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ABSTRACT 

A statistical approach for making impairment determinations in the Section 
303(d)listing process is developed. The method is based on the 100(1 - a )  
percent lower confidence limit on an upper percentile of the concentration dis- 
tribution. Advantages of the method include: (1) it provides a test of the 
null hypothesis that a percentage of the true concentration distribution fails 
to meet a regulatory standard, (2) it is appropriate for a variety of differ- 
ent concentration distributions (i.e., normal, lognormal, nonparametric), (3) 
it directly incorporates the magnitude of the measured concentrations in the 
test of the hypothesis that a percentage of the true concentration distribution 
exceeds the standard, and (4) it has explicit statistical power characteristics 
that describe the probability of detecting a true impairment conditional on 
the number of samples, the concentration distribution, and the magnitude of 
t,he exceedance. 
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INTRODUCTION 

While comprehensive guidelines for water quality assessments in our nation's 
water bodies are now available (USEPA, 1997), they lack statistically sound 
procedures for evaluating the resulting data. For example, a percentage of 



exceedances of a numeric water quality criterion for a given pollutant in a 
particular water body is often used to classify whether or not that water body 
is impaired (e.g., no more than 10% of samples can exceed the standa,rd). The 
problem with this approach is that it is based on the observed percentage and 
not an estimate of the true percentage of the concentration distribution that 
exceeds the criterion. As such, the confidence in such a statement is directly a 
function of the number of samples taken, for which the guidelines are insuffi- 
cient (e.g., a minimum of 10 samples over a three year period). The fewer the 
number of samples, the greater the uncertainty in the percentage of the true 
concentration distribution that exceeds the regulatory standard. Furthermore, 
by simply evaluating the percentage of exceedances, the actual concentrations 
have no bearing on the decision rule. Should not a concentration that is an 
order of magnitude above the standard be of greater concern than a concen- 
tration that exceeds the standard by 1% of its magnitude? 

Finally, many environmental monitoring applications involve testing hypothe- 
ses regarding the probability that a true concentration or true percentage of 
concentrations exceeds a regulatory standard, not simply an observed measure- 
ment or percentage of measurements (see USEPA Statistical Guidance Docu- 
ments, 1989, 1992, 2000). For purposes of making water quality impairment 
determinations, the appropriate null hypothesis is that the true percentage 
of the concentration distribution that fails to achieve the regulatory standard 
is less than or equal to 10% or 25% (or whatever the impairment threshold 
requirement is for a particular pollutant and water body). The alterna.tive 
hypothesis, which could establish the presumption of impairment, is that the 
true percentage is greater than the required percentage. A simple tally of the 
observed percentage of exceedances, based on a.n arbitrary number of avail- 
able samples, does not test this hypothesis in any statistically rigorous way. 
Such an approach provides us with no information regarding the confidence 
with which a percentage of the true concentration distribution fails to meet a 
regulatory standard, nor does i t  provide a sound basis for making impa,irment 
determinations. 

Based on this review, a more rigorous statistical approach for making impair- 
ment determinations is clearly needed. In the following sections, a general 
statistical methodology for that purpose is developed, illustrated and fully 
evaluated. The statistical approach presented: 



1. provides a test of the null hypothesis that a percentage of the true con- 
centration distribution fails to meet a regulatory standard, 

2. 	is appropriate for a variety of different concentration distributions ( i .e . ,  
normal, lognormal, nonparametric), 

3. 	directly incorporaties the magnitude of the measured concentrations in 
the test of the hypothesis that a percentage of the true concentration 
distribution exceeds the standard, 

4. 	has explicit statistical power characteristics that describe the probability 
of detecting a true impairment conditional on the number of samples (m), 
the concentration distribution, and the magnitude of the exceedance. 

