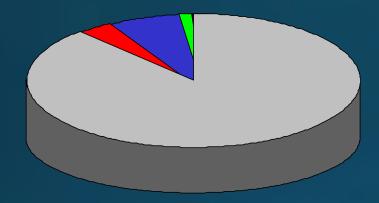
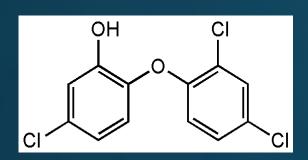
Incorporating bioanalytical screening and non-targeted analysis for CEC monitoring


Alvine C. Mehinto, Keith A. Maruya and Stephen B. Weisberg Southern California Coastal Water Research Project Authority (SCCWRP) Costa Mesa, CA USA

> Workshop on CECs and Aquatic Ecosystem Monitoring Sacramento Regional County Sanitation District

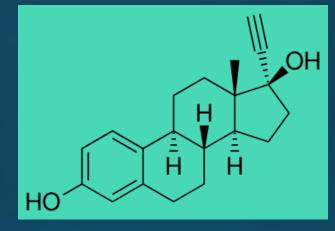
> > May 1, 2017

CECs are chemicals that may pose a health risk, but for which limited data is available

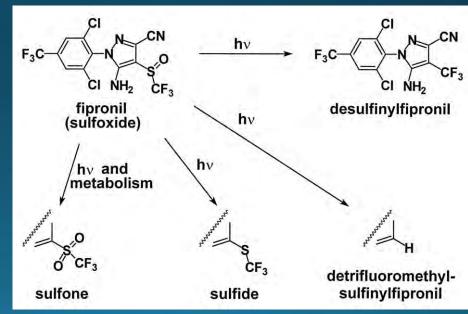

"Industrial" ~82,000 Food additives ~ 3000 Cosmetics & additives ~6000 Pharmaceuticals ~1000 Pesticides ~1000

Muir and Howard (2010)

Current Targeted Monitoring Lists Regional: ~200 Drinking/Recycled Water: ~500



There are CECs we know about...



triclosan antibacterial agent



Ethinyl estradiol – synthetic hormone

fipronil – phenylpyrazole insecticide 3

...and those that remain unknown

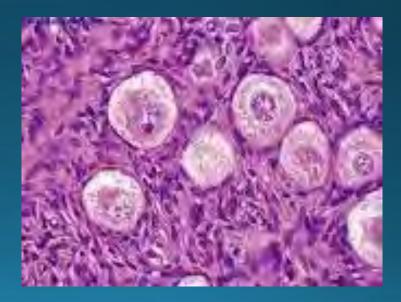


Disinfection by-products

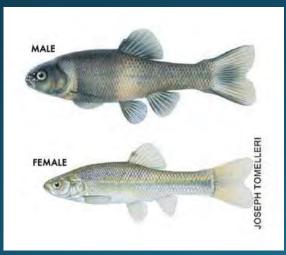
- trihalomethanes (THMs)
- nitrosamines
- halogenated CECs
- Drug, pesticide metabolites
- New, replacement chemicals

Treatment practices can lead to unintended CECs

Natural factors (e.g. sunlight) transform CECs


Tetrabromobisphenol A, a flame retardant

CECs are relevant because impacts are possible at low levels, but current methods do not address their effects



Synthetic estrogens affect fish reproduction at <u>ng/L</u> concentrations (Kidd et al. 2007)

Intersex (ovotestis)

estrogenic CECs

Statewide challenges for monitoring CECs

Which CECs pose the greatest risk to ecological and human health?

How do we monitor for CECs?

How low is low enough?

How do we assess mixture toxicity?

