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EXECUTIVE SUMMARY 
Satellite imagery is a powerful tool that can enhance the monitoring and assessment of many of 
the lakes, reservoirs, and large estuaries in California. The synoptic view that satellite imagery 
provides makes it particularly useful for assessing freshwater harmful algal bloom events 
(FHABs), which can be either chronic or episodic in nature. FHABs negatively impact multiple 
beneficial uses in surface waters, including drinking water, recreation, tribal and cultural uses, 
fishing, agriculture, and aquatic life and can occur in all types of waterbodies. The degradation 
of these uses has broad and sustained ecosystem and economic impacts. However, little is 
understood about the extent of FHAB risks to beneficial uses because many of California’s 
freshwaters are not routinely monitored for these impacts. The overall goal of this report is to 
support the broader applications of satellite imagery for assessments of FHABs. Wider use of 
this technology has been constrained due to the limited understanding of the quality of data 
and standardized procedures are lacking for processing and analyzing satellite imagery for 
additional analysis. Establishing these best practices and quantifying data quality opens the 
door to routinely use satellite imagery, as a complement to other data sources, to assess HABs 
in California’s freshwater and estuarine waters as well as support water quality management 
decisions.  

Towards this goal, this report encompasses the following topics with a focus on use of the 
Ocean and Land Color Instrument (OLCI) data products from onboard the Sentinel-3 satellite 
mission: 1) Identify management questions of relevance to remote sensing of FHABs, 2) Identify 
specific metrics that can be used to answer management questions, 3) Develop and document 
“best practices” protocols for processing raw remotely sensed imagery with supporting open-
source code; 4) Develop specific procedures to calculate and visualize metrics used to answer 
management questions, with supporting open-source code; 5) Conduct a literature review to 
support Water Board decisions on quality assurance and quality control criteria; and 6) Identify 
key gaps in existing products and make strategic recommendations towards filling these gaps. 
Each of these elements were developed in collaboration with two advisory groups, one group 
with technical expertise in remote sensing and the other with expertise in water quality and 
FHAB assessment that were identified as likely end users of the technical report and related 
products. 

Major Findings/Summary 
A common set of water quality assessment metrics that can be addressed with OLCI satellite 
imagery data were identified by a broad array of stakeholders. On a broad level, these 
assessments are used to answer questions focused on status, trends, environmental drivers, 
and FHAB incident response. The questions apply to multiple spatial scales (statewide-, 
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regional-, or waterbody-scale) and speak to swimmable, fishable, aquatic life and tribal/cultural 
uses. Broad spatial and temporal coverage for California’s largest lakes, reservoirs, and 
estuaries make OLCI satellite imagery data ideal for addressing these types of questions across 
a variety of temporal scales, such as annual, seasonal and/or monthly assessments. Similarly, 
these data can be used to assess a variety of spatial scales, ranging from assessing an individual 
resolvable waterbody (i.e., containing enough spatial coverage to be detected by a satellite) to 
assessing all resolvable waterbodies in the state. Furthermore, the Sentinel-3 mission is 
planned to extend to at least 2037, making this a suitable platform for an extended period of 
time. 

The main indicators that can be derived from OLCI imagery suitable for addressing the 
identified management questions are total phytoplankton biomass via total chlorophyll-a and 
cyanobacterial biomass via CIcyano. These indicators can be applied to the four data metrics 
defined in this report. These metrics are bloom magnitude, bloom occurrence, bloom spatial 
extent, and bloom frequency, which are used to quantify near-surface, open water blooms 
based on their intensity and duration (magnitude), temporal patterns (frequency and 
occurrence) or spatial characteristics (spatial extent) within a waterbody or group of 
waterbodies.  

The main elements used to evaluate OLCI imagery data quality are based on the Water Boards’ 
Surface Water Ambient Monitoring Program (SWAMP) data quality assurance framework. A 
literature review was conducted to summarize the status of what is known and not known 
about OLCI data quality according to six data quality elements including the detection limit, 
bias, precision, representativeness, comparability, and completeness.  

Although a majority of the data processing steps for OLCI imagery data are completed by the 
Cyanobacteria Assessment Network (CyAN) project, there are additional processing options 
including the application of a customized lake inventory, the further removal of potentially 
invalid (i.e., potentially erroneous) pixel data, or generating custom temporal composites from 
daily images. There are currently no universal standard practices for these additional processing 
options for OLCI imagery data, and different processing procedures suit different end user goals 
as well as their comfort with potential false positives and/or false negatives. Nevertheless, a 
consistent procedure with defined caveats should be developed for use of the data and for 
consistency between years. The report thoroughly explores these data processing options and 
makes recommendations for which procedures are best suited to address Water Boards 
management questions. These processing steps are then applied in a series of status, pattern, 
and trend analyses meant to provide an example of this type of assessment.  
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Recommended Future Actions 
We identified multiple recommendations to further streamline the adoption of satellite remote 
sensing for FHAB assessment. These recommendations include five major types of activities: 

Integrate additional satellite platforms that can expand the extent of waterbodies 
characterized. Higher spatial resolution platforms do exist and would allow for more 
waterbodies to be assessed, and for the resolution of more nearshore and narrow regions of 
waterbodies to be observed. Data from these platforms are valuable for future FHAB 
monitoring and assessment. Of greatest interest is the Multispectral Instrument (MSI) onboard 
the Sentinel-2 satellite constellation. Future collaboration with the CyAN project is a promising 
path forward to integrate data from this platform into California’s growing set of remote 
sensing tools. 

Standardize assessment of landscape and field-based indicators and metrics of FHAB drivers. 
To expand the utility of remotely sensed FHAB biomass assessments, we recommend assessing 
the available data that provides insights as to potential FHAB drivers. Drivers of FHABs consist 
of factors both internal and external to the waterbody. Full FHAB driver assessments require in-
situ studies, however the pairing of remotely sensed FHAB biomass data with landscape level 
(i.e., land use, climate factors etc.) and field-based (i.e., water temperature, lake level, etc.) 
indicators and metrics of FHAB drivers complement these types of efforts and identify areas to 
focus efforts. Assessing satellite-based biomass dynamics in tandem with data on potential 
drivers can be used to identify potentially useful relationships and guide additional studies. 
Building this capacity includes standardizing the assessment of landscape and field-based data, 
identifying metrics, and workflows required to investigate the relationship between status and 
drivers, including the assessment of data quality. 

Develop consensus on FHAB action levels for satellite remote sensing to support water 
quality management decisions. To improve utility of remotely sensed data for management 
decisions, thresholds should be defined that link satellite data (CIcyano and chlorophyll-a) to 
the risk of exceeding thresholds of in-situ photosynthetic pigment data (chlorophyll-a or 
phycocyanin) that impair beneficial uses in resolvable waterbodies. The infrastructure to 
conduct this data match up process is readily available since in recent years, approaches have 
been developed to streamline matching co-located in-situ measurements with satellite 
observations, making this an accessible approach. 

Continue to develop quality assurance studies and documentation for application of satellite 
remote sensing to Water Board water quality programs. The SWAMP program should develop 
a generalized quality assurance project plan (QAPP) for the application of satellite remote 
sensing to Water Board water quality programs. This report provides the scientific review with 
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which to accelerate the development of that QAPP. Additionally, SWAMP should continue to 
validate and assess remote sensing products with available in-situ data to further evaluate 
algorithm performance. Field sampling could be aligned for dates with satellite overpasses to 
increase the in-situ data available for validation. 

Enhance data communication, accessibility, visualizations, and reporting that can increase the 
utility of the program for the Water Boards and their partners. To expand the user community 
for remotely sensed FHAB data, data systems and decisions support tools are needed to 
encourage strong partnerships and rapid dissemination of FHAB monitoring data. To achieve 
this, we recommend developing the vision, including key data sources, data visualizations and 
graphical user interface (GUI) functionality for each type of decision support, through 
interactions with intended user groups. Two specific next steps are identified. These are (1) 
integrate satellite remote sensing into regular reporting on FHAB status and trends and (2) 
integrate data metrics and summaries into a FHAB satellite visualization tool to allow for 
functionalities such as comparison of a specific lake to a larger population of lakes and for 
download of data metrics into an easily digestible format such as an excel or .csv file. 
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1. INTRODUCTION  

1.1 Purpose of the Report 
Freshwater harmful algal blooms (FHABs) are defined as an overgrowth of cyanobacteria or 
eukaryotic algae within a freshwater or estuarine system. FHABs have been documented 
throughout California’s inland waters, with events being reported in lakes, rivers, streams, 
estuaries, and coastal confluences. FHABs can produce toxins that can harm humans, dogs, 
livestock, and wildlife. High biomass of both toxic and non-toxic blooms causes odor, poor 
aesthetics, and a cascade of ecological effects including growth of pathogenic bacteria, clogging 
of fish gills and benthic habitats, low dissolved oxygen concentrations, and fish kills. Additional 
adverse impacts of human and animal exposure to high biomass of blooms, regardless of the 
presence of measurable toxins, includes skin rashes, ear and eye infections, and gastrointestinal 
distress (Chorus and Welker, 2021). 

FHABs negatively impact multiple beneficial uses in California surface waters, including drinking 
and municipal water, recreation, tribal and cultural uses, fishing, agriculture, and aquatic life. 
The degradation of these uses has broad and sustained ecosystem and economic impacts. 
Nutrient pollution, hydromodification, and physical habitat alteration that occur through 
human activities are the principal drivers, exacerbated by climate change through warming, 
higher CO2 levels, and changing precipitation regimes (Paerl et al., 2018). However, the extent 
of FHAB risks to beneficial uses is uncertain because many inland surface waters are not 
routinely monitored for these impacts. Due to the increasing occurrences of FHABs in California 
and limited resources for routine ambient monitoring, the State Water Resources Control 
Board’s (SWRCB) Surface Water Ambient Monitoring Program (SWAMP) developed a satellite 
imagery tool in 2016 specifically for use in California. The satellite imagery tool was 
implemented as a screening tool to support prioritization for field-based surveys, such as 
targeting locations for HAB event response. The tool routinely acquires satellite imagery 
products from National Oceanic and Atmospheric Administration (NOAA) and developed as a 
partnership with NOAA, San Francisco Estuary Institute (SFEI), and SWAMP. To visualize the 
processed satellite imagery, the data is presented on a web-based tool (https://fhab.sfei.org) 
which provides statewide and waterbody-specific data for open-water FHABs in 255 of 
California’s largest waterbodies.  

Despite its promise for FHAB assessment, the broader applications of satellite imagery are 
constrained due to the limited understanding of the quality of data and lack standardized 
procedures for processing and analyzing satellite imagery for additional applications. Evaluating 
the current science of processing remote sensing data and developing applications based on 
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quality data promotes confidence in integrating satellite imagery data into Water Boards 
programs. Thereby, the development of these standardized procedures and quantifying data 
quality opens the door to routine use of satellite imagery in support of water quality 
management decisions. The FHAB Program has identified the following examples (but are not 
limited to): routine assessment of FHAB status and trends; integrated reporting and 
determination of FHAB-related water quality impairments in United States Environmental 
Protection Agency (USEPA) Clean Water Act Section 305(b) Integrated Reports and 303(d) 
listing decisions; and evaluation of management decisions and compliance with related policy.  

The specific goals of this report are to: 1) Identify management questions of relevance to 
remote sensing of FHABs; 2) Develop standardized procedures for processing and evaluating 
raw remotely sensed imagery with supporting open-source data processing code; 3) Conduct a 
literature review to determine known data quality of these data to support Water Board 
decisions on quality assurance and quality control criteria; 4) Identify and document custom 
processes to analyze raw remotely sensed imagery to maximize resolvability of waterbodies 
and to address management questions; 5) Create key visualizations using these data and 
metrics suitable for exporting with supporting open-source code; and 6) Identify key gaps in 
existing FHAB Program remote sensing products and make strategic recommendations towards 
filling these gaps. 

1.2 What California is doing about FHABs: the role 
of satellite remote sensing 
Routine monitoring and assessment of FHABs is important to support management and 
stakeholder response to emerging or occurring FHABs for the protection of environmental and 
human health. FHABs can develop rapidly and persist for weeks or months, making them 
challenging to monitor due to potentially rapid changes in bloom conditions. Ambient, in-situ 
monitoring, therefore, is the most ideal for FHABs to protect public health, understand drivers 
and to understand potential mitigation options. However, routine, in-situ FHAB monitoring 
programs are rare in inland waters throughout the State due to limited resources as identified 
in the FHAB Program annual reports (California State Water Resources Control Board, 2021, 
2022, 2023). Event response efforts can partially inform this gap, due to several factors 
including the timing of event response monitoring efforts often occurring post bloom, the 
turnaround time of laboratory results, and lack of follow up monitoring during an event due to 
limited resources and the nature of voluntary participation by local managers. These challenges 
are compounded due to the large number of inland waterbodies in California, some of which 
may be challenging to access routinely, that can experience FHAB events. Nonetheless, routine 
FHAB observations are needed to develop a better understanding of FHAB trends in California. 
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Such observations would also support the identification of systems with repeat FHAB issues to 
focus on where additional study of drivers and mitigation options are needed.  

Assembly Bill No. 834 (AB 834) Freshwater and Estuarine Harmful Algal Bloom Program requires 
the SWRCB and the California Regional Water Quality Control Boards (RWQCB) to establish a 
Freshwater and Estuarine Harmful Algal Bloom Program to protect water quality and public 
health from harmful algal blooms, including conducting and supporting algal bloom field 
assessment and ambient monitoring at the state, regional, watershed, and site-specific 
waterbody scales.  

With the passing of AB 834 and the establishment of a State FHABs Program, a formalized 
FHABs Monitoring Strategy was developed and published in 2021 (Smith et al., 2021). The 
document articulates the vision, framework, and strategy to develop and implement a 
statewide FHAB Monitoring Program. The FHAB Monitoring Strategy is centered around key 
management questions that are focused on immediate information needs to manage the 
impact of FHABs on water quality, including understanding the status and trends of FHABs, 
including the presence and concentrations of cyanotoxins, and the environmental drivers 
influencing FHAB magnitude, extent, frequency, and duration. Specific consideration in the 
FHABs Monitoring Strategy is given to three waterbody types: 1) lakes and reservoirs, 2) 
streams and rivers, and 3) coastal confluences (i.e., estuaries, coastal lagoons, etc. directly 
influenced by river runoff).  

The FHAB Monitoring Strategy articulates the need for multiple approaches to collect ambient 
FHAB monitoring data to inform management decisions that ultimately lead to better 
protection for public health and the environment. Specifically, the strategy laid out the vision 
for an integrated monitoring approach with multiple elements including: 1) expanded use of 
remote sensing approaches that build upon the current partnership that California has formed 
with federal agencies; 2) a partner program that provides infrastructure to encourage FHAB 
monitoring by other federal, state and local agencies, tribal governments, citizen science 
groups, etc.; and 3) field surveys developed and managed by SWAMP or its partners. 
Additionally, there is need for continued and strengthened incident response efforts via 
synergies with ambient monitoring approaches. Meanwhile, the success of the strategy 
elements is reliant on data management, visualization, and decision support systems as a core 
part of the monitoring infrastructure necessary for managers to effectively use FHAB data for 
management decisions and inform timely communication to the public. Dedicated funding for 
the implementation of the FHAB Monitoring Strategy recommendations was not identified so 
the FHAB Program has focused on cost-effective approaches to implement programmatic goals 
to work towards the objectives mandated by AB 834 that are informed by monitoring.  
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Satellite remote sensing can be a cost-effective way to support several of the mandates of AB 
834 and programmatic goals articulated in the FHAB Monitoring Strategy (Smith et al., 2021). 
Satellite remote sensing approaches can provide routine estimates of near-surface FHAB 
biomass estimates across broad spatial and temporal scales. Importantly, however, satellite-
based biomass estimates are not meant to replace in-situ sampling as they do not provide 
critical information regarding the presence of cyanotoxins. Instead, satellite imagery data can 
offer a complementary assessment approach to in-situ monitoring programs (Shi et al., 2019) 
and these observations of biomass can help identify increases in biomass indicative of increased 
potential for cyanotoxin presence. Sensors on satellite platforms can detect light reflected from 
the Earth at different wavelengths that allows for the determination of cyanobacterial and algal 
biomass, as well as a variety of other waterbody properties such as water transparency, 
biological properties, hydrology, temperature, and ice cover. The overall capabilities of a given 
satellite mission depend on the specific sensor package(s) deployed on that satellite, and how 
it’s operated. The spatial resolution of data is limited, in part, by the capabilities of the sensors 
onboard the satellite platform. The spatial and temporal resolution of satellite data products is 
also governed by the orbit characteristics of the specific satellite platform which influence the 
frequency of revisits over a given location. 

1.3 Existing satellite remote sensing infrastructure 
for FHAB detection 

1.3.1 Satellite and Sensor Infrastructure  
Several international, national, and private agencies conduct satellite missions that are used to 
assess algal and cyanobacterial abundance across a variety of aquatic ecosystems. Federal and 
International agencies conducting satellite missions include the National Aeronautics and Space 
Administration (NASA), NOAA, and the European Space Agency (ESA). The specific capabilities 
of current and future satellite missions are determined by these agencies. Among these 
platforms, one of the most well-studied, and currently operational satellite platforms for 
assessing FHABs in inland waters is the Ocean and Land Color Instrument (OLCI) onboard the 
Sentinel-3 satellite constellation. Sentinel-3A was launched by the ESA in February 2016, and 
Sentinel-3B was launched in April 2018 (Clerc et al., 2020). Sentinel-3A provided observations 
every 2-3 days beginning 2016 until the inclusion of Sentinel-3B data in May 2018 after which 
observations were available near-daily (Schaeffer et al., 2022). The lifetime of these satellite 
platforms is currently estimated at ten years. Additional Sentinel-3 satellites are included in the 
ESA Sentinel-3 program with a Sentinel-3C launch projected for 2026 and a Sentinel-3D launch 
projected for 2028, for a currently planned life of this program of at least twenty years. The 
OLCI sensor has a 300 meter by 300-meter (~22 acres) pixel resolution for a given area of the 



5 
 

state, though factors including cloud cover, sun glint, snow, and ice can limit image availability 
during satellite overpass (see section 2.3 for full discussion of observation limitations).  

OLCI can detect light reflected from the Earth at multiple wavelengths. This allows for the 
estimation of cyanobacterial and algal abundance in individual satellite pixels using spectral 
shape algorithms for specific spectral bands in the upper portion of the water column. This 
includes differentiating the unique spectral characteristics of cyanobacterial and algal biomass 
based on the unique pigments (e.g., phycocyanin) present in cyanobacteria (see Chapter 3 for 
an extended description of the algorithm). Prior to OLCI, the Medium Resolution Imaging 
Spectrometer (MERIS), onboard the Envisat satellite platform, had similar sensor characteristics 
and was used to study FHABs until it became non-operational in 2012. Currently, approaches to 
detect FHABs, including the specific detection of cyanobacteria, from imagery data collected by 
these platforms are well studied for use in lentic waterbodies such as lakes and reservoirs (Clark 
et al., 2017; Coffer et al., 2020, 2021a, 2021b; Urquhart et al., 2017; Wynne et al., 2010). 
Alongside these technological advancements to detect FHABs formed by cyanobacteria, 
researchers also developed algorithms to estimate chlorophyll-a (Chl-a; a proxy for overall algal 
and cyanobacterial biomass or density). Because cyanobacterial dominance and cyanotoxin 
concentrations are strongly correlated with chl-a (US EPA 2021), chl-a becomes a useful proxy 
for eutrophication and an added indicator of potential cyanoHAB risk, even when 
cyanobacterial blooms are not detected. Thus, given the paucity of in-situ data currently 
available for the assessment of FHABs in California’s waterbodies, OLCI imagery offers a 
powerful tool to begin to assess the status and trends of eutrophication in general and 
cyanoHAB events in large lakes and reservoirs. As more in-situ data becomes available, these 
data can supplement the remotely sensed data to improve the accuracy and completeness of 
these assessments. 

1.3.2 Data delivery and visualization infrastructure 
Satellite remote sensing is already being implemented as an approach to guide monitoring 
FHABs within California. Since 2016, California has routinely acquired remotely sensed 
cyanobacterial concentration estimates from NOAA via OLCI with historic satellite data from 
MERIS going back to 2002. Through this strategic investment, these data are provided through 
a California FHAB satellite portal hosted by SFEI (https://fhab.sfei.org/). The purpose of this 
tool, as it currently exists, is to provide early warning for managers to mobilize field crews and 
to encourage verification and surface water sampling to inform public health advisories. It is 
particularly useful to prioritize locations for event response field assessments in large 
waterbodies. A recent application of OLCI imagery for event response occurred in the San 
Francisco Bay estuary in 2022 and 2023. Large blooms of a marine algae called Heterosigma 
akashiwo occurred in the estuary, resulting in widespread fish kills and ecosystem impacts. Chl-
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a estimates from OLCI imagery helped to guide and focus monitoring efforts during these 
events by providing synoptic views of the Bay to identify where algal biomass was the greatest. 
Imagery data also provided an important temporal time series on the development of the 
bloom as it spread through the estuary.  

The current CA FHAB satellite portal was not specifically designed to assess trends in 
cyanobacterial and algal abundances over time, or to support water quality management 
decisions recommended by the FHAB Program, such as impairment listing, TMDL development, 
or compliance with biostimulatory water quality objectives. Therefore, these investments, 
while successful for event response, have not yet resulted in extensive applications to address 
FHAB management questions or actions. 

Several efforts at the federal level are promising to help support the expanded use of satellite 
remote sensing data to address a broader set of management questions about FHABs. The 
Cyanobacteria Assessment Network (CyAN) project is a collaborative initiative across the 
USEPA, NASA, NOAA, the United States Geological Survey (USGS), and, as of 2023, also the 
United States Army Corps of Engineers (USACE) to monitor and assess cyanobacteria in 
resolvable waterbodies across the United States. The CyAN project conducts initial data 
processing of raw OLCI/MERIS data into a standardized, publicly accessible output for use in 
cyanobacterial assessment. These are served via the NASA website at: 
https://oceancolor.gsfc.nasa.gov/about/projects/cyan/. 

In addition to serving data products, the CyAN project has developed recommended 
approaches for processing and analyzing OLCI imagery data for identifying and tracking 
cyanobacterial blooms on the national scale in resolvable waterbodies. Multiple peer reviewed 
papers have published approaches for assessing cyanobacterial bloom occurrence, spatial 
extent, magnitude, frequency, and trends from imagery data. As a part of these efforts, some 
initial assessments of national trends in FHAB occurrence, frequency, extent, and magnitude 
have been conducted (Coffer et al. 2020, 2021a, 2021b; Urquhart et al. 2017; Mishra et al. 
2019; Clark et al. 2017; Shaeffer et al. 2022). 

1.4 Current Needs 
The FHAB Monitoring Strategy identified that strategic investments to strengthen California’s 
use of remote sensing would be beneficial to the FHABs Monitoring Program and other related 
water quality management programs. These tools provide cost-effective and complementary 
information to field-based assessments of FHAB status, trends, and drivers. In this report, we 
focus on four concepts that were identified by the FHAB Program that would allow remotely 
sensed imagery to be more completely utilized by relevant Water Boards Program areas: 1) 
Development of standardized procedures to routinely process and evaluate best practices, 
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including routine raw data with known quality; 2) document data quality control to support the 
FHAB Program’s development of a specific quality assurance plan; 3) provide data 
communication, accessibility, visualizations, and reporting that can increase the utility of these 
data for the Water Boards and their partners and; 4) develop technological improvements that 
can greatly expand the number and completeness of resolvable waterbodies for evaluations. 