STATISTICAL METHODS 

In the present context, we are interested in comparing the true concentra- 
tion for a particular constituent(s) in a particular water body t o  a regulatory 
standard. Of course, given a h i t e  set of m samples, we can never know the 
true concentration with certainty. We can however, determine an interval that 
will contain a particular percentile of the true concentration distribution with 
a given level of confidence. For example, in evaluating water body monitor- 
ing data using EPA's 305(b) Guidelines, no more than 10% of the samples 
obtained from the water body are allowed to exceed a regulatory standard. 
Statistically, this amounts to a comparison of the upper 90th percentile of the 
distribution to the regulatory standard. As previously noted, with a finite 
number of measurements, we never know the 90th percentile of the distrib- 
ution with certainty. However, just as we can compute a confidence interval 
for the mean of a distribution, we can compute a confidence interval for an 
upper percentile of the distribution as well. The confidence interval allows 
us to incorporate our uncertainty in the true parameters of the distribution 
into our comparison to the regulatory standard (Gibbons and Coleman, 2001). 

In evaluating water body monitoring data we can then use this confidence 
interval for the upper 90th percentile of the distribution to determine if a 
particular pollutant has exceeded the regulatory standard with a reasonable 
level of confidence. This determination may be made if the entire confidence 



interval exceeds the regulatory standard. More conservatively, we can com- 
pute a one-sided lower bound on the true 90th percentile of the concentration 
distribution as a 100(1 - a ) %  lower confidence limit (LCL), where for 95% 
confidence, a = .05. In doing so, we are testing the null hypothesis that the 
true 90th percentile of the concentration distribution is less than or equal to  
the regulatory standard. If we reject the null hypothesis the pollutant in the 
water body is deemed to be at  an unacceptable level. 

Based on the distributional form of the data and the frequency with which the 
pollutant has been detected, alternate parametric and nonparametric forms of 
the LCL are available. In the following sections procedures for deriving normal, 
lognormal and nonparametric LCLs are presented. Many of these computa- 
tions can be performed by hand. Alternatively, all of these computations can 
be computed automatically for an unlimited number of constituents and water 
bodies using the CARStat computer program (www.discerningsystems.com). 

Normal  Confidence Limits for a Percentile 

To compute a normal lower confidence limit for a percentile of the distribution, 
we use factors similar to those that are used in computing one-sided normal 
tolerance limits (see Gibbons, 1994). Here we seek the (1- a)100% lower 
bound on the p(100)th percentile of the distribution, which is compnted as 

where % is the sample mean of the m measurements, 

and s is the observed sample standard deviation, 

and K,,, is the one-sided normal tolerance limit factor for (cu)100% confidence 
andp(100)% coverage (Hahn and Meeker, 1991). Table 1presents values of I< 



TABLE 1 - OneSided Factors for 95% Confidence LCLs for the  
75th and 90th Percentiles of the Distribution m = 4 t o  1000 

75th Percentile 90th Percentile 
-0.155 0.444 



useful for computing 95% confidence LCLs for the 75th and 90th percentiles 
of the distribution. 

Handling Data Below the Detection Level 

Note that if the data are normally distributed and nondetects are present, 
can compute the adjusted mean of the m samples as: 

where 5' is the average of the m -mo detected values, and mo is the number 
.of samples in which the compound was not detected. The adjusted standard 
deviation is: 

where st is the standard deviation of the m -modetected measurements. The 
normal confidence limit can then be computed as previously described. This 
method is due to Aitchison (1955) - (also see USEPA 1992 section 2.2.2). 

Lognormal Confidence Limits for a Percentile 

In the lognormal case, confidence limits for percentiles are obtained by com- 
puting LCLs as described in the previous section on the natural logarithms of 
the measured values and exponentiating the resulting limits. Since the limits 
are for percentiles of the distribution, and not the mean, the simple transfor- 
mation estimator applies directly. For example, 

LCLl,, = exp [g + K,,ps,] , (2) 

where g and s, are the mean and standard deviation of the nat,wal log trans- 
formed data y = log,(x). The factors used for computing these limits are the 
same as those given in Table 1. 

Note that if nondetects are present, we can use the previously described sta- 
tistical adjustment, replacing 2' with g' and s' with sb in the equa.tions for % 



a.nd s. The lognormal prediction limit may then be computed as previously 
described. Note that this adjustment only applies to positive random vari- 
ables. The natural logarithm of concentrations less than 1 are negative and 
therefore the adjustment does not apply. A simple solution is to add 1to each 
value (i.e., log,(xi + 1) 2 0), compute the confidence limit on a log scale and 
then subtract one from the antilog of the confidence limit. 