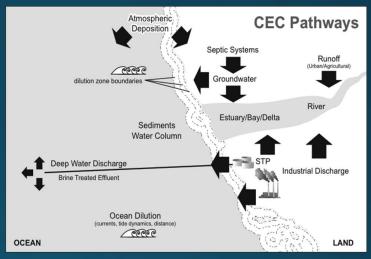
CA Recycled Water Policy requires monitoring of CECs

Regulators and dischargers need guidance for receiving waters

Regional monitoring questions

Which CECs, if any, are relevant in <u>our</u> watersheds?

What are appropriate thresholds for priority CECs, and how are they established?


What sources and/or land uses deserve attention?

How do we ensure <u>robust</u> monitoring datasets?

Building scientific consensus

- Expert Panel convened by SWRCB
 vetted/guided by stakeholders
- Monitor high priority CECs
 - Risk-based list of known chemicals
- Focus on waters receiving WWTP, stormwater discharge
 agricultural runoff not considered
- Matrix-specific list of CECs
 - drugs, personal care products, hormones, urban pesticides (n=16)

Targeted monitoring for known CECs

In water...

In sediment and fish tissue...

CEC	LA River	SG Rvier	SC River	MTL	ΜΤΩ
bpA	691	657	<25	60	>10
estrone	<2.5	<2.5	<5	6	<1
ibuprofen	38.3	40.5	<25	1000	0.04
galaxolide	2619	2753	n/a	7000	0.39
permethrin	<0.17	1.72	n/a	10	0.17
triclosan	10.7	26.0	38.4	92000	<0.01

CEC	Matrix	River	Bay	MTL	MTQ River	MTQ Bay
bifenthrin	sed	4.9	54	0.052	94	1000
fipronil	sed	1.2	3.7	0.09 (6.5)	13	0.57
PBDEs	tissue	20.1	7.0	28.9	0.70	0.24
PFOS	tissue	26	0.59	1000	0.026	<0.01

MTL – monitoring threshold MTQ = trigger quotient = Conc/MTL

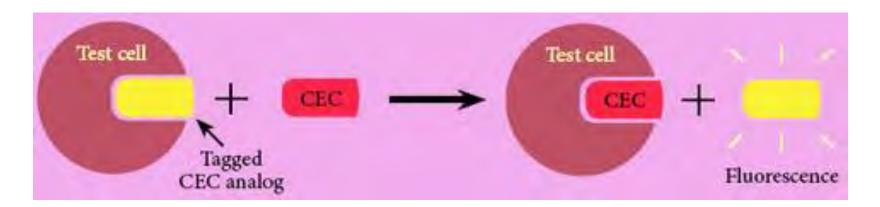
Current Water Quality Monitoring

Exposure metric numeric WQC/TMDL Risk = Meas/LOEC Animal response metric NOEC, LOEC, acceptable response threshold


Species, population, community health indices

Increasing cost, assessment time and data complexity

Is there a better way?


New monitoring tools

- bioanalytical tools to screen for toxicants by mode of action
- non-targeted analysis to identify toxicants that elude targeted methods
- Adaptive management
 - Collect and interpret data
 - Adjust target parameters, monitoring effort
 - Test promising *new* technologies

