

#### MQOs<sup>i</sup> for Determination of Cyanotoxins<sup>ii</sup> in Water and Tissue Samples by Ligand-Binding Assays (by ELISA and RBA)

<sup>*ii*</sup> MQOs developed specifically for determination of microcystins, anatoxin-a, and nodularin (toxins produced by cyanobacteria)

| Table 1. Lab Quality Control for Microcystins, Anatoxin-a, and Nodularin in Fresh Water and Tissue Samples by |
|---------------------------------------------------------------------------------------------------------------|
| Ligand-Binding Assays                                                                                         |

| Lab Quality Control                                                                   | Frequency of Analysis                                                                                   | Measurement Quality Objective                                                                                                                                                                                                                                                                                                                                  | DQ Indicator or<br>Reasoning               |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Calibration<br>(not reported to<br>SWAMP database)                                    | Initial method setup and<br>develop calibration<br>curve for each microtiter<br>plate                   | <ul> <li>R &gt;0.990 or r<sup>2</sup> &gt;0.980 <sup>(10)</sup></li> <li>RSD ≤15% for well duplicates based on absorbance <u>OR</u></li> <li>RSD ≤30% for well duplicates based on concentration</li> <li>Minimum 5 points run in duplicate wells, arithmetic mean used for calibration result</li> <li>At least 1 calibration point at or below RL</li> </ul> | Bias,<br>Instrument QC                     |
| Background<br>absorbance/<br>Instrument zero<br>(not reported to<br>SWAMP database)   | Per microtiter plate or<br>20 environmental<br>samples for non-<br>microtiter plate method <sup>1</sup> | Result <method detection="" limit<="" td=""><td>Instrument QC</td></method>                                                                                                                                                                                                                                                                                    | Instrument QC                              |
| Matrix spike <sup>2</sup>                                                             | Per microtiter plate or<br>20 environmental<br>samples for non-<br>microtiter plate method              | Recovery 50-150% of true value                                                                                                                                                                                                                                                                                                                                 | Matrix accuracy                            |
| Laboratory positive control                                                           | Per microtiter plate or<br>20 environmental<br>samples for non-<br>microtiter plate method              | <ul> <li>Recovery 70-130% of true value</li> <li>RSD ≤20% for well duplicates<br/>(triplicate recommended), report<br/>result from each replicate <sup>3</sup></li> </ul>                                                                                                                                                                                      | Lab accuracy and precision                 |
| Environmental<br>Sample Duplicate <u>OR</u><br>Matrix Spike<br>Duplicate <sup>4</sup> | Per microtiter plate or<br>20 environmental<br>samples for non-<br>microtiter plate method              | <ul> <li>Environmental sample duplicate:<br/>RSD ≤20% for well duplicates<br/>(triplicate recommended), report<br/>result from each replicate <sup>3</sup></li> <li>Matrix spike duplicate: RPD ≤25%</li> </ul>                                                                                                                                                | Matrix precision                           |
| Laboratory blank                                                                      | Per microtiter plate or<br>20 environmental<br>samples for non-<br>microtiter plate method              | Result <reporting limit<="" td=""><td>Representativeness<br/>of analytical system</td></reporting>                                                                                                                                                                                                                                                             | Representativeness<br>of analytical system |

<sup>1</sup> The term "environmental samples" refers to the unknown samples; thus, quality control samples should not be included when calculating every 20 environmental samples.

<sup>2</sup> If dilution is necessary, the matrix spike sample should be diluted *after* addition of spike solution to the environmental sample.

<sup>3</sup> Calculate the arithmetic mean for minimum of 2 replicates. Report arithmetic mean under the "LabResultComments" field in the SWAMP data entry template.

<sup>4</sup> Performance of the duplicate on the matrix spike is preferred when environmental samples have low or nondetections. If an environmental sample duplicate is used, result of original must be >RL.

