Garcia River Watershed and Monitoring Program – Overview, Status and Trends

Jonathan Warmerdam North Coast Water Board

and

Jennifer Carah
The Nature Conservancy

October 19, 2016

Presentation Topics

- 1. Garcia River Watershed Overview
- 2. TMDL and Recovery Actions
- 3. Garcia River Monitoring Program
- 4. Data and Trends
- 5. Conclusions

Photo credits: Larry Serpa, TNC and Stephen Bargsten, NCRWQCB

Photo credits: ©Thomas Dunklin (Spotty Chinook) and ©Robin Loznak (Coho Pair)

Early Logging Period (1860s - 1915)

Post-WWII Logging Era (1940-70s)

North Coast Timber Harvesting (1945 - 2010)

CDFG Stream Damage Survey - July 1966

Other Land Use Impacts

- Renewed logging (1980-1990s)
- Agricultural Activities
- Gravel Mining (1960s 1990s)
- Cannabis Cultivation

Cumulative Effects

- 1. Aggraded stream channels
- 2. Simplified aquatic habitats
- 3. Finer substrate composition
- 4. Increased turbidity levels
- 5. Decreased large wood debris volumes
- 6. Depleted riparian forests
- 7. Elevated water temperatures
- 8. Decreased dissolved oxygen
- 9. Degraded biology

What types of actions are being made to improve the health of the Garcia River watershed?

II. TMDL Implementation and Recovery Actions

Conservation and Restoration Actions

- 1954 Mailliard Ranch Conservation Easement
- 1970s Clean Water Act, Endangered Species Act
- 1970s Forest Practices Act and Forest Practice Rules
- 1980s Friends of the Garcia
- 1980s Craig Bell and California Conservation Corps
- 1992 Garcia River Watershed Enhancement Plan
- 1996 Sierra Club Legal Defense Fund lawsuit
- 1999 South Fork Garcia Watershed Erosion Control
- 2002 Garcia TMDL Action Plan
- 2004 Garcia River Forest Acquisition
- 2005 Stornetta Public Lands Acquisition
- 2008+ Large wood restoration projects
- 2014 CA Coastal National Monument Declaration
- 2016 Mailliard Ranch Conservation Easement

Garcia River Watershed Sediment Total Maximum Daily Load

- Adopted into North Coast Basin Plan in January 2002
- First sediment TMDL with an action strategy
- GOAL: Reduce the amount of controllable sediment delivery into the watershed

TMDL Compliance Options

- 1. Comply with the Waste Discharge Prohibitions
- 2. Develop and implement an Erosion Control Plan and a Site-Specific Management Plan
- 3. Develop and implement an Erosion Control Plan and follow the Garcia River Management Plan

TMDL Accomplishments

- 80% of watershed participating
- 300 miles of road upgrades
- 1,800 sediment delivery sites treated
- 250,000 yds³ of episodic erosion saved
- 65,000 yds³/decade of chronic erosion arrested

Annual Load Reduction

 $1,275 \text{ dump truck loads} = (12,750 \text{ yds}^3)$

>50,000 dump truck loads of sediment over life of TMDL

Accelerated Wood Recruitment

- Twelve miles of stream treated since 2008
- The Nature Conservancy, The Conservation Fund, Mendocino Redwood Co., Trout Unlimited

Are the conditions - physical, chemical, biological - of the Garcia River watershed improving?

III. Garcia River Monitoring Program (GRMP)

GRMP Genesis

- RWQCB needed a program to assess watershed conditions over time per the TMDL Numeric Targets
- TNC needed a program to assess management objectives and strategies per the Garcia River Forest Management Plan

Garcia River Monitoring Program

Environmental Monitoring and Assessment Program (EMAP–West)

Washington, DC 20460 **Surface Waters** Western Pilot Study: Field Operations Manual for Wadeable Streams **Environmental Monitoring and** Assessment Program

Surface Water Ambient Monitoring Program (SWAMP)

Random Probabilistic Survey Design (GRTS)

Public Roads & GRF Maintained Roads

Garcia River Watershed

Monitoring Metrics

TMDL

- Embeddedness
- Substrate composition
- Median particle size (D50)
- Large woody debris
- Width-to-depth ratio
- Aerial photos of canopy
- Primary pool frequency
- Thalweg profile
- V*
- Migration barriers