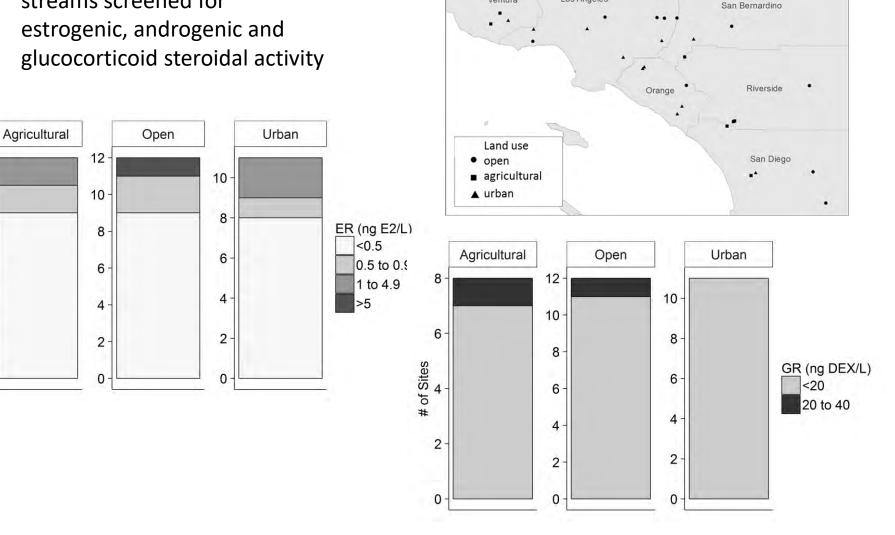
Bioanalytical Screening Tools

- Integrates the response of all known and unknown chemicals with a common mode of action
- Light intensity is proportional to the concentration of bioactive chemicals
- Cell responses can be linked to whole organism toxicity

Low endocrine response in SoCal streams

Water collected in 2015 from 33 streams screened for estrogenic, androgenic and glucocorticoid steroidal activity

8


6

4

2.

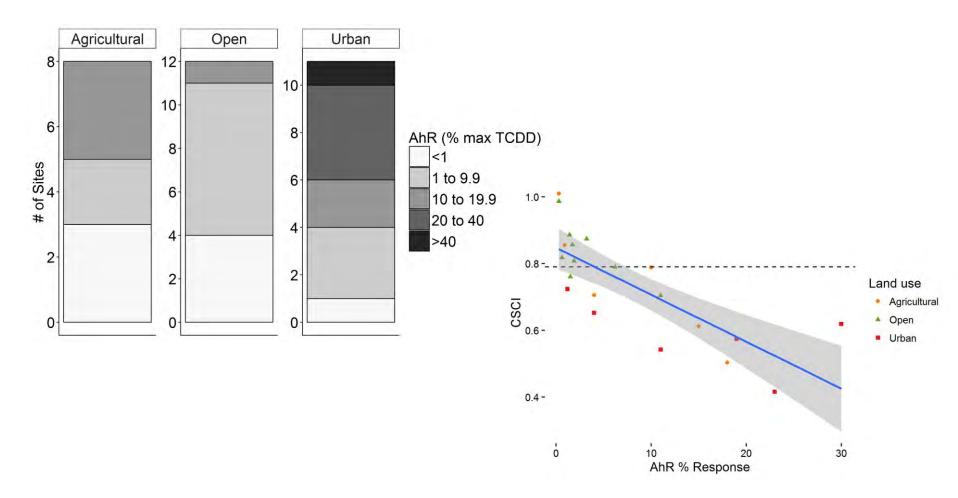
0

of Sites

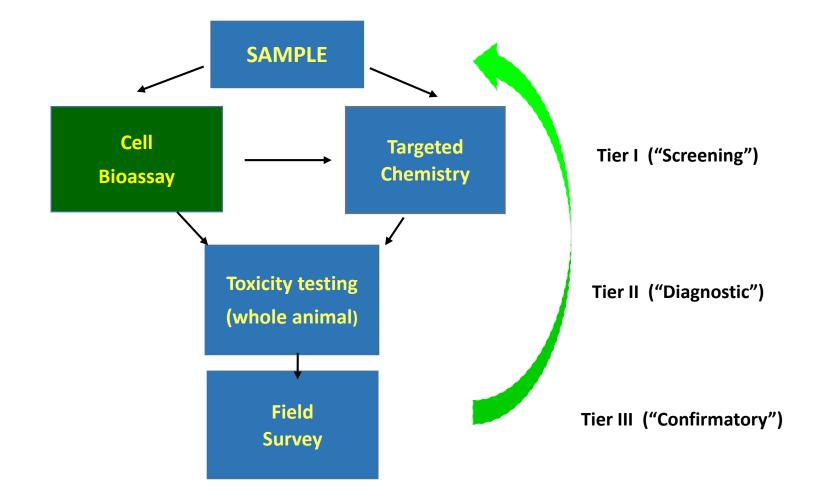
Ventura

Los Angeles

Bioscreening serves as a proxy for exposure...