The Water Boards prioritize documentation of data quality so that they can make management 
decisions with confidence. Therefore, assessment of the quality of data derived from remotely 
sensed imagery is critical to support any downstream uses of the data. Standardized analyses of 
remotely sensed imagery are important for consistency and interpretation of these data over 
time. Standardization of data of any type helps to eliminate discrepancies, ambiguity, and 
interpretation by end users and elicits confidence in the use of the data for management 
decisions. For the purposes of the FHAB Monitoring Program, the goal of using remotely sensed 
imagery is to extract meaningful data about FHABs in California’s inland waters. To accomplish 
this goal, a variety of data processing steps are needed to transform imagery into usable data 
metrics for this goal. Standardizing these data processing steps as best practices means that the 
caveats and limitations of the data can be clearly identified and articulated when 
communicating any downstream analyses and that the processing can be readily repeated. 
Standardized imagery processing also means that the processed data will be in a standardized 
format, making long term data management, assessment, and storage easier. 

1.5 Report Goals and Organization 
The organization of this report is as follows. 

In Chapter 1, there is an introduction that describes the purpose and goals of this report, the 
current approach for monitoring and managing FHABs and how satellite remote sensing can 
support these efforts, existing satellite remote sensing infrastructure for FHABs, report 
organization and complimentary documents, and the approach to developing this report. 

Chapter 2 articulates the focal management questions that guided the data quality assessment, 
data processing and data analysis development efforts.  

Several cyanobacteria specific indices and data metrics can be calculated using MERIS, and now 
OLCI imagery. These are described in detail in Chapter 3. 

A description of data processing steps, options and recommendations are described at length in 
Chapter 4 of this report. A step-by-step guide for processing including the use of open-source R 
code for analysis is described in the corresponding Guidance Document. 
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In Chapter 5, a description of data analysis methods to support answering management 
questions related to monitoring. 

A data quality literature review was conducted and is presented in Chapter 6 of this report. An 
additional complimentary effort for satellite remote sensing field validation was also conducted 
as a part of this work. The results of those efforts are presented in the corresponding Field 
Validation Report, but key findings of that effort are presented in this chapter. 

Chapter 7 presents a vision for future applications and recommendations for future work. 

1.6 Approach to Developing this Report 
The overarching approach to developing this report and recommendations consisted of the use 
of a Technical Advisory Committee (TAC). The TAC consisted of two working groups. The first 
was a technical working group, consisting of national experts in FHAB ecology and satellite 
remote sensing. The technical working group provided technical feedback on data quality 
assessment, data processing and data analysis elements, discussed various approaches and 
their inherent advantages and disadvantages, and helped provide consensus recommendations, 
where possible. The second working group within the TAC was an end user working group 
consisting of key technical staff from State and Regional Water Boards and other state agencies 
and tribes, and community scientist groups, who provided broad perspectives on the utility of, 
and application needs for integrating satellite remote sensing data products into programs, 
policies, regulations, and monitoring efforts. 

FHAB Water Boards staff proposed a set of key management questions (described in detail in 
Chapter 2) that reflected agency priority information needs and are consistent with the 
information needs of other potential partners from the federal to local level. These 
management questions were initially vetted by the TAC, then were refined by the subgroups to 
discuss explicit recommendations for satellite remote sensing data that could (or could not) 
answer those questions.  

All management questions and work products focus on filling in key gaps for the application of 
OLCI imagery. The initial focus was limited to OLCI data products from onboard the Sentinel-3 
satellite mission for several reasons. The first is that the OLCI data products can provide 
estimates of both overall algal biomass via Chl-a concentration estimates, as well as 
cyanobacterial abundance estimates via the CIcyano index. This is due to the specific 
wavelength bands available via OLCI data products. Additionally, large investments by both 
California and federal agencies have already been made to do much of the data processing, 
data hosting and serving of OLCI data products, making use of these data much more accessible 
to a variety of users. The major drawback of OLCI data products is a larger pixel size (300 m), 
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which limits the number of inland waterbodies resolvable using this platform. The large pixel 
size also limits the ability to resolve nearshore and narrow regions of large waterbodies. 
Nonetheless, the benefits of this platform outweigh these limitations for assessing FHABs in the 
surface waters of resolvable waterbodies.  

Future efforts will be focused on imagery that has finer spatial resolution, and the framework 
and analyses described in this report are envisioned to be scalable to these types of higher 
spatial resolution imagery data products. Of greatest interest is the Multispectral Instrument 
(MSI) onboard the Sentinel-2 satellite constellation. This sensor offers a 20-meter spatial 
resolution which will allow for a majority of waterbodies in California (roughly 14,500 
waterbodies are estimated to be resolvable statewide) to be monitored remotely with far 
greater spatial resolution of areas near shorelines and beaches, which are known to 
concentrate FHABs and thereby strengthen the detection of FHABs near recreational areas. MSI 
generates imagery with a different spectral signature; therefore, these products cannot be used 
to calculate a CIcyano value. Methods have been developed to use MSI imagery to estimate 
Chl-a concentrations, which could provide data about overall algal biomass like OLCI, but a 
cyanobacteria specific index equivalent to the CIcyano index is not currently available. 
Nonetheless, MSI and other high resolution satellite imagery products offer promising additions 
to FHAB monitoring. One of the major limitations for including MSI data products in this current 
effort is that pre-processed data products from Sentinel-2 are not currently available on a 
routine basis. Due to the increased spatial resolution, a significantly larger amount of data is 
generated by this platform compared to OLCI imagery. Significant investments would be 
needed to manage and use this data. The CyAN project has kicked off efforts in 2024 to build 
similar infrastructure as currently available for OLCI data products. Thus, future use of Sentinel-
2 and other higher resolution data products were kept in mind throughout the development of 
this report, and many of the recommendations for data processing and analysis in this report 
are envisioned to be scalable to these future high resolution data products.  
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2. MANAGEMENT QUESTIONS ADDRESSED VIA 
SATELLITE REMOTE SENSING 

2.1 Management Questions  
The FHAB Program, along with key management, governmental and stakeholder entities, have 
a common set of information needs related to FHABs and how they impact the beneficial uses 
of California’s inland waterbodies. The FHAB Monitoring Strategy document outlines these 
questions extensively across multiple spatial scales and a wide variety of monitoring 
approaches (Smith et al., 2021, Chapter 2). On a broad level, these questions focus on status, 
trends, environmental drivers, and FHAB incident response. The questions apply to multiple 
spatial scales (statewide-, regional-, or waterbody-scale) and speak to swimmable, fishable, 
aquatic life and tribal/cultural uses. 

In this present work, this framework was applied to satellite remote sensing imagery with a 
focus on OLCI imagery, although applicable to potential other satellite platforms, and efforts 
focused on developing the approaches to address questions related to these themes. The 
questions guiding this current effort are described in Table 2.1. 

Table 2.1: A summary of the four overarching management question categories that 
guided the development of OLCI data processing and analysis workflows. 

Category Questions 

Status 

What is the overall magnitude and frequency of FHABs in OLCI 
resolvable waterbodies in CA? 

How often do blooms occur in OLCI resolvable waterbodies in CA? 

What is the spatial extent of OLCI resolvable water area in CA that 
experiences a bloom? 

Trends How are bloom occurrence, magnitude, extent, and frequency 
changing over time? 

Drivers What are the environmental factors that are associated with bloom 
occurrence and magnitude? 

Incident 
Response 

What is the ongoing risk in the waterbodies in my region or 
watersheds with past FHAB event reports? How can remotely sensed 
data be used to inform incident response? 
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2.2 Remotely Sensed FHAB Indicators and Linkages 
to Impact Pathways 
The main indicators that can be derived from OLCI imagery are biomass based and thus 
represent at least one risk pathway to each of the beneficial use categories (see Table 2.2 of 
Smith et al., 2021). The impacts of biomass across these priority beneficial uses are briefly 
described here (see Appendix 2 of Smith et al., 2021 for an expanded discussion of FHAB 
impacts).  

Effects of excessive biomass on aquatic life, terrestrial wildlife, and livestock occur through 
multiple pathways. As the extent, frequency, and magnitude of algal blooms begin to increase, 
marked changes to primary producer biomass and community structure fundamentally 
restructure food webs that support invertebrates, fish, birds, amphibians, and other wildlife. 
The biomass of nutrient tolerant, opportunistic epiphytic and drift micro- and macroalgae and 
phytoplankton can increase under these scenarios and these species can dominate an 
ecosystem. High biomass can also cause shifts in dissolved oxygen and pH levels that negatively 
impact aquatic life. Cyanotoxins may also be more prevalent and can cause a variety of chronic 
and acute ecotoxicological impacts (Mehinto et al., 2021). 

Contact (REC1) and non-contact (REC2) recreation are impacted by FHABs through a variety of 
pathways. Visual scums, poor water clarity, the “pea green soup” of high biomass blooms, and 
abundant cyanobacterial mat growth in shallow water are all examples of aesthetic impairment 
of waterbodies. Increased organic matter accumulation associated with high biomass blooms, 
coupled with low dissolved oxygen concentration, can cause a proliferation of heterotrophic 
bacteria, some of which may be pathogenic to aquatic organisms and humans (NRC 2000). 
Direct impacts to human health and domestic animal health from cyanotoxin exposure, 
including but not limited to skin rashes, ear and eye infections, neurological symptoms, and 
gastrointestinal distress, are significant risks that are increased with higher cyanobacterial 
biomass (Puschner et al. 2008; Stewart et al. 2008; Backer et al. 2013). 

Fishable beneficial uses are impacted through several pathways. High biomass FHAB events can 
result in hypoxia, shellfish disease, fish kills, and the mortality of other aquatic species (Glibert 
et al. 2002) that ultimately reduces abundance and biodiversity of aquatic and terrestrial 
wildlife (e.g., salmonids, crabs, bivalves, et al. sportfish) associated with the beneficial uses of 
aquaculture (AQUA), shellfish harvesting (SHELL), and commercial and sportfishing (COMM). 
Additionally, bioaccumulation in fish and shellfish tissues of cyanotoxins may make them risky 
to consume (Miller et al. 2010; Kudela 2011), or taste and odor compounds can cause taste 
issues (Burr et al. 2012; Howgate 2004; Robin et al. 2006), respectively. 
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High biomass blooms are problematic for raw drinking water source protection and municipal 
waters for several reasons. Beyond the increased risk of toxins and taste and odor compounds, 
increased dissolved organic carbon (DOC) results from “leaky” algal blooms. Higher DOC levels 
increase the amount and costs of disinfectants required to achieve disinfection goals. DOC, 
algal metabolites, and other decomposition products, when present in raw water and 
chlorinated or brominated by treatment processes, can produce trihalomethanes (THM), which 
include several known and suspected carcinogens. (USEPA 2000; Graham et al. 1998; Plummer 
and Edzwald 2001). High biomass blooms also can impede municipal or industrial water intakes. 

Tribal uses of waterbodies are impacted by high biomass FHABs through a variety of pathways. 
Tribal and cultural uses of waterbodies are very specific to each tribe, and it is difficult to 
summarize the diversity of uses simply. Each tribe in the State is a sovereign nation with 
distinctive cultural practices and traditional uses of waterways. These uses of the water are 
often extensive and involve significantly more and different types of exposure than recreational 
uses. Depending on the specific tribe and tradition impacts from uses may include those 
already described above or may include unique impacts due to a range of distinctive exposure 
pathways. 

2.2.1 Chlorophyll-a 
Bulk measures of photosynthetic abundance and biomass provide an understanding of the 
trophic status of a waterbody. One of the most common indicators of photosynthetic algal 
abundance (including cyanobacteria) is Chl-a. Concentrations of Chl-a in surface water can be 
optically determined via satellite imagery. The amount of Chl-a in water changes the 
waterbody’s absorption and reflection of light. An algorithm (algorithms described in Chapter 
3) that uses specific satellite wavelength bands is then to estimate the near-surface Chl-a 
concentration from the spectral data. Concentrations of Chl-a in surface water can also be 
determined by field-based procedures, each with their specific procedures, equipment, and 
quality control; these procedures include laboratory analysis of collected water samples or 
field-based measurements using hand-held instruments. 

2.2.2 Cyanobacterial biomass 
Cyanobacterial biomass in a waterbody can provide a relative estimation of the risk that a 
waterbody may experience impacts related to FHAB events. Assessment of bulk cyanobacterial 
abundance is useful as an initial assessment of hazard as increased cyanobacterial biomass is 
related to an increased potential of cyanotoxin presence (US EPA 2021). Cyanobacteria have 
Chl-a but also have an accessory pigment called phycocyanin which is a unique accessory 
pigment that gives cyanobacteria distinctive spectral qualities. Cyanobacterial biomass can be 
differentiated using a distinct wavelength signature that allows for the differentiation of 
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cyanobacterial biomass from other algae and optically active matter (see Chapter 3 for 
extended explanation). A recent study using OLCI and MERIS imagery demonstrated this linkage 
by comparing CIcyano derived estimates of cyanobacteria to in-situ presence of microcystins in 
eleven US states, including California. Bloom detection accuracy between same day in-situ 
sample and satellite imagery match ups was 84%. This same study projected an accuracy range 
of 77%-85% with a 95% confidence interval based on a bootstrapping uncertainty analysis 
(Mishra et al., 2021). 

2.3 Strengths and Weaknesses of Remote Sensing 
for Addressing Management Questions 
Satellite imagery data is different from other data collected in the field in that no physical 
access to the field is necessary, providing information about a wide area of waterbodies, 
including hard-to-access waterbodies where there is little or no existing data. Because the data 
is collected in a routine way, it is well suited to automated and scalable analysis of one or many 
waterbodies, decreasing the amount of effort to analyze the data. In addition to the high spatial 
coverage, satellite imagery data also has high temporal coverage, with nearly daily imagery 
collected by Sentinel-3 satellite overpasses. This data is also complementary to field-based 
assessments of status and trends and provides one of the most consistent and longest time 
series of any type of water quality data to fill in data gaps related to FHAB assessments. 

The synoptic view that satellite imagery provides makes it particularly useful for assessing the 
status and trends of FHABs, which can be ephemeral or episodic in nature. This synoptic view 
also allows for comparing California data to national or global trends in FHABs. Furthermore, 
utilizing satellite imagery data can be very cost effective compared to the resource and effort 
required for field monitoring programs. California is estimated to save $120,000 per year using 
satellite imagery to monitor 20% of lakes resolvable by Sentinel-3 (Papenfus et al 2020). This 
estimate is grossly underestimated based on California’s current monitoring costs. Since field-
based monitoring programs in the state are very limited in scale and frequency of assessments 
due to low resources, satellite imagery is critical to begin assessing the impacts of the 
resolvable lakes, reservoirs, and channels. While satellite imagery cannot detect if cyanotoxins 
are present, it can detect presence of cyanobacteria and estimate cyanobacterial 
concentrations. The magnitude of cyanobacterial biomass is an indicator of decreased water 
quality and greater densities, detected in open water of resolvable lakes, can increase the 
potential threat of exposure by humans and animals thereby prioritizing waterbodies for field-
based cyanotoxin measurements.  

Despite these strengths, some key limitations and caveats of satellite imagery data exist:  
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1. Satellite imagery data is limited to optically detectable parameters. Satellite data can 
only measure parameters that are detectable optically, such as differences in 
wavelengths that can be used to infer photosynthetic pigment concentrations and thus 
only provide estimates of algal and cyanobacterial concentrations. This is an important 
distinction in the case of FHABs, since cyanotoxins cannot be detected by satellite 
imagery. Thus, satellite imagery is not currently applied to inform California state 
voluntary recreational health advisories, which are based on cyanotoxin concentrations 
and visual confirmation of a bloom. Furthermore, biomass levels need to be high 
enough concentrations to be detectable via satellite sensors, therefore more disperse or 
lower biomass blooms may not be detected. Similarly, while cyanobacteria and other 
types of algae can be differentiated via optical properties, it is not currently possible to 
differentiate the different types of cyanobacteria present since there are not distinctive 
enough optical properties. Differentiating cyanobacterial taxa based on their spectral 
properties, however, is an area of current research (Legleiter et al., 2022). This also 
means that other relevant parameters like nutrient concentrations and water flow are 
not detectable via imagery data.  

2. Satellite imagery data is limited to surface measurements. Satellite imagery can only 
measure the water surface where light can penetrate. The depth coverage of this 
measurement is variable based on the turbidity or cell concentration of the water. Many 
cyanobacteria can regulate their buoyancy and often form dense populations near the 
water surface, which makes surface measurements by satellites favorable. However, 
blooms that form subsurface or on the benthos are unlikely to be detected via satellite 
imagery, unless waters are exceptionally clear or shallow. This limitation may also result 
in potential false negatives or underestimate biomass for planktonic cyanobacterial 
species that regulate their buoyancy and are submerged at the time of the satellite 
overpass. Since California does not have a comprehensive ambient monitoring program 
for FHABs, the abundance of cyanobacteria species that form blooms lower in the water 
column and on the benthos is unknown, so the severity of the limitation is unknown.  

3. Satellite imagery data is limited to open water. Satellite imagery integrates the optical 
properties over the resolvable area of the sensor (e.g., the pixel). This means when 
pixels contain both land and water (a mixed pixel), the signal of the water and land are 
integrated. This integration may result in erroneous results depending on the proportion 
of land and water in a mixed pixel. This is particularly the case when the shoreline area 
has a substantial amount of vegetation, which contains Chl-a, that is challenging to 
disentangle from any Chl-a present in the nearby water. Thus, mixed pixels may need to 
be removed during the processing of satellite imagery data to reduce this uncertainty 
(see more in Chapter 4 about options for removal). With the removal of potential mixed 
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pixels, most often near the edge and shore of waterbodies, detections in the open water 
pixels are an elevated concern for potential denser cyanobacteria abundance near the 
edges, particularly driven by wind and water current. Thus, open water detections may 
underestimate or not detect blooms along the edges that are common locations of 
beaches, boat launches, and other more publicly accessible areas. Measurements of 
optical properties through satellite remote sensing are also subjected to possible top-of-
atmosphere radiance contamination from neighboring surfaces and/or aerosols with 
different reflectance. This is termed ‘adjacency effect’ and can be an additional source 
of error for mixed pixels. Thus, removal of mixed pixels is one conservative approach to 
minimize adjacency effects, although these can also be addressed using various 
algorithms.  

4. Satellite imagery data from OLCI is limited to larger and wider waterbodies. The mixed 
pixel paired with the larger pixel size of OLCI imagery, limits the size and shape of 
waterbodies that can be detected as the waterbody must have at least one complete 
open water pixel. The waterbody size requirement is often higher than 90,000 m2 (300 
m x 300 m) for OLCI data because it is rare that a pixel (which is a fixed grid) will neatly 
encompass water only for small waterbodies. Narrow waterbodies are also often not 
resolvable for the same reason. Fortunately, the open water regions of over 200 of the 
largest and widest lakes, reservoirs, and channels are resolvable so many of the critical 
drinking water reservoirs and water storage basins have satellite imagery data to assess. 
Smaller waterbodies that are not resolvable via OLCI (estimated to be at least 14,000 
waterbodies) will be resolvable in the future and add to the dataset available for 
assessment with the growing science, launching of new satellites, and use of satellite 
imagery with greater resolution.  

5. Environmental conditions can cause data gaps in satellite imagery data. Clouds, sun 
glint, snow, ice, and atmospheric conditions can cause interfere with the collection of 
satellite imagery. If these conditions are present during the satellite overpass, then algal 
and cyanobacterial abundance data cannot be derived from those images. This can 
result in extended periods of lost data if these conditions are persistent.  

These strengths and weaknesses result in some key caveats to each of the specific management 
question categories presented in Table 2.1. 
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2.4 Management Questions about Status and 
Trends 
Status and Trends management questions: What is the overall magnitude and frequency of 
FHABs in OLCI resolvable waterbodies in CA? How often do blooms occur in OLCI resolvable 
waterbodies in CA? What is the spatial extent of OLCI resolvable water area in CA that 
experiences a bloom? How are bloom occurrence, magnitude, extent, and frequency changing 
over time? 

Strengths: OLCI satellite imagery data is well poised to address the identified management 
questions about both the status and trends of cyanobacterial and algal biomass. Broad spatial 
and temporal coverage make OLCI satellite imagery data ideal for addressing these types of 
questions across a variety of temporal scales, such as annual, seasonal and/or monthly status 
and trend assessments (Table 2.1). Similarly, these data can be used to assess status and trends 
across a variety of spatial scales, ranging from assessing an individual resolvable waterbody to 
assessing all resolvable waterbodies in the state. Furthermore, while trend assessments are 
currently limited to 2016 to present, the ESA Sentinel-3 program plans extend to at least 2037, 
thus the ability to assess trends will only increase over time. 

Weaknesses: These questions can be answered in waterbodies if they are large enough for at 
least one open water OLCI pixel (e.g., 300m x 300m) to be detected without interference from 
land or mixed pixels. Thus, primarily only large lakes and reservoirs would be detectable using 
these data. Intermittent gaps in assessment of status and trends are also possible due to 
environmental conditions but overall, the number of observations possible via satellite remote 
sensing are still greater than those via current in-situ monitoring efforts. Notably, in California, 
cloudy and icy conditions are most prevalent in the winter and early spring seasons in the 
northern areas of the state, and coastal fog is common in some areas such as the San Francisco 
Bay in the summer. Blooms of cyanobacteria have been observed during these periods thus 
these conditions could result in some underestimation of blooms in these areas during this part 
of the year.  

Applications: Biomass estimates are useful for identifying when, where, and how often 
cyanobacterial blooms occur (see section 2.2 for impacts of high biomass on beneficial uses). 
Also, biomass estimates can provide an indication of where cyanotoxins might be present, since 
increasing cyanobacterial biomass is correlated to increasing cyanotoxin concentrations. It is 
important to note, however, that this is a risk-based relationship and correlations between 
biomass and cyanotoxin presence can be imprecise and vary based by waterbody (see Howard 
et al., 2021 and Smith et al., 2023 for examples from California lakes based on in-situ data). 
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2.5 Management Questions about Drivers 
Drivers management question: What are the environmental factors that are associated with 
bloom occurrence and magnitude? 

Strengths: Remote sensing data can be a powerful tool for risk assessment by providing a 
synoptic dataset of bloom biomass indicators for the development of statistical associations 
between increased instances of blooms with a variety of potential environmental drivers. While 
OLCI imagery does not provide environmental data directly, many driver data sets are publicly 
available such as land use, precipitation, or hydrodynamics (e.g., lake level, lake discharge, etc.), 
that can be used to identify correlative relationships with environmental conditions for future 
study. 

Weaknesses: Driver assessments via satellite imagery are limited to assessing the drivers of 
increased biomass and cannot provide direct information related to drivers of cyanotoxin 
production or concentrations. 

Applications: The driver relationships that can be derived via remote sensing data correlative 
are risk-based relationships. These relationships are for prioritizing resolvable waterbodies for 
future in-situ monitoring or specialized studies to identify drivers more precisely. These 
observations can also be applied for assessing risk of blooms in lakes that are not resolvable via 
OLCI imagery but share similar predictor characteristics. 

2.6 Management Questions about Incident 
Response 
Incident response management questions: What is the ongoing risk in the waterbodies in my 
region or watersheds with past FHAB event reports? How can remotely sensed data be used to 
inform incident response? 