Nonparametric Confidence Limits for a Percentile 

When data are neither normally or lognormally distributed, or the detection 
frequency is too low for a meaningful distributional analysis (e.g., < 50%), 
nonparametric confidence limits become the method of choice. The nonpara- 
metric confidence limit is defined by an order statistic (i.e., ranked observation) 
of the m water body measurements. Note that in the nonparametric case, we 
are restricted to computing confidence limits on percentiles of the distribution, 
for example, the 90th percentile of the distribution. Unless the distribution is 
syriimetrlc (i.e., the mean and median are equivalent), there is no direct non- 
parametric way of constructing a confidence limit for the mean concentration. 

To construct a nonparametric confidence limit for the Wth percentile of the 
concentration distribution, we use the fact that the number of samples falling 
below the p(100)th percentile of the distribution (e.g., p = .9, where p is be- 
tween 0 and 1)out of a set of m samples will follow a binomial distribution with 
parameters m and success probability p, where success is defined as the event 
that a sample measurement is below the p(100)th percentile. The cumulative 
binomial distribution (Bin(x; m,p)) represents the probability of getting x or 
fewer successes in m trials with success probability p, and can be evaluated as 

The notation ( 7 ) denotes the number of combinations of m things taken i 

a t  a time, where 



and k !  = 1 . 2  . 3 . ..k for any counting number, k. For example, the number 
of ways in which 2 t h i n 5  can be selected from 3 things is: 

To compute a nonparametric confidence limit for the 90th percentile we begin 
by rank ordering the m measurements from smallest to  largest as x ( I ) ,x(q,. . . ,x(,) 
Denoting the candidate LCL as L*,begin with L' = m, and compute the prob- 
ability 

If the probability is less than the desired confidence level, 1- a, select a new 
value of L* = L* - 1,and repeat the process until the desired confidence level 
(e.g., 95%) is achieved. 

STATISTICAL POWER 

An essential feature of any statistical method is the power with which it can 
detect a real exceedance of a given magnitude. To determine the statistical 
power of the 95% LCL for the 90th percentile of the distribution, and the 
corresponding EPA method of no more than 10% exceedances of the regu- 
latory standard, the following simulation study was conducted. Three types 
of LCLs were considered, normal, lognormal and nonparametric. Normally 
distributed data were simulated to examine statistical power of normal and 
nonparametric LCLs, whereas lognormally distributed data were simulated to  
examine statistical power for lognormal LCLs. To examine the effect of sam- 
ple size, we studied sample sizes of m = 5, 10, 20, 30, 40 and 50. In terms 
of effects sizes, we examined cases in which the true mean was one-half the 
size of the standard 0.5(STD), O.G(STD), 0.7(STD), 0.8(STD), O.g(STD), and 
equal to the standard l.O(STD). To this end we used a standard of 50 pg/L 
and a standard deviation (SD) for each condition of 10 pg/L. As such, the 
true mean concentrations of the six simulated conditions were 25, 30, 35, 40, 
45 and 50 pg/L respectively For each condition, 1000 simulated datasets were 
generated and the percentages of times the LCL exceeded the standard of 50 
pg/L, or the EPA method found more than 10% exceedances were recorded. 



The results are summarized in the following. 

