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To address the impaired condition of the water bodies 
listed under Section 303(d) of the Clean Water Act, over 
40 000 total maximumdaily loads (TMDLs) for pollutants must 
be developed during the next 10-15 years. Most of 
these will be based on the results of water quality simulation 
models. However, the failure of most models to incorporate 
residual variability and parameter uncertainty in their 
predictions makes them unsuitable for TMDL development. 
The percentile-based standards increasingly used by the 
EPA and tile requirement for a margin of safety in TMDLs 
necessitate that model predictions include quantitative 
information on uncertainty. We describe a probabilistic 
approach to model-based TMDL assessment that addresses 
this issue and is suitable for use with any type of 
mathematical model. To demonstrate our approach, we 
employ a eutrophication model for the Neuse River Estuary, 
~oithcarolina, and evaluate compliance with the state 
chloroohvll a standard. Any observed variability in chloro~nvll 
a that is iot  explained by ttie model isexpiicitl~incorporate~ 
via a residual error term. This probabilistic term captures 
the effects of any processes that are not considered in the 
model and allows for direct assessment of the frequency 
of standard violations. Additionally, by estimating and 
propagating the effects of parameter uncertainty on model 
predictions, we are able to provide an explicit basis for 
choosing a TMDL that includes a margin of safety. 
We conclude by discussing the potential for models 
currently supported by the EPA to be adapted to provide 
the type of probabilistic information that is necessary 
to support TMDL decisions. 

Introduction 
Identification and listing of impaired waters is required of 
all states under Section 303(d) of the Clean Water Act. This 
process is generally accomplished through the assessment 
of samples collected as part of an ambient monitoring 
program. Whilestates have usedavarlety ofcrlterlafor placing 
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a waterbody on the 303(d) list, the U.S. EPA guidelines for 
statewater aualIhlassesunents instmctthat awater bodv be 
listed asim~airedifmore than 10% ofthe samplesfrom ;hat 
water body violate water quality srandards (l).Thlspercentile- 
baseda~6roach is Intended t a m i t  excessive ooll~tantlevels 
whlle r;cognlzing that, because of natural ;arlability and 
measurement error, it is unreasonable to disallow anv 

I standard violations. Because euidance documents do n i t  
dictate the number of sampLs that must be taken. it is 
presumably intended that the 10% allowance refers to the 

1 	 whole dlstilbutlon of values over a soecifled time and space. 1 	 Barnett and O'Hagan (4 refer to t6is as an idealstanhard. 
because it is not possible to measure the pollutant level at 
all points in a section of a water body at 811 times. 

ImplementaUon of an ideal standard requires an opera- 
tional procedure to address whether the standard is being 
met. The only practical approach is to collect a limited 
numberofsam~lesthatcan be used. toeetherwithastatfstical 
procedure. toinfer the characteristics~ftheuue distribution 
of relevant water quality characteristics. The use of ailmired. 
sample for statls~cal inference introduces uncertainor into 
thea'ssessment ofcompliance, and thedegreeof unce~ainty 
depends on the quality and quantity of samples collected. 
Therefore, decisions regarding the listing of a water body as 
Impaired depend on the sampllng scheme used as well as 
the degme of confidence required h m  the statistlcai test. 
Methods for using sample information to infer comdiance 
with an ideal. oer&ntil&based standard have been r&orted ~~ ~~ ~~ L~ -~~~ ~~ 

inthe literatGe recently from boththedasssicaland Bayesian 
statistical perspectives (3-5). . -

Once a water bodv is listed as imoaired. SecUon 303(dI 
requires that a totai maximum daily load CTMDL) bb 
dcveioped for the pollutant causing the impairment. TMDLs 
establlsh the allowable pollutant loadlng to a water body 
and provide the basis for states to require watershed-based 
controls(6). Within thenen 10-15years,over40 OOOTMDLs 
must be develaped for 21 000 water bodies nationuide (1). 
Whereas the process of placing a water body on the 303(d) 
llst requlres inferring current compliance with standards 
based on collected data. the TMDL development process 
requires predictingfuture compllance, afcer~pollut~nt load 
reduction, usually based on a water quality model. The 
appropriate use ofmodels to address ideal percentile-based 
standards has not beenoreviouslvdiScussed In theliterature. 
Given the substantial &clal and economic implications ol 
TMDLdeclsions, it isimponant toconsider whether current 
water quality modeling practices adequately address the type 
of standards on which the TMDL program is based. 