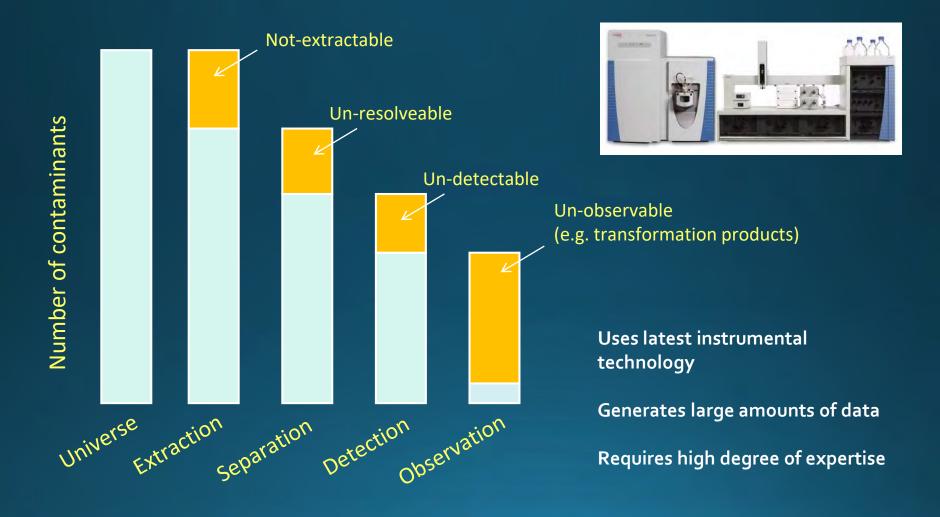

Station ID	Bioscreening (ng E2/L)	LC-MS/MS (ng E2 /L)
114RR0898	BDL: <0.38	BDL: <0.5*
Riverfront	BDL: <0.38	BDL: <0.5*
Mirabel	BDL: <0.38	BDL: <0.5*
Piner Creek	BDL: <0.38	BDL: <0.5*
114LY0010	BDL: <0.38	BDL: <0.5*
Santa Rosa Cr	BDL: <0.44	BDL: <0.5*
Lab Blank	BDL: <0.44	BDL: <0.5*
Field Blank	BDL: <0.44	BDL: <0.5*
114LY0010-Dupl	BDL: <0.44	BDL: <0.5*
WWTP#1 Effluent	BDL: <0.52	BDL: <0.5*
WWTP#2 Effluent	1.90	0.6**

- * Concentration of estrone < 0.56 ng/L
- ** Concentration of estrone was 11 ng/L ("CEQ" ~ 1.1 ng/L)



- Estrogen bioscreen applied to Russian River water samples
- Measures <u>total</u> estrogens, expressed as equivalent concentration
- Bioscreening results in agreement with analysis of known estrogens

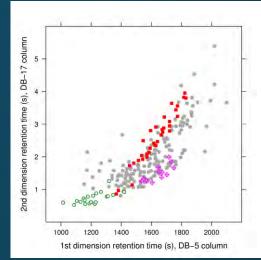
AhR bioactivity reflective of land use


CSCI – index of benthic community condition AhR % Response – aryl hydrocarbon receptor cell assay response Cell assays screen for a <u>larger</u> suite of CECs that informs <u>which chemicals</u> to analyze and <u>which toxicity tests</u> to run, resulting in greater monitoring coverage and efficiency. This is known as *"effects directed analysis"*

Does targeted chemistry explain biological activity?