GRMP

- Embeddedness
- Substrate composition
- Median particle size (D50)
- Large woody debris
- Width x depth ratio
- Canopy measurements
- No. residual pools ≥50 cm
- Thalweg profile
- Mean thalweg depths
- Mean residual depths
- Mean wetted widths
- Mean bankfull widths
- Percent pools
- No. residual pools ≥20 cm
- % of reach residual depths

- Geomorphology (slope, sinuosity)
- Relative bed stability
- Large woody debris areal cover
- Instream channel cover
- Riparian canopy cover
- Riparian tree composition
- Water temperature
- Chemistry
- Flow
- Benthic macroinvertebrates
- Aquatic vertebrate surveys
- Salmonid distribution
- Periphyton

IV. Data and Trends

What does *recovery* look like to me?

Data Collection

- Baseline conditions established for 80 reaches 2007-2010
- Short-term trend analysis conducted for 65 reaches that were surveyed in 2007/08, and resurveyed in 2012
- TNC hired full time summer crew for 2008 and 2012
- NCRWQCB conducts annual surveys of 6-9 reaches
- GRMP rough cost estimates
- Future monitoring cost estimate

Data Organization

- Results aggregated across three stream types:
 - Garcia River mainstem reaches
 - Low-gradient tributaries (≤3% slope)
 - 3. High-gradient tributaries (>3% slope)
- Achievements of numeric targets detailed as available
- Trend analyses: positive change vs. negative change

Tributary streams appear to be getting deeper and more complex, providing better rearing habitat

Channel Morphology: Trends

Statistically Significant Results

- 22% increase in mean thalweg depths in high-gradient tributaries (p=0.01)
- 6% increase in variability of thalweg depths in lowgradient tributaries (p=0.05)

Nearly Significant Results

- 14% increase in thalweg depths in low-gradient tributaries (p=0.08)
- 11% increase in residual depths on low-gradient tributaries (p=0.09)

Substrate composition in tributaries have recovered but continue to fluctuate. Mainstem reaches are still impaired.

Substrate Composition: Baseline

- Median-size particle diameter (D50) by stream category:
 - Garcia River mainstem (28 mm)
 - Low-gradient tributaries (42 mm)
 - High-gradient tributaries (54 mm)
- Percent sand and fines in high-gradient tributaries (8.6%) and low-gradient tributaries (10.0%) meet the biologically-based numeric targets for macroinvertebrates (≤10%) and aquatic vertebrates (≤13%) (Bryce et al. 2010)
- Percent sand and fines in Garcia River mainstem reaches (15.4%) exceed the numeric targets

Substrate Composition: Trends

Statistically Significant Results

- 15% increase in percent fine gravel, sand, and fines
 (≤ 16.0mm) in high-gradient tributaries (p=0.04)
- 22% decrease in geometric mean substrate diameter in high-gradient tributaries (p=0.03)

Hypothesis Testing

 Tested hypothesis as to whether erosion/sediment control efforts increased percentage of smaller substrate into high-gradient tributaries (n=25). Test inconclusive.

Relative Bed Stability

 Baseline relative bed stability (observed mean particle size/critical diameter) measurements for all three stream categories met the "preferred range" (Kaufmann et al. 2009)

Statistically Significant Changes

- RBS values in low-gradient tributaries decreased although they continued to meet the "preferred range" (p=0.01)
- RBS values for high-gradient tributaries decreased, shifting the scores to the upper end of the "fair range" (p=0.00)
- Probably driven by increase in shear stress (↑ flows; ↓ LWD)

Large wood and instream channel cover is lacking, but restoration actions are increasing volume and habitat

Large Woody Debris & Instream Channel Cover

Statistically Significant Results

- 44% increase in LWD volume per 100m in the Garcia Mainstem (p=0.04)
- 42% decrease in LWD volume per 100m in low-gradient tributaries (p=0.01) and 43% decrease in high-gradient tributaries (p=0.02)
- 18% decrease in large and small woody debris, brush, overhanging boulders, and undercut banks in highgradient tributaries (p=0.01)

Large Woody Debris & Instream Channel Cover

Additional Hypothesis Testing

Tested hypotheses to determine whether large wood restoration increased residual depths and LWD volumes following treatments:

- 29% increase in mean residual depths in treated vs. non treated low-gradient tributaries
- 225% increase in LWD volume per 100m following wood treatment (p=0.04)

Water temperatures are high in the mainstem and some tributaries, but canopy cover is improving.

