

Suisun Synthesis I Overview

Substantial impairment and complex/multiple drivers

- Pelagic Organism Decline (POD)
- Changes in phytoplankton and zooplankton abundance and composition
- Frequent *Microcystis* blooms
- Multiple stressors: what is the contribution from nutrients?

Phytoplankton

Abundance Drivers/stressors

- Clams
- Light limitation
- Nutrients (NH4)
- Residence time

Invasive clams can filter the entire water column every 1-2 days

Phytoplankton

Abundance Drivers/stressors

- Clams
- Light limitation
- Nutrients (NH4)
- Residence time

Composition Drivers/stressors

- Clams (size-selection)
- Nutrients
- other

Potential pathways for nutrient-related impairment

- Low phytoplankton biomass related to elevated NH4
- Suboptimal phytoplankton assemblages related to
 - NH4:NO3, N:P, or high concentrations
- Direct NH4 toxicity to copepods

Synthesis I:

- NH4 and low phyto bioimass
- NH4 and copepods
- Ambient NH4 sources, fate

Synthesis I:

- NH4 and low phyto bioimass
- NH4 and copepods
- Ambient NH4 sources, fate

Synthesis II

- N:P, NH4:NO3 on phytoplankton community composition
- Other foodweb effects

Synthesis III

Overview: multiple stressors

Suisun Synthesis I.

- 1. Synthesize the scientific literature on N utilization by marine and estuarine phytoplankton (M Berg, AMS)
- 2. NH4 inhibition of primary production: evaluate/synthesize results and interpretations of recent studies

(D Senn and T Jabusch, SFEI)

3. Synthesize scientific literature on copepod ecology and changes in community composition and abundance in Suisun

(W Kimmerer, SFSU-RTC)

- 4. NH4 loads and concentrations: seasonal and long-term trends, and NH4 fate (E Novick and D Senn, SFEI)
- 5. Identify next steps (DS

(D Senn and E Novick, SFEI)

Suisun Synthesis I.

- 1. Synthesize the scientific literature on N utilization by marine and estuarine phytoplankton (M Berg, AMS)
- 2. NH4 inhibition of primary production: evaluate/synthesize results and interpretations of recent studies

(D Senn and T Jabusch, SFEI)

3. Synthesize scientific literature on copepod ecology and changes in community composition and abundance in Suisun

(W Kimmerer, SFSU-RTC)

- 4. NH4 loads and concentrations: seasonal and long-term trends, and NH4 fate (E Novick and D Senn, SFEI)
- 5. Identify next steps

(D Senn and E Novick, SFEI)

NH4 in Suisun Bay

Goals:

- Develop improved understanding of sources, fate, and trends
- Inform near-term management decisions on nutrient loads.

Approach:

- Analyzed ambient water quality data (1975-2012)
- Estimated loads: Delta, POTWs, and stormwater
- Mass balance/box-model

Suisun Bay Watershed and POTWs

Suisun POTW loads

Loads from the Delta

- Large interannual and seasonal variation
 - Flows
 - Concentrations
- Tides
- No long-term field studies for loads

Load_{Suisun} =
$$Q_{west} * [C]_{D16} + Q_{rio} * [C]_{D24}$$

- Long-term daily-averaged flows
- Monthly concentration data at monitoring stations

Delta NH4 loads to Suisun Bay (kg d⁻¹)

- Strong seasonality and interannual variability
- Increasing baseline

Delta NH4 loads to Suisun Bay (kg d⁻¹)

Large increases in April-May-June

Seasonal and Long-term Variation in NH4

- Increases observed at all sites and during all months
- 50% increase in spring and fall

Seasonal and Long-term Variation in NH4

Thresholds

	<u>Season</u>	<u>Period</u>	<u>Exceed</u>
4 uM	April-Oct	1998-2011	50-90%
26 uM	year-round	1998-2011	0%

Spring-Summer NH4 Mass Balance

Spring-Summer NH4 Mass Balance

- Assimilative Capacity: NH4 loss is a dominant process...75%
- Acceptable loads:
 - modeling
 - field investigations

Suisun NH4 loads, concentration, fate: Summary

- Substantial NH4 concentration increase over past 4 decades
 - 4 uM threshold exceeded 50-90% of the time
 - 26 uM threshold seldom/never exceeded
- Increased loads:
 - Delta Loads have nearly doubled in some critical months
- Major source(s) of NH4 loads varies seasonally
 - Winter = Delta
 - Summer = Suisun POTWs
- ~75% of NH4 loads are "lost" within Suisun Bay

Suisun Synthesis I.

