Statewide Mercury Control Program for Reservoirs

Figure 1.1: Map of reservoirs identified as mercury-impaired on the 2010 303(d) List
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Statewide Mercury Control Program for Reservoirs

2010 303(d)-listed reservoirs as labeled on Figure 1.1

Map # on
Reservoir* Figure 1.1
Almanor, Lake 6
Anderson Lake 41
Beach Lake** 70
Berryessa, Lake 15
Big Bear Lake 68
Black Butte Lake 7
Bon Tempe Lake 32
Britton, Lake 5
Calaveras Reservoir 39
Camanche Reservoir 46
Camp Far West Reservoir 24
Casitas, Lake 63
Castaic Lake 65
Chabot, Lake (Alameda Co.) 37
Chesbro Reservoir 42
Combie, Lake 25
Davis Creek Reservoir 13
Del Valle Reservoir 38
Don Pedro Lake 54
East Park Reservoir 11
El Dorado Park Lakes 71
Englebright Lake 20
Folsom Lake 29
Hell Hole Reservoir 27
Hensley Lake 57
Herman, Lake 33
Hetch Hetchy Reservoir 52
Hodges, Lake 69
Indian Valley Reservoir 12
Kaweah, Lake 60
Lafayette Reservoir 35
Marsh Creek Reservoir 36
McClure, Lake 53
Mendocino, Lake 10
Mile Long Pond 73
Millerton Lake 58
Modesto Reservoir 56

Map # on
Reservoir* Figure 1.1
Nacimiento, Lake 62
Natoma, Lake 30
New Bullards Bar Reservoir 19
New Hogan Lake 48
New Melones Lake 51
Nicasio Reservoir 31
O’Neill Forebay 45
Oroville, Lake 18
Oxbow Reservoir 26
Pardee Reservoir 47
Pillsbury, Lake 9
Pine Flat Lake 59
Puddingstone Reservoir 67
Pyramid Lake 64
Robinson's Pond 74
Rollins Reservoir 23
San Antonio Reservoir 61
San Luis Reservoir 44
San Pablo Reservoir 34
Scotts Flat Reservoir 22
Shadow Cliffs Reservoir 72
Shasta Lake 4
Shastina, Lake 1
Sherwood, Lake 66
Slab Creek Reservoir 28
Solano, Lake 16
Sonoma, Lake 14
Stevens Creek Reservoir 40
Stony Gorge Reservoir 8
Thermalito Afterbay 17
Trinity Lake 2
Tulloch Reservoir 50
Turlock Lake 55
Uvas Reservoir 43
Whiskeytown Lake 3
Wildwood, Lake 21
Woodward Reservoir 49

* In this report, we use a standardized name format in which reservoir or lake goes last. Some of the
reservoir names on this list have a comma included because their proper or common name begins
with either reservoir or lake. For example, Lake Casitas is listed as “Casitas, Lake.”

** Note that "Beach Lake" will be changed on upcoming 303(d) List to "Black Crown Lake." For
consistency with the 2010 303(d) List, this reservoir is referred to throughout staff report as "Beach

Lake."
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Figure 3.1:

Map of average methylmercury concentrations in top trophic level reservoir fish

This map summarizes average methylmercury concentrations in trophic level (TL) 4 fish

(150 mm to 500 mm) in reservoirs and indicates which reservoirs are on the 2010 303(d) List.
If TL4 species were not sampled at a particular reservoir, staff calculated the average
methylmercury concentration in TL3 species. TL4 species include predator species such as
largemouth, smallmouth, and spotted bass, Sacramento pikeminnow, and brown trout.

TL3 species include rainbow trout, carp, and bluegill, among others.
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Figure 3.2:

Statewide Mercury Control Program for Reservoirs
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Nearly half of the 348 reservoirs sampled have average fish methylmercury concentrations
above the proposed sport fish target. [A] The grey symbols are reservoirs where only TL3 fish
were sampled, largely because TL4 species are not resident in many high elevation Sierra
Nevada reservoirs. [B] The black triangles are reservoirs in the Coast Range in the San
Francisco Bay Region. The grey plus symbols indicate reservoirs that have only one fish

sample.
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2010 303(d)-listed mercury impaired
reservoirs that still require TMDLs
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Figure 3.3: Map of watershed boundaries for 303(d)-listed

reservoirs
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Figure 3.4:

Map of state and federal jurisdictional dams

[Source: DWR 2010a and 2010b]
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Figure 3.5: Map of average annual precipitation Figure 3.6: Map of average July temperature
[Source: DWR et al. 1994] [Source: Hijmans et al. 2005]
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Figure 3.7: Map of vegetated areas
[Sources: USCB 2012a and 2012b; MRLC 2011; Fry et al. 2011]
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Figure 3.8: Map of urbanized and other developed areas

The bright pink and blue areas are high population regions. The grey
indicates other developed areas such as major and minor roads
throughout cultivated areas and other rural areas of the state.