Strengths: Satellite imagery can capture a synoptic image of a waterbody, which can help 
identify the location of a bloom and estimate the bloom extent. Field based sampling, 
particularly in large waterbodies, is very spatially limited and thus can potentially miss bloom 
activity. 

Weaknesses: The limit of detection for cyanobacterial specific biomass estimates is high 
compared to other in-situ monitoring methods. Thus, in-situ monitoring methods, if conducted, 
can detect biomass at earlier stages than satellite imagery.  

Applications: Satellite imagery can provide near real-time indication of where a bloom is 
forming in near-surface, open water areas of resolvable waterbodies and can also guide field-
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based event response efforts in large waterbodies, such as in the San Francisco Bay (see 
Chapter 1) and large reservoirs in the California State Water Project. Also, considering the 
longer temporal extent of cyanobacterial blooms often observed in California lakes and 
reservoirs, the near real-time biomass detections inform when and how often follow-up 
monitoring for an event should occur to assess public health impacts until the bloom dissipates. 
Satellite imagery detections showing re-occurring cyanobacterial biomass across seasons and 
years supports prioritization of resources for proactive in-situ monitoring programs to assess 
public health risk.  
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3. ASSESSMENT METHODOLOGY: INDICATORS, 
METRICS, AND SPATIOTEMPORAL REPORTING UNITS 
FOR FHABS ASSESSMENT 
Indicators and metrics describe what information derived from satellite imagery data will be 
used to address management questions. An indicator is the type of measurements, while 
metric is the precise measurement methodology and resulting values from measurements over 
time and space. In this chapter, the basic description of each indicator derived from OLCI 
imagery data will be discussed followed by a synthesis of the relevant metrics using these data. 
The same metrics described below can be applied to other satellite platforms such as the MSI 
onboard Sentinel-2 as part of future efforts. 

3.1 Indicators 

3.1.1 Cyanobacteria Index  
The CI value is a proxy of cyanobacteria specific Chl-a absorption and estimates the 
cyanobacterial biomass using a distinct spectral shape signature that allows for the 
differentiation of cyanobacterial biomass from other eukaryotic algae and reflective matter 
present in water (Wynne et al., 2008, 2010). This CI value was calculated using established 
spectral shape algorithms that utilize the spectral shape centered at 681 nm (SS(681); λ- = 665 
nm; λ+ = 709 nm). A negative shape occurs at 681 nm as a function of low fluorescence by 
cyanobacteria, and high backscatter which overwhelms absorption at 709 nm, and has been 
suggested to be the result of the structure of the cells gas vacuoles (Wynne et al., 2008). As 
such, this index can flag other blooms from non-cyanobacteria phytoplankton such as diatoms 
and chlorophytes. To reduce the occurrence of non-cyanobacteria phytoplankton as false 
positives of cyanobacteria, the CI was further refined to include the spectral shape centered at 
665 nm (SS(665); λ- = 620 nm; λ+ = 781 nm) that is sensitive to phycocyanin absorption at 681 
nm. This new CIcyano value allowed the separation of cyanobacteria blooms from other blooms 
by the following rule: 

If SS(665) < 0, cyanobacteria is not present and CIcyano = 0 

If SS(665) > 0, cyanobacteria is present and CIcyano = CI 

Note that CIcyano has also been called CImulti, referring to its use of multiple shape algorithms. 
A detailed description of the CIcyano calculations can be found in Lunetta et al. (2015) and a 
description of the development of CI and later CIcyano can be found in Coffer et al. (2020). 
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3.1.2 Digital number 
Satellite data downloaded from the CyAN project is presented as digital numbers (DN) for each 
pixel, where values range from 0 to 255, and values ranging from 1 – 253 indicate 
cyanobacteria detection. Using the conversion equation of: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 10(𝐷𝐷𝐷𝐷∗0.011714−4.1870866) 

The lowest DN of 0 indicates that cyanobacteria are below the detectable limit of the satellite 
sensor (but not necessarily that cyanobacteria are completely absent). DNs of 254 and 255 are 
data flags, with a DN value of 254 indicating land, and a DN value of 255 indicating no data was 
available, due to factors such as cloud cover, sun glint, or other data quality flags.  

3.1.3 Cell abundances 
At least two studies have been published to examine the relationship between in-situ cell 
abundances and imagery-based estimates of cyanobacterial density. The first study was 
conducted in western Lake Erie that used a small sample set (n = 12) to compare cell count 
estimates against co-located CI values derived from MERIS imagery (Wynne et al., 2010). This 
relationship was defined by the following equation:  

 

A later study by Lunetta et al. (2015) compared CIcyano values to in-situ cell count observations 
(n = 2068) in lakes from Ohio, New England (RI, MA, NH, ME, NY, and VT), and Florida. CIcyano 
values were converted to cell abundances estimates using the following equation: 

 

This study reported a good correspondence between in-situ cyanobacterial cell counts and 
imagery cell count observations was reported with an R2 value of 0.87 being reported for the 
regression analysis comparing measures. An important caveat to this finding is that ultimately a 
much smaller subset of the in-situ samples (n = 579) was compared to imagery data, with 72% 
of the samples being removed from the regression analysis comparing the two data sources, 
which improved the model fit. In particular, the comparisons indicated that the equation was 
robust for low (10,000 – 109,000 cells/mL) and very high (>1,000,000 cells/mL) cell abundance 
but did not perform as well for an intermediate range (110,000 – 1,000,000 cells/ml). The lower 
performance of the intermediate range may be attributed to the lower amount of data 
available (much of the cell count data in this category was dropped from the analysis) as well as 
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uncertainties or inconsistencies in the cell count dataset. An additional confounding factor is 
that the CI and later the CIcyano algorithms were developed from observations of Lake Erie 
which is primarily dominated by Microcystis spp., whereas the lakes used for comparison to 
CIcyano values in Lunetta et al. (2015) were often mixed assemblages of cyanobacterial taxa 
(though extensive documentation of community composition was not presented), thus the 
performance of the cell conversion is less well understood in mixed cyanobacterial 
communities, which are often documented in California waterbodies.  

A more conservative approach to estimate cyanobacterial abundances is to convert CIcyano to 
categorical abundance ranges with the goal of adding some context to the less easily 
interpreted CIcyano value. This approach is described in Clark et al. (2017) and Coffer et al. 
(2021b). In this approach, each resolvable pixel was categorized as having cyanobacteria above 
or below the sensor detection limit, which is estimated to be between 10,000 cells/mL - 20,000 
cells/mL (Coffer et al., 2021a). Then, if cyanobacteria were detected, the pixel was categorized 
as having low, moderate, or high human health risk based on cell concentration ranges defined 
by World Health Organizations (WHO) guidance in 1999. WHO associates bloom abundances of 
≤20,000 cells/mL with a low risk of adverse health impacts. A moderate risk of adverse health 
impacts is defined as between 20,000 cells/mL - 100,000 cells/mL and high risk is defined as 
≥100,000 cells/mL (Chorus and Bartram, 1999).  

FHAB Monitoring Strategy discourages the use of specific cell densities estimated from OLCI 
satellite imagery (Smith et al., 2021). While published methods to estimate cyanobacterial cell 
abundances exist, there are a multitude of associated caveats with the approach that lead to 
this recommendation, which is continued in this report. Due to the uncertainty associated with 
cell abundance conversions and limitations of the currently published studies on the topic, cell 
abundance conversions are generally not recommended for application without additional 
validation and study.  

3.1.4 Total and Cyanobacterial Chlorophyll-a 
Chl-a is a proxy for total algal biomass, which includes both cyanobacterial and non-
cyanobacterial algae. This is distinct from the specific measurement of cyanobacterial biomass 
that is achieved using CIcyano. However, estimations of Chl-a concentrations can be derived 
from remotely sensed imagery data using multiple approaches. It can be detected directly using 
directly using specific satellite wavelength bands or determined through conversions of CIcyano 
to an estimated Chl-a concentration. A key difference exists between these two approaches is 
that direct detection of Chl-a using specific sensor wavelength bands is estimated a Chl-a 
concentration that reflects all algal biomass (e.g., both cyanobacterial and non-cyanobacterial 
algae) which we describe in this report as total Chl-a. In comparison, conversion of Cycyano 
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values to an estimated Chl-a concentration is a reflection of cyanobacterial Chl-a concentrations 
due to the specificity of the CIcyano algorithm to cyanobacterial biomass. 

A variety of algorithms exist for estimating total Chl-a. Here, the Red Edge 2010 (RE10) 
algorithm presented by Wynne et al (2022) is used. This matches the approaches on the 
California FHAB satellite tool. The RE10 algorithm examines the ratio of a red-edge band (665 
nm) to the near infrared band (709 nm). They are atmospherically corrected by taking the 
difference of the 885 nm band, which represents an assumption of coarse-mode maritime 
aerosol with dark water. This is first calculated as the R2 ratio using the following equation 
where 𝜌𝜌𝑠𝑠 is the top-of-atmosphere (TOA) reflectance:  

R2 =  
ρ𝑠𝑠(709) − ρ𝑠𝑠(885)
ρ𝑠𝑠(665) − ρ𝑠𝑠(885) 

Next, the RE10 regional adjustment algorithm is applied as follows:  

𝑅𝑅𝑅𝑅10=[35.75×𝑅𝑅2−14.30]1.124 

This is then reported as a concentration of micrograms per liter and was field tested using 
samples collected in Chesapeake Bay (Wynne et al., 2022). 

Because total chl-a is proposed as a key indicator in the interpretation of California’s narrative 
biostimulatory water quality objective (Sutula et al. 2025), it is useful to retain and track this 
indicator alongside cyanobacterial-specific indicators and metrics.  

3.1.5 Conversion to Cyanobacterial Chlorophyll-a 
In addition to calculating Chl-a directly from imagery data, there are two published equations 
suitable for converting CIcyano values to estimated cyanobacterial Chl-a concentrations. These 
conversions represent a Chl-a concentration that is attributable to cyanobacteria: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶ℎ𝑙𝑙 = 4050 (±271) ∗ 𝐶𝐶𝐶𝐶 + (±3) Tomlinson et al. 2016 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶ℎ𝑙𝑙 = 6620 (±646) ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 3.1 (±5.2) Seegers et al. 2021 

One of advantages of converting CIcyano values to Chl-a concentration equivalencies is to make 
the reporting of CIcyano more intuitive for those less familiar with remote sensing of 
cyanoHABs and the scaling of DN. Updated WHO guidelines utilize Chl-a observations in a risk 
based alert framework for waterbodies that are dominated by cyanobacteria (Chorus and 
Welker, 2021). The WHO recommends a Chl-a concentrations >12 µg/L as an Alert Level 1 
threshold in waters dominated by cyanobacteria (Chorus and Welker, 2021). Using a conversion 
of CIcyano values to a Chl-a value fits well in the WHO framework, since CIcyano values 

https://www.mywaterquality.ca.gov/habs/resources/satellite-map.html
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specifically indicate cyanobacterial presence. The WHO threshold of 12 µg/L is useful to apply 
to define a bloom alert level of cyanobacteria and is recommended for integration into several 
of the metric calculations described in the section below (see Section 3.3). A Chl-a 
concentration of 12 µg/L is approximately equivalent to a DN of 132 using the Seegers et al. 
(2021) equation. This approach mirrors the methods implemented by Schaeffer et al. (2024), 
where the WHO Alert Level 1 threshold is utilized in a satellite imagery-based bloom forecasting 
framework. 

The conversion equation described in Tomlinson et al. (2016) equation was developed using 
field radiometry CI and Chl-a data from Florida and may therefore be more specific to that 
region. Even though CI is used to develop the equation, Florida waterbodies tend to be 
dominated by cyanobacteria, thus the CI is comparable to CIcyano in those waterbodies. The 
range of Chl-a in the dataset used to develop the equation was 16 – 115 µg/L, thus this 
relationship with CI at Chl-a concentrations < 16 µg/L is not confirmed. Seegers et al. (2021) 
analyzed this equation and found a biaslog of 1.33, indicating that the Chl-a value estimated 
from the equation is on average 33% higher than the dataset used to evaluate the equation. In 
addition, Seegers et al. (2021) found that the equation worked best with Chl-a concentrations > 
20 µg/L.  

The Seegers et al. (2021) equation was developed using extracted Chl-a concentrations from 
the USGS CyAN Field Integrated Exploratory Lakes Database. The authors reported a positive 
biaslog of 1.11 (11%) and mean absolute error (MAElog) of 1.6 (60%) for the equation when 
compared to in-situ observations. This represents a slight improvement on performance 
compared to the conversion equation reported in Tomlinson et al. (2016). Like the Tomlinson et 
al. (2016) equation, the performance of the Seegers et al. (2021) equation is poorest at 
oligotrophic and mesotrophic waters with lower Chl-a concentrations (< 7 µg/L). 

3.2 Recommended spatial and temporal reporting 
units 
The synoptic nature of satellite imagery allows for the application of management questions 
across a range of spatial scales. Imagery data is readily parsed into a variety of spatial units. This 
report focuses on statewide and waterbody specific spatial units. These were identified as the 
most suitable for the number of waterbodies resolvable via OLCI imagery due to the overall 
number of waterbodies resolvable across California. In total, 238 large lakes, reservoirs and 
estuaries are resolvable in the state (see Chapter 5 for more details on lake inventory 
development). While this is a major increase in the number of routinely assessable waterbodies 
in California compared to in-situ monitoring efforts, it is still a fraction of the total number of 
waterbodies statewide. FHAB Monitoring Strategy estimated that more than 14,000 lakes, 



24 
 

ponds, and reservoirs 1 hectare or larger exist statewide (Smith et al., 2021). Finer scale 
regional assessments, such as assessing waterbodies within the bounds of a RWQCB, are also 
possible using OLCI imagery data. The important caveat is that the number of resolvable 
waterbodies is highly variable from region to region. Thus, while regional assessments are 
certainly possible, it is recommended that any comparative regional analyses with OLCI imagery 
data be approached with caution due to the limited number of resolvable waterbodies in some 
regions.  

Sentinel-3 overpasses occur every ~1-2 days, resulting in multiple images available per week for 
a given area of the state. The CyAN project data portal makes daily imagery available as well as 
7-day maximum composites. For the purposes of this project, 7-day maximum composite 
images were identified as ideal for metric calculations since it smooths potential data gaps from 
environmental conditions (e.g., clouds, ice, sun glint, etc.) that may occur within a week and 
requires less computational power than daily imagery to process data and metrics. Metrics can 
be calculated on a weekly, seasonal, or annual basis to adequately address specific 
management questions. 

3.3 Metrics 
Four data metrics integral to comprehensive status and trend assessments have been 
developed by the CyAN project in recent years and these are bloom magnitude, bloom 
occurrence, bloom spatial extent and bloom frequency. Also, these metrics are also consistent 
with the ambient status and trends assessments conducted by SWAMP for non-HAB water 
quality monitoring. These metrics focus on quantifying blooms based on their intensity and 
duration (magnitude), temporal patterns (frequency and occurrence) or spatial characteristics 
(spatial extent) within the resolvable portion of waterbody or group of waterbodies. These 
calculations can be made for either total Chl-a, CIcyano or cyanobacterial Chl-a, depending on 
the applications and needs of the end user. Throughout this report, we apply these metrics with 
CIcyano and cyanobacterial Chl-a as examples, but these examples could also be applied using 
total Chl-a. 

3.3.1 Magnitude 
Bloom magnitude indicates the intensity of the cyanobacteria (or total algal) presence over a 
defined period of time (Figure 3.1). Mishra et al. (2019) defined this as the spatiotemporal 
mean of CIcyano within a waterbody for the week, season, or year, normalized by surface area: 
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Where M is the number of weeks or months in the time being assessed; T is the number of 
composites per study period (e.g., four 7-day composites per month); P is the number of valid 
pixels for the waterbody. The area normalized bloom magnitude is then calculated from bloom 
magnitude as: 

𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑛𝑛 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 𝑛𝑛𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛𝐶𝐶 =  
𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 𝑛𝑛𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑛𝑛𝐶𝐶 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶 𝑠𝑠𝑚𝑚𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑘𝑘𝑛𝑛2)

The authors used this metric to quantify annual and seasonal cyanobacteria bloom magnitude 
for lakes in Florida and Ohio during 2003 – 2011 using the functionally similar MERIS sensor 
onboard the Envisat satellite.  

3.3.2 Occurrence 
Cyanobacterial bloom occurrence summarizes pixel level data to determine if a bloom occurred 
in a single waterbody on a weekly basis based on an area threshold and cyanobacterial density 
threshold (Figure 3.2). This metric was used to assess the overall seasonal patterns of blooms 
within the state. Bloom occurrence was calculated following the methods described in Coffer et 
al. (2020) as the percentage of lakes experiencing a cyanobacterial bloom above each threshold 
on a weekly basis. The occurrence metric defines a bloom based on a minimum spatial bloom 
area (e.g., a percentage of the detectable pixels of a waterbody) and CIcyano threshold. We 
used a spatial threshold of 10%, meaning that for a lake to be considered as having a bloom, at 
least 10% of the total number of detectable pixels in a waterbody must be at or above each 
cyanobacteria abundance threshold. This spatial threshold was recommended by Coffer et al. 
(2020) as it reduces the variance in occurrence across differently sized waterbodies and across 

Figure 3.1: Conceptual diagram illustrating the area normalized bloom 
magnitude metric. Diagram based on the formulas and concepts 
described in Mishra et al. (2019).  
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seasons. Two thresholds for bloom intensity were used. The threshold for a bloom is 
cyanobacterial detection via remote sensing (DN > 0). The threshold for a bloom alert is defined 
as >12 µg/L cyanobacterial Chl-a using the conversion factor described in Seegers et al. (2021; 
DN > 132). Using these criteria, bloom occurrence can be calculated from each weekly image 
composite into counts of waterbodies experiencing a bloom.  

3.3.3 Spatial Extent 
Spatial extent summarizes the percentage of resolvable waterbody area with detectable 
cyanobacteria presence (Figure 3.3). This metric was first used to assess the temporal changes 
of cyanobacteria bloom extent in Florida, Ohio, and California (Urquhart et al., 2017), before 
efforts were expanded across CONUS (Schaeffer et al., 2022). Spatial extent is calculated by: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (%) =  
𝐶𝐶𝑚𝑚𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑠𝑠 𝑆𝑆𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝑠𝑠 𝑤𝑤𝐶𝐶𝐶𝐶ℎ 𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝑚𝑚𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑠𝑠 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 𝑆𝑆𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝑠𝑠
 x 100% 

Weekly spatial extent can be calculated for individual lakes, as well as summarized for a region 
(e.g., State). Pixels that are designated as land or no data due to cloud coverage, and pixels that 
are removed from any masking processes (Details in Chapter 5) are not counted towards the 
calculation, thus the number of valid pixels can be variable over time.  

Figure 3.2: Conceptual diagram illustrating the bloom 
occurrence bloom metric. Diagram based on the formulas and 
concepts described in Coffer et al. (2020). 
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3.3.4 Frequency 
The cyanobacteria bloom frequency metric is defined for each satellite pixel as the percentage 
of valid satellite images for that pixel throughout the year exhibiting cyanobacteria above each 
cyanobacteria abundance threshold (Figure 3.4). The development and refinement of this 
metric is described in Clark et al. (2017) and Coffer et al. (2021b). As with the occurrence 
metric, the cyanobacterial Chl-a bloom alert threshold can be applied to integrate an 
estimation of bloom density into the temporal frequency metric. Temporal frequency was 
computed as:  

𝐴𝐴𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶 𝑆𝑆𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶 𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝐶𝐶𝐶𝐶𝑓𝑓𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  100% ×  𝑐𝑐 𝑐𝑐𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 𝑐𝑐𝑎𝑎 𝑝𝑝𝑖𝑖𝑝𝑝𝑐𝑐𝑎𝑎𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑖𝑖 𝑎𝑎ℎ𝑟𝑟𝑝𝑝𝑠𝑠ℎ𝑐𝑐𝑝𝑝𝑖𝑖
𝑐𝑐 𝑐𝑐𝑜𝑜 𝑐𝑐𝑝𝑝𝑝𝑝 𝑣𝑣𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 𝑝𝑝𝑐𝑐 𝑎𝑎ℎ𝑝𝑝 𝑐𝑐𝑝𝑝𝑐𝑐𝑟𝑟

  (1) 

Individual lake frequencies were calculated by averaging the annual frequencies for all 
detectable pixels within each lake according to equation (1): 

𝐴𝐴𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑘𝑘𝐶𝐶 𝑠𝑠𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶 𝑠𝑠𝐶𝐶𝐶𝐶𝑓𝑓𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 𝑜𝑜𝑟𝑟𝑝𝑝𝑓𝑓𝑎𝑎𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑐𝑐 𝑝𝑝𝑐𝑐𝑙𝑙𝑝𝑝
𝑐𝑐 𝑐𝑐𝑜𝑜 𝑟𝑟𝑝𝑝𝑠𝑠𝑐𝑐𝑝𝑝𝑣𝑣𝑐𝑐𝑟𝑟𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 𝑝𝑝𝑐𝑐 𝑝𝑝𝑐𝑐𝑙𝑙𝑝𝑝

  (2) 

Statewide frequency calculations were made by averaging the annual frequency of all the 
detectable water pixels calculated via equation (1) within California state borders according to 
equation (2):  

𝐴𝐴𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶 𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑤𝑤𝐶𝐶𝑛𝑛𝐶𝐶 𝑠𝑠𝐶𝐶𝐶𝐶𝑓𝑓𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 𝑜𝑜𝑟𝑟𝑝𝑝𝑓𝑓𝑎𝑎𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑐𝑐 𝐶𝐶𝐶𝐶
𝑐𝑐 𝑐𝑐𝑜𝑜 𝑎𝑎𝑐𝑐𝑎𝑎𝑐𝑐𝑝𝑝 𝑟𝑟𝑝𝑝𝑠𝑠𝑐𝑐𝑝𝑝𝑣𝑣𝑐𝑐𝑟𝑟𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 𝑝𝑝𝑐𝑐 𝐶𝐶𝐶𝐶

 (3) 

Figure 3.3: Conceptual diagram illustrating the bloom spatial 
metric. Diagram adapted from Schaeffer et al. (2022). 
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Figure 3.4: Conceptual diagram illustrating the bloom 
frequency metric. Diagram adapted from Coffer et al. (2021b). 
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4. BEST PRACTICES FOR FHAB ASSESSMENT DATA 
PROCESSING  

4.1 Comparison of different processing options  
The CIcyano product is processed from raw imagery data and made available by the CyAN 
project. Standardized processing is conducted by the CyAN project for these products to relieve 
intensive data processing burdens from the end user. In brief, imagery data are geolocated, 
converted to an Albers Equal Area projection, and corrected for top-of-atmosphere reflectance 
to remove the spectral contribution of Rayleigh scattering. The CIcyano values are calculated, 
and data flags are applied to pixels containing clouds and land (including probably mixed land-
water pixels) using standardized algorithms. Imagery data are available publicly as a 7-day 
maximum composite or are available as daily images.  

After these data are downloaded, there are a variety of additional data processing steps that 
can be conducted depending on the goals of the user. These additional processing options can 
include the application of a customized lake inventory, the further removal of potentially invalid 
(i.e., potentially erroneous) pixel data, or generating custom temporal composites from daily 
images (Table 4.1). There are currently no universal standard practices for these additional 
processing options for OLCI imagery data, and different processing procedures suit different 
end user goals as well as their comfort with potential false positives and/or false negatives. 
Nevertheless, a consistent procedure with defined caveats should be developed for use of the 
data and for consistency between years. The data processing options explored in this chapter 
are described here along with final selections for procedures to best address the management 
questions articulated in Chapter 2. 