Most water quality models currently used for TMDL 
development are deterministic (@.Thatis, the modeloutputs 
are unfauelv determined bv the inouts. and oredictions 
c~nsistdfarin~levalueata~~intin
tiAeandspa&. However. 
predictingnaturalsystem response to anthropogenlcchange 
is a highly uncertain endeavor (9. 1(?, and thc relatlons5iip 
between pollutant loading and receiving water effec~s can 
never be perfectly knbwn. Regardless of the accuracy and 
complexity ofthe modeled ~hvslcal, chemical, and blolodcal 
processes; there wUl be redidLal uncertainty due to na&ral 
variation, misspeciflcation of boundary conditioms, and 
measurernani error. This is the reason that many modek are 
ohsewed to 'under-reoresent" the dvnamics of the svst?rn. 
missing the highest anh lowest meaiured values (I  I ) : M J ~ ~  
modelers interpret this to mean that they need to add more 
detail to their model. However, a few acknowledge that exact 
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Abstract 

To address the impaired condition of the water bodies listed under Section 303(d) of the Clean 

Water Act, over 40,000 Total Maximum Daily Loads (TMDLs) for pollutants must be developed 

during the next 10 to 15 years. Most of these will be based on the results of water quality 

simulation models. However, the failure of most models to incorporate residual variability and 

parameter uncertainty in their predictions makes them unsuitable for TMDL development. The 

percentile-based standards increasingly used by the EPA and the requirement for a margin of 

safety in TMDLs necessitate that model predictions include quantitative information on 

uncertainty. We describe a probabilistic approach to model-based TMDL assessment that 

addresses this issue and is suitable for use yith any type of mathematical model. To demonstrate 

our approach, we employ a eutrophication model for the Neuse River estuay, North Carolina, 

and evaluate compliance with the state chlorophyll g standard. Any observed variability in 

chlorophyllg that is not explained by the model is explicitly incorporated via a residual error 

term. This probabilistic term captures the effects of any processes that are not considered in the 

model and allows for direct assessment of the kquency of standard violations. Additionally, by 

estimating and propagating the effects of parameter uncertainty on model predictions, we are 

able to provide an explicit basis for choosing a TMDL that includes a margin of safety. We 

conclude by discussing the potential for models currently supported by the EPA to be adapted to 

provide the type of probabilistic information that is necessary to support TMDL decisions. 



Introduction 

Identification and listing of impaired waters is required of all states under Section 303(d) 

of the Clean Water Act. This process is generally accomplished through the assessment of 

samples collected as part of an ambient monitoring program. While states have used a variety of 

criteria for placing a waterbody on the 303(d) list, the U.S. EPA guidelines for state water quality 

assessments instruct that a water body be listed as impaired if more than 10% of the samples 

from that water body violate water quality standards (I). This percentile-based approach is 

intended to limit excessive pollutant levels while recognizing that, because of natural variability 

and measurement error, it is unreasonable to disallow any standard violations. Because guidance 

documents do not dictate the number of samples that must be taken, it is presumably intended 

that the 10% allowance refers to the whole distribution of values over a specified time and space. 

Bamett and O'Hagan (2) refer to this as an ideal standard, because it is not possible to measure 

the pollutant level at all points in a section of a water body at all times. 

Implementation of an ideal standard requires an operational procedure to address whether 

the standard is being met. The only practical approach is to collect a limited number of samples 

that can be used, together with a statistical procedure, to infer the characteristics of the true 

distribution of relevant water quality characteristics. The use of a limited sample for statistical 

inference introduces uncertainty into the assessment of compliance, and the degree of u n c e h t y  

depends on the quality and quantity of samples collected. Therefore decisions regarding the 

listing of a water body as impaired depend on the sampling scheme used as well as the degree of 

confidence required from the statistical test. Methods for using sample information to infer 

compliance with an ideal, percentile-based standard have been reported in the literature recently 

from both the classsical and Bayesian statistical perspectives (3-5) 



' .  
Page 4 

Once a water body is listed as impaired, Section 303(d) requires that a Total Maximum 

