Felicia Marcus, Chair C/o Jeanine Townsend, Clerk of the Board State Water Resources Control Board 1001 I Street Sacramento, CA. 95814

February 14, 2018

RE: Addressing Air Toxics in Industrial General Permit Amendments

Dear Ms. Marcus,

We are writing to you today concerned about the pollution of our state's waters. While we are concerned about the pollution of all of our state's waters, we are contacting you today regarding the revision of the Industrial General Permit. We believe that the State Water Resources Control Board must revise the Permit to include an explicit requirement that all industrial facilities have the duty to test their stormwater for all potential pollutants that a facility could reasonably discharge in its stormwater, specifically including pollutants for which they have an air permit.

Stormwater is an amazing resource for our society. Stormwater can be used to recharge depleted aquifers. It can be captured and used to water landscaping, and of course be discharged into our rivers providing natural habitats for natural and human communities. However, none of this can happen if our stormwater is not free from dangerous levels of industrial contaminants.

Extensive research by one of our organizations has highlighted just how insufficient our stormwater testing requirements are. We looked at four air toxic source categories of industrial facilities in the Los Angeles basin: chrome-plating facilities, forging facilities, major lead emitters, and minor lead emitters. What we discovered shocked us. Here are some of the most telling findings from the investigation.

Forging Facilities

The Air District developed Rule 1430 ("Control of Emissions from Metal Grinding Operations at Metal Forging Facilities") in response to the ongoing public health crisis in Paramount related to widespread hexavalent chromium contamination. Monitoring, sampling & site inspections revealed that these unregulated sources (metal grinding and metal cutting operations at forges) had significant particulate emissions and toxic air contaminants. Rule 1430 targets toxic particulate and emissions from metal grinding/cutting operations at forging facilities, including titanium, nickel and hexavalent chromium.

- 1. 80% of are not analyzing stormwater for chromium. This means that out of 20 known chromium emitters (for which we have data), more than 16 have not sampled for this carcinogenic pollutant in their stormwater in the last 5 years.
- 2. 100% of the facilities that did collect and analyze stormwater for chromium in the last 5 years report exceedances of EPA limits.
- 3. 80% of the facilities failed to include the word "chrome" (or any variant) in their core stormwater planning documents; and 0% completed the assessment of hexavalent chrome sources that are required by the Permit.

4. 85% of the facilities failed to mention the words "emission" or "fugitive" in their core stormwater planning documents, which means that the owners of these facilities utter fail to account for the well-documented relationship between air and water pollution.

Chrome Plating Facilities

The Air District is amending Rule 1469 ("Hexavalent Chromium Emissions from Chromium Electroplating and Chromic Acid Anodizing Operations") to augment existing requirements to address fugitive emissions from hexavalent chrome plating and anodizing operations. The rule covers 275 facilities with emissions of hexavalent chromium, titanium, nickel and other toxic metals. Our research focused on 10 of these facilities from the heavily impacted communities of Santa Fe Springs, Gardena, Sun Valley, Compton, Vernon and Bell Gardens.

- 1. 30% of the chromium emitting facilities operate under a Non-Exposure Certification from the Los Angeles Regional Water Quality Control Board, indicating that the facilities and the Regional Board believe no industrial activities are not exposed to stormwater.
- 2. Of the three facilities with sampling data, two have not tested for chromium in the last 5 years.
- 3. One facility with chromium concentrations in its storm water data of 0.43 mg/L (12/15/15) and 0.39 mg/L (12/21/15) and 0.23 mg/L (1/5/16) filed a Notice of Termination in 2017 claiming that the facility had not discharged stormwater since 2004.

Major Lead Emitters

The Air District designed Rule 1420.2 ("Emission Standards for Lead from Metal Melting Facilities") to regulate toxic emissions from metal melting facilities that the agency determined were major sources of lead. The rule applies to the 13 of the region's 15 largest lead emitters, each one with an annual throughput of at least 100 tons of lead. Cumulatively facilities subject to Rule 1420.2 melt more than 50,000 tons of lead annually.

Perhaps most surprising was that 1 of the facilities was given a Non-Exposure Certification by the Los Angeles Regional Water Quality Control Board, which essentially constitutes a determination that industrial activities pose no potential threat to surface waters. Another facility does not appear to participate in the Permit program, which leaves 11 facilities that have permits to emit lead and to discharge stormwater to local surface waters.

- 1. 100% of the facilities have discharged stormwater with lead concentrations in excess of the CTR and EPA Benchmark limits (0.0025 mg/L & 0.0816 mg/L respectively), i.e. not a single one of the region's largest lead air emitters have developed and implemented effective BMPs to prevent/limit dangerous lead pollution. 7 of 11 facilities have, in each of the last 5 years, reported discharges with lead concentrations that exceed EPA's Benchmark limit.
- 2. 100% of the lead emitting facilities discharge to a water body that is impaired for lead. Although this only establishes a correlation, it seems likely that the causal mechanism works in only one direction.
- 3. Among the worst actors are U.S. Battery and Trojan Battery. U.S. Battery's analysis of stormwater for lead in 3 of the last 5 years found concentrations exceeding EPA's benchmark limit by 6500% (2012-13), 12,000% (2014-15) and 4200% (2016-17). Trojan Battery Co. on

Anne Street in Santa Fe Springs has an average exceedance over 1500% of EPA's Benchmark for lead in its stormwater during the last 5 storm water years.

4. 0% of the facilities have been subject to a formal enforcement action by the Regional or State Board in any of the last 5 years.

Minor Lead Emitters

The Air District crafted Rule 1420 ("Emission Standard for Lead") in response to U.S. EPA's decision to lower the ambient air limit for lead because data demonstrate that the devastating impacts of lead poisoning, especially among children, manifest at much lower levels than previous understood. The rule covers facilities that emit lead in smaller amounts than the major lead emitters otherwise regulated by Rules 1420.1 and 14202. Of the 121 facilities subject to Rule 1420, the Air District identified 15 facilities as the largest lead sources in the inventory.

- 1. Only 30% (3 of 10) reference the word "lead" in stormwater planning documents. 70% of these known lead-emitting facilities are not disclosing/assessing lead as pollutant with the potential to contaminate stormwater.
- 2. While 70% of the facilities disclose and assess baghouse(s) (i.e. primary air pollution control equipment) as potential pollutant source, the vast majority of facilities fail to include the corresponding disclosure and assessment of fugitive emissions. Compare the approach of Arrowhead Brass Plumbing to Aircraft Foundry Co. Arrowhead mentions "baghouse" more than 15 times (as well as "emissions" and "fugitive"), and specifically includes a BMP to vacuum the baghouse area after each "dust handling event." Aircraft Foundry, on the other hand, mentions "baghouse" only once, to claim that it has no potential impact on stormwater. Aircraft also explicitly notes the potential for metal "build up" on roofs, but fails to develop a BMP to address this acknowledged pollutant source.
- 3. At least 50% of these lead-emitting facilities are not analyzing stormwater samples for lead; and 100% of those that have are consistently violating EPA's lead benchmark.
- 4. 100% of facilities (for which there is stormwater data) also report exceedances of numeric limits for aluminum, zinc, copper and/or iron.

We are attaching additional documents as Appendices A, B, C, D, E and F, all of which provide additional information regarding the details of the investigation and proposed solutions.

In conclusion, we are asking that the State Water Resources Control Board make clear in the issuance of its new Industrial General Stormwater Permit that testing for all industrial contaminants for which a facility has knowledge of requires both stormwater testing and public reporting, including pollutants that a facility emits into the air. Please do not hesitate to contact us with any questions or concerns regarding these comments.

Jane Williams

Executive Director California Communities Against Toxics Rosamond, CA 93560

Robina Suwol Executive Director California Safe Schools

Joe R. Gatlin

Vice President NAACP, San Pedro-Wilmington Branch # 1069 San Pedro, CA 90731

Pastor Anthony Quezada American Legion Post 6 Long Beach, CA 90810 Toluca Lake, CA

Drew Wood Executive Director California Kids IAQ Wilmington, CA 90744

Felipe Aguirre Coordinator Comite Pro Uno Maywood CA.

John Sermeno Director Exide Community Workers Center

Cynthia Babich

Executive Director Del Amo Action Committee Torrance, CA

Jesse N. Marquez Executive Director Coalition For A Safe Environment Wilmington, CA 90744

Ricardo Pulido

Executive Director Community Dreams Wilmington, CA 90744 Magali Sanchez-Hall, MPH

Executive Director EMERGE 913 East O Street Wilmington, CA 90744

Elizabeth Matamoros

Mujeres de Maywood Maywood, CA

Dr. John G. Miller, MD

President San Pedro & Peninsula Homeowners Coalition San Pedro, CA 90731

Shabaka Heru, Director

Society for Positive Action Athens Park, CA

Modesta Pulido Chairperson St. Philomena Social Justice Ministry Carson, CA 90745

Wilmington Improvement Network

Anabell Romero Chavez Board Member Wilmington, CA 90744 TO:Southern California's Environmental Justice CommunityFROM:Anacapa Law Group, Inc.DATE:Feb. 1, 2018

Re: <u>Air Toxics and IGP § XI.B.6.c</u>—Opportunities to Advance Environmental Justice and Regional Water Resiliency

I. California's General Permit

In response to widespread disregard for the health of our nation's water resources by industrial actors, Congress passed the Clean Water Act ("Act") to "restore and maintain the chemical, physical and biological integrity of the Nation's waters." 33 U.S.C. §§ 1251(a), 1311(b)(2)(A). To this end, the Act contains a prohibition on the discharge of pollutants from any point source into waters of the United States.

Recognizing that a *per se* rule against all polluted discharges was unrealistic from both policy and political perspectives, Congress crafted the NPDES permit program as an exception to the general prohibition in Section 402. 33 U.S.C. §§ 1311(a), 1342(p), 40 C.F.R. § 122.26(c)(1). NPDES permits allow industrial actors to discharge polluted water *so long as* those discharges are completed in compliance with an NPDES permit's requirements. In the case of stormwater, these requirements are largely enforced as a mandate that each owner/operator must implement Best Management Practices ("BMPs") tailored to each facility's assessment of pollutants and sources potentially affecting water quality.

In California, the United States Environmental Protection Agency ("U.S. EPA") has delegated authority to issue NPDES permits to the State Water Resources Control Board ("State Board"). 33 U.S.C. §§ 1342(b), (d). The State Board implements the NPDES Statewide General Permit for Storm Water Discharges Associated with Industrial Activities, Order 2014-0057-DWQ ("Industrial General Permit" or "IGP"). The IGP regulates storm water discharges from 10 federally defined categories of industrial facilities in California—including lead-acid battery manufacturers, mining operations, lumber mills, clothing factories and hazardous waste sites.

The success of the IGP depends on the effective and consistent application of its general rules to facility-specific operational and environmental considerations. In other words, the IGP's effectiveness hinges on two things—the honest implementation efforts of permittees and the sincere enforcement efforts of regulators.

II. Connecting Air and Water Pollution

The public health threats posed by air and water pollution are a common double-edged sword for many Southern California communities—*what goes up must come down*. Toxic metals and other pollutants emitted into the air settle as dust in backyards, on playgrounds and ultimately wash into creeks and rivers when it rains. From there, once-airborne particulate foul surface waters and oceans, poison aquatic ecosystems and can contaminate groundwater. As data from CalEnviroScreen indicate, Los Angeles' most vulnerable communities suffer from some of the highest rates of both air and water pollution in the State.

The relationship between air and water pollution is well established. Initial research in Europe during the 1960s and 1970s, later corroborated by studies and lived experience in North America, confirmed that air pollution has significant impacts on water quality.¹ For example, the U.S. enacted amendments to the Clean Air Act in 1990 directed, in part, at reducing emissions from coal fired power plants because air pollutants were contributing to a phenomenon called "acid" rain. These air pollutants, however, may be deposited directly into water bodies, filter slowly into ground water or, in urban areas, be washed from roads, rooftops, and parking lots into surface waters.

One IGP permittee acknowledges in a disclosure to the State that aerial deposition of toxic metals is its most prolific storm water pollutant. Unfortunately, a variety of institutional and resource hurdles have caused a disjuncture in California's efforts to address air and water pollution. This same basic deficiency was characterized by U.S. EPA in 1977 a near "total absence of interagency coordination."²

Industrial pollution (i.e. stationary source) in Southern California continues to be a principal obstacle to air and water quality imperatives. Indeed substantial portions of the LA River, San Gabriel River and Santa Ana River are impaired for toxic metals, including lead and copper, much of which appears to be initially emitted into the air. This same pollution is a primary focus on Los Angeles' EJ movement because industrial activities are concentrated in certain cities like South Gate, Paramount and Compton that are located along these waterways.

As state and local governments move forward with plans to supplement groundwater supplies with stormwater, expand recreational opportunities of surface waters like the LA River, and fulfill their commitment to EJ communities, it may be wise to consider desegregating the implementation and enforcement of the Clean Air and Clean Water Acts. The findings detailed in Section IV (*infra*) demonstrate the potential benefits of integrating air and water regulation, and better coordinating enforcement initiatives.

III. IGP Facility-Specific Requirements Regarding the Disclosure, Assessment and Monitoring of Pollutants Emitted into the Air

The Permit's most important *general* requirement is that permittees develop and implement a Storm Water Pollution Prevention Plan ("SWPPP") tailored to facility-specific considerations (e.g. blast furnace or electric arc furnace; aqueous or particulate pollution; discharging to creek, river, estuary or ocean). The SWPPP is considered the heart of the IGP, and it must identify (i.e. disclose) and assess facility-specific sources of pollutants; and then describe customized BMP pollution control measures.