4.2 Inventory of resolvable lakes 
Data processing using satellite imagery begins by defining the inventory of waterbodies that will 
be analyzed. Currently, a variety of shapefiles exist including shapefiles published by the CyAN 
project. Users can also choose the waterbodies of interest for processing through the creation 
of a custom shapefile. This step serves to 1) focus the data processing and analysis to only 
waterbodies of interest (identified as polygons in the shapefile), thereby significantly reducing 
computing power requirements, and 2) provide metadata information (e.g., Lake name, 
COMID, and coordinates) in summaries generated during data analysis.  
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Table 4.1: An overview of various data processing options available for different aspects 
of satellite imagery processing. The ultimate selections and recommendations made 
after assessing these options are bolded in the table. 

Description Options available 
Inventory of resolvable lakes 
(Section 4.2) 
 

• Use existing shapefile products 
• Develop a California custom shapefile 

Removal of mixed land-water 
pixels (Section 4.3) 

• No removal 
• Removal by static TIF indicating invalid 

pixels 
• Automated removal of boundary pixels 
• Generation of buffer zone and automated 

removal of pixels not contained within buffer 
zone 

Removal of snow and ice pixels 
(Section 4.4) 

• No additional removal 
• Removal using 4 km ice resolution 

Temporal compositing of the 
data (Section 4.5) 

• Temporal composites vs. daily imagery 
data 

• 7 days vs 10 days for temporal composites 
• Median vs Maximum value for composites 

 

The CyAN project developed a national inventory of resolvable lakes within the contiguous 
United States that is available as a product on their project website. The shapefile related to 
this inventory contains 2,321 waterbody polygons across the nation. The construction utilized 
the National Hydrography Dataset Plus version 2.0 (NHD Plus) and includes waterbodies ranging 
in surface area from 7.5x105 m2 to over 4.0x109 m2. (Urquhart and Schaeffer, 2020). A total of 
88 of the polygons in this inventory are located in California. A small number of these 88 
polygons represent multiple segments within a waterbody, so when these are combined, there 
are a total of 83 waterbodies in California within this inventory. 

Since the inventory developed by CyAN contained a small percentage of all waterbodies in 
California, we developed a custom inventory to expand the number of resolvable waterbodies 
available within the state. This custom California waterbodies shapefile includes 238 
waterbodies for the use of OLCI imagery data processing, a 170% increase in the number of 
resolvable waterbodies included in the CyAN inventory. This shapefile was generated by first 
combining the polygons from the NHD (version NHD_H_California_State_GDB) and NHD plus 
(version NHDPlusV21_CA_18_NHDSnapshot_05) shapefiles, which consisted of more than 
14,000 waterbodies across the state. Seventeen additional polygons for the San Francisco Bay 
and Delta region were copied from a shapefile provided by SFEI that was developed in 
collaboration with the Water Boards (Figure 4.1; 
FHAB_Lake_BufferedBoundaries_2019_05_16.shp). An initial size filter of 2.7x105 m2 
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(equivalent of three 300 m x 300 m OLCI pixels) was then applied to reduce the number of 
waterbodies to ~2,000, and these remaining waterbodies were manually inspected with ArcGIS 
Pro World Imagery and Google Earth to ensure they contained water and were cross-compared 
to the common grid used in CyAN data to ensure they contained at least one complete 300 m x 
300 m OLCI pixel within the bounds of the waterbody polygon (Figure 4.2).  

An attribute called ‘Water Type’ was also assigned during this manual inspection process to 
categorize waterbodies into 3 categories:  

• Lakes and reservoirs (total = 210). Within this group, additional designations were made: 

o Lake: waterbodies identified as a natural lake 

o Reservoir: waterbodies that were identified as created by the presence of a dam or 
other artificial boundary based on researching the waterbody 

o Agricultural: to denote type converted waterbodies within agricultural land-uses 
(AG) with straightened (e.g., rectangular) rather than natural shorelines (total = 10).  

• Tidal: Selected estuaries sufficiently large to be resolvable. Specifically, this included San 
Francisco Bay and San Joaquin Delta and large, episodically open meromictic coastal 
lagoons (total = 28). Other large estuaries have the potential to be resolvable but were not 
specially included in the workflow due to large marine influences (e.g., San Diego and 
Mission Bays, Tomales Bay, Humboldt Bay, etc.). 

The shapefile was also manually curated to merge polygons that had initially split a waterbody 
(e.g., Clear Lake in Figure 4.3A), but retained different sections for the San Francisco Bay 
polygons (based on management of the system). Additional features and/or shapefile 
boundaries within the waterbody that may interfere with data processing (e.g., Mono Lake in 
Figure 4.3B) but were not visible in true color imagery were also removed. 

Preliminary processing of data from 2017 – 2023 was conducted with the draft inventory to 
provide additional information on the number of resolvable pixels for each waterbody. These 
results were used to determine if additional polygon curation was needed. Preliminary 
processing identified six waterbodies had 0 resolvable pixels throughout the 7 years and those 
waterbodies were removed from the shapefile (not included in the 238 waterbodies in the final 
shapefile). An additional 47 waterbodies had only 1 – 2 potentially resolvable pixels, or a high 
number of weeks with 0 resolvable pixels (51 – 90% of the 366 weeks). These 47 waterbodies 
were categorized with an attribute called ‘Suitability for trend analysis’ as ‘limited’ to indicate 
these waterbodies have limited number of routinely resolvable pixels and should not be 
included in overall summaries and trend analyses due to data quality and availability concerns 
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(Table 4.2). The remaining waterbodies have 3 or more potentially resolvable pixels, and 
preliminary data analysis indicated they had <50% of 366 weeks with 0 resolvable pixels. These 
waterbodies were assigned the attribute “suitable”. 

 

Figure 4.1: Overview of the 17 polygons for the San Francisco Bay and Delta region. 
These polygons were imported from a shapefile obtained from SFEI and the Water 
Boards. 

 

Figure 4.2: Examples of excluded and included waterbodies for custom shapefile 
construction. Santa Rosa Creek Reservoir was excluded as it does not contain a 
complete pixel, while Baseball Reservoir was excluded as it appeared to be dried up. 
Black squares indicate OLCI common grid pixels. Martha Lake was included in the 
inventory, while Santa Rosa Creek Reservoir and Baseball Reservoir were excluded from 
the inventory. True color basemap imagery courtesy of ArcGIS Pro World Imagery (Map 
Version 2023). 
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Figure 4.3: Demonstration of the manual curation of polygons for the CA custom 
shapefile. A) Merging of selected split sections of Clear Lake. B) Merging split sections of 
Mono Lake, and removing a line in the polygon that does not appear to be any physical 
feature of the lake as indicated through current and historical Google Earth satellite 
images. 

Table 4.2: Polygon quality criteria. Criteria were based on an assessment of pixel number 
and resolvability from 7 years of imagery data between 2017-2023. 

Polygon Usage 
Category Inclusion Criteria Number of waterbodies 

in this category 

Limited 1 – 2 pixels OR 51-90% of Weeks with 0 pixels 
 

47 

Suitable 
3 or more pixels AND 0-50% of Weeks with 0 

pixels 

(> 1 resolvable pixel > 75% of the 6 years) 
 

191 
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4.3 Removal of mixed land-water pixels 

4.3.1 Mixed pixel flagging  
The processing of satellite imagery data commonly includes steps that identify pixels that are 
unsuitable for further processing due to concerns about their accuracy or quality. Data 
downloaded from the CyAN project data portal are already flagged for pixels obscured by cloud 
or sun glint, and these pixels are given a DN of 255 to indicate ‘No Data’. Pixels that are 
dominated by land are also able to be flagged, and the CyAN project flags these with a DN of 
254. These invalid pixels are easily removed during processing since they are already flagged 
with specific DN values.  

While there is an algorithm used to flag land and pixels containing a mix of land and water 
(‘mixed land-water pixels’ or ‘mixed pixels’ for short), some mixed pixels may not be detected 
and flagged by the algorithm. These mixed pixels may contain variable ratios of land and water, 
and currently it is not well understood how much land needs to be present in a mixed pixel for 
it to be flagged as land. Mixed pixels that are dominated mostly with water may also yield 
usable data, but it is dependent on a variety of factors including how much of the pixel area 
includes water, the magnitude of reflectance from nearby land (e.g., adjacency effect), 
presence of shoreline vegetation, or submerged vegetation in shallow waters. These factors 
may lead to erroneous interpretation of light spectra in these pixels as the presence of 
cyanobacteria. Determining the presence of potentially mixed pixels relies on identifying these 
pixels using another reference such as looking at true color imagery or creating a shoreline 
buffer area to remove these pixels. An added challenge in identifying and removing these pixels 
from further analysis is variable water levels that occur over time due to a variety of factors 
including water discharges, flooding, or drought. 

4.3.2 Impact of mixed pixel flagging on resulting 
bloom metrics  
We compared the results of a variety of approaches for addressing mixed pixels to determine 
how they might influence further analyses and related conclusions. The goal of this exercise 
was to better understand if mixed pixel flagging approaches might yield significantly different 
answers about the number of bloom occurrences, spatial extent, temporal frequency, and 
bloom magnitude of cyanobacterial blooms in California waterbodies within a year and on an 
annual basis. 

Imagery data from the CyAN project data portal (version 5 7D max composites 2017 - 2023) was 
processed using a modified version of the shapefile provided by the CyAN project website 
(https://oceancolor.gsfc.nasa.gov/images/about/MERIS_OLCI_Lakes.zip) that included 83 
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waterbodies in California. The period of 2017-2023 encompasses years with high levels of 
precipitation (2017, 2023) and drought periods (2020-mid 2022), thus a variety of water levels 
are represented across this period. This shapefile was used instead of the custom-made 
shapefile described above because it pairs with a static TIF file that was manually curated by 
Urquhart and Schaeffer (2020) to flag mixed land-water pixels by referencing true color satellite 
imagery. The original shapefile had 88 polygons for California, but manual inspections of each 
polygon revealed some polygons to be segments of the same waterbody, so some polygons 
were merged (similar to the processing shown in Figure 4.3). The paired static TIF was also 
updated manually to account for modification to the polygons, as well as recent changes in 
water levels and water boundary location by referencing satellite imagery from ArcGIS (Map 
Version 2023; source dates from 2020 – 2022) and historical imagery (2017 – 2023) from 
Google Earth. The use of this static TIF for flagging mixed pixels was compared to skipping 
additional mixed pixel removal, automatically removing pixels at the boundary of the polygon, 
or automated removal with a 150 m or 300 m buffer zone from the original polygon boundary. 
The inclusion of a buffer zone is a more conservative (e.g., avoiding pixels with greater potential 
for false positives) option than simple boundary removal as it removes all pixels that are within 
or intersecting with the 150 m or 300 m buffer of the polygon boundary. For consistency, these 
data were all further processed by removing ice pixels by referencing ice and snow coverage 
from the National Snow and Ice Data Center (4 km resolution) following Urquhart and Schaeffer 
(2020). 

In summary, the sets of data processed for this comparison included: 

1. No removal of mixed pixels 

2. Automated removal of intersecting polygon border pixels 

3. Removal of mixed pixels using a static TIF following Urqhuart and Schaeffer (2020) 

4. Automated removal of pixels within a 150 m buffer zone of the polygon border 

5. Automated removal of pixels within a 300 m buffer zone of the polygon border 

Figure 4.4 illustrates the differences between the different processing results using Pyramid 
Lake as an example. 

The removal of mixed pixels dramatically reduced the number of pixels analyzed (Figure 4.5A) 
but did not necessarily affect the average bloom frequency or the annual total number of 
bloom occurrences on an annual basis (Figure 4.5B - D). Not surprisingly, the use of a 300 m 
buffer zone for mixed pixel removal had the lowest number of pixels analyzed each year and 
reduced the number of waterbodies that could be resolved (i.e., with at least 1 potentially 



36 

resolvable pixel) by 14. This may explain the lower count of weekly bloom occurrences for this 
processing method compared to the other methods (gold bars in Figure 4.5B). The average 
annual bloom detection frequency (defined as DN > 0) and average annual bloom alert 
frequency (defined as DN > 132) followed the same trend of ‘No mixed pixel removal’ giving the 
highest value, followed by ‘Automated removal’, ‘Automated removal with 150 m buffer zone’, 
and ‘Automated removal with 300 m buffer zone’. The results of mixed pixel removal using a 
curated static TIF was a bit more variable depending on years and the parameter, but in general 
the results for that method are most comparable to results of using a 150 m buffer zone.  

Figure 4.4: Different processing method for mixed land-water pixels using Pyramid Lake 
in week 30 of 2020 as an example. A) Raw data from CyAN. Brown pixels in the raw data 
indicate land pixels flagged by CyAN project data processing procedures (DN = 254) and 
black pixels indicate ‘No data’ pixels flagged by the CyAN project (DN = 255). B) Removal 
of land and ‘No data’ pixels only. C) Removal of potential mixed land-water pixels by 
using a static TIF for reference. D) Automated removal of polygon border pixels (i.e., Any 
pixels touching the border of the polygon was removed). E) Automated removal of pixels 
within a 150 m buffer zone of polygon border. F) Automated removal of pixels within a 
300 m buffer zone of polygon border. 

A more temporally resolved examination of weekly state-wide bloom spatial extent (percentage 
of pixels with DN > 0 against all resolvable pixels) and number of weekly bloom occurrences in 
2017 (high rain year) and 2022 (drought impacted year) revealed a similar trend of a higher 
value for ‘No mixed pixel removal’, followed by ‘Automated removal’, ‘Automated removal with 
150 m buffer zone’, and ‘Automated removal with 300 m buffer zone’. Occasionally, using the 
300 m buffer zone led to a higher bloom extent (e.g., 2 gold peaks between week 10 – 20 for 
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2022 in Figure 4.6B), but this is likely due to occasions when shoreline pixels, which are 
excluded by the 300 m buffer zone, has pixels with lower DN compared to the center of the 
waterbody, leading to a higher extent as a lower total number of pixels is used to calculate the 
percentage. This is atypical for cyanobacteria blooms as they typically accumulate at the 
shoreline (Gons et al., 2005). Bloom magnitude follows the same pattern of a higher value for 
‘No mixed pixel removal’, followed by ‘Automated removal’, ‘Automated removal with 150 m 
buffer zone’, and ‘Automated removal with 300 m buffer zone’. The results of mixed pixel 
removal using a curated static TIF was again more variable depending on years and parameter. 
Overall, the different processing methods led to comparable bloom extent, weekly bloom 
occurrence, and bloom magnitude except when a 300 m buffer zone was used. 

Figure 4.5: Comparison of different mixed pixel inclusion or exclusion methods on A) 
total number of pixels processed in the year; B) total number of bloom detection 
occurrences (DN > 0 and spatial extent > 10%); C) average annual bloom detection 
frequency (DN > 0); and D) average annual frequency of bloom alerts (DN > 132) for 83 
waterbodies. Bloom frequency is a proportion. 

4.4 Removal of snow and ice pixels 

4.4.1 Snow and ice flagging  
Ice/snow coverage can also affect the optical signals used to calculate CIcyano, often resulting 
in false positives. It is difficult to identify snow/ice pixels directly with OLCI imagery data and 
flag them in the same way that clouds or glint are detected. Pixels that potentially contain ice 
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and/or snow undergo an initial flagging process via a NOAA algorithm, but the algorithm is 
often not full effective at identifying these pixels. Thus, additional flagging of ice pixels should 
be considered by using other references dataset of the presence of ice/snow (Urquhart and 
Schaeffer, 2020). Urquhart and Schaeffer (2020) released a workflow and recommendations for 
removing pixels potentially contaminated by snow and ice using data from the National Snow 
and Ice Data Center as a reference database.  

Figure 4.6: Comparison of weekly bloom spatial extent (% of total pixels) for A) 2017 and 
B) 2022, weekly number of bloom detection occurrences (defined by DN > 0, > 10%
pixels) for C) 2017 and D) 2022, and weekly bloom magnitude for E) 2017 and F) 2022
using different mixed pixel removal methods for 83 lakes.

In summary, the sets of data processed for this comparison included: 

1. Retention of both mixed and ice pixels

2. Removal of ice pixels only
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3. Removal of mixed pixels only using a 150 m buffer zone of the polygon border

4. Removal of ice pixels and mixed pixels only using a 150 m buffer zone of the polygon
border

4.4.2 Impact of snow and ice flagging on resulting 
bloom metrics  
We compared data processed with or without snow and ice pixel removal. Meanwhile, mixed 
pixels (Section 4.3) were either not removed or were removed by automated masking with a 
150 m buffer zone (Figure 4.7).  

Figure 4.7: Different processing methods for invalid pixels retention/removal using Clear 
Lake Reservoir located in the Modoc National Forest in week 1 of 2020 as an example. A) 
True color image of the reservoir indicating mostly ice and snow coverage. B) No 
removal of border (i.e., potential mixed land-water pixels) and ice pixels. C) Removal of 
ice pixels only. No resolvable pixel remains after removing ice pixels. D) Raw data from 
CyAN. Brown pixels in the raw data indicate land pixels flagged by CyAN project data 
processing procedures (DN = 254) and black pixels indicate ‘No data’ pixels flagged by 
the CyAN project (DN = 255). E) Removal of potential mixed land-water pixels by use of a 
150 m buffer zone. F) Removal of both potential mixed land-water pixels and ice pixels 
results in no resolvable pixels remaining after all ice pixels were removed. 

The removal of ice pixels expectedly reduced the number of resolvable pixels each year (non-
striped bars vs. striped bars in Figure 4.8A). The annual total number of bloom occurrences was 
also reduced as with average annual bloom detection frequency for most years (non-striped 
bars vs. striped bars in Figure 4.8B, C), but the average annual bloom alert frequency was 
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mostly similar between removal/retention of ice pixels, and can, at times, be higher with the 
removal of ice pixels (non-striped bars vs. striped bars for 2019 and 2022 in Figure 4.8D). The 
higher number of bloom occurrences and annual bloom frequencies suggested that ice pixels 
sometimes had DN > 0 values. However, these bloom occurrences and cyanobacterial 
detections were likely false positives since optical signals from ice and snow can sometimes be 
wrongly interpreted as cyanobacteria by the CIcyano algorithm (Urquhart and Schaeffer 2020). 
These false positive pixels were mostly of lower DN (DN < 132) and thus not included in the 
bloom alert category, which led to mostly similar annual bloom alert frequency between 
removing or retaining snow and ice pixels. The occasional increase in bloom alert frequency 
from the removal of snow and ice pixels is likely due to a decrease in total number of valid 
pixels (through the removal of snow and ice pixels) while the number of pixels defined as bloom 
alert (DN > 132) remained the same. 2019 was a particularly interesting year as both annual 
bloom detection frequency and annual bloom alert frequency increased with snow and ice pixel 
removal. The higher annual bloom frequency after the removal of ice pixels were due to weeks 
11 and 12 (3/17/2019 – 3/30/2019) specifically, when the removal of ice pixels led to a 
dramatic increase in bloom frequency. Comparing results from mixed pixel removal by 
automated masking and 150 m buffer zone with or without ice pixel removal, the removal of 
snow and ice pixels in those 2 weeks led to a ~60% decrease in pixels identified as ‘no bloom’ 
(DN = 0), but the number of pixels identified as ‘bloom’ (DN > 0) remained similar (~8,000 – 
9,000). The dramatic increase in bloom frequencies for these 2 weeks subsequently led to an 
overall increase in annual bloom frequency after ice pixel removal in 2019. Nevertheless, 
overall comparison of the removal/retention of ice pixels indicate that imagery data collected in 
the presence of ice/snow, as determined by referencing data from NSIDC, commonly had DN > 
0, and the retention of these pixels leads to a higher annual number of bloom occurrence and 
bloom frequency. 

Investigation of the weekly statewide data for bloom spatial extent, number of occurrences, 
and bloom magnitude indicate that the largest differences in ice pixel removal vs. retention 
tended to occur in weeks 0 – ~20, and weeks ~45 – 52 (Figure 4.9), which corresponds to the 
colder weeks of the year when snow and ice are present. The removal of ice pixels consistently 
led to lower numbers of bloom occurrence in these weeks (Solid line below dashed lines Figure 
4.9C, D). Notably, the results presented here show that the removal of ice pixels can lead to 
either higher or lower bloom extent. Bloom spatial extent was generally lower or similar after 
ice pixel removal for the first and last weeks of the year, while bloom spatial extent was higher 
after ice pixel removal ~weeks 10 – 20 and around week 45 for both years 2017 and 2022 
(Figure 4.9A, B, solid line above dashed lines ~weeks 10 – 20 and around week 45). Lower or 
similar bloom extent after ice pixel removal is likely due to a decrease in number of pixels 
identified as bloom (i.e., DN > 0) and total number of resolvable pixels, while higher bloom 
extent is likely due to similar number of bloom pixels (i.e., none or little of the removed ice 
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pixels were bloom pixels), but a decrease in the total number of resolvable pixels after 
removing snow and ice pixels (Figure 4.10). This pattern of lower or similar bloom extent at the 
colder time of the year (weeks 0 – 10 and weeks 45 – 52) indicated that most of the snow and 
ice pixels removed during those periods had DN > 0, while the tendency of higher bloom extent 
after snow and ice pixel removal occurring ~weeks 10 – 20 and around week 45 indicated that 
the snow and ice pixels during those periods had DN = 0. Therefore, as expected, snow and ice 
pixels had the highest risks of leading to false-positive bloom detection at the coldest times of 
the year. This is reflected by the larger difference in number of lakes with blooms during weeks 
0 – ~10 and weeks ~45 – 52 (Figure 4.9C and D). In contrast, bloom magnitude was generally 
higher after ice pixel removal in this study. As bloom magnitude is based on both the 
summation of bloom intensity (as indicated by CIcyano value after conversion from DN) as well 
as the area of waterbody (number of resolvable pixels multiplied by pixel area), higher bloom 
magnitude after ice pixel removal is likely due to the decrease in waterbody area after removal 
of ice pixels while the summation of CIcyano values remain similar.  

Figure 4.8: Comparison of different combinations of mixed pixel and ice inclusion or 
exclusion methods (as indicated by bar color and pattern combinations on A) total 
number of pixels processed in the year; B) annual number of weekly bloom detection 
occurrences (DN > 0 and spatial extent > 10%); C) average annual bloom detection 
frequency (DN > 0); and D) average annual bloom alert frequency (DN > 132) for 83 
waterbodies. Frequency is a proportion. 
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Figure 4.9: Comparison of weekly bloom detection spatial extent (% of total pixels) for A) 
2017 and B) 2022, number of lakes with bloom detection occurrences (defined by DN > 0, 
> 10% pixels) for C) 2017 and D) 2022, and weekly bloom magnitude for E) 2017 and F)
2022 using different combinations of mixed pixel and ice pixel removal methods for 83
lakes.

Figure 4.10: Depiction and example of how bloom spatial extent can be affected by the 
removal of ice pixels. Down arrow indicates a decrease, ‘~’ indicates similar result, and 
up arrow indicates an increase. 
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A summary comparison of the percentage difference between the retention/removal of mixed 
and/or ice pixels indicated how results can be affected by seasons. Summer, for example, 
appeared to be least affected by the different choices for invalid pixels as it tended to have the 
smallest range and mean for choosing to retain mixed and/or ice pixels compared to removing 
both types of invalid pixels (Table 4.3). The pervasiveness of negative minimum values in the 
table, which indicates lower metric values when mixed and/or ice pixels are retained, showed 
that the removal of both types of invalid pixels can lead to higher bloom metric values despite 
the generally lower values in overall comparisons (Figure 4.5, Figure 4.6, Figure 4.8, Figure 4.9).  