Daily Load (TMDL) be developed for the pollutant causing the impairment. TMDLs establish 

the allowable pollutant loading to a water body and provide the basis for states to require 

watershed-based controls (6). Within the next 10 to 15 years, over 40,000 TMDLs must be 

developed for 21,000 water bodies nationwide (7). Whereas the process of placing a water body 

on the 303(d) list requires infening current compliance with standards based on collected data, 

the TMDL development process requires predicting future compliance, afier a pollutant load 

reduction, usually based on a water quality model. The appropriate use of models to address 

ideal, percentile-based standards has not been previously discussed in the literature. Given the 

substantial social and economic implications of TMDL decisions, it is important to consider 

whether current water quality modeling practices adequately address the type of standards on 

which the TMDL program is based. 

Most water quality models currently used for TMDL development are deterministic (8). 

That is, the model outputs are uniquely determined by the inputs, and predictions consist of a 

single value at a point in time and space. However, predicting natural system response to 

anthropogenic change is a highly uncertain endeavor (9,IO)and the relationship between 

pollutant loading and receiving water effects can never be perfectly known. Regardless of the 

accuracy and complexity of the modeled physical, chemical, and biological processes, there will 

be residual uncertainty due to natural variation, misspecification of boundary conditions, and 

measurement error. This is the reason that many models are obse~ed  to "under-represent" the 

dynamics of the system, missing the highest and lowest measured values (11). Many modelers 

interpret this to mean that they need to add more detail to their model. However a few 

acknowledge that exact mathematical representation of nature is impossible and model 
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predictions can represent only an average effect at some scale (2). Predicting an average effect 

may be appropriate for assessing the ability of management actions to meet certain water quality 

standards expressed in terms of average levels. However, a deterministic model that purports to 

make exact predictions, without error, is inadequate in addressing the type of percentile-based 

standard that underlies the 303(d) listing. Such a model disregards the variability that is not 

explained by the model but is always present (2). For models that are calibrated to "go through 

the middle of the data", this oversight will bias predictions toward an underestimate of the 

frequency of standard violations under future conditions, thereby weakening the basis for model- 

based TMDL decisions. 

We describe a probabilistic approach to TMDL assessment that is suitable for use with 

any type of mathematical water quality model. The method explicitly incorporates residual 

variability into assessments, leading to more appropriate predictions of the frequency of standard 

violations. Additionally, we describe how to estimate the uncertainty in these percentile-based 

predictions that results f?om uncertainty in the choice of model parameter values. Such an 

assessment provides decisiorrmakers and stakeholders with a measure of the degree of 

confidence they can have in model results and provides an explicit basis for the choice of a 

margin of safety in setting a TMDL. 

To demonstrate our approach, we evaluated compliance with the state chlorophyll 2 

standard in the Neuse River estuary, North Carolina, as a function of total nitrogen inputs. The 

Neuse estuary is currently believed to be in violation of the chlorophyll standard (40 p&), and 

the development of a TMDL for nitrogen is required. We describe the nitrogen-phytoplankton 

relationship with an empirical model fit to observational data (12). Model predictions are then 

developed to assess the impact of various nitrogen load reductions on the expected frequency of 
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chlorophyll standard exceedances. Pedictions include estimates of uncertainty which are 

expressed in a form that facilitates their use in selecting an appropriate margin of safety. We 

conclude by discussing the abiity of detailed simulation models, such as those currently 

supported by the EPA, to provide the type of information that is necessary for TMDL decisions. 

Probabilistic Modeling Approach 

Most water quality models consist of a mathematical expression that relates pollutant 

concentration to a set of input, or predictor, variables and a set of coefficients, or model 

parameters. For example, following the diction of Chapra (13) we can write a general mass 

balance model for a pollutant in a well-mixed water body or stream segment as: 

Accumulation = loading -outflow +reaction, 

where loading includes all inputs, outflow includes all outputs, and reaction includes all internal 

processes that add or remove the pollutant (all terms in units of masdtime). If the volume of the 

water body is approximately constant, then accumulation, the change in mass with time, can be 

written as: 

where V =volume, c =pollutant concentration (masdvolume), and t =time. With inputs 

aggregated and described as a function of time, the loading term can be expressed as, W(t)= 

mass loading rate (massttime). With the assumption that the water body is well-mixed, the 

outflow tern can be written as the product of the in-lake pollutant concentration times Q,the rate 

of water flowing fiom the lake (volumdtime), or outflow = Qc.Reaction terms are commonly 

assumed to occur as first-order processes, where the reaction rate is proportional to the pollutant 

concentration or: 
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reaction =kVc, 

where k is a rate coefficient (Ittime). The final mass-balance equation can now be expressed as: 

