other sources, shall not cause groundwater underlying the wastewater disposal area to contain waste constituents statistically greater than background water quality.

## E. **Provisions**:

- 1. The Discharger shall comply with Monitoring and Reporting Program No. 5-01-233, which is a part of this Order, and any revisions thereto as ordered by the Executive Officer.
- 2. The Discharger shall comply with all the items of the "Standard Provisions and Reporting Requirements for Waste Discharge Requirements," dated 1 March 1991, which are a part of this Order. This attachment and its individual paragraphs are referred to as "Standard Provision(s)."
- 3. The Discharger shall install and survey the two monitoring wells and install the four Piezometers referenced in the consultant's report prior to the discharge of bottle rinse and floor wash to the leachfield. (Surveying of the Piezometers is not required.) The design and specifications of the monitoring wells and Piezometers shall be submitted to the Regional Board for review prior to installation.
- 4. The Discharger shall submit plans and specifications to both the Board and the California Department of Fish and Game for the installation of a stream gauge in Big Springs Creek by 15 October 2001. The installation of the stream gauge shall be completed upon obtaining the necessary permits from any Local, State, or Federal Governmental Agency.
- 5. The Discharger must comply with all conditions of this Order, including timely submittal of technical and monitoring reports as directed by the Executive Officer.

> Violations may result in enforcement action, including Regional Board or court orders requiring corrective action or imposing civil monetary liability, or in revision or rescission of this Order.

- 6. The Discharger shall report promptly to the Board any material change or proposed change in the character, location, or volume of the discharge.
- 7. In the event of any change in control or ownership of land or waste discharge facilities described herein, the Discharger shall notify the succeeding owner or operator of the existence of this Order by letter, a copy of which shall be immediately forwarded to this office.

To assume operation under this Order, the succeeding owner or operator must apply in writing to the Executive Officer requesting transfer of the Order. The request must contain the requesting entity's full legal name, the state of incorporation if a corporation, the name and address and telephone number of the persons responsible for contact with the Board, and a statement. The statement shall comply with the signatory paragraph of Standard Provision B.3 and state that the proposed owner or operator assumes full responsibility for compliance with this Order. Failure to submit the request shall be considered a discharge without requirements, a violation of the California Water Code. Transfer shall be approved or disapproved by the Executive Officer.

- 8. A copy of this Order and its attachments shall be maintained at the bottling facility for reference by key operating personnel. Key operating personnel shall be familiar with its contents.
- 9. The Board will review this Order periodically and will revise requirements when necessary.

I, GARY M. CARLTON, Executive Officer, do hereby certify the foregoing is a full, true, and correct copy of an Order adopted by the California Regional Water Quality Control Board, Central Valley Region, on 7 September 2001.

GARY M. CARLTON, Executive Officer

JFR:DCW

# CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CENTRAL VALLEY REGION

# MONITORING AND REPORTING PROGRAM NO. 5-01-233 FOR DANONE WATERS OF NORTH AMERICA DANNON NATURAL SPRING WATER BOTTLING FACILITY SISKIYOU COUNTY

# **EFFLUENT MONITORING**

The discharge of bottle rinse/floor wash wastewater to the leachfield shall be monitored as follows:

| Parameter                    | Units           | Type of<br><u>Sample</u> | Sampling<br><u>Freguency</u> |
|------------------------------|-----------------|--------------------------|------------------------------|
| Flow                         | gallons per day | Flow meter               | Daily                        |
| Specific Conductance         | µmhos/cm        | Grab                     | Weekly <sup>1</sup>          |
| Total Dissolved Solids       | mg/l            | Grab                     | Weekly <sup>1</sup>          |
| pH                           | units           | Grab                     | Weekly                       |
| Chemical Oxygen Demand (COD) | mg/l            | Grab                     | Weekly                       |
| Total Coliform Organisms     | MPN/100 ml      | Grab                     | Weekly <sup>1</sup>          |
| Priority Pollutants-Metals   | μg/l            | Grab                     | Annually                     |
| Priority Pollutants-Organics | µg/l            | Grab                     | Annually                     |

The sampling frequency may be reduced to monthly after one year of sampling upon approval of the Executive Officer.

# **GROUND WATER MONITORING**

## **Piezometers**

Each of the Piezometers within the leachfield shall be monitored for depth to groundwater from the surface as follows:

|                       |              | Type of     | Measurement |
|-----------------------|--------------|-------------|-------------|
| Parameter             | <u>Units</u> | measurement | Frequency   |
| Depth beneath surface | feet         | Visual      | Weekly      |

## Monitoring Wells (MW-1, MW-2, MW-3)

Prior to sampling or purging, equilibrated groundwater elevations shall be measured to the nearest 0.01 foot. The wells shall be purged at least three well volumes until pH and electrical conductivity have stabilized. Sample collection shall follow standard analytical method protocols. Groundwater monitoring shall include, at a minimum, the following:

| Parameter                    | <u>Units</u> | Type of<br><u>Sample</u> | Sampling<br><u>Frequency</u> |
|------------------------------|--------------|--------------------------|------------------------------|
| Groundwater Elevation        | feet         | Measurement              | Quarterly                    |
| Specific Conductance         | µmhos/cm     | Grab                     | Quarterly                    |
| Total Dissolved Solids       | mg/l         | Grab                     | Quarterly                    |
| pH                           | units        | Grab                     | Quarterly                    |
| Chemical Oxygen Demand (COD) | mg/l         | Grab                     | Quarterly                    |
| Total Coliform Organisms     | MPN/100 ml   | Grab                     | Quarterly                    |
| Priority Pollutants-Metals   | μg/1         | Grab                     | Annually                     |
| Priority Pollutants-Organics | μg/l         | Grab                     | Annually                     |

#### LEACHFIELD MONITORING

The leachfield shall be visually monitored on a weekly basis. Leachfield monitoring will consist of visual inspection of the leachfield and nearby area for the presence of wet areas or groundwater seepage. Leachfield monitoring results shall be included with all monthly monitoring reports.

# **STREAM GAUGE MONITORING**

The Discharger shall install a stream gauge on Big Springs Creek and report gauge readings at least weekly. The stream data shall be submitted with the monthly monitoring report.

# REPORTING

Monitoring results shall be submitted to the Regional Board by the 1st day of the second month following sample collection, (i.e., the January Report is due by 1 March). Quarterly and annual monitoring results shall be submitted by the 1st day of the second month following each calendar quarter and year, respectively.

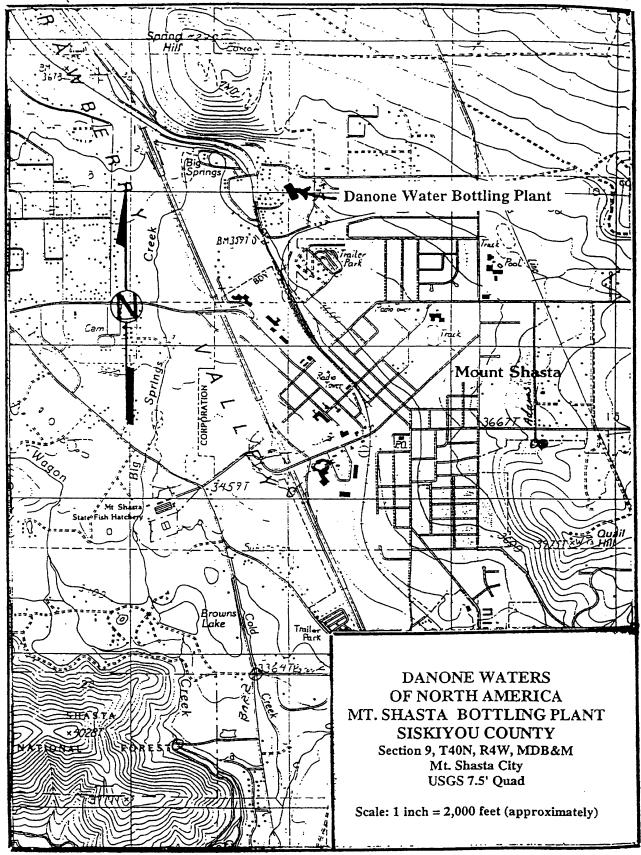
In reporting the monitoring data, the Discharger shall arrange the data in tabular form so that the date, the constituents, and the concentrations are readily discernible. The data shall be summarized in such a manner to illustrate clearly whether the discharge complies with waste discharge requirements

If the Discharger monitors any pollutant at the locations designated herein more frequently than is required by this Order, the results of such monitoring shall be included in the calculation and reporting of the values required in the discharge monitoring report form. Such increased frequency shall be indicated on the discharge monitoring report form.

The Discharger may also be requested to submit an annual report to the Board with both tabular and graphical summaries of the monitoring data obtained during the previous year. Any such request shall be made in writing. The report shall discuss the compliance record. If violations have occurred, the report shall also discuss the corrective actions taken and planned to bring the discharge into full compliance with the waste discharge requirements.

The Discharger shall have available for Board inspection data that includes the monthly volume pumped from DEX-6 and the monthly volume delivered to the bottling facility from Mossbrae Springs.

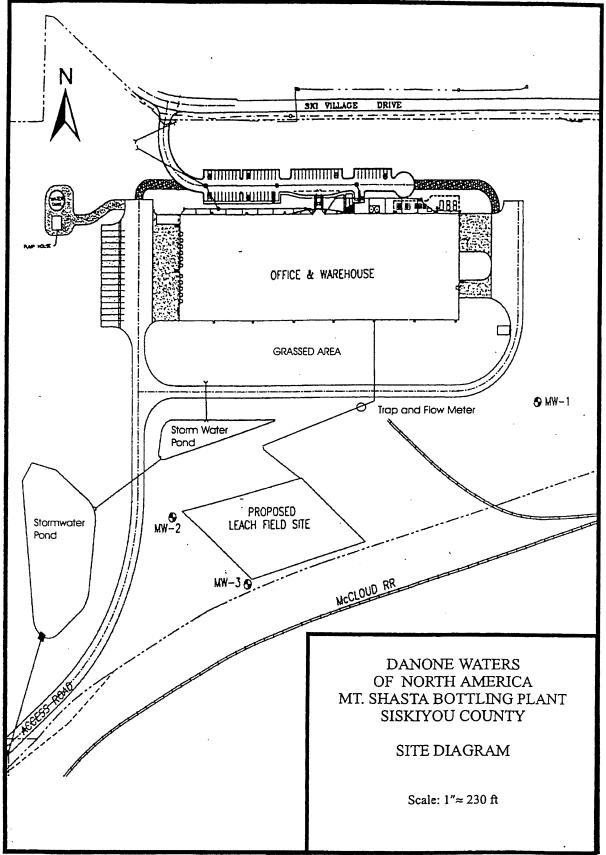
All reports submitted in response to this Order shall comply with the signatory requirements of Standard Provisions D.6.


Ordered by: CARLTON, Executive Officer

7 September 2001 (Date)

#### JFR:DCW

-3-


ATTACHMENT A



1.1







# **INFORMATION SHEET**

# ORDER NO. 5-01-233 DANONE WATERS OF NORTH AMERICA DANNON NATURAL SPRING WATER BOTTLING FACILITY SISKIYOU COUNTY

#### GENERAL INFORMATION

Danone Waters of North America owns and operates the Dannon Natural Spring Water Bottling Facility, (Assessors Parcel No. 037-140-010), immediately to the north of the City of Mt. Shasta (City) in Siskiyou County in Section 9, T40 N, R4W, MDB&M. The Discharger has requested waste discharge requirements to discharge up to 72,000 gallons per day (gpd) of bottle rinse water from an existing water bottling facility, and an additional 36,000 gpd from a proposed expansion, to a proposed subsurface leachfield. Discharges of bottle rinse water to the proposed leach field require issuance of Waste Discharge Requirements (WDRs) from the Board and compliance with the California Environmental Quality Act (CEQA). Since no previous CEQA document was completed for the facility, the Board is acting as the Lead Agency under CEQA.

## Site Description

The Dannon site encompasses approximately 250 acres and is located in Siskiyou County, at an approximate elevation of 3,660 feet above mean sea level. The site comprises 20 parcels, four of which have been partially developed as part of the bottling facility construction. The actual water bottling site encompasses approximately 18 acres located on the south side of Ski Village Drive where approximately 10 acres are occupied by the actual facility, roads and driveways, and parking areas. P&M Cedar Products formerly owned the facility site and operated a lumber mill from approximately 1958 to 1990. Much of the existing site was used for mill operations including paved areas, roads, and cleared areas.

#### **Existing Facility and Current Operations**

The existing water bottling operation consists of a natural spring water bottling facility and associated support facilities (parking lots, water tanks, etc.). The water bottling facility's source of spring water is a single production well, located on the northern portion of the Dischargers property that draws water from the Big Springs aquifer. Depth to water within the Big Springs aquifer ranges from 46 to 240 feet below ground surface (bgs). The water bottling facility also bottles water originating from Mossbrae Spring in Dunsmuir. Water from Mossbrae Spring is trucked to the bottling facility for bottling using 6,200-gallon potable water truck trailers dedicated to hauling spring water. The Discharger receives approximately 24 truck deliveries per week from the Mossbrae location, totaling approximately 148,800 gallons of water per week.

The Discharger presently operates two bottling lines and current water bottling production at the facility requires a groundwater pumping rate of approximately 60 gallons per minute (gpm) per bottling line, with a periodic maximum rate of 150 gpm per bottling line during the spring and summer months. Groundwater withdrawals of up to 150 gpm are episodic in nature and

individually occur for no more than a constant 8-hour period. Because the bottling lines do not operate on a continuous basis, the average annual pumping rate is slightly less than 120 gpm over the entire year for the existing facility (two bottling lines). The projected annual average draw per bottling line is approximately 20.5 million gallons (62.9 acre-feet) for the current facility. The Discharger has stated that over the next 5 years the operations could be expanded by one additional bottling line. If the additional bottling line were added the average pumping rate would be about 180 gpm with a maximum rate of 450 gpm.

-2-

## WASTEWATER SOURCES AND CHARACTERISTICS

## Water Bottling

Water bottling operations consist of water processing, blow molding of plastic bottles, washing bottles, and filling bottles with processed water. Water processing includes proprietary micro-filtration, ozonation, and ultraviolet treatment. Approximately 12 percent of individual bottle volume of ozonated water is flushed through the bottle to wash the bottles clean of any residue left from the blow molding process. A very small volume of spillage and floor wash is also mixed with the bottle rinse wastewater. The Report of Waste Discharge describes the discharge as follows:

| m |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

Analyses of the production well water, bottle rinse water and floor water for priority pollutant metals and organics indicated no other constituents were detected.

#### Equipment Cleaning

Cleaning operations are performed on the bottle filling water lines within the facility using cleanin-place (CIP) procedures. The CIP procedure consists of a 300-gallon tank to which the cleaning chemicals are added. The CIP process involves introducing a cleaning solution called "oxonia" into the system. Oxonia is a powder that is mixed into solution so that resultant concentrations are 1-percent peroxide and 1.5-percent peracetic acid. The cleaning solution is circulated separately through the water pipelines, filler unit, and storage tanks. The CIP method is used approximately once per week as a precautionary measure against contamination.

Estimated discharge from the cleaning operations is approximately 2,000 gallons per week of CIP acid wash water. The Discharger submitted the following analyses for the CIP wastewater:

| Constituent CIP Waster |              |
|------------------------|--------------|
| Specific Conductance   | 115 µmhos/cm |
| Total Dissolved Solids | 140 mg/l     |
| PH                     | 4.1          |
| COD                    | 750 mg/l     |
| Arsenic, Total         | 1.3 μg/l     |
| Benzoic Acid           | 62 μg/l      |
| Methyl Chloride        | 4.5µg/l      |

When the pipeline from the production well to the facility was first brought online it was filled with chlorinated water to disinfect the pipeline. The concentration of residual chlorine was approximately 50 milligrams per liter (mg/L). The total quantity of water held in the pipeline is approximately 25,000 gallons. The Discharger disposed of this water to the City's sanitary sewer after adding sodium sulfite to neutralize the chlorine. The Discharger indicates that treatment of the pipeline with chlorine should not be necessary in the future. However, should this cleaning procedure be needed again the same disposal method is proposed.

#### Domestic Wastewater and Other Potential Sources

Approximately 600 gpd of domestic wastewater from the facility is currently discharged to the City's sanitary sewer. Hazardous materials stored onsite are limited to small quantities of paint, thinners, gearbox oil, synthetic condenser oil, and solid lubricants. All such materials are stored and handled within the maintenance shop within a designated storage area. The shop has no floor drains and all minor spills would be cleaned up using dry cleaning methods.

#### WASTEWATER DISPOSAL

The Discharger is currently discharging the bottle rinse/floor wash wastewater, equipment cleaning wastewater, and domestic wastewater to the City's sanitary sewer system. The City has determined that it cannot accept long term discharge of the high volume bottle rinse/floor wash wastewater because of concerns with the collection system and treatment plant capacity. The Discharger is proposing to discharge the bottle rinse/ floor wash wastewater to proposed on-site leachfield. The domestic wastewater and CIP acid wash wastewater will continue to be discharged to the City's sanitary sewer.

-3-

# Bottle Rinse/Floor Wash Water

With the current operation of two bottling lines, and the proposed third bottling line, the volume of bottle rinse/floor wash water used to design the proposed leachfield is shown in the following table:

Dannon Monthly Leach Field Flows-Bottling Rinse and Floor Wash Flow

| Month | Days/Week | Hours/Day | -<br>Hours/Week | Hours/Month | Gallons/Month<br>(2 Lines)<br>+ Spills | Gallons/Month<br>(3 Lines)<br>+ Spills |
|-------|-----------|-----------|-----------------|-------------|----------------------------------------|----------------------------------------|
| Jan   | 5         | 16        | 80              | 320         | 960,000                                | 1,440,000                              |
| Feb   | 5         | . 16      | 80              | 320         | 960,000                                | 1,440,000                              |
| Mar   | 5         | 16        | 80              | 320         | 960,000                                | 1,440,000                              |
| Apr   | 5         | 24        | 120             | 480         | 1,440,000                              | 2,160,000                              |
| May   | 6         | 24        | 144             | 576         | 1,728,000                              | 2,592,000                              |
| Jun   | 7         | 24        | 168             | 672         | 2,016,000                              | 3,024,000                              |
| Jul   | 7         | 24        | 168             | 672         | 2,016,000                              | 3,024,000                              |
| Aug   | 6         | 24        | 144             | 576         | 1,728,000                              | 2,592,000                              |
| Sep   | 5         | 24        | 120             | 480         | 1,440,000                              | 2,160,000                              |
| Oct   | 5         | 16        | <b>80</b>       | 320         | 960,000                                | 1,440,000                              |
| Nov   | 5         | 16        | 80              | 320         | 960,000                                | 1,440,000                              |
| Dec   | 5         | 16        | 80              | 320         | 960,000                                | 1,440,000                              |
| Total |           |           |                 | 5,376       | 16,128,000                             | 24,192,000                             |

## Leachfield

The proposed leachfield is located immediately to the south of the existing bottling facility as shown on Attachment B. The leachfield will initially consist of 1,683 lineal feet (9 lengths of 187 ft) of 4-inch diameter perforated polyethylene leachline about 16 inches below ground surface. The initial leachfield area is approximately 0.55 acres and will be designed to handle a maximum 72,000 gpd discharge. The Discharger has made provision in the leachfield design to accommodate the additional 36,000 gpd maximum discharge for a total maximum design flow of 108,000 gpd. If the third bottling line were installed, the leachfield would expand to 14 lengths of leachline (2,520 lineal feet) and comprise approximately 0.83 acres. Flow to the leachfield would be by gravity and will be measured by a turbine type flow meter immediately upstream from the leachfield. From October through March, discharge to the leachfield will average 50 % below capacity. The system will have the capacity for one portion of the leachfield to be shut off

-4-

for a "rest period". The flow to each system area can be changed at the splitter box located at the head of the system. Specific leach line flow can be controlled at each distribution box.

Soils in the leachfield area consist of compact loams over extremely cobbly moderately hard sandy loam to loamy sand. The percentage of cobbles, stones and boulders increases with depth. No restrictive layers have been encountered. Percolation rates in the area of the leachfield range from 6-14 minutes per inch. The level of groundwater in the vicinity of the leachfield is approximately 40 ft bgs.

# DISCHARGE PROHIBITIONS AND SPECIFICATIONS

The waste discharge requirements prohibit the discharge of bottle rinse water, floor wash water, CIP wastewater, and domestic wastewater to surface waters or surface water drainage courses. The discharge of hazardous or toxic substances including solvents, oil, grease, or other petroleum products, is prohibited. Discharges to the leachfield other than bottle rinse water and floor wash water are prohibited. The requirements limit the daily maximum flow to the leachfield from the two existing bottling lines to 72,000 gpd and limit the daily maximum flow to the leachfield after expansion for a third bottling line to 108,000 gpd.

# ANTIDEGRADATION AND CEQA CONSIDERATIONS

The discharge of bottle rinse and floor wash at this facility is consistent with the antidegradation provisions of State Water Resources Control Board Resolution No. 68-16. The project as proposed will not result in degradation of ground water quality. The bottle rinse water/floor wash discharge contains negligible concentrations of contaminants. Further, these waste discharge requirements do not allow degradation of groundwater beneath the leachfield. Groundwater monitoring is proposed to ensure that the discharge of waste does not cause groundwater to contain waste constituents in concentrations statistically greater than background water quality.

The Board, acting as lead agency, adopted a Mitigated Negative Declaration and Mitigation Monitoring and Reporting Program for the Dischargers existing water bottling facility, and the proposed increase from two to three bottling lines, in accordance with the California Environmental Quality Act, Pub. Resources Code section 21000, et seq.). The Board determined that the project, in particular the discharge of bottle rinse/floor wash to the leachfield, would not have a significant effect on the environment. The Board determined there would be a potential short-term construction impact for the leachfield. The Board determined that the Discharger has submitted a NOI to comply with General Order 99-08-DWQ, and updating the SWPPP to include BMP for construction of the leachfield would reduce construction impacts too less than a significant level.

## MONITORING PROGRAM

#### Effluent

The requirements include monitoring for daily flow to the leachfield and monitoring for constituents identified in the Report of Waste Discharge for the effluent. The required weekly frequency for specific conductance, total dissolved solids, pH, COD, and total coliform organisms may be reduced to monthly upon approval of the Executive Officer after one year of monitoring data is submitted. Annual monitoring for priority pollutant metals and organics is required.

#### Groundwater

Four piezometers (shallow groundwater monitoring wells) will be installed within the leachfield to monitor groundwater levels resulting from leachfield operations. The Discharger is proposing to install two down gradient monitoring wells, screened at a depth to monitor the quality of the groundwater resulting from leachfield operations. An existing well located up gradient from the leachfield will be used to monitor background water quality. The locations of the monitoring wells designated MW-1, MW-2, and MW-3 are shown on Attachment B. The requirements prescribe quarterly monitoring for groundwater elevation and the constituents identified in the effluent monitoring program.

# **STORMWATER CONSIDERATIONS**

Stormwater flows are collected and held in two retention basins capable of withstanding a 100-year, 30-minute rainfall event. The retention basins hold water flowing across the impervious portion of the site to contain flows onsite. The basin then drains via a 5-inch pipe, located at the southernmost end of the basin, along a ditch and discharge into the City drainage system, eventually discharging into North Fork Cold Creek. Minimal quantities of fuel, oil, and lubricants associated with truck and passenger vehicle use that could be mobilized by storm flows are contained by a central sand trap prior to water entering the detention basin. The Discharger submitted a NOI dated 23 February 2001 and has obtained coverage under General Industrial Storm Water Permit No. CAS000001. The General Permit requires development and implementation of a SWPPP and a monitoring program to sample stormwater locations. Monitoring would be required of the discharge of storm water from the 5-inch pipe and would include at a minimum total suspended solids, pH, specific conductance, and oil and grease.

7 September 2001

-6-



Secretary for

Environmental

Protection

April 13, 2010 CCDA WATERS LLC

210 SKI VILLAGE DR

JAMES L PETERSON

MT SHASTA, CA 96067

#### State Water Resources Control Board

**Division of Administrative Services** 1001 | Street \* Sacramento, California 95814 \* (916) 341-5247 Mailing Address: P.O. Box 1888 \* Sacramento, California 95812-1888



Governo

State Water Resources Control Board

Division of Administrative Services 1001 | Street \* Sacramento, California 95814 \* (916) 341-5247 Mailing Address: P.O. Box 1888 \* Sacramento, California 95812-1888

Date: 4/13/2010 Facility ID: 5A472001001 Facility Name: CCDA WATERS LLC 210 SKI VILLAGE DR MOUNT SHASTA, CA 96067

Fiscal Year: 2009/10 Invoice Number: WD-0012271 Billing Period: 07/01/09 - 06/30/10 Invoice Date: 12/9/2009 Amount Past Due: \$ 1.226.00 Region: 5R Index Number: 062496

CCDA WATERS LLC JAMES L PETERSON 210 SKI VILLAGE DR MT SHASTA, CA 96067

For details please refer to the original involce

#### NOTICE OF VIOLATION OF WASTE DISCHARGE REQUIREMENTS

THIS IS A FORMAL NOTICE OF VIOLATION on the above delinquent invoice. Our accounting office records indicate that you have failed to pay the required annual fee. Failure to pay the required fee is considered a misdemeanor under California law (Water Code Section 13261) and could result in a civil liability assessment of up to \$1000 per day for each day that fees go unpaid. The Regional Board has been notified of your delinquent account and may issue a complaint that may result in administrative civil liability.

Please note that a transfer of ownership or relocation of a facility requires a new Waste Discharge Permit. If you are no longer discharging, please submit a letter to the regional board requesting termination of your permit.

> If you have any questions about this invoice, please call your Regional Water Quality Control Board at 530-224-4859.