Table 4.3: Summary of the range and mean (in parentheses) percentage difference 
(difference between two methods/average x 100%) in number of bloom occurrence (DN > 
0 and spatial extent > 10%), number of bloom alert occurrences (DN ≥ 132 and spatial 
extent > 10%), bloom spatial extent (DN > 0), bloom alert spatial extent (DN ≥ 132), and 
area normalized magnitude between different methods compared to removing both 
mixed and ice pixels from 2017 – 2023. Higher values indicate larger differences of the 
method compared to removal of both mixed and ice pixels. Negative values indicate 
lower metric value of method compared to removing both mixed and ice pixels. Winter = 
Weeks 1 – 9 and Weeks > 48; Spring = Weeks 10 – 22; Summer = Weeks 23 – 35; Fall = 
Weeks 36 – 48. Mixed pixels were removed via automated masking of a 150 m buffer zone 
from the edge of the polygon. Ice pixels were removed via reference from 4 km ice/snow 
coverage data from NSIDC. 

Metric Method Overall 
Winter 
(Dec – 
Feb) 

Spring 
(Mar – 
May) 

Summer 
(Jun – 
Aug) 

Fall (Sep – 
Nov) 

Occurrence 

Retain 
both mixed 

and ice 
pixels 

-33 – 
110% 
(19%) 

-10 – 
110% 
(46%) 

-19 – 
100% 
(24%) 

-24 – 19% 
(-3%) 

-33 – 
105% 
(9%) 

Occurrence 
Remove 
mixed 

pixels only 

-5 – 105% 
(19%) 

5 – 95% 
(44%) 

-5 – 71% 
(20%) 

-5 – 10% 
(1%) 

-5 – 105% 
(12%) 

Occurrence 
Remove 
ice pixels 

only 

-47 – 42% 
(1%) 

-21 – 42% 
(4%) 

-26 – 42% 
(4%) 

-26 – 21% 
(-3%) 

-47 – 42% 
(-2%) 

Bloom alert 
occurrence 

Retain 
both mixed 

and ice 
pixels 

-27 – 
108% 
(18%) 

-14 – 
108% 
(28%) 

-27 – 
108% 
(17%) 

-27 – 68% 
(13%) 

-14 – 95% 
(12%) 

Bloom alert 
occurrence 

Remove 
mixed 

pixels only 

-15 – 58% 
(3%) 

0 – 58% 
(8%) 

-15 – 44% 
(4%)  

0 – 0% 
(%) 

-15 – 58% 
(2%) 

Bloom alert 
occurrence 

Remove 
ice pixels 

only 

-28 – 
111% 
(14%) 

-14 – 
111% 
(19%) 

-28 – 97% 
(12%) 

-28 – 69% 
(14%) 

-14 – 55% 
(10%) 

Extent Retain 
both mixed 

-340 – 
111% 

-90 – 92% 
(24%) 

-340 – 
111% 

-87 – 25% 
(5%) 

-39 – 56% 
(14%) 



44 
 

Metric Method Overall 
Winter 
(Dec – 
Feb) 

Spring 
(Mar – 
May) 

Summer 
(Jun – 
Aug) 

Fall (Sep – 
Nov) 

and ice 
pixels 

(11%) (2%) 

Extent Remove 
mixed 

pixels only 

-274 – 
135% 
(2%) 

-80 – 75% 
(12%) 

-274 – 
135% 
(-4%) 

-16 – 1% 
(0%) 

-46 – 44% 
(0%) 

Extent Remove 
ice pixels 

only 

-170 – 
44% 

(10%) 

-35 – 44% 
(15%) 

-170 – 
27% 
(5%) 

-88 – 25% 
(5%) 

-8 – 29% 
(13%) 

Bloom alert 
extent 

Retain 
both mixed 

and ice 
pixels 

-265 – 
62% 
(7%) 

-91 – 62% 
(5%) 

-265 – 
43% 
(5%) 

-127 – 
38% 

(11%) 

-94 – 36% 
(7%) 

Bloom alert 
extent 

Remove 
mixed 

pixels only 

-217 – 
57% 
(-5%) 

-99 – 57% 
(-4%) 

-217 – 
33% 
(-8%) 

-17 – 0% 
(0%) 

-108 – 
25% 
(-6%) 

Bloom alert 
extent 

Remove 
ice pixels 

only 

-123 – 
37% 

(12%) 

-33 – 31% 
(11%) 

-122 – 
32% 

(13%) 

-123 – 
37% 

(11%) 

-20 – 27% 
(12%) 

Magnitude Retain 
both mixed 

and ice 
pixels 

-139 – 
72% 
(8%) 

-52 – 72% 
(5%) 

-139 – 
51% 
(6%) 

-31 – 42% 
(15%) 

-105 – 
31% 
(7%) 

Magnitude Remove 
mixed 

pixels only 

-118 – 
68% 
(-4%) 

-62 – 68% 
(-3%) 

-118 – 
45% 
(-6%) 

-16 – 0% 
(0%) 

-116 – 
25% 
(-6%) 

Magnitude Remove 
ice pixels 

only 

-61 – 41% 
(13%) 

-9 – 22% 
(10%) 

-61 – 29% 
(13%) 

-31 – 41% 
(15%) 

-20 – 30% 
(13%) 

 

Retaining snow and ice pixels led to higher differences in the number of bloom occurrences in 
all seasons except summer (See first 2 rows for ‘occurrence’ in Table 4.3). The maximum 
percentage differences were high (> 70%), as well as the mean difference particularly for winter 
and spring (> 20%). These relatively high positive values indicated that the retention of ice 
pixels resulted in higher and likely erroneous counts of bloom occurrence. This is most likely 
due to false detection based on known optical interferences (Urquhart and Schaeffer 2020). It is 
possible, however, that some of these instances may reflect true cold water bloom detections 
as there are field based observations of blooms around and under ice on record (Graham et al., 
2008, Reinl et al., 2023). Paired satellite and field observations under snow and ice conditions 
could help to untangle this dynamic, however it is generally accepted that the OLCI sensor is 
unlikely to be able detect these particular events due to the interference of the ice spectral 
signature (Urquhart and Schaeffer 2020). The retention of mixed pixels (See last row for 
‘Occurrence’ in Table 4.3), in comparison, had relatively stable differences throughout the 
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seasons. The percentage differences observed for the number of bloom alert occurrences were 
similar to that of bloom occurrences, with the retention of ice pixels leading to higher counts of 
bloom alert occurrences in winter, spring, and fall, but the increase in number is of a lower 
magnitude compared to bloom occurrences, implying that only a portion of the removed ice 
pixels have DN > 132. Waterbodies with higher number of bloom and bloom alert occurrences 
from retaining ice pixels were mostly waterbodies located at higher latitudes where snow and 
ice cover are more prevalent (Figure 4.11). 

Figure 4.11: Waterbodies with higher number of A) bloom detection occurrences (DN > 0) 
and B) bloom alert occurrences (DN > 132) from ice pixel retention during winters of 2017 
– 2023 (Weeks 1 – 9 and Weeks > 48).

While the retention of mixed and/or ice pixels had a wide range of percentage difference in 
bloom detection and alert spatial extent (e.g., range of -340 – 111% for overall extent from 
retaining both mixed and ice pixels, first row and third cell of ‘Extent’ in Table 4.3), the mean 
percentage differences were mostly around or lower than 10%. This suggests that the extreme 
range of percentage differences observed for bloom detection and alert extent may be limited 
to a small number of weeks. The retention of snow and ice pixels led to higher differences in 
winter and spring for both bloom detection and alert spatial extent (See second row for both 
‘Extent’ and ‘High extent’ in Table 4.3), with a generally negative mean value. Such negative 
mean values indicate that the removal of snow and ice pixels in winter led to higher bloom 
extent values, which occurs when snow and ice pixels were mostly non-bloom pixels (DN = 0; 
Figure 4.10). An exception to the generally negative percentage difference was bloom extent in 
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Winter (12%). This positive mean percentage indicates that the retention of snow and ice pixels 
in winter led to higher bloom extent values while removing snow and ice pixels led to lower 
bloom extent values, which occurs when snow and ice pixels were mostly bloom pixels (DN > 0; 
Figure 4.10). This again demonstrated the strong effect of snow and ice pixels leading to false-
positive indication of blooms during the winter season, but such effect is only limited to winter 
and bloom extent evaluation. The retention of snow and ice pixels led to a mean negative 
percentage difference for bloom alert extent even for winter, indicating that ice pixels overall 
did not have DN > 132. 

Interestingly, the retention of mixed pixels also led to higher mean percentage difference in 
bloom extent in winter and fall compared to spring and summer, indicating that mixed pixels 
were more often identified as bloom pixels (DN > 0) in the winter and fall which resulted in 
higher bloom extent values during these seasons. These mixed pixel ‘blooms’ could be 
accumulation of cyanobacteria from the previous summer’s blooms nearer to the shoreline, or 
alternatively, could represent interference from land vegetation. Field observations would help 
to identify the likely cause of these differences.  

The removal of ice pixels led to a general increase in bloom magnitude in all seasons, while the 
removal of mixed pixels led to a general decrease in bloom magnitude in all seasons, as 
indicated by the mostly negative mean percentage difference from ice pixel retention (second 
row of ‘Magnitude’ in Table 4.3) and the consistent positive mean percentage difference from 
mixed pixel retention (third row of ‘Magnitude’ in Table 4.3). This suggests that the removed ice 
pixels did not have a strong contribution to the bloom intensity of the waterbody (i.e., sum of 
CIcyano for all resolvable pixels), but the removed mixed pixel did have a strong contribution to 
the bloom intensity (i.e., removed mixed pixels had high CIcyano values).  

4.5 Temporal Compositing of the Data 

4.5.1 Types of temporal composites 
Daily and 7-day maximum (7D max) value imagery composites can be downloaded from the 
CyAN project data portal. SFEI also serves 10-day maximum (10D max) value composites from 
NOAA for download through the FHAB Satellite Analysis Tool (https://fhab-api.sfei.org/). Note 
that NOAA processes the satellite data with minor variations compared to the CyAN project, so 
CIcyano values from the two sources may have slight differences.  

Custom 7D max, 7D median (7D med), and 10D max composites were generated from daily 
CyAN data products from 2017 - 2022 to compare the use of different types of temporal 
composites. 7D max composites were generated from daily imagery rather than using pre-
generated 7D max composites from CyAN to ensure that the custom generated composites 
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were comparable in their processing. The range of dates for the 7D composites were from 
1/1/2017 – 12/31/2022, while the range of dates for the 10D composites were from 1/1/2017 – 
12/30/2022. The 7D 90th percentile was also tested for a smaller subset of the data and yielded 
nearly identical results to the 7D max (data not shown). 

These satellite image composites were processed using the custom California waterbodies 
shapefile (with 238 waterbodies), automated mixed pixel masking with 150 m buffer zone, and 
ice-pixel removal using 4 km ice data from NSIDC. Waterbodies included in the analysis was 
further restricted to ‘Suitability for trend analysis’= ‘Suitable’ and ‘Water Type’ = ‘Lake + 
Reservoir’ (Refer to section 4.2 for details), which resulted in a final count of 158 lakes and 
reservoirs. The use of the 150 m buffer zone resulted in the loss of 37 smallest and/or more 
narrow waterbodies from the inventory as they had 0 resolvable pixels in the 6 years of data 
analyzed when the additional buffer zone was applied. 

4.5.2 Impact of temporal aggregation on bloom metrics  
Comparison between 7D and 10D max composites indicated that 7D and 10D composites 
yielded similar annual bloom detection frequencies despite a significant reduction in number of 
resolvable pixels analyzed by 10D composites (Figure 4.12). While the annual bloom detection 
and alert frequencies for 10D max composites are consistently higher than the 7D max 
composites (Figure 4.12C, D), it should be noted that the scale for the frequencies (y-axis) were 
small, and so the overall difference between the two types of composites are small. This is 
more apparent when comparing the average annual frequencies for no bloom (DN = 0), in 
which the y-axis is from 0 – 1 (Figure 4.12E). The total number of bloom occurrence each year 
was lower for 10D max composites, which is due to the smaller number of composites analyzed 
each year (i.e. 52 – 53 per year for 7D composites; 36 – 37 per year for 10D composites).  

While the number of resolvable pixels analyzed between 7D max and 7D med composites were 
the same, 7D med composites consistently led to more conservative values of various bloom 
metric values. Number of bloom occurrences, annual bloom frequencies, and bloom spatial 
extent were all consistently lower from 7D med composites than 7D max composites (Figure 
4.12, Figure 4.13). Despite quantitative differences, 7D max and 7D med generally followed the 
same interannual patterns, with the exception of a few bloom events particularly in 2022 that 
were characterized in the 7D max dataset and not in the 7D med dataset (Figure 4.13D, 
presence of red 7D max peaks and the lack of 7D med peaks). However, without large-scale 
frequent field observations, it is difficult to understand which dataset most accurately 
characterized bloom dynamics during those events.  
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Figure 4.12: Comparison temporal compositing approaches (as indicated by bar color) 
on A) total number of pixels processed in the year; B) total number of bloom occurrence 
(DN > 0 and spatial extent > 10%); C) average annual bloom frequency (DN > 0); D) 
average annual frequency of bloom alerts (DN > 100); and E) average annual frequency of 
no bloom (DN = 0) for 83 waterbodies. Bloom frequency is presented as a proportion. 
Mixed pixels were removed by automation with 150 m buffer zone and ice pixels were 
removed using 4 km ice data from NSIDC as reference. 
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Figure 4.13: Comparison of weekly bloom spatial extent (% of total pixels) for A) 2017 and 
B) 2022 and number of bloom occurrences (defined by DN > 0, > 10% pixels) for C) 2017
and D) 2022 between 7D max and 7D med composites for 83 waterbodies.

4.6 Conclusions and recommended procedures 
The previous sections investigated the removal of mixed land-water and ice pixels, illustrating 
how different processing methods can affect the results and bloom metric values generated 
from the same satellite imagery data, and that the retention of invalid pixels may lead to false 
positives of bloom occurrence (e.g., ice pixels as shown in Figure 4.8).  

Based on these results, it is recommended to remove ice pixels before any further analyses. We 
found evidence of false positives for cyanobacteria detection (e.g., DN >0), albeit at relatively 
low levels. Furthermore, the increased detection of blooms in locations known to have ice and 
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snow suggests these are most likely erroneous results. These findings are congruent with 
previously published work (Urquhart and Schaeffer 2020). 

Table 4.4: A summary of recommended standardized procedures for satellite imagery 
processing to assess FHABs. 

Processing Step Recommendations for Standard Procedure 
Selection of resolvable 
waterbodies 

Use California custom shapefile using attributes ‘Suitability 
for trend analysis’= ‘Suitable’ and ‘Water Type’ = ‘Lake + 
Reservoir’ 

Removal of potential 
mixed land-water pixels  

Automated removal of pixels along waterbody polygon 
boundary 

Removal of potential 
snow and ice pixels  

Removal of potential ice pixels using 4 km ice reference 
map 

Temporal compositing of 
imagery data 

Use 7-day maximum temporal composites  

 

The decision of how to process mixed land-water pixels ultimately depends on the stakeholder 
goals, and considerations on the balance between data confidence and the retention of 
potentially mixed or land influenced pixels (which may or may not provide realistic data) must 
be made based on these goals. The variation in the actual water boundary for waterbodies due 
to climatic/weather conditions (e.g., drought or heavy rain) further complicates this decision. 
For the status and trend assessment goals of the FHAB Program, the boundary pixel removal 
approach is recommended since it strikes an appropriate balance between inclusion of as many 
waterbodies as reasonable and removal of edge pixels that are very likely mixed pixels. This 
approach strikes a balance between conservative mixed pixels removal and retaining enough 
pixels for robust further analysis on a larger number of waterbodies. This approach of 
automated masking is also scalable for future efforts involving high spatial resolution imagery. 
The use of the more conservative 150 m and 300 m boundary removal procedure with the 
custom California waterbodies shapefile resulted in the loss of 70 smaller/more narrow 
waterbodies from the inventory as they had 0 resolvable pixels in the 6 years of data analyzed. 
Automated removal of boundary pixels is an efficient method to remove mixed pixels, but an 
important caveat is that it is highly dependent on the accuracy of the polygons in the shapefile. 
This balance seems appropriate given that testing against conservative mixed pixel removal 
processes (i.e., the use of 150 and 300 m buffer zones) yielded generally similar results. 
Importantly, the retention of nearshore pixels may allow for more detection of cyanobacterial 
bloom occurrence by including pixels closer to the shoreline and may thus serve well for 
detecting events that may not extend into open water zones, particularly when paired with 
field-based investigations or special studies. For efforts such as event response where a field-
based assessment would be conducted as a follow up to the satellite observations, retention of 
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the more nearshore pixels might be desirable to capture these more nearshore data. When 
resources are available to implement recommendations, future efforts should consider 
comparing buffer zone data from in-situ observations to satellite observations to further 
understand the comparability (or not) of these two data types.  

A more conservative approach to the removal of possible mixed pixels via a buffer zone may be 
most suitable for applications where stringent data certainty is required. Data obtained from 
the CyAN project will include land pixel flagging (DN = 254), but it is unknown how well the 
algorithm performs with mixed land-water pixels, and whether there is a threshold of the 
proportion of land vs. water for a pixel to be flagged as land. It is also unknown how the 
inclusion of small amounts of land within the overall pixel area influences the data quality, since 
the measurement is integrating over a relatively large (300 x 300 m) area. Making a static TIF 
for reference can allow for more confidence in the inclusion of only pixels that contain 100% 
water but requires a large investment of time and labor and is not feasible to repeat routinely. 
Even with manual curation, a static reference would only reflect a snapshot of the water 
boundary condition at the timepoint that the reference images were collected. Thus, this 
approach is only recommended when a high level of customization or effort is focused over a 
specific time period. The use of a buffer zone allowed a more conservative approach for 
removing mixed pixels that is less intensive to generate but may lead to undesired removal of 
otherwise resolvable waterbodies with just a few pixels. Nevertheless, a buffer zone of 150 m 
often led to similar results as using a static, manually curated reference (Figure 4.5, Figure 4.6) 
despite the likely difference in some of the actual pixels removed between the two methods 
(i.e., the pixels removed by the static reference is different than those removed by the 
automated masking with 150 m buffer zone). This approach may strike a good balance between 
conservative mixed pixel removal and retaining enough pixels for proper further analysis given 
that the waterbodies are big/wide enough to allow such a buffer around its border. Otherwise, 
as observed in section 4.5.1, smaller and/or more narrow waterbodies will have no resolvable 
pixels after mixed pixel masking with a 150 m buffer zone.  

Different types of temporal composites (e.g., 7D vs. 10D or max vs. med) can also lead to 
different values of bloom metrics. Temporal composites made from maximum and median 
values led to similar or greater differences in bloom metric timeseries than variations in 7D and 
10D compositing, with composites using median values giving more conservative results. 
Therefore, the decision to use maximum vs. median once again depends on end user goals, and 
whether a more sensitive (e.g., bloom incident early warning) or conservative (e.g., for Water 
Board management decisions) approach is preferred. Ibelings et al. (2021) had suggested that 
in cases where toxin data are not available, the maximum cyanobacteria biomass could aid in 
the estimation of maximum expectable cyanotoxin concentrations, thus the recommendation 
for the FHAB Program is to use maximums in temporal composites, particularly for management 
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applications. Trend analyses or comparisons across different time periods, however, should be 
more cautious in temporal aggregation approach due to differences in observation frequency 
before and after the launch of Sentinel-3B (see Section 5.2). Results from 7D and 10D 
composites were comparable, and the decision to use 7D vs. 10D may just be user preference 
and data availability (if composites were already available). For the FHABs Program, 7D 
composites are recommended since these translate readily into weeks, which are readily 
interpretable when consolidated into the downstream data metrics such as bloom occurrence.  
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5. KEY GRAPHICS AND LINKAGE TO MANAGEMENT 
QUESTIONS  
This section provides example key graphics from further analysis and a summary of processed 
OLCI imagery data, applying the data metrics described in Chapter 3, and their linkages to 
management questions described in Chapter 2. The focus of the analyses in this chapter is to 
address the status and trends questions described in Table 2.1, with a particular emphasis on 
statewide and waterbody specific status, patterns, and trends. Analyses in this chapter focused 
on cyanobacterial blooms and thus CIcyano and cyanobacterial Chl-a were applied as indicators, 
although a similar analysis could also be conducted using total Chl-a should the end user wish 
to define blooms more broadly. 7D max data from 2017 – 2023 were processed using the 
custom California waterbodies shapefile with 238 waterbodies, automated masking (no buffer 
zone), and ice pixel removal using the 4 km ice data from NSIDC, according to the data 
processing recommendations in Chapter 5. The waterbodies included in the analysis were 
restricted to ‘Suitability for trend analysis’= ‘Suitable’ and ‘Water Type’ = ‘Lake + Reservoir’ 
(Refer to section 5.2 for details), which resulted in a final count of 158 waterbodies. Both 
blooms detection (defined as DN > 0 ) and bloom alerts (defined as blooms associated with >12 
µg/L cyanobacterial Chl-a, DN > 132) were examined. Status was assessed comparatively to the 
running average of each metric in relation to the observations of the specific year (i.e., 2023). 
Formal trend calculations were conducted in section 5.2. 

5.1 Status and patterns analysis 

5.1.1 Statewide 
Cyanobacterial bloom conditions in 2023 were reduced compared to 2021 – 2022 as the overall 
bloom detection and alert occurrences and frequency were below the average of the mean for 
2017 – 2023 (Figure 5.1). Satellite imagery data indicated that the number of bloom detections 
and alerts started to increase in 2018 and were highest in 2020 (for bloom detections) and 2021 
(for bloom alerts; Figure 5.1A, Figure 5.1B). Annual bloom detection and alert frequency started 
to increase in 2019, and peaked in 2021 (Figure 5.1C, Figure 5.1D). Changes from 2017 and 
2018, however, should be interpreted with caution given that observational frequency across 
this time period increased with the addition of the Sentinel-3B satellite in 2018 (Coffer et al., 
submitted). Due to these changes, observed increases may be due to increased temporal 
coverage of both Sentinel-3A and 3B satellites rather than true environmental change (see 
section 5.2 for additional discussion).  
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Figure 5.1: Comparison of A) total number of bloom detection occurrences per year, B) 
total number of bloom alert occurrences per year, C) average annual bloom detection 
frequency, and D) average annual bloom alert frequency for lakes and reservoirs suitable 
for trend analysis (Total = 158). Frequency is a proportion. Dashed line indicates the 7-
year average. The * symbol indicates years during which satellite observational 
frequency was lower compared to the rest of the timeseries. 

