Sediment Yield and Transport Analyses for the Goose Creek Restoration Project

Eric Berntsen Kalispel Natural Resources Department

Eric's talk

- Project background and watershed overview
- Overview of river restoration principles and the importance of quantifying sediment
- Q & A

Project background

- Tribe purchased 773 acres in Bonner County, Idaho to offset wetland impacts from the construction and operation of Albeni Falls Dam
- 22 square mile drainage area originates in Pend Oreille County, Washington and is mostly forested with limited agriculture
- Target species include westslope cutthroat trout, bald eagle, and yellow warbler

Goose Creek

ALL ST.

Branch p

E N

KALISPEL TRIBAL PROPERTY

- 30

Blanc Creek

BIG

River restoration principles (from Beechie et al. 2010)

- Identify root causes of habitat and ecosystem change;
- Taylor restoration actions to local potential;
- Match the scale of restoration to the scale of physical and biological processes; and
- Be explicit about expected outcomes, including recovery time.

Identify root causes

- Major portions of channel have been straightened in the last 20 years, soil compacted
 - Sediment transport capacity increased
 - Widespread channel incision and widening
 - Simplification of aquatic and riparian habitat

Lane's Diagram by Rosgen (1996) c/o Chris Bowles, cbec

 $Q_s \cdot D_{50} \propto Q_w \cdot S$

Over time channel geometry (width, depth, gradient) adjusts to be in equilibrium with flow and sediment regime.

(Kondolf 1997)

Identify root causes (cont'd)

- Destruction of riparian habitat
 - Accelerated bank erosion
 - Increased stream temperatures
 - Loss of a habitat creation and management superhero (hint:think Oregon State University mascot)

NOAA Technical Memorandum NMFS-NWFSC-120

Working with Beaver to Restore Salmon Habitat in the Bridge Creek Intensively Monitored Watershed Design Rationale and Hypotheses

Michael M. Pollock, Joseph M. Wheaton,¹ Nick Bouwes,² Carol Volk,³ Nicholas Weber,² and Chris E. Jordan

Northwest Fisheries Science Center 2725 Montlake Boulevard East Seattle, Washington 98112

¹Utah State University Watershed Sciences Department 5210 Old Main Hill Logan, Utah 84322

²Eco Logical Research, Inc. 456 South 100 West Logan, Utah 84321

³South Fork Research, Inc. 44842 Southeast 145 Street North Bend, Washington 98045

October 2012

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

Restoration actions

 Possibly mimic the actions of beaver by installing check dams to aggrade the channel and reconnect with the floodplain.

Question: How long will it take to reconnect?

Answer: 42?

Actually, we don't know until we calculate sediment yield

How long will it take the channel to reconnect?

of years to reconnect = V_c/Q_s

Q_s = average annual sediment yield (cubic yards per year)

How long will it take the channel to reconnect?

- Based on field measurements, V_c = 1.1E+04 cubic yards
- Average annual sediment yield was estimated using four methods.
 - 1. Ursic and Douglass 1978
 - 2. Patric et al. 1984
 - 3. SCS Sediment Yield Maps
 - 4. PSIAC

Sediment Yield

- 0.007 tons of sediment per acre-inch of streamflow per year from western forested areas (*what's the annual streamflow?*)
- 2. 0.25 tons per acre annually from minimally disturbed forested areas

Sediment Yield (cont'd)

3.

Sediment Yield (cont'd)

4.