The SWPPP is the essential link between executive planning and design efforts and on-theground implementation by staff. A facility's staff is highly unlikely to implement effective BMPs without a strong foundation of executive planning found in the SWPPP.

IGP § X.G defines the minimum standards for disclosing and assessing potential pollutant sources specific to each facility. Section X.G.1.a requires that every SWPPP "describe each

¹ The Effects of Air Pollution on Water Quality, PEDCo-Environmental, Inc. (March 15, 1977).

 $^{^{2}}$ Id.

³ *Harmatice* waters" are streams, rivers, and lakes that do not currently meet their applicable designated uses and water quality standards. Stormwater discharges to impaired waters may trigger additional control measures and

industrial process including: manufacturing, cleaning, maintenance, recycling, disposal and any other activities related to the process." Permittees are not required to describe activities unrelated to water quality, and may use general-enough-narratives to protect trade secrets and intellectual property. However, owners and operators must faithfully comply with the fundamental policy goal—to formulate pollution control strategies based on an accurate picture of a facility's potential impacts to water quality and public health.

Section X.G.2, which requires the disclosure and assessment of potential pollutant sources, reads:

- "2. Assessment of Potential Pollutant Sources
- a. The Discharger shall ensure that the SWPPP includes a narrative assessment of all areas of industrial activity with potential industrial pollutant sources. At a minimum, the assessment shall include:
- *i.* The areas of the facility with likely sources of pollutants in industrial storm water discharges and authorized NSWDs;
- *ii.* The pollutants likely to be present in industrial storm water discharges and authorized NSWDs;
- *iii.* The approximate quantity, physical characteristics (e.g. liquid, powder, solid, etc.), and locations of each industrial material handled, produced, stored, recycled, or disposed;
- *iv.* The degree to which the pollutants associated with those materials may be exposed to, or mobilized by contact with, storm water;
- v. The direct and indirect pathways by which pollutants may be exposed to storm water or authorized NSWDs..."

Taken as a whole, romanettes (i) through (v) establish a clear and broad legal mandate. SWPPPs must include a comprehensive narrative assessment of pollutants with the potential to affect water quality. §§ X.G.2.a.i-v may each (i.e. independently) require the disclosure and assessment of pollutants emitted into the air. First, air emissions are "likely sources of pollutants" in discharges due to the phenomenon called 'aerial deposition.' Alternatively emissions control equipment/procedures are "likely sources of pollutants." *See* § X.G.2.a.i. Second, air pollutants are "likely to be present in industrial storm water discharges" for the same reason. *See* § X.G.2.a.ii. Third, air pollutants are unequivocally "produced" and/or "disposed" of. *See* § X.G.2.a.iii. Forth, dust and particulate are highly likely to be "mobilized by contact with storm water." *See* § X.G.2.a.iv. And finally, aerial deposition constitutes an "indirect pathway by which pollutants may be exposed to storm water or authorized NSWD." *See* § X.G.2.a.v. Where a facility is subject to a permit regulating its air emissions, §§ X.G.2.a.i-v establish a strong presumption that air pollutants are present in storm water discharges unless and until a permittee has verified otherwise.

This reading is also consistent with the successful implementation of any "general permit" that applies to a varied set of industrial actors. General permits impose an obligation on permittees to focus attention on *facility-specific* sources and pollutants based on the owner/operator's familiarity with industrial materials and processes at each facility. It is, therefore, an independent and significant violation of the IGP whenever a SWPPP fails to disclose and assess pollutants contained in air emissions resulting from facility-specific industrial processes.

§ X.G.2 is operationalized via § XI.B.6. § XI.B.6 supplies the IGPs mandate with respect to monitoring and analyzing stormwater discharges. § XI.B.6 reads:

- 6. *The Discharger shall analyze all collected samples for the following parameters:*
- a. Total suspended solids (TSS) and oil and grease (O&G);
- b. *pH* (see section XI.C.2);
- c. Additional parameters identified by the Discharger on a facility-specific basis that serve as indicators of the presence of all industrial pollutants identified in the pollutant source assessment (Section X.G.2). These additional parameters may be modified (added or removed) in accordance with any updated SWPPP pollutant source assessment;
- d. Additional applicable parameters listed in Table 1 below. These parameters are dependent on the facility Standard Industrial Classification (SIC) code(s);
- e. Additional applicable parameters related to receiving waters with 303(d) listed impairments³ or approved TMDLs based on the assessment in Section X.G.2.a.ix.
- *f. Additional parameters required by the Regional Board[...];*
- g. For dischargers subject to Subchapter N, additional parameters specifically required by Subchapter N[...].

Thus, absent intervention by a regional board pursuant to sub-paragraph (f), § XI.B.6 details four (4) categories of parameters dischargers must analyze each sample for: 1) basic parameters (TSS, O&G and pH) applicable to every permittee [detailed in sub-paragraphs (a) and (b)]; 2) facility-specific parameters based on the facility's SIC code, which are included at Table 1 of the Permit [detailed in sub-paragraph (d)]; 3) facility-specific parameters found in extrinsic regulatory sources [detailed in sub-paragraphs (e) and (g)]; and 4) facility-specific parameters deriving from the pollutant source assessment each discharger must complete to comply with § X.G.2 [detailed in sub-paragraph (c)].

§ XI.B.6.c. is unique in this section because it is explicitly linked to other activities described in the SWPPP, and depends on prior compliance activities by owners/operators. § XI.B.6.c does not explicitly list additional parameters or cite to another source where additional parameters are listed. Rather, it relies entirely on an honest effort be each permittee to analyze all storm water samples for 'facility-specific' parameters that they themselves identify and assess as part of developing the facility's SWPPP. Sub-paragraph (c) requires dischargers to analyze each sample for all pollutants (and their indicators) identified in the source assessment required by IGP § X.G.2. Therefore, if an owner/operator identifies copper and iron as "facility-specific" pollutants as part of its pollutant source assessment, then all storm water samples must be analyzed for copper and iron.

³ "Impaired waters" are streams, rivers, and lakes that do not currently meet their applicable designated uses and water quality standards. Stormwater discharges to impaired waters may trigger additional control measures and monitoring requirements.

Numerous other provisions in the IGP lend inter-textual support for a broad reading of XI.B.6.c to include any pollutants emitted into the air. The following three examples are illustrative:

- 1. § X.G.1.a requires all permittees to describe "[t]he type, characteristics, and approximate quantity of industrial materials used in or *resulting from* the process."
- 2. § X.G.1.c addresses "Dust and Particulate Generating Activities," and reads: "[t]he Discharger shall ensure the SWPPP describes all industrial activities that generate a significant amount of dust or *particulate* that *may be deposited* within the facility boundaries. The SWPPP shall describe (i.e. disclose) such industrial activities, including the discharge locations, the source type, and the characteristics of the dust or particulate pollutant.
- 3. IGP § X.G.2.d requires each permittee to identify "any additional any additional *parameters beyond those required by Section XI.B.6* that indicate the presence of pollutants" identified in the pollutant source assessment.

IV. Implementation and Enforcement Failures of XI.B.6.c

Recently research provides evidence that both industry and the Regional Water Quality Control Boards are failing to implement and enforce § XI.B.6.c, respectively. These failures fundamentally undermine the efficacy of a *general* permit that is applied to such a diverse group of industrial actors/polluters, by limiting the extent to which facility-specific considerations guide pollution control decisions/strategies.

The investigation began during 2017 in response to the ongoing environmental justice crisis caused by widespread hexavalent chromium (a.k.a. hex-chrome) contamination of Paramount, California. In attempting to find the source(s) of hex-chrome emissions, the South Coast Air Quality Management District ("AQMD" or "Air District") relied on, among other tools, a passive air sampling technique called "glass plate monitoring." Investigators took note of the similarity in data outputs from glass plate monitoring and stormwater sampling. The initial research question was focused on whether it would have been possible for the Air District to identify hex-chrome emitters more quickly by reference to stormwater data from facilities enrolled in the IGP. The assumption was that, under the IGP interpretation outlined above, the facilities identified by the Air District as the source of hex-chrome emissions *should have* been disclosing the potential for hex-chrome contamination of stormwater and analyzing all samples to verify that BMPs were effectively limiting the concentrations in discharges.

The first step of the investigation was to obtain an inventory, via Public Records Act request from the Air District, of facilities subject to Rule 1430. Rule 1430 was developed specifically to regulate hex-chrome emitters in Paramount and elsewhere in Southern California. Second, investigators compiled all of the stormwater planning and compliance documents for each facility from California's NPDES permit database called Storm Water Multiple Application and Report Tracking System ("SMARTS"). While every document was reviewed, the investigation focused on analysis of each facility's SWPPP and stormwater sampling data from the last 5 years. The initial research findings demonstrated that the Air District could not have identified the sources of hex-chrome emissions in Paramount by reference to stormwater data because compliance with and enforcement of IGP § XI.B.6.c was inadequate. Here is what the initial research found:

1. 80% of facilities subject to Rule 1430 were not analyzing stormwater samples for chromium. This means that out of 20 known chromium emitters (for which SMARTS had data), more

than 16 have not analyzed stormwater samples for this carcinogenic pollutant in the last 5 years.

- 2. 100% of the facilities that did collect and analyze stormwater for chromium in the last 5 years report exceedances of EPA limits.
- 3. 80% of the facilities failed to include the word "chromium" (or any variant) in their core stormwater planning documents; and 0% completed the assessment of hexavalent chrome sources that are required by the Permit.
- 4. 85% of the facilities failed to mention the words "emission" or "fugitive" in their core stormwater planning documents, which indicates that the owners of these facilities utter fail to account for the well-documented relationship between air and water pollution.

Based on these initial findings, investigators wondered if the fundamental disconnect between air and water pollution efforts that existed for Rule 1430 facilities was part of a broader trend. The Anacapa Law Group ("ALG"), working in coordination with California Communities Against Toxics ("CCAT"), expanded the research to include 3 other air pollution rules that had been or are being developed as part of the Air District's expansion of efforts in Paramount to a 7-year campaign that would "assess[] toxic emissions associated with hundreds of metal-processing facilities" in the LA basin. This Air Toxics Action Plan ("Action Plan") initiative is focused on more than 1,000 metal processing facilities priorities as "high-risk facilities" for toxic metal emissions including hexavalent chromium, lead, arsenic, cadmium and nickel. ALG conducted the same essential research process described above for all of the following Action Plan rules:

Rule	Title	Pollutant(s)	No. Facilities	Description
1420.2	Emission Standards for Lead from Metal Melting Facilities	lead (Pb)	13	Targets lead emissions from facilities melting more than 100 tons of lead annually as part of effort to ensure attainment/maintenance of National Ambient Air Quality Standards (NAAQS) for lead
1420	Emission Standard for Lead	lead (Pb)	121	Requires lead-emitting sources not covered under Rules 1420.1 & 1420.2 to ensure compliance w/ new NAAQS
1430	Control of Emissions from Metal Grinding Operations at Metal Forging Facilities	nickel (Ni); titanium (Ti); chrome ⁶ and others	22	Aims to reduce toxic particulate and emissions from metal grinding/cutting operations at forging facilities currently exempt from District permits (i.e. unregulated). Monitoring, sampling & site inspections revealed significant particulate emissions and toxic air contaminants.
1469/ 1426	Hexavalent Chromium Emissions from Chromium Electroplating and Chromic Acid Anodizing Operations; Emissions from Metal Finishing Operations	chrome ⁶ , nickel (Ni), cadmium (Cd) and others	275	Rule 1469 augments existing requirements to address fugitive emissions from hexavalent chrome plating and anodizing operations. Rule 1426 establishes requirements to reduce nickel, cadmium and other air toxics from plating operations.

 Table 1

 Air Toxics Action Plan Rules Subject to Investigation

While the data are less than complete for the last 5 years (e.g. facilities consistently fail to submit Annual Reports; do not analyze the required number of stormwater samples), the analyses confirm the conclusion investigators drew from the Rule 1430 data alone—<u>IGP § XI.B.6.c is</u> widely disregarded and/or ignored by both regulated industry and water agencies. Here is what investigators found with respect to each rule.

Rule 1420

The Air District crafted Rule 1420 ("Emission Standard for Lead") in response to U.S. EPA's decision to lower the ambient air limit for lead, which was prompted by data demonstrating that the devastating impacts of lead poisoning, especially among children, manifest at much lower levels than previous understood. The rule covers facilities that emit lead in smaller amounts than the major lead emitters otherwise regulated by Rules 1420.1 and 14202. Of the 121 facilities subject to Rule 1420, the Air District identified 15 facilities as the largest lead sources in the inventory. The "heavy 15" were the focus of ALG's research.

- 1. At least 50% of Rule 1420 facilities are not analyzing stormwater samples for lead;
- 2. 100% of Rule 1420 facilities that have analyzed stormwater samples for lead are consistently violating EPA's Benchmark limit (0.0816 mg/L).
- 3. 100% of facilities (for which there is stormwater data) also report exceedances of numeric limits for aluminum, zinc, copper and/or iron.
- 4. Only 30% (3 of 10) reference the word "lead" in stormwater planning documents. 70% of these known lead-emitting facilities are not disclosing/assessing lead as a pollutant with the potential to contaminate stormwater.
- 5. While 70% of the facilities disclose the presence of a "baghouse" (i.e. primary air pollution control equipment), the vast majority of facilities fail to include the corresponding disclosure and assessment of fugitive emissions. Compare the approach of Arrowhead Brass Plumbing to Aircraft Foundry Co. Arrowhead mentions "baghouse" more than 15 times (as well as "emissions" and "fugitive"), and specifically includes a BMP to vacuum the baghouse area after each "dust handling event." Aircraft Foundry, on the other hand, mentions "baghouse" once, and only to claim that it has no potential impact on stormwater quality. Aircraft also explicitly notes the potential for metal "build up" on roofs, but fails to develop a BMP to address this acknowledged pollutant source.