Equation 1 is a general expression that can include any number of specific input, output, and in 

situ removal or addition processes. It can be applied to a whole lake or be used as a spatial 

discretization for advective systems such rivers and estuaries. In this model, concentration c is 

the dependent, or response, variable, and W(t)is the independent, or input, variable. The 

quantities V ,  Q,k, and V are the parameters, or coefficients, of the model. When eq. 1 is solved, 

either analytically or numerically, the solution can be written in the general form: 

c =gfx. P) (2) 

where g is a mathematical function (or functions) relating the pollutant concentration c to a set of 

all input variables X and a set of all model parameters P. Equation 2 is entirely general and can 

represent a series of detailed process-based functions or the expression of statistical relationships 

derived from historical data. In either case, once the function g(X:fl) is developed, predictions 

can be made regarding the value of the pollutant concentration c for any chosen values of input 

variables X and parameters P. Values of the model parameters are generally selected either 

informally so that predictions visually "go through the middle of the data" or formally using an 

optimization procedure to minimize prediction error (13). Either way, model predictions based 

on g(X.P) represent the expected value of c at the chosen values of X and P,not accountihg f o ~  

the variability that is not explained by the function g(X,P). However, model-based assessments 

that consider only these expected values do not provide an adequate basis for estimating the 

frequency of standard violations. Accurate estimation of this figure depends on explicit 

consideration of the additional sources of variability, so that eq. 2 becomes: 
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c = g ( k : P ) + e  (3) 

where e represents an error term that accommodates discrepancies between the predicted values 

of c represented by g(Xfi) and the observed values of c.  This lack of fit, or unexplained 

variability, may occw because the proposed function is an imperfect system representation or 

because of intrinsic randomness or measurement error (most likely, for all of these reasons). 

Characterization and incorporation of the residual error term is straightforward for a 

model that has been opthized to available data using maximum likelihood or least-squares 

regression. Adherence to the assumptions required for statistical inference with least-squares 

regression implies that the residual errors follow a normal distribution (after a suitable 

transformatiion, if necessary) with a mean of 0and a variance, d ,  the value of which is directly 

estimated from the data and is assumed to be a constant with respect to the value of c .  Therefore, 

for any given set of input variables X and model parameters P, the response variable c can now 

be viewed as being normally distributed with a mean g(X,B and a variance d :  

c -N(g(Xp). d l .  (4) 

As changes in the input variables X lead to changes in the model prediction g(Xfi), the mean of 

this distribution shifts up or down, while the variance remains constant (Figure 1). The 

probability of the response variable exceeding a numerical criterion c*, given values of P, a;and 

X, can then be calculated as: 

where p is the "exceedance probability" and F(.) is the value of the cumulative standard normal 

distribution. (While ow model development focuses on violation of standards written as an 

upper limit, the approach is equally applicable to those written as a lower limit, such as those for 
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dissolved oxygen. In these cases, the desired probability is the complement of eq. 5, orp'.) To 

assess compliance with the relevant standard over a specified time period, such as an annual 

cycle, multiple sets of predictor variables, X, can be chosen that represent the variability over that 

time period, such as daily values. The exceedance probability is then calculated from eq. 5 for 

each predictor variable set and the results averaged to calculate the "expected frequency of 

exceedance" for that time period. This value can then be compared with the frequency 

considered tolerable for the given situation, such as the 10% value suggested by EPA's water 

quality guidance documents (I). 