For payment status of your invoice, please go to the "Stormwater and Wastewater Permit Fee Information" link at http://water101.waterboards.ca.gov/dwqdas/feeunit/search/DischargerInvoiceInfo.asp

David Ceccarelli Fee Branch Manager 2

Retain this portion for your records Please detach and return this portion with your payment

Region: 5R

Fiscal Year: 2009/10

Invoice Number: WD-0012271 Index Number: 062496

(Please print the above number on check or money order)

RM # 148456

SWRCB PO BOX 1888 SACRAMENTO, CA 95812-1888

Amount Due: \$ 1.226.00 Billing Period: 07/01/09 - 06/30/10 Invoice Date: 12/9/2009 Facility ID: 5A472001001 Facility Name: CCDA WATERS LLC 210 SKI VILLAGE DR MOUNT SHASTA, CA 96067

CCDA WATERS LLC JAMES L PETERSON

210 SKI VILLAGE DR

MT SHASTA, CA 96067

Loft principal Milessen 4-27-10 Kyd rell 4-28-10 mailor 14 4-20-10

OUE 11930741 MM

NOTICE OF VIOLATION FOR FACILITY ID: 5A472001001

This is a NOTICE OF VIOLATION for failure to pay the required annual fee issued for CCDA WATERS LLC facility, located at 210 SKI VILLAGE DR MOUNT SHASTA, CA. Failure to pay the required fee is a violation under California law (Water Code Section 13261) and could result in criminal prosecution as well as a civil liability assessment of up to \$1000 per day for each day that fees go unpaid and/or rescission of your permit. Failure to comply will make you potentially liable for the full amount of a civil liability assessment from the date of the first invoice in addition to the original invoice amount. The Regional Board that has jurisdiction over your facility has been notified and may issue an Administrative Civil Liability complaint pursuant to Water Code Section 13261.

permit, please call the Regional Board or Fee Unit at the phone number on the attached invoice.

Sincerely.

David Ceccarelli

If you have questions about why you are being regulated or other questions related to the above mentioned

123-97477



April 30, 2013

Ann Macdonald Coca-Cola Refreshments 1551 Atlantic Street Union City, CA 94587

## RE: FOURTH QUARTER 2012 GROUNDWATER MONITORING REPORT THE COCA-COLA COMPANY BOTTLING FACILITY 210 SKI VILLAGE DRIVE MT SHASTA, CALIFORNIA 96067

Ms. Macdonald:

Golder Associates Inc. (Golder) is pleased to present this letter report documenting the results of the fourth quarter 2012 quarterly monitoring event conducted at The Coca-Cola Company (TCCC) Bottling Facility located in Mount Shasta, California.

During operation the spring water bottling facility operated under Waste Discharge Requirements (WDR) No. 5-01-233. The spring water bottling facility ceased operations in late 2010 and groundwater monitoring stopped at that time. TCCC conducted post production monitoring at the site beginning in the fourth quarter 2012.

# 1.0 FOURTH QUARTER 2012 SITE VISIT

Golder representatives (Amy Ha and Robert McCarthy) visited the site on November 13 and 14, 2012. Mr. Frank Christina of TCCC provided access to the various monitoring points including: DEX-1, DEX-3A, the Production Well, Lower Well (MW-1), MW-2, MW-3, two stilling wells (Stream Well, Irrigation Ditch), and the leachfield piezometers (P-1 to P-4). The approximate location of each monitoring point is shown on Figure 1. The site visit activities included downloading data from the electronic dataloggers that record water levels and temperature and collecting groundwater samples. The site activities are detailed in following sections.

# **1.1 Electronic Dataloggers Data Collection**

Electronic dataloggers are installed at monitoring locations DEX1, DEX-3A, the Production Well, Lower Well (MW-1), MW-2, MW-3, and the two stilling wells (Stream Well, Irrigation Ditch). Water levels and water temperatures are recorded at each monitoring point using a combination of Troll 4000<sup>™</sup>, MiniTroll<sup>™</sup>, Level Troll<sup>™</sup>, and Leveloggers<sup>™</sup> electronic dataloggers manufactured by In-Situ<sup>™</sup> and Solinst. Data is downloaded from the dataloggers memory onto a laptop computer using Win-Situ<sup>™</sup> software provided by In-Situ and computer software provided by Solinst. The data is imported into Microsoft Excel® for tabulation and analysis.

The computer cables could not be located to download the data from DEX-1 and DEX-3A. New computer cables could not be obtained from In-Situ because these electronic dataloggers are legacy units and are no longer supported by the company. Data from these monitoring points is not included in this report.

The cumulative temperature and water level data for monitoring points DEX-1, DEX-3A, Irrigation Ditch, Stream Well, Production Well, Lower Well, MW-2 and MW-3 are plotted on graphs in Figures 2 through 11. Table 1 presents a summary of the data collected from each of the monitoring points including the data collection period and observed trends in water levels and groundwater temperatures. The n:\projects\\_2012\123-97477 (tccc mt shasta gw monitoring)\4th quarter 2012\fourth quarter monitoring report-final.docx

Golder Associates Inc. 1000 Enterprise Way, Suite 190 Roseville, CA 95678 USA Tel: (916) 786-2424 Fax: (916) 786-2434 www.golder.com



Golder Associates: Operations in Africa, Asia, Australasia, Europe, North America and South America

transducers were removed from the Lower Well (MW-1), MW-2, and MW-3 quarterly for groundwater sampling. Table 2 lists the dates these wells were sampled. The volume of data from the monitoring points exceeds 100 printed pages. In order to be sustainable and reduce printing and shipping costs, the data has been downloaded onto a compact disc, which is included with the report.

# **1.2 Leachfield Piezometer Inspection**

The leachfield piezometers (P-1 through P-4) were visually inspected for wet areas and groundwater seepage. Golder personnel attempted to record the depth to water using an electric sounder within the leachfield piezometers; however, all of the leachfield piezometers were dry.

# **1.3 Groundwater Sampling**

Groundwater samples were collected from MW-2 and MW-3 during the fourth quarter 2012 monitoring event. A sample could not be collected from the Lower Well (MW-1) because there was not enough water for a laboratory analysis within the well to collect a sample. The sampling procedures are described in detail below.

Prior to purging and sampling the wells, the static water level was measured in the groundwater monitoring wells. The depth-to-water and total depth measurements were collected using an electric sounder with cable markings stamped at a 0.01 foot increments. By using the depth-to-water measurement and the total well depth, the volume of water present in each well casing was calculated. Three casing volumes were purged from each well prior to collecting the groundwater sample. Field measurements for pH, specific conductance, dissolved oxygen (DO), temperature, and turbidity were recorded during purging on field data sheets. Copies of the field data sheets are located in Attachment A.

Down hole dedicated pumps are permanently installed in each well, but a dedicated pump was only used to attempt to purge MW-1 during this event. The sampling systems used to purge the wells during the fourth quarter 2012 sampling event are summarized below:

- **MW-1:** A bailer, 2-inch Grundfos<sup>TM</sup> pump, and the MW-1 dedicated pump were used to attempt to purge MW-1. There was only approximately one foot of water within the well and the well did not recharge sufficiently to compete the purge. Consequently, a groundwater sample was not collected from this location.
- **MW-2:** The MW-2 dedicated pump was functional; however, MW-2 was purged using a 2-inch Grundfos<sup>TM</sup> pump and disposable tubing. Three casing volumes were purged from the well and a groundwater sample was collected.
- **MW-3:** The MW-3 dedicated pump did not function properly and was removed along with the tubing; therefore, a 2-inch Grundfos<sup>TM</sup> pump was used to purge the well. After two casing volumes were purged, the well did not recharge sufficiently within the well to purge the final casing volume. The well was allowed to recharge for approximately 1-hour and a groundwater sample was collected using a disposable bailer.

Groundwater samples from MW-2, MW-3, and a duplicate from MW-2 were transferred into sample containers provided by the laboratory. The sample containers were filled and capped. All sample containers were labeled immediately following sample collection. Water samples were kept cool with ice in insulated coolers until delivery to the laboratory.

Each sample was logged on a chain-of-custody record, which accompanied the samples through collection and delivery to the analytical laboratory. The samples were delivered to Basic Laboratory located in Redding, California. Basic Laboratory analyzed the groundwater samples for Total Coliform, COD, TDS, Specific Conductance, pH and priority pollutants. Copies of the analytical results are located in Attachment B.

The 4Q2012 results were detected below the drinking water limits set by the United States Environmental Protection Agency (EPA) maximum contaminant levels (MCLs) and the secondary drinking water



standards, with the exception of Bis(2-ethylhexyl)phthalate (DEPH). There was a detection of DEPH in MW-3 during the fourth quarter 2012 sampling event. DEPH is a plasticizer that is commonly found in polyvinyl chloride (PVC). The dedicated pump and PVC tubing was removed from MW-3 because the pump was not functioning. The detection of DEPH may be attributed to the disturbance of the PVC tubing within the well casing. The analytical results and associated MCLs or secondary drinking water standards are summarized in Table 3.

# 2.0 PROPOSED ACTIVITIES FOR THE FIRST QUARTER 2013

- TCCC will repair the dedicated pump in MW-3 for future sampling events;
- Golder and TCCC will continue to trouble shoot a solution to obtain data from DEX-1 and DEX-3A;
- Golder will conduct the First Quarter 2013 data download in March 2013. Golder will contact Frank Christina to schedule our site visit;
- Golder will import the groundwater data (water levels and temperatures) collected during each quarterly visit into a Microsoft Excel® spreadsheet and produce graphs for each monitoring point showing fluctuations in water levels and temperature;
- Golder will submit a draft quarterly report to TCCC at a minimum of 10 days prior to the report deadline. Golder will incorporate any proposed revisions to the draft and will submit a final version to TCCC for submission to the Regional Water Quality Control Board on May 1, 2013; and,

Golder Associates appreciates the opportunity provide environmental services to The Coca-Cola Company on this project. Please contact us if you have any questions or require additional information (916) 786-2424.

GOLDER ASSOCIATES INC

Amy Ha, P.E. Senior Project Engineer

Stephen T. Loftholm, P.G. Senior Consultant/Associate

- Attachments: Table 1 Summary of Cumulative Data from CCDA Monitoring Points
  - Table 2 CCDA Quarterly Groundwater Sampling Events

     Table 3 Fourth Quarter 2012 Groundwater Sampling Results

Figure 1 - Well Location Map Figure 2 - Well DEX-1 Water Level and Temperature Data Figure 3 - Well DEX-3A Water Level and Temperature Data Figure 4 - Stream Well Water Level and Temperature Data (2002-2007) Figure 5 - Irrigation Ditch Water Level and Temperature Data (2008-Present) Figure 6 - Irrigation Ditch Water Level and Temperature Data (2008-Present) Figure 7 - Production Well Water Level and Temperature Data (2002-2003) Figure 8 - Lower Well Water Level and Temperature Data (2006-Present) Figure 9 - Lower Well Water Level and Temperature Data (2006-Present) Figure 10 - MW-2 Water Level and Temperature Data Figure 11 - MW-3 Water Level and Temperature Data

Attachment B – Analytical Laboratory Results

Compact Disk with Cumulative Monitoring Data



| Well                 | Data Collection<br>Period                           | Water Level Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Water Temperature<br>Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments                                                                                                                                                                                                                                    |
|----------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEX-1<br>(Figure 2)  | August 1998 to<br>December<br>2008,November<br>2012 | Water levels have continued to<br>increase (with seasonal fluctuation)<br>approximately 1.4 feet since the<br>lowest water level was measured in<br>March 2000. The highest water levels<br>typically occur in September and<br>October and the lowest in January<br>through March. Water levels declined<br>between December 2005 and July<br>2006 but have since rebounded to<br>match the historical high water level<br>measured in 2005. The magnitude of<br>the seasonal water level fluctuations<br>vary and range from approximately<br>0.2 feet to over 1.20 feet.                                                                                                                                                                                                                                                                                                                                              | Water temperatures were<br>stable from September<br>1998 through February<br>2000 and then increased<br>approximately 0.2°C.<br>Water temperatures<br>remained stable (with<br>some seasonal<br>fluctuations) from<br>approximately April 2000<br>through January 2003.<br>Water temperatures have<br>since increased in a step-<br>wise manner with<br>temperatures increasing<br>from 0.1°C to 0.3°C<br>annually.                                                                                                                                                                | Data could not<br>be downloaded<br>from this<br>transducer<br>because the<br>computer data<br>cable was lost<br>after the plant<br>shut down and<br>computer<br>cables are no<br>longer<br>manufactured<br>for this model<br>of datalogger. |
| DEX-3A<br>(Figure 3) | August 1998 to<br>present                           | Water levels generally declined from<br>approximately August 1998 (date data<br>was first collected) through April 2001.<br>Water levels rebounded beginning in<br>April 2001 and generally increased<br>through October 2003. The highest<br>recorded water levels measured in<br>DEX-3A occurred in October 2003.<br>Water levels have fluctuated<br>seasonally November 2003 through<br>October 2005. Water levels declined<br>approximately 4.0 feet beginning in<br>approximately October 2005 and<br>extending through March 2007.<br>Water levels have since increased<br>approximately 2.0 feet and Stabilized<br>in October 2007.<br>The plot shows a 1-foot increase in<br>water level on December 11, 2007<br>because the transducer was removed<br>from the well and reinstalled at a<br>slightly different elevation to change<br>the battery. Since December 2007,<br>water levels increased approximately | Water temperature has<br>increased approximately<br>0.07°C from September<br>1998. Between April and<br>June 2006, temperatures<br>spiked approximately<br>0.48°C to their highest<br>recorded temperatures.<br>The reason for this<br>anomalous spike has not<br>been determined. Water<br>temperatures decreased<br>rapidly after June 2006<br>and have stabilized at<br>approximately 0.5°C above<br>the pre-peak levels.<br>The temperature curve<br>shows a large spike on<br>December 11, 2008 when<br>the transducer was<br>removed from the well to<br>change the battery. | Data could not<br>be downloaded<br>from this<br>transducer<br>because the<br>computer data<br>cable was lost<br>after the plant<br>shut down and<br>computer<br>cables are no<br>longer<br>manufactured<br>for this model<br>of datalogger. |

TABLE 1. Summary of Cumulative Data from CCDA Monitoring Points



| Well                              | Data Collection<br>Period                                      | Water Level Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water Temperature<br>Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stream<br>Well<br>(Figure 4)      | May 2002 to May<br>2003, and<br>October 2003 to<br>present.    | The water level data collected from a stilling well, installed (Stream Well) downstream from the spring, shows a general consistent water level of 1.25 feet with seasonal variations of approximately 0.2 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temperature fluctuations<br>of approximately 3.0°C are<br>apparent between the<br>summer and winter<br>months. Accounting for<br>seasonal differences,<br>water temperatures have<br>remained generally stable.                                                                                                                                                                                                                                                                                                               | No data was<br>collected from<br>8/12/07 to<br>9/21/07 due to<br>a battery failure<br>in the<br>transducer.<br>No data was<br>collected from<br>01/09/12 to<br>November<br>2012 due to a<br>battery failure<br>in the<br>transducer. A<br>new battery<br>was installed in<br>November<br>2012.                                                           |
| Irrigation<br>Ditch<br>(Figure 5) | May 2002 to July<br>2003 and<br>October 2003 to<br>August 2007 | Water levels in a stilling well (Irrigation<br>Ditch) installed in an irrigation ditch<br>near the western boundary of the city<br>park has exhibited quite a bit of<br>fluctuation (probably in response to<br>seasonal irrigation needs). Water<br>levels dropped approximately 2.8 feet<br>on May 15, 2006 and an additional<br>0.9 feet on September 11, 2006. In<br>between these dates, the water levels<br>appear to exhibit the typical seasonal<br>fluctuations observed at this<br>monitoring point. These sudden<br>fluctuations suggest that the flow rate<br>through the irrigation ditch was altered<br>by upstream activities. Since<br>September 2006, the water levels<br>have exhibited fluctuations of<br>approximately 0.5 feet. | Temperatures exhibit a<br>seasonal decline of<br>approximately 1.5°C<br>during the winter months.<br>The temperatures were<br>approximately 0.5°C<br>higher during the winter of<br>2007 than previous<br>winters; the 2007 summer<br>water temperatures were<br>consistent with previous<br>summer water<br>temperatures.<br>The elevated temperature<br>reading recorded on<br>November 13, 2012 was<br>recorded when the<br>transducer was removed<br>from the water and is not<br>representative of water<br>temperature. | The transducer<br>in the irrigation<br>ditch well was<br>vandalized<br>during the<br>Third Quarter<br>2007. As a<br>result, no data<br>was collected<br>from August<br>15, 2007<br>through July<br>22, 2008 after<br>a new<br>transducer was<br>reinstalled and<br>re-secured.<br>The data from<br>the new<br>transducer is<br>presented in<br>Figure 6. |

# TABLE 1. Summary of Cumulative Data from CCDA Monitoring Points



| Well                                         | Data Collection<br>Period   | Water Level Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water Temperature<br>Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments                                                                                                                                                                                                                                                                  |
|----------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Irrigation<br>Ditch<br>(Figure 6)            | July 2008 to<br>present     | Water level shows considerable<br>scatter and variance. Typical water<br>level fluctuations to approximately one<br>foot, which suggests variable<br>volumetric flow in the irrigation ditch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Water temperature<br>remains relatively stable at<br>7.0°C with seasonal<br>fluctuations of<br>approximately 0.5°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A new<br>transducer was<br>installed and<br>re-secured on<br>July 22, 2008.<br>The irrigation<br>ditch well<br>casing was<br>discovered<br>damaged again<br>in December<br>2008. The data<br>indicates the<br>irrigation ditch<br>well was<br>damaged in<br>October 2008. |
| Production<br>Well (DEX-<br>6)<br>(Figure 7) | February 2004 to<br>present | From 2004 to 2010, water levels show<br>daily fluctuations of approximately 0.5<br>foot. Seasonal fluctuations vary<br>approximately from 0.5 to 1.0 feet.<br>with the highest water levels typically<br>observed in March and the lowest<br>during September.<br>Since closure of the water bottling<br>facility in December 2012, daily water<br>level fluctuations were not observed.<br>Seasonal water level fluctuations<br>ranged from approximately 0.5 to 1.0<br>feet.<br>In August 2012, the water level<br>dropped to zero for five days and<br>remained stable at approximately 31.8<br>feet. This anomaly is associated with<br>the work conducted to the pump<br>house and pumping tests performed<br>during this time frame. | From 2004 to 2010, daily<br>water temperatures<br>fluctuate as much as<br>0.40°C, but generally<br>temperatures remained<br>stable at approximately<br>8.1°C.<br>Since closure of the plant<br>in December 2010, daily<br>water temperature<br>fluctuations were not<br>observed. Water<br>temperatures remained<br>stable at approximately<br>7.8°C.<br>In August 2012, the water<br>temperature increased to<br>18.5°C for five days and<br>dropped back down to<br>approximately 7.8°C. This<br>anomaly is associated with<br>the work conducted to the<br>pump house and pumping<br>tests performed during this<br>time frame. |                                                                                                                                                                                                                                                                           |

# TABLE 1. Summary of Cumulative Data from CCDA Monitoring Points



| Well                                                  | Data Collection<br>Period                                   | Water Level Trends                                                                                                                                                                                                                                     | Water Temperature<br>Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower Well<br>(MW-1)<br>(Figure 8<br>and<br>Figure 9) | May 2002 to<br>December 2003<br>and July 2006 to<br>present | Water levels show seasonal<br>fluctuations of approximately 2 to 5<br>feet with an average water level of<br>approximately 5 feet. The highest<br>water levels typically occur in January<br>through March and the lowest in<br>September and October. | Temperatures decreased<br>approximately one degree<br>between May through<br>November 2002. Since<br>then (through the end of<br>the recording cycle in July<br>2006), water temperatures<br>remained generally stable.<br>Temperatures have<br>fluctuated approximately<br>0.8°C since July 2006.<br>Temperatures spiked on<br>11/14/06, 1/23/07, and<br>5/21/07, 11/7/07, 3/26/08,<br>11/13/08, and 11/13/12<br>coinciding with<br>groundwater monitoring<br>and sampling events.<br>Temperatures dropped in<br>April 2011 and March 2012<br>corresponding to increases<br>in water levels. | Datalogger<br>removed from<br>well during<br>Fourth Quarter<br>2003.<br>Datalogger<br>reinstalled<br>during Second<br>Quarter 2006.<br>CCDA<br>removes the<br>transducer<br>quarterly for<br>sampling; the<br>change in<br>water levels<br>may be due to<br>the transducer<br>installed at a<br>different<br>elevation after<br>sampling. |

| TABLE 1 Summar  | w of Cumulative Date | from CCDA Monito   | vina Dointe |
|-----------------|----------------------|--------------------|-------------|
| TABLE 1. Summar | y of Cumulative Data | a from CCDA Monito | ing Points  |



| Well                | Data Collection<br>Period | Water Level Trends                                                                                                                                                                                                                                       | Water Temperature<br>Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comments                                                                                                                                                                                                                                                        |
|---------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MW-2<br>(Figure 10) | July 2006 to<br>present   | Water levels show seasonal<br>fluctuations of approximately 5 to 10<br>feet with an average water level of<br>approximately 10 feet. The highest<br>water levels typically occur in January<br>through March and the lowest in<br>September and October. | Temperatures fluctuate<br>from approximately 0.5°C<br>to 2.8°C due to seasonal<br>fluctuations, peaking in<br>March at 9.4°C to 11.8°C<br>and colder temperatures<br>typically observed in<br>September from 9.4°C to<br>10.0°C.<br>The temperature dropped<br>approximately 3°C on<br>January 4, 2008. The<br>reason for the drop in<br>temperature is unknown<br>and may be attributed to a<br>transducer malfunction.<br>Temperatures spiked on<br>11/13/12 coinciding with<br>groundwater monitoring<br>and sampling events. | Datalogger<br>installed during<br>Second<br>Quarter 2006.<br>CCDA<br>removed the<br>transducer<br>quarterly for<br>sampling; the<br>change in<br>water levels<br>may be due to<br>the transducer<br>installed at a<br>different<br>elevation after<br>sampling. |

# TABLE 1. Summary of Cumulative Data from CCDA Monitoring Points



| Well                | Data Collection<br>Period | Water Level Trends                                                                                                                                                                                                                                                                                                                                                                                                                     | Water Temperature<br>Trends                                                                                                                                                                                                                                                                                                                                                                                                                              | Comments                                                                                                                                                                                                                                                                                                                    |
|---------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MW-3<br>(Figure 11) | July 2006 to<br>present   | Water levels show seasonal<br>fluctuations of approximately 2 to 6<br>feet with an average water level of<br>approximately 2 feet. The highest<br>water levels typically occur in January<br>through March and the lowest in<br>September and October.<br>Water levels spiked on 9/25/06,<br>10/3/06, 11/14/06, 1/23/07, 5/21/07,<br>8/15/07, 10/29/07,11/7/07, 3/12/08,<br>4/30/08 coinciding with monitoring<br>and sampling events. | Temperature data reveals<br>seasonal fluctuations of<br>approximately 0.2°C since<br>July 2006. A general<br>cooling trend of<br>approximately 0.2°C is<br>observed from the peak in<br>2011 until present day.<br>Temperature spikes on<br>9/25/06, 10/3/06, 11/14/06,<br>1/23/07, 5/21/07, 8/15/07,<br>10/29/07, 11/7/07, 3/12/08,<br>04/30/08, 8/6/08, 11/13/08,<br>and 11/13/2012 coincide<br>with groundwater<br>monitoring and sampling<br>events. | Datalogger<br>installed during<br>Second<br>Quarter 2006<br>CCDA<br>removed the<br>transducer<br>quarterly for<br>sampling; the<br>change in<br>water levels<br>may be due to<br>the transducer<br>installed at a<br>different<br>elevation after<br>sampling.<br>Dedicated<br>pump removed<br>in 4Q2012 for<br>inspection. |

TABLE 1. Summary of Cumulative Data from CCDA Monitoring Points



# Table 2Quarterly Groundwater Sampling EventsTCCC Mt. Shasta Bottling Facility123-97477

| Year | Sampling Event        | Date               |  |  |  |
|------|-----------------------|--------------------|--|--|--|
| 2012 | Fourth Quarter/Annual | November 14, 2012  |  |  |  |
|      | Fourth Quarter/Annual | November 3, 2010 & |  |  |  |
|      | Fourth Quarter/Annual | November 4, 2010   |  |  |  |
| 2010 | Third Quarter         | NS                 |  |  |  |
|      | Second Quarter        | June 15, 2010      |  |  |  |
|      | First Quarter         | March 26, 2010     |  |  |  |
|      | Fourth Quarter/Annual | December 2, 2009   |  |  |  |
|      | Maintenance           | September 24, 2009 |  |  |  |
| 2009 | Third Quarter         | September 22, 2009 |  |  |  |
|      | Second Quarter        | June 22, 2009      |  |  |  |
|      | First Quarter         | March 30, 2009     |  |  |  |
|      | Fourth Quarter        | November 13, 2008  |  |  |  |
| 2008 | Third Quarter         | August 6, 2008     |  |  |  |
| 2000 | Second Quarter        | April 30, 2008     |  |  |  |
|      | First Quarter         | March 12, 2008     |  |  |  |
|      | Annual                | October 29, 2007   |  |  |  |
|      | Fourth Quarter        | November 7, 2007   |  |  |  |
| 2007 | Third Quarter         | August 15, 2007    |  |  |  |
|      | Second Quarter        | May 21, 2007       |  |  |  |
|      | First Quarter         | January 23, 2007   |  |  |  |
|      | Fourth Quarter        | November 14, 2006  |  |  |  |
| 2006 | Third Quarter         | July 14, 2006      |  |  |  |
|      | Second Quarter        | June 5, 2006       |  |  |  |

Notes:

NS - Not Sampled

| Table 3                                          |  |  |  |  |
|--------------------------------------------------|--|--|--|--|
| Fourth Quarter 2012 Groundwater Sampling Results |  |  |  |  |
| TCCC Mt. Shasta Bottling Facility                |  |  |  |  |
| 123-97477                                        |  |  |  |  |

|                                   | 123-97    |         |          |         |          |          |             | USEPA                    |
|-----------------------------------|-----------|---------|----------|---------|----------|----------|-------------|--------------------------|
|                                   |           |         |          |         |          |          |             | Drinking                 |
| Analyte                           | Units     | MW      | -2       | MW-2    | (DUP)    | мм       | /-3         | Water Limit <sup>1</sup> |
| Hardness                          | mg/l      | 42      |          | 38      | . ,      | 114      |             |                          |
| рН                                | pH Units  | 6.91    |          | 6.96    |          | 8.14     |             | 6.5 to 8.5               |
| Specific Conductance              | umhos/cm  | 116     |          | 116     |          | 384      |             |                          |
| Total Dissolved Solids            | mg/l      | 120     |          | 126     |          | 261      |             | 500                      |
| Chemical Oxygen Demand            | mg/l      | 7       |          | ND      |          | 28       |             |                          |
| Cyanide-Total <sup>2</sup>        | ug/l      | ND      |          | ND      |          | ND       |             | 200                      |
| Total Coliforms                   | MPN/100ml | <2      |          | <2      |          | <2       |             | 5%                       |
| Antimony                          | ug/l      | ND      |          | ND      |          | 0.6      |             | 6                        |
| Arsenic                           | ug/l      | ND      |          | ND      |          | 0.4      | J           | 10                       |
| Beryllium                         | ug/l      | ND      |          | ND      | R-08     | ND       |             | 4                        |
| Cadmium                           | ug/l      | ND      |          | ND      |          | ND       |             | 5                        |
| Chromium                          | ug/l      | 0.4     | J        | 2       | R-08, J  | 1.2      |             | 100                      |
| Chromium, Hexavalent              | ug/l      | ND      |          | ND      |          | ND       | R-08        |                          |
| Chromium, Trivalent               | ug/l      | ND      |          | ND      |          | ND       |             |                          |
| Copper                            | ug/l      | 0.5     |          | 0.8     | R-08, J  | 9.9      |             | 1,000                    |
| Lead                              | ug/l      | ND      |          | 0.2     | J        | 6.8      |             | 15                       |
| Mercury                           | ug/l      | 0.00042 | J        | 0.00053 |          | 0.0105 0 | QC-08, R-08 | 2                        |
| Mercury Field Blank               | ug/l      | 0.00033 | J        | ND      |          | ND       |             |                          |
| Nickel                            | ug/l      | 0.3     | J, QR-04 | ND      | QR-04, J | 1.8      | QR-04       |                          |
| Selenium                          | ug/l      | ND      |          | ND      |          | ND       |             | 50                       |
| Silver                            | ug/l      | ND      |          | ND      |          | ND       |             | 100                      |
| Thallium                          | ug/l      | ND      |          | ND      |          | ND       |             | 2                        |
| Zinc                              | ug/l      | 2.3     | QR-04    | 3.4     | QR-04    | 211      | QR-04       | 5,000                    |
| VOCs                              |           |         |          |         |          |          |             |                          |
| Benzene                           | ug/l      | ND      |          | ND      |          | 0.13     | J           | 5                        |
| Chlorobenzene                     | ug/l      | ND      |          | ND      |          | 0.06     | J           | 100                      |
| Naphthalene                       | ug/l      | 0.07    | J        | 0.07    | J        | 0.08     | J           |                          |
| Toluene                           | ug/l      | ND      |          | ND      |          | 0.07     | J           | 1,000                    |
| All other VOCs not detected       |           |         |          |         |          |          |             |                          |
| SVOCs <sup>1</sup>                |           |         |          |         |          |          |             |                          |
| Bis(2-ethylhexyl)phthalate (DEPH) | ug/l      | ND      |          | ND      |          | 250      | R-01        | 6                        |
| Phenol                            | ug/l      | ND      |          | ND      |          | 0.6      | J           |                          |
| All other SVOCs not detected      | <u> </u>  |         |          |         |          |          |             |                          |
| PESTICIDES                        |           |         |          |         |          |          |             |                          |
| All pesticides not detected       |           |         |          |         |          |          |             |                          |

Notes:

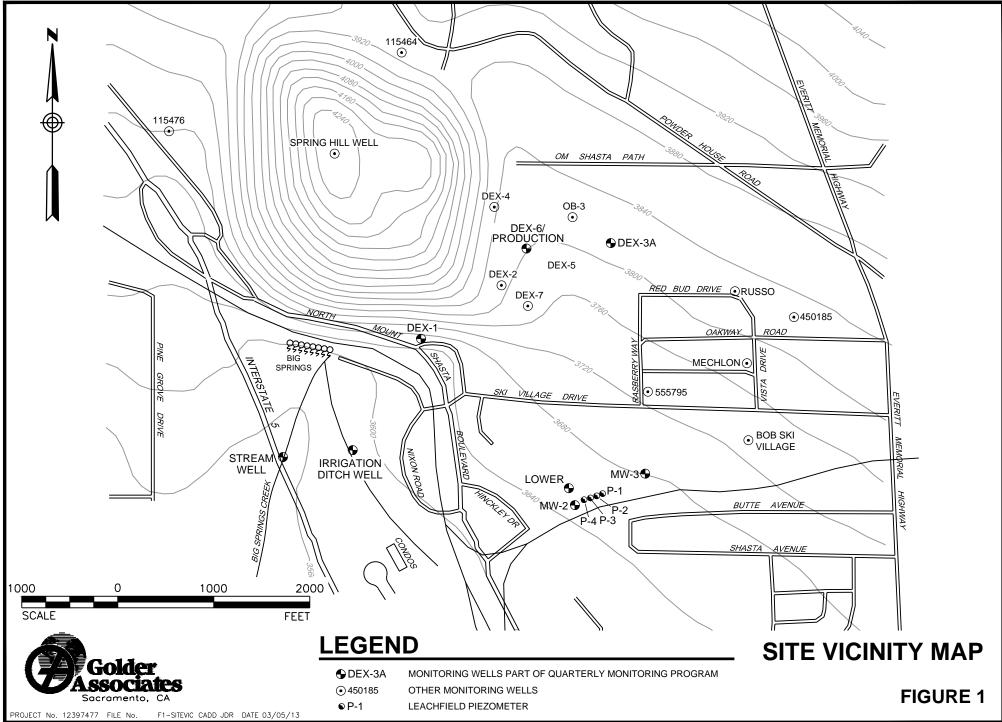
ND - Analyte not detected at or above the detection limit.

J-Detected but below the Reporting Limit; therefore, result is an estimated concentration.

QR-04 - Duplicate results are within one reporting limit and pass all necessary QC criteria.

QM-05 - The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

R-01 - The reporting limit and detection limit for this analyte have been raised due to necessary sample dilution.


R-08 - The sample was diluted due to sample matrix resulting in elevated reporting limits.

QC-08 - An increased concentration of BrCI was necessary to fully oxidize this sample. As required by EPA 1631E, a laboratory method blank containing the additional BrCI was analyzed with the sample.

1. USEPA drinking water limits include maximum contaminant limits (MCLs) and secondary drinking water standards. Secondary drinking water standards are listed for pH, TDS, Copper, Silver, & Zinc. All the remaining limits shown are MCLs.

2. No more than 5.0% samples total coliform-positive in a month. (For water systems that collect fewer than 40 routine samples per month, no more than one sample can be total coliformpositive per month.) Every sample that has total coliform must be analyzed for either fecal coliform or E. coli if two consecutive TC-positive samples, and one is also positive for E. coli fecal coliforms, system has an acute MCL violation. FIGURES





56 8.0 7.9 55 Depth of Water from Top of Casing (ft) 7.8 m 54 7.7 Temperature (°C) 7.6 53 7.5 52 7.4 51 7.3 Ш ᠾ᠇ᡙ Water Level Temperature 50 7.2 May-99 Apr-04 Apr-07 May-98 Apr-00 Apr-01 Apr-02 Apr-03 Apr-05 Apr-06 Apr-08 Apr-09

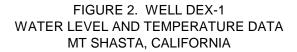



FIGURE 3. WELL DEX-3A WATER LEVEL AND TEMPERATURE DATA MT SHASTA, CALIFORNIA

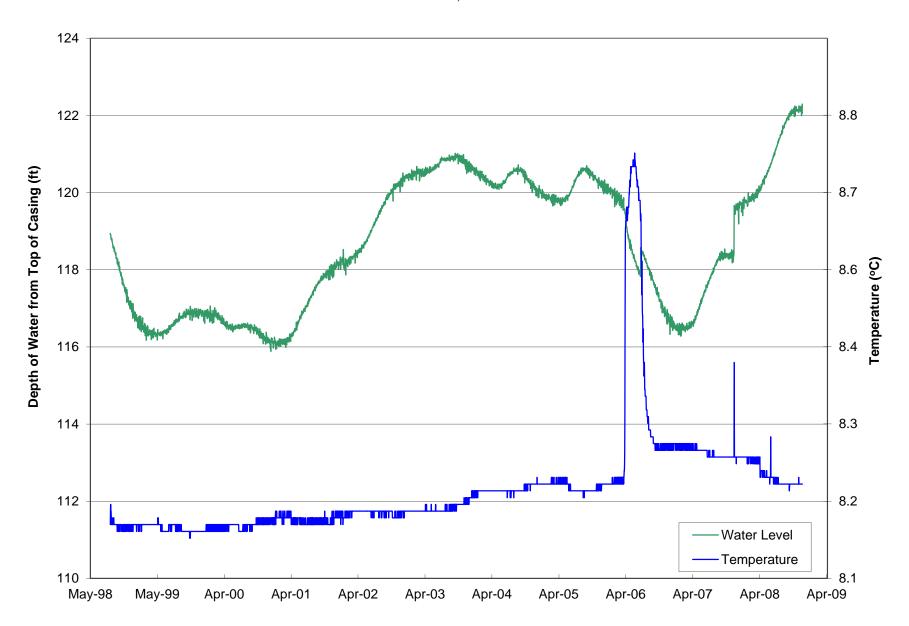



FIGURE 4. STREAM WELL WATER LEVEL AND TEMPERATURE DATA MT SHASTA, CALIFORNIA

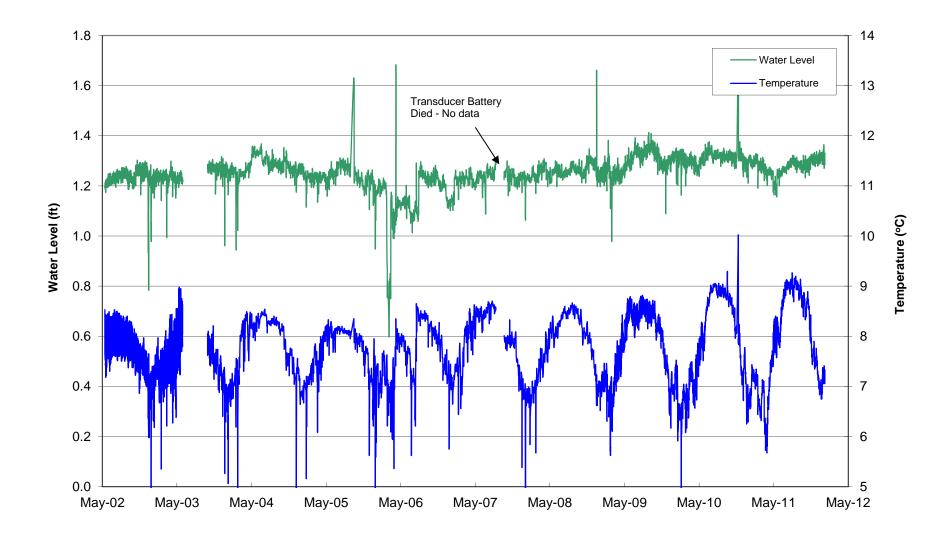



FIGURE 5. IRRIGATION DITCH WELL WATER LEVEL AND TEMPERATURE DATA 2002 - 2007 MT SHASTA, CALIFORNIA

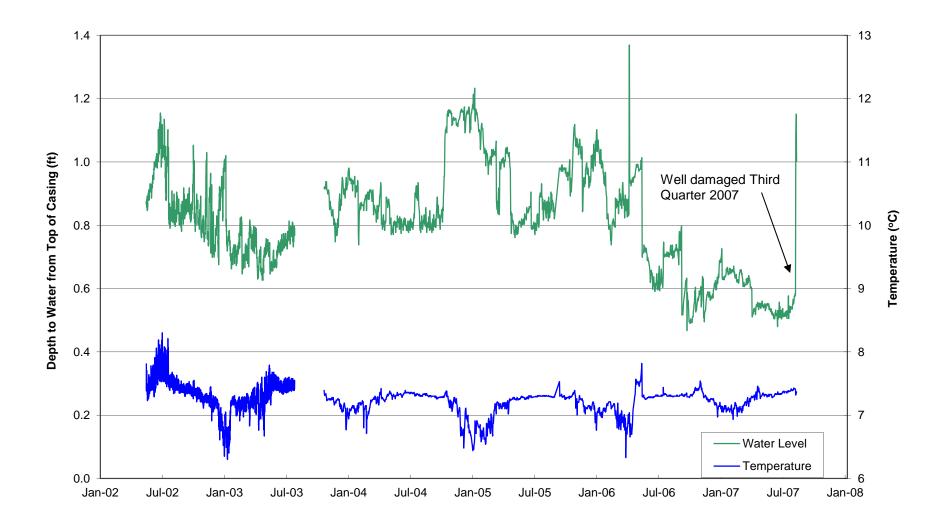



FIGURE 6. IRRIGATION DITCH WELL WATER LEVEL AND TEMPERATURE DATA JULY 2008 - PRESENT MT SHASTA, CALIFORNIA

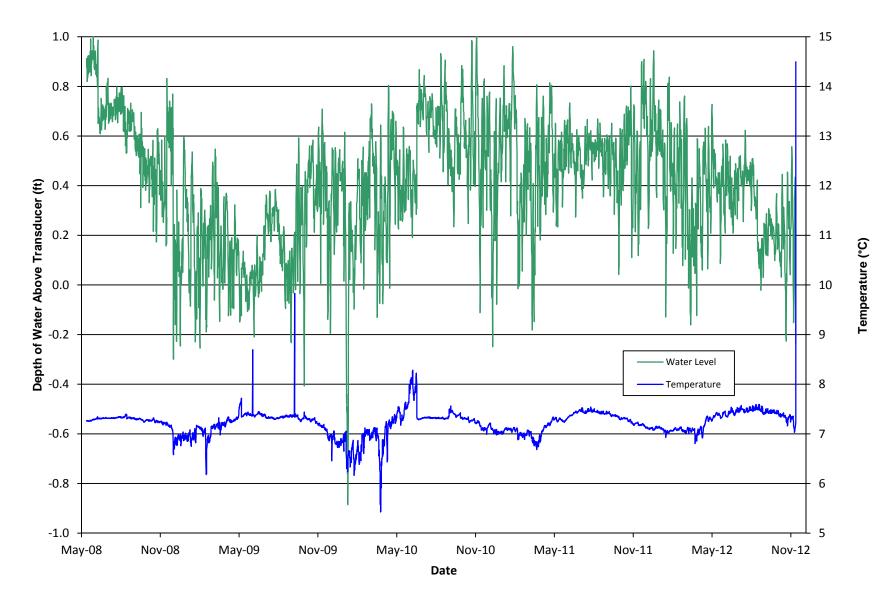
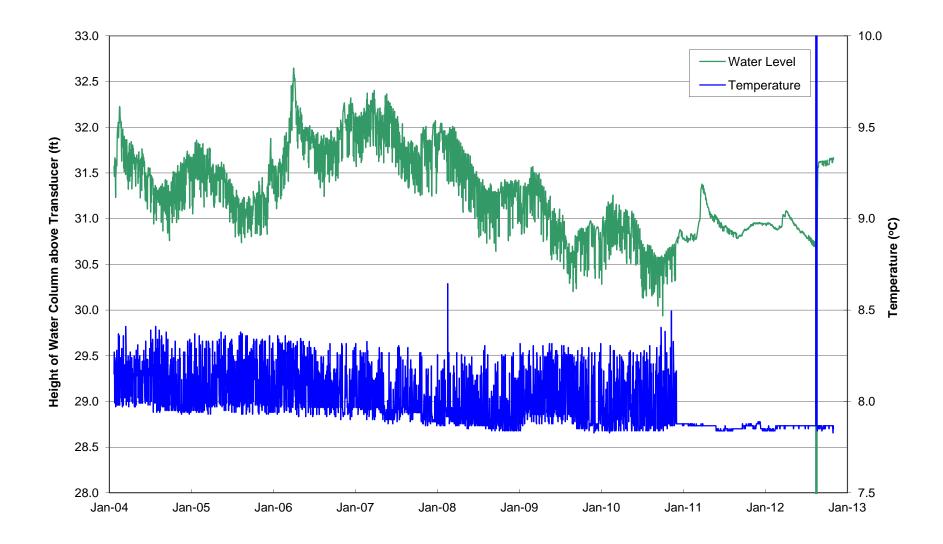




FIGURE 7. PRODUCTION WELL (DEX-6) WATER LEVEL AND TEMPERATURE DATA MT SHASTA, CALIFORNIA



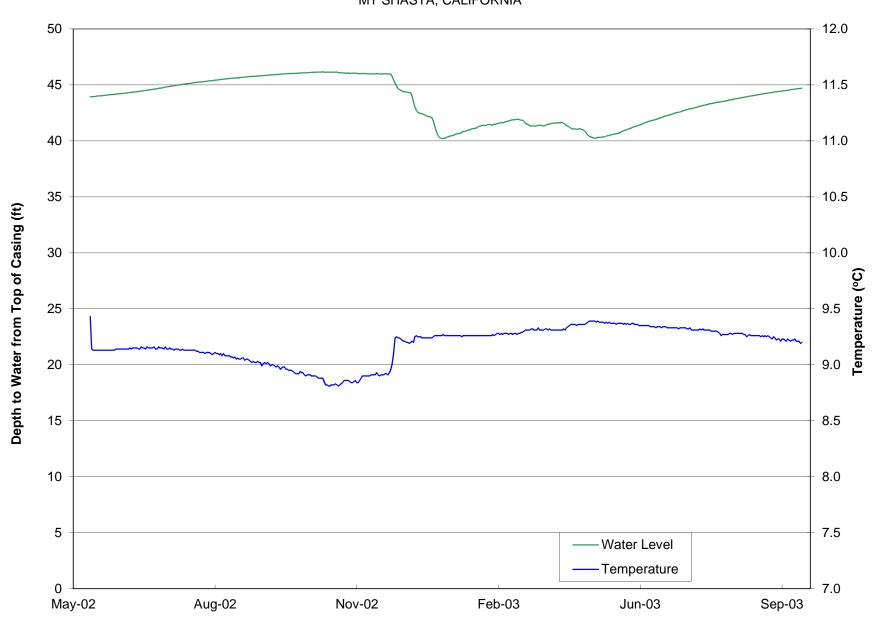



FIGURE 8. LOWER WELL (MW-1) WATER LEVEL AND TEMPERATURE DATA 2002 - 2003 MT SHASTA, CALIFORNIA

FIGURE 9. LOWER WELL (MW-1) WATER LEVEL AND TEMPERATURE DATA 2006 - PRESENT MT SHASTA, CALIFORNIA

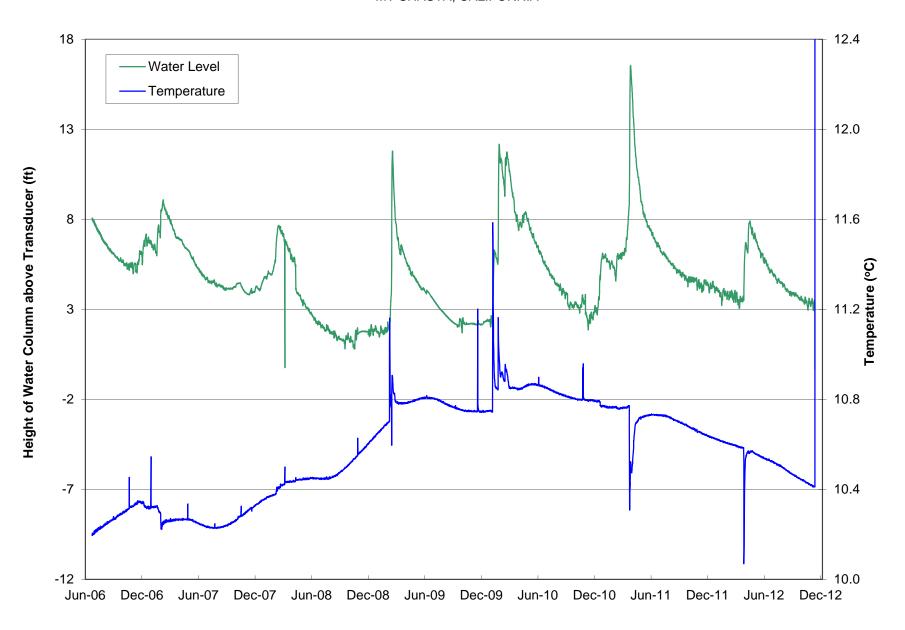



FIGURE 10. MW-2 WATER LEVEL AND TEMPERATURE DATA MT SHASTA, CALIFORNIA

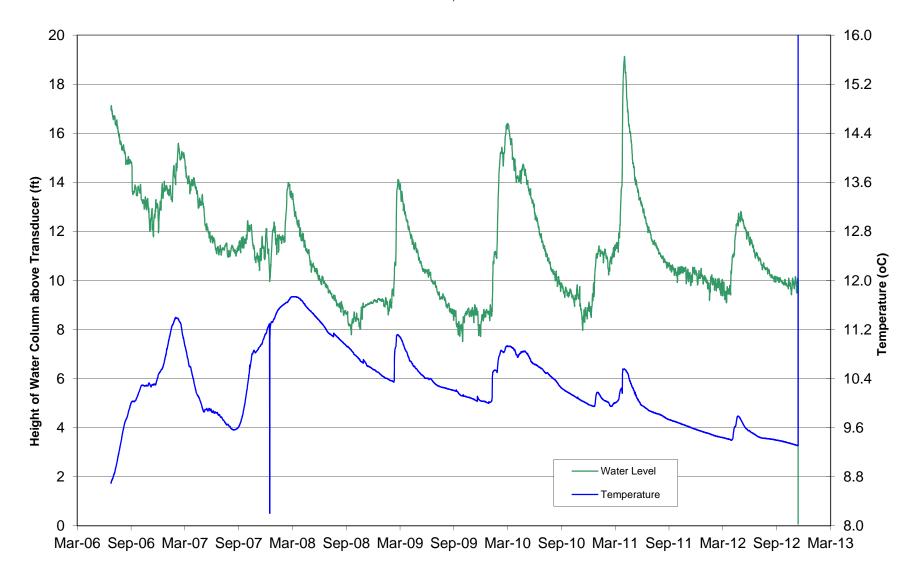
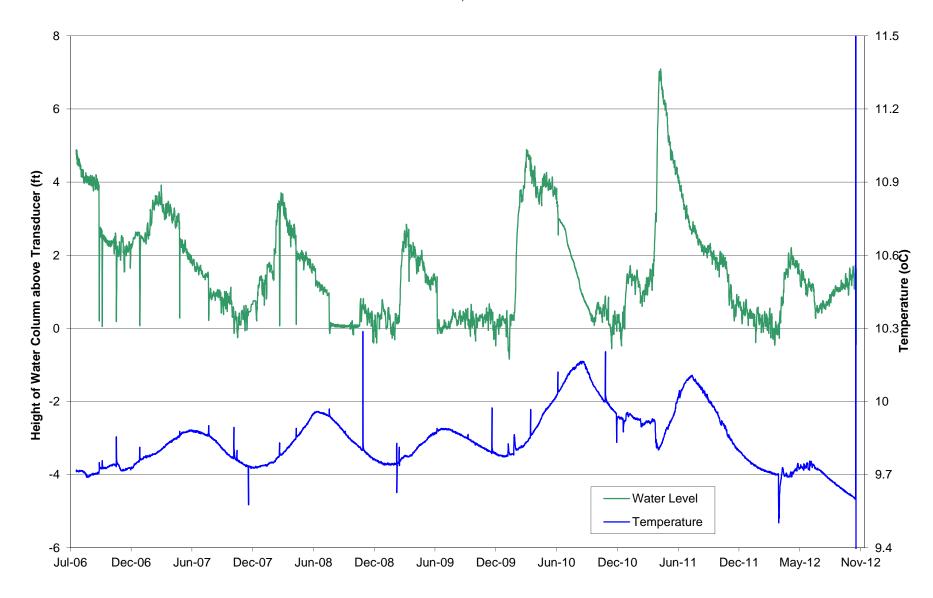




FIGURE 11. MW-3 WATER LEVEL AND TEMPERATURE DATA MT SHASTA, CALIFORNIA



# ATTACHMENT A FIELD DATA SHEETS

# WATER LEVEL DATA SHEET

Project: SHASTA

Project No.: 123-91-17

Date(s): Muyliz

Technician: Q. MCCARrwy

| Weather: {             | juniny +          | Cool |       |       |          | Sounder #: | 35330                                                                                                           |
|------------------------|-------------------|------|-------|-------|----------|------------|-----------------------------------------------------------------------------------------------------------------|
| Well                   | Date              | Time | DTW   | Well  | Measured |            | Comments                                                                                                        |
|                        | 3                 |      | (TOC) | Depth | by       |            | an and the second se |
| 100-Z                  | 11/14/12          |      | 40.61 | 48.02 |          |            |                                                                                                                 |
| 20002(100.1)           | 7                 | 1110 | 46.55 | 47.60 | Ray      |            |                                                                                                                 |
| 9.0000(140.1)<br>410-3 | $\langle \rangle$ | 1246 | 46.55 | 50.1  | Rom      |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      | ļ     |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            | 649 - 1                                                                                                         |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   | r    |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          | /m         |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |
|                        |                   |      |       |       |          |            |                                                                                                                 |

