

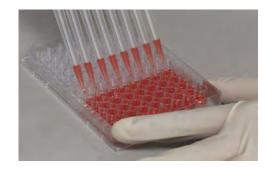
Linking Bioanalytical Methods to Biological Effects

<u>Alvine C. Mehinto</u>, Steven Bay, Keith A. Maruya Southern California coastal Water Research Project Authority

Effect-Based Monitoring Strategy

Integrated Environmental Assessment and Management — Volume 12, Number 3—pp. 540–547 © 2015 SETAC

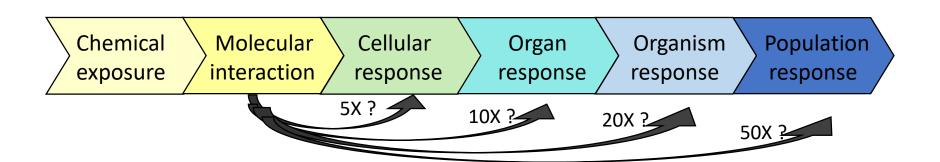
A Tiered, Integrated Biological and Chemical Monitoring Framework for Contaminants of Emerging Concern in Aquatic Ecosystems


Keith A Maruya,*† Nathan G Dodder,† Alvine C Mehinto,† Nancy D Denslow,‡ Daniel Schlenk,§ Shane A Snyder, ∥ and Stephen B Weisberg†

RESEARCH Open Access

The European technical report on aquatic effect-based monitoring tools under the water framework directive

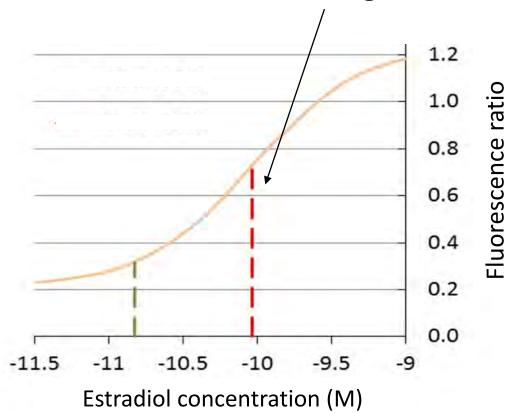
540


Ann-Sofie Wernersson¹, Mario Carere^{2*}, Chiara Maggi³, Petr Tusil⁴, Premysl Soldan⁴, Alice James⁵, Wilfried Sanchez⁵, Valeria Dulio⁵, Katja Broeg⁶, Georg Reifferscheid⁷, Sebastian Buchinger⁷, Hannie Maas⁸, Esther Van Der Grinten⁹,

- Screening based on MODE OF ACTION to streamline assessment
- Approach uses in vitro cell assays to PRIORITIZE and REFINE chemistry and toxicity testing

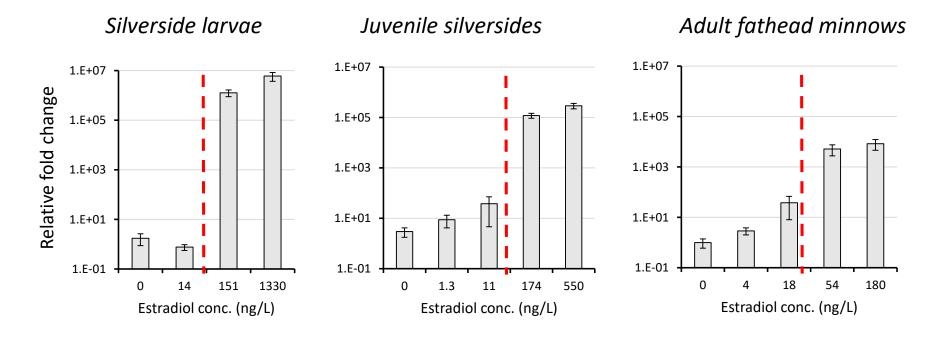
Developing Effect Thresholds

- Effect thresholds needed to interpret cell assays results
- Requires quantification of the linkage between cell assay response and adverse outcome in test animals
- Approach is similar to <u>Adverse Outcome Pathway</u>

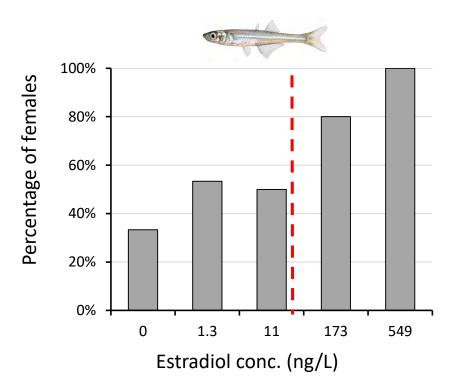

Case Study - relationship between estrogen bioscreen and fish health

Chemical	Cell assay screening	Fish gene response	Tissue response	Organism response
но		LIVE TO THE PARTY OF THE PARTY		
e.g. estradiol (E2)	Estrogen cell assay	e.g. vitellogenin (marker of feminization)	e.g. gonad development	e.g. growth, survival, reproduction