Uncertainty Analysis 

In addition to a single prediction of the expected frequency of standard violations, 

stakeholders and decision-makers will want information about the uncettainty in that prediction 

so that they might obtain a realistic expectation of the chances of achieving compliance with the 

percentile-based standard. If the uncertainty in model parameters can be expressed as a joint 

probability distribution, this type of uncertainty analysis is straightfonnrard, as the uncertainty in 

the exceedance probability p (arising fiom uncertainty in the model parameter values) for a given 

value ofX can be characterized by the probability density function: 

f (P I X)  = J P ( ~>c* l P, o , X ) f  (P,o)dPdo (6)-
wheref(P,,c3is a joint distribution representing parameter uncertainty. Because it may be an 

untiuniliar concept, it is worth reiterating that eq. 6 represents aprobability distribution of a 

probability value. It is an expression of the uncertainty in the predicted exceedance probability, 

p, for a given value of X. Equation 6 can be solved, in conjunction with eq. 5, using a Monte 

Carlo procedure (14). When multiple sets of predictor variables are used to represent a longer 
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time period of interest, the result is a distribution of the predicted frequency of standard 

violations over that time period. This distribution can be expressed either as a confidence 

interval (CI) on the exceedance frequency (14) or as a degree of confidence that the true value of 

the exceedance frequency is below a specified value (e.g. the 10%in the EPA guidelines). This 

latter quantity is termed the "confidence of compliance" (CC), (5) and its calculation provides an 

explicit means for determining an appropriate margin of saFety based on the degree of confidence 

required by managers and stakeholders. This approach will be demonstrated in the context of the 

Neuse River example described below. 

If the function g(X,P) is linear and parameter values have been derived fkom maximum 

likelihood or least-squares regression, then the parameter distribution in equation 6 can be 

appropriately represented by a multivariate t distribution described by the maximum likelihood 

estimates, together with the associated covariance matrix. From a Bayesian perspective, this 

distribution is equivalent to the posterior parameter distribution under noninformative priors 

(15). Alternately, in the true Bayesian spirit, informative priors based on cross-system data (16) 

or expert judgment (1 7) could be incorporated into the analysis, as well as a nonlinear model 

form. Either situation would require a more involved parameter inference method (18). 

Application to the Neuse River Estuary 

Study Site and Model Description 

The Neuse River estuary has recently received considerable attention due to recurrent 

algal blooms, bottom water hypoxia, and fishkills. It has been listed as an impaired water body 

on the Federal 303(d) list because, in certain segments, more than 10% of water quality samples 

analyzed for chlorophyll a have exceeded the state standard of 40 pgL. The general belief is 
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that high chlorophyll levels are due to high watershed inputs of nutrients, particularly nibgen 

(19), and a TMDLfor nitrogen is being developed to satisfy the state chlorophyll standard. To 

investigate the nitrogmphytoplankton relationship that will serve as the basis for the TMDL,the 

state has funded a coordiited water quality modeling and monitoring effort (ModMon) (20), of 

which this study is a part. 

For this analysis, we used an empirical model to relate chlorophyll 2concentration in 

each of five sections of the esturuy (Figure 2) to estuarine water temperature and incoming 

Neuse River flow and total nitrogen concentration (12). Model parameten were estimated using 

ordinaty least squares regression with approximately five years of biweekly monitoring data. 

Parameter values indicated a positive relationship between chlorophyll and nitrogen input 

concentration for all estuarine sections, with the strongest relationship in the lower section, 

where nitrogen is most likely a limiting factor for algal growth (21). Increased river flow was 

found to generally exert a negative effect on chlorophyll concentration in the upstream sections, 

possibly due to shortened residence times, lowered salinity, and increased turbidity. However, in 

the middle, bend, and lower sections, higher flow was associated with higher chlorophyll for 

flow values below an empirically-determined breakpoint but with lowered chlorophyll at flows 

above this value (Figure 3). This may be the result of increased nitrogen delivery from upstream 

sections at intermediate flow values and a flushing effect at higher flows. Additional model 

details and interpretation are discussed by Borsuk et al. (12). 

Probabilistic Prediction and Uncertainty Analysis 

A time-series of predictions and observations shows model fit to observed data (Figure 

4). The deterministic pottion of the model visually "goes through the middle of the data" and 
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captures both short and long term components of variation. The R' value indicates that the model 

explicitly resolves approximately 55% of the variation in logtransformed chlorophyll. While 

this is a better fit than that of other, more compIex simulation models that have been applied to 

the Neuse (22), the deterministic component g(X.P) cannot capture all of the variability in the 

observed data. Thus, the time series that represents the expected chlorophyll value for each day 

almost never exceeds the 40 p/L standard for any of the estuarine sections (see Fig. 4). 

However, inclusion of the residual variability, represented gmphically by a predictive interval, 

indicates that there is still some probability that samples collected on most days in the lower 

sections will exceed the standard. 