<sup>&</sup>lt;sup>i</sup> These MQOs have been developed for current SWAMP methodology. This does not limit the use of the MQOs for other laboratory methods. Please feel free to contact the OIMA Helpdesk (<u>OIMA-Helpdesk@waterboards.ca.gov</u>) to request assistance to adapt the MQOs for an additional laboratory method.

# Table 2. Lab Quality Control Corrective Actions for Microcystins, Anatoxin-a, and Nodularin in Water and Tissue Samples by Ligand-Binding Assays

| Lab Quality Control            | Recommended Corrective Action <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Calibration                    | If calibration does not meet acceptance criteria, then verify instrument parameters prior to re-analyzing samples. Indications of poor stability include low OD or poor comparability of analytical results between batches. Confirm expiration dates and manufacturing lot numbers. If using a kit, do not mix kit reagents or plates from different lot numbers in a single analytical batch. <sup>(4)</sup> It is acceptable to use different lots of reference material; for example, to use secondary source standards. |  |
| Matrix Spike                   | Re-analyze samples or plate as appropriate. Examine the recovery obtained for the matrix spike duplicate. Examine the results of the other QC samples (i.e. reference material) to determine if other analytical problems are a potential source of the poor measurements. Prior to re-processing samples, add further processing (e.g. dilution) steps to reduce matrix interference. <sup>(9)</sup>                                                                                                                        |  |
| Matrix Spike Duplicate         | Re-analyze samples or plate as appropriate. Examine the recovery obtained for the matrix spike. Examine the results of the other QC samples (i.e. reference material) to determine if other analytical problems are a potential source of poor measurements. Prior to reprocessing samples, add further processing steps (e.g. dilution) to reduce matrix interference (if needed). <sup>(9)</sup>                                                                                                                           |  |
| Laboratory Positive<br>Control | If low or high recovery, outside of acceptable range, re-analyze samples or plate as appropriate. Variable results between well replicates may indicate drift or other issue. Likely causes include: poor plate washing technique, prolonged time during plating, inappropriate laboratory temperatures, and low/high temperature of reagents during sample processing. <sup>(4,9)</sup>                                                                                                                                     |  |
| Laboratory duplicate           | Re-analyze samples or plate as appropriate. Review the results of the other QC samples<br>(i.e. other duplicate matrix spike) to determine if other analytical problems are a potential<br>source of poor performance. Investigate preparation of sample for source of variability<br>(e.g. initial pH should be neutral).                                                                                                                                                                                                   |  |
| Laboratory Blank               | If result is between method detection limit (MDL) and reporting limit (RL), then flag batch.<br>If result is ≥RL then re-process samples and reanalyze. Investigate source of<br>contamination. Consider potential contamination by filters used in processing the sample.<br>Recommend testing of each filter manufacturing lot for potential contamination prior to<br>use in routine testing.                                                                                                                             |  |
| Instrument Blank               | Verify blanking procedure prior to re-analyzing. Check plate reader functions if OD readings are high and the color was not dark. Common causes of high background include inadequate washing or contamination of reagents. <sup>(4)</sup> Avoid re-using microtiter plates from prior batches unless method utilizes disposable well strips.                                                                                                                                                                                |  |
| Filter Blank                   | If result is between MDL and RL, then flag batch. If result is ≥RL then re-process samples<br>and reanalyze. Discard filter manufacturing lot and investigate source of contamination.<br>Indications of bacterial contamination include low result and high OD reading.<br>be included when a MOO is not met and appropriate corrective actions are taken. Please                                                                                                                                                           |  |

<sup>1</sup> Documentation should be included when a MQO is not met and appropriate corrective actions are taken. Please include this documentation in the "LabBatchComments" field of the SWAMP data template or in a Corrective Action Report. The documentation should provide justification for excluding the record(s) from the lab batch **or** why the record(s) should be considered in the lab batch after corrective actions.