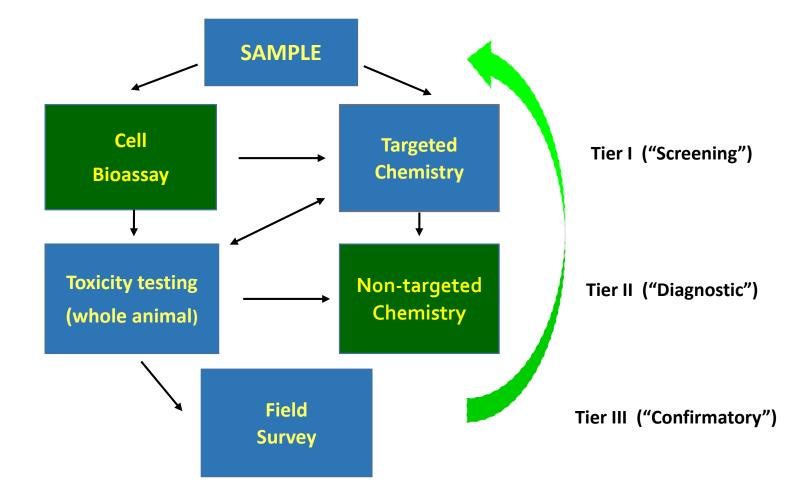
	Glucocorticoid Receptor (GR) Transactivation Assay					
	Mean BEQ	Sum CEQ	% BEQ			
WWTP Effluent	90	0.52	explained o.6			
O3 treated	61	0.49	0.8			
licroFiltration	65	0.46	0.7			

Develop non-targeted analysis to identify bioactive chemicals



NTA fingerprinting

Leco Pegasus 4D GCxGC-TOF/MS


- Dimension 1: Rtx-5MS
- Dimension 2: Rxi-17
- Rank and group SoCal stream samples by AhR response
 - control group (2 open, 1 urban) with non-detectable AhR response
- Greatest no. compounds in urban samples w/highest AhR response
- Results are preliminary

Group	AhR Range (% of max)	No. Cpds
1 (all urban)	28-49	280
2 (urban, ag)	15-23	24
3 (mixed)	8.4-11	65
4 (mixed)	4.0-6.7	2

10

Non-targeted analysis can identify toxicants that are missed by targeted analysis

Adaptive Decision-Making

High concern – control sources

Elevated concern – expand monitoring

Moderate concern – continue monitoring

Little/no concern – reduce/stop monitoring SFB RMP has been monitoring CECs since mid-gos

 Identify CECs of interest using "BPJ"

 Perform targeted monitoring (e.g. PBDEs)

 Adaptively manage using tiered response scheme

Limitations

 The number of <u>bioscreen</u>s standardized for water quality is *limited*

- Our current toolbox has 5 endpoints that are ready for piloting
- The number of <u>labs</u> performing bioscreening is small
 - Mostly academic/research
 - Utilities have had some success
- The number of bioscreening <u>thresholds</u> is even smaller
 - Only one (estrogen receptor) has a credible threshold

Limitations (cont.)

• Threshold development requires *investment* in *science*

- coupling molecular, cellular and organism responses via AOPs
- national and international efforts in progress
- NTA is expensive, time-consuming and requires expertise
 - spectral data analysis is tedious
 - rapidly emerging field
- Sample collection, isolation and concentration is cumbersome, slow
 - Direct analysis will be a major breakthrough
 - Passive sampling looks promising

Moving forward

BIOSCREENING (AND NTA) ENHANCES, AND DOES NOT REPLACE EXISTING MONITORING TOOLS!

- Targeted chemical analysis
- (Whole animal) toxicity testing
- Field monitoring/bioassessment

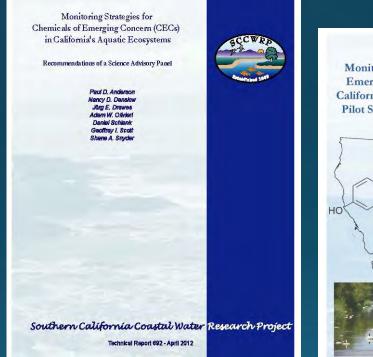
Future Work

- Compile and assess first round of pilot data
 - what results were expected? unexpected?
- Expand the current bioscreening toolbox
- Establish bioscreening thresholds via linkage studies
 identify best animal, in silico models
- Provide education and training for bioscreening tools
- Develop, optimize and standardize NTA methods
 - identify bioactive unknowns and establish databases
- Develop more efficient sample introduction methods

Questions?