Table A.1.1. Factors Affecting Sediment Yield in the Pacific Southwest.											
Sadinant Yield Lavels	A BURFACE DECIDENT (10)*	8 JOILA (20)	C CL 39478 (32)	D NUNCIPP (10)	E TORODAVINI (20)	F GROUND CONTRA (10)	0 1.000 1.000 (10)	N UPLAND ENDEDON (2h)	Z CHARTEL ENGEDH 4 REDINING THARTHART (2h)		
Nigh	 Merics shales and related mud- siones and silt- siones. 	 Fine instanced manily dispersedy anticervitations high shrink-small characteristics Single grain eithe and fine same 	 Alarma of anomal days" duration with short periods of interes saler fail. Frequent interes convention starses Frequentian monorance 	 Nigh pash flower per unit area Large volume of flow per unit area 	 Remp upland slopes (in moment of 30%) Nigh relief? 10001 er an floodplain development 	Crownd cover down not exceed 20% a. Teptition sparsey likite or no litter b. No rook in sufface soil	 New that NX millisited Almost all of area intensively graned All of area re- cently hurned 	 Here than 52% of the area obar- acterized by 2111 and gully or landalide erosion 	 Ecoding hashs mon- timensity on at frequent intervals with large deptite and long flow doration b. Antire bandwork and depredation in trib- viery standals 		
Roberte	(h) a. Nucle of metion hardwas bardwas bardwas bardwas bardwas bard a. Nucleated y fractured	 (%) a- Medium instrumed andii b- Constinuit runk fragmente c- Calinhe layers 	 (b) a. Stores of moder- ate duration and interaction and interaction b. Infrequent con- ventive stores 	 (h) Numberste paak finns Numberste volume of fins per unit area 	 (10) a. Hudepele upland alopus (less than 20%) b. Hudepele fan or finskplate develop- sent. 	(12) Cover not exampl- ing 42% • Nutionalis 11/1er b. 27 trans present understory not well developed	 (2) Less Usa 204 with wited 504 with wited 504 with same seriestly logged Less Usa 504 Usition to the seriestly grassed Collary real and other construction 	 (53) Almost 295 of the arms characterization of gells and gells and gells or land-alline evoxian Mind excession with departition in attemat characterize 	(12) a. Hoderste flow depths, andium flow depths with measionally wroting hants or hed		
	25020					1969.00	S. 1949557 2	1122	11024		
Low	(CO) a. Massive, hard Cornations	 (c) Nigh percentage of rook fragments Appropriate clays Nigh is ergenin matter 	 (2) Numl of lasts with calification of law latencity Prescipitation in Four of some Acid villaster, low latencity storme Acid villaster, low calification race connective storme 	 (0) a. Los peak flows per util a cea b. Los velues of runoff per unit, area bare runoff events 	 (D) a. Cancile upland alonge [See Usan 54) b. Roismaive allovial pialos 	(-10) a. Area supplied profested by exp- station, reak frequents, little. Little experimally for califall to reach availed material	(-10) a. He endliveling b. He remaining c. Les interativy graning	(0) a. No apparent signs of erosion	(D) a. This duling channels with flat gradients, should file dusting b. Channels in measure cost, large inclusion or well reputated a. Artificially controlled channels		

IF EXPERIENCE SO INDICATES, INTERFOLATION METMONS THE 3 SEDIMENT TIELD LEVELS MAY BE HADE.

Sediment Yield (cont'd)

Confidence & 100 of d

Use of the Rating Chart of Factors Affecting Sediment Yield in the Pacific Southwest

The following is a summary of the sediment yield classification

presented for this methodology.

Classification	Rating	AF/sq. ml.			
1	> 100	3.0			
2	75 - 100	1.0 - 3.0			
3	50 - 75	0.5 - 1.0			
4	25 - 50	0.2 - 0.5			
5	0 - 25	< 0.2			

In most instances, high values for the A through G factors should correspond to high values for the H and/or I factors.

An example of the use of the rating chart is as follows:

A watershed of 15 square miles in western Colorado has the following characteristics and sediment yield levels:

	Factors	Sediment Yield Levels	Rating
А	Surface geology	Marine Shales	10
В	Soils	Easily dispersed, high shrink-swell characteristics 10	
С	Climate	Infrequent convective	
		storms, freeze-thaw occurrence	7
D	Runoff	High peak flows; low volumes	5
Е	Topography	Moderate slopes	10
F	Ground cover	Sparse, little or no litter	10
G	Land use	Intensively grazed	10
Н	Upland erosion	More than 50% rill and gully	
		erosion	25
I	Channel erosion	Occasionally eroding banks and	
		bed but short flow duration	5
		TOTAL	92

This total rating of 92 would indicate that the sediment yield is in Classification 2. This compares with a sediment yield of 1.96 acre-feet per square mile as the average of a number of measurements in this area.