[Sources: USCB 2012a and 2012b; MRLC 2011; Fry et al. 2011]
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Chapter 4 Conceptual Model: The Mercury Cycle and Bioaccumulation

Section 4. 1 The Mercury Cycle

Atmospheric
Deposition

Photodemethylation

Figure 4.1: Mercury cycling in reservoirs

The top of the graphic depicts sources of mercury (both natural and anthropogenic) to
reservoirs, which are primarily inorganic mercury. Once the mercury is transported to the
reservoir some of the mercury is lost back to the atmosphere through evasion and some is
transported downstream; however, the majority of the mercury settles in the bottom sediment of
the reservoir. The inorganic mercury that remains in the reservoir can be converted to
methylmercury by anaerobic sulfate-reducing bacteria in anoxic sediment or in the anoxic
hypolimnion (dark blue) during thermal stratification. Some methylmercury is converted back to
inorganic mercury through both abiotic and biotic processes, and some of the methylmercury is
bioaccumulated up the reservoir’s food web.
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Methylmercury loading rates for lakes, reservoirs, wetlands, forests, agriculture, and urban land uses

(A) Lakes, reservoirs, and wetlands

Figure 4.2:

Methylmercury loading rates from reservoir and wetland land uses are substantially greater than the rates from agriculture, forests

and urban.
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Methylmercury loading rates for lakes, reservoirs, wetlands, forests, agriculture, and urban land uses

(B) Upland areas

Figure 4.2:

Methylmercury loading rates for reservoir and wetland land uses are substantially greater than the rates for agriculture, forests and

urban land uses.
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Section 4.2 Bioaccumulation

Example Magnification Per Step

Water Algae Zooplankton Prey Fish Predator Fish

Figure 4.3: Food chain biomagnification of methylmercury

The single largest increase in methylmercury concentration in the aquatic environment is from
water to algae at the base of the food web. The highest concentrations of methylmercury occur
in the top trophic level fish, and these pose the greatest risk to human and wildlife fish
consumers. One can deduce that adding additional levels to the food web could greatly magnify
methylmercury concentrations in the upper trophic levels. Thus, food web dynamics greatly
affects methylmercury accumulation in reservoirs.

[Source: Figure 5-7 in Tetra Tech 2005a]

L
i} T T T T T
a 0.2 0.4 0.6 0.8 1.0

MaHg {nafl}

Fish Hg {mg'kg)

Figure 4.4: Relationship between mercury concentrations in California roach and unfiltered
methylmercury concentrations in water samples in the Guadalupe River
Watershed

A strong positive correlation was found between stream aqueous methylmercury concentrations
and resident roach methylmercury concentrations in the Guadalupe River Watershed.

[Source: Figure 3-28 in Tetra Tech 2005a]
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Figure 4.5: Plot of San Joaquin River small fish mercury concentrations and

agueous methylmercury concentrations

This graph illustrates increases in small fish methylmercury (MeHg) concentrations following
increases in aqueous MeHg concentrations. This compares average MeHg concentrations in
juvenile, small (45 — 75 mm) Mississippi silverside fish to monthly aqueous MeHg

concentrations collected from the San Joaquin River at Vernalis. An extreme increase in small
fish MeHg concentrations was seen in July 2006 following a May 2006 spike in agueous MeHg.
MeHg concentrations in juvenile silverside averaged 0.24 mg/kg at Vernalis (Slotton et al. 2007,

page 59). (MeHg concentrations in other species of small fish also spiked; spikes in aqueous
and small fish methylmercury also occurred in the Cosumnes River.) Both fish and aqueous
MeHg levels decreased to nearly pre-flood levels by September.

[Sources: Foe et al. 2008, Figure 13; water data from Foe et al. 2008; small fish data from

Slotton et al. 2007]
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Fitted Line Plot
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Figure 4.6: Fitted line plot for Lake Oroville length-normalized spotted bass
methylmercury concentrations versus sediment methylmercury
concentrations

A strong positive correlation was found between natural logarithm transformed sediment
methylmercury concentrations and length normalized (MeHg mg/kg/mm) spotted bass
methylmercury concentrations collected from the same arms of Lake Oroville in a California
Department of Water Resources fish and sediment contaminant study (DWR 2006). The
correlation suggests that Lake Oroville food web methylmercury bioaccumulation is highly
influenced by in-lake production of methylmercury.

Staff Report for Scientific Peer Review (February 2017) Chapter 4 Figures - 6 -



Statewide Mercury Control Program for Reservoirs

Section 4.3 The Mercury Cycle Particular to Reservoirs

Before

Figure 4.7: A cartoon illustrating the effect of reservoir flooding on terrestrial ecosystems

The “Before” graphic depicts an environment with a high gradient, fast flowing river that is
shaded, cold, turbulent, and well oxygenated. The “After” graphic displays how the reservoir
environment has slowed, warmed, and changed water chemistry. The flooding of terrestrial soils
creates conditions that enhance mercury methylation. The warmed water of the reservoir allows
non-native warm water fisheries to exist. These warm water predatory fish tend to
bioaccumulate higher levels of methylmercury than native cold water fish species.
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Figure 4.8: Annual hydrologic cycle in reservoirs: temperature, dissolved oxygen, and
methylmercury

(A) From early fall through early spring, the reservoir water temperature is fairly uniform
throughout the water column, and water mixes.