**NOTES:** 





# WATER SAMPLE FIELD DATA

| CASING DIAMETER (OD-inches): $3/4$ 1<br>GALLONS PER LINEAR FOOT : (0.02) (0.04)<br>Well Total Depth (ft): $47.6$<br>Depth to Water (ft): $46.55$<br>Height of Water Column (ft): $1.05$<br><b>PURGE:</b><br>Device (Depth of Intake from TOC): Disp. Bailer<br>Bladder Pump Electric Submersible Pump $4$<br>Purge Water Containment: | SAMPLED BY:       P. IlCch2rry         Leachate       Other         2       4       K       4.5       6       8       Other         (0.17)       (0.66)       (0.83)       (1.5)       (2.6)         Volume in Casing (gal):       0       -       2       -       2       - |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field QC Samples Collected: EB FB DUF                                                                                                                                                                                                                                                                                                 | I ime:Other                                                                                                                                                                                                                                                                  |
| Time Volume Temp. EC p<br>(2400 Hr) (gallons) (°C) (μmhos/cm) (std.                                                                                                                                                                                                                                                                   | oH Color Turbidity<br>units) (visual) (visual) Other Observation                                                                                                                                                                                                             |
| <u>PNSUPPICEEUM</u> WATER TO Partice                                                                                                                                                                                                                                                                                                  | <u>Stmple</u>                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                              |
| <u> </u>                                                                                                                                                                                                                                                                                                                              | Purge Qate:                                                                                                                                                                                                                                                                  |
| SAMPLE:<br>Device (Depth of Intake from TOC): Disp. Bailer<br>Bladder PumpElectric Submersib                                                                                                                                                                                                                                          | Peristaltic Pump Centrifugal Pump<br>le Pump Dedicated Other                                                                                                                                                                                                                 |
| Time Temp. EC oH<br>(2400 Hr) (°C) (μmhos/cm) (std. bc                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                              |
| Sheen: Odor:                                                                                                                                                                                                                                                                                                                          | Sample Date:                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                       | Campio Dato.                                                                                                                                                                                                                                                                 |
| Field Measurement Devices: Horiba: YSI:                                                                                                                                                                                                                                                                                               | Oakten Turbidity: Other:                                                                                                                                                                                                                                                     |
| Meter Calibration Date: Time:                                                                                                                                                                                                                                                                                                         | Oakton Turbidity: Other:<br>Location: Ins. #                                                                                                                                                                                                                                 |
| Meter Calibration Date:         Time:           pH 4: (/@C) pH 7: (/_                                                                                                                                                                                                                                                                 | Oakten Turbidity: Other:<br>Location: Ins. #<br>@°C) pH 10: (/@°C)                                                                                                                                                                                                           |
| Meter Calibration Date:         Time:           pH 4: (/@C) pH 7: (/_           D.O. (/@100%)                                                                                                                                                                                                                                         | Oakten Turbidity: Other:<br>Location: Ins. #<br>@°C) pH 10: (/@°O)<br>/μmhos/cm@25°O)                                                                                                                                                                                        |
| Meter Calibration Date:         Time:           pH 4: (/@C) pH 7: (/_           D.O. (/@100%)                                                                                                                                                                                                                                         | Oakten Turbidity: Other:<br>Location: Ins. #<br>@°C) pH 10: (/@°C)                                                                                                                                                                                                           |
| Meter Calibration Date:         Time:           pH 4: (/@C) pH 7: (/_           D.O. (/@100%)                                                                                                                                                                                                                                         | Oakten Turbidity: Other:<br>Location: Ins. #<br>@°C) pH 10: (/@°O)<br>/μmhos/cm@25°O)                                                                                                                                                                                        |
| Meter Calibration Date:       Time:         pH 4: (/@C) pH 7: (/_         D.O. (/@100%)         ES (         ORP (/@°C                                                                                                                                                                                                                | Oakten Turbidity: Other:<br>Location: Ins. #<br>@°C) pH 10: (/@°O)<br>/μmhos/cm@25°O)                                                                                                                                                                                        |



# WATER SAMPLE FIELD DATA

| LOCATION: SHASTA                                                                                                                                                                              | SAMPLE ID:                              | Mw.2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| PROJECT NO: 123-97477                                                                                                                                                                         | SAMPLED BY:                             | 2. MCCA            | ery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| SAMPLE TYPE: Groundwater Surface Water                                                                                                                                                        |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| CASING DIAMETER (OD-inches): 3/4 1                                                                                                                                                            | 2 <u> </u>                              |                    | State of the state |                  |
| GALLONS PER LINEAR FOOT: (0.02) (0.04)                                                                                                                                                        | (0.17) (0.66)                           | (0.83)             | (1.5) (2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6)               |
| Well Total Depth (ft): <u> </u>                                                                                                                                                               | Volume in Casi                          | ng (gal): <u>5</u> | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| Depth to Water (ft): 40.61                                                                                                                                                                    | Calculated Pure                         | ge (volumes /      | gal.): <u>15 .</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                |
| Height of Water Column (ft): 7.49                                                                                                                                                             | Actual Pre-Sam                          | npling Purge (g    | gal):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| PURGE:         Device (Depth of Intake from TOC): Disp. Bailer         Bladder Pump         Electric Submersible Pump         Purge Water Containment:         Field QC Samples Collected: EB | Peristaltic Pump<br>Dedicated           | 0 Othe             | Centrifugal F<br>er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>2</sup> ump |
|                                                                                                                                                                                               |                                         |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| (2400 Hr) (gallons) (°C) (µmhos/cm) (std.                                                                                                                                                     | oH Color<br>units) (visual)<br>28 Clear | (visual)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observation      |
| 1158 10.0 10.6 124 6                                                                                                                                                                          | .17 clear                               | 5                  | 36.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| 1203 15.0 10.5 118 6                                                                                                                                                                          | 13 plan                                 | 3                  | 41.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|                                                                                                                                                                                               |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                               |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                               |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                               |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                               | Durac                                   | Date: 11           | 14/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                                                                                                                                                                                               | Fuige                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| SAMPLE:<br>Device (Depth of Intake from TOC): Disp. Bailer<br>Bladder PumpElectric Submersib                                                                                                  | _Peristaltic Pump<br>le Pump [          | Cent<br>Dedicated  | trifugal Pum<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p<br>0ther       |
| Time Temp. EC pH                                                                                                                                                                              |                                         | Color              | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ORP              |
| (2400 Hr) (°C) (μmhos/cm) (std. ur                                                                                                                                                            |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 1220 10.5 118 6.1                                                                                                                                                                             | 3 Chew                                  | Occo               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Sheen: Odor:                                                                                                                                                                                  | -                                       | Sample Date        | : 11 141-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                |
| Field Measurement Devices: Horiba: YSI:                                                                                                                                                       | ス Oakton Tu                             | urbidity: 🗙        | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| Meter Calibration Date: Time:                                                                                                                                                                 |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| pH 4: (/@°C) pH 7: (/                                                                                                                                                                         |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                               |                                         |                    | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | `C)              |
| D.O. (/@100%) EC (                                                                                                                                                                            |                                         | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| ORP (/@°C Turbidity (                                                                                                                                                                         | /                                       | NTU)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| REMARKS:                                                                                                                                                                                      |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                               |                                         | uén                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                               | a)                                      | *                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| SIGNATURE:                                                                                                                                                                                    |                                         |                    | DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/14/12         |
| NSfo1-s-fs2-vm.golder.gds\Datata ampling Blank Forms\Watersample20111.docx                                                                                                                    |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |



# WATER SAMPLE FIELD DATA

| LOCATION: SHASTA                                                                                                                                                       | SA                | MPLE ID:                                | 1lw-3                 |                    |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|-----------------------|--------------------|-------------|
| PROJECT NO: 123-47477                                                                                                                                                  |                   | MPLED BY:                               |                       | atmy               |             |
| SAMPLE TYPE: Groundwater Surface W                                                                                                                                     |                   |                                         |                       |                    |             |
| CASING DIAMETER (OD-inches): 3/4 1                                                                                                                                     | 2                 |                                         | 4.56                  | <u> </u>           | Other       |
| Well Total Depth (ft):Sol                                                                                                                                              | Vol               | ume in Casir                            | ng (gal): 2           | 2                  |             |
| Depth to Water (ft):46 90                                                                                                                                              |                   |                                         |                       |                    | С           |
| Height of Water Column (ft): 3.2                                                                                                                                       |                   | ual Pre-Sam                             | •                     | • /                |             |
| PURGE:<br>Device (Depth of Intake from TOC): Disp. Bailer<br>Bladder Pump Electric Submersible Pur<br>Purge Water Containment:                                         | np_ <u>k</u>      | Dedicated                               | Otł                   | ner                |             |
| Field QC Samples Collected: EB FB                                                                                                                                      | DUP               | Time:                                   | Othe                  | er                 |             |
| Time         Volume         Temp.         EC           (2400 Hr)         (gallons)         (°C)         (μmhos/cm)           1305         2-2         13-1         388 | . ,               | Color<br>(visual)<br>Clordy<br>Yellorsh | Turbidity<br>(visual) | Offer<br>-37.8     | Observation |
| 1310 4,4 13.2 395<br>4311 Word Dorwatered AT 4.5                                                                                                                       |                   |                                         | Med                   | -99.7              |             |
| CAMPLE:<br>Device (Depth of Intake from TOC): Disp. Bailer                                                                                                             | Perista           |                                         | Date:                 |                    | 2           |
| ladder PumpElectric Subn                                                                                                                                               | nersible Pum      | p_KC                                    | Dedicated             |                    | ther        |
| Time Temp. EC<br>(2400 Hr) (°C) (μmhos/cm) (s                                                                                                                          | pH<br>std. units) | DO<br>(mg/l)                            | Color<br>(visual)     | Turbidity<br>(NTU) |             |
|                                                                                                                                                                        | 6                 |                                         | Sample Dat            | e: 11/12/17        |             |
|                                                                                                                                                                        |                   |                                         |                       |                    |             |
| eld Measurement Devices: Horiba: YS                                                                                                                                    |                   |                                         |                       |                    |             |
|                                                                                                                                                                        |                   |                                         |                       |                    |             |
| H 4: (/@°C) pH 7: (<br>D.O. (/@100%) EC (                                                                                                                              |                   |                                         |                       | /                  | @°C)        |
|                                                                                                                                                                        |                   |                                         |                       |                    |             |
| DRP (//@°C Turb                                                                                                                                                        |                   |                                         |                       |                    |             |
| EMARKS: Alwess wou to Routhles                                                                                                                                         | s' 10             |                                         |                       |                    |             |
| -0                                                                                                                                                                     |                   | -                                       |                       |                    | 1 1         |
| GNATURE:                                                                                                                                                               |                   |                                         |                       | DATE:              | 11/14/12    |

\\Sfo1-5-fs2-vm.golder.gds\Data\Sampling\Blank Forms\Watersample20111.docx

# ATTACHMENT B ANALYTICAL LAB REPORTS



2218 Railroad Avenue Redding, California 96001

voice 530.243.7234 fax 530.243.7494 3860 Morrow Lane, Suite F Chico, California 95928 voice 530.894.8966 fax 530.894.5143

December 13, 2012

## Lab ID: 2110610

AMY HA GOLDER & ASSOCIATES 100 ENTERPRISE WAY, STE 190 ROSEVILLE, CA 95678 RE: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

Dear AMY HA,

Enclosed are the analysis results for Work Order number 2110610. All analysis were performed under strict adherence to our established Quality Assurance Plan. Any abnormalities are listed in the qualifier section of this report.

If you have any questions regarding these results, please feel free to contact us at any time. We appreciate the opportunity to service your environmental testing needs.

Sincerely,

For

Ricky J

Ricky D. Jensen Laboratory Director California ELAP Certification Number 1677



| J | 1 | J | Ŀ | 2 | ) | I | ļ |
|---|---|---|---|---|---|---|---|
| а | b | 0 | r | а | t | 0 | ļ |

2218 Railroad Avenue voice 530.243.7234 Redding, California 96001 fax 530.243.7494

3860 Morrow Lane, Suite F Chico, California 95928

voice 530.894.8966 fax 530.894.5143

#### Lab No: 2110610 **Reported:** 12/13/12 Phone: (530) 243-7234 P.O. #

#### **GOLDER & ASSOCIATES** Report To: 100 ENTERPRISE WAY, STE 190 ROSEVILLE, CA 95678

Attention: AMY HA

Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

## **General Chemistry**

| Analyte                       |             | Units         | Results    | Qualifier        | MDL      | RL   | Method      | Analyzed          | Prepared | Batch   |
|-------------------------------|-------------|---------------|------------|------------------|----------|------|-------------|-------------------|----------|---------|
| MW-2 Water (2                 | 110610-01)  | Sampled:11/1  | 4/12 12:20 | Received:11/14/  | 12 15:53 |      |             |                   |          |         |
| Hardness                      |             | mg/l          | 42         |                  | 3        | 5    | SM 2340C    | 11/16/12          | 11/16/12 | B2K0429 |
| pH (see note 2)               |             | pH Units      | 6.91       |                  | 0.01     | 0.01 | SM 4500H+B  | 11/14/12          | 11/14/12 | B2K0364 |
| Specific Conductance          | 1           | umhos/cm      | 116        |                  | 2        | 10   | SM 2510B    | 11/14/12          | 11/14/12 | B2K0363 |
| Total Dissolved Solids        | 5           | mg/l          | 120        |                  | 3        | 6    | SM 2540C    | 11/15/12          | 11/15/12 | B2K0405 |
| Chemical Oxygen Der           | nand        | n             | 7          |                  | 3        | 7    | SM 5220D    | 11/20/12          | 11/20/12 | B2K0520 |
| Cyanide - Total               |             | ug/i          | ND         |                  | 1        | 5    | SM 4500CN E | 11/15/12          | 11/15/12 | B2K0368 |
| MW-3 Water (2                 | 110610-02)  | Sampled:11/1  | 4/12 14:00 | Received:11/14/  | 12 15:53 |      |             |                   |          |         |
| Hardness                      |             | mg/l          | 114        |                  | 3        | 5    | SM 2340C    | 11/16/12          | 11/16/12 | B2K0429 |
| pH (see note 2)               |             | pH Units      | 8.14       |                  | 0.01     | 0.01 | SM 4500H+B  | 11/14/12          | 11/14/12 | B2K0364 |
| Specific Conductance          | •           | umhos/cm      | 384        |                  | 2        | 10   | 5M 2510B    | 11/14/12          | 11/14/12 | B2K0363 |
| <b>Total Dissolved Solids</b> | s           | mg/l          | 261        |                  | 3        | 6    | 5M 2540C    | 11/15/12          | 11/15/12 | B2K0405 |
| Chemical Oxygen Den           | nand        | u             | 28         |                  | 3        | 7    | 5M 5220D    | 11/20/12          | 11/20/12 | B2K0520 |
| Cyanide - Total               |             | ug/l          | ND         |                  | 1        | 5    | SM 4500CN E | 11/1 <b>5/</b> 12 | 11/15/12 | B2K0368 |
| DUP Water (211                | 10610-03) 5 | Sampled:11/14 | /12 12:30  | Received:11/14/1 | 2 15:53  |      |             |                   |          |         |
| Hardness                      |             | mg/l          | 38         |                  | 3        | 5    | SM 2340C    | 11/16/12          | 11/16/12 | B2K0429 |
| pH (see note 2)               |             | pH Units      | 6.96       |                  | 0.01     | 0.01 | SM 4500H+B  | 11/14/12          | 11/14/12 | B2K0364 |
| <b>Specific Conductance</b>   |             | umhos/cm      | 116        |                  | 2        | 10   | SM 2510B    | 11/14/12          | 11/14/12 | B2K0363 |
| <b>Total Dissolved Solids</b> | \$          | mg/l          | 126        |                  | 3        | 6    | SM 2540C    | 11/15/12          | 11/15/12 | B2K0405 |
| Chemical Oxygen Demar         | nd          | ū             | ND         |                  | 3        | 7    | SM 5220D    | 11/20/12          | 11/20/12 | B2K0520 |
| Cyanide - Total               |             | ug/i          | ND         |                  | 1        | 5    | SM 4500CN E | 11/15/12          | 11/15/12 | B2K0368 |
|                               |             |               |            |                  |          |      |             |                   |          |         |

Approved By

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



Project:

Microbiology

MW-2 Water

MW-3 Water

Total Coliforms

Total Coliforms

Total Coliforms

DUP Water

Analyte

www.basiclab.com

| Jasic     | 2218 R  |
|-----------|---------|
| aboratory | Redding |

 Aailroad Avenue
 voice 530.243.7234

 ng, California 96001
 fax 530.243.7494

TCCC-MT SHASTA ANNUAL MONITORING 123-97477

Sampled:11/14/12 12:20

Sampled:11/14/12 14:00

Sampled:11/14/12 12:30

Results

<2

<2

<2

Units

MPN/100 ml

MPN/100 ml

MPN/100 ml

3860 Morrow Lane, Suite F Chico, California 95928

RL

2

2

2

Method

SM 9221B

SM 9221B

SM 9221B

PHASE 002

Qualifier

Received:11/14/12 15:53

Received:11/14/12 15:53

Received:11/14/12 15:53

MDL

voice 530.894.8966 fax 530.894.5143

| Lab No:   | 2110610        |
|-----------|----------------|
| Reported: | 12/13/12       |
| Phone:    | (530) 243-7234 |
| P.O. #    |                |

11/14/12

11/14/12

11/14/12

Batch

B2K0476

B2K0476

B2K0476

**Analyzed Prepared** 

11/18/12

11/18/12

11/18/12

Report To:GOLDER & ASSOCIATES100 ENTERPRISE WAY, STE 190ROSEVILLE, CA 95678Attention:AMY HA

(2110610-01)

(2110610-02)

(2110610-03)

Approved By

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



| С    | 2218 Railroad Avenue      | voice 530.243.7234 |   | 3860 Morrow Lane, Suite F | vc  |
|------|---------------------------|--------------------|---|---------------------------|-----|
| ) ry | Redding, California 96001 | fax 530.243.7494   | 1 | Chico, California 95928   | fax |

oice 530.894.8966 ax 530.894.5143

Phone:

P.O. #

Lab No: 2110610

(530) 243-7234

Reported: 12/13/12

#### Report To: **GOLDER & ASSOCIATES** 100 ENTERPRISE WAY, STE 190 ROSEVILLE, CA 95678

Attention: AMY HA

Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

#### Metals - Total

| Analyte                         |              | Units         | Results     | Qualifier      | MDL        | RL         | Method     | Analyzed      | Prepared         | Batch              |
|---------------------------------|--------------|---------------|-------------|----------------|------------|------------|------------|---------------|------------------|--------------------|
| MW-2 Water                      | (2110610-01) | Sampled:11/   | 14/12 12:20 | Received:11/1  | 4/12 15:53 |            |            |               |                  |                    |
| Antimony                        |              | ug/l          | ND          |                | 0.1        | 0.5        | EPA 200.8  | 11/29/12      | 11/26/12         | B2K0490            |
| Arsenic                         |              | 11            | ND          |                | 0.1        | 0.5        |            | n             | п                |                    |
| Beryllium                       |              | et.           | ND          |                | 0.1        | 0.5        | п          | a             | n                | п                  |
| Cadmium                         |              | п             | ND          |                | 0.05       | 0.25       | "          | 1             | D                |                    |
| Chromium                        |              | п             | 0.4         | J              | 0.1        | 0.5        | 11         | U             | 11               |                    |
| Chromium, Hexaval               | ent (CrVI)   | п             | ND          |                | 2          | 5          | SM 3500-Cr | 11/15/12      | 11/15/12         | B2K0374            |
| Chromium, Trivalent             | :            | II            | ND          |                |            | 5.0        | EPA 200.8  | 11/29/12      | 11/26/12         | [CALC]             |
| Copper                          |              | п             | 0.5         |                | 0.1        | 0.5        | 81         | li            | 11               | B2K0490            |
| Lead                            |              | и             | ND          |                | 0.1        | 0.5        | ŧ          | •             | H                | н                  |
| Mercury                         |              | ng/l          | 0.42        | J              | 0.20       | 0.50       | EPA 1631E  | 11/21/12      | 11/21/12         | B2K0611            |
| <b>Mercury Field Bla</b>        | nk           | ŧr            | 0.33        | J              | 0.20       | 0.50       | a          | 11            | 11               | 0                  |
| Nickel                          |              | ug/l          | 0.3         | QR-04, J       | 0.2        | 1.0        | EPA 200.8  | 11/29/12      | 11/26/12         | B2K0490            |
| Selenium                        |              | 1             | ND          | ••••           | 0,4        | 2.0        | U          |               | ,<br>n           | U                  |
| Silver                          |              | n             | ND          |                | 0.1        | 0.5        | п          | 11/28/12      | 11/27/12         | B2K0561            |
| Thallium                        |              | u –           | ND          |                | 0.2        | 1.0        | н          | 11/29/12      | 11/26/12         | B2K0490            |
| Zinc                            |              |               | 2,3         | OR-04          | 0.4        | 2.0        | п          | ,,<br>a       | ,,               |                    |
| MW-3 Water                      | (2110610-02) | Sampled:11/   |             | Received:11/1  |            |            | · · ·      |               |                  |                    |
| Antimony                        | <b>_</b>     | ug/l          | 0.6         |                | 0.1        | 0,5        | EPA 200.8  | 11/29/12      | 11/26/12         | B2K0490            |
| Arsenic                         |              | 0             | 0,4         | J              | 0.1        | 0.5        | 17         | ·'            | "                | 71                 |
| Beryllium                       |              |               | ND          |                | 0.1        | 0.5        | w          |               | IT               | п                  |
| Cadmium                         |              | u             | ND          |                | 0.05       | 0.25       | ч          | n             | II.              | н                  |
| Chromium                        |              | ۹۲            | 1.2         |                | 0.1        | 0.5        | **         | n             | r                | u                  |
| Chromium, Hexavale              | ent (CrVI)   |               | ND          | R-08           | 10         | 25         | SM 3500-Cr | 11/15/12      | 11/15/12         | B2K0374            |
| Chromium, Trivalent             |              | n             | ND          |                | 10         | 25.0       | EPA 200.8  | 11/29/12      | 11/26/12         | [CALC]             |
| Copper                          |              | u             | 9.9         |                | 0.1        | 0.5        | "          | "             | 11,20,12         | B2K0490            |
| Lead                            |              | н             | 6.8         |                | 0.1        | 0.5        | ti         | ы             | n                | "                  |
| Mercury                         |              | ng/l          | 10.5        | QC-08, R-08    | 1.00       | 2.50       | EPA 1631E  | 11/21/12      | 11/21/12         | B2K0611            |
| Mercury Field Blank             |              | "             | ND          | QC 00, IX 00   | 0.20       | 0.50       | "          | "             | "                | "                  |
| Nickel                          |              | ug/l          | 1.8         | QR-04          | 0,2        | 1,0        | EPA 200.8  | 11/29/12      | 11/26/12         | B2K0490            |
| Selenium                        |              | 49/1          | ND          | QIVOT          | 0.4        | 2.0        | LFA 200.0  | "             | "                | 0210150            |
| Silver                          |              | 11            | ND          |                | 0.1        | 0.5        | н          | 11/28/12      | 11/27/12         | B2K0561            |
| Thallium                        |              |               | ND          |                | 0.2        | 1.0        | ·          |               | • •              | B2K0301<br>B2K0490 |
| Zinc                            |              | 11            | 211         | QR-04          | 0.4        | 2.0        |            | 11/29/12<br>" | 11/26/12         | 17                 |
|                                 | 2110610-03)  | Sampled:11/14 |             | Received:11/14 |            | 2.0        |            |               |                  |                    |
| Antimony                        |              | ug/l          | ND          |                | 0.1        | 0.5        | EPA 200.8  | 11/29/12      | 11/26/12         | B2K0490            |
| Arsenic                         |              | ug/1          | ND          |                | 0.1        | 0.5        | LFA 200.0  | 11/25/12      | "                | UZROTJO<br>W       |
| Bervilium                       |              |               | ND          | R-08           | 0.5        | 2.5        | R          | ti            | U                | 11                 |
| Cadmium                         |              | tt            | ND          | R-00           | 0.05       | 0.25       | IF.        | a             |                  | Ħ                  |
| Chromium                        |              | u             | 2.0         | R-08, J        | 0.05       | 2.5        | v          | 0             |                  | ŧr                 |
| Chromium, Hexavale              | nt (CrA/I)   | п             | ND          | K-00, J        |            |            | CM 2500 C- | 11/15/10      | 11/15/10         | B2K0374            |
|                                 |              | u             | ND          |                | 2          | 5          | SM 3500-Cr | 11/15/12      | 11/15/12         |                    |
| Chromium, Trivalent             |              | 11            |             | D 00 1         |            | 5.0        | EPA 200.8  | 11/29/12      | 1 <b>1/26/12</b> | [CALC]             |
| Copper<br>Lead                  |              |               | 0.8         | R-08, J        | 0.5        | 2.5        |            | u<br>U        |                  | B2K0490            |
|                                 |              |               | 0.2         | J              | 0.1        | 0.5        |            |               |                  |                    |
| Mercury<br>Mercury Field Disels |              | ng/l          | 0.53        |                | 0.20       | 0.50       | EPA 1631E  | 11/21/12      | 11/21/12         | B2K0611            |
| Mercury Field Blank             |              |               | ND          |                | 0.20       | 0.50       | "          | u             |                  |                    |
| Nickel                          |              | ug/l          | ND          | QR-04, R-08    | 1.0        | 5.0        | EPA 200.8  | 11/29/12      | 11/26/12         | B2K0490            |
| Selenium                        |              | u<br>v        | ND          |                | 0.4        | 2.0        | 61         |               |                  |                    |
| Silver                          |              | 17            | ND          |                | 0.1        | 0.5        | н          | 11/28/12      | 11/27/12         | B2K0561            |
|                                 |              |               |             |                |            |            |            |               |                  |                    |
| Thallium<br>Zinc                |              | 4             | ND<br>3.4   | QR-04          | 0.2<br>0.4 | 1.0<br>2.0 |            | 11/29/12      | 11/26/12         | B2K0490            |