Goal: Quantify the relationship between cell assay response and adverse effects in whole organisms


Cell Assay Response of Estradiol

Cell assay threshold set at 50 % effect concentration; i.e. ~ 25 ng/L


Link to Gene Expression Response

- Vitellogenin increase at concentrations ≥ cell assay threshold
- Same patterns observed in different life stages and species

Link to Organ and Organism Response

Major impact on gonad development of juvenile silversides,
 i.e. feminization

Establishing Cell Assay Thresholds is Possible

- Linkage demonstrated for different test species/life stages
- Fish health impacted at levels ≥ cell assay threshold
- Potential to establish thresholds protective of aquatic life

Chemical	Cell assay screening	Fish gene response	Tissue response	Organism response	
Estradiol	1 X (~ 25 ng/L)	≤ 7 X (170 ng/L)	≤ 7 X (170 ng/L)	> 22 X (550 ng/L)	
	Estrogen receptor activation	Vitellogenin increase	Feminization of gonads	Body weight; Survival	

Research Needs

- Develop/optimize cell assays for other relevant modes of actions (e.g. neurotoxicity, immunotoxicity)
- Quantify relationship to higher order biological effects
 - for promising endpoints

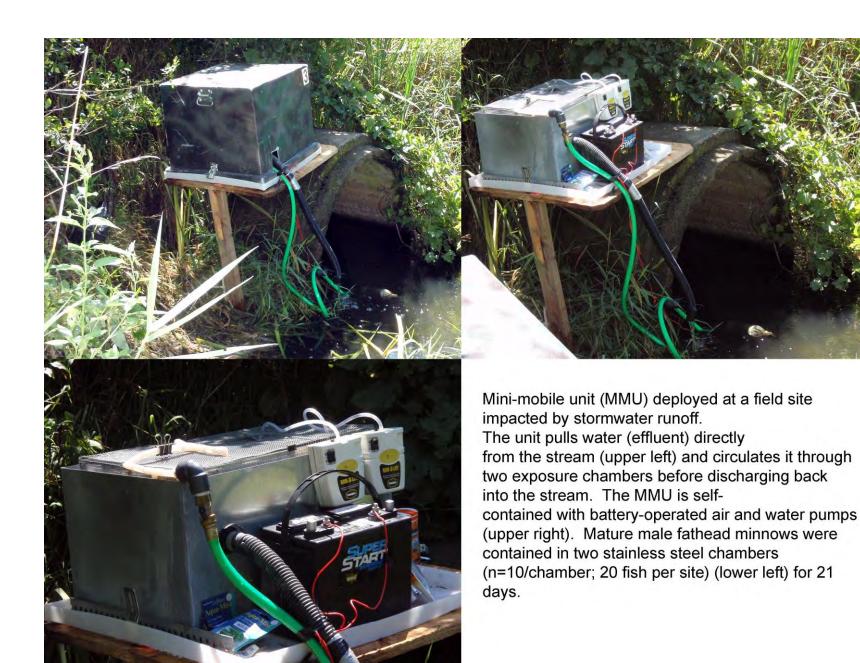
Cell assay endpoint	Potential adverse effect	Chemicals screened
Estrogen receptor	Feminization, impaired reproduction	Estrogens, alkylphenols
Glucocorticoid receptor	Development, metabolic disorder	Anti-inflammatory steroids
Androgen receptor	Impaired reproduction	Fragrances, pesticides
Aryl hydrocarbon receptor	Cancer, embryonic malformations	Dioxin-like chemicals

Research Needs

- Conduct linkage studies in the laboratory and field
- Establish bioscreening effect thresholds
- Investigate the use of cell assays in a weight of evidence approach

Questions?

alvinam@sccwrp.org



Fathead Minnow Linkage Study

	Endpoint	LOEC			
Cell Assay Response	Estrogen receptor activation	≥ 0.5 ng E2/L			
Molecular Response	Increased vtg gene expression in males Increased plasma vtg levels in males Disruption of steroid hormone pathway	≤ 18 ng E2/L ≤ 54 ng E2/L ≤ 180 ng E2/L	36 >		
Tissue Response	Reduced hepatosomatic index in females Decreased # and index of males tubercles Reduced female maturity index	≤ 180 ng E2/L ≤ 180 ng E2/L ≤ 180 ng E2/L	360		
Organism Response	Weight loss in females Decreased survival of females Reduced fecundity	≤ 54 ng E2/L ≤ 180 ng E2/L ≤ 180 ng E2/L	360		