(B) Warm summer air temperatures create a temperature gradient within the reservoir. The
difference between the temperature of the surface and bottom reservoir water creates density
gradients that resist vertical mixing. Oxygen is depleted in the deep waters from respiration and
organic carbon decomposition. These anoxic conditions stimulate mercury methylation, and
methylmercury builds up in the unmixed deep waters.

(C) During late summer, cooling air temperatures cool reservoir surface waters. The decreasing
temperature gradient between the surface and bottom waters allows the waters to mix. The
accumulated methylmercury in the bottom water becomes distributed throughout the water
column, where it is available to enter the food web.

[Source: Figure 5-13 in Tetra Tech 2005a]
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ORP (mV) Electron Acceptor Redox Condition
+700 to +400 Oxygen (0y) Oxidized
+400 to +300 Nitrate (NO3y) Moderately reduced
+200 to +100 Manganese (Mn*") Moderately reduced
+100 to -100 Iron (Fe*) Reduced
-100 to -200 Sulfate (SO,%) Reduced
-200 to -300 Methane production (CO,) Highly reduced

Figure 4.9: Oxidation reduction potential (ORP) scale and ranges where reduction becomes
thermodynamically preferred for some common chemicals

This matrix illustrates the ecological oxidation-reduction (redox) sequence from oxygen to
nitrate, manganese, iron, sulfate, and finally to methanogenesis. These electron receptors are
listed in the second column and redox potential (ORP) is listed in the first column. Before
stratification, reservoir conditions start at the first row in aerobic conditions, i.e., when oxygen is
present and the redox potential is above 400 millivolts (mV). As oxygen, then nitrate,
manganese, and iron are depleted, the redox potential drops, as indicated by reading from top
to bottom. Significantly, methylmercury is primarily produced by anaerobic sulfate-reducing
bacteria.

[Source: Delaune and Reddy 2005]
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Anadromous and Land-Locked Chinook
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Figure 4.10: Plot of methylmercury concentrations in anadromous and land-locked Chinook

This plot shows methylmercury concentrations in land-locked Chinook salmon in California
reservoirs (red squares on the left) and in anadromous Chinook salmon in California rivers
(blue circles on the right). Land-locked Chinook are smaller and have much higher mercury
levels than anadromous Chinook. Anadromous fisheries are being restored for many reasons,

and a positive outcome of that effort is lower fish methylmercury levels.
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Figure 5.1: Bar chart summarizing fish species and fish methylmercury and length
standardization methods employed for linkage analysis

Methods similar to Tremblay and others (1998) and Davis and others (2010) were used to determine
length-standardized fish methylmercury concentrations. The standardized fish for most reservoirs was
350 mm length largemouth bass (LMB). If no LMB were available for a given reservoir, then other
predatory fish data were used to calculate standardized fish methylmercury concentrations. Preference
was given to other black bass species, smallmouth bass (SMB) and spotted bass (SPB).

Preference was given to black bass species with enough data to length standardize their methylmercury
concentrations. If not enough data were available to standardize for length for any black bass species at a
given reservoir, the average concentration for the highest trophic level black bass species was used.

If no black bass data were available, Sacramento pikeminnow (SPM) and brown trout (BRT) were used. If

no predatory fish data were available, lower trophic level fish—rainbow trout (RBT) and Sacramento
sucker (SSKR)—were used.
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Figure 5.2: Plot of correlation between standardized fish mercury concentrations and the
average fish mercury concentrations in legal-sized top trophic level fish (Ilength
200 — 500 mm TL4 or 150 — 500 mm TL3) for reservoirs in the Linkage Analysis

The correlation between standardized fish methylmercury (MeHg) concentrations and average
MeHg concentrations in legal-sized TL4 fish is statistically significant (n = 107 reservoirs,

R? = 0.82). Note that the size of TL4 standardized fish (150 — 500 mm) differs slightly from size
used for Statewide Water Quality Objective and sport fish target (200 — 500 mm).
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Figure 5.3: Plot of correlation between standardized fish methylmercury concentrations and
geomean sediment mercury concentrations in California reservoirs

This graph plots geomean sediment total mercury (THg) concentrations against standardized fish
methylmercury (MeHg) concentrations in California reservoirs, both with log scales. The black boxes are
reservoirs where their sediment THg concentrations are comparable to natural background. The red
circles are reservoirs with elevated mercury from mines and atmospheric deposition. Reservoirs in
different parts of the state have different natural background levels of mercury. See Chapter 6

(section 6.2) for a review of natural (pre-industrial) and modern background mercury concentrations in
soils and sediments throughout California.

There is a statistically significant correlation between standardized fish MeHg and sediment THg

(n = 62 reservoirs, adjusted R” = 0.227, p < 0.001). However, there is substantial fish MeHg variability not
explained by sediment THg concentrations. There can be high fish MeHg in reservoirs where there is low
sediment THg, low fish MeHg where there is high sediment THg, and reservoirs where there is extensive
mercury contamination but the fish MeHg are not as high as we would expect from the high sediment THg
concentrations. Further, there are many reservoirs with sediment THg concentrations comparable to
natural background that have fish MeHg levels that exceed the sport fish water quality target (0.2 mg/kg).
In summary, this plot illustrates how multiple factors are at play, more than just mercury pollution sources
and associated sediment mercury concentrations.
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Figure 6.1: Statewide map of historic mercury mining districts, mercury mine sites, and
geologic formations where naturally mercury-enriched soils may occur

The names of the numbered major and minor mercury mining districts are listed on the
following page.