Final Report

Monitoring Strategies for Chemicals of Emerging Concern (CECs) in Recycled Water


Recommendations of a Science Advisory Panel

Panel Members Paul Anderson, Nancy Denslow, Jörg E. Drewes (*Choir*), Adam Olivieri, Daniel Schlenk, and Shane Snyder

Convened by the State Water Resources Control Board

> June 25, 2010 Sacramento, California

Monitoring of Constituents of Emerging Concern (CECs) in California's Aquatic Ecosystems -Pilot Study Design and QA/QC Guidance

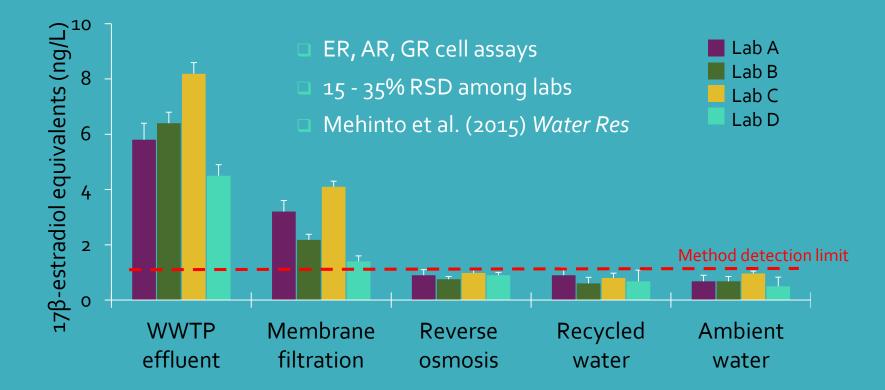
Nathan G. Dodder Alvine C. Mehinto Keith A. Maruya