- 1. Synthesize the scientific literature on N utilization by marine and estuarine phytoplankton (M Berg, AMS)
- 2. NH4 inhibition of primary production: evaluate/synthesize results and interpretations of recent studies

(D Senn and T Jabusch, SFEI)

3. Synthesize scientific literature on copepod ecology and changes in community composition and abundance in Suisun

(W Kimmerer, SFSU-RTC)

- 4. NH4 loads and concentrations: seasonal and long-term trends, and NH4 fate (E Novick and D Senn, SFEI)
- 5. Identify next steps (D Senn and E Novick, SFEI)

NH4-inhibition Hypothesis

P.1 When NH4 > 1-4 μ mol L⁻¹, nitrate uptake is inhibited

- **P.2** The rate of NO3 uptake is greater than the rate of NH4 uptake.
 - when NO3 uptake is suppressed, and only NH4 is being taken up by phytoplankton, the overall rate of N uptake is lower

P.3 The lower rate of N uptake translates into lower rates of primary production.

Classic uptake kinetics (Michaelis-Menten)

NH4-inhibition Hypothesis

- **P.1** When NH4 > 1-4 μ mol L⁻¹, nitrate uptake is inhibited
 - well-supported by the scientific literature
 - common across wide-range of phytoplankton species

P.2 Phytoplankton take up NH4 more slowly than N03

- not well-supported by broader scientific literature
- science gap: few targeted studies
- some RTC studies support P2, but some contradictory or unclear results and further validation needed
- Remains a plausible hypothesis

NH4-inhibition Hypothesis

- **P.3** The lower rate of N uptake translates into lower rates of primary production.
 - not well-supported by broader scientific literature
 - multiple studies suggesting comparable growth rates on NO3 and NH4
 - science gap: few targeted studies
 - some results from RTC studies support P3
 - further validation needed
 - competing explanations tested
 - Remains a plausible hypothesis

System Behavior pre-1987 (pre-clam invasion)

System Behavior pre-1987 (pre-clam invasion)

Recommendations

- Need for well-controlled experiments...
 - Greater growth with NO3 than NH4?
 - test under a range of conditions (e.g., T, light, levels)
 - Experiments with phytoplankton mono-cultures from Suisun/SFB
- Test and rule-out/rule-in competing explanations and experimental artifacts
- Evaluate the potential environmental significance of process at the ecosystem scale (vs. clams, light limitation)
 - Modeling
- Science Plan and Workshop: Identify key science questions and experiments to test current uncertainties

Copepod Ecology

- Key links in the foodweb between microplankton and fish.
- Declines in abundance, biomass, and composition and the underlying causes of these changes are of key concern
- Likely causes of change:
 - introduced species, some of which are not suitable as food
 - Food limitation Clam grazing on phytoplankton (Corbula)
 - Grazing on copepod juveniles by clams
 - Contaminants (including nutrients) can't be ruled out

Quantifying N and P loads and transformations in the Delta

Funder: IEP

Collaboration: SFEI, RMA, USGS

Approach...

- Spatial and temporal analysis of DWR/IEP nutrient data
- Use monitoring data and flow estimates to quantify loads into and out of Delta
- Calibrate hydrologic/WQ model (DSM2-QUAL)
- 4. Use simulation modeling to quantify transformation rates under varying conditions

IEP Project: Nutrient loads and transformations in the Delta

Delta NH4 loads to Suisun Bay (kg d⁻¹)

- Strong seasonality and interannual variability
- Increasing baseline

NH4 Budget: Delta

DIN (NO3+NH4) Budget: Delta

PO4 Budget: Delta