## Table 3. Field Quality Control for Microcystins, Anatoxin-a, and Nodularin in Water and Tissue Samples by Ligand-Binding Assays

| Field Quality Control        | Frequency of Analysis                                                         | Measurement Quality                                                 | DQ Indicator or                |
|------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------|
|                              |                                                                               | Objective                                                           | Reasoning                      |
| Equipment blank <sup>1</sup> | 5% of total project samples                                                   | <reporting limit<="" td=""><td>Field Process Bias</td></reporting>  | Field Process Bias             |
| Field duplicate              | 5% of total project samples                                                   | RPD ≤25%                                                            | Sample Collection<br>Precision |
| Filter blank                 | 5% of total project samples<br>(only required if filtration done<br>in field) | <reporting limit<="" td=""><td>Sample Process Bias</td></reporting> | Sample Process Bias            |

<sup>1</sup> Equipment blank refers to preparing a sample bottle blank or sampling equipment blank. Sample bottle blank is only required if the sample bottle is re-cleaned from prior sampling. Sampling equipment blank is only required if a device (e.g. cup, pump) is used to transfer the environmental sample from water body to the sample container.

# Table 4. Field Quality Control Corrective Actions for Microcystins, Anatoxin-a, and Nodularin in Water and Tissue Samples by Ligand-Binding Assays

| Field Quality Control | Recommended Corrective Action <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Equipment Blank       | Investigate the source of contamination. The laboratory should report evidence of field contamination as soon as possible so corrective actions can be implemented. Samples collected in the presence of field contamination should be flagged. <sup>(6)</sup>                                                                                                                               |  |
| Field Duplicate       | Visually inspect the sample to determine if a high RPD between results could be attributed to sample heterogeneity. For duplicate results due to matrix heterogeneity, or where ambient concentrations are below the reporting limit, qualify the results and document the heterogeneity. All failures should be communicated to the project coordinator for further actions. <sup>(6)</sup> |  |
| Filter Blank          | Investigate the source of contamination. The laboratory should report evidence of field contamination as soon as possible so corrective actions can be implemented. Samples collected in the presence of field contamination should be flagged. <sup>(6)</sup>                                                                                                                               |  |

<sup>1</sup> Documentation should be included when a MQO is not met and appropriate corrective actions are taken in the field at the time of collection. Please include this documentation in the collection comments found on the field entry form or in a Corrective Action Report. The documentation should provide justification for excluding the record(s) from the data set **or** why the record(s) should be considered in the data set after corrective actions.

Table 5. Sample Handling for Microcystins, Anatoxin-a, and Nodularin in Water and Tissue Samples

| Matrix                                                         | Container <sup>3,6</sup>                                            | Microcystin & Nodularin                                                                                                                                   | Anatoxin-a Temperature &                                                                                                                                  |
|----------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                |                                                                     | Temperature & Holding Time                                                                                                                                | Holding Time <sup>4</sup>                                                                                                                                 |
| Water (for total toxin <sup>1</sup> )                          | Amber glass<br>(recommended) or<br>dark colored HDPE <sup>3</sup>   | Cool to <6 °C (in dark) for up to<br>5 days, then freeze at <-20°C. <sup>(2)</sup><br>Long term storage of up to 6<br>months at -80°C. <sup>(10,11)</sup> | Cool to <6 °C (in dark) for up to<br>3 days, then freeze at <-20°C. <sup>(2)</sup><br>Long term storage of up to 6<br>months at -80°C. <sup>(10,11)</sup> |
| Water (for dissolved<br>phase or<br>filtrate)                  | Amber glass<br>(recommended) or<br>dark colored HDPE <sup>3</sup>   | Cool to <6 °C (in dark) for up to<br>48 hours, then freeze at <-20°C.<br>Long term storage of up to 6<br>months at -80°C.                                 | Cool to <6 °C (in dark) for up to<br>48 hours, then freeze at <-<br>20°C. Long term storage of up<br>to 6 months at -80°C. <sup>(10,11)</sup>             |
| Water (for particulate<br>phase <sup>2</sup> or<br>periphyton) | Amber glass<br>(recommended) or<br>dark colored HDPE <sup>3,5</sup> | Cool to <6 °C (in dark) for up to<br>24 hours, then freeze at <-20°C.<br>Long term storage of up to 6<br>months at -80°C. <sup>(7)</sup>                  | Cool to <6 °C (in dark) for up to<br>24 hours, then freeze at <-<br>20°C. Long term storage of up<br>to 6 months at -80°C. <sup>(7)</sup>                 |
| Tissue <sup>7</sup> (for dissected<br>tissue)                  | Amber glass<br>(recommended) or<br>dark colored HDPE                | Freeze short term at<br><-20°C. Long term storage of up<br>to 6 months at<br>-80°C. <sup>(1,5)</sup>                                                      | Freeze short term at<br><-20°C. Long term storage of<br>up to 6 months at<br>-80°C. <sup>(1,5)</sup>                                                      |