First, there are very few cases in which the LCL exceeded the standard of 
50 pg/L when the true mean was 25, 30, or 35 pg/L. This finding indicates 
that there is very little chance of an exceedance when the true mean is more 
than one standard deviation unit below the standard (i.e., SD = 10 pg/L). 
This is not true for the EPA approach, which indicated reasonably high per- 
centages of failures, even when the true concentration was as low as 25 pg/L 
(i.e., 2.5 standard deviation units below the standard). For example, with a 
lognormal distribution and m =5 measurements, their were 10% failures even 
when the true concentration was half of the regulatory standard. At a true 
concentration of 35 pg/L (which is still well below the standard of 50 pg/L), 
the rate at  which the EPA method indicates impairment is approximately 
30% or more, regardless of the distributional form of the data. These false 
positive results for the EPA method were most pronounced for small sample 
sizes (m < 20) and lognormd distributions, both of which are characteristic 
of practice in this area. Second, for a true mea,n of 40 pg/L (i.e., exactly one 
SD unit below the standard), exceedances are detected with some frequency 
for both pa.rametric and nonparametric LCLs, however, at  best, power was 
63% at  .rn = 50 samples. Third, when the true mean is one-half of a standard 
deviation unit below the standard (i.e., 45 pg/L) power is approximately 80% 
or more for either parametric or nonparametric LCLs and a minimum sample 
size of m = 20. Fourth, when the true mean is equal to the standard, power is 
generally excellent in all cases. A single exception is the nonparametric LCL 
for m = 5. As such, the minimum sample size that should be used for the 
nonparametric LCL is m = 10 samples. Fifth, power is generally best for the 
normal LCL (when the data are normally distributed), there is a small loss of 
power for lognormally distributed data, and a more substantial loss of power 
for the nonparametric LCL, particularly for smaller samplesizes (i.e., m < 20). 

In terms of the EPA method (i.e., no more than 10% exceedances), power was 
reasonably comparable for the higher concentrations; however, the very high 
false positive rates should preclude further use of the method. 



ILLUSTRATION 

Consider the following data for hexavalent chromium (pg/L) obtained from a 
water body. 

Date Result 
08/02/99 29 

The adjusted mean concentration is 36.182 pg/L with standard deviation of 
42.483 pg/L. The normal 95% LCL for the upper 90th percentile is 67.364 
pg/L. Note that inspection of the raw data clearly does not provide evidence 
for normality of these data. Indeed distributional testing using the Shapiro- 
Wilk test (see following section) revealed W,, = ,716, WlOg= .936 and a 
critical value of Wcet=.842 indicating that the data are consistent with a log- 
normal distribution. The lognormal 95% LCL for the upper 90th percentile is 
53.119 pg/L The nonparametric LCL for the upper 90th percentile is 33.000 
pg/L, which corresponds to the 8th ordered observation, and provides confi- 
dence of ,981. Given that the distribution was shown to be consistent with 
lognormality, we have 95% confidence that the true 90th percentile of the 
hexavalent chromium distribution is no less than 53.119.pg/L. If the regula- 
tory standard is 50 pg/L, then we would conclude that there is 95% confidence 
that the true 90th percentile of the distribution has exceeded the regulatory 
standard (i.e., more than 10% of the concentrations in the water body are 
above the regulatory standard). 



CONCLUSIONS 

In summary, use of the LCL for upper percentiles of a pollutant distribution in 
water body sampling applications provides a rigorous solution to the problems 
associated with taking a simple tally of the number of observed measurements 
which happen to exceed the standard. Statistical power characteristics indi- 
cate that the approach provides sensible results in those cases in which there is 
clearly not an impact, as well as those cases where an exceedance is apparent. 
In fact, power is excellent even when the mean of the pollutant distribution 
is one-half of a standard deviation unit below the regulatory standard. The 
best results overall, are obtained when the number of samples is at  least 20 or 
more. The statistical power computations also revealed that the nonparamet- 
ric approach should never be used when fewer than 10 samples are available. 
By contrast, the false positive rate for the EPA method of no more than 10% 
exceedances was quite high, particularly for small sample sizes and lognormal 
distributions, conditions which typify routine practice. 

By using the statistical approach, focus is now on estimating a lower bound of 
a percentile of the true pollutant distribution and not a collection of available 
environmental measurements (e.g.,  the 10th percentile of the observed data 
computed as the 9th largest of 10 available samples). Furthermore, the LCL 
is sensitive to the actual measured concentrations and does not simply rely on 
a binary determination of whether or not the observed measurement exceeded 
the regulatory standard. As shown in this paper, exact confidence levels for 
environmental decisions are directly available with the statistical approach, 
whereas they cannot even be guessed a t  using the current non-statistical ap- 
proach. In this paper, both normal and lognormal forms of the LCL have 
been developed, as well as a nonparametric alternative which is quite useful 
for nonnormaily distributed data that cannot be suitably transformed. The 
common case of having "nondetects" in an environmental dataset, makes the 
nonparametric approach attractive as well. 
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