Average annual streamflow

- Created a mean daily flow record for Goose Creek using 58 years of daily flow data and annual peak discharges from two nearby USGS flow gages on the Priest River
- 1.5 yr discharge assumed to approximate bankfull discharge in Northern Idaho/Eastern Washington (Castro 1997)
- Used USGS regression equation to calculate 1.5 yr discharge for Goose Creek

Average annual streamflow (cont'd)

• $Q_{dGC} = Q_{1.5GC} * (Q_{dPR} / Q_{1.5PR})$

Where Q_{dGC} = Goose Creek daily discharge (cfs) $Q_{1.5GC}$ = Goose Creek 1.5 year discharge (cfs) Q_{dPR} = Priest River daily discharge (cfs) $Q_{1.5PR}$ = Priest River 1.5 year discharge (cfs)

(Based on Biedenharn et al. 2000)

Average annual streamflow (cont'd)

- Used GeoTools (Bledsoe et al. 2007) to calculate mean annual flow
- Estimated average annual streamflow = 36 cfs
- 36 cfs = 3E+05 acre-in/year

How long will it take the channel to reconnect?

Sediment Yield Method	Average Annual Sediment Yield (tons/yr)
1. Ursic and Douglass 1978	2.2E+03
2. Patric et al. 1984	3.5E+03
3. SCS Sediment Yield Maps	7.9E+03
4. PSIAC	1.1E+04
Average	6.4E+03

How long will it take the channel to reconnect?

- Assuming density of sediment is 110 lbs/cf,
 6.4E+03 tons/yr = 4.3E+03 cy/yr
- years to reconnect = 1.1E+04 cy/4.3E+03 cy/yr
- years to reconnect = 2.5 yrs

Taylor restoration actions

- Target plan forms of new channel need to reflect the historic channel pattern and current discharge and sediment regime (Kondolf et al. 2001)
 - Historic channel pattern sinuous channel (>1.5), low width to depth ratio (approx. 6), slope of 0.0016 to 0.0019 ft/ft.
 - Variety of methods used to analyze discharge and sediment regime

Discharge and sediment regime

- Channel forming discharge
- Sediment transport

Channel forming discharge (see Doyle et al. 2007)

- Specific return interval discharge
- Bankfull discharge
- Effective discharge

Specific return interval discharge

- Discharge of a given return interval (e.g., 1.5 yr, 2 yr, etc.)
- Castro (1997) suggested 1.5 yr return interval is most appropriate for Northern Idaho/Eastern Washington

Specific return interval discharge (cont'd)

- Goose Creek 1.5 yr discharge determined using
 - USGS Regression Equation
 - By prorating drainage areas from Priest River gages
 - Mean daily flow record from Goose
 Creek

Bankfull discharge

- Determined from channel hydraulics
- Mannings n determined using Jarrett's equation
- Discharge determined using Gauckler-Manning Equation

Gauckler-Manning Equation

$$Q_b = (1.49/n)^* A_b^* R_b^{2/3*} S^{1/2}$$

where Q_b = bankfull discharge (cfs) n = Manning's roughness coefficient A_b = bankfull area (sf) R_b = bankfull hydraulic radius (ft) S = channel slope (ft/ft)

Effective discharge

- The discharge or range of discharges which, over time, transports the greatest quantity of sediment.
- Computed by finding the maximum of the curve resulting from multiplying the flow frequency curve times a sediment discharge rating curve

(Doyle et al. 2007)

Effective discharge

- Used GeoTools with mean annual flow record for Goose Creek developed earlier
- Used arithmetic binning of discharges based on the research of Soar and Thorne (2001)
- Used Yang's Sand equation (Yang 1996) to determine sediment rating curve