[Sources: CDOC-DMG 2000; USBM 1965, Figure 7; USGS 2008]
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Mercury Mining Districts in California as Labeled on Figure 6.1

Map

Code Name Type
Clear Lake Major

2 Wilbur Springs Major
3 Knoxville Major
4 East Mayacmas Major
5 West Mayacmas Major
6 Guerneville Major
7 Oakuville Major
8 Sulphur Springs Mt Major
9 Mount Diablo Major
10 Emerald Lake Major
11 New Almaden Major
12 Stayton Major
13 Central San Benito Major
14 New Idria Major
15 Parkfield Major
16 Cambria — Oceanic Major
17 Adelaide Major
18 Rinconada Major
19 Cachuma Major
20 Los Prietos Major

Staff Report for Scientific Peer Review (April 2017)

Map
Code Name Type
21 Skaggs Springs Minor
22 Petaluma Minor
23 Del Puerto — Orestimba Minor
24 Bryson & San Capoforo Minor
25 Pine Mt Minor
26 Diamond Creek Minor
27 Patrick Creek Minor
28 Klamath River Minor
29 Alturas Minor
30 Altoona Minor
31 New River Minor
32 Mill Creek Minor
33 Clover Creek Minor
34 Occident Minor
35 Nashville Minor
36 Mogul Minor
37 Bridgeport Minor
38 Coso Minor
39 Tehachapi Minor
40 Tustin Minor
41 San Bernardino County Minor

Chapter 6 Figures - 2 -



Statewide Mercury Control Program for Reservoirs

id ) Legend

)
L]

Districts known to be mineralized with
“ quicksilver

. Principal areas underlain by the Jurassic
% Franciscan Formation

0 25 50 100

mlViles

Figure 6.2: Statewide map of quicksilver (mercury) mineralized provinces in California

identified in 1939 “Economic Mineral Map of California No. 1-Quicksilver”

The “districts known to be mineralized with quicksilver” (solid red) and “principal areas underlain
by the Jurassic Franciscan Formation” (red hatching) mapped on the California Division of
Mines’ “Economic Mineral Map of California No. 1 — Quicksilver” indicate the areas in California
where naturally mercury-enriched soils may occur.

[Source: Jenkins 1939]
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Figure 6.3: Statewide map showing the delineation of the naturally mercury-enriched region
compared to 2010 303(d)-listed mercury-impaired reservoir watershed boundaries

Water Board staff based the delineation of the naturally mercury-enriched region primarily on
the “Quicksilver Mineral Provinces” mapped on the California Division of Mines’ “Economic
Mineral Map of California No. 1 — Quicksilver” (Jenkins 1939). The location of historic mercury
mining districts (USBM 1965), historic mercury mine sites (USGS 2005), surface geology
(CDOC-DMG), and background soil mercury concentrations (USGS 2008) also guided the
delineation.
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Figure 6.4: Chart illustrating natural (pre-industrial) and background soil mercury levels based
on dated sediment core and soil mercury concentrations

Natural background levels are based on average mercury concentrations observed in dated
lake and estuary sediment cores. Modern background levels are based on average surface
sediment mercury concentrations observed in lakes and reservoirs and the 95" percentile
mercury concentrations observed in sails.
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Figure 6.5: Chart comparing 2010 303(d)-listed reservoir sediment average and individual
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Figure 6.6:

Statewide maps showing the locations of historic mercury, gold, and silver mines
identified in the MRDS with the watershed boundaries of the 2010 303(d)-listed
reservoirs

[Source: Mineral Resources Data System (MRDS), USGS 2005]
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[Source: Principal Areas of Mine Pollution database, OMR 2000]
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Statewide maps showing the locations of historic mercury, gold, and silver mines identified in the Principal Areas of
Mine Pollution (PAMP) database with the watershed boundaries of the 2010 303(d)-listed reservoirs
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Figure 6.8: Statewide map of dredge and placer tailings and diggings identified in the

California Department of Conservation’s Topographically Occurring Mine Symbols

(TOMS) Data Set

The boundaries of dredge and placer tailings are thickened to better show their locations.
[Source: OMR 2001]
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Figure 6.9: Charts illustrating watershed mercury, gold, and silver mine site density, and
estimates of historic gold and silver production and associated mercury loss in
2010 303(d)-listed reservoir watersheds

Charts A and B illustrate the number of historic mercury, gold, and silver mines and other mine features
(prospects and occurrences) identified by the USGS’s Mineral Resources Data System (MRDS, USGS
2005) in each 303(d)-listed reservoir watershed. Chart C illustrates estimates of gold and silver
production compiled by the USGS’s Database of Significant Deposits of Gold, Silver, Copper, Lead, and
Zinc in the United States (Long et al. 1998; note, this database does not include mercury production
information). The 303(d)-listed reservoir watersheds are charted from north to south within each
geographic region noted with green brackets. The blue brackets indicate 303(d)-listed reservoirs that are
in the same watershed; the reservoirs are charted from downstream to upstream within a given
watershed.