Approved By

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



2218 Railroad Avenue voice 530.243.7234 Redding, California 96001 fax 530.243.7494

3860 Morrow Lane, Suite F voice 530.894.8966 Chico, California 95928

fax 530.894.5143

Reported:

Phone:

P.O. #

Lab No: 2110610

12/13/12

(530) 243-7234

Report To: **GOLDER & ASSOCIATES** 100 ENTERPRISE WAY, STE 190 ROSEVILLE, CA 95678

Attention: AMY HA

Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

#### **Volatile Organic Compounds**

| Analyte               |               | Units       | Results     | Qualifier     | MDL        | RL   | Method   | Analyzed | Prepared | Batch   |
|-----------------------|---------------|-------------|-------------|---------------|------------|------|----------|----------|----------|---------|
| MW-2 Water            | (2110610-01)  | Sampled:11/ | 14/12 12:20 | Received:11/1 | 4/12 15:53 |      |          |          |          |         |
| crolein               |               | ug/l        | ND          |               | 2.00       | 5.00 | EPA 624  | 11/15/12 | 11/15/12 | B2K0437 |
| crylonitrile          |               |             | ND          |               | 0.15       | 0.50 | п        | п        | п        | 11      |
| enzene                |               | n           | ND          |               | 0.07       | 0.50 | R        | н        | U        | 11      |
| romodichlorometha     | ane           |             | ND          |               | 0.08       | 0.50 | W        | D        | 0        | Ħ       |
| romoform              |               | 11          | ND          |               | 0.05       | 0.50 | W        | n        | н        | н       |
| romomethane           |               | 18          | ND          |               | 0.10       | 0.50 | ¥        | р        | н        | 11      |
| arbon tetrachloride   | 2             | **          | ND          |               | 0.05       | 0.50 | 71       | n        | n        | n       |
| hlorobenzene          |               | **          | ND          |               | 0.06       | 0.50 | ۹r       | в        | 11       | 11      |
| hloroethane           |               | tt.         | ND          |               | 0.09       | 0.50 | 71       | в        | н        | 11      |
| -Chloroethylvinyl e   | ther          | u           | ND          |               | 0.11       | 0.50 | *1       | n        | 14       | #       |
| hloroform             |               | U           | ND          |               | 0.07       | 0.50 | ti       | 17       | n        | W       |
| hloromethane          |               | н           | ND          |               | 0.12       | 0.50 | a        | u        | н        | 17      |
| ibromochlorometh      | ane           | н           | ND          |               | 0.06       | 0.50 | n        | и        | п        | v       |
| ,2-Dichlorobenzene    |               | п           | ND          |               | 0.09       | 0.50 | н        | n        | в        | n       |
| ,3-Dichlorobenzene    |               | "           | ND          |               | 0.07       | 0.50 | п        | "        | It       | 98      |
| ,4-Dichlorobenzene    |               | 10          | ND          |               | 0.05       | 0.50 | п        | 11       | и        | N       |
| ,1-Dichloroethane     | · · ·         | 11          | ND          |               | 0.08       | 0.50 | п        | Ħ        |          | п       |
| ,2-Dichloroethane     |               | 11          | ND          |               | 0.08       | 0.50 | ŋ        | н        | 11       | п       |
| ,1-Dichloroethene     |               |             | ND          |               | 0.06       | 0.50 | U        | 11       | 71       | п       |
| ans-1,2-Dichloroet    |               | a           | ND          |               | 0.05       | 0.50 | n        | ę.       | **       | п       |
| ,3-Dichloropropane    |               | ę.          | ND          |               | 0.05       | 0.50 | н        | el       |          | п       |
|                       |               | n           |             |               |            |      | н        | н        | n        |         |
| 1-Dichloropropene     |               | n           | ND          |               | 0.08       | 0.50 | и        |          | n        |         |
| s-1,3-Dichloroprop    |               |             | ND          |               | 0.08       | 0.50 | ,.<br>H  |          |          |         |
| ans-1,3-Dichloropr    |               |             | ND          |               | 0.08       | 0.50 |          |          |          |         |
| ,3-Dichloropropene    | • •           |             | ND          |               | 0.16       | 1.00 |          |          |          |         |
| ichloromethane (M     | , ,           | "           | ND          |               | 0.29       | 0.50 | 17<br>17 | 1        | "        |         |
| 2-Dichloropropane     |               |             | ND          |               | 0.06       | 0.50 | 17       |          |          |         |
| thylbenzene           |               | 11<br>11    | ND          |               | 0.06       | 0.50 | 17<br>17 | 41<br>El |          | ч<br>П  |
| exachiorobutadien     |               |             | ND          |               | 0.05       | 0.50 | 14       |          |          |         |
| lethyl tert-Butyl Eth | ier (MTBE)    | n           | ND          |               | 0.08       | 0.50 | 11       | ti       | ч        | н       |
| laphthalene           |               | п           | 0.07        | J             | 0.07       | 0.50 | 17       | п        | н        | н       |
| ,1,2,2-Tetrachloroe   |               | н           | ND          |               | 0.07       | 0.50 | 11       | ч        | н        | н       |
| etrachloroethene (l   | PCE)          | n           | ND          |               | 0.08       | 0.50 | 11       | n        | н        | н       |
| oluene                |               | н           | ND          |               | 0.07       | 0.50 | 61       | u        | п        | U       |
| 2,4-Trichlorobenze    | ine           |             | ND          |               | 0.07       | 0.50 | ti       | п        | п        | n       |
| 1,1-Trichloroethan    | e (1,1,1-TCA) | 11          | ND          |               | 0.09       | 0.50 | ti<br>ti | н        | н        | n       |
| 1,2-Trichloroethan    | e (1,1,2-TCA) | 11          | ND          |               | 0.07       | 0.50 | ti       | u        | н        | 11      |
| richloroethene (TCi   | E)            | ŧ           | ND          |               | 0.09       | 0.50 | u        | u        | н        | 17      |
| inyl chloride         |               | Ħ           | ND          |               | 0.10       | 0.50 | ti (     | u        | н        | 17      |
| urrogate: 1,2-Dichi   | oroethane-d4  |             | 102 %       |               | 78.5-2     |      | u        | #        | п        | Ð       |
| urrogate: Toluene-    |               |             | 94.8 %      |               | 79.8-      |      | #        | μ        | п        | H       |
| urrogate: 4-Bromo     |               |             | 105 %       |               | 71.4-      |      | #        |          | n        | Ħ       |
| W-3 Water             | (2110610-02)  | Sampled:11/ |             | Received:11/1 |            |      |          |          |          |         |
| crolein               |               | ug/l        | ND          |               | 2.00       | 5.00 | EPA 624  | 11/15/12 | 11/15/12 | B2K0437 |
| crylonitrile          |               |             | ND          |               | 0.15       | 0.50 | "        | N N      | ,        | 11      |
| enzene                |               | н           | 0.13        | J             | 0.07       | 0.50 | U        | п        | н        | n       |
| omodichlorometha      | пе            | н           | ND          | -             | 0.08       | 0.50 |          | н        | н        | 19      |
| omoform               |               | п           | ND          |               | 0.05       | 0.50 |          | п        | н        | 11      |
| omomethane            |               | п           | ND          |               | 0.10       | 0.50 | U        | н        | п        | 11      |
| arbon tetrachloride   |               | н           | ND          |               | 0.05       | 0.50 | н        | п        | п        | R       |
|                       |               |             |             |               |            |      |          |          |          | *       |
| hlorobenzene          |               |             | 0.06        | J             | 0.06       | 0.50 |          |          |          | н       |

wed By Ap Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



2218 Railroad Avenue voice 530.243.7234 Redding, California 96001 fax 530.243.7494

3860 Morrow Lane, Suite F Chico, California 95928

voice 530.894.8966 fax 530.894.5143

Lab No: 2110610 **Reported:** 12/13/12 Phone: (530) 243-7234 P.O. #

#### Report To: **GOLDER & ASSOCIATES** 100 ENTERPRISE WAY, STE 190 ROSEVILLE, CA 95678

Attention: AMY HA

Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

## **Volatile Organic Compounds**

| Analyte                              | Units        | Results     | Qualifier        | MDL       | RL   | Method  | Analyzed | Prepared | Batch   |
|--------------------------------------|--------------|-------------|------------------|-----------|------|---------|----------|----------|---------|
| MW-3 Water (2110610-02)              | Sampled:11/  | 14/12 14:00 | Received:11/14   | /12 15:53 | ,    |         |          |          |         |
| 2-Chloroethylvinyl ether             | Ū            | ND          |                  | 0.11      | 0.50 | н       | 17       | 11/15/12 |         |
| Chloroform                           | U            | ND          |                  | 0.07      | 0.50 |         | 1T       | н        |         |
| Chloromethane                        | IJ           | ND          |                  | 0.12      | 0.50 |         | 71       | н        |         |
| Dibromochloromethane                 |              | ND          |                  | 0.06      | 0.50 |         | п        | D        |         |
| 1,2-Dichlorobenzene (o-DCB)          | н            | ND          |                  | 0.09      | 0.50 | n       | п        | n        | U       |
| 1,3-Dichlorobenzene (m-DCB)          |              | ND          |                  | 0.07      | 0.50 |         | u -      | n        | п       |
| 1,4-Dichlorobenzene (p-DCB)          | 17           | ND          |                  | 0.05      | 0.50 |         | н        | n        | n       |
| 1,1-Dichloroethane (1,1-DCA)         | "            | ND          |                  | 0.08      | 0.50 | 17      | u        | n        | n       |
| 1,2-Dichloroethane (1,2-DCA)         | п            | ND          |                  | 0.08      | 0.50 | 11      | н        | 17       | n       |
| 1,1-Dichloroethene (1,1-DCE)         | п            | ND          |                  | 0.06      | 0.50 | . т     | n        | 12       | n       |
| trans-1,2-Dichloroethene (t-1,2-DCE) | U            | ND          |                  | 0.05      | 0.50 | Ħ       | U        | 14       | n       |
| 1,3-Dichloropropane                  | D            | ND          |                  | 0.07      | 0.50 | 4       | u        | n        | 19      |
| 1,1-Dichloropropene                  | и            | ND          |                  | 0.08      | 0.50 | n       | н        | 17       | "       |
| cis-1,3-Dichloropropene              | 17           | ND          |                  | 0.08      | 0.50 | н       | n        | w        | 12      |
| trans-1,3-Dichloropropene            | 17           | ND          |                  | 0.08      | 0.50 | н       | п        | u.       | 17      |
| 1,3-Dichloropropene (total)          | W            | ND          |                  | 0.16      | 1.00 | н       | n        | n        |         |
| Dichloromethane (Methylene Chloride) | н            | ND          |                  | 0.29      | 0.50 |         | IF       | a        | . a     |
| 1,2-Dichloropropane                  | а            | ND          |                  | 0.06      | 0.50 | 0       | 11       | a        | и ,     |
| Ethylbenzene                         | п            | ND          |                  | 0.06      | 0.50 | 0       | *1       | u        | a       |
| Hexachlorobutadiene                  | u            | ND          |                  | 0.05      | 0.50 | n       | 11       | · 0      | U       |
| Methyl tert-Butyl Ether (MTBE)       | 0            | ND          |                  | 0.08      | 0.50 | n       | ti       | U        | U       |
| Naphthalene                          | n            | 0.08        | J                | 0.07      | 0.50 | n       | ч        | n        | U       |
| 1,1,2,2-Tetrachloroethane            | U U          | ` ND        |                  | 0.07      | 0.50 | 19      | ti       | n        | U       |
| Tetrachloroethene (PCE)              | n            | ND          |                  | 0.08      | 0.50 | 11      | n        | п        | U       |
| Toluene                              | 11           | 0.07        | J                | 0.07      | 0.50 | It      | н        | II       | U       |
| 1,2,4-Trichlorobenzene               | 19           | ND          |                  | 0.07      | 0.50 | 11      | II       | п        | п       |
| 1,1,1-Trichloroethane (1,1,1-TCA)    | n            | ND          |                  | 0.09      | 0.50 | 19      | н        | п        | U       |
| 1,1,2-Trichloroethane (1,1,2-TCA)    | "            | ND          |                  | 0.07      | 0.50 | 17      | н        | н        | н       |
| Trichloroethene (TCE)                | u            | ND          |                  | 0.09      | 0.50 |         | н        | n        | н       |
| Vinyl chloride                       | п            | ND          |                  | 0.10      | 0.50 | TI I    | н        | п        | н       |
| Surrogate: 1,2-Dichloroethane-d4     |              | 98.9 %      |                  | 78.5      | -114 | u       | 11       | #        | Ħ       |
| Surrogate: Toluene-d8                |              | 94.9 %      |                  | 79.8      |      | и       | H        | н        |         |
| Surrogate: 4-8romofluorobenzene      |              | 103 %       |                  | 71.4      |      | и       | н        | н        | H       |
|                                      | Sampled:11/1 | 4/12 12:30  | Received:11/14/3 |           |      |         |          |          |         |
| Acrolein                             | ug/l         | ND          |                  | 2.00      | 5.00 | EPA 624 | 11/15/12 | 11/15/12 | B2K0437 |
| AcrylonItrile                        | <u>.</u>     | ND          |                  | 0.15      | 0.50 | u       |          |          | Ħ       |
| Benzene                              | n            | ND          |                  | 0.07      | 0.50 | u       |          |          | 11      |
| Bromodichloromethane                 | ti           | ND          |                  | 0.08      | 0.50 | п       | n        | *1       | 17      |
| Bromoform                            | 18           | ND          |                  | 0.05      | 0.50 | a       | n        | *        | "       |
| Bromomethane                         | 10           | ND          |                  | 0.10      | 0.50 | u       | n        | *        | v       |
| Carbon tetrachloride                 | 16           | ND          |                  | 0.05      | 0.50 | u       | n        | "        | 14      |
| Chlorobenzene                        | 11           | ND          |                  | 0.06      | 0.50 | п       | n        | e        | 11      |
| Chloroethane                         | -            | ND          |                  | 0.09      | 0.50 | n       | n        | ti       | 11      |
| 2-Chloroethylvinyl ether             |              | ND          |                  | 0.11      | 0.50 | u       | 10       | tr       | 11      |
| Chloroform                           | "            | ND          |                  | 0.07      | 0.50 | и       | 11       | a        | 11      |
| Chloromethane                        | "            | ND          |                  | 0,12      | 0.50 | U       | 10       | a        | n       |
| Dibromochloromethane                 | п            | ND          |                  | 0.06      | 0.50 | u       | 11       | n        | a       |
| 1,2-Dichlorobenzene (o-DCB)          |              | ND          |                  | 0.09      | 0.50 | U       | Ħ        | a        | U       |
| 1,3-Dichlorobenzene (m-DCB)          | н            | ND          |                  | 0.07      | 0.50 | U       | *        | U U      | н       |
| 1,4-Dichlorobenzene (p-DCB)          | н            | ND          |                  | 0.05      | 0.50 | 0       | *1       | n        | IJ      |
| 1,1-Dichloroethane (1,1-DCA)         |              | ND          |                  | 0.08      | 0.50 | и       | 11       | 0        | 11      |
| 1,2-Dichloroethane (1,2-DCA)         | п            | ND          |                  | 0.08      | 0.50 | n       | 98       |          | 0       |
| _,                                   |              |             |                  | 0.00      | 0.00 |         |          |          |         |

wed By Appr

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



| 1 | đ | L | 2 | ) | L | C | j |  |
|---|---|---|---|---|---|---|---|--|
| b | 0 | r | а | t | 0 | r | y |  |

2218 Railroad Avenue voice 530.243.7234 Redding, California 96001 fax 530.243.7494

3860 Morrow Lane, Suite F Chico, California 95928

voice 530.894.8966 fax 530.894.5143

Lab No: 2110610 Reported: 12/13/12 Phone: (530) 243-7234 P.O. #

## **Report To:** GOLDER & ASSOCIATES 100 ENTERPRISE WAY, STE 190 ROSEVILLE, CA 95678

Attention: AMY HA

Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

## **Volatile Organic Compounds**

| Analyte               |                     | Units        | Results    | Qualifier      | MDL       | RL   | Method  | Analyzed | <b>Prepared</b> | Batch   |
|-----------------------|---------------------|--------------|------------|----------------|-----------|------|---------|----------|-----------------|---------|
| DUP Water             | (2110610-03)        | Sampled:11/1 | 4/12 12:30 | Received:11/14 | /12 15:53 | ·    |         |          |                 | ·       |
| 1,1-Dichloroethene    | • • •               | "            | ND         |                | 0.06      | 0.50 | u       | 11       | 11/15/12        | 17      |
| trans-1,2-Dichloroe   |                     | n            | ND         |                | 0.05      | 0.50 |         | н        |                 | *1      |
| 1,3-Dichloropropar    |                     | n            | ND         |                | 0.07      | 0.50 | n       | н        |                 | u       |
| 1,1-Dichloroproper    |                     | 18           | ND         |                | 0.08      | 0.50 | 14      | 17       | 12              | u       |
| cls-1,3-Dichloropro   | pene                | **           | ND         |                | 0.08      | 0.50 | 17      | 17       | 17              |         |
| trans-1,3-Dichlorop   | propene             | ri -         | ND         |                | 0.08      | 0.50 | *1      | n        |                 |         |
| 1,3-Dichloropropen    | ie (total)          | n            | ND         |                | 0.16      | 1.00 | a       |          | n               | n       |
| Dichloromethane (I    | Methylene Chloride) | IJ           | ND         |                | 0.29      | 0.50 | a       | n        | n               | и       |
| 1,2-Dichloropropan    | e                   | 16           | ND         |                | 0.06      | 0.50 | u       | п        | п               | 4       |
| Ethylbenzene          |                     | 11           | ND         |                | 0.06      | 0.50 | n       |          |                 | 18      |
| Hexachlorobutadler    | ne                  | 13           | ND         |                | 0.05      | 0.50 | 0       |          |                 | 12      |
| Methyl tert-Butyl Et  | ther (MTBE)         | ŋ            | ND         |                | 0.08      | 0.50 | н       |          |                 | 17      |
| Naphthalene           |                     | н            | 0.07       | J              | 0.07      | 0.50 | 17      | U        | n               | "       |
| 1,1,2,2-Tetrachloro   | bethane             | н            | ND         |                | 0.07      | 0.50 |         | н        | н               |         |
| Tetrachloroethene     | (PCE)               | и            | ND         |                | 0.08      | 0.50 | IF      |          | 17              |         |
| Toluene               |                     | 11           | ND         |                | 0.07      | 0.50 | 11      | w        | II.             | U       |
| 1,2,4-Trichlorobenz   | zene                | tr           | ND         |                | 0.07      | 0.50 | "       |          |                 | 11      |
| 1,1,1-Trichloroetha   | ne (1,1,1-TCA)      | *1           | ND         |                | 0.09      | 0.50 | n       | n        |                 | 12      |
| 1,1,2-Trichloroetha   |                     | a            | ND         |                | 0.07      | 0.50 | a       | п        | н               | 19      |
| Trichloroethene (TC   |                     |              | ND         |                | 0.09      | 0.50 | U       | 0        | н               | B       |
| Vinyl chloride        | -                   | U            | ND         |                | 0.10      | 0.50 | н       | 0        |                 | п       |
| Surrogate: 1,2-Dici   | hloroethane-d4      |              | 101 %      |                | 78.5      |      | н       | "        | 11              | u       |
| Surrogate: Toluene    |                     |              | 95.5 %     |                | 79.8      |      | н       | "        | 11              | a       |
| Surrogate: 4-Brome    | ofluorobenzene      |              | 103 %      |                | 71.4      |      | u       | "        | "               | 11      |
| TRIP BLANK            |                     | 0-04) Sample | d:11/14/12 | 00:00 Received | :11/14/12 |      |         | ····     |                 |         |
| Acetone               | · · · · · ·         | ug/l         | 1.0        | ]              | 0.6       | 2,5  | EPA 624 | 11/15/12 | 11/15/12        | B2K0437 |
| Acrolein              |                     | н            | ND         |                | 2.0       | 5.0  | "       | *1       | 'n              |         |
| AcrylonItrile         |                     | u –          | ND         |                | 0.2       | 0.5  | п       | "        | 11              | п       |
| tert-Amyl Methyl Et   | her (TAME)          | н            | ND         |                | 0.07      | 0.5  | н       |          | a               | IJ      |
| Benzene               | •                   | 11           | ND         |                | 0.07      | 0.5  | н       | н        | н               | 18      |
| Bromochlorometha      | ne                  | и            | ND         |                | 0.1       | 0.5  | n       | н        | н               | 11      |
| Bromodichlorometh     | lane                | R            | ND         |                | 0.08      | 0.5  | n       | н        | н               | **      |
| Bromoform             |                     | Ħ            | ND         |                | 0.05      | 0.5  | 14      | н        | н               | н       |
| Bromomethane          |                     |              | ND         |                | 0.1       | 0,5  | พ       | r -      | IF              |         |
| 2-Butanone (MEK)      |                     | "            | ND         |                | 0.4       | 2.5  | ¥       | W        | 17              | н       |
| tert-Butyl Alcohol (1 | ΓBA)                | n            | ND         |                | 0.7       | 5.0  | Ħ       | W        | u               | 11      |
| Carbon disulfide      | ,                   | н            | ND         |                | 0.06      | 0.5  | n       | **       | 4               |         |
| Carbon tetrachioride  | e                   | н            | ND         |                | 0.05      | 0.5  | "       |          | n               | n       |
| Chlorobenzene         |                     | v            | ND         |                | 0.06      | 0.5  | n       | п        | *1              |         |
| Chloroethane          |                     | 17           | ND         |                | 0.09      | 0.5  | u       |          | 11              | 11      |
| 2-Chioroethyivinyi e  | ther                | 1            | ND         |                | 0.1       | 0.5  | u       | п        | 11              | 18      |
| Chloroform            |                     | п            | ND         |                | 0.07      | 0.5  | n       | п        | u               | 11      |
| Chloromethane         |                     | п            | ND         |                | 0.1       | 0.5  | u       | п        | u               |         |
| Dibromochlorometh     | iane                |              | ND         |                | 0.06      | 0.5  | U       | н        | н               | v       |
| 1,2-Dibromo-3-chio    |                     | п            | ND         |                | 0.1       | 0.5  | 11      | и        | н               |         |
| 1,2-Dibromoethane     |                     | п            | ND         |                | 0.07      | 0.5  | 11      | n        | n               |         |
| Dibromomethane        | ·/                  | U            | ND         |                | 0.09      | 0.5  | Ð       | n        |                 | п       |
| 1,2-Dichlorobenzen    | e (o-DCB)           | n            | ND         |                | 0.09      | 0.5  | R       | 17       | ır              | п       |
| 1,3-Dichlorobenzen    | • •                 | 10           | ND         |                |           | 0.5  | 11      | 16       | 11              | п       |
| 1,4-Dichlorobenzen    | · ·                 | 17           | ND         |                | 0.07      |      |         | 1        |                 |         |
| Dichlorodifluoromet   |                     | 11           |            |                | 0.05      | 0.5  |         |          |                 | n<br>1  |
|                       |                     | n            | ND         |                | 0.09      | 0.5  |         |          | 1               |         |
| 1,1-Dichloroethane    | (1,1-DCA)           |              | ND         |                | 0.08      | 0.5  | 0       | e e      | 1               | 0       |

Approved By

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



| ļ | J | ( | J | l | 2 | ) | L | C | ر |  |
|---|---|---|---|---|---|---|---|---|---|--|
| l | а | b | 0 | ľ | a | t | 0 | ľ | y |  |

