Delineating Geomorphic Landscape Units to assess sediment supply in the San Diego River Watershed

Papantzin Cid University of Redlands

Watershed Analysis/Mapping Watershed Characteristics and Processes Current Land Use and Stream Conditions Past Actions/Legacy Effects Proposed Future Actions/Changes in Land Use Watershed Hydromodification Management ➤ Opportunities/Constraints Management Objectives Framework for Determining Site Control Requirements > Valuation Method for Mitigation New Development Site Analysis Other Entities or Programs New Development Site Controls and Watershed Management Actions Mitigation Requirements Stream Restoration Floodplain Management On-site Actions Flow and Sediment Management Off-site Actions Monitoring

Objectives

- Review of Original Geomorphic Landscape Units (GLUs) Approach
- Revised GLUs Approach
 - San Diego River Watershed
- Limitations

Original Approach to GLUs

- Classification of Slope, Geology and Land Cover
- Planning tool to predict effects of hydromodification based on sediment changes due to landscape alteration
- Rapid assessment technique that could inform management decisions

HYDROMODIFICATION SCREENING TOOLS: GIS-BASED CATCHMENT ANALYSES OF POTENTIAL CHANGES IN RUNOFF AND SEDIMENT DISCHARGE

Derek B. Booth Scott R. Dusterhoff Eric D. Stein Brian P. Bledsoe

Southern California Coastal Water

Technical Report 605 - March 2010

Research Project

Escondido Creek Watershed

Escondido Creek Watershed

Escondido Creek Watershed

Relative Sediment Production Rates

Low

Medium

High

Revised GLUs Approach

- Datasets:
 - 1. USGS 30 Meter elevation to derive slope
 - 2. CGS 1977 Jennings Geology
 - 3. SanGIS Current Land Use and Planned Land Use

San Diego River Watershed

- 433 Sq. Mile
- Second Largest
- Highest Population

Slope Classification

- 30 Meter Resolution
- Slope stability

Geology Reclassification

- CGS
- 68 Original
- Grouped by geologic characteristic

Coarse-Competent Classification

Crystalline Classification

Land Use Classification

- General & Community Plans
- 90 Original
- 3 Reclassified

Slope

Geology

Land Use

Unique Landscape Units – Current Land Use

Unique Landscape Units – Planned Land Use

Unique Landscape Units – Current Land Use

Crystalline; Scrub/Shrub; High

Crystalline; Scrub/Shrub; Low

Coarse-Competent; Scrub/Shrub; High

Lagand	Caalaar	Clara	Current 2012 Land	Relative Sediment	Potential 2050 Land	Difference in
Legend	Geology	Slope	Use	Production	Use	Percent
	Crystalline	Medium	Agriculture	Low	Developed	-6.6
	Crystalline	Medium	Scrub/Shrub	Low	Scrub/Shrub	-8.1
	Crystalline	High	Scrub/Shrub	Low	Scrub/Shrub	-3.1
	Coarse- Competent	Low	Scrub/Shrub	Low	Scrub/Shrub	-0.7
	Coarse- Competent	High	Scrub/Shrub	Medium	Developed	-1.2
	Coarse- Competent	Medium	Scrub/Shrub	Medium	Scrub/Shrub	-0.2

2050

A predicted reduction in sediment could be used to identify areas of hydromodification

Relative Sediment Production

Limitations

• Defined by the coarsest dataset – Jennings Geology

• Reclassification of Categories

• Assessment of relative sediment production rates

Summary

- Goal was to identify unique landscape units that could be used in a rapid assessment of the watershed
- 3 indicators of potential sediment production
- Predicted reduction in sediment could be used to identify areas of hydromodification and assist decision makers
- Dataset and Classification limitations

Questions? papantzin.cid@gmail.com