The average frequency (and associated uncertainty) of exceeding a chlorophyll level of 

40 pgk over a specified time period can be calculated from eq. (6). The Neuse TMDL is to be 

expressed in terms of a percent nitrogen load reduction relative to 1991-95 (22). Therefore, to 

assess standard compliance, our model predictions will focus on those years using observed daily 

values of flow, nitrogen concentration, and water temperature as predictor variables. To generate 

the distribution described by eq. (6), we used a Monte Carlo procedure. We fmt randomly drew 

1,000 parameter sets from a multivariate normal parameter distribution with mean vector and 

covariance matrix determined h m  the regression estimation. We then calculated a mean 

predicted chlorophyll value from the regression model and a corresponding probability of 

exceeding 40 pgk from eq. (5) for each of the 1825 (5*365) days, for each parameter set. These 

values were then each averaged across all days for each parameter set to obtain the daily average 

chlorophyll concentration and average exceedance frequency for the 1991-95 time period 

predicted by that parameter set. The distribution of exceedance frequencies across parameter 

sets was then used to represent the unceltainty in the exeedance kquency resulting from 
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parameter uncertainty. The bounds of the middle 90% of the values are reported as the 90% 

confidence internal (CI). The "confidence of compliance" (CC) is the proportion of the 

exceedance frequency distribution that lies below the EPA's 10% cutoff (Figure 5). This is a 

measure of the probability that the hue exceedance frequency is below lo%, given the 

uncertainty in the model. To determine the necessary reduction in riverine nitrogen inputs, 

results were generated for the three estuary sections in violation of the chlorophyll standard 

(upper, middle, and bend) for total nitrogen concentration reductions of 0%, lo%, 20%, 30%, 

40% and 50%. 

Results (Table 1) indicate that, under the baseline scenario, the expected frequency of 

standard exceedances is above 10% for all three sections, consistent with the 303(d) listing. 

However, because of parameter uncertainty, the true exceedance frequency may be higher or 

lower as indicated by the 90% confidence interval. In fact, only for the bend section does the 

10% value fall below the lower limit of this confidence interval. This is reflected by a 

confidence of compliance of less than 5%. As the nitrogen input concentration is reduced, both 

the average chlorophyll concentration and the exceedance frequency are also reduced, while the 

confidence of standard compliance increases. Only at reductions of 50% or greater do we predict 

the expected exceedance frequency to reach 10% for all three sections. However, it is important 

to note that even under this scenario, our confidence in complying with the 10% guidance is still 

only 50% for the bend section. If managers and stakeholders demand greater confidence that the 

actual exceedance frequency is less than lo%, an even greater nitrogen reduction is necessary. 

The difference between the nitrogen reduction necessary to achieve an exceedance frequency of 

10% with 50% confidence and the reduction necessary to achieve a higher level of confidence is 

the required margin of safety. 



Discussion 

The interpretation of water quality standards to allow for violations at some fkquency 

(e.g., 10%) and the requirement that TMDLs include a margin of safety both represent explicit 

acknowledgment of the importance of natural variability and prediction error. From an 

operational standpoint, these conditions imply that model-based TMDL predictions must consist 

of more than a single point or deterministic time series; instead, probability distributions or 

interval estimates are required. This error analysis must occur at two levels. First, any 

variability in water quality that is not explained by the model must be quantified to appropriately 

predict the frequency of standard violations (see eq. 5). Second, any knowledge uncertainty 

arising from the rnisspecification of the model or parameters must be probabiistically described 

to explicitly derive the margin of safety (see eq. 6). We have demonstrated how to characterize 

these two sources of error simultaneously for a model statistically fit to observational data. At 

this point, it is worth examining the extent to which other types of models, such as the simulation 

models currently supported by the EPA, can be used to pmvide this additional assessment. 

Prediction m r  in water quality simulation models has traditionally been estimated in 

one of two ways. For a comprehensive assessment, error propagation using Monte Carlo 

simulation has been used to estimate the collective effect of individual ermr terms on the 

prediction error (see summaries in 23.24). A second and simpler approach has been to compare 

predictions with observations and assume the differences between the two represent total 

prediction error. However, each of these methods has impomt practical limitations that may 

limit their applicability for TMDL development 

In a Monte Carlo analysis, it may be difficult to derive appropriate distributions 

describing the individual error terms. If a model is fit to observational data using least squares, 
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maximum likelihood, or Bayesian analysis, parameter and residual un-inty are estimated 

explicitly. However, simulation models typically have too many parameters for statistical 

estimation. As a consequence, parameters are judgmentally chosen and model fitting becomes 

an art; more experienced modeler/rutists will presumably produce better fitting models. 