Rule 1420.2

The Air District designed Rule 1420.2 ("Emission Standards for Lead from Metal Melting Facilities") to regulate toxic emissions from metal melting facilities that the agency determined were major sources of lead. The rule applies to the 13 of the region's 15 largest lead emitters, each one with an annual throughput of *at least* 100 tons of lead. <u>Cumulatively facilities subject</u> to Rule 1420.2 melt *more than* 50,000 tons of lead annually.

Perhaps most surprising was that 1 of these major lead-emitting facilities was given a Non-Exposure Certification ("NEC") by the Los Angeles Regional Water Quality Control Board. An NEC essentially constitutes a determination that industrial activities at a facility pose no potential threat of stormwater pollution. Another facility does not appear to participate in the Permit program (i.e. a "non-filer), which leaves <u>11 facilities that possess permits to emit lead into the air and to discharge lead in stormwater to local surface waters.</u>

- 1. 100% of facilities subject to 1420.2 disclose and assess lead in their SWPPPs. However, at least 50% of facilities analyzing stormwater samples for lead do so *explicitly* due to the fact that the receiving waters are impaired for lead. The other 50% of facilities provide no rationale for why they analyze stormwater samples for lead. This means that § XI.B.6.c is not being widely respected as a core IGP mandate even among facilities whose primary industrial pollutant is lead.
- 2. 100% of the lead emitting facilities discharge to a water body that is impaired for lead.
- 3. 100% of the facilities have discharged stormwater with lead concentrations in excess of the California Toxics Rule ("CTR") and EPA Benchmark limits (0.0025 mg/L & 0.0816 mg/L respectively). This indicates that not a single one of the region's largest lead air emitters have developed and consistently implemented effective BMPs to prevent/limit dangerous lead pollution. <u>7 of 11 facilities have, in each of the last 5 years, reported discharges with lead concentrations that exceed EPA's Benchmark limit.</u>
- 4. Among the worst actors among Rule 1420.2 facilities are U.S. Battery and Trojan Battery. U.S. Battery's reports stormwater lead concentrations in 3 of the last 5 years as <u>exceeding EPA's benchmark limit by 6500% (2012-13), 12,000% (2014-15) and 4200% (2016-17)</u>. Trojan Battery Co. on Anne Street in Santa Fe Springs has an <u>average exceedance of more than 1500% of EPA's Benchmark for lead during the last 5 storm water years.</u>
- 5. 0% of the facilities have been subject to a formal enforcement action by the Regional or State Board in any of the last 5 years.

Rule 1496/1426

The Air District is updating Rule 1469 ("Hexavalent Chromium Emissions from Chromium Electroplating and Chromic Acid Anodizing Operations") requirements to address fugitive emissions from hexavalent chrome plating and anodizing operations. The rule covers 275 facilities with emissions of hexavalent chromium, titanium, nickel and other toxic metals. ALG's research focused on 10 of these facilities from the heavily impacted communities of Santa Fe Springs, Gardena, Sun Valley, Compton, Vernon and Bell Gardens.

- 1. 30% of the chromium emitting facilities operate under an NEC from the Los Angeles Regional Water Quality Control Board, indicating that the facilities and the Regional Board believe that none of the industrial activities are exposed to stormwater.
- 2. Of the three facilities with sampling data, two have not tested for chromium in the last 5 years.
- 3. 0% of the facilities with SWPPPs available on SMARTS use the word "fugitive" in this essential planning document. This is a strong indication that these facilities have not developed BMPs to address the impact of fugitive emissions on water quality. This is especially concerning because air regulators often identify fugitive emissions as an especially prominent pollutant source. None of the facilities that are subject to a rule amendment specifically addressing the impact of fugitive emissions mention the word fugitive in their SWPPPs.
- 4. One facility with chromium concentrations of 0.43 mg/L (12/15/15) and 0.39 mg/L (12/21/15) and 0.23 mg/L (1/5/16) filed a Notice of Termination in 2017 claiming that the facility had not discharged stormwater since 2004.
- 5. All 10 facilities are classified under the Standard Industrial Classification (SIC) code system as 3471 ("Electroplating, Plating, Polishing, Anodizing, and Coloring"). Of the 253 active SIC code 3471 facilities operating within the Los Angeles Regional Water Quality Control

Board jurisdiction, 40% were granted NEC status; and 18% (9 of 41) were granted NEC status by the Santa Ana Regional Water Quality Control Board.

Overall, the data suggest that § XI.B.6.c is not being adequately implemented or enforced. This failure has the potential to undermine the efficacy of the Industrial General Permit by allowing permittees to avoid the disclosure and analysis of air toxics.

V. State Water Board Options

In responding to the discussion and findings contained in this memo, the State Water Board has *at least* the following four options as it amends the IGP:

Option 1 <u>Do nothing</u>.

Option 2 Craft a Special Permit for facilities with air permits.

See 40 CFR 122.28 for rules regarding when it is appropriate for special permits to be constructed and issued.

Option 3 <u>Make no change to the Permit; Clarify *existing* mandates for all IGP permittees.</u>

Option 3 assumes that the State Board concurs with the IGP interpretation contained herein (supra), i.e. the obligation to disclose, assess, and analyze for air pollutants exists under the IGP as written. This option could include the issuance of a binding or non-binding⁴ interpretation of the provisions at issue and/or provide permittees with technical support (e.g. issue templates for how to revise an existing SWPPP to bring a facility into compliance, see Table A below).

	Pollutant Ic	dentification	and Analysi	s Table for C	Chain of Cust	ody Forms	
Source as	Permit	Permit	Permit	Permit	Permit	Permit	Permit
(defined in	XI.B.6.a	XI.B.6.b	XI.B.6.c	XI.B.6.d	XI.B.6.e	XI.B.6.f	Section
X.G.1 &	(TSS &	(pH)	(Facility-	(SIC-based)	(303(d)	(RB	XI.B.6.g
X.G.2)	O&G)		specific)		impairments)	required)	(SubCh-N)
Emissions							
Control							
System							
Outdoor							
storage							
Metal							
Grinding							
Metal							
Cutting							
Plating							
Tanks							
Furnace							
Exhaust							
System							

<u>Table A</u> Pollutant Identification and Analysis Table for Chain of Custody Forms

⁴ The State Water Board must consider potential legal challenges to the issuance of binding guidance as an

[&]quot;underground regulation," i.e. creation of new policy without completing required notice and comment procedures.

Ducts				
Baghouse				
Fugitive Emissions				

Option 4 <u>Revise Permit as part of 2018 Permit Amendment process.</u>

The State Board has at least two pathways under Option 4. First, the State Board could make a technical, non-substantive correction to an internal citation in the IGP—specifically expand the citation in XI.B.6.c to include both X.G.1 and X.G.2. The benefit of this change is that it would clarify that pollutants identified in assessing dust and particulate-generating activities must be included in monitoring/analysis of stormwater samples. This has the affect of more explicitly including emissions subject to air permits. However, it leaves the following phrase in place—"that serve as *indicators* of the presence of all *industrial pollutants*." The terms "indicators' and "industrial pollutants" are undefined in the Permit, thus creating unnecessary and harmful ambiguity.

Alternatively, the State Board could re-draft IGP § XI.B.6 to create a single sub-section describing the various facility-specific pollutants that must be assessed. This could be achieved by incorporating § XI.B.6.d into a new "catch all" § XI.B.6.c. The advantage of this option is that it links the SIC-based rules, which are largely complied with, to the facility-specific pollutant source assessment rules. The following example of a new § XI.B.6.c improves Permit clarity by making significant changes to the text but <u>does not</u> alter in any meaningful way the legal obligations of permittees:

- "6. The Discharger shall analyze all collected samples for the following parameters:
 - c. All facility-specific pollutants, including those:
 - i) Listed in Table 1 for the relevant SIC code; and
 - ii) Identified as part of the pollutant source assessment completed per X.G.1 and 2."

VI. Conclusion

This memo is intended to highlight an opportunity for EJ advocates and California's air and water regulators. The solutions outlined above help the community achieve important goals for advancing environmental justice and developing an intelligent policy around stormwater capture/infiltration/re-use.

AN OPPORTUNITY TO ADVANCE ENVIRONMENTAL JUSTICE AND REGIONAL WATER RESILIENCY

Integrating Implementation and Enforcement of the Clean Air and Clean Water Acts

Building Capacity in Environmental Justice Communities

January 22, 2018 The California Endowment by Jesse Colorado Swanhuyser Anacapa Law Group, Inc.

THE BASIC QUESTION

Can Better Integrating California's Air and Water Regulation Meaningfully Advance Environmental Justice and Regional Water Resiliency?

ENVIRONMENTAL JUSTICE

REGIONAL WATER RESILIENCY

air toxics + gravity + rain = water toxics

THE CRISIS

 \equiv sections **Q** search

Los Angeles Times

L.A. NOW NOVEMBER 7, 2016

Air regulators find a cancer-causing metal at 350 times normal levels in Paramount. Now they're looking for the source

L.A. NOW NOVEMBER 25, 2016

Air pollution hot spot in Paramount spurs calls for action on metal factory emissions

By Tony Barboza

Even with the doors and windows closed, Venecia Yanez can't escape the headsplitting metallic odors that permeate her Paramount home Vanez says the

ue she finds

L.A. NOW DECEMBER 4, 2016

Agencies were urged to address Paramount metal emissions years before air toxics scare

By Tony Barboza

The recent discovery of high levels of a cancer-causing pollutant in Paramount has alarmed residents and led authorities to crack down on dangerous emissions from two metal-processing plants. But the interventions last week by air regulators and health officials followed years of slow and sporadic...

anssions from two metal processing plants, but the inverventions last we by air regulators and health officials followed years of slow and sporadic...

THE INSIGHT

	Glass Plate	Sai	np	ling	at	Me	etal	Fo	rgin	ıg F	aci	litie	s (20	014)					
	Location Description	As	Ba	Ca	Cd	Со	Cr	Cu	Fe	к	Mn	Mo	Ni	Pb	Sb	Sn	Sr	Ti	v	Zn
	Roof of grinding room	6.81	418	18,500	2.12	555	607	665	35,300	6,220	430	217	3,340	89.8	7.98	33.1	181	2,320	134	1,300
Carlton	West side of roof of saw bldg	6.98	491	19,300	2.37	761	815	815	33,500	7,260	449	287	4,500	130	9.71	31.9	205	2,390	130	1,330
Forge	East side of roof of saw bldg	7.09	521	18,000	2.43	556	661	624	26,200	6,870	391	279	3,620	94.3	9.53	31.2	215	2,470	118	1,500
TOIBC	Roof of Residence across street from facility	7.63	547	21,700	1.99	258	358	746	27,100	7,690	458	149	1,750	133	10.5	42.8	185	2,290	96.8	1,270
	Top of fence along perimeter of parking lot	8.29	583	20,700	1.51	146	234	271	28,200	8,810	470	89.8	1,020	99.6	14.5	30.7	207	2,120	82.1	1,140
	Site #1 Roof of Bldg O	16.3	513	34,400	1.66	17.1	98.4	450	28,000	12,000	467	37.3	172	91.2	9.24	20.4	229	2,730	302	1,720
	Site #2 Open area next to tracks	17.4	2,370	35,100	1.39	17.6	160	578	71,500	12,500	637	35.5	215	98.7	6.92	21.8	272	2,720	237	1,630
Weber	Site #4 Top of Transformer at North perimeter of facility	10.5	453	29,500	1.89	18.7	310	731	42,300	7,200	454	163	862	100	10.9	74.3	241	8,710	568	2,110
Metals	Site #5 Roof of Bldg P	9.62	521	28,600	1.53	20.9	224	632	36,100	9,160	606	67.2	508	99.8	8.54	35.1	204	12,500	736	1,790
	Site #6 Top of Patio adjacent to Bldg L	6.98	575	31,100	2.37	13.5	86.8	654	27,700	7,060	398	23.8	151	211	87.5	89.8	184	1,850	75.8	2,080
	Site #7 Roof of storage shed at Promise Hospital	18.3	495	14,300	3.14	48.9	1,990	997	161,000	6,690	1,130	995	5,810	89.3	12.1	77.6	167	10,200	683	864
	Site #1 Roof of outside grinding station	6.61	59.3	5,780	4.67	1,340	5,070	722	194,000	1,710	1,190	1,640	18,200	15.3	0.08	6.1	63.3	7,150	774	154
	Site #2 Roof of larger outside grinding station	8.46	38.2	3,080	6.53	791	5,140	786	197,000	1,010	1,230	2,290	18,600	14.7	0.15	7.7	51.5	7,030	919	81.1
Draws	Site #3 Adjacent to Forge Building	12.5	333	17,200	2.4	60.1	1,170	364	116,000	4,980	835	634	4,110	55.2	5.4	85	153	9,770	794	746
Press Forge	Site #4 Adjacent to 2 nd Forge Building	9.65	481	20,600	2.6	36.2	224	247	39,100	8,570	532	125	757	618	9.3	505	183	2,840	136	1,170
roige	Site #5 North Perimeter of facility	9.73	527	20,300	3.26	31.3	181	437	32,700	7,910	473	55.1	430	414	10.5	18	179	2,510	109	1,150
	Site #6 Adjacent to Eng Building	11.2	344	19,900	2.64	34.1	711	292	79,400	5,650	707	380	2,730	81.3	6.9	62	164	6,220	440	894
	Site #7 Storage shed at Promise Hospital	15.9	430	20,400	3.66	83.2	1,260	468	105,000	7,070	838	769	4,340	70	8.6	112	184	9,510	643	769
	Admin Bldg roof	38.4	591	25,062	3.4	52 9	574	641	44,791	7,607	1133	667.8	2040	10 6.4	12.2	31	189	1,965	85.02	1,884
1 F	Roof of container adjacent to bldg 4	15.3	450	27,871	4.35	1797	2785	635	59,792	6,288	1170	1505.7	12434	90.78	5.33	20.2	181	2,716	142.9	1,861
Schlosser	Southeast end of grinding room	20.5	444	25,233	2.65	1072	774	503	36,556	6,027	1084	527.36	7277	107.1	9.97	21.5	213	2,073	99.48	1,751
	Southeast end of grinding room adjacent to emission contra	12.2	248	14,636	4.46	8657	6983	371	27,754	3,531	546	2195.6	58462	48.88	3.81	9.37	148	2,661	149.4	1,035
	On top of modular between bldgs 2 and 3	11.2	243	19,163	3.74	4540	3742	483	34,852	3,631	599	1758.1	31059	46.04	2.3	10	124	1,988	148.3	1,477

THE QUESTION

air toxics + gravity + rain = water toxics IN SOUTHERN CALIFORNIA?