Lake Berryessa and Lake Solano in the Putah Creek watershed had by far the most upstream historic
mercury mining features of any of the 303(d)-listed reservoirs, with over 100 MRDS mercury mining
features. In contrast, many 303(d)-listed reservoirs in the Sierra Nevada region have hundreds to
thousands of MRDS gold and silver mining features. In some watersheds, the most production is
associated with placer gold mining (e.g., Lake Natoma and Folsom Lake in the American River
watershed). In other watersheds, the most production is associated with lode mining of gold (e.g., Camp
Far West) and silver (e.g., Shasta Lake). A comparison of Charts B and C indicates the MRDS database
sometimes identifies mine features in watersheds where the USGS’s Database of Significant Deposits
does not identify any significant production, but the number of MRDS features is usually low in such
watersheds. However, relatively high production occurred in watersheds where there were relatively few
MRDS mine features. This indicates that the number of MRDS mine features may not be a good
surrogate for the amount of production in a given watershed.
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Figure 6.9, continued

Chart D illustrates the watershed density of gold and silver production (production amount per
unit watershed area, shown by vertical bars) compared to the watershed mine site density
(number of MRDS productive mines, shown by dashes, and other MRDS features, shown by
circles). Reservoirs with watersheds with high production density and mine site density are likely
to be more contaminated. Camp Far West, Combie, Rollins, and Wildwood have high upstream
production densities and watershed mine site densities. In contrast, Shasta, which had a high
production amount in its watershed (Chart C), has a low production density and mine site
density because of the immensity of its watershed area. This indicates the potential for more
watershed supply of native soils and sediments that could mix with and dilute or bury
contamination associated with historic mining. Also, the mine site density and production density
generally track together. However there are some exceptions. For example, New Hogan
Reservoir has comparatively low production given its high mine site density, and Lake
Berryessa has comparatively high production given its low mine site density.
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E. Estimated Mercury Loss from Gold & Silver Production
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Figure 6.9, continued

Chart E provides estimates of historic mercury loss from gold and silver mining (bars) along with
watershed densities of mercury loss (dashes) for each 303(d)-listed reservoir. For some
reservoir watersheds, mercury loss estimates are greater than expected from gold and silver
production amounts in Chart C (e.g., Tulloch and Don Pedro), while for others the mercury loss
estimates are less than expected (e.g., Lake Berryessa). This is because the loss estimates
consider another key factor for evaluating the level of contamination in a watershed: the type
and time period of mining activities. Mercury losses were greater with placer mining than lode
mining, and loss rates for both decreased with time as new mining methods were developed
(Churchill 2000). Water Board staff used estimated mercury loss amounts provided by Alpers
and others (2014) and Churchill (2000) for placer and lode mining districts identified in the
USGS Database of Significant Deposits (Long et al. 1998) to estimate mercury loss upstream of
303(d)-listed reservoirs. High watershed mercury loss densities indicate the potential for
particularly elevated contamination in reservoir sediments. The chart shows how some
watersheds had both high mercury loss and high watershed densities of mercury loss (e.g.,
Englebright, New Bullards Bar, Camp Far West, Tulloch, and New Melones), and others had
low mercury loss but high watershed loss density (e.g., Wildwood, Combie, and Rollins). The
chart also shows how some reservoirs may not have had a high watershed production density,
but could have elevated watershed mercury loss densities because of extensive historic placer
mining (e.g., Englebright, New Bullards Bar, Natoma, Folsom, Tulloch, New Melones, and Don
Pedro).
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Figure 6.10: Pie chart illustrating estimates of mercury emissions for 2008 from
natural processes

9% 7%

Emissions from natural processes include primary natural mercury emissions plus re-emissions
of historic deposition originating from natural and anthropogenic sources.
[Source: Pirrone et al. 2010]
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Figure 6.11: Time series of estimated historic anthropogenic mercury emissions from
North America and modern anthropogenic mercury emissions from North
America and other continents

This figure shows estimated historic and modern anthropogenic mercury emissions into the
atmosphere from North America beginning in 1800, and for the rest of the world beginning in
1990. The grey line shows that North American mercury emissions into the atmosphere peaked
before 1890 as a result of gold and silver production. The black line shows the steady increase
in industrial emissions from North America. The open circles show that since 1990, North
American regulations including the U.S. Clean Air Act have measurably reduced emissions.
However, the black squares show that emissions from Asia have increased in recent years and
are far greater than mercury emissions from North America.