Accuately quantifying the uncertainty, especially the parameter covariance structure, in such a 

situation is extremely difficult. However, because these models are generally calibrated to 

describe typical or average system behavior, it is reasonable to expect that a well-calibrated 

model will yield a prediction trajectoly that goes through the middle of the time series of 

observations. This observation leads to the second common approach to error analysis. 

The second approach to error analysis has been to statistically describe the nature of the 

differences between predictions and observations. Again, if a model is fit to data using classical 

statistical or Bayesian analysis, this error term has clear meaning; it describes a prediction 

internal centered on the fitted observations. However, if the model is fit using judgmental 

parameter selection, then correct interpretation of such an analysis is not straightforward. 

Depending on the judgment of the modeler, the resulting prediction interval may not be centered 

on the mean of the observations or have a constant error variance. For example, if, in order to 

address the 10% exceedance allowance, the judgmental parameters are selected to fit the upper 

extremes of the response variable (e.g., high chlorophyll a levels) then the chosen parameters are 

incompatible with a model structure designed to describe average system behavior. It is then not 

clear how the predictiorrobservation differences can be used for assessing uncertainty. 

Additionally, if a model is "overlitted" to calibration data,then the prediction-observation 

differences will likely underestimate the prediction error in new scenarios. The best way to 



Page 16 

avoid this is to obtain independent verification data substantiated with a statistical comparison 

between calibration and verification data 

Two-dimensional and three-dimensional simulation models cangenerate large numbers 

of predictions, so when an error analysis is not feasible, one option might be to simply plot the 

empirical distribution of all predictions and assess the distribution tail area for percent standard 

exceedances. However, as noted above, simulation models are typically specified and fitted to 

describe average behavior. This means that extremes are underestimated, so the tail area of a 

distribution of predictions can be expected to underestimate the true extent and percentage of 

extremes. This practice also does not provide any basis for selecting a margin of safety based on 

uncertainty in model specification. 

Each of the above observations may explain the common practice of selecting the margin 

of safety using safety factors or conservative model assumptions. However, such a practice 

obscures the underlying basis for the marginof safety (7) and amounts to making decisions in the 

dark. If, on the other hand, a formal uncertainty analysis is performed, allowing model results to 

be expressed as the degree of confidence that a standard will be met for any given pollutant 

loading level, then decisiommakers simply need to choose the percent reduction that corresponds 

to their desired level of confidence. The choice of required confidence is not an easy decision 

and should be based on careful consideration of the potential cost to stakeholders of continued 

impairment despite the attainment of the target pollutant load. 

Given the substantial model fo~cas t  uncertainty in most water quality models, the 

practical consequence of the analysis in this paper is that TMDLs are likely to require 

considerable over-design to accommodate margin of safety requirements. Because the margin of 

safety depends on both the risk tolerance of decisiowmakers and the uncertainty in the water 
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quality model, the size of the margin might be reduced in either of two ways. Either: (1) 

decision-makers and stakeholders must settle for a lower degree of confidence in achieving their 

objectives, or (2) predictive uncertainty must be reduced. Assuming that a lower confidence 

level is not acceptable, then the size of the margin of safety is wholly reliant on the choice of a 

model and the appropriate assessment of predictive uncertainty. If the prediction error estimate 

is incomplete, biased, or in some way does not reflect the application scenario, then the error 

analysis is misleading. Since the size of the margin of safety has a d i c t  impact on the pollutant 

load reduction required and, therefore, on the cost of watershed management, modelers and 

decision-makers should place a high priority on selecting and developing TMDL models that 

facilitate the assessment of prediction error (7). This requirement should be considered no less 

important than any other model choice criterion. 