(Adopted March 3, 2017)

RULE 1430 CONTROL OF EMISSIONS FROM METAL GRINDING OPERATIONS AT METAL FORGING FACILITIES

(a) Purpose

The purpose of this rule is to reduce toxic emissions, particulate matter emissions, and odors from metal grinding and metal cutting operations at metal forging facilities.

TO DISCLOSE & ASSESS

Г	K5 🛟 🕄	3 🛛 (=	fx 1 ("Fugitiv	ve titanium dust o	n surfaces at sout	heast end	l of Buildin	g 3." And	yet NOT analyzin	g for Ti.)			
	A	В	С	D	E	F	G	Н	1	J	K	L	MN
1	Facility	Nickel	Titanium	Aluminum	Chromium	Alloy	Toxic	Settle	Deposition	Grind	Fugitive	Emission	
1	Facility	Nickel	Titanium	Aluminum	Chromium	Alloy	Toxic	Settle	Deposition	Grind	Fugitive	Emission	
2	Aerocraft	0	0	0	0	0	0	0	0	3		0	
3	Ajax	0	0	0	0	0	0	0	0	0	0	2 (specific	ally "N/A")
4	Al Precision	0	0	6	0	0	0	0	0	0	2	0	
5	American Ha	0	7	5	0	3	0	0	0	9	1 ("Fugit	0	
6		0	0	0	0	1	1 (citati	0	0	6	0	0	
7	CA Drop Forg	0	0	4	0	0	1 (citati	0	0	42	0	0	
8		4	4	6		4	2 (citati	0	0	20	0	0	
9		0	0	1	0	0	0		1 (citation or	0	0	0	
1		0	0	33	0	0	1 (citati		0	1	0	0	
1	1 Firth Rixon	1	0	1	0	0	1 (citati		0	13	0	0	
1	2 Indy Forge	0	0	21	1	0	0	0	5	1	0	0	
1		0	0	2	0	0	0	0	0	4	0	0	
1													
1		non-file											
1		1	3	12	0	12	0	6	0	23	0	6	
1		non-file											
1	8 Press Forge	0	6	9	0		1 (citati		0	21	0	0	
1				29	1		1 (citati		0	11	0	0	
2			2	4			1 (citati	2 (both	0	8	0	1	
2		9	4	27	2	9	1	0	0	41	0	10	
2		3	3	10	0	1	1 (citati				1 (Some	0	
2		0	0	2	0	0	0	0	1 (citation or	0	0	0	
2	4 Weber	2	11	14	1	0	0	0	0	0	0	0	
2	5												
2	6												

FAILURE TO DISCLOSE

						E										
						Chromium	A									
ſ		K5 🛟 😪) 🛇 (=	fx 1 ("Fugitiv	ve titanium			end	l of Buildin	g 3." And	yet NOT analyzin	g for Ti.)				
		A	В	С	D	Chromium	A		G	Н	1	J	K	L	М	N
	1	Facility	Nickel	Titanium	Alumin)		0	y	Toxic	Settle	Deposition	Grind	Fugitive	Emission		
	1	Facility	Nickel	Titanium	Alumin)		0	y	Toxic	Settle	Deposition	Grind	Fugitive	Emission		
2	2	Aerocraft	0	0	5		0	0	0	0	0	3	0	0		
	3	Ajax	0	0	-		0	- 0	0	0	0	0	0	2 (specific	ally "N//	A")
	4	Al Precision	0	0	2		-	- 0	0	0	0	0	2	0		
	5	American Hai	0	7)		0	_ 3	0	0	0	9	1 ("Fugit	0		
	6	CAAmforge	0	0	1		0	_ 1	1 (citati	0	0		0	0		
	7	CA Drop Forg	0	0	5		0	0	1 (citati		0	42	0	0		
	8	Carlton	4	4			0	- 4	2 (citati	0	0		0	0		
	9	Chen Tech	0	0	1		0	- 0	0	0	1 (citation or	: 0	0	0		
	10	Continental	0	0			-		1 (citati		0	-	0	0		
	11	Firth Rixon	1	0			0	- 0	1 (citati		0	13	0	0		
	12	Indy Forge	0	0	l		1	0	0	0	5	1	0	0		
	13	Mattco	0	0	2	(0	0	0	0	0	4	0	0		
	14	MS Aerospace	non-file	r												
	15	NC Dynamic	non-file	r			+									
	16	Pacific Forge	1	3	1		0	-12	0	6	0	23	0	6		
	17	Performance 1	non-file	r	4		-									
	18	Press Forge	0	6				_	1 (citati		0		0	0		
	19	Quality Al)		0		1 (citati		0	11	0	0		
	20	Schlosser/Alco		2)		1		1 (citati	2 (both	0	8	0	1		
	21	Shultz	9	4	1		+	- 9	1	0	0	41	0	10		
	22	Sierra Alloys	3	3			2		1 (citati	``			1 (Some	0		
	23	Valley Forge	0	0	<u>/</u>		_	- 0	0	0	1 (citation or	0	0	0		
	24	Weber	2	11)		0	_ 0	0	0	0	0	0	0		
	25				2		0	_								
	26				1		1									
							\top									

FAILURE TO ASSESS

					Settle	Deposition	C	Fugitive	Emission	j
	К5 🛟 🖗		for 1 ("Eucitia	ua titaniun	0	0	" And we	0	0	
	к5 ‡ б	3 🛇 (* B	fx 1 ("Fugitiv	e titaniun-	0	0	- " And ye H	0	2 (specificall	V M N
1	Facility		Titanium	Alumi	0	0	ttle I	2	0	on
1	Facility	Nickel	Titanium	Alumi	0	0	ttle I	_	0	on
2	Aerocraft	0	0		-		- 0	1 ("Fugitive	0	- 0
3	Ajax	0	0	1	0	0	_ 0	0	0	ifically "N/A")
4	Al Precision	0	0		0	0	0	0	0	0
5	American Ha		7		0	0	0	0	0	- 0
6	CAAmforge	0	0		0	1 (citation only A	- 0			_ 0
7	CA Drop Forg		0		0		0	0	0	0
8	Carlton	4	4		0	0	0	0	0	
9	Chen Tech Continental	0	0		0	0		0	0	- 0
10 11	Firth Rixon	1	0		0	5	0			0
12	Indy Forge	0	0		0	0	0	0	0	- 0
13	Mattco	0	0	-	v	U	- <u> </u>	0	0	_ 0
14	MS Aerospace	non-file	-							
15	NC Dynamic									-
16		1	3		6	0	6			- 6
17	Performance						- <u> </u>	0	6	
18	Press Forge	0	6				0			0
19	Quality Al				0	0	0	0	0	- 0
20	Schlosser/Alco Shultz	(3 9	2		0	0	both 0	0	0	- <u>1</u> 10
21		3	4		2 (both ir	0	Add		0	-0
23		0	0		0	0	Auu0_1	0	1	- 0
24		2	11		1 (1 1 1 1 1		$-\frac{0}{0}$	0	10	0
25		_		1	1 (Additi	0		1 (Some of	0	
26					0	1 (citation only A				
					0	0		0	0	
								0	0	

FAILURE TO ANALYZE

	A	8	С	D	Ε	F	G	Н	1	J	K	L	M	T
1	FACILITY	AR YEAI	DPs	Sampl	Add	Sample I	pН	TSS-hi	TSS-lo	O&G-hi	O&G-l	Cr-high	Cr-low	Fe
80	NC Dynamics		Non-Fi									not teste		
81	NC Dynamics		Non-Fi									not teste		
82	NC Dynamics		Non-Fi									not test		
83	NC Dynamics		Non-Fi									not tests	ed	
84	NC Dynamics		Non-Fi	ler								not test	ed	
85	NC Dynamics													
86	Pacific Forge		2	1								not test	ed	
87	Pacific Forge		2	1								not tests	ed	
88	Pacific Forge		2	1	y –							not tests		
89	Pacific Forge		2	3								not tests		
90	Pacific Forge											not tests	ed (added)	Ni d
91	Pacific Forge													
92	Performance 1		Not on											
93	Performance 1		Not on											
94	Performance 1		Not on		_									
95	Performance 1		Not on											
96	Performance 1		Not on	SMAR	TS									
97	Performance 1													
98		2012-13										not tests	ed	
99		2013-14										not tests	ed	
		2014-15										not tests	ed	
	Press Forge											not teste	ed	
		2016-17										not teste	ed	
		2017-18												
104	Quality Al	2012-13	No AR											
105			2	2	у							0.024 (s	s <0.05 &	ND
106		2014-15	No AR											
107		2015-16	-	6	у							0.041 (s	ND	
108	Quality Al	2016-17	No AR											
109	Quality Al	2017-18												
110	Schlosser	2012-13	2	2	у	3/8/13; 5/		68	53	not repor	ted	only 1 I	ND	
111	Schlosser	2013-14	2	2	у	10/28/13;	2/27	68	66	not repor	ted	not repo	orted	
112	Schlosser	2014-15	4	1		5/14/15						not testa	ed (see CC	C)
113	Schlosser	2015-16	1	4		9/15/15 n	o Cr	in COC); 10/5/	15 (no Cr	on COC		ed (see CC	
114	Schlosser	2016-17	1 or 2			10/24/16							0.005 on	2/1

THE OPPORTUNITY

NEWS

For Immediate Release April 7, 2017

South Coast Air Quality Management District Announces Sweeping Air Toxics Action Plan

SCAQMD officials today announced a far-reaching initiative to expand its ongoing regulation of toxic air pollution by assessing toxic emissions associated with hundreds of metal-processing facilities in the region. Any facilities found to be emitting high levels of toxic metals will be required to reduce them quickly.

"SCAQMD has many existing rules and programs in place to protect the public from harmful toxic emissions," said SCAQMD Executive Office Wayne Nastri. "However our recent discovery of high emissions of hexavalent chromium from two facilities in Paramount has led us to develop an intensive air toxics initiative. Our goal is to eliminate or minimize the release of hexavalent chrome into the environment associated with metal-processing facilities."

"SCAQMD has many existing rules and programs in place to protect the public from harmful toxic emissions," said SCAQMD Executive Office Wayne Nastri. "However our recent discovery of high emissions of hexavalent chromium from two facilities in Paramount has led us to develop an intensive air toxics initiative. Our goal is to eliminate or minimize the release of hexavalent chrome into the environment associated with metal-processing facilities."

PART 2

the permit

THE GENERAL PERMIT

Section XI.B.6 reads:

6. The Discharger shall analyze all collected samples for the following parameters:

- a. Total suspended solids (TSS) and oil and grease (O&G);
- b. pH (see section XI.C.2);
- c. Additional parameters identified by the Discharger on a facility-specific basis that serve as indicators of the presence of all industrial pollutants identified in the pollutant source assessment (Section X.G.2);
- d. Additional applicable parameters listed in Table 1 below. These parameters are dependent on the facility Standard Industrial Classification (SIC) code(s);
- e. Additional applicable parameters related to receiving waters with 303(d) listed impairments or approved TMDLs based on the assessment in Section X.G.2.a.ix.
- f. Additional parameters required by the Regional Board[...];
- g. For dischargers subject to Subchapter N, additional parameters specifically required by Subchapter N[...].

FACILITY-SPECIFIC POLLUTANTS

Section XI.B.6 reads:

6. The Discharger shall analyze all collected samples for the following parameters:

- Total suspended solids (TSS) and oil and grease (O&G); pH (see section XI.C.2);
- c. Additional parameters identified by the Discharger on a facility-specific basis that serve as indicators of the presence of all industrial pollutants identified in the pollutant source assessment (Section X.G.2);

Additional applicable parameters related to receiving waters with 303(d) in impairments or approved TMDLs based on the assosment in Section X.G.2.a.ix.

- Additional parameters required by the Regional Board
- For dischargers subject to Subchapter N, additional parameters specifically required by Subchapter N[...].