<sup>1</sup>Analysis of intracellular and extracellular cyanotoxins.

<sup>2</sup> Analysis of intracellular cyanotoxins.

<sup>3</sup> Glass containers recommended to prevent adsorption of toxin to plastic material. <sup>(3,8)</sup>

<sup>4</sup> Limit holding time for anatoxin-a analysis to reduce toxin degradation.

<sup>5</sup> Filtering conducted in the field may utilize petri dishes as an alternative container to store filters.

<sup>6</sup> If amber or dark colored containers are not available, foil may be used to cover containers. Ensure foil completely covers container.

<sup>7</sup> Table 5 has been developed for analysis of muscle and organ tissue from fish and shell fish. This does not limit the use of the guidelines for other tissue types. Please feel free to contact the OIMA Helpdesk

(<u>OIMA-Helpdesk@waterboards.ca.gov</u>) to request assistance to adapt the guidelines for an alternative sample type.

#### References

- (1) <u>Al-Sammak, M. A.</u> Hoagland K.D., Cassada, D., and Snow, D.D., 2014, Co-occurrence of the Cyanotoxins BMAA, DABA and Anatoxin-a in Nebraska Reservoirs, Fish, and Aquatic Plants, Toxins, Volume 6, 488-508.
- (2) <u>Graham, J.L</u>., Loftin, K.A., Ziegler, A.C., and Meyer, M.T., 2008, Guidelines for design and sampling for cyanobacterial toxin and taste-and-odor studies in lakes and reservoirs: U.S. Geological Survey Scientific Investigations Report 2008–5038, 39 p. [Also at <u>http://pubs.acs.org/doi/abs/10.1021/es1008938</u>]
- (3) <u>Hyenstrand, P.</u>, Metcalf J.S., Beattie K.A., Codd G.A., 2001, Effects of adsorption to plastics and solvent conditions in the analysis of the cyanobacterial toxin microcystin-LR by high performance liquid chromatography, Water Research, Volume 35, Issue 14, 3508-3511.
- (4) Idexx. "ELISA Technical Guide." 2013. Web. 7 January 2015.
- (5) <u>Mekebri, A.</u>, Blondina, G.J., Crane, D.B., 2009, Method validation of microcystins in water and tissue by enhanced liquid chromatography tandem mass spectrometry, Journal of Chromatography, Volume 1216, Issue 15, 3147-3155.
- (6) SWAMP. Water Quality Control and Sample Handling Tables. Web. 10 December 2014.
- (7) <u>Szlag, D.C.</u>, Sinclair, J.L., et al., 2015, Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants, Toxins, Volume 7, 2198-2220.
- (8) US EPA. "Detection." Nutrient Policy and Data. 1 October 2014. Web. 7 January 2015.
- (9) US EPA, NLA. "Laboratory Operations Manual." 2012 National Lakes Assessment. Version 1.1.
- (10) <u>US EPA, Ohio.</u> Total (Extracellular and Intracellular) Microcystins ADDA by ELISA Analytical Methodology. Version 2, January 2015.
- (11) US EPA, Region 9 Laboratory. SOP 1305 Microcystin by Elisa Analysis. Revision 4, November 2012.