Southern California Coastal Water Research Project SCOWRP Technical Report 854

keithm@sccwrp.org

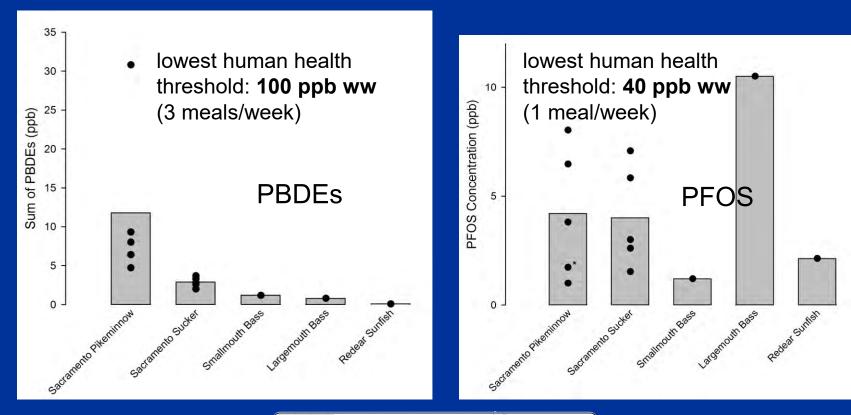
sccwrp.org/ResearchAreas/Contaminants

SCCWRP's "bioscreening" toolbox

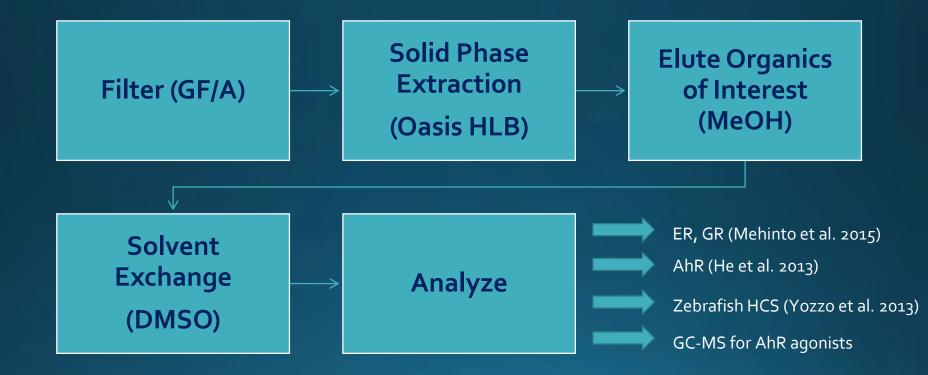

ENDPOINT	SIGNIFICANCE
Estrogenicity (Estrogen Receptor or ER)	Impaired reproduction, <u>feminization</u> of males
Androgenicity (Androgen Receptor or AR)	Impaired reproduction, <u>masculinization</u> of females
Glucocorticoid Activity (Glucocorticoid receptor or GR)	Impaired development, immune diseases
Aryl Hydrocarbon Receptor (AhR)	Dioxin-like toxicity, cancer, tissue damage
Tumor suppressor protein response element (p53RE)	DNA damage, mutagencity, cancer
Peroxisome proliferator activated receptor (PPAR)	Metabolic disoders, impaired immune function, cancer

...and guidelines for data quality*

QA/QC Criteria	Description		
Background	Media, solvent blank response shall be <u><</u> 15% of lowest sample response		
Cell Viability	Samples shall not cause > 20% cell mortality (corrected for background)		
	Dose-response curve for reference toxicant shall be linear (R² > 0.99).		
Calibration	Continuing calibration shall be within 10% of mean initial calibration response.		
Test Response (Spiked sample)	Test response of sample spiked with reference toxicant shall be within 50-150% of expected response		


Mehinto et al. (2015), Wat Res

Good precision <u>among</u> labs is achievable


CECS IN FISH TISUE – RUSSIAN RIVER

- Fish (multiple species) collected in August 2015 in 5 sections of the River
- Tissue composited by species and location analyzed for PBDEs, PFOs
- PBDEs, PFOs levels were < available human health thresholds

Sample processing & analysis

Targeted monitoring is a short term fix

Scenario	WWTP Effluent			Storm Water (MS4)	Effluent Dominated River	Coastal Embayment		Ocean Outfall	All Scenarios
Matrix	Ac	lneo	OUS	Aqueous, Sediment	Aqueous	Aqueous	Sediment	Sediment	Tissue
Bis(2- ethylhexyl) phthalate	0			NA	NA	NA	NA	Μ	NA
Butylbenzyl phthalate	0			NA	NA	NA	NA	М	NA
p-Nonylphenol	0			NA	NA	NA	NA	М	NA
Bifenthrin	Е		F	М	М	М	М	NA	NA
Permethrin	E		F	М	М	М	М	NA	NA
Chlorpyrifos	Ε		F	М	М	М	NA	NA	NA
Estrone	E		F	М	М	М	NA	NA	NA
17-beta estradiol	E		F	М	М	М	NA	NA	NA
Galaxolide (HHCB)	E		F	М	М	М	NA	NA	NA
Bisphenol A	Ε		F	М	М	М	NA	NA	NA
Ibuprofen	F			М	М	NA	NA	NA	NA
Diclofenac	F			М	М	NA	NA	NA	NA
Triclosan	F			М	М	NA	NA	NA	NA
PBDE -47 -99	Е	F	0	М	NA	NA	М	М	М
PFOS	Е	F	0	М	NA	NA	М	М	М