Section X.G.2 requires assessing and disclosing potential pollutant sources. It reads:

2. Assessment of Potential Pollutant Sources

a. The Discharger shall ensure that the SWPPP includes a narrative assessment of all areas of industrial activity with potential industrial pollutant sources. At a minimum, the assessment shall include:

i. The areas of the facility with likely sources of pollutants in industrial storm water discharges and authorized NSWDs;

ii. The pollutants likely to be present in industrial storm water discharges and authorized NSWDs;

iii. The approximate quantity, physical characteristics (e.g. liquid, powder, solid, etc.), and locations of each industrial material handled, produced, stored, recycled, or disposed;

iv. The degree to which the pollutants associated with those materials may be exposed to, or mobilized by contact with, storm water;

Section X.G.2 requires assessing and disclosing potential pollutant sources. It reads:

2. Assessment of Potential Pollutant Sources

a. The Discharger shall ensure that the SWPPP includes a narrative assessment of all areas of industrial activity with potential industrial pollutant sources. At a minimum, the assessment shall include:

i. The areas of the facility with likely sources of pollutants in industrial storm water discharges and authorized NSWDs;

The pollutants likely to be present in industrial storm water discharges and

ii. The approximate manual, physical characteristics (e.g. liquid, powder, solid etc.), and locations of each industrick matched handled, produced, stored, recycled, or disposed;

iv. The degree to which the pollutants associated with those materials marking exposed to, or mobilized by contact with, storm water;

Section X.G.2 requires assessing and disclosing potential pollutant sources. It reads:

2. Assessment of Potential Pollutant Sources

ii

a. The Discharger shall ensure that the SWPPP includes a narrative assessment of all areas of industrial activity with potential industrial pollutant sources. At a minimum, the assessment shall include:

The areas of the facility with likely sources of pollutants in industrial storm or discharges and authorized NSWDs; The pollutants likely to be present in industrial storm water discharges and

etc.), and locations of each industrial material handled, while ecycled, or disposed;

iv. The degree to which the pollutants associated with thore materials more exposed to, or mobilized by contact with, storm water;

Section X.G.2 requires assessing and disclosing potential pollutant sources. It reads:

2. Assessment of Potential Pollutant Sources

a. The Discharger shall ensure that the SWPPP includes a narrative assessment of all areas of industrial activity with potential industrial pollutant sources. At a minimum, the assessment shall include:

The areas of the facility with likely sources of pollutants in industrial storm or discharges and authorized NSWDs;

llutants likely to be present in industrial storm water discharges and

iii.

etc.), and locations of each industrial material handled, produced, stored, recycled, or disposed

iv. The degree to which the pollutants associated with those materials mark exposed to, or mobilized by contact with, storm water; v. The direct and indirect pathways by which pollutants may be exposed to storm water or authorized NSWDs...

Section X.G.2 requires assessing and disclosing potential pollutant sources. It reads:

2. Assessment of Potential Pollutant Sources

a. The Discharger shall ensure that the SWPPP includes a narrative assessment of all areas of industrial activity with potential industrial pollutant sources. At a minimum, the assessment shall include:

The areas of the facility with likely sources of pollutants in industrial storm profischarges and authorized NSWDs;

The pollutants likely to be present in industrial storm water discharges and

etc.), and locations of each industrial material handled, produced, s recycled, or disposed;

iv. The degree to which the pollutants associated with those materials may be exposed to, or mobilized by contact with, storm water;
DISCLOSURE & ASSESSMENT

Section X.G.2 requires assessing and disclosing potential pollutant sources. It reads:

2. Assessment of Potential Pollutant Sources

a. The Discharger shall ensure that the SWPPP includes a narrative assessment of all areas of industrial activity with potential industrial pollutant sources. At a minimum, the assessment shall include:

The areas of the facility with likely sources of pollutants in industrial storm or discharges and authorized NSWDs;

The pollutants likely to be present in industrial storm water discharges and utbeviand NSMDs:

ii. The approximate duality, any not characteristics (e.g. liquid, powder, sold etc.), and locations of each industrial material handled, produced, stored, recycled, or disposed;

iv. The degree to which the pollutants associated with those mate exposed to, or mobilized by contact with, storm water:

v. The direct and indirect pathways by which pollutants may be exposed storm water or authorized NSWDs...

FACILITY-SPECIFIC POLLUTANTS

Section XI.B.6 reads:

6. The Discharger shall analyze all collected samples for the following parameters:

- Total suspended solids (TSS) and oil and grease (O&G); pH (see section XI.C.2);
- c. Additional parameters identified by the Discharger on a facility-specific basis that serve as indicators of the presence of all industrial pollutants identified in the pollutant source assessment (Section X.G.2);

Additional applicable parameters related to receiving waters with 303(d) in impairments or approved TMDLs based on the assosment in Section X.G.2.a.ix.

- Additional parameters required by the Regional Board
- For dischargers subject to Subchapter N, additional parameters specifically required by Subchapter N[...].

"total absence of interagency coordination" The Effects of Air Pollution on Water Quality, PEDCo-Environmental, Inc. (March 15, 1977)

FOUR RULES

Rule	Title	Pollutant(s)	No. Facilities	Description
1420.2	Emission Standards for Lead from Metal Melting Facilities	lead (Pb)	13	Targets lead emissions from facilities melting more than 100 tons of lead annually as part of effort to ensure attainment/maintenance of National Ambient Air Quality Standards (NAAQS) for lead
1420	Emission Standard for Lead	lead (Pb)	121	Requires lead-emitting sources not covered under Rules 1420.1 & 1420.2 to ensure compliance w/ new NAAQS
1430	Control of Emissions from Metal Grinding Operations at Metal Forging Facilities	nickel (Ni); titanium (Ti); chrome ⁶ and others	22	Aims to reduce toxic particulate and emissions from metal grinding/cutting operations at forging facilities currently exempt from District permits (i.e. unregulated). Monitoring, sampling & site inspections revealed significant particulate emissions and toxic air contaminants.
1469/ 1426	Hexavalent Chromium Emissions from Chromium Electroplating and Chromic Acid Anodizing Operations; Emissions from Metal Finishing Operations	chrome [®] , nickel (Ni), cadmium (Cd) and others	275	Rule 1469 augments existing requirements to address fugitive emissions from hexavalent chrome plating and anodizing operations. Rule 1426 establishes requirements to reduce nickel, cadmium and other air toxics from plating operations.

RULE 1420

major lead emitters

RULE 1420.2 LOTS OF Pb

E	stimated Annual Lead Th	roughput by Metal Meltir	ıg
	Facilities Subject to P	AR 1420.2 2010-2012	
Quantity of Lead Melted	100 to <500	500 to <1000	1000 tons/year
Quantity of Long Microod	tons/year	tons/year	or more
Number of Facilities	4	3	6

50,000 TONS/YEAR

RULE 1420.2 KEYWORDS

	A	В	С	D	E	F	G	Н		J
1	Facility	Lead	Fugitive	Baghouse	Emission	Exhaust	Duct	Vacuum	AD	Settle
2	Interspace (Concorde)	15+	1	10	2	0	0	3	0	1
	Senior Aerospace Jet Product	15+	1	4	1	3	0	2	1	0
	Ramcar Batteries Inc.	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
5	Liberty Manufacturing, Inc.	0	1	11	3	0	0	0	0	0
6	P. Kay Metal, Inc.	15+	0	15+	6	0	0	0	0	0
7	Ace Clearwater (Paramount)	15+	0	10	4	0	0	1	0	0
8	Gerdau	2	0	7	1	0	0	8	0	0
9	US Battery (2016 response to NOV)	15+	0	0	1	0	0	0	0	1
10	Trojan (Anne)	15+	1	11	0	0	0	2	0	0
11	Atlas Pacific Corp	4	4	15+	11	2	0	1	0	0
12	Teledyne Reynolds Inc	15+	0	1	7	10	0	4	0	6
13	Exide Corp.	15+	0 (surprisi	6	0	0	0	3	0	0

RULE 1420.2 STORMWATER ANALYSIS

	Α	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q	R	S T		V
1 1	ACILITY	AR YEARS	Samples/DPs	pH	TSS (high)	TSS (low)	O&G (high)	O&G (low)	Pb (high)	Pb (low)	Cu (high)	Cu (low)	Al (high)	Al (low)	Zn (high)	Zn (low)	Fe (high)	Fe (low)	Cad Ar	s Manganese	Chromium
14 (Gerdau	2012-13	2; 3	9.96/8.76	1500	64	2	0	0.382	0.038	0.563	0.061	21.6	1.48	3.32	0.35	10.6	2.96	0.012/N	5.69/0.29	0.13/0.021
							3					0.45	7.5	1.7	1.3		8.42	2.1		1.55/0.238	0.07/0.014
							4					0.059	4.68	1.72	0.65			3.4		0.5/0.13	0.046/0.011
						30	1					0.04	17	5.42	1.2			0.51		.2.56/ND	0.07/0.023
							23						7.79	0.572	0.69	0.13	19.5	1.29		0.992/ND	0.045/0.0047
		2017-18	5,5	1010/011	0.0			-	0100	010022	0.00			0.072	0.07	0.120	1710		0.0020		
			2; 2	HJ	280	48		ND/ND	5.4	0.73											
			0; 2			x		x													
			2; 2 (12/3 & 3/	HJ	650	32	16	0	11	0.52 (not r	eport in AR)									
23	J.S. Battery	2015-16	2; 2	HJ	230	88	5	0		not tested	(see COCs)	, 									
24	J.S. Battery	2016-17	4*;2	HJ	140	15	6	1.5	3.8	0.4	Í										
25 L	J.S. Battery	2017-18																			
26	ce	2012-13	2; 2 (3/8 & 5/7)	7.8/6.84	16	2	5	1	0.2	0.011			1.96	0.1	1.2	0.6					
27	ce	2013-14	1; 2 (2/28)	7.12/6.84	7	5	23	0	0.14	0.02			0.37	0.21	0.51	0.5					
28	ce	2014-15	2; 2 (12/2 & 12	7.23/6.54	22	2	2	1.5	0.47	0.008			1.2	0.063	1.9	0.15					
29 /	ce	2015-16	3; 5 (9/15, 12/1		15	0	10	0	0.88	0			0.94	0.4	0.5	0.03	0.4	0.01			
30 4	lce	2016-17	4; 5	7.0/7.0	5.2	0	28	2	0.08	0			0.34	0	1	0.01					
31 4		2017-18																			
32			1; 2 (5/6)	6.74/6.64	93	54	38	27	0.24	0.17	0.1	0.081			1	0.81					
			No AR																		
			No AR																		
			No AR																		
			2; 2 (12/15 and	7.55/6.79	96	96/23	4.5	2	0.24	0.073	0.04	0.02			0.46	0.16		х	x x	x	x
		2017-18																			
			2; 1 (11/30/12			•	0	0		0.16					0.62	0.4				D/ND	
			1 (2/27/2014)							2.4					0.88	0.88			0		
			2; 1 (12/2 & 12			12	•	-		0.73					0.74	0.49			0/0		
			2; 1 (12/22 & 2			0	0			0.25					0.52	0.42				t tested	
			2; 1 (2/6 & 2/2	7.9/7.2	5.5	0	0	0	0.56	0.37					0.35	0.17			not	t tested	
		2017-18		_		-															
			1; 1 (1/24/13)	7	8	8			0.35 (hardr											ND	
					20	0					ness 24/9.3)	·			-		-			ND/ND	
				6.9/6.8	12	0					ness 17/9.5))								ND/ND	
			2; 1 (1/05 & 3/				0			0.51										not tested	
			3; 1 (12/16, 01/	7/7/6.9	4	0	3	2	0.25	0.074 (har	dness 13/11)								not tested	
49	feledyne	2017-18																			

Lead

Lead by year per facility

RULE 1420.2 EXAMPLE 1

J.S. B	attery	2012	-13	2; 2			HJ		280		48			ND/N	5.4	0.73	
.S. Ba	attery	2013	-14	0; 2							х			х			
S. B	attery	2014	-15	2; 2 (1	2/3	& 3/	HJ		650		32		16	0	11	0.52 (not 1	report in
.S. Ba	attery	2015	-16	2; 2			HJ		230		88		5	0	not tested	see COCs))
.S. B	attery	2016	6-17	4*;2			HJ		140		15		6	1.5	3.8	0.4	
.S. Ba	attery	2017	-18														
	30 Ace		016-17	4; 5	7.0/7.0	5.2	0	28	2	0.08		0	0.34	1	0.01		
	32 P. Kay Met			1; 2 (5/6)	6.74/6.64	93	54	38	27	0.24	0.17 0.1	0.081	1 1	1	0.81	the state	15 mg 1
	33 P. Kay Met			No AR	Set Start	1 and	Strange Pro		and the second	1.	1. 5 1 -	A CONTRACTOR	1	and the	1	the second second	Contract 1
0608	34 P. Kay Met			No AR	and and the	12 -	a walker to	6 ST. 19 19 19	and a start	2 A 2 3 4	1000	Sec. 1	1.0	1	- 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3
	35 P. Kay Meta			NoAR	and the set	12.42.200	the Part Sugar		and the states	and the second	ANG TONG	C. alling	6312 F	CALL PROPERTY	and the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
	36 P. Kay Met			2; 2 (12/15 and	7.55/6.79	96	96/23	4.5	2	0.24 (0.073 0.04	0.02	3-1-1-13	0.46	0.16 x	X X X	x
	37 P. Kay Met		017-18	120-10-10p	15 C		1 th and	C. P. Carlo	State of the second	at all a series	and the state of the	1000	2.000	23 2 27 22	F. M. IS . Change of Fr	100 1000	R. Carotan Bar
	38 Trojan (An			2; 1 (11/30/12		19	0	0	0		0.16	1	11250	0.62	0.4	ND/ND	
	39 Trojan (An			1 (2/27/2014)		13	13	2.2	2.2		2.4	Part	1 total	0.88	0.88	0	5
	40 Trojan (An 41 Trojan (An			2; 1 (12/2 & 12		44	12	0	0		0.73	17 1 1	Carrier and	0.74	0.49	and a second	
	41 Trojan (An 42 Trojan (An			2; 1 (12/22 & 2 2; 1 (2/6 & 2/2)		5.5	0	0	0		0.37	-	ANDER	0.52	0.42	not tested not tested	
	42 Trojan (An 43 Trojan (An		017-18	2, 1 (2/0 & 2/2.	1.311.2	5.5	0	0		0.50			2	0.55	0.17	not tested	
	44 Teledyne			1; 1 (1/24/13)	7	8	8		not tested	0.35 (hard) (0.35 (hardness 9.9)					ND	
Salat a	45 Teledyne				7.4/6.7	20	0		not tested		0.20 (hardness 24/9.)	3)	A COLORED			ND/ND	
					6.9/6.8	12	0		not tested		0.16 (hardness 17/9.)					ND/ND	
								the second se	inor readed		110 (maileood 1117.			ALCON THE R. L. L.	and the second sec	- DITE	100 million (100 million)
	46 Teledyne 47 Teledyne				7.4/7.0	34	11	0	0	0.78 (0.51					not tested	
	46 Teledyne 47 Teledyne 48 Teledyne	2	015-16	2; 1 (1/05 & 3/ 3; 1 (12/16, 01/		34 4	11	0 3	0		0.51 0.074 (hardness 13/1	1)				not tested not tested	

