Presentation to SWRCB July 28, 2006

Gary Lorden, Ph.D. Statistical Consultant

Panel's "Statistical" Comments

- "...there is wide variation in stormwater quality from place to place, facility to facility, and storm to storm (p.6)."
- "Since the storm-to-storm variation at any outfall can be high, it may be unreasonable to expect all events to be below a numeric value." (p.6)."
- "...several to more times each year, the runoff volume or flow rate from a storm will exceed the design volume or rate capacity of the BMP. Stormwater agencies should not be held accountable for pollutant removal from storms beyond the size for which a BMP is designed." (p.10)
- "The Panel recommends that Numeric Limits and Action Levels not apply to storms of unusual event size and/or pattern (e.g. flood events)." (p.18)

What kinds of statistics are needed?

- Design of data collection needed to choose and maintain numerical limits— range of storm variables, receiving water variables, flows/volumes/dilutions, sufficient sample sizes and locations
- Statistical profile of a facility's data distributions of effluent constituents, in relation to storm variables, etc. Is "lognormal distribution" model sufficient? Indications are negative.
- Useful estimates of "frequency of exceedance" for possible choices of numerical limits
- Statistical procedures for updating estimates— and possibly modifying numerical limits— as data accumulate over a period of years (with yearto-year variation in number and severity of storms).
- Establish data-taking requirements for monitoring and compliance: How much data is needed?

Sources of Data Variability

Input Variables

- -- Influent characteristics
- -- Storm characteristics (e.g. rainfall intensity, flow rate/volume)
- -- Site-specific hydrologic features
- -- Receiving water characteristics (e.g. → dilution)

Treatment Characteristics

- -- Treatment capabilities (facilities + inputs → great variability in quality of treated effluent)
- -- Flow rate/volume-based capacity limits

Output Variables

- -- Measurements of discharge constituents
- -- One grab-sample/storm vs. hourly averages vs. storm composite concentrations
- -- Lab analysis screening strategy

Sample Dataset: Grab sample measurements of copper at three outfalls

(water quality objective = 14 mg/L)

	Α	В	C
Sample Size	23	32	20
Sample Median	2.8	2.8	3.2
Sample Maximum	55	12	39
Probability*	.003	.012	.110

- Probability of obtaining a maximum "as large as this" if data distribution was lognormal
- The largest values in such datasets are typically "too large to fit a lognormal model". Therefore, statistical analysis based on a lognormal model is not justified.

How large do sample sizes need to be?

- Failure of lognormal model
 - Cannot use calculated "average" and "standard deviation" of a dataset to estimate the frequency of "over-the-limit" events (or "exceedances") for a given numerical limit—since the "shape" of the distribution is unknown
- Fallback: use the "observed exceedances" in the dataset
 - → very large sample sizes are needed
- Example: To show that the exceedance rate is at most 5% requires, for example, a sample size of 153 with at most 3 exceedances. (For "95% confidence".)
- "Caesar's wife" effect: to reliably avoid the suspicion of "having more than 5% exceedances", one must have much less than 5%-- e.g. a 1.1 % true exceedance rate is needed to guarantee a 90% probability of avoiding suspicion when the sample size is 153.

Key Statistical Points

- Important to base numeric limits on data collection designed to reflect the full ranges of major sources of variability in effluent measurements -- storms, receiving waters, facilities/treatments, and sampling methods
- Need updating of data to reflect year-to-year variability of storms— and corresponding reassessment of numerical limits
- Don't rely entirely on highly variable data like grab samples or optimistic statistical assumptions like "lognormal"
- Data requirements for compliance monitoring are severe should use large enough sample sizes and shouldn't impose "too high expectations of Caesar's wife"