[Sources: Pirrone et al. 1998; USEPA 2008b; Pacyna et al. 2002, 2006, and 2010]
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Figure 6.12: Pie charts illustrating estimates of anthropogenic mercury emissions in 2005

from global, United States, and California sources

[Sources: AMAP/UNEP 2008; Pacyna et al. 2010; USEPA 2012a; US
USEPA 2008a, Table 4-3; ICF 2011]
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A. Trends in California Mercury Emissions
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Figure 6.13: Bar chart showing trends in California and United States anthropogenic mercury emissions by sector

Green stars highlight emission sectors that have experienced substantial reductions.
[Sources: USEPA 2012a; USEPA 2012b, Table 7; USEPA 2008a, Table 4-3; ICF 2011]
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Figure 6.14: Bar chart showing trends in California anthropogenic mercury emissions by major emission type

California mercury emissions decreased by more than 50% between 2001 and 2008. Some emissions types, such as Portland
cement production, vary from year to year as a result of changes in economic demand. Others, such as municipal waste incineration,
have had substantial reductions due to implementing emission controls.

[Sources: USEPA 2012a; ICF 2011]
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Figure 6.15: Statewide map of top 50 mercury emitting facilities in the 2001 facility emissions
inventory

The 50 facilities with the highest mercury emissions accounted for about 90% or more of all
facility emissions in 2001, 2002, 2005, and 2008. Emissions from cement manufacturing,
geothermal power production, and petroleum industry facilities within the top 50 reporting
facilities account for about 60—-80% of all annual statewide facility emissions. As this map of the
top 50 emitting facilities in 2001 shows, many are clustered in the northern Coast Range
northeast of Santa Rosa, San Francisco Bay area, Bakersfield area, and Los Angeles area.
[Sources: USEPA 2008a; ICF 2011]
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Figure 6.16: Statewide map of atmospheric mercury deposition monitoring sites in California
and western Nevada

Several short-term monitoring studies and one long-term monitoring program have evaluated
atmospheric mercury in wet deposition at 13 sites in California and dry deposition at 7 sites in
California. No monitoring data are available for northern inland California, northern and central
Sierra Nevada, and southeastern California.
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Figure 6.17: Statewide maps of REMSAD 2001 model output for total, wet and dry atmospheric
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Figure 6.18: Statewide maps of REMSAD 2001 model output for atmospheric deposition of
mercury in California attributed to anthropogenic emissions from California, United
States, Canada, and Mexico

Note changes in color scale for each of maps A-D. The magnitude of deposition is different for the
different source regions. For example, deposition attributed to anthropogenic emissions from other states
(map B) peaks (red) at less than 0.3 g/lkm?/year. In contrast, deposition attributed to anthropogenic
emissions within California (map A) peaks (red) at 100 times greater, at 30 g/km?/year.
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Figure 6.19: Statewide maps of REMSAD 2001 model output for atmospheric deposition of

mercury in California attributed to 2000 emissions from global background sources
and re-emission of previously deposited mercury (from a combination of natural

and anthropogenic sources)

Global background sources do not include anthropogenic emissions from the United States,
Canada, and Mexico in 2001, but may include mercury emitted from anthropogenic sources in
these countries in 2000. Re-emission of previously deposited mercury includes mercury from

natural and anthropogenic sources.
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Figure 6.20: Map of REMSAD 2001 model output for total atmospheric deposition of mercury
throughout the United States

[Source: USEPA 2008a, Figure 6-3c]
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Figure 6.21: Statewide map showing the ratio of atmospheric mercury deposition
attributed by REMSAD to all sources except 2001 California
anthropogenic sources to total deposition

The dark green areas illustrate where the REMSAD model attributes almost all the
mercury deposition to California anthropogenic emissions, while the light green, yellow,
orange, and red areas illustrate where the model attributes most of the deposition to
natural and global sources. The model indicates that most of the mercury deposited in
the state does not come from anthropogenic emissions in the state.

The black lines outline areas where REMSAD modeled atmospheric deposition exceeds
20 g/km?/year. The model attributes the elevated mercury deposition in the southeastern
portion of the state primarily to global and natural sources. REMSAD attributes the

elevated mercury deposition in other areas of the state to anthropogenic emissions from

within the state.
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Figure 6.22: Statewide maps of REMSAD 2001 model output for atmospheric mercury deposition tagged to particular California

emissions

These maps illustrate where the REMSAD model attributes mercury deposition to specific California anthropogenic emissions, and
where such deposition coincides with the location of 2010 303(d)-listed reservoirs and their watershed boundaries, and other

reservoirs with elevated fish methylmercury concentrations.
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Figure 6.22: Statewide maps of REMSAD 2001 model output for atmospheric mercury deposition tagged to particular California

emissions, continued
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Figure 6.22: Statewide maps REMSAD 2001 model output for
atmospheric mercury deposition tagged to particular
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Figure 6.23: Statewide map showing the ratio of atmospheric deposition attributed by
REMSAD to 2001 California anthropogenic emissions to total deposition

The black lines outline “California emissions hotspots” where the REMSAD model
attributes more than 20% of all deposition to California anthropogenic emissions.
Reducing California emissions could make a substantial, measurable reduction in
atmospheric deposition to these areas. Almost a third of the 2010 303(d)-listed reservoirs
or their watersheds intersect a California emissions hotspot. There are five reservoirs
where REMSAD attributes more than 50% of atmospheric deposition to California
anthropogenic emissions: Davis Creek Reservoir, Indian Valley Reservoir (hotspot #3),
Lake Herman (hotspot #4), El Dorado Park Lakes, and Puddingstone Reservoir