X 🛃 🤊 • =		GeoTools-Excel 2007 - Microsoft Excel	
File Home	Insert Page Layout Formulas Data R	eview View	
Paste V IB Z Clipboard S	$ \begin{array}{c c} & \cdot & 11 & \cdot & A^* & A^* \\ \hline \underline{U} & \cdot & \underline{V} & \cdot & \underline{A} & \cdot \\ \hline \end{array} \equiv \equiv \equiv & & & & \blacksquare \\ \hline \end{array} $ Opening	Scientific Scientific Image: Scientific conditional Format Cell Image: Scientific conditice conditice conditional Format Cell Imag	Sort & Find & Filter * Select * Editing
	Liser Options	Coomerphology Teelbox v4.3	~
A B		Geomorphology roolbox v4.2	0 =
	• Effective Discharge	Developed at the Engineering Research Center at Colorado State University.	
3	C Sediment Transport	Questions and feedback - Dr. Brian Bledsoe: Brian.Bledsoe@ColoState.edu or Dr. David Baff : draff@do.usbr.gov	
6	C Partial Frequency Analysis		
7 8 9	C Disturbance Regime		
10 11 12	C Channel Change Indices	Reference File C:\Users\Eric\Desktop\Geomc	
13 14	C Hydrologic Metrics	File 2	
15			
16		File 3	
17	Supress progress indicators		
18	Supress log file	File 4	
19	DUN OUT		
20	RON Quit		
22			
22			
24			
25			
	t Transport Input Sheet Chest?		
Ready		Average: 6.1E+03 Count: 5 Sum: 3.1E+04 🗐 🗐 💷 100%	
📀 🖸	6 🗋 🚷 💽		10:40 PM

X 🛃 🤊 ▾ ╤ File Home Insert Page Layout	GeoTool Formulas Data Review	s-Excel 2007 - Microsoft Exc View	el		- 0 - ? -	23 67 53
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c c} Calibri & & 11 & \\ & & & \\ \end{array} \begin{array}{c c} Calibri & & 11 & \\ & & & \\ \end{array} \begin{array}{c c} Calibri & & 11 & \\ & & & \\ \end{array} \begin{array}{c c} Calibri & & 11 & \\ \end{array} \begin{array}{c c} Calibri & \\ \end{array} \begin{array}{c c} Calibri & \\ \end{array} \begin{array}{c c} Calibr$		Scientific ▼ \$ ▼ % , €.0 .00 .00 →.0 Number 5.0	Conditional Format Cell Formatting * as Table * Styles *	Gells	Σ × ↓ × Sort & Find & × Filter × Select × Editing	
	Augmient G	Number	Styles	Cells	Luting	
Goose Sed Yield	Sediment Transport Rate Calcu Select Equation Bagnold Total Load Brownlie Yang's Sand, d50 Channel Properties Discharge (ft ³ /s) Average Velocity (ft/s) Energy Slope (ft/ft) Hydraulic Radius (ft) d50 (mm)	lator (Version 1.0) Select Units Select S.I. Select Eng Temperature (Effective Width .019 1.48	Units Ilish Units			
Ready		Cancel	Continue>>			× 1
			and the second second		- 10:51	РМ
						2013

Channel forming discharge

- 1.5 yr discharge = 146 cfs
- Bankfull discharge = 143 cfs
- Effective discharge = 21 cfs
- Ratio of bankfull to effective discharge consistent with values reported in Soar and Thorne 2001 for sand bed channels)

Sediment Transport

- Sediment competence
- Sediment transport capacity
- Sediment transport rate estimates and relationship to sediment supply

Sediment Competence and Capacity

Sediment Competence

Bankfull Shear Stress Unit Weight H₂O Hydraulic Radius Slope Grain Diameter

Sediment Capacity

Unit Stream Power Bankfull Shear Stress Mean Velocity 0.99lb/ft/s 0.27lb/ft² 3.64ft/s