2218 Railroad Avenue voice 530.243.7234 Redding, California 96001 fax 530.243.7494

3860 Morrow Lane, Suite F Chico, California 95928

voice 530.894.8966 fax 530.894.5143

> Lab No: 2110610 Reported: 12/13/12 Phone: (530) 243-7234 P.O. #

#### Report To: **GOLDER & ASSOCIATES** 100 ENTERPRISE WAY, STE 190 ROSEVILLE, CA 95678

Attention: AMY HA

Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

## **Volatile Organic Compounds**

| Analyte                              | Units    | Results        | Qualifier   | MDL        | RL    | Method    | Analyzed | Prepared | Batch |
|--------------------------------------|----------|----------------|-------------|------------|-------|-----------|----------|----------|-------|
| TRIP BLANK Blank (2110610-04         | ) Sample | ed:11/14/12 00 | :00 Receive | d:11/14/12 | 15:53 |           |          |          |       |
| 1,2-Dichloroethane (1,2-DCA)         | u        | ND             |             | 0.08       | 0.5   | н         | n        | 11/15/12 | ri    |
| 1,1-Dichloroethene (1,1-DCE)         | u        | ND             |             | 0.06       | 0.5   | н         | 17       | 86       | u     |
| cis-1,2-Dichloroethene (c-1,2-DCE)   | ч        | ND             |             | 0.06       | 0.5   | n         | 11       | N        | н     |
| trans-1,2-Dichloroethene (t-1,2-DCE) | п        | ND             |             | 0.05       | 0.5   | "         | 11       | н        | n     |
| Trichlorotrifluoroethane (Freon 113) | н        | ND             |             | 0.1        | 0.5   | 17        | a        | IJ       | н     |
| Dichloromethane (Methylene Chloride) | п        | ND             |             | 0.3        | 0.5   | 14        | 6        | н        | U     |
| 1,2-Dichloropropane                  | п        | ND             |             | 0.06       | 0.5   |           | (1       | IJ       | н     |
| 1,3-Dichloropropane                  | п        | ND             |             | 0.07       | 0.5   | и         | п        | U U      | U.    |
| 2,2-Dichloropropane                  | п        | ND             |             | 0.1        | 0.5   | 97        | U        | U        | U     |
| 1,1-Dichloropropene                  | "        | ND             |             | 0.08       | 0.5   | 47        | 11       | н        | н     |
| cis-1,3-Dichloropropene              | r r      | ND             |             | 0.08       | 0.5   | ŧi        | 11       | н        | U     |
| trans-1,3-Dichloropropene            | **       | ND             |             | 0.08       | 0.5   | 97        | U        | н        | U.    |
| 1,3-Dichloropropene (total)          | 10       | ND             |             | 0.2        | 1.0   | <b>61</b> | n        | н        | н     |
| DI-Isopropyl Ether (DIPE)            | ţi.      | ND             |             | 0.06       | 0.5   | ų         | u        | н        | н     |
| Ethylbenzene                         | ţı       | ND             |             | 0.06       | 0.5   | u         | п        | n        | н     |
| Ethyl tert-Butyl Ether (ETBE)        | п        | ND             |             | 0.06       | 0.5   | થ         | 0        | u        | 0     |
| Hexachlorobutadiene                  | n        | ND             |             | 0.05       | 0.5   | 4         | n        | n        | n     |
| 2-Hexanone                           | п        | ND             |             | 0.3        | 2.0   | a         | Ø        | и        | н     |
| 4-Methyl-2-pentanone (MIBK)          | н        | ND             |             | 0.1        | 1.0   | ri        | U        | н        | 11    |
| Methyl tert-Butyl Ether (MTBE)       | н        | ND             |             | 0.08       | 0.5   | u         | n        | 11       | 11    |
| Naphthalene                          | н        | 0.2            | J           | 0.07       | 0.5   | (i        | u        |          | 11    |
| Styrene                              | 0        | ND             |             | 0.05       | 0.5   | u         | U        | TF I     | 11    |
| 1,1,1,2-Tetrachloroethane            | U        | ND             |             | 0.1        | 0.5   | a         | u        | W.       | 17    |
| 1,1,2,2-Tetrachloroethane            | n        | ND             |             | 0.07       | 0.5   | a         | u        | R.       | IN .  |
| Tetrachloroethene (PCE)              | 11       | ND             |             | 0.08       | 0.5   | n         | н        | ĸ        | 11    |
| Toluene                              | n        | ND             |             | 0.07       | 0.5   | u         | н        | н        | н     |
| 1,2,4-Trichlorobenzene               | u.       | 0.1            | 3           | 0.07       | 0.5   | U         |          | n        | н     |
| 1,1,1-Trichloroethane (1,1,1-TCA)    | w        | ND             |             | 0.09       | 0.5   |           |          | n        | п     |
| 1,1,2-Trichloroethane (1,1,2-TCA)    | w        | ND             |             | 0.07       | 0.5   | п         |          | п        | 11    |
| Trichloroethene (TCE)                | w        | ND             |             | 0.09       | 0.5   | п         |          | n        | U     |
| Trichlorofluoromethane (Freon 11)    | n        | ND             |             | 0.06       | 0.5   | п         | 0        | н        | н     |
| 1,2,3-Trichloropropane               | ¥        | ND             |             | 0.09       | 0.5   | "         | u        | н        | н     |
| Vinyl chloride                       | Ħ        | ND             |             | 0.1        | 0.5   | a         | u        | н        | n     |
| Xylenes (total)                      | 91       | ND             |             | 0.1        | 1.0   | Ø         | U        | н        | 1F    |
| Surrogate: 1,2-Dichloroethane-d4     |          | 101 %          |             | 78.5       | -114  | ŧ         | #        | R        | н     |
| Surrogate: Toluene-d8                |          | 98.0 %         |             | 79.8       | -128  | Ħ         | н        | н        | н     |
| Surrogate: 4-Bromofluorobenzene      |          | 103 %          |             | 71.4       | -123  | #         | 8        | н        | u     |

Approved By

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



2218 Railroad Avenue voice 530.243.7234 Redding, California 96001 fax 530.243.7494

3860 Morrow Lane, Suite F Chico, California 95928

voice 530.894.8966 fax 530.894.5143

Reported:

Phone:

P.O. #

Lab No: 2110610

12/13/12

(530) 243-7234

| Report To: | GOLDER & ASSOCIATES         |
|------------|-----------------------------|
|            | 100 ENTERPRISE WAY, STE 190 |
|            | ROSEVILLE, CA 95678         |
|            |                             |

Attention: AMY HA

Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

## Semi Volatile Organic Compounds

| Analyte               |               | Units       | Results     | Qualifier      | MDL        | RL  | Method  | Analyzed | Prepared | Batch    |
|-----------------------|---------------|-------------|-------------|----------------|------------|-----|---------|----------|----------|----------|
| MW-2 Water            | (2110610-01)  | Sampled:11/ | 14/12 12:20 | Received:11/14 | 4/12 15:53 |     |         |          |          |          |
| Acenaphthene          |               | ug/i        | ND          |                | 0.5        | 1.0 | EPA 625 | 11/28/12 | 11/16/12 | B2K0422  |
| Acenaphthylene        |               | v           | ND          |                | 1.0        | 5.0 | и       | U        | a        | "        |
| Anthracene            |               | u.          | ND          |                | 1.0        | 5.0 | R, IS   | U        | U        | "        |
| Benzidine             |               | п           | ND          |                | 1.0        | 5.0 | R       | U        | u        | п        |
| Benzo (a) anthracen   | e             | н           | ND          |                | 1.0        | 5.0 | 11      | 17       | 11       |          |
| Benzo (a) pyrene      |               | н           | ND          |                | 1.0        | 5.0 | 11      | 14       | n        |          |
| Benzo (b) fluoranthe  |               | п           | ND          |                | 1.0        | 5.0 | 61      | 14       | 14       |          |
| Benzo (g,h,i) peryle  | ne            | п           | ND          |                | 1.0        | 5.0 | п       | n        | 14       |          |
| Benzo (k) fluoranthe  | ene           | v           | ND          |                | 2.0        | 5.0 | U       | R        | *        |          |
| Bis(2-chloroethyl)eth |               | 97          | ND          |                | 0.5        | 1.0 | U       | "        | *        |          |
| Bis(2-chloroethoxy)r  |               | ri<br>I     | ND          |                | 1.0        | 5.0 | п       | "        | ч        |          |
| Bis(2-chloroisopropy  | /l)ether      | U           | ND          |                | 1.0        | 2.0 | U       |          | u        | U U      |
| Bis(2-ethylhexyl)pht  | halate (DEHP) | U           | ND          |                | 2.0        | 5.0 | 'n      | a        |          |          |
| 4-Bromophenyl pher    | nyl ether     | п           | ND          |                | 1.0        | 5.0 | 10      | a        | a        | 11       |
| Butyl benzyl phthala  | te            | п           | ND          |                | 1.0        | 5.0 | 14      | a        | ti (     | 17       |
| 4-Chloro-3-methylph   | nenol         | н           | ND          |                | 0.5        | 1.0 | 17      | u        | u        | 17       |
| 2-Chloronaphthalene   | 9             | п           | ND          |                | 1.0        | 2.0 | u.      |          | U        | et .     |
| 2-Chlorophenol        |               | 11          | ND          |                | 1.0        | 5.0 | n       |          | U        | ti       |
| 4-Chlorophenyl pher   | nyi ether     | 11          | ND          |                | 1.0        | 5.0 | п       | 11       | ņ        | n        |
| Chrysene ·            | •             | n           | ND          |                | 1.0        | 5.0 | н       |          |          | u        |
| Dibenz (a,h) anthrac  | ene           | ŧ           | ND          |                | 1.0        | 5.0 | н       | W        | 11       |          |
| 3,3 '-Dichlorobenzidi |               | n           | ND          |                | 0.4        | 5.0 | н       | 17       | u        | н        |
| 2,4-Dichlorophenol    |               | _ U         | ND          |                | 1.0        | 2.0 | п       | 11       | 71       | н        |
| Diethyl phthalate     |               | н           | ND          |                | 1.0        | 2.0 | U       | u        | н        |          |
| 2,4-Dimethylphenol    |               | н           | ND          |                | 1.0        | 2.0 | 17      | п        | n        | н        |
| Dimethyl phthalate    |               | 19          | ND          |                | 1.0        | 5.0 | 17      |          | n        |          |
| Di-n-butyl phthalate  |               | 11          | ND          |                | 1.0        | 5.0 | It      | a        | a        |          |
| Di-n-octyl phthalate  |               | 97          | ND          |                | 1.0        | 5.0 | 11      | a        | u        | n        |
| 4,6-Dinitro-2-methyl  | phenol        | 11          | ND          |                | 1.0        | 5.0 | 17      | н        | u        | D        |
| 2,4-Dinitrophenol     |               | ft          | ND          |                | 1.0        | 5.0 | н       | u        | U        | n        |
| 2,4-Dinitrotoluene    |               | 19          | ND          |                | 1.0        | 5.0 | 11      | IJ       | U        | 11       |
| 2,6-Dinitrotoluene    |               | n           | ND          |                | 1.0        | 5.0 | п       | п        | U        | 11       |
| 1,2-Diphenylhydrazir  | 1e            | n           | ND          |                | 0.2        | 1.0 | п       |          | 19       | "        |
| Fluoranthene          |               | U           | ND          |                | 0.2        | 1.0 | п       | 11       | 10       | n        |
| Fluorene              |               | п           | ND          |                | 2.0        | 5.0 |         | п        | 11       | п        |
| Hexachlorobenzene     |               | п           | ND          |                |            |     |         | 17       | 17       | n        |
| Hexachlorocyclopent   | radiona       | ш           |             |                | 0.5        | 1.0 |         | R        | 11       |          |
| Indeno (1,2,3-cd) py  |               | И           | ND          |                | 1.0        | 2.0 |         |          | 1        |          |
| Hexachloroethane      | rene          | 17          | ND          |                | 1.0        | 5.0 |         |          |          | ;;<br>!! |
|                       |               |             | ND          |                | 0.5        | 1.0 |         |          | 11       |          |
| Isophorone            |               | R           | ND          |                | 0.5        | 1.0 |         |          | "        | 0        |
| Nitrobenzene          |               |             | ND          |                | 0.5        | 1.0 | "       | "        | 1        |          |
| 2-Nitrophenol         |               | a .         | ND          |                | 1.0        | 5.0 |         |          | -        |          |
| 4-Nitrophenol         |               | a<br>       | ND          |                | 1.0        | 5.0 | "       | II.      | ęr.      | "        |
| N-Nitrosodi-n-propyl  |               | 4           | ND          |                | 1.0        | 5.0 | "       |          | Ņ        | п        |
| N-Nitrosodimethylam   |               | ŭ           | ND          |                | 0.1        | 2.0 | 18      | u        | 1        | п        |
| N-Nitrosodiphenylam   |               | n           | ND          |                | 1.0        | 2.0 | w       | u        | n        | п        |
| Pentachlorophenol (I  | PCP)          | U           | ND          |                | 0.5        | 5.0 | и       | 71       | п        | n .      |
| Phenanthrene          |               | U           | ND          |                | 1.0        | 5.0 | ŧſ      |          | н        | R        |
| Phenol                |               | U           | ND          |                | 0.5        | 1.0 | n       | a        | н        | u        |
| Pyrene                |               | п           | ND          |                | 1.0        | 5.0 | a       | u        | н        | *1       |
| 2,4,6-Trichlorophenc  | bl            | n           | ND          |                | 1.0        | 5.0 | u       | u        | n        | п        |
| Surrogate: 2-Fluorop  | henol         |             | 33.6 %      |                | 19.9-67    | 7.1 | "       | п        | н        | u        |

Approved By

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



| J | 1 | 0 | Ŀ | C | ) | L | C | ر |  |  |  |
|---|---|---|---|---|---|---|---|---|--|--|--|
| a | b | 0 | r | a | t | 0 | r | У |  |  |  |

2218 Railroad Avenue voice 530.243.7234 Redding, California 96001 fax 530.243.7494

3860 Morrow Lane, Suite F Chico, California 95928

voice 530.894.8966 fax 530.894.5143

> Lab No: 2110610 Reported: 12/13/12 Phone: (530) 243-7234 P.O. #

| GOLDER & ASSOCIATES         |
|-----------------------------|
| 100 ENTERPRISE WAY, STE 190 |
| ROSEVILLE, CA 95678         |
|                             |

Attention: AMY HA

Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

# Semí Volatile Organic Compounds

| Analyte                                            | Units       | Results     | Qualifier     | MDL        | RL         | Method   | Analyzed | Prepared | Batch    |
|----------------------------------------------------|-------------|-------------|---------------|------------|------------|----------|----------|----------|----------|
| MW-2 Water (2110610-01)                            | Sampled:11/ | 14/12 12:20 | Received:11/1 | 4/12 15:53 | }          |          |          |          |          |
| Surrogate: Phenol-d5                               |             | 25.6 %      |               | 16.9       | -52.2      | 15       | "        | 11/16/12 | "        |
| Surrogate: 2,4,6-Tribromophenol                    |             | 122 %       |               | 56.8       | 3-138      | "        | "        | п        | "        |
| Surrogate: Nitrobenzene-d5                         |             | 98.4 %      |               | 41.3       | 3-100      | n        | "        | и        | "        |
| Surrogate: 2-Fluorobiphenyl                        |             | 105 %       | S-BN          |            | 103        | "        | "        | "        | u        |
| Surrogate: Terphenyl-dl4                           |             | 125 %       |               |            | 5-126      | n        | "        | 13       | n        |
| MW-3 Water (2110610-02)                            | Sampled:11/ | 14/12 14:00 | Received:11/1 | 4/12 15:53 | }          |          |          |          |          |
| Acenaphthene                                       | ug/l        | ND          |               | 0.5        | 1.0        | EPA 625  | 11/28/12 | 11/16/12 | B2K0422  |
| Acenaphthylene                                     | 97<br>F1    | ND          |               | 1.0        | 5.0        | 11       | "        | п        | 19       |
| Anthracene                                         |             | ND          |               | 1.0        | 5.0        | n        | a        | н        | H        |
| Benzidine                                          | u<br>v      | ND          |               | 1.0        | 5.0        | n        | u<br>    | н        | H        |
| Benzo (a) anthracene                               | 0           | ND          |               | 1.0        | 5.0        | u<br>11  | a<br>U   | 17       |          |
| Benzo (a) pyrene                                   |             | ND          |               | 1.0        | 5.0        |          |          | H<br>H   | 17       |
| Benzo (b) fluoranthene                             | 13          | ND          |               | 1.0        | 5.0        | 11       |          | 1        | 77       |
| Benzo (g,h,l) perylene                             | 17          | ND          |               | 1.0        | 5.0        | R        | n        | 11       | *        |
| Benzo (k) fluoranthene                             |             | ND          |               | 2.0        | 5.0        | 14       | -        | #<br>11  | 11<br>11 |
| Bis(2-chloroethyl)ether                            | "           | ND          |               | 0.5        | 1.0        | 17<br>11 | "        |          | "        |
| Bis(2-chloroethoxy)methane                         |             | ND          |               | 1.0        | 5.0        | "        |          | "        |          |
| Bis(2-chloroisopropyl)ether                        |             | ND          |               | 1.0        | 2.0        |          | **       | "        |          |
| Bis(2-ethylhexyl)phthalate (DEHP)                  | .,          | 250         | R-01          | 40.0       | 100        |          | 11/30/12 | n<br>r   |          |
| 4-Bromophenyl phenyl ether                         | .,          | ND          |               | 1.0        | 5.0        |          | 11/28/12 | 17       |          |
| Butyl benzyl phthalate                             | 17          | ND          |               | 1.0        | 5.0        |          |          | I.       |          |
| 4-Chloro-3-methylphenol                            |             | ND          |               | 0.5        | 1.0        | 17       |          | 1        | а<br>а   |
| 2-Chloronaphthalene                                |             | ND          |               | 1.0        | 2.0        | 17       |          | 1        | a        |
| 2-Chlorophenol                                     |             | ND          |               | 1.0        | 5.0        | "        |          | 11       | a<br>(1  |
| 4-Chlorophenyl phenyl ether                        |             | ND          |               | 1.0        | 5.0        | u u      | 17       | **       | u<br>u   |
| Chrysene                                           |             | ND          |               | 1.0        | 5.0        |          | 17       | n<br>a   |          |
| Dibenz (a,h) anthracene<br>3,3 ´-Dichlorobenzidine |             | ND          |               | 1.0        | 5.0        |          | 17       |          |          |
| •                                                  | 11          | ND          |               | 0.4        | 5.0        |          |          | "        |          |
| 2,4-Dichlorophenol                                 |             | ND          |               | 1.0        | 2.0        | a        |          |          |          |
| Diethyl phthalate                                  |             | ND          |               | 1.0        | 2.0        |          | "        |          |          |
| 2,4-Dimethylphenol                                 | v           | ND          |               | 1.0        | 2.0        |          | a<br>a   |          | "        |
| Dimethyl phthalate<br>Di-n-butyl phthalate         | u.          | ND          |               | 1.0        | 5.0        |          |          |          |          |
| Di-n-octyl phthalate                               | n           | ND<br>ND    |               | 1.0        | 5.0        |          |          |          |          |
| 4,6-Dinitro-2-methylphenol                         | п           |             |               | 1.0        | 5.0        |          |          |          |          |
| 2,4-Dinitrophenol                                  |             | ND<br>ND    |               | 1.0<br>1.0 | 5.0<br>5.0 | 17       |          |          | "<br>"   |
| 2,4-Dinitrotoluene                                 |             | ND          |               |            |            |          |          |          |          |
| 2,6-Dinitrotoluene                                 | U           | ND          |               | 1.0        | 5.0<br>5.0 | #        |          |          |          |
| 1,2-Diphenylhydrazine                              | 17          | ND          |               | 1.0        |            |          |          |          |          |
| Fluoranthene                                       |             | ND          |               | 0.2<br>0.5 | 1.0        |          | н        |          | a        |
| Fluorene                                           | **          | ND          |               | 2.0        | 1.0        |          |          |          |          |
| Hexachlorobenzene                                  | n           | ND          |               |            | 5.0        |          | n        |          |          |
| Hexachlorocyclopentadiene                          | n           | ND          |               | 0.5        | 1.0        |          | 17       |          |          |
| Indeno (1,2,3-cd) pyrene                           | 11          |             |               | 1.0        | 2.0        | n        | w w      |          | 0        |
| Hexachloroethane                                   | U           | ND<br>ND    |               | 1.0<br>0.5 | 5.0        |          |          |          |          |
| Isophorone                                         | u           | ND          |               | 0.5        | 1.0        |          | u        |          | 17       |
| Nitrobenzene                                       | U           | ND          |               | 0.5        | 1.0<br>1.0 |          |          | n        | *        |
| 2-Nitrophenol                                      | п           | ND          |               | 1.0        | 5.0        |          |          |          | *        |
| 4-Nitrophenol                                      | н           | ND          |               |            |            |          |          |          | "        |
| N-Nitrosodi-n-propylamine                          | н           | ND          |               | 1.0        | 5.0        |          |          |          |          |
| N-Nitrosodimethylamine                             | 11          | ND          |               | 1.0        | 5.0        |          |          |          |          |
| N-Nitrosodiphenylamine                             | 11          |             |               | 0.1        | 2.0        |          |          | и<br>И   |          |
| a na osouprenyamme                                 |             | ND          |               | 1.0        | 2.0        | -        |          | и        |          |

Арр éd By

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



| Ų | 0 |   | Ŀ | C | > | L | ļ |
|---|---|---|---|---|---|---|---|
| а | b | 0 | ľ | а | t | 0 | l |

2218 Railroad Avenue voice 530.243.7234 Redding, California 96001 fax 530.243.7494

3860 Morrow Lane, Suite F Chico, California 95928

voice 530.894.8966 fax 530.894.5143

Reported:

Phone:

P.O. #

Lab No: 2110610

12/13/12

(530) 243-7234

| Report To: | GOLDER & ASSOCIATES         |
|------------|-----------------------------|
|            | 100 ENTERPRISE WAY, STE 190 |
|            | ROSEVILLE, CA 95678         |
| A          | 440/114                     |

Attention: AMY HA

Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

## Semi Volatile Organic Compounds

| Analyte                           | Units         | Results     | Qualifier                             | MDL       | RL   | Method  | Analyzed | Prepared | Batch   |
|-----------------------------------|---------------|-------------|---------------------------------------|-----------|------|---------|----------|----------|---------|
| MW-3 Water (2110610-02)           | Sampled:11/   | 14/12 14:00 | Received:11/14                        | /12 15:53 |      |         |          |          |         |
| Pentachlorophenol (PCP)           | đ             | ND          |                                       | 0.5       | 5.0  | a       | 14       | 11/16/12 | н       |
| Phenanthrene                      | w             | ND          |                                       | 1.0       | 5.0  | "       | 14       | "        |         |
| Phenol                            | u.            | 0.6         | J                                     | 0.5       | 1.0  | п       | IF.      | п        | н       |
| Pyrene                            | "             | ND          |                                       | 1.0       | 5.0  | ti (    | R.       | н        | н       |
| 2,4,6-Trichlorophenol             | *             | ND          |                                       | 1.0       | 5.0  | a       | 11       | н        | н       |
| Surrogate: 2-Fluorophenol         |               | 21.0 %      |                                       | 19.9-     | 67.1 | 17      | "        | 17       | n       |
| Surrogate: Phenol-d5              |               | 16.6 %      | S-AC                                  | 16.9-     | 52,2 | n       | н        | п        | п       |
| Surrogate: 2,4,6-Tribromophenol   |               | 92.0 %      |                                       | 56.8-     | -138 | #       | "        | 17       | п       |
| Surrogate: Nitrobenzene-dS        |               | 53.5 %      |                                       | 41.3-     | -100 | #       | "        | n        | N       |
| Surrogate: 2-Fluorobiphenyl       |               | 58.0 %      |                                       | 47-1      | 103  | "       | н        | 17       | "       |
| Surrogate: Terphenyl-dl4          |               | 88.5 %      |                                       | 51.6-     | -126 | "       | н        | #        | "       |
| DUP Water (2110610-03)            | Sampled:11/14 | 4/12 12:30  | Received:11/14/                       | 12 15:53  |      |         |          |          |         |
| Acenaphthene                      | ug/i          | ND          | · · · · · · · · · · · · · · · · · · · | 0.5       | 1.0  | EPA 625 | 11/28/12 | 11/16/12 | B2K0422 |
| Acenaphthylene                    | н             | NÐ          |                                       | 1.0       | 5.0  | *1      | п        | 11       | **      |
| Anthracene                        | U             | NÐ          |                                       | 1.0       | 5.0  | n       | 4        | ti       | ••      |
| Benzidine                         | U             | ND          |                                       | 1.0       | 5.0  |         | 11       | "        | स       |
| Benzo (a) anthracene              | н             | ND          |                                       | 1.0       | 5.0  |         | 11       | н        | "       |
| Benzo (a) pyrene                  | н             | NÐ          |                                       | 1.0       | 5.0  |         | и        | ri       | *1      |
| Benzo (b) fluoranthene            | н             | ND          |                                       | 1.0       | 5.0  |         | н        | н        | **      |
| Benzo (g,h,i) perviene            | п             | NÐ          |                                       | 1.0       | 5.0  | "       | н        | n        | \$1     |
| Benzo (k) fluoranthene            |               | ND          |                                       | 2,0       | 5.0  |         | п        | "        | **      |
| Bis(2-chloroethyi)ether           |               | ND          |                                       | 0.5       | 1.0  | 11      | U        | "        | 16      |
| Bis(2-chloroethoxy)methane        | n             | ND          |                                       | 1.0       | 5.0  | *1      | н        | 71       | 11      |
| Bis(2-chloroisopropyl)ether       | n             | ND          |                                       | 1.0       | 2.0  | 11      | н        | 71       | 11      |
| Bis(2-ethylhexyl)phthalate (DEHP) | п             | ND          |                                       | 2.0       | 5.0  | 11      | н        | n        | 11      |
| 4-Bromophenyl phenyl ether        | n             | ND          |                                       | 1.0       | 5.0  | 12      | н        | N        | н       |
| Butyl benzyl phthalate            | п             | ND          |                                       | 1.0       | 5.0  | u       | н        | Ħ        | н       |
| 4-Chloro-3-methylphenol           | н             | ND          |                                       | 0.5       | 1,0  | 17      | a        | 11       | н       |
| 2-Chloronaphthalene               |               | ND          |                                       | 1.0       | 2,0  | ır      | п        | 17       | U       |
| 2-Chiorophenol                    | н             | ND          |                                       | 1.0       | 5.0  | 17      | u        | 17       | n       |
| 4-Chlorophenyl phenyl ether       | D             | ND          |                                       | 1.0       | 5.0  | 18      | n        | 17       | Ð       |
| Chrysene                          | н             | ND          |                                       | 1.0       | 5.0  | 14      | u        | "        | 11      |
| Dibenz (a,h) anthracene           | н             | ND          |                                       | 1.0       | 5.0  | 17      | n        | r        | n       |
| 3,3 '-Dichlorobenzidine           | 11            | ND          |                                       | 0.4       | 5.0  | 14      | a        | "        | n       |
| 2,4-Dichlorophenol                | н             | ND          |                                       | 1.0       | 2.0  | 11      | n        | "        | n       |
| Diethyl phthalate                 | U             | ND          |                                       | 1.0       | 2.0  | 18      | 11       |          | в       |
| 2,4-Dimethylphenol                | 11            | ND          |                                       | 1.0       | 2.0  | 17      | 8        | п        | D       |
|                                   | 13            | ND          |                                       | 1.0       | 5.0  | п       | 1        | н        | п       |
| Dimethyl phthalate                | н             | ND          |                                       | 1.0       | 5.0  | 17      | 11       | н        | п       |
| Di-n-butyl phthalate              | н             |             |                                       | 1.0       | 5.0  | n       | 11       |          | a a     |
| Di-n-octyl phthalate              | н             | ND          |                                       | 1.0       | 5.0  | n       | "        | U        | a       |
| 4,6-Dinitro-2-methylphenol        |               | ND          |                                       |           |      |         | n        |          | a       |
| 2,4-Dinitrophenol                 |               | ND          |                                       | 1.0       | 5.0  |         | н        |          | н       |
| 2,4-Dinitrotoluene                |               | ND          |                                       | 1.0       | 5.0  | U       |          | 1        | n       |
| 2,6-Dinitrotoluene                |               | ND          |                                       | 1.0       | 5.0  |         | н        | 1        | н       |
| 1,2-Diphenylhydrazine             | "             | ND          |                                       | 0.2       | 1.0  |         |          | "<br>V   | "       |
| Fluoranthene                      | "             | ND          |                                       | 0.5       | 1.0  | 0       | "        | 11       |         |
| Fluorene                          |               | ND          |                                       | 2.0       | 5.0  |         |          |          | u<br>u  |
| Hexachlorobenzene                 |               | ND          |                                       | 0.5       | 1.0  |         |          |          |         |
| Hexachlorocyclopentadiene         |               | ND          |                                       | 1.0       | 2.0  |         |          | u<br>    |         |
| Indeno (1,2,3-cd) pyrene          | Ш             | ND          |                                       | 1.0       | 5.0  | u       | "        | I        |         |
| Hexachloroethane                  | Ш             | ND          |                                       | 0.5       | 1.0  | н       |          | и        | n       |
| Isophorone                        | U             | ND          |                                       | 0.5       | 1.0  | f1      |          | II.      |         |
|                                   |               |             |                                       |           |      |         |          |          |         |