(hotspot #11)
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Areas and Urban Clusters and [B] classified as developed by the 2006 National Land Cover Database

Figure 6.24: Bar charts of the percent of 2010 303(d)-listed reservoir watersheds [A] within 2010 Census-designated Urbanized
[Sources: MRLC 2011; Fry et al. 2011; USCB 2012a and 2012b]
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Figure 6.25: Pie charts illustrating the number of NPDES-permitted facility dischargers and sum
of design flows by facility type throughout California
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Figure 6.26: Pie charts illustrating the number of NPDES-permitted facilities and sum of
permitted facility discharge volumes (design flows) by receiving water location,
with and without power plant noncontact cooling water releases
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Figure 6.27: Bar chart of the number of NPDES-permitted facility dischargers and sum of permitted design flows grouped by
receiving water location

The facilities are grouped by receiving water type. Facilities in group #3, “Approved TMDLs,” all discharge to water bodies downstream of any
reservoir. This figure illustrates that there are much fewer facilities upstream of reservoirs than downstream, and that their total discharge

volume is a small fraction of discharges downstream of reservoirs.
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Figure 6.28: Box plot of effluent total mercury concentrations for four types of NPDES-permitted
facility discharges

This figure summarizes effluent total mercury concentrations for four significantly different types
of discharge (Kruskal-Wallis test, p<0.001): municipal wastewater treatment plants

(Mun WWTPs), municipal combined stormwater sewer systems (Mun CSSS), petroleum
refineries (Petro Refinery), and other types of facilities (Other). The boxes illustrate the
interquartile ranges (25" and 75" percentiles). The middle horizontal lines indicate the medians.
The asterisks illustrate outliers.
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Figure 6.29: Statewide map of NPDES-permitted discharges from facilities with individual
NPDES permits in 2010 303(d)-listed reservoir watersheds

This map shows only the facilities that discharge within the 303(d)-listed reservoirs’ watersheds.
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Figure 6.30: Pie charts illustrating the number of NPDES-permitted facility dischargers and sum
of design flows by facility type in 2010 303(d)-listed reservoir watersheds
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Figure 6.31: Bar chart comparing sum of NPDES-permitted facility design flows and total mercury loads to
2010 303(d)-listed reservoir inflows and REMSAD modelled atmospheric deposition
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Figure 6.32: Pie chart illustrating the different combinations of sources that contribute to each of
the 2010 303(d)-listed reservoirs

The pie chart represents 74 303(d)-listed reservoirs. Mining waste contributes to almost two
thirds of the reservoirs. Atmospheric deposition is the primary anthropogenic mercury source to
more than a third of the reservoirs, and global industrial emissions are the primary
anthropogenic source to more than half of these.
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Figure 7.1: Chart illustrating mercury reductions in biota observed after mercury source
controls at industrial sites

This chart illustrates 11 industrial sites from around the world that used source control to address mercury
pollution. The left hand (grey) columns are before cleanup, the right hand (black) columns are after
cleanup. “Multiple Controls” means source reduction and one or more other measures, such as dredging,
excavation, or groundwater treatment, were used at these sites. On the right, “Only Source Control” was
used at these sites. Fish methylmercury results are provided for two species or sizes at three of the sites,
Pinchi Lake, Ball Lake and Lake Kirkkojarvi; Dungeness crab not fish results are provided for Howe
Sound.

Substantial biota methylmercury reductions were achieved at all these sites. However, only one of these
is a mine site. In addition, the proposed sport fish target of 0.2 mg/kg was achieved in fish tissue at only
one of these sites, Pinchi Lake, in a lower trophic level species (lake whitefish) and not in lake trout; it
also was achieved in Dungeness crab at Howe Sound.

[Sources: Armstrong and Scott 1979; Azimuth Consulting Group Inc. 2008; Lindestrom 2001; Lodenius
1991; Parks and Hamilton 1987; Southworth et al. 2000; Takizawa 2000; Turner and Southworth 1999]
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Figure 7.2: Graphs of atmospheric deposition and fish methylmercury concentrations
in reservoirs with and without upstream mines

These graphs compare reservoir fish methylmercury concentrations to REMSAD modeled 2001
atmospheric Hg deposition rates and presence/absence of upstream historic mine sites. The reservoirs
with the very highest fish methylmercury levels are associated with extensive mercury mining. However,
numerous reservoirs have elevated fish methylmercury but do not have any record of any upstream mine
sites. There are 60 reservoirs with high fish methylmercury but low atmospheric mercury deposition rates
and no upstream mines. Conversely, there are many reservoirs with low fish methylmercury but very high
atmospheric mercury deposition rates. These graphs illustrate how there is no one source or factor that
explains all fish mercury impairments.
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Figure 7.3: Statewide maps showing predicted atmospheric mercury deposition rates and percent reductions if anticipated

California and global emission reductions and proposed allocations are achieved
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Figure 7.4: Graph illustrating City of Stockton municipal wastewater treatment plant
(WWTP) effluent ammonia, methylmercury, and total mercury
concentration data collected before and after WWTP upgrades

Average effluent methylmercury concentrations decreased by 91% subsequent to upgrading the
treatment process at the City of Stockton’'s WWTP. (Note, it is not known if the treatment plant
upgrades are responsible for the methylmercury and mercury reductions, or if the reductions are
a result of other operational or physical changes.)