The model that we present for TMDL development and error analysis is largely 

empirical. In general, however, we may prefer a TMDL model that has a strong mechanistic 

basis, as this provides additional assurance that the model will reflect the changes in pollutant 

loads associated with a TMDL forecast. Thus, an urgent research need is the development of 

process-based models that accommodate rigorous and complete error analysis (e.g. 12). Such 

models will allow for the d i c t  assessment of the frequency of standard violations and facilitate 

the determination of an appropriate margin of safety -both essential tasks within the current 

TMDL framework. 
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Table 1. Model predictions for the 1991-95 t h e  period for total nitrogen reductions from 0 to 

50%. Confidence of compliance values have been rounded to the nearest lo%, except when less 

than 5%. 
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Figure 1. Hypothetical distributions of predicted pollutant concentration for two sets of input 

variables, XIand )(2. Shaded areas pl and p2 represent the corresponding probabilities of 

exceeding a numerical criterion c*. 
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Figure 2. The Neuse River Estuary,North Carolina, showing the delineation into five sections 

for this analysis. Filled points indicate the location of water quality sampling stations. 
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Figure 3. Partial residual plots indicating the effect of river flow on chlomphyll a concentration 

for each estuary section. Solid l i e s  indicate the fitted model relationship, and points indicate the 

observedvalues afterremovingthe effect of the other model terms. 
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Figure 4. Time series plot of predictions and observations of chlorophylla concentration for 

each estuary section (both after a natural log transformation). Points indicate observed values 

and solid lines indicate the mean and the 80%credible interval for the model predictive 

distribution. The horizontal dashed line indicates the 40 k& standard. 
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Figure 5. Hypothetical probability density for the exceedance frequency over a specified time 

period. The shaded area represents the probability that the true exceedance frequency is below 

the 10% EPA guideline and is termed the confidence of compliance (CC). The mean of the 

distribution is termed the expected exceedance (EE). 
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ENV335 WATER QUALITY MODELING CLASS 
Fall, 2000 

Instructor: Dr. Kenneth H. Reckhow, A317ALSRC,613-8026, 
reckhow@duke.edu 
Office Hours: Wednesday 1:30 - 3:30; Friday 9:30-11:30 

CLASS SCHEDULE and LECTURE TOPIC (Readings) 
1 Introduction (Reckhow & Chapra, Chapter 1) 

2 Basic modeling concepts (Reckhow 1994b; 
Chapra and Reckhow, Chapter 10) 

3 Probability network models (Reckhow 1996) 


4 Stream DO models (Chapra 1997, Lecturesl9-21) 


5 Uncertainty analysis (Reckhow andchapra, Chapter 2) 


6 Mechanistic models - QUAL2E (Chapra1997, Lecture 26, 

36) 


7 Pollutant runoff models (Novotny and Olem, Chapter 9) 


8 Lake eutrophication models (Chapra 1997, Lecture 29) 


9 Trend analysis (Reckhow, Kepford, and Warren-Hicks 
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10 To be determined 

11 Statistical modeling 

12 Toxic substances (Chapra 1991) 

13 Final issues 

Course Objective: To acquaint'students with problems and 
approaches in surface water quality modeling, with particular 
attention to model choice and applications for management. 

Course Requirements: Six problem sets, weekly written 
literature reviews, readings, and active participation inclass 
discussion. 

Standard Class Format: first half lecture and second half 
discussion. 

Expected Assignment Schedule: Each assignment will have two 
weeks for completion; the first assignment will be given on the 
first day of class. Assignment topics and expected sequence 
are: 
1. model selection criteria 
2. probability network models 
3. stream DO model error analysis 
4. pollutant runoff models 
5. water quality trend analysis 
6 .  statistical modeling 

Readings: There is no class textbook; instead, copies of all 
readings will be distributed in class. 

Additional useful websites: 
EPAT~MDb 
D.D~U.list.~f.WQ..mo&!..sit.es 
USGS Water Research Abstracts .... .. .. . .. .. .... . .. ...... .. .. .. .. ...... .. .. . .. . .. .. .. .. ... .. ... .. .. .. . ....... . ... ...... 


Literature Reviews: Each week, a paper from the recent 
professional literature will be assigned for reading and critique. 
Written reviews (approximately three pages) will be due the 
following week, and the second half of that class will be 
devoted to a discussion of the paper and related issues.For each 
reading, the written review should provide a brief summary, 
your own comments on the paper, and answers to questions; 
these will provide the initial basis for class discussion. 
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