Seasonal analysis indicated that summer and fall are usually the seasons with the highest bloom 
spatial extent, number of lakes with blooms, and bloom magnitude, while winter usually has 
the lowest bloom extent, magnitude, and number of occurrences. Average bloom detection 
and alert extent was particularly high for summers of 2019 and 2021 (red bars in Figure 5.2A, 
B), which fit with the increased bloom detection and alert annual frequencies observed for 
those years (Figure 5.1C, D). Bloom magnitude for summer of 2017 and fall of 2021 and 2022 
were particularly high even though bloom detection and alert extent was not particularly high 
for those seasons. This may indicate high intensity blooms were present (as suggested by the 
magnitude metric) for a small number of pixels (thus constraining bloom alert extent to modest 
values) during those seasons. The above average number of bloom occurrences observed for 
years 2020, 2021, and 2022 (Figure 5.1A) were due to increased occurrences of winter and 
spring blooms (blue and green bars in Figure 5.2C), highlighting that blooms can occur year-
round in many waterbodies in California. 
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Figure 5.2: Seasonal average of A) bloom detection and B) bloom alert spatial extent. The 
count of of C) bloom detection and D) bloom alert occurrences, and E) bloom magnitude 
for lakes and reservoirs suitable for trend analysis (Total = 158). Winter = Weeks 1 – 9 
and Weeks > 48; Spring = Weeks 10 – 22; Summer = Weeks 23 – 35; Fall = Weeks 36 – 48. 
The * symbol indicates years during which satellite observational frequency was lower 
compared to the rest of the timeseries. 

Weekly analysis of the state-wide bloom detection and alert spatial extent indicated that spatial 
extent generally remained stable, peaking around ~8 – 10% for bloom detections, and ~5 – 10% 
for bloom alerts (Figure 5.3C, D). Spikes of increased bloom detections and alerts (> 20% for 
bloom detections and >15% for bloom alerts) were observed for a small number of weeks in 
2019 (weeks 11 – 12, 32 – 33) and 2021 (weeks 29 – 32), which indicated there was an overall 
increase in bloom alert spatial extent throughout the state during those periods. Weekly 
number of bloom occurrences and bloom magnitude (Figure 5.3A, B, E) followed the seasonal 
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pattern of higher numbers in the middle of the year (summer and fall) compared to the start 
and end of the year. 

Figure 5.3: Weekly number of lakes and reservoirs suitable for trend analysis (Total = 
158) with A) bloom detections and B) bloom alerts. Weekly C) bloom detection spatial
extent and D) bloom alert extent, and E) weekly bloom magnitude. Winter = Weeks 1 – 9
and Weeks > 48; Spring = Weeks 10 – 22; Summer = Weeks 23 – 35; Fall = Weeks 36 – 48.
Black vertical dashed line indicates Sentinel-3B reaching its nominal orbit phased 140°
from Sentinel-3A and essentially doubling the observational frequency of the Sentinel-3
satellite series.

Bloom metrics were used to identify if any geographic patterns in FHABs were apparent in 
resolvable lakes across California. There were no visually apparent geographic patterns or 
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geographic clusters of lakes with similar numbers of bloom detection occurrences in 2023 
(Figure 5.4). Instead, waterbodies bloom occurrence counts for each resolvable waterbody on 
the map were randomly distributed across the state when considering both detectable and 
alert level blooms. Despite the overall lower number of bloom occurrences in 2023 compared 
to previous years, there were a number of waterbodies that had higher number of bloom 
detection and alert occurrences in 2023 compared to the 7-year average for that waterbody 
(Figure 5.5). These waterbodies with increased number of cyanobacterial bloom occurrences 
were again present throughout the state. 

Figure 5.4: Location and counts of A) bloom detection (DN > 0) and B) bloom alert (DN > 
132) occurrences for lakes and reservoirs suitable for trend analysis (Total = 158) in
2023. The count of weekly bloom detection and alert occurrences are indicated for each
resolvable lake with warmer colors indicating a higher number and cooler colors
indicating a lower number.

All lakes and reservoirs suitable for trend analysis (n = 158) were sorted into 6 distinct 
categories according to their total number of bloom occurrences each year and the number of 
lakes in each category were compared across years (Figure 5.6). The categories used were: 1) 0 
weeks with a bloom; 2) 1-4 weeks with a bloom; 3) 5-12 weeks with a bloom; 4) 13-24 weeks 
with a bloom; 5) 25-35 weeks with a bloom; and 6) >36 weeks with a bloom. The category ‘5 – 
12 weeks’ consistently had the highest number of waterbodies throughout the 7 years analyzed 
(green bars in Figure 5.6), while the category ‘> 36 weeks’ consistently had the lowest number 
of waterbodies (red bars in Figure 5.6). This indicated that there were only a small number of 
waterbodies that had bloom occurrences > 70% of the year. A decrease in waterbodies in the 
categories ’25 – 36 weeks’ and ‘> 36 weeks’ for 2023 indicated a reduction in the number of 
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waterbodies that had persistent blooms throughout the year and implied some improvements 
in the statewide bloom situation. Notably, 2023 is the year following record levels of rainfall in 
late 2022 and throughout early 2023 which may have influenced bloom dynamics. 

Figure 5.5: Locations of lakes and reservoirs suitable for trend analysis (Total = 158) with 
the number of A) bloom detection occurrences and B) bloom alert occurrences in 2023 
above their each respective 7-year (2017 - 2023) mean number of bloom detection and 
alert occurrences. 

5.1.2 Individual lakes 
This section demonstrates the application of similar status and patterns analyses on individual 
waterbodies using Clear Lake as an example. 

An average of 28 near-surface, open water bloom occurrences were detected at Clear Lake 
between the years of 2017 – 2023 (Figure 5.7) Most of the detected blooms (>90%) were 
classified as major (high) blooms with DN > 132 constituting over 10% of the resolvable lake 
pixels. However, bloom pixels were generally not homogenous in the lake, and limited to 
certain regions. For example, the median DN values for the pixels in the upper arm of Clear Lake 
was 0 in 2023 (Figure 5.8 left panel), indicating there were no cyanobacterial bloom detection 
more than half of the year when the pixels were resolvable. This type of spatial pattern was 
observed in most years (data not shown), and matches in situ observations at the lake (Smith et 
al., 2023). Looking at the maximum pixel DN values, on the other hand, showed that blooms 
were detected across the entire lake for at least some portion of the year, as indicated by each 
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pixel experiencing an elevated DN value (DN > 132) for at least 1 week in 2023 (Figure 5.8 right 
panel).  

 

Figure 5.6: Number of lakes and reservoirs suitable for trend analysis (Total = 158) sorted 
into categories indicating number of weeks with bloom occurrences from 2017 – 2023. 
The * symbol indicates years during which satellite observational frequency was lower 
compared to the rest of the timeseries. 

 

Figure 5.7: Annual number of bloom alerts (red bars) and detections (blue bars) in Clear 
Lake from 2017 - 2023. Black horizontal line indicates the 7-year mean number of bloom 
occurrences. Percentages indicate the percentage of bloom alert occurrences among 
total bloom occurrences. The * symbol indicates years during which satellite 
observational frequency was lower compared to the rest of the timeseries. 
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Figure 5.8: Median and maximum pixel DN values for all resolvable weeks for each pixel 
in Clear Lake over the year in 2023. 

Weekly bloom spatial extent values indicated similar annual patterns and values over the 7-year 
period (Figure 5.9A, B), in which bloom extent was low (<5%), a rapid increase to ~100% around 
May, and then another rapid decrease to <5% around September/October. This suggested that 
blooms generally occurred and covered large areas of the lake relatively rapidly, with similar 
rapid bloom termination. Sharp peaks in bloom magnitude, on the other hand, suggests that 
high bloom intensity periods were generally shorter in duration in comparison (Figure 5.9C). 

Figure 5.9: A) Weekly bloom detection extent, B) bloom alert extent, and C) bloom 
magnitude at Clear Lake. Blue horizontal dashed line indicates 10% bloom occurrence 
spatial threshold i.e., values above the horizontal dashed line indicates a bloom 
occurrence. Black vertical dashed line indicate a doubling of the observational frequency 
of the Sentinel-3 satellite series. 
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5.2 Statistical Trend Analyses 

5.2.1 Statistical approaches for calculating trends and 
baselines 
Annual and monthly trends in bloom metrics can be investigated using a variety of statistical 
approaches. One of the most used approaches for trend analysis of water quality data, 
including bloom metric data, is the Mann-Kendall approach (Hirsch et al., 1982; Urquhart et al., 
2017). This non-parametric approach tests for monotonic trends in metrics. It handles missing 
data well (as long as missing data is not in systematic intervals), making it ideal for imagery data 
where clouds, ice, glint and other factors can result in sporadic missing observations. This is a 
more appropriate approach for monotonic trends than linear regression analysis which is more 
suited for normal data distributions and can be more strongly influenced by missing data and 
serial dependence (Hirsch et al., 1982). Both trend analysis approaches are sensitive to 
autocorrelation. 

The Mann-Kendall test can detect trends by calculating differences in signs between earlier and 
later time points and determines if there is a consistent increase or decrease in sign values over 
the time series for each individual month or across years. It has two different variations, the 
Seasonal Mann-Kendall Test and the Mann-Kendall Test, which are suitable for timeseries that 
have seasonality and for annualized timeseries, respectively. Trends for monthly or weekly time 
series that encompass a seasonal cycle are best estimated using a Seasonal Mann-Kendall test 
to account for seasonality across months (Hirsch et al., 1982). The Mann-Kendall test follows 
the same principles but is best suited for annual data inputs. The Kendall’s tau value, which 
ranges between -1 and 1, indicates the relative strength of the trend. Values closer to one 
indicate a stronger trend and values closer to -1 indicate a weaker trend. A value of 0 indicates 
no trend. The sign of the Kendall’s tau value indicates the directionality of the trend with a 
positive value indicating an increasing trend and a negative value indicating a decreasing trend. 
Trends are considered significant at p-values ≤ 0.05. 

A waterbody can exhibit no directional trend for several reasons, including because it has 
frequent or persistent blooms or because blooms are exceptionally rare. Determining baseline 
conditions can allow the addition of supplemental context to waterbodies without significant 
directional trends and delineate these two scenarios (i.e., frequent blooms or rare blooms). 
Baseline conditions can be determined by calculating the historical average condition or other 
measure of central tendency for a given bloom metric for either the individual waterbody or 
the larger population of waterbodies of the same type. Individual waterbodies with no trend for 
a given bloom metric can then be compared to the historical average condition for the larger 
population to determine if the historical average of that metric for that waterbody is below or 
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above baseline condition. These waterbodies can then be characterized as being above or 
below the historical baseline for that metric to better contextualize no trend data. 

5.2.2 Temporal compositing considerations for trend 
analyses with imagery data 
Trend assessments that include Sentinel-3 observations from 2017 and 2018 should be 
interpreted with caution given that observational frequency across this time period varies. 
Sentinel-3A was launched by the ESA in February 2016, and Sentinel-3B was launched in April 
2018 and reached its nominal orbit on 23 November 2018 (Clerc et al., 2020). Thus, during mid-
2018, observation frequency changed from 1-2 images per week (2016-2018) to near-daily 
imagery beginning in November 2018 due to the added satellite platform (Schaeffer et al., 
2022). Recent work by Coffer et al. (submitted) demonstrated that maximum 7D composites 
can lead to observed increases in trends due to increased observational frequency through the 
addition of satellites to the constellation rather than true environmental change since the 
increased observational frequency increases the opportunity to observe extreme values. Two 
different approaches exist to mitigate this effect. First, using a measure of central tendency for 
weekly compositing, such as using a median or mean instead of a maximum, helps to reduce 
this effect when using a timeseries that includes periods where the satellite constellation 
changes (e.g., going from one platform to two). Second, limiting trend analyses to a period 
where the number of satellite platforms is consistent (e.g., only the period when 2 satellite 
platforms are in use) can also reduce this effect. Notably, 7D maximum composites are a 
routinely available product, while 7D medians need to be generated by the user, thus the 
choice between these options should balance these added data processing considerations.  

Trends in both annual and seasonal bloom metrics were tested for the period of 2019-2023 
when two satellite platforms were consistently in use. This time period represents five years of 
year-round observations, meeting the minimum time period of five years recommended by 
Hirsch (1988) for water quality trend analyses. 158 resolvable lakes from the custom California 
waterbody inventory were used based on using the analysis inclusion criteria of water type = 
“Lake” and Use type = “All”. These waterbodies were processed using the procedures 
recommended in Chapter 5 and used automasking (i.e., no buffer zone) for edge pixel removal 
and 4km ice removal. The Mann-Kendall test was applied to the annualized bloom metrics, 
annual bloom frequency and annual number of weeks with bloom occurrences. The seasonal 
Mann-Kendall test was applied to bloom metrics that contained seasonality within the 
timeseries, categorized as monthly average bloom extent and number of bloom occurrence per 
month. Trends were considered significant at p-values ≤ 0.05. Lakes with non-significant trends 
(p-value > 0.05) were evaluated according to the statewide average for that bloom metric from 
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2019-2023 and were categorized as either no change and above that baseline or no change and 
below that baseline. 

Overall, significant directional trends for annual bloom frequency and annual number of bloom 
occurrences were rare, with only 1 (<1% of lakes assessed) lake demonstrating a significant 
decreasing trend in annual bloom frequency. More directional trends were observed for 
monthly average bloom extent and monthly number of weeks with bloom occurrences. A total 
of 10 (6%) and 7 (4%) lakes had decreasing trends for bloom extent and weeks with bloom 
occurrences, respectively. Less lakes had an increasing trend (Table 5.1). For all bloom metrics, 
most lakes had no statistically significant trend. Depending on the bloom metric, between 45-
63 lakes (28% - 40%) were above the statewide baseline for a given metric, while 90-106 (57% - 
67%) were below the baseline. 

Table 5.1: Summary of results of trend analysis for the period of 2019-2023 using 7D 
maximum temporal composites. The number of lakes in each trend category are 
summarized in the table. 

Bloom Metric 
Tested 

Increasing 
Trend (n) 

Decreasing 
Trend (n) 

No change, 
lake above 
baseline (n) 

No change, 
lake below 
baseline (n) 

Statewide 
baseline 

Annual Bloom 
Frequency 

0 1 51 106 0.15 

Annual number 
of weeks with 
bloom 
occurrence 

0 0 63 95 11.80 

Monthly Average 
Bloom Extent 

4 10 45 99 14.45 

Number of weeks 
with bloom 
occurrences per 
month 

3 7 58 90 0.98 
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6. SATELLITE REMOTE SENSING DATA QUALITY FOR 
ASSESSMENT OF FHABS 
The purpose of this chapter is to define the elements that comprise a data quality assessment 
and to review existing literature on these elements for OLCI imagery data. Guidance for data 
quality assessments of environmental data was developed by US EPA and SWAMP integrated it 
into their quality assurance manual (EPA, 2000b). The focal elements of this literature review 
conducted for this report were selected based on the SWAMP quality assurance manual since 
the FHAB Program intends to develop a quality assurance project plan governing the use of 
Satellite Remote Sensing data for water quality management decisions using the information 
summarized in this report.  

6.1 Data Quality Elements 
OLCI data derived from the CyAN project can be assessed through the lens of SWAMP Data 
quality indicators (DQIs), analogous to what is routinely evaluated for a variety of sample 
matrices and parameters collected during in-situ water quality and toxicity monitoring efforts. 
DQIs are quantitative measures and qualitative descriptors used to set limits of acceptable 
levels of data error. Here DQIs are defined using a set of elements related to data quality 
assessment. The measures include accuracy/bias, precision, representativeness, comparability, 
completeness, as well as sensitivity in the form of the detection limit. DQIs are used as a means 
to specify measurement quality objectives (MQOs) which, if achieved, will provide an indication 
that the resulting data are valid and expected to meet the project data quality objectives (EPA, 
2002). This provides a process to set an acceptable amount of uncertainty for the data collected 
from a project, and ultimately, to assess project performance and confidence in the resulting 
data. This report will support development of MQOs that will be articulated in the future 
quality assurance project plan governing the use of satellite remote sensing data.  

These data quality elements are: 

• Detection Limit – A method to inform sensitivity of a measurement, is the lowest 
concentration of an analyte that a specified analytical procedure can reliably detect. 
Often called the minimum detection limit of an analytical procedure.  

• Accuracy/Bias – The difference between an observed value and the "true" value (or 
known concentration) of the parameter being measured; bias is the first component of 
accuracy, which is the ability to obtain precisely a nonbiased (true) value. Sources of 
bias that can be introduced into analytical systems include systematic error, matrix 
interference, calibration, and contamination.  
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• Precision – The level of agreement among multiple measurements of the same 
characteristic; precision is the second component of accuracy. 

• Representativeness – The degree to which the data collected accurately represents the 
population of interest (e.g., contaminant concentrations.) 

• Comparability – The similarity of data from different sources included within individual 
or multiple data sets; the similarity of analytical methods and data from related projects 
across areas of concern. 

• Completeness – The quantity of data that is successfully collected with respect to the 
amount intended in the experimental design. 

OLCI imagery data, specifically CIcyano values and cyanobacterial Chl-a estimations as well as 
ESA sensor performance reports, were reviewed for these six elements in the sections below. 

Inherent differences exist between point-based in-situ observations and raster-based, two-
dimensional satellite data that limit comparisons to in-situ data. These six data quality elements 
are most related to data derived from field-based sampling; however, they provide a useful 
framework by which to evaluate satellite imagery and consistent with the SWAMP quality 
assurance manual requiring that applicable DQIs are evaluated for every measurement to 
inform confidence in the results. Three key caveats exist that are relevant to applying these 
data quality elements. First, there is an inherent spatial mismatch that exists between a point-
based observation like a grab water sample and a spatially integrated observation of a pixel that 
covers a 300 x 300 m area. Given these spatial differences, perfect agreement is not expected. 
Next, imagery data integrates the visible portion of the water column, with the total integrated 
depth varying based on water clarity. While field measurements can also use an integrated 
water sampler to integrate depth, it is most common that the field collections involve surface 
water grabs. Lastly, there is often temporal variability between point-based observations and 
satellite imagery (on the order of minutes to hours). This can be a major driver of variation 
between these types of observations due to the highly variable nature of cyanobacteria, which 
can shift their positions within the water column throughout the day by modulating buoyancy 
and can be shifted across the water surface throughout the day by wind.  

6.2 Detection Limit 
Satellite data downloaded from the CyAN project is presented as digital numbers (DN) for each 
pixel, and DN = 1 - 253 is the range of values that indicate cyanobacteria detection. The lower 
detection limit of the OLCI sensor is difficult to quantify, however the best estimate provided by 
the CyAN project is that the lower detection limit for CIcyano is between 10,000 – 20,000 
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cells/mL (Coffer et al., 2021a). DNs of 1 – 253 are roughly equivalent to ~10-20,000 – 7,000,000 
cells/mL. It should be noted though that the conversion of CIcyano to cell abundance data is 
currently a very rough estimation (more details in Chapter 3). The relatively high cell 
abundance equivalent of the lower end of the detection limit may make it hard to detect the 
beginning of a cyanobacterial bloom using satellite data. Therefore, low detections of 
cyanobacteria abundance may indicate that impacts to beneficial uses are already occurring in 
these waterbodies.  

The detection of total Chl-a using the RE10 algorithm described in Chapter 3 is most effective 
beginning at concentrations > 1 µg/L (Wynne et al., 2022). Additionally, the conversion 
between CIcyano values to cyanobacterial Chl-a was shown to perform best beginning at in-situ 
Chl-a concentrations around 7 µg/L (Seegers et al., 2021). 

6.3 Bias 
The multidimensional nature of satellite imagery data makes it challenging to derive a “true 
value” by which to compare (see description of key differences above). For analytical chemistry 
systems, the true value is based on a standardized reference material for the analyte to be 
measured or a surrogate analyte; this approach is not feasible for satellite remote sensing. To 
measure bias for this system, one approach is to compare remotely sensed versus point-based 
field observations to ascertain if there is agreement between a field observation and a satellite 
image collected from a similar time and pixel location. This approach can serve to determine if 
satellite imagery is generally in agreement with a field observation. It is important to note, 
however, that field-based data from point sampling has its own bias that complicates these 
types of comparisons. For example, Trees et al. (1985) found that fluorometric measurements 
of Chl-a underestimated concentrations by an average of 39% compared to measurement via 
high-performance liquid chromatography in samples collected from three different oceanic 
regions. Despite this known bias associated with fluorometric Chl-a determinations, it is one of 
the most common approaches for analysis used today. 

Field validation using in-situ radiometry can help to assess and cross validate if satellite data are 
within the published range and identify potential thresholds of increased false-positive risks but 
also are not perfect at generating a “true value” by which to compare. Mismatches between 
field and satellite-based sensors may also occur due to environmental and instrument 
variability, such as moving parcels of water or difference in instrument calibration, and do not 
necessarily indicate imprecise satellite measurements. Variability in the matchups between 
satellite and field radiometry data is an inherent issue with cyanobacteria blooms and thus field 
validation efforts (Tomlinson et al 2016). 
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Sentinel-3 satellite imagery was able to detect cyanobacteria blooms that occurred in Clear 
Lake (Lake County, CA) in a field validation study conducted by the CA State Water Boards in 
2019 – 2020 (Lie et al., in prep). In this study, satellite data from CyAN performed better in 
bloom detection than field measurements as a majority (87%) of the field measurements 
indicated no bloom presence (i.e., DN = 0) despite macro- and microscopic confirmation of 
cyanobacteria in the field at the same time as the satellite overpass. Field radiometry generated 
DN were mostly 0 due to negative values of the exclusion criterion SS(665) in the calculation of 
CIcyano. Satellite data also failed to detect blooms in waterbodies other than Clear Lake (e.g., 
Lake San Antonio) despite microscopic observations of Dolichospermum spp. in water samples. 
Low cyanobacteria biomass could be a potential reason why satellite and field radiometry failed 
to detect blooms. Therefore, while the addition of the SS(665) criterion for CIcyano values was 
meant to reduce false-positives (i.e., CI value > 0 despite the absence of cyanobacteria), this 
study demonstrated that instances of false negative can occur, especially at lower 
cyanobacteria biomass. Further studies could be conducted to investigate a possible threshold 
in which SS(665) (and thus CIcyano and DN) becomes unreliable in detecting the presence of 
cyanobacteria. Another potential reason for the failure to detect blooms is the composition of 
the cyanobacteria community. The use of the SS(665) exclusion criterion is based on the 
observation of a large peak at 664 nm in Microcystis dominated water in an African dam 
(Matthews et al. 2012), so the inability for SS(665) to indicate the presence of cyanobacteria in 
the study may be due to differences in optical properties between Dolichospermum and other 
cyanobacteria genera compared to those of Microcystis. This highlights the need for additional 
work to better resolve the performance of the CIcyano observations in systems with variable 
cyanobacterial community composition. Nevertheless, in cases of the remaining 13% of field 
generated DN with values > 0, comparison with CyAN DN showed generally good agreement 
(Field validation report; Fig. 10).  

6.4 Precision 
Two Sentinel-3 satellite platforms are currently in orbit, each with an identically designed OLCI 
sensor, thus it is possible to assess precision by assessing differences across repeated measures 
of the same waterbody location by each individual sensor onboard Sentinel-3A and Sentinel-3B. 
The ESA conducted a tandem flight configuration to cross compare the in-flight performance of 
each sensor, OLCI-A and OLCI-B, from early June to mid-October following the launch of 
Sentinel-3B in 2018. A tandem flight configuration means each satellite can take images of the 
same location roughly 30 seconds apart from the same viewing angle, which allowed for 
exploration of potential differences between the platforms once in flight (Lamquin et al., 
2020a). From these observations, it was determined that a radiometric bias of 1-2% existed 
between the two sensors (Lamquin et al., 2020a). Given this minor difference between sensors, 
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Hammond et al. (2020) examined how individual sensor uncertainty may influence trend and 
spatial pattern analysis during a period of tandem flight configuration. This study found that 
differences in sensor uncertainty resulted in minimal differences in trends of Chl-a in coastal 
and open ocean environments, and that suggested future trend analysis using both satellite 
sensor platforms should yield consistent results with continued sensor performance (Hammond 
et al., 2020).  

