

Development and evaluation of an environmental DNA (eDNA) protocol to monitor wild delta smelt

Ann Holmes¹, Alyssa Benjamin¹, Brian Mahardja², Andrea Schreier¹, Brian Schreier², Ted Sommer², Mandi Finger¹

¹UC Davis Genomic Variation Lab (GVL)

²California Department of Water Resources (DWR)

Environmental DNA (eDNA)

- Genetic methods for detecting species in water or soil
- Does not directly sample the organism
- Species-specific and community approaches

Photos: DW Gotshall (green sturgeon), J Katz (Chinook salmon), DWR (Delta smelt)

Environmental DNA (eDNA)

- Genetic methods for detecting species in water or soil
- Does not directly sample the organism
- Species-specific approach: Advantages for monitoring
 - Cost per sample: lower
 - Processing time: shorter

Photo: DWR (Delta smelt)

eDNA: Monitoring application

Surveying rare or cryptic species with traditional methods requires substantial field effort

Surveying Europe's Only Cave-Dwelling Chordate Species (*Proteus anguinus*) Using Environmental DNA

Judit Vörös^{1,2}*, Orsolya Márton³, Benedikt R. Schmidt^{4,5}, Júlia Tünde Gál¹, Dušan Jelić⁶

Environmental DNA from Seawater Samples Correlate with Trawl Catches of Subarctic, Deepwater Fishes

Philip Francis Thomsen¹*, Peter Rask Møller², Eva Egelyng Sigsgaard², Steen Wilhelm Knudsen², Ole Ankjær Jørgensen^{3,4}, Eske Willerslev^{1,5,6}*

An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater

Irene Adrian-Kalchhauser^{1*}, Patricia Burkhardt-Holm^{1,2}

Citations: 1. Vörös et al. 2017 2. Thomsen et al. 2016 3. Adrian-Kalchhauser et al. 2016; Photos: A Hyde, N Calovianis, wikipedia

eDNA: Advantages

[•] Detect rare/cryptic species^{1,2,3}

- No morphological identification
- No sampling-related mortality
- Less disturbance of habitat/populations⁴
- Ability to sample sites not accessible by trawl
- Same gear for all life stages
- Large-scale implementation

Photo: USFWS

1. Vörös et al. 2017 2. Thomsen et al. 2016 3. Adrian-Kalchhauser et al. 2016 4. Thomsen et al. 2012

eDNA: Fish detection

- Fish shed: mucus, waste, skin, scales
 - Cellular
 - Extracellular
- Particulates filtered from water
- Total DNA extracted from sample
- Delta smelt eDNA detected using quantitative PCR (qPCR) assay⁵

Photo: DWR

Field sampling

3 x 1L per tow

eDNA + negative controls

What can go wrong?

- Low detection rate / no detection
 - Optimize assay for sensitivity
 - Understand impact of environmental factors (e.g. variable flows, turbidity)
- Contamination
 - Manage contamination in the field (right) and cross-contamination between samples⁶

Field sampling for fish (top) and eDNA (left) in the San Francisco Estuary with USFWS

Delta Smelt detection using eDNA: Protocol considerations

- Detection method: species specific
 Delta smelt qPCR assay⁵
- Detection protocol (risk of false negatives) Current project
- Contamination (risk of false positives)
 Current project

Detection using eDNA: Protocol considerations

- Detection method: species specific
- Detection protocol (risk of false negatives)
- Contamination (risk of false positives)
 - Identify steps most likely to cause contamination
 - Field methods, equipment
 - Infrastructure: clean lab
 - Negative controls

Protocol development

DNA dilutions

More control

Tank experiments

More realistic

Field experiments

Field sampling

Protocol development

DNA dilutions

More control

Tank experiments

- Serial DNA dilutions 2016-2017
 - Consistent detection at delta smelt DNA concentration of 0.1 pg/µl
- Tank experiments at Fish Conservation and Culture Lab (FCCL) <u>Upcoming</u>
 - eDNA shed rate
 - eDNA decay rate

Protocol development

- Field Experiment: <u>May 2017</u>
 - How far away is eDNA detectable?
 - How long is eDNA detectable?
- Field Sampling: Jan-Feb 2017
 - Concurrent with USFWS Enhanced Delta Smelt Monitoring (EDSM)

More realistic

Field experiments

Field sampling

Field sampling with EDSM (USFWS)

Summary

- Species-specific approach
- Significant advantages for monitoring of Delta smelt
- Maximize detection, minimize contamination
- Experiments and field sampling
- Challenges and limitations
- Promising preliminary data

Funding

California Department of Fish & Wildlife

California Department of Water Resources

UC Davis Graduate Group in Ecology Fellowship

Acknowledgements

USFWS: Chris Hart, Jessica Adams, Denise Barnard, Matt Dekar, Bill Powell, and the Enhanced Delta Smelt Monitoring Team **CDFW: Jeff Rodzen** FCCL: Tien-Chieh Hung DWR: Lynn Takata UC Davis: Amanda Coen, Alisha Goodbla, Shannon Kieran, Zach Lounsberry, Ben Sacks, Rachel Struch & the ANIMAL SCIENCE **Genomic Variation Lab**