RULE 1420.2 EXAMPLE 2

	1 FA	ACILITY		ARYI	BEARS	Sample	s/DPs	D pH	TS	E S (high)	F TSS (low) 0&0	G G (high) O	H D&G (low)	Pb (hig	gh) Pb (J (low)	K Cu (high)	L Cu (low)	Al (h	M nigh) A	N I (low)	O Zn (high)	P Zn (low)	Q Fe (high)	R Fe (low)	S T Cad Ar	U Manganese	V Chromium	
U.S. B	ate	erdau erdau	201	2013 1 2014 1 2015 1	3	2,3 243	2	8.53/6.5 9.31/7.9	9 227 5 110	7	49 133	3 4	Ó	280	0.27	0.07		0.133 0.661 0.14	0.45	7.5	1.	7 72 N	Ð/N	0.282 0.157 0.44	8.42 8.7	2.1 3.4	0.0+/N	1.55/0.238 0.5/0.13	0.07/0.014 0.046/0.011 0.07/0.023	
U.S. E	19 G	STORT.		2017-1	0	0; 2	2	10.6/8.4	548	3	17	23			0.06		n	0.05	0.017	7.79	0.	572 X	0.69	0.13	19.5	1.29		0.992/ND	0.045/0.0047	
U.S. E	222 11	S Raffer	V	2014-1	5	272 042 2.2.012	2(1	2/3	8	3/	48 xIJ 32	16	6	630	5.4		32	port in A	R)		16	0		11		-		-	report	in AR)
U.S. E	100 C	S. Batter	V	2010-1	/	47;2	-	HJ HJ	230 140		86	5		230	3.8	0.4	rested (see COCs			5	0			-			COCS)	19
U.S. B	27 10	•0		2013-1	1	2; 2 (3/5	28)	7.8/6.84	16		HJ	5	-	140	0.2	0.01	15	/		1.96	6 0. 0.	$\frac{1}{21}$	0.51	3.8			0.4			
U.S. E		ery	201	12015-1	8	3: 5 (9/)	15, 12/1	7.23/6.5	4 22 15 5.2	/	2	2 10 28	2	.5	0.47 0.88 0.08	0.00	08	_	/	1.2	0.	063 4	1.9 0.5	0.45 0.03 0.01	0.4	0.01	-		1	
	33 P.	xe Kay Met Kay Met Kay Met	als	2010-1 2017-1 2012-1 2013-1 2014-1	8 3 4	1; 2 (5/0 No AR No AR	Start C	6.74/6.6	Contain the	-	54	38	2	7	0.24	0.17		0.1	0.081	0.34		1	and the second	0.81	1	197			1	
Troja	ın	201	2-1	13	2;	1 ((11	./30)/1	2 6	7.2/	6.7		19				0					0	0		1.2	2		0.16	
Troja	ın	201	3-1	14	1;	1 ((2/	27/	20	14	6.7/	6.7		13				13					2.2	2.	2	2.4	1		2.4	
Troja	ın	201	4-]	15	2;	1 ((12	2/2	&	12	7.6/	6.9		34				12					0	0		2.0	5		0.73	
Troja	IN	201	5-1	16	2;	1 ((12	2/22	2 8	ε2	8.5/	7.2		44				0					0	0		2.7	7		0.25	
Troja	ın	201	6-1	17	2;	1 ((2/	68	ε2	/2:	7.9/	7.2		5.5	5			0					0	0		0.5	56		0.37	

RULE 1420

smaller lead emitters

RULE 1420 KEYWORDS

	A	В	С	D	E	F	G	Н	1	J	К	L	
1	Facility	Lead	Fugitive	Emission	Baghouse	Duct	Furnace	Deposition	Settle	Vacuum	Roof	XI.B.6	Notes
1	Facility	Lead	Fugitive	Emission	Baghouse	Duct	Furnace	Deposition	Settle	Vacuum	Roof	XI.B.6	Notes
2	Aircraft	0	0	3	1	0	0	0	0	0	5	6	Explici
3	Alcast	0	0	0	0	0	2	0	7	4	0	0	word se
4	Alhambra	0	1	10	15+	0	3	0	0	1	12	0	"The ar
5	Gasser	6	0	0	11	0	0	3 (citation of	0	0	1	2	
6	Arrowhead	0	1	8	15+	0	15+	0	0	5	3	0	
7	Atlas	0	4	15+	6	0	15+	0		1	15+	0	"The or
8	Fox Hills	0	1	8	15+	0	2	0	0	0	2	0	"Fugiti
9	Kinsbursky	14	11	15+	1	0	0	1	3	15+	15+	0	
10	LA Pump	0	1	6	15+	0	15+	0	0	1	13	0	
11	Metal X	3	3	12	15+	3	15+	0		15+	15+	0	
12													

RULE 1420 DISCLOSURE

1			1 A	В	1								
1	-	A	Facility	Lead		F	G	H	1	J	K	L	
	1	Facility	Facility	Leau	ouse	Duct	Furnace	Deposition	Settle	Vacuum	Roof	XI.B.6	Notes
-	- The P	Participant in the second seco		I	-					-			1
	1	Facility	Facility	Lead	ouse	Duct	Furnace	Deposition	Settle	Vacuum	Roof	XI.B.6	Notes
-	2	Aircraft			- 11	0	0	0	0	0	5	6	Explici
and a	3	Alcast	Aircraft	0	inst	0	2	0	7	4	0	0	word se
	4	Alhambra	Alcast	0	+	0	3	0	0	1	12	0	"The ar
	5	Gasser		-	in the second	0	0	3 (citation o	0	0	1	2	3/
	6	Arrowhead	Alhambra	0	+	0	15+	0	0	5	3	0	ALL STREET
	7	Atlas	Gasser	6	1	0	15+	0		1	15+	0	"The of
	8	Fox Hills		_	+	0	2	0	0	0	2	0	"Fugiti
	9	Kinsbursky	Arrowhead	0		0	0	1	3	15+	15+	0	
	10	LA Pump	Atlas	0	+ /	0	15+	0	0	1	13	0	
	11	Metal X		-	+	3	15+	0		15+	15+	0	1/
	12		Fox Hills	0			-					or since so	
			Kinsbursky	14									
			LA Pump	0									
			Metal X	3									

RULE 1420 ASSESSMENT

		A	B		С	D	E	F]	
T	A Facility	Facility	Lead	01	Fugitive	Emission	Baghouse	Duct	L .B.6	Notes
ł	Facility		Lead	101	Fugitive	Emission	Baghouse	Duct	100	Notes
23	Aircraft Alcast	Aircraft	0		0	3	1	0	6	Explici word se
4 5	Alhambra	O Alcast	0 0 1	+	0	0	0	0	0	"The ar
6	Gasser Arrowhead	Alhambra	0 1	+	1	10	15+	0	0	1
7	Atlas Fox Hills	O Gasser 15	+ 6	1	0	0	11	0	0	"The of "Fugiti
9	Kinsbursky	Arrowhead	+ 0		1	8	15+	0	0	Tugiti
10	LA Pump Metal X	O Atlas		+	4	15+	6	0	0	1
12		Fox Hills	0		1	8	15+	0		
		Kinsbursky			11	15+	1	0	-	
		LA Pump	0		1	6	15+	0		
		Metal X	3		3	12	15+	3		

RULE 1420 STORMWATER ANALYSIS

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р
1	FACILITY	AR YEAR	Samples	DPs	TSS	TSS	Pb+	Pb-	Cu+	Cu-	Al+	Al-	Zn+	Zn-	Fe+	Fe-
	A • • • •	2014 15							1	1	1	1	1	1	1	1
4		2014-15		X												
5		2015-16	0	2												
6	Aircraft	2016-17	0	3												
7	Aircraft	2017-18														
8	Alcast	2012-13	1	2	136	39	not test	ed	1.68	1.28	5.1	5.01	1.36	0.99	4.34	0.82
9	Alcast	2013-14	1	2	80	56	not test	ed	2.21	0.33	18.2	1.73	1.05	0.5	2.44	1.31
10	Alcast	2014-15	No AR													
11	Alcast	2015-16	4	3	4.4	1.3	not test	ed	0.415	0.172		not tes	0.47	0.16	not te	sted
12	Alcast	2016-17	4	3	5.7	2.9	not test	ed	0.176	0.122	0.16	0.13	0.17	0.14	0.14	0.121
13	Alcast	2017-18										1				
14	Alhambra	2012-13	0	4												
15	Alhambra	2013-14	0	4												
16	Alhambra	2014-15	1	4	13	2.2			0.009	0.006	0.35	0.24	1.4	0.53	0.43	0.19
17	Alhambra	2015-16	0	4	28	ND			0.023	0.001	0.93	ND	0.99	0.08	1.7	0.04
18	Alhambra	2016-17	3	4	2.3	ND			0.031	0.013	0.06	ND	0.25	0.07	0.32	0.04
19	Alhambra	2017-18														
20	Arrowhead	2012-13	0													
21	Arrowhead	2013-14	0	2												
22	Arrowhead	2014-15	1	2	x	not te	0.13		0.86		1.63		1.07		2.35	
23	Arrowhead	2015-16	1	2	57	12	not test	ed	5.8	1.6	1.4	0.2	3.1	1.5	5.6	0.54
24	Arrowhead	2016-17	2	2	11	4.7	not teste	ed	1	0.34	0.21	0.11	1.4	0.8	0.42	0.28

RULE 1469

SIC Code 3471 electroplating, plating, polishing, anodizing and coloring

RULE 1469 KEYWORDS

1	Facility	Fugitive	Chromium	Emission(s)	AD	settle	NOTES
2	Cal-Tron	0	0	1	1	0	
3	Accu Chrome	NEC	NEC	NEC	NEC	NEC	
4	Angelus	NEC	NEC	NEC	NEC	NEC	
5	Electronic Chrome/Grinding	NEC	NEC	NEC	NEC	NEC	
6	Verne's	NO SMARTS	FILES	NO SMARTS	FILES	NO SMARTS	FILES
7	LMDD	0	6	5	0	0	Includes refe
8	S K Plating	0	2	0	0	0	Supposedly to
9	Christiansen	NO SMARTS	FILES	NO SMARTS	FILES	NO SMARTS	FILES
10	Bowman	0	0	0	0	0	
11	Metal Surfaces	0	6	0	0	0	
12	Domar	0	0	1	0	0	from SWPPP

RULE 1469

-				SIC 4371 & NECs		
	1	Facility	Los Angeles	Regional Water Quality	Control Board Jx.	NOTES
	2	Cal-Tron	SMARTS Page	Active Permittees	Permittees w/ NEC	0
	3	Accu Chr	1	18	11	
	4	Angelus	2	19	18	
	5	Electronic	3	15	0	
	2		4	2	0	
	6	Verne's	5	4	0	TS FILES
	7	LMDD	6	14	1	0 Includes refe
	8	S K Plati	7	14	1	0 Supposedly to
	9	Christians	8	13	0	TS FILES
			9	17	3	
	10	Bowman	10	13	1	0
	11	Metal Sur	11	7	1	0
	12	Domar	TOTAL: 253	active facilities	99 (40%)	0 from SWPPP
			Santa Ana I	Regional Water Quality (Control Board Jx.	
			SMARTS Page	Active Permittees	Permittees w/ NEC	
			1	16	5	
			2	13	0	
			3	15	3	A Contraction
			4	5	1	
			TOTAL: 49	active facilities	9 (18%)	

RULE 1469 DISCLOSURE

			C	U				
			Chromium	Emission(s)	ion(a)	AD	aattla	NOTES
		acility Cal-Tron	0	1	ion(s) 1	AD 1	settle 0	NOTES
	State of the	Accu Chrome	NEC	NEC	1	NEC	NEC	2
	and the second second	Angelus Electronic Chron	NEC	NEC		NEC NEC	NEC NEC	
		Verne's	NEC	NEC	MARTS	ELLES	NØSMARTS	FILES Includes refe
	8 8	S K Plating	FILES	NO SMARTS	0	0	0	Supposedly to
	CONTRACTOR OF CONTRACTOR	Christiansen Bowman	6	5	MARTS 0	FILES	NO SMARTS	FILES
1		Metal Surfaces Domar	2	0	0	0	0	from SWPPP
			FILES	NO SMARTS				1 T
			0	0				
			6	0				
			0	1				