Baseline: Percent Canopy Cover Mid-Channel

Garcia River Watershed

Garcia River Forest

XCDENMID

- 0 19%
- 20 39%
- **o** 40 59%
- 60 79%
- 80 100%

Canopy Cover and Riparian Vegetation Structure

 Baseline mean percent canopy midstream greatest in the tributaries (76-90%) and least in mainstem (45%)

Statistically Significant Results

- 8% increase in mean percent canopy midstream in the Garcia River mainstem (p=0.01)
- 34% increase in total riparian canopy in Garcia River mainstem (p=0.01)
- 22% increase in riparian woody cover (trees) in Garcia River mainstem (p=0.02)

Water Temperature

- Temperatures (max weekly maximum) on the Garcia mainstem exceed numeric targets ≤16° C for optimal rearing habitat (Carter 2008)
- Temperatures on several tributaries (North Fork Garcia, Signal Creek, Graphite Creek, and Olsen Gulch) currently meet the numeric targets ≤16 ° C for optimal rearing habitat (Carter 2008)
- Temperatures on most Garcia River reaches exceed numeric targets ≤18 ° C for presence of coho salmon (Welsh et. al 2001)
- Temperatures on several tributaries and some Garcia River reaches currently meet the numeric targets ≤18 ° C for presence of coho salmon (Welsh et. al 2001)

The tributaries are healthy according to the bugs. Salmon and trout are found in every subwatershed, albeit in low numbers.

Benthic Macroinvertebrates: California Stream Conditions Index (CSCI)

- Low-gradient tributary scores (0.96) and high-gradient tributary scores (0.99) met the numeric targets (>0.92) and were considered "likely intact" (Rehn et al. 2015)
- Garcia mainstem reach scores (0.79) did not meet the numeric targets and fell within upper end of the "likely altered condition" range (0.79 to 0.63)
- CSCI scores remained nearly the same in 2012; small changes were not statistically significant

Benthic Macroinvertebrates: California Stream Conditions Index (CSCI)

Public Roads

Garcia River Watershed

Garcia River Forest

CSCI

- 0 0.62 very likely altered condition
- 0.63 0.79 likely altered condition
- 0.80 0.91 possibly altered condition
- ≥0.92 likely intact condition

Other BMI Metrics

	Garcia mean metric	Low Grad. Trib.	High Grad. Trib.
Metric	score	mean metric score	mean metric score
EPT Richness	6	9	9
% Intolerant Ind.	4	4	5
% Non-Insect Taxa	7	8	8

^{*}On a scale from 1 to 10, from NC B-IBI scoring metrics, Rehn et al. 2005

Salmonid Distribution

- Salmonids spawning and rearing widely but in small numbers
- Coho salmon maintaining all three cohorts (2013,-14,-15,-16)
- Steelhead trout widely distributed throughout watershed
- Spawning Chinook salmon found by CDFW (2010,-11,-13)
- Pink salmon occasionally found in lower Garcia River

V. Conclusions

Garcia Mainstem

- Mainstem reaches need more time to recover
 - Excess sediment still being vacated
 - Pools and residual depths not yet improving
 - Large wood volumes lacking
 - Canopy cover improving
 - Temperatures still exceed targets
 - Benthic macroinvertebrates not meeting targets
 - Continued salmonid spawning and rearing

Tributaries

- Tributaries are improving or meeting targets
 - Thalweg depths and variability increasing
 - Residual depths increasing
 - Substrate composition meeting targets
 - Canopy cover improving
 - Large wood restoration increasing habitat
 - Benthic macroinvertebrates meeting targets
 - Continued salmonid spawning and rearing

Lessons Learned

- The Garcia River's impairment took a long time to occur.
 Similarly, recovery is on a decadal (or longer) time scale.
- Conservation and restoration actions are working...but natural factors are the primary driver of recovery.
- The implementation of the Garcia TMDL is a success due to strong partnerships and large private/public investments.
- To succeed, a TMDL implementation strategy should be both a catalyst for action and a mechanism of support.

Lessons Learned

- A watershed recovery strategy should include: pollution controls, riparian protections, and habitat restoration.
- Tracking watershed recovery requires a robust, scientifically-based, adaptable, sustained, and wellfunded monitoring program.
- The GRMP allows us to evaluate whether conservation and restoration practices are working, and therefore...is a surrogate for other watershed recovery strategies.

