NOTES:
OWER FUNCTIONS OF THE SIGN TEST AND POWER EFFICIENCY
FOR NORMAL ALTERNATIVES:
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L. Summary. Power functions are tabulated for the sign test for various
smple sizes and o near .05 and .01, Several of these power functions, are com-

L;ﬁf 1;4‘ i pared with the power function of the ¢-test for samples from normal populations
¢l can v means of a power efficiency function. The results indicate decreasing power
efficiency for increasing sample size, for increasing level of significance and for |
mncreasing alternative. ' '
exponential dig

- Power function. The power of the two-sided sign test for level of significance,

opulations ;q;.t, 5 given bj_” :
. Res. Memiiis : ‘ AN i aes .

D) = X () [pi1 — 9" + p™ 1 — )]
vith two degrees’ =0 \J ' :

b

ZE'(I‘.r ) (/2" s (1/2a
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nd* NV is considered fixed [5]. Here, p is the altemnative population proportion.
alues for A(p) may be obtained readily from a table of the cumulative binomial
1].or tables of the incom_plete beta function (2] since '

> (N) 21 = )" = I AN ~ 4,4+ 1),
f=0 \ ] ‘

" Beyond the range of these tables the approzimation of Camp {3] can be used
-vith great accurscy. The maximum ¢ which satisfies (2) is tabulated 2s-r in
able I of reference [5] for @ = 01 and « = .05. Tables I and II of this paper
ve the power for these critical values. Since p = .50 is the nuil hypothesis,
be values in the column headed p = .50 in Tables I and IT of this paper give
the actual level of significance (.01 or £.05) of each test. At the foot of the
bles are the normal alternatives corresponding to the alternative p, that is,
13 defined by the relation 1 — F(5) = p where F(z) is the cumulative zero mean
nit variance normal distribution. For normal alternatives Tables I and IT may
¢ entered either with p or é. For nonnormal alternatives the tables must, of
ourse, be entered with p.
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) TABLE I :
Power for Sign Test (o = .
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Normal alter-
natives

0

0

L1257
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. 7416
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3.. Power efficiency. Discussion of the power of the sign test for normal alterna-
tives was given in [4) for large N. This paper obtains 100 (2/x) = 63.7 per cent
as the efficiency. Reference [5], by a rough coincidence of the power function of
the sign test for a sample of N observations with the power function of the {-test
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POWER FUNCTIONS OF' ‘I'HE SIGN TEST -

Sme smaller sa.mple size obta.med ratios of sa.mple sizes of 67 for N =
or N = 44. This ratio of sample sizes is defined to be power eﬂ'iclency

TABLE II
Power for Sign Test (a S 01)
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'ﬁerm shape. The eqtuvalence “by slght” or by an averaging process disguises

‘ ese differences in §ha.pe"‘Iﬁ would seem more realistic to define a power efficiency

= 63.7 per cent ction which ‘gives the power efficiency for each alternative. This function
ower function f_ 85 heen obtained for the sign test for N = 5, 10, 20 and is given in Fig. 1. The
tion of the ?-test ower function of the test was compared for & corresponding to particular exact:
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210 Coer T . M. ELLIOTT : .
will be used to refer to any tcfziperature change that produces a significant
-disturbance in the normal functions of a freshwater teleost and thus
decreases the probability of survival. This definition is similar to that.
proposed by Brett (1958) and assumes that the response is a stochastic

- variable that can be measured quantitati\%ely It also assumes that thermal
stress is harmful. Although this is 4 reasonable assumption for the individual
fish it is not always true for the population or community. For example,

“increased mortality in a crowded population may be beneficial to the fish
population as a whole if space and/or food resources are limited. An
extreme example is the death of the entire population through the severe
stress of a thermal discharge, but even this may be beneficial to other
members of the community.

“It has been traditionally assumed in ecology that i mcreasmg complexxty or
diversity in a community produces increasing stability (e.g. Elton, 1958), but
a more recent proposition is that complexity begets mstablhty not stability,
and that ecological communities persist desp1te not because of, their
complexity {e.g. May, 1973, 1976; Pimm and Lawtoxn, 1980). It is, therefore,
not surprising that stress respo‘ns'es at the population and community level
are very complex and that Jittle is known about the response of a freshwater
ecosystem (for general reviews of stress and ecosystems see Odum, 1967,
1974, Slobodikin and Sanders, 1969; Gibbons, 1976; Lugo, 1978; Lefiler,
1978). Therefore the present paper considers thermal stress only at the level
of the individual fish.

The responses of a fish to stress can be broadly classed as elther primary or
secondary. Primary responses include neuro-endocrine and ‘endocrine
reactions which are reviewed in detail elsewhere in this volume (see contri-
butions by Donaldson, 1981; Mazeaud and Mazeaud, 1981). Examples of
primary responses to thermal stress include work on juvernile coho salmon,
Oncorhynchus kisutch (Wedemeyer, 1973), goldfish, Carassius auratus
(Fryer, 1975), juvenile sockeye salmon, Oncorhynchus nerka (Mazeaud et
al., 1977), and juvenile cutthroat trout, Salmo clarki (Strange et al., 1977).
As the fish were subjected to rapid increases of 10-15°C in these experi-
ments, it is not surprising that the primary responses were so large. Such
temperature increases rarely occur naturally in fresh water, and it would be
of more ecological value to know the primary responses to smaller tempera-
ture changes at different acclimatiop temperatures and the level of
temperature change at which there is no significant primary response.

There are numerous secondary responses. to thermal stress and these
include disturbances in osmotic and ionic regulation, metabolic processes,

growth, reproduction and behaviour. The ultimate response is death.
Metabolic and osmoregulatory disturbances during stress are effected by
neuro-humoral changes (see reviewsg by Love, 1970; Maetz, 1974; Fontsine,
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