RULE 1469 ASSESSMENT

		C	D		В	
-	Estalling	Chromium	Emission(s)		Fugitive	NOTES
2	Facility Cal-Tron	Pugitive		ion	0	0 NOTES
3	Accu Chrome	NEC NEC	NEC NEC		NEC	
4	Angelus Electronic Chron	NEC ^{ling} NEC	NEC NEC		NEC	1
6	Verne's	NO SMAF	TS FILES NO.8	MAI		MARTS FILES
8	LMDD S K Plating	NEC	NEC 6	the second	NEC	0 Includes refe
9	Christiansen	FILES NO SMAR	NO SMARTS	MAI	NO SMARTS	MARTS FILES
10	Bowman Metal Surfaces	6	0 0 5		0	0
12	Domar	2	0 0		0	0 from SWPPP
		FILES	NO SMARTS		NO SMARTS I	
		0	0		0	
		6	0		0	1 12 13
		0	1		0	

RULE 1469 STORMWATER ANALYSIS

FACILITY	AR YEAF	Status	Samples	DPs	Chrome (mg/L)
Verne's	2017-18		RTS FIL	E	
LMDD	2012-13				
LMDD	2013-14		-	1	
LMDD	2014-15	enrolled	?	?	
LMDD	2015-16	enrolled	3	1	0.43 (12/15); 0.39 (12/21
LMDD	2016-17	Terminat	ed		
LMDD	2017-18				
S K Plating	2012-13	not enrol	led		
S K Plating	2013-14	enrolled	1	2	no lab data
S K Plating	2014-15			2	< 0.02
S K Plating	2015-16	enrolled	2	2	not tested (other # great)
S K Plating	2016-17	enrolled	2	2	not tested (other # great)
S K Plating	2017-18				
Metal Surface	2012-13	?			
Metal Surface	2013-14	?			
Metal Surface	2014-15	?			
Metal Surface	2015-16	enrolled	4	1	no data
Metal Surface	2016-17	enrolled	4	1	no data
Metal Surface	2017-18				
Domar	2012-13	enrolled	2	2	no data
Domar	2013-14	enrolled	2	3	no data
Domar	2014-15	enrolled	0	2	no samples
Domar	2015-16	No AR			-
Domar	2016-17	enrolled	?	2	not tested (12/16/16)
Domar	2017-18				
Christiansen	2012-13	No SMA	RTS FIL	E	

where to go from here?

AN OPPORTUNITY TO ADVANCE ENVIRONMENTAL JUSTICE AND REGIONAL WATER RESILIENCY

Integrating Implementation and Enforcement of the Clean Air and Clean Water Acts

FACILITY	AR YEAI	DPs	Sampl	Add	Sample D	pН	TSS-hi	TSS-lo	O&G-hi	O&G-lo	Cr-high Cr-low	Fe-hig	Fe-lov	Al-hig	Al-low	N+N-l
Aerocraft	2012-13	No AR	-								not tested					
Aerocraft	2013-14	No AR									not tested					
Aerocraft	2014-15	4	1	No	#######	у	128	26	5	5	not tested					
Aerocraft	2015-16	4	1	Fe	#######	у	144	16	16	5	not tested	0.06	0.05			
Aerocraft	2016-17	4	2	Fe	01/13/17;	у	294	5	5	5	not tested	6.00	0.02			
Aerocraft	2017-18										not tested					
Ajax	2011-12	3	0	Zn; 1	N+N; Fe; A	41					not tested					
Ajax	2013-14	3	0	No							not tested					
Ajax	2014-15	3	? (AR	No							not tested					
Ajax	2015-16	3	? (AR	No							not tested					
Ajax	2016-17	3	1	NO!	01/06/16;	у	not teste	not test	ND	ND	not tested	not tes	ted			
Ajax	2017-18															
Al Precision	2012-13	No AR														
Al Precision	2013-14	2	4	у	12/07/13;	у	45	ND	not tested	1	not tested	not tes	ted	0.99	0.16	
Al Precision	2014-15	No AR	-													
Al Precision	2015-16	4	4	у	09/15/15;	у	86	5.7	5.8	ND	not tested	2.59	0.07	2.88	0.1	1.46
Al Precision	2016-17	5	6	у	12/16/16;	у	50	2.1	15.9	ND	not tested	2.36	0.04	1.51	0.15	0.71
Al Precision	2017-18															
American Han	2012-13	not enr	olled								not tested					
American Han	2013-14	not enr	olled								not tested					
American Han	2014-15	not enr	olled								not tested					
American Han	2015-16	2	0								not tested					
American Han		2	3		12/16/16;	у	17	4	1.8		not tested	0.74	0.08	0.38	0.09	0.43
American Han	2017-18															
CA Amforge	2012-13	2	2	у												
0	2013-14	2	2	Zn; 1	10/09/13;	•	104	6	7.8	1.6	not tested	2.94	0.84	2.08	ND	7.62
CA Amforge	2014-15	2	2	у	12/02/14;	у	62		0	0	not tested	1.22	0.46	0.49	0.29	12.2
CA Amforge	2015-16	2	4	у	09/09/15;	у	132	12	0	0	not tested	9.14	0.5	0.43	0.32	3.97
	2016-17	2	4	у	12/15/16;	у	143	7	4	0	not tested	8.71	0.36	3.17	0.13	remove
CA Amforge	2017-18															

Cal. Drop For	2012-13	No AR					not teste	ed	not tested	ł	not teste	ed	not tes	ted	not tes	ted	not tes
Cal. Drop For	2013-14	0	3				not teste	ed	not tested	t	not teste	d	not tes	ted	not tes	ted	not tes
Cal. Drop For	2014-15	0	3				not teste	ed	not tested	t	not teste	ed	not tes	ted	not tes	ted	not tes
Cal. Drop For	2015-16	0	3				not teste	ed	not tested	t	not teste	ed	not tes	ted	not tes	ted	not tes
Cal. Drop For	2016-17	0	3				not teste	ed	not tested	đ	not teste	ed	not tes	ted	not tes	ted	not tes
Cal. Drop For	2017-18																
Carlton	2012-13	9	2	у	No Data												
Carlton	2013-14	9	1	у	#######	у	55	0	9.4	0	not teste	ed	not tes	ted	1.06	0.63	not tes
Carlton	2014-15	9	3	у	no AR; 11	у	2880	ND	55	ND	not teste	ed	40	0.38	17.1	0.59	10.5
Carlton	2015-16	15	4		10/5/15; 1	2/19	/15; 1/5/	16; 2/1	7/16; 3/7/	16; 3/17/	not teste	ed					
Carlton	2016-17																
Carlton	2017-18																
ATI/Chen Tec	2012-13	No AR															
ATI/Chen Tec	2013-14	No AR	-														
ATI/Chen Tec	2014-15	No AR															
ATI/Chen Tec	2015-16	4	2	у	9/9/15; 3/	у	24	10	23.6	3.6	not teste	ed	0.7	0.2	0.84	0.14	1.6
ATI/Chen Tec	2016-17	4	4	у	10/24/16;	у	190	ND	16.7	ND	0.02	ND	1.67	ND	1.53	ND	1.4
ATI/Chen Tec	2017-18																
Continental	2012-13	5	0														
Continental	2013-14	5	1	n	#######	у	136	31	6	<5	not teste	ed	not tes	ted	not tes	ted	not tes
Continental	2014-15	5	2	n	12/12/14;	у	50	5	13	<5	not teste	ed	not tes	ted	not tes	ted	not tes
Continental	2015-16	6	3	n	9/15/15; 1	у	37	5	5	<5	not teste	ed	not tes	ted	not tes	ted	not tes
Continental	2016-17	6	4	у	10/17/16;	у	98	0	9	ND	not teste	ed	2.1	0.02	1.5	0.15	1.12
Continental	2017-18																
Firth Rixson	2012-13	2	0	n							not teste	d					
Firth Rixson	2013-14	2	1	у	#######	у	10	8	<5	<5	not teste	d	< 0.01	< 0.01	< 0.01	< 0.01	not tes
	2014-15	No AR									not teste	ed					
Firth Rixson	2015-16										not teste	d					
Firth Rixson	2016-17										not teste	ed					
Firth Rixson	2017-18																
Independent	2012-13	No AR	-														

Independent	2013-14	2	0	No					not teste	d				
-	2014-15	1	1	No	3/2/2015	y			not teste	d				
Independent	2015-16	2	0											
Independent	2016-17	1	?											
Independent	2017-18													
Mattco	2012-13								not teste	d				
Mattco	2013-14								not teste	d				
Mattco	2014-15								not teste	d				
Mattco	2015-16								not teste	d				
Mattco	2016-17								not teste	d				
Mattco	2017-18													
MS Aerospace	2012-13	Not on	SMAR	TS										
MS Aerospace	2013-14	Not on	SMAR	TS										
MS Aerospace	2014-15	Not on	SMAR	TS										
MS Aerospace	2015-16	Not on	SMAR	TS										
MS Aerospace	2016-17	Not on	SMAR	TS										
MS Aerospace	2017-18													
NC Dynamics	2012-13	Non-Fi	ler						not teste	d				
NC Dynamics		Non-Fi	ler						not teste	d				
NC Dynamics	2014-15	Non-Fi	ler						not teste	d				
NC Dynamics		Non-Fi							not teste	d				
NC Dynamics		Non-Fi	ler						not teste	d				
NC Dynamics														
Pacific Forge		2	1						not teste	d				
Pacific Forge	2013-14	2	1						not teste	d				
Pacific Forge		2	1	у					not teste	d				
Pacific Forge		2	3						not teste	d				
Pacific Forge									not teste	d (added N	i & Cu)		
Pacific Forge														
Performance I		Not on												
Performance I	2013-14	Not on	SMAR	TS										

Performance I	2014-15	Not on	SMAR	TS													
Performance I	2015-16	Not on	SMAR	TS													
Performance I	2016-17	Not on	SMAR	TS													
Performance I	2017-18																
Press Forge	2012-13										not teste	d					
Press Forge	2013-14										not teste	d					
Press Forge	2014-15										not teste	d					
Press Forge	2015-16										not teste	d					
Press Forge	2016-17										not teste	d					
Press Forge	2017-18																
Quality Al	2012-13	No AR															
Quality Al	2013-14	2	2	у							0.024 (s	<0.05 & N	١D				
Quality Al	2014-15	No AR															
Quality Al	2015-16	4	6	у							0.041 (s	ND					
Quality Al	2016-17	No AR															
Quality Al	2017-18																
Schlosser	2012-13	2	2	у	3/8/13; 5/	у	68	53	not repor	ted	only 1 D	ND					
Schlosser	2013-14	2	2	у	10/28/13;	2/27	68	66	not repor	ted	not repo	rted					
Schlosser	2014-15	4	1		#######							d (see CO	1				
Schlosser	2015-16	1	4		9/15/15 no	o Cr	in COC)	; 10/5/1	5 (no Cr c	n COC);	not teste	d (see CO	C)				
Schlosser	2016-17	1 or 2			10/24/16 (no C	Cr on CC	DC); 11/	21/16 (no	Cr on CC	0.077 (to	0.005 on 2	2/17/17)				
Schlosser	2017-18																
Schultz	2012-13	5	2	у	2/8/2013						not teste	d					
Schultz	2013-14	No AR															
Schultz	2014-15	5	2	у	10/31/201	4; 1/	10/15;				not teste	d					
Schultz	2015-16	5	3								not teste	d					
Schultz	2016-17	treatme	ent syste	em in	stalled						not teste	d					
Schultz	2017-18																
Sierra	2012-13	No AR															
Sierra	2013-14	2	0	blan	k						not teste	d	not test	ed	not tes	sted	not tes
Sierra	2014-15	4	4	n (li	#######						not teste	d	not test	ed	not tes	sted	not tes

Sierra	2015-16	2	4	n	3/11/16; 4	/7/10	5;				not teste	ed	not tes	ted	not tes	sted	not tes
Sierra	2016-17	2	4	у	12/21/16;	1/20	/17; 2/6/	1; 2/17	/17		not teste	ed	0.83	0.25	1.1	0.14	0.56
Sierra	2017-18																
Valley Forge	2012-13	1	0	у													
Valley Forge	2013-14	1	1	у	#######	у	30		ND		not teste	ed	0.75		0.51		not tes
Valley Forge	2014-15	2	1	у	2/23/15; 5	у	24	22	not tested	1	not teste	ed	0.98	0.81	0.62	0.73	0.6
Valley Forge	2015-16	1	1	у	1/6/2016	у	45		not tested	1	not teste	ed	0.14		0.21		0.35
Valley Forge	2016-17	1	3	у	12/22/16;	у	63	20	2.4		not teste	ed	1.9	0.51	1.2	0.42	0.26
Valley Forge	2017-18																
Weber	2012-13	2	3	у	10/11/201	у	801	22	287	7.4	0.45	0.08	not tes	ted	not tes	sted	not tes
Weber	2013-14	2	3	у	10/28/13;	у	801	47	119	<5	0.19	< 0.02	not tes	ted	not tes	sted	not tes
Weber	2014-15	3	2	у	1/10/15; 1	у	127	12	20.7	<4.58	< 0.05	< 0.05	2.07	0.13	3.75	0.24	60.2
Weber	2015-16	3	4	у	9/15/2015	у					ND	ND					
Weber	2016-17	2	4	у	12/16/16;	1/5/	17; 1/9/1	7; 1/19/	/17		0.018	ND					
Weber	2017-18																

