SUPPLEMENTAL

STATE OF CALIFORNIA CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN FRANCISCO BAY REGION

MEETING DATE: May 12, 2010

ITEM: 5A

SUBJECT: Town of Yountville and California Department of Veterans

Affairs, Town of Yountville/California Veterans Home Joint Wastewater Reclamation Facility and Collection System, Yountville, Napa County – Reissuance of NPDES Permit

DISCUSSION: This supplemental report describes changes to the Revised

Tentative Order and Fact Sheet (Appendix A). First, it contains recalculated copper effluent limits based on a corrected ambient background concentration. We identified this correction in our Response to Comments, but neglected to include the recalculations based on the correction in the Revised Tentative Order. Second, it corrects some minor typographical errors in the Revised Tentative Order. Additions are shown in <u>underline</u>; deletions are shown in

strikethough.

This supplemental report also includes the cover letter (Appendix B) that the Town of Yountville sent with its comments. While we included the Town's comments, we inadvertently omitted the cover letter from the package that was sent to you.

CIWOS Place ID: 274410 (vc)

APPENDICES: A. Changes to Revised Tentative Order and Fact Sheet

B. Town of Yountville Cover Letter, April 7, 2010

CHANGES TO REVISED TENTATIVE ORDER AND FACT SHEET

I. Revise Tentative Order section IV.B, Table 7, as follows:

Table 7. Effluent Limitations for Toxic Pollutants

Parameter	Units	Final Effluent Limitations [1][2]			
		Average Monthly	Maximum Daily		
Copper	μg/L	30 <u>34</u>	61 <u>69</u>		
Zinc	μg/L	230	460		
Cyanide	μg/L	12	24		
Dioxin-TEQ ^[3]	μg/L	1.3 x 10 ⁻⁸	2.6 x 10 ⁻⁸		
Dichlorobromomethane	μg/L	3.0	5.9		
Ammonia, Total	mg/L N	10	21		

II. Revise Fact Sheet section II.E as follows:

E. Planned Changes

The Discharger is currently upgrading its treatment and distribution system in an effort to completely eliminate discharges to the Napa River, except for exceptionally wet years. Phase I of the upgrades is emplete underway. This phase included modifying Plant filters and the disinfection system to produce Title 22 tertiary recycled water, and changing the piping layout to allow better control of wastewater flows....

III. Revise Fact Sheet section IV.C.4.c(1)(c) and (d) as follows:

- (c) **WQBELs.** Effluent limitations for copper, calculated according to SIP procedures with a default CV of 0.6 and D=5, are an AMEL of $\frac{30}{4} \, \mu \text{g/L}$ and an MDEL of $\frac{61}{69} \, \mu \text{g/L}$.
- (d) Feasibility of Compliance. It is feasible for the Discharger to comply with the copper effluent limits because the 95th percentile (28 μ g/L) is less than the AMEL (30 34 μ g/L); the 99th percentile (32 μ g/L) is less than the MDEL (61 69 μ g/L); and the mean (19 μ g/L) is less than the long term average of the projected distribution of the effluent data set after accounting for effluent variability (20 $\underline{22}$ μ g/L).

IV. Revise Fact Sheet section IV.C.4.c(5)(c) and (d) as follows:

- (c) **WQBELs.** Final WQBELs for dichlorobromomethane, calculated according to SIP procedures with a default CV of 0.6 and D=5, are an AMEL of 3.0 μ g/L and an MDEL of 6.0 5.9 μ g/L.
- (d) Feasibility of Compliance. It is feasible for the Discharger to comply with the effluent limits because the 95th percentile (2.2 μ g/L) is less than the AMEL (3.0 μ g/L); the 99th percentile (3.4 μ g/L) is less than the MDEL (6.0 5.9 μ g/L);

and the mean (0.9 $\mu g/L)$ is less than the long term average of the projected lognormal distribution of the effluent data set after accounting for effluent variability (0.95 $\mu g/L).$

V. Revise Fact Sheet section IV.C.4.e, Table F-8, as follows:

Table F-1. Effluent Limit Calculations

Table F-1. Effluent Limit Calculations									
Pollutant				Dioxin- TEQ	Dichloro-	Total Ammon ia			
	Copper	Zinc	Cyanide		bromo-				
					methane				
Units	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L N			
Basis	BP &	BP &	BP &CTR	BP	CTR HH	BP aq life			
	CTR FW	CTR FW	FW aq life	narrative		1			
	aq life	aq life	1						
Criteria-Acute	14.4	123	22			1.93			
Criteria-Chronic	9.6	123	5.2			1.17			
Dilution factor	5	3		0	5	10			
No. of samples per	4	4	2 4	4	4	4			
month									
Aquatic life criteria	Y	Y	Y	N	N	Y			
analysis required (Y/N)									
HH criteria analysis	N	N	Y	Y	Y	N			
required (Y/N)									
Applicable WQO	9.6	123	5.2	1.3E-08	0.56	1.17			
Background	4.1 3.1	12	0.6	1.1E-09	0.08	0.04			
<u> </u>									
ECA acute	66 <u>71</u>	456	65			20.83			
ECA chronic	37 <u>42</u>	456	14			12			
ECA HH			700	1.3E-08	2.0				
<u> </u>									
Average effluent	18.9	133	3.9	1.6E-10	0.93	3.6			
Standard deviation	5.8	51.9	2.4		0.54				
CV	0.6	0.6	0.6	0.6	0.6	0.6			
ECA acute mult99	0.32	0.32	0.32		0.32	0.32			
ECA chronic mult99	0.53	0.53	0.53		0.53	0.53			
LTA acute	21.2 <u>22.8</u>	146	20		0.95	6.7			
LTA chronic	20 <u>22</u>	241	7.4		2.8	11.6			
Minimum LTA	20 <u>22</u>	146	5.0			6.7			
		-							
AMEL mult95	1.6	1.6	1.6			1.6			
MDEL mult99	3.1	3.1	3.1			3.1			
AMEL (aq life)	30 <u>34</u>	228	11.7			10.38			
MDEL (aq life)	61 69	456	24.0			20.83			
(1)									
MDEL/AMEL	1		2.01	2.01	2.01				
multiplier									
AMEL (human health)			700	1.3E-08	2.96				
MDEL (human health)	1		1437	2.6E-08	5.94				
(,	00					
Final limit – AMEL	30 34	230	12	1.3E-08	3.0	10			
Final limit – MDEL	61 <u>69</u>	460	24	2.6E-08	5.9	21			