0.27 lb/ft² 62.4 lb/ft³ 2.3 ft 0.0019 ft/ft 20 mm

Sediment Transport Rate Estimates

- Annual sediment transport rate (from effective discharge calculation in Geotools)
 = 3.3E+04 tons/yr
- Sediment transport rate at 1.5 yr discharge = 456 tons/day (sediment transport module in Geotools)

X 🖁	<u>ا - (-</u>	Ŧ	-	-	_		- 10	GeoTool	s-Excel 200	7 - Microsoft E	xcel	-				
File	н	ome I	nsert	Page Lay	out Fo	rmulas	Data I	Review	View							۵ 🕜
Paste	¥ 19-	Calibri B	<u>U</u> - []	• 11 •	· A ·	= =	= ≫ ≡ ≇ ≇		General \$ → %	, • .00 .00 • • 00 .00	Condition Formattin	al Format g × as Table	Cell Styles *	B™ Insert ▼ B™ Delete ▼ Bormat ▼	Σ · A · Z · Z · Sort Filte	R Find
Clipbo	bard 🗔		Font	t	Γ ₂		Alignment	- Fai	Nu	mber [9	Styles		Cells	Edi	ting
			- (°	f3	×			1							1	
1 2	A RES	B	C		D	E Sedimen	F t Transport R	G ate Calcu	H lator (Versi	ion 1.0)	J	K		M	N	0
3 4 5 6 7	-					Sele Bag Bro Yai	ect Equation gnold Total L ownlie ng's Sand, d	.oad 50	•	Select Unit	s .I. Units nglish Units					
8 9 10 11 12						Char Disch Avera Energ	nnel Properti harge (ft³/s) age Velocity gy Slope (ft/	es (ft/s) ft)	146 3.64 .0019	Temperature	e (°F)	45				
13 14 15					-	d50 ((mm)	(ii)	1.48				E			
16 17 18										Canc	el Co	ontinue>>				
19 20																
21 22																
23 24																
25 14 4	N S	Gediment	Transport	Inpu	ut Sheet	Sheet	2 / 2				[] ◀					

Relationship to Sediment Supply

- Annual sediment transport rate greater than annual sediment yield (3.3E+04 tons/yr vs. 6.4E+03 tons/yr)
- Sediment yield for 1.5 yr discharge = 2900 tons/day (used relationship between annual yield and event-specific yield from MacArthur et al. 1995 and 1.5 yr yield from Simon et al. 2004)

Relationship to Sediment Supply

 Sediment transport rate at 1.5 yr discharge less than sediment yield for 1.5 yr discharge (456 tons/day vs. 2900 tons/yr)

Discharge and sediment regime

- Bankfull discharge approximately equal to 1.5 yr discharge
- Sediment supply exceeds sediment transport capacity for 1.5 yr discharge, less on annual basis
- Flows exceed flow necessary for incipient motion 98% of the time (i.e., conveyor belt is moving)

Match scale of restoration

- Need easements for farming adjacent to parcel and upstream of project
- Work with adjacent landowners and Pend Oreille and Bonner County Conservation Districts on bridge and riparian exclusion fencing
- Be involved with Colville National Forest planning efforts (culverts, logging, roads)

Be explicit about expected outcomes

- Rough estimate of the number of years to reconnect floodplain
- We hope to have beavers restablish dams...we know this isn't a typical alluvial system (lots of irregularly-flooded habitat)
- Dams will get built and get blown out under high flows, potentially causing localized erosion and flooding. It's ok...

Be explicit about expected outcomes (cont'd)

- Plantings will take a while to establish
- This isn't the Field of Dreams "If you build it, they will come"
- We don't expect cutthroat to thrive until brook trout are eradicated

Acknowledgements

- Kalispel Tribe
- Kalispel Natural Resources Department
- Confluence Consulting

Questions?

Eric Berntsen 509-671-6466 ekberntsen@gmail.com