N+N-	Zn-hig	Zn-low	Pb-hig	Pb-low	Cu-hig	Cu-lov	Ni-hig	Ni-low	Ti-higl	Ti-low	Arsenic	Manganese	Cadmium	Informal	Formal l
															Yes (201
															105 (201
														Threat of S	\$1.5k fine
		0.1													
0.1	1.17	0.07													
0.11	0.06	0.03													
0.11	0.00	0.05													
1.24	3.98	0.7													
		0.15													
		0.21													
	0.83	0.15			0.09	0.006	0.12	0							

ted	not tes	ted									
ted	not test										
ted	not test										
ted	not tes										
ted	not test										
ted		0.16									
ND	9.48	0.12									
								-			
0.69		0.18									
ND	0.89	0.06			0.02	ND					
ted	not test	ted									
ted	not test										
ted	not test										
0.12		0.49									
ted	0.05	0.04	< 0.02	< 0.02							

						L		

-							 		
<u> </u>									
<u> </u>								 	
<u> </u>					 	 			
Ļ					 				
	not test								
ted	not test	ed							

ted	not tested												
0.32	0.13	0.1											
ted	1.7												
0.56	1.1	0.61											
	0.52												
ND	0.79	0.41											
ted	3.05	1.3	not tested		0.45	0.08	0.08	ND	0.76	0.04			
ted	4.86	1.85	not tested		0.74	0.12	0.23	0.029	1.29	0.06			
0.99	4.41	0.19	not tested		0.12	0.06	0.75	< 0.05	0.06	< 0.05			

Notes						
no metal testing in 2011-12						
no metal testing						
2017 waste manifest lists Chromium; inspection r	eport notes titar	nium and waspa	loy alloys sittir	ng uncovered in	yard DURING	Frain event next
See Stipulated_Order_May_11 doc for evidence of						ng change in the
Unfortunately yes the Section E.l was overlooked	BUT they fill	the report forn	n w/ "<0.05" fo	r every parame	ter	
SC 4900 & pH at 2.2 and 2.1!						
Worst numbers, not surprisingly, come in first 2 (QSEs.					
"Due to being new to the permit and personnel ch	anges the facilit	y did not samp	le. Company ha	s acquired envi	ironmental con	sulting services
no data; AR claims 2 samples from 2 DPs						
second rain event had MUCH lower pollutant cor						
QSEs 10 days apart.						
No data for Al or Zn for 3 of 4 samples	t to atom of L 1 a	totuc				
Purchased sweeper in Jan. NOTES 1430 in reque	si io siay at L1 s	status.				
o samples taken: No samples were taken due to	no discharge. A	storm water con	ntainment, filtra	ation, storage a	nd infiltration s	ystem has been
--	------------------	--------------------	-----------------------	------------------	-------------------	-------------------
ame						Í
o samples taken due to no discharge. A storm-w	vater containmer	t, filtration, sto	rage and infiltration	ation system ha	s been installed	l and the rainfal
ame						
torm water sample are taken at Discharge Pts. #	1, 2, 3 & 4. All	9 discharge poi	nts are visually	monitored for	both storm-wat	er and non-stor
iled for permit coverage in 2015						
irst QSE only 2 DPs analyzed. Second QSE onl	ly 1 DP analyzed	l.				
ot analyzing samples from each DP. "TOTAL]			C only for 2 DPs	s on 1/5/17 sam	ple? HUH!?!?	
hecked "no" on E.10.a re: need to test for Table	D parameters					
hecked "no" on E.10.a re: need to test for Table	D parameters					

vents took place started more than 2 hours before	re work hours of	7:00 am or did	not produce en	ough water for	sample.	

no AR, BUT 1 lab report									
1/5/17 Cr 0.062 mg/L, Co 0.072, Ni 0.49									
1/3/17 CI 0.002 Ing/L, CO 0.072, IN 0.47									
"It is with deep regret to inform you that we were not able to collect any storm water samples due to the fact that we in California are experied									
It is with deep regret to inform you that we were	not able to colle	ect any storm w	ater samples di	ie to the fact th	at we in Califoi	rnia are experie			

ERA L1 for O&G notes: As a forge, there are mar	y metals onsite	that need to be	surveyed in sto	ormwater. Alth	ough sources ar	e unlikely, we
No AR on file, just 1 lab report						

r									
t to storm drain	n with no BMPs	: hazwaste outo	loors no BMPs						
		,							
ir compliance)									
to help them s	tay in complian	ce with the indu	ustrial general r	permit All SW	PPP team mem	hers have been	trained and are	nrenared to tal	e samples "
									co sumples.
L									

installed and t	he rainfall in ar	v 24 hour perio	did not exce	ed the capacity	and percolation	n rate of the sys	stem to result in	n a discharge.	
				line in the second s					
ll in any 24 hou	ur period did no	t exceed the ca	pacity and perc	olation rate of	the system to re	sult in dischar	ge.		
					J				
m water discha	rges at all time	s, but water ent	ering the draina	age system at D	ischarge Points	s # 1, 2, 3 & 4 v	vill encounter a	representative	majority of this

Image: state of the state of						
Image: state of the state of						
Image: state in the state in						
Image: state in the state in						
Image: sere drought."Image: sever dro						
Image: series of the series						
Image: series of the series						
Image: series of the series						
Image: series of the series						
Image: sever s						
Image: sever drought." I						
Image: sever drought."Image: sever drought.Image: sever drought.Image: sever drought.Image: sever drought."Image: sever drought.Image: sever drought.<			 	 		
Image: sever true true true true true true true tr						
Image: sever drought."Image: sever drought.Image: sever drought.Im						
Image: sever drought."Image: sever drought.Image: sev						
Image: seven drought."Image: seven drought.Image: seven drought.Imag						
Image: state in the state in						
Image: state of the state of						
Image: state of the state of						
Image: sever drought."Image: sever drought."Image: sever drought."Image: sever drought."Image: sever drought."Image: sever drought.Image: sever dr						
Image: sever drought."Image: sever drought."Image: sever drought."Image: sever drought."Image: sever drought.Image: sever dro						
Image: sever drought."Image: sever drought."Image: sever drought."Image: sever drought.Image: sever drou						
Image: seven drought."Image: seven drought.Image: seven drough						
Image: sever drought."Image: sever drought.Image: sever drough						
Image: Sever drought." Image: Sever drought." Image: Sever drought." Image: Sever drought. Image: Sever d						
Image: Sever drought." Image: Sever drought." Image: Sever drought." Image: Sever drought." Image: Sever drought. Image: Sever						
Image: Sever drought." Image: Sever drought. Image: Sev			 	 	 	
Image: Constraint of the second se						
cing a sever drought."						
cing a sever drought."						
	ncing a sever d	rought."	 			

must evaluate s	ite for this para	meter				

s facility's outd	oor activity and	l will best repre	esent the effecti	veness of our E	Best Manageme	nt Practices. Tl	ne other dischar	rge points (#5 -	#9) do not inclu

r									
ude potential p	ollutants not re	presented in the	e discharges fro	om Pts. # 1, 2, 3	& 4; therefore	Discharge Poin	nts #5 through #	#9 are visually	monitored but r

Facility	Lead	Fugitive	Baghouse	Emission	Exhaust	Duct
Interspace (Concorde)	15+	1	10	2	0	0
Senior Aerospace Jet Product	15+	1	4	1	3	0
Ramcar Batteries Inc.	n/a	n/a	n/a	n/a	n/a	n/a
Liberty Manufacturing, Inc.	0	1	11	3	0	0
P. Kay Metal, Inc.	15+	0	15+	6	0	0
Ace Clearwater (Paramount)	15+	0	10	4	0	0
Gerdau	2	0	7	1	0	0
US Battery (2016 response to NOV)	15+	0	0	1	0	0
Trojan (Anne)	15+	1	11	0	0	0
Atlas Pacific Corp	4	4	15+	11	2	0
Teledyne Reynolds Inc	15+	0	1	7	10	0
Exide Corp.	15+	0 (surprisi	6	0	0	0
Industrial Battery Eng. Inc.						

Vacuum	AD	Settle	Furnace	Roof	Effectiveness	WW Treatme	SW Treatmer
3	0	1	0	9		Y	Ν
2	1	0	0	1		Y	Ν
n/a	n/a	n/a	n/a	n/a		n/a	n/a
0	0	0	5	1		Ν	Ν
0	0	0	1	6		Ν	Ν
1	0	0	10	2		Y	Y
8	0	0	10	0	1	likley	Y
0	0	1	2	5	13	Y	unclear/unlike
2	0	0	0	3	4	Y	Ν
1	0	0	15+				
4	0	6	0	3	2	Y	Ν
3	0	0	0	7	2	Ν	Ν

Notes						
See 2015.09.	05 Team Meetin	g				
see "settle" or	n pdf page 23 w	hich notes poter	ntial for particu	late to settle an	d impact water	•
Facility uses	treatment systen	n to clean early	small storms.			
-						
	1					

Facility	AQMD ID	AQMD Rule	RB4 ID	SIC	NAICS	Product
Aircraft	21937	1420	4 19I001609	3365	331524	
Alcast	43020	1420	4 19I025853	3365	331524	
Alhambra	20492	1420	4 19I001651	3321	331511	
Arrowhead	20492	1420	4 19I023153	3471	331524	
Fox Hills	19341	1420	8 301000689	3369	331511	
Gasser	23941	1420	4 19I000688	3369	331529	
Kinsbursky	35006	1420	8 30MR0000	5093	423930	
Metal X (Briquetting Co.)	61681/91868	1420	4 19I000881	3341	331314	
LA Pump & Valve	20167	1420	4 19NEC001	3499	331529	
		1420				
	AQMD					
Company Name	ID No.	County	NAICS	Stree	City	Zip
ATLAS PACIFIC CORPORATIO	77271	RV	331410	2803	BLOOM	92316
CAME ALLOYS	48010	LA	331524	1231	SUN VA	91352
CHARTER FOUNDRY CO INC	21972	LA	331529	5208	HUNTIN	90255
KOKO'S FOUNDRY	142410	LA	331524	3525	LOS ANO	90023
MONTCLAIR BRONZE INC	35194/60815	LA	331529	5621	MONTCI	91763
TECHNI-CAST CORP	7796	LA	331529	1122	SOUTH	90280

Address	City	Primary Rec	Secondary R	Impairments	Assembly M	Formal Enfo
5316 Pacific	Huntington P	LAR Reach 2	Pacific			
2821 190th S	Redondo Bea	Dominguez C	Pacific			
1147 Meridia	Alhambra	LAR	Pacific	Zn, Cu (accor	ding to 2016-	17 AR)
5142 Alhamb	Alhambra	LAR	Pacific			
5831 Researc	Huntington B	Chica Channe	Pacific	Cu, pH (accor	rding to 2015-	-16 AR)
2618 Fruitlan	Vernon	LAR	Pacific	Pb, Cu, Zn, p	H & Oil	
1314 Anahein	Anaheim	Carbon Cany	on Tributary			
366 East 58th	LA (South)	LAR Reach 2	Pacific			
2529 E 55th S	Huntington P	LAR Reach 2	Pacific			
			Notes			

Treatment?	Example	Notes				
		owner change	e between 201	3 and 2014; 1	0.5.12 viz obs	ervation; some
		SWPPP notes	s baghouses, r	oofs, grinding	, melting and	furnace areas
		4 19I023153	(Active since	5.12.2011); Te	erminated 201	Champion Ar
		roof cover cro	edit; stormwat	er treatment s	ystem (see 202	15 Board Inspe
		1				
		1				
		1				

dirt but it w	as first storm	and ran alaara	r latar in the d		. 12 12 11 viz	observation o
s uni, but it w	as mist storm a			ay (NO SHIT)	, 12.12.11 VIZ	
but NOT lea	d. Note re: iss	suance of a 20	10 Benchmar	k exceedance 1	letter. The Al	hambra 2013 (
rowhead LLC	(can not loca	variations of	the WDID, wh	nich is missing	g one number)	
ction Report)						

f rain event.	$\frac{1}{15.12}$ viz ob	servation of ra	$\frac{1}{1000}$	Inspection Re	port note that	t the form does
			III 110w, 2013	Inspection Re		
	· D1		(1 1	1		
Group Monito	ring Plan men	tions "lead" a	s a "baseline r	naterial presei	nt' in the Scra	p Metal Area (
ļ						
├ ────						

s not include a	any place for i	nspectors to co	onsider air pol	lution control	equipment or	aerial depositi
		1	1		1 1	
(see Table 2 a	t pdf page 7).					
Ì						

]
ion (i.e. proble	em may be wi	th Board and f	acilities, not j	ust facilities)

Facility	Fugitive	Chromium	Emission(s)	AD	settle
Cal-Tron	0	0	1	1	0
Accu Chrome	NEC	NEC	NEC	NEC	NEC
Angelus	NEC	NEC	NEC	NEC	NEC
Electronic Chrome/Grinding	NEC	NEC	NEC	NEC	NEC
Verne's	NO SMARTS I	FILES	NO SMARTS I	FILES	NO SMARTS F
LMDD	0	6	5	0	0
S K Plating	0	2	0	0	0
Christiansen	NO SMARTS I	FILES	NO SMARTS I	FILES	NO SMARTS F
Bowman	0	0	0	0	0
Metal Surfaces	0	6	0	0	0
Domar	0	0	1	0	0

NOTES						
FILES						
Includes refe	rence to Ni, Ci	r, Cu, and Cad	mium particu	late on roof su	urfaces, BUT d	loes not analy:
Supposedly t	esting for Al, F	e, Zn, N+N, C	r, Ni, Pb, Cu, a	immonia, arse	nic, cadmium	, chloride and
FILES						
from SWPPP	from SWPPP in reviewing additional parameter req's: "Based upon the Domar Precision Inc., no					

ze for metals	other than Cr.					
flouride						
additional pa	arameters are	required." No	ot only is this i	ncoherent gra	immatically, b	ut is legally w

rong/problem	natic.