Approved By

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



| ĸ   | 1 | σ | Ŀ | C | > |
|-----|---|---|---|---|---|
| l a | b | 0 | r | а | t |

2218 Railroad Avenue voice 530.243.7234 Redding, California 96001 fax 530.243.7494

3860 Morrow Lane, Suite F Chico, California 95928

voice 530.894.8966 fax 530.894.5143

Lab No: 2110610 Reported: 12/13/12 Phone: (530) 243-7234 P.O. #

#### Report To: **GOLDER & ASSOCIATES** 100 ENTERPRISE WAY, STE 190 ROSEVILLE, CA 95678

Attention: AMY HA

Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

## Semi Volatile Organic Compounds

| Апајуte                         | Units         | Results   | Qualifier      | MDL      | RL   | Method | Analyzed | Prepared | Batch |
|---------------------------------|---------------|-----------|----------------|----------|------|--------|----------|----------|-------|
| DUP Water (2110610-03)          | Sampled:11/14 | /12 12:30 | Received:11/14 | 12 15:53 |      |        |          |          |       |
| Nitrobenzene                    | 12            | ND        |                | 0.5      | 1.0  | п      | п        | 11/16/12 | 11    |
| 2-Nitropheno!                   | 12            | ND        |                | 1.0      | 5.0  |        | u        | a        | **    |
| 4-Nitrophenol                   | 18            | ND        |                | 1.0      | 5.0  |        | a        | u        | er    |
| N-Nitrosodi-n-propylamine       | 11            | ND        |                | 1.0      | 5.0  | н      | u        | u        | 11    |
| N-Nitrosodimethylamine          | 11            | ND        |                | 0.1      | 2.0  | n      | U        | U        | **    |
| N-Nitrosodiphenylamine          | 11            | ND        |                | 1.0      | 2.0  | 11     | U        | u        | н     |
| Pentachlorophenol (PCP)         | 11            | ND        |                | 0.5      | 5.0  | 17     | U        | U        | et    |
| Phenanthrene                    | "             | ND        |                | 1.0      | 5.0  | 17     | n        | U        | N.    |
| Phenol                          | n             | ND        |                | 0.5      | 1.0  | n      | n        | U        | 11    |
| Pyrene                          | 11            | ND        |                | 1.0      | 5.0  | 18     | U        | U        | 12    |
| 2,4,6-Trichlorophenol           |               | ND        |                | 1.0      | 5.0  | 14     | n        | 11       | 11    |
| Surrogate: 2-Fluorophenol       |               | 34.2 %    |                | 19.9-    | 67.1 | "      | н        | п        | "     |
| Surrogate: Phenol-d5            |               | 24.8 %    |                | 16.9-    | 52.2 | и      | н        | 11       | "     |
| Surrogate: 2,4,6-Tribromophenol |               | 115 %     |                | 56.8-    | 138  | и      | 11       | n        | H     |
| Surrogate: Nitrobenzene-d5      |               | 101 %     | S-BN           | 41.3-    |      | u u    | 14       | n        | "     |
| Surrogate: 2-Fluorobiphenyl     |               | 102 %     |                | 47-1     | (03  | B      | #        | #        | н     |
| Surrogate: Terphenyl-dl4        |               | 119 %     |                | 51.6-    |      | "      | H        | #        | "     |

Appì d By

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718



|  |  | voice 530.894.8966<br>fax 530.894.5143 |
|--|--|----------------------------------------|
|--|--|----------------------------------------|

#### Report To: **GOLDER & ASSOCIATES** 100 ENTERPRISE WAY, STE 190 ROSEVILLE, CA 95678 Attention: AMY HA Project: TCCC-MT SHASTA ANNUAL MONITORING 123-97477 PHASE 002

Pesticides

| Analyte                                                                                                                                                                                                                                                                                                            |                | Units                                                                                                    | Results                                                                         | Qualifier     | MDL                                                                                                                                                                                                | RL                                                                                                                                                             | Method                                                                                           | Analyzed                                                                                              | Prepared                                                                                                       | Batch                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| MW-2 Water                                                                                                                                                                                                                                                                                                         | (2110610-01)   | Sampled:11/                                                                                              | 14/12 12:20                                                                     | Received:11/1 | 4/12 15:53                                                                                                                                                                                         |                                                                                                                                                                |                                                                                                  |                                                                                                       |                                                                                                                |                                                                                             |
| Aldrin                                                                                                                                                                                                                                                                                                             |                | ug/l                                                                                                     | ND                                                                              |               | 0.003                                                                                                                                                                                              | 0.005                                                                                                                                                          | EPA 608                                                                                          | 12/01/12                                                                                              | 11/15/12                                                                                                       | B2K0373                                                                                     |
| alpha-BHC                                                                                                                                                                                                                                                                                                          |                | U                                                                                                        | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          | 41                                                                                               | U                                                                                                     | u                                                                                                              | 17                                                                                          |
| beta-BHC                                                                                                                                                                                                                                                                                                           |                | и                                                                                                        | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.005                                                                                                                                                          | м                                                                                                | 17                                                                                                    | U.                                                                                                             | W                                                                                           |
| gamma-BHC (Lindar                                                                                                                                                                                                                                                                                                  | ie)            | 19                                                                                                       | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          | 61                                                                                               | 11                                                                                                    | н                                                                                                              | 11                                                                                          |
| delta-BHC                                                                                                                                                                                                                                                                                                          | •              | 11                                                                                                       | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.005                                                                                                                                                          | н                                                                                                | 17                                                                                                    | 11                                                                                                             | **                                                                                          |
| Chlordane (tech)                                                                                                                                                                                                                                                                                                   |                | u.                                                                                                       | ND                                                                              |               | 0.090                                                                                                                                                                                              | 0.500                                                                                                                                                          |                                                                                                  | я                                                                                                     | 17                                                                                                             | (1                                                                                          |
| 4,4'-DDE                                                                                                                                                                                                                                                                                                           |                |                                                                                                          | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          | u                                                                                                | 11                                                                                                    | 11                                                                                                             | ti                                                                                          |
| 4,4'-DDD                                                                                                                                                                                                                                                                                                           |                | п                                                                                                        | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.020                                                                                                                                                          | U                                                                                                | 11                                                                                                    | 11                                                                                                             | π                                                                                           |
| 4,4 '-DDT                                                                                                                                                                                                                                                                                                          |                |                                                                                                          | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          |                                                                                                  | 11                                                                                                    | u.                                                                                                             | u                                                                                           |
| Dieldrin                                                                                                                                                                                                                                                                                                           |                | н                                                                                                        | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          | п                                                                                                | 11                                                                                                    | w                                                                                                              | a                                                                                           |
| Endosulfan I                                                                                                                                                                                                                                                                                                       |                | 11                                                                                                       | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          | н                                                                                                |                                                                                                       | 11                                                                                                             | u                                                                                           |
| Endosulfan II                                                                                                                                                                                                                                                                                                      |                |                                                                                                          |                                                                                 |               |                                                                                                                                                                                                    |                                                                                                                                                                |                                                                                                  |                                                                                                       |                                                                                                                | n                                                                                           |
| Endosulfan sulfate                                                                                                                                                                                                                                                                                                 |                | **                                                                                                       | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          | 12                                                                                               |                                                                                                       |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                    |                | N.                                                                                                       | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.020                                                                                                                                                          |                                                                                                  |                                                                                                       | ti i                                                                                                           |                                                                                             |
| Indrin                                                                                                                                                                                                                                                                                                             |                |                                                                                                          | ND                                                                              |               | 0.003                                                                                                                                                                                              | 0.010                                                                                                                                                          |                                                                                                  | a                                                                                                     |                                                                                                                |                                                                                             |
| Indrin aldehyde                                                                                                                                                                                                                                                                                                    |                |                                                                                                          | ND                                                                              |               | 0.005                                                                                                                                                                                              | 0.010                                                                                                                                                          |                                                                                                  |                                                                                                       | 11                                                                                                             |                                                                                             |
| leptachlor                                                                                                                                                                                                                                                                                                         |                | н                                                                                                        | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          | 92                                                                                               | U                                                                                                     | н                                                                                                              | 0                                                                                           |
| eptachlor epoxide                                                                                                                                                                                                                                                                                                  |                | п                                                                                                        | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          | "                                                                                                |                                                                                                       |                                                                                                                | 11                                                                                          |
| <b>1ethoxychlor</b>                                                                                                                                                                                                                                                                                                |                | п                                                                                                        | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          | "                                                                                                |                                                                                                       | п                                                                                                              | 11                                                                                          |
| Toxaphene                                                                                                                                                                                                                                                                                                          |                | п                                                                                                        | ND                                                                              |               | 0.060                                                                                                                                                                                              | 0.500                                                                                                                                                          | п                                                                                                |                                                                                                       | n                                                                                                              |                                                                                             |
| CB-1016                                                                                                                                                                                                                                                                                                            |                | н                                                                                                        | ND                                                                              | QR-05         | 0.050                                                                                                                                                                                              | 0.200                                                                                                                                                          | н                                                                                                | 11                                                                                                    | 17                                                                                                             | н                                                                                           |
| <b>CB-1221</b>                                                                                                                                                                                                                                                                                                     |                | n                                                                                                        | ND                                                                              | -             | 0.050                                                                                                                                                                                              | 0.200                                                                                                                                                          |                                                                                                  | R                                                                                                     | IF .                                                                                                           | п                                                                                           |
| CB-1232                                                                                                                                                                                                                                                                                                            |                | H I                                                                                                      | ND                                                                              |               | 0.050                                                                                                                                                                                              | 0.200                                                                                                                                                          |                                                                                                  | 11                                                                                                    | N                                                                                                              |                                                                                             |
| CB-1242                                                                                                                                                                                                                                                                                                            |                | 11                                                                                                       | ND                                                                              |               | 0.050                                                                                                                                                                                              | 0.200                                                                                                                                                          |                                                                                                  |                                                                                                       | 17                                                                                                             | п                                                                                           |
| CB-1248                                                                                                                                                                                                                                                                                                            |                | fr                                                                                                       | ND                                                                              |               | 0.050                                                                                                                                                                                              | 0.200                                                                                                                                                          |                                                                                                  | R                                                                                                     | w                                                                                                              |                                                                                             |
| CB-1254                                                                                                                                                                                                                                                                                                            |                | n                                                                                                        | ND                                                                              |               | 0.050                                                                                                                                                                                              | 0.200                                                                                                                                                          | 0                                                                                                | и                                                                                                     | w                                                                                                              | п                                                                                           |
| CB-1260                                                                                                                                                                                                                                                                                                            |                | н                                                                                                        | ND                                                                              |               | 0.050                                                                                                                                                                                              | 0.200                                                                                                                                                          | n                                                                                                | 11                                                                                                    | *                                                                                                              | n                                                                                           |
| CB-1262                                                                                                                                                                                                                                                                                                            |                | п                                                                                                        | ND                                                                              |               |                                                                                                                                                                                                    |                                                                                                                                                                | п                                                                                                | #                                                                                                     | •*                                                                                                             | п                                                                                           |
| Gurrogate: Tetrachio                                                                                                                                                                                                                                                                                               | va mata valana |                                                                                                          |                                                                                 |               | 0.100                                                                                                                                                                                              | 0.500                                                                                                                                                          | 8                                                                                                | #                                                                                                     | "                                                                                                              |                                                                                             |
| -                                                                                                                                                                                                                                                                                                                  |                |                                                                                                          | 55.0 %                                                                          |               | 14.2                                                                                                                                                                                               |                                                                                                                                                                | 8                                                                                                | u                                                                                                     |                                                                                                                | "                                                                                           |
| Surrogate: Decachio.<br>4W-3 Water                                                                                                                                                                                                                                                                                 | (2110610-02)   | Sampled:11/:                                                                                             | 73.9 %                                                                          | Deserved 11/1 | 27.7                                                                                                                                                                                               | 133                                                                                                                                                            |                                                                                                  |                                                                                                       | *                                                                                                              |                                                                                             |
|                                                                                                                                                                                                                                                                                                                    | (2110010-02)   |                                                                                                          |                                                                                 | Received:11/1 |                                                                                                                                                                                                    | A                                                                                                                                                              | 554 480                                                                                          | 10/01/110                                                                                             |                                                                                                                |                                                                                             |
| Ndrin<br>Ilpha-BHC                                                                                                                                                                                                                                                                                                 |                | ug/l                                                                                                     | ND                                                                              |               | 0.003                                                                                                                                                                                              | 0.005                                                                                                                                                          | EPA 608                                                                                          | 12/01/12                                                                                              | 11/15/12                                                                                                       | B2K0373                                                                                     |
|                                                                                                                                                                                                                                                                                                                    |                |                                                                                                          |                                                                                 |               |                                                                                                                                                                                                    | <b>•</b> • • •                                                                                                                                                 |                                                                                                  |                                                                                                       |                                                                                                                |                                                                                             |
|                                                                                                                                                                                                                                                                                                                    |                | "                                                                                                        | ND                                                                              |               | 0.002                                                                                                                                                                                              | 0.010                                                                                                                                                          | W                                                                                                | u                                                                                                     |                                                                                                                |                                                                                             |
| eta-BHC                                                                                                                                                                                                                                                                                                            |                | н                                                                                                        | ND                                                                              |               | 0.002<br>0.002                                                                                                                                                                                     | 0.005                                                                                                                                                          | 97                                                                                               | u                                                                                                     | U                                                                                                              | n                                                                                           |
| eta-BHC<br>amma-BHC (Lindan                                                                                                                                                                                                                                                                                        | e)             |                                                                                                          | ND<br>ND                                                                        |               | 0.002<br>0.002<br>0.002                                                                                                                                                                            | 0.005<br>0.010                                                                                                                                                 | 57<br>77                                                                                         | u<br>U                                                                                                |                                                                                                                | 11                                                                                          |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC                                                                                                                                                                                                                                                                            | e)             | н                                                                                                        | ND                                                                              |               | 0.002<br>0.002                                                                                                                                                                                     | 0.005                                                                                                                                                          | 97<br>P2                                                                                         | u<br>U<br>U                                                                                           | 11<br>13                                                                                                       |                                                                                             |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>Thlordane (tech)                                                                                                                                                                                                                                                        | e)             | 11<br>11<br>17<br>17                                                                                     | ND<br>ND                                                                        |               | 0.002<br>0.002<br>0.002                                                                                                                                                                            | 0.005<br>0.010                                                                                                                                                 | 97<br>17<br>14                                                                                   | 11<br>11<br>11<br>10<br>0                                                                             |                                                                                                                | 11                                                                                          |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>Thlordane (tech)                                                                                                                                                                                                                                                        | e)             | н                                                                                                        | ND<br>ND<br>ND                                                                  |               | 0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                   | 0.005<br>0.010<br>0.005                                                                                                                                        | 97<br>P2                                                                                         | u<br>U<br>U                                                                                           | 11<br>13                                                                                                       | 11                                                                                          |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>hlordane (tech)<br>,4'-DDE                                                                                                                                                                                                                                              | e)             | 11<br>11<br>17<br>17                                                                                     | ND<br>ND<br>ND<br>ND                                                            |               | 0.002<br>0.002<br>0.002<br>0.002<br>0.090<br>0.002                                                                                                                                                 | 0.005<br>0.010<br>0.005<br>0.500<br>0.010                                                                                                                      | 97<br>17<br>14                                                                                   | 11<br>11<br>11<br>10<br>0                                                                             | 11<br>13<br>13                                                                                                 | 11                                                                                          |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>hlordane (tech)<br>,4 '-DDE<br>,4 '-DDD                                                                                                                                                                                                                                 | e)             | 11<br>11<br>17<br>17                                                                                     | ND<br>ND<br>ND<br>ND<br>ND                                                      |               | 0.002<br>0.002<br>0.002<br>0.002<br>0.090<br>0.002<br>0.002                                                                                                                                        | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020                                                                                                             | 17<br>17<br>11<br>11                                                                             | 0<br>0<br>0                                                                                           | 11<br>11<br>15                                                                                                 | 74<br>74<br>74<br>84                                                                        |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>hlordane (tech)<br>,4 '-DDE<br>,4 '-DDD<br>,4 '-DDT                                                                                                                                                                                                                     | e)             | 11<br>17<br>17<br>17<br>17<br>17                                                                         | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                |               | 0.002<br>0.002<br>0.002<br>0.002<br>0.090<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                      | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010                                                                                                    | #<br>#<br>#<br>#<br>#                                                                            | u<br>U<br>U<br>D<br>D                                                                                 | 11<br>11<br>12<br>12<br>13<br>13                                                                               | 14<br>14<br>14<br>14<br>17                                                                  |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>hlordane (tech)<br>,4 '-DDE<br>,4 '-DDD<br>,4 '-DDT<br>ieldrin                                                                                                                                                                                                          | e)             | 11<br>17<br>17<br>17<br>17<br>11                                                                         | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                          |               | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                             | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010                                                                                           | #<br>#<br>#<br>#<br>#<br>#                                                                       | u<br>U<br>U<br>D<br>0<br>0<br>0                                                                       | 11<br>17<br>17<br>17<br>17<br>17<br>11                                                                         | 14<br>14<br>14<br>14<br>17                                                                  |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>ihiordane (tech)<br>,4 '-DDE<br>,4 '-DDD<br>,4 '-DDT<br>ieldrin<br>ndosulfan I                                                                                                                                                                                          | e)             | 11<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                    |               | 0.002<br>0.002<br>0.002<br>0.090<br>0.090<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                    | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010                                                                                  | #<br>#<br>#<br>U<br>U<br>U<br>U                                                                  | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U                                                                  | 11<br>17<br>17<br>17<br>17<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1                                | 14<br>14<br>14<br>14<br>17                                                                  |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>/hlordane (tech)<br>/4'-DDE<br>/4'-DDD<br>/4'-DDT<br>ieldrin<br>ndosulfan I<br>ndosulfan II                                                                                                                                                                             | e)             | 11<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                              |               | 0.002<br>0.002<br>0.002<br>0.090<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                           | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010<br>0.010                                                                         | #<br>#<br>#<br>U<br>U<br>U<br>U                                                                  | U<br>U<br>U<br>U<br>U<br>U<br>D<br>N                                                                  | 11<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                                | 14<br>14<br>14<br>14<br>34<br>37                                                            |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>/hlordane (tech)<br>/4 '-DDE<br>/4 '-DDT<br>ieldrin<br>ndosulfan I<br>ndosulfan II<br>ndosulfan sulfate                                                                                                                                                                 | e)             | 11<br>12<br>12<br>12<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                        |               | 0.002<br>0.002<br>0.002<br>0.090<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                  | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010<br>0.010<br>0.020                                                                | #<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#                                                   | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U                                                        | 11<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                                | 14<br>14<br>14<br>14<br>17                                                                  |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>/hlordane (tech)<br>/4 '-DDE<br>/4 '-DDT<br>ieldrin<br>ndosulfan I<br>ndosulfan II<br>ndosulfan sulfate<br>ndrin                                                                                                                                                        | e)             | 11<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                  |               | 0.002<br>0.002<br>0.002<br>0.090<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                       | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010<br>0.010<br>0.020<br>0.010                                                       | н<br>н<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц | U<br>U<br>U<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D      | 11<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                                | 14<br>14<br>14<br>14<br>34<br>37                                                            |
| eta-BHC<br>amma-BHC (Lindan<br>lelta-BHC<br>hlordane (tech)<br>,4 '-DDE<br>,4 '-DDD<br>,4 '-DDT<br>bieldrin<br>ndosulfan I<br>ndosulfan II<br>ndosulfan II<br>ndosulfan sulfate<br>ndrin<br>ndrin aldehyde                                                                                                         | e)             |                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND            |               | 0.002<br>0.002<br>0.002<br>0.090<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.003<br>0.003<br>0.005                                     | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010<br>0.010<br>0.020<br>0.010<br>0.010                                              |                                                                                                  | и<br>9<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 11<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                                | 19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>1             |
| eta-BHC<br>Jamma-BHC (Lindan<br>Jelta-BHC<br>Chlordane (tech)<br>,4 '-DDD<br>,4 '-DDD<br>Jeldrin<br>Indosulfan I<br>Indosulfan II<br>Indosulfan Sulfate<br>Indrin aldehyde<br>Jeptachlor                                                                                                                           | e)             |                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND      |               | 0.002<br>0.002<br>0.002<br>0.090<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.003<br>0.005<br>0.002                                     | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010                                     |                                                                                                  | U<br>U<br>D<br>D<br>D<br>D<br>D<br>D<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U                | 11<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1                                | 14<br>14<br>14<br>14<br>17                                                                  |
| eta-BHC<br>amma-BHC (Lindan<br>lelta-BHC<br>chlordane (tech)<br>,4 '-DDD<br>,4 '-DDT<br>bieldrin<br>indosulfan I<br>indosulfan II<br>indosulfan sulfate<br>indrin aldehyde<br>leptachlor<br>eptachlor epoxide                                                                                                      | e)             |                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N |               | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.003<br>0.005<br>0.002<br>0.002                                              | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010                            |                                                                                                  | U<br>U<br>U<br>D<br>D<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U      | 11<br>17<br>17<br>18<br>18<br>18<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 11<br>12<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14                  |
| eta-BHC<br>amma-BHC (Lindan<br>elta-BHC<br>ihiordane (tech)<br>,4 '-DDE<br>,4 '-DDD<br>ieldrin<br>ndosulfan I<br>ndosulfan II<br>ndosulfan sulfate<br>ndrin<br>ndrin aldehyde<br>eptachlor<br>eptachlor<br>eptachlor                                                                                               | e)             |                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N |               | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.003<br>0.005<br>0.002<br>0.002<br>0.002                            | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010                   |                                                                                                  | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U           | 11<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                   | 17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1             |
| eta-BHC<br>Jamma-BHC (Lindan<br>Jelta-BHC<br>Chlordane (tech)<br>,4 - DDE<br>,4 - DDD<br>Jeldrin<br>indosulfan I<br>indosulfan II<br>indosulfan sulfate<br>indrin<br>indrin aldehyde<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor | e)             |                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N |               | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.003<br>0.005<br>0.002<br>0.002                                              | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010                            |                                                                                                  | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U           | 11<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                   | #<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br># |
| veta-BHC<br>jamma-BHC (Lindan<br>lelta-BHC<br>/hlordane (tech)<br>/,4 - DDE<br>/,4 - DDT<br>jeldrin<br>indosulfan I<br>indosulfan II<br>indosulfan sulfate<br>indrin<br>indrin aldehyde<br>leptachlor<br>leptachlor epoxide<br>lethoxychlor<br>oxaphene<br>/CB-1016                                                | e)             |                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | QR-05         | 0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.003<br>0.005<br>0.002<br>0.002<br>0.002                            | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.020<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010                   |                                                                                                  | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U           | 11<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                   | #<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br># |
| eta-BHC<br>Jamma-BHC (Lindan<br>Jelta-BHC<br>Chlordane (tech)<br>,4 - DDE<br>,4 - DDD<br>Jeldrin<br>indosulfan I<br>indosulfan II<br>indosulfan sulfate<br>indrin<br>indrin aldehyde<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor<br>Jeptachlor | e)             |                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | QR-05         | 0.002<br>0.002<br>0.002<br>0.090<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.003<br>0.003<br>0.005<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002 | 0.005<br>0.010<br>0.005<br>0.500<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010 |                                                                                                  | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U           | 11<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                   | #<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br># |

Approved By

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718

Lab No: 2110610

(530) 243-7234

**Reported:** 12/13/12

Phone:

P.O. #



| Dasic | 2218 Railroad Avenue<br>Redding, California 96001 | voice 530.243.7234<br>fax 530.243.7494 | 3860 Morrow Lane, Suite F<br>Chico, California 95928 | voice 530.894.8966<br>fax 530.894.5143 |  |
|-------|---------------------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------|--|
|       |                                                   |                                        |                                                      |                                        |  |

| Report To: | GOLDER & ASSOCIATES                       |             | Lab No:   | 2110610        |
|------------|-------------------------------------------|-------------|-----------|----------------|
|            | 100 ENTERPRISE WAY, STE 190               |             | Reported: | 12/13/12       |
|            | ROSEVILLE, CA 95678                       |             | Phone:    | (530) 243-7234 |
| Attention: | AMY HA                                    |             | P.O. #    |                |
| Project:   | TCCC-MT SHASTA ANNUAL MONITORING 123-9747 | 7 PHASE 002 |           |                |
|            |                                           |             |           |                |