Following the tandem flight phase, Sentinel-3 flight pattern was shifted from the tandem 
configuration to their current orbit phasing, where the Sentinel-3B satellite has a 140° 
separation from the Sentinel-3A satellite. This shift allows for the current near daily temporal 
resolution of the Sentinel-3 mission. A progressive drift phase was utilized to slowly make this 
shift and allow for additional comparisons between the OLCI-A and OLCI-B sensors across a 
range of viewing angles (Lamquin et al., 2020a). During this drift phase, the small differences in 
sensors and the downstream impacts on data products like Chl-a were examined and were 
found to be minimal (Lamquin et al., 2020a). The temporal stability of Chl-a cross-calibrations 
between the OLCI-A and OLCI-B was also assessed and was found to be stable between a 
roughly 1.5-year period following the drift phase (Lamquin et al., 2020b). Similar comparisons 
of CIcyano have not been reported. The differences between sensors continues to be 
monitored by the ESA and monthly assessments of OLCI performance and stability are 
conducted to ensure continued data quality. The most recent report from the ESA found 
negligible variation between sensor performances (ESA, 2024). Two Level 2 products are 
evaluated by the ESA routinely (the Green Instantaneous Fraction of Absorbed 
Photosynthetically Available Radiation and the OLCI Terrestrial Chlorophyll Index) that allow 
comparison between Sentinel-3A and Sentinel-3B. When comparing the outputs of each 
individual satellite for each of these metrices, correlations between each satellite ranged from 
0.90 – 0.95, bias ranged from 0.01-0.03 and normalized root mean square error ranged from 
0.07-0.18 in 2023 (ESA, 2024). 

6.5 Representativeness 
Each pixel of satellite data represents the average surface condition within the pixel. This is 
despite potential heterogeneity within the pixel, as is a common source of error for field-based 
measurements of cyanobacterial blooms which can have high spatial variability within a small 
area. As described above, each pixel of satellite data also integrates measurements over the 
depth of the photic zone, which varies based on water clarity conditions. Cyanobacterial 
biomass can also vary across depth based on regulation of buoyancy (ability to change position 
throughout the day); Graham et al. (2008) described potential water column distributions of 
cyanobacteria, some of which are more readily detectable by remote sensing methods than 
others. Field based survey methods also can have the same challenges to measure water 
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column distributions of cyanobateria due to constraints of resources, equipment, and access to 
open water. 

Another consideration of representativeness is how cyanobacterial cells are spatially 
distributed. Satellite data are well suited to capture the full bloom intensity if cells are 
concentrated at the surface (e.g., Microcystis blooms under calm water conditions), but 
sometimes blooms may be spread out vertically within the water column (e.g., Planktothrix 
blooms or Microcystis bloom homogenization via wind action). Cyanobacteria blooms also 
often accumulate along the shore due to wind and wave action, but satellite measurements are 
limited to open water areas only due to issues with adjacency effects and mixed pixels closer to 
shore. Altogether, the constraints may result in underestimation of the true cyanobacteria 
abundance due to the omission of shorelines and particularly during times of well mixed water 
columns.  

Despite this potential for underestimation due to the limitation of imagery data, studies of 
cyanobacterial blooms using satellite imagery have aligned well with field-based observations 
of bloom phenology. Patterns in weekly near-surface, open water cyanobacterial bloom 
occurrence were studied using both MERIS and OLCI imagery observations of more than 2000 
large lakes and reservoirs nationwide. This study, which used imagery data collected between 
2008-2011 and 2017-2018, demonstrated that weekly cyanobacterial bloom occurrence 
patterns on the national scale followed the anticipated temporal pattern of freshwater blooms. 
Overall, the number of waterbodies experiencing blooms each week increased throughout the 
calendar year, reaching a peak in the late summer and early fall, and decreasing with the onset 
of winter (Coffer et al., 2020). This demonstrates that over a large spatial scale, satellite 
imagery data can typically reproduce previously reported bloom phenology (Jöhnk et al., 2007).  

6.6 Comparability 
Several recent studies have been published that relate CIcyano values to a series of in-situ 
indicators of cyanobacterial blooms that help to understand how imagery data related to these 
observations. CIcyano values have been cross validated against the presence of a cyanotoxin 
class named microcystins (as an indicator of blooms presence) in 281 lakes across eleven states 
across the United States (Mishra et al., 2021). These comparisons were made using both the 
MERIS and OLCI sensors for the period of 2005-2011 and 2016-2019. Same day comparisons of 
CIcyano values and microcystins observations demonstrated that imagery data had an overall 
accuracy of 84% for detecting blooms when using toxin levels as an indicator of bloom presence 
(Mishra et al., 2021). In another study, eleven lakes with drinking water intakes across six 
different states (including California) were assessed for cyanobacterial bloom frequency using 
OLCI imagery between 2018 and 2019 (Coffer et al., 2021a). Satellite observations were 
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compared to 92 qualitative, visual observations of algal bloom presence near source water 
intakes (e.g., within 900 m). This comparison showed a 94% agreement between the imagery 
data and the visual observation data (Coffer et al., 2021). Schaeffer et al. (2018) and Whitman 
et al. (2022) both conducted comparisons between satellite imagery data and state issued 
cyanobacteria advisories and bloom reports. Schaeffer et al. (2018) compared OLCI imagery 
data to 25 different state advisories issued in six different states (including California) in 2017. 
State advisories, although most utilizing somewhat variable bloom definitions, were used as a 
general indication of in-situ bloom presence. Satellite data correctly identified bloom events 
that co-occurred with these advisories (Schaeffer et al., 2018). In a subsequent study, Whitman 
et al. (2022) examined the presence-absence agreement between reported cyanobacterial 
bloom events (a Natural Resources Defense Council database) and state advisories (state event 
response databases) to MERIS and OLCI imagery data. The bloom event database used for cross 
validation contained 1,343 events from 210 lakes across 23 states (including California), while 
the state advisory database included 160 advisories from 87 lakes across 11 states. Both cross 
validation datasets considered the period of 2008-2019. This study found a 69% agreement rate 
with state issued advisories and a 60% agreement rate with the bloom event data (Whitman et 
al., 2022). Collectively, these studies report agreement rates between 60% and 94% between a 
variety of direct and indirect field-based indicators (representing multiple lines of evidence) of 
cyanobacterial blooms and CIcyano values.  

6.7 Completeness 
The completeness of satellite data for resolvable waterbodies is affected by weather conditions 
such as cloud coverage or sun glint (Figure 6.1). Reflectance from ice and snow can also 
influence satellite data and pixels with snow and ice coverage should be removed from analysis 
(See section 6.4.2). Therefore, the amount of satellite data available in areas or seasons with 
high cloud and snow coverage tends to be reduced. Coffer et al. (2020) presented a summary of 
seasonal variations in bloom occurrence and lake resolvability across the United States. In the 
southwest region, which included California and Nevada, approximately 10%-15% of the 101 
lakes included in the study were resolvable throughout the entire year depending on the year. 
However, during the late spring through late fall period, nearly 100% of lakes were resolvable, 
even after ice pixel removal (Coffer et al., 2020). Adopting a process to identify when satellite 
remote sensing data is not complete (or available) due to these environmental conditions is a 
method to avoid the error associated with incomplete data.  
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Figure 6.1: Examples of A) cloud coverage 
(http://oceandata.sci.gsfc.nasa.gov/getfile/L2019001.L3m_DAY_CYANTC_tc_CYAN_CON
US_300m_1_1.tif) and B) sun glint 
(https://www.esa.int/ESA_Multimedia/Images/2020/11/Sun_glint) from true color satellite 
images. Picture of sun glint is taken from the European Space Agency website. 

  

http://oceandata.sci.gsfc.nasa.gov/getfile/L2019001.L3m_DAY_CYANTC_tc_CYAN_CONUS_300m_1_1.tif
http://oceandata.sci.gsfc.nasa.gov/getfile/L2019001.L3m_DAY_CYANTC_tc_CYAN_CONUS_300m_1_1.tif
https://www.esa.int/ESA_Multimedia/Images/2020/11/Sun_glint
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7. FUTURE RECOMMENDATIONS TO ENHANCE AND 
STREAMLINE APPLICATIONS 
The FHAB Program intends to expand the use of satellite imagery for FHAB monitoring and 
assessment. Their long-term goal is to expand the application of FHAB remotely sensed data to 
support Water Board management decisions beyond a screening tool for event response (Table 
7.1). This report provides the initial documentation of standard procedures and data quality to 
support the provisioning of high-quality data and document uncertainties. 

Table 7.1: FHAB Program vision for Water Board-specific applications of FHAB satellite 
remote sensing. Examples of each application is provided in the description column. 

FHAB Program’s Proposed 
Applications to relevant 
Water Board Programs 

 

 
 

Description 

Waterbody screening for 
event response 

Evaluating waterbodies for immediate FHAB response to 
implement the Voluntary Response Plan to inform public 
protection 
 

Assessment Evaluating status and trends at the waterbody, watershed, 
regional, and statewide level 
 

Evaluating Impairments Supporting decisions on impairments due to FHABs 
 

Informing Permit 
Requirements 
 
 

Where waterbodies are identified to be at risk of FHABs, 
supporting the development of permit requirements to prevent 
FHABs and/or incorporation of FHAB-specific monitoring 
requirements 

Evaluation of TMDL 
Implementation, 
Restoration, or 
Enforcement Actions 
 

Evaluating effectiveness of actions taken to mitigate FHABs in 
a waterbody  
 

 

7.1 Conclusions and Future Recommendations  
This report outlines a streamlined robust approach for Water Board and partner water quality 
applications by: 1) Identifying the remote sensing indicators and metrics that correspond to 
specific management questions; 2) establishing best practices for FHAB data processing, 
building on the considerable foundation of CyAN published literature and expert assistance; 3) 
identifying how these indicators and metrics would be calculated and visualized to assess FHAB 
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status and trends in single lakes versus groups of lakes, available to the community through 
well documented, open source coding; and 4) review of the literature describing what is 
understood about satellite remote sensing data quality. Implementing the approaches 
described in this report provides a tractable approach to assess the status and trends of large 
lakes and other waterbodies, which is particularly valuable since very little FHAB related data 
are available in these systems due to the lack of ambient programs in the majority of these 
lakes. 

Below, we identify multiple recommendations to further streamline the adoption of satellite 
remote sensing for FHAB assessment. These recommendations fall with five major types of 
activities, discussed briefly in the sections below.  

A. Integrate additional satellite platforms that can greatly expand the extent of 
waterbodies characterized  

B. Develop consensus on action levels for remotely sensed FHAB data 

C. Continue to develop quality assurance studies and documentation for application of 
satellite remote sensing to Water Board water quality programs.  

D. Enhance data communication, accessibility, visualizations, and reporting that can 
increase the utility of remote sensed data for the Water Boards and their partners. 

E. Integrate satellite remote sensed data into FHAB driver assessments. 

A. Collaborate with CyAN Project et al. partners to integrate additional satellite platforms 
(e.g. Sentinel 2 MSI imagery) to greatly expand the extent of waterbodies characterized 

Higher spatial resolution platforms do exist and are envisioned as a valuable data stream in the 
future for FHAB monitoring and assessment. Of greatest interest is the Multispectral 
Instrument (MSI) onboard the Sentinel-2 satellite constellation. This sensor offers a 30-meter 
spatial resolution which will allow for a majority of waterbodies in California to be monitored 
remotely. MSI generates imagery with a different spectral signature; therefore, these products 
cannot be used to calculate a CIcyano value. Methods do exist to use MSI imagery to estimate 
Chl-a concentrations, which could provide data about overall algal biomass, but a cyanobacteria 
specific index equivalent to the CIcyano index is not currently available. Nonetheless, MSI and 
other high resolution satellite imagery products offer promising additions to FHAB monitoring. 
One of the major limitations for including MSI data products in this current effort is that Level-3 
data products from Sentinel-2 are not currently routinely available in a similar ready to use 
format as the Sentinel-3 products. Due to the increased spatial resolution, a significantly larger 
amount of data is generated by this platform compared to OLCI imagery. Significant 
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investments would be needed to manage and use this data if this was done directly by the 
state. The CyAN project has kicked off efforts in 2024 to build similar infrastructure as currently 
available for OLCI data products. Thus, future use of Sentinel-2 and other higher resolution data 
products were kept in mind throughout the development of this report, and many of the 
recommendations for data processing and analysis in this report are envisioned to be scalable 
to these future high resolution data products.  

B. Develop consensus on FHAB action levels for satellite remote sensing to support water 
quality management decisions 

To improve utility of remotely sensed data for management decisions, thresholds should be 
defined that link satellite data (CIcyano and chlorophyll-a) to risk of exceeding thresholds of in-
situ pigment data (chlorophyll-a and phycocyanin) that impair beneficial uses. The 
infrastructure to conduct this data match up process is readily available since in recent years, 
approaches have been developed to streamline matching co-located in-situ measurements with 
satellite observations (Ross et al. 2019), making this an accessible approach. As additional in-
situ data are developed this relationship can be refined over time. As an example of such 
studies, one could investigate the application of the thresholds currently recommended in this 
report (e.g., bloom alert threshold based on WHO 2021 guidance) and determine how well this 
threshold aligns with in-situ observations. 

C. Continue to develop quality assurance studies and documentation for applying satellite 
remote sensing to Water Board water quality programs  

Within this recommendation, two specific actions are recommended. First, the SWAMP 
program should develop a generalized quality assurance project plan (QAPP) for application of 
satellite remote sensing to Water Board water quality programs. This document provides the 
scientific review with which to accelerate the development of that QAPP. The QAPP should 
identify which decisions would be supported and the action levels (Recommendation B above).  

Second, SWAMP should continue to validate and assess remote sensing products with available 
in-situ data to further evaluate algorithm performance. Field sampling could be aligned for 
dates with satellite overpasses to increase the in-situ data available for validation. These data 
are best collected in collaboration with other academic and research partners. Therefore, a 
specific strategy, SOP, and data management system for satellite field verification should be 
developed, so that external partners can help participate in collecting data and submit it to a 
common database. These efforts are envisioned to continue to ground-truth satellite data, 
improve the CA-specific algorithm and overall data quality characterization. These efforts 
should be conducted in close collaboration with this expert workgroup and the strategy and 
subsequent SOP should be published and widely distributed among partners in the state. 
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D. Increase the utility of remote sensed data for the Water Boards and their partners. 

To expand the user community for remotely sensed FHAB data, it is essential to build data 
systems and decisions support incrementally even at moderate FHAB monitoring program 
funding levels to encourage strong partnerships and rapid dissemination of FHAB monitoring 
data. To achieve this, we recommend developing the vision, including key data sources, data 
visualizations and graphical user interface (GUI) functionality, for each type of decision support, 
through interactions with intended user groups (Waterboard or external targeted FHAB 
monitoring program partners). Two near-term actions are highlighted:  

1) Integrating satellite remote sensing into regular reporting on FHAB status and trends.  

Annual or biannual reports could be published by SWAMP on a 1- to 2-year interval and would 
summarize FHAB status, trends, and drivers from imagery data of visible waterbodies on a 
regional, watershed, and statewide basis. 

2) Integrate data metrics and summaries into a FHAB Satellite visualization tool to allow for 
functionalities such as comparison of a specific lake to the larger population of lakes and for 
download of data metrics into an easily digestible format such as an excel or csv file. 

The State Water Boards has already made strategic investments to capitalize on federally 
curated FHAB remote sensing products for large lakes and provides these data through a 
Californian FHAB satellite portal (fhab.sfei.org). The metrics and workflows, including the R 
Shiny app for status assessment, will be incorporated into the routine workflows broadly 
available to the portal. A strategic vision for the portal, and incremental development steps 
should be further identified, especially as new remote sensing options become available.  

E. Integrate satellite remote sensed data in FHAB drivers assessment  

To expand the utility of satellite remotely sensed data resulting from these best practices, we 
recommend this data as routine data source to inform FHAB driver assessments. The FHAB 
Monitoring Strategy (Smith et al. 2021) provided a comprehensive review of external and 
internal drivers and potential data sources. We recommended assessing the status of data that 
can be used routinely used to assess drivers, identifying metrics, workflows required to 
investigate the relationship between status and drivers, including the assessment of data 
quality. Leveraging remote sensing in a standardized approach can support elements of the 
FHAB Monitoring Strategy to holistically assess the drivers, the occurrence and inform 
management decisions to address HABs.  
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8. APPENDIX A. CHLOROPHYLL-A ESTIMATION 
THROUGH RE10 ALGORITHM 

8.1 Introduction 
Chlorophyll-a (Chl-a) is the dominant pigment light absorption pigments in phytoplankton and is 
often used as a proxy to total phytoplankton biomass. Accurate phytoplankton Chl-a 
measurements can be obtained by extracting Chl-a and then measurements via a fluorometer, 
but this method requires a physical water sample. Optical methods via remote sensing for 
measuring Chl-a rely on the optical properties of Chl-a, which absorbs light primarily in the 
violet (430 nm) and red (662 nm) wavelengths. Various algorithms have been developed for 
estimating Chl-a from satellite imagery data, including various Ocean Color (OCx), ESA algal_1 
and algal_2, and the Red Edge 2010 (RE10). 

RE10 determines Chl-a concentrations by calculating the near-infrared:red ratio. The use of the 
red and near infrared (NIR) bands is more effective for inland and coastal waters than the blue 
and green bands used for open ocean algorithms, as the red and NIR bands are less sensitive to 
interference from colored dissolved organic matter (CDOM) and particles scattering. The RE10 
algorithm was first described by Gilerson et al. (2010) and has been subsequently modified by 
Wynne et al. (2018).  

8.2 Methods 

8.2.1 RE10 Algorithm 
The RE10 algorithm is based on the ratio of near-infrared (709 nm):red (665 nm) ratio (R2), 
both atmospherically corrected with an assumption of a coarse-mode maritime aerosol with 
dark water at 885 nm: 

𝑅𝑅2  =  
𝜌𝜌𝑠𝑠(709)  −  𝜌𝜌𝑠𝑠(885)
𝜌𝜌𝑠𝑠(665)  −  𝜌𝜌𝑠𝑠(885) 

Where ρs is the top-of-atmosphere reflectance for specific bands. 

Gilerson et al. (2010) derived a 2-band algorithm and a 3-band algorithm for the estimation of 
Chl-a, but subsequent work indicated that the 2-band algorithm performed better. 
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Where aw are absorption due to water for wavelengths λ1 and λ2, and p is a coefficient 
generated from the relationship between phytoplankton Chl-a specific absorption coefficient 
(a*ph) between a*ph(665) and a*ph(675) (Gilerson et al. 2010; Bramich et al 2021). Taking aw(665) 
= 0.4245 m-1 and aw(709) = 0.7864 m-1, and p = 0.89, the equation is rewritten as: 

𝐶𝐶ℎ𝑙𝑙𝑙𝑙  =  [35.75 × 𝑅𝑅2  −  19.30]1.124 

Wynne et al. (2021) then regionally adjusted the coefficient of 19.30 to 14.30 to account for 
waters off south Florida as Chl-a values were not available from the original equation. 
Therefore, the final equation for RE10 used in Wynne et al. (2022) as well as this study is: 

𝐶𝐶ℎ𝑙𝑙𝑙𝑙  =  [35.75 × 𝑅𝑅2  −  14.30]1.124 

A minimum Chl-a value of 0.5 µg/L is assigned when the calculated RE10 Chl-a was < 0.5 
(Wynne et al 2021). 

8.2.2 Satellite imagery processing 
7D max composite NetCDF (.nc) files for 2019 - 2023 were downloaded from the Inland Waters 
Data (ILW) project on NASA EarthData’s Ocean Color Website 
(https://oceancolor.gsfc.nasa.gov/about/projects/inlandwaters/), and then projected to match 
the pixel grid of the CyAN data before calculating the Chl-a using the RE10 algorithm. The data 
was then subsequently masked for mixed land-water and ice pixels using automated masking 
and NSIDC 4 km ice coverage as reference (See Section 4.3). The resulting rasters of Chl-a values 
as pixels were finally processed using R scripts to calculate the annual bloom frequency and 
weekly bloom occurrence, bloom spatial extent and bloom magnitude metrics. These R scripts 
are the same R scripts for processing CyAN data, but slightly modified to account for different 
Chl-a vs. CI bloom thresholds.  

Calculated Chl-a values for pixels ranged from 0.5 – 6.8 x 108 µg/L, but extremely high values of 
calculated Chl-a were rare. Less than 2.5% of all resolvable pixels had Chl-a values > 200 µg/L 
for the 5 years analyzed (2019 – 2023), so a maximum cap of 200 µg/L was set such that Chl-a 
values >200 µg/L were set at 200 µg/L. A bloom alert threshold was defined as 12 µg/L was set 
for subsequent bloom metrics analysis. This bloom threshold was based on the recently 
updated WHO guidelines that utilize Chl-a observations in a risk based alert framework for 
waterbodies (Chorus and Welker, 2021), and mimicking the bloom alert threshold for 
cyanobacterial Chl-a estimates. 

8.2.3 Mismatches with CyAN data 
There are some discrepancies in pixel data availability between the ILW and CyAN datasets. 
Some pixels from the ILW dataset do not have any data for the bands used in the RE10 

https://oceancolor.gsfc.nasa.gov/about/projects/inlandwaters/
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algorithm available, despite the same pixels from CyAN having a DN (Figure 8.1A). On the other 
hand, data flagged by CyAN for land (DN = 254) or no data (DN = 255) were not necessarily 
flagged by the NetCDF, and may be included in the final Chl-a rasters. An example is the red 
pixel seen in Figure 8.1B, which indicates a pixel from CyAN (blue color) was missing due to land 
flagging from CyAN. Finally, despite attempts to make sure that the projection for the NetCDF 
data from ILW match the rasters from CyAN, there is a slight misalignment (< 1 m) between the 
two (Figure 8.1C). Such misalignment might lead to differences in the pixels included in mixed 
and ice pixels masking. Together, these issues led to differences in the total number of pixels 
processed and analyzed between the two datasets (Figure 8.2), but a detailed investigation was 
not performed.  

 

Figure 8.1: Comparison between the RE10 Chl-a pixels and the CyAN CI pixels using 
Clear Lake (A) and Lake Elsinore (B – C) during the first week of 2019 as an example. 
Blue color indicates CyAN pixels and red color indicates RE10 Chl-a pixels. A) Red RE10 
Chl-a layer is on the top, so blue pixels indicate pixels with available data from CyAN that 
are not available for RE10 Chl-a. B) Blue CyAN layer is on the top, so red pixels indicate 
pixels with available data for RE10 Chl-a that is not available for CyAN. C) Close-up of B) 
that indicates the slight pixel misalignment between the RE10 Chl-a and CyAN pixels. 
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Figure 8.2: Comparison of the number of resolvable pixels between RE10 Chl-a (red bars) 
and CyAN (blue bars). Only waterbodies with ‘Suitability for trend analysis’= Suitable 
were included (n = 191). 

8.3 Comparison with CyAN CIcyano values 
The RE10 Chl-a (total phytoplankton biomass) and CyAN CIcyano DN (a proxy for CIcyano) 
values for each pixel were compared to elucidate the relationship between CIcyano DN and 
RE10 Chl-a values. One goal in particular was to understand the relationship between the RE10 
Chl-a estimates of the WHO bloom alert level of 12 µg/L (Chorus and Welker, 2021) compared 
to CIcyano bloom alert level (DN = 132). Bloom detection for RE10 Chl-a estimates was defined 
as 5 µg/L, and as DN > 0 for CIcyano. 