[Source: Wood et al. 2010b, Figure 6.6]
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Figure 7.5: Statewide map highlighting the six 303(d)-listed reservoirs where relatively

quick fish methylmercury reductions are predicted from source control

The three reservoirs predicted to have relatively quick benefits from mine remediation are, from north to
south, Davis Creek, Marsh Creek, and Lake Nacimiento (Table 7.1). Similarly from north to south and
west to east, the three reservoirs predicted to have relatively quick benefits from atmospheric deposition
are Indian Valley, El Dorado Park, and Puddingstone. The rationale supporting these predictions is
provided in section 7.2.7.

The red, orange, and yellow areas highlight where substantial reductions in atmospheric mercury
deposition are expected if emission controls are achieved as anticipated (see Figure 7.3B). Atmospheric
deposition from California industrial emissions is the primary anthropogenic source to Indian Valley,

El Dorado Park, and Puddingstone Reservoirs, and they are located in regions expected to have
substantial reductions in atmospheric deposition. Several other mercury-impaired reservoirs also are in
such regions, but these reservoirs receive mercury from historic mine sites as well and therefore quick
benefits from emission controls are not expected.
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Figure 7.6: Graph illustrating seasonal maximum methylmercury concentrations
in Lake Almaden, California, before and after installation of
solar-powered circulators

The Santa Clara Valley Water District reported the following:
Annual maximum concentrations in the hypolimnion (green) varied over the study period,
and were obviously affected by the circulator after it was set at the bottom in 2008 .... In
2005-2007 the maximum concentration in the hypolimnion was about 70 ng/L; in 2008
through 2011, the maximum concentration was 30, 18, 24 and 15 ng/L, respectively.
Mid-depth seasonal maximum concentrations were immediately affected by the circulator
following installation in 2006, and remained below 10 ng/L during the reporting period.

[Source: Drury 2011, Figure 31]
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Determination of Waste Load Allocations (WLA)
for NPDES facility discharges with individual permits
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watershed flows: No WLA
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facility design flows exceed 1% of
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If sum of facility design flows is > 1% If sum of facility design flows is £ 1%
and individual design flow >1 MGD: or individual design flow <1 MGD:
WLA equals: WLA equals:
Municipal WWTPs: 10 ng/L Municipal WWTPs: 20 ng/L
All other facilities: 30 ng/L All other facilities: 60 ng/L
Compliance: Compliance:
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effluent total mercury concentration effluent total mercury concentration

Figure 8.1: Flow chart for determining waste load allocations for facilities with individual
NPDES permits upstream of mercury-impaired reservoirs

[Table 8.1 Notes provided on next page]
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Figure 8.1 Notes:

(1) The answer to the question, “Does the sum of individual NPDES facility design flows exceed
1% of reservoir inflows?” is yes if either the sum of annual design flows for NPDES-
permitted facility discharges exceeds 1% of annual reservoir inflows, or the sum of dry
weather design flows for NPDES-permitted facility discharges exceeds 1% of dry weather
reservoir inflows.

Calculation methods:

Annual design flow for each facility is calculated by multiplying the facility daily design
flow by 365, or by the potential maximum allowable number of days of discharge each
year for facilities that do not discharge year round.

Dry weather design flow for each facility is calculated by multiplying the facility design
flow by 61 (the number of days in October and November) or by the potential maximum
allowable number of days of discharge during October and November for facilities that
do not discharge year round.

Annual reservoir inflow for each reservoir is calculated by first summing the total inflow
volume during each year of the entire period of gage record, and then dividing that sum
by the number of years of the gage record.

Dry weather reservoir inflow for each reservoir is calculated by first summing the total
inflow volume during October and November of each year of the entire period of gage
record, and then dividing that sum by the number of years of the gage record.

If gaged inflow data are not available for a reservoir, gaged outflow data may be used
instead. If no gaged reservoir inflow or outflow data are available, watershed precipitation
runoff estimates may be used. Watershed precipitation runoff estimates should be based on
at least five years of precipitation data.

For facilities such as hydro-power plants and fish hatcheries that make use of surface water
intakes from the same water bodies as their discharge receiving waters, the annual and dry
weather design flow calculations, WLAs, and effluent limitations apply to the discharges
from internal waste streams, not to once-through cooling water discharges or other
discharges of ambient surface water. The Water Boards will apply intake credits to once-
through cooling water and other discharges as allowed by law.

If a facility has more than one outfall to a given reservoir's watershed, the WLA and effluent
limitation are determined by the sum of all its outfalls in that reservoir watershed. The WLA
and effluent limitation apply to all of the facility’s outfalls in that watershed.

If future expansions or other new discharges from facilities with individual NPDES permits

cause the watershed sum of annual or dry weather design flows to exceed 1% of reservoir
inflows, then all the facilities in that reservoir watershed that discharge greater than 1 MGD
shall be re-evaluated per the methodology described in Figure 1.
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