### Pesticides

| Analyte                           | Units           | Results       | Qualifier      | MDL        | RL        | Method  | Analyzed | Prepared | Batch   |
|-----------------------------------|-----------------|---------------|----------------|------------|-----------|---------|----------|----------|---------|
| MW-3 Water (2110610               | -02) Sampled:11 | /14/12 14:00  | Received:11/1  | 4/12 15:53 |           |         |          |          |         |
| PCB-1242                          | ц               | ND            |                | 0.050      | 0.200     | U.      | п        | 11/15/12 | 'n      |
| PCB-1248                          | п               | ND            |                | 0.050      | 0.200     | 11      |          | 17       |         |
| PCB-1254                          | п               | ND            |                | 0.050      | 0.200     |         |          |          |         |
| PCB-1260                          | п               | ND            |                | 0.050      | 0.200     |         | D        | 11       |         |
| PCB-1262                          | п               | ND            |                | 0.100      | 0.500     | R       | D        | и        | 0       |
| Surrogate: Tetrachloro-meta-xylen | ne ·            | 26.8 %        |                | 14,2-      | 103       | "       | "        | "        | п       |
| Surrogate: Decachlorobiphenyl     |                 | <i>51.2 %</i> |                | 27.7-      | 133       | "       | "        | "        | 11      |
| DUP Water (2110610-0              | 3) Sampled:11/1 | 4/12 12:30    | Received:11/14 | /12 15:53  | · · · · · |         |          |          |         |
| Aldrin                            | ug/l            | ND            | ······         | 0.003      | 0.005     | EPA 608 | 12/01/12 | 11/15/12 | B2K0373 |
| alpha-BHC                         | rt              | ND            |                | 0.002      | 0.010     | u       |          | พ        |         |
| beta-BHC                          | ti              | ND            |                | 0.002      | 0.005     | n       | 4        | *1       |         |
| gamma-BHC (Lindane)               | u               | ND            |                | 0.002      | 0.010     | *1      | 10       | e        | U       |
| delta-BHC                         | U               | ND            |                | 0.002      | 0.005     | a       | 17       |          |         |
| Chlordane (tech)                  | п               | ND            |                | 0.090      | 0.500     | 11      | W        |          | 11      |
| 4,4'-DDE                          | п               | ND            |                | 0.002      | 0.010     | U       | 11       |          | 10      |
| 4,4'-DDD                          | п               | ND            |                | 0.002      | 0.020     | U       | u        |          | 10      |
| 4,4'-DDT                          | п               | ND            |                | 0,002      | 0.010     | U       |          |          | **      |
| Dieldrin                          | 11              | ND            |                | 0.002      | 0.010     |         |          | п        | **      |
| Endosulfan I                      | 17              | ND            |                | 0.002      | 0.010     |         | п        | D        | **      |
| Endosulfan II                     | **              | ND            |                | 0.002      | 0.010     | п       | n        | tr       | **      |
| Endosulfan sulfate                | **              | ND            |                | 0.002      | 0.020     | п       | n        | v        | n       |
| Endrin                            | "               | ND            |                | 0.003      | 0.010     | п       | n        | U        | **      |
| Endrin aldehyde                   | *               | ND            |                | 0.005      | 0.010     | n       | n        | U        | **      |
| Heptachlor                        | 1               | ND            |                | 0.002      | 0.010     | n       | ti       | n        | 17      |
| Heptachlor epoxide                | п               | ND            |                | 0.002      | 0.010     | n       | a        | U        | "       |
| Methoxychlor                      | п               | ND            |                | 0.002      | 0.010     | n       | a .,     | U        | ν       |
| Toxaphene                         | п               | ND            |                | 0.060      | 0.500     | н       | 11       | U        | w       |
| PCB-1016                          | "               | ND            | QR-05          | 0.050      | 0,200     | 11      | "        |          | 17      |
| PCB-1221                          | и               | ND            | -              | 0.050      | 0,200     | п       | ч        |          | W       |
| PCB-1232                          | U U             | ND            |                | 0.050      | 0.200     | "       | а        | U        | *1      |
| PCB-1242                          | II              | ND            |                | 0.050      | 0.200     | "       | a        | n        | "       |
| PCB-1248                          | п               | ND            |                | 0.050      | 0.200     |         | n        | n        | н       |
| PCB-1254                          | п               | ND            |                | 0.050      | 0.200     | "       | u        | "        | 11      |
| PCB-1260                          | н               | ND            |                | 0.050      | 0.200     | W       | n        | 17       | U       |
| PCB-1262                          | н               | ND            |                | 0.100      | 0.500     | W       | u        | It       | н       |
| Surrogate: Tetrachloro-meta-xylen | e               | 54.1 %        |                | 14.2-      |           | и       | н        | "        | "       |
| Surrogate: Decachlorobiphenyl     | -               | 76.2 %        |                | 27.7-      |           | "       | "        | н        | "       |

Approved By Basic Laboratory, Inc.

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718 Ł

| Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| ALL DESCRIPTION OF THE PARTY OF | www.basiclab.com                                                                                                                                                                                                                                                                                          |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| basi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           | voice 530.894.8<br>fax 530.894.514       |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| Report<br>Attenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 ENTERPRISE WAY, STE 190<br>ROSEVILLE, CA 95678                                                                                                                                                                                                                                                        | Lab No:<br>Reported:<br>Phone:<br>P.O. # | 2110610<br>12/13/12<br>(530) 243-7234 |  |  |  |  |  |  |  |  |  |  |  |  |
| Proje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                           |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Notes and Definitions                                                                                                                                                                                                                                                                                     |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| S-BN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Base/Neutral surrogate recovery outside of control limits. The data was accepted based on valid recovery of remaining two                                                                                                                                                                                 | base/neutral surroga                     | ites.                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| S-AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acid surrogate recovery outside of control limits. The data was accepted based on valid recovery of remaining two acid sur                                                                                                                                                                                | rogates.                                 |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| R-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The sample was diluted due to sample matrix resulting in elevated reporting limits.                                                                                                                                                                                                                       |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| R-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The Reporting Limit and Detection Limit for this analyte have been raised due to necessary sample dilution.                                                                                                                                                                                               |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| QR-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The RPD result for the LCS/LCSD exceeded the QC control limit; however, both percent recoveries were acceptable. Sample                                                                                                                                                                                   | e results for the QC b                   | atch were accepted                    |  |  |  |  |  |  |  |  |  |  |  |  |
| QR-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | based on percent recoveries and completeness of QC data.<br>Duplicate results are within one reporting limit and pass all necessary QC criteria.                                                                                                                                                          |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| OC-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | An increased concentration of BrCl was necessary to fully oxidize this sample. As required by EPA 1631E, a laboratory meth                                                                                                                                                                                | od blank containing t                    | he additional BrCl was                |  |  |  |  |  |  |  |  |  |  |  |  |
| J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | analyzed with the sample.<br>Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). The J flag is equivalent                                                                                                                                               |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyte DETECTED                                                                                                                                                                                                                                                                                          |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyte NOT DETECTED at or above the detection limit                                                                                                                                                                                                                                                      |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Reported                                                                                                                                                                                                                                                                                              |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample results reported on a dry weight basis                                                                                                                                                                                                                                                             |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Relative Percent Difference                                                                                                                                                                                                                                                                               |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Less than reporting limit                                                                                                                                                                                                                                                                                 |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| ≤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Less than or equal to reporting limit                                                                                                                                                                                                                                                                     |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greater than reporting limit                                                                                                                                                                                                                                                                              |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| ≥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greater than or equal to reporting limit                                                                                                                                                                                                                                                                  |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Detection Limit                                                                                                                                                                                                                                                                                    |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| RL/ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimum Level of Quantitation                                                                                                                                                                                                                                                                             |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| MCL/AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maxium Contaminant Level/Action Level                                                                                                                                                                                                                                                                     |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Results reported as wet weight                                                                                                                                                                                                                                                                            |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| TTLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Threshold Limit Concentration                                                                                                                                                                                                                                                                       |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| STLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soluble Threshold Limit Concentration                                                                                                                                                                                                                                                                     |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Toxicity Characteristic Leachate Procedure                                                                                                                                                                                                                                                                |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| Note 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received Temperature - according to EPA guidelines, samples for most chemistry methods should be held at $\leq 6$ transportation, unless the time from sampling to delivery is <2 hours. Regulating agencies may invalidate results if temperature results in temperature results in temperature results. |                                          |                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| Note 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | According to 40 CFR Part 136 Table II, the following tests should be analyzed in the field within 15 minutes of sampling: pl                                                                                                                                                                              | I, chlorine, dissolved                   | oxygen, and sulfite.                  |  |  |  |  |  |  |  |  |  |  |  |  |

Approved By

- and the second

and a second

Basic Laboratory, Inc. California ELAP Cert #1677 and #2718 Ļ.

-----

-

2110610 Due 12.3.12

| (DAS                                          | iolder<br>sociate                             | 25        | Roseville<br>Phone: 9<br>Fax: 916- | 16-7                    | '86-:   | 2424        |                |             |           |                  |              |               |       |            |           |                            |                                 |                   |                                |                       |                    |                                       |                               |                    |              |                | Ра                        | ge   |          | of ]             |           |
|-----------------------------------------------|-----------------------------------------------|-----------|------------------------------------|-------------------------|---------|-------------|----------------|-------------|-----------|------------------|--------------|---------------|-------|------------|-----------|----------------------------|---------------------------------|-------------------|--------------------------------|-----------------------|--------------------|---------------------------------------|-------------------------------|--------------------|--------------|----------------|---------------------------|------|----------|------------------|-----------|
| Project Contact (H<br>Amy Ha                  | ardcopy or Pl<br>& Ken Haskel                 |           | Cal                                | ifo                     | rnia    | ı ED        | FRe            | por         | t?        |                  |              | Yes           | Ē     | <u> </u>   | io        |                            | Cha                             | ain               | -of-                           | Cu                    | sto                | ody                                   | Re                            | eco                | rd           | and            | d A                       | nai  | ysis     | Requ             | lest      |
| L <mark>ab:</mark><br>Basic Laboratory I      |                                               |           | Global I<br>Sample                 | Co                      | mp      | any         | ID:            |             |           |                  |              |               |       |            |           | Analysis Request           |                                 |                   |                                |                       |                    |                                       |                               | TAT                |              |                |                           |      |          |                  |           |
| Address:<br>2218 Railroad Avenu               | ue, Redding C                                 | A 96001   | Deliverab<br>aha@gol<br>khaskell(  | der                     | .cor    | n           |                | ress        | ):        |                  |              |               |       |            |           |                            | 6                               |                   |                                |                       |                    | 200.8)                                |                               |                    |              |                |                           |      |          | 2 WK             | Γ         |
| Phone No.:                                    | Fax No.:                                      |           | Project N                          |                         |         |             |                | 7           |           |                  |              |               |       |            |           |                            | 522(                            | ତ୍ର               | æ                              |                       |                    |                                       | 5                             |                    |              |                |                           |      | 1        | ž                |           |
| 530-243-7234                                  | 530-243-749                                   | 4         | Phase Nu                           |                         |         |             |                |             |           |                  |              |               |       |            |           | _                          | WS)                             | 2540              | 510                            |                       |                    | <u>۳</u>                              | S<br>S                        |                    |              |                |                           |      | 1        | -                | A P       |
| Project Name:                                 |                                               |           | Sampler                            | pler                    |         |             |                |             |           |                  | E E          | P             | SM    | SM2        |           |                            |                                 | 135               |                                |                       |                    | 8                                     |                               | 1                  | 72 H         |                |                           |      |          |                  |           |
| CCC-Mt. Shasta A                              |                                               | Signatur  | e:                                 |                         |         |             |                |             |           |                  |              |               |       |            | 2211      | Ë                          | Solids (SM2540C)                | ))<br>93          |                                |                       | Ň                  | IS.                                   |                               |                    |              | Å              |                           | 1    |          | Lab Use          |           |
| Project Address:                              | Project Address: Sam<br>210 Ski Village Drive |           | oling                              |                         | <u></u> | onta        | ine            |             | P         | res              | erv          | ativ          | e I   | lati       | <u>ix</u> | SW9                        | ă<br>Ę                          | Soli              | tan                            |                       | 4<br>Q             | ď                                     | Ē                             | μ                  |              |                | 1                         |      |          | 48 H             | Lab       |
| 210 Ski Village Drive<br>Vit. Shasta, CA 9606 |                                               |           |                                    |                         |         |             |                | BAG         |           |                  |              |               |       |            |           | Ē                          | 9<br>B<br>V                     | ved.              | ğ                              | (                     | M23                | tant                                  | E                             | ğ                  | िर्          | 625)           | l 🖁                       |      |          |                  | ۳.<br>۲   |
|                                               |                                               |           |                                    | ð                       |         |             |                | U<br>B<br>C |           |                  |              |               |       |            |           | Total Coliform (SM9221B/E) | Chemical Oxygen Demand (SM5220) | Total Dissolved   | Specific Conductance (SM2510B) | pH (4500-H+)          | Hardness (SM2340C) | Priority Pollutant Total Metals* (EPA | Hex & Tri Chromium (SM3500Cr) | Cyanide (4500CN-E) | VOC (EPA624) | SVOC (EPA 625) | Pesticides/PCBs (EPA 608) |      |          | 24 Hr            | 1 "       |
| Sample                                        |                                               |           |                                    | 40 ml VOA               | SLEEVE  |             | AMBER<br>GLASS | PLASTIC I   |           | 33               |              | щ             | WATER | 1.         |           | 8                          | nica                            | Dis               | ific                           | 1500                  | nes                | ₽<br>Z                                | 는<br>정                        | lde                | 6            | 18             | 뵹                         |      |          | 년<br>1<br>1<br>1 |           |
| Designation                                   |                                               | Date      | Time                               | ŝ                       | Ľ۳      | POLY        |                | [Š          | Ξ         | HNO <sub>3</sub> | ÿ            | NONE          | Į     | SOIL       | AIR       | otal                       | her                             | otal              | bec                            | H (4                  | lard               | riori                                 | ex (                          | yan                | 8            | Į Š            | est                       |      |          | 12 F             |           |
| ₩₩<br>₩₩                                      |                                               |           |                                    |                         |         |             |                |             | Ē         |                  |              |               | -     | Ű          |           | Ī                          | $\overline{\mathbf{N}}$         | $\mathbf{\Sigma}$ | $\mathbf{X}$                   | $\mathbf{X}$          | Ż                  | $\mathbf{\Sigma}$                     | $\mathbf{\dot{\mathbf{x}}}$   | Ň                  | $\mathbf{k}$ | N/             | $\frac{1}{2}$             |      |          |                  |           |
| MW-2                                          |                                               | 1414/12   | 1220                               |                         |         | H           |                |             |           |                  |              |               | ┢     | <u>}</u> _ |           |                            | $\overline{\mathbf{X}}$         |                   |                                |                       |                    | $\bigtriangledown$                    | $\bigtriangledown$            | $\bigtriangledown$ | Ħ            | $\mathbf{k}$   |                           |      |          | STI              |           |
| MW-3                                          |                                               | 1114/12   | 1400                               |                         |         | ┠━┝         |                |             |           |                  |              | +             | ₭     | ╢          |           |                            | $\bigotimes$                    | $\heartsuit$      | $\bigcirc$                     | $\overleftrightarrow$ | $\heartsuit$       | $\bigotimes$                          |                               |                    | ┢            | ₩              | Ҟ                         | ┦    | $\vdash$ | STI              |           |
| DUP                                           |                                               |           | 1230                               |                         |         | ┟─┼         | +              | +           |           | -                |              | +             | ₭     | ┦─         |           |                            | $\bigotimes$                    | $\ominus$         | $\bigcirc$                     | $\ominus$             |                    | $\bigotimes$                          |                               | Ю                  | Ю            | 枪              | ₩                         | ╢    | $\vdash$ | STI              |           |
|                                               |                                               | trl. d.m. | 1230                               |                         |         | $\vdash$    | ╈              | ╈           | ┢─        |                  |              |               | +     | ╄—         | -         | $ \frown $                 | $\sim$                          | $\sim$            | $\sim$                         | $\bigtriangleup$      | $\sim$             | $\vdash$                              | $\sim$                        | 뛰                  | ⊬            | 뛰              | ⊬                         |      |          | STI              |           |
|                                               |                                               | ·         |                                    |                         |         |             | +              |             | -         |                  |              | +             |       | +          | ┝         |                            |                                 |                   |                                |                       |                    |                                       |                               |                    |              |                | ╞                         |      | $\vdash$ | STI              |           |
|                                               |                                               |           |                                    |                         | 1       |             | ╉              |             | ┢         |                  |              | +             | +     | ┢          | $\vdash$  |                            |                                 |                   |                                |                       |                    |                                       |                               |                    | $\vdash$     |                |                           |      | ┢─╋      | STI              |           |
|                                               |                                               |           | -                                  |                         |         | $\vdash$    | ┿              | +           | ┢         |                  | $\vdash$     | -             |       | ┢          | $\vdash$  |                            |                                 |                   | -                              |                       |                    |                                       |                               |                    | $\vdash$     |                | ╀                         | ┨'   | ┝━╌╁     | STI              |           |
|                                               |                                               |           |                                    |                         |         |             |                |             | $\vdash$  |                  |              | +             | ╉     | ┢          | ┝         |                            | $\square$                       |                   |                                |                       |                    |                                       |                               |                    | $\vdash$     |                |                           | -    | ┝─╂      | ST               | _         |
|                                               |                                               |           |                                    |                         |         |             | ╋              | +           |           |                  |              | -             | ╋     | ·          | ┢         |                            |                                 |                   | -                              |                       |                    | -                                     |                               |                    | ┝            |                |                           | -    | $\vdash$ | STI              |           |
| Relinguished by:                              | -71-1                                         |           | Date                               | Ti                      | me      | Rec         | eived          | bv:         |           | 1                |              |               |       | _          |           |                            | Ren                             | nari              | s:                             |                       |                    |                                       |                               | L                  | L            |                |                           |      |          | ST               | <u>ار</u> |
| i Anni                                        | Her                                           |           | 51411                              | 16                      | Ø       |             |                |             |           |                  |              |               |       |            |           |                            | *An                             | time              | -                              | Ars                   | enic               | ;, Ве                                 | rylli                         | ium,               | Ca           | dmi            | um,                       | Chro | əmiur    | m, Copp          | er,       |
| Relinquished by:                              |                                               |           |                                    |                         |         |             |                | ise         | и, п<br>С | iicke<br>A       | n, 31<br>-ta | elen<br>c lys | er(   | , 30<br>4  | ≥∽∧       | па<br>а :                  | 1000<br>\                       | m, 2              | inc<br>い                       | , 1-tc.               | s icsi             |                                       |                               |                    |              |                |                           |      |          |                  |           |
| Polla                                         |                                               |           | ~                                  |                         | 11-1    | <b>4</b> -F | Z              | 71          | 7:        |                  | _            |               |       | <u> </u>   |           |                            |                                 |                   |                                | Ç                     | $\sim$             |                                       |                               |                    |              |                |                           |      |          |                  |           |
| Relinquished by:                              |                                               |           | Date                               | Ti                      | me      | Rec         |                | -           | -         | 2                |              | _             |       |            |           |                            | Bill                            | to:               |                                |                       |                    |                                       |                               |                    | -            |                |                           |      |          |                  |           |
| 11-14-12 1020 Eliner eroff                    |                                               |           |                                    | Golder Associates, Inc. |         |             |                |             |           |                  |              |               |       |            |           |                            |                                 |                   |                                |                       |                    |                                       |                               |                    |              |                |                           |      |          |                  |           |

and Basic Loboratory Inc dated November 11, 2012.

Upper Sacramento, McCloud, Lower Pit Integrated Regional Water Management



Regional Water Management Group (RWMG) 5727 Dunsmuir Avenue, Dunsmuir, CA 96025

April 24, 2015

Ms. Pamela Creedon Executive Officer CA Regional Water Quality Control Board Central Valley Region 11020 Sun Center Drive, Suite 200 Rancho Cordova, CA 95670-6114

Re: USR RWMG Resolution re CVRWQCB Exec Order 5-01-233

Dear Ms Creedon,

The Upper Sacramento, McCloud, Lower Pit Regional Water Management Group (USR RWMG) submits for your information and review our March 19, 2015 Resolution regarding the Central Valley Regional Water Quality Control Board (CVRWQCB) Executive Order 5-01-233.

The membership of the USR RWMG is a result of the direction and mandate of the California Department of Water Resources to invite participation of a wide range of stakeholders that include Statutory Authorities, Resource Management Interests and Tribal Authorities.

Our Integrated Regional Water Management Plan (IRWMP) identifies goals and objectives for research, educational programs and projects that can benefit the health of our watershed while maintaining and enhancing high quality water. Additionally our Plan supports the sustainable storage and production of water while respecting the larger physical and cultural environment.

Trout Unlimited, as a member, presented to the USR RWMG an apparent regulatory violation and discrepancy of the Waste Water Discharge permit currently owned by Crystal Geyser, Inc. in Mount Shasta (CVRWQCB Exec Order 5-01-233). Trout Unlimited, in conjunction with other members of the USR RWMG and a local citizen group, is currently conducting a well monitoring project in the vicinity of the proposed Crystal Geyser water bottling plant.

After in depth discussion, the USR RWMG agreed that the apparent permit violation and discrepancy could allow a significant pollution threat to the Big Springs aquifer. The Big Springs aquifer is the source of drinking water for hundreds of area households and is thought to have a direct connection to the surface water system of the Upper Sacramento River.

Upper Sacramento, McCloud, Lower Pit Integrated Regional Water Management Regional Water Management Group (RWMG) Resolution April 7, 2015 Page 2

The USR RWMG therefore adopted our March 19, 2015 Resolution that is transmitted with this letter.

The USR RWM Group encourages the Central Valley Regional Water Quality Control Board to review Executive Order 5-01-233 and consider the effects of your permit on local citizens who reside within the USR and the member organizations of the USR RWMG.

We request that you inform the RWM Group of any action your Board takes on this matter. Thank you for your consideration.

Sincerely,

Markmyosti

Mark Miyoshi Mount Shasta District Representative Winnemem Wintu Tribe Chair Pro Tem, RWMG USR RWMG

Upper Sacramento, McCloud, Lower Pit Integrated Regional Water Management



Regional Water Management Group (RWMG) 5727 Dunsmuir Avenue, Dunsmuir, CA 96025

# UPPER SACRAMENTO, McCLOUD, & LOWER PITT RIVERS REGIONAL WATER MANAGEMENT GROUP RESOLUTION IN REGARDS TO THE CENTRAL VALLEY REGIONAL WATER QUALITY CONTROL BOARD EXECUTIVE ORDER 5-01-233 March 19, 2015

WHEREAS the USR RWMG was founded under the auspices of California Water Code (CWC) Sec. 10540 for the purpose of supporting collaborative efforts to manage all aspects of water resources in a region. Integrated Regional Water Management crosses jurisdictional, watershed, and political boundaries; involves multiple agencies, stakeholders, individuals, and groups; and attempts to address the issues and differing perspectives of all the entities involved through mutually beneficial solutions;

WHEREAS the USR RWMG collaborated extensively for many years to develop and adopt an Integrated Regional Water Management Plan (IRWMP);

WHEREAS the USR RWMG desires to continue its efforts to coordinate and collaborate among stakeholders in one of California's most important source water areas encompassing the Upper Sacramento River, McCloud River and Lower Pitt River region;

WHEREAS the parties to the USR IRWMP seek to implement a long-term collaborative program in the region that will be closely coordinated with other planning efforts and land and water resource management interests and agencies;

WHEREAS the USR RWMG is an independent, self-governing and self-sustaining body;

WHEREAS the Central Valley Regional Water Quality Control Board issued Executive Order 5-01-233 on September 7, 2001, to Danone Waters of North America for a waste discharge at its facility adjacent to the City of Mt. Shasta;

WHEREAS Executive Order 5-01-233 was transferred from Danone Waters of North America to the Crystal Geyser Water Company on or about October 13, 2013;

WHEREAS Section E. Provision 2, of Executive Order 5-01-233 states: The Discharger shall comply with all the items of the *Standard Provisions and Reporting Requirements for Waste Discharge Requirements* dated March 1, 1991, which are a part of this Order;

Upper Sacramento, McCloud, Lower Pit Integrated Regional Water Management Regional Water Management Group (RWMG) Resolution March 31, 2015 Page 2

WHEREAS Section E. Provision 4 of Executive Order 5-01-233 states: ... Violations may result in ... revision or rescission of this Order;

WHEREAS Section E. Provision 8, of Executive Order 5-01-233 states: The Board will review this Order periodically and will revise requirements when necessary;

WHEREAS the report entitled Fourth Quarter 2012 Groundwater Monitoring Report, dated April 30, 2013 and compiled by Golder Associates, Inc., indicates the presence of Bis(2ethylhexyl)phthalate in a concentration of 250 micrograms per liter in the drinking water aquifer beneath the discharging facility. The maximum contaminant level of Bis(2-ethylhexyl)phthalate in drinking water is 6 micrograms per liter;

**NOW THEREFORE BE IT RESOLVED THAT** the Upper Sacramento, McCloud, Lower Pit River Regional Water Management Group:

Encourages the Central Valley Regional Water Quality Control Board and other appropriate regulatory agencies to review Executive Order 5-01-233 and ensure that it meets the criteria of SWRCB Resolution No. 68-16 and AB 685, the human right to water.

Respectfully, USR RWMG

I HEREBY CERTIFY that the foregoing resolution was adopted by roll call vote after discussion of the item at a meeting of the USR RWMG, duly noticed and held according to USR RWMG bylaws, on the day of March 19, 2015.

AYES: 8 NOES: 0 ABSENT: 6 ABSTAIN: 2 DATED: March 19, 2015

ATTEST: Mark Myrsh Date: 4-24-15

Mark Miyoshi, RWMG Chair Pro Tem