Results indicated a generally logarithmic growth curve-type relationship (Figure 8.3), in which 
there is a linear portion of DN (< 210) and RE10 Chl-a (< 40 µg/L) and a plateau portion in which 
DN remains similar (~210 - 220) whereas RE10 Chl-a increased (> 40 µg/L). Figure 8.3. shows 
data points for pixels that have values for both CIcyano DN and RE10 Chl-a in 2023 as an 
example. Data points for all years (2019 – 2023) were not individually plotted due to the large 
amount of data points (~9.8 million), but results for each of the 5 years are similar to the results 
for 2023.  
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Figure 8.3: Comparison between individual pixel CIcyano DN and RE10 Chl-a values for 
paired pixels in 2023. 

Only 6% of pixels had agreement for bloom detection classifications and 3% of pixels for bloom 
alert classifications between RE10 Chl-a and CIcyano DN biomass estimate comparisons (Table 
8.1, Table 8.2). Agreement between no bloom classifications for each type of biomass 
estimation approach was slightly better with corresponding no bloom detection classifications 
and no bloom alert classifications occurring in 10% and 35% of pixels, respectively. More often 
than not, however RE10 Chl-a indicated a bloom detection classification (83% of pixels) or 
bloom alert classification (62% of pixels) when CIcyano DN values for the same pixels indicated 
these same bloom classifications were not present (Table 8.1, Table 8.2). 

  

 








87 
 

Table 8.1: Confusion matrix for bloom detection occurrences to evaluate agreement 
between CIcyano and chlorophyll a calculated from OLCI satellite imagery data from 2019 
– 2023. Numbers indicate the number of pixels that fit into each scenario, and 
percentages in parentheses indicate the percentage of each scenario against the total 
number of pixels with paired CIcyano and chlorophyll a values (n = 9,700,830). 

 
Chl-a bloom detection Chl-a no bloom detection 

DN bloom detection 
621,373 

(6%) 

70,742 

(1%) 

DN no bloom detection 
8,050,228 

(83%) 

958,487 

(10%) 

 

Table 8.2: Confusion matrix for bloom alert occurrences to evaluate agreement between 
CIcyano and chlorophyll a calculated from OLCI satellite imagery data from 2019 – 2023. 
Numbers indicate the number of pixels that fit into each scenario, and percentages in 
parentheses indicate the percentage of each scenario against the total number of pixels 
with paired CIcyano and chlorophyll a values (n = 9,700,830). 

 
Chl-a bloom alert Chl a no bloom alert 

DN bloom alert 
272,957 

(3%) 

56,955 

(1%) 

DN no bloom alert 
6,018,645 

(62%) 

3,352,273 

(35%) 

8.4 Conclusion 
We initiated procedures for estimating Chl-a values from OLCI data using the RE10 algorithm, 
but the procedures has yet to be established and revision are still needed to ensure that the 
RE10 Chl-a data is comparable to the CyAN CIcyano data. Preliminary analyses indicated general 
lack of agreement between CIcyano and Chl-a data, and the majority of the disagreement is a 
combination of differences in sensitivity of the algorithms (Lie et al., in prep) as well as a 
reflection of non-cyanobacterial blooms as RE10 Chl-a data also casts a wider net and includes 
algae and plants.   
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9. APPENDIX B. 
Table 9.1: List of 238 waterbodies in the final CA custom shapefile for remote sensing 
data processing. Regional Board is populated with the regional board number and Water 
Project is populated with if the waterbody is part a the state (indicated with an “S”) or 
federal (indicated with an “F”) water project. “-“ indicates no COMID, lake name or water 
project information available. 

Shapefile 
ID Waterbody Name COMID 

Suitability 
for Trend 
Analyses 

Waterbody 
Type 

Regional 
Board 

Water 
Project  

77 
Copco Reservoir 
(Historical) 361267 Suitable Reservoir 1 

- 

79 

Iron Gate 
Reservoir 
(Historical) 361273 Suitable Reservoir 1 

- 

90 
Freshwater 
Lagoon 8315523 Limited Tidal 1 

- 

91 Stone Lagoon 8315525 Suitable Tidal 1 - 

92 Big Lagoon 8315527 Suitable Tidal 1 - 

267 Indian Tom Lake 2554839 Suitable Lake 1 - 

295 Tule Lake 2554943 Suitable Agricultural 1 - 

530 Lake Pillsbury 8307970 Suitable Lake 1 - 

536 Lake Sonoma 8271433 Suitable Reservoir 1 - 

549 
Deadhorse Flat 
Reservoir 2556873 Limited Reservoir 1 

- 

553 Reservoir N 2556901 Limited Reservoir 1 - 

619 Trinity Lake 8245358 Suitable Reservoir 1 F 

990 
Clear Lake 
Reservoir 2554957 Suitable Reservoir 1 

- 

1011 Lake Shastina 3917046 Suitable Reservoir 1 - 

1019 Lake Earl 22226558 Suitable Tidal 1 - 

1025 Lake Mendocino 8306696 Suitable Reservoir 1 - 

1087 Silver Lake 14981200 Suitable Reservoir 5 - 

1168 Goose Lake 120052284 Suitable Lake 5 - 

1186 
Dorris Brothers 
Reservoir 7923473 Suitable Reservoir 5 

- 

1192 
Big Sage 
Reservoir 7923491 Suitable Reservoir 5 

- 

1211 Dorris Reservoir 7926953 Suitable Reservoir 5 - 

1242 Payne Reservoir 7927031 Limited Reservoir 5 - 
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Shapefile 
ID Waterbody Name COMID 

Suitability 
for Trend 
Analyses 

Waterbody 
Type 

Regional 
Board 

Water 
Project  

1257 Delta Lake 7927093 Suitable Lake 5 - 

1260 
West Valley 
Reservoir 7927103 Suitable Reservoir 5 

- 

1336 Snag Lake 7951690 Limited Lake 5 - 

1342 Medicine Lake 7946776 Limited Lake 5 - 

1352 
Horr Pond Big 
Lake 7947624 Suitable Lake 5 

- 

1365 Lake Britton 7947664 Suitable Reservoir 5 - 

1386 
Thermalito 
Forebay 7968005 Suitable Reservoir 5 

S 

1417 
Thermalito 
Afterbay 7968933 Suitable Agricultural 5 

S 

1462 Lake Oroville 12076080 Suitable Lake 5 S 

1620 
Camp Far West 
Reservoir 15012277 Suitable Reservoir 5 

- 

1700 Black Butte Lake 7989989 Suitable Lake 5 F 

1890 Rollins Reservoir 15014315 Limited Reservoir 5 - 

2043 
Lower Roberts 
Reservoir 7924879 Suitable Reservoir 5 

- 

2103 Bucks Lake 2775024 Suitable Lake 5 - 

2107 Concow Reservoir 2775046 Limited Reservoir 5 - 

2135 
Round Valley 
Reservoir 8026074 Suitable Reservoir 5 

- 

2137 
Sly Creek 
Reservoir 8036781 Suitable Lake 5 

- 

2144 Whiskeytown Lake 2781993 Suitable Reservoir 5 - 

2288 
East Park 
Reservoir 7993809 Suitable Lake 5 

- 

2297 
Indian Valley 
Reservoir 8005383 Suitable Lake 5 

- 

2307 McCreary Lake 8014709 Limited Reservoir 5 - 

2333 Lake Spaulding 8063073 Suitable Lake 5 - 

2359 Shasta Lake 120054085 Suitable Reservoir 5 F 

2418 
New Bullards Bar 
Reservoir 8060079 Suitable Reservoir 5 

- 

2464 Thurston Lake 8008511 Suitable Lake 5 - 

2554 Frenchman Lake 8038615 Suitable Reservoir 5 - 

2555 Lake Davis 8038617 Suitable Lake 5 - 
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Shapefile 
ID Waterbody Name COMID 

Suitability 
for Trend 
Analyses 

Waterbody 
Type 

Regional 
Board 

Water 
Project  

2572 Gold Lake 8038673 Limited Lake 5 - 

2581 
Scotts Flat 
Reservoir 8063155 Suitable Reservoir 5 

- 

2599 
Jackson Meadows 
Reservoir 120053436 Limited Reservoir 5 

- 

2603 Bowman Lake 8062949 Suitable Reservoir 5 - 

2608 French Lake 8062965 Limited Reservoir 5 - 

2621 Fordyce Lake 8063005 Limited Reservoir 5 - 

2672 
Union Valley 
Reservoir 14981052 Suitable Reservoir 5 

- 

2728 

Mountain 
Meadows 
Reservoir 20295245 Suitable Reservoir 5 

- 

2828 Loon Lake 120053833 Suitable Reservoir 5 - 

2925 Moon Lake 7927141 Suitable Reservoir 5 - 

2942 Blue Lake 7927117 Limited Lake 5 - 

2972 
Stony Gorge 
Reservoir 7990259 Suitable Reservoir 5 

- 

3005 Juniper Lake 2772452 Limited Lake 5 - 

3024 Clear Lake 8005399 Suitable Lake 5 - 

3062 
Butt Valley 
Reservoir 2772516 Suitable Reservoir 5 

- 

3075 
Little Grass Valley 
Reservoir 120053229 Suitable Reservoir 5 

- 

3126 
Ice House 
Reservoir 14981136 Suitable Reservoir 5 

- 

3154 Renner Lake 120052285 Suitable Lake 5 - 

3159 Bayley Reservoir 7927085 Suitable Reservoir 5 - 

3296 
French Meadows 
Reservoir 14991593 Suitable Reservoir 5 

- 

3299 
Merle Collins 
Reservoir 8060125 Suitable Reservoir 5 

- 

3300 
Hell Hole 
Reservoir 14991599 Suitable Reservoir 5 

- 

3302 Folsom Lake 20194524 Suitable Reservoir 5 F 

3311 Lake Almanor 2772500 Suitable Reservoir 5 - 

3313 Antelope Lake 8026058 Suitable Reservoir 5 S 

3327 
Twin Lakes 
Reservoir 14981180 Limited Reservoir 5 

- 
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Shapefile 
ID Waterbody Name COMID 

Suitability 
for Trend 
Analyses 

Waterbody 
Type 

Regional 
Board 

Water 
Project  

3328 Lake Siskiyou 7964705 Suitable Reservoir 5 - 

3353 Lake Berryessa 130951632 Suitable Reservoir 5 - 

3393 Lake Woollomes 17160996 Suitable Agricultural 5 - 

3440 Pine Flat Lake 22057133 Suitable Reservoir 5 - 

3576 Lake Webb 17168272 Suitable Reservoir 5 - 

3718 
Courtright 
Reservoir 22048371 Suitable Reservoir 5 

- 

3802 Bravo Lake 17152378 Suitable Agricultural 5 - 

4259 Wishon Reservoir 22048623 Suitable Reservoir 5 - 

4389 Lake Kaweah 120052624 Suitable Reservoir 5 - 

4416 Castac Lake 14948546 Limited Lake 5 - 

4610 Isabella Lake 22670080 Suitable Reservoir 5 - 

4613 Lake Success 14930103 Suitable Reservoir 5 - 

4651 Jennings Ponds 120050792 Suitable Agricultural 5 - 

4678 Lake Alpine 120051897 Limited Reservoir 5 - 

4686 Beardsley Lake 342083 Suitable Reservoir 5 - 

4723 Donnell Lake 345487 Suitable Reservoir 5 - 

4741 Pinecrest Lake 345581 Suitable Reservoir 5 - 

4742 
New Melones 
Lake 120051899 Suitable Reservoir 5 

F 

4749 
Woodward 
Reservoir 2822246 Suitable Reservoir 5 

- 

4796 Turlock Lake 2822462 Suitable Reservoir 5 - 

4966 
Clifton Court 
Forebay 1890272 Suitable Agricultural 5 

S 

5302 
Salt Springs 
Reservoir 120052626 Suitable Reservoir 5 

- 

5392 Upper Blue Lake 17053824 Limited Reservoir 5 - 

5405 Pardee Reservoir 17055346 Suitable Reservoir 5 - 

5453 Huntington Lake 17114527 Suitable Reservoir 5 - 

5487 Florence Lake 17117151 Limited Reservoir 5 - 

5488 Desolation Lake 120052656 Limited Lake 5 - 

5508 
San Luis 
Reservoir 17112371 Suitable Reservoir 5 

S, F 
(partial) 

5768 
Thousand Island 
Lake 16603633 Limited Lake 5 

- 
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Shapefile 
ID Waterbody Name COMID 

Suitability 
for Trend 
Analyses 

Waterbody 
Type 

Regional 
Board 

Water 
Project  

5832 
Los Banos 
Reservoir 17080669 Suitable Reservoir 5 

S 

5964 
Hetch Hetchy 
Reservoir 21611075 Suitable Reservoir 5 

- 

5969 Yosemite Lake 17065952 Suitable Reservoir 5 - 

6073 New Hogan Lake 17052964 Suitable Reservoir 5 - 

6194 
Lower Bear River 
Reservoir 20194786 Suitable Reservoir 5 

- 

6196 Jenkinson Lake 20197596 Suitable Reservoir 5 - 

6246 
Camanche 
Reservoir 17080041 Suitable Reservoir 5 

- 

6247 
Don Pedro 
Reservoir 17076029 Suitable Reservoir 5 

- 

6319 Cherry Lake 17114471 Suitable Reservoir 5 - 

6386 
Mammoth Pool 
Reservoir 17114481 Suitable Reservoir 5 

- 

6390 Bass Lake 17114583 Suitable Reservoir 5 - 

6405 Shaver Lake 120053836 Suitable Reservoir 5 - 

6480 Millerton Lake 21608959 Suitable Reservoir 5 - 

6514 Tenaya Lake 2822404 Limited Lake 5 - 

6571 Modesto Reservoir 19769209 Suitable Reservoir 5 - 

6604 O'Neill Forebay 17117691 Suitable Reservoir 5 S 

6646 Martha Lake 120053883 Limited Lake 5 - 

6689 
Lake Thomas A 
Edison 2818128 Suitable Reservoir 5 

- 

6704 
Salt Spring Valley 
Reservoir 17080605 Suitable Reservoir 5 

- 

6781 Lake Eleanor 17113675 Suitable Lake 5 - 

6783 Duck Lake 21606665 Limited Lake 5 - 

6915 Lake McClure 19770005 Suitable Reservoir 5 - 

6936 
South SF Bay Salt 
Pond A8 120051850 Suitable Tidal 2 

- 

6967 
South SF Bay Salt 
Pond A4 17692747 Suitable Tidal 2 

- 

7016 
South SF Bay Salt 
Pond A2E 17692753 Suitable Tidal 2 

- 

7017 

South SF Bay 
Sunnyvale WPCP 
Pond 17693795 Suitable Tidal 2 

- 
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Shapefile 
ID Waterbody Name COMID 

Suitability 
for Trend 
Analyses 

Waterbody 
Type 

Regional 
Board 

Water 
Project  

7051 Anderson Lake 2784475 Suitable Reservoir 2 - 

7194 Mallard Reservoir 1670833 Suitable Reservoir 2 - 

7239 
San Pablo 
Reservoir 1670847 Suitable Reservoir 2 

- 

7242 Briones Reservoir 2803341 Suitable Reservoir 2 - 

7255 San Andreas Lake 2806071 Suitable Reservoir 2 - 

7339 
San Antonio 
Reservoir 17692669 Suitable Reservoir 2 

- 

7385 
Upper Crystal 
Springs Reservoir 5329245 Suitable Reservoir 2 

- 

7390 Abbotts Lagoon 2808483 Limited Tidal 2 - 

7557 Lake del Valle 2809463 Suitable Reservoir 2 S 

7558 
Calaveras 
Reservoir 120053056 Suitable Reservoir 2 

- 

7580 Lake Hennessey 17686953 Suitable Reservoir 2 - 

7660 Lake Merced 17609317 Limited Lake 2 - 

7689 Lake Cachuma 17657101 Suitable Reservoir 3 - 

7771 
Carrizo Plain 
complex 17671477 Limited Lake 3 

- 

7781 
Hernandez 
Reservoir 120053442 Suitable Reservoir 3 

- 

7854 Lake San Antonio 17657079 Suitable Lake 3 - 

7970 Soda Lake 8192379 Limited Lake 3 - 

7981 Lopez Lake 8210941 Suitable Reservoir 3 - 

7992 Lake Nacimiento 22522315 Suitable Reservoir 3 - 

8184 
Puddingstone 
Reservoir 22560266 Limited Reservoir 4 

- 

8195 Lake Mathews 22532548 Suitable Reservoir 8 - 

8208 Perris Reservoir 22558520 Suitable Reservoir 8 S 

8217 Big Bear Lake 17586364 Suitable Reservoir 8 - 

8240 Lake Casitas 20332372 Suitable Reservoir 4 - 

8262 
Sweetwater 
Reservoir 20334374 Suitable Reservoir 9 

- 

8267 
San Vicente 
Reservoir 20329440 Suitable Reservoir 9 

- 

8293 Lake Sutherland 22534902 Suitable Lake 9 - 

8417 Lake Hemet 17568947 Limited Reservoir 8 - 
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Shapefile 
ID Waterbody Name COMID 

Suitability 
for Trend 
Analyses 

Waterbody 
Type 

Regional 
Board 

Water 
Project  

8442 Pyramid Lake 20342929 Suitable Reservoir 4 S 

8471 Lake Henshaw 17573833 Suitable Lake 9 - 

8482 Lake Piru 20332390 Suitable Reservoir 4 - 

8500 Lower Otay Lake 22545095 Suitable Reservoir 9 - 

8523 Skinner Reservoir 20332350 Suitable Reservoir 9 - 

8531 El Capitan Lake 17568961 Suitable Reservoir 9 - 

8550 Bouquet Reservoir 17568963 Suitable Reservoir 4 - 

8551 
Elderberry 
Forebay 22560294 Suitable Reservoir 4 

- 

8553 
Santiago 
Reservoir 120053060 Suitable Reservoir 8 

- 

8559 Castaic Lagoon 17568965 Suitable Reservoir 4 S 

8568 Castaic Lake 22532616 Suitable Reservoir 4 S 

8584 Lake Elsinore 20314430 Suitable Lake 8 - 

8727 Upper Alkali Lake 20317978 Suitable Lake 6 - 

8738 Middle Alkali Lake 20310407 Limited Lake 6 - 

8828 Dodge Reservoir 20291765 Limited Reservoir 6 - 

8839 Eagle Lake 22657961 Suitable Lake 6 - 

9078 Silverwood Lake 22657963 Suitable Reservoir 6 - 

9079 Lake Arrowhead 20268205 Suitable Reservoir 6 - 

9120 
South Haiwee 
Reservoir 20287066 Suitable Reservoir 6 

- 

9130 Gem Lake 20273063 Limited Lake 6 - 

9157 Convict Lake 20277691 Limited Lake 6 - 

9306 
Tinemaha 
Reservoir 20287024 Suitable Reservoir 6 

- 

9330 June Lake 20273047 Suitable Lake 6 - 

9358 Lake Crowley 20286922 Suitable Reservoir 6 - 

9471 Saddlebag Lake 20286972 Limited Lake 6 - 

9473 Grant Lake 20268199 Suitable Lake 6 - 

9483 
North Haiwee 
Reservoir 20286504 Suitable Reservoir 6 

- 

9486 Mono Lake 22677686 Suitable Lake 6 - 

9501 Lake Palmdale 22597891 Suitable Reservoir 6 - 
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Shapefile 
ID Waterbody Name COMID 

Suitability 
for Trend 
Analyses 

Waterbody 
Type 

Regional 
Board 

Water 
Project  

9641 Ramer Lake 948100002 Limited Agricultural 7 - 

9650 Salton Sea 0 Suitable Lake 7 - 

10002 Martinez Lake 0 Suitable Lake 7 - 

11444 Topaz Lake 0 Suitable Reservoir 6 - 

13517 Hensley Lake 0 Suitable Reservoir 5 - 

21179 Cascade Lake 0 Limited Lake 6 - 

22941 
Los Vaqueros 
Reservoir 0 Suitable Reservoir 5 

- 

24974 Funks Reservoir 0 Suitable Reservoir 5 - 

31370 
McLaughlin Mine 
Tailings Pond 120052758 Limited Reservoir 5 

- 

32351 Lake Havasu 8914219 Suitable Reservoir 7 - 

40276 
Bridgeport 
Reservoir 0 Suitable Reservoir 6 

- 

41036 
Van Norman 
Bypass Reservoir 0 Limited Reservoir 4 

- 

43951 Bull Slough 0 Suitable Agricultural 5 - 

45950 Boca Reservoir 0 Suitable Reservoir 6 - 

48205 Lower Echo Lake 0 Limited Lake 6 - 

48799 
Independence 
Lake 8932994 Limited Reservoir 6 

- 

49938 Donner Lake 0 Suitable Lake 6 - 

50956 
Senator Wash 
Reservoir 0 Suitable Reservoir 7 

- 

50974 Allensworth Pond 0 Suitable Agricultural 5 - 

65783 Sand ridge Pond 0 Suitable Agricultural 5 - 

88091 
Diamond Valley 
Lake 0 Suitable Reservoir 9 

- 

89130 

South SF Bay Salt 
Pond at Mallard 
Slough 0 Suitable Tidal 2 

- 

89279 
H. V. Eastman 
Lake 0 Suitable Reservoir 5 

- 

90649 
Twin Lakes 
(Upper) 0 Limited Lake 6 

- 

90730 
Twin Lakes 
(Lower) 0 Limited Lake 6 

- 

95569 Webber Lake 8943229 Limited Lake 6 - 

107221 Fallen Leaf Lake 0 Suitable Lake 6 - 
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Shapefile 
ID Waterbody Name COMID 

Suitability 
for Trend 
Analyses 

Waterbody 
Type 

Regional 
Board 

Water 
Project  

108050 Applegate Lake 0 Suitable Lake 1 - 

109323 Goose Lake 0 Suitable Lake 7 - 

110290 
Copper Basin 
Reservoir 0 Suitable Reservoir 7 

- 

110584 Batiquitos Lagoon 0 Limited Tidal 9 - 

112455 
Prosser Creek 
Reservoir 120053784 Suitable Lake 6 

- 

113994 Lake Tahoe 0 Suitable Lake 6 - 

116615 
Stampede 
Reservoir 0 Suitable Reservoir 6 

- 

150000 
Napa River island 
slough complex 0 Suitable Tidal 2 

- 

150001 Prospect Slough 0 Suitable Tidal 5 S 

150002 Horseshoe Bend 0 Limited Tidal 5 - 

150003 
San Joaquin River 
at Bradford Island 0 Suitable Tidal 5 

S, F 
(partial) 

150004 San Pablo Bay 0 Suitable Tidal 2 - 

150005 
Lower South SF 
Bay 0 Suitable Tidal 2 

- 

150006 South SF Bay 0 Suitable Tidal 2 - 

150007 Richardson Bay 0 Suitable Tidal 2 - 

150008 Central SF Bay 0 Suitable Tidal 2 - 

150009 New York Slough 0 Suitable Tidal 2 - 

150010 Broad Slough 0 Suitable Tidal 5 S 

150011 
Sacramento River 
at Sherman Island 0 Suitable Tidal 5 

S, F 
(partial) 

150012 Sherman Lake 0 Suitable Tidal 5 S 

150013 Big Break 0 Suitable Tidal 5 S 

150014 Franks Tract 0 Suitable Tidal 5 S 

150015 Suisun Bay 0 Suitable Tidal 2 S 

150016 Carquinesz Strait 17117147 Suitable Tidal 2 S 
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